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1

Strong Earthquake Ground Motion

Prediction: tools and methods to build

realistic seismic scenarios

“It is not light that we need, but fire; it is not the gentle shower but thunder. We need the

storm, the whirlwind, and the earthquake.”

– Frederick Douglass

The concept of earthquake-related risk embodies the possibility of disastrous effects (in terms of

human and economic losses) that are likely to occur in the future, due to the occurrence of a ground

shaking. The definition of risk of natural disasters was traditionally inflected into physical hazard,

vulnerability and exposition. Therefore, the hazard event is not the sole driver of risk, since the de-

gree of adverse effects is prevalently determined by its intricate combination with vulnerability and

exposure of societies and social-ecological systems (Cardona et al., 2012).

Recently, strong ground motion earthquakes have been widely documented and studied. For instance,

between 2010 and 2016, a sequence of devastating earthquakes struck several places all over the

world. Figure 1.1 shows a selection of strong motion earthquake (MW >6.5) occurred all over the

world in the last 10 years. As a matter of fact, economic losses quickly raised to billion dollars

in this period. For instance, comparing the 1995 Kobe and the 2011 Tohoku earthquakes, the loss

statistics shows a factor 3 increase for the economic loss (Paolucci et al., 2014). This trend appears

intrinsically related to population dynamics and growth, along with multiple and variegate demands

for location, comfort and energy which, in turns, leads to the gradual decrease in the availability of

safer lands, along with an increased susceptibility to excessive damage and low resilience, i.e. an

inevitable increase of potentially dangerous places (Lavell, 2003). Where exposure to events is im-

possible to avoid, land use planning and location decisions can be accompanied by other structural or

non-structural methods for preventing or mitigating risk (Cardona et al., 2012).

From a modern conceptual point of view, earthquakes (such as other natural disasters) mainly rep-

resent an un-managed risk or series of risks, whose detonator is the physical event itself. As things

stand, the procedures and methods for post-earthquake disaster management, seismic vulnerability

and hazard assessment started to be re-thought, so to include the identification of critical structures

and infrastructures, their vulnerability evaluation, control and financing along with the traditional

predictive framework (Paolucci et al., 2014). The aim is twofold: on one side, to improve the pre-

paredness and response, predominantly based on engineering schemes; on the other, to consider

prevention and mitigation as major efforts in reducing the overall risk. Unfortunately, the latter aspect

has been widely disregarded in the past, and even so governments and society were mostly devoted to

the modification of hazards using structural engineering measures or sporadic relocation of commu-
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Figure 1.1: Map of strongest earthquakes that struck several regions all around the world in the last

10 years (source: https://earthexplorer.usgs.gov/).

nities located in risk zones (Lavell, 2003). From early 1990s up to now, however, the good practice of

risk mitigation through intervention prior to earthquake disasters took place, enforced by the devasta-

tions caused by those ruthless natural disasters. Specifically, vulnerability and exposure to earthquake

disasters were revisited, so to better assess and estimate the severity of the impact of extreme and

non-extreme ground shaking. In this sense, one of the hot tasks to cope with is the seismic design of

critical structures, such as highways, bridges, all major lifelines and energy power plants, such as nu-

clear ones. The latter aspect is doubly important, due to the associated primary disaster potential and

to the indirect damage and losses due to their scarce resilience. Understanding the multiple shades of

vulnerability and exposure of those structures to earthquakes disasters steers the path to design and

implement effective adaptation and disaster risk management strategies (Cardona et al., 2012).

Bearing in mind the ultimate goal of risk mitigation, the performance-based earthquake engineer-

ing methodology evolved accordingly. For instance, the Pacific Earthquake Engineering Research

(PEER), proposed a brand new methodology which unravels in four stages (Porter, 2003):

1. the hazard analysis in which one of several intensity measure (IM) parameters are identified

2. the structural analysis in which the response to the earthquake is represented by the engineering

demand parameter (EDP)

3. the damage analysis in which the probability of failure is quantified (e.g. by drawing realistic

fragility curves)

4. the loss analysis, which requires the estimation of the decision based on the cost and mainte-

nance of the project

The listed items may be arranged into a pyramidal scheme: the database of observed and/or synthetic

ground motion parameters (item 1) bare the whole framework, since it provides realistic input motion

to perform structural analyses (item 2), it feeds probabilistic models (item 3) by defining marginal

distributions of several IM and they constrain macro-seismic intensity maps that steer loss analysis
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(item 4). Following this framework, this work places itself into the first stage, as it aims to provide

reliable yet synthetic earthquake ground motion estimations so to feed the whole PEER work chain.

In doing so, strong ground motion observations are employed to tune the constructed seismological

model.

1.1 The Earthquake Ground Motion Prediction framework

On of the main ingredients of the seismic hazard assessment resides into the Earthquake Ground Mo-

tion Prediction (EGMP) framework. Its ultimate goal is the prediction of a parameter related to the

severity of earthquake ground motion, given a set of basics information as magnitude, distance, fault-

ing style etc. First and foremost, quantitative EGMP requires the definition of an Intensity Measure

(IM). Traditionally, earthquake intensity and ground acceleration are two parameters which express

the degree to earthquake ground shaking. In this sense, EGMP outcome has a twofold nature since

it may be intended as (1) full time-histories and/or as some ground motion peak value (typically

Peak Ground Acceleration, PGA, or the Peak Ground Velocity, PGV), or (2) as an macro-seismic

intensity measure. The former interpretation better describes the incident wave field and the physical

process underlying the earthquake, whereas macro-seismic intensity measures generally quantify the

effects of earthquakes on structures on a observational basis. The general problem when working

with macro-seismic intensity data is that intensities are assigned relative to various scale and within

certain cases, a considerable portion of personal judgment (Sørensen et al., 2010). However, when

observed at larger scale and over a large number of points, intensity parameters show a quite regular

pattern that may be controlled by radiation properties of the seismic source (Panza et al., 1997).

In a broad sense, EGMP may be portrayed as an operational framework that encompasses different

methods and tools (both probabilistic and deterministic) and takes advantage of large databases of

ground motion recordings. It is worth to mention that, due to the major intrinsic uncertainties that

resides within each earthquake scenarios (mainly due to the general poor understanding of the physical

process underlying an earthquake, inherited from the difficulty to handle the naturally multi-scale

problem and to quantify each aspect one apart from the other), each estimation must be supplied with

a measure of the level of confidence or of the safety margins. A traditional conceptual scheme (widely

used in seismology to help unravelling EGMP) asserts that a given earthquake intensity measure Y
can be estimated at a generic site by the following convolution product (Boore, 2003):

Y (M ;R; f) = E (M ; f) ∗ P (R; f) ∗G (f) ∗ I (f) (1.1)

with:

• E: the Earthquake source mechanism

• P : the propagation Path effect

• G: the soil Site effect

• I: instrument or type of motion

where M is alternatively the seismic moment M0 (firstly introduced by Kanamori and Anderson,

1975) or the moment magnitude, R and f are source-to-site distance and frequency respectively.

Figure 1.2 schematically portrays a Source-to-Site earthquake scenario, highlighting some of the

features characterizing the source, the propagation multi-pathing and the site effects. In the following

paragraphs, each of the components of a complete Source-to-Site analysis are described into details,

keeping in mind that an exhaustive EGMP requires the whole of them to be convolutely coupled

together.
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Figure 1.2: Scheme of the forward deterministic EGMP. Three main items (source E (M ; f), path

P (R; f) and site-effect G (f)) are highlighted in dashed black boxes meaning they may be charac-

terized as standalone features. The external dashed orange line indicates the all-embracing Source-

to-Site framework, to highlight its multi-scale nature. Next by each of dashed box, a set of keywords

concerning the highlighted feature is listed.

Earthquake Source E (M ; f)

The ground shaking originates along active rupture fronts inside crustal rocks, the dimensions of

which may range from few km (e.g. MW5-MW6) up to hundreds of km (e.g. MW8-MW9). Intuitively,

the source is interpreted as a discontinuity in the Earth’s crust, whose sides slip one with respect to

another at a certain rupture velocity and along a certain rupture path, releasing and dissipating energy

due to complex frictional mechanisms. As a matter of fact, the complete characterization of the

seismic source process requires, along with the knowledge of the geometry, the 3D orientation and the

structure of the fault system, the knowledge of spatio-temporal distribution of the forces acting on the

discontinuity interface (Bizzarri, 2014), and the respective nonuniform distribution of those physical

properties. Forward analysis may be performed by translating the inverted slip distribution/stress

drop into equivalent dynamic forces that excite the computational model. Nowadays, the kinematic

approach is widely adopted to describe the seismic source, which is represented as a set of force

couples, denoted by their seismic moment (Madariaga et al., 2013). It has been widely observed

that the amplitude of the source Fourier’s spectrum scales with the earthquake magnitude, according

to a similarity condition firstly outlined by Aki (1967). As a matter of fact, earthquakes of higher

magnitude are prone to generate longer period wave-field. Conventional scaling relations for the fault

parameters, such as the fault length and average slip on the fault based on the seismic magnitude,

are mostly estimated with the help of wave-form inversion techniques exploiting from surface offsets

22



and using teleseismic/geodetic measurements (Tarantola, 1988). Those observations characterize the

long-period part of the motion, thus being insufficient to picture the broad-band near-source ground

motion effects at periods less than 1 s, which are of major concern for engineers (Miyake et al.,

2003). In determining the spectral and spatial limits of high-frequency wave propagation, the rupture

propagation schemes cannot be overlooked however.

Propagation Path P (R; f)

The wave-field radiated from slipping interfaces propagates to the Earth’s surface through complex

geological configurations. It is well known that Earth’s crust has statistically a stratified nature. How-

ever, the tectonic stress state generated complex folded structures with regional scale extension. From

a smaller scale point of view, crustal material happens to be rather heterogeneous and anisotropic. The

latter issues cause wave scattering and dispersion, along with the radiative damping due to the large

distances (within a radius of interest of 50-100 km approximately) travelled by the wave-front. More-

over, the heterogeneous nature of the bedrock material induces scattering phenomena which address

the radiated wave-forms at higher frequencies. Therefore, the physics-based approach models the

propagation effect by describing the mechanical behaviour of the Earth’s crust and of the regional

geological interfaces. The pre-existent tectonic stress state should be taken into consideration as well.

Site-effects G (f)

The very final objective of any EGMP is the provision of the so-called incident ground motion that

excites the structural components. The site specific conditions (i.e. within a distance ≈ 100-1000 m

in the site surroundings) have huge impact on the ground motion propagating from deep crustal rock

conformation towards the surface. This is mainly due to the impedance contrast between shallow

softer soil deposits and the stiffer bedrock, combined with the presence of complex geological inter-

faces and the heterogeneous non-linear rheology characterizing sandy and clayey layers beneath the

surface. The latter factors play competitive roles in modifying the input motion (Kramer, 1996): the

impedance contrast (softer-over-stiffer layer) tends to amplify the ground motion and steer it along

the vertical direction, whereas the non-linear rheology lead the soil deposits to absorb seismic energy

damping the incoming ground motion (hysteresis loops in Figure 1.2). Moreover, the wave scatter-

ing/dispersion due to the heterogeneity of soil media is contrasted by the wave focalization due to the

basin-type geology (often observed at shallow depths, due to the diagenesis process).

When assessing the seismic site-effects, the eventual presence of the structure must not be disre-

garded. Soil-Structure-Interaction (SSI) represents the direct application of EGMP: the predicted

ground motion excite the structural resonance modes, implying the structure to modify the incident

seismic wave-field by radiating seismic energy back to the soil.

1.1.1 Classical EGMP: tools and approaches

A huge variety of approaches for EGMP has been proposed in the past four or five decades, relying on

different information detail associated to different outputs (Figure 1.3). The most intuitive approach

consists into casting all the aspects within an empirical Ground Motion Prediction Equation (GMPE).

The latter is usually calibrated upon instrumental observations from real earthquakes, in terms of

average prediction and standard deviation. A compilation by Douglas (2011) has reported about 300

of such equations to estimate peak ground acceleration (PGA) since 1964, and about 200 to estimate

the response spectral ordinates. As reported, for instance, by Boore et al. (2013) and by Douglas et al.

(2014), the empirical GMPE tool represented so far a valid substitute of more efficient numerical
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Figure 1.3: Scheme of the principal EGMP methods, with relative inputs required and provided out-

comes. Reprinted from Paolucci et al. (2014).

tools and an intensive statistical processing of available records (whose quality and associated meta-

files are continuously increasing, however). Peak values predicted through GMPEs may be also

obtained by a stochastic approach (Hanks and McGuire, 1981; Boore, 1983, among others). However,

one of the major improvement due to the stochastic approach resides in its capability of generate

time-histories. The idea beneath is rather simple: the earthquake ground motion is interpreted as

a non-stationary time-varying stochastic process. The synthetic spectrum is generally expressed as

white-noise spectrum opportunely scaled by the source amplitude spectrum (frequency modulating

functions). Alternatively, time-varying autoregressive moving average (ARMA) models are employed

(Liu, 1970; Lin and Yong, 1987). For instance, the stochastic method proposed by Boore (1983) filters

a suite of randomly generated windowed time series, whose average amplitude spectrum matches the

specified one. Originally developed for a point-source, the stochastic method has been extended to

finite-fault simulations by Motazedian and Atkinson (2005).

It is worth to remark that despite the reduced number of parameters required, those approaches are

still data-driven. Moreover, the main parameters affecting the ground motions (i.e. source, path, and

site) are still cast into simple functional forms. As a matter of fact, certain magnitude-distance ranges

or specific site conditions remain poorly covered. This inevitably leads to major approximations,

especially in complex near-fault conditions or when non-linear site-effects are observed. During the

last decades, some authors proposed to use GMPEs calibrated on a combination of both empirical and

numerically simulated ground motion data to overcome the limitation related to available observed

data (Abrahamson and Silva, 2007). Despite its undoubted advantages, the classical EGMP suffers of

major drawbacks, namely:

• the fundamental unresolved dichotomy between simple casting equation and the degree of com-

plexity of the phenomenon;

• the scarce adaptability to different site conditions and seismic scenarios (due to their regression

coefficients, issued from limited databases Lee and Han, 2002);
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• the difficulty to employ those equations to estimate reliable broad-band full time-histories (since

peak values or IM are generally provided);

• the unrealistic spatial variability of the synthetic ground motion.

1.1.2 Physics-based EGMP: history, development and new horizons

In recent years, the transient evolution of the incident motion and structural response has become

more ease to handle and study, thanks to the technological and computational enhancement. A great

interest has been given to deterministic numerical simulations of seismic scenarios, the so called for-

ward Physics-Based Simulations (PBS). The ever increasing computational power (e.g. massively

parallel supercomputers) made a 3D numerical simulations of the source-to-site seismic wave prop-

agation at local, regional or global scale relatively fast and efficient. For this reason, PBS is rapidly

becoming one of the leading tool to simulate ground shaking scenarios for future earthquakes. The

method encompasses (1) the detailed description of the rupture process (kinematic or dynamic), along

with (2) the detailed 3D description of the geological profile, topography and eventually (3) non-linear

site effects. Physics-based modelling already proved in the past decades to be well suited for global

(Graves, 1996; Wald and Graves, 1998; Pitarka et al., 1998; Komatitsch and Tromp, 2002a,b) and

regional scale simulation (Bao et al., 1998; Olsen, 2000; Dumbser and Käser, 2006; Day et al., 2008;

Tsuda et al., 2011; Smerzini and Villani, 2012; Taborda and Bielak, 2013; Villani et al., 2014; Paolucci

et al., 2015; Chaljub et al., 2015), challenging the dynamic problem from the source of earthquake

up to the structures in an omni-comprehensive computational model. In this context, the idea behind

a modern EGMP physics-based platform is to build up a virtual laboratory for better understanding

of the physical process and for the assessment of the epistemic uncertainty on the physical param-

eters. Ground motions can be simulated for arbitrary conditions and model parameters, that can be

varied systematically to assess sensitivity to input specification and safety margins (conforming to a

performance-based approach). Physics-based simulations are integrated to the current seismic hazard

analysis, used to constrain empirical ground motion predictions in circumstances not well-constrained

by observations (Abrahamson et al., 2013).

Although very powerful, to run a reliable physics-based simulation represents a delicate task, fun-

damentally due to its multi-physics (i.e., fluid and solid mechanics), multi-mechanism (e.g. rupture

dynamics, wave-propagation in non-linear heterogeneous media), multi-scale (from extended seis-

mogenic fault structures at depth towards the surface throughout coarser to finer geological deposits)

nature. Although all those features are extremely appealing, tribute must be payed to the higher mod-

elling complexity, to the increasing computational costs (therefore most of the simulations have been

so far restricted to relative low-frequency range, i.e. hardly overcome the limit of 4.0 Hz), not to

mention to the deep knowledge of the area under investigation required. The great theoretical and

technological progresses made so far widened the horizon of fancy analyses, that unfortunately slams

into the hinder represented by the need for preservation of physical sense to correctly interpret the

observations. A classical example is provided by the source modelling: typical studies on wave-form

inversion characterize the slip patch along a fault plane up to 1.0-2.0 Hz. Therefore, even if the com-

putation model was capable to accurately propagate wave-fields at frequencies higher than 2.0 Hz,

the energy sourced into the the system do not cover a broad band. The higher frequencies eventually

observed in the synthetic time-histories are generated by other mechanism, only due to the propaga-

tion path and to the site effects, due to lack of information on the source process. At a first glance,

those analyses are more than compatible with the results of wave-form inversions performed to char-

acterize seismic sources. However, a further effort in enlarging the radiated spectrum is required so

to provide plausible realizations of an earthquake occurrence on both a regional and local scales for a

multi-shaded estimation of the risk associated, the costs implied and the emergency plans.
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Two strategies are possible to obtain reliable broad-band synthetics, by leaning on physics-based

simulations: (1) to produce them by directly refining the computational model, so to reduce the

numerical dispersion due either to the poor spatial/time discretizations and (2) by applying stochastic

methods to low-frequency deterministic simulations (Seyhan et al., 2013).

Concerning the first option, several issues must be tackled to build-up a complete broad-band model.

The latter must handle complex and large geometries (regional topography, bathymetry, coastlines,

geological structures), detailed mechanical models for material behaviours (viscous, non-linear and

heterogeneous soil materials, fluid-solid interaction) and a refined description of the source mech-

anisms in a more refined manner, including its time-evolution from nucleation to post-event settle-

ment. In this sense, it must be mentioned the great contribution provided by the Southern California

Earthquake Center (SCEC) group, which launched in 1991 a vast research program (still ongoing) ex-

plicitly targeting the study of the earthquake phenomenon under different point of views, integrating

seismology, tectonic geodesy, earthquake geology, and computational science. The major concern

the SCEC group tackles is the need to synthesize the huge amount of information provided by the

mentioned study fields (in terms of observations, laboratory experiments and numerical analyses)

into a multitasking and multipurpose platform to produce reliable and physics-based ground shaking

scenarios. For instance, the CyberShake project1 was intended to entirely replace the GMPEs with

simulation-based ground motion predictions (Baker et al., 2014). This great effort aimed to extend the

frequency band and to enable PBS to be used with confidence in engineering applications (e.g.: seis-

mic hazard analysis and structural or geotechnical dynamic analysis). To this end, the SCEC started

promoting the Broadband Platform (BBP), an open-source software distribution that contains physics

based ground motion models capable of calculating earthquake ground motions at frequencies up to

10 Hz across regional distances 2. Moreover, SCEC is currently exploring the feasibility of using

almost entirely physics-based, 3D deterministic methods (the High-F Project 3, moving deterministic

simulations up to 10 Hz within the next decade. High-F will benefit from recent results in realistic

characterization of earthquake source complexity, as well as statistical description of small-scale het-

erogeneities of the surrounding media.

Concerning the earthquake nucleation, major efforts are intended into obtain reliable description of

the complex time-evolving rupture patterns, primarily responsible of broad-band (i.e. 0.0-20.0 Hz)

energy radiation. The complex phenomenon span multiple spatial and temporal scales. From a spa-

tial point of view, the SCEC group is striving to obtain a multi-scale spatial description capable to

depict both the lithospheric strain rates (inferred from far-field motion of plate boundaries) and the

slip distributions along active faults. A multi-physics approach is sought, which encompasses the

low-temperature elastic-plastic mechanisms along with the viscous creep at high temperature. To

this end, the stress transfer across the elastic upper crust and flowing mantle is taken into account

(Takeuchi and Fialko, 2012), since the processes that determine frictional resistance and its evolu-

tion during co-seismic slip are critical to understanding earthquake behavior (how, when, and where

ruptures initiate, propagate, and stop, Lapusta et al., 2000; Noda and Lapusta, 2013). Short term

dynamics is mainly related to brittle rheology but it must however be coupled with a model for the

long-term ductile fracture propagation, which is fundamental to assess the tectonic stress distribu-

tion along the whole earthquake and post-event phase. It appears evident that the SCEC group is

marching beyond kinematic models to a fully coupled dynamic modelling of the fault offset along

the rupture segments. Nonetheless, correlations between slip and rupture velocity fluctuations linked

to the fault geometry, open up to new pseudo-dynamic approaches. Realistic simulations require the

consideration of off-fault plasticity and damage, co-seismic fault weakening due to shear heating and

1a SCEC research project developing a PSHA-oriented Probabilistic Seismic Hazard Analysis
2http://scec.usc.edu/scecpedia/Broadband Platform
3http://scec.usc.edu/scecpedia/High-F
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pore pressure evolution (Goldsby et al., 2014), fault roughness, and large-scale complexities (Proctor

et al., 2014). Moreover, a stochastic approach is foreseen to perform some sort of stress-test on the

system response to different realization of dynamic rupture configurations, and quantify the tectonic

stress confidence margins at which earthquakes are likely to occur (Lapusta et al., 2000). Several re-

alizations of rough fault simulations (with different rupture styles, e.g. sub-Rayleigh vs. supershear,

slip pulse vs. crack) populate the pool of response on which perform solid uncertainty quantification.

Another source of high-frequency energy that the SCEC project is investigating is related to the in-

elastic and heterogeneous nature of the Earth’s crust. Scattering by small-scale heterogeneities con-

tributes significantly to the apparent attenuation of high-frequency pulses in near-field condition and

leads to incoherence in the wave-field important to ground-motion predictions. Fine-scale mate-

rial heterogeneities represent spatially correlated random perturbations of the mean velocity models

(characterized by data from well-logs, seismic reflection surveys, and dense seismic arrays) and they

significantly alter the high-frequency part of the simulated ground motion (>2 Hz Withers, 2016).

Moreover, it becomes therefore necessary to alter intrinsic attenuation used in simulations by making

the quality factor Q dependent on both frequency and depth. The non-linear soil behaviour and the

site response of thin geotechnical layers as well, are involved into the scattering and damping mech-

anisms of the wave-field (Roten et al., 2016, see for instance).

This great effort towards broad-band forward physics-based simulations was made possible by the

SCEC’s vision of a center-without-walls (SCEC, 2017), based on collaboration and sharing of data

and tools. This interdisciplinary community-centered approach is embodied by the so called Commu-

nity Models (CXM, see Figure 1.4) on specific areas in the Southern California, as the high-resolution

3D Velocity model (CVM, Tape et al., 2010; Lee et al., 2014), the Community Fault Model (CFM,

Plesch et al., 2007), these two integrated from countless investigations of the California crust into the

Unified Structural Representation of the southern California crust and upper mantle (Shaw et al.,

2015). During SCEC4 (research plan 2012-2016), investigators initiated a Community Geodetic

Model (CGM Jordan, 2015), gathering GPS and InSAR datasets to improve maps of inter-seismic

strain rates at the surface and a Community Stress Model (CSM, http://sceczero.usc.edu/projects/CSM),

to describe the current knowledge about the stress state of the San Andreas fault system. These devel-

opments have motivated considerable research on the prediction of strong ground motions from the

large, as of yet unobserved fault ruptures that will someday occur. Empirical ground motion prediction

equations (GMPEs) can potentially be improved by supplementing the direct observations of ground

motions with simulation data that use the physics of wave propagation to extrapolate to unobserved

conditions (Baker et al., 2014). Continuous improvements to these community models, sustained by

CFM

CVM

USR
CRM

CSM

CGM

CTM

F = Fault

V = Velocity

Uni�ed Structural

Representation R = Rheology

G = Geodetic

S = Stress

T = Thermal

Figure 1.4: Sketch of the Community Models constructed by the SCEC group. Reprinted from SCEC

(2017)

SCEC, have led to a boom in physics-based hazard modeling of Southern California. One major goal

in the multi-objective research proposal of the SCEC group for 2017-2022 (SCEC5) is explicitly the

improvement of high-fidelity ground-motion simulations, in terms of high-frequency accuracy (in the

engineering band, up and beyond 10.0 Hz). The construction of two new Community Models have

been planned, (1) the Community Rheology Model (CRM) providing the constitutive properties es-

sential for understanding active tectonics and the cyclical deformation of tectonic stress accumulation
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and earthquake stress release, along with non-elastic rheologies (mineralogy, grain size, and fluid

content) and conditions (temperature, stress, and fluid pressure) that vary in space and time; (2) the

Community Thermal Model (CTM), which will estimate the temperature structure of the Southern

California lithosphere.

Inspired by the SCEC project, the SINAPS@ project financed the development of a high-performance

numerical code conceived to perform the numerical simulation of the 3D wave propagation in large

heterogeneous and non-linear geological domains. The code, called SEM3D, is based on the Spectral

Element Method (Patera, 1984; Mayday et al., 1989), originally developed for fluid mechanics and

then extended and widely employed in computational seismology (please refer to the original contri-

butions of Faccioli et al., 1997; Komatitsch, 1997; Komatitsch and Vilotte, 1998). SEM3D tackles the

computational burden by running on parallel computer architectures. I contributed to its development,

both in terms of its effective vectorization so to improve the scalability on multi-core supercomputers

and by implementing a non-linear constitutive relationship to be able to reproduce the energy ad-

sorption due the hysteretic cyclic behaviour of the shallow soil layers. The final goal, however, is

the SEM3D exploitation towards the construction of high-fidelity and broad-band earthquake ground

shaking scenarios. In this thesis, my major effort was to produce a realistic regional-scale numerical

model of the site response of a nuclear site, accurate in frequency range of 0.0-7.0 Hz. The focus was

pointedly set on the effect of complicated 3D geological configurations, so to test the performance

of SEM3D as propagator tool. Therefore, conceptually speaking, this work may be ascribed to the

study of the Propagation Path P (R; f).

Although the described brutal force approach is very appealing, the mentioned forward deterministic

strategy will still take some years in the making, mainly due to the burdensome computational costs

required to shatter the 10.0 Hz frequency barrier and produce synthetics wave-forms with realistic

Fourier’s spectra up to 30.0 Hz (for major engineering applications). Besides, a major conceptual gap

has to be bridged: the high-frequency part of the earthquake ground motion is still poorly constrained

by physics-based model, since it is the result of a complex convolution process encompassing the

source mechanism, the dispersive and scattering effects due to the propagation throughout the Earth’s

crust, the non-linear interaction between the incident wave-field and the softer shallow soil layers and

the growth of intricate surface wave-fields, mainly due to the presence of irregular geological and to-

pographical geometries. As a matter of fact, regardless the frequency band reached by the propagator

tool, the seismological models traditionally split the low-frequency content from the high-frequency

one when describing real records. The former is considered as the deterministic part of the wave-

motion and it is mainly due to the source mechanism and to the propagation path throughout the

Earth’s crust. It results fairly constrained and reproducible via physics-based simulations for frequen-

cies f < 3.0 Hz. For what concern the higher-frequency part of the seismic records (f > 3.0 Hz),

major difficulties arises when trying to discriminate the different factors that can eventually affect it.

A crucial aspect resides in the hinder of reproducing reliable near-field synthetics, given the extreme

directivity effects which usually take place in the epicentre’s surroundings, along with the impulsive

nature of the seismic observation in the forward direction of the rupture propagation, the permanent

displacement due to the fault offset and the complex interaction between the rise and the rupture

times (Mai and Beroza, 2003). Traditional GMPEs may be confidently employed for large source-to-

site distances; numerical simulations, on the other hand, require a huge amount of parameters, often

unavailable. Therefore, major uncertainties on the high-frequency content of the radiated wave-field

have traditionally been condensed into a probabilistic framework, somehow capable of mimicking the

observations. This assumption helps, in a sense, to overcome the intrinsic difficulty of understanding

the physical mechanisms that lead to such recordings, although, the mentioned stochastic framework

should be accurately formulated and calibrated upon available observations.

In this piece of research, I provide a deeper insight of an interesting hybrid approach, which couples

the low-frequency content obtained by forward deterministic analyses and high-frequency predictions
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made through of Artificial Neural Networks (ANN). The latter represent a fringe computational tool

and they are widely employed in several scientific fields nowadays. They are particularly appreciated

since they reproduce the biological learning process, but in a fictive but accelerated trial and error

learning session. They are endowed with intelligent predictive capability, once repeatedly trained.

Therefore, the idea behind their employment in constructing a broad-band seismic scenario is to pre-

dict short period spectral ordinated upon feeding the ANN with long-period synthetics produced by

physics-based simulations.

1.2 Motivation and credits: the SINAPS@ project

The PhD thesis presented hereafter places itself within the framework of the French research project

SINAPS@ (Séisme et Installations Nucléaires, Améliorer et Pérenniser la Sûreté). The latter has

been conceived to rethink all the EGMP work-chain (along with the vulnerability and risk assessment

procedures) employed to assess the seismic vulnerability of nuclear facilities. This ambitious research

project was launched by the members of the SEISM Institute4 and it stemmed from the nuclear disaster

occurred in March 2011 in Japan, at the Fukushima nuclear power plant. The French government has

reacted immediately after, by publishing a call (50M e) to enhance the scientific background in the

area of the nuclear safety and radiation protection. Specifically, the call targeted the following issues:

• to deepen the knowledge of the circumstances that led to major nuclear accidents, taking into

consideration initial findings and Ratings Supplemental Security implemented by the Nuclear

Safety Authority;

• to investigate the different ways of managing all major nuclear accidents;

• to study the impact of these incidents on the environment on the release of radioactive mate-

rials, their impact on health and the environment and conditions for recovery of contaminated

territories;

• to apply the gathered knowledge to France’s nuclear facilities, both for present and future ap-

proach to increase reliability, resilience and effectiveness of their emergency mechanism, in

case of extreme events.

SINAPS@ represents the engineering seismology facet of this scientific context: it was conceived to

assess the uncertainties of databases, methods and procedures adopted at each and everyone of the

steps required for a detailed seismic hazard analysis. All of these aspects target the ultimate goal of

a better understanding of the whole physical phenomenon which entails earthquake-related nuclear

disasters. In this sense, a modern risk mitigation approach has been followed: the main objective

is to identify or quantify the seismic margins resulting from every assumption made in the design

process, from the definition of the IM to the selection of the structural demands, taking into account

the uncertainties related to conservative choices and design strategies. Figure 1.5 sketches the main

work-packages of the SINAPS@ project. The SINAPS@ work-packages cover SINAPS@ main aims

can be listed as follows:

• to explore uncertainties inherently to available databases;

• to increase knowledge of physical processes, design methods at each step of seismic hazard

evaluation and structural vulnerability;

4CEA, EDF, École Normale Supérieure de Saclay, CentraleSupélec, http://www.institut-seism.fr/en/about-us/
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Figure 1.5: Work packages of the SINAPS@ project.

• to identify or quantify the seismic margins related to the assumptions made (selection of seismic

design level and strategies).

SINAPS@ project will help to address safety issues highlighted following the Fukushima accident

and French studies additional security, especially with regard to seismic safety margins.

KARISMA numerical benchmark

The great computational power reached in engineering seismology widened the horizon of the predic-

tive exercise. Most of the modelling simplified assumptions, inherited from an obsolete engineering

practice, constrained by a poor technology, incapable to follow the evolution of complexity of the

mathematical and physical models, may be carefully dropped today. However, the increased com-

plexity granted by the ease in handling and solving huge computational burdens, entailed the need for

comparison with certified traditional models. That is why it became of great interest to run numer-

ical benchmarks, so to compare and validate the computational resources in blind tests issued from

canonical cases or either from real case studies.

In this sense, my research activity can be considered a follow up of the KARISMA numerical bench-

mark (KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment), which took place

between 2011 and 2013 and which targeted the Kashiwazaki-Kariwa Nuclear Power Plant and its

seismic response during the Niigata-Ken Chūetsu-Oki . Indeed, the core part of the thesis covers the

topics encapsulated in Work Package 4, since a demonstrative case was taken into consideration (see

Chapters 2). KARISMA exercise included benchmarking on the analytical tools and numerical sim-
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ulation techniques for predicting seismic response of NPP structures (in linear and non-linear range),

site response, soil-structure interaction (SSI) phenomena, seismic response of piping systems, slosh-

ing in the spent fuel pool and buckling of tanks. The benchmark is primarily based on data provided

by Tokyo Electric Power Company (TEPCO). It is not linked to seismic re-evaluation of KKNPP

which was carried out by TEPCO itself (IAEA, 2014).

1.3 Outline of the report

This work tackles the problem of defining reliable and exploitable earthquake intensity measures. The

major outcome is the provision of realistic yet synthetic input ground motion for further vulnerability

studies. Specifically, I focused on the multiple aspects required to picture realistic seismic scenarios at

a regional scale, which aid in defining the realistic IM values and corresponding time-histories. The

main scope is to contribute to reach the ultimate dream represented by a multi-tool computational

platform which can quickly and reliably estimate ground shaking effects over wide urban areas or at

specific sites of economic and human relevance. A huge effort was made in grouping and linking

all the tools and the methods employed at different stages of a seismic analysis, trying to effectively

compute the convolution of all the factors (i.e. investigate the importance of including 3D basin ef-

fects on ensemble averaged long-period ground motions, comparing ground motions computed in 1D

and 3D crustal models) affecting the level of shaking at the site, i.e. radiating source, path effect

and local site-effects. An omni-comprehensive (or holistic) approach has been followed, consisting

in characterizing each factor that may have an impact on the wave-field radiated from the fault and

propagating towards the site. An vulnerability-oriented critical review of the common IM employed

in engineering seismology is discussed, stressing the importance of the assumption made in their def-

inition compared to the more stringent and less characterized near-source conditions. The ultimate

goal of this piece of research is to assess the uncertainty related to each modelling assumption when

it comes to understand and reproduce complex phenomena as strong ground motion scenarios, serv-

ing as solid foundation for further vulnerability studies on critical structures, such as nuclear power

plants. In doing so, I took advantage of a series of new generation numerical tools, employed at

different stage of the analysis, and widely described. This work can be placed partially within Work

Package 1 and Work Package 2, in terms o uncertainty quantification of seismic databases (described

in Chapter 2) and assess non-linear site-effects from a engineering point of view (described in Chap-

ter 2 and partially in Chapter 3). This part of the thesis aims to provide a deeper insight on the uncer-

tain determination of dynamic soil properties and geological profile, due to the epistemic contribution

related to the possible inaccuracy of the site investigation method. Those issues are widely discussed,

highlighting the difficulties arising when assessing near-field site response from an engineering point

of view. From another perspective, a closer view of those site-effects is provided, by investigating the

contribution of either the non-linear soil behaviour and the aleatory contribution of small-scale ran-

dom variability of the soil properties. The working approach follows the SCEC philosophy to explore

and to validate the effects of empirical and statistical models of velocity heterogeneities of Central

California upon past earthquake scenario, so to estimate the the significance of the lowest (S-wave)

velocities as frequencies increase along with the significance of progressively including geotechnical

layers.
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2

Seismic Site Response at

Kashiwazaki-Kariwa Nuclear Power Plant in

2007 Chuetsu-Oki Earthquake

“The only people who see the whole picture are the ones who step outside the frame.”

– Salman Rushdie, The Ground Beneath Her Feet

2.1 Summary

The aim of this chapter is to clarify some aspects concerning the seismic site effects that took place

at the Japanese nuclear site of Kashiwazaki-Kariwa (KK), during the 6.6 Niigata-Ken Chūetsu-Oki

earthquake (July, 16th 2007). Due to the relative small source-to-site distance and shallow hypocenter

depth, the mentioned seismic scenario is extremely complex to be characterized, although very ap-

pealing due to the consistent seismic record database available. The site characterization presented

herein targeted two down-hole arrays of strong motion accelerometers, installed within the nuclear

site. Those recordings allowed to track the seismic wave path (origin and direction of propagation

towards the surface) and they were studied to outline the site response dependency on the direction of

motion. Moreover, those records were to check the two VS profiles (estimated by in situ PS logging),

by applying borehole interferometry technique. In one case, an improved agreement with the empir-

ical amplification functions was obtained using a smoothed VS profile. The main non-linear features

highlighted by signal processing were globally reproduced by means of equivalent linear analyses.

The strong influence of the considered motion direction was assessed.

Parts of this chapter has been object of a paper in an international conference proceeding (Gatti et al.,

2015) and of a scientific paper recently submitted to the Bulletin of Earthquake Engineering.

2.2 Introduction

Seismic site effects represent the modification (in amplitude, direction and frequency content) that the

shallow Earth’s layers induce on the radiated wave field while travelling from the nucleation point on

the seismic fault to the considered site. In the last few decades, complex 3D non-linear site-effects

have been extensively observed and studied (e.g. during the 1985 Mexico City, 1994 Northridge,

1995 Hyogoken-Nanbu (Kobe) and the more recent 2011 Tōhoku earthquake). Local soil conditions

within the upper part of the Earth’s crust plays a crucial role in the seismic design of building’s foun-

dation, since they dramatically increase the destructive power of seismic ground motion on structural
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Figure 2.1: Map of the area in the surroundings of the KK-NPP. Epicentres of main shock (MS) and

selected aftershocks (AS) are depicted; grey shaded area axes represents the fault projection. Small

axes: map of Japan highlighting the region of Niigata (west Japan).

components (Faccioli and Vanini, 2003; Regnier et al., 2013). Namely, the main features to be as-

sessed are (1) the (de-) amplification due to soil layering, (2) the scattering caused by interactions

with geological interfaces and topographical surfaces, (3) the time-dependent non-linear stiffness de-

cay of geomaterials, triggered at relative small strain magnitudes (Hashash and Groholski, 2010). In

near-source conditions, uncertain faulting mechanisms and propagation path add further complexity

to the problem. In such a case, addressing seismic hazard evaluation should be re-examined carefully,

especially relatively to critical structures as nuclear power plants.

In this context, strong ground motion recordings represent a great source of information in order to

calibrate numerical models for site-specific seismic response analyses. For this purpose, arrays of

seismometers deployed down-hole, till the depth of the engineering bedrock, provide an additional

relevant evidence on the effect of shallow geology on the seismic motion. Signal processing tech-

niques unravel the non-linear evolution of soil properties, as well as some major features of ground

motion in near-source conditions (e.g. the possible impulsive nature of velocity records). Never-

theless, the exploitation of record databases is not always straight-forward and the interpretation of

results can be difficult.

In this chapter, borehole recordings were processed to characterize the seismic site effects observed

during the MW6.6-6.8 Niigata-Ken Chūetsu-Oki (NCO) earthquake, occurred on July, 16th 2007

(10:13 UCT) off the coast of the Niigata prefecture (Japan). The NCO earthquake affected an area

of approximately 100 km of radius along the coastal line of South-West Niigata prefecture, till a

maximum depth of 17 km (Pavlenko and Irikura, 2012). The seismic sequence (see further details in

Table 2.1) caused the shut down of the Kashiwazaki-Kariwa Nuclear Power Plant (KK-NPP), located

close to the epicentre location (see Figure 2.1). The site (composed by 7 generators and whose map

is presented in Figure 2.2) is located on the hanging wall of the mentioned fault, above a region of

relatively high slip (Ozawa, 2008). The strong motion sensors indicated that during the earthquake the

site experienced nearly twice the ground shaking (in terms of Peak Ground Acceleration, ) that was

considered in the plant design. The rather high variability of PGA values within the area of the plant

is representative of directivity features of the source radiation (Pavlenko and Irikura, 2012). Accord-

34



KSH

KK5

Figure 2.2: Georeferenced and scaled map of the Kashiwazaki-Kariwa Nuclear Power Plant (courtesy

of TEPCO (2008)). The site has 7 units, with four units (Units 1-4) at south side of the site and the

other three units (Units 5-7) only about 1.5 km away from Units 1-4.

ing to Kokusho and Suzuki (2008), the acceleration spectral response is unexpectedly high at long

period. Pavlenko and Irikura (2012) made an extensive study to assess the non-linear site response

at KK-NPP. They performed one-dimensional analyses on representative soil columns (i.e. horizon-

tally layered models and shear wave vertical propagation). They subdivided the soil layers into three

groups (e.g. by classifying them according to their values) characterized by batch normalized stress-

strain relationship. For each group of layers, they generated 250 different stress-strain relations, from

which they selected the curves showing the best-fit approximation to the observed records (the main

shock or the aftershocks) at the depths of locations of the recording devices. They performed their

calculations using the method proposed by (Joyner, 1975). The reduction of the shear moduli esti-

mated in the upper softer layers was about 30-35% during the main shock and about 1.5-3% during

the aftershocks.

Another extensive work on the seismic characterization of the Kashiwazaki-Kariwa Nuclear Power

Plant during the NCO earthquake was performed by Yee et al. (2011). The authors focused on the

simulation of site response recorded free-field at the Service Hall. They compared equivalent linear

and full non-linear soil column models, adjusting input parameters (i.e. G
Gmax

− γ − D curves ) ac-

cording to in situ and laboratory tests on soil samples from KK-NPP. They assessed the non-linear

site response during the NCO main shock, in an extensive study which encompasses a liquefaction

analysis.

Hereafter, further investigations on the geotechnical seismo-induced site effects at the KK-NPP are

performed. First of all, this study aims to assess the features of near-source ground motion and to

describe the variability of seismic response within the KK-NPP. To this end some representative lo-

cations were selected on the base of the quantity and quality of the available seismic records. On

the other hand, performance of standard numerical approaches (based on 1D soil column models and

the equivalent linear approach), as well as their applicability, are tested in such complex scenario.

This is a crucial step before any further 3D model involving complicated surface geology and faulting

mechanism. In Section 2.3 a general overview on the main features of the incident wave motion is

presented, by proving its quasi-vertical propagation as well as its impulsive nature (symptomatic of
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near-fault conditions). Besides, some insight is presented both on the directivity effects registered

and on the borehole de-amplification. In the following (Section 2.4) the estimated geological con-

figuration beneath the surface is checked by means of seismic interferometry. The latter technique is

suitable to assess the non-linear evolution of VS values during shock. Finally, in Section 2.5 the results

obtained via equivalent linear analyses on 1D soil columns are compared to the recorded response,

for both the aftershock and the main shock.

In Table 2.1 the ensemble of seismic events considered herein is listed. PGA and PGV values regis-

tered at two borehole stations are reported.

Table 2.1: List of the earthquake considered in the chapter (courtesy of TEPCO, 2007). MJMA is mag-

nitude according to the Japanese Meteorological Agency, R represents the epicentral distance in km.

- and - represents the Peak Ground Acceleration/Velocity on the Horizontal and Vertical directions

respectively. SG1 and G51 denote the surface stations of boreholes KSH and KK5 respectively. Not

available values (due to data loss) are reported as -.

MJMA [km] PGAH[cm/s2] PGAV[cm/s2] PGVH[cm/s] PGVV[cm/s]

SG1 G51 SG1 G51 SG1 G51 SG1 G51

MS 6.8 16 433 - 583 - 123 - 44 -

AS1 3.7 5 36 23 42 20 1 1 0.7 0.4

AS2 5.8 10 189 275 188 88 25 22 9 4

AS3 4.2 4 50 42 36 23 2 2 0.8 0.4

AS4 4.4 10 70 - 65 - 2 - 1 -

AS5 4.8 17 77 101 50 27 5 5 2 1

AS6 3.2 6 34 - 26 - 1 - 0.5 -

2.3 Overview on seismic site response at KK-NPP

The Niigata-Ken Chūetsu-Oki earthquake occurred as a result of a buried reverse-slip motion nu-

cleated at the estimated hypocenter depth of 8 km and causing no significant surface rupture (Aochi

et al., 2013a). Despite the dense observation network in operation (considering Kik-Net records as

well) and the extensive number of seismological studies, the faulting mechanism remains uncertain

(see for instance Aoi et al., 2008; Kato et al., 2008). Moreover, the distance of the nuclear site of

Kashiwazaki-Kariwa to the surface projection of the fault (i.e. Joyner-Boore distance) is =0 km,

whereas the rupture distance is =16 km (Yee et al., 2011).

By the time the 2007 NCO earthquake occurred, KK-NPP was instrumented with an older and a more

recent systems of accelerometers. The horizontal recording devices (EW and NS respectively) are ori-

ented with respect to the Plant North (see Figure 2.2). The Tokyo Electric Power Company (TEPCO)

provided the azimuthal deviation of some seismometers due to their installation down-hole. Ground

motion at 33 locations were registered by the new system, although the recordings of the old system

obtained at other 66 locations (including two free-field down-hole arrays and most structural arrays)

were lost with the exception of the peak values (Kayen et al., 2009).

In this study, the attention is focused on the seismic response occurred at two down-hole arrays,

installed respectively at Unit 5 (KK5 set) and at the Service Hall (KSH set), to characterize the site

response in the structure’s surroundings and in the assumed free-field conditions. In Figure 2.2 the

locations of those two sites are illustrated along with the KK-NPP planimetry: KK5 is located nearby

the north-east group of reactors, while KSH is placed at the entrance, on the south. The distance
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Figure 2.3: VS profiles and seismometers locations at (a) array KSH (Service Hall) and (b) KK5 (Unit

5).

between the boreholes is relatively large (approximately 1 km) and the geology and topography quite

complicated. Strong motions accelerometers are installed and PS-logging VS profiles were provided

by TEPCO, as well as reference G
Gmax

− γ − D curves for four different soil layers (where and are

initial and secant shear moduli, the shear distortion and the hysteretic damping). Figure 2.3 shows the

mentioned VS profiles.

The available records revealed that during the NCO earthquake the nuclear site experienced nearly

two times the plant design shaking intensity (in terms of PGA). For instance, recorded accelerations

reached up to 6.80 m/s2 (EW component) at the basement of Unit 1, largely above the design specifica-

tion for safe shutdown, i.e. 4.50 m/s2 and well above the rapid restart specification for key equipment

in the plant, i.e. 2.73 m/s2. At the reactor basements of Unit 2, 3 and 4 (located on the southwest part

of the plant), accelerations of 6.06, 3.84, and 4.92 m/s2 respectively were recorded (EW component),

whereas at Unit 5, 6 and 7 (located on the northeast part of the site) PGA were slightly lower (4.42,

3.22, and 3.56 m/s2 respectively). Besides, ground motion exceeded 0.5 g on outcropping bedrock.

Concerning the acceleration response spectra (Sa), Figure 2.4 shows the recorded at the Unit 7 reactor

building basemat (along the EW and NS directions), compared to the design spectrum employed by

the TEPCO (IAEA, 2014). As confirmed by many authors (Kokusho and Suzuki, 2008, among oth-
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Figure 2.4: Pseudo-acceleration response spectrum Sa at Unit 7 reactor building basemat. Blue and

red lines refer to the recorded response spectrum during the NCO main shock, along the EW and

NS direction respectively. Black line refers to the design spectrum for the reactor building basemat

(TEPCO).

ers), the recorded ground motion entailed a rather amplified low period component, which exceeded

the design response. However, post-seismic site inspections reported minor structural damages to the

Kashiwazaki-Kariwa Nuclear Power Plant . Kayen et al. (2009) observed a discrepancy between the

measured and the design PGA, along with the apparent absence of structural damage. They attributed

this occurrence to the conservative design in the equivalent static design procedure used in Japan, i.e.

redundant structures with large over-strength, large importance factor (≈ 3).

2.3.1 Predominant vibration period

From the point of view of ground motion amplitude, the discrepancy between recorded and design

response can be explained by considering not only the great PGA values but also the corresponding

Peak Ground Velocities (PGV). Figure 2.5 shows the relationship between PGA and the inverse of

the predominant harmonic period , recorded at KK-NPP during the NCO cluster:

1

TV \A
=
αP GA

(ξ=5%)

αP GV
(ξ=5%)

PGA

2πPGV
(2.1)

Eq. (2.1) (proposed by Green and Cameron (2003) and Kawase (2011)) is based on the assumption

that ground motion is dominated by the harmonic component corresponding to the intersection be-

tween the constant spectral acceleration and velocity regions of a 5% damped Newmark-Hall type

spectrum constructed using the actual PGA-PGV values (Green and Cameron, 2003). In this sense,

and are the median spectral amplification factors for horizontal motion proposed by Newmark and

Hall (1982) for the constant velocity and constant acceleration regions of 5% damped response spec-

tra. Green and Cameron (2003) suggest values of αP GA
(ξ=5%)

∼= 2.12 and αP GV
(ξ=5%)

∼= 1.65.

Black dashed lines in Figure 2.5a represent respectively iso-PGA (i.e. 800-2700 cm/s2) and iso-PGV

lines (i.e. 100-250 cm/s), the latter with a slope from left-down side to right-up side. Based on the

observations in 1995 Kobe earthquake, those lines delimit the region above which major damages

are expected (Kawase, 2011), and roughly correspond, according to the relationship between the

Modified Mercalli Intensity (IMM) and PGV/PGA values proposed by Wald et al. (1999), to IMM
∼=X. As shown in Figure 2.5b, a few points range within the polygonal area included between the

mentioned black dashed lines. Such points refers to the main shock (MS) and to devices placed on (1)

the turbines at the basement level (1T2, 2T2 and 3T2, on turbines at Units 1,2 and 3 respectively), (2)

on the reactor of Unit 1 at first floor (1R1) and (3) at the ground surface nearby Unit 1 (point 1G1).
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Figure 2.5: PGA values with respect to the inverse of the equivalent harmonic dominant period 1
TV \A

for all the record database provided by TEPCO.(a) all the values in the two directions (EW-NS); (b)

zoom on the area delimited by the dashed lines representing the PGA-PGV limit values and suggested

by (Kawase, 2011), after Kobe earthquake.

Figure 2.5 is in agreement with the evidence highlighted by site inspections (see for example IAEA,

2014), i.e. that the large ground deformations damaged Unit 3 (although with no particular safety

significance).

2.3.2 Directivity and hanging wall effects

Although not exhaustive, TV \A is a significant and intuitive index of the severity of the ground motion,

but waveforms should be analyzed carefully too. The velocity pulse coupled with a corresponding

large peak displacement considerably enhance the damage potential (Cox and Ashford, 2002). There-

fore artificial spectrum-compatible ground motions are generated based on recorded motions selected

as seeds, modified to possess not only PGA but also duration, velocity and displacement similar to

those of the target design seismic event. Intuitively, a large displacement imposed at low velocity does

not have a significant damaging potential since the structure adapts itself in a quasi-static way (Cox

and Ashford, 2002). In near-field, large velocity pulses incorporate the cumulative effect of most

of the seismic radiation from the fault dislocation (Bolt, 2004). A ground shaking characterized by

strong velocity pulses exerts an extreme demand on the structural components as proved by several

studies (e.g. Mavroeidis and Papageorgiou, 2003; Mavroeidis et al., 2004; Luco and Cornell, 2007).

Therefore, the selected seed motions should have phase spectra that entail a definite velocity pulse. As

a matter of fact, several authors argued the pulse-like shape of some velocity time-histories recorded

at KK-NPP. For instance, (Uetake et al., 2008) observed three significant pulses at KSH array (i.e.

Service Hall), possibly associated to the three major asperities identified on the fault plane, via wave-

form inversion. In this context, the occurrence of velocity pulses at the Kashiwazaki-Kariwa Nuclear

Power Plant was verified considering the borehole records available and by classifying them as ac-

cording to the ranking criterion proposed by Baker (2007) (excluding late arrivals and small events).

Figure 2.6 schematically presents the results of the above-mentioned classification. The Pulse Indi-

cator (PI) proposed by Baker (2007) (see Eq. (2.2)) is based on two predictor variables: the Peak

Ground Velocity (PGV) of the residual record - obtained by subtracting the extracted pulse from the

as-recorded time-history - divided by the original record’s PGV (i.e. PGV-ratio, reported along the x-

axis in Figure 2.6b) and the energy of the residual record divided by the original record’s energy (i.e.

the Energy-ratio, reported along the y-axis in Figure 2.6c and computed by dividing the Cumulative
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Figure 2.6: Pulse classification for borehole records at KK-NPP (horizontal components). (a) Com-

parison between recorded velocity signals and extracted pulses. (b) Map of the surrounding of the

KK-NPP with the causative fault trace and NCO earthquake main shock. (c) Pulse classification ac-

cording to Energy-ratio and PGV-ratio. Red and green points represent respectively pulse-like and

non-pulse-like signals, whereas light-blue points cannot be clearly classified automatically (accord-

ing to predictor factor proposed by (Baker, 2007)). Circles indicate the extracted pulse fulfils criteria

CT1 and CT2 (mentioned in this paragraph). (d) Polar plot portraying the angles at which pulses

were extracted, with respect to the fault-normal (FN) and fault-parallel directions (FP). The angle

corresponds to the one that provides the highest PI.

Squared Velocity(CSV) of the residuum by the original record’s CSV).

PI =
1

1 + e−23.3+14.6P GVratio+20.5Energyratio
(2.2)

Records with PI scoring above 0.85 and below 0.15 were classified as pulses (red circles in Figure 2.6b

and Figure 2.6c) and non-pulses respectively (green diamonds in Figure 2.6b and Figure 2.6c). The

remaining time-histories cannot be classified since they do not comply the seismological criteria

mentioned above (i.e. light-blue diamonds in Figure 2.6b and Figure 2.6c). In pulse identification,

recorded components were rotated by 5 different angles to check the preferential direction they mostly

come from (with respect to fault normal (FN) and fault parallel (FP) directions, corresponding to 0◦

and 90◦ in Figure 2.6c). In Figure 2.6c each point corresponds to the direction at which the greatest

pulse-like wave form has been extracted. The pulse-like wave field is not oriented along a prefer-

ential direction although most of the extracted pulses come from a +30◦ angle with respect to the

FN direction, approximately along the site-to-epicentre direction. Since the KK-NPP is located on

the fault hanging wall of a buried reverse-slip fault, wave pulses were also observed on the vertical

component, although not shown here for brevity. High PGA values along the vertical direction are in

agreement with the rapid uplift of the ground during the fault slip, caused by elastic rock rebound ef-

fects (Bolt, 2004). This result is typical when forward directivity condition is met. Further studies on
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the so called hanging wall effect for this earthquake may be found in Spudich et al. (2013). Although

the followed procedure does not discriminate the mechanism originating the pulse-like recordings, it

helps in quantifying the near-field effects for engineering purposes, barely described by traditional

tools (such as the pseudo-spectral acceleration response).

2.3.3 Verticality of the propagation of wave motion

Another crucial step prior the construction of a realistic ground motion scenario is the detection of

wave field incidence. When simplified 1D analyses are performed, one must ensure the input signals

to have a quasi-vertical incidence. To this end a polarization analysis of the records was carried out,

consisting into a linear transformation of the three components of motions into the principal ones

(e.g. vertical and radial/transverse projections with the respect to the source-to-site direction). In fact,

those components are associated to the eigenvectors/values of the cross-correlation matrix (at zero

lag time) between the three components. The azimuth angle AZ and the angle of apparent incidence

IN (e.g. angle of deviation from the vertical) were estimated within a time-window sliding along the

whole record duration. Those parameters defines the wave trajectory along the whole records length,

considering time window of 0.1-0.5 s and low-pass filtering up to 2.5-5 Hz to get stable results. In

Figure 2.7 stereo-net projections summarize the average wave incidence computed at P-wave arrival

time (northern axis refers to local KK-NPP’s one). Signals drift vertically towards the surface, as

SG1

SG2
SG3
SG4

KSH-MS stereonet

(a)

G52
G53
G54
G55

KK5-AS2 stereonet

G51

(b)

Figure 2.7: Wulff projections indicating wave-field incidence at each accelerometers’ location.(a)

Stereo-net referring to main shock recorded at KSH; (b) stereo-net referring to aftershock 2 (the most

intense) at KK5.

outlined by Gatti et al. (2015). Nevertheless, such rectilinearity decays in time. Concerning the

azimuth, it must be noted that the focal mechanism is still uncertain (Aochi et al., 2013a). This is due

to the difficulties in deconvolving the source mechanism from the effects of 3D geological structures.

Two potential fault planes have been proposed so far: a NW dipping plane striking at 215◦ and a SE

dipping one at 49◦ strike. Which of these two planes is associated with the main shock rupture is

unresolved (see Aoi et al., 2007; Miyake et al., 2010). Aftershock locations fell along both planes,

although the majority of the aftershocks were located along the SE dipping plane (strike 49◦ Kayen

et al., 2009; Aochi et al., 2013a). Estimated azimuth values are coherent with the observed tectonic

mechanisms. The quasi-vertical propagation of the incident wave field, maintained along the whole

borehole length, supports modelling the problem by a 1D soil-column analysis, due to small influence

of spurious waves impinging the borehole at sub-horizontal incidence.
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2.3.4 Horizontal principal axes of the ground motion

Once vertical incidence has been proven (see previous paragraph), standard 1D soil column analyses

may be carried out, assuming one horizontal component of the motion at time. This shortcoming can

be resolved by finding preferential direction of motions, e.g. the two components associated to max-

imum and minimum energy release. For instance, Penzien and Watabe (1975) defined the principal

axes of ground motion as the directions along which the three components of motions are statistically

independent. They assumed projected time series uncorrelated, although uncorrelated variables are

not a priori statistically independent. Along the major principal axis, the motion amplitude, mea-

sured for instance as Arias intensity (Rezaeian and Der Kiureghian, 2012), is the highest. The major

principal axis is assumed horizontal and pointing towards the direction of the earthquake source (Pen-

zien and Watabe, 1975). However, this hypothesis appears not to be always verified, especially in a

near field regime (as further recent investigations by (Rezaeian and Der Kiureghian, 2012) proved).

Assuming quasi-vertical ground motion and the vertical component as the less intense, the second hor-

izontal principal component is denoted as the intermediate principal component (int) (Rezaeian and

Der Kiureghian, 2012; Penzien and Watabe, 1975). Figure 2.8 shows the mentioned cross-correlation

coefficient varying with the in-plane rotation angle for two selected records at SG1 (for KSH site)

and at G51 (for KK5 site). Penzien and Watabe (1975) examined the correlation coefficient ρXY for
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Figure 2.8: Cross-correlation coefficient ρXY varying with rotation angles angle at SG1/G51. makes

the ρXY =0 at the considered depth. θBB (black dashed line) represents the angle corresponding to

ρXY =0 for accelerometers (a) SG4 and (b) G55 respectively. θNP (grey dotted line) is the angle

between the strike directions of the fault and the seismometers’ reference system.

a number of recorded ground motions, varying the angle θXY by which the in-plane components are

rotated. They did not observe a significant time-dependence so that ρXY was computed for the entire

length of the record. For each signal, the correction angle θC refers to the in-plane rotation angle at

which ρXY vanishes, thus defining major and intermediate axes at that depth. Such an angle (the solid

black line in Figure 2.8) was compared to and to , where θBB corresponds to the correction angle

computed at the deepest sensor in the array (SG4 and G55 respectively), whereas θNP is measured

between seismometers and fault plane strike directions (see the miniature in Figure 2.8b). For the

main shock (Figure 2.8a) θC values calculated for array KSH are coherent with the those estimated

by Pavlenko and Irikura (2012). They corrected the orientations of the sensors based on the recorded

low-frequency (0.01-0.2 Hz) trajectories within a 3s-wide window located just after the first wave

arrival time. They obtained correction angles θC of 6◦, 8◦, 4◦ for sensors SG2, SG3 and SG4 re-

spectively. θC and θBB are close to θF P when considering the main shock, confirming somehow a

dominant direction of the motion (i.e. towards the fault asperities). In this sense, maj-int directions

align to the FN/FP ones. This is not true for the aftershocks sequence, e.g. for aftershock 2 (see
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Figure 2.8b), where the three mentioned angles differ one from each other.

However, the fact that θC 6= θBB in both cases may be due to the local geological conditions that

deviate the principal axes of motions from down-hole towards the surface (see Section 2.4).

2.3.5 Rotation independent horizontal response spectra

Ground Motion Prediction Equations (GMPEs) are usually formulated exploiting some sort of mea-

sure of the as-recorded site response. To this end, the signals recorded along the two horizontal

components are combined into a single measure of shaking intensity, usually by computing the geo-

metric mean of their related response spectra (Somerville et al., 1999), sometimes with a correction

of the standard deviation of the predicted motions to approximate a randomly chosen component of

ground motion (Boore et al., 2006; Boore and Joyner, 1997). Although the geometric mean reduces

the aleatory uncertainty in ground-motion prediction equations (Boore et al., 2006), a fundamental

drawback holds: geometric mean is not invariant to the orientation of the sensors. Therefore, in the

ideal case of noise-free, linearly polarized ground motion, the component along the direction of po-

larization would give the maximum spectral response, whereas on the orthogonal direction it would

be zero (and so the geometric mean), regardless of the amplitude of the polarized ground motion.

Figure 2.9 shows the pseudo-acceleration spectra (PSA) at SG1 and SG4 (array KSH, at the Service

Hall of KK-NPP site) for the two horizontal components rotated by an angle θBB (see Section 2.3.4)

compared to their geometric mean GM (green line in Figure 2.9). The former angle makes the hori-

zontal time-series at SG4 uncorrelated (i.e. maj-int components), but signals rotated by the same angle

at SG1 are generally correlated (see Figure 2.8a). The difference between the single-component PSAs

and their geometric mean (GM) is more significant for SG4 (uncorrelated signals) rather than for SG1

(correlated time-series), as stated by (Boore et al., 2006). This trend attenuates close to the surface

(e.g. at SG1, as depicted in Figure 2.9b). At SG4 major (X) and intermediate (Y) PSA values are vis-

ibly different over the period range between 0.1 and 2 s. The proximity of the source is predominant.

Non-linear effects attenuates this trend at surface (SG1, Figure 2.9b). Despite the benefit of reducing

the discrepancy between the two directions and the geometric mean, the de-amplification leads to

higher PSAs along the intermediate direction for some periods. This proves that although major and

intermediate directions are usually related to stronger and weaker components of motions in terms of

time series, it might not be always the case when considering spectral ordinates at different periods.

2.4 Identification of non-linear site-effects

2.4.1 Borehole (de-) amplification

The aim of this section is the identification of those features of recorded ground motions, both during

the main shock and the aftershocks, that may support the evidence of non-linear soil response. A

first hint of non-linearity taking place is given by plots in Figure 2.10, where a spectral amplification

function (SAF) is introduced as the ratio of PGA at ground surface with respect to the corresponding

PGA at depth (). Site Amplification Factors were computed at KSH and KK5 by considering two

couples of seismometers each: (1) SG1-SG2 at GL-2.4 m and GL-50.8 m and SG2-SG4 at GL-50.8

m and GL-250 m respectivelyat KSH; (2) G51-G52 at GL-2.7 m and GL-36 m and G52-G55 at GL-

36 m and GL-312 m respectively for KK5. In the case of linear response, the trend of SAF would be

constant, independent of PGAR, supposed not to be affected by non-linearity. As a matter of fact, on

one side the KK5 array shows this trend, having recorded only the aftershocks (Figures 2.10c- 2.10d),

while, on the other side, KSH shows a clear tendency to a decreased SAF for increasing PGAR

beyond about 0.1 g (Figures 2.10a- 2.10b), which is often considered as the threshold for significant
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Figure 2.9: Pseudo Spectral Horizontal Acceleration spectra (PSA) for NCO main shock recorded

at the KK-NPP Service Hall (KSH). (a) PSA for signal recorded at GL-250 m (SG4); (b) PSA for

signal recorded at GL-2.4 m (SG1). Small axes show the spectra for a larger band of natural periods.

Dark grey and light grey lines refer to the rotated components X and Y, by the angle θBB at which

the two as-recorded horizontal components EW-NS at SG4 (base of the borehole) are uncorrelated.

Main axes represent a zoom between 0.1 and 2 s. Green line represents the geometric mean of the

X-Y components.

non-linear response in soft soils (Kramer, 1996, e.g.). The latter tendency is observed not only when

considering the shallowest instrument (SG1), but also when considering SG2, placed at GL-50.8 m,

meaning that non-linear effects may have occurred below this depth. The presented results agree with

the results presented by Pavlenko and Irikura (2012). The authors concluded that the motion at the

Service Hall was de-amplified during its propagation to the surface from the depth of 250 m because

of the non-linearity of the soil response. At the same time, at Unit 5 the ground motion was amplified

on the surface if compared to the motion at 200-300 m, indicating that the seismic waves resonant

amplification prevailed.

2.4.2 Validation of shear-wave velocity profile

The entity of recorded seismic site-effects strongly depends on the initial, small strain shear wave

velocity values and on the spatial distribution of geological layers. To this end, in situ measurements

represent a good estimation of the initial VS profiles. Down-hole methods (such as PS-logging) are

generally considered the most accurate and direct (invasive) measurement of the shear wave veloc-

ity, but their estimation may be biased by the soil disturbance (as observed by Thompson et al.,

2009). Moreover, the upward propagating wave motion alters the mechanical properties of shallow

sediments, reducing their stiffness and increasing their damping capacity. Those alterations may be

irreversible sometimes. For this reasons, the first investigation consisted into estimating VS variation

along the strong motion duration. A seismic interferometry technique was applied to the available

records (Curtis et al., 2006). Briefly, this technique consists of computing the wave travel-times be-

tween two adjacent sensors, estimated as the lag-time at which the seismic interferogram attains its

peak. In 1D Earth-like models, only a single wave source is considered to construct those seismic

interferograms (cross-correlation between two recorded signals in function of lag-time) between any

source-receiver pair, including sources or receivers placed on the free surface (Curtis et al., 2006). A

sliding time window of 4-6 s (with 50% of overlap) was selected. Base line correction and Hanning

tapering (5%) were performed on the windowed signals.
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Figure 2.10: Site Amplification Factors (SAF) computed on PGA at KSH (a-b) and KK5 (c-d) ar-

ray, with respect to the PGA recorded at bedrock. (a) SAF considering SG1/SG2 ratio (KSH); (b)

SAF considering SG2/SG4 ratio; (c) SAF considering G51/G52 ratio (KK5); (d) SAF considering

G52/G55 ratio (KK5).

