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Abstract

All life on earth has adapted to an environment where there is a small, persistent, radiation

background interacting with cells. Unlike evaluating the clearly harmful effects of high

radiation doses, understanding the effects of this low persistent radiation dose on living

systems is incredibly difficult. We have attempted to study whether background radiation

is an important factor in evolution by conducting identical evolution experiments with

Escherichia coli in the Clermont-Ferrand Particle Physics Laboratory and the Modane

Underground Laboratory. Despite a 7.3 fold difference in the rate of interactions between

the radiation background and cells between the two environments, no significant difference

was found in the competitive fitness of the cell populations grown at each location. Using

simulations, we showed that the rate at which ionising radiation interacts with cells is one

hundred times less frequent than E. coli’s mutation rate in our experimental conditions,

supporting the contention that natural radiation has no strong evolutionary effect. To further

support this conclusion, we developed a mechanistic simulation for DNA damage as part

of the Geant4-DNA project. Using this application, we irradiated a model of an E. coli
genome, showing that for electron irradiation > 10 keV, the double strand break yield can

be reasonably estimated to be between 0.006−0.010 DSB Gy−1 Mbp−1, depending upon

the modelling of radical scavenging. This is in agreement with experimental data, further

highlighting the small role natural ionising radation plays as a cause of mutations.





Résumé

La vie sur Terre s’est adaptée à un environnement où il y a un faible et persistent bruit de fond

radiatif qui interagit avec les cellules. Loin des effets clairement nocifs des radiations à haute

dose, il est difficile d’évaluer et de comprendre les impacts des faibles doses de la radioactivité

naturelle sur les systèmes vivants. Nous avons tenté d’étudier si le bruit de fond radiatif

est un facteur important dans l’évolution, en menant des expériences évolutives identiques

avec Escherichia coli au Laboratoire de Physique Corpusculaire de Clermont-Ferrand, et

au Laboratoire Souterrain de Modane. Malgré une différence d’un facteur 7,3 entre les

taux d’interaction des rayonnements ionisants avec les cellules dans les deux laboratoires,

aucune différence significative n’a pu être trouvée dans le fitness compétitif des populations

cellulaires évoluées dans chaque laboratoire. Par simulation, nous avons montré que le taux

d’interaction entre le bruit de fond radiatif et E. coli est cent fois plus faible que le taux de

mutations d’origine endémique, ce qui renforce l’hypothèse que les radiations naturelles ont

peu d’effet sur l’évolution. Dans le cadre du projet Geant4-DNA, nous avons développé

une application complète de simulation mécanistique des dommages radio-induits à l’ADN,

afin d’explorer davantage cette hypothèse. Avec cette application, on a irradié un modèle

du génome d’E. coli, montrant que pour l’irradiation par des électrons d’énergies > 10 keV,

le rendement des cassures double brin est de 0,006− 0,010 CDB Gy−1 Mbp−1, selon le

modèle de piégeage des radicaux chimiques. Ce résultat est en accord avec des données

expérimentales, et souligne plus encore que les radiations ionisantes d’origine naturelle n’ont

qu’une contribution mineure aux mutations responsables de l’évolution.
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ESS Evolutionarily Stable Strategy

gen Generation (of a cell)

GPx Glutathione peroxidase

GSSG-Rx Glutathione reductase

GST Glutathione transferase

IRT Independent Reaction Times

LB Low Background

LET Linear Energy Transfer

LNT Linear-No Threshold

LPC Laboratoire de Physique Corpusculaire de Clermont-Ferrand

LSM Laboratoire Souterrain de Modane

LTEE Long Term Evolution Experiment

MMS Methyl methanesulfonate

ROS Reactive Oxygen Species

SB Standard Background

SOD Superoxide dismutase

SSB Single Strand Break

TA Tetrazolium-Arabinose



Summary

Right now, there is about one cosmic muon passing through your thumb every second. When

this happens, it’s slowed down by all the atoms it is passing through, and causing it to lose

about 2 MeV of energy. You don’t notice this of course, because such a small amount of

energy is inconsequential in all but the most finely calibrated systems.

This thesis asks how this small amount of energy, and the small amounts of energy like it

that make up the natural background radiation on earth can impact the delicate machinery

that is DNA. And more specifically, can radiation, as an external, abiotic factor, influence

the evolution of life? That is to say, if evolution is the result of an accumulation of genetic

mutations, and ionising radiation is a mutagen, is evolution to a measurable extent dependent

upon natural ionising radiation.

Basing our work around an experiment designed to measure whether background radiation

impacts the evolution of Escherichia coli, we address this question in three ways. First,

through simulation, we consider how often ionising radiation from background sources

actually impacts cells. Secondly, we try and quantify what happens when ionising radiation

strikes DNA: how much DNA is damaged when a certain amount of energy is deposited in

DNA, and how likely is it that this damage induces a break in the DNA chain, a precursor for

mutations. These two stages help us to make predictions about what will happen to bacteria

when the natural radiation background is suppressed in an evolution experiment, our third

approach in tackling this question.

Evolution experiments provide a way of observing evolution in a repeatable way. From

a given starting genome and selection pressure, an organism is likely to respond in only

a limited set of ways over the first few thousand or so generations that it grows in these

conditions. While mutations can occur across the entire genome, those that are favourable

and accessible are often quite limited, permitting experimentalists to know with a certain

probability, what paths evolution is likely to take. By studying controlled evolution in

two slightly different conditions, the impact of a certain treatment on the evolutionary

behaviour of a model organism can be found. In this work, we consider the outcome of an

evolution experiment across 500 generations in E. coli, conducted in two different radiation



2 Summary

environments, a reference environment at the Clermont-Ferrand Particle Physics Laboratory,

and a low radiation environment at the Modane Underground Laboratory.

In Chapter 2, we quantify these two radiation environments, and detail some of the

considerations necessary in order to control the radiation background in a low radiation

biological experiment. The dose rate in Clermont-Ferrand was calculated to be 214 nGy hr-1,

while underground, conducting our experiment inside lead shielding, a background level of

26 nGy hr-1was achieved. The vast majority of the radiation background underground was

due to the β− decay of 40K inside the nutritive medium used in our experiments. The impact

of a radiation environment on individual cells though is not easily found from the dose alone.

This is because dose is a macroscopic concept, that smooths out across a volume the very

narrow paths traced by ions and subatomic particles as they travel through space.

Using the Geant4 simulation toolkit, we were able to quantify the magnitude of this

effect, finding that the tracks of ionising radiation cross over bacterial cells with a very low

frequency. For a given cell population grown in Clermont-Ferrand, ionising radiation from the

background will touch cells with a frequency of 6.0×10−5 day−1 cell−1, while underground

this frequency drops to 8.2× 10−6 day−1 cell−1. The median energy deposited in DNA

when these events occur is 140 eV. Compared to the daily mutation rate of E. coli cells in

our experimental conditions, mutations from sources endemic to the cell must occur at least

one hundred times more frequently than ionising radiation induced mutations. While this is

an argument suggesting that ionising radiation should play a minimal role in evolutionary

behaviour, it does not provide any link between the number of mutations induced in E. coli
per day from the radiation background, nor give any measure of what it means for a cell to

be hit by radiation.

To investigate this, we developed a complete mechanistic DNA damage simulation as

part of the Geant4-DNA project. The Geant4-DNA project is a subset of the Geant4 project

which provides track structure codes for liquid water, and simulates the radiolysis of water

following irradiation. It includes a module for simulating radiation chemistry up to 1 μs

after irradiation. Chapter 3 describes this application, and the geometry of an E. coli cell we

developed for the simulation. The application was designed to be generic, so that other groups

could also use it to produce mechanistic DNA damage simulations for a variety of cell types

and DNA conformations. We found that our simulations produced results largely consistent

with experimental measurements of the strand break yield in bacterial DNA. Depending

on the assumptions regarding radical simulations made in the simulation, we predict that

for most electrons interacting with E. coli, between 0.006 and 0.010 DSB Gy−1 Mbp−1 are

caused in the cell.

Yields of double strand breaks are a first step towards determining the mutagenicity of
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energy depositions in cells from ionising radiation. The misrepair of single and double strand

breaks is one mechanism by which mutations can enter the genome. E. coli has a genome

length of 4.6 Mbp, thus given the median energy deposit in DNA from radiation, each

interaction between the radiation background and a DNA strand will cause ≈ 6×10−3 single

strand breaks, and ≈ 5×10−4 double strand breaks (median values). Work remains to be

done associating strand breaks as well as radical damage of bases with mutagenicity, but

these numbers provide an indication already that the majority of interactions between cells

and the radiation background cause comparatively little DNA damage.

Experimental validation of these predictions is important. Basing our work upon previous

E. coli evolution experiments, we grew E. coli across 500 generations in two different radia-

tion environments, measuring their competitive fitness in each location at regular intervals.

Previously, the rate of change of fitness has been shown to be correlated with the mutation

supply rate, a measure of how many mutations can enter the population each generation. The

experiment was designed such that if radiation was significantly responsible for mutations,

the 7.3-fold reduction in the rate that cells interact with the radiation background between the

high and low radiation background environments would manifest itself in the rate of change

of fitness within 500 generations.

We conducted detailed comparisons between the multiple lineages studies after 0, 200 and

500 generations of growth. At each interval, no significant difference in the distribution of

fitnesses was able to be measured between the radiation environments considered. Thus under

the conditions of our experiment, we conclude that after 500 generations, the natural radiation

environment does not have a significant impact on evolution in E. coli that is measurable

by competitive fitness. This is in agreement with our predictions from simulation, that the

radiation environment should not significantly impact evolutionary behaviour.

Despite this, there remain many cellular outcomes observed in response to suppression of

the radiation background that merit exploration in an underground laboratory. These include

changes in the growth rate, gene expression and antioxidant regulation. An implication of this

work is that these observations are not caused by interactions between radiation and DNA,

but rather must come from how cells sense and respond to background ionising radiation.

Exploring these responses, in order to quantify how cells understand, measure and respond to

low radiation environments could reveal a rich tapestry of cellular processes as yet unknown

or poorly understood, that are possibly driven by epigenetics or intercellular communication.

For both human spaceflight, and for understanding living systems in high radiation zones

and nuclear disaster zones, it is important that the basic responses of cells to background

radiation are well known. Such research may even have a significance that carries over

towards understanding some of the more perplexing observations that occur at low absorbed
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doses, such as the bystander effect and genomic instability.

Given the many ideas brought together in this thesis, each chapter attempts to introduce

enough relevant background material so that it can be understood on its own. The interested

reader is directed to Chapter 2 for a detailed discussion of dosimetry in our experiments,

and a quantification of how frequently ionising radiation touches cells. Chapter 3 presents a

thorough consideration of the DNA damage that occurs when the natural radiation background

interacts with E. coli cells, while Chapter 4 presents and explores our biological results.



Synthèse

Pendant que vous lisez ce document, environ un muon traverse votre pouce toutes les

secondes. A l’intérieur de votre pouce, il est ralenti par tous les atomes qu’il rencontre, ce

qui lui fait perdre environ 2 MeV d’énergie. Vous ne le sentez pas bien sûr, cette infime

quantité d’énergie est invisible sauf aux systèmes les plus sensiblement calibrés.

Cette thèse étudie comment ces petits dépôts d’énergie, et les autres petites quantités

d’énergie qui viennent du bruit de fond radiatif naturel sur Terre peuvent impacter l’objet

délicat qu’est l’ADN. Et plus spécifiquement, les radiations ionisantes peuvent-elles, en tant

que facteur abiotique externe à la vie, influencer l’évolution des êtres vivants. Autrement

dit, si l’évolution est le résultat de l’accumulation des mutations génétiques, et si les radia-

tions ionisantes sont mutagènes, est-ce que l’évolution dépend, à un niveau mesurable, de

l’exposition à la radioactivité naturelle ?

A partir d’une expérience conçue pour mesurer si les radiations naturelles ionisantes

impactent l’évolution de la bactérie Escherichia coli, nous étudions cette question de trois

façons. D’abord, par simulation, nous considérons la fréquence avec laquelle les rayon-

nements ionisants du bruit de fond naturel interagissent avec les cellules. Deuxièmement,

nous essayons de quantifier exactement l’effet des rayonnements ionisants sur l’ADN : quelle

quantité d’énergie est déposée et quelle probabilité un brin d’ADN de se casser du fait de

ce dépôt d’énergie. Les cassures de l’ADN contribuent à la quantification de la mort des

cellules et à l’apparition de mutations. Les résultats obtenus au cours de ces deux étapes nous

aident à prédire l’impact de la diminution du bruit de fond sur une expérience d’évolution,

troisième volet de notre étude.

Une telle expérience nous offre le moyen d’observer l’évolution d’une manière répétable.

A partir d’un génome de départ et d’une pression sélective choisie, il y a comparativement

peu de façons dont un organisme peut répondre pendant les premières quelques milliers

de générations de l’expérience. Même si les mutations peuvent arriver n’importe où dans

le génome, celles qui sont favorables et accessibles sont plutôt limitées. Cela permet aux

experimentateurs de connaître, avec une certaine probabilité, quels chemins l’évolution

va prendre pour l’organisme étudié. Faire ces expériences en ne variant qu’un paramètre,
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toutes choses égales par ailleurs, permet d’isoler l’effet de ce paramètre sur le comportement

évolutionnaire de l’organisme modèle. Dans ce travail nous considérerons les résultats d’une

expérience évolutive à travers 500 générations chez E. coli, menée dans deux environnements

radiatifs différents : un environnement de référence, le Laboratoire de Physique Corpusculaire

de Clermont-Ferrand, et un environnement où le niveau de radiation est réduit, le Laboratoire

Souterrain de Modane.

Après une introduction, nous quantifierons dans le chapitre 2, ces deux environnements

et détaillerons comment comprendre et analyser le bruit de fond radiatif d’une expérience

biologique aux très faibles niveaux de radioactivité. Selon ces estimations, le taux de dose

absorbée à Clermont-Ferrand est de 214 nGy hr-1, tandis qu’au Laboratoire Souterrain de

Modane, il est de 26 nGy hr-1. Au Laboratoire Souterrain de Modane, la majorité du bruit de

fond souterrain vient de la décroissance β− du Potassium-40 dans le milieu nutritif utilisé

pour nos expériences. L’impact de l’environnement radiatif sur les cellules individuelles

n’est pas directement proportionnel à la dose absorbée. Effectivement, la dose absorbée

est une quantité macroscopique, qui correspond à l’énergie déposée par les rayonnements

ionisants dans un volume comparativement large par rapport au volume des bactéries. En

réalité, cette énergie est vraiment déposée le long de traces très fines, ne concernant qu’une

petite fraction des bactéries dans le milieu.

A l’aide de la boîte d’outils Geant4, nous avons pu quantifier la magnitude de cet

effet. Pour une population donnée, mise en culture à Clermont-Ferrand, les rayonnements

ionisants touchent les cellules avec une fréquence de 6.0× 10−5 jour−1 cellule−1. Dans

l’environnement souterrain du Laboratoire Souterrain de Modane, ce taux est réduit à 8.2×
10−6 jour−1 cellule−1. Dans les deux cas, l’énergie déposée médiane est de 140 eV. En

comparaison avec le taux de mutation d’E. coli dans notre expérience, les mutations d’origine

endémique se produisent cent fois plus souvent que les mutations radio-induites. Cela

confirme l’hypothèse que les radiations ionisantes ne devrait pas jouer un grand rôle dans le

comportement évolutionnaire d’E. coli. Cependant, ce résultat ne nous dit rien sur ce qui se

passe chaque fois qu’une bactérie est touché par un rayonnement.

Pour cela, nous avons développé une application complète pour simuler les processus

mécanistiques impliqués dans l’induction des dommages à l’ADN à la suite d’une irradiation.

Ce travail s’inscrit dans le projet Geant4-DNA, qui ajoute à Geant4 des codes pour modéliser

les structures de traces dans l’eau liquide, ainsi que la radiolyse de l’eau et les réactions chim-

iques qui la suivent, jusqu’à 1 μs après l’irradiation. Le chapitre 3 décrit cette application et

la géométrie d’une cellule d’E. coli développée pour cette étude. L’application a été conçue

pour être générique, pour que d’autres groupes de recherche puissent l’utiliser après son inté-

gration au projet Geant4. Les résultats de ces simulations sont largement en accord avec des
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mesures expérimentales déjà faites des dommages radio-induits à l’ADN chez E. coli. Selon

les paramètres choisis pour modéliser le piégeage des radicaux chimiques dans la cellule,

nous prévoyons que la plupart des électrons causent entre 0.006 et 0.010 CDB Gy−1 Mbp−11

quand ils interagissent avec une cellule d’E. coli.
L’estimation du taux de cassures double brin est un premier pas vers la quantification de

la mutagénicité des dépôts d’énergie dans une cellule soumise à des radiations ionisantes.

La mauvaise réparation des cassures simples et doubles des brins d’ADN est une source

de mutations dans le génome. Le génome d’E. coli compte 4.6 Mbp. Ainsi, en prenant en

compte la médiane de l’énergie déposée dans une bactérie, chaque interaction entre le bruit

de fond radiatif naturel et une cellule va induire, en médiane, ≈ 6×10−3 cassures simples,

et ≈ 5×10−4 cassures doubles. Il reste du travail à faire afin d’associer des cassures d’ADN,

ainsi que les dommages radio-induits aux bases de l’ADN, à la mutagénicité. Néanmoins, ces

chiffres indiquent que la plupart des interactions entre les radiations ionisantes et les cellules

n’ont pas l’énergie suffisante pour être responsables de dommages significatifs à l’ADN.

La validation expérimentale de ces prédictions est importante. A partir d’une expérience

déjà faite sur l’évolution expérimentale d’E. coli, nous avons cultivé E. coli dans deux

environnements radiatifs différents, nous avons comparé les fitness compétitifs de l’ancêtre

et des souches évoluées à intervalles réguliers. Des travaux antérieurs ont montré que le taux

de variation du fitness est corrélé au taux d’offre de mutations, ce qui est une mesure de

la quantité de mutations qui peuvent entrer dans la population à chaque génération. Nous

avons conçu notre expérience de telle façon que si les mutations radio-induites contribuaient

significativement à l’évolution, la réduction d’un facteur 7,3 du taux d’interaction entre les

radiations naturelles et les cellules impacterait le taux de variation de fitness à 500 générations.

Nous avons fait des comparaisons détaillées entre plusieurs lignées étudiées après 0, 200 et

500 générations de croissance. A chaque étape, aucune différence significative dans la

distribution des fitness n’a pu être mesurée entre les environnements considérés. Ainsi,

dans les conditions de notre expérience, nous concluons qu’au bout de 500 générations,

l’environnement radiatif n’a pas un impact sur l’évolution d’E. coli qui se manifeste dans

le fitness compétitif. Cette observation est en accord avec nos prédictions de simulation ;

l’environnement radiatif, au niveau naturel, ne devrait pas significativement impacter le

comportement évolutionnaire de l’E. coli.
Malgré ces observations, des effets cellulaires ont été observés en réponse à la réduction

de bruit de fond radiatif qui méritent une recherche plus approfondie en laboratoire souterrain.

Des changements dans le taux de croissance de bactéries, l’expression des gènes et la

régulation des antioxydants cellulaires apparaissent en réponse à l’introduction des cellules à

1CDB : cassures double brin. Mbp : 106 pairs de base.
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un environnement souterrain. Ce travail indique que ces observations ne sont pas causées

par des interactions entre les rayonnements ionisants et l’ADN, mais qu’elles doivent quand

même provenir de l’interaction entre les cellules et le bruit de fond radiatif. L’exploration de

ces réponses, afin de quantifier comment les cellules comprennent, mesurent et répondent

aux bas bruits de fonds radiatifs pourrait révéler un ensemble de processus cellulaires qui

sont inconnus, ou peu compris. Il y a une forte probabilité que l’épigénétique et/ou la

communication intracellulaire soient nécessaire pour que les effets observés puissent exister.

Pour la compréhension des systèmes vivants dans les zones fortement irradiés, dans le

contexte de l’exploration de l’espace, ou d’un désastre nucléaire, une connaissance des

réponses fondamentales de la vie au bruit de fond radiatif est important. Ces connaissances

pourraient même apporter un éclairage nouveau sur les observations précédemment réalisées

aux faibles doses absorbées, notamment l’effet « bystander » et l’instabilité génomique.

Vu les idées rassemblées par cette thèse, chaque chapitre est rédigé de façon à être lu

de manière quasi-indépendante. Pour une discussion détaillée des mesures de dose faites

pendant cette thèse et une présentation des informations nécessaires pour comprendre un

environnement biologique à très bas bruit de fond, le lecteur est dirigé vers le chapitre 2. Le

chapitre 3 offre une description de notre application pour simuler les dommages radio-induits

à l’ADN, ainsi que les résultats de nos simulations. Nos expériences biologiques sont décrites

dans le chapitre 4, où nous présentons aussi nos résultats. Le manuscrit se finit par une

conclusion et des perspectives.



Chapter 1

Introduction

This thesis considers one simple question: does ambient ionising radiation have a measurable

impact on the pace of evolution? Evolution occurs as a result of genetic changes in organisms

over time, and these changes come from many origins, including ionising radiation. In

a sense it is a fait accompli that ionising radiation has triggered genetic changes in organisms

in the past, but here we are looking for reasoning more significant than a Drake Equation-

esque proof affirming that yes, there is a high probability that radiation has played a role in

evolution somewhere along the tape of life. Answering this question thoroughly requires

a quantification of how frequently ionising radiation interacts with cells, damaging DNA and

inducing mutations. Is this rate comparable or not with the mutation rate in most genomes,

or is the mutation rate largely independent of ionising radiation? And beyond this, can we

conduct an experiment that should clearly show whether or not radiation at natural levels has

a measurable impact on evolution?

To get a feel for some of the numbers and quantities that are important in this work, we

can quickly consider how often the natural radiation background impacts cells1. The typical

radiation background on earth is 100 nGy hr-1, or 6.2× 1011 eV kg−1 hr−1. Typically,

something around 20 eV of energy can cause an ionisation that damages a DNA strand, so

a background rate of DNA damage from the environment could reasonably be approximated

around 3.1×1010 kg−1 hr−1. Taking a typical human cell with a nucleus whose diameter is

6 μm, the frequency with which the nucleus would conceivably be damaged is then around

3.5×10−3 hr−1, or once every ten days or so. By comparison, the spontaneous mutation rate

per genome (μg, given per genome duplication) in human cells is around μg = 0.16 (Drake

et al., 1998).

In reality, ionising radiation deposits energy in cells along correlated tracks which acts

to decrease the frequency with which cells are touched by radiation. The point however of

1In print, Katz (2016) has shown similar logic applied to an experiment involving Deinococcus radiodurans.
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the above calculation is to show, via a back of the envelope’ calculation, that at the background

radiation level, ionising radiation does not interact with cells all that frequently. Certainly

not on the time scale where it could be considered a frequent or continuous process. Cells in

humans may divide anything from several times per day to less than a few times per month,

so depending on the cell line, one could say that radiation touches cells with a frequency

comparable to the mutation rate.

In microbes, regardless of the genome size, a spontaneous mutation rate of μg ≈ 0.003 is

observed. Considering an Eschirichia coli bacterium, its 1 μm3 volume means that at most it

would see ionising radiation around 1.3×10−4 hr−1. When looking at this in comparison to

the mutation rate per unit time (μ) for E. coli, μ ≈ 0.06 hr−1 (c.f. Drake, 1991, considering

a 20 minute division time), it becomes clear that in many systems, the majority of spontaneous

mutations cannot come from radiation.

This begins to highlight the difficulty of conducting research on the impacts of the natural

radiation background. Quantitatively, its effects are negligible in relation to other biological

processes, but this overlooks how potentially damaging ionising radiation can be to living

organisms. Despite its relatively low level, natural ionising radiation is still observed to

have measurable biological effects. Radiation hormesis (Calabrese, 2013; Calabrese &

Baldwin, 2003), the bystander effect (Morgan, 2003a,b) and transgenerational radiation

sensitivity (Dubrova, 2003) are likely all symptoms of this simple biological dilemma:

ionising radiation interacts with cells rarely, but cells must be alert to it due to its potentially

devastating consequences.

In this work, we want to see whether ionising radiation at the background level has

a measurable impact upon the pace of evolution. Strictly following the numbers, ionising

radiation should hardly impact the speed of evolution at all, but as an agent capable of

wreaking great biological damage in a small number of cells, it is possible that it makes

accessible evolutionary pathways that would otherwise be closed to endogenously driven

mutations.

In the following few sections, we will present a brief background of radiation biology in

the low dose regime, before summarising the work that has been done studying the impact of

removing natural radiation background by conducting biological experiments in underground

laboratories. Next, we’ll introduce work that has been done up to now linking evolution

and ionising radiation. Here, we introduce some theoretical concepts that will be important

to understanding evolution later in the manuscript. We’ll also discuss controlled evolution

experiments, and the Long Term Evolution Experiment (LTEE) led by Lenski et al. (1991),

which are the experimental tool we will use to probe the pace of evolution in different

radiation environments. Finally, we introduce the strategies we will use in this thesis to



1.1 A Brief Introduction to Low-Dose Radiation Biology 11

explore how ionising radiation impacts evolution. In simulation, we seek to precisely quantify

how frequently radiation at the natural level impacts cells. This knowledge is applied to our

experiments probing evolution, led in the Laboratoire Souterrain de Modane (LSM) and

Laboratoire de Physique Corpusculaire de Clermont-Ferrand (LPC).

1.1 A Brief Introduction to Low-Dose Radiation Biology

In the preceding section, the relatively low frequency with which ionising radiation interacts

with cells at the natural background level was introduced. This introduces a stochastic

element to predictions of radiation damage and risk at low dosages. At high dosages this

disappears and models of cell survival and cell damage are accordingly much better defined.

The Linear-No Threshold (LNT) model for example describes radiation risk well for radiation

workers, meanwhile the Linear Quadratic model is well adapted for predicting experimental

cell survival data. In particular, the linear regions of these models are built on an assumption

that at low radiation doses, radiation damage accumulates linearly from microscopic causes.

Implicit in this is that there is no safe radiation dose. At low radiation doses however, both

these models overestimate radiation risk, as cells have developed multiple responses to low

levels of radiation (there is active debate in the community regarding this subject, e.g. Cohen,

2012; Feinendegen, 2005; Little et al., 2009; Tubiana et al., 2009).

In particular, the idea is emerging that the radiation background has a stimulatory effect

on cells, promoting oxidative resistance and possibly growth. This idea is called radiation

hormesis (Figure 1.1). Hormesis is an important phenomena when considering a range of

toxins, where small amounts of them can be beneficial or stimulatory, whilst large quantities

remain harmful (e.g. Calabrese, 2013; Calabrese & Baldwin, 2003). The mechanisms

by which hormesis acts are often difficult to pin down, especially in regards to ionising

radiation, where cells must conceivably be alert to the impacts of environmental radiation,

whilst passing multiple generations without seeing its impact. In general, two methods are

available to cells which can enable this, cell signalling, where information about the radiation

environment is somehow passed between cells, with the ensemble of cells in a population

acting as a much larger detector of radiation than any one cell alone, and epigenetics, whereby

cells are able to pass down information about the radiation environment to their descendants.

The low dose response of cells can be studied experimentally by looking at both individual

cells, cell populations and multicellular organisms. When probing individuals, microbeams

in particular allow unparalleled access to the interior workings of cells (Prise & Schettino,

2011). Single ions can be fired with micrometre level accuracy to target certain cellular

regions, enabling the study of cell death and repair. Microbeams have been used when
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Fig. 1.1 The Linear-No Threshold (LNT) model, which describes the risk of cellular damage

as linear with increasing dose is experimentally well validated for high doses, but is an

extrapolation in the low-dose regime where biological responses are more difficult to probe.

Alternative models, such as radiation hormesis, propose the hypothesis that small radiation

doses are stimulatory and often beneficial.
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studying tissues to provide evidence of bystander effects, where localised radiation dosages

can be lethal to cells far from the location of the actual dose deposit (Figure 1.2), and have

implicated not just DNA damage, but irradiation of the cytoplasm and mitochondria in

the cell signalling that underpins the bystander effect (e.g. Zhou et al., 2008). They can

also be used to explore epigenetic responses to low radiation dosages in larger organisms, in

particular using the nematode Caenorhabditis elegans (e.g. Bertucci et al., 2009).

Epigenetics, the field which explores heritable traits that are not transmitted on the genome

but rather in its regulation, is being seen as increasingly important in understanding radiation

responses of organisms (Merrifield & Kovalchuk, 2013). Such changes are most visibly seen

in the inheritable methylation of DNA strands, which changes the way they are read. In

many cases where radiation leads to cell death, or cancer in larger organisms, it is difficult

to mechanistically link a single radiation event with its later cause, as the two can be

separated by months or even years, in the case of some cancers. The changes which may

lead the descendant of an irradiated cell, many generations later, to become cancerous can be

epigenetic in origin, carried by an inheritable genomic instability (Limoli et al., 1999).

The immediate environment around cells conspires with epigenetics to make the picture

of low dose radiation effects yet more difficult to discern. It has already been said that cell sig-

nalling must be heavily implicated in observations of the radiation induced bystander effect.

Numerous mechanisms have been proposed that can trigger cell death following the irradia-

tion of neighbouring cells, from gap-junction transmitted information (Azzam et al., 2003) to

reactive oxygen species (Mothersill & Seymour, 2004) and short RNa sequences (Ilnytskyy

& Kovalchuk, 2011). Evidence for cell signalling as a mediator of the radiation response

of cells has even been implicitly observed in population level studies of bacteria grown in

underground laboratories (Castillo et al., 2015, 2016).

Detailed explanations of these mechanisms are beyond the scope of this introduction,

but it is worthwhile to hypothesise why such responses might exist. There is no evidence

that life has ever developed an ability to sense the radiation environment in a way that might

encourage animals, plants or even bacteria to avoid high radiation regions. When cells are

hit by ionising radiation, the damage that they succumb to is both far too localised, and

far too abrupt to motivate a response from the organism to leave the environment. Instead,

cells are required to, even in multicellular organisms, respond to radiation on an individual

level, often via repair mechanisms (Steinhauser, 2015). On the other hand, cells do not

see ionising radiation strike them very often - in the case of bacteria, cells could pass by

tens or hundreds of generations without witnessing the stress of radiation damage. In this

sense, when thinking about the low dose radiation response, cells are caught in a dilemma.

Cells need to defend against the catastrophic impacts of radiation damage, whilst having
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Narrow
beam

20�m Increasing risk of death

Fig. 1.2 The bystander effect describes a common experimental observation seen at low

dosages, where a narrow radiation beam is focused on a cell medium, often a tissue. Paradox-

ically, in these experiments it is often cells far from the beam that are more likely to suffer

cell death than those closest to the beam.

little exposure to radiation itself. The two ways cells can be aware of radiation though it

infrequently affects them are by increasing either the volume in which they can be sensitive

to radiation, or by increasing the time across which they can measure radiation.

It is plausible that the bystander effect, genetic instability and other epigenetic trends are

a consequence of this dilemma. Epigenetics provides a mechanism by which cells can pass

information to their descendants without a genetic change occurring. This increases the time

over which cells can effectively sample the dose rate, and ensure they are primed to respond

to radiation. Cell communication can theoretically increase the volume over which cells are

sensitive to ionising radiation, again allowing cells to more effectively sample the background

dose rate. A growing body of experiments conducted in underground laboratories hints that

this contention is possible, however conclusive proof of this is difficult to obtain. Even in

simple systems, the regulatory mechanisms that are invoked in these processes are difficult

to quantify, and are likely very finely balanced.

