FEMxDEM double scale approach with second gradient regularization applied to granular materials modelization - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

FEMxDEM double scale approach with second gradient regularization applied to granular materials modelization

Approche double échelle de type FEMxDEM avec régularisation second gradient pour la modélisation des géomatériaux

Résumé

The multi-scale FEMxDEM approach is an innovative numerical method for geotechnical problems involving granular materials. The Finite Element Method (FEM) and the Discrete Element Method (DEM) are simultaneously applied to solve, respectively, the structural problem at the macro-scale and the material microstructure at the micro-scale. The advantage of using such a double scale configuration is that it allows to study an engineering problem without the need of standard constitutive laws, thus capturing the essence of the material properties. The link between scales is obtained via numerical homogenization, so that, the continuum numerical constitutive law and the corresponding tangent matrix are obtained directly from the discrete response of the microstructure.Typically, the FEMxDEM approach presents some drawbacks; the convergence velocity and robustness of the method are not as efficient as in classical FEM models. Furthermore, the computational cost of the microscale integration and the typical mesh-dependency at the macro-scale, make the multi-scale FEMxDEM approach questionable for practical uses. The aim of this work is to focus on these theoretical and numerical issues with the objective of making the multiscale FEMxDEM approach robust and applicable to real-scale configurations. A variety of operators is proposed in order to improve the convergence and robustness of the method in a quasi-Newton framework. The independence of the Gauss point integrations and the element intensive characteristics of the code are exploited by the use of parallelization using an OpenMP paradigm. At the macro level, a second gradient constitutive relation is implemented in order to enrich the first gradient Cauchy relation bringing mesh-independency to the model.The aforementioned improvements makes the FEMxDEM approach competitive with classical FEM models in terms of computational cost thus allowing to perform robust and mesh-independent multi-scale FEMxDEM simulations, from the laboratory scale (e.g. biaxial test) to the engineering-scale problem, (e.g. gallery excavation).Keywords:Double scale, numerical homogenization, numerical constitutive law, elasto-plasticity, second gradient, microstructured materials, large strain, finite elements, discrete elements, Newton method, parallelization, uniqueness.
L'approche multi-échelle FEMxDEM est une méthode numérique innovante pour les problèmes géotechniques impliquant des matériaux granulaires. La méthode des éléments finis (FEM) et la méthode des éléments discrets (DEM) sont simultanément appliquées à résoudre, respectivement, le problème structurel à la macro-échelle et la microstructure du matériau à la micro-échelle. L'avantage d'utiliser une telle configuration à double échelle est de permettre d'étudier un problème d'ingénierie sans la nécessité de lois de comportement standard, capturant ainsi l'essence des propriétés des matériaux. Le lien entre les échelles est obtenu par homogénéisation numérique, de sorte que la loi de comportement continu numérique et la matrice tangente correspondante sont obtenues directement à partir de la réponse discrète de la microstructure.En règle générale, l'approche FEMxDEM présente quelques inconvénients; la vitesse de convergence et la robustesse de la méthode ne sont pas aussi efficaces que dans les modèles FEM classiques. De plus, le coût de calcul de l'intégration de la micro-échelle et la dépendance du maillage typique de la macro-échelle, rendent l'approche multi-échelle FEMxDEM discutable pour des utilisations pratiques. Le but de ce travail est de se concentrer sur ces questions théoriques et numériques avec l'objectif de rendre l'approche multi-échelle FEMxDEM robuste et applicable à des configurations à l'échelle réelle. Une variété d'opérateurs est proposée afin d'améliorer la convergence et la solidité de la méthode dans un cadre quasi-Newton. L'indépendance de l’intégration des différents points de Gauss et les caractéristiques d’intensivité sur les d'éléments sont exploités par l'utilisation d’une parallélisation en utilisant un paradigme OpenMP. Au niveau macro, une relation constitutive second gradient est mise en œuvre afin d'enrichir la relation de Cauchy de premier gradient apportant indépendance du maillage au modèle.Les améliorations susmentionnées rendent l'approche FEMxDEM compétitive avec les modèles FEM classiques en termes de coût de calcul permettant ainsi d'effectuer des simulations multi-échelle FEMxDEM robustes et indépendantes du maillage, depuis l'échelle du laboratoire (par exemple essaie biaxiale test) jusqu’à celle du problème à l'échelle de l'ingénierie (par exemple, excavation d’une galerie).Mots clés:Double échelle, homogénéisation numérique, loi constitutive numérique, élasto-plasticité, second gradient, matériaux microstructurés, grande déformation, éléments finis, éléments discrets, méthode de Newton, parallélisation, unicité.
Fichier principal
Vignette du fichier
ARGILAGA_CLARAMUNT_2016_diffusion.pdf (11.48 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01626295 , version 1 (30-10-2017)
tel-01626295 , version 2 (23-01-2018)

Identifiants

  • HAL Id : tel-01626295 , version 2

Citer

Albert Argilaga Claramunt. FEMxDEM double scale approach with second gradient regularization applied to granular materials modelization. Solid mechanics [physics.class-ph]. Université Grenoble Alpes, 2016. English. ⟨NNT : 2016GREAI066⟩. ⟨tel-01626295v2⟩

Collections

UGA CNRS 3S-R STAR
372 Consultations
340 Téléchargements

Partager

Gmail Facebook X LinkedIn More