Figure 2.11 presents VS values varying with time, at Service Hall and Unit 5 respectively. At shallow

depths (i.e. within the first 50 m under the surface, which is the distance from instruments SG1 and

SG2) a consistent VS reduction may be observed after the main shock arrival (array KSH). Values are

substantially lower than the minimum VS value at SG1 (∼= 310 m/s), especially along the NS direction

(probably due to a non-linear anisotropic soil behaviour and to the ground motion incoherence due

to near-field conditions). Shear wave velocity does not seem to retrieve its original value within the

first meters under the surface, at least for the first 150 s of MS (Figure 2.11a). On the other hand, the

most intense aftershock did not cause a significant degradation of shear modulus, as we can notice in

Figure 2.11b. A reduction at intermediate depths can be observed too at KSH (in the strata between

SG2 and SG3’s depths, Figure 2.11c), whereas no reduction occurred at KK5 (Figure 2.11d). Reduc-

tion could be neglected for stiffer sediments. In Figure 2.12, estimated VS profiles are compared to

PS-logging estimations provided by the TEPCO. Results from the aftershocks overestimate PS-log VS

profile: this is probably due to scarce resolution of the method for ground motions of weak intensity.

Aftershock 2 seems not to degrade significantly the soil mechanical properties. However, borehole

interferometry analysis is limited by the coarse distribution of recording devices along depth. Suspen-

sion logging measurements performed at KSH by Yee et al. (2011) also revealed VS values between

130-240 m/s within the first 16 m depth, followed by values ranging between 240-390 m/s till 70 m

depth finally the bedrock materials have velocities increasing from 330-450 m/s (between 70-83 m)

to 400-600 m/s (for depths greater than 83 m). Seismic interferometry revealed a stiffness reduction
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Figure 2.11: VS values estimation by borehole interferometry (along the EW-NS directions, dark grey

circles and light grey diamonds, respectively); solid black lines indicate average VS values (from PS-

log) at the two devices’ locations. The EW-NS time-histories are shown along side, for (a) main shock

at KSH (seismometers SG1-SG2); (b) aftershock 2 at KK5 (seismometers G51-G52); (c) main shock

at KSH (seismometers SG2-SG3); (d) aftershock 2 at KK5 (seismometers G52-G53).

within the shallowest soil layers for main shock at KSH, while computed and measured shear wave

values are similar at KK5. Tokimatsu and Arai (2008) back-calculated the shear wave velocity values

by coupling genetic algorithms with the equivalent linear method. Their findings showed shear wave

velocities at depths smaller than about 70 m significantly smaller than the PS-logging measures (even

for small aftershocks). In contrast, those at deeper depths for the three events are almost identical.

Those results make the PS-logging profiles questionable. The estimated VS profiles may be used as

simplified geology configuration for numerical models. The described behavior was remarked by sev-

eral authors. For instance, Pavlenko and Irikura (2012) estimated a ∼= 30-35% reduction of the shear

modulus within the first 42 m down-hole, during the main shock. Mogi et al. (2010) estimated tem-

poral changes of S-wave velocity by using Normalized Input-Output Minimization (NIOM) method

based on the vertical array records observed during the main shock and the events before and after

it and found that the S-wave velocity in the layers (0-50 m) and (50-100 m) decreased significantly

during the principal motion of the main shock (indicating non linear behaviour), whereas nearly linear

behaviour was observed in the bedrock layer (below 100 m). In Section 2.3.4 the deflection of major-
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Figure 2.12: VS profile obtained by averaging EW-NS results from borehole interferometry analysis

on the two arrays KSH (instruments SG1 to SG4 at depths GL-2.4, -50.8, -99.4 and -250 m respec-

tively) and KK5 (instruments G51 to G55 at depths GL-2.7, -36, -112, -192 and -312 m respectively).

Computed profiles are compared with the PS-logging one (black line) provided by TEPCO (2008).

intermediate direction was referred to as a possible consequence of soil heterogeneity. Therefore,

results coming from interferometry technique were used to verify the latter occurrence. Moreover, in

traditional analysis of 1D soil columns the lateral isotropy is assumed by default. Thus the validity

of this hypothesis should be verified. To this end, VS values computed in the EW and NS directions

(by borehole interferometry) are reported in Figure 2.13. Values estimated herein follow the 1:1 line,

proving an overall lateral isotropy.
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Figure 2.13: On the x-axis VS values computed by borehole interferometry along NS direction; on

the y-axis the values computed considering EW records.

2.5 1D numerical simulations of soil response

As stated in Section 2.4, non-linear de-amplification occurred in the high-frequency part of ground

motion (especially in terms of PGA) during the 2007 Chuetsu-Oki main shock strong motion earth-

quake, whereas aftershock sequence caused negligible degradation of soil stiffness. To complete the
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site characterization, 1D numerical simulations were performed in two stages: (1) verification of the

stratified geological profile and site seismic response at small strains (i.e. analyses on the aftershocks

sequence); (2) validation of available G
Gmax

− γ − D curves by standard equivalent linear approach

(EQL). The first stage of the analysis aims to compare the discontinuous shear modulus profiles

released by TEPCO (PS-logging measures plotted in Figure 2.3) with modified ones, in terms of em-

pirical borehole spectral ratio (BHSR). In both cases the wave equation is solved in the frequency

domain, but in the EQL formulation the shear modulus and damping ratio are iteratively adjusted as

a function of an effective measure of shear strain (Kramer, 1996).

The two soil column models defined for KSH and KK5 respectively, reach the depth at which sen-

sors SG3 and G52 were installed, i.e. GL-99.4 m for KSH and GL-36 m for KK5 (see Figure 2.3

and Figure 2.14). For this purpose, two real accelerograms are available to compare the result of
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Figure 2.14: Simplified VS and small-strain damping (DSS) profiles used in the analysis herein. (a)

VS profiles for KK5 and KSH soil column models; (b) small strain damping DSS for KK5 and KSH

soil column models. 1LP and 2LP are a mono- and bi-layer profiles respectively. MLP profiles

corresponds to the PS-logging measurements provided by TEPCO (2008). MMP are the adjusted

profiles adopted in the further sections for equivalent linear analysis.

numerical simulation. Furthermore, EQL formulation is generally suitable to characterize the seis-
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mic response at shallow depths, where the hypothesis of quasi-vertical propagation of the seismic

input holds approximately (see Section 2.3.3). Real base-line corrected recordings were introduced,

under the assumption of inside input motions (Dobry, 2013). To overcome the limitation of 1D nu-

merical analyses to be dependent on the input motions and therefore to tackle the dependence of the

observed site response on the direction considered (see Section 2.3), results were post-processed by

applying common averaging techniques used in seismology. For instance, theoretical borehole spec-

tral ratios are compared to the geometric mean (called , see Eq. (2.3)) of the ensemble of spectral

ratios computed for Nθ different in-plane rotations of the two horizontal components (by an angle

θn ∈ [0◦; 180◦]), namely

EMP-GM (f) =
Nθ∏

n=1

n

√√√√
(
OX (f, θn)

IX (f, θn)

)(
OY (f, θn)

IY (f, θn)

)
(2.3)

where OX (f, θn),OY (f, θn) represent the Fourier ordinate of recordings at shallowest depth at fre-

quency , considering two horizontal orthogonal directions X and Y respectively, obtained by a rotation

of angle θn of the as-recorded EW-NS components. IX (f, θn),IY (f, θn) refer to deepest recording

station.

In equivalent linear analyses, numerical results depend on the different rotation angles θ at which

the input motion were injected at the soil-column base. Therefore, the response spectra geometric

mean between each couple of rotated components X-Y obtained numerically (one couple for each θ)

is first computed. Then, geometric mean (called GM-EQL) and 16th-84th percentiles of SaGM (θ) are

compared to the Sa obtained from original records (EW/NS components) at the shallowest stations in

the arrays (SG1 and G51 for KSH and KK5 respectively).

2.5.1 Seismic response at KK5

Seismic response in small strain regime

In the surroundings of Unit 5, in situ measurements found a shallow subsurface layer of over-consolidated

clay overlying the engineering bedrock. Gatti et al. (2015) observed some discrepancies when us-

ing the PS-logging measurements (provided by TEPCO) at shallow depths, at Unit 5 array. They

compared empirical transfer functions with the theoretical ones, comparing the original VS profile,

provided by TEPCO, and called Multi-Layer Profile (MLP) with two simplified profile, Two-Layers

Profile (2LP) obtained by smoothing the two shallow layers of MLP (i.e. replacing them with VS,30

value) and One-Layer Profile (1LP), with VS,30 uniform value. Those findings have been extended

hereafter, by introducing a further modified profile (MMP) (black solid lines in Figures 2.14a- 2.14b).

In Figure 2.15, theoretical transfer functions (called borehole spectral ratios, BHSR) are compared to

the empirical geometric mean (orange thick line labelled as EMP-GM) and to the 16th-84th percentiles.

Results presented in Figure 2.15 show the achieved effect due to the adjustment of the provided VS

profile. Profile MMP seems to be the best compromise, at least for the weakest aftershocks such as

AS1 and AS3 (Figure 2.15a- 2.15c): the related theoretical transfer function matches satisfactorily

the first two peaks of the EMP-GM transfer function. This result supports the importance of the

impedance contrast between the deepest stiff layer (VS =500m/s) and the shallowest ones. However,

slight discrepancies between simulated and recorded soil response are still pronounced as provided in

Figure 2.15b where it can be seen that the simulated spectral ratios fit rather well the recorded ones

in two cases (AS1 and AS3), while in the other ones (AS2 and AS5) the observed spectral ratio peaks

stand at lower frequencies than the simulated ones. On one side, it may be argued that the shift of

the observed peak towards lower frequencies may be due to the onset of significant non-linear effects

(as a matter of fact, AS2 is the most intense aftershock). On the other side, other factors may affect
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Figure 2.15: Theoretical transfer function for borehole KK5, compared to the Empirical ones along

the generic X-Y directions for (a) aftershock 1, (b) aftershock 2, (c) aftershock 3 and (d) aftershock

5. EMP-GM represents the geometric mean transfer function on different in-plane rotation angles

θ ∈ [0◦; 180◦]. 16th-84th percentiles of Empirical borehole spectral ratios are plotted as thin orange

lines.

the position and amplitude of the peaks of seismic response for weak motions, such as the frequency

dependence of damping (e.g. Miura et al., 2000), which is commonly considered constant in the 1D

equivalent linear simulations. In the present case, a satisfactory match with observed spectral ratios

was found using hysteretic damping ratio of about 7% (see Figure 2.14b), which is substantially larger

than expected at small strain. This implies the underestimation of higher modes.

Equivalent Linear analysis

For borehole KK5 two aftershocks are considered to reproduce non-linear site effects (i.e. AS2 and

AS5), since they exhibited period lengthening (as mentioned in previous subsection), with respect to

the linear visco-elastic approach. Unfortunately, records of NCO main shock went lost.

A few information on the dynamic properties of the soil deposits at this site were released by the

TEPCO, namely: (1) a set of normalized secant shear modulus reduction and damping curves for the

shallower clayey deposits (curve Clay Ref. in Figure 2.16) and (2) a set of curves referring to the so

called engineering bedrock (curve Rock in Figure 2.16). As observed by many authors (e.g. Vardanega

and Bolton, 2013; Darendeli, 2001) the cyclic behaviour of over-consolidated clays is affected by the

confining pressure to some extent. TEPCO did not specify the reference confinement pressure at

which the non-linear model curves were issued, so a conventional value of 100 kPa was assumed and
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Figure 2.16: G
Gmax

− γ − D curves for KK5 site. Experimental data from laboratory tests (Clay Ref.

and Rock, courtesy of TEPCO) are compared to curves used in equivalent linear analysis (MMP VS

profile). Damping values are discounted from the small strain critical damping relative to each layer

and taken from MMP model. The color bar refers to the vertical stress state estimated along the

borehole depth.

a stress-wise correction was applied consequently. The latter was inspired by Pecker (2011), who

proposed the variation of the dynamic non-linear properties to the effective overburden vertical stress

. For instance, they presented two new sets of curves, referring respectively to σ′V 0 =75-125 kPa

and portrayed in Figure 2.16, under the tag Clay 75 kPa and Clay 125 kPa. Figure 2.16 compares

the mentioned experimental curves with the set of curves selected in the equivalent linear analysis,

performed on MMP VS model (see Figure 2.14). The stress-wise correction unwraps into two steps:

(1) interpolating the experimental points of the reference curve by employing the backbone curve

model proposed by Nakagawa and Soga (1995); (2) correcting the calibrated parameters by a factor√
σ′V 0/patm, according to Pecker (2011) (with σ′V 0 being evaluated at the middle of each soil layer and

the atmospheric pressure). In details, the shear modulus degradation curve is casted into the following

bi-parametric equation:
G

Gmax

(σ′V 0) =
1

1 + α
(
γ
√

patm

σ′
V 0

)β (2.4)

Stress dependency was also assumed for the non-linear evolution of critical damping ratio as follows:

D (σ′V 0) = DSS +DLS

(
1 − G

Gmax
(σ′V 0)

)
(2.5)

where DSS and indicate small- and large- strain damping ratios respectively (set respectively to 5%

and 15%). The corrected hysteretic damping at large strain was forced to saturate, in agreement with

the adjustments proposed by Darendeli (2001). were obtained by logarithmic interpolation of the ref-

erence curve released by TEPCO (Clay ref.). The modified G
Gmax

−γ−D curves were associated to the

first 25 m of the MLP model (over-consolidated clays). The deepest layer (defined by VS of 500m/s)

was associated to the Rock degradation curve (Figure 2.16), interpolated over the experimental data.

Numerical prediction and recorded response are compared in Figure 2.17 in terms of acceleration

time-histories and in Figure 2.18 in terms of elastic response spectra in acceleration Sa. An over-

all good agreement is observed between simulated time-histories and the recorded ones for AS2 and
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Figure 2.17: Comparisons between acceleration time-histories recorded and simulated (by equivalent

linear analyses and angle θ=0◦) time-histories for AS2 (a-c) and AS5 (b-d) at KK5 site.
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Figure 2.18: Elastic response spectrum in acceleration Sa (conventional damping 5%) referring to

AS2 (a) and AS5 (b) at KK5 site. Thick solid black lines (GM-EQL) refers to the results from

equivalent linear analyses, being the geometric mean of all the SaGM (θ). Finer solid black lines

represent the 16th-84th percentiles of SaGM (θ) distribution. Blue and red lines refer to the recorded

EW-NS response accelerations.

AS5. In terms of spectral ordinates however, EQL analysis provides a slightly damped Sa spectrum,

compared to the recorded one (Figure 2.18b). This might be due to the recovered stiffness of the

clayey deposits at shallow depths. The chosen stress correction may play a major role as well. For

AS2, some discrepancies at shorter periods can be noticed, e.g. the peak at approximately 0.3 s along

the EW direction in Figure 2.18a. As a matter of fact, EQL simulations well captured the dependency

of the spectral ordinates on the rotation angle of the input motion only for periods longer than 0.4 s.

2.5.2 Seismic response at KSH

Seismic response in small strain regime

The site response at the Service Hall was simulated according to the same approach as for KK5

site. The TEPCO VS profile (MLP, portrayed by the green lines in Figures 2.14c- 2.14d), based on an

earlier suspension logging campaign, was compared to the estimation made by Yee et al. (2011)(MMP,

portrayed by the dashed black lines in Figures 2.14c- 2.14d), obtained by integrating new PS-logging
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measurement with Standard Penetration Tests performed by the Tokyo Soil Research in 2009 at the

Service Hall site. The soil deposits is composed of unsaturated and poorly graded sands till 70 m.

Below this depth, for both the geological models, the unit weights at different depths were retrieved

from in situ and laboratory results performed by Yee et al. (2011). The MLP layered geological

model is poorly refined at shallow depths, compared to the MMP model, which is also featured by

a velocity inversion below 70 m. As expected from the interferometry results (Section 2.4.2 and

Figure2.12) the MMP model looks more adequate in reproducing the empirical borehole transfer

function (Figure 2.19), both in terms of the main natural frequency peak for weaker (AS3) and more

intense aftershocks (AS2). Higher models are well reproduced by the MMP layering configuration,
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Figure 2.19: Theoretical transfer function for borehole KSH, compared to the Empirical ones along

the generic X-Y directions for (a) aftershock 2 and (b) aftershock 3. EMP-GM represents the geomet-

ric mean transfer function on different in-plane rotation angles θ ∈ [0◦; 180◦]. 16th-84th percentiles of

Empirical borehole spectral ratios are plotted as thin orange lines.

although de-amplification and shift towards the lower frequencies is observed for AS2. For MLP,

the critical damping values provide a decrease of the frequency peaks much larger than observed.

However, the DSS values employed represent the best compromise for MLP profile to match the

first mode. As a matter of fact, Yee et al. (2011) highlighted that the as-provided model-data (from

the previous studies performed by TEPCO) showed some over-prediction of motions at GL-2.4 m

(device SG1), which they addressed as an underestimation of damping ratios (ranging between 1-

4%), which they also observed in their resonant column tests. Thus, they slightly increased DSS to

2-5%. However, results does not clearly support either a preferential choice on MLP or MLP, probably

due to the greater depth reached by the soil column model (i.e. GL-99.4 m) where recording device

SG3 is installed and to some residual modification of the soil properties, due to the strong main shock

that struck the site.

Non-linear site response at KSH

The borehole array KSH, installed at the KK-NPP Service Hall, recorded the NCO main shock.

Nonetheless, according to Yee et al. (2011), prior to the 2011 Tohoku Japan earthquake, the KSH ar-

ray recorded the strongest motions for a vertical array in soil, without exhibiting liquefaction. There-

fore, this location is suitable to study the non-linear site response in the surroundings, via 1D soil

column analyses. Main shock (MS) and aftershock 2 (AS2) are considered herein.

The TEPCO released a degradation curve for sand layer (Sand ref. in Figure 2.20). Those values were

assumed to refer to an in situ confining pressure state of 100 kPa. The stress correction described in

Section 2.5.1 was judged incompatible with the experimental results obtained by Yee et al. (2011)
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(curves tagged as Yee et al., in Figure 2.20). A more accurate description of the effect of the overbur-
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Figure 2.20: G
Gmax

− γ − D curves for KSH site. Experimental data from laboratory tests conducted by

the Tokyo Soil Research (Yee et al., 2011) and by TEPCO are compared to curves used in equivalent

linear analysis (MLP VS profile), obtained by applying the overburden stress correction proposed by

Yee et al. (2011).

den pressure was proposed by Yee et al. (2011), so to fit the laboratory results. The authors adopted a

classical hyperbolic model (Hartzell et al., 2004), in the form of:

G

Gmax
(p′0) =

1

1 +
(

γ

γr(p′0)

)β(p′0)
(2.6)

where represents the pseudo-reference shear strain and the mean effective confining pressure at depth.

Based on the previous parametric studies performed by Menq (2003) on the dynamic properties of

cohesionless granular soils, they adjusted the provided empirical relations by proposing the following

stress dependencies for γr and β:

γr (p′0) = γr,1

(
p′0
patm

)n

(2.7)

β (p′0) = β1 + β2 log

(
p′0
patm

)
(2.8)

are regression coefficients, which have been tuned upon the experimental results for the unsaturated

sandy deposit above 70 m (approximately corresponding to a confining pressure p′0 = 6.75 atm),

whereas at higher depths they assume the empirical values obtained for clays by Darendeli (2001).

However, the inherent uncertainty on those regression coefficients reported by Yee et al. (2011) was

solved by a trial and error adjustment, at each depth. Figures 2.21a-2.21b portray the comparison

between the adopted values of γr and β with varying confining pressure (referred as to Y − mod.)
along with the models proposed by Yee et al. (2011) (average value Y − µ and confidence limits

Y − µ + / − σ). Figure 2.21 highlights the two main major adjustments adopted herein: (1) γr

deviates from the Yee et al. (2011) exponential model at small confining pressures (i.e. p′0 < 2 atm)

so to better capture the experimentally measured pseudo-reference strain; (2) β values generally range

across the lowest curve (Y − µ− σ).
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Figure 2.21: Values of γr (a) and β (b) with varying confining pressure p′0. Red lines referred as to

Y −mod. indicate the stress correction employed in this study. Blue lines refer to the average (Y −µ)

values and confidence limits (Y − µ+) of the regression coefficients according to Yee et al. (2011).

The red symbols in Figure 2.21a indicate the laboratory results reported by Yee et al. (2011).

Thanks to those quite simple expedients, the simulated time-histories (see Figure 2.22) are rather

well reproduced, despite the higher frequency content polluting the simulations and mainly due to

the limitations of the equivalent linear method with intrinsic hysteretic assumption of a frequency-

constant damping (Miura et al., 2000, among others). In Figure 2.23 simulated site response for MS
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Figure 2.22: Comparisons between acceleration time-histories recorded and simulated (by equivalent

linear analyses) for MS (a-c) and AS2 (b-d) at KSH site.

is strongly dependent on the direction along which the motion is projected. The MS recorded response

spectra are well replicated for natural periods greater than 2.0 s, EQL results show high variability

depending on the input motion angle considered at shorter periods. On the other hand, for AS2 the

simulated response ranges within a narrow confidence band across GM-EQL (Figure 2.23b). Those

effects are related to the proximity of the seismic source since the motion intensity and direction

change drastically the response. Moreover, those discrepancies highlight the shortcomings of EQL

analysis when large strains occur.
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Figure 2.23: Elastic response spectrum in acceleration Sa (conventional damping 5%) referring to MS

(a) and AS2 (b) at KSH site. Thick solid black lines (GM-EQL) refers to the results from equivalent

linear analyses, being the geometric mean of all the SaGM (θ). Fine solid black lines represent the

16th-84th percentiles of SaGM (θ) distribution. Blue and red lines refer to the as-recorded EW-NS

response accelerations.

2.6 Conclusions

The Niigata-Ken Chūetsu-Oki earthquake affected the Kashiwazaki-Kariwa Nuclear Power Plant

causing limited damage to the nuclear installments. Non-linear site effects were observed. The case

study was very interesting either from a seismological point of view, either from an engineering one.

In this study, some crucial features of the global seismic response of KK-NPP were tackled, with an

engineering approach.

First of all, since the design seismic capacity has been exceeded during the main shock, a correlation

between the recorded peak values (i.e. PGAs) and the dominant harmonic periods of the ground

motion was established, proving the potential damage occurrence at some locations within the site.

In the following, the impulsive response of the incoming wave field was assessed. Hanging wall

and directivity effects were judged as responsible of such a response, due to the small source-to-site

distance. This characteristics of the seismic scenario prevent the recognition of preferential direction

of motion, i.e. making the site response strongly dependent on the considered horizontal direction at

each location.

The consistent number of recordings available was exploited to check whether non-linearity took

place. Wave motion de-amplifies towards the surface, as expected during the main shock and non-

linear stiffness degradation is observed at shallow depths, thanks to seismic interferometry applied to

borehole arrays of seismometers. Thus, PS-logging measurements referring to this specific site are

poorly adequate and they may lead to an underestimation of the of the structural response of both

the reactor building and other structural components in nuclear facilities. VS values measured in situ

may overestimate the real soil stiffness during transient analyses. This is confirmed by the equivalent

linear calculations presented in Section 2.5: predicted transfer functions provide a reasonable match

to the shape and resonant frequencies of the observed ones, although the data is clearly too limited to

establish statistically significant empirical trends for small-strain site response. Original mechanical

properties may have not been recovered during the aftershock cluster, preventing the use of weak

motions as input for calibration of non-linear soil models. On the other hand, limitations of the 1D

models may alter the predictions (e.g. the frequency dependence of the damping, the wave motion

deviation from the vertical, the spurious wave content and the destructive interference). However,

none of those factors can generally be dealt exhaustively with 1D models. Care should be paid
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in near-field conditions, where the strong dependency on the orientation of the input motion may

alter dramatically the results of numerical simulations. In this case, consideration of the different

components of the motion is strongly recommended to obtain more stable results.

It is clear that the present case of study needs for complex 3D numerical models since complex

geology underlies the site, as reported by several authors (Aochi et al., 2013a; Tsuda et al., 2011).

Due to the near-field conditions, the seismological model should also include the faulting mechanism

to be able to model the impulsive nature of seismic records.
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3

Numerical tools

“In the beginning there was nothing, which exploded.”

– Terry Pratchett, Lords and Ladies

In recent years, classical seismological models have been successfully improved so as to ex-

plain the observed waveforms in sedimentary basins Graves and Wald (2004) or at the global scale

Komatitsch and Tromp (2002a). The computation of high-quality synthetic seismograms and their

comparison with actual recordings at the stations, steer an ever improving knowledge of the deep

geological models and earthquake parameters (Liu, 2006). It is well known the role of the geo-

logical site conditions as one of the dominant factors controlling the spatial variation of the ground

shaking (Olsen, 2000, for instance). Historically, synthetics have been computed via numerous tech-

niques, like ray tracing or normal mode summation (Cupillard et al., 2012). For many purposes, those

techniques resulted very convenient but with major shortcomings (low-frequency approximation, lim-

itation to weak lateral heterogeneities, etc.). To this end, the three-dimensional (3D) source-to-site

numerical simulation of strong ground motion earthquakes has become the leading and most reliable

tool Paolucci et al. (2014). Large scale simulations comprehend the regional geology and topography.

The incident wave-field is naturally radiated from a kinematic description of the fault mechanism.

The available numerical methods used in seismology are able to simulate 3D seismic wave propa-

gation in complex geological media at large scale with increasing resolution (Maufroy et al., 2015;

De Martin, 2011). Among the direct numerical solutions investigated, the Finite Difference Method

(FDM) has widely employed to solve the wave equation (Alterman and Karal, 1968; Boore, 1972;

Virieux, 1986; Moczo et al., 2007, among others). Although its undoubted major advantages com-

pared to analytical and semi-analytical methods, the FDM suffers of intrinsic shortcomings, such as

dealing with complex geometries (typically the basin edges and the bathymetry), with unstructured

computational grids sometimes required to mesh huge physical domains and its cumbersome numer-

ical solution and memory requirement. The Finite Element Method is more flexible and does not

suffer of the problems above mentioned. However it is traditionally featured by low-degree poly-

nomial approximation and therefore not indicated for this kind of analysis, due to high numerical

dispersion and inaccuracy (Lysmer and Drake, 1972; Marfurt, 1984; Cupillard et al., 2012). In the

plethora of numerical methods used in engineering seismology, the Spectral Element Method (SEM,

i.e. a high-order version of the FEM) has recently become predominant due to its accuracy and

straight-forward extension to parallel implementation (Göddeke et al., 2014), and it is well known to

provide an accurate solution of the elasto-dynamic problem in highly heterogeneous media (Seriani,

1998; Komatitsch and Tromp, 1999). This high-order numerical method is based on the pioneering

works in fluid dynamics performed by (Patera, 1984; Korczak and Patera, 1986; Maday et al., 1987;

Mayday et al., 1989). The Spectral Element (SE) formulation (extensively detailed in appendix A)

bares on a non-isoparametric piecewise polynomial approximation of the wave-field. The key-point
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of this powerful numerical tool resides in the use of orthogonal Lagrangian polynomials, sampled at

the Gauss-Lobatto-Legendre (GLL) quadrature points. The accuracy of the solution can be arbitrarily

increased by simply enhancing the polynomial approximation degree (Mazzieri et al., 2013). The

first seismology-oriented application of the SEM can be found in Priolo et al. (1994); Seriani et al.

(1995). Large scale 3D wave-propagation (≈ 109 degrees of freedom) in visco-elastic media has been

successfully performed using the SEM, both at local and regional scales (Faccioli et al., 1997; Ko-

matitsch and Vilotte, 1998, among others).

However, to model the spatial variability of seismic incident field (due to its significant effect on

the structural response), the heterogeneous composition and the non-linear behaviour of soil deposits

must be taken into account. Non-linear soil behaviour was integrated into 2D Spectral Element codes

in the recent years (see, for instance, Stupazzini and Zambelli, 2005; di Prisco et al., 2007; Stupazzini

et al., 2009; Oral, 2016)).

The physics-based simulation of realistic earthquake scenarios requires a reliable estimation of sev-

eral different parameters, related to the source mechanism, to the geological configuration and to the

mechanical property of the soil layers and crustal rocks. Due to the enormous extension of those

regional scale scenarios, the degree of uncertainty associated to the whole earthquake process (from

fault to site) is extremely high. Another drawback resides on the computational effort required to

routinely solve the wave propagation on such huge domains and over such a great number of DOFs.

An extensive parametric study on each and everyone of the parameters involved is rather complicated.

At this point, it appears necessary to build up a multi-tool virtual laboratory to construct and calibrate

the seismological model. The different physical mechanisms encompassed (mainly the source mech-

anism and the propagation into non-linear heterogeneous soil layers) are firstly calibrated by means of

simplified analyses (e.g. semi-analytical methods), each one focusing on an aspect of the earthquake

scenario. All the contributions are finally convolved together in a large scale simulation. To this end,

three main issues must be tackled:

• mesh the domain of interest, its geological conformation (bedrock to sediment geological sur-

faces), the topographical surface and the bathymetry (if present)

• represents the material rheology (i.e., elastic, viscous-elastic, non-linear hysteretic)

• describe the natural heterogeneity of the soil properties, at different scales (i.e., regional geol-

ogy, local basin-type structures and heterogeneity of granular materials)

Among the tools employed, the main wave propagation solver is herein represented by a software

called SEM3D, an High-Performance code tailored to efficiently solve the SE numerical approxima-

tion of wave propagation at the regional scale1. Among the advantages of SEM3D, two main aspects

must be stressed, namely (1) its efficient and cost-effective massively parallel implementation (by

Message Passing Interface, MPI) on large super-computers and (2) its ability to accurately take into

account 3D discontinuities such as the sediment-rock interface. The original core of the SEM3D

software (written in Fortran 90/C/C++ routines) allowed to solve the wave propagation problem in

any velocity model, including anisotropy and intrinsic attenuation. However, within the framework

of the SINAPS@ project, the software has been equipped with an external library to effectively gen-

erate scalar random fields at the regional scale and with a non-linear solver to efficiently integrate

the cyclic hysteretic soil rheology (modelled within the elasto-plasticity framework). Moreover, the

code makes use of an efficient linear octree finite element mesh generation scheme, called HexMesh

(Camata and Coutinho, 2013). The latter is capable to generate large scale computational grids by

1To clarify, by regional scale, it is hereafter assumed an average distance range between about 1 km (local scale) to

90 (continental scale).
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extruding the Digital Elevation Model (DEM) provided. To validate the code, results from PRENO-

LIN international benchmark are employed (Régnier et al., 2016). The PRENOLIN project addressed

the numerical simulation of 1D wave propagation in elastic and non-linear soil deposits. Moreover,

to test the implementation of the point source double-couple (an kinematic approach to simulate fault

offsets in computational seismology), large scale simulations were compared to the semi-analytical

solution provided by the Wave Number Integration method (WNI) (Hisada, 1994, 1995). All these

simulations show the great flexibility of the code at the local and regional scale.

3.1 3D Spectral Element based numerical solver

The extensive formulation of the SEM is presented in the appendix A. The SEM borrowed from the

FEM its natural capability to handle both interface and free boundary surface conditions, allowing a

good resolution of evanescent interface and surface waves (Cupillard et al., 2012). Given a 3D open

domain Ω ⊆ R3 and a time interval It ⊆ R+, the wave propagation problem is governed by the

Euler-Lagrange equations (which, in turn, express the conservation of the linear momentum), in the

form (Lagrange, 1853):

{
∇x.σ (u (x; t)) + b (x; t) = ρ (x; t) v̇ (x; t) ∀ (x; t) ∈ Ω × It

ρ (x; t) v (x; t) = ρ (x; t) u̇ (x; t)

(3.1)

(3.2)

with and the unknown displacement/velocity wave-field respectively, >0 the unit mass density, the

body force density distribution (per unit mass) applied to the medium (e.g. the mass gravity) the

Cauchy’s stress tensor2. The relationship between σ and displacement field u (x; t) depends on the

chosen rheology. �̇ represents the material time derivative d�/dt. Equations 3.2 is supplied with the

initial conditions: {
u (x; 0) = u0 (x) ∀ (x) ∈ Ω

v (x; 0) = v0 (x) ∀ (x) ∈ Ω

(3.3)

(3.4)

and the following Neumann’s boundary condition:

tn = σ (x; t) .n (x; t) = tn,0 (x; t) ∀ (x; t) ∈ ΓT × It (3.5)

with ΓT ⊆ ∂Ω the surface where the Neumann’s conditions are applied. For the sake of simplicity,

ΓT = ∂Ω and a free-surface is assumed (i.e. =0).

Due to lack of a closed form solution for complex geometries and source domains, a numerical so-

lution is required. The latter is obtained by first rewriting the Euler-Lagrange Equation 3.2 in its

variational formulation (see Section A.4) and then by subdividing the spatial domain Ω̄ into Ne non-

overlapping elements Ω̄e (generally hexahedral elements) such that Ω̄ = ∪e=1,Ne
Ω̄e and the inter-

section between two distinct elements e
′

and e Ω̄e′ ∩ Ω̄e is an element’s corner, edge or face. The

approximate solution of the Euler-Lagrange problem (i.e. the displacement/velocity couple
(
uh; vh

)
)

is sought in the space of high-order piece-wise polynomial on the element Ωe. Specifically, the SEM

employs tensorized (and orthogonal) Lagrangian polynomials of order Nd as basis functions (see

Section A.5). The tensorial grid features (N + 1)d
interpolation nodes of belonging to the Gauss-

Lobatto-Legendre (GLL) set (Section A.2). Those GLLs are involved in the Gauss quadrature used

to evaluate the integrals in the variational formulation and to discretize the displacement and velocity

fields, their derivatives and the external forces. Moreover, the choice of a Lagrangian interpolation

associated with the GLL nodes gives the SEM a very interesting convergence property: an increase

2the small strain and small displacement assumptions are considered hereafter
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of the polynomial order leads to an exponential diminution of the aliasing error (the so called spectral

precision Cupillard et al., 2012; Mazzieri et al., 2013). Substituting the piecewise polynomial ap-

proximation into the variational counterpart of the Euler-Lagrange equations and approximating the

integrals by means of the Gauss quadrature rules (based on the GLL tensorized grid)3 lead to a system

of ordinary differential equations governing the evolution at the global nodal position, which can be

written as follows: 



M
˙̂

V
h

G = F
ext − F

int
(

Û
h

G; V̂
h

G

)
+ F

trac
(
T

h
G

)

˙̂
U

h

G = V̂
h

G

(3.6)

(3.7)

with , and the displacement, velocity global DOF vectors and the traction at the global nodes, re-

spectively. is the diagonal mass matrix (an interesting property, in terms of computational effort,

inherited from the spectral discretization, and specifically from the orthogonal Lagrange polynomials

employed, see Section A.7). The vectors and contain the external and internal forces, respectively,

and corresponds to the traction forces (Delavaud, 2007). The natural diagonality of the mass matrix

steers the choice of an explicit time-marching scheme, e.g. a second-order accurate leap-frog method

(belonging to the Newmark’s family) which was found to preserve the angular momentum (Simo

et al., 1992).

3.2 Meshing regional Earth’s chunks

From a practical point of view, keeping in mind the need for large scale (i.e. ∼ 10-100 km) com-

putational grids representing chunks of the Earth’s crust, an efficient meshing tool must tackle the

following difficulties:

• meshing the topographical surface and eventually the coastline and the sea bottom;

• consider geological discontinuities (typically sedimentary basins, folded geological strata, fault

segments)

• reach a sufficient refinement close the topographical surface, where slower soil strata are natu-

rally found, so to preserve the maximum frequency propagated by the numerical model

In the following subsections, some of the main aspects concerning the SE meshing tool adopted in

this work are explained and detailed, along with some rule of thumbs and practical considerations for

a good meshing procedure.

3.2.1 General aspects

Hexahedral meshes are generally less adapted than tetrahedral for meshing geometrically complex

structures. However, they feature two major advantages, i.e. (1) the intrinsic tensorization property

and (2) the flexibility provided by a non-linear geometric mapping from a master unit cube �Ω to

any deformed 8- or 27-node hexahedra element in the physical space (Figure 3.1). The second aspect

opens up to the ease of generating unstructured meshes with additional advantage (Cupillard et al.,

2012). The high flexibility of the SE discretization allows to handle high number of integration points

per minimum wavelength. After Tromp et al. (2008), using 4th or 5th order Lagrange polynomial

might provide a best trade-off between accuracy and computational time. However, typically much

higher values of N are used in the SEM, e.g. 5 ≤ N ≤ 10, and in these cases the spacing of the

3The complete mathematical derivation of the Galerkin’s formulation
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Figure 3.1: 8-node hexahedral reference element and the mapping function (Delavaud, 2007)

nodes is not even: the nodes tend to cluster near the element borders and are rarefied in the interior

(Komatitsch, 1997). This means that the size of the elements d and the polynomial order N are both

constrained by the shortest wavelength propagated in the medium. This condition can be summarized

by the following relation (Cupillard et al., 2012):

d ≤ N

No
λmin (3.8)

where represents the number of integration point per minimum wave-length, set to either 4 or 5.

Moreover, to ensure the stability of the time-marching, the time step ∆t of the leap-frog scheme has

to verify the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967):

∆t ≤ C∆tmin = C

(
d

cp

)

min

(3.9)

where d is the size of an element, n is the order of the polynomial, λ is the minimum wavelength and

is the Courant’s number which is generally considered to be 0.4 for a 3D modelling.

3.2.2 Parallel implementation of the meshing scheme

As a strict requirement, the meshing tool must be fast, accurate (in terms of multiple levels of refine-

ment/coarsening) and cost-effective. Although many solvers have been recently adapted to parallel

supercomputers, grid generators did not. As a matter of fact, most of the numerical solver (as SEM3D)

exploits an efficient domain partitioning scheme featured by a mapping sub-domain → target parallel

system (Camata and Coutinho, 2013). For instance, the Metis library4, for instance, is widely used to

roughly partition the computational nodes/elements in equal parts (among the processors involved),

such that the number of edges connecting vertices in different parts is minimized (Karypis and Ku-

mar, 1995). Moreover, for direct application in engineering seismology, one would desire the mesher

to handle complex surfaces, such as the regional topography, the ocean bathymetry and the coastline.

All the mentioned requirements are met by HexMesh5, a software tailored to extrude a given Digital

Elevation Model (DEM)6 down to a certain depth so to obtain an unstructured hexaedral mesh (with

4source: http://www.cs.umn.edu/∼karypis
5source: https://github.com/jcamata/HexMesh.git
6See for instance, the Shuttle Radar Topography Mission (SRTM) data sets, result from a collaborative effort by the

National Aeronautics and Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA), as well

as the participation of the German and Italian space agencies, to generate a near-global digital elevation model (DEM) of

the Earth using radar interferometry. Source: https://dds.cr.usgs.gov/srtm/version2 1.
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Figure 3.2: 27-tree definition scheme.

a 3:1 balance refinement from down to top) spanning up to 100 km size. The mesher portability is

granted by its parallel implementation (MPI based) and by its 27-tree based axis-aligned hierarchical

data structures. A 27-tree is a tree data structure composed by nodes each one with exactly 27 chil-

dren and finite volume associated with it. The generation algorithm starts from a root node 0 taken to

be the smallest axis-aligned cube V 0 fully enclosing the domain (Camata and Coutinho, 2013). The

parent volume V 0 is then subdivided into 27 smaller and equal-size child sub-cubes V 1
i , i = 1, ..., 27

(also called cells) obtained by simultaneously dividing V 0’s edges along each of the coordinate axes

(x1, x2, x3) in three. This parent → children decomposition strategy is recursively applied till the tree

reaches a maximum depth (the refinement depth of a node from the root is called level) or the cubes

getting smaller than some preset minimum size. Nodes that have no children are called leaf nodes.

Figure 3.2 shows a 27-tree domain decomposition and its tree representation. Considering that the

maximum permissible depth of 27-tree is fixed a priori and that each node has exactly 27 nodes, the

whole hierarchical data structure can also be represented with a complete list of leaf nodes, arranged

in a linear array, instead of the tree data structure. Each cell is encoded with a bijective scalar key

called locational code (Camata and Coutinho, 2013), treated as a binary scalar value and containing

information about position and level of the cell in the tree. The leaf nodes are therefore sorted accord-

ing to their locational codes, being the storing order univocal determined from the preorder traversal

of the 27-tree (Camata and Coutinho, 2013). The location code is generated by generating 3n×3n×3n

indivisible cells in the 3D Cartesian coordinate space. n is the maximum possible depth. Any 27-tree

can be identified by an integer triplet representing its lower left corner coordinates and its levels in

the tree (Camata and Coutinho, 2013). The mesh is refined from depth to the surface, by interposing

transition elements (see small panel in Figure 3.3). Once the reference cube has been generated and

appropriately refined, the nodes belonging to the free surface are slightly adjusted according to the

DEM of the meshed region. Figure 3.3 shows a 27-tree based mesh which encompass the topography

and the bathymetry, along with the coastline. HexMesh handles arbitrary surfaces pretty easily: those

surfaces are generally parametrized by a triangulation, which typically is obtained from CAD pack-

ages via STL files. The cells intersected by those complicated surfaces are smartly detected by testing

the overlap between object bounding volumes encapsulating one or more objects of more complex

nature.
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Figure 3.3: Sketch of large scale (60 × 50.8 × 50.8 km) mesh generated by 27-tree algorithm, for

the Niigata region, Japan. Small panel: detail on the 3:1 refinement. The Digital Elevation Model is

portrayed on the top panel: the bathymetry and the coastline of the Japan Sea were meshed as well.
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3.2.3 Handling complex geology and discontinuity

The accuracy of the wave-propagation numerical solutions is strongly sensitive to the smoothness of

the velocity model, or, in other words, on the level of accuracy the discontinuous material properties

are modelled and the interfaces discretized. An improper discrete representation of the interfaces can

cause inaccurate numerical modelling of surface waves (Chaljub et al., 2015). According to Moczo

et al. (2002), the transverse anisotropy (i.e. the canonical case of a layered half-space) is the cor-

rect representation of a planar material interface consistent with the boundary conditions in the long

wavelength approximation, i.e. Assuming a welded interface, the boundary condition implies the

continuity of the displacement (or particle-velocity) and traction vector along it. However, one cannot

infer a stress/strain continuity from this boundary conditions. Therefore, in traditional Finite Element

and Finite Difference Schemes, the mesh must theoretically honour the spatial distribution of the ge-

ological discontinuities (i.e. sediments, folds, basins, fault disconituies) so to effectively benefit of

the high degree of accuracy of the method. However, a not honouring approach is worth considering

as well: the mesh does not model the geometrical discontinuities, but different mechanical properties

are attributed to the GLL points across the discontinuity, by employing the SEM interpolating shape

functions. In Figure 3.4a7, a numerical example is sketched, for a bi-layered domain, with a planar

material discontinuity and an impedance factor of VS2/VS1 = 2. The impact of different modelling

strategies to handle the material heterogeneity is assessed herein: synthetic wave-forms for an hon-

ouring (black line) and not-honouring (green and red lines) are shown in terms of the velocity and

acceleration time-histories in Figures 3.4d-3.4g respectively. For the not-honouring approach, the pro-

file was discretized by means of 10 (coarse) and 1000 points (fine), to test the impact on the synthetic

wave-form. As a matter of fact higher number of GLL integration points (deployed along the element

face/edges, including their corners) entail a satisfactory approximation of the heterogeneous nature of

the Earth’s crust, as the overall good ranking in terms of Anderson’s criteria between the honouring

and coarse (Figure 3.4b) and fine (Figure 3.4c) not-honouring cases show. A not-honouring approach

with coarser discretization, i.e. smoother material profile, might be however poorly accurate.

3.3 Non-linear modelling in explicit dynamics

One major objective of my PhD thesis was the choice, the calibration and the numerical implementa-

tion in SEM3D of a non-linear hysteretic constitutive behaviour for soils. Hereafter, a brief summary

of the main ingredients required to realistically model the soil cyclic behaviour is presented, along

with some hints on the computational effort required for the numerical implementation in a 3D wave-

propagation code. The choice of the elastic-plastic non-linear model was steered by the sake of its

simplicity: a few number of parameters to be calibrated and a rather ease of implementation. To this

end, one may argue that the renowned complexity of the soil cyclic behaviour is barely reproduced

by a simple model, due to the peculiarities (such as, for instance, the shear-volumetric elastic-plastic

coupling). However, I chose to privilege a less sophisticated hysteretic for two reasons, one chained

to another: (1) the types of physics-based numerical analyses I performed (presented in Chapter 5)

consider large scale regional domains (i.e. an area of ≈ 50 km of diameter) whose level of detail-

ing and resolution seem poorly compatible with the inherent peculiarities of the soil behaviour at

the laboratory scale; (2) since SEM3D was originally conceived for a visco-elastic heterogeneous

rheology (i.e. for the Earth’s crust) and speeded-up accordingly, a simple elastic-plastic model (that

normally requires an iterative stress correction and the need to store internal variables to reproduce

7They are a measure of the Goodness of Fit between two time-histories proposed by Anderson (2004). There are 10

criteria (C), scoring the misfit of some parameter between 0-10: C1 = Arias duration; C2 = Energy duration; C3 = Arias

Intensity; C4 = Energy Integral; C5 = Peak Acceleration; C6 = Peak Velocity; C7 = Peak Displacement; C8 = Response

Spectra; C9 = Fourier Spectra; C10 = Cross Correlation
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Figure 3.4: (a) Example of bi-layered domain. (b-c) Anderson’s criteria values for the three compo-

nents of motion simulated at the material discontinuity (Z=0 m): the honouring approach is compared

to the not-honouring one, with 10 points (b) and 1000 points (c) of discretization respectively. Ve-

locity (d-e) and Acceleration (f-g) time-histories obtained at the interface between layers 1 and 2, by

employing an honouring (HN , black line) and not-honouring (coarse NH − 10pt, green line, and

fine NH − 1000pt, red line) approach respectively.

the path-dependent rheological behaviour) would hopefully contain the extra computational cost and

have a limited impact on the overall code performance. The latter statement applies specifically to the

classical type of analyses run by SEM3D: the non-linear behaviour is typically spatially restrained to

the shallow soil layers (i.e. of ≈ 200 m of thickness), whereas the rest of the computational domain

may be considered as visco-elastic. In the context of a massively parallel implementation of SEM3D,

the use of sophisticated non-linear model, requiring complex iterative procedures to solve the path-

dependent stress-strain relationship and several internal variables to be calibrated and stored, would

eventually jeopardize the overall computational balance among the cores. The situation that is likely

to avoid is the case of some MPI cores dealing with the non-linear soil behaviour of shallow layers and

over-charged of floating operations, while the rest of the MPI cores is waiting. Those topics require a

sophisticated analysis, which however have not been made object of this study.

3.3.1 An excursus on soil rheology

The main issue concerning non-linear finite element analysis is represented by the time-integration

of the local constitutive relationships and to subsequently assemblage of the internal force vector
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. The latter is issued from the SE semi-discretized form8 of the following expression:

Ne∑

e

∫

Ωe

wh
e ⊗S ∇x : σ

(
uh

e

)
dVx (3.10)

where Ωe is the single element volume, wh
e is the SE piece-wise polynomial trial test function em-

ployed in the SE variational formulation and uh
e is the SE piece-wise polynomial approximation of

the displacement wave-field. It is important to stress the key role that the rheology in bonding the

internal force evolution with the displacement/velocity field, within a displacement-based mechanical

problem. The rheology translates into the action of the stress operator σ (·). In the following, three

of the main rheologies commonly used in seismology and geotechnics are briefly described.

Elasticity

The internal force vector linearly depend on the displacement field gradient when elasticity is solely

considered. For an elastic isotropic material, the rheological model reads:

σ (u (x; t)) = λ (x)Tr
(
ε

x
(u (x; t))

)
+ 2µ (x) ε

x
(u (x; t)) (3.11)

with are the so called Lamé coefficients, and the linear operator is the small strain tensor, defined as:

ε
x

(u (x; t)) = u ⊗s ∇x (x; t) (3.12)

being the symmetric gradient operator. The Lamé coefficients are usually casted into the so called

elasticity 4th tensor , that reads:

D
el (x) = λ (x) I ⊗ I + µ (x) I, σ (u (x; t)) = D

el : ε
x

(u (x; t)) (3.13)

with the 2nd order identity tensor and the 4th order identity tensor. When one considers an anisotropic

material, Del (x) has 21 independent coefficients.

Viscoelasticity

In a more general sense, the stress state in attenuating media is determined by the functional:

σ (x; t) =
∫ t

−∞
D

el
(x; t− τ) ε

x
(u (x; τ)) dτ (3.14)

In seismology, the quality factor is generally observed to be approximately constant over a wide range

of frequencies (see Section B.2 for further details).

Elastoplasticity

The classical theory of rate-independent plasticity is effectively described by means of strain-stress

rate (i.e. infinitesimal increments). The reason behind this approach is that it allows to follow the path-

dependent material response at each step by solving a set of ordinary differential equations (ODEs).

As confirmed by experimental evidence, non-linear modelling is based on the assumption that the

total strain rate is the sum of a recoverable and an irrecoverable strain ones (elastic-plastic split):

ε̇
x

(x; t) = ε̇re (x; t) + ε̇ir (x; t) (3.15)

8The semi-discrete counter part is expressed in Equation A.71. See Section A.6 for all the mathematical development

of the mentioned semi-discretized formulation.
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where ε̇
x

(x; t) ∈ S represents the small-strain rate tensor for a generic REV positioned at point x in

space at time t; ε̇re (x; t) and ε̇ir (x; t) are the recoverable and irrecoverable strain rates respectively.

In the elastic-plastic framework, the recoverable strain rate is called elastic one (), whereas the entire

irrecoverable part is purely plastic (). Irrecoverable strain increments take place instantaneously,

coherently with the rate-independent plasticity theory. As mentioned in subsection B.1, the non-

linear cyclic material behaviour is modelled by considering a set of hidden internal variables, noted

as . The hidden variables keep track of the loading path, by influencing the stress response at each

time. For instance, a typical stress-strain curve for a simple-shear test is shown in Figure 3.5. The

yield limit

unloading

yield limithardening

har
den

in
g

irrecoverable strain

Figure 3.5: Typical non-linear strain-stress curve.

stress-strain relationship remains linear as long as the stress state does not exceed a certain threshold

(indicated as yield limit in Figure 3.5). At this stage, all the strain cumulated is entirely recoverable

and the set of hidden variables does not evolve since strain and stress states are directly related through

the incremental linear (hyper-) elastic Hooke’s law, which reads:

σ̇ (x; t) = D
el (x; t) :

(
ε̇

x
(x; t) − ε̇pl

x
(x; t)

)
(3.16)

The Hooke’s law is valid within the so called initial elastic domain (Simo and Hughes, 1998). As

general assumption, the stress state and the set of hidden variables must lie at all the time within the

an admissible domain referred as to the instantaneous elastic range (that can be seen as a non-linear

evolution of the initial one). Its boundary is called the yield locus (defined by means of a convex yield

function =0): in an elastic-plastic framework, the stress-strain relationship is perfectly linear and elas-

tic before crossing ∂Eσχ, and χ
∼

remains constant. The yield locus constrains the admissible stresses

within a closed interval (i.e. the Eσχ is a closed convex set, Simo and Hughes, 1998). It has been

experimentally proven that plastic flow develops as long as the the stress state is equal or exceeds the

so called yield limit (f = 0). Plastic strains develop according to the so called flow rule, whereas

the yield function f evolves along with the plastic flow according to the appropriate hardening-rule

(see Section B.3.3). The whole process of elastic-plastic loading/unloading may be formulated as a

constrained evolution problem and solved by translating those constrains into some non-linear pro-

gramming conditions. Traditionally, the plastic flow activation and evolution are ruled by the manifold

Karush-Kuhn-Tucker condition (KKT) (Simo and Hughes, 1998). The KKT approach generalizes the

method of Lagrange multipliers (limited to equality constraints) and they translate mathematically the

experimental evidence that when the applied stress is less than the flow stress, no irrecoverable strain

is developed and the instantaneous response of the device is elastic (the so called plastic consistency).

The inadmissible stress state therefore lies outside the yield locus. Moreover, the consistency condi-

tion requires a complementary condition to ensure the persistency of the plastic flow, which assures
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the stress state to be confined within the evolving yield locus. When plastic flow occurs, the set of rul-

ing equations can be reformulated in the following time-marching computational problem, arising by

splitting the loading path into N sub-steps ∆tn = (tn; tn+1) of the total time interval It = ∪N
n=0∆tn:

Given the state of the material

(
σ

n
,χ
∼n

)
at t = tn, and the evolution equations of the Elastic-

Plastic model:

EP
(

σ ,χ
∼

)
:





σ̇ = D
ep
(

σ; χ
∼

)
: ε̇

x
, elastoplastic CE

χ̇
∼

= ṗh
∼

(
σ; χ
∼

)
= H

(
σ; χ
∼

)
: ε̇

x
, hardening law

(3.17)

(3.18)

find: 



σ
n+1

= σ
n

+
∫ tn+1

tn

D
ep
(

σ; χ
∼

)
: ε̇

x
dτ

χ
∼n+1

= χ
∼n

+
∫ tn+1

tn

H

(
σ ; χ
∼

)
: ε̇

x
dτ

(3.19)

(3.20)

and that respect the KKT conditons K (Equation B.29).

is the so called elastic-plastic tensor (depending on the current stress state and on the strain incre-

ment). represents the plastic hardening modulus and is the plastic multiplier (Sloan et al., 2001). The

system of Equations 3.18 rarely has a closed form solution. Therefore, the stress state/plastic flow

integration at the current time-step is numerically obtained by means of either implicit (or backward

Euler) algorithm or explicit (or forward Euler).

3.4 Numerical integration of the elastic-plastic stress state

During a typical step or iteration of an elastic-plastic finite element analysis, the external forces Fext

are applied in increments and the corresponding nodal displacement u and velocities v are predicted

from the global stiffness equations. Those quantities are obtained by computing the internal forces,

which are the expression of the strain-energy stored by the body and which are derived from the strain

increment ε̇
x
and the induced stress increment σ̇ . In the context of fast transient dynamics (e.g. the

regime induced by a strong ground motion), strain increments are computed (at each integration point,

within each element) by exploiting the velocity-wise approach proposed by Joyner (1975), that reads:

ε̇
x

= v ⊗s ∇x (3.21)

The stress state can be computed by exploiting the desired constitutive relationship, expressed by a

generic functional form F (see Section 3.5, for further details). In SEM3D an explicit multi-step inte-

gration scheme was adopted. A simple and fast iterative procedure is introduced to obtain final stress

and hardening states, so to check whether they comply with the plastic consistency conditions within

an accepted tolerance (see Section B.3.2). In a fully implicit scheme, non-linear ODEs linearized and

solved by iterative minimization of the residuals. Implicit methods solve the set of ODEs at the final

step, leading to resulting stress and hardening states intrinsically satisfy the plastic consistency. In

explicit methods, an artificial drifting correction must be applied to fulfill those conditions. Although

generally more accurate, the great disadvantage of implicit methods resides in the fact that their com-

plex algebraic formulation requires the second derivatives of the yield function and plastic potential to

be computed at each sub-iteration, dramatically slowing the solver down and leading to cumbersome

computational costs. Explicit schemes just involve first order derivatives. Another crucial aspect is
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Figure 3.6: Sketch of the usual time marching algorithm used in non-linear dynamics.

that implicit schemes do not require the intersection with the yield surface to be found, whereas the

explicit ones do. SEM3D was featured by the general explicit elastic-plastic integrator with automatic

sub-stepping and error control proposed by Sloan et al. (2001). This adaptive procedure is based on

the pioneering work of Sloan (1987), so to improve the solution accuracy. The latter sub-stepping

algorithm was implemented in SEM3D due to the important enhancements to improve their accuracy,

efficiency and robustness. In such a way, the error on the final stress is automatically limited and

stress state which does not comply with the yield criterion is automatically drifted onto the yield sur-

face. The main drawback of such methods is that they bare on the knowledge of the stress state that

intersects the yield surface: spurious intersections may appear when fast cyclic loading is concerned,

but they are effectively avoided as explained in Section B.3.4.

3.4.1 Cyclic behaviour of geo-materials

Inelastic straining of geo-materials induces many complex phenomena which have to be described

separately or simultaneously. The elastic behaviour does not allow for plastic (permanent) strains,

resulting inadequate to describe the unloading and reloading stress-strain curves observed experi-

mentally. Masing was able to produce a simple model to reproduce the hysteretic behaviour and

the stress reversals (Masing, 1923, 1926). Such simplified approach (sometimes referred as to de-

formational plasticity) is based upon the assumption of a backbone strain-stress curve featured by

arbitrary loading, unloading and reloading shear moduli which have to respect the so called gener-

alized Masing rules (Vucetic, 1990; Kramer, 1996, among others). This mathematical interpretation

of the hysteresis behaviour is phenomenological. Several models of backbone curves have been pro-

posed so far: the Ramberg-Osgood, the hyperbolic and the logarithmic models are among the most

popular ones (e.g. Ishihara et al., 1985; Kramer, 1996; Beresnev and Wen, 1996). Modified versions

may be found in Hashash and Groholski (2010); Hashash and Park (2001). Non-linear stress-strain
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functions, in combination with the Masing rules, allow for a simplified equivalent-linear analysis of

shear wave propagation in soils, which is an important component of many seismic and dynamic

geotechnical problems (Puzrin, 2012). However, the proper way to model both the non-linearity and

the irreversibility of the small and large strain behaviour is within the framework of the plasticity

theory. Compared to elastic-plastic models, the deformational plasticity approach is however more

cost-effective, since neither internal variables need to be stored, nor their evolution has to be de-

scribed. Traditionally, the cyclic behaviour has been described by means of an internal back stress

as state variables, which changes sign according to the corresponding stress-strain cycle, taking the

form of a hysteresis loop (Armstrong and Frederick, 1966; Frederick and Armstrong, 2007). The

conventional elastic-plastic constitutive model assumes that a purely-elastic behaviour takes place at

small strain (Drucker, 1988). However, the latter is therefore incapable of describing the plastic strain

rate due to the rate of stress inside the yield surface (Hashiguchi, 2015). Starting from the late 60s,

lot of research has been done on unconventional elastic-plastic constitutive models aiming at describ-

ing the progressive plastic strain development even inside the yield surface. To effectively model the

non-linear path-dependence of soil materials, several mathematical models have been formulated in

the past. For instance, the multi-yield surface plasticity model was proposed by Iwan (1967) and

Mroz (1967), then applied by Prevost to soil mechanics (for instance, Prevost, 1977, 1978). The

model is an extension of classical J2 (or Von Mises) elastic-plastic behaviour, featured by a series

of N nested yield surfaces to reproduce the soil non-linear hysteretic behaviour by means of a piece-

wise linear approximation based on the contributions of each plastic moduli. The ith yield surface is

associated to a linear-kinematic hardening rule, defining a sub-regions (in the stress space) of con-

stant plastic shear moduli (computed considering the active plastic mechanisms). A pure deviatoric

kinematic hardening rule is employed to capture the Masing-type hysteretic cyclic response behavior

of clays under undrained shear loading conditions. Another efficient model was proposed by Aubry

et al. (1982), who developed it at École Centrale Paris (ECP). The ECP model was then improved by

Hujeux (1985) and applied to seismic wave propagation (e.g., Aubry and Modaressi, 1992; Lopez-

Caballero et al., 2007; Lopez-Caballero and Modaressi-Farahmand-Razavi, 2010; Montoya-Noguera,

2016, among others). The ECP model can take into account a large range of deformations due to its

decomposition into pseudo-elastic, hysteretic and mobilized domains. According to the critical-state

concept, the macroscopic behavior of sands and clays is similar and is related to the proximity of its

initial state to the critical state or steady-state rather than to the absolute measurements of density

(Jeffries and Been, 2006; Ishihara et al., 1985). Three hardening evolutions are used for the different

mechanisms. For monotonic mechanisms: (1) the deviatoric, which is based on the plastic strain and

is dependent on deviatoric and volumetric strains, and (2) the isotropic, where only volumetric strains

are involved; and for cyclic loading: (3) the kinematic hardening that relies on the state variables at

the last load reversal (Montoya-Noguera, 2016).

The reality is that in many practical geotechnical problems only a relatively small volume of soil ex-

periences large deformations. The strains in the remaining part are very small. In assessing a strong

ground motion earthquake scenarios at the regional scale, the analysis is not intended to estimate the

settlements of shallow deposits, but rather the overall influence of the non-linear material behaviour

on the incident wave field in terms of absorbed energy and frequency content. As the problem size

scales up, the small strain contribution can be quite insignificant to depict the overall geotechnical-

seismic response. Moreover, the computational cost associated to a detailed dynamic analysis of

the highly non-linear nature of soils rapidly blows up due to the required spatial refinement of the

computational grids.
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3.5 Modelling hysteretic soil non-linearity

The deformation behaviour of geo-materials is very hard to be described. The main reason resides in

the high path-dependency of soil behaviour, that restricts the predictive efficiency of any mathemati-

cal formulation, despite its degree of complexity, mainly due to the poor generalization. Specifically,

in soil dynamics, the behaviour of soils under dynamic loading is mainly characterized by (1) the

elastic or maximum-stiffness represented by the shear modulus (µ0); and (2) the degradation of the

secant shear modulus (G) and the evolution of damping (D) with respect to the shear distortion (γ),

known as the non-linearity curves. The decrease of µ involves the decrease of the shear wave velocity

(VS ) and hence a shift to low frequencies, as shown earlier. Additionally, the increase in D causes

a deamplification of the amplitude of the propagating motion. Finally at high levels of strain, other

phenomena appear related to the evolution of volume change and of pore water pressure generation,

in the case of saturated media. Two resisting/dissipative mechanism usually take place, i.e. the fric-

tional (displacement proportional) and viscous one (velocity proportional).

As a matter of fact, a suitable non-linear model for soil dynamics should meet a few requirements

(Prevost, 1982; Pisanò and Jeremić, 2014):

1. a complete multi-axial formulation: the behaviour must be captured when soil undergoes a

general stress-strain path instead of being limited to a few classes of paths (e.g. axial symmetry

or pure shear);

2. a good compromise between ease of calibration a sufficient description of the physical process:

a simpler model is desirable, since it would require less samples and less tests to be calibrated,

until it does reproduce the major of observed phenomena

3. a fair reproduction of the dynamic stiffness reduction and damping: it should be verified over a

wide strain range, as well as frictional failure and irreversible deformation. Dilatancy would be

desirable as well, to describe volumetric behaviour.

For instance, numerous formulations have been proposed in the past for quasi-static loading condi-

tions. For many specific experimental tests, those existent constitutive relationships resulted to be

very accurate, yet hardly applicable to different in situ loading conditions (such as in earthquake

engineering applications). The model should fit some experimental curves, but preserving its appli-

cability to a larger dataset and loading conditions. In this perspective, a good material model should

be able to first determine correctly the stress-strain behaviour in the specific experimental test con-

ditions and then predict the observed behaviour in a blind prediction. In this work, the hysteretic

material behaviour was modelled within the context of a J2-plasticity framework, i.e. characterized

by a von Mises failure criterion and a non-linear Armstrong-Frederick (AF) kinematic hardening rule

(also called Chaboche’s model) (Armstrong and Frederick, 1966; Chaboche, 1989). The yield locus

is identified as the von Mises cylinder, i.e. the norm of the deviatoric stress, expressed as:

f =

√
3

2

(
Sσ − X

)
:
(
Sσ − X

)
− σyld (3.22)

where Sσ denotes the deviatoric stress tensor:

Sσ = σ − σ : I (3.23)

and (called back-stress tensor) denotes the center of the yield surface (f = 0) in the deviatoric stress

space (grey circle in Figure 3.7a). embodies the size the yield surface (3
2

times the yield surface ratio).

The plastic potential function reads:
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Figure 3.7: (a) Norm of the deviatoric stress and back-stress (black dashed line) as a function of the

plastic-strain norm, according to the AF hardening rule. (b) Normalized decay curve obtained with

the AF model, used to model the non-linear soil behaviour.

g = f +
3

4

κkin

Ckin

X : X (3.24)

with being the two parameters that rule the non-linear evolution of the kinematic hardening. The

isochoric flow-rule derived from Equation 3.24 is expressed as:

ε̇pl
x

= ėpl = 〈ṗ〉∇
σ
g (3.25)

where 〈ṗ〉 = max (0, ṗ) is the plastic multiplier (〈ṗ〉 = ‖ε̇pl
x

‖Jε
2
), ∇

σ
g is the gradient of the plastic

potential g with the respect to the deviatoric stress tensor and the deviatoric plastic strain rate. Despite

the non-associative flow rule (f 6= g), plastic flow is normal to the yield locus in the deviatoric plane.

The plastic strain increment is non-negative and it undergoes the KKT complementary conditions.

The extra term 3
4

κkin

C

(
X : X

)
represents the model’s fading memory. Finally, the hardening rule for

the kinematic internal variable X reads:

Ẋ = −2

3
Ckinṗ∇X

g =
2

3
Ckinε̇pl

x
− 3

2
κkinX (3.26)

The latter expression describes the shift in the deviatoric plane of the yield locus’s center X : the

critical state (i.e. hardening saturation) is achieved when the stress point lies both on f = 0 and

on the yield limit surface (black solid line in Figure 3.7a). With the respect to the classic linear

kinematic hardening rule, the Armstrong-Frederick model states the back-stress increment along with

the plastic flow, but adding a recall term −3
2
κkinX that makes the back-stress evolution non-linear.

In this context, Ckin represents the initial hardening modulus, i.e. the slope of the stress-plastic strain

curve, when kkin = 0. In such a case, the model is a bilinear one, with classic linear kinematic

hardening. The second parameter kkin represents the rate at which the hardening modulus decreases

with increasing plastic strain.

The inelastic response of a material model develops under different loading conditions, typically when

the material undergoes monotonic or cyclic excitation, applied in a quasi-static or dynamic manner.

Figure 3.8 shows the performance of the AF model, in terms of two normalized stress paths (red

lines) developed accordingly, under cyclic strain-controlled loading (blue line). In Figures 3.8b- 3.8d,

it can be noticed the different stress response between a symmetric and non-symmetric straining paths.