1.2 Biology in Underground Laboratories

Low background radiation experiments typically study multiple cell populations treated in

parallel, with equal numbers of cell lines grown at both a reduced radiation background,

and a standard terrestrial background which serves as a control. The exact magnitude of

the reduction in the radiation background varies between experiments, typically between

5- and 10-fold, once contributions to the background from 40K in the nutritive medium

have been considered. When comparing strains grown in different radiation environments,

experimentalists typically target only a few measurements in order to gauge whether the cell

populations have responded to the background. As ionising radiation manifests itself as

oxidative cellular damage, these tests tend to analyse the presence and activity of proteins

implicated in oxidative damage and stress. Mutation induction assays are frequently used,
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as they allow the response of the cell to oxidative damage to be studied and for similar

reasons, the response of cells to radiomimetic toxins is also studied. Finally, cell growth rate

is also frequently measured, to see if the low background treatment of the cells has an impact

on the performance and viability of the cell as a complete system. The majority of recent

biological experiments conducted in underground and low background conditions has been

summarised in Table 1.1, organised by organism type.

Under the hypothesis that removing ionising radiation from a growing cell population

will reduce the need for scavengers of reactive oxygen species (ROS) in a cell, attention has

been placed upon the superoxide dismutase (SOD) and catalase enzymes, as well as enzymes

involved in glutathione regulation - glutathione peroxidase (GPx), glutathione transferase

(GST), and glutathione reductase (GSSG-Rx). Growing V79 hamster cells in the Gran Sasso

underground laboratory, Satta et al. (2002) showed that after 9 months culturing cells in both

standard and reduced radiation background environments, catalase, GPx and GSSG-Rx were

more dominant in the low background culture, whist SOD levels remained constant between

the control and SB culture. Replicating the experiment across a ten month period though,

Fratini et al. (2015) found equivalent SOD and catalase levels in the two populations, and

significantly reduced levels of GPx. Across such a long duration experiment, it is foreseeable

that culture ageing could have a stronger effect than the radiation background, explaining

this discrepancy. The downregulation of GPx however in response to a reduced radiation

background is supported by work in human TK6 cells, which have shown, over 6 months

growth in a low background environment, a significantly decreased quantity of both GPx

and catalase enzymes compared to cells grown at a standard radiation background level.

Again here, the SOD abundance remained constant. In bacterial cells, qPCR analysis of

S. oneidensis grown over 50 hours at the Waste Isolation Pilot Plant in New Mexico has

shown that stress related genes, including those for catalase production, are up-regulated

by exposure to low radiation environments (Castillo et al., 2015). The same experiments

also found that exposure of D. radiodurans to reduced radiation backgrounds up-regulated

the gene dnaK, responsible for the production of the heat shock protein HSP70. Intriguingly,

the up-regulation of HSP70 has also been observed in bronchial epithelial cells and lung

fibroblast cells as a result of growth at low backgrounds (Smith et al., 2011).

The number of mutants arising in cell populations following irradiation in low background

biological experiments can diagnose whether the presence of the natural radiation background

†Satta et al. (1995)
‡Smith et al. (2011)
§Castillo et al. (2015)
¶Satta et al. (2002)
||Fratini et al. (2015)

**Carbone et al. (2009)
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Table 1.1 a selection of recent low background biological experiments, grouped by organ-

ism type. LB refers to the low background environment studied, and SB to the standard

background used as a control.

Cell Type Culturing Experiment Result

S. cerevisiae 120 gen. at LB

120 gen. at SB †
Mutation challenge

from MMS

At high MMS concentrations, cells

cultured in LB have impaired repair

D. radiodurans

75 hr at LB

75 hr at SB ‡
Cell growth rate

Total Cell protein

Growth inhibited at LB compared to SB

Proteins were reduced at LB

50 hr at LB

50 hr at SB §
Cell growth rate

qPCR

Reduced growth at LB compared to SB

Upregulation of dnaK at LB

S. oneidensis 50 hr at LB

50 hr at SB§
Cell growth rate

qPCR

Reduced growth at LB compared to SB

Reaction of stress genes associated with

exposure to UV and solar radiation to LB

V79 Chinese

Hamster

9 mth at LB

9 mth at SB ¶
Growth curve

Apoptosis following

cyclohexamide

exposure

Antioxidant

abundance

Mutation induction

after γ-irradiation

Growth unchanged between SB and LB.

Increased apoptosis compared to control at

LB and SB after 3 mth and 9 mth.

Significantly increased apoptosis after 3

mth at LB compared to SB.

Different modulation of antioxidant

expression at LB compared to SB

No increase in mutation induction at 3 mth

compared to control, increased mutation

induction relative to control and SB at 9

mth of LB.

10 mth at LB then

6 mth at SB

16 mth at SB||

Antioxidant activity

Spontaneous

mutation frequency

Downregulation of GPx activity in LB and

upregulation of GPx activity in SB cells.

Increased mutation frequency after 10 mth

at LB, increasing further at 16 mth.

Human

Bronchial

Epithelial

Human Lung

Fibroblast

10 pass. at SB

10 pass. at LB‡
Protein expression Upregulation of HSP 90B and HSP 70 in

LB compared to SB

TK6 Lym-

phoblastoid

6 mth at LB

6 mth at SB**

Growth curve

Micronuclei

formation

Antioxidant enzyme

activity

No dependence on radiation environment

More micronuclei formation in LB cells

exposed to 2 Gy challenge compared to

control. SB cells unchanged compared to

control.

Reduction in GPx and Catalase enzymes at

LB compared to SB, no change in SOD

abundance.



1.2 Biology in Underground Laboratories 17

is important in the upkeep of biological processes related to DNA repair and prevention of

oxidative damage. An increase in the number of mutants with the time spent in a low radiation

level treatment relative to the control or standard background treatments would indicate

that cells removed from the radiation background have lost some of their ability to resist

oxidative damage, and suggests that the radiation background provides a stimulatory effect

on these systems. Irradiating Chinese hamster V79 cells with up to 6 Gy of γ-radiation from

a 137Cs source, Satta et al. (2002) measured the number of mutants arising from mutations

at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus, and found that after

3 months of culture in low and standard radiation background environments, no change in

the number of mutants that appeared was apparent compared to a control measurement made

at the beginning of the experiment. After 9 months however, the population grown at a lower

background level showed a significant increase in the number of mutants that appeared,

including a number of spontaneous mutants that arose even without irradiation. In a similar

experiment, Fratini et al. (2015) found a higher rate of spontaneous hprt mutations after

V79 had been cultured underground for 10 months. Upon reintroduction to a surface-level

radiation environment, where the cells were cultured for another 6 months the number of

spontaneous mutants increased again. This behaviour suggests a long term adaptive response

to background radiation environments. Additionally, cells that had lost some capacity for

repair and oxidative resistance were damaged by the higher oxidative stresses at the surface,

to which they did not quickly habituate.

In human TK6 cells, the ability to resist and repair DNA damage was measured by

subjecting cells to a 2 Gy dose of X-rays, and measuring the fraction of binucleated cells

containing micronuclei following irradiation. Micronuclei formation is indicative of unre-

paired or mis-repaired chromatin damage. Spontaneous micronuclei formation in populations

of cells grown for 6 months in low and standard radiation backgrounds, and in a control

population from the start of the experiment, shows little variation before irradiation, however

after irradiation micronuclei formation is particularly elevated in the low radiation back-

ground population. This further supports the case for a drop in oxidative resistance following

culturing of cells for extended time periods in low background environments.

The proportion of aberrant, damaged, or apoptopic cells in a population following

exposure of cells to toxic agents can often serve as another indication of the ability of cells to

recover from DNA damage. One study in the yeast S. cerivisae showed that cells grown at

a low background in an underground laboratory for 120 generations showed a significantly

lower ability to resist DNA damage than cells cultured at standard backgrounds in the same

amount of time, when exposed to a high dose of methyl methanesulfonate (MMS), which

induces DNA damage by stalling replication forks. In a later study, V79 cells were exposed
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to cyclohexamide after 3 and 9 months at low and standard backgrounds. A significantly

increased quantity of hypodiploid cells, indicative of eventual apoptosis, occurred in cells

grown at both low and standard radiation backgrounds at both time points measured compared

to the control sample (from zero culture time), however at 3 months the reduced background

cells were significantly more likely to be hypodiploid than those grown in a standard radiation

background. Echoing the results of past experiments, this supports the hypothesis that

reduction of the ionising radiation background reduces the resistance of cells to stresses,

though here this effect is possibly convoluted with a contribution from culture ageing.

Growth curves from cell cultures are an effective way to measure the impact of an

environment upon a cell population. Planel et al. (1987) found the protozoa P. tetraurelia
showed a marked decline in its generation time when grown at low backgrounds compared

to the natural radiation level, whilst a stimulatory effect was observed upon growth when

the radiation level was raised beyond the natural by growing cells at higher altitudes where

cosmic radiation levels are elevated. This was replicated partially by Kawanishi et al. (2012),

who, although unable to replicate inhibited cell growth immediately after cells underwent

autogamy, did observe reduced growth rates in P. tetraurelia after it had grown at low

backgrounds for 40 days.

Compelling evidence of reduced growth rates in cultures grown at low radiation back-

grounds has been shown by Castillo et al. (2015) in bacteria, where both S. oneidensis and D.
radiodurans exhibited reduced growth rates within 24 hr of being introduced to a shielded,

underground, low radiation environment, compared to a parallel population grown in the same

underground laboratory with a simulated natural radiation level environment. Additionally,

the low background populations had lower maximum optical densities at the end of the ex-

ponential growth phase. It was also demonstrated in this work that the higher growth rate

at the standard background level could be rapidly recovered by transferring the population

grown at low background back to the standard background environment. Studies of growth

rates in mammalian cells have not however indicated a clear difference in growth rate between

cells grown at low and standard backgrounds. Neither TK6 cells (Carbone et al., 2009) nor

V79 cells (Satta et al., 2002) showed a significant difference in doubling time after being

cultured over months at different background radiation levels compared to the doubling time

measured at the start of the experiment.

1.2.1 The Laboratoire Souterrain de Modane

This study is concerned with observing the evolutionary behaviour of bacterial cells across

many generations in both underground and surface laboratories. This work is complementary

to what has been shown so far in underground laboratories where a number of biological end
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Fig. 1.3 The LSM is positioned in the Fréyjus road tunnel. The tunnel (light brown) runs

through the Alps, under the French-Italian border.

points vary in response to the radiation environment, but no work has been done to show if

the radiation environment causes this by directly impacting the genome. We assess this by

looking, at first, at whether ionising radiation can impact evolution, which signals its role as

both an evolutionary pressure and mutagenic agent that is significant at the background level.

We conducted our low background biological experiments in the Laboratoire Souterrain
de Modane (LSM), located within the French Alps near the Italian border. The laboratory is

built inside the Fréjus road tunnel near its deepest point, around 200 m west of the Fréjus peak.

The lab itself is 1,700 m below the surface, and this rocky shield gives a radiation background

equivalent to being 4,700 m under water (Figure 1.3). Beyond biological experiments,

the laboratory hosts dark matter searches, neutrino science and is actively used for gamma ray

spectroscopy.

1.3 Evolution and Ionising Radiation

Specific work has already been done trying to understand the impact of background radiation

on evolution, though it has been hampered by the difficulties inherent in measuring what

is typically a background effect. Two pistes have been explored in this research, the first

considers whether higher levels of natural radiation can encourage extinction, and the second,

more related to this work, explores the role of 40K and artesian water as primordial gene

irradiators.

Both the biodiversity present in the Chernobyl environment despite the elevated back-

ground, and the existence of radiation tolerant extremophiles on earth suggest significant

increases in the radiation background don’t prevent life, though they may hamper it. This

hypothesis gathers some support from the fossil record, where both 62 Myr and 140 Myr
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cycles are seen in fossil diversity (Rohde & Muller, 2005), which may be correlated with

a 140 Myr cycle in the cosmic ray intensity on earth, caused by the solar system’s passage

through the spiral arms of the galaxy (Shaviv, 2002). This cycle does not greatly enhance

the background cosmic ray flux above present levels however, estimates suggest that the cos-

mic ray background varies from 25% to 135% of current levels. It is very unlikely such

a small signal impacts biodiversity, and the cyclic trends in fossil diversity may be due to

other causes.

Potassium is an essential nutrient in biological systems. It is important in maintaining

a correct electrolytic balance between cells and their environments, and across most cell

types, the potassium is the main ion actively transported across the cell membrane. At present,

radioactive 40K makes up 0.012% of all natural potassium, having its origins in the formation

of the solar system as a primordial radionuclide with a half life of 1.25× 109 yr. Moore

& Sastry (1982) hypothesised that the likelihood of mutagenesis from cellular 40K was

substantial given the yields of radicals produced from Auger electrons emitted following 40K

electron capture decay. Despite this, Gevertz et al. (1985) was unable to show, by measuring

bacterial growth in the presence of varying 40K levels, that Potassium has a mutagenic effect.

The idea of radiation as a mutagenic agent has merit beyond considering 40K. Present

high radiation environments are often dominated by a dose contribution from airborne Radon.
222Rn and 220Rn can be concentrated in groundwater supplies, and as α emitters, have a much

larger biological effect than even the auger production of 40K. The consequences of this

were explored by Martell (1992), who suggested α emission could have a range of biological

effects, especially early in earth’s evolution when the primordial radionuclides 238U, 235U

and 232Th were significantly more abundant. The hypothesis though that these chemicals are

essential, or at least important, in early evolution is difficult to test and has not largely been

followed up.

It’s to this end that we are conducting controlled evolution experiments in varied ra-

diation environments. Controlled evolution experiments permit evolution to be studied in

a controlled, repeatable and reproducible way. From the initial conditions of the experiment,

the evolutionary behaviour of a species emerges as a dependent variable. Such experiments

must take place over the long term, as evolution is a long term phenomenon. Specifically,

we replicate the Long Term Evolution Experiment (LTEE, Lenski et al., 1991). The LTEE

is a long duration experiment that has been measuring the evolution of E. coli for over

20 years in well defined experimental conditions. The very long baseline in time over which

the experiment operates allows the evolution of the bacteria to be precisely studied.
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1.3.1 Some Basic Evolutionary Dynamics

The dynamics of long term evolution experiments can become quite complex, and a few

terms are necessary before tackling the idea. Two dominant ideas are going to be discussed

here which illustrate and model the reasons species evolve in the ways they do. These are

the fitness landscapes of Wright (1932), and the evolutionarily stable strategies (ESSs) of

Maynard Smith & Price (1973).

Fitness landscapes were conceived before the discovery of DNA’s structure by Watson

& Crick (1953). Working under Mendelian genetics, Wright considered the enormous

phenotypic variety that can arise when different alleles are combined. As an example, five

genes, each being able to be in active or inactive states, can contribute to 32 (25) different

genotypes. Expanding this, 1000 genes, each having ten different levels of activation means,

to quote Wright’s own understatement, "the number of possible combinations is 101000, which
is a very large number"8. Linked of course to this is the fact that different gene combinations

can lead two organisms having incredibly varied performances in different environments. As

the genetic change that can occur between an organism and its children however is limited,

the vast space of possible gene combinations is not well explored, and only small changes

are permissible from one generation to the next. Nevertheless, the idea of a fitness landscape

permits two somewhat quantitative parameters to be defined. The first is the fitness, and

the second is a measure of the ‘distance’ between two genotypes. A rigourous definition

of the fitness will be addressed later, but here, it can be thought of as a measurement of

how well a genotype performs in an environment, with higher fitnesses corresponding to

genotypes that are better adapted to an environment. Fitness as a function of genotype is

an incredibly difficult parameter to quantify, given genotypes are overwhelmingly multi-

dimensional. When considering fitness landscapes, simplifications are often made in favour

of clarity, and the genome is simplified to only one or two dimensions, with genotypes that

are only a few genes apart plotted close to each other, and more distant genomes drawn far

away from each other.

A simple illustration of a fitness landscape is given in Figure 1.4, where a population

inhabits a local maximum of the fitness landscape. The population, exchanging genes

amongst itself could remain in the left local maxima indefinitely, but eventually, a spontaneous

mutation would lead to genes that let the population migrate towards the second maxima.

Such a change would be encouraged by high mutation rates, or large population sizes. Once

in the second maxima, the population would continue to migrate towards the peak. In an

environment where selection is weak, populations could exist in each peak, or between them.

In an environment where selection is strong, it is likely that the population in the less fit peak

8Emphasis is mine.
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Fig. 1.4 Wright (1932) conjectured that evolution could be explained by fitness landscapes.

As genotypes change, populations seek out local maxima of fitness. The quest to find different

local maxima can lead to localised sub-populations of cells, or even speciation.

c Accessible innovation
Genetic architecture 

d Antagonistic epistasis

Fi
tn

es
s

Genotype

a Hypermutator
Mutation rates

b Antimutator

Fig. 1.5 Fitness landscapes can illustrate secondary aspects of selection (selection for traits

that are not linked to an increase in fitness). Arrows around a point here represent the potential

mutations from a point on the fitness landscape. Different mutation rates may arise that allow

the landscape to be better explored (a), or encourage the species to remain near a peak fitness

by discouraging further mutations (b). Some mutations may make accessible entirely new

fitness spaces (c), or lead to antagonistic epistasis (d), where one mutation (in blue) limits

further fitness gains more than another (in green). From Barrick & Lenski (2013).

would reach extinction (or at least, the genes responsible for that peak would become extinct

in the population).

At a deeper level, fitness landscapes explain a wide variety of evolutionary phenomena,

including the appearance of mutator genes, and rare innovations. This is illustrated in

Figure 1.5 (Barrick & Lenski, 2013), which illustrates how one mutation may limit or

promote the adaptation of a species. In relation to mutation rates, a single mutation can permit

or deny to a genotype the ability to rapidly explore the environment. So called ‘mutator

genes’, which substantially increase the mutation rate of a species, often by decreasing

the efficiency of repair processes or the fidelity of gene transcription, can be favourable in

certain instances, as they allow the fitness landscape to be explored rapidly. Often when they

are of no more use, they will be selected against, as the advantages they offered in rapidly

increasing the fitness disappear, outweighted by the increased cell death they can engender

(as even simple mutations can have lethal consequences). Certain mutations can also open
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up new parts of a fitness landscape, whilst others may close off avenues to further fitness

increases, leading to evolutionary niches and cul-de-sacs.

Despite saying that fitness landscapes are complicated due to the multi-dimensionality

of a genome, they can be simplified by considering fitness as a function of only two or

three phenotypic properties. This is a common property of evolutionary algorithms, where

a complex model is measured against a few performance criteria before being slightly

modified, to see if the updated model parameter set is more advantageous than the precedent

set. Niklas (1994) used this to great success to predict the most common structures of trees.

Whilst the structure of a tree is complex, containing a potentially infinite number of branches,

of varied lengths, at myriad positions, the success of a particular geometry is dependent upon

a tree’s ability to gather sunlight, spread seeds, and resist breaking. By considering a fitness

landscape for trees, Niklas showed that a wide variety of tree-like geometries that can be

observed in nature are reproducible by maximising fitness (the ability to gather sunlight,

spread seeds and resist breaking). As this thesis is concerned with bacterial growth, in

Section 1.3.2 we consider a simple fitness landscape for bacteria, a small application of these

ideas.

ESS’s provide a complementary method of understanding evolution, by addressing

a danger in the interpretation of fitness landscapes whereby they may be perceived as an

evolutionary march across a static landscape to the highest adaptive form available to an

organism. Whilst the idea of a fitness landscape doesn’t preclude a dynamic landscape,

the changing dynamics of a competing population that alters its landscape as it evolves are

fundamental with the ESS framework.

Before continuing, it’s worthwhile to note the language that the fitness landscape and ESS

frameworks use to describe themselves. A fitness landscape seeks to classify the fitness of

a species as a function of either phenotype or genotype, depending on the study. The surface

created by this highly multivariate fitness function is the fitness landscape. Changes that

increase fitness are characterised as climbing up the fitness landscape, whilst detrimental

changes move down the landscape. Populations tend to occupy peaks in the fitness landscape,

as the consequence of climbing up the landscape is a migration of the population toward

peaks. In many cases, the fitness landscape becomes metaphorical and statements can be

made describing speciation.

While fitness landscapes may seem akin to an optimization problem, ESS’s adopt the lan-

guage of game theory. Here, evolution seeks strategies which win ‘games’. A ‘game’ occurs

any time to organisms interact. The strategy they choose defines how they interact. To

illustrate this, we can think of simple behaviours animals may choose when they interact9.

9these examples follow closely the explanations given by Maynard Smith & Price (1973) and Dawkins
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Take for example a population of animals that may be genetically programmed to behave

always as an aggressor or as a pacifist. Every time an aggressor meets another animal it

will always attack, until the other animal is substantially wounded or dead. The pacifist,
conversely, never attacks but will leave if the animal it encounters attacks. If a pacifist
encouters another pacifist, one will eventually give up, after waiting a certain amount of

time. In this game, we could assign a value to each outcome of the game. Winning the game,

because your competitor is wounded or retreats, would yield a significant pay-off, let’s say

+50. Losing due to wound would have a large negative pay-off, suppose -100. Retreating

instead of being attacked would naturally have no cost, and perhaps retreating after a long

time competing would have a small negative pay-off, say -10.

In this scenario, if all the players are aggressors, the average pay-off each time to competi-

tors meet would be very low, at -25. Even though a competitor wins half the time, receiving

a pay-off of +50, when it loses it suffers greatly, with a pay-off of -100. A community of only

pacifists however would have a much higher average pay-off of 20. Whenever two pacifists
meet, they stare each other down under these rules until one leaves, suffering a penalty of -10,

whilst the ‘winner’ takes the pay-off of +50. Whilst this may make it seem like evolution will

favour the higher average pay-off strategy of the pacifists, this solution is not evolutionarily

stable. This means that a population entirely composed of aggressors would easily be in-

vaded by pacifists, who would preferentially always never suffer whilst the aggressors fought

amongst themselves. Equivalently, in a population consisting entirely of pacifists, a mutation

that caused the appearance of an aggressor would be favourable. Given the numbers we have

chosen, there is an evolutionary stable number of aggressors and pacifists, but neither strategy,

to be always aggressive or always passive, is favourable. What this example highlights is that

the most competitive behaviour, and by extension phenotype, often changes as the population

changes. The game theory model of ESS’s provides a mechanism for exploring how shifting

levels of a trait or behaviour in a population change the potential benefit of those traits.

Such an interpretation is not typically necessary to understanding the dynamics of our

work, due to the sample studied and the short duration of the experiment. In different circum-

stances however, this can become very necessary, especially as time goes by and evolutionary

niches are created. Over long time periods, complex behaviours can arise, including unstable

oscillatory patterns where over time the population shifts from predominantly expressing one

genotype to another. Computational modelling offers excellent advances in understanding

these behaviours through the lens of game theory (Nowak & Sigmund, 2004).

(2006).
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Fig. 1.6 Bacterial growth in a nutrient limited medium has three distinct phases: lag, in which

bacteria adapt to the fresh nutritive levels; growth, a period of exponential growth; stagnation,

where cells enter a stressed state as the medium is depleted of nutrients.

1.3.2 a fitness landscape for bacteria

Fitness landscapes can motivate which parameters should change in evolution experiments.

Here, we consider for example how the parameters in a bacterial growth curve (similar to

Figure 1.6) can lead to a fitness landscape, and how this can predict how selection should

change those parameters. Bacterial growth can be described by three gross parameters,

the lag time l a bacterial cell waits before division starts when it adapts to a new solution,

the e-growth time10, τ , and the rate at which a strain consumes nutrients κ . We consider

a fourth parameter R0, the resources available in the medium at the beginning of a growth

cycle. Given this, a simple fitness landscape could be constructed by considering the amount

bacteria grow before all resources disappear.

To derive this, we’ll consider a general case of n competing lineages, before simplifying

the derivation to the case of a single lineage. We define the set of latency times as L =

{l1, l2, . . . , ln}, the e-growth times as T = {τ1,τ2, . . . ,τn} and the set of nutrient consumption

rates as K = {κ1,κ2, . . . ,κn} for each competing strain. The number of bacteria in each

strain is given by the set N (t) = {n1(t),n2(t), . . .nn(t)}.

We model bacterial growth by an exponential curve following a stationary lag phase as

follows for the m-th strain:

10This, the time it takes for a population to grow by e, is related to the doubling time, given by τ ln(2)
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nm(t) =

⎧⎨
⎩

nm,0 t < lm

nm,0 exp
(

t−lm
τm

)
t ≥ lm.

(1.1)

Our aim is to find the fitness of each strain. Fitness is often expressed in a relative way,

being the ratio of one strains growth rate to another’s. The fitness of the m-th strain here can

be given relative to the growth of the entire population as

Fr,m =
log

(
nm(t f )/nm(0)

)
log

(
ntot(t f )/ntot(0)

) , (1.2)

where t f is the time when the level of nutrients reaches zero, and Ntot is shorthand for the total

population, the sum of all members of N .

The total amount of resources consumed by each strain, rm(t) can be modelled as follows,

based on the rate of resource consumption being proportional to the number of cells.

ṙm(t) = κmnm(t)

rm(t) = κm

∫ t

0
nm(t) dt. (1.3)

Given an ensemble of strains, the global nutrient level is given by the initial level of

nutrients minus the sum of the individual consumptions, r(t) = ∑n
m=0 rm(t), and hence

the global level of nutrients with time is

R(t) = R0 −
n

∑
m=0

∫ t

0
κmnm(t) dt

= R0 −
n

∑
m=0

(∫ t

lm
κmnm,0 exp

(
t − lm

τm

)
dt +

∫ lm

0
nm,0 dt

)

= R0 −
n

∑
m=0

nm,0κmτm

(
exp

(
t − lm

τm

)
−1+

lm
τm

)
(1.4)

Rearranging Equation 1.4 to find t f , the time when the resources available drops to zero

is non-trivial when multiple strains exist. The single strain case is however solvable, and is

quite instructive, though it’s worth noting that the presence of multiple strains can strongly

impact the shape of the fitness landscape. Considering though only one strain, the subscripts
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Fig. 1.7 Here we simulate a simple bacterial fitness landscape. When resources are plentiful

(left), there is little incentive for a cell to adapt mutations that reduce its latency phase,

however when resources are scarce, reductions in the latency phase can have important

implications for fitness.

can be dropped and we find

R0 = κn0τ
(

exp

(
t l

τ

)
1+ l/τ

)
(1.5)

t f = τ ln

(
R0

κτn0
+1 l/τ

)
+ l (1.6)

leaving

n(t f ) =
R0

κτ
+(1 l/τ)n0. (1.7)

In the single strain case, there isn’t a candidate strain against which a relative fitness can be

considered, so instead we consider just the numerator of Equation 1.2, which equates fitness

to growth:

Fr = log

(
R0

κτn0
+(1 l/τ)

)
(1.8)

Noting that R0 > ln0κ so that t f > l.
Equation 1.8 is a little hard to distinguish a general rule from, however the relative

fitness ought to be inversely proportional to both the latency time and the e-growth rate.

This is seen in Figure 1.7, which plots Equation 1.8, across a range of e-growth times and
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lag phase durations. In the case of plentiful resources considered here, there are 200,000

times more resources than in the case of scarce resources, where the amount of resources

is only a few times more than is necessary to survive a 120 min lag phase. In particular,

when resources are scarce, selection favours more strongly reductions in the lag time than

it does when resources are plentiful. Similarly, when resources are scarce, even small

changes in the growth parameters can lead to rapid fitness gains, highlighting the impact that

environmental factors can have on evolutionary behaviour.

These landscapes look incredibly simple, but they hide the real domain over which

species evolve, namely the genotype. Bacteria cannot smoothly move across this landscape

as the paths that are permitted by the mutations possible in a bacterium are limited. Mapping

genotype to any single macroscopic parameter is an immense task, however fitness landscapes

like the one shown above do permit us to rationalise the mutations observed in real life.

1.4 The Long Term Evolution Experiment

Having seen a small amount of the theory that motivates evolutionary biology, selection

and competition, this section introduces the Long Term Evolution Experiment (LTEE) run

out of Michigan State University by R. E. Lenski (Barrick et al., 2009; Lenski et al., 1991;

Lenski & Travisano, 1994). The experiment is the longest running controlled evolution study,

and offers an immensely detailed view of how the subject organism, E. coli evolves under

fixed conditions. The LTEE is an ongoing experiment, having now grown 12 independent

E. coli lineages for over 65,000 generations. In particular, it has been used to guide the de-

velopment of models of competition in clonal populations (Gerrish & Lenski, 1998), study

the appearance of mutator genes (Sniegowski et al., 1997), explore the links between fitness,

mutations and phenotype changes (Elena et al., 1996), understand the targets of selection

(Travisano & Lenski, 1996) and observe the variation in genome dynamics across multiple

parallel populations (Barrick et al., 2009; Tenaillon et al., 2016).

The 12 independent lines grown by Lenski are subjected to a daily adaptation-growth-

starvation cycle (as in Figure 1.6) in a nutrient limited medium. At the end of each cycle,

the bacteria have grown by 6.6 generations. Over time, bacteria adapt to the daily growth

cycle, which acts as an evolutionary pressure. As each lineage faces the same pressures,

and the same conditions, the reproducibility of different evolutionary paths can be studied.

Mutations arise randomly on genomes, and selection itself has a random component, but by

repeating the same evolutionary initial conditions multiple times, trends can be observed,

alongside which mutations are more favourable than others.

By making evolutionary studies reproducible, reproducing an LTEE-like experiment
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Fig. 1.8 Across an evolution experiment, both beneficial mutations and neutral mutations

accumulate. Here, independent lineages with no mutator genes are shown with the number

of mutations they accumulate as they adapt (a different symbol is used for each independent

line). Neutral mutations accumulate linearly with time (dotted grey line), while beneficial

mutations accumulate more slowly as time passes, and can be modelled as proportional to

the square root of time (grey line). The black line best fits the data, by considering both

beneficial and neutral mutations (number of mutations, is fitted via nm = at +b
√

(t)). From

Tenaillon et al. (2016).
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Fig. 1.9 Here, the fitness of an individual E. coli lineage is shown measured every 100

generations. A step-model was fitted to the data, showing that changes in fitness occur in

discrete steps. This is due to the fixation of beneficial mutations in the populations. From

Lenski et al. (1991).

allows us to measure the impact of natural radiation on the speed of evolution. Across

the LTEE, many different endpoints have been observed, but for this work fitness is the most

relevant. In the LTEE, the fitnesses were measured for every one of the 12 independent

lineages at 500 generation intervals. Recent work has seen the genomes of the bacteria at

these intervals sequenced, which allows the evolution of beneficial and neutral mutations

to be observed with time. These studies have permitted a quantification of the number of

mutations observed in E. coli with time. Two types of mutations generally become noticeable

in these experiments, neutral and beneficial mutations. Overly harmful mutations tend to be

suppressed as they are selected for only under specific circumstances11. Neutral mutations

accumulate linearly in a population, whilst beneficial mutations accumulate most rapidly at

the beginning of the fitness experiment, when the genome has the most potential to adapt

(Figure 1.8). The relatively rapid beneficial mutation rate at the beginning of a fitness

experiment can be used to determine whether different environments change the evolutionary

behaviour of E. coli as here, changes in fitness are particularly sensitive to changes in

the mutation rate (see also Section 4.1.2).

In the early stages of a fitness experiment, the population dynamics of a clonal population

lead to a somewhat jagged development of the fitness of a bacterial population, linked to

the ‘fixation’ of mutations in the population. Fixation denotes that a mutation has passed

through the entire population12. Fixation of a gene can take place in 100 generations, and

can manifest itself then as step like increases in the fitness of a population when the fitness

11Detrimental mutations, commonly mutator genes, can ‘hitch-hike’ to fixation in a population, when they

occur alongside a beneficial mutation, by benefiting from the beneficial mutation whose genome they share.
12Interested readers here are referred to the article Genome dynamics during experimental evolution, by

Barrick et al. (2009). In particular, Figure 2 in their paper aptly describes the different genome dynamics that

arise in experimental evolution in clonal populations.
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Fig. 1.10 In the early stages of controlled evolution experiments, sudden ‘punctuations’ are

observed, where a phenotypic parameter changes rapidly in response to the rapid fixation of

an advantageous mutation. Here, the size of E. coli cells shows a punctuated increase within

the first 500 generations of the LTEE. From Elena et al. (1996).

is sampled at 100 generation intervals. The fitness of an individual E. coli line is shown in

Figure 1.9. Steps in the growth of fitness are observable in the fit to the data made by Lenski

et al. (1991), however it ought to be noted that a linear model can also explain the growth of

fitness.