Features such as inclination or breadth of the hysteresis loops strongly depend on both soil stiffness

and damping.
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Figure 3.8: Shear stress-strain curves γ − τ for a typical saw-tooth (a-b) and rising sinus (c-d) strain

paths. On the left, the time evolution of the normalized strain-stress paths id portrayed. On the right,

the stress-strain hysteresis loops are depicted instead.

3.5.1 Application of AF model in soil dynamics

It has been widely observed that when a clayey soil undergoes fast dynamic loading (for instance, a

seismic excitation), it attains an undrained behaviour. This assumption entails the possibility of a total

stress analysis, since no the water over-pressure corresponds to the volumetric load increment at each

time step under isochoric conditions. This property inherited from the undrained assumption couples

with the pressure-independent failure criterion usually adopted, in total stress, when describing the

plastic behaviour of clays. In this sense, the AF model presented in the section above suits the basic

requirements to describe the inelastic and hysteretic behaviour of cohesive soils under shear loading.

This statement translates into being capable to display a non-linear decay of the secant shear modu-

lus (also indicated as G, in an engineering notation), along with increasing shearing distortion γ, as

portrayed in Figure 3.7b. The loops portrayed in Figures 3.8b- 3.8d indicate the non-linear evolution

of the secant modulus with increasing shear distortion. The secant shear modulus may be taken as an

average shear stiffness of the soil. Given that the cyclic behaviour of the soil is nonlinear as well as

hysteretic, it becomes clear that stiffness together with the damping (computed upon the calculation

of the loop’s area) are strain dependent. Therefore, a series of cyclic tests should be performed with

varying strain levels such that the collection of results, in terms of stiffness, lead to the normalized
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modulus reduction curves. One key parameter is the shear modulus at small strains, also known as

small-strain shear modulus, µ0 (also indicated as G0, in an engineering notation) because it plays a

significant role in the elaboration of the normalized modulus reduction curves. As the name itself

describes it, G0 serves the normalization of the cyclic tests stiffness outcome as being the maximum

value the material can experience. One other key parameter, damping ratio represents a material prop-

erty related to the friction between soil grains, strain rate effects and inelastic stress-strain response.

Each hysteresis loop describes the dissipation of energy during a loading cycle; the post-processing

of data leads to the damping ratio as it depends both on the energy dissipated during a complete load-

ing cycle at a given strain amplitude and maximum retained strain energy. Moreover, the decrease

in shear strain translates into decrease in dissipated energy, thus the area of the loop will suffer a

reduction as well. Similarly, the damping ratio curves are defined collecting different nonlinear soil

responses based on increasing strain amplitude. However, the trend is opposite, as in the nonlinearity

of the soil results in an amplification of dissipated energy, thus in the damping ratio, with increasing

strain magnitude.

In this study, the mentioned decay curve is employed to define the non-linear soil behaviour, indepen-

dently from its elastic properties (represented herein by the initial elastic shear modulus µ0).
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3.6 Numerical Verification: the PRENOLIN test case

SEM3D was verified by running some of the canonical cases proposed within the framework of

the PRENOLIN international benchmark (PREdiction of NOn-LINear soil behavior) (Régnier et al.,

2016). The principal scope of the PRENOLIN project was to assess and verify the response of several

numerical codes in predicting non-linear seismic site response with various constitutive models. Sev-

eral recommendations were provided, concerning some good practices in the numerical simulation of

1D seismic site-effects. Another major achievement of this numerical benchmark was represented by

the uncertainty quantification performed on the major geotechnical parameters (e.g. elastic modulus,

shear strength), on the interpretation of laboratory and in situ experimental results and on the way to

inject the incident wave motion at the sediment-substratum inter- face (that is via an elastic base, and

via a rigid base respectively).

The PRENOLIN benchmark involved 21 teams and 23 different computational codes. Most of

them solve the SH-wave propagation equation by considering a mono-dimensional layered half-space

(trimmed at the engineering bedrock), featured by elastic/visco-elastic/equivalent linear/non-linear

soil rheology. However, some of the codes involved are based on the two-dimensional (2D) version

of the wave-propagation problem and were effectively re-adapted to reproduce a plane shear wave

field propagating vertically towards the free surface. SEM3D has not been conceived to simulate 1D

seismic site response, but rather to study the propagation of the regional wave-field radiated from

seismic source. In this sense, a major effort has been pursued to re-adapt a full 3D numerical code

to a mono-dimensional boundary problem. In this sense, this section aims to highlight the capability

to approximate the ideal conditions assumed in this benchmark and effectively reproduce the non-

linear site-effects. Keeping that goal in mind, the main results of the verification phase portrayed in

the following sections refer to the simplest test cases previewed in PRENOLIN. Although not fully

exhaustive, the analyses performed highlight a few major features of the SEM3D code, namely:

1. its capability to approximate the incident plane wave-front, by means of a set of in-phase point-

sources deployed all over an horizontal plane

2. its satisfactory performance in reproducing the site amplification in elastic/visco-elastic cases

3. the predicted non-linear site response, according to the implemented AF elastic-plastic model

3.6.1 Canonical test case P1

The simplest test case proposed to the participants of the PRENOLIN projects is the Profile 1 (P1,

Figure 3.9), a 20 m thick homogeneous soil layer presenting a significant velocity impedance ratio at

rock, with amplification in the intermediate frequency range (2-10 Hz). The P1 geology was modelled

in SEM3D by considering a 130 m×130 m×25 m (see Figure 3.10). The numerical model was

enveloped by Perfectly-Matched-Layers (PML), required to dampen the incident waves at the lateral

boundaries, so to simulate the ideal half-space conditions.

3.6.2 Approximation of the incident plane wave-motion

A simple Ricker pulse (RCP) input motion was tested (Figure 3.11). As far as the input motion is con-

cerned, SEM3D is featured by point force/moment, widely employed in computational seismology

to introduce a dynamic excitation into the computational model. The far-field approximate solution

of the elasto-dynamic problem for an elastic isotropic and homogeneous material and a point source
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Figure 3.9: The three simple idealized profile cases studied here (P1-P3), for the elastic and nonelastic

domains, and for a rigid and elastic soil-bedrock base, using a Ricker pulse and three accelerations of

different peak ground acceleration (PGA) and frequency contents
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Figure 3.10: (a) SEM3D model for the P1 case. (b) Scheme of the recording stations along the soil

column.
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Figure 3.11: Ricker pulse acceleration
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f = δ (x − xO) a reads:

uG (x,xO,a; t) =
(er.a) er

4πρc2
P r

δ
(
t− r

cP

)
+

a − (er.a) er

4πρc2
Sr

δ
(
t− r

cS

)
(3.27)

being the Dirac’s function, the P-wave and S-wave velocities, ρ the crust density and with r =
‖x − xO‖, and er = (x − xO) /r the radial unit vector (in spherical coordinates). The elasto-

dynamic solution for a generic time-varying source function is represented by the convolution product

uG (x,xO,a; t) ∗ f (t). Therefore, any arbitrary incident wave motion can be a priori generated by

a spatial distribution of point-wise forces, keeping in mind that the elasto-dynamic Green’s function

is the superposition of a P-wave (first term in Equation 3.27) and a S-wave (second term in Equa-

tion 3.27). For instance, if one considers a plane Σ and a point force fΣ (x0; t) = fΣ (t) δx0
eΣ

9 lo-

cated at a distance d from a plane Σ and tangent to it (Figure 3.12), the resulting wave-field uΣ (x; t),
impinging the plane Σ can be written as:

uΣ (x,xO, eΣ; t) = uG (x,xO, eΣ; t) ∗ fΣ (t) =

(er.eΣ) er

4πρc2
P r

fSH
(
t− r

cP

)
+

eΣ − (er.eΣ) er

4πρc2
Sr

fSH
(
t− r

cS

) (3.28)

It is clear from Equation 3.28 that the plane Σ is impinged by asynchronous P- and S-waves arrivals.

Figure 3.12: Sketch of the plane wave-front composed by spherical waves (Huygen’s principle).

In addition to the normal incidence ray-path, there are other rays not quite vertical which construc-

tively interfere with the normal ray to generate the total response (non-specular rays) (Liner, 2004).

A plane-wave field at Σ requires multi-point sources to be generated. The idea stems from the Huy-

gen’s principle, which states that the wave-front at any later instant may be regarded as the envelope

of secondary spherical waves placed along the earlier wave-front. Therefore, it becomes of primary

importance to chose a sufficiently small lag-distance ℓ between each point source, so to vanquish the

disturbance of non-specular rays, by letting them constructively interfere to obtain a planar in-phase

wave-field. The numerical simulation of the Huygens’ principle is rather complicated to reproduce

however, due to the intricate interference patterns created by the spherical wave-fields. Moreover,

the single source amplitude should be calibrated so to obtain a quasi-plane wave-field at the soil-

to-bedrock interface with the desired incident amplitude. To this end, a first trial & error numerical

experiment was performed on an 3D column (Figure 3.10) so to simulate the wave-propagation from

depth up to the soil layer throughout the bedrock. An homogeneous bedrock material was considered

at this stage and the free surface was distanced from the desired interface to avoid reflected waves

travelling backwards to pollute the incident ground motion. Figure 3.13 shows the good fit between

the reference input motion and the SEM3D simulation at point O in Figure 3.10.

9eΣ represents unit vector parallel to the plane Σ
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Figure 3.13: Incident wave motion at the soil-bedrock interface (point O in Figure 3.10): reference

motion (REF, dashed black line) and synthetic wave motion generated by SEM3D (orange line).

The incident wave motion was generated by a distribution of equally spaced point sources (ℓ=20 m)

aligned on an horizontal plane (distanced 20 m from point the point O).

3.6.3 Site amplification in linear elastic regime

Despite some minor discrepancies due to the handmade implementation of the plane-wave input mo-

tion, SEM3D was effectively employed to reproduce the ground motion amplification due to shallow

softer sediments, in a classical soil-over-bedrock configuration (portrayed in Figure 3.10). The inci-

dent wave-motion calibrated in Subsection 3.6.2 was injected in the model as outcrop motion (i.e. by

dividing its amplitude by a factor 2) and the synthetics accelerogram obtained at surface was com-

pared to the reference one, obtained from the Haskell-Thomson analytical solution (see Figure 3.14a

Haskell, 1953; Thomson, 1950). The site amplification by uniform layer on elastic bedrock is shown

in Figure 3.14b: SEM3D effectively reproduce the theoretical response for a soil column. Minor

discrepancies appear to be due to the 3D wave-propagation effect, with some spurious interference

between the spherical waves employed as sources

3.6.4 Site de-amplification and stiffness degradation due inelastic behaviour

As far as the inelastic soil response is concerned, the AF model implemented in SEM3D was tested

by gradually increment the input motion amplitude so to study the transition from moderate to strong

non-linearity. In Figure 3.15, some interesting aspects of the non-linear modelling are pictured. Either

for weak and strong non-linearity, late wave-form arrival is observed (Figures 3.15a- 3.15b), along

with a consistent de-amplification. Moreover, the stress-strain curves produced at different depths

show consistent hysteresis for strong non-linearity, symptom of to consistent material damping taking

place along the soil column.
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Figure 3.14: (a) Wave motion at the free-surface (point P in Figure 3.10): reference motion (REF,

dashed black line) and synthetic wave motion generated by SEM3D (red line); (b) Amplification

Ratio (AR) for the soil layer in Figure 3.10
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Figure 3.15: Wave motion at the free-surface (point P in Figure 3.10) for weak (a) and strong (b) non-

linearity: reference motion (REF, dashed black line) and synthetic wave motion generated by SEM3D

(red line) for non-linear case (with AF model). Time-histories are normalized by the maximum value

of the elastic response (REF, dashed black line), so to highlight the de-amplification. Stress-Strain

hysteresis cycles obtained with AF model implemented in SEM3D at different depths along the soil

layer, for weak (c) and strong (d) non-linearity. The black straight line represents the elastic bedrock

response.
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3.7 Modelling soil heterogeneity by means of random field

A strategy to model heterogeneous media consists in considering the mechanical properties as one sta-

tionary random field (featured at least by its average and its auto-covariance model ). The latter is then

sampled at Np integration points in the computational domain Ω: in the SEM, those are the Gauss-

Lobatto-Legendre (GLL) integration points, at which both mass matrix and internal force vectors are

computed. A realization of θ (x) is obtained by generating a Gaussian random field G (x), whose

Cumulated Distribution Function (CDF) is mapped point-wise ((e.g., via the non-linear Rosenblatt

transform Rosenblatt, 1952) to the desired first-order marginal density (e.g. log-normal).Modelling

soil heterogeneity in large scale domains implies a major computational effort: despite its character-

istic dimension (≈ 104 m) the computational grid must resolve both the wavelength and the hetero-

geneity correlation length (≈ 102 m). To generate our random samples an open-source library ScaRL

was used (Paludo et al., 2015). It uses the spectral representation technique (Shinozuka and Deodatis,

1991). In this method the random field is generated as a sum of Nφ = NxNyNz cosines with random

phases, namely:

G (x) =
∑

n≤Nφ

√
2S(kn)|∆k| cos (kn · x + φn) (3.29)

Following this approach, the wave-number domain spanned by is discretized over a regular grid of

size N = [Nx, Ny, Nz]
T

, indexed by n = [nx, ny, nz]T . S (kn) represents the power spectral density

of the random field, whereas |∆k| is the unit volume in the spectral domain and the random variables

φn are the independent elements of a N -dimensional random variable with uniform density over

[0, 2π]. The Fast Fourrier Transform can be used to bring the complexity of this generation method

to O(Nφ logNφ)) (Shinozuka and Deodatis, 1991) but it requires an uniform grid. Since the GLL

points are not uniformly distributed in space, the random field must then be interpolated to the Np

GLL nodes.

When dealing with large domains (L ≫ ℓcθ) ScaRL has a strategy to overcome the scalability

issue. It generates realizations of G (x) over the entire domain as superposition of I smaller indepen-

dent realizations Gi (x) supported on overlapping subdomains Ωi of Ω (Paludo et al., 2015):

G (x) =
∑

i∈I

√
ψi (x)Gi (x) . (3.30)

where the set of functions ψi (x) forms a partition of unity of Ω (that is to say
∑

i∈Iψi (x) = 1 for

any x ∈ Ω), supported by the set of subdomains Ωi. Using this approach, the complexity becomes

O(np log(np)) where np = Nφ/P and P is the number of processors. Essentially, this means that the

scheme is O(1) when we consider a constant number of GLL nodes per processor. The overlapping

Eq. (3.30) involves an approximation that does not alter the average and variance of the resulting field

G (x) (Paludo et al., 2015). The influence on the correlation structure depends on the overlap, relative

to the correlation length and has been studied in Paludo et al. (2015).

3.7.1 Strategy to couple heterogeneous and non-linear soil behaviour

In this study, the initial shear modulus is represented by a random field G0 (x) = ρVS (x)2
, where

ρ is the homogeneous soil unit weight and VS (x) its shear wave velocity. Despite the local vari-

ation of the shear modulus, the set of parameters σyld-C-κ ruling the FA hardening rule (i.e. the

back-stress evolution) were adjusted to follow the same normalized decay curve Gsec (x) /G0 (x).
The corresponding decay-curves of secant shear modulus Gsec are depicted in Figure 3.16b and they

correspond to the normalized decay curve in Figure 3.7b. Figure 3.16a shows the stress-strain rela-

tionship (τ − γ) issued from the FA model for randomly generated G0 values. Hysteresis loops have

the same shape but different amplitudes. From a practical point of view, a random field representing
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Figure 3.16: (a) Example of 20 cyclic shear stress-strain relationships (τ − γ) for the Fredrick-

Armstrong model, with randomly generated elastic shear modulus G0. (b) 20 secant shear modulus

decay curves according to the Fredrick-Armstrong model, corresponding to the τ − γ curves in (a). If

normalized by the initial elastic shear modulusG0, the decay curves in (b) correspond to the prototype

curve in Figure 3.7b

shear-wave velocities VS (x) (at GLL points) was generated at first, with the approach outlined in

Sect.3.7. VS (x) was assumed to follow a log-normal distribution and the isotropic correlation length

was set as ℓC−V s=30m. G0 (x) was computed accordingly and C (x) was set to be equal to G0 (x) to

assure a smoother elastic-to-plastic transition (since C represent the value of the hardening module at

first yield and zero plastic strain). As consequence, σyld and κ remain to be defined: the first is fixed

as
√

3ρV 2
S (x) γel (with γel being the shear-distortion at first yield, set equal to 10−5). Considering an

analogical 1D shear-test, the critical state is reached when the back-stress saturates (at large strains).

The maximum shear stress τmax is attained at this point and it is expressed as
√

3τmax = σyld + C/κ.

From the latter expression, the local value of κ is straightforward determined, by either knowing τmax

values (for clays, it can be referred as as the Ultimate Strength Su) or estimating it upon correlation

relationships with G0 (see for instance Vardanega and Bolton (2013)).

3.7.2 Limitations of the Armstrong-Fredrerick model

As stated by Pisanò and Jeremić (2013), the singularity at the elastic/elastic-plastic transition prevents

the G/Gmax curves to follow the concavity exhibited by the experimental curves (Darendeli, 2001).

The main reason behind this resides in the fact that the non-smooth elastic-plastic implies an abrupt

decay of the secant shear-modulus, as soon as the yield strain γel is reached. The inconsistent fit of

the experimental decay curves (over the usual strain range for soil dynamics) is pathologically linked

to the decrease of the yield strain. Reasonable fit is achieved, however, for medium/large values of

the yield strain. Different trends may be obtained by varying at the same time both kkin and Ckin, but

this would in general modify the prescribed shear strength.

However, it is in the belief of the author that, at the regional scale of application this model is intended

to, such peculiar shortcomings might be of a lesser importance. The idea behind the choice of the

model was the ease of implementation, along with the reduced number of parameters required.
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3.8 Effect of the soil non-linearity and heterogeneity on the earth-

quake ground motion coherency

Large scale 3D wave-propagation (≈ 109 dofs, with 10 points per minimum wavelength) in visco-

elastic media has been successfully performed using the SEM, both at local and regional scales Facci-

oli et al. (1997); Komatitsch and Vilotte (1998). However, to model the spatial variability of seismic

incident field (due to its significant effect on the structural response), the heterogeneous composition

and the non-linear behaviour of soil deposits must be taken into account. Section 3.7 discusses the

efficient generation of 3D Gaussian scalar random-fields to represent the natural heterogeneity of the

soil mechanical properties. Section 3.7.1 proposed a strategy to couple the AF non-linear model with

the soil heterogeneity. In this section, the results of an extended version of the SEM to handle both

non-linear and heterogeneous rheologies, to reproduce the ground motion incoherence. The test case

considered is a seismic wave propagation problem within a 3-layer half-space (see Section 3.8.1). The

uppermost soil layer is either modelled as elastic homogeneous, elastic heterogeneous, elasto-plastic

homogeneous and elasto-plastic heterogeneous. The simulated wave-field at the surface is studied

by comparing the synthetic time-histories, in terms of both ground motion coherency curve and soil

layer spectral ratio.

3.8.1 Canonical wave-propagation test case

A classical case study is considered herein: a seismic wave generated by a point-wise non-spherical

source (i.e. a double-couple representing a pure-shear dislocation, indicated as SRC in Figure 3.17e)

propagating towards the surface throughout a 3-layered domain is studied. The two deepest layers

are considered homogeneous (HOM) linear-elastic (EL) materials. Due to the propagation in the lay-

ered substratum, the spherical wave-field radiated from SRC transforms into a planar incident wave

impinging the lower soil layer interface. With this configuration, four simulations were performed

and compared, by either considering the top-layer as (1) homogeneous linear-elastic (HOM-EL), (2)

heterogeneous linear-elastic (HET-EL), (3) homogeneous non-linear (HOM-NL) and (4) heteroge-

neous non-linear (HET-NL) material. The domain is enveloped by Perfectly Matched Layers (PML),

acting as absorbing boundary conditions. The effect of soil non-linearity and heterogeneity is at first

described at three recording stations, namely: SRF1, SRF2 (at the surface) and INT (at the inter-

face). Figure 3.17a-3.17d show the velocigrams obtained at SRF1 and SRF2 (base-line corrected and

high-pass filtered at 20 Hz): the two time-histories coincide in the homogeneous cases, as expected

due to is plane and coherent wave-field. Typical coda-waves appear in the heterogeneous cases in-

stead (Figure 3.17b-3.17d). Those late arrivals are symptomatic of an incoherent wave-field at SRF1

and SRF2. Clear de-amplification of the incident wave motion is presented for the two non-linear

cases (Figure 3.17c-3.17d). The pseudo-acceleration response spectra Sa at point SRF1 (shown in

Figure 3.17f) is highly influenced by the non-linear soil behaviour (depicted in terms of shear stress-

strain relationship τyz − γyz in Figure 3.17g) at short period. Heterogeneity plays a minor role for the

elastic case (≈25% of PGA reduction), whereas the short-period and peak Sa ordinates are remark-

ably de-amplified for HET-NL, with the respect to HOM-NL (≈21% of PGA reduction). This result

is in accordance with the τyz − γyz curves in Figure 3.17g, where the HET-NL hysteresys loop is

wider than HOM-NL, indicating the greater amount of energy dissipated. Another interesting aspect

is the analysis of the ground motion coherency at the surface. The latter is a fundamental require-

ment for advanced seismic structural analysis. Coherency curves were computed for three different

lag-distances (10, 20 and 30 m respectively), by applying a 11-point Hamming smoothing window

Abrahamson et al. (1991). For each lag-distance, the bin set were constructed by considering 40×40

points (i.e. 40 per direction). The mean of the log of the coherency curves was finally computed
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Figure 3.17: (a-d) Synthetic velocigrams obtained at the surface for the four rheological models con-

sidered for the uppermost soil layer (HOM-EL, HET-EL, HOM-NL, HET-NL). (e) Clip and front/top

views of the domain considered in the test case. The input displacement time-history at SRC is shown.

SRF1, SRF2 and INT are employed as reference points. (f) Pseudo-Acceleration reponse spectra Sa
at point SRF1. (g) Shear stress-strain relationship τyz − γyz at INT point.

and shown in Figure 3.18. Figure 3.18a-3.18e show the lagged coherency for the four rheological

models (HOM-EL, HET-EL, HOM-NL and HET-NL), at different lags. The homogeneous cases

resulted to be coherent over a broad-band frequency range as expected, whereas the heterogeneous
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cases show the loss of coherency in the lower frequency band, decreasing after 10 Hz. The impact

of the soil heterogeneity on the ground motion incoherence is clear even at small frequency and it

appears more pronounced in the elastic case (Figure 3.18b) with respect to the non-linear one (Fig-

ure 3.18d). For HET-EL, the coherency loss is evident event at small lag-distance (i.e. coherency

amplitude | ¯γ (f)| ≈0.9 for lag-distance of 10 m) and | ¯γ (f)| drops to values ≈0.6 for lag-distance

of 30 m (comparable to ℓC−VS
). For a non-linear rheological model (HET-NL), | ¯γ (f)| stabilizes at

above 0.75 between 0-10 Hz.

3.8.2 Partial Conclusions

In this study, a parametric large scale numerical simulation of the seismic wave propagation in a

non-linear-heterogeneous soil layer is presented, by exploiting the The Spectral Element Method.

Numerical analyses are featured by the generation of soil heterogeneous mechanical properties by an

efficient large random field generator. Moreover, a modified non-linear solver is employed to solve the

dynamic equilibrium equation for elasto-plastic materials. The soil non-linearity mostly affects the

ground motion de-amplification, whereas the soil heterogeneity produces incoherent ground motion

at the surface. However, the non-linear decay of the shear modulus values seems to counteract the loss

of coherency due to wave scattering. For the sake of brevity, a moderate source amplitude was con-

sidered herein. The effect of an increasing amplitude on the synthetics at the surface is interesting to

be investigated (especially for a non-linear material behaviour). The preliminary parametric analysis

presented herein may be extended also to the case of anisotropic correlation lengths of the shear-wave

velocity (or other mechanical properties), which are estimated geological surveys and influence the

recorded motion at the surface. In doing so, higher degrees of mesh refinement should be considered

so as to capture the extended frequency band of the surface signal, due to the wave-scattering effect.
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Figure 3.18: Lagged coherency curves at the surface, for different lag-distances: (a) 10 m (c) 20 m (e)

30 m. |γ̄ (f) | represents the absolute value. In each plot, four coherency curves are depicted, one for

each rheological models considered (HOM-EL, HET-EL, HOM-NL and HET-NL) for the uppermost

soil layer. Lagged coherency curves for the HET-EL and HET-NL cases are depicted, one for each

lag-distance considered (10 m, 20 m and 30 m), in (b) and (d) respectively.
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3.9 Numerical modelling of seismic sources

3.9.1 Basic concepts

Seismic observations of strong ground motions proved that earthquakes originate along seismogenic

faults, i.e. major fractured discontinuities within the Earth’s crust. Blocks of crust on either side of

the fault surface moves relative to one another parallel to the fracture. A fault is addressed as active

whether an earthquake is likely to occur sometime in the future. Faults are commonly considered to

be active if they have moved one or more times in the last 10.000 years (USGS glossary). They are

located either along the major tectonic plate boundaries (Japan, California, Turkey) or inside these

plates (Alps). Earthquakes are generated from the dynamic stress-release along the fault’s edges. At

this occurrence, the cumulated strain energy of crustal materials is partially released inducing ground

motions. This failure mechanism is described in details in Section D.1. Increasing deformation is

accumulated during the very slow relative motions of the plates at a speed of a few centimeters per

year. Depending on the tectonic context, the faults’ depth ranges from 10 to 200 km. The strongest

ground shaking generally occurs close to an earthquake fault rupture because geometric spreading

reduces ground shaking amplitudes as distance from the fault increases.

The conceptual and theoretical framework of the modern seismic source modelling was built starting

from the pioneering works of Eshelby (1957), who studied the perturbation of the elastic field due

to an ellipsoidal inclusion. Burridge and Knopoff (1964) derived an explicit expression for the body

force to be applied in the absence of a dislocation, which produces radiation identical to that of the

dislocation. Haskell (1964) rigorously derived the equivalence between relative displacement on rect-

angular shear fault to a distribution of double-couple point sources over the fault plane. Madariaga

(1978) deepen this study, focusing on the near-field generated by Haskell’s rectangular fault model

used extensively to interpret seismic data. Aki (1968) and Haskell (1969) developed provided the-

oretical considerations on the elastic displacements in the near-field of a propagating fault. In the

following, Brune (1970) proposed an earthquake model, by considering the effective stress available

to accelerate the sides of the fault, describing for near- and far-field displacement-time functions and

spectra (also including the effect of fractional stress drop).

A common belief among seismologists is that the strong motion earthquakes are primarily caused by

the slipping upon the heterogeneities on the fault plane, namely asperities, defined as regions of the

fault plane that have larger slip rate relatively to the average one on the rupture area (Somerville et al.,

1999). In this sense, one of the first numerical method developed to deconvolve complex body waves

into a multiple shock sequence was developed by Kikuchi and Kanamori (1982), by employing the

Haskell (1964) asperity model and with a superposition of point dislocations with identical fault ori-

entation and depth. Another original interpretation contribution was provided by Papageorgiou and

Aki (1983), who constructed an earthquake source model from a specific form of the barrier model

proposed by Das and Aki (1977), i.e. the fault surface is visualized as composed of an aggregate of

circular cracks which represent areas of localized slip, and the strong motion is assumed to be gener-

ated by the stationary occurrence of these localized ruptures as the rupture front propagates.

As a matter of fact, it is well known that the source processes are difficult to be fully determined, due

to the lack of a complete panorama of specific information about this complex phenomenon. Irikura

and Miyake (2010) outlined the main information required to predict and simulate strong ground

motion (see Figure 3.19). Strong motion observations do not represent an exhaustive information

when studying the strong motion earthquake initiation. For instance, data collected from monitoring

activity on active faults (i.e. GPS data referring to the fault trace onto the surface) are extremely

useful in assessing the fault mechanism and reproduce it. They steer the definition of three sets

of parameters, (1) outer (defining the size of the strong ground motion, such as rupture area and
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Figure 3.19: Predicting framework for strong ground motion scenarios, proposed by Irikura and

Miyake (2010).

seismic moment), (2) inner (e.g. slip heterogeneities, asperity areas and their stress drops) and (3)

extra parameters (related to the definition of rupture paths, e.g. nucleation and termination points).

A seismogram may contain information relevant to all of the above parameters but it is extremely

difficult to be interpreted in this sense. Moreover, each seismogram must be corrected for distortion by

the instrument and the Earth and for dynamic properties of the source and faulting main direction. The

magnitude was the first quantitative measure of the strength of an earthquake, issued from observed

seismograms. Although still widely used, this parameter has some intrinsic shortcomings. Among

all, it is poorly related to other source characteristics such as strain energy release, fault offset, stress

drop, source dimension, moment and radiated seismic energy. Although in some cases the rise time,

or source-time function, can be determined from the seismogram, the information usually available

is the amplitude at some frequency (the magnitude). A spectral description of the seismic source is

therefore desirable to relate the faulting parameters to the magnitude. Such a description is inferred

from a complete time-space description of the faulting mechanism (or stress release mechanism).

Techniques of waveform inversion of strong motion data are widely used to estimate the rupture

process. When the observed body waveforms are relatively simple, the modeling can be alternatively

done by using inverse methods, as originally shown by Langston (1976) and Burdick and Mellman

(1976) that used a time-domain inversion method to determine some of the complexities of the source

time function. Another seminal contribution was provided by Madariaga (1977), in terms of the

implications of stress-drop models for the inversion of seismic observations.

3.9.2 Self-similarity of the seismic sources

Several studies (Kanamori and Anderson, 1975, among others) show the systematic scaling of inner

and outer fault parameters with the earthquake magnitude. Moreover, it was historically observed that
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the dimensions of fault asperities scale with the source intensity (measured in terms of seismic mo-

ment) and the area of strong motion generation usually coincides with asperities area (i.e. the rupture

area, where the largest stress concentration releases at first Irikura and Miyake, 2010). Conventional

scaling relations for the fault parameters (see, for instance Aki, 1967), such as the fault length and

average slip on the fault based on the seismic magnitude, are mostly measured from surface offsets

and from forward source modelling, using teleseismic and geodetic data. A dynamic description of

the faulting process is employed to derive the relationship. These scaling relations are important for

establishing general rules for developing source models for simulating strong ground motions.

The basic property of a self-similar system is that events of different sizes cannot be distinguished

except by a scale factor. The simplest scaling relationship is a self-similar one in which the basic

properties of the slip models, and of the asperities that they contain, remain scale invariant. When

considering an uniform failure with a constant slippage ∆u along a given surface S in an elastic

medium with a rigidity (shear modulus) µ, one can defines the seismic moment as10:

M0 = µ∆uS (3.32)

The scalar seismic moment M0 may be seen as a measure of the earthquake intensity, and it is the

product of a force times a displacement, thus it can be compared to a work or an energy. Nevertheless,

M0 is referred as moment since µ is a shear modulus and not the actual stress. On the contrary one

can define the released energy as the mechanical work dissipated on the fault:

E = τ∆uS (3.33)

with τ the mean shear stress on the fault during the earthquake. The above relationship E ≈ 10−4M0

suggests that the fault rupture occurs for shear strains reaching 10−4. The expression of the static

moment (in Equation 3.32) represents a basic self-similar scaling law: an increase in seismic moment

occurs by proportionately equal changes in the average slip ∆u or in the surface extension S (e.g.,

for a rectangular fault plane, the fault length L and fault width W ), considering a constant stress drop

(proportional to the ratio of ∆u to L or W ). Stress-drop ∆τ and fault length are directly related to

the seismic moment. According to Kanamori and Anderson (1975), the relation between logS and

logM0 is remarkably linear (slope ≈ 2/3), corresponding to stress drops ∆τ of 30, 100, 60 bars for

inter-plate, intra-plate and average earthquakes. Although the static and dynamic study of such a

relationship is out of the scope of this study, developments in fracture mechanics lead to the following

general expression to relate the stress drop to a fault characteristic length L̃ (Aki, 1967; Kanamori

and Anderson, 1975; Madariaga, 1977):

∆τ = C
µ∆u

L̃
(3.34)

where µ represent a measure of the rigidity, and C is a non-dimensional shape factor. The charac-

teristic dimensions of the fault are the radius R for circular faults, the length L and width W for

rectangular ones. For instance, for a penny-shape crack with diameter 2R in a purely elastic material,

Eshelby (1957) proposed the following relationship:

∆τ =
7π

16
µ

∆u

2R
(3.35)

10in a more general way, the slip displacement may be time-varying (i.e. ∆u (t)). If one considers the average

displacement offset 〈∆u〉 on the total fractured area at the end of the seismic process A ⊆ S, the scalar seismic moment

may be expressed as:

M0 (t) = µ〈∆u〉 (t) A = µ〈∆utot〉s (t) A (3.31)

with 〈∆utot〉 the total average slip on the rupture area. The source time-function STF s (t) can be expressed as
〈∆u〉(t)
〈∆utot〉
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This leads to the following approximate expression for the seismic moment as a function of the fault

length:

M0 ≈ L3

4
∆τ, 3 MPa ≤ ∆τ ≤ 10 MPa (3.36)

showing that the seismic moment is proportional to the length to the power 3. This means that an

increase of the active length by one order of magnitude corresponds to a thousand time the original

seismic moment. This lead to a linear relationship between the slippage and the fault length

∆u =
16

7π

∆τ

µ
L ≈ 10−4L (3.37)

roughly observed in practice when the fault reaches the free surface (Eshelby, 1957). At last it is

worth to notice that the corresponding released energy reads:

E = τ∆uS =
τ

µ
M0 ≈ ∆u

L
M0 (3.38)

Also, the duration of slip on the fault τ increases in proportion to ∆u, or equivalently to L or W ,

so that the slip velocity (expressed as the ratio ∆u
τ

) remains constant. In this self-similar model, the

size of asperities in relation to L (and W ) remains constant, their average slip in relation to ∆u (slip

contrast) remains constant, and the number of asperities remains constant. The self-similar model

is convenient to use, and in many instances its use can be justified because it provides a reasonably

good description of nature. For example, Tanioka et al. (1997) found that the teleseismic source time

functions of large earthquakes are compatible with a self-similar scaling model.

3.9.3 Modelling strong ground motion via Green’s functions

The ground motions produced at any site by an earthquake are the result of seismic radiation associ-

ated with the dynamic faulting process convolved to the path-effects that influence the way the seismic

energy propagates from fault’s nucleation points to the site of concern. Based on the self-similarity

principle, seismologists defined a commonly adopted procedure to produce synthetic waveforms for

large seismic events developing along extended fault segments. This technique was proposed by

Hartzell (1978) and then modified by Irikura (1983) based on a scaling law of fault parameters for

large and small events (Kanamori and Anderson, 1975) and the omega-squared source spectra (Aki,

1967). A common assumption made states that the fault rupture initiates at some point on the fault

(the hypocenter) and proceeds outward along the fault surface. For the sake of simplicity, each fault’s

segment maybe approximated to a 2D plane. The latter is commonly discretized into finite sub-faults,

each one considered as a radiating source (see Figure 3.20). Using the representation theorem (see

Section D.2.2 Spudich and Archuleta, 1987),the ground velocity v(x; t)is the convolutive tensor-

product between the slip-time functions ṡij (t) of each sub-fault (i = 1, ..., m and j = 1, ..., n are row

and column indexes in the along-depth and along-width directions of the fault plane, as shown in Fig-

ure 3.20) and the impulsive response functions uG
ij(x; t)defined by means of site Green’s functions:

v (x; t) =
m,n∑

i,j

vG
ij (x; t) ṡij (t) (3.39)

The site Green’s vG
ij function is computed by considering the corresponding i × j sub-fault as a

impulsive source point and it takes the form of the time-derivative of Equation D.17. By taking the
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Figure 3.20: Schematic diagram of finite-fault discretization scheme. Rings and arrows emanating

from the hypocenter represent the time evolution of the rupture. Large blue arrows denote fault slip

orientation (after O’Connell et al., 1984).

Fourier transform with respect to time of Equation 3.39, one gets the following expression:





v̂ (x;ω) =
m,n∑

i,j

v̂G
ij (x;ω) ˆ̇sij (ω)

V̂ (x;ω) exp (iωφv (ω)) =
m,n∑

i,j

V̂ G
ij (x;ω) exp (iωφG (ω)) ˆ̇Sij (ω) exp (iωφs (ω))

(3.40)

(3.41)

where capital letters indicate the Fourier’s transform amplitude, while φ is the frequency-dependent

phase.

This approach cannot be performed without knowing the system response at each pulse-wave radi-

ated from small sources, disregarding the delay and directivity effects due to the rupture path but

just focusing on the propagation path effect, i.e. the impact of 3D geological structure. The latter

response is referred as to the system Green’s function. From a mathematical standpoint, defining

and tuning a Green’s function is an extremely hard task, due to the complexity of the propagative

domain (i.e. geometry, boundary and radiation conditions, material mechanics). Therefore, seismolo-

gists traditionally employed the seismic observations from real small aftershocks as empirical Green’s

function. As a matter of fact, their limited size leads to approximate those events as point-sources,

so to assume the recorded waveforms unaffected by the complex rupture mechanisms. A Green’s

function v̂G (x; t) (or its counterpart in the frequency domain, v̂G (x;ω)) is mainly influenced by the

following parameters (O’Connell et al., 1984):

• Amplitude V̂ G (x;ω)

– Geometrical spreading : Body waves decrease with 1/r, 1/r2, 1/r4 (with strong influence

on higher frequency) and 1/
√
r for surface waves

– Large-Scale Velocity structure : Horizontal/Vertical velocity gradients affect amplitudes

and durations; Low-velocity basins amplify the motion+basin-edge effects
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– Near-Surface sediments : Coupled interface modes can amplify and extend durations of

ground motions

– Non-Linear site response : Dynamic non-linear soil properties and pore pressure influence

decrease intermediate/high frequency amplitudes and amplify low/high and extend/reduce

duration of large amplitudes

– Frequency independent attenuationQ: Linear hysteretic behavior that reduces amplitudes

– High-frequency attenuation κ: Strong attenuation of high-frequencies in the shallow crust

– Scattering : It tends to reduce amplitudes on average

– Anisotropy : It complicates shear-wave amplitudes and modifies radiation pattern ampli-

tudes; It introduce frequency-dependent amplification based on direction of polarization.

– Topography : It can produce amplification near topographic highs and introduces an addi-

tional sources of scattering

• Phase φG

– Geometrical spreading : It introduce frequency-dependent time-delays

– Large-Scale Velocity structure : Horizontal/Vertical velocity/density gradients produces

frequency-dependent phase-shifts

– Near-Surface sediments : Interactions of shear-wave arrivals of varying angles of inci-

dence and directions produce frequency-dependent phase shifts.

– Non-Linear site response : Depending on the dynamic soil properties and pore pressure

responses, it can increase/reduce phase dispersion.

– Frequency independent attenuation Q: It produces frequency-dependent velocity disper-

sion that produces frequency dependent phase variations.

– Scattering : It determines propagation distances required to randomize the phase of shear-

waves as a function of frequency

– Anisotropy : It complicates shear-wave polarizations; It modifies radiation pattern polar-

ization

– Topography : It complicates phase as a function of topographic length scale and near-

surface velocities.

The Wave Number Integration method for extended seismic source simulation

The Earth’s crust has been traditionally approximated as a layered half-space, for the sake of simplic-

ity (see Figure 3.21). Within the limits of this rude approximation, however, one can take advantage

of a semi-analytical expression of the Green’s function. For instance, the Wave-Number Integration

(Hisada, 1994, 1995, 2008, WNI, ) is a semi-analytical method that simulates the complete 3D wave

propagation field radiated from an extended kinematic seismic source in an extended half-space. This

approach is based on the computation of static and dynamic Green’s functions of displacements and

stresses for a visco-elastic horizontally layered half-space. It takes advantage of two main ingredi-

ents, namely (1) the stress discontinuity representation for boundary and source conditions and (2)

an analytical form derived from the generalized Reflection/Transmission coefficients (R/T) method

(which is numerically stable up to very high frequencies) to asymptotically solve the Green’s function

integrands (Hisada et al., 2012). The analysis computes the Green’s functions by means of a trun-

cated wave-number series, with high accuracy even when sources and receivers located are located

at equal or nearly equal depths. The fault plane is subdivided into rectangular sub-faults at constant
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Figure 3.21: Green’s function in cylindrical coordinates for layered half-space (Luco and Apsel,

1983a,b).

slip and rake angle and their contribution is then convolved to obtain the waveforms at each receiver’s

location.

In this work, the WNI method (implemented by Y. Hisada in FORTRAN77 code) is extensively used.

Although the numerical tool suffers of major shortcoming (1D layered geology, long-period limita-

tion, deterministic approach), it helps in a preliminary stage of the source modelling, steering more

complicated and physics-based analyses. Some further insight about the WNI method may be found

Section D.3.

A verification study concerning the synthetic wave-field generated by means of the WNI method is

presented hereafter, so to check its efficacy. A canonical test case is borrowed from the SISMOWINE

platform11, a long-term interactive web interface for verifying numerical-modeling methods in seis-

mology, and developed by the Comenius University Bratislava. SISMOWINE is a continuation of the

original SPICE Code Validation interface established within the 6th Framework Programme project

SPICE12. The test case WP1-HSP1 was chosen which consists into a point-wise double-couple within

an infinite homogeneous and isotropic elastic medium. First of all, the analytical solution presented

in the Subsection D.2.5 is implemented in a Matlab code and tested against the solution found in the

literature (e.g. De Martin et al., 2007; De Martin, 2010) and with the reference solution uploaded

on the SISMOWINE website. The verified analytical solution is used as reference to test the WNI

semi-analytical solution. This approach allows investigating the effects of source, fling step, rupture

directivity and strong motion in near-fault conditions, which may play a relevant role in the ground

shaking prediction. Finally, analytical and semi-analytical solutions are compared. To assess the

goodness of fit (GoF), the Anderson’s criteria are employed (Anderson, 2004, listed in Table 3.1).

Both theoretical and numerical wave forms were opportunely band-pass filtered between 0.05-5 Hz,

so to consider a good signal-to-noise ratio. Figure 3.22 shows the comparison between theoretical

(orange traces) and WNI wave-field (black traces) at some monitors placed in both near and far field.

On the other side, the results of the Anderson’s Criteria applied to the analytical and semi-analytical

11source: http://www.sismowine.org/
12http://www.spice-rtn.org
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Table 3.1: Goodness of fit parameters

Number Symbol Similarity of:

C1 SDa Arias duration

C2 SDe Energy duration

C3 SIa Arias Intensity

C4 SIv Energy Integral

C5 Spga Peak Acceleration

C6 Spgv Peak Velocity

C7 Spgd Peak Displacement

C8 Ssa Response Spectra

C9 Sfs Fourier Spectra

C10 C* Cross Correlation

Figure 3.22: Comparison between theoretical and semi-analytical (WNI method) solution obtained

for the WP1-HSP1 test case. The fault strikes at 0◦ and dips at 90◦, with a rake angle of 0◦.

solutions are portrayed in Figure 3.23, considering the slipping direction x (NS). The results of the

verification benchmark certified the accuracy of the WNI method, in the frequency range of applica-

bility.

3.9.4 SEM numerical modelling of the fault mechanism

The bottleneck represented by the extreme difficulty in deriving the Green’s function for complex ge-

ometries, material interfaces and properties has been broken through by developing numerical meth-

ods (such as the SEM) capable to propagate the radiated wave field from source to site. Those methods

are usually based on the variational formulation of the wave-equation in solid/fluid domains, supplied

by the opportune boundary and initial conditions (see Sections 3.1 and A). However, a mechanical

representation of the dynamic source radiating energy into the computational domain is required, in

the guise of external forces. In computational seismology, the external forces are commonly gener-

ated by either point-wise forces, double-couple (see Section D.2.5) or extended kinematic fault planes

(Aki and Richards, 1980). For the first two cases, the analytical expression of point-wise force/couple
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Figure 3.23: Comparison between theoretical and semi-analytical (WNI method) solution in terms of

Anderson’s Criteria, obtained for the WP1-HSP1 test case.

placed at point x0 reads (Faccioli et al., 1997; Madariaga, 1989):

b (x; t) ≡





d∑

i=1

Aiδ (x − xS) f (t) ei, point-wise force

− ∇x.m (x; xS) f (t) , point-wise double couple

(3.42)

(3.43)

with Ai is the amplitude of the point-wise force along the ith direction, δ the Dirac’s delta, xS the

source point and m (x; t) the seismic moment tensor density and m (x) = m
0
δ (x − xS). To

translate the analytical formulation of the point-wise forces, let first xS coincide for simplicity with

one of the GLL nodes. Then the body force numerical counterparts bN (x; t) may be written as:

bN (x; t) ≡





d∑

i=1

Aiδ
N (x − xS) f (t) ei, point-wise force

− ∇x.
[
m

0
δN (x − xS)

]
f (t) , point-wise double couple

(3.44)

(3.45)
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δN is the numerical counterpart of the Dirac’s delta. According to the quadrature formulas and La-

grangian interpolation employed in the SE discretization, δN is the N th order Lagrangian shape func-

tion ΨL/ωL (with L = Id (r, s, t) the multi-index corresponding to the GLL point coordinated by the

indexes r, s, t on a 3D master element) that vanishes at all GLL points I 6= L within the element,

except at xS

(
ξL
)

, where it is equal to 1/ωL (the GLL weight associated to ξL in quadrature formula

on Ωe). Note that the integral
∫

Ωe
δNdVx = 1 according to the GLL quadrature formulas employed.

Therefore, the Galerkin’s formulation of the external force on an element e (and according to the local

reference system xe) reads:

(
wh

e (xe) ,
d∑

i=1

Aiδ
N (xe − xeS) f (t) ei

)h

Ωe

= f (t)
d∑

i=1

Aiwei
(xeS) (3.46)

for a point-wise force. Concerning the double-coupe source, a convenient representation of the seis-

mic moment tensor density was originally formulated by Aki and Richards (1980), in the following

fashion:

m (x; xS) = m
0
δ (x − xS) =

M0

V
(dΣ ⊗S nΣ) δ (x − xS) (3.47)

with dΣ and nΣ the slip and normal vector defining the spatial disposition of the fault offset; M0 is

the total seismic moment (see Section 3.9.2) and V the source elementary volume (Faccioli et al.,

1997). The seismic moment13 translates into the equivalent body force distribution proposed in Equa-

tion A.79. Hence, the application of the divergence theorem to the variational formulation of Equa-

tion A.81, gives:

(
wh

e (xe) ,−∇x.
[
m

0
δN (x − xS)

]
f (t)

)h

Ωe

=

=
(
m

0
δN (x − xS) f (t) ,wh

e ⊗S ∇x

)h

Ωe

=

=
1

2

d∑

i,j=1

f (t)m0ij


∂w

h
ei

∂xj

+
∂wh

ej

∂xi


ωL =

1

2

d∑

i,j=1

f (t)m0ij

(
∂ΦL

i

∂xj

+
∂ΦL

j

∂xi

)

(3.48)

From Equation A.84, it appears that the right-hand member vanishes if L is associated to any of the

nodes outside the sub-domain e containing the source, whereas it is different from zero for those L as-

sociated to each of the nodes inside e (except at xS). Thus, due to the discretization into subdomains

of finite size, the virtual internal work associated to the source is spread over e . As a consequence,

the numerical method can accurately portray a double couple point source provided the size (Faccioli

et al., 1997).

With the intent to verify the accuracy of SEM3D in reproducing the wave-field radiated from a point

source double-couple, the SISMOWINE benchmark is used again as reference.

The structured computational grid was designed with an average element size of 346 m, and 7 GLL

points per direction. The model was enclosed into PML domain all along its external surface, so

to absorb the spurious waves coming from artificial reflection at the computational boundaries. The

model runs over 216 MPI cores: 2 hours (CPU-time) are required to simulate up to 5 s of wave

propagation.

According to the results of the verification case (portrayed in Figures 3.24 and 3.25), SEM3D is well

suited to reproduce the near and far wave-field generated by a concentrated double-couple.

13The seismic moment tensor is symmetric. Its traces vanishes for pure slip condition, i.e. when dΣ.nΣ = 0.
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Figure 3.24: Comparison between theoretical and numerical (SEM3D) solution obtained for the WP1-

HSP1 test case. The fault strikes at 0◦ and dips at 90◦, with a rake angle of 0◦.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 3.25: Comparison between theoretical and numerical (SEM) solution in terms of Anderson’s

Criteria, obtained for the WP1-HSP1 test case.
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4

Coupling physics-based numerical

simulations and Artificial N. N. to generate

realistic broadband earthquake ground

motions

“Maybe the only significant difference between a really smart simulation and a human

being was the noise they made when you punched them.”

– Terry Pratchett, The Long Earth

4.1 Introduction

As mentioned in Chapter 1, recent developments in physics-based earthquake ground motion simula-

tion are intended to produce broad-band synthetic seismograms, to be confidently used in structural

seismic design. This aspect has been a primary goal of Engineering Seismology ever since, and the

need for broad-band synthetics to be exploited for engineering purposes has been progressively ap-

proached by several authors in the past. The path was steered by the seminal works of Hartzell (1978)

and Irikura (1983), who first proposed to sum the recordings from small aftershocks to reproduce

larger ones. This concept lead to the Empirical and Semi-Empirical Green’s function method. How-

ever, Green’s functions are not always available for different focal mechanisms sufficient signal to

noise ratio at low frequencies Zeng et al. (1994). Boore (1983) extended the original concept by con-

sidering stochastic source and path effects (the methods goes under the name stochastic point-source,

SPS, indeed). The author considered the transient earthquake wave-motion as a stationary scalar ran-

dom field, possibly obtained by filtering a suite of windowed stochastic time histories (typically white

noise with zero mean), whose spectrum is then scaled to a specified one, leaving the phase untouched.

Noticeably, the method produce reasonable broad-band synthetics (up to 15.0 Hz), covering all the es-

sential aspects of high-frequency ground motions for earthquakes over a very large magnitude range.

However, Zeng et al. (1994) observed that this approach only generates an S-wave pulse, generate

three-component seismograms with poor physically expected coherency. Moreover, phases of ar-

rivals, such as dispersed surface waves, cannot be simply included. Somerville et al. (1991) developed

a procedure to produce synthetic acceleration time histories of large sub-duction earthquakes and have

tested it against the recorded strong ground motions of the MW = 8.0 Michoacan, Mexico, and Val-

paraiso, Chile, earthquakes of 1985. The response spectra of the simulated motions have little or no

significant bias in the period range of 0.05 to 2 sec for both earthquakes, and the peak accelerations,

durations, and envelope shapes of the time histories are in good agreement with the recorded motions.
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Such models for wave propagation have represent the ground motion as a convolution of a slip func-

tion on the fault with a synthetic Green’s function (Aki and Richards, 1980), although appropriate

source descriptions are hardly obtained. To cope with this shortcoming, Zeng et al. (1994) presented

a composite source model for the convolution with synthetic Green’s functions, in order to synthesize

strong ground motions due to a complex rupture process of a large earthquake. Sub-events with a

power-law distribution of sizes are located randomly on the fault. Each sub-event radiates a displace-

ment pulse with the shape of a Brune’s pulse in the far field, at a time determined by a constant rupture

velocity propagating from the hypocenter. They produced hihg-quality broad-band synthetics up to

10.0 Hz. Exploiting the SPS, Saikia and Somerville (1997) combined the deterministic low-frequency

wave-forms with stochastic high-frequency ones, granting a classical ω−2 spectral decay for far-field

displacement seismograms. Combining the deterministic and semi-empirical results, the authors ob-

tained no significant bias in the frequency range of 0.2 to 30.0 Hz. However, an atypical behaviour was

observed at the corer frequency where the low-frequency and high-frequency spectra are intended to

be sewed: if amplitude spectra are easily matched, a phase mismatch usually occurs at the hybridiza-

tion step. Mai and Beroza (2003) solved this problem by constructing the hybrid broad-band synthetic

wave-form filtering the two components with smooth weighting functions defined in the Fourier’s do-

main, mirrored upon the corner frequency (f ∼ 1.5 Hz) and that sum to unity at each frequency.

This approach is similar to the simultaneous deconvolution approach proposed by Harvey and Choy

(1982). In their study, Mai and Beroza (2003) generated a decimated low-wavenumber filtered dislo-

cation model to generate low-frequency displacements (by employing the discrete-wavenumber/finite

element method proposed by Olson et al. (1984), opportunely extended to finite-fault sources by Spu-

dich and Archuleta (1987) and Spudich and Xu (2002)). The high-frequency ray-theory seismograms

were instead computed by employing the isochrone integration method proposed by Spudich and

Frazer (1984) and Spudich and Xu (2002), applied to a finer fault grid, capable of take into consider-

ation near-source effects. Being the background dislocation model employed the same, no significant

phase shift was observed. With this technique, they produced reliable synthetics up to a frequency

of 10.0 Hz. Beresnev and Atkinson (1997) and Motazedian and Atkinson (2005) extended the SPS

method to extended fault mechanisms (SFS method): the fault is divided in a certain number of sub-

faults, whose contribution to the total wave-field is computed one modelled as a point source can be

calculated as suggested by Boore (2003) and then summed at the observation point, with a proper

time delay. This permits to control the local frequency corner at each sub-fault as a function of time.

The rupture begins with a high corner frequency and progresses to lower corner frequencies as the

ruptured area grows. Thus, the hybrid models cover a broad frequency range, from about 0.1 to 20

Hz. However, hybrid methods may not necessarily provide Green’s functions that satisfy both the

amplitude and phase information in the important intermediate frequency range from 0.5 to 2.0 Hz;

the source processes generating the 0.5 to 2.0 Hz motions are not adequately resolved by either low or

high-frequency models (Motazedian and Atkinson, 2005). Hartzell et al. (2005) compared kinematic

models based on the summation of a fractal distribution (Irikura and Kamae, 1994) of sub-event sizes

with a dynamic model based on the slip-weakening friction law proposed by Ida (1972). Kinematic

modeling is performed for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from

0.2 to 2.0 Hz, instead. Source models were propagated to the far field by convolution with 1D and 3D

theoretical Green’s functions. Because the knowledge of the velocity structure is often poor, however,

theoretical Green’s functions may be poorly realistic for frequencies higher than 1.0 Hz. Broad-band

(0.0-20.0 Hz) synthetic seismograms were generated by Frankel (2009), for finite-fault sources with

constant stress drop with seismic moment. They were obtained by combining deterministic synthetics

for plane-layered models at low frequencies with stochastic synthetics at high frequencies. The deter-

ministic synthetics were calculated using an average slip velocity, and hence, dynamic stress drop, on

the fault that is uniform with magnitude (exploiting the frequency-wavenumber integration proposed

by Zhu and Rivera (2002), to generate synthetic Green’s functions for a plane-layered model). The
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stochastic part of the broad-band synthetics was generated by employing the SPS (Boore, 2003). The

spectral accelerations at 0.2, 1.0, and 3.0 sec periods from the synthetics generally agreed with those

from the set of Next Generation Attenuation (NGA) relations for MW 5.5-7.5 for distances of 2-100

km. At distances of 100-200 km some of the NGA relations for 0.2 sec spectral acceleration were

substantially larger than the values of the synthetics for MW 7.5 and M 6.5 earthquakes because these

relations do not have a term accounting for quality factor Q. At 3 and 5 sec periods, the synthetics for

M 7.5 earthquakes generally had larger spectral accelerations than the NGA relations, although there

was large scatter in the results from the synthetics. The synthetics showed a sag in response spectra

at close-in distances for M 5.5 between 0.3 and 0.7 sec that is not predicted from the NGA relations.

Pulido and Dalguer (2009) generalized the dynamic high-frequency model of a suddenly stopping cir-

cular crack Madariaga (1977) to the radiation from a general 3D rupture in a planar fault, where HF

content is radiated during gradual changes of rupture velocity at the rupture front. Their simulations

of the 2000 Tottori (Japan) earthquake by inverting observed near-source acceleration envelopes of

the earthquake were reliable up to 10.0 Hz. Their simulated near-source strong ground motions of the

Tottori earthquake are also able to reproduce the ω−2 radiation theoretically predicted in 2D dynamic

fault rupture models.

All the mentioned studies produce satisfactory broad-band synthetics. However, they suffer the lack

of an accurate propagator tool. Moreover, the dynamic models are poorly constrained at high-

frequencies, due to the paucity of observations. As a matter of fact, most modern broadband pro-

cedures use analytical Green’s functions to model low-frequency path effects, including the effects

of sedimentary basins. However, the development of high-fidelity physics-based simulations of the

low-frequency content of the seismic wave-motion has been widely exploited as a basis to generate

hybrid broad-band records. Graves and Pitarka (2004) combined the physics-based simulations (valid

up to 1.0 Hz, with a kinematic description of fault rupture, featured by a model of heterogeneous

slip distribution, rupture velocity and rise time) with a stochastic approach at high-frequencies (pro-

posed by Beresnev and Atkinson, 1997), for moderate and larger crustal earthquakes. The broadband

response (up to 10.0 Hz) was obtained by summing the separate responses in the time domain us-

ing matched filters centered at 1.0 Hz for ground motion time histories. The authors restricted both

the velocity models for low- and high- frequencies to a computational velocity model with the same

average near-surface shear wave velocity. In this manner, frequency-dependent non-linear site am-

plification factors were applied to efficiently include a detailed site-specific geologic information in

the ground motion estimates. Validation studies of the simulation methodology using ground motions

recorded during the 1989 Loma Prieta and 1994 Northridge earthquakes. Liu et al. (2006) improved

this technique by introducing a spatial correlation structure between slip amplitude, rupture velocity,

and rise time, as suggested by dynamic fault modeling. To produce more accurate high-frequency

amplitudes and durations, the 1D synthetics were corrected with a randomized, frequency-dependent

radiation pattern. The 1D synthetics were further corrected for local site and nonlinear soil effects

by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s

National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure

is validated by comparison with the 1994 Northridge, California, strong ground motion data set.

Graves et al. (2008) simulate a broadband (0.0-10.0 Hz) ground motions for three MW 7.8 rupture

scenarios of the southern San Andreas fault, using the high-performance computing resources of the

Southern California Earthquake Center. The hybrid physics-based and semi-stochastic method was

employed. Graves and Pitarka (2010) improved their previous work by changing the correlation of

random distributions of parameters such as slip and rupture velocity slip, by including a magnitude

dependent scaling; the correlation structure for rise-times adopted was proposed by Aagaard et al.

(2008b,a). The long period ground motion (up to 1.0 Hz) was obtained by Finite Difference Method

(FDM), whereas the high-frequency is generated via Stochastic Finite Source method (Beresnev and

Atkinson, 1997). Aagaard et al. (2010b) and Aagaard et al. (2010a) simulated broadband (fmax =
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10.0 Hz) for 39 scenario earthquakes involving the Hayward, Calaveras, and Rodgers Creek faults.

They considered the effects of creep on co-seismic slip using two different approaches, both of which

reduce the ground motions, compared with neglecting the influence of creep. The Finite Element

Method (FEM) was exploited. An important parameter in the overall slip distribution they adopted

was heterogeneity length scale that defines the crossover between the background distribution and the

stochastic distribution. Selecting too short length scale for the crossover results in only very short

length-scale heterogeneity. This leads to excessive energy radiated at long periods and a deficiency

of energy radiated at shorter periods. On the other extreme, selecting a too long length scale for the

crossover results in ruptures that do not have the desired dimensions due to large regions with zero

slip. To choose a reasonable crossover length scale, they generated broadband (T > 0.1 s) synthetics

for a simple 1D velocity structure and a suite of 50 sites ranging from 2 km to 70 km from the rupture,

with the goal of minimizing the overall residual in spectral acceleration with respect to NGA ground-

motion prediction models. These simulations use the hybrid broadband ground motion simulation

methodology of Graves and Pitarka (2004) with a 1D seismic velocity model based on the generic

rock profile of Boore and Joyner (1997), deterministic ground motion calculations at periods longer

than 1.0 s, and stochastic ground-motion calculations for periods 0.10-1.0 s. As a result, they selected

to crossover from the background slip distribution to the stochastic slip distribution at a length scale

equal to one-half of the rupture length. More recently, Taborda and Bielak (2013) simulated the MW

5.4 Chino Hills earthquake for a maximum frequency up to 4 Hz and a minimum shear-wave velocity

down to 200 m/s, with a Finite Element code for anelastic wave propagation in heterogeneous media.

A validation study was performed comparing data obtained from seismic networks with simulation

synthetics on more than 300 recording stations. The source model corresponds to that of an indepen-

dent inversion study, and the material model used is a community velocity model (CVM) developed

by the Southern California Earthquake Center (SCEC). Despite the lower frequency solved by their

analysis, from a regional perspective, the simulation starts to deviate from the data at frequencies

above 1 and 2 Hz. At particular locations or station clusters, however, the synthetics yield very good

results, even at frequencies between 2 and 4 Hz. The best results are obtained between 0.1 and 0.25

Hz over the entire region and up to 1 Hz within the major basins. However, the interesting aspect of

this study, is the inclusion of a very soft soil deposits. Last but least, in order to address the multi-

resolution problem that arises from the inclusion of the earthquake source at a regional scale and the

building models at a local scale, and to be able to vary the system configuration during repeated sim-

ulations, the Domain Reduction Method (DRM) introduced by Bielak et al. (2003a) has been widely

used (Quinay et al., 2013; Isbiliroglu et al., 2015). The methods subdivides the original problem into

two simpler ones: (1) an auxiliary problem that simulates the earthquake source and propagation path

effects with a model that encompasses the source and a background structure from which the local-

ized feature has been removed and (2) a problem to model local site effects (source of high-frequency

enrichment of the incident wave-field). Its input is a set of equivalent localized forces derived from

the first step. These forces act only within a single layer of elements adjacent to the interface between

the exterior region and the geological feature of interest. This enables to reduce the domain size in

the second step. If the background subsurface structure is simple, one can replace the finite-element

method in the first step with an alternative efficient method.

Table 4.1 summarizes (in chronological order) the principal research works intended to produce

broad-band synthetic wave-forms.

In this chapter, an alternative strategy for the physics-based generation of broad-band synthetics is

presented. As a matter of fact, instead of pushing physics-based simulations to higher frequencies by

employing a stochastic description to handle fault complexity and crustal structure (one of the main

objectives of the SCEC5 research plan for 2017-2021), the described approach targets the ultimate

design tool, i.e. the design spectrum. The enhancement strategy suggested goes under the acronym
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Table 4.1: Summary of the principal studies to produce broad-band synthetic wave-forms for earth-

quake ground shaking scenarios. E-GF = Empirical Green’s function Irikura (1991); SE-GF = Semi-

Empirical Green’s Functions (Irikura, 1983; Somerville et al., 1991; Zhu and Rivera, 2002); SPS

= Stochastic Point Source method (Boore, 1983); DW-FE = Discrete-Wavenumber/Finite Element

method (Olson et al., 1984; Spudich and Archuleta, 1987); ISI = ISochrone Integration (Spudich and

Frazer, 1984; Spudich and Xu, 2002); SFS = Stochastic Finite Source method (Beresnev and Atkin-

son, 1997; Motazedian and Atkinson, 2005); SE-GF (F) = Semi-Empirical Green’s Function with

Fractal sub-event distribution (Irikura and Kamae, 1994); FLD = Friction-Law Dynamics (Ida, 1972,

for instance); FDM = Finite Difference Method; FWI = Frequency-Wavenumber Integration

Author(s) fmax [Hz ] Method(s)

Hartzell (1978) ? E-GF

Irikura (1983) 5.0 SE-GF

Boore (1983) 15.0 SPS

Somerville et al. (1991) 20.0 E-GF

Zeng et al. (1994) 10.0 SE-GF

Saikia and Somerville (1997) 30.0 SPS + SE-GF

Mai and Beroza (2003) 10.0 DW-FE + ISI

Graves and Pitarka (2004) 10.0 FDM + SFS

Motazedian and Atkinson (2005) 20.0 SFS

Hartzell et al. (2005) 10.0 SE-GF (F)

Hartzell et al. (2005) 2.0 FLD

Liu et al. (2006) 20.0 FDM + SFS

Pulido and Dalguer (2009) 10.0 FLD

Frankel (2009) 20.0 FWI + SPS

Miyake et al. (2010) 10.0 E-GF

Graves et al. (2008) 10.0 FDM + SFS

Graves and Pitarka (2010) 10.0 FDM + SFS

Aagaard et al. (2010b) 10.0 FEM + SFS

Taborda and Bielak (2013) 4.0 FEM

ANN2BB, since it is based on the combination of physics-based simulation with Artificial Neural

Networks (ANN). An ANN is a data-processing algorithm (or an actual hardware) designed upon bi-

ological neural networks. In other words, it can be regarded as a statistical-computational framework

set up to artificially reproduce the predictive capability of interconnected logic units (i.e. neurons).

A neural network is constructed by organizing sets of interconnected neurons in layers to estimate

or approximate non-linear functions that usually depends on a large number of inputs. Due to their

adaptive interconnection, the neurons learn from examples, and exhibit some structural capability for

generalization. Moreover, neural networks normally have great potential for parallelism, since the

computations of the components are independent of each other. An ANN has the following basic

features: it contains sets of adaptive weights, i.e. numerical parameters that are tuned by a learn-

ing algorithm and it is capable of approximating non-linear functions of their inputs. The adaptive

weights can be thought of as connection strengths between neurons, which are activated during the

training phase (upon a set of data, compatible with the expected outcome) and exploited during the

prediction phase. In this context, ANNs are trained upon exemplary strong ground motion database,

taking LP spectral ordinates as input data (once a corner period has been arbitrarily chosen). Applying

the trained ANN upon the synthetic time-histories provided by deterministic numerical simulations

(PBS or hybridized), one gets two response spectra, exactly coincident at long-period, but diverging

at short-periods. Therefore, by scaling the synthetic response spectrum upon ANN prediction at short
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periods, one gets broad-band synthetics whose response spectrum is predicted by ANN constrained

by deterministic analysis of the earthquake scenario. ANN2BB was conceived to try to solve the

uncertainty related to system-specific PBS and contribute to the overall understanding of earthquake

predictability. This goal is worldwide shared by the scientific community, as for instance it is indi-

cated in the SCEC5 provisional proposals.