Rather, step like changes in biological parameters can be more easily seen in phenotypic

parameters. Elena et al. (1996) showed the cell size, in particular, exhibits a step like change

due to the fixation of cell membrane related genes in the studied population. This behaviour

harkens back to the idea of punctuated equilibrium (explored by Eldredge & Gould, 1972;

Gould & Eldredge, 1977, and equivalent in some ways to rapidly moving to a new part of

a fitness landscape, or a new ESS becoming prevalent), that the fossil record shows speciation

occurs in rapid jumps rather than gradual changes. Figure 1.10 shows an example of this at

a simple level. The exploration of the genetic landscape that the LTEE bacteria underwent

when they were placed in their new experimental conditions allowed them to access a new

mutation with a significant benefit. This mutation rapidly swept through the population,

causing the mean cell size to change in a binary, rather than gradual manner.

1.5 Simulating the Impact of Radiation on DNA

Any change in the mutation rate in response to the radiation environment must be caused

by radiation interacting with cells. A large part of this work consists of modelling and

understanding the impact of environmental radiation on cells. We perform this at both

a dosimetric level and a DNA level. Using dosimetry, we can understand the frequency

with which radiation interacts with cells, important in quantifying the impact of ionising

radiation on individual cells rather than just the population. Simulations can also reveal
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the mechanistic underpinnings of radiation damage, building a model that passes from energy

depositions, to radiation damage, and finally to its biological effect.

The impact of radiation on DNA damage is often modelled in one of two ways. Com-

monly, a ‘top-down’ approach is used, where dosimetric measurements are made, and

a relationship is inferred between dosimetry, radiation type and cell type to estimate the bio-

logical effectiveness of a radiation treatment. At a crude level, even equivalent dose is an

example of this, by considering the elevated likelihood of biological damage following irradi-

ation by high linear energy transfer (LET) radiation sources. Current trends favour the local

effect model (Elsässer et al., 2008; Elsässer & Scholz, 2007; Scholz et al., 1997) as a ‘top

down’ way of describing the biological damage caused by different radiation sources. Such

models can even be combined with empirically derived repair models (e.g. McMahon et al.,

2016), to provide a complete model of radiation induced biological damage, or enhanced to

improve their predictive power for nanoparticle based treatment (Brown & Currell, 2017;

Lechtman et al., 2013). In our work, such models are not appropriate as they are designed

to work in the high dose regimes dealt with in cancer radiotherapy (> 1 Gy). To explore

the impact of the radiation background on mutation rates, we need rather a model that is

built from the ‘bottom up’, which mechanistically tries to model all the processes involved

in cellular damage. In particular, most top-down models break when considering damage

caused by low radiation dosages, as this is significantly beyond their domain of validity.

Modelling radiation-induced biological damage requires three elements, a Monte Carlo

track structure code that is accurate at molecular resolutions, a model for radiochemistry

and chemical reactions that can induce DNA damage, and a model for DNA. Monte Carlo

codes capable of some or all of these functions have previously been reviewed by Nikjoo

et al. (2006) and El Naqa et al. (2012). Most important in this is the modelling of physics

at the molecular level. Many Monte Carlo codes are ‘condensed history codes’, which in

order to improve performance, do not simulate every individual physical reaction a particle

makes, permitting particles to move relatively large distances in a single computational step.

Discrete track structure codes do not make this approximation, they attempt to simulate every

interaction made by a tracked particle until it reaches thermal energies. From the physics

stage, energy depositions from a transported particle in a track structure code can be correlated

spatially, to give indications of biological damage, even in the absence of a geometrical

DNA model (Francis et al., 2011), and similarly, analytic chemistry models can be used

to replace a full simulation of radiochemistry to calculate biological damage (Liang et al.,

2016).

There are two major existing platforms that combine the simulation of physics, chemistry

and geometrical DNA models. These are the PARTRAC (Friedland et al., 2011) and KUR-
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BUC (Nikjoo et al., 2016) platforms. This work extends the Geant4-DNA project (Bernal

et al., 2015; Incerti et al., 2010), which already possesses a number of physics models and

a chemistry module (Karamitros et al., 2011, 2014), so that generic DNA geometries may

be simulated. Within these platforms, DNA damage must be modelled and evaluated. Such

damage can typically be broken down into direct and indirect damage. Direct damage is

caused in the physical stage of the simulation, and is linked to DNA molecules being directly

impacted by radiation. Indirect damage occurs subsequent to this, and is caused by reactive

oxidative species created through the radiolyis of water chemically reacting with DNA, thus

damaging it and inducing strand breaks.

1.5.1 The Geant4-DNA Project

Geant4-DNA was developed to extend the Geant4 Monte Carlo simulation toolkit (Agostinelli

et al., 2003; Allison et al., 2006, 2016) to molecular level simulations. It leverages the flexible

architecture of Geant4 to allow users to conduct a wide variety of simulations at energies

and scales relevant for microdosimetry, nanodosimetry, and at energies relevant in assessing

biological damage. Geant4-DNA comprises three distinct sections for modelling the radi-

olysis of water. The physics stage comprises a choice of models for electron and ion track

structures in liquid water, based on either the dielectric response function of liquid water

(Emfietzoglou et al., 2005), or the CPA100 model set, notably derived by using the binary

encounter Bethe approach to model ionisation (Bordage et al., 2016). The physico-chemical

stage then occurs, where radical species and excited water molecules are created in the simu-

lation. Finally, a chemical stage simulates the diffusion of these molecules and their chemical

reactions.

Regardless of the physics model chosen in Geant4-DNA, all interactions between elec-

trons and ions with their surrounding medium are discrete. That is to say that each step made

by these molecules passing through the medium corresponds to an interaction with it, be it

elastic scattering, ionisation or electron excitation. This permits the simulation to achieve

a very high spatial accuracy, down to the nanometre scale, whilst the statistical nature of

Monte Carlo simulations ensures quantum limits are not violated (Liljequist & Nikjoo, 2014).

The physics modelling in Geant4-DNA takes place rapidly compared to other events, and is

typically said to have terminated within 1 fs. The propagation of tracks takes place in liquid

water, though validation data is frequently based upon data coming from the vapour or solid

phases of water, due to the experimental difficulties of measuring interaction cross-sections

in liquids. Particles are traced down to the energies where they are solvated or thermalised

(around 8 eV), whereupon the physico-chemical stage commences.

The aim of the physico-chemical stage is to simulate the interactions that take place in
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water between 1 fs and 1 ps after irradiation. Here, excited water molecules dissociate into

new radical species, such as e−aq, •OH, H2, H3 O+ and H•. These radicals go on to interact

amongst themselves to produce other species, notably OH− and H2 O2. It is not unusual

for these molecules to form solvation cages, where water molecules orient themselves to

surround the (often non-polar) radicals. This is notably the case for e−aq, which represents

a solvated electron, that is to say an electron within a shell of bound water molecules.

Following the creation of radical species and the de-excitation of water molecules, radicals

diffuse and interact. In Geant4, the processes simulated in the physico-chemical stage, as well

as diffusion and reaction rates for the chemical stage are based on those used in PARTRAC,

described by Friedland et al. (2011) and Kreipl et al. (2009). The chemical stage diffuses and

reacts all radicals in the system simultaneously, across a number of time steps. Two time

stepping algorithms have been implemented in Geant4-DNA. The first is a traditional method

based upon using adaptive time steps, and solving the Smoluchowski diffusion equation to

propagate molecules. Chemical reactions are realised when molecules are in close proximity

to each other. A newer method is under development and has been used in this work based on

the Independent Reaction Times (IRT) modelling approach (Green et al., 1990). This method

offers a vastly accelerated simulation of chemical reactions and diffusion by the times of

chemical reactions independently of their diffusion.

Geant4-DNA also contains a library of geometries for DNA level simulations provided

through examples. In particular, a whole human cell has been modelled, filled with chromatin,

(Dos Santos et al., 2013), and the capability of importing Protein Data Bank geometries has

been developed (Delage et al., 2015). The toolkit allows for flexible modelling of geometries

by building from the constructive solid geometry library within Geant4. Geometries have

also be imported into Geant4-DNA simulations from the DnaFabric application, a tool for

generating realistic human cell geometries (Meylan et al., 2016).

1.5.2 DNA Damage and the Radiolysis of Water

DNA damage is measured in simulations separately for the direct and indirect damage

pathways. The direct pathways depend only on the physical stage of the simulation and

attempt to model the likelihood that DNA molecules have been ionised or excited, and that

this has lead to a strand break. Indirect pathways consider the chemical reactions between

ROS and DNA that can induce a strand break. In both cases, the fundamental quantities

considered are Single Strand Breaks (SSBs) and the Double Strand Breaks that occur when

two SSBs are in close proximity to each other. Secondary parameters often considered are

the amount of times bases are damaged in relation to the sugar and phosphate molecules that

make up the backbone of the DNA chain.
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Fig. 1.11 a primary electron travelling through water creates radicals by first creating δ -rays,

low energy electrons released following excitation or ionisation of water molecules. Low and

medium energy δ -rays create blobs (r 7 nm), or more commonly spurs (r 4 nm), of radical

species as the δ ray thermalizes in water. More energetic δ -rays can create short tracks,

which themselves yield (often overlapping) blobs and spurs.

Before addressing SSB and DSB induction, it is worthwhile to take some time to explore

the radiolysis of water, which at a basic level is important in understanding what is being

modelled. When an electron passes through water, at high energies, its LET is of course low,

and as it is slowed in the medium, its LET increases. All this time, the electron is losing

energy by exciting or ionising atoms along its path, and this creates low energy secondary

electrons, often called δ -rays. δ -rays bear the primary responsibility for the radiolysis of

water and biological damage, as these electrons deposit energy in relatively confined volumes.

Following an image first proposed by Samuel & Magee (1953), these energy deposits occur

along the length of the path of a high energy electron as ‘spurs’. δ -rays with a typical energy

of � 100 eV have such a small path length in water that they tend to create small pockets of

radicals called spurs (Figure 1.11). More energetic δ electrons can create larger blobs, or

escape the trajectory of the mother track as their own short track.

The addition of DNA to a water medium complicates this picture, at the physics level,

as it is difficult to model the interaction cross-section of DNA molecules in a way that

is useful in a Monte Carlo simulation. Furthermore, a bulk cross-section doesn’t always

represent the dynamics of how excitation and ionisation occur in a single molecular chain.

Electrons with energies of 5 eV, below the ionisation level of DNA (7.5 eV) have been shown

experimentally to induce SSBs in DNA molecules (Boudaiffa et al., 2000), and theoretical

models have shown that even less energetic electrons can induce breaks via shape-resonances

(Barrios et al., 2002). Incident electrons of between 5-15 eV can also cause DNA strand

breaks, typically by the dissociative excitation of phosphates and sugars, as well as molecular

resonances, while more energetic electrons can induce strand breaks via direct electronic

excitation of dissociative states (Orlando et al., 2008). Water molecules around the DNA can
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also introduce new resonances into the system which lead to breakages.

Rather than simulate this level of detail in the Monte Carlo physics stage, the criteria used

to determine whether a strand break has been induced in DNA is the accumulation of

a threshold energy in a certain region around the DNA. Such an approach has statistical

merit, whilst departing from the complicated reality of excitation and ionisation induced

strand breaks. Additionally, as electrons are typically tracked down to 8 eV in Monte Carlo

simulations, the small amounts of damage induced by low energy electrons are very difficult

to model.

DNA damage by radicals near DNA by chemical processes relies on a smaller degree

of approximation, in some respects, as it is based on well known chemical reactions, with

defined chemical reaction rates. Some level of approximation does need to be made here,

as the DNA geometry can block certain chemical reaction sites (Balasubramanian et al.,

1998). SSBs resulting from chemical attack though can be easily found by analysing which

chemical reactions are able to proceed in a simulation. In addition to explicitly specifying

chemical reactions, it can be emulated by seeing with what likelihood relevant ROS species,

notably •OH diffuse towards DNA molecules, and by counting diffusion into the DNA region

as a chemical reaction (e.g. Nikjoo et al., 1997).

1.6 Putting it all together

This introduction has brought together many disparate threads across biology and physics.

This thesis is really about replicating the Long Term Evolution Experiment in both a standard,

above ground radiation environment, and the low background environment provided by

the Modane Underground Laboratory. We spend a lot of time however trying to understand

these two radiation environments as they apply to biology, in order to be sure that any changes

we see between the two environments are able to be motivated by changes in the radiation

environment.

Chapter 2 is intimately linked to this, exploring the many considerations that are neces-

sary when conducting biological experiments in underground environments. We describe

the dosimetry conducted in each environment, and the simulations we have performed in

order to quantify the frequency with which cells in different radiation environments interact

with the radiation background. Chapter 3 continues the theme of simulation, but now we try

and quantify the rates of DNA damage in underground environments. Here, we present a new

method for flexibly implementing a DNA geometry in Geant4, developed as part of the work

of the Geant4-DNA collaboration. In particular, the method allows different geometries to be

implemented, whilst taking away the burden of developing a scoring system for physical and
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chemical DNA damage.

In Chapter 4 we address our biological experiments, explaining our protocols and moti-

vating the experimental method we have chosen. We take as a starting point that the results

of a controlled evolution experiment change when the environment changes in a way that

evolution is sensitive to. To this end, our replication of the LTEE in both the LPC and

the LSM is used to indicate whether evolution, in E. coli at least, is sensitive to the radiation

background, or whether it is primarily driven by endogenous causes.





Chapter 2

Biological Experiments in Low Radiation
Environments

This chapter addresses a fundamental question in low background radiation studies. What

is the fundamental impact of different radiation environments on cells? Quantifying this is

essential in designing and developing experiments at low dose, especially for quantifying

the scale of damage and cellular disruption triggered by radiation compared to that which

occurs due to cellular processes.

Radiation exposure is typically described in terms of absorbed and effective dosages. That

is, a measurement of the amount of energy deposited in a target volume by weight. Effective

doses introduce a scaling parameter that describes the likelihood of different particles to

induce biological damage. At each of these levels, experimentalists withdraw slightly from

the reality of radiation exposure in an effort to aid modelling. First, the conversion from

an energy deposit by an ionising particle along a track that is discrete in space to an energy

deposited in a volume obscures the spatially origin of radiation events. Secondly, conversion

to effective dose converts the energy deposited into a new parameter that better describes

a risk factor than an energy deposit. These parameters are both very valuable in their domains

of applicability, but here we seek to understand both different radiation environments as

well as their impact on individual cells. This dilemma is illustrated in Figure 2.1, where an

incident electron travels through a field of cells. Only a few cells are traversed by the electron,

and the energy deposition in each cell is likely far from uniform.

This chapter is divided into three sections, which present varying aspects of what is

required to quantify radiation backgrounds in underground biological experiments. The first

section provides an overview of common considerations for radiation environments in

biological experiments. Unlike low background physics experiments where background

events need to be almost eliminated, or restricted to a few events per day, the sensitivities
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Fig. 2.1 From absorbed dose, ionising radiation deposits energy roughly uniformly in a vol-

ume. However, ionising radiation really deposits energy along a track. For small volumes,

such as cells, when few particles traverse a volume, the approximation of a continuous

energy deposit loses validity when considering the impact of radiation on single cells. In

the above image, few cells, drawn as ellipsoids, are actually traversed by the passing electron,

whilst the cell containing a black spur, representing a secondary electron, is likely to have

a significantly higher energy deposited within it than other cells which were hit.

required for biology aren’t as restrictive. This is largely a consequence of a biological

experiment consisting of thousands to millions of cells, each of which can be regarded

as a detector, whilst physics experiments typically have comparatively few detectors. In

particular, for biological experiments, we are interested in seeing how many cells pass from

seeing an energy deposit within them due to radiation in a given time period, to seeing no

energy deposit at all in the same time period within their cell wall.

We begin this chapter by discussing different radiation environments in biology, and

some general principles that need to be considered when designing an experiment. This

discussion, presented in Section 2.1, focuses upon the impact of 40K and 222Rn in biological

experiments at low background. In particular, we note here that the radiation dose coming

from the biological media used in the experiment is important in assessing the absorbed

dose for a cell sample, and to this end we consider the activity of a range of commonly used

growth media.

A dosimetric investigation of the different environments we consider is presented in

Section 2.2. As previously mentioned, absorbed doses paint however an incomplete picture

of how a radiation environment affects cells, especially when considering the long term

effects of radiation where the key parameter concerned is the chance that an individual cell

is intersected by the track made by an ionising particle. In the experiments we conduct,

this is particularly relevant as individual cells may pass many generations without ‘seeing’

any radiation. For the different radiation environments considered in our experiments, we

have conducted an investigation into the frequency with which ionising radiation actually
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impacts E. coli cells in Section 2.3. These events occur stochastically, and understanding

their frequency is important in predicting the physical consequences upon cells of changing

the radiation environment, in a far more complete way than dosimetric measures can.

2.1 Radiation Environments in Biology

Conducting our experiments in physics laboratories, work has already been done to classify

the sources of radiation present, especially in the LSM. These measurements have been made

though with physics experiments in mind. In low-background physics experiments, a single

α decay may, for example, lead to a false detection and bias an experiment. When conducting

biological experiments, this level of sensitivity isn’t necessary as trace quantities of radio-

elements in biological growth media contribute to a background that limits the maximum

possible dose reduction.

Keeping this in mind, Table 2.1 presents a brief overview of the relevant radiation

background sources in surface and underground radiation environments. In addition to radio-

elements in the nutritive medium, at the surface, biological systems are affected by terrestrial

radiation sources and the cosmic background. In underground laboratories, the cosmic

component of the background is greatly reduced, though the quantity that does penetrate

the laboratory is still significant enough to affect sensitive experiments.

For the LSM, a small amount of cosmic muons penetrates into the laboratory, and

a thermal neutron flux is measurable coming from spontaneous fission of radio-elements

and reactions in the surrounding rock (Bettini, 2014). A gamma background is created from

the decay chains of 40K, 232Th and 238U within the laboratory concrete and walls (Chazal

et al., 1998). Measurements from Malczewski et al. (2012), show the gamma ray flux in

the LSM over the energy range 7.4−2734.2 keV varies as one moves closer to the walls.

Low numbers of cosmic muons penetrate the lab, with a vertical flux of 5.4±0.2 m−2 day−1

(Schmidt et al., 2013), a reduction by a factor of over 106 compared to the surface level.

Table 2.1 The radiation sources dominant in biological experiments in underground and sur-

face laboratories are marked with ticks. For most experiments, while construction materials

can emit α and β particles, the short penetration distance of these particles greatly reduces

their impact on experiments.

Terr. γ Terr. α ,β 222Rn 40K,14C Cosmic γ ,μ Cosmic n

Surface � - � � � �
Underground � - � � - -
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Thermal neutrons are also present in the LSM from spontaneous fission and (α,n) reactions,

with a flux of φn = 1.9× 10−6 cm−2 s−1 (Savvidis et al., 2010). This flux is over one

thousand times smaller than the surface level neutron flux from cosmic sources.

Trace radio-elements in biological media are typically 40K and 14C. Whilst this quantity

varies between experiments, it along with the contributions to the radiative background

from Radon and the terrestrial γ background, typically dominate the radiation dose received

within a biological experiment. When conducting a low background experiment, many of

these sources can be suppressed further. Biological experiments may be conducted inside

incubated lead shielding to reduce the terrestrial γ rays. Radon suppression presents a greater

obstacle and can be minimised by using de-radonised air, or alternatively, a radon-minimising

experimental apparatus.

2.1.1 Radon in biological experiments

In the LSM, the radon level is maintained between 5 Bq m−3 and 15 Bq m−3 (Piquemal,

2012), and is dominated by 222Rn due to its 3.8 day half life (whereas all other natural

Radon isotopes have half-lives less than a minute). This can have a significant effect on both

physical and biological experiments due to Radon’s decay chain. A daughter of naturally

occuring Radium, Radon enters the atmosphere by dissolving through rocks after its creation.

The dominant decay chain of the gaseous atom is the following:

222Rn → 218Po+α T1
2
= 3.8 d

218Po → 214Pb+α T1
2
= 3.1 m

214Pb → 214Bi+β− T1
2
= 27 m

214Bi → 214Po+β− T1
2
= 20 m

214Po → 210Pb+α T1
2
= 160 μs

210Pb → 210Bi+β− T1
2
= 22 y

210Bi → 210Po+β− T1
2
= 5.1 d

210Po → 206Pb+α T1
2
= 140 d.

Immediately upon decaying, 222Rn ceases to diffuse gaseously and falls. It poses sig-

nificant problems in low background experiments as its immediate daughter nuclei decay

rapidly, releasing two α and two β− particles before the comparatively stable 210Pb is

reached. In physics experiments, this problem is typically solved by using de-radonised air

in experiments. This is not always practical though in biological experiments as the process

of removing radon from air tends to dry it significantly, which may alter biological outcomes.
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Given that in biological experiments the complete absence of radon is not as necessary as

in physics, it is often better to construct experimental geometries which reduce as much as

possible the quantity of radon to which a sample is exposed.

Radiation from radon may affect a biological experiment in one of two ways. First,

radionuclides in water, or radon dissolved in water from the air may decay inside the sample.

Secondly, airborne radon can decay and fall on to a sample, subjecting it to radiation. In

the first case, the two relevant factors are the biological sample size and the propensity of

radon to accumulate in water. Rather than attempting to estimate the quantity of radon in

water based on the atmospheric density of radon and its subsequent diffusion in water, it is

more instructive to consider the recommended maximum α emission activity of French tap

water, which is 0.1 Bq L−1 (Caamano et al., 2011). In a 1.5 mL sample, this corresponds

to a maximum of 13 α decays per day. Using pure distilled water in our experiment further

reduces this as it eliminates contributions to the radioactive background from water-borne

radionuclides such as 226Ra.

In the second case, the amount of airborne radon falling on a sample following its decay

grows with the height of the air column above a sample. Reducing this height by raising

the sample in an incubator can effectively reduce the radon induced dose. Keeping cell

samples wrapped in aluminium foil virtually eliminates this exterior radon dose as falling

radon daughters land upon the aluminium, which will block the vast majority of α and β
particles, effectively removing the radon background.

Based upon these two cases, it is safe to assume that the impact of Radon in biological

experiments at low background can be ignored when suitable measures are undertaken to

reduce its impact. More generally, there are experimental geometries where Radon will

impact experiments, notably experiments that have large air columns above samples, or water

sources with high radionuclide abundancies. These scenarios are less likely to occur however,

as most biological practices favour covered nutrient media and distilled water.

2.1.2 Potassium in biological systems

Given that the impact of radon in biological experiments can be easily managed, 40K rests as

the sole natural radioisotope whose impact must be mitigated in low background experiments.

The impact of 40K on mutation rates in simple cellular systems has been considered in

the past. Moore & Sastry (1982) considers that 40K could have played a role as a primordial

gene irradiator. The elemental potassium is located inside all living cells, playing an essential

role in cellular processes. β− emission from the element could trigger mutations with a high

likelihood, given the particularly high LET with which some electrons are emitted from

the radionuclide. This hypothesis was partially tested by Gevertz et al. (1985), who found
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that no change was observable in the mutation rate of K12 strain E. coli when it was grown

in media containing different levels of 40K, a measurement they achieved by using potassium

salts at least partially depleted of 40K (and consequently enriched in 39K).

Practically, low background biological experiments need to accurately quantify the ra-

diation dose received from internal 40K as this is often the dominant source of radiation

exposure. For certain biological growth media the exact chemical composition of the media

is known, and thus the activity of 40K inside the media can be accurately determined. For

other media, this is more difficult as the two major potassium sources, tryptone and yeast

extract, are purified products that result from the digestion of organic compounds. Here,

gamma spectroscopy can be used to determine the 40K concentration of these mixtures.

There always remains the possibility to use biological media depleted of 40K through

physical separation processes. This process is expensive, but it does permit one to conduct

experiments where virtually all background radiation is suppressed. At this level, further

challenges are encountered, as the radiation background can become dominated by unex-

pected sources, such as metals in the experimental apparatus, trace radionuclides in plastics,

and even the radioelements present in inks used in to mark samples. As such, any experiment

that seeks to reduce the background radiation level below the level that naturally occurring
40K forces in an experiment requires an accounting for sources that goes beyond the scope of

this thesis.

2.1.3 Activity measurements for biological media

In our experiments, E. coli is grown in glucose-enriched Davis Medium (Carlton & Brown,

1981). In order to be able to compare the activity of Davis Medium to other commonly used

biological media, we measured by gamma spectrometry the potassium concentrations of

two common ingredients in biological experiments, yeast extract and tryptone. In particular,

these are derived from biological processes rather than a mixture of chemicals, so their

potassium concentration is not derivable analytically. Yeast extract (Sigma-Aldrich 70161) is

a nutrient rich medium containing autolysed yeast cells. Tryptone (Sigma-Aldrich T9410) is

a peptide mixture made from the digestion of casein by the tryptase enzyme. Inside a gamma

spectrometer, we measured a 2.65 g sample of yeast extract for 190,450 s and 2.77 g of

tryptone was measured for 239,602 s. In both measurements the potassium concentration

was found from the size of the 1.46 MeV gamma ray peak in the spectrum, and was corrected

for the detector background, geometry and efficiency.

In Table 2.2, we show the concentration of potassium in the various biological powders,

and the associated activity of 40K. In both yeast extract and tryptone, there is significantly less

potassium than in Davis Medium powder. Whilst the potassium concentration of a biological
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Table 2.2 Measured concentrations, c, of potassium and activity, A, of 40K within one

kilogram of standard biological powders from gamma spectroscopy. The measurement from

Davis medium is calculated from its chemical composition.

Medium (as powder) c(K) A(40K)

(mg g−1) (Bq kg−1)

Yeast Extract 63.3±1.2 1.96(.04)×103

Tryptone 2.5±0.2 7.7±0.6
Davis Medium 351 1.084×104

culture depends on the levels of yeast extract and tryptone demanded by the recipe, large

reductions in concentration can be made by using media other than the Davis Medium.

For example, 1 L of Lysogeny Broth (containing 10 g L−1 tryptone, 5 g L−1 yeast extract)

contains 341.5 mg L−1 of potassium, a reduction in the potassium concentration by a factor

of 10.9 times compared to Davis Medium (containing 10.6 g L−1 powder typically).

2.2 Evaluating Dose in Different Environments

We address dosimetry in the different environments we consider in two parts, reflecting

that we have used a combination of measurements, where available and simulation, where

measurements were not possible. We first present the dosimetric measurements we were

able to take, followed by our dosimetry simulations. The results of both these sections are

summarised together in Section 2.2.3.

2.2.1 Simple dosimetry

In both the LPC and LSM, measurements of the gamma dose and spectrum were made. Dose

measurements made in the LSM were all taken within the recently added biology room with

the detector in the centre of the room, or in cases noted as being “shielded” measurements,

within a lead shield consisting of an interior layer of 5 cm of copper, surrounded by 10 cm

of lead. Dose measurements of the background at the LPC were made in the microbiology

laboratory attached to the LPC.

Measurements of the gamma spectra in each location (Figure 2.2) were made using

the NaI (Tl) detector of a handheld IdentiFinder Ultra-NGH. The detector chamber in

the device is 36.0 mm in diameter and 50.8 mm long. Integration times for each observation

varied from 7.46×104 s at the LPC to 2.61×103 s and 7.87×104 s in the unshielded and
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Fig. 2.2 Comparison of gamma spectra at Clermont-Ferrand (LPC, solid red), the LSM

biology lab (LSM, dashed blue), and inside the experimental lead chamber (LSM shielded,

dotted green) measured with a NaI (Tl) detector.

shielded LSM environments respectively. The measurements were made in Modane on

March 18 and 19, 2015 and in Clermont-Ferrand from March 19-20.

The absolute count rate at the LPC was significantly higher than the count rate in the LSM,

at 10.57 γ s 1 compared to 3.16 γ s 1 and 0.092 γ s 1 in the LSM biology room and lead

shielding respectively. A steep drop is observed in the LSM biology room at counts above

1,650 keV as the integration time was not sufficient to observe gamma rays at this energy.

The curves for the LPC and shielded LSM environments do extend beyond this to 3,068 keV,

however there are very few counts in this region (in both cases, < 0.6% of total counts).

Across the entire range of energies sampled, the gamma background in Clermont-Ferrand

remains approximately 100 times greater than that in the shielded LSM environment, and 3

times greater the unshielded environment.

Whilst this measurement lacks the spectral resolution of a high purity germanium crystal,

gamma peaks corresponding to some elements are evident and have been marked on Figure

2.2. These are all traceable to the primordial radionuclides that surround the laboratory. Most

notable is the 1460 keV peak from 40K, and the 609.3 keV peak from 214Bi, a radon daughter.

An excess is observed in the curves near 338-362 keV, which is likely due to the 352.0 keV

peak of 214Pb (also a radon daughter).

The gamma dose was measured using the dosimeter built into the IdentiFinder probe in

each location. All dose measurements made were corroborated by secondary measurements

from a Canberra Radiagem 2000 Personal Dose Rate and Survey Meter with a Very Low
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(a) 96-well microplate from above.
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(b) Individual well from the side.

Fig. 2.3 The geometry of the 96-well microplate used (a), highlighting the central well that

was chosen to be used as a detector (hatched), alongside an individual well filled with 1.5 mL

of water (b). The individual well is drawn surrounded by a radius 30 mm circle, representing

a spherical source used to simulate isotropic irradiation.

Dose Rate Probe attached. The ambient equivalent doses measured by these devices were

converted to absorbed doses using the radiation weighting factor for gamma rays of 1.

Dosimetry reveals the significant decrease in the gamma dose achieved by conducting ex-

periments in the underground lab. Using the IdentiFinder gamma dosimeter, the gamma dose

in the LSM biology room was found to be 20±5 nSv hr 1, whilst in the Clermont-Ferrand

microbiology laboratory the gamma dose was significantly higher, at 150± 10 nSv hr 1.

Measurements made inside the lead chamber with the door ajar were not possible as the dose

rate was below the detection threshold of the dosimeter for the integration period. The Identi-

Finder detector was limited to a precision of 10 nSv hr 1.

2.2.2 Dosimetry simulations

In order to corroborate our gamma dosages, and to obtain the absorbed doses in the biological

sample from both cosmic background sources and the internal emission from radionuclides

in the nutritive medium, we used Geant41 to model the transport and energy depositions

of each of these radiation sources. A simulation geometry was defined based upon the 96-

well microplates within which bacteria grew on a daily basis, shown in Figure 2.3. For

these simulations, electromagnetic physics was simulated using the “Livermore” physics

constructor. The simulations were repeated using the default “StandardPhysics” constructor

to ensure that results were consistent across different physics models. The results obtained

using the Livermore models are by large presented here, as these models are better adapted

to low energy electromagnetic physics.

1version 10.1.patch01 was used throughout §2.1
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Fig. 2.4 The γ spectrum measured using a high purity germanium spectrometer in the centre

of the LSM grand hall, using a collimator around the spectrometer. Identifiable emission

lines are marked with their mother radionuclei. From Malczewski et al. (2012).
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Fig. 2.5 Binned γ spectra based upon Table 2.3 for measurements made by Malczewski et al.

(2012) at both a wall in the LSM and the centre of the grand hall.
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Table 2.3 Gamma fluxes in γ cm−2 s−1 measured by Malczewski et al. (2012) within the LSM,

with a detector near the centre of the main hall and flush against a wall.