In Section 4.2, the ANN training procedure is described in detail. The design of the training work-

flow is presented at first: neural networks are constructed by testing their regression performance

on validation sets. In the following, two crucial aspects are discussed: the sensitivity to the site-

class of the training dataset and the predictive performance with respect to the vertical component

of motion. Section 4.3 outlines the recipe to produce broad-band strong ground motions from 3D

physics-based numerical simulations, following the workflow depicted in Figure 4.1). Some applica-

tions of the methodology are also presented in the following. Specifically, two Italian strong ground

motion earthquakes are considered, namely: (1) the 2009 MW 6.3 L’Aquila earthquake, Central Italy

and (2) MW 6.0 2012 May 29 earthquake in the Po Plain, Northern Italy. Recording stations nearby

the epicentres were considered in this study, since they experienced an intense ground shaking in

near-field conditions.

SCENARIO LF synthetics

HF synthetics HYB synthetics BB synthetics

ANN

simulation
SP ordinates

DATABASE
ANN

prediction

PBS
SEM,FEM,FDM

STOEMP

TRAIN

PSA

scaling
Inverse FFT

Figure 4.1: Outline of the proposed strategy to generate broad-band(BB) synthetics. Low-frequency

(LF) synthetics are obtained by numerical physics-based simulations (PBS) (e.g. by exploiting the

Finite Difference Method (FDM), the Spectral Element Method (SEM) or the Finite Element Method

(FEM)). The high-frequency (HF) part of the ground motion is preliminary generated independently,

for instance by Empirical (EMP) or Stochastic (STO) methods (e.g. the one proposed by Sabetta and

Pugliese (1996) or by Boore Boore (1983)). A classical hybrid coupling is performed at first to obtain

hybrid (HYB) records. The latter are spectral scaled upon the short-period (SP) spectral ordinates

obtained by applying an Artificial Neural Network (opportunely trained on a trial set of records). The

spectral-matching technique is applied iteratively by exploiting the direct and inverse Fast Fourier

Transform (FFT) to finally obtained BB synthetics, once the original HYB spectrum matches the

ANN prediction.

The content of this chapter has been object of a submitted publication to the Bulletin of Seismological

Society of America.

106



4.2 Correlation of long and short period spectral ordinates, through

an ANN based on a strong motion dataset

4.2.1 Design and train of an ANN

It is commonly assumed that any physical quantity can be obtained by summing a deterministic func-

tion (depending on the set of input parameters) to a stochastic contribution (Bishop, 1995). The

deterministic function is often described by a model (analytical or numerical) of the problem. Nev-

ertheless, in some cases the complexity of the problem is increased by the undetermined nature of

the input, such as the seismic slip distribution along the fault, and by the poor control of the model

parameters, such as the large scale geological models involved in PBS, due to insufficient detailed in-

formation and possible non-linear soil response. In most cases, Artificial Neural Networks are used to

estimate the non-linear relationship between a vector of input variables (e.g. the LP spectral ordinates

obtained via numerical simulation) and the output target (e.g. the SP Sa). As a matter of fact, under

mild mathematical conditions, any problem involving a continuous mapping between vector spaces

can be approximated to arbitrary precision (i.e. within an error tolerance) by feed-forward ANNs

which is the most often used type (Cybenko, 1989). Especially, ANNs are very effective in generaliz-

ing output predictions when facing problems tolerant to some errors, featured by a highly populated

input database, but to which hard and fast rules can not easily be applied. ANNs with a proper ar-

chitecture can be therefore considered statically consistent estimators. Our purpose is to establish

through the ANN a correlation between NLP
Sa response spectral ordinates selected for T ≥ T ⋆, being

T ⋆ the corner period corresponding to the range of reliability of PBS, with NSP
Sa response spectral

ordinates for T ≤ T ⋆. A strong ground motion dataset (Smerzini et al., 2014) was used as teach-

ing set. The dataset consists of Ndb=501 three components high-quality accelerograms, spanning a

range of Moment Magnitude from 5 to 7.4 and epicentral distances less than 40 km. Two ANNs are

considered, one referring to the geometric mean of the horizontal components and one to the vertical

one. As long as the database is enriched, the procedure can be ideally extended by training differ-

ent ANNs separately, for different homogeneous datasets (such as for different soil classes) and/or

for different components of motion (such as fault normal and fault parallel). In our case, the neural

network is designed as a two-layers (i.e. nodes are grouped in layers) feed-forward (i.e. the arcs

joining nodes are unidirectional, and there are no cycles) neural network with Nh
n sigmoid hidden

neurons (the so called activation functions) and a linear output neuron. The number of nodes in the

input layer N i
n equals the number of input variables NLP

Sa . The number of nodes in the output layer

No
n equals the number of target values NSP

Sa . With this kind of configuration, the ANN takes the

name of Multi Layer Perceptron (Bishop, 1995; Bishop and Roach, 1992). The backpropagation of

error was used in the training phase (McClelland et al., 1986). The idea is to propagate error signal,

computed in single teaching step, back to all connected neurons.Back-propagation needs a teacher

that knows the correct output for any input (supervised learning) and uses gradient descent methods

(e.g. the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963)) on the error to train

the weights. The neural network fitting tools (nftool) implemented in Matlab was employed at

this stage. A sketch of the ANN training process for the problem at hand is shown in Figure4.2a.

The NLP
Sa input parameters are {Log10 [Sa (Tj)]}NLP

Sa
j=1 , where Sa is the pseudo-acceleration response

spectral ordinates at period Tj , ranging from the corner period T ⋆ to 5 s. The outputs areNSP
Sa ground

motion parameters, specifically, {Log10 [Sa(Tk)]}NSP
Sa

k=1 , at periods Tk = 0 (PGA = Peak Ground Ac-

celeration), up to T ⋆ (depicted as red dots in Figure4.2b). Typically, the entire set of Ndb input-output

data is divided into three subsets: a training (input/output) data set, used to calibrate the adjustable

ANN weight; a validation (input/output) data set made of patterns different from those of the training

set and thus used to monitor the accuracy of the ANN model during the training procedure; a test (in-
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Figure 4.2: (a) Logic scheme of the ANN training patterns: the LP spectral ordinates represents the

teaching inputs, whereas the SP ones are the biased output predicted by the ANN. (b) Sa spectrum

obtained by numerical simulations (blue line), compared to ANN prediction (red dots). The black

line represents the response spectrum of hybrid records obtained by coupling PBS with broad-band

wave-forms generated by empirical/stochastic methods.

put/output) data set, not used during ANN training and validation, but needed to evaluate the network

capability of generalization in the presence of new data. This distinction helps to avoid the problem

of overfitting, which is a well known shortcoming of ANN design. As a matter of fact, even though

the error on the training set is driven to a very small value, the network may fail in generalizing the

learned training patterns if the patterns of the training set do not sufficiently cover the variety of new

situations. Therefore, an early stop criterion was adopted to stop the training phase when the error on

the validation set starts growing. Moreover, it is common practice to randomly divide the set of data

into training, validation, and test. As a matter of fact, the nftool package resets the initial weights

and biases at each training session: different starting sets lead to different solutions. Therefore, the

Ntrain=50 neural networks were trained upon the 95% of the total data available. The best (i.e. most

performant) ANN was chosen among those Ntrain, as the one that provided the lowest mean square

error on the remaining 5% of the dataset. Another issue to be solved is the choice of the number of

neurons composing the network. As a matter of fact, Figure 4.3 shows the poor increase in terms of

prediction of six different ANNs trained with an increasing number of connected neurons (i.e. Nh
n

varying from 30 to 180). The error bars refer to train set (blue in Figure 4.3), validation set (green

in Figure 4.3) and test set (red in Figure 4.3) corresponding to the best at each iteration to find the

best ANN (over the Ntrain trained). Despite the increased computational cost associated to the higher

number of neurons employed at hand, no significant improvement were achieved along the whole sets

of target periods. Therefore, Nh
n was kept as low as possible (since a too small network may not have

enough power to fit the data), due to lack of data and to reduce the chance of overfitting (Hagan et al.,

1996). As a matter of fact, the number of parameters in the network is much smaller than the total

number of points in the training set, then there is little or no chance of overfitting.

In the following subsections, the ANN sensitivity to different choices of T ⋆ is tested, on both the

horizontal and vertical components of motion. Moreover, the response of different ANNs trained

on subsets of records selected by site-class is presented. The trained ANNs were tested to the time-

histories recorded during recent earthquakes, such as the 2016 MW 7.1 Kumamoto (KMM2016) earth-

quake (Japan) and the two seismic sequences that stroke central Italy in August (MW 6.2) and October

(MW 6.5) 2016 (referred as to CIT2016).
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Figure 4.3: ANN performance in the training phase, expressed in terms of estimated/target Sa. The

performance is estimated at each target natural period T , here normalized by the corner period T ⋆=0.5

s. Three ANNs were trained by changing the number of hidden neurons Nh
n from 30 (a), to 90 (b) and

to 180 (c) respectively.

4.2.2 Testing the ANN performance on the horizontal component

Effect of the corner period T ⋆

The choice of the corner period T ⋆ is allegedly delicate. One may expect that as smaller T ⋆ becomes

as much more accurate will be the neural network prediction. In practice, a smaller T ⋆ means to

feed the neural network with a greater number of input values and to reduced number of outcomes

accordingly. However, the risk of over-fitting the data in the training phase may increase. Moreover,

the level of confidence on the LP spectrum raise to higher frequency content. Since the physics-based

simulations (at which we aim to apply this procedure) loose reliability in the SP region, reducing T ⋆

translates into an increased confidence in the PBS carrier spectrum, which would require high com-

putational effort to be produced. To clarify the effect of the corner period onto the ANN prediction,

three different ANNs were trained upon the ensemble of records available (Ndb=501) but considering

a corner period T ⋆ of 0.5, 0.75 and 1 s respectively. Their performances were tested for the CIT2016

(Figure 4.4) and KMM2016 (Figure 4.5) strong ground motions respectively.

The ratio between estimated (SaANN ) and recorded (SaREC) spectral values at SP are presented in

the top rows of both Figure 4.4 and Figure 4.5. The synoptic comparisons between the recorded

and estimated spectra are depicted along the bottom row. The geometric mean spectra of the two

horizontal components is depicted for comparisons. The Accumuli (ACC) and Norcia (NRC) stations

were considered for CIT2016, whereas stations KMMH16 and KMMH14 stations were studied for

KMM2016. It seems clear that the neural network prediction is highly sensitive to the corner period

selected. For instance, in Figures 4.4e and 4.4b, the choice of T ⋆= 1 s seems quite inappropriate.

This hypothesis is backed by KMM2016 spectra (Figure 4.5b, 4.5e). Although it is not possible to

distinguish the spectral region where the deterministic nature of the seismic scenario plays a major

role on the spectral shape, the ANN trained ad T ⋆ = 1 s seems poorly constrained, thus indicating that

the purely stochastic component of the input motion dominates the spectral shape at lower periods.

On the other hand, the prediction becomes more accurate starting from T ⋆ = 0.75 s (see Figures 4.4a,

4.4d 4.5a,4.5d). Generally speaking, although for one-peak-shaped spectra (such as the ACC one, in

Figure 4.4d), the three tested ANNs are very precisely reproducing the SP spectral content, for more

complicated spectral shapes, both T ⋆ = 0.75 s and T ⋆ = 0.5 s look suitable for an accurate estimation

rather than T ⋆ = 1.0 s.
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Figure 4.4: ANN performance for different training corner periods T ⋆, expressed in terms of estimat-

ed/target Sa (a-c). (d-f) estimated Sa spectra compared to the recorded ones (thick orange line). The

recordings at two stations (ACC and NRC) for the CIT2016 earthquake are shown. Thin solid black

line refers to an ANN trained at T ⋆=0.5s; thin solid grey line with squared markers refers to an ANN

trained at T ⋆=0.75s and solid black line with triangle markers refers to an ANN trained at T ⋆=1.0s.

Effect of the site class

Another characteristic of the SP spectral shape the ANN have desirably to predict is the effect of the

non-linear site response onto it. In particular, soft soils exhibit lower Sa values at short periods since

the high-frequency content of the input motion is damped out due to a viscous mechanism (taking

place for weak shear-strain amplitudes, γ <10−5) and to the soil non-linear hysteresis (γ >10−5).

In this sense, one expects the neural network trained upon a set of time-histories recorded on soft

rock or stiff soil to be prone to estimate lower Sa values, whereas higher response-spectral ordinates

are likely to be predicted if the teaching set refers to stiffer sites (e.g. rock). To prove the latter

assumption, a set of three different ANNs is considered herein, called respectively AB, CD and ALL.

Those networks have been selectively trained upon sub-sets of the original database, formed by time-

histories recorded at the same site class (classically defined based on the shear wave velocity of the

top 30 m of the soil, VS,30 , according to EuroCode 8 (EC8)). As a matter of fact, very firm soil and

soft rock sites (classes C and D) have similar amplitudes, distinctively different from the ones on rock

and firm rock sites (classes A and B). Thus, AB and CD refer to classes A-B ( VS,30 > 760 m/s) and

C-D (180 m/s < VS,30 < 760 m/s) respectively. ALL has been trained without taking into account the

site classification. To study the effect of the site-class filter applied to the training database, the three

ANN were tested on two stations of class A-B (i.e. ACC and NRC, during the CIT2016 earthquake
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Figure 4.5: ANN performance for different training corner periods T ⋆, expressed in terms of estimat-

ed/target Sa (a-c). (d-f) estimated Sa spectra compared to the recorded ones (thick orange line). The

recordings at two stations (KMMH14 and KMMH16) for the KMM2016 earthquake are shown. Thin

solid black line refers to an ANN trained at T ⋆=0.5s; thin solid grey line with squared markers refers

to an ANN trained at T ⋆=0.75s and solid black line with triangle markers refers to an ANN trained at

T ⋆=1.0s.

- see Figure 4.6) and two stations classified as C-D sites (i.e. KMMH14 and KMMH16, during the

KMM2016 earthquake - see Figure 4.7).

AB predicts higher SP-Sa values compared to CD, whereas ALL stands in the middle. In the case of

KMMH16, the CD artificial network has the best performance: relatively low SP amplitudes (due, at

large magnitudes and short distances, to non-linear site effects) are correctly reproduced. One may

argue that the greatest differences in horizontal ground motion among the four EC8 site categories

occur at long periods on firm rock sites, which have significantly lower amplitudes due to an absence

of sediment amplification (Campbell, 2008). In our analysis, we did not take into account this differ-

ence since all the three ANN tested have the been fed with the same LP-Sa.

The neural network application to the horizontal ground motion revealed the scarce importance of the

site class upon the final prediction whereas it highlighted the importance of the choice of the corner

period.

4.2.3 ANN performance on ground motion vertical component

Another interesting point we investigated herein is the ANN performance on the vertical component

of the ground motion. According to Campbell (Campbell, 2008), the vertical strong ground motion
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Figure 4.6: ANN performance for different EC8 site classes, expressed in terms of estimated/target Sa
(a-c). (d-f) estimated Sa spectra compared to the recorded ones (thick orange line). The recordings at

two stations (ACC and NRC) for the CIT2016 earthquake are shown. Thin solid black and grey lines

with square markers refers to an ALL and AB respectively; solid black line with triangle markers

refers to CD.

component exhibits similar behaviour to the horizontal ones for firm rock sites (class A) at long

periods, but has relatively higher short-period amplitudes at short distances on firm soil (class C) sites

due to a lack of non-linear site effects, less anelastic attenuation, and phase conversions within the

upper sediments. Figures 4.8 shows the pseudo-spectral acceleration response predicted by AB, CD

and ALL respectively for T ⋆ = 0.75 s. The latter are compared to the recorded Sa spectrum. No

significant differences may be noticed in the ANN predictions.

4.3 Recipe to produce broad-band strong ground motions from

3D physics-based numerical simulations

4.3.1 ANN-based broad-band response spectra

According to the procedure described hereafter, the construction of broad-band synthetics cannot

part with the physics-based analysis of the seismic scenario. The latter serves as a background de-

terministic milestone, to which routinely apply the ANN prediction. The seismological/geotechnical

model usually spans several tens of kilometres in the surroundings of the epicentral area, so to encom-

pass the regional geology and the rupture area. However, common numerical methods barely solves
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Figure 4.7: ANN performance for different EC8 site class, expressed in terms of estimated/target Sa
(a-c). (d-f) estimated Sa spectra compared to the recorded ones (thick orange line). The recordings

at two stations (KMMH14 and KMMH16) for the KMM2016 earthquake are shown. Thin solid

black and grey lines with square markers refers to an ALL and AB respectively; solid black line with

triangle markers refers to CD.

the intermediate-to-high frequency range with sufficient accuracy, unless an ever-increasing compu-

tational burden is accepted (see, for instance, Paolucci et al., 2015; Chaljub et al., 2015). Herein,

numerical analyses were performed by using SPEED - Spectral Elements in Elastodynamics with

Discontinuous Galerkin (http://speed.mox.polimi.it), an innovative high-performance computer code

to solve seismic wave-propagation problems in heterogeneous media at local and regional scales. This

tool is based on the Discontinuous Galerkin Spectral Element Method (DGSEM), a non-conforming

version of the classical SEM formulation firstly proposed by Patera (1984). Earlier applications in

computational seismology can be found in Seriani et al. (1995); Faccioli et al. (1997); Komatitsch

and Vilotte (1998); Komatitsch et al. (1999). Fast and accurate solutions can be achieved by using

the SEM (as shown by Mayday et al., 1989), also due to its relatively easy parallel implementation

on large supercomputers (Göddeke et al., 2014). SPEED has been efficiently developed on paral-

lel architectures, exploiting the Multi Passing Interface (MPI) algorithms. In other words, the SEM

accuracy can be improved by either decreasing the mesh-size h or, alternatively, by increasing the

polynomial order p of the approximated displacement field. The possibility to address discontinuous

approximations (Käser and Dumbser, 2006) conducted to an efficient strategy to build up complex

and large meshes on the DG version of the method (as explained in Antonietti et al. (2012)). The

global mesh is thus the result of the assemblage of a set of sub-meshes, each one with its own ele-
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Figure 4.8: ANN performance for different training corner periods T ⋆, expressed in terms of esti-

mated/target Sa (a-c). (d-f) estimated Sa spectra compared to the recorded ones (thick orange line).

The recordings at ACC station for the CIT2016 earthquake and at KMMH16 station for KMM2016

earthquake are shown. Solid black line and grey line with squared markers refer to ALL and AB

respectively; thin dashed black line with triangle markers refers to CD.

ment size and polynomial degree, according to the required detail. This represents a flexible meshing

technique, capable to tackle complicated 3D geological discontinuities and topographies as well as to

better describe the local wave-field, due to selective finer approximations.

The source mechanism is numerically reproduced in SPEED by exploiting a kinematic description

of the fault rupture. The set of required parameters is calibrated upon inverted slip models, based on

observed co-seismic deformations. Some enhancements of the slip distribution are eventually possi-

ble, by making it compatible with a k2 model (using the approach developed by Herrero and Bernard,

1994, ,for instance). Nevertheless, the mesh size and the poor description of the fault mechanism

reduced so far the range of confidence of LF-synthetics up to 1.5-2 Hz (Smerzini and Villani, 2012;

Paolucci et al., 2015, ,among others). Numerical dispersion is usually observed above the design

frequency. Due to the mentioned features, SPEED represents a flexible numerical tool for several

applications in engineering seismology. For instance, Paolucci et al. (2015) studied the anatomy of

complex strong ground motion events and the seismic risk scenarios in large urban areas for rein-

surance evaluations (Paolucci et al., 2014). SPEED was exploited as well to quantify the city-site

interaction effects related to the dynamic response of large infrastructures (Mazzieri et al., 2013).

Following the parametric study on the ANN performance presented in Section 4.2, the trained neural

networks are now tested on the LF synthetics provided by the PBS analysis. The broad-band synthet-
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ics are finally obtained by scaling the original PBS Sa to the ANN prediction. From Figure 4.2b), it is

clear that the forward deterministic model (blue line in Figure 4.2b) fails in predicting short-periods

Sa, as expected. Preliminary tests conducted on such synthetics showed major difficulties and poor

effectiveness when trying to match their SP spectrum to ANN prediction. We repeatedly observed

that the numerical dispersion polluting PBS time-histories at high-frequencies impoverishes the qual-

ity of the final broad-band synthetics. Therefore, instead of applying the spectral-scaling technique

to PBS synthetics, a classical hybridization mid-step was introduced. The latter combines the LF

wave-forms with independently generated HF synthetics. For instance, hybrid accelerations aHY B at

a given site are generated by first computing an empirical/stochastic realization aHF
d for each ground

motion component d. The aLF
d and aHF

d are aligned in time, by matching their respective t5%, the

time-step corresponding to a normalized Arias intensity Ia = 5%. Finally, LF and HF waveforms are

convolved together into aHY B
d (t) by applying a Butterworth’s match filter in the frequency domain.

This double filter is defined as follows (see Figure 4.9):

A
[
aHY B

d

]
(f) = wLF (f) A

[
aLF

d

]
(f) + wHF (f) A

[
aHF

d

]
(f) (4.1)

where the A [�] (f) operator stands for the Fourier’s amplitude spectrum applied to the � acceler-

ation wave-form and wLF , wHF represent the LF and HF weight of the double filter respectively.

wLF (f) and wHF (f) are low-pass and high-pass Butterworth’s filters of order 3 respectively, with

the same frequency corner fC (Figure 4.9). In this study, aHF
d are routinely generated by following

f [Hz]

[1
]

Figure 4.9: Fourier’s spectrum of the Butterworth’s low-pass (LF) and high-pass (HF) match filter,

used for hybrid scheme.

the empirical recipe proposed by Sabetta and Pugliese (1996). The latter consists in generating syn-

thetic wave-forms extending the spectral moments theory to the non-stationary case. Input parameters

are easily correlated with earthquake magnitude, source distance, and soil conditions. The resulting

ground motion has realistic earthquake intensity indices (PGA, PGV, Arias intensity), Fourier’s spec-

tra and response spectra (Sabetta and Pugliese, 1996). Even though the mentioned approaches usually

encapsulate the physics of the earthquake process and wave propagation into simple equation forms

(Boore, 2003), they are particularly useful for our purpose, since they are simply exploited to increase

the effectiveness of spectral matching technique, without affecting the LF reliable part of the strong

motion.

4.3.2 Scaling synthetics to the broadband response spectrum

At this point, the hybrid response spectrum (the black line in Figure 4.2b) is iteratively matched to

ANN one at short-periods. In detail, the spectral-match is performed in five steps, iteratively repeated
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to achieve a satisfactory convergence. At each kth-iteration, the procedure (1) computes the pseudo-

spectral acceleration and Fourier’s spectrum of the input record ak
d (t) (with a0

d (t) = aHY B
d (t)),

namely Sa
[
ak

d

]
(T ),F

[
ak

d

]
(f); (2) the spectral ratio RaD

[
ak

d

]
(T ) = Sa

[
ak

d

]
/SaANN

d is computed,

defined as the ratio (at a discrete set of oscillation periods T ) between the hybrid spectrum and the

target one (estimated by ANN simulation); (3) a RaD

[
ak

d

]
(T ) linear interpolation over the desired

frequency range (typically till 40 Hz) is carried out along with a change of variable from period to

frequency, obtaining RaI

[
ak

d

]
(f); (4) the input Fourier’s spectrum F

[
ak

d

]
(f) is scaled by a factor

1/RaI

[
ak

d

]
(f) and finally (5) its inverse Fourier’s transform is taken to get a new wave-form ak+1

d (t).
The described spectral-matching technique applies in the frequency domain, thus causing the well-

known displacement distortions. When time domain spectral-matching procedures are employed,

displacement drifts are unlikely to appear, due additivity of the scaled wavelet functions. Extra dis-

placement arises when the matching is performed in the frequency domain with a multiplicative scale

function applied to the Fourier spectrum. Figure 4.10 portrays schematically the iterative procedure

to spectral-match the hybrid spectrum to the ANN prediction at short period. Improved velocity and

Figure 4.10: Sketch of the Sa spectral matching iterative procedure.

displacement time-histories where obtained by applying the corrective factor proposed by Shahbazian

and Pezeshk (2010). A further improvement is performed by generating a set of trial hybrid wave-

forms and select the best one in terms of goodness of fit of the target ANN spectrum.

4.3.3 Two applicative exercises

To test the described recipe for generation of broad band time-histories, two test cases were investi-

gated, namely (1) the 2009 April 6 MW 6.3 L’Aquila (AQE2009) and (2) the 2012 May 29 Po Plain

earthquakes (PPE2012). In particular, we refer to the work of Smerzini and Villani Smerzini and

Villani (2012) for the former and to Paolucci et al. Paolucci et al. (2015) for the latter. In both cases,

the numerical simulations were performed by means of the Spectral Element code SPEED. In both
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cases the authors addressed the seismic risk analysis in large urban areas and they focused on the

effects of near-fault conditions and of complex geological settings. The results were compared with

the recordings provided by relatively dense seismographic networks around the epicentre areas.

4.3.4 The 2009 MW 6.3 L’Aquila Earthquake

The 2009 L’Aquila earthquake (AQE2009) one of the largest event recorded by accelerometric sta-

tions in Italy. Furthermore, it is one of the best instrumentally documented strong ground motion in the

Italian catalogue. Smerzini and Villani (2012) reconstructed the seismic scenario of the AQE2009,

by building up a numerical model of the by epicentral area. The parametric study they performed

revealed that (1) the assumed simplified local geology had minor influence on estimated synthet-

ics and (2) that main discrepancies with the available recordings were most likely due to the poor

kinematic description of the causative fault (i.e. the Paganica fault), unveiling a more complex rup-

ture process. The authors improved their source model through the definition of stochastically (but

realistically) varying kinematic source parameters that may play a relevant role in propagating high-

frequency. With this stratagem, the synthetics fitted reasonably well the strong-motion recordings up

to 2.5 Hz (see, for instance, the results at AQK in Figure 4.11). To improve the numerical results in

0 3 6 9 12 15 18 21 24 27 30

t [s]

-656

-328

0

328

656

a
(t

) 
[c

m
/s

/s
]

AQK 2009-04-06 01:32-NS

(a)

0 3 6 9 12 15 18 21 24 27 30

t [s]

-40

-20

0

20

40

v
(t

) 
[c

m
/s

]

AQK 2009-04-06 01:32-NS

(b)

0 3 6 9 12 15 18 21 24 27 30

t [s]

-12

-6

0

6

12

d
(t

) 
[c

m
]

AQK 2009-04-06 01:32-NS

(c)

0 3 6 9 12 15 18 21 24 27 30

t [s]

-656

-328

0

328

656

a
(t

) 
[c

m
/s

/s
]

AQK 2009-04-06 01:32-NS

(d)

0 3 6 9 12 15 18 21 24 27 30

t [s]

-40

-20

0

20

40

v
(t

) 
[c

m
/s

]

AQK 2009-04-06 01:32-NS

(e)

0 3 6 9 12 15 18 21 24 27 30

t [s]

-12

-6

0

6

12

d
(t

) 
[c

m
]

AQK 2009-04-06 01:32-NS

(f)

Figure 4.11: AQK time-histories in NS direction: (a-c) Recorded (REC) time-histories; (d-f) Physics-

Based Simulated (PBS) time-histories.

a post-process phase, the LF synthetics were enriched at high-frequency, by exploiting the proposed

methodology. The hybrid scheme considers a corner frequency fC = 3 Hz. Moreover, the Artificial

Neural Network was trained on SIMBAD database and it refers to the geometric mean of the two hor-

izontal ground motion components, with corner period T ⋆= 0.75s. Hybrid (HYB-SP96) and Spectral

Matched (SPM) time-histories are portrayed in Figure 4.12. Both the hybrid and the spectral-matched

wave-form are enriched at high-frequency, although HYB-SP96 accelerograms look quite spiky. As

a matter of fact, the employed ANN provides better estimation of the shape of the Sa spectrum at

SP, both on the horizontal (Figure 4.13b) and on the vertical (Figure 4.13c) components, the SPM

spectrum is closer to the recorded one, with the respect to the HYB-SP96 one, which looks mono-

peaked and it reaches unrealistic Sa values. However, the limits of the procedure are highlighted in

Figure 4.13a, where a worse fit of the recorded spectral shape is portrayed. The physics-based sim-

ulations failed in reproducing the spectral peak at intermediate periods (i.e. 1-3 s) probably due to
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Figure 4.12: AQK time-histories in NS direction: (a-c) Hybrid (HYB-SP96) time-histories (obtained

employing Sabetta and Pugliese (1996) technique); (d-f) Spectral-Matched (SPM) time-histories.

surface waves, thus the ANN is less effective. However, the Peak Ground Acceleration (PGA) (i.e.

Sa (T = 0s)) of the SPM wave-forms is closer to the recorded one. Moreover, Figures 4.13d- 4.13f

clarify the broad-band nature of the synthetic wave-forms. The synthetic high-frequency falloff (red

line) is realistic and in good agreement with the observations, whereas the hybrid one (green line)

shows an high-frequency peak which is unlikely to occur.

The 2012 MW 6.0 Po Plain Earthquake

In 2012, Northern Italy was interested by a sequence of strong ground motions, caused by a thrust-

fault focal mechanism. Although it is an area of moderate seismicity, huge damages occurred in the

Emilia-Romagna region, in a densely populated urban area residing on a very deep sedimentary struc-

ture such as the Po Plain. The seismic sequence had two major events: a first MW 6.1 event on May

20th and a second relevant shock (MW 6.0) on May 29th. A large database of high-quality recordings

covering the epicentral area was released: the second event (hereby referred to as PPE2012) was the

best documented in terms of strong-motion records and it presented some unique features, the most

important being (1) the complex geological setting of a deep and large sedimentary basin such as

the Po Plain, with sharp variability of sediment thickness, from a few tens of metres to about 8 km

and (2) the availability of a nearly unique near-fault strong ground motion data set on deep and soft

sediments in the context of a region of moderate seismicity. Those characteristics resulted into pecu-

liar near-source strong-motion records and spatial variability of damage distribution. Paolucci et al.

(2015) designed a 3D numerical model of the interested portion of the Po Plain to depict the PPE2012

anatomy. An overall good agreement between their numerical simulations and strong-motion records

was achieved, especially along the NS direction (see for instance the comparison at MIR08 in Fig-

ure 4.14). The inverted kinematic fault model was adjusted accordingly to the records, as well as

rapidly varying thickness of Quaternary sediments in the epicentral area, based on the arrival time

of the observed waveforms. Preliminary investigations (i.e. the analysis of a wide set of near-source

records, the calibration of an improved kinematic seismic source model) resulted to be crucial in this

sense. The satisfactory reproduction of the LF content achieved by PBS is observable in velocity

and displacement traces (e.g. Figures 4.14e-4.14f). Synthetic accelerograms are however poorly con-

sistent at high frequencies. Therefore, to improve the numerical results, we firstly hybridize the LF
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Figure 4.13: (a-c) AQK response spectra. (d-f) AQk Fourier’s spectra. Black solid lines represent the

recorded (REC) wave-forms, the blue dotted lines the Physics-Based Simulations (PBS), the green

dashed lines the hybrid synthetics (HYB-SP96) and the red solid lines the Spectral Matched synthetics

(SPM).

synthetics with HF wave-forms in a post-process phase (see the wave-forms in Figures 4.15a- 4.15c).

Although no significant difference is appreciable between HYB-SP96 and SPM synthetics, their re-

spective Sa spectra have rather assorted shapes: once again the HYB-SP96 response spectra are too

much spiky at SP (green dashed lines in Figure). The latter features is unrealistic and it highlights

the great improvement made by spectral matching the hybrids upon the ANN predictions. In this

range of vibration periods, LF synthetics show high numerical dispersion, being therefore unreliable.

However, our methodology goes beyond this step, by applying a trained Artificial Neural Network to

the hybrid wave-forms. The ANN refers to the geometric mean of the two ground motion horizon-

tal components and it is trained upon the SIMBAD strong motion database (presented by Smerzini

et al. (2014)). A corner period T ⋆=0.75 s was chosen and reasonable SP-Sa values were found by

employing all the SIMBAD database in the training phase. An overall improvement of the hybrid

broad-band synthetics is obtained by applying ANN2BB to the original PBS traces, both in terms of

Sa spectra (Figures 4.16a-4.16c) and Fourier’s spectra (Figures 4.16d-4.16f), both on the horizontal

and vertical components. Unexpectedly, the ANN is capable of distinguish between the peak-shaped

spectra typical of vertical components, with the respect to the flatter one for horizontal components.
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Figure 4.14: MIR08 time-histories in NS direction: (a-c) Recorded (REC) time-histories; (d-f)

Physics-Based Simulated (PBS) time-histories.
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Figure 4.15: MIR08 time-histories in NS direction: (a-c) Hybrid (HYB-SP96) time-histories (ob-

tained employing Sabetta and Pugliese, 1996, technique); (d-f) Spectral-Matched (SPM) time-

histories.

4.4 Partial conclusions and perspectives

ANN2BB has been proven as highly effective alternative strategy to generate broad-band synthetic

seismograms, out of low-frequency physics-based analyses. This meta-modelling technique looks

very promising for a point wise estimation of realistic wave-motion. However, one of the near future

tests foreseen is the assessment of ANN2BB performance in depicting the spatial variability of the

earthquake ground motion at short period, starting from a LP ground shaking scenario.
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Figure 4.16: (a-c) MIR08 response spectra. (d-f) MIR08 Fourier’s spectra. Black solid lines represent

the recorded (REC) wave-forms, the blue dotted lines the Physics-Based Simulations (PBS), the green

dashed lines the hybrid synthetics (HYB-SP96) and the red solid lines the Spectral Matched synthetics

(SPM).

121



122



5

Physics-based simulation of the 2007

Niigata-Chuetsu-Oki earthquake

“The only thing that makes life possible is permanent, intolerable uncertainty: not knowing

what comes next.”

– Ursula K. Le Guin,The Left Hand of Darkness

5.1 The 2007 Niigata-Ken Chūetsu-Oki earthquake

The MW6.6-MJMA6.8 Niigata-Ken Chūetsu-Oki (Japan) earthquake (NCOEQ-2007) of the July, 16th

2007 affected a wide area in the surrounding of the Kashiwazaki-Kariwa Nuclear Power Plant . It

occurred as a result of a buried reverse-slip motion nucleated at an estimated hypocenter depth of

8 km, and no significant surface rupture was detected (Aochi et al., 2013a). The distance of the

Kashiwazaki-Kariwa Nuclear Power Plant to the surface projection of the fault (i.e. Joyner-Boore

distance) is RJB=0 km, whereas the rupture distance is Rrup = 16 km (Yee et al., 2011, see Figure 5.1).

Due to the relative small source-to-site distance and shallow hypocenter depth, this seismic scenario

appears very appealing to study and to quantify the effects of the near-field ground motion. Moreover,

as proved in Chapter 2, the ground shaking event is fairly well documented (a consistent database of

seismic recordings is available, e.g. the Japanese strong ground motion seismograph networks K-

NET and KiK-Net, as well as the seismometer network installed at the Kashiwazaki-Kariwa Nuclear

Power Plant ). In this context, the test-case represents a suitable benchmark for the work-packages of

the SINAPS@ project.

The objective of this chapter is to perform realistic physics-based numerical simulation of the NCOEQ-

2007 scenario. The tectonic context of the epicentral area is primarily described in Section 5.1.1, fol-

lowed by an excursus upon the different slip distributions proposed in the literature for the NCOEQ-

2007 fault plane is presented (see Aoi et al., 2008; Kato et al., 2008, among other), outlined in Sec-

tion 5.1.2. Those models have been obtained by exploiting several wave form inversion techniques

(Virieux and Operto, 2009), by assuming different simplified geological profiles of the Niigata area,

which in turn limits their reliability to a narrow low-frequency band (0.1-1 Hz). However, the un-

certainty on the rather complicate fault mechanism has still to be solved. A deeper insight on the

exceptional spatial variability of the earthquake ground motion recorded at the KKNPP is provided

in Section 5.1.3, identifying its possible origin as the along-path focalizing effect exerted by the com-

plex geological conformation lying beneath the site, and described in Section 5.1.4. In this section,

the results of several previous investigations performed to assess a suitable geological profile for the

Niigata region are discussed.
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Figure 5.1: Map of the region surrounding the Kashiwazaki-Kariwa Nuclear Power Plant . Some

stations belonging to the Japanese strong ground motion seismograph networks K-NET and KiK-Net

are shown (blue circles), along with the TEPCO-KKNPP site and the NCOEQ-2007 epicenter (red

star).

In the following, Section 5.2 describes the steps to build up and calibrate a high-fidelity seismic sce-

nario, capable to provide a synthetic wave-field at the regional scale, according to an all-embracing

approach. An accurate source-to-site model of the wave-motion propagation is pursued by (1) assess-

ing a stratified geological model for the Niigata region, (2) checking the topography effect, (3) testing

the effect of the source parameters in a kinematic approach (e.g. the rise time and the shape of the

Source Time Function). A series of 3D source-to-site numerical simulations of the MW4.4 NCOEQ-

2007 aftershock is therefore carried out with this regard (by means of the Spectral Element Method

code, SEM3D). The seismic scenario calibration is aided by the use of the semi-analytical solutions

provided by the Wave-Number Integration Method (WNI) and by comparing the synthetics with the

recordings at several locations (i.e. the KNET-Kik-Net stations nearby and the KKNPP site). The

forward physics-based analysis renders a low-frequency (0.00-3.75 Hz) synthetic wave-field to be

exploited in further studies as a reliable regional incident wave-field for the engineering bedrock. The

latter study has been presented during the 6th International Conference on Computational Methods

in Structural Dynamics and Earthquake Engineering, COMPDYN 2017 (Gatti et al., 2017). Based

on calibrated regional model, the near-field earthquake scenario of the KKNPP site is constructed by

including the local 3D geological structure. Section 5.3 describes the implications due to the inclu-
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sion of a shallow syncline-anticline structure: the spatial variability of the broad-band (0.0-7.0 Hz)

wave-field within KKNPP is addressed and satisfactorily reproduced by the computational model.

Specifically, I focused on the spatially variable amplification of the site-response, clearly due to the

folding structure and not pictured when a classical sub-horizontally layered configuration is consid-

ered instead. Two aftershocks were simulated, so to discount the outcome from the complex effect of

the extended fault mechanism, focusing on the along-path and buried topography effect instead. The

results presented at this point were submitted to the Geophysical Journal International for a journal

publication. An application of the ANN2BB methodology (outlined in Chapter 4) is presented in

Section 5.4, based on the physics-based simulations performed on the MW4.4 aftershock, to improve

the frequency spectrum of the synthetic seismograms.

Finally, a preliminary investigation on the extended fault rupture is presented in Section 5.5. The

NCOEQ-2007 main shock is replicated by means of point-wise double-couples located at each as-

perity identified by wave-form inversion. Those results have however to be largely improved by the

future introduction of a full kinematic description of the fault offset and rupture mechanism.

5.1.1 The tectonic context of the Niigata area

Recent GPS measures performed by the Geographical Survey Institute of Japan revealed that the cen-

tral coastal area of the Japan Sea - technically named NKTZ (Niigata-Kobe Tectonic Zone) - is sub-

jected to large strain rate, due to subduction of the Pacific and Philippine Sea plates. The NKTZ rep-

resents a 500×100 km deformation belt (Figure 5.2). Specifically, the Niigata region is placed within

Figure 5.2: Distribution of principal axes of horizontal strain rates deduced from continuous GPS

observation (February 1996-June 1999). Historical large (MW > 7) shallow (depth < 60 km) earth-

quakes in and around southwest and central Japan are also plotted by blue (before 1900) and red (after

1900) circles. The red broken line and the thick gray line in the inset show the high strain rate zone

(NKTZ). In the inset, plate tectonic setting in the Japan islands and the district names are also shown,

where AM, PA and PH indicates the Amurian, Pacific and the Philippine Sea plate, respectively. The

gray lines indicate the major plate boundaries. The rectangle in the inset shows the southwestern and

central Japan. Reprinted from Hyodo and Hirahara (2003)

a region of compressional deformation that is associated with the boundary between the Amurian

plate and the Okhotsk plate, two relatively small plates that lie between the larger Eurasia and Pacific

plates (Kayen et al., 2009; Sagiya et al., 2000). Historically, large earthquakes occurred in and around
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the NKTZ. Figure 5.2 and Figure 5.3a show the documented earthquakes in the region, such as the

1964 Niigata (MW7.5), 1847 Zenkoji (MW7.4), 1858 Hietsu (MW7.1), 1961 Kita-Mino (MW7.0), 1891

Nobi (MW8.0), and 1995 Kobe (MW7.2) earthquakes. In the northern extension of NKTZ, although

deformation cannot be inferred by land-based GPS, there have been large earthquakes such as 1983

Japan Sea (MW7.7), 1993 Hokkaido Nansei-Oki (MW7.8), and 1940 Shakotan (MW7.5) earthquakes,

implying the existence of an active deformation zone. Sagiya et al. (2000) measured large strain

rates (0.1 ppm/year) and assumed that two strain rate distributions are going on at two different time

scales (2 years and 100 years respectively) but with common features, such as a similar dominant

compressive strain along the NW-SE axe of the NKTZ. The northern part of NKTZ is dominated by

(a) (b)

Figure 5.3: (a) epicentres of past large earthquakes in NTKZ (reprinted from Sagiya et al., 2000);

(b) seismicity in NKTZ Region in the last two decades (reprinted from USGS report, 2007). Yellow,

green, blue and purple beach balls indicate hypocenters related to subducting slab. Orange symbols

represent shallow crustal hypocenters of large earthquakes in Japan and NTKZ area.

a large east-west compression, as the 1964 Niigata earthquake witnessed (thrust mechanism with an

east-west compression strain regime, dominated by the absolute vertical stress Sagiya et al., 2000).

However, the mechanism underlying those strong ground motion earthquakes is not easy to under-

stand. In fact, large earthquakes in the south-western half of NKTZ mainly have strike-slip source

mechanisms, being shear strain rates relatively larger than in surrounding regions. Although the het-

erogeneous structure of the surrounding crustal rocks might explain the sharp contrast in deformation

rate, the geological studies indicated that a thick sedimentary basin was formed by a rift structure

with a normal fault plane system developed during the extension stage of Japan Sea (Sato, 1994;

Nakahigashi et al., 2012). The normal fault system during the rifting stage has been reactivated as

a reverse fault system by a change in the tectonic stress from extension to compression. This stress

change is estimated to have been caused by a change in the dip angle of the sub-ducting Pacific plate

(Nakahigashi et al., 2012). Moreover, several quaternary active faults and folds are placed in this

region, comprising a series of anticline structures and reversal faults.

5.1.2 NCOEQ-2007: Fault mechanisms from wave-form inversion

Coherently with the main compressional strain regime in the region, the NCOEQ-2007 occurred as

the result of a buried reverse-slip (Kayen et al., 2009) faulting. The main shock (MS) occurred in the
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upper crust (although the main fault trace has not been found) with a steeply dipping reverse fault

mechanism under the North-West/South-East (NW/SE) compression (the so called Western Nagaoka

Basin active fault system Yukutake et al. (2008)). In the MS immediate aftermath, a long aftershock

sequence struck the region, lasting for about a month. The largest aftershock’s magnitude was es-

timate as MJMA5.8. The whole scenario was found in accordance with regional tectonic context in

the NKTZ (Nakamura et al., 2009). The fault mechanism was estimated by the distribution of the

polarity for the P-wave first motion by Hi-net (Obara et al., 2005) and by the moment tensor analysis

of F-net data (Okada et al., 2004). The P-axis WNW-ESE direction was consistent with the tectonic

maximum compressive stress direction in and around the Mid-Niigata area (Matsumoto et al., 2007;

Aoi et al., 2008). Yukutake et al. (2008) relocated the hypocenter using the differential arrival times

obtained by both manual picking and wave-form cross-correlation analysis (37.5397N, 138.6091E,

and 7.417 km depth). Moreover, they found that the aftershocks extended for approximately 25 km

in the direction of N38◦E-S38◦W (Figure 5.4). The trend of aftershock epicenter distributions in the

Figure 5.4: (a) Map of the NCOEQ-2007 sequence relocated by Yukutake et al. (2008). XY section

is portrayed, corresponding to nodal plane along-strike direction. (b) XY section: orange circles

represent the main shock and largest aftershock. Red/blue circles refer to earthquakes occurred in the

period between 2004 and the MS.

map view in Figure 5.4 is rather consistent with Plane B, predominantly SE dipping (at ∼ 50◦). The

aftershock depth distribution along the nodal plane cross section in Figure 5.4a is deeper (down to

approximately 20 km) in the NE part (where the largest aftershock occurred), while it is shallower at

the SW part (with an upper limit of approximately 3 km). The ordinary seismic activity before the

main shock (i.e. since the 2004 Niigata earthquake, up to the NCOEQ-2007, illustrated by the light

red colour in Figure 5.4) was deployed along in the 15-20 km large surroundings of the lower limit of

the NCOEQ-2007 aftershock distributions.

The two conjugate fault planes A and B (red and blue plane in Figure 5.5a) were estimated as:

• Plane A (Figure 5.5b): φS=215◦, δ=49◦, λ=80◦ (NW dipping)

• Plane B (Figure 5.5c): φS=49◦, δ=42◦, λ=101◦ (SE dipping)

However, which of the two fault planes was the effective causative one is still a matter of debate. For

this purpose, aftershock spatial distribution poorly steered the choice.
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Figure 5.5: (a) Projection of the NCOEQ-2007 conjugate fault planes. (b-c) Fault models (A and B)

proposed by Aoi et al. (2008). Open circles are aftershock distribution within 24 hours after the main

shock located by manual picking of Hi-net data. (Reprinted from Aoi et al., 2008)

Aoi’s models

For wave-form inversion, the Japanese National Research Institute for Earth Science and Disaster

Resilience (NIED) assumed a rupture starting point at the same epicenter and 8 km depth (Aoi et al.,

2007). They considered a fault plane model of 30 km length by 24 km width to cover the aftershock

distribution corresponding to the first 24 hours after the main shock. Both Plane A and Plane B were

investigated (Figures 5.5b-5.5c). In the multi-time window linear wave-form inversion procedure,

the moment-release distribution was discretized in both space (180 sub-faults, each 2 km × 2 km)

and time (6 smoothed ramp functions with 1.0 sec duration separated by 0.5 sec). Aoi et al. (2008)

integrated NIED’s analyses and they found that Plane A (NW-dipping fault plane) has a total seismic

moment of 1.42E19 Nm (MW6.7) with a large asperity in the south-west deeper part of the rupture

starting point, which is close to the Kashiwazaki-Kariwa Nuclear Power Plant . Plane B (SE-dipping

fault plane) has a total seismic moment of 1.62E19 Nm (MW6.7), with a large asperity in the south-

west shallower part of the rupture starting point, which is also close to the Kashiwazaki-Kariwa

Nuclear Power Plant . In both models, they detected a small asperity near the rupture starting point

and a large asperity approximately 10 km south-westward. The latter has a maximum slip of 2.3 and

2.5 m for Models A and B, respectively. The large asperities fall on to the area with relatively sparse

aftershock distribution. The triggering velocities for the first time windows giving the best wave-form

fits were 2.5 km/s for Plane A and 2.1 km/s for Plane B. As the difference of the residuals between the

observed and synthetic wave-forms for both the models was not significant, Aoi et al. (2008) could

not conclude which fault plane more appropriately explains the observations.
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Cirella’s model

A similar slip-patch was obtained by Cirella et al. (2008). The authors performed a non-linear joint

inversion of strong motion and GPS data, retrieving peak slip velocity, rupture time, rise time and slip

direction for the SE dipping fault plane (Plane B). This slip model is available at the SRCMOD 1, an

online database of finite-fault dynamic rupture models of past earthquakes, developed by Dalguer and

Mai (2011). The inferred rupture model contains two asperities: a small patch near the nucleation and

a larger one located 10-15 km to the south-west. The maximum slip ranges between 2.0 and 2.5 m and

the total seismic moment is 1.6E19 Nm (see Figure 5.6). The inferred rupture history is characterized

by rupture acceleration and directivity effects, which are stable features of the inverted models.
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Figure 5.6: NCOEQ-2007 slip patch proposed by Cirella et al. (2008) for the SE dipping plane (Plane

B)

Shiba’s model

Shiba (2008) inferred a detailed source mechanism for the NCOEQ-2007, from regional strong-

motion records. They assumed a south-east dipping (Plane B - φS=35◦-λ=90◦-δ=35◦) rectangular

fault of 29.4 km long and 16.8 km wide, corresponding to the aftershock distribution relocated through

the data from ocean bottom seismometers (Shinohara et al., 2008). The distribution of the main fault

parameters (e.g., the seismic moment and the rise-time) along the fault plane and their time variation

were estimated by coupling a very fast simulated annealing technique (VFSA) with the empirical

Green’s function method (Irikura, 1991). The Green’s functions were tuned upon the MJMA4.4 (oc-

curred on 16th, July 2007 at 21:08). Strong-motion records of two horizontal components from 18

stations (within 50 km from the center of the main shock fault) were employed by the authors for the

inversion; the characterized source model was tuned to generation broadband strong motions during

the main shock at the Kashiwazaki-Kariwa Nuclear Power Plant stations. Their estimated optimal so-

lution is depicted in Figure 5.7. The author recognized three separated asperity areas on the fault plane

(Figure 5.7), each one corresponding to a separated pulse-like waveform observed at near-source sta-

tions (KKNPP). It is likely that this area also includes the second asperity ASP2, because the distance

between the first and second asperities is so small that the inversion of long-period seismograms can-

not resolve the zone into separate asperities. The rupture accelerates abruptly on the third asperity

which is most distant from the hypocenter, and the local rupture velocity seems to exceed the S-wave

velocity. Shiba (2008) assumed a radial rupture propagation, driven by individual rupture speeds at

1http://equake-rc.info/SRCMOD/
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Figure 5.7: Slip patch for the NCOEQ-2007 main shock, proposed by Shiba (2008)

each asperity. The fault plane was subdivided into 21×12 1.4 km × 1.4 km sub-faults. The charac-

terized source model is moreover featured by the effective stress drop on each the asperity, which is

roughly distributed between 20-25 MPa (see Table 5.2). The original fault mechanism was updated a

few year later (Shiba et al., 2011), by using the empirical Green’s functions based on the aftershock

distributions newly determined by Shinohara et al. (2008). The distribution changes along the strike

direction (modified to 39◦, but set to constant), thus leading to an heterogeneous dip angle and slip

distribution at each sub-fault (the rake angle λ was set to 90◦). Compared to the previous model

(Shiba, 2008), the surface of the asperity and effective stress have been changed only for the ASP1.

The dip angles were set to 40◦ for ASP1 and 30◦ for ASP3, respectively. For ASP2, the rupture area

was divided into smaller rectangular sub-faults, deployed at different depths. On ASP2, the dip angle

varies linearly from 40◦ (northernmost side, close to ASP1) to 30◦ (southernmost side, ASP3).

Hikima & Koketsu model

Another set of source models were proposed by Hikima (2007) and lately integrated by Miyake et al.

(2010). The authors performed four kinds of wave-form analyses for determining the source fault

plane: point source analysis and finite source inversion of teleseismic records and finite source in-

version and empirical Green’s function simulation of strong-motion records. Focal mechanism and

hypocenter depth of the earthquake were estimated from the moment tensor inversion of teleseismic

P-wave motion observed at 34 stations of the International Federation of Digital Seismograph Net-

works (FDSN). They confirmed that the conjugate fault planes in the Centroid Moment Tensor (CMT)

solution were almost equivalent to the two trends identified in the distribution of aftershocks. They

then performed finite source inversions of the previously described teleseismic records to determine

the detailed geometry and depths of the conjugate fault planes. The best fit of synthetic to observed

seismograms was accomplished with strikes/dips of 34◦/36◦ and 214◦/54◦ for the south-east- (Plane

B in Aoi et al. (2008)) and north-west-dipping (Plane A in Aoi et al. (2008)) fault planes, respectively,

though these teleseismic inversions for the two conjugate fault planes resulted in similar wave-form

residuals. They fixed the epicenter of 37.53824N and 138.61744E (Earthquake Research Institute,

University of Tokyo; personal communication), and the hypocenter at a depth of 9 km resulted in the

smallest degree of variance for the two conjugate fault planes. As the hypocenter is located close

to the intersection (see Figure 5.8) of the two trends in the 3D aftershock distribution, they arranged

two fault planes of 32 km in length by 24 km in width such that they intersect along a horizontal line

at the hypocenter depth of 9 km. The authors recognized the intrinsic difficulty in determining the

focal mechanism and the slip distribution, due to the complex velocity structure of the Niigata re-

130



Figure 5.8: (a) Sketch of the conjugated fault planes, intersecting at the hypocenter depth of 9 km

(red star). (b-) Slip distributions estimated via wave-form inversion for the SE-NW dipping planes

respectively. Blue square represent KKNPP site; the epicenters of the main shock MS and MJMA4.4

aftershock (red stars), and the first (blue star) and third (green star) asperities located by joint hypocen-

ter determination are also shown. (Reprinted from Miyake et al., 2010)

gion. Therefore, adaptive 1D layered velocity profiles were built for each station, by inverting ground

motion wave-forms from an MJMA4.4 aftershock with a simple source mechanism (small red stars in

Figure 5.8b,c). Using the resulting velocity structure models, they then obtained the slip distribution

shown in Figure 5.8b- 5.8c for the south-east-dipping planes and north-west-dipping planes, respec-

tively, from the source inversions of velocity seismograms filtered with a frequency band of 0.03 to

0.5 Hz. The main rupture propagates south-westward along strike with a speed of around 2.6 km/s;

however, the inversions performed with the two conjugate planes yielded almost identical wave-form

residuals, meaning that inability to determine which plane was the source fault of the NCO earthquake

(with seismic moments equal to 1.2E19 Nm and 1.4E19 Nm for the south-east and north-west-dipping

planes respectively, corresponding to MW6.7). In the foregoing, Miyake et al. (2010) used the empir-

ical Green’s function method (proposed by Irikura, 1991) to simulate broadband ground motions at

KKNPP, where dominant frequencies were generally higher than the upper limit of the frequency band

used in their inversion. They estimated the size and stress drop of the three asperities located close to

the zones of large slip. The simulated seismograms on the two conjugate planes again show similar

performance in comparison with the observed ground accelerations, velocities, and displacements at

the KKNPP and other strong motion stations. The overall wave-form analyses previously described

proposed that both the fault planes are possible. However, Miyake et al. (2010) finally endorsed the

assumption of SE dipping plane as the causative of NCO earthquake due to the additional support pro-

vided by (1) the relocation of rupture starting points of asperities using strong-motion pulses, (2) the

aftershock observation by ocean-bottom seismometers (OBSs) (Shinohara et al., 2008), and (3) the

reflection surveys in the source region. Especially, Shinohara et al. (2008) deployed 32 OBSs in and

around the earthquake source region from 25 July to 28 August 2007 to obtain an accurate aftershock

distribution. They picked P- and S-waves arrivals and then the aftershock hypocenters were precisely

determined using the arrival times with the double-difference method (Waldhauser and Ellsworth,

2000). The obtained seismic profile clearly shows a plane south-east-dipping to a depth of around

13 km. Finally, Miyake et al. (2010) fixed the rupture starting point in the surrounding of the first

asperity at a depth of 9±1 km, along with the rupture starting point of the first asperity shown as the

blue stars in Figure 5.8 located on both of the two conjugate planes, close to their line of intersection.

The rupture starting point of the third asperity at a depth of 7.5 km with an error of within 1 km in

depth was located at the position of the green stars to the west of the KKNPP in Figure 5.8. Because
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there is no zone of large slip around the green star in Figure 5.8c, the third asperity should be located

on the south-east-dipping plane as shown in Figure 5.8b. Seven seismograms observed at the KKNPP

were aligned upon the initial P-wave arrivals matching the calculated travel times. This finding indi-

cates that the first asperity, corresponding to the first pulse, is located in a zone of large slip close to

the hypocenters shown in Figure 5.8. In contrast to pulse 1, pulse 3 arrived at the seven reactors at

similar times. This finding implies that the third asperity is independently related to small zones of

large slip in the southern parts of the slip distributions, as the reactors are located at approximately

equal distances from each of the zones.

Further slip models from wave-form inversion

Nakamura et al. (2009) confirmed the presence of the two fault plane which form a cross-sectional

V pattern. They analyzed the kinematic source process for the two fault planes consistent with the

aftershock distribution using teleseismic body wave-form data. Their results indicate that the main

shock initiated rupture on both faults north-east of their intersection and that the rupture propagated

unilaterally south-westward along the south-east-dipping fault. The seismic moments of north-west-

and south-east-dipping faults are 8E17 Nm (MW5.9) and 7.5E18 Nm (MW 6.5) (see Figure 5.9a).

The authors argued that the main shock is composed by those two sub-events which together add up

to a total of 8.3E18 Nm (MW6.6). This value is however slightly different from Aoi’s estimation.

Nakamura et al. (2009) estimated a strike, dip and rake angles of 40.1, 36.8, 89.8◦ respectively, for

SE-dipping fault plane (slightly different from values retrieved by Aoi et al. (2008)). The forward

(a) (b)

Figure 5.9: Slip distributions proposed by Nakamura et al. (2009) (Reprinted). Nozu slip proposed

for SE-dipping fault plane. The frequency range is 0.2-1.0 Hz. Reprinted from Nozu (2008).

modelling of geodetic displacement from the obtained fault model was found consistent with the GPS

and InSAR measurements.

Nozu (2008) performed an inversion analysis based on the SE-dipping plane. Aftershock records

were used as empirical Green’s functions to avoid uncertainty in subsurface structure in and around

the source region for the calculation of Green’s functions. To ensure that the path and the site effects

are shared between ground motions from the main shock and those from the aftershocks, the main

shock fault plane was divided into three domains, each of which was allocated to one of the after-

shocks used. Aftershocks were considered as the system response to unit pulses. Based on the results

of the inversion, a major distinctive asperity was identified approximately 20 km southwest of the

hypocenter, near Kashiwazaki City. A minor, rather obscure asperity was recognizable between the

hypocenter and the major asperity (Figure 5.9b). The total estimated seismic moment is 3E19 Nm.

Nozu proposed strike, dip and rake to be 40◦, 36◦, 90◦, respectively.
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Figure 5.10: Map of the KKNPP site (courtesy of TEPCO, 2007). The three coloured squares indicate

the three recording stations which entirely recorded the NCOEQ-2007 main shock. The devices were

oriented with the respect to plant North (NS-KKNPP), which differs from the real geodetic North of

an angle θ= 18◦ 54
′

51
′′
. Moreover, some of them suffered of an azimuthal deviation, whose value

was provided by TEPCO (2007).

Plane B proposed by Aoi et al. (2008) and the SE dipping model by Miyake et al. (2010) differ

in hypocental locations (only about 1 km apart) even though due to differences in strike and dip,

the discrepancy between the two fault planes is greater. Both models are analysed using available

near-field strong ground motion. The only significant difference is that Hikima and Koketsu used

the nearest station data at the Kashiwazaki-Kariwa nuclear power plant, while Aoi et al. (2008) did

not. Moreover, Aoi et al. (2008) introduced the moving source effect when calculating their Green’s

functions semi-theoretically (Aochi et al., 2013a). Aochi et al. (2013a) performed 1D finite difference

analysis on the data provided by Aoi et al. (2008) and Miyake et al. (2010). They compared the results

at several stations belonging to the Japanese Strong-Motion Network KiK-Net-K-NET. They found

that at station NIG016, the synthetic motion from Hikima & Koketsu reproduces the characteristic

wave-forms, especially for the vertical component, with time shift of a few seconds. Such a time

shift is common in inversions, as the location of the hypocenter and the origin time are not always the

same.

5.1.3 Reconnaissance of the earhtquake ground motion spatial variability at

KKNPP

The KKNPP site consists of seven Units, grouped into two blocks: (1) Units 1-4, built in the south-

west part of the site and (2) Units 5-7 placed approximately 1.5 km away, in the north-east corner.

Figure 5.10 shows a sketch of the plant, highlighting the recording devices downhole and at surface.

Devices 1G1 (green) and 5G1 (orange) both belong to the most recent (2004) recording network,

and they are placed at the surface (G.L. 0 m), respectively close by Unit 1 and Unit 5-7. On the

other hand, four devices (SG1-SG4) are deployed along the vertical array KSH (blue) located at the

KKNPP Service Hall, up to a depth of 250 m; other five devices are deployed downhole close by Unit

5 (KK5, red), till 312 m of depth; four devices are finally located in the surroundings of Unit 1 (KK1,

magenta) with devices G07-G10 reaching 255 m of depth. The three vertical arrays KSH, KK5 and

KK1 belong to the oldest recording network, where surface devices 1G1 (Unit 1) and 5G1 (Unit 5) are

deployed at surface. It is worth noting that just one (KSH) out of three vertical array entirely recorded

the main shock, along with 1G1 and 5G1.

According to Watanabe et al. (2009), the strong motion records at Unit 1 were significantly larger

than those in the surrounding of Unit 5. Many authors (e.g. Uetake et al., 2008; Miyake et al., 2010;
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Figure 5.11: Comparison between velocity signal (black traces) and extracted pulses (red traces),

according to Baker (2007), for devices SG1 (G.L.-2.4 m, (a)), SG4 (G.L.-250 m, (b)) in the KSH

vertical array (Service Hall) and for 1G1 (G.L. 0 m, (c)) and 5G1 (G.L. 0 m, (d)). The in plane

azimuthal angle θ at which those pulses were extracted is indicated above the velocigrams.

Tsuda et al., 2011) stressed the impulsive nature of the recorded time-histories. Large velocity pulses

are usually observed nearby the fault rupture and coupled with their corresponding large peak dis-

placement, they considerably enhance the structural damage potential (Cox and Ashford, 2002). In

the NCOEQ-2007 case, Uetake et al. (2008) first noticed the three significant pulses at KSH array,

associating them to the three major asperities identified (via wave-form inversion) on the fault plane.

As a matter of fact, velocity pulses may be effectively extracted from the time-histories at KSH, 1G1

and 5G1 (i.e. the only devices which entirely recorded the main shock), by employing the ranking

criterion proposed by Baker (2007) (excluding late arrivals and small events). Figure 5.11 shows an

example of the mentioned pulse-like nature of the velocigrams recorded. The average pulse period

ranges around 2.5 s for SG1, SG4 and 5G1, whereas 1G1 identifies with a shorter period pulse (1.5

s). Remarkable differences (in terms of amplitude, period and phase) are evident at a first glance,

seemingly indicating an incoherency of the ground motion all around the nuclear facility zone. The

observed site response at the surface is definitely more intense at the Service Hall and at Unit 1. It

is worth noting that the velocity pulses were identified and extracted at different azimuthal directions

(with the respect to the real North) for SG1 (KSH, surface) SG4 (KSH, depth), 1G1 (Unit 1, surface)

and 5G1 (Unit 5, surface) respectively, the polarization of the impulsive incident wave-field spatially

varies at the site scale, along its travelling path towards the surface. Another interesting aspect resides

in the fact that later pulses may be identified at each location, whose nature has been correlated to the

progressive fault rupture of the three asperities (Uetake et al., 2008; Miyake et al., 2010). Tsuda et al.

(2011) observed that the first two pulses were rather comparable in terms of maximum amplitude,

whereas the third one allegedly comes from the third asperity (ASP3, green rectangle in Figure 5.1)

are different for two sites: the peak ground velocity on the south side of the KKNPP (KK1) is much

larger than that on the north side (KK5) (Tsuda et al., 2011). The exceptional ground motion spatial

variability is event more clear when one computes the Anderson’s Criteria (Anderson, 2004) for the

three station recordings (see Figure 5.12). The difference is remarkably high between SG1 (located

at the Service Hall of the KKNPP site) and 1G1-5G1, which are placed nearby the coast of the Japan

Sea, 1 km far away from the Service Hall.
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Figure 5.12: Anderson’s criteria for the recordings within the KKNPP site (SG1, 1G1, 5G1, see

Figure 5.10).

Table 5.1: Summary of physics-based earthquake ground shaking scenarios of the NCOEQ-2007,

targeting the KKNPP. FDM = Finite difference Method; FEM = Finite Element Method; SEM =

Spectral Element Method. Fold = Tokumitsu et al. (2009); JNES-2005 = internal report; ERI =

Shinohara et al. (2008); Kato et al. (2008, 2009); JNES-2008 = JNES (2008); NIED = Fujiwara et al.

(2009); GSJ = Sekiguchi et al. (2009);

Reference Dimension Geology Method Model Size [km] fmax [Hz] min (VS) [m/s]
Watanabe et al. (2009) 2D Fold FEM 7.6 × 4.8 5.0 700

Kawabe and Kamae (2010) 3D JNES-2005 ? ? 1.6 700

Ducellier and Aochi (2010) 3D ERI FDM 110 × 120 × 30 0.866 866

Tsuda et al. (2011) 3D JNES-2008 + Fold FDM 50 × 50 × 20 4.0 700

Aochi et al. (2013b) 3D ERI/NIED/GSJ FDM 110 × 120 × 30 0.5 866/350/400

Quinay et al. (2013) 3D NIED FEM 110 × 120 × 30 1.0 866/350/400

Aochi and Yoshimi (2016) 3D GSJ FDM 110 × 120 × 30 1.0 400

5.1.4 Influence of the geological structure in the Niigata region

The subsurface geological structure underlying the Niigata region has been proven to be rather in-

tricate. Several 1D and 3D models of the velocity structure have been proposed in the past, based

on geological and geophysical explorations (see, for instance, Shinohara et al., 2008). The latter set

of geological configurations have been tested and tuned by several authors, by exploiting the long

aftershock sequence occurred in the main shock aftermath and then exploited to simulate the main

shock itself. Table 5.1 resumes the ensemble of physics-based analyses performed on the KKNPP

site, during the NCOEQ-2007. Kawabe and Kamae (2010) simulated the wave propagation in a 3D

structure model provided by the Japan Nuclear Energy Safety Organization (JNES, internal report,

2005) in a frequency range 0.05-1.6 Hz. Aochi et al. (2013a) and successively Aochi and Yoshimi

(2016) performed a complete FDM analysis of the NCOEQ-2007 scenario, comparing three regional

velocity models: (1) the model proposed by the Earthquake Research Institute (ERI, University of

Tokyo) obtained by P- and S-wave travel time double-difference tomography on the data provided

by Shinohara et al. (2008); Kato et al. (2008, 2009), with a grid resolution of 3 km × 5 km × 3 km

(vertical) and with a minimum shear-wave velocity VS of 866 m/s; (2) the model proposed by the Na-

tional Research Institute for Earth Science and Disaster Resilience (NIED), taken from Fujiwara et al.