7.4-249.8 250.2- 500.8- 1005.6- 1556.2- 2056.2-

keV 500.4 keV 1005.2 keV 1555.8 keV 2055.8 keV 2734.2 keV

Hall 0.185 5.36×10−2 3.74×10−2 1.87×10−2 4.10×10−3 2.50×10−3

Wall 0.389 0.109 7.47×10−2 3.51×10−2 8.89×10−3 5.01×10−3

Choosing one well towards the center, we measured the energy absorbed within this well

when it was surrounded by an isotropic gamma source, emitting with the flux defined in Table

2.3. These binned fluxes are based upon spectra (Malczewski et al., 2012) measured with

a high-purity germanium crystal detector (Figure 2.4) allowing more distinct radio-elements

to be identified above the background than in Figure 2.2. The γ-spectrum at the centre

of the hall is shown in Figure 2.4. This resolution of course disappears when the binned

spectrum is considered (Figure 2.5), however as the spectrum is background-dominated

this has little effect on the final result. The isotropic source was defined as a sphere of

radius 3 cm around the centre of the well (Figure 2.3b). Using each spectra, we simulated

107 gamma rays, corresponding to 0.524 days for the spectrum at the wall and 1.08 days

for the spectrum in the great hall. Physics was simulated using the “Livermore” physics

constructor. The simulations were repeated using the default “StandardPhysics” constructor

to ensure that results were consistent across different physics models. A secondary production

cut of 1 μm was used in both cases.

The Davis minimal broth solution (Carlton & Brown, 1981) that provides nutrition

for the bacteria in the experiment has an irradiative effect on the bacteria. We used sim-

ulation to measure the dose received from this source, based on the activity of the Davis

medium solution found from its chemical composition. The DM250 solution we use (Davis

medium without dextrose, sourced from Sigma-Aldrich product 15758 with glucose added)

carries a radioactivity from its potassium concentration of 115 Bq L−1. This activity was

confirmed using a Germanium gamma spectrometer at the LPC Clermont-Ferrand. 14C

within the DM250, in its standard abundance carries a minor contribution to the activity

of 5.17×10−2 Bq L−1. To simulate these sources, we kept the same simulation geometry

as in Figure 2.3b except the water-filled well served as the particle source, for both beta

electrons (in the cases of 40K and 14C) and for gamma rays (40K only). For 40K, particles

were simulated across two simulations. The first simulation measured the received dose

from internal gamma emission, arising from the 1.46 MeV photon emitted when 40K un-

dergoes electron capture. The second simulation modelled internal electron emission from

β− decay, using the emission spectrum measured by Cameron & Singh (2004), shown in
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Fig. 2.6 β spectrum measured of 40K, binned according to Cameron & Singh (2004).

The mean emitted electron energy is 511 keV.

Figure 2.6. The 107 primary particles simulated corresponded to simulation time periods of

6.16×103 days (γ source) and 7.33×102 days (β source). For 14C, electrons were simulated

matching the element’s beta spectrum (Tilley et al., 2012), corresponding to 1.49×107 days

of experiment. Physics processes were modelled using the same methods as for the gamma

background.

As part of providing a dose comparison between the LPC and LSM, it is necessary to

estimate the radiation dose due to cosmic rays above ground at the LPC. The absorbed dose

from charged cosmic rays and photons is reasonably uniform across most latitudes, and

a good estimate is provided by the standard annual effective dose, which for these particles is

identical to the absorbed dose (UNSCEAR, 2000). Following Bouville & Lowder (1988), this

value needs to be increased by 6% to account for the 400 m altitude of the LPC. The absorbed

dose from neutrons is more difficult to calculate, and while standard effective dose numbers

at sea level are available, the relationship between absorbed and effective neutron dose is

a function of neutron energy. In order to estimate the absorbed dose in an experimental

well above ground, we simulated the energy absorbed by a well in our experiment again

using Geant4, keeping the same well geometry as in Figure 2.3b but with a modified source

geometry. The modified source was a circular surface 150 mm in radius, 30 mm above

the base of the well, centred directly above the well considered. Particles were generated

along the down-facing side of this surface with their direction specified by an isotropic

angular distribution. This is equivalent to simulating neutrons arriving at the well from an

angle of 11.3◦ above the horizon up to the zenith. The particles arrive at the well with an
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Fig. 2.7 The analytic neutron energy spectrum we simulate (curve) alongside its measurement

(histogram). Our simulations consider neutrons with energies up to 500 MeV. (Reproduced

from Gordon et al., 2004).

angular distribution of where is the angle from the zenith. 107 particles were simulated,

corresponding to 4.37 days of real time. The algebraic approximation of the neutron spectrum

in New York (Gordon et al., 2004) was used between 100 keV and 500 MeV in the simulation,

giving a neutron flux of 5.96×10 3 cm 2 s 1 (Figure 2.7), and physics was modelled using

the QGSP_BIC_HP physics list and a 1 mm secondary production cut.

2.2.3 Results

Simulations of the energy deposited in water by the gamma background were made us-

ing energy-binned flux measurements taken at a wall and in the centre of the LSM great

hall. The results of these simulations are shown in Table 2.4, for the StandardPhysics and

Livermore physics constructors in Geant4. Both physics constructors used gave results in

agreement with each other. The absorbed dose measured using the spectrum from the great

hall is within the precision of that measured by dosimetry, whilst the spectrum against wall

overestimates the measured dose.

The major internal contributions to the radiation dose are also presented in Table 2.4.

Firstly, the 40K gamma line has a very minor impact on radiation dose, and the radioactive

decay of 14C is negligible. Rather, the internal dose is dominated by the emission of beta

particles from 40K. It bears noting that the average energy of a 40K beta particle is 560 keV,

however as electrons may escape the simulated well, an average of 426 keV is deposited

in the well per event. The particles that escape may interact with another well. Whilst

this depends strongly on the position of the well on the microplate (as not all wells have



52 Biological Experiments in Low Radiation Environments

Table 2.4 Simulated absorbed dose rates from the gamma background in the LSM and

the radiation sources in the nutritive medium. Doses were calculated using the Livermore

and StandardPhysics constructors within Geant4. The gamma background was simulated

using spectrum measured against a wall, and towards the centre of the laboratory hall.

Source Livermore Standard

nGy hr-1 nGy hr-1

Gamma (wall) 47.3(4) 47.9(4)

Gamma (hall) 23.3(2) 23.3(2)
40K(β ) 25.865(5) 25.939(5)
40K(γ) 0.1080(3) 0.1088(3)
14C(β ) 1.4757(3)×10−3 1.3762(3)×10−3

the same number of neighbouring wells), an approximation of the radiation dose in one well

from another can be made by considering the angular space occupied by a neighbouring

well. By considering the maximum solid angle that a neighbour may occupy and also

assuming that little energy is lost in the air between wells, an upper bound can be found for

the energy deposited in each neighbouring well per event of 6.1 keV. That is, the dose is

underestimated by 1.4% per neighbouring well. Thus, considering the geometry of a well in

the centre of the microplate with six nearby, filled, neighbours (see Figure 2.3a), the size of

the underestimation in the 40K beta dose is no larger than 7%.

The summed doses for each environment are presented in Table 2.5, where we have

also marked the estimated neutron dose above ground (4.4±0.3 nGy hr-1) from simulation.

The presence of internal 40K sets a limit upon the maximum dose reduction achievable follow-

ing a protocol that uses Davis Medium. Merely conducting experiments in an underground

laboratory reduces by a factor of 4.6 the background radiation level compared to the LPC.

Removing the gamma background from the LSM using shielding allows a further reduction,

such that the dose compared to the LPC is reduced by a factor of 8.2.

2.2.4 Discussion

These dosimetric results show the suitability of Modane for low background biological ex-

periments. We show that it is possible underground to reduce the background radiation from

ambient source to the 1 nGy hr-1 level, using relatively simple means. Nevertheless, a sig-

nificant radiation background remains from 40K in nutritive media. Biological experiments

introduce a unique nuance into the standard way of running a low background experiment,

where typically it is necessary to eliminate as many background sources as possible, to as

large a degree as possible. Practically, biological experiments bring with them a level of
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Table 2.5 Doses relevant to biological experiments at the LSM, relative to measurements

made at the LPC Clermont-Ferrand. Dosimetry measurements exhibited a time variation on

the order of 20% on both sides of the value cited. The background for cosmic rays was taken

from UNSCEAR (2008). Doses from potassium and carbon inside the well were simulated

using the Geant4 simulation toolkit.

Source Method LPC Clermont LSM LSM (shielded)

(nGy hr-1) (nGy hr-1) (nGy hr-1)

γ background Dosimeter 150 20 <1

Cosmic rays (μ , e−, p, γ) UNSCEAR 33 � 1 � 1

Cosmic rays (n) Simulation 4.4 � 1 � 1
40K (γ) Simulation 0.13 0.13 0.13
40K (β ) Simulation 26 26 26
14C Simulation � 1 � 1 � 1

Total 214 46 26

radioactivity in their natural chemical composition, by virtue of the important biological role

of potassium. Methods of reducing the potassium dose in biological experiments have not

been widely discussed, indeed some experiments have forgotten to include the contribution

of potassium within growth media (e.g. Castillo et al., 2015). Media selection also plays

an important role in reducing the potassium background. We have presented measurements

of the potassium concentration of one manufacturer’s yeast extract and tryptone in Section

2.1.3. These measurements can serve as a guide to assessing the radiative impact of different

media. Indeed, there is a ten-fold decrease in the potassium concentration, and thus 40K

activity going from Davis Medium to Lysogeny Broth. Further reductions in the radiation

background could be achieved by using 39K rather than natural potassium in experiments, as

was performed by Gevertz et al. (1985). In this case, new dosimetric measurements would be

required in the LSM to quantify the dosage below the 1 nGy hr-1 level, as portable dosimeters

are not sensitive to such low radiation levels.

Working in underground laboratories, the major significant external radiation source

is the gamma background. This gamma background can be effectively suppressed using

standard lead shielding. While above ground, lead shielding can reduce the gamma back-

ground, underground laboratories shelter biological experiments from the far more difficult

to eliminate cosmic sources of radiation, typically neutrons and muons. The underground

laboratory itself is responsible for a reduction in the absorbed dose by 35 nGy hr-1, according

to our quantification of the neutron dose, and the standard estimate of the cosmic background

dose from charged particles and photons. A higher reduction is often achievable given that

most underground laboratories include other measures to reduce the background radiation
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level, such as low radioactivity concrete and low radon air supplies.

It should be noted that our measurement of the gamma background at the LPC are signifi-

cantly higher than the standard terrestrial gamma background of 60 nGy hr-1 (UNSCEAR,

2008). Whilst the measurement we made does convolute the terrestrial and cosmic gamma

backgrounds, as the gamma dosimeter could not distinguish the two, this is not a significant

factor in the large background measurement as the cosmic background dose is dominated

by muon interactions. Instead, the high gamma background at the LPC is caused by its

location, in the ‘Massif Central’ region of France, which is known to have a particularly high

background radiation level.

We have not specifically considered 222Rn and its daughters as an important contributor

to the internal dose in these measurements. Whilst the energy contained in from decaying
222Rn is large, and can significantly impact a biological system, the experimental geometry

can play a large role in varying this dose. Lungs, or a lung like system for example will

receive a significantly larger radiation dose from radon, due to the frequent gas exchange,

than a glass test tube containing bacteria in a nutritive medium, and little air. Even without

elaborate measures to limit exposure, the impact of 222Rn is relatively small, for example, in

the Gran Sasso laboratory, Fratini et al. (2015) find its contribution to be less than 1% of that

of 40K (0.17 nGy hr-1 in a 5 Bq m3 environment). In the LSM, we judge the contribution of

Radon to be small also, based on the low ambient Radon concentration (≤ 25 Bq m−3, or

≤ 5×10−5 Bq well−1), and the geometry of our system, where an aluminium sheet prevents

falling products from decaying, airborne radon from irradiating our samples.

Our simulation measurements of the gamma background in the main hall are in agreement

with gamma dosimetry measurements, and as such would serve as an appropriate input

for future simulations of the gamma background in Modane. Conversely, the gamma

spectrum taken next to the wall overestimates the gamma dose, which is unsurprising

given that the geometry of the measurement is heavily directional. Whilst using an energy

binned spectrum as a simulation input causes the spectrum to lose the distinctive peaks that

characterise a gamma spectrum, this has little effect on the underlying result as the majority

of counts are in the continuum part of the spectrum.

Assessing the biological impact of a background reduction from the 214 nGy hr-1 ab-

sorbed dose an organism would receive on the surface in Clermont-Ferrand with the much

lower 26 nGy hr-1 dose in the LSM is difficult due to the poorly determined response

of living systems in ultra-low background environments. Daly (2012) suggests that dou-

ble strand breaks (DSBs) from radiation exposure typically occur with a frequency of

0.004 DSB Gy−1 Mbp−1. If a linear model for induced radiation damage with dose holds

true, then there would be an 8-fold difference in the number of DSBs occuring within organ-
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isms outside an underground laboratory, compared to those studied within it. Following this

logic, cells grown underground would be considerably less damaged than those grown above

ground. Whether this is observable however requires a better quantification of how radiation

interacts with cells, compared to the biological processes acting upon cells. Moreover, such

a simple assumption ignores how regulatory mechanisms and repair functionalities act within

cells at low radiation doses, which is likely far from linear.

2.2.5 Conclusions and Perspectives from Dosimetry

Dosimetry is an inherently macroscopic concept. At high radiation doses, it can lead to good

predictions of biological outcomes, however at low doses its usefulness is limited. Models of

the biological effect of radiation, such as the Linear-No Threshold model that are built from

extrapolations from high dosage data, break down at low doses (Feinendegen et al., 2004;

Tubiana et al., 2009). Our dosimetric studies here have highlighted to what extent different

radiation sources can be removed from the environment. A key finding is that potassium in

biological media sets an approximate limit on the amount of radiation that can reasonably be

removed. Dosimetry is also important for providing a simple comparison between multiple

environments. A difference in dose corresponds loosely to a difference in radiation-induced

damage events. The utility of this measurement depends highly on each individual cell’s

response to radiation.

To better understand the impact of radiation on cells though, it is necessary to quantify

that impact on the level of individual cells. This is the object of the next section, where rather

than providing dosimetric evaluations of radiation environments, we use simulation to work

out the frequency with which radiation tracks traverse individual cells.

2.3 The impact of radiation environments on cells

When considering the impact of ionizing radiation on cellular systems from the environment,

the absorbed radiation dose is considered by experimentalists. While this is appropriate in

high dose regimes, it is less applicable in low background biological research. Absorbed dose

measures a continuous energy deposition per unit mass, when in reality energy is deposited by

ionizing particles along tracks. For low doses, these tracks do not always cross a significant

proportion of cells in the populations studied in a biologically relevant time period. In this

section we use Geant4 simulations to replicate our biological experiments and their radiation

environments, in an effort to quantify how frequently radiation tracks traverse cells.
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The need for such studies is highlighted by a recent study conducted at the Waste

Isolation Pilot Plant in New Mexico where a reduction in the growth rates of both Shewanella
oneidensis and Deinococcus radiodurans was observed when they were grown for 48 hr in an

extremely low background environment compared to a reference environment (Castillo et al.,

2015). As the bacteria were given no time to adapt to the radiation environment, and upon

re-introduction to the reference environment, the bacteria immediately recovered their former

rate of growth, one is left wondering how the bacteria could so rapidly sense the change

in the radiation level. Quantifying the frequency with which radiation tracks traverse cells

permits this, though even simple estimations of the frequency with which ionisation events

occur in cells suggests it is difficult for ionising radiation alone to mediate this population

wide response (Katz, 2016).

Using simulation, the stochastic impact of the radiation background in biological experi-

ments can be constrained, by calculating the frequency with which particle tracks intersect

cells and deposit energy within them. Monte-Carlo based particle track simulation packages

have seen wide use in simulating the impact of radiation upon cells in radiotherapy (El Naqa

et al., 2012; Nikjoo et al., 2006) and are easily applicable to cellular dosimetry (Douglass

et al., 2012; McNamara et al., 2012). Going further, Monte Carlo codes can simulate both

direct and reactive oxygen species induced damage caused by radiation sources, both through

explicit simulation (Friedland et al., 2011) and analytical modelling of the chemical processes

induced by radiation (Liang et al., 2016). This is beyond the scope of this chapter, but is

discussed in Chapter 3.

Continuing from the previous section, we present a method in this section in which

the Geant4 simulation toolkit (Agostinelli et al., 2003; Allison et al., 2006, 2016) is used

to accurately calculate the frequency with which ambient radiation sources interact with

bacterial cells (all simulations in this section were run using Geant4.10.2.p01 MT). We

apply this method to our LTEE in both the LSM and LPC. We show how many cells are

impacted per unit time by the radioactive background, placing bounds on the maximum

rate of mutations triggered by the ionizing background. More generally, these numbers

are interpreted in the light of short term low background experiments, giving a physical

quantification of the extent to which bacterial cells may indeed be able to ‘sense’ the radiation

present in their environment.

As part of the Geant4-DNA collaboration, the source code used for the simulations in

this section has been released publicly2.

2The curious reader is referred to Lampe (2016), and http://github.com/natl/multiscale.
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2.3.1 Biological Conditions

Our simulations are designed to mimic the LTEE we are conducting in the LPC and LSM.

A more complete description of the experiment is provided in Chapter 4. In both the ambient

radiation environment in the LPC and the low background environment provided by the LSM,

E. coli has been grown across hundreds of generations in 24 wells of a 96-well polypropylene

microplate. Each well in the microplate was filled with 1×1×1.5 cm3 of Davis minimal

broth (Carlton & Brown, 1981) enriched with 250 mg L−1 glucose. This is essentially

the same geometry that was simulated in Section 2.2 (see also Figure 2.3. Every day,

the liquid culture was agitated constantly at 170 RPM at 37◦C for 24 h. At the end of

each 24 h cycle, 5 μL of bacteria was transferred to a new microplate. The bacterial

concentration begins at the start of each daily cycle at 1.7×106 cells mL−1 which rises to

5.0×108 cells mL−1 at the end of the growth phase.

Our simulations consider two levels. The macroscopic level considers environmental

sources interacting with the liquid medium in the microplate itself. At the microscopic level,

we consider the charged particles created within the well and how frequently they traverse

cells. In this second, microscopic simulation, 4000 cells are simulated in a cube of side

length 200 μm3, which replicates the maximum cellular density observed in experiments.

This two-stage simulation and the repeating boundary condition at the microscopic level

where chosen to enable us to efficiently place over 108 cell geometries into memory for

the simulation. In hindsight, a more effective way to run this simulation is to use multiple

placements of a small repeating unit equivalent to our microscopic simulation geometry into

Geant4, thus eliminating the need to run two levels of simulations, and develop a repeating

boundary condition.

2.3.2 The Macroscopic Level

The simulations at the macroscopic level consider the environment of the experiment. Follow-

ing the dosimetric simulations, we modeled a 96-well microplate using polypropylene (Fig

2.3a) in Geant4. A Davis minimal broth solution was modeled as water that was enriched

elementally by the chemical composition of the Davis minimal broth (specifically matching

the composition of Sigma-Aldrich product 15758), as the trace presence of these constituents,

notably potassium cause a ≈ 10% increase in the neutron absorption cross section of the well

(c.f. Varley, 1992). The composition used is shown in Table 2.6.

The aim of this simulation was two-fold, we measured the dose deposited in the well

in addition to recording the charge carriers created within the well, either directly from an

internal source, from a charge carrying particle entering the well from the outside, or from
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Table 2.6 Simulated composition of Davis Medium

Molecule Concentration (%)

H2 O 98.9147

N 0.0212

H 0.0163

S 0.0269

O 0.4430

K 0.3702

P 0.1700

Mg 0.0020

Na 0.0117

C 0.0222

physical processes where charged particles were created within the well by neutral particles

that entered the sensitive volume (ie. photons and neutrons). By storing only charged particles

created, and not the secondaries that these particles in turn created, we preserved the spatial

correlations between all electrons created by ionization from any recorded charged particle

within the sensitive volume, as they were ‘re-created’ at the microscopic level. Particles

were still tracked after they were saved in order to measure the energy that they deposited

in the well and to observe whether secondary particles were later created that re-entered

the well even after a given particle had left. When particles were saved, their positions,

momentum directions, species’ and energies were recorded. At the conclusion of the run,

these were placed into a binary data file formatted following the ROOT format. This file

served as the input for microscopic level simulations.

2.3.3 The Microscopic Level

Within the previous simulation, a phase space file was produced that contains the positions,

energies and directions of each proton and electron created within a wells of a microplate.

This data is used as the input to a new simulation run at smaller length scales, which allows

the impact of these particles upon cells to be evaluated. By simulating individual cells in their

nutritive medium, the frequency and magnitude of energy deposits in cells from a radiation

source can be found, and the exact energies and types of particles that enter cells to interact

with DNA can be quantified. The energy spectrum of particles entering cells can be placed

into a phase space file with each particle’s direction and point of entry into the cell in order to

seed a yet lower level simulation where the interactions between these particles and DNA is

measured, so that the DNA damage induced by a particular radiation source may be assessed.



2.3 The impact of radiation environments on cells 59

101

102

103

104

105

106

σ t
o
t

(m
m

−1
)

Davis Broth

Water

10−1 100 101 102 103 104

Energy (keV)

−0.4

−0.2

0.0

0.2

D
if

fe
re

n
ce

(%
)

Fig. 2.8 The top panel shows the total electron interaction cross section (σtot, given per

volume, for ρ = 1 g cm3 solutions), which determines the likelihood of electron interac-

tions occurring for a given electron energy, in both water and Davis broth. The difference

between these curves is shown in the bottom panel. Across the range of electron energies

considered in our simulations, water approximates the Davis broth solution to within < 0.5%.

The comparison here was made using the Penelope physics models in Geant4.
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The geometry used within Geant4 at this level is a cube of side length 200 μm filled with

4000 bacterial cells. This domain is significantly smaller than a well in a microplate, and is

easily escaped by even low energy electrons as 100 keV electrons have a mean penetration

distance of 140 μm in water (Berger et al., 1998). A periodic boundary condition is thus

placed on the domain so it may adequately represent the larger domain.

Particles are generated inside this domain. Macro commands allow the user to specify

the location where particles are generated and whether they are generated in a uniform

direction or isotropically, if a phase space file is not being read. The capacity to use an input

energy spectrum following a user histogram is also available via macro commands. When

generated particles enter cells, the energy they deposit in each cell is saved, as well as their

position, direction and energy at entry. The number of cells hit in each event is also saved.

Each cell itself was modelled as a cylinder of length 2 μm capped at each end by

r = 0.5 μm hemispherical end caps. Unlike at the macroscopic level, cells were simulated

as being composed of water, in a water medium. The density of water inside the cells was

however set at 1.10 g cm−3, a compromise between the few measurements of the internal E.
coli density we found in the literature Baldwin et al. (1995); Godin et al. (2007). Approxi-

mating the Davis Medium as water has little impact here, as the electron cross section is not

substantially different between these two media (Figure 2.8 shows the maximum difference

over the energies we are most interested in to be < 0.5%).

At least 106 particles were simulated in each run at the microscopic level, which was

enough for the simulation results to converge. As the inputs at the microscopic level are

dependent on the macroscopic level, the time normalisation for each microscopic simulation

run was determined from the rate at which secondary particles were created (following

normalisation) in the macroscopic simulation.

Implementation of a repeating boundary condition

The repeating boundary condition was implemented by adding a counter to G4Track objects

that tracks the location of the particle in a larger, fictitious parent domain, so that particles

may leave the simulation if they travel far enough in any direction. In this way, particles

are identified by their identity not just within the box, but also within the larger domain that

the repeating boundary replicates.

Using the repeating boundary conditions, we introduce two simulation regions. The mi-

croscopic region is that which is actually simulated, a small domain containing a reduced

number of cells. The parent region however is made of tessellated microscopic regions

and describes the entire simulation region. This region allows a particle’s position in real

space to be calculated. The relationship between these two regions is illustrated in Figure
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Fig. 2.9 a) The repeating boundary condition allows the simulation area at the macroscopic

level to be broken up into a series of microdomains with (x,y) ∈ [−100 μm, 100 μm]2. Each

microdomain contains the same geometry due to the repeating boundary, however each track

additionally stores the index of its microdomain domain, here labelled in the bottom left of

each small cube. b) When a particle leaves a microdomain, it re-enters at the other side, due

to the periodic boundary. When this occurs, the track updates the index of its microdomain

counter. This allows the position of the track in the overall parent domain to be recovered.

2.9. The microscopic region tracks position within its domain boundaries centered about

an origin at the box center. The parent domains are counted from (x,y,z) = (0,0,0) up to

(x,y,z) = (nx,ny,nz) where nx (ny, nz) is the number of repeated microscopic regions needed

to fill the macroscopic region in the x−(y−, z−) direction. Whenever the repeating boundary

is used, the particle updates its position inside the parent domain to account for this change.

When the particle leaves the bounds specified by the domain, it is killed.

The implementation of the repeating boundary condition is handled in Geant4 using

a custom physics process, a parallel world constructor, the user information classes for

both tracks and events, and the post user tracking action (Lampe, 2016). The relevant

classes inherit from existing Geant4 classes and are called MicroPeriodicBoundaryPro-
cess (inherits from G4VDiscreteProcess), MicroParallelWorldConstruction (inherits from

G4VUserParallelWorld), MicroEventInformation (inherits from G4VUserEventInformation),

MicroTrackInformation (inherits from G4VUserTrackInformation) and MicroTrackingAction
inherits from G4UserTrackingAction). When a primary vertex is created within Geant4

(inside the implemented ‘Primary Generator Action’), its location in both the microscopic

and macroscopic domains are set from an initial position in the macroscopic domain that
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is broken down into two components, an index (ix, iy, iz) corresponding to the space that

the microscopic domain would occupy within the larger space, and a position (px, py, pz)

within that microscopic cube.

The processes involved in transporting particles and ensuring that particle positions in

the parent domain are valid are illustrated in Figure 2.10. The MicroTrackingAction class

is responsible for assigning the correct MicroTrackInformation object to each track within

Geant4. This action is called each time a track is taken from the stack in Geant4, and

MicroTrackInformation stores a record of the tracks position in the larger ‘macroscopic’

spatial domain. While the object is being tracked, the track information may be changed

to reflect the passage of the particle through the periodic boundary. We ensure the periodic

boundary process is always triggered when it is hit by a particle, regardless of what is in

the main Geant4 world, by defining its region in a parallel world. To simplify the processing

of trajectories when a particle crosses the boundary, the particle crossing the boundary is

killed, and a clone is created to replace it, which is placed in the vector of secondaries

created by the track. When the track ends, the tracking action acts on all the secondaries

created along the track to ensure that they have the appropriate MicroTrackInformation object

assigned to them. If the particle has crossed a boundary, the track information is used to

identify any changes necessary to the secondary’s position, so that it is correctly moved to

the opposite side of the periodic domain.

2.3.4 Background sources and simulation parameters

In the previous section we discussed the relative contributions of different background sources

to biological experiments and presented measured dosages pertinent to these experiments

in both above and below ground environments. Here, however, the complete spectrum of

each particle source is needed, rather than just dosimetric measurements and UNSCEAR

recommendations. We simulate the γ and 40K backgrounds in both the LSM and LPC, as well

as the cosmic μ and neutron backgrounds in the LPC. The γ , 40K and neutron backgrounds

are similar to those presented in Section 2.2.2, whilst the cosmic μ background has been

rederived for the 400 m altitude of the LPC.

At both simulation scales hadronic processes were modeled using the QGSP_BIC_HP

physics list and the ‘Option 4’ standard EM physics list was used to simulate EM processes

with a low energy production threshold of 100 eV. Option 4 was chosen in particular due to

its more accurate Compton scattering model, which may improve simulations of the gamma

background (Brown et al., 2014). At the macroscopic level a secondary production cut of

1 μm was used, and at the microscopic level the secondary cut was reduced to 10 nm. We

also set the maximum step size to 10 nm for these simulations.
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The choice of the secondary production cut at the microscopic level is very important, as

energy deposition measurements are made within cells with a characteristic length of around

1 μm. In Geant4, the accuracy with which energy deposits can be localised is determined

in part by the secondary production cut. The cut stops the production of secondaries that

have a range shorter than that specified in the cut. The energy of these secondaries is instead

recorded as part of the energy lost along the step. By insisting on a secondary production cut

significantly smaller than the cell size, spatial errors in energy deposition are minimised in

the simulation.

The gamma background

Recalling Section 2.2.2, we have based our simulations of the terrestrial gamma background

upon measurements made within the LSM using a high purity Germanium spectrometer

(Malczewski et al., 2012). The γ background in the LPC, when measured using a Thallium-

doped Sodium Iodide handheld gamma spectrometer was shown to be very similar to

the LSM spectra, albeit significantly reduced in intensity (c.f. Figure 2.2). Accordingly,

the LPC spectra used was obtained by scaling the underground spectrum by 6.4 (thus

ensuring a surface dose of 150 nGy hr−1, consistent with measured values). The tabulated

underground spectra is shown in Table 2.3. At the macroscopic level, the energy binned

gamma fluxes were simulated as isotropic, by considering the source to be an r = 3 cm

gamma-emitting sphere around a central well in the microplate, which was chosen to be

the detector. Incoming gamma rays create electrons by the Compton and photoelectric effects,

as well as occasional positrons by pair production. The positions, directions and energies of

these secondary particles created in the chosen well was then used to seed the simulation

at the microscopic level. 108 primary gamma rays were simulated at the macroscopic level,

equivalent to 10.8 days of exposure in the LSM (after scaling, this is 1.68 days in the LPC).

At the microscopic level, 2×106 secondaries were simulated, randomly selected from those

created at the macroscopic level.

The nutritive background - Potassium-40

The radiation background from the nutritive medium in biological experiments is dominated

by the contribution from β− emission by 40K, which dominates the absorbed dose from 40K

γ-emission and 14C β -decay by over two orders of magnitude. To model the secondaries

that enter each well in our experiment, we chose a central water-filled well in the microplate

geometry to be the sensitive region, and defined that well and its six closest filled neighbors to

be sources. Within each of these seven source wells, electrons were created with a uniformly



2.3 The impact of radiation environments on cells 65

random distributions of position and emission direction. The energy spectrum (see Figure 2.6)

was defined by the β spectrum of 40K (Cameron & Singh, 2004). 107 events were simulated at

the macroscopic level, corresponding to 105 days of real time. At the microscopic level, 106

events were simulated, drawn randomly from the phase space file created at the macroscopic

stage. For this source, the phase space file consists solely of electrons with an energy spectrum

very similar to that at the macroscopic level, as all electrons created within the sensitive

region are saved as soon as they are created.

The cosmic neutron background

As in Section 2.2.2, the neutron background was simulated using an algebraic expression

for the neutron differential flux in New York (Gordon et al., 2004) between 100 keV and

500 MeV (Figure 2.7). Within this range, the differential flux is φn = 5.96×10−3 cm−2 s−1.

In simulation, this source was modeled as a disc of radius 10 cm situated 30 mm above

the center of the microplate emitting neutrons uniformly along its surface with an isotropic

angular distribution. This causes the particles to arrive at the well with an angular distribution

of cos2 θ where θ is the angle to the vertical. Neutron interactions within the well create

primarily free protons, electrons, alpha particles and 16O ions, while many other ions are

created in small quantities. Given the high kinetic energy of the incident neutrons, these

particles often also have a high kinetic energy, sometimes a few hundred MeVs. All these

particles are saved at the end of the simulation, to be read into the microscopic simulation.

At the macroscopic level, 108 particles were simulated corresponding to 98.4 days of real

time. 106 particles were then simulated at the microscopic level, drawing randomly from

the list of particles created at the macroscopic level.

The cosmic muon background

We simulated the cosmic muon background based upon the spectrum predicted by Chirkin

(Chirkin, 2004), which provides the differential muon flux as a function of both muon mo-

mentum and direction. A correction to the spectrum was made corresponding to the altitude

of the LPC, provided by Neiss (2016). While this derivation is for muons with momenta

above 600 GeV/c, it models low energy to an acceptable level of accuracy for our simula-

tions. To generate the distribution of muons, we sampled the differential flux distribution

106 times, generating a series of pairs of zenith angle and muon energy. We considered

muons with momenta between 0.1−50 GeV/c, and simulated 54% of muons as μ+, with

the rest as μ−. The total integrated flux within this range was 3.4× 10−2 μ cm−2 s−1, in

reasonable agreement with the accepted sea level muon flux (Olive et al., 2014). The energy
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Fig. 2.11 The cosmic muon energy spectrum is angle dependent, as low energy muons are

more likely to be absorbed by the atmosphere at large angles from the zenith, due to the thicker

atmospheric width in these directions. The above figures decouple this dependency, showing

histograms of muon number with energy (left) and zenith angle (right).

spectrum of muons is strongly dependent on zenith angle, as muons with low elevation

travel through a thicker atmospheric column before reaching the earth’s surface, cutting off

the contribution of low energy muons. Figure 2.11 shows histograms of muon abundance for

different energies and angles respectively.

We simulated 108 μ as the primary source at the macroscopic level, created at random

positions in an r = 15 cm disc positioned 3 cm above the microplate, with emission angles

based upon the integrated differential flux formula. This is normalized to 48.7 days of

real time. At the microscopic level, 106 particles generated at the macroscopic level were

randomly drawn and tracked to measure the interactions between muons and electrons from

muon-disintegrations and bacterial cells. The energy of these particles spanned the same

range as the input muon spectrum, given that the energy loss of muons travelling through air

is small.

2.3.5 Results

Model Selection Using a Monte Carlo particle transport simulation at such small length

scales, we were nevertheless concerned that some continuous multiple scattering models

employed could introduce errors into our analysis. To better understand the impact of our

choice of physics models on the final simulation results, we simulated the transport of 106

200 keV electrons in the same geometry as the microscopic simulation, with the only change

being that the repeating region continued indefinitely. The aim of this simulation was to
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Table 2.7 Variation between simulation outputs for different physics models. Energy deposits

are given at the 25th, 50th and 75th percentile of the distribution.

EM Physics Constructor Cells hit Edep (eV)

25th 50th 75th

Geant4-DNA Option 2 541568 108 212 426

Standard Option 4 534138 152 218 414

Penelope 531943 125 222 446

Livermore 570801 114 191 396

compare different physics models, to give an estimate of the variation of the meaningful

simulation outputs when different approximations of particle transport processes were used.

We compared the interactions of these electrons with cells using the standard electromagnetic

Option 4 physics constructor, as well as the low energy electromagnetic Penelope, Livermore

and Geant4-DNA option 2 physics constructors (Geant4 Collaboration, 2015). Notably,

the Geant4-DNA Physics models (Bernal et al., 2015) provide fully discretized low energy

electromagnetic processes. This allows us to see whether the approximation of scattering as

a continuous process, which is made in most other models, noticeably impacts our results.

As the choice of physics models used in any simulation impacts the outcome, we first

present our brief comparison of physics models for the microscopic level simulation. The dis-

tribution of energy depositions in cells and the number of cells that had energy deposited in

them are summarized in Table 2.7. The spectrum of energy depositions follows a Landau

distribution as it is effectively a sampling of the energy deposited by a decelerating charged

particle. Accordingly, we present percentiles of this distribution rather than a mean, as

the mean carries little meaning for this type of distribution. Between each model, the distri-

butions of energy deposition are significantly different (a Kolmogorov-Smirnov test between

any two models shows the distributions are dissimilar to > 5σ ), however the parameters

relevant to our study show broad agreement between models. The number of cells hit in

the simulation (those experiencing at least one energy deposit) agrees within 10% between

models, and the measures of energy deposited, while being different distributions, differ

by ≈ 10% beyond the 50th percentile. These two observations allow us to approximate

the errors in our results coming from the physics models chosen to ≈ 10%.

Simulation Results Table 2.8 indicates the frequency with which cells are subjected to

a radiation induced energy deposition for each source we considered. The hit frequency

is normalized by the total number of cells considered in the study, giving a quantity that

corresponds to hits per cell per day, or alternatively, the chance that any given cell is hit in
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Table 2.8 Frequency with which ionizing radiation from background sources interacts with

E. coli cells, the median and modal energies deposited in each interaction. These quantities

correspond to the surface environment at LPC.

Source Dose Rate Hit frequency Edep, median Edep, mode

(nGy hr−1) (day−1 cell−1) (eV) (eV)

γ background 150 3.6×10−5 140 100
40K β -decay 26 8.2×10−6 120 120

Cosmic μ 45 1.6×10−5 110 120

Cosmic n 4.4 1.4×10−7 1.2×103 670

Total 225 6.0×10−5 - -

a one day period. The specific distribution of energies deposited in a cell per day is shown in

Fig 2.12.

Studying just the dosages found using the inputs available, it is evident that the gamma

background dose is elevated when compared to the standard population weighted average

dose of 60 nGy hr−1 (UNSCEAR, 2000) . This is caused by naturally higher radiation

levels at the LPC due to the soil composition. Similarly, the muon dose is 27% higher than

modeled values would predict for a site at our elevation (400 m), where the predicted dose is

33 nGy hr−1 (Bouville & Lowder, 1988).

The total number of interactions between an E. coli cell per day and the radiation

background at the surface is 6.0×10−5 day−1, indicating that on average roughly 1 in 20,000

would be expected to interact with ionizing particles from the radiation background on a given

day. Underground, the 6.4-fold reduction in the gamma background reduces the frequency

of interactions per day for a given cell to 1.37× 10−5 day−1. Suppressing the gamma

background entirely leaves only the contribution of 40K, giving a 7.3-fold reduction in

the cellular hit rate compared to the background of 8.2×10−6 day−1.

To better understand the nature of energy deposition induced by each source, in Fig 2.13

we show the distribution of energy deposits per 106 simulation events. Energy depositions

correspond with what one would expect based on the particle transport characteristics of

each input source, that is to say that higher LET sources deposit energy according to a flatter

Landau distribution, whilst the exact quantity of cells hit is determined by the mean distance

particles would travel through the water medium simulated.

Comparing the backgrounds from the gamma background and the nutritive medium, for

the same input dose, electrons from beta decay of potassium in the nutritive Davis minimal

broth impact more cells, albeit with a lower median energy deposition (Table 2.9). This is

consistent with the expected comportment of electrons: higher energy electrons will have
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Fig. 2.12 Each source deposits energy in cells according to different Landau-like distributions.

Energy depositions are normalized to the hit rate, indicating for each source the chance a

specific amount of energy is deposited in it in a day. The peaks near 600 eV and 1.2 keV

in the γ-background and β -electron spectra are related to the emission of one or two short-

traveling Auger electrons emitted by Oxygen atoms within cells, in addition to the energy

deposited by other processes.
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Fig. 2.13 When the energy depositions are normalized to 106 primary events, the characteris-

tics of each source become clearer. Sources that travel further through the medium impact

more cells, whilst the significantly higher LET from neutron-induced ions is reflected in

the flatter distribution of energy deposits from this source.
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Source Expected interactions Mean source energy

(nGy−1) (keV)

γ background 1.0×10−8 7.4×10−2

40K β -decay 1.3×10−8 5.11×10−1

Cosmic μ 1.3×10−8 1.34×107

Cosmic n 1.3×10−9 1.1×104

Table 2.9 Expected radiation interactions in one E. coli cell per unit dose from natural

background sources. These quantities are sensitive to both the geometry of the cell considered

and the experimental geometry.

longer paths relative to their energy given linear energy transfer is inversely proportional to

a particle’s energy, and the mean beta electron energy from 40K is 511 keV in comparison

to 74 keV for electrons created from the gamma background. Secondaries created from

the neutron background, being predominately ions, tend to have very high LET values leading

to both a large energy deposit when cells are hit, and a relatively small quantity of cells hit

given the short path neutrons traverse.

It is interesting to note that both tracks from 40K beta decay electrons and cosmic muons

traverse the same amount of cells per unit dose of radiation. Additionally, the spectrum

of energy depositions from muons strongly resembles that caused by beta decay electrons.

This is tied to the similar LETs of 511 keV electrons (2.04 MeV cm−1, c.f. Berger et al.,

1998) and muons (2.55 MeV cm−1 for 14 GeV muons, c.f. Groom et al., 2001), however

based upon this alone muons ought to interact with comparatively fewer cells per unit dose

deposited in the material. The additional component in the muon interactions comes in part

from a contribution to the interactions made by electrons that enter the well as the children

of decaying muons.

2.3.6 Discussion I: Physics

By conducting these simulations, we have sought to quantify the impact of background

radiation in biological experiments, and in doing so, guide the interpretation of the growing

body of low background biological experiments. Measurements of the frequency with which

the radiative background interacts with cells provides an upper bound for the size of most

radiation induced effects. Such effects are not limited to genetic damage induced by radiation,

as radiation may also affect cells and induce death by damaging proteins directly and through

oxidation (Daly, 2012; Krisko & Radman, 2010).

Physically, the spectrum of energy depositions from each source (Figs 2.12 and 2.13)

reveals a significant amount of information about the nature of the energy being deposited
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within cells. Clearly evident in the spectra are peaks related to the Auger emission spectrum

of water (near 500 eV), emphasizing the significance of this process in low energy cellular

dosimetry. This is especially important considering the otherwise low energy deposits that

occur in the absence of Auger effects. For lepton backgrounds, the modal and median

energy deposits are near 100 eV per cell hit, meaning that the emission of just one Auger

electron in a cell has the capacity to significantly affect the energy that would otherwise be

deposited. It is worthwhile to give some consideration to the impact of these energy deposits

in terms of the volume they impact through the radiolysis of water. In the domain we are

interested in, a majority of the primary electron’s energy is deposited in water as ‘spurs’

along the electron’s path. Spurs are bead-like regions where a 40−100 eV energy deposit

ionizes and excites water molecules, which react and diffuse in a cloud with a diameter of

4 nm (Ward, 1988). Considering that the median energy deposit from lepton sources is at

its highest 140 eV, the majority of cells impacted by radiation contain only one to three

such regions. Emission of a single Auger electron, which has a maximum track length of

11 nm (Mozumder & Magee, 1966) significantly contributes to the energy deposited, and

also to the volume within the cell impacted by radiation. More importantly perhaps, this

energy is deposited over a well-localized region in space, while spurs can be separated by

several hundred nanometers. It would be interesting to pursue simulations further to quantify

the precise impact of this on cellular structures.

2.3.7 Discussion II: Interpretation for an LTEE

These simulations were conceived to help predict the outcome of our long term evolu-

tion experiment in the LSM. Between the reference radiation environment at the LPC and

the reduced radiation environment at the LSM, cell cultures are grown experiencing either

6.0× 10−5 interactions cell−1 day−1 or 8.2× 10−6 interactions cell−1 day−1. From these

figures, we seek to determine whether the evolutionary behavior of E. coli ought to change

between these regimes. Such an evaluation is comparatively simple: the upper bound on

the point mutation rate of E. coli across the first 20,000 generations of a long term evolution

experiment is 7.4×10−4 mutations per generation (Barrick et al., 2009). Given we grow 8.23

bacterial generations per day, the upper bound on the point mutation rate in our experiments

is 6.1×10−3 mutations per day: 102 times higher than the frequency with which radiation

interacts with cells. The significance of this comparison indicates that, following the assump-

tion that radiation should not produce mutations that differ significantly in their effects to

those of biological processes, in an E. coli-focused long term evolution experiment, the radia-

tion background should not significantly affect the evolutionary behavior of the population,

due to the relative infrequence with which it impacts bacterial cells at the surface radiation
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level. With the caveat that a comparison between the daily mutation rate and radiation

interactions per day is a comparison of two upper bounds, the evolutionary behavior of

bacterial cells should not be significantly different in an underground environment compared

to a surface-level laboratory, as the impact of the radiation background is less than 1% of

that from biological processes.

The independence of radiation induced interactions, and thus, possible radiation induced

mutations from the point mutation rate is not surprising. The mutation rate is a biological

parameter that is subject to selection, which is optimized according to the dynamics of

the host population rather than by a uniform oxidative stress. Typically, its value is limited

by random genetic drift: the variation in the frequency of different alleles within a population

that comes from random sampling of a population. This limit arises because while proteins

could theoretically be synthesized in the cell to reduce the mutation rate, after a point

this becomes disadvantageous when the cost to the organism of having such proteins does

not significantly outweigh the gains from reducing the total amount of genetic variation

between generations (Lynch, 2010). Certain situations may also favor the appearance of

vastly higher mutation rates, as is often marked by the appearance of mutator alleles in

evolution experiments (Sniegowski et al., 2000, 1997). The existence of radiation-tolerant

bacteria such as D. radiodurans, and experiments forcing the evolution of radio-resistance in

E. coli (Harris et al., 2009) indicate that when oxidative stresses are considerable, species

evolve mechanisms to protect themselves from oxidative damage. In many ways this is both

a by-product of the cell evolving mechanisms that allow it to survive oxidative stress as well

as the cell attempting to select a mutation rate that is optimal for its environment, as each of

these goals are mutually compatible. Nevertheless, there remains no significant reason why

such a mutation rate should be particularly correlated with the radiation environment given

the other forces involved in selection.

Exploring these responses in the context of controlled increases in the background

radiation does present further avenues of future study. Long term evolution experiments show

that a three-fold increase in the mutation rate caused by transfecting cells with a mutator gene

can produce observable changes in the fitness trajectory (de Visser et al., 1999). Simulations

such as those performed here can be used to determine which radioactive sources best increase

the quantity of cells impacted by radiation so that this rate approaches or exceeds the mutation

rate. For the sources considered here, an increase in the background rate to ∼ 20 μGy hr−1

would be sufficient to cause the rate at which cells are impacted by radiation to be near

equivalent to the point mutation rate. Whether this increased radiation level would favor

mutations linked to radioprotection rather than the fitness experiment itself needs careful

evaluation. One study from the Chernobyl environment showed that background absorbed



2.3 The impact of radiation environments on cells 73

dose rates of up to 75 μGy hr−1 do not seem to encourage the formation of radio-resistant

sub-strains (Zavilgelsky et al., 1998), however a more recent study showed that resistance to γ-

radiation was augmented in bacteria living in bird feathers that grew in radiation environments

only a few times above the standard background (450 nGy hr−1), compared to bacteria

found in feathers at both standard and significantly elevated (2.9 μGy hr−1) backgrounds

(Ruiz-Gonzalez et al., 2016). Controlled, long term low-dose evolution experiments could

even elucidate whether different radioprotective mechanisms evolve in different radiation

environments.

There remains scope for the possibility that radiation may interact with biological systems

in ways that conflict strongly with the assumptions made in the preceding paragraphs. Much

as one type of mutation may become more or less likely depending on the genome of a cell3,

one could propose the idea that radiation could act as a trigger for less likely mutations.

Measuring and quantifying this would be challenging, however this does leave a mechanism

by which the radiation background could impact the evolutionary behavior of a population.

Our measurements of competitive fitness in different radiation environments are designed

to elucidate this, and are discussed in Chapter 4. Even if the evolutionary behavior of a

cell population shows no dependence on the radiation environment in the first thousand

generations of an LTEE however, this does not eliminate the potential for radiation to play

a subtler, longer term role in LTEEs. As the cell population becomes increasingly well

adapted to its environment, measurements at much later generation times could potentially

show a fitness dependence on radiation environment were radiation responsible for rare mu-

tations, as the supply of non-radiation induced mutations could become exhausted. Whether

this is possible is debatable, given that even after growing 50,000 generations of E. coli,
the measured fitness of the bacteria continues to grow seemingly without bound (Wiser et al.,

2013) .

2.3.8 Discussion III: Implications for Low Background Experiments

Cast in the light of other low background experiments, the relatively low frequency of inter-

actions between the radiation background and cells challenges existing assumptions about

the mechanisms by which bacterial cells have seemed to ‘sense’, in a relatively short amount

of time (days up to a week), that they have been transferred to a low background environment.

In introducing this section, we presented Castillo et al.’s measurement of impaired bacterial

growth in a low background environment compared to a reference environment after just 24

hours growth with the radiation background suppressed (Castillo et al., 2015). Repeating

3e.g. the mutY allele in E. coli increases G:C to T:A transversions (Radicella et al., 1988)
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our simulations for the experimental and cellular geometries used in their experiment4, we

estimate that the chance a radiation track deposits energy in a D. radiodurans cell in a day

is 1.3×10−4, significantly lower than the upper bound on this figure given by Katz (2016),

largely due to our consideration of track structures. Note that despite the lower dose in this

experiment as compared to our E. coli simulations, there are more interactions per day due to

the larger size of D. radiodurans cells compared to E. coli, and the higher LET of secondary

electrons induced from the γ-background used by Castillo et al., compared to a standard

terrestrial background spectrum. Another way of interpreting these figures is then to say

that Castillo et al. notice a population wide effect when only ≈ 0.01% of the cell population

is actually able to notice a decrease in the radiative background in a one day long period.

While bacterial cells can communicate, for example through the secretion of outer membrane

vesicles (Kulp & Kuehn, 2012), the emergence of a population wide effect coming from such

a small fraction of the cell population is startling and warrants further investigation. While

the decrease in growth rate is consistent with the hypothesis that the radiation dose response

is hormetic, the speed with which the change occurs remains to be explained.

Beyond considering the rapidity with which a population level change has been reported

to occur in a low background environment, it’s worth also noting that the time scale on which

cells interact with the background is significantly longer than their division time. Assuming

for a cell that the likelihood of interacting with the radiation background scales with its

surface area, an animal cell (r ≈ 15 μm) is hit 900 times more often than an E. coli cell

(r ≈ 0.5 μm). Thus even larger cells are still hit relatively rarely (on average, once every

25 days). In long duration experiments across both yeast and mammalian cells, evidence of

a hormetic response to radiation has been observed in low background experiments (Carbone

et al., 2009; Fratini et al., 2015; Satta et al., 1995, 2002), where a small level of radiation

seems to stimulate oxidative response mechanisms. Yet the mechanism by which information

about very infrequent radiation energy deposition events is passed through the cell population

or down the cell lineage remains to be understood.

2.3.9 Perspectives

This study in some ways poses more questions than it answers. In line with previous estimates,

we have shown that the frequency with which radiation tracks interact with bacterial cells

is incredibly small. That the radiation background and its related suppression has been

shown to have an effect, often rapidly, on simple cellular systems is astounding, and it

highlights the need for further investigation in this area. In this section, not much comment

4Where D. radiodurans cells were simulated as spheres of radius r = 1.5 μm exposed to 71.3 nGy hr−1

from an isotropic 1.46 MeV γ-ray source, and a 7.2 nGy hr−1 exposure from internal 40K β−-decay.
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has been made regarding low-dosage radiation effects, such as the bystander effect and

genomic instability. This study suggests that the rapid changes observed in cellular systems

to reductions in the radiation background are another unorthodox result that can be observed

in low dose regimes.

Typically, one wouldn’t expect an LTEE conducted at low backgrounds to bear any

changes compared to one conducted at the surface. This is shown numerically in the very

low frequency of cells hit per day, even at a standard background level. The odd behaviour

of cells at low backgrounds suggests that this prediction is not guaranteed (the experiment

itself is the subject of Chapter 4).

There is also scope to continue this investigation in simulation. Little work has been

done simulating at a genome level the impact of radiation on bacterial systems. Whilst

the frequency of interactions between a radiation source and a cell provides useful upper

bounds on the amount of damage that could be incurred, we are currently unable to clarify

the nature of this damage. Chapter 3 considers this in detail, as given an appropriate geometri-

cal description of a cell, detailed simulations combining physics and radiation chemistry can

enable the quantification of single and double strand breaks of DNA from radiation sources.

Importantly, these simulations we have presented provide a means of obtaining the input

spectrum of ionizing particles that interact with cells from an environmental source.

2.4 Conclusions from Dosimetry and Microdosimetry

From the work in this chapter, we have quantified the LPC and LSM environments for low

background biological experiments. Radiation acts upon cells at the level of individuals, and

we have shown a method which quantifies this, extending the general principle of dosimetry

to a level where one can consider how a radiation environment actually impacts a cell. For E.
coli at a standard background, the chance in a day that a cell is touched by a radiation track

in a single day is 6×10−5. This makes interactions between radiation and cells incredibly

rare events. It’s entirely possible that the rarity of these events is what creates the driver that

allows cell populations to respond rapidly to them. If radiative interactions are both rare and

damaging, a collective response to them that lasts across generations has some evolutionary

sense.

Substantial work needs to be done to show this however, and it can advance in two

directions. Showing that a particular mechanism, such as population-level sensitivity to

radiation, is evolutionary favourable may be accomplished through simulations of simple

cell populations via evolutionary games and cellular automata (Maynard Smith & Price,

1973). On the other hand, the magnitude of cellular damage induced by radiation passage
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events needs to be better established. This is a difficult task, though experimentally it can be

realised with nuclear microbeam studies looking at the appearance of γH2AX foci following

irradiation, which in cells that form chromatin is indicative of double strand breaks. This can

also be explored in simulation.

A number of Monte Carlo codes can already simulate the direct and indirect DNA damage

induced by ionising radiation. They provide an indication of the magnitude of cellular damage

by quantifying the number of single and double strand breaks induced by radiation tracks.

This is can be of particular importance in low dosage simulations where the discrepancy

between mechanistic predictions of biological effects, and the observed effects can best be

quantified by accurate models. Currently, no open source method exists though of running

these simulations. In the following chapter, we present a Geant4 application that extends

the Geant4-DNA toolkit to the simulation of direct and indirect radiation damage for flexible

cellular geometries.



Chapter 3

Evaluating radiation damage with
Geant4-DNA in bacteria

When ionising radiation interacts with a living cell, it can trigger a range of events. Ionisation

of molecules composing the DNA strand, or of water molecules very close to the DNA

strand can directly damage DNA. Additionally, ionising radiation radiolyses water, producing

reactive oxygen species which can damage DNA, particularly hydroxyl radicals •OH and

solvated electrons e−aq. Ionising radiation induced DNA strand breaks play a role in both

mutagenesis and cell death, with double strand breaks, damage events triggered by two nearly

coincident strand breaks often causing apoptosis when left unrepaired (Friedberg, 2003;

Friedburg et al., 2005).

Quantifying radiation induced damage from different environments allows better limits

on the extent to which different radiation levels can impact the evolution of simple cellular

systems. More broadly, the end-goal of quantifying radiation induced DNA damage is

to have better predictive models of cellular responses to radiation, built from mechanistic

predictions. Work towards a complete mechanistic model of irradiation, and of subsequent

biological responses, has been underway since the early 1990s. Notably, the PARTRAC

project (Friedland et al., 2011) and the simulations of Nikjoo et al. (for a review see Nikjoo

et al., 2016) have made significant progress in this regard. Both these projects however are

closed-source, and difficult to build upon for non-experts.

In this chapter, we present a framework for modelling radiation induced DNA damage

based on a geometrical DNA model as part of the Geant4-DNA project. Previous work

within the Geant4-DNA project has used clustering approaches to measure DNA damage

(Francis et al., 2011) from discrete Monte Carlo simulations, as well as correlating energy

depositions in water with a spatial DNA model (Bernal et al., 2013). Dos Santos et al.

(2013) also presented a geometric model of a whole nucleus modelled in Geant4, however all



78 Evaluating radiation damage with Geant4-DNA in bacteria

Fig. 3.1 Indirect DNA damage, that is damage caused by water-based radicals created by low

energy radiation tracks, is responsible for the majority of radiation induced DNA damage in

cells. Here, the contribution of indirect effects to cell death is considered, as a function of

dose-averaged LET. For low LET radiation, indirect damage is a significant contributor to cell

death. Indirect damage decreases as LET increases (trendline). Not shown are X-rays (with

a dose- (track-) averaged LET of 9.4 (1.7) keV μm 1) where indirect damage contributes at

a level of 76±5 % to cell death. From Hirayama et al. (2009).

these models lack an interface to the chemistry module of Geant4-DNA (Karamitros, 2013;

Karamitros et al., 2011, 2014). The inclusion of chemical reactions, to facilitate the simulation

of indirect damage effects, is important because indirect damage can contribute up to 80%

of radiation induced DNA damage (Figure 3.1), in the case of low LET irradiation. Prior to

this work, at least one program had already been developed that permits Geant4 to model

radiation damage in DNA geometries, across both the physical and chemical stages of DNA

damage, by linking multiple Geant4 applications that consider the physical and chemical

stages DNA damage separately (Meylan, 2016; Meylan et al., 2016).

In the following section, we introduce the requirements for our simulation. Namely,

we seek to create a simulation that can simulate a variety of DNA geometries, and their

interactions with the physics and chemistry of Geant4. This simulation will be demonstrated

with a bacterial genome, linking the simulation work here to the work in Chapter 2 and our

LTEE. The requirements for the simulation application are described in Section 3.1. Section

3.2 describes the basic organisation of a bacterial genome, which underpin our geometric

model. We then detail the implementation details of our simulation in Section 3.3, before
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presenting a parameter study of the model in Section 3.4 as a form of benchmarking. We

then apply our model to bacteria in Section 3.5 before presenting our conclusions.

3.1 Requirements for the simulation

While other applications exist to mechanistically model DNA damage in Geant4, they are

tailored towards human cells, and lack a simple means of re-using their interfaces for bacterial

cells. We have sought to create a simulation platform for DNA geometries integrated into

Geant4 which can flexibly model arbitrary DNA types, plasmid structures and common test

geometries, whilst also remaining well contained within the limits of physical memory on

modern computers.

The requirements for our application can be broken into a few categories, namely:

flexibility, the application should allow as many physical parameters as possible to be varied

so that multiple values can be tested; extendability, the application shouldn’t restrict itself to

one DNA conformation; performance, the application needs to run on available hardware in

a reasonable time frame; and compatibility, the application should remain compatible with

Geant4.

The need for flexibility in the simulation design is assured through the use of macro based

application commands in Geant4. An advantage of simulation is that it allows the impact of

changing parameters on a result to be studied: this is best facilitated by having easily changed

parameters. Similarly, the simulation ought to be extensible, permitting multiple varied

geometries without recompiling the application. This can be assured by either having a robust

geometry specification language incorporated in the application that can generate varied

geometries, or by allowing data files that specify geometries to be read by the application.

In terms of performance, the simulation ought to be processor limited rather than memory

limited. Simulating all 4.6 Mbp of a bacterial genome could naively require 20 GB of

memory if each base pair is placed separately, which is towards the memory limit of most

modern computers. Such a model is furthermore inextensible as a similar implementation of

human DNA would require terabytes of RAM. Instead, the application should take advantage

of the repeating patterns present in DNA in order to economise memory. Despite the need to

ensure good memory performance, the strength of the Geant4 framework is its generality,

and this shouldn’t be compromised to implement the simulation. Therefore, the application

should be written without the addition of any custom Geant4 classes.

To this end, we place a constraint on the geometry, in that it be definable in terms of

simple repeating units. Via macro commands, we will specify one text file, which defines

the position of these repeating units, and a number of secondary text files which describe
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the position of DNA related molecules inside these repeating units. The way these files are

read influences how geometries are generated, and how they are then placed inside Geant4,

so for this reason we detail the file specification inside the simulation requirements. Ideally,

to simulate any new simulation geometry, all that should be necessary is a series of files

defined according to the standard laid out in the following section.

Specification of input file formats At least two files need to be generated in order to run

a DNA level simulation using Geant4. These allow the breakdown of the DNA geometry into

a large scale structure which specifies the placement of many different placement volumes.

Positions are given in relative units so that spatial scalings of the geometry do not require

a new definition file. Each placement volume is described by a file that contains a molecular

specification of the DNA chain. Files are single-space separated text files, where commented

lines are marked by a hash.

Files are selected using the Geant4 macro interface of the simulation application1. Two

commands are provided for this. /dnageom/definitionFile sets the location of the file

that defines the locations of placement volumes. The command /dnageom/placementVolume
sets the name and location of each placement volume. The name chosen is the name ref-

erenced by the definition file when specifying where to put each placement volume. An

optional boolean parameter allows the user to flag that the strand undergoes a 180◦ twist

from start to end, necessary when joining two strand elements together properly.

For the large scale structure the aim of the file is to specify the position of each in-

dividual placement volume together with its rotation. Positions can be specified in units

relative to the size of an individual placement volume and then scaled via the command

/dnageom/fractalScaling. This requires a file with the following columns:

1. Index, integer, the index to be assigned to the placement volume. It should increase

from zero by unity for each placement. The DNA strand is assumed to pass continu-

ously from the placement with index i to the placement with index i+1.

2. Kind, string, a string specifying the name of the placement volume. Names are set

for a given placement volume used when that placement volume is defined in a macro

command.

3. Position-X, double, the x-position where the specified placement volume will be

centered, in relative units.

4. Position-Y, double, the y-position where the specified placement volume will be

centered, in relative units.

1A detailed guide to all commands available in the simulation is provided in Appendix A
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5. Position-Z, double, the z-position where the specified placement volume will be

centered, in relative units.

6. Angle-ψ , double, rotation about the x-axis to transform the global axis into the local

axis, in radians.

7. Angle-θ , double, rotation about the y-axis to transform the global axis into the local

axis, in radians.

8. Angle-φ , double, rotation about the z-axis to transform the global axis into the local

axis, in radians.

Rotations are defined by the three Euler angles (ψ, θ , φ) about the (x, y, z) axes. As there

are many definitions of Euler angles, we note here that the rotations, when applied to the iden-

tity matrix I should create a rotation matrix R = Rz(φ)Ry(θ)Rx(ψ) where the columns refer

to the local axes inside the placement volume. Because this is an internal transformation, we

note that when these Euler angles are read in to Geant4, Geant4 will apply the transformation

R = (Rz(φ)Ry(θ)Rx(ψ))−1 to the placement volume. This convention was chosen because

a reference to the local axis is useful when generating fractals using ‘turtle graphics’ methods

as we do here.

Placement volumes are specified similarly to the large scale structure file, in a text file

with space separated values, where hashes can be used to comment lines. They are placed in

Geant4 inside a box with dimensions specified by the command /dnageom/placementSize.

Rotations are defined in a similar way, where the Euler angles (φ , θ , ψ) rotate the standard

(x, y, z) axes into the local (x, y, z) axes of the molecule. The positions (x, y, z) that are

specified are the position of the molecule within the volume, in angstroms.

1. Name, string, the name of the molecule being placed, either "Phosphate", "Sugar",

"Guanine", "Adenine", "Thymine" or "Cytosine".

2. Shape, string, a string specifying whether the molecule should be modelled as a circle

or ellipse (as of the current implementation, this is ignored in Geant4 and all shapes

are treated as ellipses, though this flag may be useful in visualisation engines).

3. Chain-ID, integer, starting from zero from the first chain, identification number of

each chain when multiple chains of DNA are present in a volume.

4. Strand-ID, integer, the index of the strand, either zero or one, to identify which side

of the DNA strand a molecule is on.

5. Base Pair Index, integer, the index of the base pair, starting at zero for the first base

pair and increasing by one as pairs are added to the chain.

6. Position-X, double, the x-position where the specified molecule will be placed, in

angstroms.

7. Position-Y, double, the y-position where the specified molecule will be placed, in
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angstroms.

8. Position-Z, double, the z-position where the specified molecule will be placed, in

angstroms.

9. Angle-ψ , double, rotation about the x-axis to transform the global axis into the local

axis, in radians.

10. Angle-θ , double, rotation about the y-axis to transform the global axis into the local

axis, in radians.

11. Angle-φ , double, rotation about the z-axis to transform the global axis into the local

axis, in radians.

There are a few additional restrictions to observe in the structure of this file. Each

molecule in a base pair will interact with those around it, and so the order of molecules

is important. Each base pair needs to be written as the following six rows (noting that

the distinction between strand zero and strand one is arbitrary provided it remains internally

consistent):

1. Phosphate on strand zero

2. Sugar on strand zero

3. Nucleotide on strand zero

4. Phosphate on strand one

5. Sugar on strand one

6. Nucleotide on strand one

Each chain must be completed before the next one commences. The application expects

the specified placement volumes to contain either one, four or eight chains (given cubes have

a four-fold rotational symmetry). Additionally, the placement volumes should not include

molecules placed outside the size specified by the macro command /dnageom/placementSize.