(2009) from the seismic reflection results and observed H/V spectra (available on the Japan Seismic

Hazard Information Station (J-SHIS)2, with a 1 km × 1 km resolution and minimum VS equal to 350

2source: http://www.j-shis.bosai.go.jp
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Figure 5.13: (a) Summary of the proposed regional 1D velocity structures (VP and VS) for the Niigata

region. (b) Sketch of the folded structure lying beneath KKNPP.

m/s; (3) the model proposed by the Geophysical Survey of Japan (GSJ) and found in Sekiguchi et al.

(2009), which is an improvement of the NIED velocity structure for the Niigata area (the resolution

is 0.5 km × 0.5 km), carefully tuned upon the regional variation of material parameters (VSmin=400

m/s). The authors concluded that the ERI model was less preferable than the other two in order to re-

produce the regional wave field, mainly due to the poor resolution of the shallow deposits and despite

the low frequency range of the analyses. Moreover, they argue the use of the JNES model (Kawabe

and Kamae, 2010) for the regional-wise purposes, being however more precise around KKNPP. The

crust material, topography, and sub-surface data provided by the J-SHIS were used by Quinay et al.

(2013) to carry out a complete 3D analysis up to 1.0 Hz, studying the effect of the synthetic wave

field on the structural behaviour of one of KKNPP reactor building. Aochi and Yoshimi (2016) im-

proved the previous results by Aochi et al. (2013b) by enlarging the frequency band up to 1.0 Hz and

employing the GSJ model, although their study targeted mostly the effect of different seismic source

models and numerical implementation.

As a matter of fact, the lowest shear velocities considered in all the mentioned studies varies from 350

m/s to 866 m/s. As a general remark, the velocity models described previously were estimated for

low-frequency analyses (i.e. wave-form inversions of the source mechanism), and eventually they are

all based on the interpretation of several 1D/2D models, which Aochi et al. (2013a) proved to perform

fairly well in reproducing the complex wave-field radiated, although phase shifts must be taken into

account, due to modified travel times. Figure 5.13a shows some of the mentioned layered velocity

structures available for the Niigata region. D&A2010-1 and D&A2010-2 were proposed by Ducel-

lier and Aochi (2010), in their numerical physics-based simulations performed for the NCOEQ-2007

main shock. With the same purposes, Aochi et al. (2013a) provided a simplified 1D profile, tagged as

Aochi2013. Cire.2008 velocity values were employed by Cirella et al. (2008) to perform a wave-form

inversion of the NCOEQ-2007 source mechanism, whereas Shino.2008 was obtained by exploiting

the data of the seismic survey conducted by Shinohara et al. (2008) and used to relocate the aftershock

sequence. Finally, profile indicated as NIG004, NIG016, NIG026 and NIGH12 refer to the namesake

K-NET and Kik-Net stations (the NIED strong ground motion networks, covering the Japan territory)

and they were estimated by K. Koketsu3.

3source: http://taro.eri.u-tokyo.ac.jp/saigai/chuetsuoki/source/index.html
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Despite the good approximation of the regional incident wave motion obtained with simplified 1D

and 3D geological configurations in the surroundings of the epicentral area, there is consensus among

many researchers (Uetake et al., 2008; Tokumitsu et al., 2009; Watanabe et al., 2009; Hijikata et al.,

2010) that none of them is suitable to picture the spatial variability of the ground motion observed at

KKNPP. With this regard, Uetake et al. (2008) and Tokumitsu et al. (2009) related this aspect to the

presence of a folded structure underneath KKNPP (characterized via boring and seismic reflection

surveys, Kobayashi et al. (1995)) and composed by the Madonosaka syncline, interposed between

the Ushirodani and Chuo-Yutai anticlines (Gürpinar et al., 2017). The folding cross-section extends

for approximately 7 km across the Japanese coastline, up to 2.5 km down depth and with its hinge

axes (i.e. the directrixes) strike at N55◦E, as shown in Figure 5.13b. The geographical distribution of

this peculiar sediment conformation shears through the nuclear facility, with the Ushirodani anticline

and Madonosaka syncline placed below KK5 and KK1 respectively. The Chuo-Yatai anticline is

indicated as well, which seemingly passes in the Service Hall surroundings (array KSH). A detailed

description of the seven strata defining the folding is provided in Section 5.3.1. Watanabe et al.

(2009) constructed a 2D FEM model of the syncline-anticline conformation, from boring and seismic

reflection survey. Simulation results show good agreement with the observed strong motion records

at Unit 1. Tsuda et al. (2011) constructed a 3D model by taking into consideration seven 2D sections

across the folding area, and interpolating them. The joined up the folding model with the regional one

(the 3D velocity model built by the Japan Nuclear Energy Safety Organization (JNES), which covers

broad area including Chuetsu area (JNES, 2008).

5.1.5 Post-event seismic Safety Evaluation at KKNPP

The Tokyo Electric Power Company (TEPCO) and the Japanese Nuclear and Industrial Safety Agency

(NISA) performed further studies on the seismic safety and vulnerability of the KKNPP site, after the

2007 Niigata-Ken Chūetsu-Oki . Two sets of active faults were judged to be potentially dangerous for

the nuclear power plant: one set of inland faults and one set on the ocean side (fault traces are shown

in the map in Figure 5.14). The most influential fault segment on the power plant seismic safety

were judged to be the F-B fault (approximately 36 km long, located in the sea area) and the Nagaoka

Plain Western Boundary fault zone (approximately 91 km in length, in land area). At the continental

shelf slope of the Sado basin east edge located the north of the area where the activity of F-B fault

(Figure 5.14), the sedimentary layers, normal continental slopes, are growing, but neither the active

faults nor active foldings are observed. NISA experts suggest that the northern extension part of F-B

fault is further extended to the northern Sado basin east edge. The results of the off-shore ultrasonic

survey conducted by NISA showed no deformation in the geologic stratum of late Pleistocene and

no activity observed. On the other side, results of the underground exploration revealed that the

activity of Kakuta-Yahiko fault contributes to the formation of continental shelf slope in the northern

F-B fault. It appears that the Kakuta-Yahiko fault dipping to the west raises the continental shelf

slope, the continental shelf, and then Yahiko-yama, contributing to the formation of the asymmetric

fold structure (Figure 5.15). The record of the underground exploration shows that there are no fault

observed at the east edge of Sado Basin. Moreover, source modelling encompassing Kakuta-Yahiko

fault enabled NISA researchers to account for the uplift in the terrace surface. The evaluation of the

Nagaoka plain western boundary fault zone by NISA led to define the two following cases should be

considered for each of Kakuda-Yahiko, Kihinomiya and Katakai faults, since each fault has a different

principal seismicity period, average displacement rate, etc.:

• the case where each fault independently becomes seismically active;

• the case where the section of approx. 91 km formed by grouping three faults simultaneously

becomes seismically active in consideration of an uncertainty in the evaluation of the seismic
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Figure 5.14: Active faults in the Niigata area, to be considered in seismic design of the Kashiwazaki-

Kariwa Nuclear Power Station. Reprinted from NISA, personal communication. F-B was judged

critical for KKNPP seismic safety.

Figure 5.15: Results from TEPCO that independently re-processed and analyzed the data generated

by the Japan Petroleum Development Corporation (Present: Japan Oil, Oil Gas and Metal National

Corporation) using the refraction seismic survey.

motion.

The event probability of an earthquake of the scale exceeding the standard seismic motion Ss is on

average to the extent of once every ten thousand years to a hundred thousand years. NISA confirmed

the adequacy of the standard seismic motion formulated by TEPCO and reports to Nuclear Safety

Commission. The Special Committee for Seismic Safety Evaluation of Nuclear Safety Commission

provided the following instructions:

• A seismic motion for confirmation based on the source model under the following ideas re-

flecting the 2007 NCO earthquake should be formulated independently of the standard seismic

motion Ss to confirm the adequacy of standard seismic motion Ss.
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(a) (b)

Figure 5.16: (a) FB fault that originated the NCO earthquake. (b) new fault model proposed by

TEPCO to fulfill the recommendations proposed by the Nuclear Safety Commission. A fourth asper-

ity was added, compared to original model proposed by several authors for NCO earthquake model

(see e.g. Aoi et al. (2008); Shiba (2008).

• When modelling the F-B fault, the macroscopic and microscopic source parameters should be

established based on strong motion prediction recipes of Headquarters for Earthquake Reseach

Promotion (2008), with the exception that the number and position of asperity and the stress

drop should be established by utilizing maximally the data obtained from the NCO earthquake.

Furthermore, the fracture initiating point should be established in consideration of the impact

on the premises of the plant, plant because of its uncertainty.

In response to above, TEPCO formulated a seismic motion for confirmation in accordance with the

instructions of Nuclear Safety Commission. The size of this seismic motion for confirmation is to

the same extent as the standard seismic motion Ss formulated by TEPCO but a fourth asperity was

added with the respect to original models proposed for NCO by several authors (see e.g. Aoi’s models

and Hikima & Koketsu model, described in previous section), and the fracture initiating point of the

fourth asperity was set so that the fracture would move to premises of the plant for the evaluation of

safety.

5.2 Physics-based simulation of the regional wave-field

Following the logic proposed by Boore (2003), the seismological model of the Niigata-Ken Chūetsu-

Oki is herein built-up by tuning each feature (source, path, site-effect) stand-alone so to progressively

enrich the original skeleton model. At any step, a back-verification check is done, so not to spoil the

model by progressively dropping simplified assumptions, but to refine it instead.

Another crucial distinction made herein to ease the understanding and modelling of a large broad-

band seismic scenario concerns the origin of the synthetic frequency content. Most of the slip distri-

bution estimations available in the literature are derived from longer period ground motions (strong

earthquake ground motion time-histories, teleseismic velocity seismograms, GPS and InSar measure-

ments) and therefore valid within a frequency range ≈ 0.05-0.50/1.00 Hz. In this long period range,
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earthquake ground motion is predominantly deterministic and wave-forms can be usually modelled

using simple descriptions of the source and crustal structure. The mentioned WNI method (proposed

and numerically implemented by Hisada, 1994, 1995, see Chapter 3) is naturally appropriate to this

end, since it couples the need of a relative small amount of parameters with a reduced computational

cost to simulate the complete 3D wave propagation field radiated from an extended kinematic seis-

mic source in a layered half-space. Typically, WNI method deterministic analyses are reliable in

a 0.05-2.00 Hz frequency band. However, several authors (e.g. Kamae et al., 1998; Hartzell et al.,

1996; Somerville et al., 1999) agreed on the fact that despite their modest accuracy, long-period de-

terministic models are relevant for the simulation of artificial high-frequency signals, since the main

uncertainty, both for short- and long-period wave-forms, resides into the methods to characterize the

source mechanism (Somerville et al., 1999). For instance, slip models of shallow crustal earthquakes

(as the NCOEQ-2007) are characterized by strong spatial variation in slip on the fault surface, in-

cluding the asperities (Somerville et al., 1999). However, while travelling towards the surface, the

wave-field gets enriched at high-frequencies (i.e. 2.0-15.0 Hz) when encountering finer deposits in

the shallow part of the Earth’s crust and topographical surface (Somerville et al., 1999). This spectral

component is predominantly stochastic and it is extremely interesting for structural analysis. There-

fore, the numerical model of the NCOEQ-2007 scenario was designed to propagate seismic energy

up to 3.75 Hz. SEM3D (see Chapter 3) was employed due to its higher accuracy in solving wave-

propagation problems and due its easy and scalable extension to parallel implementation (Göddeke

et al., 2014). Moreover, the SEM has been successfully used to simulate 3D seismic wave propagation

in complex geological media (and topographical surface) at regional scale with increasing resolution

(e.g. Paolucci et al., 2014; Maufroy et al., 2015; De Martin, 2011). However, despite the efficiency

of the numerical tool used in this study, the calibration of huge 3D large-scale seismic scenarios was

conducted with the aid of a less cumbersome yet simplified semi-analytical/numerical tool (i.e. WNI

method). In this way, the initial gross epistemic uncertainty is rapidly trimmed and more refined nu-

merical tools (i.e. SEM3D) are then employed to refine the earthquake scenario.

In particular, this section stresses the methodological approach adopted to construct and calibrate it.

The uncertainty quantification mainly targeted the choice of the crustal geology and the topography/-

bathymetry effect.

The plan of the performed numerical exercise can be unravelled into the following points:

• to test the influence of different regional geology profiles onto final wave-forms at some location

in the surrounding of the NCOEQ-2007 epicentre. Several 1D geological profiles have been

tested, either as discontinuous layered geology, or by smoothing it up with a piece-wise linear

approximation;

• to perform a sensitivity analysis upon the seismic source time functions (STF), featuring the

kinematic description of a point-wise double couple seismic source;

• to test the effect of the topography on the synthetic wave-forms;

• to simulate a broad-band (depending on the source radiated frequency content) synthetic inci-

dent wave-field at the engineering bedrock issued from 3D forward physics-based numerical

simulation

Two numerical tools were employed in this work: (1) the 1D semi-analytical solution provided by

the WNI and (2) the SEM3D (Faccioli et al., 1997; Komatitsch and Vilotte, 1998), developed within

the framework of the SINAPS@ project (as a collaboration between CentraleSupélec, the Commis-

sariat à l’énergie atomique et aux énergies alternatives (CEA) and Institut de Physique du Globe de

Paris). The former is alternatively employed to find the most adequate geological profile (by running

a simulation over a MJMA4.4 aftershock, denoted by AS from now on) and the most adequate slip
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distribution (by running a simulation of the NCOEQ-2007 main shock (MS) featured by the previ-

ously chosen geological model). The fairly good comparison between WNI method and the results

and recordings is valid between 0.05-0.50 Hz. At this point, SEM3D was adopted to simulate the 3D

wave propagation over a broader frequency range (up to ∼ 3.75 Hz). In particular, SEM3D was used

for manifold purposes, i.e. to test different STFs for a point-wise double couple approximation of the

AS earthquake, to test the topography effect on the synthetic wave-forms.

5.2.1 Preliminary Choice of a Suitable 1D Geological Profile

With respect to the Niigata-Ken Chūetsu-Oki earthquake, several different stratified geologies (vary-

ing station by station) have been calibrated from the aftershocks recordings (Shinohara et al., 2008;

Cirella et al., 2008; Aochi et al., 2013b; Miyake et al., 2010). Those 1D profiles are generally ob-

tained by wave-form inversion procedures, performed on narrow time windows (∼ rupture duration)

centered on the main phase of S-wave and reaching a maximum frequency of 1.0 Hz. Therefore, in

an early stage of the seismic scenario calibration, they are employed to provide a reasonable synthetic

wave-field at the regional engineering bedrock, supposed underlying the shallow folded sedimentary

strata. At this point, it is important to remark that the resolution of those geological profiles is ap-

proximately 0.5 km. The large scale model may be equipped with complex 3D geological model

(e.g. Kato et al., 2008, 2009; Sekiguchi et al., 2009) in a second instance (Watanabe et al., 2009;

Tsuda et al., 2011; Ducellier and Aochi, 2010; Aochi et al., 2013a; Shinohara et al., 2008; Hikima

and Koketsu, 2005; Hikima, 2007; Cirella et al., 2008). In this task, some of the mentioned approx-

imated geological profiles were tested. The latter refers to the Niigata region around KKNPP and

they are portrayed in Figure 5.13a. The epistemic uncertainty on the geological profile was solved by

running a parametric analysis WNI method. The MJMA4.4 aftershock of July 16, 21.08h, was con-

sidered, which nucleated near-by one of the three major fault asperities at a depth of 11 km (Tsuda

et al., 2011) by detecting the polarity for the P-wave first motion (performed by the Hi-net Obara

et al., 2005) and by considering the Centroid Moment Tensor analysis provided by F-net data (Okada

et al., 2004). The Kik-Net and KNET recording stations were employed at this point, along with the

recorded time-histories at the KKNPP (device KSH-SG4, placed at G.L.-250m at the Service Hall

of the nuclear site). The parametric analysis lead to the choice of the soil profile Aochi2013 in Fig-

ure 5.13a and proposed by Aochi et al. (2013b) (although a satisfactory match has been obtained for

other soil profiles). Figure 5.17 show a fairly good comparison obtained at several stations in the

surroundings of the Kashiwazaki-Kariwa Nuclear Power Plant . A Brune’s source model was adopted

(see the discussion in Section 5.2.4), with frequency corner fC= 1 Hz, coherently with the measured

magnitude (Geller, 1976). One single unitary sub-fault was considered herein to simulate the small

MJMA4.4 aftershock. In accordance with Aochi et al. (2013b), the recordings and the synthetics were

band-pass filtered between 0.1-0.5 Hz and aligned at the time-step corresponding to the 1% of the

respective Arias intensity. Aochi et al. (2013b) introduced a sequence of softer layers (Figure 5.13a)

at shallow depths, with the respect to the crustal models estimated the the KNET/Kik-Net stations

(NIG004, NIG016, NIG026, NIGH12). Similar results were however obtained for the crustal models

tagged as Cire.2008 and Shin.2008. Despite the local alignment, some phase shift among the sim-

ulations and the recordings is still visible for NIG004 and NIGH12, whereas in the near field (cf.,

NIG018, NIG016) the fit is quite good (probably due to the simple propagation path Aochi et al.,

2013b). Finally, from Figure 5.17, it appears that the simulations performed at KKNPP site are sat-

isfactory only along the NS direction, whereas synthetics are de-amplified along the EW direction.

This might be a effect of the shallow local geology of the Niigata basin. With that being said, it is well

known that the choice of a 1D velocity structure tends to accentuate the ground motion directionality.
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(a)

Figure 5.17: Simulations performed by WNI method of the NCOEQ-2007 MJMA4.4 aftershock of

July 16, 21.08h. Blue wave-forms represent the recorded velocigrams, red wave-forms the synthetic

ones. Both records and synthetics were base-line corrected and band-passed filtered between 0.1 and

0.5 Hz. Synthetic wave-forms were obtained by considering the soil profile Aochi2013 (Figure 5.13a).

Velocigrams (in cm/s) are herein magnified by a factor 1000 and aligned with respect at the 1% of

their Arias intensity.

5.2.2 Test 1D Geological Profile in 3D Large Scale Simulations

The chosen 1D geological model (depicted in Figure 5.18b) was implemented in 3D large scale SEM

numerical model (see the sketch in Figure 5.18a). No topography was introduced at first, so to com-

pare the synthetics with WNI results. 5 Gauss-Lobatto-Legendre (GLL) integration nodes were cho-

sen to grant the minimum wave-length (≈ 500m) a satisfactory discretization (i.e. to reach a frequency

upper bound of ≈ 2 Hz (De Martin, 2011)). The total number of degrees of freedom of the considered

mesh is therefore ≈ 1.9·108. The SEM3D software was used to solve the wave propagation problem

so to verify it with the WNI semi-analytical model tuned in the earlier stages of the parametric anal-

ysis (and described in Section 5.2.1).

In the Spectral Element Method formulation, material properties are assigned to each GLL point.

Therefore, two strategies were investigated to feature the numerical model with the varying material

properties, namely (1) a direct meshing approach that adapts the computational grid to the layer-

to-layer interface, so to coherently reproduce the abrupt impedance contrast along it and (2) a not

honouring approach that associate to the whole independently-meshed domain a space-varying het-

erogeneous material map (in this case, transverse isotropic in the horizontal plane). In this standard
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(a)

7

(b)

z [m] QP [1] QS [1]
0.0 200.0 100.0

0.5 228.7 100.0

1.0 257.1 100.0

1.5 293.3 100.0

2.0 309.1 100.0

3.0 325.9 100.0

4.0 368.2 100.0

5.0 403.2 100.0

6.0 430.9 100.0

7.0 455.8 100.0

8.0 476.4 100.0

9.0 500.2 100.0

10.0 537.5 100.0

14.0 588.7 250.0

(c)

Figure 5.18: (a) Sketch of the SEM3D computational domain used designed to simulate a layered

half space (without topography). (b) Geology model proposed by Aochi et al. (2013b) for the Niigata

area. Blue and red profile refers to VS and VP values (in km/s). The red star indicate the depth of

the AS hypocenter. The quality factor profile was proposed by Aochi et al. (2013a) and reported in

Table 5.18c

test case (i.e. a flat and bounded layered half-space) the second strategy does not seem particularly

appealing since the material interfaces are planar and horizontal and a structured mesh was adopted.

Although no computational gain is achieved by using one or the other approach at this early stage,

the verification test was performed in view of implementing the not honouring approach in the non-

structured mesh domain portrayed in Figure 5.20, extruded at depth from the local Digital Elevation

Model.

The numerical back-verification of the model upgrade (WNI→SEM3D) was satisfactory. For in-

stance, Figure 5.19 shows a synoptic comparison between synthetic wave-forms filtered between 0.1

and 1.0 Hz.
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Figure 5.19: Numerical verification of SEM3D code, against the semi-analytical solution obtained

via WNI method. Synthetic acceleration wave-forms obtained at (a) the KKNPP site (KSH-SG4,

G.L.-250 m, focal distance 15.1 km) and at (b) the KNET station NIG018 (focal distance of 20.1

km) are portrayed. A good match is achieved between the WNI method (WNI, red line) and SEM3D

numerical model equipped either with a layered geology (LAY, blue line) or with a not honouring

approach (GRD, green line)
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5.2.3 Effect of the topographical surface

A further step of the numerical exercise consisted into adding the topographical surface (TOPO) to

the previously calibrated flat model (FLAT). Figure 5.20 shows the employed computational grid.

The latter was routinely generated on parallel architecture, by exploiting 27-tree data structures (Ca-

Figure 5.20: Sketch of the numerical model designed for the NCOEQ-2007 scenario. The mesh has

been.

mata and Coutinho, 2013, see Section 3.2). A 90 km × 83 km × 82 km region in the surrounding of

the KKNPP was meshed with 8-nodes tetrahedrons, by extruding the local Digital Elevation Model

(DEM), obtained from the SRTM database 4. The mesh was coarsened along depth (below 15 km of

depth). The progressive top-to-down refinement level allowed to enlarge the frequency band propa-

gated by the model. 15 Gauss-Lobatto-Legendre (GLL) integration nodes were chosen to propagate

a seismic wave-field up to ≈ 3.75 Hz (considering, as reference, a third-order polynomial interpola-

tion, Paolucci et al., 2015). The shear-wave velocity profile (Aochi2013 model) was implemented

via a not honouring approach (Figure 5.18b). Constant Q factors of 200 and 100 were chosen for the

damping mechanism. The Sea of Japan is not taken into account: a flat solid surface was considered

instead. Figure 5.21 shows the comparison between the accelerograms obtained at the ground level at

KKNPP site, for the FLAT (red line) and TOPO (blue line) model. The wave-forms were band-pass

filtered between 0.05 and 3.75 Hz. Early wave arrivals at higher frequencies are observed when the

topographical surface is included in the model, although it does not seem to consistently affect the

radiated wave-field. This aspect might be due to the fact that the Japan sea was disregarded. Finally,

Figure 5.22 shows the synthetic velocigrams generated by SEM3D physics-based simulation at dif-

ferent locations nearby the Kashiwazaki-Kariwa Nuclear Power Plant . The synthetics wave-forms

were band-pass filtered between 0.05 and 3.75 Hz. The typical velocity pulses are visible in the near

4source: http://dds.cr.usgs.gov/srtm/version2 1
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Figure 5.21: Numerical verification of SEM3D code: effect of the topographical surface. Synthetic

wave-forms obtained at KKNPP (at surface) are portrayed: (a) EW component, (b) NS component.

Both synthetics were compared in the frequency band 0.05-2 Hz.

field (i.e. KKNPP, NIG018, NIG016), and high-frequency late arrivals may be observed in far field

(NIG004 and NIGH12).

Figure 5.22: Simulations performed by SEM3D analysis of the NCOEQ-2007 MJMA4.4 aftershock

of July 16, 21.08h. Synthetic wave-forms were obtained by considering the soil profile Aochi2013

(Figure 5.13a). Velocigrams (expressed in cm/s) were amplified by a factor 1000 and locally aligned

at the time-step corresponding to the %1 of the Arias intensity.
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5.2.4 Choice of Source Time Function

Small earthquakes (e.g. aftershocks occurring after a strong ground motion event) have been his-

torically used to replace theoretical Green’s functions (Irikura, 1983). This method does not require

knowledge of the explicit shape of the slip time function (STF) for the small event. The wave-form for

a large event is obtained by summing the contributions of small events, correcting each slip velocity

time function (SVF) according to some sort of scaling laws between a large a small event (Miyake

et al., 2003). Although this approximation has been proven to be accurate enough to simulate the far-

field ground motion component (see for instance Miyake et al., 2003), one may argue that the chosen

STF/SVF can influence the synthetic wave-field nearby the source. Moreover, the a priori selec-

tion of a suitable combination STF/SVF for a point-wise double-couple approximation of the seismic

source is not obvious (Bizzarri, 2014). An accurate choice must be done, which in turn is extremely

important in the contest of hazard assessment. Therefore, in this section a brief parametric analysis

addressing different STFs/SVFs and the respective featuring parameters is presented. SEM3D ex-

ploits a kinematic description of the seismic source (Faccioli et al., 1997) which consists in replacing

the displacement offset on the point-discontinuity by equivalent body forces (following the approach

proposed by Madariaga, 1989).

Several 3D large scale analyses were performed by means of the SEM3D software. The domain

geometry considered has been presented in the Section 5.2.3. Two different functions describing the

time evolution of the displacement offset have been examined: (1) the so called Bouchon’s ramp (or

smoothed ramp function Bouchon, 1981) uT NH
S (t) , that writes:

uT NH
S (t) =

A

2

[
1 + tanh

(
4
t− tS
τR

)]
(5.1)

and (2) the source model proposed by Brune (1970), expressed by the following equation:

uEXP
S (t) = A

[
1 −

(
1 +

4 (t− tS)

τR

)
exp

(
−4 (t− tS)

τR

)]
H (t− tS) (5.2)

The latter is well suited to approximate long-tailed Moment Rate Functions (MRF) (Duputel et al.,

2013). Three are the free parameters that tune the shape and the position in time of the two mentioned

STFs: the time-shift tS , the generic rise time τR and the maximum displacement offset A. H (t− tS)
represent the Heaviside function. The maximum slip value A is spontaneously determined by relat-

ing it to the scalar seismic moment value (for the MJMA4.4 AS event, the F-net indicated a seismic

scalar moment M0=5.21e15 Nm). The time shift tS was manually tuned to respect the quiescent past

assumption (Aki and Richards, 1980). Among all, the crucial parameter results to be τR. Although no

explicit definition of the rise time is available neither for uT NH
S (t) nor for uEXP

S (t) (Bizzarri, 2014),

τR represents the duration of the slip rate pulse (Bizzarri, 2014; De Martin et al., 2007). Besides,

τR is intrinsically related to the corner frequency of the SVF spectrum fC (Kanamori and Ander-

son, 1975; Geller, 1976), which undergoes the empirically scaling laws originally proposed by (Aki,

1967). This aspect is highlighted when one compares the Fourier’s spectra of different SVFs. For

instance, Figure 5.23 compares three different sources (both in time and frequency domain), tested in

the AS simulations performed by exploiting the SEM3D: the red spectrum in Figure 5.23a refers to

two Brune’s slip rate time evolutions (portrayed in Figure 5.23b), whereas the blue and green lines

correspond to the Bouchon’s ramp functions. The high-frequency falloff of the two Brune’s SVF fol-

lows an ω−2 decay, whereas Bouchon’s ramps steeper decreases for f > fC . Two different values of

the free parameter τR were tested herein: τR1 = 10(0.5(MW−6.69)) (with MW the moment magnitude,

according to Dreger et al., 2007) and τR2 = 2·1.2·10−8 3
√
M0 (withM0 representing the scalar seismic

moment, in dyne.cm, according to Duputel et al., 2012). The two definition of τR (herein τR1=0.12
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Figure 5.23: (a) Fourier’s spectra of the tested SVFs for the AS simulation (EW component). (b)

Time evolution of th source velocity functions tested for a double couple point source in SEM3D.

In the captioned sub-axes in (a), two estimations of τR are depicted: as a function of the magnitude

MW (black line, according to Dreger et al., 2007); as a function of the seismic moment M0 (red line,

according to Duputel et al., 2012).

s and τR2=0.82 s) are depicted in black and red lines in the captioned sub-axes in Figure 5.23a. The

solution pertaining to the double couple point-wise simulation with the uEXP
S (t) globally has a higher

frequency content, compared to the Bouchon’s ramps. This result is coherently observed at different

free surface receivers (such as KKNPP), although within the frequency band solved by the numerical

grid (i.e. fmax= 3.75 Hz). In that respect, the synthetic accelerograms generated by SEM3D large

scale simulation of the AS event at KKNPP are traced in Figure 5.24. The solution obtained for AS
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Figure 5.24: Numerical verification of SEM3D code: effect of the STF parameters (functional form

and rise time). Synthetic wave-forms obtained at KKNPP are portrayed: (a) EW component, (b) NS

component.

simulation by employing uT NH
S (τR2) was found to be rather poor at high-frequency and not suitable

for this broad band simulation, whereas the synthetic wave-forms obtained by either uEXP
S (τR1) and

uT NH
S (τR1) are comparable. In the following section, the synthetic peak values were compared to the

ones estimated by the Ground Motion Prediction Equations.
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5.2.5 Comparison with Ground Motion Prediction Equations

Ground Motion Prediction Equations (GMPEs) are traditional yet very useful tool to estimate strong

ground motion parameters. Therefore, they might be employed to check if the outcomes of physics-

based numerical simulation are reasonable. For instance, Fukushima (2007) proposed a rather simple

GMPE, whose functional form was issued from a probabilistic seismic hazard analysis performed

on PGA and PGV. K-NET and KiK-net stations in the Kanto district (Japan) were employed in the

regression. The choice of this GMPE is justified by the coherency between the predicted values and

AS recordings in the Niigata region. The latter are plotted in Figure 5.25 (in terms of geometric mean

of the horizontal PGAs and PGVs) along with the prediction by Fukushima (2007). The Fukushima

(2007) GMPE predicts rather well both the recorded mean PGAs and PGVs (±σ), although a slight

overestimation may be noticed at larger source-to-site distance. This discrepancy might be due both

to the location (the Kanto district is placed south-westward the Niigata prefecture) and to the mag-

nitude (greater or equal to 5.0) to calibrate the GMPE parameters (Cotton et al., 2008). However,

Figures 5.25b- 5.25d suggest that the choice of a rise time τR1 (for either uEXP
S or uT NH

S ) is the most

consistent with the selected GMPE (Fukushima, 2007), so it has been chosen as the suitable STF for

the AS analyses. It is worth noticing that the choice of a constant Q factor might affect the peak

values, diminishing their values compared to the attenuation relationship.

5.3 Numerical analysis of the near-source wave motion

The numerical model portrayed in Figure 5.20 is considerably large (∼ 90 km) and it is henceforth

suitable to quantify (1) the effect of the regional stratified geology, (2) the model sensitiveness to the

source parameters (even for a point-wise small aftershock) and (3) the implications of considering or

neglecting the topographical surface. This holistic approach adopted leads to focus on the coherent

methodology to assess all its different tasks. The analysis performed provided reassuring comparisons

between the synthetics and the traditional predictive tools (i.e. GMPEs). However, most of the com-

putational tools used in engineering seismology, despite their effectiveness in estimating the far-field

part of the wave-field, suffer of major drawbacks when it comes to quantify near-source field. This

represent one of the major advantages that a complete and reliable source-to-site strong ground motion

scenario must supply with the work-chain and methodology for vulnerability assessment of critical

structures. Therefore, a step further is made at this point: the so called LARGE model presented in

previous sections was improved by extrapolating a smaller yet refined Earth’s chunk from within it

(see Figure 5.26) and by running new analyses progressively complexifying the computational model.

First and foremost, the SMALL model seems to solve the slight numerical dispersion observed in the

LARGE model when the topography is considered: the ringing effect seemingly taking place in Fig-

ure 5.21 almost disappears when the refined model is considered instead (Figure 5.27). The brand

new SMALL model was also featured by the Japan sea at a glance, by running coupled fluid-solid

simulations (model called SMALL-W in Figure 5.27, compared to model SMALL-S model, where

the Japan sea is replaced by solid Earth’s crust). This improvement does not affect much the horizon-

tal components (Figure 5.28a), but seemingly gives rise to late arrivals on the vertical one, as shown

in Figure 5.28b.

5.3.1 Effect of the local folding model

The Aochi2013 velocity model (depicted in Figure 5.27) used so far was found to be suitable to sim-

ulate the regional wave-field (Aochi et al., 2013a). However, some major drawbacks prevent it to

be reliable for more refined site-specific analysis, namely (1) the coarse stratification (i.e. Hmin ∼
500 m) and (2) the lack of slower strata (VS,min ∼ 1000 m) and foremost the lack of a local folding

148



10 20 30 §0 50 ¨0
10

-1

10
0

10
1

10
2

10
3

P
G

A
H

[c
m

/s
/s

]

AS© ª« ¬­¬ ®007-07-16 21:08

[km]

(a)

10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

P
G

A
H

[c
m

/s
/s

]

[km]

A¯: Mj 4°4 2007±07±16 21:08

(b)

10 20 30 40 50 60

[km]

10
-2

10
-1

10
0

10
1

10
2

P
G

²

H
[c

m
/s

]

A³: Mj 4́4 2007µ07µ16 21:08

(c)

10 20 30 40 50 60
10

-2

10
-1

10
0

10
1

10
2

P
G

¶

H
[c

m
/s

]

[km]

A·: Mj 4̧4 2007¹07¹16 21:08

(d)

Figure 5.25: Horizontal geometric mean of Peak Ground Acceleration (PGAH , portrayed in the top

row) and Velocity (PGVH , portrayed in the bottom row) obtained by SEM3D simulations of the

MJMA4.4 aftershock event. Synthetic peak ground motion values are compared to the GMPE proposed

by Fukushima (2007). (a-c) Recorded peak ground motion values (from Kik-Net, KNET and KKNPP

databases); (b-d) SEM3D simulations performed by introducing point-wise double couple source

with different SVF: red circles and blue triangles refer to Brune’s (uEXP ) and a Bouchon’s (uT NH)

functions respectively, with free-parameter τR = τR1 = 0.12s; green triangles refer to a Bouchon’s

ramp function with free-parameter τR = τR2 = 0.82s instead. Thick black line represents the median

PGAH /PGVH stemming from the chosen GMPE; dashed black lines (±σ) represent the standard

deviations.
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Figure 5.26: Elevation map of the meshed chunk of the Earth’s crust. (a) LARGE model of the Niigata

region; (b) SMALL model.
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Figure 5.27: Sketch of the refined NCOEQ-2007 scenario. The Japan sea is considered in the smaller

model (SMALL-W). Result are compared to the large (LARGE) and small (SMALL-S) model where

the sea of Japan is disregarded. Synthetic accelerograms by three different numerical models: large

scale model (LARGE, red), small scale solid model (SMALL-S, blue) and small scale solid-fluid

model (SMALL-W, green).

structure below the KKNPP site, widely observed and characterized (Watanabe et al., 2009; Tsuda

et al., 2011, among others) and constructed from boring and seismic reflection survey. Given the

complex geological structure described so far, and with the aim to reproduce the overall regional

wave-field, but focusing on a realistic broad-band simulation of the incident ground motion in the

KKNPP surroundings, a hybrid geological model of the Niigata region was constructed gathering

all the available information. Once opportunely calibrated, the regional model has been adjusted so
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Figure 5.28: The time-histories portrayed refer to KKNPP site (G.L. 0 m). (a) NS synthetic wave-

forms compared; (b) UD synthetic wave-forms compared.

to include a 3D model of the Ushirodani anticline - Madonosaka syncline - Chuo-Yatai anticline,

based on the previous work of Tsuda et al. (2011). Geological surveys indicated the folded structure

strikes at N55◦E, shearing through the nuclear facility, with the Ushirodani anticline and Madonosaka

syncline placed below KK5 and KK1 respectively (Figure 5.13b). To clarify, Figure 5.29a portrays

a geographical map indicating the estimated extension of the folding area beneath KKNPP. The in-

vestigated geological structure, referring to the central cross-section SC, is depicted in Figure 5.29b.

The syncline-anticline combination extends up to 7.6 km wide (across the coastline, along SC) and

4.8 km deep. The stratification consists of seven strata, whose mechanical properties are reported in

Table 5.29c. The conformation of the soil deposits has a probable continuity of shape in the along-

strike direction (N145◦E), even outside the KKNPP site. Tsuda et al. (2011) tested a 3D smoothed

version of the folded geological structure, obtained by extruding a few cross-sections of it (proposed

by Tokumitsu et al., 2009) (and whose geological profile is similar to SC) on either sides along the

hinge axis (i.e. till the SE-SW cross-sections in Figure 5.29a have been reached). They adjusted the

velocity structure on the boundary area of broad model connecting to the area of local folding model

in order to reduce the artificial refracted waves that are generated around the boundary. Inspired by

this approach, the representative cross-section SC passing through KKNPP (see its numerical model

in Figure 5.30a) was chosen and extruded up to SW (south-westward) and SE (north-eastward), as

depicted in Figure 5.30b. A linear smoothing of the folded material discontinuity was applied in so to

obtain a quasi-horizontal layered profile at SW and SE (see Figure 5.30b). Due to the asymmetric na-

ture of the folded structural geology, two small aftershocks scenarios were simulated (AS1, MJMA4.4

aftershock of July 16, 21.08h and AS2, MJMA4.2 aftershock of July 16, 17.42h), whose hypocenters

were located along the directrix of the Madonosaka syncline, at the two opposite sides with the re-

spect to its planar cross-section passing through the TEPCO facility (see Figure 5.29a). The aim is to

characterize the 3D effect of such a complex geology, by spanning different incidence angles of the

wave-front impinging the KKNPP. With respect to the LARGE model, the SMALL one, featured by

a minimal shear-wave velocity of 700 m/s was designed to accurately propagate up to 5.0 Hz, with a

third order polynomial degree.

Except the expected poor reproduction of the late surface wave arrivals, general features of observed

records for AS1 and AS2 could be reproduced, as portrayed in Figure 5.31 (AS1, 1G1) and 5.32 (AS2,

5G1). Unfortunately, no recordings for AS1 at 5G1 are in the authors’ disposal. The improvement

granted by the inclusion of the folded configuration however is evident (red traces in Figures 5.31b-

5.31d and in Figures 5.32b-5.32d), compared to the poor fit to the records obtained with a layered

geology (green traces in Figures 5.31a-5.31c and in Figures 5.32a-5.32c) For both AS1 and AS2 and

for both Unit 1 and Unit 5, the synthetic wave-forms at surface look out of phase with the respect

to the records, on one of the two directions FP or FN. This stress the great achievement obtained by

including the Madonosaka syncline in the analysis. A more equitable judgment of the wave-form fit
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Figure 5.29: (a) Map of the Niigata region indicating the traces of the geological sections provided by

Watanabe et al. (2009); Tsuda et al. (2011) and exploited herein. The two NCOEQ-2007 aftershocks

considered at this stage are portrayed, along with their respective focal mechanism. The schematic

structural map portrays the series of Ushirodani anticline - Madonosaka syncline, located underneath

KKNPP and whose axial planes or hinge axes passes below Unit 1 and Unit 5. The Chuo-Yatai

anticline is indicated as well, which seemingly passes in the Service Hall surroundings (array KSH).

(b) Folded geological structure at section SC (close by KKNPP site) up to 5 km depth. (c) Mechanical

properties of the local folded geology.
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Figure 5.30: (a) Sketch of Section SC (see Figure 5.29a); (b) Sketch of Section SE (see Figure 5.29a).

is provided by the Anderson’s Criteria (Anderson, 2004) in Figures 5.33a 5.33b for AS1 and 1G1, and

in Figures 5.33c 5.33d for AS2 and 5G1. For both AS1 and AS2, the complex geological structure

seems to influence specifically the FN direction. However, the poor score obtained for both cases

for the first four Anderson’s Criteria (related to the energy of the wave-form) highlights one major

drawback of the model: recordings are more energetic than synthetics, due to late arrivals the model

is incapable to reproduce.

In terms of normalized Sa response spectra (with respect to their respective PGA), a suitable mea-
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Figure 5.31: Recorded (REC, blue) and synthetic velocigrams for layered (LAY, green) and folded

(FLD, red) geology along the fault parallel (FP, top row) and fault normal (FN, bottom row) directions,

for AS1, at 1G1.
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Figure 5.32: Recorded (REC, blue) and synthetic velocigrams for layered (LAY, green) and folded

(FLD, red) geology along the fault parallel (FP, top row) and fault normal (FN, bottom row) directions,

for AS2, at 5G1.

sure of the goodness of the model is the difference between the natural periods corresponding to the

maximum Sa ordinate and referred as to TP . In Figures 5.34b-5.34d, the focalization of the wave-

field due to the syncline causes a shift of TP towards the observed one, at both SG4 (Service Hall,

G.L.-250 m) and 1G1 (Unit 1, G.L. 0 m), compared to the poor fit obtained for a layered geology

(see Figures 5.34a- 5.34c). For AS2, the pseudo-spectral acceleration response less sensitive at Unit

5 (Figures 5.35a- 5.35b), where it is improved at 1G1 (Figures 5.35c- 5.35d) Finally, the KKNPP
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Figure 5.33: Scores of the Anderon’s Criteria along the FN/FP directions for AS1 (a-b) and AS2

(c-d).
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Figure 5.34: Comparison between recorded (REC, red for FP and orange for FN) response spectra

Sa for SG4 and 1G1 sites for AS2, compared to synthetic ones. (a-c) Sa spectra for layered geology;

(b-d) Sa spectra for folded geology.
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Figure 5.35: Comparison between recorded (REC, red for FP and orange for FN) response spectra

Sa for 5G1 and 1G1 sites for AS2, compared to synthetic ones. (a-c) Sa spectra for layered geology;

(b-d) Sa spectra for folded geology.

site response estimated by SEM3D analyses for AS1 and AS2 is condensed in the following four

figure: Figures 5.36 and Figures 5.37 portray the pseudo-spectral acceleration spectra Sa estimated

at KKNPP, for AS1 and AS2 respectively.

Hayakawa et al. (2011) showed that the large amplitude of KK1 site (Unit 1, located on the south-

westward part of the KKNPP) comes from the folding structure where KK1 is located on the synclinal

axis (Figure 5.13b). In agreement with what proposed in the literature, Figures 5.36- 5.37 indicate
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Figure 5.36: Sa response spectra (in cm/s2) at different location around the KKNPP site.

LAY ERED (red) and FOLDED geological models were compared for the AS1.
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Figure 5.37: Sa response spectra (in cm/s2) at different location around the KKNPP site.

LAY ERED (red) and FOLDED geological models were compared for the AS2.

the folded geology as responsible of higher peaks for the response spectra obtained nearby Unit 1, for

natural periods T <0.5 s. The site response is seemingly unaltered by the introduction of a complex

folding structure beneath KKNPP (at Unit 5 and Service Hall). The minimum shear velocity intro-

duced in the model corresponds to the engineering bedrock, justifying that the spatial incoherence of

the ground motion recorded at surface and specifically the amplification southwestward are extremely

influenced by the syncline-anticline structure, despite the effects due to shallow borehole geology

(dispersion, attenuation/amplification) which have been disregarded in the analysis. This strengthens

the conviction that the site response at the Service Hall depended mainly on the non-linear site-effects

taking place at shallow depths (i.e. G.L.-250 m). The amplification trend occurs independently on the

source position, being more accentuated along the EW direction. Watanabe et al. (2009) showed that

the Upper Teradomari stratum does not alter the wave-propagation of up-going waves, which tend

to focalize at the Madonosaka syncline passing through Shiiya stratum. Site amplification becomes

therefore significant at Unit 1. On the other hand, Unit 5 is evidently more sensitive to wave-motion
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travelling from South-West to North-East, throughout the folding zone: the pseudo-spectral peaks

differs from layered to folded geology only in Figure 5.37, referring to AS2 (nucleated close by the

third asperity on the fault rupture plane).

5.3.2 On the accuracy of numerical solution

The accuracy of the numerical method employed to solve the 3D elasto-dynamic problem is notori-

ously a big deal to cope with. Due to inherent spatio-temporal nature of the wave-propagation physical

phenomenon, the origins of the observed numerical dispersion are namely (1) the spatial and the (2)

time discretization indeed. Usually, a Finite-Difference of Finite-Element spatial semi-discretization

is assumed, along with a numerical time-integrator belonging to the Newmark’s family. In the SEM,

high-order polynomial are employed, sampled at the GLL point on each element. Despite the intrinsic

h − p property held by the SEM (leading to finer spatial discretizations and increased accuracy), it

is intuitive that the two sources of numerical dispersions are not disconnected: Seriani and Oliveira

(2008) stated that low-order time discretizations (such as the 2nd-order accurate Newmark’s schemes)

deteriorate the high accuracy in space. According to Seriani and Oliveira (2008), P-wave dispersion

and polarization errors are less sensitive to the value of Poisson’s ratio than the S-wave dispersion

error. They confirmed that four grid points per wavelength are sufficient to have the dispersion error

below 1% on SE approximations of degree eight with GLL collocation points. Following the indica-

tions provided by the modal analysis performed by the mentioned authors, a parametric analysis on

the computational model presented in this study for folded geology was performed. The minimum

element size ∆e of the computational grid is ∼ 250 m at surface, with VS,min=700 m/s and Poisson’s

ratio ν ≈0.4. Three analysis were run therefore, with 5, 7 and 10 GLL points per element edge

respectively. According to Seriani and Oliveira (2008) and for the Poisson’s ratio considered, the fre-

quencies delimiting the accuracy of the analyses are 2.8, 5.0 and 7.0 Hz respectively. Therefore, the

whole set of results of the three-analyses were low-pass filtered at 7.0 Hz, to check whether significant

differences emerge. Figure 5.38 show the comparisons (in terms of accelerograms, Fourier’s spec-

trum along FP and FN directions respectively and geometric mean of the horizontal pseudo-spectral

acceleration SaGMH) for 5, 7 and 10 GLL points respectively, at 1G1 (Unit 1, G.L. 0 m). The

comparisons are rather explicative, in the following sense:

• the ground motion estimation does not change significantly for 7 or 10 GLL points, whereas

it is rather underestimated (see the SaGMH ordinates in Figure 5.38c) when the computational

model is featured by 5 GLL points;

• the response at short periods is amplified by increasing the number of GLL points, granting a

certain confidence to the analyses portrayed in the previous section (comparison with layered

geology). Increasing the number of GLL points would lead to even more amplified response at

both 1G1 and 5G1.

• the computational costs (measured in CPU-time, and plotted in the captioned sub-axes in Fig-

ure 5.38c) are growing exponentially with increasing number of GLL points, although no re-

markable difference can be found between 7 and 10 GLL. This justify, in a sense, the choice of

7 GLL as an optimum solution for the range of frequency of interest;

• the code-to-code numerical error (measured as logarithmic misfit between the log-average re-

sponse (λSaGMH ) of the geometric mean of the horizontal components SaGMH) on the whole

ensemble of analyses, for a frequency corner of 7.0 Hz, is restrained within a narrow band

around the average response at short-periods (see Figure 5.39) at both 1G1 and 5G1, with a
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Figure 5.38: Results of the parametric analysis on the SMALL model with folded geology at 1G1.

(a) Accelerograms(FP direction), (b) Fourier’s spectra (FP direction) and (c) pseudo-spectral acceler-

ation responses (geometric mean of horizontal components) for 5 (blue), 7 (red) and 10 (green) GLL

respectively. Synthetics were filtered at 7 Hz. The computational costs of the SEM3D analyses are

plotted in the captioned axes in (c).
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Figure 5.39: Mean λ and relative standard deviations λ ± ζ of the geometric mean (horizontal com-

ponents) pseudo-spectral acceleration ordinates SaGMH at 1G1 (a) and 5G1 (b).

log-standard deviation ζSaGMH attaining a plateau at higher frequencies. The numerical anal-

ysis seems therefore quite stable, and the error margins decreasing with increasing number of

GLL
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5.4 ANN2BB application to SEM3D results

Despite the good fit between the SEM3D numerical simulations and the observations, and the high

accuracy obtained at 5.0 Hz, it is interesting to apply the ANN2BB technique to the synthetic time-

histories obtained. For the sake of simplicity, AS1 was solely considered. An ANN was trained

with corner period T⋆=0.75 s, and applied to the numerical results obtained either with LAYERED

geology and either with FOLDED geology. Figure 5.41 portrays the site response (in terms of Sa)

at the KKNPP. The hybrid spectral-matched synthetics (filtered at 25.0 Hz) reproduce the same trend
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Figure 5.40: Sa response spectra (in cm/s2) at different location around the KKNPP site, after

ANN2BB application. LAY ERED (red) and FOLDED geological models were compared for

the AS1. Synthetics are filtered at 25.0 Hz.

obtained in the frequency band 0.0-5.0 Hz: the FOLDED model amplifies the response at 1G1 and

5G1, compared to the LAY ERED one. This confirms somehow the fact that the broad-band pre-

diction inherits the information concerning spatial distribution of the earthquake ground motion and

it propagates it to shorter periods. This is an interesting phenomenon, since it proves the exceptional

capability of neural networks to recognize the input pattern and predict the outcome based on the

experience gained during the training phase. Finally, the geometric mean spectral ordinates Sa are

extremely improved all over the recording stations within KKNPP, as Figures 5.41a- 5.41b portray.

The ANN2BB efficacy is highlighted by the improved fit provided at both 1G1 and SG1. Even when

SEM3D analyses provided poor fit to the records (probably due to the effect of shallow geotechnical

layers, not considered in the numerical analyses), the ANN2BB provides more reasonable spectral

ordinates, recommending its utilization to generate realistic broad-band synthetics.

It has to be noted that the ANN employed at this stage were trained upon the SIMBAD database

(Smerzini et al., 2014), containing high-quality recordings observed for earthquakes in a magnitude

range MW 5.0-7.5. Despite the fact that AS1 has a magnitude MW4.4, the satisfactory results obtained

ensure somehow the reliability of the ANN predictive capabilities.

5.4.1 Partial Conclusions

In this chapter, a source-to-site numerical model of the NCOEQ-2007 earthquake is constructed, to

reproduce the seismic site response observed at KKNPP. Specifically, the aim of this study is to crit-

icize the common simplified assumption of a sub-horizontally layered Earth’s crust, inferred from

geodetic and geological surveys, stressing the importance of the shallow geological conformation
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Figure 5.41: Sa response spectra (in cm/s2) at SG1 (a) and 1G1 (b) respectively: recorded spectra

(REC, blue) are compared to SEM3D analyses (SEM3D, with FOLDEDgeology, red) and to hybrid

ones (ANN2BB, green). Recordings and synthetics are filtered at 25.0 Hz.

in altering the incident wave-motion. The case of KKNPP rises as an exemplary benchmark, due

to extensively observed near-field effects at the site, such as the ground motion incoherence within

a relatively small distance. As a matter of fact, the incident wave-motion resulted amplified in the

south-west area, nearby the first group of nuclear reactors and structures (Unit 1-4), compared to

the second group of facilities (Unit 5-7), located north-eastward. Two aftershocks belonging to the

NCOEQ-2007 sequence were simulated to prove the assumption focusing on the effect of the geolog-

ical configuration. The dense observation network deployed in the Niigata region and at the KKNPP

steered the calibration of two numerical seismic scenarios: one to portrays the regional incident wave-

field (in a frequency band 0.1-0.5 Hz) and a second one restricted to the ground shaking pertaining

the KKNPP surroundings, but extending the modelling accuracy up to 5 Hz. The paper explains the

methodological approach to construct an holistic source-to-site physics-based computational model:

LARGE is first calibrated upon the results of semi-analytical solutions, considering a 1D regional ge-

ology so to constrain the low-frequency band of the incident wave-field; SMALL is later constructed

by trimming a portion of LARGE model and plugging into the 1D regional geology the intricate 3D

set of syncline-anticlines, placed right underneath KKNPP. LARGE is used to assess the effect of the

source parameters and of the topography, comparing the results with classical GMPEs. SMALL in-

cludes the Japan Sea, the bathymetry and the coastline, other than the folding geology. The outcome

of the numerical exercise provides a fairly good agreement between the recordings and the synthetics

at KKNPP. The effect of the folding clearly improve this fit, compared to the too much simplified

sub-horizontally layered profiles. Moreover, the effort of including a complicated geology in the seis-

mological model is worthwhile: the numerical analyses highlight the impact of the syncline laying

below Unit 1 in causing an amplification (both in terms of peak ground motions and response spectra)

with the respect to the layered geology. The syncline seemingly focalizes the upgoing wave-field,

drifting the radiated energy towards Unit 1. This occurrence represents an exception to the current

design standards, which traditionally leans towards the assumption of a 1D layered geology in case

of lack of further informations concerning the subsurface geology. The case study stresses the impor-

tance of the propagation path in drifting and altering (eventually amplifying) the wave-field radiated
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even from relatively weak aftershocks. However, the major shortcoming of the analyses presented

herein resides in the lack of more refined models of the scattered wave-field in a high frequency range

(0.0-10.0 Hz). This is a crucial feature to be taken into consideration in the transition towards a

broad-band deterministic modelling of the earthquake phenomenon, along with the a good trade-off

between computational cost and sought accuracy. To this end, the performance of SEM3D are par-

ticularly promising, as the analyses carried out in this chapter showed. In this specific test-case, for

instance, an extra bonus accuracy resides within the chosen size of the computational model, possibly

extending their reliability up to 7.0 Hz. As perspective, the inclusion of heterogeneous soil deposits

and non-linear hysteretic damping would surely enhance the realism of the final outcome, although it

may mislead the understanding of the physical mechanisms taking place, due to the increased num-

ber of parameters required. However, satisfactory broad-band synthetic time-histories were obtained

by applying the ANN2BB procedure to the PBS outcome. This smart usage of the Artificial Neural

Network seems rather attractive, even for weak aftershocks.

Based on these considerations, it can be argued that the current seismic design guidelines for critical

structures should require further improvements of site-characterization not only in terms of active

faults and local geotechnical conditions, but specifically on the conformation of the Earth’s crust

(such as the SCEC research plan for the period 2012-2016, focused on specific areas in the Southern

California and enhanced the Community Velocity Model (CVM), describing seismic P- and S-wave

velocities and densities throughout the southern California region). It is in the authors’ belief that the

modern procedures for earthquake ground motion prediction for seismic hazard analysis, especially

for the low probability events inherent to the seismic design of critical structures, should account for

a reliable incident wave-field issued from forward physics-based deterministic analyses. The ever

increasing computational power leads to put major efforts to extend the frequency band and to en-

able PBS to be used with confidence in engineering applications (e.g.: seismic hazard analysis and

structural or geotechnical dynamic analysis).
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5.5 Preliminary simulation of the extended fault mechanism

Following the same approach outlined in the previous sections, the first and foremost step required to

calibrate the MJMA6.8 main shock earthquake scenario was the WNI simulation. The two main issues

to address are :

1. the fault geometry and orientation

2. the suitable slip patch for a kinematic description of the fault offset

The preliminary WNI numerical analyses were limited to 1.0 Hz. Nevertheless, they steered the

choice of a simplified yet reliable kinematic fault model, that was then plugged into the SEM3D com-

putational model for a more detailed broad-band simulation.

The plethora of fault mechanism and related slip patches proposed from 2007 up to now for the

NCOEQ2007 main shock (see Section 5.1.2 for the detailed discussion) was sifted to select two mod-

els to compare, namely (1) Cirella2008 (Cirella et al., 2008) and (2) Shiba2008 (Shiba, 2008). Slip

patched are portrayed in Figures 5.42a-5.42b, following the discretization proposed by the authors.

The two fault model looks rather different at glance: the Cirella2008 fault plane is larger than the
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Figure 5.42: (a) Cirella2008 model for the SE dipping plane; (b) Shiba2008 model for the SE dipping

plane (Shiba, 2008).

Shiba2008 ones and its peak slip value is higher (2.58 m for Cirella2008 and 1.94 m for Shiba2008).

However, the bilobate slip distribution of the Cirella2008 is shifted NW compared to the three major

asperities identified by Shiba (2008).

Cirella et al. (2008) provided the peak slip velocity, rise time and rupture time contours, along with the

slip distribution. On the other hand, Shiba2008 model is featured by the stress-drop ∆σ inferred on

three major rectangular asperities (see Table 5.2). Therefore, the average slip values S̄ were estimated

by means of the following Equation, proposed by Madariaga (1977):

S̄ = C
∆σ

µ̄
W (5.3)

where C represents a shape coefficient (although formally rectangular, sub-faults were assumed to be

circular shaped, by considering Madariaga proposition for C = 16π
7

). Moreover, the shear modulus of
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Table 5.2: Properties of the characterized source model proposed by Shiba (2008) and inferred from

the inverted slip source distribution.

ASP1 ASP2 ASP3

Effective stress (MPa) 25.5 20.8 19.9

Seismic moment 1.83 2.11 1.43

Fault area (km2) 5.6×5.6 5.6×7.0 5.6×5.6

Rupture Velocity (km/s) 3.1 2.8 2.5

Rise time (s) 0.4 0.4 0.5

the layers crossing each asperities were averaged along them (µ̄). In this manner, constant slip values

were estimated onto each of the three asperities proposed by Shiba (2008). The choice of rectangular

definition of asperities facilitates the generation of slip models of future earthquakes using this simple

geometry. An asperity is initially defined to enclose fault elements whose slip is more than 1.5 times

larger than the average slip over the fault plane. In their inversion analyses, Shiba (2008) exploited

displacement records, band-pass filtered till 2.0 Hz.

5.5.1 WNI analysis of NCOEQ2007 earthquake

The WNI analyses performed on the NCOEQ2007 main shock are schematically presented in Fig-

ure 5.43 (Cirella2008) and Figure 5.44 (Shiba2008). Based on the previous results, the Aochi2013

geology model was considered.

The two models provided rather good comparisons with the recordings, in a frequency range 0.1-

0.5 Hz. High frequency content was herein disregarded due to the inherent limitations of the WNI

method and to the interest into outlining the low-frequency band radiated from such complicated

source mechanism. The best fit was obtained for the KKNPP (G.L.-250 m) and the NIG016 sta-

tions. However, there have some major discrepancies for stations collocated far from the hypocenter

(NIG004, NIGH12) highlighting the intrinsic difficulties in modelling complex earthquake scenarios

at this scale. An interesting aspect is the scarce fit at NIG018: the recorded wave-form is rather un-

derestimated along the NS direction. This might be due to the fact that NIG018 was interested by

liquefaction.

5.5.2 Large scale broad-band scenario

By the same token as previously, WNI results were exploited to calibrate large scale SEM3D simu-

lations, once the most suitable fault mechanism has been chosen. The simple slip patch proposed by

Shiba (2008) is used in a preliminary analysis, since it requires less parameters and it composes of

three well-defined asperities only (see Table 5.2 and Figure 5.45a). Due to the lack of a kinematic

model of the extended fault mechanism in SEM3D, most of the assumptions on the rupture path were

dropped, in favour of a simplified yet reliable numerical simulation. Keeping this in mind, the slip

contour was replaced by equivalent point sources, whose parameters were tuned upon the local stress-

drop/seismic moment, rise time and spatial orientation along the fault plane. Each point-wise source

triggers asynchronously, according to the rupture time contour picture in Figure 5.45b. The compu-

tational model of reference is the SMALL-W one, described in Section 5.3. The Aochi2013 regional

geological profile was considered in a first place.

The choice of a suitable number of point-wise double-couple sources capable of reproducing the

continuous and dynamic fault offset is not an easy task. A main issue of debate is represented by the

rise-time value. As a matter of fact, the scalar seismic moment is associated to the average cumulative

fault slip regardless the approach to generate the extended seismic source (i.e. by either considering
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Figure 5.43: WNI simulations of the NCOEQ2007 Mj6.6 main shock of July 16, 10.13h. Blue wave-

forms represent the recorded time-histories, red wave-forms the synthetics. Both records and synthet-

ics were base-line corrected and band-passed filtered between 0.1 and 0.5 Hz. Synthetic wave-forms

were obtained by either considering the soil profile Aochi2013 and the source model proposed by

Cirella et al. (2008)

a coherent slip patch or approximating it as a series of concentrated double-couples). The value of

the time parameter, i.e. the rise time, cannot be straightly scaled from an estimation for a finite fault

mechanism to a double-couple point source, due to the effect of the rupture front. Indeed, its empiri-

cal estimation is rather polluted by the effect of the propagating rupture and source directivity, along

the whole slip duration. For instance, Bizzarri (2012) showed how difficult it is to estimate the rise

time from a spontaneous dynamic faulting offset. Therefore, the rise-times provided in Table 5.2 have

been found unsuitable for this kind of approach. Instead, a constant value of 1.3 s was estimated from

Dreger et al. (2007) and provided to each double-couple representing the set of asperities.

The first trial analysis was performed by employing three double-couple sources, one per asperity.

However a very poor fit to the recordings was obtained. At this point, the source model had to be

integrated with further information, increasing the level of detail required to correctly describe the

rupture path. To this end, a modification of the original Shiba2008 model released in 2011 (Shiba

et al., 2011) was considered. Compared to the previous model, in Shiba2011 fault mechanism the

three asperities, despite striking at the same angle (39◦) have slightly different dip angles. The whole

seismic source may therefore be seen as originated by a multi-segment fault rupture. The dip angle
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Figure 5.44: Same as Figure 5.43 and the source model proposed by Shiba (2008)

varies from 40◦ at ASP1 to 30◦ for ASP3, respectively, through a linear variation along ASP2. The

latter was divided into five smaller rectangular sub-faults (i.e. double couples), each one placed at

different depth and with dip angles linearly changing from 40◦ (northward, close to ASP1) to 30◦

(southward, in the surroundings of ASP3). Table 5.3 lists the newly determined fault parameters of

the so called Shiba2011 model. Stress drops slightly differ from the Shiba2008 model, along with the

seismic moment.

Two multi double-couple models are herein tested: PTS, composed by seven source points, one on

ASP1 and ASP3 respectively and five along the NE-SW directrix on ASP2, to depict the assumed-

linear dip angle variation (see Figure 5.46a) and GRD, with all three asperities duly discretized by

5×5 grid point each (see Figure 5.46b). The key feature of the PTS and GRD models resides in the

fact that the second asperity ASP2 is modelled as multiple point sources instead than one, granting

the correct transition from the rupture initiation (on ASP1) to the fault edge (ASP3). This aspect

is likely to have been inferred from the fact that the second velocity pulse in KKNPP records was

not clearly detected (Miyake et al., 2010). No nucleation times for each asperity was provided, but

the point source time shift were set according to the rupture time contour in Figure 5.45b. A fairly

good agreement with the recordings is observed, for both PTS and GRD (see the seismograms in

Figure 5.47). This is a rather satisfactory result, given the crude assumptions made in the modelling

phase. However, one can notice a slight directivity effect for PTS model, due to the location of the

sources across ASP2. The energy radiated cumulates at the rupture front, resulting in a long period
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(a)

(b)
(c)

Figure 5.45: Geometry of the fault plane obtained by Shiba (2008). The three asperities ASP1 (blue),

ASP2(orange) and ASP3 (green) are indicated (a). In (b) the rupture time TR contour is shown. (c)

Sketch of the SEM3D numerical model including the three asperities proposed by Shiba (2008) and

Shiba et al. (2011).

Table 5.3: Properties of the characterized source model proposed by Shiba et al. (2011) and inferred

from the inverted slip source distribution.

ASP1 ASP2 ASP3

Effective stress (MPa) 23.15 20.84 19.91

Seismic moment (Nm) 1.09 2.11 1.43

Fault area (km2) 5.6×4.2 5.6×7.0 5.6×5.6

Rupture Velocity (km/s) 3.0 2.8 3.0

Rise time (s) 0.4 0.4 0.4

impulsive wave-form impinging KKNPP, unlikely to occur. This is one of the prior shortcoming

related to the simplified assumption made in this preliminary step of the analysis.

In terms of GMPEs, the brand new simulation seems more coherent with the recordings instead of

respecting the empirical prediction, both in terms of PGA (Figure 5.48b) and PGV (5.48d). Although

GMPEs are a reliable predictive tool, they might be influenced by the sake of generality and fail into

estimating local site- and scenario- specific features, such as it is likely to occur herein. Evidently,

when high-quality recordings are available, one must confront with real data instead.

5.5.3 Conclusions

This section presents some preliminary results concerning the simulation of the NCOEQ-2007 main

shock. The extended fault rupture was first calibrated at low-frequency, by means of a semi-analytical

solution. Thereafter, a distribution of point-wise double-couple moment tensors was employed to

discretize the fault asperities and reproduce the overall mechanism, by SEM3D broad-band analy-

ses. The results are rather promising, although majors simplified assumptions were introduced in the

modelling. This preliminary investigation represents a solid basis for further numerical analysis, en-
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(a) (b)

Figure 5.46: Equivalent point-source model for extended fault mechanism. (a) Simplified model

inspired by Shiba et al. (2011) slip contour, with seven double-couple points (PTS). (b) Refined

model inspired by Shiba et al. (2011) slip contour, with a grid of double-couple points (GRD).
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Figure 5.47: Synthetic velocity time histories obtained with the multi-point source SEM3D simulation

for PTS model (red traces) and GRD model (green traces) compared to NCOEQ2007 recordings

(blue traces). Comparisons along the FP/FN direction at recording stations 1G1 (a-d) and 5G1 (b-e),

within KKNPP site and at KNET station NIG018 (c-f). Both recordings and synthetics were low-pass

filtered at 5.0 Hz.

compassing a reliable kinematic model of the fault offset.

As things stand at present, the numerical implementation of a kinematic model of the fault rupture

is being tested in SEM3D. The slip patch provided is obtained by an external software RIKsrf 5

(Gallovič, 2016). This software is a slip rate generator for earthquake strong ground motion simu-

lations using an advanced kinematic source model based on the model of Ruiz et al. (2011). Main

features of the RIK model are the introduction of randomly distributed overlapping sub-sources with

fractal number-size distribution. Their position can be constrained by prior knowledge of major asper-

ities (stemming, e.g., from slip inversions), or can be completely random. This fractal composition

of the source model implies that the slip decays as k−2 at high wavenumbers k. The rise time is

considered to depend on sub-source radius due to the positive correlation between slip and rise time

5source: https://github.com/fgallovic/RIKsrf
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Figure 5.48: Horizontal geometric mean of Peak Ground Acceleration (PGAH , portrayed in the left

column) and Velocity (PGVH , portrayed in the right column) obtained by SEM3D simulations of the

Mj6.8 MS event. Synthetic peak ground motion values from model Shiba2008 and Shiba2011 are

compared to the GMPE proposed by Fukushima (2007). (a-c) Recorded peak ground motion values

(from Kik-Net, KNET and KKNPP database); (b-d) SEM3D simulations performed by introduc-

ing three point-wise double couple sources corresponding to the three asperities outlined featuring

Shiba2008 model (red circles) and Shiba2011 model (green triangles). Thick black line represents

the median PGAH /PGVH stemming from the chosen GMPE; dashed black lines (±σ) represent the

standard deviations.
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as observed in dynamic source modeling. The latter two properties ensures ω−2 decay of resulting

source time function. Rupture velocity and rise time can follow local S-wave velocity profile, so that

the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong

ground motions. Rupture velocity can be either constant or with have random variations, which re-

sults in irregular rupture front while satisfying the causality principle. The generated slip rates can

be simply incorporated in any numerical wave propagation code without requiring any cross-over fil-

tering with stochastic Green’s functions. RIKsrf provides slip rate functions on a finely discretized

source that result in synthetics with the desired ω−2 spectral decay in broad-band (up to 10.0 Hz)

frequency range.

Another foreseen investigation concerns the role of the soil behaviour on the seismic site response,

whose non-linear features have been widely recognized and modelled at the borehole scale (Kayen

et al., 2009; Pavlenko and Irikura, 2012; Yee et al., 2011). To this end, a first attempt to perform

a source-to-site non-linear site-response analysis was made by Pavlenko and Irikura (2012), using

methods of stochastic finite-fault modelling to estimate the input motion to the soil layers during the

main shock (recorded by the deepest sensor of the vertical array, e.g. SG4) for f<10 Hz. Following

the holistic approach presented herein, however, the complete source-to-site analysis must be refined

in terms of minimum wave-length solved by the computational model, as well as of topographical

detail and, last but least, of shallow geological layers. To this end, the model described in this chapter

my be poorly suitable for a so detailed and localized analysis. However, it may be efficiently exploited

in the context of the Domain Reduction Method (DRM) proposed by Bielak et al. (2003a) and Bielak

et al. (2003b). A first attempt, in this sense, has been made by Quinay et al. (2013), who applied

the DRM to the KKNPP case, although their analysis was limited to 1 Hz. However, the proved

efficiency of SEM3D in terms of broad-band propagation would surely improve those results. More-

over, SEM3D is already equipped with a non-linear constitutive behaviour (implemented by me, in

the framework of the present research study) and a generator of 3D Gaussian random fields to model

the soil heterogeneity (see Chapter 3).
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6

Conclusions and Perspectives

“If we knew what it was we were doing, it would not be called research, would it?”

– Albert Einstein

The SINAPS@ project, which entirely financed this work, was conceived to gather the informa-

tion coming from the earthquake engineering and the seismology to integrate them into an omni-

comprehensive computational framework. The declared intent is to improve common design prac-

tices of critical structures (i.e. nuclear power plants) and revise the existent ones, with an innovative

physics-based and source-to-structure slant. To this end, the chosen applicative case all the SINAPS@

workpackages are referring to is the seismic response of the Kashiwazaki-Kariwa Nuclear Power

Plant, during the 2007 Niigata-Ken Chūetsu-Oki . The latter is a well documented seismic scenario,

suitable for deep investigations on the near-field conditions, non-linear site-effects and structural anal-

ysis. Moreover, the site has been object of the KARISMA numerical benchmark, which highlighted

some critical aspects of the site and structural response.

In this work, I have explicitly focused on some crucial aspects of the physics-based modelling of

the NCO earthquake scenario. Inspired by the proposals of SINAPS@, the forging idea of the PhD

project was to analyze all (or almost all) the different aspects of the problem, from a holistic point of

view, featured by an uncertainty quantification. I avoided to concentrate only on a specific aspect of

the whole computational framework, since I see the Engineering Seismology as a multi-disciplinary

and multi-objective topic, which requires critical judgment and deep understanding of all the mech-

anisms influencing the wave-field propagation from the source to the structure. I preferred, instead,

to provide a colorful panorama of the tools, methodologies (along with their criticality) current em-

ployed in computational earthquake engineering.

The earthquake-induced ground shaking scenario was first investigated and understood by analyzing

the available seismic record database, partially referring to the KKNPP site and partially belonging to

the K-NET/Kik-Net Japanese strong ground motion network. To this end, Chapter 2 present an exten-

sive review of the consistent (yet hollow) piece of information available on the site. This was intended

to pave the way to complex physics-based analyses, helping in understanding the phenomenon and

constrain the numerical model. The analysis of the seismic records highlighted the impulsive nature

of the wave-motion (typical of near-field conditions) along with the non-linear degradation of the stiff-

ness of the shallow clayey and sandy deposits. The information provided regarding the velocity pro-

file and the degradation curves were revised and modified so to be able to reproduce the site response

by means of the Equivalent Linear Method. Further improvements are however possible, running

for instance site-specific non-linear 1D and 3D analyses to reproduce the site de-amplification, along

with the ground settlements observed (for further acknowledgements, please refer to Yee et al., 2011).
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However, the main objective of this work is to quantify the uncertainty related to the practice of

simulation-based earthquake predictions, from the source to the site-effects, in accordance with the

philosophy of the SINAPS@ project. The second major effort of my thesis has been to produce

realistic broad-band time-histories, either by pushing to the limit the accuracy of the deterministic

computational models (i.e. ∼ 7 Hz), either by coupling them with meta-modelling predictions, such

as the Artificial Neural Networks.

The first strategy is intrinsically related to the appropriateness of the earthquake rupture and of the

3D crustal models and rheology. Given the multifaceted nature of the earthquake phenomenon, the

construction of realistic seismic scenarios was performed by exploiting different computational tools.

Inspired by the SCEC philosophy, I participated into the construction of a HPC (High-Performance-

Computing) multi-tool platform, whose main core is represented by a 3D Spectral Element code to

solve the wave-propagation problem in viscous non-linear solid and fluid materials on massively par-

allel supercomputers. The code is featured by a highly scalable random field generator to simulate

Earth’s crust heterogeneity, along with a high-performance 27-tree based meshing tool to produce

numerical model representing Earth’s chunks, including topography and bathymetry. In a common

context of lack of inherent data, verification and validation against observation are the principal means

by which the predictive capability of ground motion simulation methods and their implementation can

be assessed. This is the reason why in Chapter 3, the due verification tests have been provided along

with the general presentation of the tools of virtual laboratory mentioned earlier. Moreover, a prelimi-

nary study on the effect of heterogeneous and non-linear soil deposits on the broad-band wave-motion

coherency at the surface is assessed.

The core of this thesis is the physics-based simulation of the KKNPP during the Niigata-Ken Chūetsu-

Oki . The numerical model was constructed by progressively including further ingredients and back-

verifying the upgraded version at each time. The main issue I tackled was the effect of the geology on

the regional wave-field. The earthquake source process was investigated as well, although preliminary

results were provided. The simulation of two small aftershocks steered the calibration of the geologi-

cal profiles, i.e. the broader, layered 1D geological structure, suitable for the low-frequency (0.0-0.5

Hz) regional wave-field and the refined 3D folded model to depict the spatial variability at KKNPP

(up to 7.0 Hz). The latter analysis unveiled the reason behind the great ground motion incoherence

recorded within relative short distances at the nuclear site: the syncline-anticline structure lying below

the site caused a wave-motion drift towards Unit 1, where higher amplitude were effectively noticed.

This implies the need for an accurate investigation of the deep geological profiles (i.e. up to ∼ 5.0 km

of depth) when the critical and spatially extended structures are designed, other than the geomechani-

cal characterization of shallower (i.e. up to ∼ 500 m of depth) soil deposits, responsible of non-linear

site-effects.

Although less significant for slender and elongated structures (such as bridges), the need for broad-

band synthetic earthquake seismograms is vital for the design of nuclear facilities, due to the presence

of peculiarly rigid structures (such as the nuclear reactors) conceived for safety issues and embedded

in the first meters of soil down depth. A critical factor in the numerical solution of the 3D wave equa-

tion with comprehensive physics is that the maximum frequency that can be modeled is a function of

the model spatial resolution (i.e. grid spacing). Doubling the maximum frequency of the simulation

generally results in an increase in computational demands (Bradley et al., 2017). Chapter 4 outlines

a new procedure (called ANN2BB) for the hybrid generation of broad-band synthetic time-histories.

This strategy bypass the hinder of burdensome computations, slightly deviating from the trending way

of improving the earthquake prediction at larger frequency bands by simply constructing more com-

plicated and fancy models. However, ANN2BB bares upon physics-based numerical simulations, by

coupling the latter with the outcome (i.e. short-period pseudo-spectral ordinates) of Artificial Neural

Networks, opportunely trained on heterogeneous seismic databases. This hybrid approach gravitates
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around the need for realistic time-histories, whose response spectrum is compatible to the recorded

observations. ANN2BB was applied to some recent Italian earthquake scenarios, with interesting

results in terms of site-specific estimated time-histories. It represents a very appealing alternative to

fully deterministic analyses, whenever the physical mechanism lying behind the observed records are

not easy to be modelled at a certain scale. As immediate perspective, ANN2BB is about to be applied

at a regional scale, so to portray reliable shaking maps and to calibrate lagged-coherency functions in

a 0.0-20.0 Hz band. With the respect to traditional hybrid approaches (based on empirical or semi-

empirical methods), ANN2BB should be able to preserve the ground motion coherency observed at

low-frequency. It is in my belief that ANN2BB represents a smart meta-modelling technique to ef-

fectively cope with the lack of data, of suitable models, of computational resources and, least but last,

of a deeper understanding of the earthquake phenomenon.

My PhD thesis represents the conceptual and computational foundation for further developments,

intended to improve the multi-tool platform conceived for hybrid physics-based multi-scale simula-

tions. Although not totally exhaustive in all the issues tackled, this document can be seen as a seminal

work to be integrated in the very near future with the aspect listed below.

• Despite the argued inadequacy of the Armstrong-Frederick non-linear model to describe the

non-linear soil behaviour at a laboratory scale, the key point of this choice the ease of imple-

mentation and the paucity of model parameters required. Moreover, the model efficacy was

proven, when assessing the effect of the non-linearity on the earthquake ground motion co-

herency, paired with the description of the soil heterogeneity. Viewed in perspective, however,

this choice does not diminish the overall quality of the analyses when considering the scale of

the problem (i.e. ∼ 100 km). The typical spatial discretization (i.e. element size of ∼ 100 m)

introduce a major approximation of the propagated wave-field, masking the secondary pecu-

liarities of the cyclic hysteretic model chosen to represent the soil behaviour. However, a more

adequate elastic-plastic non-linear model is going to be implemented in the next months, so

to provide to SEM3D the necessary flexibility to accurately handle both regional-scale wave-

propagation problems and specific site-scale ones. Put in perspective, this further effort is

complementary with current parallel developments to couple SEM3D with a structural code

(Code Aster, developed by EDF) to perform Soil-Structure Interaction studies on nuclear facil-

ities.

• Strong earthquake ground motions are caused by the dynamic rupture of large portions of the

Earth’s crust, along major active faults. In this study, the complex slip distribution and rupture

path was approximated by asynchronous double-couple source points, located in the surround-

ings of the major fault asperities. However, a numerical implementation of the kinematic finite

fault model is being developed in SEM3D. The idea is to discretize the rupture surface by a fine

computational grid. Each grid point is treated as a point-wise double-couple seismic source,

whose fault offset time-history is provided by an external software, such as RIKsrf 1. The Ruiz

Integral Kinematic (RIK) earthquake source model (Ruiz et al., 2011) provides slip rate func-

tions on a finely discretized source that result in synthetics with the desired ω−2 spectral decay

in full (broad-band) frequency range (fmax = 10.0 Hz). Currently, the due canonical verifica-

tions are being performed. However, in the very next few months, this tool will stably join the

multi-tool platform we are constructing within the framework of the SEISM institute.

• The meshing code employed in this work, HexMesh, is currently under development, so to refine

the structured mesh issued from the Digital Elevation Model, so to handle complex bathymetries

and coastline discontinuities.

1https://github.com/fgallovic/RIKsrf
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The practice of earthquake ground motion prediction is progressively drifting towards the forward

all-embracing numerical simulation of the seismic scenarios. Despite the non-negligible intrinsic

difficulties of producing realistic ground shaking simulations, physics-based numerical predictions

of past earthquakes have been performed successfully so far. All over the world, seismologists and

engineers are striving to increase the accuracy of seismological/geotechnical models along with the

computational power of the numerical models required to carry the simulations out. Past and well doc-

umented strong-ground motion scenarios improve the understanding of complex phenomena from the

source to the site with evident conceptual benefits if compared to empirical ground motion models

based on worldwide data from historical earthquakes (Bradley et al., 2017). However, such determin-

istic approach suffers from great epistemic and aleatory uncertainty, which observations can rarely

solve. One of the major problem concerns the detailed modelling of the high-frequency part of the

recorded seismograms (see the objectives of the SCEC research plan).

Source-to-site deterministic models capable of portraying all the factors competing and interacting

into producing broad-band (0.0-20.0 Hz) time-histories are still poorly constrained. As a matter of

fact, a complete analysis should take into consideration the multi-scale thermo-hydro-mechanical

processes responsible of the earthquake initiation and evolution, the complex interaction between

radiated wave-field and complex 3D geological structures (often poorly described) including attenu-

ation and scattering and, last but least, the site-effect triggered as the wave-fields propagates into the

shallow geotechnical layers. If the structural components are included, the soil-structure interaction

should be taken into consideration as well. It is evident that this highly non-linear and aleatory prob-

lem represent a hard challenge to be tackled with a purely deterministic approach.

Therefore, broad-band seismograms are nowadays routinely produced via hybrid approach, with quite

a success. The latter consist in matching the low-frequency part of the signal, obtained by rigorous

and well constrained physics-based simulations, with the high-frequency counterpart, obtained by

semi-empirical or stochastic approaches. Meta-modelling is another appealing alternative, as for in-

stance the employment of Artificial Neural Networks.

In this optics, the practice hybrid physics-based has become the most attractive tool for a solid Earth-

quake Ground Motion Prediction. Due to the technological and computational resources demanded

to this end, multi-tool platforms have been developing ever since, along with consistent and multi-

purpose databases (such as the Community Models constructed by the SCEC). Within the framework

of the SINAPS@ project, a similar effort has been and will be done, targeting the response of nuclear

facilities in France and all over the world.

Forward simulations serve therefore as a solid tool to improve hazard assessment and mitigation of

large urban areas from future events. As a matter of fact, this deterministic approach can seal some

holes in the databases employed for broad-band Probabilistic Seismic Hazard Analysis (PSHA) and

improve its disaggregated output. For instance, PSHA studies in region characterized by low to

moderate seismicity, such as continental France, suffer of lack of strong ground motion recorded in

near-field conditions. As far as the seismic design of critical structures is concerned (e.g. nuclear fa-

cilities), existent seismic scenarios are to be integrated with the outcome of physics-based simulated

seismic responses, obtained both in operational and in extreme conditions. The KKNPP embodies

a representative test case, in this sense, since it was conceived with a twofold design threshold: an

Operating Basis Earthquake (OBE), for which the plant is expected to remain elastic, and the Safe

Shutdown Earthquake (SSE), which triggers the shutdown of the facility (Pavlenko and Irikura, 2012).

This strategy entails a strong interaction with the Probabilistic Seismic Demand Analysis (PSDA),

a performance-based engineering procedure that combines ground motion hazard information with

probabilistic structural response, providing a realistic distribution of ground motion intensities con-

tributing to exceedance of a given structural response level. PSDA disaggregation is combined with

the PSHA counterpart, so to determine the distribution of Magnitude-Distance pairs entailing the ex-
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ceedance of a given structural response level. A typical design tool that PSDA provides is represented

by the so called fragility curves. Disaggregation procedures with a vector-valued measure of ground

motion intensity are available as well (Baker et al., 2005). When the tectonic and geological context

is known, the calibrated numerical model can be routinely employed by changing source position

and intensity, performing rigorous and detailed stress-tests on the seismic response of critical struc-

tures. This information provides additional insight to the engineer, and is also useful for verifying

that a sufficient range of ground motion levels has been considered the assessment of a structure.

Moreover, Operational Earthquake Forecasting and Earthquake Early Warning need for increased

high-fidelity predictability, thanks to physics-based forecasting models, conditioning early-warning

algorithms (Baker et al., 2005).
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Appendix A

The Spectral Element Method

A.1 Introduction

Partial Differential Equation (PDE) solutions can be approximated by exploiting different numerical

methods. Spectral-type methods are based onto a discrete solution in the form of high-degree polyno-

mial, thus being very accurate when smooth solutions are sought. On the other hand, singularities in

the analytical are poorly represented, as well as domains with irregular boundaries are barely handled

by those methods (unless domain decomposition methods are considered, Patera, 1984).

The Finite Element Method (FEM) solves PDEs by discrete approximating functions restricted to very

small domains (called elements), yet exploiting low-degree polynomials. The method is well suited

to problems with complex geometries and full non-linearities (both geometric and material-related).

Nevertheless, its accuracy is limited by the polynomial degree (Ciarlet, 2002).

Several attempts have been made (see e.g. Patera, 1984; Babuska et al., 1981; Bernardi et al., 1990,

among others) to combine the two methods into a unified framework, and thereby obtaining the advan-

tages of both. The main idea consists of a decomposition of the domain into (rather) small regularly

shaped sub-domains so as to fit the geometric complexity of the boundary, and then use high-degree

polynomials in each sub-domain to approximate the solution. Two different approaches have been

proposed: the Spectral Element Method (SEM) and the pFEM. finite element method. The SEM

(Patera, 1984; Maday et al., 1987; Mayday et al., 1989) consists of using a spectral algorithm on a

fixed number of sub-domains. On the opposite side, the so called p-version of the Finite Element

Method exploits the discrete functions in the form of polynomials of fixed high degree on each ele-

ment. These methods are fundamentally different, first by their origin but also, and mainly, because

the bases and quadrature formulas required by the numerical discretization of the methods are com-

pletely different. In the Spectral Element Method, the sub-domains have to be curved parallelepipeds;

this leads to the use of tensor-bases, so that consistent quadrature rules can be employed to compute

the different integrals of the problem. This is not in general the case for the pFEM, and the resulting

numerical problems are completely different, even in the number of operations required. The two

methods present the same asymptotic behaviour but the operations count for the resolution of the re-

sulting discrete equations is different. The idea presented in (Bernardi et al., 1990) is very different

(see also Korczak and Patera, 1986). It consists of dividing the domain where the problem is to be

solved in two parts; then, the problem is approximated by a finite element method on one part and

by a spectral method on the other. Consequently, the discrete space consists of functions which are

piecewise polynomial on one part and a high-degree polynomial of the other, and which satisfy a

matching condition on the interface. Two kinds of such matching conditions are presented, analyzed

mathematically and compared in (Bernardi et al., 1990): the first kind is a point-wise one, i.e., one

requires the functions to be continuous at the nodes of the finite elements of the interface; the second

kind is an integral one, where one requires the trace of the FEM function on the interface to be the
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L2 projection of the trace of the polynomial onto the finite element space. Of course, both algorithms

are nonconforming in the general case, since it is impossible to match a high-degree polynomial and

a piecewise polynomial function on the interface.

The most important conclusion of (Bernardi et al., 1990) is that, whatever the regularity of the exact

solution is, better convergence results are obtained in the case of the integral matching condition. For

this reason, an integral approach has been adopted herein.

A.2 Spectral Element Method: key points

Consider a PDE problem P (u) defined over the spatial domain Ω and with suitable boundary and

initial conditions. In the Finite Element Method, the domain is subdivided into elements of size h
and the solution u is approximated with piecewise polynomials of degree k in each element (usually,

the adopted polynomials are of very low degree, being k = 1,2). Then, if u is sufficiently smooth, the

approximated solution uh converges to u as:

lim
h→0

‖u− uh‖L2(Ω) = lim
h→0

Chk+1 (A.1)

where ‖ · ‖L2(Ω) represents the L2 error norm defined as:

‖ · ‖L2(Ω) =
(∫

Ω
| · |2dV

) 1
2

(A.2)

and L2 the space of square-integrable functions. In the Spectral Element Method, quadrature points

are the so called Gauss-Legendre-Lobatto points (GLLs) Dave and Armstrong (1970). The coordi-

nates of those points may be defined as follows. Consider a normalized 1D domain D := [−1; 1] ∈ R

and the N-degree Legendre polynomial LN (ξ) : D → R, defined recursively as:

L0(ξ) = 1, L1 (ξ) = ξ

(k + 1)Lk+1 (ξ) = (2k + 1) ξLk (ξ) − kLk−1 (ξ) , k ≥ 1
(A.3)

The spatial coordinates ξp
N of the ensemble of GLL points ΞN+1 := {ξN

0 , ξ
N
1 , ..., ξ

N
N } ∈ [−1; 1]

correspond to the N − 1 roots of the LN first space derivative L
′

N (ξ) and the extremes of D, {−1; 1}
(Canuto et al., 1988):

ΞN+1 := {ξi |
(
1 − ξ2

)
L
′

N (ξ) = 0}, i ∈ [0;N ] ∩ N (A.4)

The latter set defines the N + 1 GLL nodes in each space direction.

The spectral solution is then approximated with Lagrange interpolating polynomials ψm
N (ξ)∈ lN (ξ) :

D → R centered at each l GLL point (located at ξl):

ψl
N (ξ) =

N+1∏

k=1,k 6=l

ξ − ξk

ξl − ξk
= − 1

N (N + 1)

(1 − ξ2)L′N (ξ)

(ξ − ξl)LN (ξl)
(A.5)

The first evident implication of the Lagrange polynomial definition in Equation A.5 is the following:

ψl
N (ξm) = δlm (A.6)

being δlm1 the Kronecker’s delta.

In analogy with the FEM, the SEM approximated solution uN of P (u) convergence is stated as:

lim
N→∞

‖u− uN‖L2(Ω) = Ce−αN (A.7)

1apexes corresponds to the nodes at which the function is evaluates
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Thus, by comparing Equation A.7 with Equation A.1 one can see that the SEM converges more rapidly

than the FEM or, equivalently, it is more accurate for a given number of nodal points, a property

known in the literature as spectral accuracy. This is the basic reason why spectral elements are being

preferred to model the linear part of the domain. Note that forN very low, i.e. N = 1,2, the position of

the GLL nodes and therefore the shape of the element coincides with the shape of the corresponding

Finite Element. After Tromp et al. (2008), using 4th or 5th order Lagrange polynomial might provide

a best trade-off between accuracy and computational time. However, typically much higher values

of N are used in the SEM, e.g. 3 < N < 10, and in these cases the spacing of the nodes is not

even: the nodes tend to cluster near the element borders and are rarefied in the interior (Komatitsch,

1997). In particular, if h is the distance between the extreme nodes, the grid spacing decrease as 1/h
at the center, whereas it diminish to 1/h2 close to the interval boundaries (Delavaud, 2007). This

fact is a potential serious drawback as far as the use of such elements in an explicit time integration

context is concerned (Casadei and Gabellini, 1997). In fact, explicit methods are conditionally stable,

and the critical integration step is proportional to the minimum intra-nodal distance, as stated by the

so called Courant-Friedrichs-Levy condition (CFL) (Casadei and Gabellini, 1997). While the FEM

usually employs a uniform grid within each element, so that the critical time step ∆tmax ∼ N−1,

in the SEM with GLL grid the dependency is on ∆tmax ∼ N−1. Thus the use of too fine spectral

discretization is rather cumbersome in an explicit context. That is why an efficient parallelization is

required (Göddeke et al., 2014). Besides the relative position of the nodes, another relevant practical

characteristic of the SEM with the respect to the FEM is the spatial integration rule adopted in order to

compute the element’s integrals. As a matter of fact, in order to preserve the high accuracy of the SEM

approximation, the GLL is used, so to efficiently take into consideration the boundary conditions. In

the FEM, the well-known Gauss quadrature rule is exploited, the sampling points ξk being internal to

the element’s domain and the optimal accuracy o (2N − 1) with N sampling points (in 1D, Canuto

et al., 1988): 



∫ 1

−1
φ (ξ) dξ =

N∑

k=0

φ
(
ξk
)
ωk, ∀φ ∈ P2N−1

ωk =
2

N (N + 1)

1

LN (ξk)
> 0

(A.8)

(A.9)

It turns out that the points at which the unknown variables (displacements, velocities and accelera-

tions) are solved do not coincide with the grid points where the element variables (strains, stresses

and material-related quantities) are evaluated. In the SEM, on the other hand, it appears more natu-

ral to use the GLL integration rule, because in this way the sampling points coincide with the nodal

points. This has a very important practical advantage, in that all the element integrands containing

expressions involving the element’s shape functions ψ, are easily evaluated at these very points thanks

to the properties A.6 (Casadei and Gabellini, 1997).

A.3 Governing equations

Let us consider an elastic medium occupying an open domain Ω ⊂ Rd bounded by a smooth bound-

ary ∂Ω, with the closure Ω̄ = Ω ∪ ∂Ω. Let us call It = [0, T ] ⊂ R+ the time interval of interest.

The displacement and velocity fields are denoted as u (x; t) : Ω̄ × It → Rd and v (x; t) = u̇ (x; t)
respectively (with �̇ indicating the material time derivative). The Euler-Lagrange equations of elas-

todynamics can be stated as (Lagrange, 1853):

{
∇x.σ (u (x; t) ; v (x; t)) + b (x; t) = ρ (x; t) v̇ (x; t) ∀ (x; t) ∈ Ω × It

ρ (x; t) v (x; t) = ρ (x; t) u̇ (x; t)

(A.10)

(A.11)
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with ρ (x; t) = ρ (x) > 0, ρ (x) ∈ L∞ (Ω) the unit mass density, b (x; t) ∈ [L2 (Ω × It)]
d

the

body forces, σ (x; t) : Ω̄ × It → S ⊂ Rd×d the symmetric Cauchy stress tensor. Here S is the

subspace of symmetric second-order tensors of dimension d(d + 1)/2. The relationship between σ

and displacement/velocity fields u (x; t) v (x; t) depends on the chosen rheology, and it will made

explicit in the following paragraphs. However, when the solid domain is considered as purely elastic

and isotropic, σ (·) is a linear map expressed as follows:

σ (u (x; t)) = λ (x)Tr
(
ε

x
(u (x; t))

)
+ 2µ (x) ε

x
(u (x; t)) (A.12)

with λ (x), µ (x) are the so called Lamé coefficients, and the linear operator ε
x

(·) is the small strain

tensor, defined as:

ε
x

(u (x; t)) = u ⊗s ∇x (x; t) (A.13)

being · ⊗s ∇x the symmetric gradient operator. However, the stress strain relationship is not always

linear (see for instance the elasto-plasticity theory). The dependency on the velocity field kicks in

when modelling viscosity.

Equations A.11 is supplied with the initial conditions:

{
u (x; 0) = u0 (x) ∀ (x) ∈ Ω

v (x; 0) = v0 (x) ∀ (x) ∈ Ω

(A.14)

(A.15)

and the following Neumann’s boundary condition:

tn = σ (x; t) .n (x; t) = tn,0 (x; t) ∀ (x; t) ∈ ΓT × It (A.16)

with ΓT ⊆ ∂Ω the surface where the Neumann’s conditions are applied. For the sake of simplicity,

ΓT = ∂Ω and a free-surface is assumed (i.e. tn,0 = 0).

A.4 Variational formulation of the elasto-dynamic problem

The solution of the Euler-Lagrange equation, supplied by complex boundary conditions, rarely has a

closed form. However, u (x; t) may be sought in the functional space of the kinematic-admissible

fields St defined as follows:

St := {u (x; t) : Ω × It → R
d|u ∈ H1 (Ω)d , ∀t ∈ It;

u (x; t) = g (x; t) , ∀ (x; t) ∈ ΓD × It}
(A.17)

where H1 (Ω) represents the Sobolev’s space of the functions in L2 (Ω) = H0 (Ω) with their gradient

(in a distributional sense) in [L2 (Ω)]
d
. g represents the eventual displacement imposed as Dirichlet’s

condition onto the boundary ΓD ⊆ ∂Ω. Furthermore, the space of admissible displacements δS is

expressed as:

δS := {w (x) : Ω → R
d|w ∈ H1 (Ω)d ;

w (x) = 0, ∀x ∈ ΓD} (A.18)

At this point, the variational formulation consists in finding the couple (u,v) ∈ St × St that solves,

for all test functions w ∈ δS and ∀t ∈ It, the following equations, obtained by multiplying left-
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and right-hand sides of Equations A.11, A.15 and A.16 by the kinematic admissible field w (x) and

integrating over the domain volume Ω (Komatitsch and Vilotte, 1998):





(w (x) , ρ (x) v̇ (x; t))Ω = (w (x) , b (x; t))Ω − AΩ (w (x) ,u (x; t)) +
(
w (x) , tn,0 (x; t)

)
ΓT

(w (x) , ρ (x) v (x; t))Ω = (w (x) , u̇ (x; t))Ω

(A.19)

(A.20)
with initial conditions: {

(w (x) ,u (x; 0))Ω = (w (x) ,u0 (x))Ω

(w (x) ,v (x; 0))Ω = (w (x) ,v0 (x))Ω

(A.21)

The inner products in Equations A.20 and A.21 are defined as :

• (w,u)Ω =
∫

Ω w.udVx

• (w, tn)ΓT
=
∫

ΓT
w.tndSx

and bilinear form AΩ(w,u) is defined by:

AΩ(w,u) =
∫

Ω
(∇x ⊗ w) : σ (u) dVx (A.22)

The bilinear form in Equation A.22 is symmetric, V-elliptic and continuous (Antonietti et al., 2012).

The variational formulation may therefore be rewritten in a more generic way as:

Find the couple (u; v) ∈ St × St that solves the equations:

{
∂t (w, ρv)Ω + AΩ (w,u)Ω = L (w) , ∀w ∈ δS
∂t (w,u)Ω = (w,v)Ω

(A.23)

(A.24)

where ∂t represent the time-derivative, and L : δS → Rd represents a linear functional and is equal

to (w, b)Ω +
(
w, tn,0

)
ΓT

. The solution of the variational formulation in Equation A.20 corresponds

to the minimum of the energy associated to the Euler equation (Delavaud, 2007).

A.5 Spatial discretization

Semi-discrete approximation of the variational problem

The domain Ω̄ is discretized into Ne elements Ω̄e such that Ω̄ = ∪e=1,Ne
Ω̄e and the intersection

between two distinct elements e
′

and e Ω̄e
′ ∩ Ω̄e is an element’s corner, edge or face. In turns, the

semi-discretized problem reads:

Ne∑

e=1

(we (xe) , ρv̇e (xe; t))Ωe
=

Ne∑

e=1

(we (xe) , be (xe; t))Ωe
−

−
Ne∑

e=1

AΩe
(we (xe) ,ue (xe; t)) +

Ne∑

e=1

(we (xe) , te; t (xe))Ω̄e∩ΓT

(A.25)

Equation A.25 represents the semi-discrete approximation of the variational formulation expressed

in Equation A.20, with each of the terms approximated by the all the single element contributions,
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according to: 



(w (x) , ρ (x) v̇ (x; t))Ω =
Ne∑

e=1

(we (xe) , ρv̇e (xe; t))Ωe

(w (x) , b (x; t))Ω =
Ne∑

e=1

(we (xe) , be (xe; t))Ωe

AΩ (w (x) ,u (x; t)) =
Ne∑

e=1

AΩe
(we (xe) ,ue (xe; t))Ωe

(w (x) , t (x; t))ΓT
=

Ne∑

e=1

(we (xe) , te; t (xe))Ω̄e∩ΓT

(A.26)

(A.27)

(A.28)

(A.29)

where the footnote e represents the restriction of the Cartesian system of physical spatial coordinates

x to Ω̄e. The latter discretization of the physical domain defines a quadrangulation Ih
(
Ω̄
)

, h referring

to the scale of the characteristic dimension that parametrizes the geometric discretization.

Geometrical mapping

In the spectral element geometrical computations (which are performed before entering the time loop

for the transient solution), as well as in many other models, the following problem is encountered:

given a point P and a geometrical figure (e.g., an element or an element face), determine whether or

not the point lies within the figure. Sometimes, in the case that the point lies inside, it is also required

to determine the normalized coordinates of the point with respect to the figure. This problem can

be viewed as the inverse of the mapping transformations often used in Finite Element formulations.

Therefore, on each element the quadrature formulas (see integrals above) are defined over a Cartesian

hyper-cubic reference domain �Ω = [−1; 1]d (see Figure A.1). In this sense, each spectral element

Figure A.1: 8-node hexahedral reference element and the mapping function

Ω̄e represents the image of �Ω by means of the regular diffeomorphism Fe, i.e. the invertible function

which maps the smooth manifold �Ω to another Ω̄e, such that both Fe and its inverse F−1
e are smooth

(i.e. their derivatives of all orders are defined everywhere in their respective domains). This map can

be expressed as follows:

Fe : �Ω → Ω̄e| xe = x|e = Fe

(
ξ
)
, ξ = (ξ1, ..., ξd) ∈ �Ω (A.30)

where ξ is the Cartesian system of coordinates defined over the reference element �Ω. A suitable

and regular map Fe can be defined by means of the linear combination of the N = (N + 1)d2 multi-

2N represents the total number of control point on the element Ω̄e
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dimensional shape functions Ψ
L
(
ξ
)
, derived from the tensorization of 1D Lagrange polynomials

(one per direction) of order N . A sample of position of GLL points on a 2D element of 9th order is

shown in Figure A.2a, and an example of the 9th order Lagrange polynomials is shown in Figure A.2b.

The kth component of xe can be expressed as:

(a) (b)

Figure A.2: (a) Positions of GLL points on a 2D element of order 9. (b) Lagrange polynomial of

order 9 (Delavaud, 2007)

xek
=
N∑

L=1

ΨL
k

(
ξ
)
xL

ek

Ψ
L
(
ξ
)

=
d∑

k=1

ΨL
k

(
ξ
)

ek

(A.31)

(A.32)

where xL
ek

is the kth component of xL
e , set of physical coordinates of control points indexed asLwithin

the element e (i.e. whose coordinates are xL
e = xe

(
ξL
)

). ΨL
k

(
ξ
)

represents the kth component of

the d-dimensional shape function Ψ
L
(
ξ
)

and ek is the kth Cartesian unit vector. The vectorial index

L (useful for efficient numerical implementation) is expressed as a function Id of the d dimensional

multi-index (i1, ..., id):

Id : Nd → N

L = Id (i1, ..., id) , 0 ≤ ip ≤ N, p = 1, ..., d

(A.33)

(A.34)

The GLL coordinates
(
ξN

i1
, ..., ξN

id

)
associated to the multi-index (i1, ..., id) belong to the tensorial

product ⊗d
i=1Ξ

N+1
i . For instance, for d = 2 (see Figure) and considering the same number of nodes

N along the two directions, one gets L = I2 (i, j) = N (j − 1) + i.

Each of the ΨL
k

(
ξ
)

function can be referred as the tensor product between d Lagrange polynomials

(one per each Cartesian direction) of the type ψ
Lj

N (ξj) , 1 ≤ j ≤ d of degree N (see Equation A.5):

ΨL
k

(
ξ
)

= ⊗d
j=1ψ

Lj

N (ξj) (A.35)

where L = Id

(
{Lj}d

j=1

)
represents the generic computational node on the master domain �Ω, and

{Lj} the ensemble of GLL points defined on the master element edge [−1; 1] (Figure A.3). Equa-
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Figure A.3: Example of the diffeomorphism employed in the SEM.

tion A.35 stresses the isotropic nature of the set of shape functions, implying that:

xe =
NP∑

L=1

ΨL
(
ξ
)

xL
e (A.36)

One needs 4 and 8 or 9 control points for d = 2 and 8 and 20 or 27 control points for d = 3 to

obtain linear and quadratic geometry discretization. Note that, in general, the linear (or quadratic)

shape functions NL
(
ξ
)

=ΨL
1

(
ξ
)

(routinely employed in Finite Element) are used herein to map the

geometry. The high-order spectral functions are instead employed to interpolate the displacements u.

The analytical expressions of those shape functions and their derivatives may be found in Dhatt et al.

(2012). This formulation assures the geometric continuity along the element’s edges and faces, by

means of element-to-element interface coincidence. The described geometric discretization holds its

effectiveness even in case of distorted 3D elements, yet assuring non-zero determinant of the Jacobian

matrix. This is because the element geometry is defined (in a linear way) by the nodes of the so called

macro-element, not by those of the micro elements (i.e. defined by the ensemble of GLL within a

macro-element). In other words, the present spectral elements can be viewed as non-isoparametric

finite elements. The index L in Equation A.36 spans only the corner nodes (formally belonging to the

macro-element). A further difference from classical finite elements is that the Jacobian, and thus the

terms ∂xi

∂ξj
, are to be evaluated at the GLL points, and not at ordinary Gauss points.

Non-linear geometric mapping: a deeper insight

In this context, to invert the diffeomorphism Fe, one needs to compute the Jacobian matrix J of the

transformation and its determinant J . Assuming, for the sake of simplicity, d = 2, J can be expressed

as:

J =

[∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(A.37)

and its determinant J reads:

J =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
(A.38)

The inverse of the Jacobian matrix can be expressed as:

J−1 =

[ ∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]
=

1

J

[ ∂y
∂η

−∂x
∂η

−∂y
∂ξ

∂x
∂ξ

]
(A.39)

If one considers d = 3, the Jacobian matrix is expressed by the following expression:

J =




∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ


 (A.40)
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The determinant of the Jacobian matrix in 3D reads instead:

J =
∂x

∂ξ
A11 +

∂y

∂η
A22 +

∂z

∂ζ
A33

A11 =
∂y

∂η

∂z

∂ζ
− ∂z

∂η

∂y

∂ζ
, A22 =

∂x

∂ξ

∂z

∂ζ
− ∂z

∂ξ

∂x

∂ζ
, A33 =

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

(A.41)

(A.42)

Finally, the inverse of the Jacobian matrix reads:

J−1 =




∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z


 =

1

J



A11 A21 A31

A12 A22 A32

A13 A23 A33


 (A.43)

with the coefficient Aij,i6=j defined as:

A12 =
∂y

∂ζ

∂z

∂ξ
− ∂y

∂ξ

∂z

∂ζ
, A21 =

∂x

∂ζ

∂z

∂η
− ∂x

∂η

∂z

∂ζ

A13 =
∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η
, A31 =

∂x

∂η

∂y

∂ζ
− ∂x

∂ζ

∂y

∂η

(A.44)

(A.45)

When the spatial derivatives of shape functions have to be computed, the rule of chain derivative

applies:

∂ΨN
L

∂ξj
=

d∑

k=1

∂ΨL
N

∂xk

∂xk

∂ξj
(A.46)

Equation A.46 represents a linear system which has to be solved for the unknowns
∂ΨL

N

∂xk
, whose solu-

tion may be written as:

∂ΨL
N

∂xk

(
ξ
)

=
d∑

j=1

∂ΨL
N

∂ξj

(
ξ
) ∂ξj

∂xk
(A.47)

Specifying Equation A.47 for d = 2, one obtains:

∂ΨL
N

∂x
=
∂ΨL

N

∂ξ

∂ξ

∂x
+
∂ΨL

N

∂η

∂η

∂x
=

1

J

(
∂ΨL

N

∂ξ

∂y

∂η
− ∂ΨL

N

∂η

∂y

∂ξ

)

∂ΨL
N

∂y
=
∂ΨL

N

∂ξ

∂ξ

∂y
+
∂ΨL

N

∂η

∂η

∂y
=

1

J

(
−∂ΨL

N

∂ξ

∂x

∂η
+
∂ΨL

N

∂η

∂x

∂ξ

)

For d = 3 Equations A.47 becomes instead:

∂ΨL
N

∂x
=

1

J

[
∂y

∂ξ

(
∂z

∂η

∂ΨL
N

∂ζ
− ∂z

∂ζ

∂ΨL
N

∂η

)
− ∂y

∂η

(
∂z

∂ξ

∂ΨL
N

∂ζ
− ∂z

∂ζ

∂ΨL
N

∂ξ

)
+
∂y

∂ζ

(
∂z

∂ξ

∂ΨL
N

∂η
− ∂z

∂η

∂ΨL
N

∂ξ

)]

∂ΨL
N

∂y
=

1

J

[
∂z

∂ξ

(
∂x

∂η

∂ΨL
N

∂ζ
− ∂x

∂ζ

∂ΨL
N

∂η

)
− ∂z

∂η

(
∂x

∂ξ

∂ΨL
N

∂ζ
− ∂x

∂ζ

∂ΨL
N

∂ξ

)
+
∂z

∂ζ

(
∂x

∂ξ

∂ΨL
N

∂η
− ∂x

∂η

∂ΨL
N

∂ξ

)]

∂ΨL
N

∂z
=

1

J

[
∂x

∂ξ

(
∂y

∂η

∂ΨL
N

∂ζ
− ∂y

∂ζ

∂ΨL
N

∂η

)
− ∂x

∂η

(
∂y

∂ξ

∂ΨL
N

∂ζ
− ∂y

∂ζ

∂ΨL
N

∂ξ

)
+
∂x

∂ζ

(
∂y

∂ξ

∂ΨL
N

∂η
− ∂y

∂η

∂ΨL
N

∂ξ

)]

Substituting Equation A.35 in Equation A.47 and considering Equation A.6, the derivatives
∂ΨL

N

∂ξj
read

for d = 2:
∂ΨL

N

∂ξ

∣∣∣∣
ξr ,ηs

=
∂ψi

N

∂ξ

∣∣∣∣
ξr

ψj
N (ηs) =

∂ψi
N

∂ξ

∣∣∣∣
ξr

δjs

∂ΨL
N

∂η

∣∣∣∣
ξr ,ηs

= ψi
N (ξr)

∂ψj
N

∂η

∣∣∣∣
ηs

= δir ∂ψ
j
N

∂η

∣∣∣∣
ηs

(A.48)

(A.49)

(A.50)
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with L = I2 (i, j). For d = 3, Equation A.50 becomes:

∂ΨL
N

∂ξ

∣∣∣∣
ξr ,ηs,ζt

=
∂ψi

N

∂ξ

∣∣∣∣
ξr

ψj
N (ηs)ψj

N

(
ζ t
)

=
∂ψi

N

∂ξ

∣∣∣∣
ξr

δjsδkt

∂ΨL
N

∂η

∣∣∣∣
ξr ,ηs,ζt

= ψi
N (ξr)

∂ψj
N

∂η

∣∣∣∣
ηs

ψk
N

(
ζ t
)

= δir ∂ψ
j
N

∂η

∣∣∣∣
ηs

δkt

∂ΨL
N

∂ζ

∣∣∣∣
ξr ,ηs,ζt

= ψi
N (ξr)ψj

N (ηs)
∂ψk

N

∂ζ

∣∣∣∣
ζt

= δirδjs∂ψ
k
N

∂ζ

∣∣∣∣
ζt

with L = I3 (i, j, k).

A.6 Galerkin approximation of the solution

The semi-discretized problem in Equation A.25 is issued from the quadrangulation Ih
(
Ω̄
)

. Such a

discretization is preserved by replacing the infinite dimensional spaces St, δS (Equations A.17-A.18)

by the finite-dimensional subspaces St,h ⊂ St, δSh ⊂ δS, based on the polynomial approximation:

St,h := {uh ∈ St,uh
e = uh|Ω̄e

◦ Fe ∈ ⊗d
i=1 [PN (ξi)]} (A.51)

δSh := {wh ∈ δS,wh
e = wh|Ω̄e

◦ Fe ∈ ⊗d
i=1 [PN (ξi)]} (A.52)

with PN (ξi) representing the space of generic polynomials of order n ≤ N , defined over [−1; 1] and

employed in the non-linear mapping Fe
3. Taking into consideration the non-isoparametric mapping

described in paragraphs A.5-A.5, the sought element-wise polynomial approximation of the displace-

ment vector field uh
e = uh|Ω̄e

reads:

uh
k|Ω̄e

= INuk|Ω̄e
(x) =

N∑

r,s,t=0

uh
ek

(
ξN

r , ξ
N
s , ξ

N
t

)
φr

k (ξ1)φ
s
k (ξ2)φ

t
k (ξ3) (A.53)

with x = Fe

(
ξ
)

= Fe (ξ1, ξ2, ξ3), IN the Lagrange interpolation operator that ensures the C0 continu-

ity between elements, since the restriction uh|Ω̄e
is the unique polynomial in ⊗d

i=1PN (ξi) coincident

with u|Ω̄e
on the (N + 1)d

GLL points.

Therefore, taking into consideration the Gauss quadrature rule in Equation A.9, the generic inner

product of the semi-discretized formulation of the Euler-Lagrange Equation A.25 can be approxi-

mated on the tensorial grid ⊗d
i=1ΞN+1

i as follows:

(
wh

e ,u
h
e

)h

Ωe

=
∫

Ωe

wh
e (x) .uh

e (x) dVx ≃
N∑

α,β,γ=0

[
wh

e .u
h
e

] (
ξN

α , ξ
N
β , ξ

N
γ

)
Je

(
ξN

α , ξ
N
β , ξ

N
γ

)
ωαβγ

(A.54)

where Je

(
ξN

α , ξ
N
β , ξ

N
γ

)
represents the determinant of the Jacobian matrix J

e
= ∇ξFe (i.e. the gra-

dient of the non-linear geometrical mapping between master and physical elements) evaluated at the

GLL point
(
ξN

α , ξ
N
β , ξ

N
γ

)
and ωαβγ = ωαωβωγ . The approximation in Equation A.54 is not always

exact, since the product
[
wh

e .u
h
e

]
∈ P2N

3in this case PN (ξi) correspond to the space of the Lagrange polynomials lN (ξ)

186



In turns, the Galerkin’s formulation of the semi-discrete variational problem consists into searching

for the couple
(
uh,vh

)
∈ St,h × St,h for which the equation:





(
wh, ρhv̇h

)h
=
(
wh, bh

)h − A
h
Ω

(
wh,uh

)
+
(
wh, th

n

)h

ΓT(
wh, ρhu̇h

)h
=
(
wh, ρhvh

)h

(A.55)

(A.56)

Efficient vectorized formulation of the Galerkin’s formulation

The Galerkin’s formulation of the Euler-Lagrange equation expressed in Equation A.56, along with

the GLL spectral discretization and quadrature formulas, represents an algebraic system of equa-

tions, whose Degrees Of Freedom (DOF, i.e. the unknowns of the system) are represented by the

ensemble of 3D displacement and velocity vector fields evaluated at the GLL points, i.e. uh
ek

|rst =

uh
ek

(
ξN

r , ξ
N
s , ξ

N
t

)
, vh

ek
|rst = vh

ek

(
ξN

r , ξ
N
s , ξ

N
t

)
respectively. The latter are element-wise indexed (along

with their corresponding local GLL points). To solve the problem along across the whole computa-

tional domain, an efficient vectorization was proposed by Deville et al. (2002) (see Figure A.4). The

Figure A.4: 2D indexation of the unknown field uh
ei

at the 4 × 4 GLL grid points within the reference

element. Reprinted from Delavaud (2007)

vectorization scheme proposed by Deville et al. (2002) is based on the vectorial index Id defined in

Equation A.34 and it consists into casting the kth vector component of the unknown fields into vectors

ûh
ek

as follows:

ûh
ek

|L=Id(rst) = uh
ek

|rst

ûh
ek

= (uek
|1, ..., uek

|L, ..., uek
|N )T =

= (uek
|000, ..., uek

|rst, ..., uek
|NNN)T

(A.57)

with N = (N + 1)3
and L = 1 + r + (N + 1) s + (N + 1)2 t. At this points, the vector containing

all the element-wise unknowns (all the direction considered) is defined as ûh
e =

(
ûh

e1
, ûh

e2
, ûh

e3

)T
.

Finally, all the element-wise unknown vectors are grouped into the vector of global unknowns Û
h

L =(
ûh

1 , ..., û
h
e , ..., û

h
Ne

)T ∈ RNe.d.N . Û
h

L is the concatenation of all the DOFs (Delavaud, 2007; Deville

et al., 2002). The Lagrangian interpolation assures the element-to-element continuity across their

shared faces/edges/corners, which implies the existence of a connectivity matrix QG

L
, to pass from a

local (L) to a global (G) indexation, so to uniquely identify each of the NG computational node (GLL)
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and the vector of distinct DOFs on the entire mesh Û
h

G ∈ Rd.NG :

Û
h

L = QG

L
Û

h

G (A.58)

QG

L
allows to pass from a global to a local indexation of each node and DOF, by means of copying

common values from a vector one to another. QG

L
is not invertible. However, its transpose is solely

employed QL

G
=
(
QG

L

)T
, as an assemblage operator, to sum correctly all the contributions coming

from each element. QG

L
is never computed/stored directly, yet its action is addressed indirectly.

Galerkin’s formulation: a deeper insight

The application of the quadrature rule to the inner product Ae
Ω appear more complex, due to the

presence of the gradient ∇x ⊗wh
e . The latter can be unraveled by first applying the chain’s rule to the

partial derivative of the kth component of the function wh
e with respect to the mth spatial coordinate

xm, evaluated at GLL point corresponding to
(
ξN

α , ξ
N
β , ξ

N
γ

)
∈ ⊗d

i=1Ξ
N+1
i :

∂wh
ek

∂xm

(
x
(
ξN

α , ξ
N
β ,

N
γ

))
=

d∑

i=1

∂wh
ek

∂ξi

∂ξi

∂xm

(
ξN

α , ξ
N
β ,

N
γ

)
(A.59)

In Equation A.59, the terms ∂ξi

∂xm
express the non-linear geometrical mapping, described in para-

graph A.5 and unravelled in paragraph A.5 in the 2D and 3D case. Therefore, the terms to be further

characterized are the derivatives
∂wh

ek

∂ξi
. To this end, let us take, for the sake of simplicity, the derivative

∂wh
ek

∂ξ1
and the polynomial approximation of we (Equation A.53):

∂wh
ek

∂ξ1

(
ξN

α , ξ
N
β , ξ

N
γ

)
=

N∑

r,s,t=0

uh
ek

(
ξN

r , ξ
N
s , ξ

N
t

) ∂ψr
k

∂ξ1

(
ξN

α

)
φs

k

(
ξN

β

)
φt

k

(
ξN

γ

)
=

=
N∑

r,s,t=0

uh
ek

(
ξN

r , ξ
N
s , ξ

N
t

) ∂ψr
k

∂ξ1

(
ξN

α

)
δsβδtγ =

N∑

r=0

uh
ek

(
ξN

r , ξ
N
β , ξ

N
γ

) ∂ψr
k

∂ξ1

(
ξN

α

)
=

=
N∑

r=0

uh
ek

(
ξN

r , ξ
N
β , ξ

N
γ

)
DN

rα

(A.60)

Therefore, the 1D-derivative matrix DN has (N + 1)2
elements (associated to the N + 1 GLLs) and

it can be defined in its entirety as follows (Delavaud, 2007):

DN
ij ≡





LN

(
ξN

i

)

LN

(
ξN

j

) 1(
ξN

i − ξN
j

) , i 6= j

− N (N + 1)

4
, i = j = 0

N (N + 1)

4
, i = j = N

0, otherwise

(A.61)

(A.62)

(A.63)

(A.64)

In turns, if one employs the vectorization proposed by Deville et al. (2002) and expressed in Equa-

tion A.57, the vector field
∂ŵh

ek

∂ξj

(
ξN

α , ξ
N
β , ξ

N
γ

)
can be written as:

∂ŵh
ek

∂ξj

(
ξN

α , ξ
N
β , ξ

N
γ

)
=
∂ŵh

ek

∂ξj

∣∣∣∣∣∣
α,β,γ

= Djŵ
h
ek

∣∣∣
α,β,γ

(A.65)
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with the algebraic operator Dj , defined as the tensorial product:

Dj ≡





D1 = IN+1 ⊗ IN+1 ⊗ DN

D2 = IN+1 ⊗ DN ⊗ IN+1

D3 = DN ⊗ IN+1 ⊗ IN+1

(A.66)

(A.67)

(A.68)

with IN+1 being the (N + 1)2
identity matrix and ⊗ the tensorial product. The operator Dj em-

ploys (N + 1) (N + 1)3
coefficients to store (N + 1)2

values. Following the latter developments, the

derivative in the physical domain (Equation A.59) simplifies to:

∂ûh
ek

∂xm

∣∣∣∣∣∣
α,β,γ

=
d∑

i=1

[
∂ûh

ek

∂ξi

∂ξi

∂xm

]

α,β,γ

=
d∑

i=1

[
Diû

h
ek

∂ξi

∂xm

]

α,β,γ

=

(
ûh

ek

∣∣∣
α,β,γ

)T d∑

i=1

[
D

T
i

∂ξi

∂xm

]

α,β,γ

=
[
ûhT

ek
D̃

T
m

]
α,β,γ

=
[
D̃mûh

ek

]
α,β,γ

(A.69)

When the vectorization proposed by Deville et al. (2002) is applied, and all the field components are

considered, its gradient becomes:

[
Dmûh

e

]
α,β,γ

=
([

D̃mûh
e1

]
α,β,γ

,
[
D̃mûh

e2

]
α,β,γ

,
[
D̃mûh

e3

]
α,β,γ

)T

(A.70)

With the interpolated version of the gradient field being defined, the approximate expression of AΩe

(under its vectorized version, at the GLL node L = Id (r, s, t)) can be easily written, by keeping in

mind the as:

AΩe

(
wh

e ,u
h
e

)
=
∫

�Ω




d∑

m,k=1

em ⊗ ∂wh
ek

∂xm



(
ξ
)

: σ
(
uh

e ; vh
e

) (
ξ
)
dVξ

AΩe

(
wh

e ,u
h
e

) ∣∣∣
Id(r,s,t)

≃ A
h
Ωe

(
ŵh

e , û
h
e

) ∣∣∣
Id(r,s,t)

=

=
d∑

m,k=1

[
ûhT

ek
D̃

T
m

]
r,s,t

: σ

(
ûh

e

∣∣∣
α,β,γ

; v̂h
e

∣∣∣
α,β,γ

)
Je|r,s,tωrst

(A.71)

Again, the stress operator σ (·) depends on the rheology. Equation A.71 represent the internal force

member in the semi-discretized dynamic balance equation.

A.7 Spectral Element discretized dynamic balance equations

The employment of the semi-discretized Galerkin’s formulation of the Euler-Lagrange equation,

along with the Lagrangian interpolation and the Gauss-Lobatto-Legendre quadrature formulas, led

to a system of ordinary differential equations, governing the time-evolution of the nodal global (G)

positions and vector fields, which can be written as follows:





M
˙̂

V
h

G = F
ext − F

int
(

Û
h

G; V̂
h

G

)
+ F

trac
(
T

h
G

)

˙̂
U

h

G = V̂
h

G

(A.72)

(A.73)

with4:

4
⊎Ne

e=1 represents, in the following, the assemblage operator
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• the (d.NG) × (d.NG) mass matrix M, defined as:

M =
Ne⊎

e=1

Me (A.74)

with Me being defined as the elemental mass matrix:

Me = I
d

⊗ M̂
e

(A.75)

I
d

is the identity matrix and M̂
e

is defined as:

M̂ij =
∫

�Ω

ρe

(
ξ
)

Ψi
k

(
ξ
)

Ψj
k

(
ξ
)
Je

(
ξ
)
dVξ =

N∑

α,β,γ=1

ρ|α,β,γJe|α,β,γωαβγ (A.76)

The local mass matrix M̂
e

has an interesting property, being naturally diagonal, due to the

intrinsic orthogonality of the Lagrange polynomials at the GLL points. From a computational

point of view, this turns into an extremely convenient formulation, since no matrix inversion

is required in the solving process: the solution of the system is obtained node-wise, since the

nodal masses are naturally lumped.

• the (d.NG) × 1 external force vector Fext, defined as:

F
ext =

Ne⊎

e=1

F
ext
e (A.77)

where Fext
e represents the local element-wise external force contribution. In computational

seismology, the external forces are commonly generated by either point-wise forces, double-

couple (see Section D.2.5) or extended kinematic fault planes (Aki and Richards, 1980). For

the first two cases, the analytical expression of point-wise force/couple placed at point x0 reads

(Faccioli et al., 1997; Madariaga, 1989):

b (x; t) ≡





d∑

i=1

Aiδ (x − xS) f (t) ei, point-wise force

− ∇x.m (x; xS) f (t) , point-wise double couple

(A.78)

(A.79)

with Ai is the amplitude of the point-wise force along the ith direction, δ the Dirac’s delta, xS

the source point and m (x; t) the seismic moment tensor density and m (x) = m
0
δ (x − xS).

To translate the analytical formulation of the point-wise forces, let first xS coincide for sim-

plicity with one of the GLL nodes. Then the body force numerical counterparts bN (x; t) may

be written as:

bN (x; t) ≡





d∑

i=1

Aiδ
N (x − xS) f (t) ei, point-wise force

− ∇x.
[
m

0
δN (x − xS)

]
f (t) , point-wise double couple

(A.80)

(A.81)

δN is the numerical counterpart of the Dirac’s delta. According to the quadrature formulas and

Lagrangian interpolation employed in the SE discretization, δN is the N th order Lagrangian

shape function ΨL/ωL (with L = Id (r, s, t) the multi-index corresponding to the GLL point

coordinated by the indexes r, s, t on a 3D master element) that vanishes at all GLL points I 6= L

within the element, except at xS

(
ξL
)
, where it is equal to 1/ωL (the GLL weight associated to
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ξL in quadrature formula on Ωe). Note that the integral
∫

Ωe
δNdVx = 1 according to the GLL

quadrature formulas employed. Therefore, the Galerkin’s formulation of the external force on

an element e (and according to the local reference system xe) reads:

(
wh

e (xe) ,
d∑

i=1

Aiδ
N (xe − xeS) f (t) ei

)h

Ωe

= f (t)
d∑

i=1

Aiwei
(xeS) (A.82)

for a point-wise force. Concerning the double-coupe source, a convenient representation of the

seismic moment tensor density was originally formulated by Aki and Richards (1980), in the

following fashion:

m (x; xS) = m
0
δ (x − xS) =

M0

V
(dΣ ⊗S nΣ) δ (x − xS) (A.83)

with dΣ and nΣ the slip and normal vector defining the spatial disposition of the fault offset;

M0 is the total seismic moment (see Section 3.9.2) and V the source elementary volume (Fac-

cioli et al., 1997). The seismic moment5 translates into the equivalent body force distribution

proposed in Equation A.79. Hence, the application of the divergence theorem to the variational

formulation of Equation A.81, gives:

(
wh

e (xe) ,−∇x.
[
m

0
δN (x − xS)

]
f (t)

)h

Ωe

=

=
(
m

0
δN (x − xS) f (t) ,wh

e ⊗S ∇x

)h

Ωe

=

=
1

2

d∑

i,j=1

f (t)m0ij


∂w

h
ei

∂xj
+
∂wh

ej

∂xi


ωL =

1

2

d∑

i,j=1

f (t)m0ij

(
∂ΦL

i

∂xj
+
∂ΦL

j

∂xi

)

(A.84)

From Equation A.84, it appears that the right-hand member vanishes if L is associated to any of

the nodes outside the sub-domain e containing the source, whereas it is different from zero for

those L associated to each of the nodes inside e (except at xS). Thus, due to the discretization

into subdomains of finite size, the virtual internal work associated to the source is spread over e
. As a consequence, the numerical method can accurately portray a double couple point source

provided the size (Faccioli et al., 1997).

• the (d.NG) × 1 traction force vector Ftrac
(
T

h
G

)
, defined as:

F
trac

(
T

h
G

)
=

Ne⊎

e=1

F trac
e

(
t̂

h

ne

)
(A.85)

with T
h
G being the global traction vector (defined onto ΓT ) and T

h
L its local counterpart on each

element.

• the (d.NG) × 1 internal force vector Fint

(
Û

h

G; V h
G

)
, defined as:

F
int
(

Û
h

G; V h
G

)
=

Ne⊎

e=1

F int
e

(
Û

h

L; V h
L

)
(A.86)

5The seismic moment tensor is symmetric. Its traces vanishes for pure slip condition, i.e. when dΣ.nΣ = 0.
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The internal forces, as mentioned above, depend on the local rheology, being it either elastic

(which implies the internal forces to solely depend on the displacement field), viscous-elastic

(which, in turns, implies the dependency on the velocity vector field) or elastic-plastic (which

implies the dependency on evolution of the stress field). As a matter of fact, the rheology

determines the way the stress operator σ (·) transforms the local displacement field (and strain

rate) into local stress state and in turns to local internal forces.

Time discretization

Generally, the Equation A.73 should be solved numerically at each time step. The time interval It

is descretized into short intervals ∆t : t0, t1, t2.... with tn = tn−1 + ∆t. Denote with Û
h,n

G , V̂
h,n

G

and Â
h,n

G the displacement, velocity and acceleration global DOF vectors respectively, evaluated at

the time step tn. The time solution of the discretized dynamic balance equation can be inscribed into

the general time-marching Newmark’s solution scheme for dynamic problems (Chan and Newmark,

1952; Hughes, 1987; Simo, 1992). Consider, therefore, three integration parameters α, β, γ ∈ [0, 1].
The Equation A.73 can be written, at time step tn+α, as (Komatitsch, 1997; Komatitsch and Tromp,

1999) : 



MÂ
h,n+1

G = F
ext,n+1 − F

int
(

Û
h,n+1

G ; V̂
h,n+1

G

)

Û
h,n+1

G = Û
h,n

G + ∆tnV̂
h,n

G + ∆t2n

[(
1

2
− β

)
Â

h,n

G + βÂ
h,n+1

G

]

V̂
h,n+1

G = V̂
h,n

G + ∆tn

[
(1 − γ) Â

h,n

G + γÂ
h,n+1

G

]

(A.87)

(A.88)

(A.89)

The general Newmark’s scheme has the following stability properties, according to the values of the

coefficients α, β, γ (Hughes, 1987):

• β ≥ γ ≥ 1/2: the system is unconditionally stable

• β < 1/2 and γ ≥ 1/2: the system is conditionally stable

• γ = 1/2: the system has a 2nd order approximation in time

• β = 0 and γ = 1/2: the angular momentum conservation is ensured

• γ = 1/2 and β = 1/4 (trapezoidal rule): the angular moment is not preserved, but the linear

momentum is preserved. This numerical integration scheme depends on the acceleration field,

which is always polluted by numerical noise (Komatitsch, 1997).

The time-marching scheme proposed in Equation A.89 solves the set of second-order ordinary dif-

ferential equations (e.g. the equation expressing the conservation of the linear momentum), of the

type:

d2x

dt2
= F (x) (A.90)

The second-order differential equation may be rewritten and decoupled into the dynamic system be-

low, which unveil the unknown velocity field dx/dt:





dv

dt
= F (x)

dx

dt
= v (x, t)

(A.91)

(A.92)
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In analogy with Equation A.92, the system of Equations A.89 the can be rewritten as a function of the

velocity field:




1

∆t
M

[
V̂

h,n+1

G − V̂
h,n

G

]
= F

ext,n+α − F
int
(

Û
h,n+α

G ; V̂
h,n+α

G

)

Û
h,n+1

G = Û
h,n

G + ∆t

[(
1 − β

γ

)
V̂

h,n

G +
β

γ
V̂

h,n+1

G

]
+ ∆t2

(
1

2
− β

γ

)
Â

h,n

G

Â
h,n+1

G =
1

γ∆t

[
V̂

h,n+1

G − V̂
h,n

G

]
+

(
1 − 1

γ

)
Â

h,n

G

(A.93)

(A.94)

(A.95)

along with the Crank-Nicolson approximations:

Û
h,n+α

G = αÛ
h,n+1

G + (1 − α) Û
h,n

G (A.96)

F
ext,n+α = αFext,n+1 + (1 − α)Fext,n (A.97)

Some interesting properties may be mentioned for this velocity scheme: if the coefficients are set to

α = β/γ = 1/2, i.e. a conservative leapfrog scheme, independent on the acceleration field and with

a second order accuracy if β = 1/2 and γ = 1 (Simo, 1992; Simo et al., 1992). The acceleration is

estimated a posteriori as:

Â
h,n+1

G =
V̂

h,n+1

G − V̂
h,n

G

∆t
(A.98)

See Hughes (1987); Simo (1992) for major details on the stability of the leap-frog scheme. In math-

ematics, leapfrog integration methods are employed to numerically integrate differential equations

of the form of Equation A.90 (or, equivalently, of the form of Equation A.92). The name itself of

the numerical scheme suggests that the leapfrog integration is equivalent to updating positions x (t)
and velocities v (x, t) = dx/dt at interleaved time points, staggered in such a way that they leapfrog

over each other. In contrast to Euler integration methods (i.e. forward/backward finite difference),

which is only first-order, the leapfrog integration has second-order accuracy, yet implying the same

number of function evaluations per step and it is conditionally stable (see Section A.8). In detail, the

time-marching scheme may be written in the following manner:





xt=ti
= xt=ti−1

+ v|t=ti−
1

2
∆t∆t

a|t=ti
=

(
d2x

dt2

) ∣∣∣∣∣
t=ti

= F (x|t=ti
)

v|t=ti+ 1

2
∆t = v|t=ti−

1

2
∆t + a|t=ti

∆t

(A.99)

(A.100)

(A.101)

The separation of the acceleration calculation onto the beginning and end of a step means that if time

resolution is increased by a factor of two (∆t → ∆t/2). There are two primary strengths to leapfrog

integration, namely: (1) the time-reversibility (i.e. one can integrate forward n steps, and then inte-

grate backwards n steps to arrive at the same starting position) and (2) its symplectic nature (i.e. the

conservation of the energy related to the dynamical system).