3.2 Generating Geometries

Before discussing the implementation of the Geant4 simulation, we turn to the generation of

cellular geometries2. Generation of a cellular geometry can be separated into a discussion

of the large scale and small scale orderings DNA takes. At a large scale, DNA forms one

or multiple chromosomes, with DNA folded and compacted into the nucleus. In different

phases of the cell cycle, organised chromosomes may be visible as characteristic ‘X’ shapes,

while at other times the chromosome may resemble something of a messy ball of DNA. At

2It is noted here, and also later in this section that Python routines to generate the geometries described here

are published online at http://github.com/natl/fractaldna. Routines have also been written to visualise these 3D

geometries using the Blender open source 3D graphics suite (www.blender.org).
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Fig. 3.2 Chromosomes fold into a geometry defined more by a space-filling curve (similar to

a fractal globule), than a random, equilibrium globule. This has the effect of ensuring genes

that are linearly close on the DNA polymer are also close in their folded, 3-D conformation.

From Lieberman-Aiden et al. (2009).

smaller scales DNA in eukaryotic organisms folds into different conformations of chromatin,

which itself possesses a level of order. Bacterial systems compact their DNA into the cell

through a mixture of supercoiling at small scales and the formation of loop domains at large

scales.

Whilst there can seem as though there is a lack of order to the packing of DNA, at

large scales, DNA packs itself into a roughly fractal geometry. This satisfies two naïve

requirements for DNA packing: first, DNA must be able to unfold itself without tangling

so that it can duplicate; and secondly any packing scheme for DNA should require as little

information as possible. Space-filling curves, a form of fractal, allow this, by permitting

a 1-dimensional fractal curve to be densely compacted without forming knots. Additionally,

space-filling curves require very little information to describe mathematically as they can

be described recursively. This behaviour seems to be favoured in natural systems, and it

has been shown that DNA compacts following the behaviour of a space-filling curve, which

also ensures that points that are linearly close along the DNA chain are spatially close

(Lieberman-Aiden et al., 2009).

It should be noted there is significantly more complexity to DNA packing at the large

scale than just a space filling curve, though this serves as a good method of approximating

spatial relationships between genes. As it is relevant to this work, we note that in bacteria,

the packing of DNA can be described with the same ‘high-level’ accuracy as eukaryotic DNA

by a space filling curve. The close localisation in space of linearly close genes on the DNA
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Fig. 3.3 Polymer folding studies of E. coli reveal that linearly nearby segments of bacterial

DNA cluster together in three-dimensional space (image from Fritsche et al., 2012). This

trait is shared by space-filling curves.

has been demonstrated in relaxation simulations of DNA polymers (Figure 3.3). In bacteria,

a range of different proteins are responsible for bending, binding and wrapping the DNA, as

well as twisting it to enable further compaction by supercoiling. This is most active when

the cell is in its exponential growth phase (Dillon & Dorman, 2010), otherwise the packing

of the DNA tends to be more relaxed.

Modelling all these levels is difficult, so we commence with a simple model where

the bacterial DNA follows a large scale fractal ‘Hilbert curve’ geometry. The Hilbert curve is

broken into a series of straight and 90◦ turned DNA segments, each containing four DNA

strands fixed distances from the centre. Different densities of DNA can be accommodated by

changing the turning radius of the DNA sections.

3.2.1 Generating Fractal Geometries

Fractals are commonly found in nature as they allow dense packing to be efficiently achieved

using very few instructions. Typically, recursive rules are used to generate fractals. Com-

mon methods include iterative functions, strange attractors and L-systems. L-systems in

particular lend themselves well to generating path shaped fractals, and accordingly we have

implemented an L-system based fractal generator in Python. The generator produces a path

specified in terms of turns about an axis, and steps forward, which are then converted into

rotated straight and turned ‘voxels’ in 3-dimensional space that are appropriate for reading

by our application.

Fractal L-systems

L-systems construct fractals from strings of symbols that are iterated according to a series of

rules. Certain symbols in the string carry a geometrical meaning that can be interpreted to

construct a fractal. In two dimensions, a set of instructions may be as follows:
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Fig. 3.4 The first, second, third and fourth iterations of an L-system fractal that constructs

the Koch snowflake

Fig. 3.5 The first, third, fifth and seventh iterations of an L-system fractal that constructs

the the Sierpinski spearhead curved. This curve converges to the Sierpinski gasket.

Symbol Instruction

+ Turn 60◦ right

- Turn 60◦ left

F Move forward 1 unit

These instructions belong to the language of ‘turtle graphics’, where shapes are drawn

relative to a moving cursor on a Cartesian plane, analogous to a turtle moving along sand

and leaving a trace (Françon, 1997). From these instructions, simple shapes can be drawn

from a starting point. The pattern F++F++F for example would signify an equilateral

triangle, as the turtle moves forward one unit, then turns 120◦ right, then moves forward

one unit again, turns again and closes the triangle. Furthermore, simple iterated rules can

be used to build fractals. Using this language the Koch snowflake can be drawn starting

from an equilateral triangle defined by F++F++F and then applying the replacement rule

F → F−F++F−F. The first four iterations are drawn in Figure 3.4.

More complex shapes can be realised by expanding the alphabet used to define shapes.

For example, an L-system can be defined for the Sierpinski spearhead curve, which converges

towards the Sierpinski gasket (or triangle). In addition to the simple instructions for turning

and moving, two instructions, X→YF+XF+Y and Y→XF−YF−X are needed. Starting

from the seed YF+XF+Y, the fractal shape becomes increasingly evident with each

iteration of the algorithm (Figure 3.5).
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L-systems can also be defined in three dimensions. Under this paradigm, the alphabet

used is expanded to permit the cursor to roll, yaw and pitch, using a co-ordinate system

analogous to that of an airplane, where the heading axis, local up axis, and local left axis are

tracked (Figure 3.6). Using this, the instruction set for a right-angled system would have:

• +, yaw by +90◦

• -, yaw by −90◦

• ∨, pitch by +90◦

• ∧ˆ, pitch by −90◦

• \, roll by +90◦

• /, roll by −90◦

• |, turn around (yaw by 180◦)

A complete mathematical treatment of such a system is given by Françon (1997). Based

upon the instructions above though, a Hilbert curve can be generated following the substitu-

tion rule

X = ∧/XF ∧/XFX −F ∧XFX ∨F +XFX −FX − . (3.1)

Such a Hilbert curve is shown in Figure 3.7. To be able to place a 3-D fractal like this in

our simulation though, it needs to be converted into a series of turned and straight repeating

units. We refer to this process as ‘voxelising’ a fractal, as we convert it into discrete, spatially

located 3-D units akin to the voxels found in computer graphics (Figure 3.8). From this,

a text document listing a series of turned and straight volumes to be placed can be generated,

with each figure having a placement and a rotation.
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Fig. 3.7 A Hilbert curve defined by the 3D L-system presented in Equation 3.1.

Fig. 3.8 A space-filling curve can be broken into a series of square regions containing either

a straight or curved section of DNA. This structure of repeating turned and straight segments

is well suited to a Geant4 simulation geometry.
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Voxelising a fractal

The algorithms to generate the voxelised fractal have been written in Python3. They permit

an L-system defined fractal to be converted into a sequence of turned and straight segments.

In particular, this is done by keeping each placement box keeping track of its internal axis.

The rotation necessary to convert this internal axis to the global axis defines how a turned

or straight DNA segment box must be rotated to be placed in its correct orientation in

the simulation. In accordance with the formats specified in 3.1, the Euler angles to be read

are produced also for each voxelised element.

3.2.2 Generating DNA Volumes

The curved and straight sections in the voxelised fractal representation of DNA now need to

be generated. In each placement, we built cubic placement regions containing four straight or

four turned DNA regions4. Two stages of modelling were required for this, the first involves

modelling a base pair of DNA as consisting of a collection of molecules, rather than discrete

atoms. The second involves building chains out of these base pairs.

The locations of atoms in base pairs of B-DNA are well defined, and we base our

approximation of the double helix structure on measurements of the molecular positions of

DNA constituent elements made by Arnott & Hukins (1972). In DNA damage modelling

however, the positions of the DNA constituent molecules is of greater importance than

the positions of individual atoms, so it is necessary to extract a molecular position and

volume estimate from the constituent atoms. DNA can be considered as being composed of

phosphate (H3PO4) and deoxyribose (C5H10O4) molecules forming a backbone that supports

the nucleotide bases guanine (C5H5N5O), adenine (C5H5N5), cytosine (C4H5N3O) and

thymine (C5H6N2O2). We approximated the phosphate and sugar molecules as spheres,

whilst the bases, due to their flatter shape were interpreted as ellipsoids.

A given base pair molecule has its position approximated by its van der Waal’s radius-

weighted mean position, so that larger atoms are more important in determining the atoms

position than smaller ones. In the case of base pairs, the ratios of the major axes were

determined by the ratios of the maximum extents along the cardinal axes of the constituent

atoms. The semi-major axes (and the radii in spherical molecules) were then set so that

the molecule had the same volume as that of its constituent atoms (Figure 3.9). The volumes

of the constituent molecules were calculated based on the position and van der Waal’s radius

3They are available both with the application, and at the Git repository http://github.com/natl/fractaldna.
4These Python routines are also available at http://github.com/natl/fractaldna alongside routines to generate

placement volumes containing one individual strand of DNA or eight individual strands. A chromatin-like

geometry has not yet been developed.
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Fig. 3.9 We represent a base pair of DNA as six molecules: two phosphate molecules (yellow),

two deoxyribose molecules (red) and two nucleotide bases (blue). The molecules are based

on the positions and sizes of their constituent atoms (Hydrogen in white, Carbon in grey,

Nitrogen in blue, Oxygen in red).

Fig. 3.10 Left: Four turned strands of DNA make one placement element. The size of

the element can be varied to change the DNA density. Right: A small section of a space

filling curve made of repeating curved and straight elements. When repeated enough times,

this can seed a genome.

of each atom in the molecule (Bondi, 1964; Kammeyer & Whitman, 1972), taking into

account double and triple overlaps between atoms (following the method of Gibson &

Scherage, 1987).

From here, chains of DNA can be built based on the 3.3 Å separation between base

pairs, and their 34◦ turn per base pair. Multiple strands were placed a set distance from

the centre in the case where four or eight strands were placed in a placement volume. In these

cases, a four-fold symmetry was required so that strands would be continuous between boxes.

Rotational transformations were also made to bend the DNA by 90◦ for turned segments, and

twist the DNA by 90◦ along its long axis to ensure strands joined continuously. Four DNA

strands in a single turning placement volume are shown in Figure 3.10, rendered with Python

based visualisation scripts in Blender. Also pictured is a segment of DNA in a larger fractal

DNA structure.

The Python package for generating these geometries provides its own documentation

on their use, as well as scripts to aid visualisation. When designing curved geometries, it is

worth bearing in mind the persistence length of DNA (about 50 nm) as this determines how

rapidly DNA may realistically fold back on itself without the aid of folding proteins. We
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now turn to the implementation of the molecular level DNA simulation, which reads these

geometries and measures radiation-induced DNA damage in them.

3.3 Implementation of the molecular level DNA simulation

Our Geant4 simulation to model DNA damage has a number of sections, linked to geometry,

chemistry, scoring and analysis. Here, we describe these sections, giving an overview of

the theory that motivates them. In doing so we discuss some of the technical details of their

implementation, though an attempt is made to focus on methods and motivations rather than

technical specifics.

Under geometry, we consider two key elements. First, we consider the chromosome

interface which is used to define regions of interest and where DNA can validly be placed. In

this way, a generic square fractal can be made to fill an elliptical, spherical or rod-shaped

volume. Next we consider the steps necessary to read the geometry files that were described

in Section 3.1, and build a geometry. We then consider the changes to the chemistry in

Geant4 that were necessary to enable this simulation, and to allow the chemistry module

to communicate with the simulation geometry. Finally we talk about how we model DNA

damage, and how this is implemented in scoring and analysis.

A summary of the classes defined is provided in Appendix B, as sometimes these classes

are referenced in text.

3.3.1 Chromosome definition and structure

Before the fractal DNA geometry is built in Geant4, a series of regions of interest can be

defined in the macro by the user, which serve as a proxy for defining chromosomes. Their

flexibility and definition independent of the geometry can allow the same geometry file to

model several different chromosomal geometries and configurations if the user so wishes. In

particular, this allows results to be recorded only in regions that the user specifies, and allows

such regions to be broken down into smaller sub regions. As a result, DNA geometries are

only ever placed in volume that is occupied by a chromosome (Figure 3.11).

Chromosomes are defined in the user supplied macro file based on a simple one line input

structure (See Appendix A). We have implemented spherical, elliptical, cylindrical and rod

shaped chromosomes thus far, though new chromosomes can be added by inheriting from

the MolecularVirtualChromosome class, and adding an interpreter for the chromosomes

specification in MolecularChromosomeFactory. Typically, fractal geometries are square,

as spherical shapes are not very good seeds for repeating structures. Defining chromosomes
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Fig. 3.11 Chromosomes are defined independently of the geometry and serve as a means of

implementing geometries. Only placement boxes with their centre inside a chromosomal

region are placed in the simulation and count towards damage (cyan/magenta shaded boxes).

In the case of overlapping chromosomes, the first chromosome defined in the user macro

file (blue in this case) takes precedence over any overlapping chromosomes for assigning

damage.

facilitates the use of more traditional DNA structures, as DNA is only placed when the centre

of a placement volume lies inside a chromosome. This entails some loss of continuity in

the DNA strands we simulate, however the effects of this are small.

3.3.2 Reading in geometries

The geometry that we read in is based on the inputs established in Section 3.1, and requires

a number of steps to be realised. First, individual placement volumes need to be constructed,

which are filled with DNA. Both local rotations of the base pair need to be considered in

addition to the position of the base pair in relation to other molecules near it. Also, an

effective way of spatially searching DNA molecules is necessary for both the physical and

chemical stages of the simulation, as physical damage models and chemical reaction models

require a knowledge of nearby molecules, independent of the radius of the placement volume

for a given molecule. After the placement volumes have been built, the fractal geometry

can be built, and data structures are needed to let the application keep track of which DNA

strands are continuous.

Use of parallel worlds The Geant4 chemistry module has difficulty dealing with compli-

cated geometries due to dissociation processes, which can place the products of the molecular

dissociation of an energetic molecule way from the dissociating molecule. To avoid having

too many geometrical boundaries in our simulations, all the physical volumes are placed

in a separate parallel world, using the layered geometries offered by Geant4 (Enger et al.,

2012). Thus, the physically placed DNA molecules described in this section are only seen
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Fig. 3.12 We represent a base pair of DNA as six molecules, two deoxyriboses (red), two

phosphates (yellow) and two base pairs (grey). They are modelled internally in Geant4 as

ellipsoids, cut along their z-axis.

by physical processes, and their boundaries are effectively ignored by chemistry. Chemical

reactions are able to look up nearby molecules using an octree data structure, eliminating any

navigational problems that could arise from placing a complicated geometry in the chemistry

stage of the simulation.

Reading in DNA placement volumes

When placement volumes are read into the Molecular DNA application, a few changes to

them need to be made to eliminate any overlaps between the volumes. These changes are

designed to satisfy the following criteria:

• Phosphate molecules are aligned to point to the next sugar molecule in the backbone.

They are cut along this axis so they do not overlap the following deoxyribose molecule.

• Deoxyribose molecules are aligned to point along their respective DNA backbones to

the next phosphate molecule in the chain.

• Base pairs are oriented along the axis running from their centre position to their

adjoining deoxyribose molecule. They are cut along this axis so as not to overlap

neither the deoxyribose molecule nor their complementary base pair. They are shrunk

along the DNA’s long axis so that their height along this axis never exceeds 1.7 nm,

thus preventing two adjacent molecules from overlapping.

• The first and last molecules in a placement volume (which would otherwise extent

beyond the boundary of the volume) are oriented to face the placement volumes wall

along their z-axis. They are then cut along this axis so as not to overlap the volume

boundary.
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Fig. 3.13 OpenGL render of DNA arranged DNA placements inside the Geant4 viewer. Note

that the major and minor curves of the DNA molecule are visible. (Yellow: Phosphate; Red:

Deoxyribose; Green: Guanine; Cyan: Cytosine; Blue: Thymine; Magenta: Adenine.

These criteria are shown schematically in Figure 3.12, and their appearance in Geant4’s

OpenGL viewer is shown in Figure 3.13.

Octrees for Rapidly Localising DNA Molecules

When energy is deposited, we want to rapidly see if it has occurred in the vicinity of a DNA

structure or not. To do this, the molecules near to any energy deposition need to be quickly

found. In three dimensional space this can be easily done using octrees, which are a tree

data structure that divides any given region (node) into exactly eight smaller regions (nodes).

An octree is made for each different placement volume, and is stored in a map based on it’s

memory address. The octrees contain a position based record of all physical volumes they

contain. As tracks in Geant4 know their location in a hierarchy of physical volumes, they can

identify whether the current volume they are in, or one of their parent volumes, possesses an

octree.

This allows energy depositions an arbitrary distance from the base pair molecules to be

assigned to base pairs (Algorithm 1). This is important as not all damage models assume

that strand break-causing energy depositions occur inside a molecule’s van der Waal’s radius.

Furthermore, this is important in chemistry simulations, where even distant molecules must

be locatable in order to identify possible chemical reactions.

Arranging placement volumes

Having built the placement volumes they are physically placed in the simulation according

to a separate definition file, commonly built from a fractal. The Euler angles in the input

file specified in Section 3.1 are converted into a Geant4 Rotation Matrix by the following

operation, which takes into consideration the different specifications of Euler angles used in
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Algorithm 1 Assigning energy to a molecule via an octree

if energy_deposited > 0 then
octree = get_octree(energy_position)
molecules = octree.get_nearby_molecules(en_position,rad)
min_distance = rad
closest_molecule = None

for molecule ∈ molecules do
if get_distance(molecule.position,en_position)< min_distance then

min_distance = get_distance(molecule.position, position)
closest_molecule = molecule

end if
end for
if closest_molecule �= None then

assign_energy_to_molecule(closest_molecule,energy_deposited)
end if

end if

generating our geometries and Geant4 internally.

Ri = Rz(−φ)Ry(−θ)Rx(−ψ), (3.2)

A placement volume is put into the parallel world containing the physical description of

DNA, and an empty placement volume containing only water, but having the same rotations

and translations as the parallel world placement, is put into the main simulation world.

Permitting the macro-structure to be reassembled A significant problem arises in these

simulations when attempting to join together damage that occurs across multiple placement

volumes. Each base pair needs to know its location in a larger chain, that extends beyond

the placement volume it resides in. This is not difficult to implement when a single continuous

chain is used in each placement volume, as a data structure can easily store the index of

the base pair which starts each placement volume, but as our bacterial DNA model builds

itself from up to eight chains in each placement volume, each with differing numbers of

base pairs, eight indices are necessary. For each placement made, a value is assigned to

each of the possible eight strands that globally may be labelled from 0 to 7, containing

the index of each base pair at the point of entry into the volume. Additionally, depending

upon the rotation of the placement volume, any of the four (or eight) DNA strands interior

to the placement volume could correspond to any other global strand. This is illustrated for

the two dimensional, two-strand case in Figure 3.14.

To identify base strands, we defined in the MolecularDNAGeometry class a member
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Placement 30
BP Index 3000

Placement 31
BP Index 3100

Placement 33
BP Index 3300

Placement 32
BP Index 3200

Placement 30
BP Index1 3000
BP Index2 3000

Placement 31
BP Index1 3075
BP Index2 3125

Placement 32
BP Index1 3200
BP Index2 3200

Placement 33
BP Index1 3325
BP Index2 3275

Fig. 3.14 The index of the base strands that are being counted needs to be recorded for each

placement volume so that damage that occurs on the boundaries on placement volumes can

be correctly identified. This is simple in the case of a single strand, but more complicated

in the case of a placement volume containing multiple DNA strands, where the index has

a dependency on the strand number, and additionally, where each strand locally (here, the long

and short strand) need to know globally whether they belong to strand 1 or strand 2.

vector fPlacementTransformations, where each element corresponds to a placement volume

specified in the input placement volume file. The vector is indexed by the placement index

specified in the input file, and each element contains a tuple with three elements. These are

1) the global strand ID in an 8 element array, indexed by the local strand ID; 2) the indices

of the first base pair of each strand in the placement volume, in an 8-element array indexed

by the global ID of each strand; and 3) the indices of the last base pair of each strand in

the placement volume, in an 8-element array indexed by the global ID of each strand.

To fill this data structure for a placement volume with index i, it is necessary to know

the transformation between the local and global chain indices for the placement volume i−1,

and the rotations of both these placement volumes. The other prior information necessary

is that DNA placement volume segments that are straight run along the z-axis from −z to

+z, whilst segments that turn always enter the placement volume at it’s −z face and leave

from its +x face. If one considers the 3-d axis running along the DNA strand in each of these

cases, two scenarios are possible. In the first case, the DNA chain is straight, and the axis

moving along the DNA strand doesn’t change moving up the strand. In the second case,

the axis is rotated by +π/2 around the local positive y-axis.

To express this mathematically, first the rotation matrices of each volume must be found.

As we are considering the position of the rotation axes within each volume, the rotation

matrix Ri for the i-th element
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Ri = Rz(φ)Ry(θ)Rx(ψ), (3.3)

will contain the local axes, as has been specified for input files. This means that the first,

second and third columns of this matrix contain the unit vectors for the local x, y and z-axes.

The transformation T of the axis along the chain in the placement volume i− 1 depends

on the strand geometry. In the case where the DNA segment is straight T = I, however

in the second case, we define the transformation using a rotation matrix built from a π/2

rotation about the y-axis local to placement volume i−1, Rii−1,y:

T = R(
π
2
,Ri−1,y). (3.4)

This leaves us with two, new, rotated sets of axes A as follows:

Ai−1 = T Ri−1I

Ai = RiI (3.5)

By construction, each of these two sets of axes will have the same z-axis, and we want to

find the angle by which the set of axes Ai has been rotated from the axes Ai−1 about it’s local

z-axis. This comes from demanding the transformation between Ai−1 and Ai, which we call

M:

Ai = MAi−1

RiI = MT Ri−1I

M = R−1
i−1T−1Ri. (3.6)

As mentioned, M is a rotation about the local z-axis. The global axis corresponding

to this rotation can be found then by decomposing the matrix into a vector and an angle.

Geant4 provides this through the getDelta and getAxis methods of rotation matrices.

An idiosyncracy of these methods however is that the final rotation δ ∈ [0,π]. The proper

quadrant can be identified from the rotation axis of �Mr, specifically we use the fact that if

the rotation is positive, then

�Mr · �Ri,z = 1, (3.7)



3.3 Implementation of the molecular level DNA simulation 97

where �Ri,z is the third column of the rotation matrix Ri. If the quantity in Equation 3.7 is

negative, the rotation δ0 obtained from interpreting the rotation matrix M can be transformed

into a positive rotation by δ = 2π −δ0.

Knowing which global strand index every local strand index corresponds to in each place-

ment volume allows the final base pair index for each global strand to be obtained, given that

each local strand is of a fixed length, stored in the MolecularPlacementVolumeInfo class.

The MolecularDNAGeometry class contains the method AddNewPlacement to facilitate

the addition of new placement volumes, with the assumption that where placement volumes

are meant to be joined, they are added one after the other along a continuous strand.

To add the supplementary information for each placement volume, AddNewPlacement
is called with the pointer to each the placements logical volume, the four element array

generated previously mapping each local chain to its global chain, and a boolean specifying

true if the strand undergoes a half-twist between entering and leaving the volume. Using this

information, the information for the placement volume pertaining to its base pair indices is

added to fPlacementTransformations.

The MolecularDNAGeometry class then exposes three public methods to obtain the base

pair information from each placement volume. These require the placement index of the phys-

ical volume of interest and either the global or local chain index, depending on the function

being called. The methods are listed for clarity:

int GetGlobalChain(placement_idx, local_chain_idx);
long long GetStartIdx(placement_idx, global_chain_idx);
long long GetEndIdx(placement_idx, global_chain_idx);

In the simulation, these can be accessed within a Geant4 ‘Stepping Action’ class, in order to

recover the position of each molecule on its DNA chain. This allows us to ensure that all

DNA base pairs are correctly joined together, permitting damage that occurs on the edges of

placement volumes to be identified and correctly classified.

Building unique identifiers for each molecule In order to track chemical reactions, and

localise nearby damage on the DNA strand, all molecules placed need to be uniquely

identifiable. Geant4 does not afford users many ways to attach arbitrary information to

physical volumes, so we use the physical volume name to hold an index detailing the molecule

type, and its position along a given DNA chain. Each larger DNA region placement volume

also contains an index in its name, which is used combined with the name of each molecule

to yield a unique identifier for each molecule. From this unique identifier, every positional

characteristic for every DNA molecule regarding its location in the DNA chain can be

reconstructed. Additionally, as this identifier is unique, it can be used to flag which molecules
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Table 3.1 Chemical reactions defined between the DNA bases and deoxyribose-5-phosphate,

and radicals (From Buxton et al., 1988)

Reaction Rate (L mol−1 s−1)

•OH+ adenine 6.1×109

•OH+ thymine 6.4×109

•OH+ guanine 9.2×109

•OH+ cytosine 6.1×109

•OH+ C5H12O7 P 1.8×109

e−aq+ adenine 9.0×109

e−aq+ thymine 1.8×1010

e−aq+ guanine 1.4×1010

e−aq+ cytosine 1.3×1010

e−aq+ C5H12O7 P 1.0×107

H•+ adenine 1.0×108

H•+ thymine 5.7×108

H•+ guanine −
H•+ cytosine 9.2×107

H•+ C5H12O7 P 2.9×107

have already participated in chemical reactions, preventing them from participating in future

reactions.

3.3.3 Implementation of Chemistry

Given the large spatial scale of a nucleus, a new implementation of Geant4 DNA chemistry

was used in these simulations based on an Independent Reaction Time (IRT) model5. Previous

chemistry implementations followed a ‘step-by-step’ approach, which solves the Smolu-

chowski diffusion equation adaptively in time, for a series of fixed minimum time steps.

A Brownian Bridge in this model is used to ensure time steps do not skip chemical reactions

(Karamitros et al., 2014). The IRT model identifies all possible reactions that could occur

in a reasonable amount of time, and then calculates the marginal distributions of reaction

times for these reactions (see Green et al., 1990). From this distribution, reactions are

selected starting from the earliest reaction to the latest. In this manner, the dynamics of

the simulation are greatly accelerated as they are driven by a time stepping based less on

determining the paths taken by molecules, and more based on when they will react.

5The implementation of the IRT chemistry model in Geant4 is the exclusive work of Mathieu Karamitros.
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This model was combined with the geometry via a new template class. The template

class queries the geometry every time step to find which DNA molecules are nearby and

available to participate in chemical reactions. This is done by querying the octree belonging

to a given chemical track’s physical volume. From this, the unique ID’s of each molecule

can be constructed, and the material of the molecule found.

The material of each placed molecule is necessary as it is used to calculate the reaction rate

between the radicals simulated and the DNA molecules (Table 3.1). We consider the reaction

rates for the •OH, H• and e−aq radicals with the four bases and the sugar phosphate molecule.

Following Buxton et al. (1988), it is possible to model either the reaction of radicals with

deoxyribose as an isolated molecule (here, the reaction rate is 2.5×109 L mol−1 s−1), or as

deoxyribose-5-phosphate. In DNA, the bonds between deoxyribose and adjoining phosphate

molecules play a role in altering its reaction chemistry, with the affect of reducing its reaction

rate. We follow the approach taken by Kreipl et al. (2009), which considers one deoxyribose-

5-phosphate molecule at each side of the base pair, providing a more realistic interpretation

of the underlying chemistry. Other approaches that have modelled only deoxyribose have

added an empiric adjustment to the chance of a reaction between radicals and deoxyribose to

account for the fewer available reaction sites (Meylan, 2016).

In order to further accelerate the chemistry, we implemented a method of killing chemical

tracks that are unlikely to contribute to biological damage. This has been done in the past by

Nikjoo et al. (1997), who did not simulate •OH radicals more than a certain distance from

DNA strands. We implement the same procedure, allowing the distance at which radicals

are killed to be specified by the user. Additionally, all radicals outside a DNA placement

volume are killed, as they are also far from DNA, and unlikely to cause physical damage.

This also acts as a crude way of mimicking the effects of radical scavengers, however a better

implementation of scavenging would allow for the medium to react with radicals, based on

the scavenger concentrations found in cells.

3.3.4 DNA Damage Model

Mechanistic DNA simulations are dependent upon a DNA damage model to relate energy

depositions close to DNA, and chemical reactions with DNA to actual DNA damage. Such

models contain three components. The first relates energy depositions by physical process

close to DNA to single strand breaks (SSBs). The second relates chemical reactions with DNA

molecules to chemically induced SSBs, and the third component identifies the complexity of

strand breaks, identifying double strand breaks (DSBs) from nearby SSBs.

We have attempted to allow the parameters of the damage model to be selectable by

the user, and we have explored their impact upon simulation outputs in Section 3.4. This
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Fig. 3.15 Left: Physical energy deposits are assigned to the closest DNA physical volume

within a user specified radius, r. Right: Variation in the sensitive volume of DNA strands

(sum of phosphate and sugar molecules) and DNA bases as r changes. The dashed line is

the volume of the semi-annulus considered as the sensitive region by Charlton & Humm

(1988).

allows a comparison to existing platforms, which evaluate the processes that can lead to

strand breakages from measured damage in different ways, and also allows assumptions

about damage to be challenged, by seeing how different parameters can effect results.

The parameters that are changeable, and their associated macro commands, are presented in

Appendix A.

Scoring Physical Damage

Physical damage is scored by associating all energy deposited in a region around a DNA

molecule with that molecule. When enough energy has been accumulated in this region,

a strand break is said to have occurred. Fixing a strand break energy is difficult however, as

numerous processes can allow low energy electrons to damage DNA, each with a different

activation energy and likelihood (e.g. Barrios et al., 2002; Boudaiffa et al., 2000). Addi-

tionally, the region of space which constitutes a phosphate, deoxyribose or base molecule

for the purposes of measuring DNA damage is difficult to define, and will be correlated to

the energy chosen as a threshold for DNA damage. Nikjoo et al. (2016) commonly defines

the region of a strand sensitive to physical breaks as a semi-annulus, within which a 17.5 eV

energy deposit causes a strand break, based on a model originally used by Charlton & Humm

(1988). The PARTRAC code (Friedland et al., 2011) instead determines probabilistically

whether a break occurs, with the chance of a break being induced by physical processes

increasing linearly with the energy deposited near the strand. Energy here needs to be

deposited in the hydration shell of the DNA strand, or the strand itself, calculated on a per

molecule basis as the van der Waal’s radius of a given molecule either doubled or increased
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Fig. 3.16 The amount of energy needed to induce a strand break is set via two parameters,

a lower and an upper break limit. The probability of a strand break varies linearly from zero

to one between these limits. The values plotted here (5 eV and 37.5 eV) are taken from

the PARTRAC simulation platform (Friedland et al., 2011).

by 1.6 Å.

We define the region in which energy deposits are assigned to DNA molecules based

on a single distance value. The energy from a given energy deposit is always assigned to

the closest sugar-phosphate moiety or base molecule, provided their is a molecule within

this radius (Figure 3.15, left panel). Also, for the purposes of calculating the chance of

a break, the sugar and phosphate molecules are considered together. By using the closest

molecule in our criteria for energy depositions in DNA, we do introduce a little bit of

complexity into the model when compared to other models, as the volume of DNA then

sensitive to ionising radiation does not vary simply with the distance parameter the user can

set. To allow a comparison to other platforms, in particular the semi-annulus model used

by Charlton & Humm (1988), we show in Figure 3.15 (right) the variation in the volume of

both the DNA strand (phosphate and deoxyribose) and base pair regions with the distance

parameter, calculated by Monte Carlo integration.