At this point, by employing the leapfrog scheme, the nature of the Newmark’s scheme is unravelled

into its intrinsic phases: a prediction, the solution of the system and the final correction. The predic-

tion ()p
reads: 




Û
h,p

G = Û
h,n

G

V̂
h,p

G = Û
h,n

G

(A.102)

(A.103)
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The system is then solved as:

1

∆t
M∆V̂

h,n

G = ∆F
ext,n+1/2 − F

int
(

Û
h,n+1/2

G ; V̂
h,n+1/2

G

)
(A.104)

and finally the correction ()c
is applied:

V̂
h,n+1

G = V̂
h,n

G + ∆V̂
h,n

G (A.105)

Û
h,n+1

G = Û
h,n

G + ∆t∆V̂
h,n

G (A.106)

Â
h,n+1

G = Â
h,n

G +
∆V̂

h,n

G

∆t
(A.107)

A.8 Courant-Friedrichs-Lewy (CFL) condition

The leapfrog integrator applied to the dynamic system of equation is conditionally stable and it re-

quires a constant time step ∆t. According to several authors (Komatitsch and Vilotte, 1998; Ko-

matitsch et al., 2005; Festa and Vilotte, 2005; Cupillard et al., 2012, among others), the accuracy and

stability of the numerical method is ensured when:

∆t ≤ ∆tmin =
2

ωmax
(A.108)

where ωmax represents an estimation of the higher frequency of the system, roughly estimated as(
∆x
Cp

)
min

, with ∆x being the characteristic element size and Cp is the P-wave velocity. The stability

condition translate the need to sample a transient wave field at a higher rate than the wave speed and

avoid aliasing. As a corollary, when the grid point separation is reduced, the upper limit for the time

step also decreases. To ensure the stability to be preserved against the numerical spurious errors, the

Courant-Friedrichs-Lewy condition (CFL) (Courant et al., 1956) kicks in and reduces the minimum

time step to:

∆t ≤ C∆tmin = C

(
d

cp

)

min

(A.109)

where d is the size of an element, n is the order of the polynomial, λ is the minimum wavelength and

C is the Courant number which is generally considered to be 0.4 for a 3D modelling.

d ≤ n

5
λmin ∼ n

10
λmin (A.110)

A.9 Absorbing boundary conditions

To be able to model the wave-propagation problem in a full/half space, some absorbing boundary con-

ditions are routinely employed. As a matter of fact, a dichotomy arises between the necessity to model

infinitely extended domains and the necessity to truncate the computational domain due to computa-

tional limits. As observed by several authors (Claerbout, 1970; Clayton and Engquist, 1977, ,among

others), the standard boundary conditions used at the sides of seismic section in wave-equation migra-

tion generate artificial reflections. These reflections from the edges of the computational grid appear

as artifacts in the final section. Clayton and Engquist (1977) observed tht padding the section with

zero traces on either side adds to the computational cost and simply delays the inevitable reflections.

Several stable absorbing boundary conditions have been analytically derived in the past (e.g., Clay-

ton and Engquist, 1977; Engquist and Majda, 1977). More recently, an efficient absorbing boundary
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Figure A.5: A half space domain surrounded by PML materials

condition has been mediated from electro-magnetism (Berenger, 1994) and applied to computational

seismology (Festa and Vilotte, 2005): the Perfect Matched Layers (PML) is herein applied to the SE

formulation. PML is an absorbing medium that envelopes the computational domain so to absorb the

wave-field impinging the domain truncation surface (see Figure A.5). In a wider sense, a PML corre-

sponds to an imaginary extension of the real physical space. This extension of the spatial coordinates

to the complex space is obtained by the following coordinate change Festa and Vilotte (2005) :

x̃ = x+
Σ(x)

iω
(A.111)

where ω is the circular frequency and Σ(x) is an arbitrary function of xwhich increases regularly from

the interface of the domain of interest to the external border of the PML. In turns, for a plane-wave

written in the form of:

Φ(x, z, t) = Aei(ωt−kxx−kzz) (A.112)

where A is the amplitude and kx and kz are respectively the wave numbers in x and z directions, will

be transformed in the PML in x direction as:

Φ̃(x, z, t) = Φ(x, z, t)e−
kx
ω

Σ (A.113)

which decreases exponentially independently of frequencies because of the ratio kx

ω
. Consider the

decomposition in plane-wave of an Rayleigh wave propagating along the free surface (z = zmax).
The dependence along x direction of that wave will have the same characteristics as those of volume

waves: they respect the same decreasing properties when they enter into the PML in x direction.

Additionally, they preserve the characteristics of a surface wave, i.e. the movement is characterised

by an exponential decreasing with the depth and an elliptic retrograde polarisation in the propagation

plane on the surface, and prograde in the depth. The classical choice of transformation in PML

domain, as indicated in A.111 allows for a uniform decay, independent of frequencies inside the

absorbing layer PML and a simplified description of the motions. More sophisticated expressions can

lead to just as simple representations in the time domain, with interesting properties inside the PML.

If a real part is added to the frequency term, the pole of the stretching is moved away from the origin

of the reference frame, into the imaginary axis, and the transformation can be written as:

x̃ = x+
Σ(x)

iω + ωc

(A.114)
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Figure A.6: Real and imaginary parts of the decay factor. The real parts controls the attenuation

inside the absorbing layer and it is an increasing function reaching assymptotically the value 1. The

imaginary part represents a phase shift, maximum at ω = ωc and decreasing to zero for both ω = 0
and ω → ∞ Festa and Vilotte (2005)

Figure A.7: Modulus of the velocity at three different instants Festa and Vilotte (2005) to show about

the absorbing properties of PML

With this transformation, the compressional waves decrease in the PML following :

Φ̃(x, z, t) = Φ(x, z, t)e
− kx

ω
ω2−iωωc

ω2+ω2
c

Σ
(A.115)

where ωc is for instance, the circular cut-off frequency. The transformation is finally dependent of

frequencies through the factor ω2−iωωc

ω2+ω2
c

. Its real part contributes to the changes of the amplitude of

decay, while its imaginary part is responsible of a phase shift. An example of the real part and

imaginary part of the decay factor, plotted as functions of ω/ωc is presented in Figure A.6 Festa and

Vilotte (2005). For the case of (ω = 0 and kx/ω finite), the real and imaginary parts tend to zero

conducting to an elastic regime. When (ω → ∞), the real part tends tend to 1, while the imaginary

part vanishes. In this case, a PML standard is asymptotically found. Regarding the real part, the

PML medium is like an elastic medium at low frequencies and a dissipative layer in high-range, the

transition being described by a low pass filtering with a cut off frequency ωc. On the other hand, the

imaginary part has a maximum for ω = ωc, which corresponds to a phase shift. Figure A.7 (Festa and

Vilotte, 2005) presents the modulus of velocity at three different instants : when waves propagate in

the domain of interest, when waves arrive at the PML, and when waves are absorbed by PML. The

source is simply an explosive Ricker at the center of the domain. It is shown that there is no visible

reflections is seen to come back into the elastic medium.
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A.10 Solid-Fluid interaction

The wave-field in the acoustic, inviscid fluid is governed by the system of conservation and dynamics

equations (Landau and Lifshitz, 1959; Komatitsch et al., 2000):

{
u̇W (x; t) + ρW (x; t) c2

W ∇x.v = 0, (conservation of mass)

∇xuW + ρW (x; t) v̇ = 0, (conservation of linear momentum)

(A.116)

(A.117)

with ρW being the water density, uW the water pressure (defined as uW = −σ : I
3
), cW the water

pressure-wave velocity (defined as cW =
√
κW/ρW , with κW the water bulk modulus). In SEM3D,

the gravity was neglected, the water density ρW was considered homogeneous field, and the fluid is

considered irrotational (i.e. ∇x ∧ v = 0). At this point the velocity can be rewritten as the gradient

of its scalar potential v = ∇xφ thus allowing to drop the pressure term in Equations A.117, and

condense them into the following wave-equation:

∆xφ = c−2
W φ̈ (A.118)

To couple the two media at a fluid-solid interface, we have to ensure the continuity of traction

tn (x; t) = σ (x; t) .nSF (x), where nSF (x) denotes the unit normal to the solid-fluid interface.

Due to the fact that the fluid is assumed inviscid, the traction vector takes the form:

tn (x; t) = −uW (x; t) nSF (x) = ρφ̇ (x; t) (A.119)

On the other hand, the kinematic condition reads:

∇xφ (x; t) .nSF (x) = u̇ (x; t) .nSF (x) (A.120)
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Appendix B

Non-linear material modelling in explicit

dynamics

B.1 Basic rheological assumptions

The rheology is properly defined as the study of the mathematical relationship between stresses and

strain velocities in a deformable body. Those constitutive relationships are not unique but arbitrary,

since they cannot directly be inferred form the fundamental equations of motion (i.e. the conservation

of the linear and angular momentum). However, whichever constitutive relationship must satisfy the

the fundamental laws of thermodynamics.

Roughly speaking, two classes of models are commonly employed for soil mechanics (Zienkiewicz

et al., 1999), namely (1) micro-mechanical or physical models, developed for materials whose be-

haviour is highly influenced by its micro-structure (at smaller scale) and (2) macro-mechanical or

phenomenological models for materials. Although the description of a material behaviour becomes

more accurate (yet complex) by increasing the number of spanned scales, many materials (e.g., con-

crete and geo-materials) can be idealized as equivalent continua, rather than assemblages of particles.

This phenomenological approach relies on the concept of Representative Elementary Volume (REV).

The latter has a characteristic size much greater than the smaller scale heterogeneity, whose impact

on the mechanical properties measured at the upper scale becomes statistically homogeneous. At

this scale, the phenomenological model do not require any specific knowledge of the micro-structure

and the mathematical model is validated upon experimental findings at the REV scale. The inferred

properties will be ideally attached to the material point in common boundary problems. Therefore,

the REV represents an infinitesimal volume dV in the Euclidean affine physical space, characterized

by the fact that all the particles in it at time t0 remain in it at all time t, despite the deformation the

REV undergoes. In this sense, the REV centroid x (t) represents the position of the abstract parti-

cle defined as material point. For granular materials, it can be possible to geometrically define the

underlying micro-structure within the REV, provided that it contains a sufficient and representative

number of grains. The material is called homogeneous (or more precisely statistically homogeneous

whether all dV s are statistically indistinguishable (i.e. same number of grains, same shapes and other

morphological characteristics). No observable fluctuations of the material and physical quantities is

observed at the phenomenological scale and the following inequalities must hold when considering

an continuum-equivalent approach:

d ≪ LREV ≪ L (B.1)

where d, LREV and L are the characteristic dimension of the micro-structural heterogeneities, of the

REV and of the physical domain respectively.

In the following, a generic boundary problem is considered: a d−dimensional solid medium occupy-
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ing an Euclidean open domain Ω ⊂ Rd, bounded by a smooth boundary ∂Ω with ¯Omega = Ω
⋃
∂Ω

and a time interval of interest It = [0, T ] ⊂ R+. The position of any material point is defined by the

space-coordinate x (Euclidean description).

The problem of defining a material constitutive relationship can be as the definition of an admissible

Cauchy’s stress tensor σ : Ω×It → S ⊂ Rd×d (in small strain approximation), being S the symmetric

tensor subspace of order d (d+ 1) /2. This local stress state refers to the considered REV. Experimen-

tal evidence showed that stress state is affected by several variables (e.g. the temperature field) but

primarily it depends on the body deformation pattern. The latter is fully determined at each time tn
by knowing the local velocity field vn(x; t). More specifically, it depends on the motion mapping χ

between reference and actual configuration (at time t), defined as:

χ : Ω0 → Ωt, x (t) = χ (X ; t) (B.2)

where Ω0 and Ωt represent the initial and actual open physical domains, X ,x (X ; t) the position

vectors in the initial and actual configuration respectively.

Disregarding from now on the effect of the temperature in the material description (it might be added

afterwards by changing material properties accordingly, based on the results of mechanical tests per-

formed at different temperatures), a general constitutive relationship can be formulated by means of

the memory functional F :

σ (x; t) = Fs∈[0,t];Y ∈Ω0

(
χ (Y , s)

)
(B.3)

The latter expression states that the Cauchy’s stress tensor in actual configuration σ(x; t)depends on

the past and present motion history (s ∈ [0, t]) and on each point position Y within the domain Ω0 (in

reference configuration). EquationB.3 respects the causality principle, i.e. the Cauchy’s stress tensor

does not depend on the future history.

The general constitutive relationship in EquationB.3 can be refined by making the so called assump-

tion of local action: the spatial dependency of the memory function F is restricted to the infinitesimal

neighbourhood of X ∈ Ω0, thus assuming that the local stress state depends on the local motion. Un-

der this assumption furthermore, the motion mapping can be approximated by its nth-order Taylor’s

series expansion and EquationB.3 reduces to:

σ (x; t) = Fs∈[0,t];n>0

(
χ (X ; s) ;

∂nχ

∂X

n

(X ; s)

)
(B.4)

EquationB.4 further simplifies if one considers just the 1st-order gradient F (X ; t) (also called de-

formation gradient):

σ (x; t) = Fs∈[0,t]

(
χ (X ; s) ; F (X ; s)

)
(B.5)

A material that satisfies EquationB.5 is called materially simple. This kind of models neglects the

strain second-order effects. This means that the motion mapping can be fully described by the linear

tangent application F (X ; t) that transforms the material fibre dX into the current fibre dx in the

actual configuration. This assumption is most of the times confirmed by experimental results.

Material behaviour can be described according to different reference systems. Nevertheless Cauchy’s

stress should be evaluated independently on the adopted reference system. For a materially simple

material, the Cauchy’s stress in another reference system R⋆ reads:

σ⋆ (x; t) = F⋆
s∈[0,t]

(
χ⋆ (X ; s) ; F ⋆ (X ; s)

)
(B.6)

where the change of reference system is fully defined by the linear mapping:

χ⋆ (X ; t) = R (t) .χ (X ; s) + c (t) ,

F ⋆ (X ; t) = R (t) .F ⋆ (X ; s) , ∀R (t) ∈ GO+
(
R3
) (B.7)
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with R(t) and c(t) are the orthogonal rotation tensor and the translation vector respectively. Cauchy’s

stress tensor is by construction an objective quantity, thus:

σ⋆ (x; t) = R (t) .σ (x; t) .RT (t) , ∀R (t) ∈ GO+
(
R3
)

(B.8)

The deformation gradient is not objective instead, and it transforms as F ⋆(X ; t) = R(t).F (X ; t).
Therefore, by substituting EquationB.8 in EquationB.6 one gets the following relation for the memory

functional F :

R (t) .Fs∈[0,t]

(
χ (X ; s) ; F (X ; s)

)
.RT (t) =

F⋆
(
R (s) .χ (X ; s) + c (s) ; R (s) .F (X ; s)

)
∀R (t) ∈ GO+

(
R3
) (B.9)

By considering the mentioned properties of the memory functional, a further step into the definition of

the constitutive relationship maybe done considering the fundamental material indifference principle

which states that memory functional F is insensitive to any euclidean transformation. The functional

shape remains the same upon time-dependent roto-translation and time shifts. The latter kinds of

transformations causes inertial effects which might be eventually taken into consideration as external

forces. Centrifugal stress states are not disregarded herein, but they are not involved into the material

law description. They are computed directly by enforcing the momentum balance equation on the

body. As an example, the material indifference principle states that the stiffness of elastic materials

does not depend on the chosen reference system.

Material indifference infers two corollary properties of the memory functional:

1. F does not explicitly depend on the position x(X ; t)

∀c (t) ∈ R
3,R (t) = I ,

F ′s∈[0,t]

(
χ (X ; s) + c (s) ; F (X ; s)

)
=

Fs∈[0,t]

(
χ (X ; s) ; F (X ; s)

)
→ ∂F

∂x
= 0, σ (x; t) = Fs∈[0,t]

(
F (X ; s)

)
(B.10)

2. F does not explicitly depend on the time

∀t0,R (t) = I ,F ′s∈[0,t]

(
F (X ; s) , t− t0

)
=

Fs∈[0,t]

(
F (X ; s) , t

)
→ ∂F

∂t
= 0

(B.11)

The first statement cannot be directly extended to the X . A material defined by a memory function

F independent on the position in the reference configuration is called homogeneous material. Unless

geo-materials are generally heterogeneous materials, only homogeneous materials will be considered

for the sake of simplicity. Earth’s crust and shallow geological deposits will be considered as the

ensemble of different homogeneous parts. The second corollary property does not exclude at all the

material dependence on time (i.e. irrecoverable effects due to the past stress path) and on the velocity

of charge (i.e. stress relaxation due to viscous effects). Those phenomena are included by coupling

the constitutive relationship with a set of equations that relate the stress evolution to the evolution of

hidden or internal variables. Their evolution will be described by an time-incremental approach, that

involves the time-derivatives of all those quantities. The memory function is explicitly independent on

time by means that it is not affected by the selected observation time of the reference system. Those

variables represent extra degrees of freedom of the model and they may describe the effect of the

underlying micro-structure (e.g. in case of anisotropy) or keep track of the whole loading path.

201



B.2 Viscous-Elastic modelling: key concepts

The (hyper)elastic response of the material is described by postulating the existence of a stored energy

function ψ
(
εel

x

)
: S → R, such that:

σ (x; t) = ∇
εelψ (x; t) (B.12)

For an elastic isotropic material, the rheological model reads:

σ (u (x; t)) = λ (x)Tr
(
ε

x
(u (x; t))

)
+ 2µ (x) ε

x
(u (x; t)) (B.13)

with λ (x), µ (x) are the so called Lamé coefficients, and the linear operator ε
x

(·) is the small strain

tensor, defined as:

ε
x

(u (x; t)) = u ⊗s ∇x (x; t) (B.14)

being · ⊗s ∇x the symmetric gradient operator. The Lamé coefficients are usually casted into the so

called elasticity 4th tensor Del, that reads:

D
el (x) = λ (x) I ⊗ I + µ (x) I, σ (u (x; t)) = D

el : ε
x

(u (x; t)) (B.15)

with I the 2nd order identity tensor and I the 4th order tensor. When one considers an anisotropic

elastic D
el (x) has 21 independent coefficients. The D

el (x; t) is the fourth-order linearized elastic

stiffness tensor, featured by minor and major symmetries, and positive definite, if restricted to S (the

so called Hadamard’s condition Festa and Vilotte, 2005):

A : D
el

(x; t) : A ≥ α (x) A : A > 0 (B.16)

In a more general sense, the stress state in attenuating media is determined by the functional:

σ (x; t) =
∫ t

−∞
D

el
(x; t− τ) ε

x
(u (x; τ)) dτ (B.17)

In seismology, the quality factor Q is generally observed to be approximately constant over a wide

range of frequencies. To approximate such an absorption-band solid, Liu and Archambeau (1976)

introduced the idea of using a series of L standard linear solids (Moczo et al., 2007). It has been

widely observed that the Earth’s bulk quality factor is several hundred times larger than the shear

quality factor, which means that attenuation mainly depends on the shear quality factor. To effectively

model attenuation one can focus onto modelling the time evolution of the average isotropic shear

modulus (Komatitsch et al., 2005), as proposed by Liu and Archambeau (1976):

µ (x; t) = µR (x)

[
1 −

L∑

i=1

(
1 − τ ε

i

τσ
i

exp

(
− t

τσ
i

))]
H (t) (B.18)

with H (t) is the Heaviside’s function and τσ
i , τ ε

i denote the stress and strain relaxation times, re-

spectively, of the ith standard solid and µR (x) the relaxed shear modulus. The stress state reads

therefore:

σ (x; t) = D
el
U (x) : ε

x
(u (x; t)) −

L∑

i=1

R
i
(x; t) (B.19)

with D
el
U the un-relaxed elastic tensor:

D
el
U (x) = D

el (x)

(
1 −

L∑

i=1

(
1 − τ ε

i

τσ
i

))
(B.20)
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The memory variables R
i
(x; t)1 solve each one the following differential equation:

∂tRi
(x; t) = −R

i
(x; t) − δµie (x; t)

τσ
i

(B.21)

with e (x; t) the deviatoric strain tensor. The modulus defect δµi associated with each individual

standard linear solid determined as

δµi (x; t) = −µR (x)

(
1 − τ ε

i

τσ
i

)
(B.22)

B.3 Elastic-Plastic modelling: key concepts

B.3.1 The concept of elastic domain and yield locus

As confirmed by experimental evidence, non-linear modelling is based on the assumption that the

total strain rate is the sum of a recoverable and an irrecoverable strain ones (elastic-plastic split):

ε̇
x

(x; t) = ε̇re (x; t) + ε̇ir (x; t) (B.23)

where ε̇
x

(x; t) ∈ S represents the small-strain rate tensor for a generic REV positioned at point x in

space at time t; ε̇re (x; t) and ε̇ir (x; t) are the recoverable and irrecoverable strain rates respectively.

In the elastic-plastic framework, the recoverable strain rate is called elastic one (ε̇el
x

), whereas the

entire irrecoverable part is purely plastic (ε̇pl
x

). Irrecoverable strain increments take place instanta-

neously, coherently with the rate-independent plasticity theory. As mentioned in subsection B.1, the

non-linear cyclic material behaviour is modelled by considering a set of hidden internal variables,

noted as χ
∼

(x; t) ∈ K). The hidden variables keep track of the loading path, by influencing the stress

response at each time. For instance, a typical stress-strain curve for a simple-shear test is shown in

Figure B.1. The stress-strain relationship remains linear as long as the stress state does not exceed

yield limit

unloading

yield limithardening

har
den

in
g

irrecoverable strain

Figure B.1: Typical non-linear strain-stress curve.

a certain threshold (indicated as yield limit in Figure B.1). At this stage, all the strain cumulated is

entirely recoverable and the set of hidden variables does not evolve since strain and stress states are

directly related through the incremental linear (hyper-) elastic Hooke’s law, which reads:

σ̇ (x; t) =
∂2ψ

εel
x

⊗ εel
x

: ε̇el
x

(x; t) = D
el (x; t) : ε̇el

x
(x; t) = D

el (x; t) :
(
ε̇

x
(x; t) − ε̇pl

x
(x; t)

)

(B.24)

1R
i
(x; t) are symmetric and have zero trace
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The Hooke’s law is valid within the so called initial elastic domain (Simo and Hughes, 1998). As

general assumption, the stress state and the set of hidden variables must lie at all the time within the

an admissible domain referred as to the instantaneous elastic range Eσχ (that can be seen as a non-

linear evolution of the initial one). Its boundary is called the yield locus ∂Eσχ (defined by means of a

convex yield function f
(

σ; χ
∼

)
= 0): in an elastic-plastic framework, the stress-strain relationship is

perfectly linear and elastic before crossing ∂Eσχ, and χ
∼

remains constant. The yield locus constrains

the admissible stresses within a closed interval (i.e. the Eσχ is a closed convex set, Simo and Hughes,

1998). To sum up, the elastic-plastic material behaviour requires:

• an instantaneous elastic range (open set):

int (Eσχ) := {
(

σ; χ
∼

)
∈ (S × K) |f

(
σ; χ
∼

)
< 0} (B.25)

• a yield locus (convex set):

∂Eσχ := {
(

σ; χ
∼

)
∈ (S × K) |f

(
σ ; χ
∼

)
= 0} (B.26)

• an incremental formulation to describe the path-dependent evolution of the irrecoverable (plas-

tic) strains

This yield surface can be allowed to expand or contract (isotropic behaviour) or translate (kinematic

behaviour) in the stress space. In principle, distortion of the surface can also be allowed.

B.3.2 Mathematical description of the elastic-plastic cyclic transition

Plastic flow develops as long as the the stress state is equal or exceeds the yield limit. The yield func-

tion evolves along with the plastic flow, according to the appropriate flow rule. The whole process of

elastic loading and unloading or elastic-plastic loading and unloading naturally appears as constrained

problem of evolution and it requires a careful mathematical description. The path-dependent stress

evolution may be described by employing some non-linear programming conditions. As a matter of

fact, the plastic flow activation and evolution are traditionally ruled by the manifold Karush-Kuhn-

Tucker condition (KKT) (Simo and Hughes, 1998):

K :





f
(

σ ; χ
∼

)
≤ 0,

p ≥ 0, ∀
(

σ; χ
∼

)
∈ S × K

ṗf
(

σ ; χ
∼

)
= 0

(B.27)

(B.28)

(B.29)

where ṗ is the so called plastic multiplier and embodies the magnitude of the plastic strain rate:

ṗ = ‖ε̇pl
x

‖J ε
2

=

√
2

3
ε̇pl

x
: ε̇pl

x
(B.30)

The KKT conditions represent unilateral conditions for ṗ and σ and they translate mathematically

the experimental evidence that when the applied stress is less than the flow stress, no irrecoverable

strain is developed and the instantaneous response of the device is elastic. The inadmissible stress

state therefore lies outside the yield locus. The last condition of the set of Equations B.29 is called

consistency condition and it enables to determine the actual value of ṗ at any time during the loading
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path (Simo and Hughes, 1998). The KKT approach generalizes the method of Lagrange multipliers

(limited to equality constraints). The system of equations and inequalities is rarely solved directly

(except for closed-form solutions). In general, many optimization algorithms can be interpreted as

methods for numerically solving the KKT system of equations and inequalities. However, the con-

sistency condition requires a complementary condition to ensure the persistency of the plastic flow,

i.e.:

ṗḟ
(

σ; χ
∼

)
= 0, ∀

(
σ; χ
∼

)
∈ S × K (B.31)

where the �̇ represents the material derivative. The persistency condition B.31 assures the stress state

to be confined within the evolving yield locus. For instance, if at time t a stress state attains the yield

locus (i.e. σ (t) ∈ ∂Eσχ), the KKT must remain valid at the next time step t+ ∆t:

f
(

σ; χ
∼

)
(t) = 0

f
(

σ; χ
∼

)
(t+ ∆t) = f

(
σ; χ
∼

)
(t) + ḟ

(
σ; χ
∼

)
(t) ∆t+ o (∆t)

ṗḟ
(

σ; χ
∼

)
(t) = 0, ∀

(
σ ; χ
∼

)
(t) ∈ S × K

(B.32)

B.3.3 Flow rule and strain hardening plasticity

Once the elastic-plastic evolution has been ruled by the KKT conditions, a further feature to be ad-

dressed is the description of the plastic flow, whose evolution determines the non-linear stress-state

relationship and the cumulation of irrecoverable plastic strains. From a general point of view, the flow

rule reads:

ε̇pl
x

= ṗ∇
σ
g (B.33)

where g is the so called plastic potential. The flow rule expressed in Equation B.33 expresses the

relation between plastic multiplier and plastic strain rate: the former represents some sort of norm of

the second. The plastic flow develops along the direction (in the stress space) of maximum increase

of the plastic potential g. In case g = f , the flow rule is associative. Most of the models developed

for soil mechanics bare on a non-associative flow rule though.

Following the same scheme, the evolution of the hidden variables is determined by the hardening

rule, that reads:

η̇
∼

= −ṗ∇
χ
g (B.34)

where η
∼

is a set of hidden kinematic variables (in analogy with the plastic strain rate, which per se a

kinematic quantity), whereas χ
∼

is defined as the set of static hidden variables. η
∼

and χ
∼

are meant to

be conjugated variables.

What distinguish an elastic-plastic model from another is basically the different hardening rule adopted.

A vast number of models of varying level of sophistication have been developed to model the elasto-

plastic behavior of soils under cyclic conditions (Prevost, 1977, 1978; Aubry et al., 1982; Prevost,

1982, 1985; Hujeux, 1985; Dafalias, 1986, among others). The major difference among them resides

in the hardening rules steering the movement of the yield surface (the kinematic hardening) and the

change in the size (the isotropic hardening). From a general point of view, the two mechanisms are

identified by dictating the non-linear evolution of the set of inner variables χ
∼

=
[
X ;R

]
, being X

the backstress (its center) and R the yield strength (its radius). Concerning the translation of the

yield surface, Drucker and Prager (1952) and Ziegler (1959) initiated the fundamental frame-work

for kinematic hardening rules. Mroz (1967) introduced successively the notion of a field of work-

hardening moduli represented by a number of nested hypersurfaces, the so called loading surfaces.
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In the generalization of his model to non-proportional loading, a new rule for kinematic hardening

is proposed by Armstrong and Frederick (1966) with an evanescent strain-memory term (dynamic

recovery term) for more accurate prediction of the multiaxial Bauschinger effect. The Armstrong and

Frederick rule has been retrieved and improved extensively by Chaboche (1989) and Lemaitre and

Chaboche (1990), that postulated an additive decomposition of the evolution equation of the back-

stress into several components of the Armstrong-Frederick type. Another interesting approach for the

translation rules is the so called bounding surface approach (Krieg, 1975; Dafalias and Popov, 1975,

among others). It postulates the existence of a loading stress surface and an outer one (i.e. located

outside the yield surface) bounding the evolution of the other. Expansion of the bounding surface

represents the development of isotropic hardening, while translation of the yield surface inside the

bounding surface describes the nonlinear kinematic hardening.

B.3.4 Solution of the elastic-plastic problem

The classical theory of rate-independent plasticity is effectively described by means of strain-stress

rate (i.e. infinitesimal increments). The reason behind this approach is that it allows to follow the

path-dependent material response at each step by solving a set of non-linear ordinary differential equa-

tions (ODEs). Within the context outlined above, the incremental integration of the rate-independent

elastic-plastic model is regarded as a strain-driven process in which the total strain ε
x

(u (x; t)) is the

basic independent variable. The set of ordinary differential equations can be casted into the following

time-marching computational problem, arising by taking the sub-steps ∆tn = (tn; tn+1) of the total

time interval It = ∪N
n=0∆tn:

Given the state of the material

(
σ

n
,χ
∼n

)
at t = tn, and the evolution equations of the Elastic-

Plastic model:

EP
(

σ ,χ
∼

)
:





σ̇ = D
ep
(

σ; χ
∼

)
: ε̇

x
, elastoplastic CE

χ̇
∼

= ṗh
∼

(
σ; χ
∼

)
= H

(
σ; χ
∼

)
: ε̇

x
, hardening law

(B.35)

(B.36)

find: 



σ
n+1

= σ
n

+
∫ tn+1

tn

D
ep
(

σ; χ
∼

)
: ε̇

x
dτ

χ
∼n+1

= χ
∼n

+
∫ tn+1

tn

H

(
σ ; χ
∼

)
: ε̇

x
dτ

(B.37)

(B.38)

and that respect the KKT conditons K (Equation B.29).

D
ep is the so called elastic-plastic tensor. The plastic multiplier, in a strain driven problem, can be

found by replacing the stress definition B.24 in the material derivative of the yield locus (applying the

chain rule), as follows:

ḟ
(

σ,χ
∼

)
= ∇

σ
f : σ̇ + ∇χf

∼
: χ̇
∼

= 0

ḟ
(

σ,χ
∼

)
= ∇

σ
f : Del :

(
ε̇

x
− ṗ∇

σ
g
)

+ ∇χf
∼

: h
∼
ṗ

→ ṗ =
〈 ∇

σ
f : Del : ε̇

x

∇
σ
f : Del : ∇

σ
g − ∇χf

∼
: h
∼

〉

(B.39)

(B.40)

(B.41)
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with 〈·〉 is the Macaulay brackets, with 〈x〉 = (x+ |x|) /2. The denominator in the right-hand side of

Equation B.41 can be seen as an hardening scalar measure H = ∇
σ
f : Del : ∇

σ
g − ∇χf

∼
: h
∼

, with

ḟ = ∇
σ
f : σ̇ + Hṗ.Equation B.41 entails the definition of the elastic-plastic tensor:

D
ep (x; t) = D

el − ∇
σ
f : Del

H (B.42)

It is worth noting that for rate-independent materials, the physical time t can be rescaled to the time

step ∆t as the following non-dimensional measure:

T =
t− tn

tn+1 − tn
, T (tn) = 0; T (tn+1) = 1 (B.43)

Keeping this scaling in mind, all time-derivatives can be written in the form d·
dt

can be rewritten as

= d·
dT

∆tn. Henceforth, for the sake of simplicity, The evolution equations EP transform into:

EP
(

σ,χ
∼

)
:





dσ

dT
= D

ep
(

σ ; χ
∼

)
: ∆ε

n
, elastoplastic CE

dχ
∼

dT
= H

(
σ; χ
∼

)
: ∆ε

n
, hardening law

(B.44)

(B.45)

In a strain driven problem, ∆ε
n

= ∆tnε̇
x

is a givena data (Sloan et al., 2001; Simo and Hughes,

1998), since it can be cmioputed from the velocity field vn (x; t):

ε̇
x

= vp
n (x; t) ⊗S ∇x (B.46)

with vp
n the velocity prediction in a general Newmark’s prediction-multi-correction scheme (described

in Section A.7) Looking at Equation B.45, one may notice that if the unknowns are casted in the gen-

eral vector x = {σ; χ
∼

} ∈ (S × K), as well as the mapping f (x) = {Dep
(

σ; χ
∼

)
: ∆ε

n
;H

(
σ; χ
∼

)
:

∆ε
n
} : (S × K) → (S × K), it is re-written in the general form of:

dx

dT
(T ) = f (x (T ))

x(0) = xn





∀T ∈ [0; 1]
(B.47)

(B.48)

An approximation of Equation B.38 (in its general form) is defined as:

{
xn+1 = xn + ∆tnf (xn+θ)

xn+θ = θxn+1 + (1 − θ)xn, θ ∈ [0; 1]

(B.49)

(B.50)

Here, xn+1
∼= x(1) represents the algorithmic approximation of the exact value x(1) (Simo and

Hughes, 1998). This family of algorithms contains well-known integrative schemes, in particular





θ = 0, forward (explicit) Euler

θ = 1/2, midpoint rule

θ = 1, backward (implicit) Euler

(B.51)

(B.52)

(B.53)

The unconditional stability of the integration scheme proposed in Equation B.50 is assured for θ ≥
1/2 (Simo and Hughes, 1998). However, the standard explicit methods can be used to integrate

numerically the evolution equations, with the recurrence formulas in Equation B.55, become:




σ
n+1

= σ
n

+ D
ep
(

σ
n
; χ
∼n

)
: ∆ε

n

χ
∼n+1

= χ
∼n

+ H

(
σ

n
; χ
∼n

)
: ∆ε

n

(B.54)

(B.55)
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The update of the stress and of the state variables in its explicit form is first order accurate: the global

discretization error is of the order of O (∆tn). Despite the conditional stability, some regularization

techniques have been proposed in the literature, as for instance the family of Runge-Kutta (RK) pth-

order recurrence formulas:





x (1) = xn + ∆tn

p∑

k=0

c′kfk = xn +
p∑

k=0

ckfk

fk = f


tn + α′k∆tn; xn + ∆tn

p−1∑

i=1

β ′kifi


 = f


αk; xn +

p−1∑

i=1

βkifi




(B.56)

(B.57)

Sloan et al. (2001) proposed an adaptive procedure inspired from the RK algorithm and based on

the pioneering work of Sloan (1987), so to improve the solution accuracy. The latter sub-stepping

algorithm was implemented in SEM3D, due to the important enhancements to improve their accuracy,

efficiency and robustness. The seminal idea behind this modified forward-Euler integrator SI resides

in the fact that the time step ∆tn or (∆T = 1 equivalently) is subdivided in ns sub-steps ∆Tk, with

∪ns

k=1, not necessarily of the same size. The size of each sub-step can be estimated adaptively based

on a prescribed error tolerance. The sub-stepping algorithm (see the algorithm in (A1)) is unraveled

by firstly update the current stress/state variables. Once the current strain increment is computed, the

trial stress increment ∆σtrial
n

= D
el

∆ε
n

is evaluated: the latter represents a purely elastic first guess

of the current stress increment, as if the flow rule was not taking place. The total stress at the end of

the step can be rewritten in terms of trial increment by rearranging Equation B.45 as:

σ
n+1

= σ
n

+ D
el : ∆ε

n
− ∆pDel : ∇

σ
g = σtrial

n
− ∆pDel : ∇

σ
g (B.58)

Equation B.58 clearly show that the elastic-plastic step is composed by a trial elastic increment (blue)

and an elastic-plastic correction (red). If the flow rule is associated (i.e. f ≡ g) the elastic-plastic

correction is perpendicular to the yield locus.

The trial state

(
σtrial

n
; χ
∼n

)
=
(

σ
n

+ ∆σtrial
n

; χ
∼n

)
is plugged into the yield locus to test the plastic

consistency K: if the trial stress resides (within a certain tolerance) inside the yield locus, the update

is straight forward and the next step is started. On the contrary, if the trial stress exceeds the yield

limit, the plastic correction takes place (see algorithm (A2)). As a matter of fact, the trial stress

increment is linear. Therefore, it is possible to split it into two parts: the one lying inside the yield

locus (αNL∆σtrial
n

) and the part exceeding it ((1 − αNL) ∆σtrial
n

). The so called modified Pegasus

algorithm IP (unravelled in )(A3-A4), Dowell and Jarratt, 1971) is employed at this stage to find the

stress state σint
n

= σ
n

+αNL∆σtrial
n

that lies on the yield locus. The Pegasus algorithm is a modified

regula-falsi method to find the zeros of an equation (i.e. f
(

σint
n

; χ
∼n

)
= 0) and therefore the value

of αNL. The original algorithm is modified so to effectively handle the elastic-to-plastic transition,

even when an abrupt elastic-plastic unloading takes place when the initial stress state already lies on

the yield locus (see Figure B.2). Once the intersection with the yield locus has been found, the stress

and state variable states at the end of the step T = 1 are obtained by applying a multi-step procedure

to the trial stress part that exceeds the yield criterion (1 − αNL) ∆σtrial
n

(see Algorithm (A5)). For

each sub-increment, the local error measure is found by taking the difference between a second order

accurate modified Euler solution and a first order accurate Euler solution. The next time-step size

is determined according to error of the previous one. This type of error control permits the size of

each sub-increment to vary throughout the integration process, depending on the non-linearity of the

constitutive relations. Moreover, the drift correction algorithm proposed by Potts and Gens (1985)

kicks-in at each sub-increment to be sure the final stress state lies on the yield locus (Algorithm (A6)).
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Modified Forward Euler scheme (A1)

function

(
σ

n+1
; χ
∼n+1

)
= SI

(
ε

n
; σ

n
; χ
∼n

; ∆ε
n

)

0. Update current state variables:

→

(
ε

n
; σ

n
; χ
∼n

)
←

(
ε

n+1
; σ

n+1
; χ
∼n+1

)

1. Compute strain increment:

→∆ε
n

= v
p
n ⊗S ∇x

2. Predict elastic trial stress:

→∆σtrial

n
= D

el : ∆ε
n

(∆εpl = 0)

3. Check Plasticity1:

→ (status; αNL) = CP

(
ε

n
; σ

n
; χ
∼n

; ∆σtrial

n

)

σint

n
= σ

n
+ αNL∆σtrial

n

4. Elasto-Plastic correction2

if status == ELAST IC then

→ ELASTIC (UN-)LOADING→∆σ
n

= ∆σtrial

n
(∆εpl = 0)

→ EXIT

else if status == P LAST IC then

→ (ELASTO-)PLASTIC LOADING

(
∆σ⋆

n
; ∆χ
∼

⋆

n

)
= PC

(
αNL; ∆ε

n
; ∆σtrial

n
; σint

n
; χ
∼n

)

→ σ
n+1

= σint

n
+ ∆σ⋆

n

→ χ
∼n+1

= χ
∼n

+ ∆χ
∼

⋆

n

end if

end function

(a) (b)

Figure B.2: Sketch of the trial stress and intersection check.

1See Algorithm (A2)
2See Algorithm (A5)
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Check Plasticity (A2)

function (status;αNL) = CP
(

ε
n
; σ

n
; χ
∼n

; ∆ε
n

)

3.1 Yield condition:

→ fS = f

(
σ

n
; χ
∼n

)
; fT = f

(
σ

n
+ ∆σtrial

n
; χ
∼n

)

3.2 Evaluate loading condition:
if fS < −F T OL3 then

if fT ≤ F T OL then

→ (status; αNL) = (ELAST IC; 1)→ GO TO (A2) - STEP 4

else

→ status = P LAST IC

→ αNL = IP

(
σ

n
; χ
∼n

; ∆σtrial

n
; cos (θ)

)
4

→ GO TO (A2) - STEP 4

end if

else if |fS | < F T OL then

cos (θ) =
∇

σ

f

(
σ

n

)
:∆σtrial

n

‖∇
σ

f

(
σ

n

)
‖‖∆σtrial

n

‖

if cos (θ) ≥ −LT OL then

→ αNL = 0
→ status = P LAST IC → GO TO (A2) - STEP 4

else

if fT < −F T OL then

→ (status, αNL) = (ELAST IC, 1) (UNLOADING)

→ GO TO (A2) - STEP 4

else

→ status = P LAST IC

→ αNL = IP

(
σ

n
; χ
∼n

; ∆σtrial

n
; cos (θ)

)
4

→ GO TO (A2) - STEP 4

end if

end if

else if |fS | > F T OL then

→ ERROR

end if

end function

3FT OL is typically set to 10−3

4See Algorithm (A3)

210



Find Intersection (Modified Pegasus algorithm) (A3)

function αNL = IP
(

σ
n
; χ
∼n

; ∆σtrial
n

; cos (θ)
)

3.2.1 Set up trial values:

→ αtrial
0 = 0 and αtrial

1 = 1

3.2.2 Compute stress starting values:
→ σ

0
= σ

n
+ αtrial

0 ∆σtrial

n
= σ

n

→ σ
1

= σ
n

+ αtrial
1 ∆σtrial

n
= σ

n
+ ∆σtrial

n

3.2.3 Compute yield locus:

→ f0 = f

(
σ

0
; χ
∼n

)

→ f1 = f

(
σ

1
; χ
∼n

)

3.2.4 Correct trial values (just for load reversal):
if cos (θ) < −LT OL5 then

→ (α0, α1) = UC

(
αtrial

0 , αtrial
1 ; f0, f1; σ

n
; χ
∼n

; ∆ε
n

)
6

→ σ
0

= σ
n

+ α0∆σtrial

n

→ σ
1

= σ
n

+ α1∆σtrial

n
else

(α0, α1)=
(

αtrial
0 , αtrial

1

)

end if

3.2.5 Find Intersection:
for i = 1 : MAXIT S7 do

→ αt = α1 −
(α1−α0)f1

f1−f0

→ σ
t

= σ
0

+ αt∆σtrial

n

→ ft = f

(
σ

t
; χ
∼n

)

if |ft| ≤ F T OL then

INTERSECTION FOUND

→ αNL = αt

→ EXIT LOOP OVER i
else

if ftf0 < 0 then

→ α1 = α0

→ f1 = f0

else

→ f1 = f1f0

f0+ft

end if

→ f0 = ft

→ α0 = αt

end if

end for

if ft > F T OL then

ERROR

end if

end function

5LT OL is typically set to 10−6

6See Algorithm (A4)
7MAXIT S is typically set to 10
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Find Intersection (Modified Pegasus algorithm for load reversal) - (A4)

function (α0, α1) = UC
(
αtrial

0 , αtrial
1 ; f0, f1; σ

n
; χ
∼n

; ∆ε
n

)

α0 = αtrial
0 ;α1 = αtrial

1

fsave = f0

for i = 1 : NSUB0
8 do

→ ∆α = (α1 − α0) /NSUB1
8

→ F LAGEXIT =false

for j = 0 : NSUB1 do

→ αt = α0 + ∆α
→ σ

t
= σ

0
+ αt∆σtrial

n

→ ft = f

(
σ

t
; χ
∼n

)

if ft > F T OL then

→ α1 = αt

if f0 < −F T OL then

→ f1 = ft

→ F LAGEXIT =true

else

→ α0 = 0
→ f0 = fsave

end if

→ EXIT LOOP OVER j
else

→ α0 = αt

→ f0 = ft

→ LOOP OVER j
end if

end for

end for
if F LAGEXIT ==false then

ERROR : NO INTERSECTION FOUND!

end if

end function

8NSUB0 = MAXIT S, NSUB1 = 10

212



Elastic-Plastic Correction (A5)

function

(
∆σ⋆

n
; ∆χ
∼

⋆

n

)
= PC

(
αNL; ∆ε

n
; ∆σtrial

n
; σint

n
; χ
∼n

)

5.1 Initialize values

→ T = 0; ∆T = 1

→ σ
T

= σint

n

→ χ
∼T

= χ
∼n

5.2 Correct by adaptive sub-increment
while T < 1 do

Increment (1)

→ ∆σ
1

= ∆T (1− αNL)Dep

(
σ

T
; χ
∼T

)
: ∆ε

n
; ∆χ
∼ 1

= ∆T (1− αNL)H

(
σ

T
; χ
∼T

)
: ∆ε

n

Update (1)

→ σ
1

= σ
T

+ ∆σ
1

; χ
∼1

= χ
∼T

+ ∆χ
∼ 1

Increment (2)

→ ∆σ
2

= ∆T (1− αNL)Dep

(
σ

1
; χ
∼1

)
: ∆ε

n
; ∆χ
∼ 2

= ∆T (1− αNL)H

(
σ

1
; χ
∼1

)
: ∆ε

n

Average

σ̂
i

= σ
T

+
∆σ

1

+∆σ
2

2
; χ̂
∼i

= χ
∼T

+

∆χ
∼ 1

+∆χ
∼ 2

2

Compute error

RT +∆T = 1
2

max{

∥∥∆σ
2

−∆σ
1

∥∥∥∥σ̂
i

∥∥ ;

∥∥∆χ
∼ 2

−∆χ
∼ 1

∥∥
∥∥χ̂

∼i

∥∥ ; macheps9}

if RT +∆T > ST OL10 - STEP FAILED then

Change time-step

∆T ← max{q∆T ; ∆Tmin}

→ q = max{
√

0.9ST OL/RT +∆T ; 0.1}; ∆Tmin = 10−4

Repeat step from Increment (1)

else if RT +∆T ≤ ST OL - STEP SUCCESSFUL then

Update time-step

T = T + ∆T
∆T ← q∆T

→ q = min{
√

0.9ST OL/RT +∆T ; 1.1}

→ ∆T = max{∆T ; ∆Tmin}; ∆T = min{∆T ; 1− T}
Update stress/state variables

σ←−
T

σ̂
i
;χ
∼

←−

T

χ̂
∼i

if
∣∣f
(

σ
T

; χ
∼T

)∣∣ > F T OL then

Drift correction

(
σ

T
; χ
∼T

)
= DC

(
σ

T
; χ
∼T

)
10

end if

end if

end while

5.3 Update finale state

∆σ⋆
n

= σ
T

− σint
n

; ∆χ
∼

⋆

n
= χ
∼T

− ∆χ
∼ n

end function

8Machine Epsilon
9ST OL is typically set to 10−6

10See Algorithm A6
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Drift Correction (A6)

function

(
σC

T +∆T
; χ
∼

C

T +∆T

)
= DC

(
σ

T +∆T
; χ
∼T +∆T

)

6.1 Initialize values
→ σ

0
= σ

T
;χ
∼0

= χ
∼T

→ f0 = f

(
σ

0
; χ
∼n

)
> F T OL;H0 = H

(
σ

0
; χ
∼n

)

6.2 Sub-stepping drift correction
for i = 1 : MAXIT S do

→ ∆pt = f0

H0

→ σ
t

= σ
0
−∆ptD

el : ∇
χ

g

(
σ

0
; χ
∼0

)

→ χ
∼t

= χ
∼0

+ ∆pt : h
∼0

if
∣∣f
(

σ
t
; χ
∼t

)∣∣ >
∣∣f0

∣∣ then

Radial correction→ ∆pt = f0

/[
∇

σ
f : ∇

σ
f

(
σ

0
; χ
∼0

)]

→ σ
t

= σ
0
−∆pt∇

σ
f

(
σ

0
; χ
∼0

)

→ χ
∼t

= χ
∼0

end if

if
∣∣f
(

σ
t
; χ
∼t

)∣∣ ≤ 0 then
(

σC

T
; χ
∼

C

T

)
=

(
σ

t
; χ
∼t

)

EXIT

end if

end for

end function
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B.3.5 The Armstrong-Frederick model

Armstrong and Frederick (1966) model (AF) stemmed from the classic Prager linear kinematic model

(Drucker and Prager, 1952). In its simplest form, the AF model employs a non-linear kinematic hard-

ening rule to describe a closed hysteresis loop, but without functions for cumulative plastic strain. In

the framework of time-independent plasticity, using the yield surface concept and taking into account

the plastic incompressibility though a von-Mises yield function, leads to:

f
(

σ; χ
∼

)
=

√
3J σ

2

(
Sσ − X

)
− σyld −R (B.59)

where J σ
2

(
S

σ
− X

)
is the second invariant of the deviatoric stress S

σ
−X , S

σ
is the deviatoric part

of the Cauchy’s stress state, X is the deviatoric back stress (or rest stress) (Chaboche, 1989), σyld the

initial yield strength, R its evolution (increase or decrease).

χ
∼

=
[
X ;R

]
represent the set of static hidden variables. The flow and hardening rules are defined

upon a plastic potential g in the form:

g
(

σ; χ
∼

)
=

√
3J σ

2

(
Sσ − X

)
− σyld − R +

3

4

κkin

Ckin

X : X (B.60)

being Ckin and κkin two model constants. The term 3
4

κkin

Ckin
X : X represents a fading memory, that

tends to be constant if the back-stress values saturates (typically at large plastic strain). Although a

non-associative flow rule is employed (f 6= g), one may notice that ∇
σ
g = ∇

σ
f . With that respect,

the plastic flow is not affected by the recall term, but the hardening rule is.

Armstrong and Frederick (1966) proposed the following relationship between χ
∼

and the set of kine-

matic hidden variables η
∼

=
[
α; r

]
:

X
(
α
)

=
2

3
Ckinα (B.61)

R (r) = R∞iso (1 − exp (−bisop)) (B.62)

where R∞iso and biso are two model parameters for the isotropic model. From Equation B.62, one

may notice the isotropic hardening evolution keeps track of the cumulated plastic strain. Once the

relationship between conjugated variables has been defined, their rates are obtained by (1) taking the

gradient of the plastic potential (Equation B.60), which reads :

α̇ = −ṗ∇
X
g = −ṗ

(
−∇

σ
f +

3

2

κ

C
X

)
= ε̇pl

x
− ṗ

3

2

κ

C
X (B.63)

ṙ = − ∂g

∂R
ṗ = ṗ = ‖ε̇pl

x
‖J ε

2
(B.64)

and (2) by substituting Equations B.63 and B.64 in Equations B.61 and B.62 respectively:

Ẋ =
2

3
Ckinε̇pl

x
− κkinX ṗ (B.65)

Ẋ =
2

3
Ckinε̇pl

x
− κkinX ṗ (B.66)

has two distinct terms: a strain hardening term and a dynamic recall term that operates at all times.
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Appendix C

The Elasto-Dynamic problem

Let us consider an physical space ε isomorphic to R3 (Euclidean space). Consider an open domain

Ω ∈ R3 and a point p ∈ Ω. By associating an orthogonal base to ε the point p can be referenced by

a coordinate set x. The classical equation of dynamic equilibrium of Ω (called momentum balance

equation)takes the following form:

∫

∂Ω
tn (u) (x; t) dS +

∫

Ω
f

ext
(u) (x; t) dV =

∫

Ω
ρ∂ttu (x; t) dV (C.1)

where u (x; t) represents the relative displacement field with the respect to a reference configuration;

tn (u) (x; t) is the traction vector onto the domain boundary; f
ext

(x; t) the volume density of exter-

nal forces and ρ (x) the unit mass.

By taking the Cauchy’s assumption, it exists a 2nd-order stress tensor σ (u) (x; t) for which:

∫

∂Ω
tn (u) (x; t) dS =

∫

Ω
σ (u) n (x; t) dV (C.2)

For small perturbations of the equilibrium configuration (thus assuming u (x; t) and ∂tu (x; t) 1st

order infinitesimals) and exploiting the Stoke’s divergence theorem, Equation C.2 can be specified

point-wise as:

∇x.σ (u) (x; t) + f
ext

(x; t) = ρ (x) ∂ttu (x; t) (x; t) ∈ (Ω, It) (C.3)

The strain tensor can be defined as:

ε
x

(u) = u ⊗s ∇x (C.4)

For the sake of simplicity, let us consider the solid material to be elastic, thus writing the linear

constitutive relationship by means of the 4th-order elasticity tensor Del (x):

σ (u) = D
el : ε

x
(u) (C.5)

with the : defining tensor double contraction. Considering the symmetry of both D
eland ε

x
, Equa-

tion C.3 becomes:

∇x.
(
D

el
: (u ⊗s ∇x)

)
+ f

ext
= ρ (x) ∂ttu (x; t) ∈ (Ω, It) (C.6)

If the solid material is considered homogeneous, Del (x) = D
el can be written by means of the two

Lamé constants (λ, µ):

D
el

= λI ⊗ I + 2µI (C.7)
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with I =
∑

j ej ⊗ej and I =
∑

i,j ei ⊗ej ⊗ei ⊗ej the 2nd- and 4th-order identity tensors respectively.

From Equation C.6, the stress tensor can be written as:

σ (u) = λ (∇x.u) I + 2µε
x

(u) (C.8)

Finally, Navier-Stokes equation C.6 becomes:

(λ+ µ) ∇x (∇x.u) + µ∆xu + f
ext

= ρ∂ttu (C.9)

If we further consider the relation ∆xu = ∇x (∇x.u) − ∇x ∧ (∇x ∧ u), the latter expression can

be rewritten as:

(λ+ 2µ) ∇x (∇x.u) − µ∇x ∧ (∇x ∧ u) + f
ext

= ρ∂ttu (C.10)

C.1 Helmholtz decomposition

For the sake of simplicity, let us first solve the homogeneous Navier-Stokes equation, i.e. by putting

f
ext

= 0. The non-zero solutions of this set of equations represent the free-modes of the system and

they belong to the kernel of the following differential operator:

(∆⋆
x − ρ∂tt) (·) = ((λ+ µ) ∇x (∇x. (·)) + µ∆x (·) − ρ∂tt (·)) (C.11)

(∆⋆
x − ρ∂tt) (u) = 0 (C.12)

Suitable solutions of the rearranged Navier-Stokes equation are sought within the space of slow grow-

ing exponential functions, e.g. the space of tempered distributions. This choice eliminates from the

solution space the functions exponential growing at infinite, which are not physically acceptable.

From now on, Fourier’s transform defined on the functions belonging to the selected solution space

are defined in a distribution sense.

Navier-Stokes equation can be easily solved by exploiting the so called Helmholtz decomposition of

the displacement vector:

u = ∇xΦ + ∇x ∧ Ψ, ∇x.Ψ = 0 (C.13)

The Helmholtz decomposition introduces a scalar potentials Φ and a solenoidal vector potential Ψ

that can be uniquely determined by solving two uncoupled Laplace equations of the form:

∆xΦ = ∇x.u, ∆xΨ = −∇x ∧ u (C.14)

Equation C.13substituted into Equation C.12), lead to the following couple of equations for Φ and Ψ:

∇x ((λ+ 2µ) ∆xΦ − ρ∂ttΦ) + ∇x ∧ (µ∆xΨ − ρ∂ttΨ) (C.15)

The uniqueness of Helmholtz decomposition implies that Equation C.15 can be solved by the follow-

ing system of equations:

(λ+ 2µ) ∆xΦ − ρ∂ttΦ = 0

µ∆xΨ − ρ∂ttΨ = 0

(C.16)

(C.17)

The latter system of equations is based on the 1D wave equation structures, that can be expressed as:

c2∆xF − ∂ttF = 0 (C.18)
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C.1.1 Plane wave solution

Equation C.18 can be solved either by separation of variables either throughout Fourier’s transform.

A suitable generic solution of this equation is called monochromatic plane wave function and it reads:

F (x; t) = F0e
i(k.x−ωt), ‖k‖ =

ω

c
(C.19)

Those functions are called plane-waves since all the points x belonging to the planeP
(
ξ,xo

)
passing

by the point x0 and of outward normal ξ verify the following equation:

F± (x; t) = F± (x0; t) (C.20)

The plane P
(
ξ,xo

)
is called wave-front and wave motion is in phase along it. The wave-front

propagates with velocity c along the ξ direction, because:

F
(
x ± ct′ξ; t± t′

)
= F± (x0; t) (C.21)

Using the expression k = ωξ and considering F0 as the Fourier transform of a generic function f ,

the inverse Fourier’s transform of Equation C.19 with the respect to ωtakes the general form:

F± (x; t) = f
(
ξ.x ± ct

)
, ‖ξ‖ = 1 (C.22)

This type of non-zero solution of the 1D wave equation are now exploited to solve Equation C.17.

From now on, we further assume f : R → R belonging to the Sobolev’s space H1 (R).

C.1.2 Elastic Plane waves

Considering Equations C.17 and the 1D wave equation solution C.22 the two Helmholtz potentials

may be written as:

Φ (x; t) = Φ0e
iω

(
ξ .x

cP
±ωt

)
, cP =

√
λ+ 2µ

ρ

Ψ (x; t) = Ψ0e
iω

(
ξ.x

cS
±ωt

)
, cS =

√
µ

ρ
,Ψ0.ξ = 0

(C.23)

(C.24)

cP and cS are the P-wave and S-wave velocities for isotropic homogeneous elastic material. Sub-

stituting the solutions in Equation C.24 into Equation C.13, the displacement field that solves the

homogeneous wave equation composes of two terms uP and uS:

uP (x; t) = ∇x.u = ikP Φ (x; t)

uS (x; t) = ∇x ∧ u = ikS ∧ Ψ (x; t)

(C.25)

(C.26)

kP and kS are the wave-number vectors for P- and S-wave respectively.

Pressure waves

The wave field uP , derived from the Φ potential and called pressure wave field propagates parallel to

ξ, at velocity cP . The associated traction vector, on a surface of outward unit vector ξ, reads (from

Equation C.1):

tn (uP ) (x; t) = −ρω2Φ (x; t) ξ = iρωcP uP (x; t) (C.27)

tn (uP ) is also parallel to ξ thus being the P-wave field longitudinal and compressional. Moreover,

cP is calculated from the oedometric modulus, since no tangential stress is induced on the wave front.
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Figure C.1: Displacement and traction vectors on plane-wave fronts. (a) P-wave front; (b) S-wave

front

Shear waves

The wave field uS, derived from the Ψ potential and called shear wave field propagates perpendicular

to kS , at velocity cS . The associated traction vector, on a surface of outward unit vector ξ, reads (from

Equation C.1):

tn (uS) (x; t) = −ρω2
(
ξ ∧ Ψ (x; t)

)
= iρωcSuS (x; t) (C.28)

tn (uS) is also perpendicular to ξ thus being the S-wave field transversal and shearing. Moreover,

being cP > cS , S-wave arrival are delayed with the respect to P-wave one, thus calling them primary

(P) and secondary (S) waves.

C.1.3 Impedance and Radiation

From Equations C.27, C.28, we derived the general formula for traction vectors, called impedance

relation:

tn (uα) (x; t) = iωcαuα (C.29)

The latter expression is still valid for non-plane waves whose wave-front has small curvature, i.e.

wave fields that locally behave as plane waves. From a numerical point of view, they are mainly

exploited to express local boundary conditions, especially to enforce non-reflection condition. On the

other hand, they are used to express the mathematical condition known as Sommerfeld’s radiation

condition that reads:

lim
R→∞

∫

‖x‖=R
‖tn − tn (uα) ‖2dS = 0 (C.30)

lim
R→∞

∫

‖x‖=R
(σnn − iωρcP u.n)2 dS = 0 (C.31)

lim
R→∞

∫

‖x‖=R
‖tt

n − iωρcSut‖2dS = 0 (C.32)

with n = x/R and t defining the direction perpendicular to n. The Sommerfeld radiation condi-

tion states non-plane waves vanishes at infinite. Moreover, Equation C.30 is necessary to assure the

uniqueness of stationary solutions of the Navier’s equation. As a matter of fact, plane waves repre-

sent the non-trivial solution of Equation C.12. Therefore, at each particular solution of Navier-Stokes

equations can be superposed a any plan-wave. If no wave field is present for t < t0 (i.e. homogeneous

boundary conditions) those plane-waves have zero amplitude, whereas this is not valid for stationary

solutions. In particular, plane-waves do not verify Sommerfeld’s radiation condition C.30. Plane-

wave verify impedance condition just along their propagation direction, i.e. not for all directions.

Stein and Wysession (2003)
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C.2 Wave-field induced by body forces

Given two displacement fields u1(x; t)and u2(x; t), solution of two Elasto-Dynamic problems with

external forces f
1
(x; t)and f

2
(x; t)respectively, the Reciprocity Theorem (also called Betti’s Theo-

rem) states the following integral identity:
∫

Ω

[(
f

1
(x; t) − ρ (x) ∂ttu1 (x; t)

)
.u2 (x; t)

]
dV (x) +

∫

∂Ω
tn (u1 (x; t)) .u2 (x; t) dS (x) =

∫

Ω

[(
f

2
(x; t) − ρ (x) ∂ttu2 (x; t)

)
.u1 (x; t)

]
dV (x) +

∫

∂Ω
tn (u2 (x; t)) .u1 (x; t) dS (x)

(C.33)

tn(ui)(x; t)represents the traction vector distribution per unit surface and it is related to the Cauchy’s

stress tensor σ(x; t)by the relation:

tn (ui) (x; t) = σ (u) (x; t) .n

Note that Betti’s theorem does not depend on the initial conditions on u1, u2, ∂ttu1, ∂ttu2, tn(u1)(x; t)and

tn(u2)(x; t). Moreover, it is time invariant, i.e. it does not depend on the time steps t1, t2 at which

the two solutions are evaluated. For instance, considering the couple t1 = t,t2 = τ − t and integrates

Equation C.33 between 0 and τ , the acceleration terms reduce to the following expression:

ρ (x)
∫ τ

0
[−∂ttu1 (x; t) .u2 (x; τ − t) + ∂ttu2 (x; τ − t) .u1 (x; t)] dt =

ρ (x)
∫ τ

0
∂t [−∂tu1 (x; t) .u2 (x; τ − t) + u1 (x; t) .∂tu2 (x; τ − t)] dt =

ρ (x) [−∂tu1 (x; τ) .u2 (x; 0) + u1 (x; τ) .∂tu2 (x; 0) +

∂tu1 (x; 0) .u2 (x; τ) − u1 (x; 0) .∂tu2 (x; τ)]

(C.34)

Non-homogeneous Navier-Stokes equations C.3 can therefore be solved for each density of body

forces f
ext

(x; t)in two steps: first finding the solution for a unit force applied in y , at time t′, acting

along direction a, called uG
(
y , t′,a; x, t

)
and then superposing the solutions obtained at each y, t

′
.

uG
(
y , t′,a; x, t

)
represent the Green’s function of Equation C.3, thus it solves:

(λ + µ) ∇x

(
∇x.u

G
)

+ µ∆xuG + δyδt′a = ρ∂ttu
G (C.35)

where δy = δ
(
x − y

)
and δt′ = δ (t− t′)1. Due to the linearity of Equation C.35, the general

solution of Equation C.3 can be written as:

u (x; t) =
∑

k

∫

R4
uG

(
y, t′, ek; x, t

)
fk

(
y, t

′
)
dV

(
y
)
dt′ (C.36)

with (e1, e2, e3) is the selected R3 orthonormal basis and fk = f .ek.

The convolution integral in Equation C.34 vanishes whether it exist an instant in time τ0 before

which both u and v are zero (and hence ∂tu and ∂tv = 0). This quiescent past condition can

be applied to the Reciprocity Theorem, by integrating the two members of the expression in time,

namely:

∫ +∞

−∞

∫

Ω

(
f

1
(x; t) .u2 (x, τ − t) − f

2
(x, τ − t) .u1 (x; t)

)
dV (x) dt =

∫ +∞

−∞

∫

∂Ω
(tn (u2 (x, τ − t)) .u1 (x; t) − tn (u1 (x; t)) .u2 (x, τ − t)) dtdS (x)

(C.37)

1δx is a distribution defined for each continuous function φ, such that (φ, δx)=φ (x)
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To fully specify a Green’s function, boundary condition on ∂Ω must be specified. If one considers

∂Ω as a rigid surface (homogeneous boundary conditions), uG depends on the time lag t− τ , and the

time origin can be shifted at will. Hence:

uG
(
y, t′,a; x, t

)
= uG

(
y, 0,a; x, t− t′

)
= uG

(
y,−t,a; x,−t′

)
0, ∀x 6= y, ∀t ≤ τ, (C.38)

Equation C.38 represents the reciprocity condition between source and receiver in time, for homoge-

neous boundary conditions.

C.2.1 Green’s function in homogeneous space

In homogeneous space, the Green’s function in Equation C.35 has the following property:

uG
(
y, t′,a; x, t

)
= uG

(
0, 0,a; x − y, t− t′

)
(C.39)

For the sake of simplicity, from now on the unit force will be considered as applied in the origin and

at time 0 and parameters y and t′ will be omitted. Equation C.35 becomes:

(λ+ µ) ∇x

(
∇x.u

G
)

+ µ∆xuG + δ (x) δ (t) a = ρ∂ttu
G (C.40)

with initial conditions uG (x, t,a) = ∂tu
G (x, t,a) = 0, for t < 0. The solution is sought by

applying Fourier transform in space and time to Equation C.40.

Fourier transform in time

The Fourier transform with respect to time can be expressed as:

ûG (x, ω,a) =
∫

R

uG (x, t,a) exp (−iωt) dt (C.41)

Equation C.40 becomes:

(λ+ µ) ∇x

(
∇x.û

G
)

+ µ∆xûG + δ (x) a = −ω2ρûG (C.42)

For ω fixed, we are going to solve C.42 for harmonic functions in time.

Fourier transform in space

The Fourier transform with respect to time can be expressed as:

̂̂
uG

(
ξ, ω,a

)
=
∫

R3
ûG (x, ω,a) exp

(
−i
(
ξ.x

))
dV (x) (C.43)

Before substituting C.43 in Equation C.42, it is worth recalling the following relations:

(̂∂ju) = −iξjû

̂(u ⊗ ∇x) = −iû ⊗ ξ

̂(∇x.u) = −iξ.û
(̂∆xu) = −‖ξ‖2û

̂(∇x (∇x.u)) = −
(
ξ.û

)
ξ

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)
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Equation C.40 becomes:

(λ+ µ)
(

ξ.
̂̂
uG

)
ξ +

(
µ‖ξ‖2 − ρω2

) ̂̂
uG − ̂̂

f
(
ξ;ω

)
= 0 (C.49)

where
̂̂
f

ext
= a is constant in

(
ξ;ω

)
∈ R3 × R. The solution of the problem will be computed once

Equation C.49 is solved and it is the inverse Fourier transform of its solution:

uG (x; t) =
1

(2π)4

∫

R4
ûG (x, ω,a) exp

(
−i
(
ξ.x

))
dV (x) dω (C.50)

The solution resulted as the contribution of a series of harmonic plane-waves of pulsation ω and

wave-vector ξ, being the two apparently not linked. Due to the latter, those plane-waves are not of the

same kind of those constituting the homogeneous solution. The constant external force
̂̂
f

ext
creates

plane-waves at all frequencies and propagating in all the directions.