Both a minimum and maximum energy are able to be specified for the probability that

direct energy depositions in these regions causes a strand break. This allows a simulation of

damage following a PARTRAC-like model, and also following a fixed energy limit (Figure

3.16).

Scoring Chemical Damage

Chemical damage is scored when chemical reactions take place between radicals and DNA

molecules. Beyond the chemical reaction rates themselves, a number of parameters have

been used to determine whether a strand break follows a chemical reactions. Measurements
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(Balasubramanian et al., 1998) and simulations (Aydogan et al., 2002) show not all sites on

the deoxyribose-5-phosphate component of the DNA strand react equally with •OH radicals,

and that the DNA sequence can itself modulate the likelihood of SSB induction (Sy et al.,

1997). Meylan (2016) choose to simulate this by assuming that certain reaction sites are

blocked, reducing the chance SSBs can be formed, while other authors consider a strand break

efficiency that is informed by measurements of the rate of the reaction DNA+ •OH → SSB

(e.g. Milligan et al., 1993; Udovicić et al., 1994). Our damage model allows the likelihood

that a chemical reaction with a strand or base component of DNA proceeds to an SSB or base

damage to be set by the user, as values found in the literature range from p = 0.42 (Meylan,

2016) to p = 0.7 (Kreipl et al., 2009). It is also possible that a strand break is induced by

chemical damage on the base caused by •OH. In an attempt to provide a consistent interface

for these secondary parameters for chemical damage, we introduce four variables that may

be set for the various radicals e−aq, •OH and H•. These variables control:

• The likelihood that the radical interacting with a DNA strand molecule results in

the induction of an SSB.

• The likelihood that the radical interacting with a DNA base molecule damages the base

(beyond what the free reaction rate would suggest).

• The likelihood that, following an interaction between a base and a given radical, an

SSB is induced, which may arise physically for example via bond breakages following

resonant electron attachment to bases (Boudaiffa et al., 2000).

These variables are designed to give users the ability to control for known effects that can

impact the efficiency of strand break formation. Care needs to be taken to make sure they

are not used to tune a simulation to a desired outcome, but are somewhat motivated by

experimental observations.

For this work, we consider that base damage never induces an SSB, and that all reactions

between radicals and bases produce base damage. We also treat all radicals identically, rather

than considering the different impacts of e−aq, •OH and H• unless otherwise stated. With

these two conditions, we replicate previous mechanistic studies of DNA damage, whilst

also arriving at a preliminary quantification of the impact of the H• and e−aq radicals in DNA

damage. This is possible as the reaction rate between deoxyribose-5-phosphate and •OH

is significantly higher than that with H• and e−aq, and thus whether simulated or not, strand

breaks caused by •OH vastly outnumber those caused by any other radical.
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Fig. 3.17 We follow the strand breakage scheme presented by Nikjoo et al. (1997). Breaks in

a DNA segment are classified both by complexity (left) and source (right). The model entails

two parameters, dDSB is the maximum separation between two damage sites on alternate

sides of a DNA strand for us to consider that a DSB has occurred (typically dDSB = 10 bp).

ds is the distance between two damage sites for us to consider that the damage events

should be considered as two separate breakages (yielding two separate segments that need

classification). Whilst many of the classifications are clear, we note that a DSB+ requires

a DSB and at least one additional break within a ten base pair separation, while a DSB++

requires at least two DSBs along the segment, regardless of whether they are within dDSB

of each other or not. For break complexity, the most complex break type is always chosen.

When classifying breaks by source, we pay attention not to all damage along the strand, but

to the damage which causes DSBs only. DSBs from only indirect sources are classified as

DSBi, and those only from direct sources are classified as DSBd. DSBhyb is distinguished

from DSBm, as DSBhyb requires that the DSB not occur in the absence of indirect damage.

Otherwise, a break caused by indirect and direct sources is classified as DSBm. Where

a segment contains both indirect and direct DSBs, it is classified as DSBm. Similarly, when

a segment contains a DSB classified as DSBhyb in conjunction with a direct DSB or mixed

DSB, it takes the DSBm classification, otherwise it keeps the classification DSBhyb.
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Identifying SSBs and DSBs

The complexity and source of strand breaks can be classified in a variety of ways. We follow

the classification scheme of Nikjoo et al. (1997), which classifies strand breaks by both

complexity and source as shown in Figure 3.17. Typically, a DSB is considered to have

occurred when the distance between SSBs on opposite sides of the DNA strand is within

dDSB ≤ 10 bp. We introduce a new parameter, ds, which allows the distance between two

damaged sites to be increased or decreases before the damaged sites are counted as two

separate damage events.

Classification by complexity is important for determining the severity of strand breaks

and their implications for biological damage, particularly as DSBs are a major driver of cell

death. By classifying breaks by source, it is possible to see the relative impacts of direct and

indirect damage induction on the DNA. In particular, the classification DSBhyb is noteworthy,

as it indicates DSB’s that would not occur unless indirect damage is induced.

3.4 Model Parameter Studies

A key challenge of this kind of simulation is gathering predictive data based on a true

physical understanding of DNA damage mechanisms, whilst avoiding tuning a model to

match an experiment, and accepting those results as truth. In saying this, one is reminded of

an expression attributed to John von Neumann, with four parameters I can fit an elephant,
with five I can make him wiggle his trunk (Dyson, 2004). Many of the parameters chosen

in these simulations to date are chosen based on fits of a model to an experiment. This is

unavoidable to some extent, and remains regarded as state-of-the-art6

In this section, we try and understand the impacts of the different parameters in our model,

in order to better understand their impact on our work. We draw inspiration from Nikjoo et al.

(1997), who present a past parameter study on a simple geometry. We explore in particular

how the parameters that define physical damage are related, with certain parameters showing

a clear inverse proportionality. The impact of different physics models is also explored with

clear differences in biological damage existing between models. We then explore the impact

of chemical damage, and how different assumptions about strand break induction can change

the results of the simulation. Here we also address the relative importance of the radical

species •OH, e−aq and H• for strand and base damage.

6A recent review (Nikjoo et al., 2016) states that the quantity 17.5 eV energy deposition in the S-P volume
was first suggested by Charlton & Humm (1988) in a simulation of an experiment by Martin & Haseltine (1981)
remains the only value to date for the energetics of DNA damage based on biological experiment and evidences,

however we note that in the original work by Charlton & Humm, this value is the best fit of a simulation model

to experimental data.
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Fig. 3.18 Our geometry for parameter sweeps consists of a 3 μm sphere filled with 200,000

individual 216 bp long straight DNA segments in a 100×30×30 nm placement volume.

Primary electrons are generated randomly, with a random direction in a smaller 500 nm sphere

in the centre of the test region. As we use primaries with energies no greater than 4.5 keV,

no primaries can escape the larger spherical region, and all primaries see an equivalently

random region.

3.4.1 Geometry for Parameter Studies

We have defined a simulation geometry based upon a previous study of direct and indirect

DNA damage yields in straight DNA fibres (Nikjoo et al., 1997). In order to see how

different model parameters affected DNA damage yields, we replicated a geometry similar

to this, studying DNA damage in randomly placed 216 bp long straight DNA fibres, in

a 100× 30× 30 nm placement volume. These volumes were placed randomly in a 3 μm

sphere, with random orientations. The placement algorithm, written in Python, made sure

that the spheres didn’t overlap (based on the method of separating axes). We placed 200,000

such volumes in the sphere, filling 20% of the sphere with DNA regions, approximately

the maximum density possible without resorting to a packing algorithm (Figure 3.18).

In the majority of tests, we explored how the strand break yield varied for primary

electrons with energies of 300, 500, 1,000, 3,000 and 4,500 eV. We chose these energies

to follow the work of Nikjoo et al., and also because they represent a range of energies

significant in the radiolysis of water, with 300 eV representing a few ‘spurs’, or a ‘blob’,

and 4.5 keV being equivalent to the amount of energy typically found in a short track (c.f.

Mozumder & Magee, 1966).

3.4.2 Results

We first tested the physical damage parameters, not considering chemical damage, to under-

stand how this model behaved when the parameters that define physical damage were varied.
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Fig. 3.19 For a physical damage radius of 6 Å, the ratio of SSBs to DSBs from physical

processes alone is shown for a fixed break energy of 17.5 eV (solid lines) and a break energy

that varies from 5 37.5 eV following the model used by PARTRAC (dotted lines). These

are in turn shown for three physics lists.

Next, we explored how the model responded when radicals more than a set difference from

the DNA strand were killed, rather than simulating them until the simulation ended - this

is of interest as the majority of indirect damage comes from radicals created close to DNA.

Finally, we explored how varying the likelihood that chemical reactions between radicals

and DNA strands impacts the amount of DSBs.

Direct Damage We explored how the direct damage of DNA changed in response to

changes in the radius for scoring physical damage, the threshold energy for physical damage,

and the physics list used. Tables of break damage for selected sweeps are presented in

Appendix C for reference. For each input electron energy, we simulated 1 GeV worth of

events (ie. 106 events for 1 keV) so that the total yield of breaks for different events is roughly

comparable.

We consider first the relationship between the input energy and the ratio of SSBs to DSBs.

In general, higher input electron energies increase the ratio of SSBs to DSBs (Figure 3.19),

regardless of physics list or the energy required to induce a strand break. This is consistent

with the LET of low energy electrons increasing as their energy decreases, thus inducing

breakages more easily. An exception to this is noted at 300 eV, where high threshold energies

for induced breaks can reduce the number of DSBs relative to SSBs due to the electrons

having less energy with which to cause breaks initially. The PARTRAC damage model, which
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Fig. 3.20 The absolute yields of SSBs and DSBs for the Nikjoo (solid lines) and PARTRAC

(dotted line) damage conditions outlined in Figure 3.19 can also be quite different, depending

on the physics model.

allows DNA strand breaks to occur with increasing probability from energy deposits as small

as 5 eV predicts more damage to be located in DSBs than SSBs in general than a flat 17.5 eV

cut off for strand breaks. The Geant4-DNA Option 4 physics model (Kyriakou et al., 2015),

which provides a more realistic implementation of the dielectric response of liquid water,

shows a notable (20%) deviation from the predictions of the default Geant4-DNA model

for liquid water, indicating that the results obtained for DNA damage are sensitive also to

the physics model used, to at least a similar extent as they are to the choice of damage model.

The Geant4-DNA Option 6 models, which is a recent implementation of the CPA-100 model

set within Geant4 (Bordage et al., 2016), shows an even stronger deviation than the default

model from the default strand break yields, though for this model the 17.5 eV break threshold

and PARTRAC models give very similar values for SSB/DSB.

The absolute yields of physical damage in this test geometry are also quite sensitive

to the physics model and the physical damage model. For example, while the Geant4-

DNA option 6 model shows the SSB/DSB ratio to be near invariant when passing from

a 17.5 eV SSB induction threshold and a variable threshold, this is not due invariance in

the underlying absolute numbers of SSBs and DSBs (Figure 3.20). Here, it can be seen that

for a constant damage induction threshold, the yield of SSBs remains constant for electron

energies above 1 keV, whilst some variability is seen when lower electron energies are

considered in the (variable) damage model. DSBs are signifcantly more sensitive to spatial

clustering in models, and show a stronger sensitivity to both the physics models used, and

the criteria for break induction. At worst, changing the break induction and physics models
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Fig. 3.21 The fractions of breakages caused by 300 eV electrons with a 17.5 eV simulated in

this work using the Geant4-DNA physics lists and Nikjoo et al. (1997) compare reasonably

well. Geant4-DNA produces a larger fraction of SSBs than Nikjoo et al., but fewer DSBs,

while the CPA-100 models in Geant4 produce relatively more DSBs than SSBs.

can cause a two-fold difference in DSB yield.

For 300 eV electrons, the classifications of strand breaks measured in Geant4-DNA op-

tion 4 compare favourably to those simulated by (Nikjoo et al., 1997). Using a 17.5 eV break

threshold, broadly the fractions of SSBs and DSBs are the same (Figure 3.21). A slightly

higher fraction of direct damage in Geant4-DNA is located in SSBs however, and a cor-

respondingly smaller fraction of damage is located in DSBs. This is due to the physics

models used by Nikjoo et al. simulating a higher LET for very low energy electrons than

Geant4-DNA option 4. In particular, Nikjoo et al. consider an older version of the CPA-100

models (i.e. option 6), though recent improvements to the model appear to have increased

the ratio of DSBs to SSBs.

The impact of the energy threshold for breaks is shown in detail in Figure 3.22, where

the fraction of breaks for the different classifications is given. As the energy required for an

SSB decreases, the fraction of complex breaks increases, across all input electron energies.

It’s also clear that low energy electrons are more likely to cause complex breaks than high

energy electrons. This behaviour changes for the highly complex DSB++ breaks when

the energy threshold for breaks increases. Partially, this could be due to the fact that for

300 eV electrons, at least 70 eV is required to cause a DSB++ classified fracture, which is

a significant fraction of the input electron energy. It could also be linked to the LET modelled

in Geant4-DNA for low energy electrons being such that the 17.5 eV energy threshold has

a significant impact on the total yield of breaks compared to other energy differences. This is
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Fig. 3.22 Distribution of strand breaks by classification for a 12.6 eV (left) and 17.5 eV

damage threshold, considering a damage threshold radius of 6 Å and using the Option 4

Geant4-DNA physics constructor.

supported by Figure 3.23, where we consider the impact of both radius and break energy on

the ratio of SSBs to DSBs, noting that the small change in the break yield energy from 15 eV

to 17.5 eV causes a large change in the SSB:DSB ratio.

The impact of the damage radius chosen is quite important in determining the ratio of

single to double strand breaks as it is correlated with the break energy. The PARTRAC

damage breakage model however appears to be consistently in between the 15 eV and

17.5 eV constant damage threshold models across most radii considered, which is somewhat

unexpected as the model predicts a p = 0.5 chance of a strand break only at 21.25 eV. This

likely reflects the significant preference in energy deposits in DNA towards lower energies,

particularly below 17.5 eV, as the PARTRAC model allows these events to be sometimes

counted as damage. Notable also in Figure 3.23 is the consistent prediction of more DSBs

per SSB from the option 4 model set than the default model set. In particular, option 4 shows

significantly better agreement with the strand break ratio found by Nikjoo et al. (1997) in

a similar geometry (where we calculate the radius for the Nikjoo et al. study as the radius

that gives the same volume as their geometry, c.f. Figure 3.15), especially at 15 eV. A large

difference exists however between what we simulate at 17.5 eV and what Nikjoo et al.

simulate. We are inclined to have more confidence in the Geant4-DNA option 4 model

here than the overplotted data points, as we see in option 4, for each increase in the energy

required for a strand break, a roughly equivalent increase in the ratio of DSBs to SSBs. This

is not the case in the verification data points, where the total SSBs to DSBs changes by varied

intervals, up to values as high as 90 and 54 (not plotted) for break energies of 21.1 eV and
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Fig. 3.23 Variation of the SSB to DSB ratio with the damage radius for a variety of break

energies for the default (top left), option 4 (top right) and option 6 (bottom left) physics

models. The surface plot in the bottom right hand panel highlights that the SSB to DSB

ratio is degenerate for a range of break energy and damage radius combinations. Stars in

each of the first three panels indicate the results found by Nikjoo et al. (1997) in a similar

configuration.
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30 eV respectively.

Looking at and above r = 6 Å in particular, it is interesting that all the Geant4-DNA

models are quite linear for most energy deposit thresholds when r > 5 Å. This occurs because

for large radii, changes in the radius cause a fractionally smaller change in the volume of

the sensitive area, flattening the curve.

Impact of Radical Diffusion Chemical damage is of particular interest in DNA damage

because radical species can diffuse, and thus it is significantly less localised than physical

damage. Here we try and ask at what extent does this de-localisation of damage affect

the amount of SSBs and DSBs. It is conceivable that radicals that diffuse towards DNA from

afar and then react with it are significantly less likely to cause complex DNA damage, rather

they are likely to have isolated chemical reactions with DNA which would be easily repaired

by cellular systems. This question is important for code optimisation also, as if far away

radicals do not cause significant DSB formation, their tracks can be killed without greatly

altering the number of DSBs simulated.

Radical tracks are able to be killed when the radical is located more than a certain distance

from the DNA strand. We varied this distance in our cylindrical test geometry, from 0 nm

(chemical reactions can only occur if particles are created co-incident with DNA molecules)

to 9 nm. 105 events were simulated, considering a single 4.5 keV primary particle in each

event (the Geant4-DNA physics option 4 constructor was used in the physical stage). For

radical damage, the likelihood of a chemical reaction with a base proceeding to base damage

was set to one, the probability that base damage could induce a strand break damage was set

to zero, and 0.65 was chosen as the likelihood that a chemical reaction with a strand leads to

strand damage (and a strand break), following Nikjoo et al. (1997). Physical damage required

an energy deposit within 7 Å of the DNA molecule of at least 17.5 eV.

In this section, we allow the simulation of chemistry to proceed up to 1 μs. The aim is to

investigate the impact of diffusion on breakages. Due to this however we see that, across all

radii at which to kill radicals considered, that the number of strand breaks seemingly grows

without bounds. This is in contrast to what Nikjoo et al. (1997) indicate, that •OH attacks

plateau for radii above 4-6 Å(this corresponds to 3-5 Å in our schema), where the chemical

simulation is stopped at 1 ns. The increase is seen across all breakage complexities in

Figure 3.24, but is particular pronounced in the most simple breaks (SSB and DSB). As

expected, as more diffusion is permitted, SSB+ and 2SSB increase at a similar rate. There

are always however less 2SSB than SSB+, as when spatial correlations are high, damage

events resembling 2SSB will be classified as DSBs, whilst when two radical attacks events

occurs randomly across a segment (i.e. far apart), SSB+ and 2SSB occur with almost equal
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Fig. 3.24 The relative number of strand breaks caused by direct and indirect effects as

the distance from the DNA strand at which radicals were killed is varied, broken down by

complexity. SSBs are shown on the left, normalised to 1 (from 1.17 SSB Gy 1 Mbp 1), and

total DSBs are shown on the right, normalised to 1 (from 0.12 DSB Gy 1 Mbp 1). Due to

diffusion, the number of strand breaks never ceases to grow across the range considered.

probability.

Figure 3.25 shows the sources of the breaks recorded in these simulations. As the radius

from molecules at which chemical species are killed increases, a growth in indirect SSBs

and DSBs is seen. As the amount of physical damage in the simulation is unchanged with

increases in the distance from DNA at which radical tracks are killed, the amount of DSBd

damage doesn’t increase, but rather, direct SSBs and DSBs are converted into DSBhyb and

DSBm, which eventually plateau.

A similar behaviour is seen when one considers the energy depositions in DNA which

cause strand breaks (Table 3.2). Regardless of the radical kill distance, the same energies

are always deposited in the DNA strand (as expected), and are in close agreement with

other work. We find however that compared to other works we frequently see events where

radicals react with DNA strands without the primary track depositing any energy in the DNA

molecule, and as a corollary of this, significantly more DSBs are caused by when energy

deposits in the DNA molecule are on the scale of 0 60 eV rather than 60 150 eV as has

been previously suggested.

7The frequency is given relative to segments that have Edep > 0 eV. This ignores breaks that are solely

caused by indirect effects. The frequency of such breaks relative to those we consider is shown in the 0 eV

column.
8Nikjoo et al. (1997), results for a 4.5 keV electron interacting with 216 bp long DNA segments.
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Fig. 3.25 The change in SSB (left) and DSB (right) abundance, broken down by source,

as the distance at which radicals are killed changes. Normalisations for each curve are

the same as in Figure 3.24. As more radicals are included in the simulation, all the growth

in damage is attributable to growing indirect damage. Typically, DSBhyb dominates DSBm.

The percentage of tracks in each category is given in Table C.11.

One reason for this discrepancy is that other works end their chemistry simulation

after a few nanoseconds, or provide some measure of radical scavenging. This decreases

the amount of reactions with radicals that can occur and is investigated in the following

section. On the same note, while our selection of pSSB = 0.65 for the chance a chemical

reaction between a strand and a base yields an SSB follows that used by Nikjoo et al. (1997),

our reaction rates lead to •OH radicals interacting with strands and bases in a 32:68 ratio,

rather than the 20:80 ratio counselled. As a result, when •OH interacts with DNA, the chance

a strand break is induced is 24%, rather than 13% as used by Nikjoo et al..

Radical Diffusion and Chemical Reactions The number of reactions that occur as a func-

tion of the radius at which radical tracks are killed is shown in Figure 3.26. Chemical reactions

are dominated by the base attack reactions from eaq and •OH, while attacks from H• are

negligible by comparison. As expected, reactions between •OH and the sugar-phosphate

moiety occur less frequent than base damage, and in the model used for this section 65% of

these reactions go on to cause strand breaks. We note that across the range of data points stud-

ied, •OH base attacks represent 67.6±0.3% of all •OH damage, disagreeing with the 80%

fraction of •OH attacks measured to occur in bases (Scholes et al., 1969). This hints that

the reaction rate chosen between •OH and deoxyrobose-5-phosphate is too high, or doesn’t
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Table 3.2 Fraction of energy deposits and DSB yields for different energy deposits in a 216 bp

straight DNA segment by 4.5 keV electrons for different radical simulation radii.

Radius Edep frequency7 (%) DSB frequency (%)

(nm) 0 eV 0+−60 eV 60−150 eV > 150 eV 0 eV 0+−60 eV 60−150 eV > 150 eV

0 0.0 91.6 7.9 0.5 0.0 19.7 67.5 12.8

1 56.6 91.8 7.9 0.3 0.4 44.5 51.0 4.1

2 199.9 91.7 8.0 0.2 9.9 52.6 34.9 2.5

3 348.8 91.7 8.0 0.3 17.3 55.1 26.4 1.3

4 473.7 92.1 7.6 0.3 27.2 49.8 21.7 1.3

N978 - 92 7 1 - 30 64 6

take into account the interactions that may arise to block or preferentially favour reaction

sites when this molecule is part of the DNA backbone (Balasubramanian et al., 1998). Future

simulations may try and consider how the DNA molecule can geometrically block reaction

sites, though this is computationally difficult.

Near 7 nm, we remark that •OH reacts more frequently with bases than e−aq. This is

possibly tied to the slightly higher yields of •OH than e−aq in water. The impact of diffusion is

shown in the right hand panel of Figure 3.26, where the simulation was stopped after 1 ns. In

this scenario, the number of •OH reactions reaches a plateau around 4-5 Å, while the number

of e−aq reactions continues to grow due to the electrons higher diffusivity. The consequences

of this can be seen in the numbers of SSBs and DSBs recorded when diffusion is limited to

only 1 ns (Figure 3.27). The number of indirect damage events plateaus for DSBs around

4 nm, and for SSBs around 6 nm.

Figure 3.28 shows the impact of cutting the simulation at 1 ns for a range of chemical

distances considered. Both as the time permitted for diffusion, and the distance radicals can

diffuse are increased, the amount of strand breaks recorded increases. Cutting the simulation

at 1 ns, we place ourselves closer to the work of Nikjoo et al. (1997), though we find that in

these conditions, when simulating radicals within 4 nm of DNA, the yield of SSBs (DSBs) is

0.41 SSB (0.058 DSB) Gy−1 Mbp−1, whilst Nikjoo et al. predicts the yield of SSBs (DSBs)

to be 0.29 SSB (0.018 DSB) Gy−1 Mbp−1.

Efficiency of SSB formation in strands The likelihood that a chemical reaction between

a base and a sugar-phosphate moiety induces a single strand break is one of the most poorly

known parameters in our simulation. Up to now, we have considered that the efficiency

with which such events induce breaks (here referred to as pSSB) is 65%, following other

authors who combine an estimate of the break efficiency of reactions between •OH and

DNA of 12% (Milligan et al., 1993), and the observation that only about 20% of reactions
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Fig. 3.26 The amount of chemical reactions that occur as the distance from the DNA at which

radicals are killed grows up to at least distances of 10 nm (left), though when the simulation

is stopped after 1 ns, diffusion causes the number of reactions to plateau (right). The reaction

between the H• radical and a base is the least common of the reactions plotted (at 9 nm,

≈ 3×103 reactions). The reactions between eaq and H• with strands are at least a factor of

five less likely again.
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Fig. 3.27 The change in SSB (left) and DSB (right) abundance, broken down by

source, as the distance at which radicals are killed changes. The percentage of

tracks in each category is given in Table C.11, and SSBs (DSBs) are normalised by

0.48 SSB (0.058 DSB) Gy 1 Mbp 1.
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Fig. 3.28 When considering only radicals within less than 4 nm of DNA for the chemical

simulation, restricting diffusion to 1 ns has little effect on damage yields. Above this, however

further DNA damage is stopped.

between •OH and DNA occur in the sugar phosphate moiety (Scholes et al., 1969)9. Other

estimates of the efficiency of strand break induction range up to 29% for when •OH reacts

with DNA (Udovicić et al., 1994), it is suggested that these variations are related to scavenger

concentration.

We investigated the importance of the strand break induction parameter, simulating

3.33×105 primary electrons with input energies of 4.5 keV in our test geometry, for values

of pSSB = 0, 0.2, 0.3, ..., 0.9, 1.0. A radical kill distance of 4 nm was used, and simulations

proceeded until no more radicals were left. From Figure 3.29, it can be seen that choosing

pSSB = 0.65, corresponds rather in our simulations to near the middle of these two averages.

This is because our simulated reaction rates overestimate the number of chemical reactions

between radicals and strands compared to bases, relative to Scholes et al. (32% rather than

20%). In order to conduct simulations in line with Nikjoo et al. (1997), a value of pSSB = 0.4

should be favoured.

As two SSBs are required to form a DSB, decreasing pSSB impacts the ratio of single

to double strand breaks (Figure 3.30, left panel). From the rate corresponding to physical

damage alone (pSSB = 0), the ratio of SSBs to DSBs drops near linearly as the efficiency of

converting chemical reactions to strand breaks increases. The different individual responses

of SSBs and DSBs to changes in pSSB can be seen in how the fraction of indirect breaks

9This would tend to suggest pSSB = 0.65 is a slight overestimate of what should be 12%/20% = 0.6.

Nevertheless we use the 65% adopted by Nikjoo et al. (1997).
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efficiencies of SSB formation for •OH reacting with DNA.
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Fig. 3.30 As the likelihood of a strand break from a radical reaction increases, the relative

number of SSBs per DSBs decreases (left). Equally, the damage becomes entirely dominated

by indirect strand breaks (right). Both these figures consider a simulation that ends when all

radicals are consumed.



118 Evaluating radiation damage with Geant4-DNA in bacteria

as a fraction of total breaks changes as the efficiency of strand breaks increases (Figure

3.30, right panel, here we consider only SSBi and DSBi, as a fraction of total breaks).

The sensitivity of the results to these parameters is striking, especially given that SSB/DSB

is a key measurable in these simulations, and can vary by almost a factor of 3 across a range

of reasonable break induction probabilities. The fraction of purely indirect and direct SSBs

plateaus as the probability of inducing a break rises. Whilst it approaches 1 for SSBs, this

is not the case for DSBs as a non-negligible proportion of DSBs, at least for the simulation

radius considered, belong to mixed damage classifications (DSBm and DSBhyb).

3.4.3 Discussion of Parameter Sweep

The differences in physical damage recorded between the Geant4 models are a consequence

of the underlying physics being simulated. The default, option 4, and CPA-100 physics

models all model electron scattering cross sections differently below 10 keV. The default

option is based on modelling the dielectric response function of liquid water, and the option

4 model is based on a refinement of this approach, redistributing the imaginary part of

the dielectric function to better model electrons close to their binding energies. Option 6

is based on the CPA-100 model set, which models ionisation cross sections via the binary

encounter Bethe model. The result of this is that option 6 has in general higher interaction

cross sections below 10 keV, while the option 4 models have higher total cross section below

1 keV than the default models. Thus options 4 and 6 model energy depositions more densely

than the default option, contributing to a higher number of both SSBs and DSBs, driving

down the ratio of the two quantities. Nikjoo et al. used an older version of the CPA-100 code

than we model here, however this explains the good agreement between the physical damage

modelled here in option 6 and their work.

Our simulations of chemistry in the test geometry considered three parameters, the dis-

tance from DNA at which radical tracks are killed, the end time of the simulation (which

impacts diffusion), and the likelihood of inducing a DNA break from a recorded chemical

reaction between a sugar-phosphate moiety and a radical. Even though we applied the same

treatment to H• and e−aq that we applied to •OH, we discuss these changes only in the context

of •OH as e−aq and H• radicals rarely react with deoxyribose-5-phosphate.

Both the end time of the simulation and the radius of radicals simulated are highly linked

to the concepts of diffusion and radical scavenging. These two ideas are linked by considering

scavenger abundancies and diffusion distances in cells. From the diffusion constant, Dc,

of the •OH radical (Dc = 2.8× 10−9 m2 s−1, from Schwarz, 1969), the radical’s mean
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displacement x̄ in terms of time can be found in a three dimensional system as

x̄ =
√

6Dct,

= 4.09
√

t nm. (3.8)

Numerous authors conclude their chemical simulations of •OH after only a few nanoseconds

(e.g. Meylan, 2016; Nikjoo et al., 1997), implying that this provides a simulation of

radical scavenging effects. Limiting the time of the simulation makes sense in many ways,

as the majority of •OH-induced damage comes from radicals that are non-scavengeable,

and are created close to, or in the hydration shell of DNA (Daly, 2012; Ward, 1988). In

cellular media, the average diffusion distance of the •OH radical is 6 nm (Roots & Okada,

1975), corresponding to an average lifetime of 3.7 ns, and a scavenging efficiency of around

3×108 s−1.

The need for this to be modelled in some way can be seen by the limitless growth of

indirect SSBs and DSBs as the distance at which we model radicals increases, far beyond

what is seen in living cells (≈ 0.01 DSB Gy−1 Mbp−1). That said, yields of DSBs as high

as 0.23 DSB Gy−1 Mbp−1 are observable in plasmids when scavenger abundances are low

(Souici et al., 2016), and •OH molecules are likely to diffuse tens of nanometres. While sim-

ulating this is outside of the domain of this study, it would be feasible to expand the radius at

which radicals are simulated and conduct a study of DNA damage in the complete absence of

scavenging. The growth in indirect strand breaks as the chemistry simulation radius increases

is also an encouraging ‘sanity check’ for our classification routines. The classifications

of complexity all behave as expected (Figures 3.24 and 3.25), with the SSB+ and 2SSB

classifications showing similar though offset behaviour (as at small radii, the two radicals

that react on opposite strands to cause a 2SSB classification are likely to be so close they

cause a DSB). Similarly, the DSB++ classification grows faster than the DSB+ classification,

as increasing the amount of radicals simulated pushes DSBs to become DSB+, and breaks

classified as DSB+ to a final state of DSB++. When the source classifications are studied,

hybrid and mixed double strand breaks plateau, as the limited amount of direct breaks is

consumed by a growing amount of indirect damage.

In real systems, some level of scavenging should be considered. Following other authors,

we investigated ending the simulation at 1 ns, in order to see the impact of limiting radical

diffusion on our results. It’s worth bearing in mind though that, from the mean lifetime τ of
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a radical, the probability pscav that it will have been scavenged within a time period t is

pscav(t) =

∫ t
0 e−t/τ dt∫ ∞
0 e−t/τ dt

,

= 1− e−t/τ .

Substituting the values for the •OH radical, we find that after 1 ns, the probability that

a radical has been scavenged is

pscav(t) = 1− e−t/3.7 ns,

pscav(1 ns) = 0.24.

This does question the results of simulations that cut the simulation time as a means of consid-

ering scavenging, as a significant fraction of radicals may still be present in the environment.