Resolution in the transformed domain

Let us take the take the scalar product of ξ and all the members of Equation C.49:

(
ξ.
̂̂
uG

)
=

(
ξ.a

)

ρ
(
c2

P ‖ξ‖2 − ω2
) (C.51)

By substituting the latter expression2 in Equation C.49, one obtains the solution in transformed space:

ρc2
S

̂̂
uG

(
ξ;ω

)
=

a

‖ξ‖2 − k2
S

+

(
ξ.a

)
ξ

k2
S

(
1

‖ξ‖2 − k2
S

− 1

‖ξ‖2 − k2
P

)
(C.52)

with kα = ω/cα.

In the usual sense, Equation C.52 has no meaning (yet it does in a distributional sense3) for either

‖ξ‖ = ±kP and ‖ξ‖ = ±kS , i.e. for plane-wave solutions freely propagating in the homogeneous

elastic space. For those values,
̂̂
uG is not defined.

2The scalar product in Equation C.51 refers to longitudinal waves since the scalar product of by iξ in the Fourier

transformed space corresponds to take the gradient
3In a distributional sense, Equation C.52 is not meaningless. Let us consider a distribution T and a function f that

have zero-values on the set of points xi. With those assumptions, the equation T f = 1 has the following solution:

T =
1

f
+
∑

i

αiδxi
(C.53)

with 1/f a pseudo-function and αi any set of constants. To explain the role of the constants αi one must consider the

fact that dividing a function by iξ in the Fourier’s transform domain, translates into a function integration in the physical

domain, i.e.:

iξf̂ (ξ) = C (C.54)

f (x) =
1

2π

∫

R

C

iξ
exp (iξx) dξ + α0 = Cx + α0 (C.55)

In Equation C.52, the denominator function has zero values onto the hypercones with spherical base defined by: ‖ξ‖2 =

k2
S

and ‖ξ‖2 = k2
P

. The latter expressions correspond to monochromatic plane-waves, adding to the Green’s function

solution two plane-waves (initial boundary conditions enforce their amplitudes nil).
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C.2.2 Stationary Green’s function

Let us consider the orthonormal base of R3, (e1, e2, e3), with e3=x/‖x‖. The generic vector ξ may

be defined in spherical coordinates, ξ=(ρ sin θ sin φ, ρ cos θ sin φ, ρ cosφ)T . Les us define g (x) and

ĝ
(
ξ
)

a function and its Fourier’s transform, defined as:

ĝ
(
ξ
)

=
1

ρ
(
ξ
)2 − k2

, g (x) =
1

(2π)3

∫

R3

exp
(
iξ.x

)

ρ
(
ξ
)2 − k2

dV
(
ξ
)

(C.56)

Thanks to the defined reference system, one can take x = (0, 0, r)T
, leading to:

g (x) =
1

(2π)2

∫ +∞

0

1

ρ2 − k2

∫ π

0
eirρ cos φ sin φdφρ2dρ (C.57)

Integrating over φ, one obtains:

g (x) =
1

(2π)2

∫ +∞

0

e−irρ − eirρ

ir (ρ2 − k2)
ρdρ = − 1

ir (2π)2

∫ +∞

−∞

eirρ

(ρ2 − k2)
ρdρ (C.58)

The latter integral in Equation C.58 is computed by considering ρ varying on a closed contour in the

complex plane. This choice provides for positive k a pole in −k. The selected contour eliminates

physically inadmissible solutions, i.e. plane waves (k = ω/c) coming from infinite. Therefore, the

integration finally leads to the following expression of g (x):

g (x) =
eikr

4πr
(C.59)

Furthermore, recalling the relation in Equations C.48, the following equation holds:

ĝ
(
ξ
) (

ξ.a
)

ξ = − ̂(∇x (∇x. (g (x) a))) (C.60)

Finally, the integration (in the transformed domain) of Equation C.49 one gets the time Fourier’s

transform of the Green’s function ûG:

µûG (x;ω) = GS (r) a +

(
1

kS

2
)

∇x (∇x. ((GS (r) −GP (r)) a)) (C.61)

with

Gα =
eikαr

4πr
, α = p, s (C.62)

Further interesting expressions can be obtained if one considers that for all functions g (r) of this

type, the following equations hold:

∇x. (g (r) a) = (a, er) g
′ (r)

∇x (∇x. (g (r) a)) =
1

r
[(a − (a, er) er) g

′ (r) + r (a, er) erg
′′ (r)]

(C.63)

Equation C.61 becomes:

µûG (x;ω) = GS (r) a +
1

r

(
cs

ω

2
)

[a (G′S (r) −G′P (r)) +

+ (a, er) er (rG′′S (r) −G′S (r) − rG′′P (r) +G′P (r))]
(C.64)
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with:

G′α (r) =
(

irω

cα − 1

)
gα (r)

r

G′′α (r) =

(
2 − 2irω

cα − 1
−
(
rω

cα

)2
)
gα (r)

r2

(C.65)

The final result fully developed is:

µûG (x;ω) = GS (r) a +
1

(kSr)
2 [(GP (r) (1 − ikP r) −GS (r) (1 − ikSr)) a +

+
((

3 (1 − ikSr) − (kSr)
2
)
GS (r) −

(
3 (1 − ikP r) − (kP r)

2
)
GP (r)

)
(a, er) er

] (C.66)

The stationary version of the latter Green’s function can be attained by developing Equation C.66 in

Taylor’s series on 1
ω

:

µûG (x; 0) =
1

r

(
a +

((
cS

cP

)2

− 1

)
(a − (a, er) er)

)
(C.67)

C.2.3 Transient Green’s function

To obtain the full expression of Green’s function in space-time, one must perform the inverse Fourier’s

transform of Equation C.66. Let us first consider the following function (in the transformed domain)

f̂ (ω) and ĥ (ω) in the form:

f̂ (ω) = e−iωα

ĥ (ω) =
(

1

ω2
− iα

ω

)
f̂ (ω)

(C.68)

By denoting δ and H as the Dirac’s delta and Heaviside functions4 it is possible to prove5 that their

inverse Fourier’s transforms read:

f (t) =
1

2π

∫ +∞

−∞
eiω(t−α)dω = δ (t− α) (C.74)

4δ (t) is defined for all test functions φ ∈ C∞ (R) as: (δ, φ) = φ (0). The Heaviside function H (t) is defined as:

H (t) = 1, t ≥ 0

H (t) = 0, t < 0
(C.69)

and it verifies the relation H ′ = δ in a distributional sense.
5Let us compute the Fourier’s transform of the function g (t) defined as follows:

g (t) = t, t ≥ 0

g (t) = 0, t < 0
(C.70)

The latter admits Fourier’s transform in a distributional sense, i.e. for all φ rapidly decreasing C∞ (R) test functions:

(g′′, φ) = (g, φ′′) =

∫ +∞

0

tφ′′ (t) dt = −
∫ +∞

0

φ′ (t) dt = φ (0) = (δ, φ)

=
(

δ̂, φ̂
)

=
(

ĝ, φ̂′′
)

= −ω2
(

ĝ, φ̂
)

from which one can write:

ĝ (ω) = − 1

ω2
(C.71)

Following the same logic, one can obtain the Fourier’s transform of the Heaviside function:

Ĥ (ω) = − i

ω
(C.72)
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h (t) = tH (t− α) (C.75)

from where one can derive the general expression of the transient Green’s function:

4πuG (x; t) =
1

r3

(
3 ((a, er) er − a) t

(
H
(
t− r

cP

)
−H

(
t− r

cS

)))
+

1

rc2
S

((a, er) er − a) δ
(
t− r

cS

)
+

1

rc2
P

((a, er) er) δ
(
t− r

cP

)
(C.76)

Finally, combining the equations above, one gets the inverse Fourier’s transform of h (ω):

h (t) = (g (t) + αH (t)) ∗ δ (t − α) = tH (t − α) (C.73)
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Appendix D

Mechanics of earthquake sources

D.1 Failure mechanism

As many other materials, rocks can bare a limited amount of shear stress before failure. The corre-

sponding yield shear stress τm is often related to the normal stress σnn by mean of the Mohr-Coulomb

law. Therefore, the yield stress of a fault discontinuity depends both on depth and on the regional

stress field. Once the yield stress reached the material shows plastic deformations until a new shear

stress is attained and plastic flow stops. A new yield stress τ0 < τm is reached at this point. The

assumption of elasto-plastic constitutive behaviour implies that the plastic flow localizes along shear

bands, i.e. the seismic fault and the relative slippage of its two edges. The surrounding rock material

is softened along those shear bands the plastic deformation will always occur along these bands. In

a time range of a few tenths of thousands of years, earthquakes always occur along existing faults.

Depending on regional tectonic context, the stress drop ∆τ = τm − τ0 ranges from 3 to 10 MPa.

Since the plastic deformation is localized on the fault it can be characterized by the resulting relative

γ

τ τ

σnn

τm

τ;

Δτ

Figure D.1: Shear stress-strain behaviour along softened shear-bands (i.e. fault discontinuities). Peak

shear stress τm reduces to its residual value τ0 upon monotonic shearing (Clouteau, 2008)

displacement along it and denoted by ∆u (i.e. slippage). It satisfies ∆u.n = 0 with n the normal

vector of the fault. The amplitude of this displacement depends both on the stress drop ∆τ and on the

elastic properties of the surrounding soil. In this analogical model, ‖∆u‖ represents the total average

slip 〈∆u〉 developed by the event along the fault surface (Bizzarri, 2014).

The simplest possible model of seismic source is that of a point source buried in an elastic half-space.

The development of a proper model took a few years in the making. Nakano (1923) made the first
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efforts, by modelling the earthquakes as explosions. After some years, Honda (1962) observed that

the P-waves spatial distribution is well reproduced by a couple of forces, whereas this approach does

not replicate the S-wave distribution. To solve the problem of the seismic radiation generated by a

shear crack that starts from a point and grows radially with either a circular or an elliptical rupture

front has been studied for a long time by application of the representation theorem of Burridge and

Knopoff (1964). The problem was firstly solved for far-field body waves and a finite kinematic crack

with an elliptical rupture front propagating at a constant velocity (Savage, 1966) and more realistic

source models were proposed later on, based on dynamical models of the rupture propagation (i.e.

self-similar crack growing indefinitely, taking into account the dynamic friction (Richards, 1976)).

The dynamic problem was solved numerically for a finite circular crack by Madariaga (1976); Virieux

and Madariaga (1982). However, concerning the seismic radiation itself, these latter authors only paid

attention to the far-field body-wave terms. Very little attention was paid to the near-field terms of the

seismic radiation problem in these early studies. With the exception

D.2 Kinematic source model

D.2.1 The Elasto-Dynamic Green’s function

The Elasto-Dynamic problem is ruled by a non-homogeneous Navier-Stokes equation (see appendix C):

∇x.σ (u) (x; t) + f (x; t) = ρ (x) (x) ∂ttu (x; t) (x; t) ∈ (Ω, It) (D.1)

where Ω ⊆ R3 is an open set representing the ensemble of point belonging to the body in the current

configuration, It ⊆ R is the time interval considered, ρ (x) the material’s density. σ(u)(x; t)represents

the Cauchy’s stress tensor and f (x; t)is the external force distribution per unit-weight. In small strain

regime and in case of elastic material, the stress tensor can be written as:

σ (u (x; t)) = D
el

(x) : ε
x

(u (x; t)) , ε
x

(u (x; t)) = u ⊗s ∇x (x; t)

with ε
x
(u (x; t)) called the small strain tensor. The Uniqueness Theorem proves that the displace-

ment field u(x; t)is a unique solution of Equation D.1 (Aki and Richards, 1980).

Assuming the linear elastic stress-strain relationship, uG
(
y, t′,a; x, t

)
represent the Green’s function

of Equation D.1, thus it solves:

∇x.
(
D

el : uG ⊗s ∇x

)
(x; t) + δyδt′a = ρ∂ttu

G (x; t) ∈
(
R

3,R
)

(D.2)

where • ⊗s ∇x represent the symmetric gradient operator and δy , δt′ are the Dirac’s delta centered on

y and on t′.
Green’s function has a tensor nature since it depends on both receiver and source’s coordinates. The

quiescent past conditions may be applied invariably in the form:

uG
(
y, t′,a; x, t

)
, ∂tu

G
(
y , t′,a; x, t

)
= 0, ∀x 6= y , ∀t ≤ τ, (D.3)

D.2.2 The Representation Theorem

Equation D.1 can be solved for whichever density of body forces f (x; t)in two steps: first finding

the solution for a unit force applied in y , at time t′, acting along direction a, called uG
(
y , t′,a; x, t

)

and then superposing the solutions obtained at each y, t
′

as:

u (x; t) =
∑

k

∫

R4
uG

(
y , t′, ek; x, t

)
fk

(
y , t

′
)
dV

(
y
)
dt′ (D.4)
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with (e1, e2, e3) is the selected R3 orthonormal basis and fk = f .ek. Consider the domain depicted

in Figure D.2 with inner discontinuity Σ. By substituting u1=u(x; t), u2 = uG
(
y , 0, ek; x, t

)
,

f
1
=f and f

2
= δyδ0ek in Reciprocity Theorem (in the form of Equation C.37), one gets the First

Representation theorem (Burridge and Knopoff, 1964; Aki and Richards, 1980):

u (x; t) =
∑

k

∫ +∞

−∞

∫

Ω

[
f .uG

(
y , 0, ek; x, t− τ

)]
ekdV

(
y
)
dτ

+
∑

k

∫ +∞

−∞

∫

Σ

[
tn

(
uG

(
y, 0, ek; x, t− τ

))
.u
]

ekdS
(
y
)
dτ

−
∑

k

∫ +∞

−∞

∫

Σ

[
tn (u (x; t)) .uG

(
y , 0, ek; x, t− τ

)]
ekdS

(
y
)
dτ

(D.5)

If elasticity holds, the traction vector issued from the Green’s function can be written as:

tn

(
uG

(
y , 0, ek; x, t− τ

))
=
[
D

el
:
(
uG

(
y , 0, ek; x, t− τ

)
⊗S ∇x

)]
.n (D.6)

D.2.3 Equivalent body forces generated by fault slippage

The Earth’s crust can be seen as an elastic domain Ω, bounded by the regular surface ∂Ω = Γ, as a

first approximation. According to Aki and Richards (1980), the seismic source may be conceptually

described as displacement discontinuities [u] (x; t) = ∆u (x; t) dΣ (x; t) across a given surface Σ.

The latter represents a buried active fault and it resides within Ω. Σ has two adjacent surfaces Σ+ and

Σ− that spontaneously slip one with the respect to each other, radiating the earthquake wave-field.

d(x; t)is the slip vector (‖dΣ‖ = 1) representing the direction along which the relative displacement

occurs. The displacement jump [u](x; t)across Σ is expressed as:

[u] (x; t) = u|Σ+ (x; t) − u|Σ− (x; t) (D.7)

In general, a similar discontinuity may be formed by traction vectors, due to external forces on Σ, but

for spontaneous rupture the traction should be continuous [tn](x; t)=0. [u](x; t)does not satisfy the

elasto-dynamic equation in int (Ω), unless one extend its boundary to the discontinuity, i.e. ∂Ω⋆ =
Γ ∪ Σ+ ∪ Σ−. At this point, Γ is no longer of direct interest (it may be the surface of the Earth),

thus admitting homogeneous boundary conditions on it. Σ may be parametrized by a local reference

system defined by d and the outward normal unit vector nΣ(x; t)vector (dΣ.nΣ = 0) (Burridge and

Knopoff, 1964; Aki and Richards, 1980). Let us consider a fault of thickness h in the direction of nΣ

and let us denote by xO any point along the mean surface of the fault (xO ∈ Σ). Assuming a linear

variation of the displacement along nΣ leads to:

u (xO + ζnΣ; t) = u (xO; t) +
ζ

h
∆u (x; t) dΣ (xO; t) + o (ζ) nΣ,

ζ = (x − xO) .nΣ

(D.8)

The derived strain tensor (first order truncation) reads:

ε
x

(u (x; t)) = [u] ⊗s ∇x =
∆u (x; t)

h
dΣ ⊗s nΣ + o(I ) (D.9)

where I represents the 2nd-order identity tensor and ⊗s the symmetric tensor-product.

Taking the limit of the strain tensor in Equation D.9 for h → 0 the generalized strain tensor (in a

distribution sense) associated to the displacement jump reads:

ε
x

(u (x; t)) = [u] ⊗s ∇x = ∆u (x; t) δΣ (x) dΣ ⊗s nΣ (D.10)
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Figure D.2: A finite elastic body Ω with external surface Γ and internal surface Σ (representing the

surface across which the discontinuous displacement field may arise, i.e. the buried fault). The two

sides Σ+ and Σ− may slip one to each other, with a displacement discontinuity ∆u. The normal

vector to Σ points from Σ− towards Σ+ (Aki and Richards, 1980).

where δΣ (x) represents the Dirac’s delta centered on the fault surface.

Assuming the Earth’s crust as an elastic material, the equivalent traction forces associated to the

displacement jump reads:

f
Σ

(x; t) = ∇x.
(
D

el (x) : ε
x

(u (x; t))
)

= ∇x.
(
D

el (x) : ∆u (x; t) δΣ (x) dΣ ⊗s nΣ

)
(D.11)

where ∇x. (•) is the divergence operator, • : • the double-contraction operator and D
el(x) the 4th-

order elastic stiffness tensor.

It must be noted that the equivalent forces expressed in Equation D.11 have a double interpretation:

on one side they represent the traction forces at the fault surface, on the other side they might be seen

as concentrated body forces within the elastic domain Ω.

D.2.4 Displacement field generated by seismic sources

The first Representation TheoremD.5 is valid regardless the boundary conditions that uG mus satis-

fies. Therefore, a convenient choice of uG is done. The inner discontinuity surface can be seen as a fic-

titious surface across which the Green’s function first derivatives are continuous (i.e. [tn]
(
uG (x; t)

)
=

0) so uG satisfies the equation of motion even on Σ. Thus, in absence of body forces f = 0, Equa-

tion D.5 can be rewritten as follows:

u (x; t) =
∑

k

∫ +∞

−∞

∫

Σ

(
∆u

(
y ; τ

)
δΣ

(
y
)

dΣ ⊗s nΣ

)
:

:
(
D

el :
(
uG

(
y, 0, ek; x, t− τ

)
⊗S ∇y

))
ekdS

(
y
)
dτ

(D.12)

The same expression may be obtained by substituting f
Σ

in Equation D.13

u (x; t) =
∑

k

∫

R4
uG

(
y , 0, ek; x, t− τ

)
⊗ f

Σ

(
y; τ

)
.ekdV

(
y
)
dτ (D.13)

and then by integrating by parts.
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D.2.5 Double-Couple simplified solution

For an elastic isotropic and homogeneous medium, Equation D.11 reduces to:

f
Σ

(x; t) = 2µ∇x. (∆u (x; t) δΣ (x) dΣ ⊗s nΣ) (D.14)

with µ the shear modulus of the crustal material.

By assuming a constant slip along the fault plane (∆u (x; t) = ∆u (t)), the equivalent force vector

can be expressed as:

f
Σ

(x; t) = m
O
.∇xδΣ (x) (D.15)

where m
O

= 2µ∆u (t) (dΣ ⊗s nΣ) represents the surface density of moment tensor. When observed

far enough the fault surface can be approximated as a point, thus leading to approximate δΣ (x; t) as

δo|Σ| (being δo = δ (xO; t) and |Σ| the total fault surface). The resulting localized equivalent force

vector reads:

f
Σ

= M
O
.∇xδO =MO lim

h→0

1

h

(
dΣδ

(
h

2
nΣ

)
− dΣδ

(
−h

2
nΣ

)
+

+ nΣδ

(
h

2
dΣ

)
− nΣδ

(
−h

2
dΣ

)) (D.16)

with |Σ| =
∫

Σ dS
(
y
)

being the area of the fault and M
0

= 2µ|Σ|∆u (dΣ ⊗s nΣ) the moment tensor

generated by the point-discontinuity and consisting of four forces (two couples) applied around the

hypocenter: two opposite shear forces on both side of the fault (Figure D.3(a)) and two forces on both

side edge of the fault to balance the moment induced by the two first (Figure D.3(b)). This model is

useful to understand the shear wave pattern induced by the fault rupture. Moreover, those four forces

can also be seen as two couples of extension-compression forces, giving some insight on the induced

P wave pattern. For a heterogeneous slip distribution ∆u (x; t) in an heterogeneous medium, the

(a) (b)

Figure D.3: Set of equivalent forces generated by spontaneous slippage along the active fault surface.

(a) compressive and tensile traction forces; (b) shear traction forces.

moment tensor M
O

(x; t) represents the product average 2
∫

Σ µ
(
y
)

∆u
(
y; t

)
(dΣ ⊗S nΣ) dS

(
y
)

.

The solution of the elasto-dynamic problem for an elastic isotropic and homogeneous material and a

point source f = δ (x − xO) a reads (see sectionC.2):

uG (x,xO,a; t) =
(er.a) er

4πρc2
P r

δ
(
t− r

cP

)
+

a − (er.a) er

4πρc2
Sr

δ
(
t− r

cS

)
(D.17)

being cP ,cS the P-wave and S-wave velocities, ρ the crust density and with r = ‖x − xO‖, and

er = (x − xO) /r the radial unit vector (in spherical coordinates).
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Different expression of the seismic moment tensor

Although moment tensors provide a general theoretical framework to describe seismic sources based

on generalized force couples, their description is not restricted to earthquake sources, but it can be

extended to other types of seismic sources such as explosions, implosions, rock falls, landslides,

meteorite terminal explosions (e.g. atmospheric), and mixed mode ruptures driven by fluid and gas

injections. Moment tensor inversion techniques provide more accurate estimations of the earthquake

focal mechanism (Dahm and Kruger, 2014). The coordinate system should always be published

together with the moment tensor solution, since a wrong association may lead to misinterpretation of

components and fault directions. The moment tensor is symmetric: the diagonal elements represent

linear vector dipoles, whereas the off-diagonal terms can be schematized as the force-by-arm couples

(see Figure D.4). The moment tensor has components Mij where i, j = 1, 2, 3. Often, three local

Figure D.4: The system of force couples representing the components of a Cartesian moment tensor.

Diagonal elements of the moment tensor represent linear vector dipoles, while off-diagonal elements

represent force couples with moment.

geographic coordinate system are used to define a Cartesian system tensor:

• ENU: with coordinate coordinate x1 pointing Eastward (E), coordinate x2 pointing to the real

North (N) and positive x3 pointing upward (U). It coincides with the UTM (Universal Trans-

verse Mercator) reference system.

• NED: with coordinate x1 pointing to the real North (N), coordinate x2 pointing Eastward (E),

and positive x3 pointing downward (D).

• USE with coordinate x1 pointing upward (U), coordinate x2 pointing Southward (S), and posi-

tive x3 pointing downward Eastward (E). This system is commonly reported in Global Centroid

Moment tensors (Global CMT, formerly Harvard CMT). It is represented by the r − θ − φ-

system, with r, θ, φ pointing upward, southward, and eastward (USE), respectively.

Tensor moment components can be easily converted from a reference system to another. If one con-

siders the principal USE coordinate system as reference (i.e. x1 ≡ r, x2 ≡ θ, x3 ≡ φ), the conversion

from a reference system to another is easily performed according to the following rules:

• USE → ENU

Mrr = +MUU , Mθθ = +MEE , Mφφ = +MNN

Mrθ = −MEU , Mrφ = +MNU , Mθφ = −MEN

(D.18)
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• USE → NED

Mrr = +MDD, Mθθ = +MNN , Mφφ = +MEE

Mrθ = +MND, Mrφ = −MED, Mθφ = −MEN

(D.19)

It is helpful at this point to realize that the moment tensor is simply a spatial integral of a stress

tensor that is applied to the medium. Like any stress tensor, it can be decomposed into an isotropic

(sometimes called hydrostatic stress) and a deviatoric part. Now, if an earthquake is composed of

unidirectional slip on a plane, then the shear strain and stress necessary to simulate that slip provide a

pure deviatoric moment tensor (i.e. M
0

= Mijei ⊗S ej , i 6= j). A point source of this type is com-

monly called a double-couple source. Unfortunately, the word non-double-couple source is common

in geophysical literature, and it is often taken to mean sources that are not well described as slip on a

plane (e.g., an explosion). For instance, explosive sources correspond to equal diagonal elements and

vanishing non-diagonal elements of the moment tensor. The moment tensor representation is useful

to represent compensated linear vector dipole source as well (Bizzarri, 2014). However, the word

non-double-couple source technically means a source that is not fit with a simple shear at a point. The

implementation of the moment-tensor source can be done either by particle velocity (Yomogida and

Etgen, 1993; Graves, 1996, among other) or by stress (Virieux, 1986).

D.2.6 Seismic source time evolution

The time-evolution of the displacement jump is modelled with the so called the Source Time Function

STF is employed. First of all, the quiescent past assumption (i.e. the fact, before the fault rupture

initiation, the offset is zero) implies that a suitable STF should be zero ∀t ≤ 0. Moreover, the STF has

to remain constant after the earthquake (slip weakening is neglected in this study). Finally, at any time

t, the STF and its first time-derivative (the so called Slip Velocity Function (SVF)) must be positive

(so to fulfil the requirement of a positive moment tensor, since the SVF represents the L2-norm of the

vector slip velocity on the fault area (Bizzarri, 2014)):




uS (t) ≥ 0 t ≥ 0

∂tuS (t) ≥ 0 t ≥ 0
(D.20)

Within the framework of a point-wise approximation of the seismic source, the choice of an adequate

STF is not trivial. Since real recordings usually show the well-know ω−2 spectral decay (originally

observed and theorized by Aki, 1967; Brune, 1970, , assuming a constant stress-drop model), a suit-

able STF can be selected accordingly. Indeed, the ω−2 model has been extensively used in source

models (Boore, 2003, 2009, among others). However, the ω−2 spectral decay is not unique (Bizzarri,

2014): there is no universal theoretical or empirical evidence that favours one STF over another. In

this sense, some mono-parametric STFs are described in the following.

The simplest STF model is the step or Heaviside function, vanishing for negative times and equal to

one for positive times, namely:

uHV S
S (t) =





0, t < tS

A, t ≥ tS
(D.21)

A the amplitude of the final displacement and tS the time shift the function is centred on. Due to its

abrupt increase from 0 to the unit slip (uHV S
S (t) is not C1 at t = tS), the Heaviside STF can create

spurious numerical oscillations. Therefore, another simple model used to describe the slip rise along
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the fault plane is the so called ramp-function (Cara and Bour, 1995, among others):

uRMP
S (t) =





0, t < tS

A t−tS

τ
, tS ≤ t ≤ tS + τ

A, t ≥ τ

(D.22)

τ is called rise-time and it represents the time-lag required to the whole local slip to take its maximum

value (assumed constant). Again, due to its uneasy mathematical manipulation, uRMP
S (t) is often

replaced by a smoothed ramp function uT NH
S (t) (initially proposed by Bouchon, 1981), that writes:

uT NH
S (t) =

A

2

[
1 + tanh

(
t− tS
τ

)]
(D.23)

In the literature, the smoothed ramp function is sometimes expressed in terms of another free-parameter

fC , referred as the characteristic frequency and being equivalent to fC = 1
4τ

. One of the major ad-

vantages of using uT NH
S (t) is that its third derivative is of the form of the well-known Ricker of

order 2 function. Its principal advantage is not to create high frequencies due to its smoothed cut-off

frequency (Bard and Bouchon, 1980). Alternatively, Brune (1970) proposed the following STF:

uEXP
S (t) =





0, t < tS

A
[
1 −

(
1 + t−tS

τ

)
exp

(
− (t−tS )

τ

)]
, t ≥ tS

(D.24)

The associated slip rate is expressed as:

∂tu
EXP
S (t) =





0, t < tS

−A t−tS

τ2 exp
(
− (t−tS)

τ

)
, t ≥ tS

(D.25)

The free parameter τ can be considered either as the slip duration (Brune, 1970; Bizzarri, 2014) either

as τR

4
(Dreger et al., 2007, where τR is inferred from statistical regression, as in ). Equation (D.24)

recalls the slip rate proposed by Brune (1970):

ṡ (t) =





0, t < tS
cS∆τb

µ
exp

(
− (t−tS)

tC

)
, t ≥ tS

(D.26)

where ∆τb is the breakdown stress-drop Bizzarri (2014). In Brune’s model, the slip duration tC is

controlled by the propagation speed and by the dimension of the rupture. Moreover, the analytical

form of has been also used by to describe the moment release function (Imperatori and Mai, 2013).

However, Brune’s model has a smooth spectrum and a ω−2 high frequency decay rate, where ω is the

angular frequency.

Figure D.5 compares the mentioned STF in terms of fault offset uS (displacement), slip velocity ∂tuS

and acceleration ∂ttuS Further comparisons between different STF can be found in Bizzarri (2014).

The resulting moment tensor can be therefore modelled as:

M
0

(t) = M
0
ūS (t) (D.27)

being ūS (t) the normalized slippage time-history uS (t) /A.

As proved by many authors (e.g., Tinti, 2005; Bizzarri, 2014), the choice of such a temporal evolution

is not straightforward. The STF parametrization represent a delicate tuning exercise in wave propaga-

tion problems, either considering an point-source approximation, either for extended rupture models

based on the kinematic approach.
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ū
S
(t
)[
m
/
s/

s]

Acceleration

(c)

Figure D.5: Different source functions ūS (t) compared. (a) Displacement source functions; (b)

Velocity source functions; (c) Acceleration source functions.

D.2.7 Full elasto-dynamic solution

Generally, at point x and time t, the complete seismic motion u(x; t)radiated by an arbitrary fault

surface Σ with a dislocation vector field ∆u(x; t)over Σ can be written as the sum of three main

contributions (near-, intermediate- and far-field) (Madariaga, 1989).

u (x; t) = uNF (x; t) + uIF (x; t) + uF F (x; t) (D.28)

The NED coordinate system is used below to derive relations between the angles of a ruptured fault

(strike and dip angle) and the dislocation direction on the rupture plane (rake angle). In Figure D.6a

and Figure D.6b u is represented as a function of nΣ, er, of the strike angle φS , the dip angle δ,

the rake angle λ, the take-off angle iξ and the azimuth angle φ. By substituting Equation D.17 in

Equation D.12, the displacement field is obtained and it writes (Aki and Richards, 1980):

u (x; t) = uNF (x; t) + uIF−P (x; t) + uIF−S (x; t) + uF F−P (x; t) + uF F−S (x; t) (D.29)
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departing ray

(a) (b)

Figure D.6: Definition of the Cartesian coordinate system (x, y, z).

with:

• Near-Field displacement field:

uNF (x; t) =
30µ|Σ|A (er.nΣ)

(
er.

∫ r/cS

r/cP
τ ūS (t− τ) dΣdτ

)
er

4πρr4
−

−
6µ|Σ|A

(
er.

∫ r/cS

r/cP
τ ūS (t− τ) dΣdτ

)
nΣ

4πρr4
−

−
6µ|Σ|A (er.nΣ)

∫ r/cS

r/cP
τ ūS (t− τ) dΣdτ

4πρr4

(D.30)

uNF (x; t)is composed of both P- and S-waves. It is therefore neither irrotational (i.e., having

zero curl), nor solenoidal (i.e., having zero divergence), and this indicates that it is not always

fruitful to decompose an elastic displacement field into its P- and S-wave components. The

near-field attenuates as 1
r4 .

• Intermediate-Field displacement field (P-waves):

uIF−P (x; t) =
12µ|Σ|A (er.nΣ)

(
er.ūS

(
t− r

cP

)
dΣ

)
er

4πρc2
P r

2
−

−
2µ|Σ|A

(
er.ūS

(
t− r

cP

)
dΣ

)
nΣ

4πρc2
P r

2
−

−
2µ|Σ|A (er.nΣ) ūS

(
t− r

cP

)
dΣ

4πρc2
P r

2

(D.31)

The P-wave intermediate-field attenuates as 1
r2 .

• Intermediate-Field displacement field (S-waves):
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uIF−S (x; t) = −
12µ|Σ|A (er.nΣ)

(
er.ūS

(
t− r

cS

)
dΣ

)
er

4πρc2
Sr

2
+

+
3µ|Σ|A

(
er.ūS

(
t− r

cS

)
dΣ

)
nΣ

4πρc2
Sr

2
+

+
3µ|Σ|A (er.nΣ) ūS

(
t− r

cS

)
dΣ

4πρc2
Sr

2

(D.32)

The S-wave intermediate-field attenuates as 1
r2 .

• Far-Field displacement field (P-waves):

uF F−P (x; t) =
2µ|Σ|Aer (er.dΣ) (er.nΣ)

4πρc3
P r

∂tūS

(
t− r

cP

)
(D.33)

The P-wave far-field attenuates as 1
r
.

• Far-Field displacement field (S-waves):

uF F−S (x; t) = −2µ|Σ|A (er.dΣ) (er.nΣ)

4πρc3
Sr

∂tūS

(
t− r

cS

)
er+

+
µ|Σ|A (er.dΣ)

4πρc3
Sr

∂tūS

(
t− r

cS

)
nΣ+

+
µ|Σ|A (er.nΣ)

4πρc3
Sr

∂tūS

(
t− r

cS

)
dΣ+

(D.34)

The S-wave far-field attenuates as 1
r
.

Figure D.7 shows the geometric attenuation of the different components of the radiated wave-fields,

at two stations place right above embedded in an horizontal fault plane and slipping in along it. All
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Figure D.7: Near-,Intermediate- and Far-Field contribution to the total displacement radiated by an

horizontal fault (φS = 0◦, λ = 0◦, δ = 0◦) at an azimuth φ = 0◦ and take-off angle iξ = 180◦.

(a) Displacement fields at a distance r = 800 m from the point source; (b) displacement fields at a

distance r = 1000 m from the point source.
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the terms in Equation D.29 vanishes as power of 1
r
. Much of the practical work of seismology is done

in the far field, at distances of several wavelengths from the source. When the distance r is large only

the last two terms of Equation D.29 are important, i.e. in that region it is not necessary to use the

complete elastic field. Thus, at large distances, the following far-field approximation holds:

u (x; t) ≈MO

(
2er (er.dΣ) (er.nΣ)

4πρc3
P r

H
′
(
t− r

cP

)
+

nΣ (er.dΣ) + dΣ (er.nΣ) − 2er (er.dΣ) (er.nΣ)

4πρc3
Sr

H
′
(
t− r

cS

)) (D.35)

If it is considered that there is roughly a factor of 2 between cP and cS , one can assume that the second

term in Equation D.35 is predominant, leading to the final approximate:

u (x; t) = uO (x)H
′
(
t− r

cS

)
(D.36)

uO (x) = MO
nΣ (er.dΣ) + dΣ (er.nΣ) − 2er (er.dΣ) (er.nΣ)

4πρc3
Sr

(D.37)

As far as earthquake resistance of structure is concerned, the main quantity of interest is the acceler-

ation. Equation D.37 shows that this acceleration is rather difficult to predict since it is given by the

third derivative of the time evolution of the seismic moment, i.e. the third derivative of the slippage

time-history. The approximate H
′ ≈ δ is too crude for this purpose.

The concept of near-field

There has been always been some confusion in the seismological literature with respect to the exact

meaning of the term far-field, since a point force has zero length-scale, by definition. This problem has

important practical consequences for the numerical solution of the wave equation, for the computation

of near-source accelerograms, etc (Madariaga, 1989). In order to clarify this, one should examine the

frequency domain expression for the Green function D.3, expressed in Equation

D.2.8 Finite size effect and corner frequency

Even if the detailed time-history of the seismic motion seems difficult to be predicted, some global

tendency of the frequency content of the seismic motion can be sought by taking into account the fault

size. Indeed, considering a planar rectangular fault Σ of size H ×L in the (e1, e2) plane and centered

on the reference frame and accounting just for shear waves, one has:

u (x; t) ≈ 1

|Σ|
∫

Σ
u0

(
x − y

)
H
′
(
t− r

cS

)
dS

(
y
)

(D.38)

Since a far field approximate is sought, the first term in Equation D.38 is approximated by taking its

value for y = 0. Moreover, within the limits of this assumption, one can take r ≈ rO − eO.y , being

rO = ‖x‖ and eO =
x

rO
. Taking the Fourier transform of the last term of Equation D.38 leads to:

û (x;ω) = ûO (ω)
1

|Σ|
∫

Σ
exp

(
iω

eO.y

cS

)
dS

(
y
)

(D.39)

with ûO(ω) frequency response for a localized seismic moment. Finally, one gets:

û (ω) = ûO (ω) sinc (ωT1) sinc (ωT2) (D.40)
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where Tα = Lα
e

O
.eα

2cS
and sinc (x) = sin x

x
.

As a consequence, the finite size of the source has a low-pass filtering effect. The proposed model

accounts only for a ω−1 decay at high-frequencies whereas experimental results usually show a ω−2

decay. The latter can be modelled using a more complex slip time-history. As a conclusion one can

take the following expression for the Fourier amplitude of the far-field response:

|û (ω) | =
|ûO (ω) |

1 + (ω \ ωC)2 (D.41)

with ωC the corner circular frequency defined as :

ωC ≈ 2cS

3
√

|Σ|
(D.42)

Using simple source models we have been able to explain and to quantify basic relationships between

wave amplitudes, fault length, slippage, seismic moment, energy, frequency spectrum. However

these expressions are not always consistent with the original Richter scale. Moreover the proposed

models do not seem able to predict the maximum acceleration. At last, the propagation medium has

been considered as homogeneous whereas the seismic wave experience large velocity contrasts when

reaching the free surface. As a consequence more detailed studies have to be conducted in order to

quantify the local seismic filed in the vicinity of structure to be designed (Clouteau, 2008).

D.2.9 From point to extended seismic source

The earthquake source signal is the source time function produced by the faulting. In the simplest

case of a short fault that slips instantaneously, the seismic moment function is a step function whose

derivative (i.e. a delta-function) is the source time function. However, real faults give rise to more

complicated source time functions. For instance, consider a simple case in which the rupture at each

point on a rectangular fault radiates an impulse (Figure D.8) The total radiated signal is not impulsive

because of the progressive rupture along the fault plane. Waves arrive first from initial point of rupture

and later from points further along the fault. Assume a rupture propagating along the fault plane at a

rupture velocity VR along the fault of length L and a receiver at distance r0 and azimuth θ from the

nucleation point N . The first seismic arrival is at time T0 = r0

c
, where c represents the wave P-S wave

velocity respectively. The far end point of the fault E ruptures at time L
VR

later than the nucleation

point, giving a seismic arrival time TE = L
VR

+ r
c
, where r is the distance from between E and the

receiver S. Simple trigonometry states that:

r2 = r2
0 + L2 − 2r0 cos θ (D.43)

which can be simplified in far-field as:

r ≈ r0 − L cos θ (D.44)

Thus, the time pulse generated by a finite fault is a boxcar of duration:

TR =
L

c

(
c

VR

− cos θ
)

(D.45)

TR is commonly known as rupture time. If one typically assumes VR ≈ 0.7 − 0.8c, the ratio c
VR

equals 1.2 for S-waves and 2.2 for P-waves. The maximum duration occurs at θ = 180◦ (Stein and

Wysession, 2003). A second effect lightening the time function is that, even at a single location on
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Figure D.8: Schematic fault plane and parameters required to perform numerical simulations (inner,

outer and extra parameters). Reprinted from Yin-Tung (2012).

the fault, slip does not occur instantaneously,yet a slip history should be modelled instead. The latter

is often assumed as a ramp function beginning at time zero and ending at the so called rise time τ .

The source time function depends on the derivative of the slip history. For a ramp, this derivative is a

boxcar. Convolving the finiteness of and rise time effects yields a trapezoid whose length is the sum

of the rise and rupture.

r (t)

{
1,TN ≤ t ≤ TE

0,t < TN , t > TE

(D.46)

(D.47)

s (t)

{
s̄,0 ≤ t ≤ τ

0,t < 0, t > τ

(D.48)

(D.49)

uS (t) =
∫ +∞

−∞
r (t− τ ) s (τ ) dτ =

∫ +∞

−∞
r (τ ) s (t− τ ) dτ =

∫ TE

TN

s (t− τ ) dτ =
∫ t−TN

t−TE

s (τ ) dτ =

∫ 0

t−TE

s (τ ) dτ +
∫ τ

0
s (τ ) dτ +

∫ t−TN

τ
s (τ ) dτ =

s̄+
∫ 0

t−TE

s (τ ) dτ +
∫ t−TN

τ
s (τ ) dτ =

(D.50)
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uS (t) = 0,t < TN

uS (t) = s̄
(
t− TN

τ

)
,TN ≤ t ≤ TN + τ

uS (t) = s̄, TN + τ < t < TE

uS (t) = s̄
(

1 − t− TE

τ

)
,TE ≤ t < TE + τ

uS (t) = 0,t > TE + τ

(D.51)

(D.52)

(D.53)

(D.54)

(D.55)

Other source function shapes of comparable length are possible, like triangles or Gaussian func-

tions. Seismograms are often insensitive to the details of the source time function itself (Stein and

Wysession, 2003).

D.3 The Wave-Number Integration Method

The WNI is based upon an extension of the wave-propagation into elastic full space to a layered

half-space. The equations of elastodynamics for the layered half-space in Figure 3.21, read (for all

j = 1, ..., N + 1 layers):





(
λj + 2µj

)
∇x

(
∇x.u

j
)

− µj
∇x ∧

(
∇x ∧ uj

)
+ f j

ext
= ρj∂ttu

j

σ1.iz = 0, (x, y, z, t) ∈ (R,R, z = 0) × [0, t]

(D.56)

(D.57)

At each layer-to-layer interface, the following extra-conditions add to the problem (displacement and

traction continuity):





uj+1
(
x, y, zj+1 = 0, t

)
= uj

(
x, y, zj = hj , t

)

σj+1.iz

(
x, y, zj+1 = 0, t

)
= σj.iz

(
x, y, zj = hj , t

)
(D.58)

(D.59)

Again, the Sommerfeld’s radiation condition holds at the deepest layer:





lim
R→∞

∫

‖x‖=R

(
σN+1

nn − iωρN+1V N+1
P uN+1.n

)2
dS = 0

lim
R→∞

∫

‖x‖=R
‖tt(N+1)

n − iωρN+1V N+1
S ut(N+1)‖2dS = 0

(D.60)

(D.61)

The Huygen’s principle states that a 3D displacement wave-field can be expressed as superposition

of spherical waves of radius R in the general form of uS (R;ω) = 1
R
ei ω

c
R Hisada (1994) (ω is the

circular frequency and c the propagation speed). In the WNI, those spherical waves are decomposed

into cylindrical waves by means of the so called Sommerfeld’s integral in the wave-number domain

(referred as to k) Aki and Richards (1980):

1

R
ei ω

c
R =

∫ +∞

0

[
k

ν
e−ν|z−h|J0 (kr)

]
dk (D.62)

where J0 (kr) represents the 0th-order Bessel’s function and ν2 = k2 −
(

ω
c

)2
, Re (ν) ≥ 0. z and h

represent the receiver’s and source’s depths respectively and R =
√
r2 + (z − h)2 (see Figure 3.21).

In order to obtain the radiated stress field, one needs to perform the derivative of uS with the respect to
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r and z. Following the same approach, the derivative ∂uS

∂r
(r, ω) can be expressed in the Sommerfeld

integral form, namely:

(
1

R
− i

ω

c

)
r

R2
ei ω

c
r =

∫ +∞

0

[
k2

ν
e−ν|z−h|J1 (kr)

]
dk (D.63)

where J1 (kr) represents the 1th-order Bessel’s function. The semi-infinite integrals in Equations D.62

and D.63 oscillates (i.e. decreasing/increasing amplitudes with k) when z ≈ h, since the decaying ex-

ponential term e−ν|z−h| disappears. Nevertheless, Luco and Apsel (1983a,b) proved that the dynamic

Green’s functions converge to static for large k:





lim
k→∞

(
1

R
ei ω

c
R
)

=
1

R
=
∫ +∞

0

[
e−k|z−h|J0 (kr)

]
dk

lim
k→∞

[(
1

R
− i

ω

c

)
r

R2
ei ω

c
R
]

=
r

R3
=
∫ +∞

0

[
ke−k|z−h|J1 (kr)

]
dk

(D.64)

(D.65)

Subtracting Equations D.65 from Equations D.62 andD.63 respectively, one gets a residuum that

converges fast to zero with the wave-number, even for z ≈ h:





1

R
ei ω

c
R =

∫ +∞

0

[(
k

ν
e−ν|z−h| − e−k|z−h|

)
J0 (kr)

]
dk +

1

R
(

1

R
− i

ω

c

)
r

R2
ei ω

c
R =

∫ +∞

0

[(
k

ν
e−ν|z−h| − e−k|z−h|

)
kJ1 (kr)

]
dk +

r

R3

(D.66)

(D.67)

Due to the rapid convergence to zero with the horizontal wave-number of the integral in Equa-

tions D.67, their numerical integration ranges can be reduced compared to Equations D.62 andD.63,

particularly when the source depth is the same or close to the receiver depth. Based on this ana-

lytical result, Hisada (1994, 1995, 2008) developed an efficient numerical method to compute the

Green’s functions due to point and dipole sources, via the generalized reflection/transmission (R/T)

coefficients. The WNI semi-analytical solution was implemented in a FORTRAN 77 code. The FOR-

TRAN codes for this method for both point and dipole sources are open to academic use through

anonymous FTP (hisada@cc.kogakuin.ac.jp).
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Resumé en Français

Le projet SINAPS@, qui a financé entièrement ce travail, a été conçu pour cueillir l’information

venant de l’ingénierie parasismique et de la sismologie pour les intégrer dans un cadre omni-compréhensif.

L’intention déclarée est d’améliorer les pratiques communes de conception parasismique des struc-

tures critiques (par exemple les centrales nucléaires), en revisitant les existants avec un point de vue

innovant, basé sur la physique du problème et sur la simualtion de la faille au site. À cette fin, le

cas applicatif choisi par SINAPS@ est la réponse sismique de la centrale nucléaire de Kashiwazaki-

Kariwa (KKNPP), pendant le seisme de Niigata-Ken Chūetsu-Oki (NCO) de 2007. Le dernier est un

scénario sismique bien documenté, convenable pour des investigations profondes sur les conditions

de champs-proche, les effets de site non linéaires et de la réponse structurel. De plus, le site a été

l’objet du benchmark numérique KARISMA, qui a souligné quelques aspects critiques du site et de

la réponse structurelle. Dans ce travail, je me suis concentré explicitement sur quelques aspects cru-

ciaux de la modélisation ”physics-based” du scénario sismique de NCO. Inspiré par les propositions

de SINAPS@, l’idée de base du projet de doctorat est d’analyser tous (ou presque tous) les différents

aspects du problème, d’un point de vue holistique et en approfondissant la quantification d’incertitude

de ceux-ci. J’ai évité de me concentrer seulement sur un seul aspect spécifique, parce que je vois la

Sismologie et le Génie Parasismique comme une thèmatique multidisciplinaire et multiobjectif, qui

exige un jugement critique et une compréhension profonde de tous les mécanismes influants sur la

propagation d’onde sismique de la source à la structure. J’ai préféré fournir un panorama détaillé des

outils et des méthodologies couramment employées dans le génie parasismique avec leur criticités.

Le scénario du tremblement de terre a été d’abord investigué et compris en analysant la base d’ enreg-

istrements sismiques disponible, en faisant référence partiellement au site KKNPP et partiellement

au grand réseau accélérometrique japonais K-NET/Kik-Net. À cette fin, le Chapitre 2 présente une

révision de l’ensemble d’information (encore partiel) disponible sur le site. Cela afin d’ouvrir la

voie à des analyses physics-based complexes, aidant à la compréhension du phénomène et à la car-

actérisation du modèle numérique. L’analyse des données sismiques souligne la nature impulsive

d’onde incident (typique de conditions de champs proche) et la dégradation non linéaire de la raideur

des couches de sol peu profondes. La caractérisation du site, fournie en termes de profil de vitesse

des ondes de cisaillement et courbes de dégradation, a été révisée et modifiée ainsi pour reproduire la

réponse du site 1D au moyen de la Méthode Linéaire Équivalente. D’autres améliorations sont possi-

bles cependant, par exemple avec un modélisation non linéaire 1D pour reproduire la de-amplification

en surface et les tassements de sol observés (Yee et al., 2011).

Le deuxième effort important de ma thèse était de produire des signaux synthétiques à large bande

réalistes, soit en poussant à la limite la modélisation déterministe (ici jusqu’à 7 Hz), soit par meta-

modèle, en couplant les simulations numériques avec les prédictions des réseaux artificiels de neu-

rones. La première stratégie est intrinsèquement rattachée à la connaissance du mécanisme de rup-

ture et du modèle 3D de la croûte et de sa rhéologie. Étant donné la nature à facettes multiples du

phénomène de tremblement de terre, la construction de scénarios sismiques réalistes a été exécutée
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en exploitant différents outils numériques. Inspiré par la philosophie de SCEC (Southern Califor-

nian Earthquake Center), j’ai participé à la construction d’un plate-forme HPC (High-Performance

Computation), dont le coeur principal est représenté par le code SEM3D, pensé pour la résolution du

problème de propagation d’onde 3D dans des fluides et solides visqueux et non-linéaires et basé sur

la méthode des Éléments Spectraux. Ceci a été développé pour avoir une scalabilité optimale sur des

architectures informatiques parallèles. De plus, le code s’appuie sur un générateur de champs stochas-

tiques 3D, pour simuler l’hétérogénéité naturelle des géo-matériaux, ainsi que sur un outil numérique

(basé sur une architecture d’octree 27-tree) pour la génération de maillages de la croûte trrestre, en in-

cluant la topographie et le bathymetrie. Dans un contexte commun de manque de données inhérentes

au cas test, plusieurs vérifications et validations avec les observations ont été effectuées, pour tester

leur capacité prédictive. C’est la raison pourquoi dans le Chapitre 3, les résultats de ces tests sont

inclus dans la présentation générale des outils du laboratoire virtuel mentionné avant. De plus, une

étude préliminaire sur l’effet des couches de sol hétérogènes et non linéaires sur le mouvement d’onde

sismique à large bande est présentée, en se focalisant sur la reproduction de l’incohérence spatiale à

la surface.

Le coeur de cette thèse est la simulation de la réponse sismique de KKNPP pendant le tremblement de

terre NCO du 2007. Le modèle numérique a été construit en incluant progressivement des ingrédients

du modèle et en vérifiant à chaque fois la cohérence avec les modèles moins raffinés d’avant. La ques-

tion principale était de comprendre l’effet de la géologie sur le champ d’onde locale. La simulation

de deux petites secousses secondaire a conduit au calibrage de deux profils géologiques, c-à-d une

structure géologique 1D à échelle régionale, convenable pour les basses fréquences (0.0-0.5 Hz) et

un modèle 3D plus raffiné proche du site nucléaire (convenable pour des simulations jusqu’à 7.0 Hz),

où une structure géologique pliée a été caracterisée et identifiée comme résponsable de la variabilité

spatiale du mouvement sismique observée à KKNPP. La structure synclinal-anticlinal localisée sous

le site a provoqué une focalisation d’onde sismique vers l’Unité 1, où la plus grande amplitude (c-à-d

Peak Ground Acceleration, PGA) a été efficacement enregistrée. Cela implique le besoin d’une in-

vestigation des profils géologiques profonds (c-à-d jusqu’à 5.0 km de profondeur) pour la conception

parasismique des structures critiques, et éventuellement avec une extension spatiale considérable,

autre que le caractérisation géomecánique des couches superficielles (c-à-d jusqu’à 500 m de pro-

fondeur), responsables des effets de site non linéaires. Dans cette analyse, le processus de génération

du tremblement de terre a été investigué aussi, avec une calibration préliminaire du modèle de source

sismique pour la simulation du main shock.

Bien que moins significatif pour les structures minces et allongées (telles que les ponts), le be-

soin de signaux sismiques synthétiques fiables à large bande est indispensable pour la conception

d’installations nucléaires, en raison de la présence des structures particulièrement rigides et enfoncés

dans les premiers mètres de sol, telles que les réacteurs nucléaires. Un facteur critique dans la sim-

ulation numérique de la propagation d’onde 3D est la fréquence maximale qui peut être modélisée,

en étant une fonction de la résolution spatiale du modèle (c-à-d espacement de la grille computation-

nelle). Ceci généralement finit par augmenter rapidement le coût de calcul (Bradley et al., 2017). Du

coup, dans le Chapitre 4, une nouvelle procédure (appelée ANN2BB) pour la génération de signaux

synthétiques hybrides à large bande est décrite. Cette approche hybride gravite autour d’un besoin

de signaux sismiques réalistes, avec un spectre de réponse compatible aux observations. ANN2BB

couple les simulations numériques physics-based (généralement valables sur une gamme de 0-10

Hz) avec des prédictions à courte période (f>10Hz) du spectre de réponse, donnée par des Réseaux

des Neurones Artificiels (ANN), opportunément entrainée sur des bases d’enregistrements sismiques

hétérogènes. ANN2BB a été appliqué à quelques scénarios de tremblement de terre italiens récents,

avec un très bonne estimation du spectre de réponse au site d’interêt. Pour cette raison, ANN2BB
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représente une alternative très charmante aux analyses complètement déterministes, surtout chaque

fois que les mécanismes physiques du phénomène ne sont pas facile à être modelés à une certaine

échelle. À une échelle régionale, ANN2BB est employée pour fournir des cartes d’intensité sismique

fiables et décrire la cohérence spatiale du mouvement sismique entre 0.0-25.0 Hz. Par rapport aux

approches hybrides traditionnelles (basé sur analyses empiriques ou stocastiques), ANN2BB sem-

ble capable de préserver le caractère de variabilité spatiale de mouvement de terre observée à basses

fréquences jusqu’à haute fréquences, en représentant du coup une technique de meta-modélisation

intelligente alors que il y aille un manque de données, des modèles convenables, des ressources com-

putationnelles et d’une compréhension plus profonde du phénomène de tremblement de terre.

Ma thèse de doctorat représente une fondation conceptuelle et une contribution du point de vue

du développement et amèlioration de la plate-forme multioutil conçue pour la simulation hybride

multiéchelle et physics-based du tremblement de terre. Bien que non complètement exhaustif dans

toutes les aspects attaqués, ce document peut être vu comme un travail séminal à être intégré dans le

très proche avenir avec l’aspect énuméré ci-dessous:

• Le modèle hysteretique non linéaire (d’Armstrong-Frederick) que j’ai implementé dans SEM3D

pour décrire la comportement cyclique des sols a été choisi pour le facilité d’implémentation

et la pénurie de paramètres modèles exigés. De plus, l’efficacité du modèle a était prouvé dans

le Chapitre 3, en évaluant l’effet de la non-linéarité (couplé avec l’hétérogénéité de sol) sur

le cohérence du mouvement sismique en surface libre. Vu dans la perspective, cependant, ce

choix ne diminue pas la qualité totale des analyses en considérant l’échelle du problème typique

à prendre en compte (c-à-d 100 km) et la discretization spatial typique (c-à-d dimensions des

éléments de 100 m). Ces aspects forcent à une approximation importante du détail du champ

d’onde propagé, en masquant les détails du modèle hysteretic cyclique choisi pour représenter

le comportement de sol, qui sont plutôt distinguables à une échelle de laboratoire. De plus,

cet effort supplémentaire est complémentaire avec les développements parallèles actuels pour

coupler SEM3D avec un code structurel pour réaliser des études d’Interaction Sol-Structure et

de vulnerabilité sismique des sites nucléaires.

• Les mouvements forts sont provoqués par la rupture dynamique de grandes portions de la croûte

terrestre, le long des faille sismiques actives. Dans cette étude, la distribution complexe du

glissement et le parcours de rupture a été simulé de façon approximée, au travers d’une dis-

tribution des points source asynchrones (moments sismiques double couple), localisés atours

des majeures aspérités d’une faille. Cependant, la mise en oeuvre d’un outil pour la simulation

numérique de la rupture basé sur une déscription cinématique de la discontinuité est en cours

de développement dans SEM3D. L’idée est toujours de discretizer la surface de rupture par une

grille numérique fine et de traiter chaque point de grille comme une source sismique double

couple, mais la dont la distribution spatio-temporelle soit fournie par un logiciel externe, tel

que RIKsrf (basé sur l’implémentation du modèle de source Ruiz Integral Kinematic proposé

par Ruiz et al., 2011, (RIK)) qui fournit le taux de glissement locale selon le modèle k−2 désiré

à large bande (fmax = 10.0 Hz). Actuellement, des verifications dans des cas canoniques sont en

cours de exécutés. Cependant, cet outil va être stablement integré dans la plate-forme multioutil

construite et développée dans le cadre de l’institut SEISME et du projet SINAPS@.

La pratique de reproduction de tremblement de terre vire progressivement vers la simulation numérique

3D et large échelle des scénarios sismiques. Malgré les difficultés intrinsèques non-négligeables,

ces simulations numériques basées sur la physique du phénomène ont eu du succès jusqu’à présent.

Dans le monde entier, sismologues et ingénieurs s’efforcent d’augmenter la precision des modèles

seismologiques/géotechniques, compatiblement avec la puissance de calcul croissante. La simula-

tion des scénarios de mouvement sismiques passée et bien documentés améliore la compréhension
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de phénomènes complexes et leur déscription de la source au site avec les avantages conceptuels

évidents si comparé aux analyses empiriques basées sur les données mondiales des tremblements

de terre historiques (Bradley et al., 2017). Cependant, un tel approche deterministe souffre d’une

grande incertitude épistémique et aléatoire, que les observations peuvent rarement résoudre. Un du

problème important concerne le modelage détaillé de la partie à haute fréquence des seismograms

enregistrés (voir les objectifs du plan de recherche SCEC). Les modèles déterministes capables de

décrire toute la concurrence de ces facteurs pour la production des synthétiques à large bande (0.0-

25.0 Hz) sont toujours peu contraints. Une analyse complète devrait prendre en compte les processus

thermo-hydro-mécaniques multiéchelle, responsables de l’initiation de tremblement de terre et de son

évolution, ainsi que l’interaction complexe entre structures géologiques 3D et le champ d’onde ray-

onné (souvent pauvrement décrit) en incluant attenuation et diffraction et les effet de site dans les

couches peu profondes. Si les composantes structurelles sont incluses, l’Interaction Sol-Structure

devrait être pris en considération aussi. Il est évident que le caractère extrêmement non linéaire et

aleatoire du problème représente un défi dur à être attaqué avec une approche purement déterministe.

Donc, des seismograms à large bande peuvent être produits avec un approche hybride. Les outils de

meta-modélisation servent à améliorer l’évaluation du hasard sisimque et l’atténuation du risque dans

des grandes zones urbaines. De plus, ces simulations permettent de remplir les trous dans les bases

de données employé pour les études de Alea Sismique et de disaggregation (Probabilistic Seismic

Hazard Analysis, PSHA), surtout dans les régions caractérisée par une seismicité moderée, tel que la

France metropolitaine.
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Nomenclature

α and β Coefficient of Nakagawa and Soga (1995) model

αP GA
(ξ=5%) Median spectral acceleration amplification factor

αP GV
(ξ=5%) Median spectral velocity amplification factor

θ̄ (x) Mean of random field

D
el Elasticity 4th-order tensor

δ Dirac’s function

D
ep Elastic-Plastic 4th-order tensor

ε̇el
x

Elastic strain increment

ε̇pl
x

Plastic strain increment

Sσ Deviatoric stress tensor

ṗ Plastic multiplier

ℓcθ Heterogeneity correlation length

λ (x), µ (x) Lame’s coefficients

ρ (x) Volumetric mass density

γ Shear strain

γr,1, n, β1 and β2 regression coefficients from Yee et al. (2011)

γr pseudo-reference Shear Strain

· ⊗s ∇x Symmetric gradient operator

χ
∼

(x; t) Hidden internal variable set

k Wave-number vector

λmin Minimum wave-length

Eσχ Instantaneous elastic range

Fext Global external force vector
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Fint

(
Û

h

G; V̂
h

G

)
Global internal force vector

Ftrac
(
T

h
G

)
Global traction force vector

H Plastic hardening

I 4th order identity tensor

M Global mass matrix

Rθ (x) Auto-covariance model for random field

µsec Secant shear modulus

∂Eσχ Yield Locus

ρXY (θXY ) Cross-correlation coefficient

σ′V 0 Effective overburden vertical stress

σyld First yield limit

σ (x; t) Cauchy’s small strain stress tensor

ėpl Deviatoric plastic strain tensor

ε
x

(·) Small strain tensor

I 2nd order identity tensor

X Back-stress tensor

θC Horizontal azimuthal deviation for 0 cross-correlation

θC Horizontal azimuthal deviation for 0 cross-correlation

θXY Horizontal azimuthal deviation

θXY Horizontal azimuthal deviation

θ (x) Stationary random field

θBB Horizontal azimuthal deviation at borehole

θNP Horizontal azimuthal deviation corresponding to fault parallel/normal direction

Â
h,n

G Global acceleration vector

Û
h

G Global displacement vector

V̂
h

G Global velocity vector

T
h
G Global traction vector

b (x; t) Body forces

tn,0 Traction vector
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u (x; t) Displacement field

v (x; t) Velocity field

ξ Critical damping ratio

C Courant-Friedrichs-Lewy number

cP , cS P-wave and S-wave velocities

Ckin and κkin AF kinematic hardening parameters

D Critical damping coefficient

DLS Large Strain critical Damping coefficient

DSS Small Strain critical damping coefficient

DSS Small Strain critical damping coefficient

f frequency

f
(

σ; χ
∼

)
Yield function

G Shear modulus

g Plastic potential function

G (x) Gaussian random field

Gmax Maximum/Initial shear modulus

J2 Second invariant of deviatoric tensor

L Domain characteristic dimension

No Number of integration points per minimum wave-length

p′0 Mean effective confining Pressure

patm Atmospheric Pressure

Q Quality factor

Sa Pseudo Spectral Acceleration

SaGM (θ) Geometric Mean Pseudo Spectral Acceleration

TV \A Predominant harmonic period

VS Shear Wave Velocity

EMP-GM Geometric Mean Empirical borehole spectral ratio

MJMA Earthquake magnitude according to the Japanese Meteorological Agency

Mw Earthquake moment magnitude
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PGA Peak Ground Acceleration

PGAH Peak Ground Acceleration of Horizontal components

PGAH Peak Ground Acceleration of Horizontal components

PGAV Peak Ground Acceleration of the Vertical component

PGAR Peak Ground Acceleration at borehole bedrock

PGVH Peak Ground Velocity of Horizontal components

PGVH Peak Ground Velocity of Horizontal components

PGVV Peak Ground Velocity of the Vertical component

R source-to-site distance

RJB Joyner-Boore distance

Rrup Closes source-to-site distance from the fault plane
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Titre : Analyse physics-based de scénarios sismiques «de la faille au site»: prédiction
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Résumé : L’ambition de ce travail est la prédic-
tion du champ d’onde incident réalistique, induit par
des mouvement forts de sol, aux sites d’importance
stratégique, comme des centrales nucléaires. À cette
fin, un plateforme multi-outil est développé et ex-
ploité pour simuler les aspects différents d’un phéno-
mène complexe et multi-échelle comme un tremble-
ment de terre. Ce cadre computationnel fait face à la
nature diversifiée d’un tremblement de terre par ap-
proche holistique local-régionale.Un cas d’étude com-
plexe est choisie: le tremblement de terre MW6.6
Niigata-Ken Chūetsu-Oki, qui a endommagé la cen-
trale nucléaire de Kashiwazaki-Kariwa. Les effets de
site non-linéaires observés sont à premier examinés et
caractérisés. Dans la suite, le modèle 3D «de la faille
au site» est construit et employé pour prédire le mou-

vement sismique dans une bande de fréquence de 0-7
Hz. L’effet de la structure géologique pliée au-dessous
du site est quantifié en simulant deux chocs d’inten-
sité modérée et en évaluant la variabilité spatiale des
spectres de réponse aux différents endroits dans le
site nucléaire. Le résultat numérique souligne le be-
soin d’une description plus détaillée du champ d’onde
incident utilisé comme paramètre d’entrée dans la
conception structurel antisismique de réacteurs nu-
cléaires et des installations. Finalement, la bande de
fréquences des signaux synthétiques obtenues comme
résultat des simulations numériques est agrandie en
exploitant la prédiction stochastique des ordonnées
spectrales à courte période fournies par des Réseaux
Artificiels de Neurones.

Title : Forward physics-based analysis of "source-to-site" seismic scenarios for strong
ground motion prediction and seismic vulnerability assessment of critical structures

Keywords : engineering seismology, computational earthquake engineering, strong ground motion earth-
quake, physics-based modelling, seismic vulnerability, uncertainty quantification

Abstract : The ambition of this work is the predic-
tion of a synthetic yet realistic broad-band incident
wave-field, induced by strong ground motion earth-
quakes at sites of strategic importance, such as nu-
clear power plants. To this end, an multi-tool plat-
form is developed and exploited to simulate the dif-
ferent aspects of the complex and multi-scale phe-
nomenon an earthquake embodies. This multi-scale
computational framework copes with the manifold na-
ture of an earthquake by a holistic local-to-regional
approach. A complex case study is chosen to this end:
is the MW6.6 Niigata-Ken Chūetsu-Oki earthquake,
which damaged the Kashiwazaki-Kariwa nuclear po-
wer plant. The observed non-linear site-effects are at
first investigated and characterized. In the following,
the 3D source-to-site model is constructed and em-

ployed to provide reliable input ground motion, for
a frequency band of 0-7 Hz. The effect of the folded
geological structure underneath the site is quantified
by simulating two aftershocks of moderate intensity
and by estimating the spatial variability of the res-
ponse spectra at different locations within the nuclear
site. The numerical outcome stresses the need for a
more detailed description of the incident wave-field
used as input parameter in the antiseismic structu-
ral design of nuclear reactors and facilities. Finally,
the frequency band of the time-histories obtained as
outcome of the numerical simulations is enlarged by
exploiting the stochastic prediction of short-period
response ordinates provided by Artificial Neural Net-
works.
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