How many of these will react with DNA however within the next few nanoseconds has not

been investigated. It is arguably better practice instead to limit the radius of the chemical sim-

ulation to a region where scavenging is not relevant, and better yet is to simulate scavenging

as is done by Friedland et al. (2011).

When simulations are limited to 1 ns, we reproduce the chemical reaction behaviour

of Nikjoo et al. (1997), notably seeing that •OH radicals further than 4 nm from the DNA

molecule do not greatly contribute to damage (Figure 3.26). A similar threshold applies to

the production of indirect and mixed SSBs and DSBs, a consequence of a reduction in base

damage (Figure 3.27). Based on the measurements here, we find that SSB (DSB) damage

plateaus at 0.48 SSB Gy−1 Mbp−1 (0.058 DSB Gy−1 Mbp−1), higher in both cases than

the value measured by Nikjoo et al. (0.29 SSB Gy−1 Mbp−1 and 0.018 DSB Gy−1 Mbp−1).

In part, this is caused by an elevated value for pSSB, the chance that a reaction between
•OH and a strand leads to an SSB (Figures 3.29 and 3.30). We compare our work to

a simulation that bases their DNA breakage model on the work of (Milligan et al., 1993),

where the efficiency of a reaction between DNA and •OH leading to a strand break is 12%.

In our work, we cannot choose this parameter, it is rather a consequence of the reaction

rates for reactions between strands and bases, as well as pSSB. By setting pSSB = 0.4, we

can contrive a simulation that matches that of Nikjoo et al., however this may be a way of

avoiding a better calibration of the reaction rate between •OH and deoxyribose-5-phosphate.

In the DNA chain, each sugar-phosphate moiety is bonded to two other moieties and a base

pair, which may in turn decrease its reactivity. In their measurement of the efficiency of SSB

formation following •OH-DNA reactions, Udovicić et al. (1994) find a reaction efficiency of

29%, significantly higher than the values we considered here, though their reaction rate for
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the reaction between •OH and DNA was 2.5±0.5×108 L mol−1 s−1, an order of magnitude

lower than the reaction rates we consider here for •OH.

Much as the radius for physical energy deposition and the energy required for a break

are strongly correlated, the reaction rates for •OH and the efficiency of strand breaks are

correlated, and are thus difficult to precisely define. In this section, we have attempted to

illustrate the general tends that occur when parameters change. Based on these, we have been

able to identify some parameters that resemble the work of Nikjoo et al. that this parameter

study has tried to replicate. Based upon these, we can conduct a set of simulations that

illustrates the similarities and differences between the Geant4-DNA platform, and that used

by Nikjoo et al..

3.4.4 Reproducing Nikjoo et al., 1997

Based upon the physical damage parameters investigated above, and the value of pSSB

determined to have the same break efficiency as that used by Nikjoo et al. (1997), we are able

to reproduce this simulation in order to illustrate the differences between our Geant4-DNA

and other mechanistic DNA damage simulation toolkits. The parameters we used for this

simulation are given in Table 3.3, while the geometry remains the same as in the previous

section (2×105 strands of DNA, each 216 bp long). We expect already that we should record

less physical damage than Nikjoo et al., as we record fewer physical DSBs per SSB than they

do based on a 17.5 eV break threshold. Similarly, we expect to have up to twice as much

indirect damage, as the Geant4-DNA models for chemistry have about 1.5 times the amount

of •OH radicals as those used in the emulated study (c.f. Karamitros, 2013; Terrissol &

Beaudré, 1990).

Figure 3.31 presents a comparison between our break yields and those of Nikjoo et al.

for 300 eV and 4500 eV primary electrons. Notably, Geant4-DNA finds significantly more

damage in this geometry than Nikjoo et al., across most energies studied, overestimating

the SSB yield by 1.5, and the DSB yield from 1.5 to 3 times (Table 3.4, see also Tables

C.12 and C.13). This is attributable largely to indirect damage, which is significantly more

influential in our work than in that of Nikjoo et al. across the range of energies considered.

Across these energies, approximately 20% of DSBs occur in the absence of any energy

deposition in the DNA. Indirect damage has pronounced effects on break complexity. When

considering only direct damage, we noticed a distribution of strand breaks largely similar to

Nikjoo et al., however as indirect breaks become more dominant, more complex DSBs are

noticed, such that the number of DSB+ and DSB++ classifications approach each other.

The large level of indirect damage recorded in the Geant4-DNA model is not necessarily

an error, but is worth investigating. When scavenging is weak, 80% (Daly, 2012) up to 96%
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Table 3.3 Parameters required in order to reproduce the work of Nikjoo et al. (1997).

Lower limit for physical damage 17.5 eV

Upper limit for physical damage 17.5 eV

Radius for direct damage 6 Å

Distance from strand to kill radicals 4 nm

Simulation end time 1 ns

Simulation maximum time step 500 ps

pSSB(radical+ strand) 0.4

pBD(radical+base) 1.00

pSSB(radical+base) 0.00

Physics List Option 4

Distance between SSBs to induce a DSB (dDSB) 10 bp

Distance between two damaged segments (ds) 100 bp

Table 3.4 SSB and DSB yields when reproducing Nikjoo et al. (1997)

Energy Geant4-DNA Nikjoo et al. (1997)

(eV) SSB Gy−1 Mbp−1 DSB Gy−1 Mbp−1 SSB Gy−1 Mbp−1 DSB Gy−1 Mbp−1

300 0.265 0.039 0.163 0.015

500 0.246 0.038 0.163 0.013

1000 0.257 0.035 0.156 0.013

3000 0.297 0.031 - -

4500 0.305 0.028 0.286 0.018
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Fig. 3.31 Using the parameters defined in Table 3.3, we compare the yields of breaks by

source and complexity simulated in Geant4-DNA and by (Nikjoo et al., 1997) for 300 eV

and 4500 eV electrons. This information is presented for all energies in Tables C.12 and

C.13. The DSBhyb type dominates the DSBm type, though we consider them together as their

origins are similar.
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Fig. 3.32 As more and more radicals are simulated under the conditions postulated by Nikjoo

et al. (1997), SSBs and DSBs increase (the above graph is for 4.5 keV primary electrons).

A fair comparison with biological data where scavenging is high would only simulate radicals

out to the third or so hydration shell of DNA, at 6.5 Å (Nakano et al., 2016). In this region

we come close to matching the break yields from cellular irradiation by 4.5 keV X-rays

de Lara et al. (2001), plasmid irradiation with very high scavenger concentration with soft

(4 keV μm 1) X-rays (Shiina et al., 2013).

(Souici et al., 2016) of DNA damage is caused by indirect effects. The simulation described

here is in many ways not a situation of ‘strong’ scavenging, as radicals outside of the DNA

hydration shells are simulated and tracked. This can be examined further by comparing

our results to biological data, particular at varying simulation radii to consider how our

simulations in a high scavenging situation, where only the first few hydration shells of DNA

are simulated, compare to experimental results. This provides a decent comparison to real

cellular systems as in cells, structural proteins contribute more significantly to reducing

radical abundances than scavenger molecules (Ljungman et al., 1991), and the majority of

indirect damage comes from non-scavengeable radicals created very close to DNA (Daly,

2012).

The results of this comparison for 4.5 keV primary electrons is shown in Figure 3.32, in

comparison to experimental data where scavenging should limit most radical damage caused

far from DNA. The simulations conducted by Nikjoo et al. overestimate the damage to DNA,
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however we see here that when we consider only radicals created very close to the DNA

molecule, good agreement with experimental data is found, particularly towards 1 nm. Of

course, while based upon sound reasoning, these numbers are also somewhat tuned, being

tied to a physical damage model. At 1 nm also, the ratio of SSBs to DSBs is 9.5, a little

lower than expected (Shiina et al., 2013, find that SSB/DSB ≈ 12).

The changes in break complexity and source as the number of radicals simulated is

increased is shown in Figure 3.33. In these plots, we paid attention to simulation radii

for radicals corresponding to the first three hydration shells of the B-DNA molecule, at

3.5, 5.0 and 6.5 Å. Water molecules within these radii are important in maintaining the shape

of the B-DNA molecule, and interact with it via hydrogen bonding (Nakano et al., 2016).

As expected, we are never able to simulate the same amount of physical damage as Nikjoo

et al. achieve, which is a consequence of the physics models used. Between 1 and 2 nm, our

distributions of break complexity best match those of Nikjoo et al..

Discussion of results While our comparison with Nikjoo et al.’s simulation is far from

perfect, it highlights the importance of considering how radicals are modelled and in particular

how their scavenging is considered. The fairest comparison that can be made with biological

data is in the high scavenging case, where indirect damage is almost exclusively caused by

radicals created in the hydration layers of DNA. Alternatively, experiments exist measuring

plasmid damage in the near-total absence of scavengers, where indirect effects represent up

to 96% of DNA damage (Souici et al., 2016). Here, SSB yields can be 100 times their cellular

level, and DSB yields 50 times their cellular level (Butterworth et al., 2008), representing

a vastly different regime to what is often simulated, but providing a point of comparison that

is independent of any speculated modelling of scavengers.

When we only consider radicals created close to DNA, we find a good comparison to

experimentally measured strand break yields (c.f. Figure 3.32). Tuning of the simulation

could produce a better agreement with biological data, however part of the strength of our

comparison here is that we use values that are already published in the literature, rather than

attempting to find a set of ideal values and justifying them a posteriori. Part of what improves

our comparison though when we only consider radicals close to the DNA is the exclusion

of radicals at either end of each 216 bp long DNA segment. These are not a large issue

for Nikjoo et al. who simulate long chords of DNA, however here they can contribute to

an excess of indirect breaks. Reducing the radius at which radicals interact with strands

has a disproportionate effect on reducing the effects of indirect damage on the ends of

the modelled base pairs. This is less of an issue when we consider an entire E. coli bacterium

in the following section, as the mostly continuous DNA model we adopt has comparatively
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Fig. 3.33 The yields of each type of break differ significantly from that predicted in Nikjoo

et al. (1997) as the radius at which radicals are considered changes.
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few loose ends.

We have consistently shown that we model less direct damage than Nikjoo et al. in their

work. We do not believe this to be an error in our approach, as other works have found

that indirect damage dominates direct damage in both Monte Carlo simulation (Friedland

et al., 2003; Meylan, 2016), contributing at least two thirds of all damage, more in line

with what we show, when we consider radicals out to 4 nm from DNA. This highlights

again the importance of the modelling of scavenging to the interpretation of results. These

two works offer again a different conception of scavenging, which considers a 2.5 μs-long

chemical simulation, which leads them to consider radicals that diffuse further than Nikjoo

et al. and our work permit. Evidently, a clearer picture needs to emerge of how scavenging is

best studied, however such a model requires a clear experimental picture of how many strand

breaks come from indirect causes compared to direct causes.

3.5 Simulation of an E. coli bacterium.

The final step in our simulation studies is to determine the number of strand breaks expe-

rienced by an E. coli bacterium in the natural radiation background. From this, we can

approach, almost as far as physically possible, the number of mutations caused by the radia-

tion background in our evolution experiments. We adopt the same set of parameters as we

used when comparing our simulations to Nikjoo et al. (1997) in the above section (Table

3.3), however the physics list is changed to Geant4-DNA Option 7. The option 7 list uses

the option 4 processes for electrons below 10 keV, but passes to the default list above 10 keV,

as option 4 is not defined above 10 keV for electrons. We conduct a second set of simulations

considering only breaks induced by radicals created within 1 nm of the bacterial DNA, to

better model the strong scavenging present in bacterial cells, induced by both scavenger

molecules and folding proteins (c.f. Daly, 2012).

Simulation Geometry We simulate the genome of an E. coli bacterium using four, side-

by-side Hilbert curve fractals with four levels of recursion (see Section 3.2). This creates

16383 placement volumes that we assign to be cubic boxes with a side length of 50 nm. We

only placed placement volumes that fell inside an ellipsoid with a semi-major axis of 950 μm

and two equal semi-minor axes of 400 μm, creating an elliptical geometry that corresponded

roughly to the dimensions of an E. coli bacterium. The final geometry (Figure 3.34) contained

4.63 Mbp, similar again to the length of an E. coli genome. This was composed of 3,600

straight segments, and 5,652 turned segments of DNA.
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Fig. 3.34 Top: A simulated E. coli bacterium viewed from the front, lines can be seen

delineating the main parts of the fractal. Bottom: The bacterium viewed from the side,

indicating its ellipsoidal shape. The long axis of the ellipsoidal geometry is 950 μm and

the two short axis are 400 μm. In total, 4.6 Mbp are shown.
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Fig. 3.35 Left: the total number of breaks from indirect and direct causes for 10 MeV protons

is shown compared to proton damage yields measured by Friedland et al. (2003) and Meylan

(2016). Both a 17.5 eV break induction threshold and a variable break induction threshold are

considered for physical damage. Right: direct (stars), indirect (circles) and total (diamonds)

break yields measured for protons and electrons measured with our simulation application

and a 17.5 eV threshold for physical strand break induction. Horizontal grey lines mark

the results from Friedland et al. (2003).

Electrons are simulated coming from an ellipse enclosing the bacterial cell (of the same

dimensions as the cell) with energies between 1 and 990 keV, distributed approximately

logarithmically. The angular distribution of electron trajectories coming from the cell surface

follows a cosine law, which simulates an isotropic radiation environment. For each energy,

enough events were run to deposit at least 20 MeV in the target volume, which would typically

cause at least 200 DSBs. The typical statistical variation between equivalent simulation runs

was 0.001 DSB Gy 1 Mbp 1 with this threshold for the number of events. Under these

conditions, a limited number of simulations were also run with protons having energies up to

30 MeV in order to provide a point of comparison to other simulation work.

In order to better understand the modelling of scavenging, we again considered only radi-

cals created very close to the DNA chain. Simulations were made at 1, 10, 100 and 990 keV,

only simulating radicals within 1 nm of DNA, to provide a comparison of how distant

(scavengeable) radicals impacted break yields. Again, simulations were run to ensure at least

20 MeV cumulatively was deposited in the chromosomal region.

3.5.1 Results

Before we consider double strand break yields in relation to experimental data, we consider

our yields of direct and indirect strand breaks in relation to the simulations of Meylan (2016)
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and Friedland et al. (2003). These two simulation platforms show, like us, that the majority

of strand breaks result from indirect damage, in contrast to Nikjoo et al. (1997), whose

work served as a point of comparison for our parameter sweeps. In Figure 3.35 (left panel),

we show that our yields of direct and indirect strand breaks compare favourably to these

two platforms for 10 MeV protons. As the PARTRAC platform, presented by Friedland

et al., considers physical strand breaks to be induced by a linearly varying probability, from

energy deposits starting at 5 eV up to a maximum of 37.5 eV, we have ran our simulations

under this condition, as well as the 17.5 eV fixed break induction threshold (also used by

Meylan). The change in the threshold for physical damage causes a significant change

in the yields of direct breaks, as was indicated in our parameter testing. The 17.5 eV

threshold better approximates the physical damage of Meylan, and the variable threshold

better matches the PARTRAC results. Differences in the interpretation of chemical damage

between each platform are responsible for the variations in indirect damage between our work

and the other platforms. When compared across a range of particle energies (Figure 3.35

right), we consistently underestimate the direct damage yield from PARTRAC, though this

underestimation is consistent with that which arises when using a 17.5 eV break induction

threshold rather than a variable threshold. Indirect damage in general compares well to

that observed by PARTRAC, though a disagreement is seen at high LETs where PARTRAC

would suggest indirect damage effects start to decrease.

The yields of strand breaks for the different energies considered are shown in Figure 3.36.

For low energy electrons, DSB yields are noticeably higher than for high energy electrons,

where the break yield plateaus around 0.010 DSB Gy−1 Mbp−1. These yields are lower than

we found in our parameter sweeps and comparisons to (Nikjoo et al., 1997), likely due to

simulating a fully continuous geometry. The yields of strand breaks compare well to those

measured previously in bacteria. Bonura et al. (1975) measure using low LET 50 kVp X-rays

a break yield of 0.01 DSB Gy−1 Mbp−1, consistent with what we measure across the range

10−100 keV.

As has been mentioned previously, the modelling of scavenging can play a large role

in the results obtained. The results we have shown represent a modelling approach which

considers damage from radicals across only 1 ns, corresponding to an •OH diffusion distance

of 4 nm, and a high scavenging efficiency similar to that found in cells due to scavenger

proteins. DNA folding and binding proteins also pay a large role in scavenging radicals

beyond scavenger proteins, and it is worthwhile to consider in simulation only the non-

scavengeable damage as a point of comparison. Thus, also shown in Figure 3.36 are yields

where a 1 nm chemistry simulation radius has been considered. This reduces significantly

the total yield of SSBs and DSBs (Table 3.5), producing DSB yields consistently around
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Fig. 3.36 SSB yields (left) and DSB yields (right) in E. coli from electron irradiation,

considering chemistry within both 4 nm and 1 nm of the DNA molecule. Bonura et al. (1975),

Ulmer et al. (1979) measure damage in E. coli from a photon source. Folkard et al. (1993)

measures electron damage in plasmids, and Shiina et al. (2013) measures X-ray damage in

plasmids with high scavenger abundances (the electron energy was chosen to have a similar

LET). Yields are also compared with simulation data for low energy electrons (Nikjoo et al.,

1997) and 30 MeV electrons (Friedland et al., 2003), as well as some plasmid measurements

from electrons (Folkard et al., 1993) and X-rays at cellular (S13-CS) and high (S13-HS)

scavenger concentrations (Shiina et al., 2013).
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Fig. 3.37 SSB/DSB ratios for the data sets considered in Figure 3.36. Plasmid data (F93,

S13-CS, S13-HS) is generally well reproduced by Geant4-DNA, however we underestimate

the SSB/DSB ratios produced by other simulations (N97, F03).
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Table 3.5 Impact of considering only radicals created close to DNA, mimicking unscavenge-

able damage.

rchem = 1 nm rchem = 4 nm

Energy SSBs DSBs SSB/DSB SSBs DSBs SSB/DSB

(keV) (Gy−1 Mbp−1) (Gy−1 Mbp−1) - (Gy−1 Mbp−1) (Gy−1 Mbp−1) -

1 0.054 0.007 7.8 0.118 0.015 7.6

10 0.057 0.006 13.0 0.155 0.010 16.0

100 0.057 0.006 14.8 0.166 0.010 16.8

990 0.061 0.002 24.5 0.161 0.009 17.5

0.006 DSB Gy−1 Mbp−1. This value is consistent with break yields from 60Co γ-irradiation

of E. coli measured by sedimentation analysis (0.006 DSB Gy−1 Mbp−1, Ulmer et al.,

1979), but underestimates values found (also for 60Co γ-irradiation) via pulsed field gel

electrophoresis (0.002 DSB Gy−1 Mbp−1, Daly et al., 2004). This last value seems a little

low, especially given gel electrophoresis is known to sometimes underestimate DSB yields

(Prise et al., 2001), however we still manage to produce it in simulation for very low LET

electrons.

Averaged across the whole cell simulated, 10 keV electrons have an LET of 4.8 keV μm−1.

A comparison can be made then between the rchem = 1 nm simulations and plasmids in very

high scavenging environments. In particular, Shiina et al. (2013) consider X-rays with a sim-

ilar LET (4 keV μm−1), and find the yield of DSBs to be 0.010±0.03 DSB Gy−1 Mbp−1

and the SSB yield to be 0.124±0.013 SSB Gy−1 Mbp−1. These are both higher than our

yields, though our DSB yield at 10 keV is at the lower bound of the measured uncertainty.

For both values of rchem considered, the ratio of single to double strand breaks induced by

electrons measured by Folkard et al. (1993) compares quite well to our simulations. However,

when considering the yields of SSBs and DSBs on their own, Folkard et al. produce yields

significantly in excess of ours, more resemblant of the yields we record when we consider

our test geometry. By assuming that high scavenger densities can be modelled by only

simulating radicals less than 1 nm from DNA, we were able to reproduce experimental

SSB/DSB ratios made with high scavenger abundancies (Figure 3.37, see the comparison

to S13-HS). We consistently however underestimate the SSB/DSB ratios produced by other

simulation works. Furthermore, we find that simulations conducted with radicals out to 4 nm

better reproduce SSB and DSB yields seen in other simulations and in plasmid experiments,

however we underline that, especially when comparing raw yields to plasmid yields, the

differing geometries could be responsible for part of the difference.

The structure and source of strand breaks has some dependence on the energy of the ir-

radiating electrons, particularly for low energy electrons (Figure 3.17). Notably, very low
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energy electrons are more likely to cause DSBs than high energy electrons. The distributions

seen here echo largely the findings seen in our parameter sweeps, as expected as break

classification is not highly dependent upon the global geometry.

3.5.2 Discussion

These results represent the first complete simulation of mechanistic DNA yields in a bac-

terium. We achieved this by developing a versatile simulation platform built as part of

the Geant4-DNA framework, that can easily accommodate a wide variety of geometries. This

work establishes the adequacy of this application for mechanistic DNA damage simulations,

in particular we have shown good agreement with experimental results with a minimum of

parameter tuning, having rather focused our parameter set on parameters that correspond

well to those identified in previous simulation studies.

An interesting observation from this study is the significantly lower damage yields seen

in the E. coli model compared to both plasmid damage yields, and our test geometry. Naïvely,

one would expect that as damage yields are normalised by the number of base pairs in

the geometry, damage yields are universal, however the large scale geometry of DNA can

frustrate this assumption, particularly when the DNA being considered is non-continuous.

Damage yields grow as the number of independent DNA segments that are hit increases.

This is proportional to the density of DNA, but is also a function of the geometry. In cellular

geometries, the overall continuity of the DNA imposes some restrictions on how many DNA

segments can coincide with a track, whilst in a random geometry, one track can cover many

more segments of DNA for a given DNA density. The same is true for plasmids, which

in terms of geometrical order sit somewhere between cellular DNA, and randomly placed

DNA segments. This was briefly tested by running bacterial DNA simulations with both one

quarter and twice the typical bacterial DNA density, and for the cellular geometry, we found

that yields were independent of the DNA density because the large scale packing order was

preserved.

Our measured strand break yields are in good agreement with experimental data measur-

ing radiation induced strand breaks in E. coli. Such measurements for photon sources suggest

a DSB yield between 0.002 and 0.010 DSB Gy−1 Mbp−1, which matches our predictions,

albeit across a range of different considerations for scavenging conditions. For electron

induced damage, data exists only for plasmids, thus largely due to the different geometry

of plasmid DNA compared to bacterial DNA, absolute damage yields are not comparable,

however the ratio of SSBs to DSBs may translate. Our results, regardless of whether radicals

far from DNA are killed or not are in excellent agreement with low energy electron damage
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Fig. 3.38 The distribution of strand breaks by type and complexity in E. coli for different

energies. Hybrid and mixed DSBs are considered together.
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yields measured by Folkard et al. (1993), and correspond well to damage from X-rays of

similar LET to 10 keV electrons measured by Shiina et al. (2013).

The breakdown of damage yields by source is again, in disagreement with that found

by Nikjoo et al. (1997), but in quite good agreement with that observed in the PARTRAC

simulation platform (Friedland et al., 2011, 2003) and the work of (Meylan, 2016). At low

LETs, the majority of damage should come from indirect sources (e.g. Hirayama et al., 2009),

a conclusion that Nikjoo et al. do not match. Meylan ran simulations using the Geant4-

DNA toolkit, and thus differences between our work and his come from differences in

the sensitive volume considered for direct damage, the physics list used (default or option 4),

and the treatment of chemistry. In particular, Meylan overestimates the reaction rate between
•OH radicals and the DNA backbone, by considering reactions with deoxyribose rather

than deoxyribose-5-phosphate (which better approximates DNA structure), and chooses

a poorly motivated SSB induction efficiency. The incredibly tight agreement between

the total break yields measured by Meylan and the PARTRAC work seems suspiciously

tuned in this regard. It’s worth highlighting that our work was built around assumptions

based on establishing the parameter set most equivalent to that used by Nikjoo et al., and

the only change we need make in order to produce an agreement with both direct and indirect

break yields in PARTRAC is to the physical damage induction model, a factor which we

know from parameter sweeps can cause large variations in physical damage yields (c.f.

Figure 3.20). At high LETs, we do not observe as significant a drop in DSB yield as is

seen by PARTRAC, which is possibly due to errors modelling chemistry at high LET. When

radicals are extremely abundant, modelling radiolysis via a particle based approximation

can introduce errors, and more accurate simulations can be realised by considering radical

concentrations and concentration gradients.

Simulation of only radicals created in very close proximity to constituent DNA molecules,

in an attempt to model only unscavengeable radical damage lowered radical yields from

a lower limit of ≈ 0.010 DSB Gy−1 Mbp−1 to ≈ 0.006 DSB Gy−1 Mbp−1. Across a wide

range of organisms, DNA damage yields are consistently around 0.005−0.006 DSB Gy−1 Mbp−1

(Daly, 2012), suggesting this is something of a natural limit to how much organisms can

naturally reduce the impact of ionising radiation on DNA. If this does reflect a natural limit,

it should almost be expected to be found when only non-scavengeable damage is considered,

as natural selection would tend to favour the development of cellular systems that scavenge

all radicals that can be scavenged.

This work was conducted in the context of investigating the impact of the natural radiation

background on bacterial cells, in order to limit their mutation rate. In Chapter 2, we showed

that the natural radiation background strikes a given cell in a 24 hour period with a probability
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of 6× 10−5. We also showed that this deposits, a median energy of 140 eV in a cell,

though Auger electrons can cause 600 eV and 1.2 keV energy deposits with slightly elevated

frequencies. For the cell considered in Chapter 2, a median dose absorbed of 10 mGy is found,

suggesting every encounter of the cell with ionising radiation induces ≈ 5×10−4 DSBs and

≈ 6×10−3 SSBs. Thus the frequency with which DNA is actually damaged by the radiation

background in bacteria is extremely low. In this context, it is really only rare events that

deposit significant amounts of energy which are going to be responsible for DNA damage.

For a 140 eV energy deposition, the amount of energy required to induce two strand breaks

near each other as a fraction of total energy deposited is a significant fraction of the energy

deposited, and given such deposits typically come from low LET events that do not have

tightly correlated spatial energy depositions.

It has been speculated that Auger electrons emitted following the electron capture (γ emis-

sion) decay of 40K could be highly mutagenic (Moore & Sastry, 1982). These electrons have

energies from 2.5−3.2 keV, the majority of which would be deposited in the cell (Bé et al.,

2010, 1999). At a maximum though, we estimate that these electrons would cause around

≈ 0.05 DSB decay−1, based on simulations of randomly oriented 4 keV electrons, which

while significant, is significantly reduced in impact by the infrequence of electron capture

decays occurring inside a bacterium ≈ 2×10−9 day−1.

Based on this analysis, we can conclude that mutations that have their origin in the ra-

diation background are exceedingly rare. It is difficult to correlate SSBs and DSBs with

mutation events, and nearly impossible to correlate them with beneficial mutation events,

but we can limit the frequency with which radiation causes DNA to break (via SSBs or

DSBs) in bacteria to ≈ 4×10−7SSB day−1 cell−1. Because of the uncertainty in our mea-

surements of DNA damage yields, which depend on a number of inexact parameters, we

stress the approximateness of this number. Nevertheless, as an order of magnitude estimate,

we can see that DNA damage events are exceedingly rare where the radiation background is

considered. Given the rarity of DNA damage events, it is qualitatively likely that changes in

the radiation level will manifest themselves in the regulation of cellular processes, measurable

through gene regulation and protein abundances, rather than through genetic damage, or

evolutionary changes. This finds implicit support in environmental measurements in high

radiation environments such as Chernobyl (Galván et al., 2014), and underground biological

experiments (Castillo et al., 2015).
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3.6 Conclusions and Perspectives

The work conducted in this chapter supports our conclusions from Chapter 2, namely that

the ionising radiation background contributes negligibly to the mutation rate, are further

supported in this investigation. SSBs and DSBs are significantly rarer than interactions

between cells and background radiation sources. Because of this rarity, it is probable that

if small changes in the radiation background are to influence living systems, these changes

will manifest themselves in regulatory systems, rather than genetic changes. Biological

systems are complicated though, and these claims require experimental examination, which

is the target of Chapter 4.

This chapter has also delivered a Geant4 user application that combines physics, chemistry

and user-defined cell geometries in one flexible simulation package. This is a considerable

milestone in the Geant4-DNA project, and permits many experimental systems to be explored

in simulation. By adapting the geometries we have defined here, chromatin structures may

be defined as well as plasmids. Clever use of the underlying file definition structure could

even allow users to define complex DNA loop structures, and full chromosome domains for

human cells. As work proceeds to better predict the mechanical causes of DNA damage,

this has the potential to be quite useful in bridging the gap between heuristic models of cell

death, such as the local effect model, and the underlying causes of cell death. A longer

term extension of this would be towards using Geant4-DNA to measure radiation induced

damage to other cell structures, such as proteins and membranes. This may be of particular

importance to the study of how gold nano-particles can increase the effective dose in a region,

for example.

The DNA damage measured in these simulations is based on parameters that were chosen

for their compatibility with existing simulation platforms. However, these parameters are

essentially based on fits to data, and a certain level of a posteriori logic. In many ways this is

necessary, in order to develop mechanistic DNA damage simulations, and is a consequence

of any one group lacking the resources to thoroughly explore the vast array of reaction

rates and damage models that are possible in these simulations. It is hoped that by sharing

the application developed here with the community, a wide parameter space will be explored.

Tightly controlled experiments may be devised to assess where the assumptions behind

many of the parameters we chose break down, and how the underlying physics models can

alter results. Assumptions about scavenging and DNA damage can also be tested in a wide

range of conditions, allowing, in general, a far better understanding of how radiation induces

biological damage.





Chapter 4

Long Term Evolution Experiments in
Different Radiation Environments

Radiation can undoubtedly trigger mutations in DNA, but its effect on evolutionary time

scales is difficult to quantify. Many coincidences can be pulled together to make the case that

radiation is a driving force in evolution. Early multi-cellular life is thought to have appeared

in Gabon (El Albani et al., 2010, 2014) in close proximity to the Oklo natural fission reactor

(Gauthier-Lafaye et al., 1996), and Potassium-40 has been hypothesised to have played a role

as a primordial gene irradiator (Moore & Sastry, 1982).

More broadly though, the radiation background is an environmental factor to which

life adapts. Genetic and epigenetic changes have been seen repeatedly in the Chernobyl

environment, and are hinted at by experiments conducted in underground laboratories, which

effectively suppress the base level of radiation on earth to which most life has adapted.

Extremophiles provide an even more intriguing picture of how ionising radiation can shape

life. The bacteria Candidatus Desulforudis audaxviator, which lives in single species colonies

deep underground, metabolises molecules in minerals produced by radiolysis from Uranium,

Thorium and Potassium decay (Atri, 2016; Chivian et al., 2008). Deinococcus radiodurans
has adapted extreme radio-resistance due to exposure to extremely oxidative conditions

(Battista, 1997), as has the multicellular tardigrade, a consequence of its ability to withstand

incredibly dry environments (Beltrán-Pardo et al., 2013).

The impact of different radiation environments on living systems is measurable in vivo
by studying different ecosystems with different radiation levels. On earth, the radiation level

varies from that found in protected underground spaces to the very high levels that are found

in areas where artesian groundwater rich in Radon leeches high radon into the air1.

1The highest reported background radiation level is from Ramsar, Iran, where radiation-rich groundwater

contributes in some regions to a background absorbed dose of 30 μGy hr−1 (Ghiassi-nejad et al., 2002)



140 Long Term Evolution Experiments in Different Radiation Environments

Significant work has been carried out in the Chernobyl environment to quantify how the

large release of radiation in this disaster has impacted the local environment. Interestingly,

long term census data reveals that the density of large mammals in the Chernobyl zone is

not suppressed due to the higher natural radiation levels present, nor is mammal abundance

negatively correlated with radiation dosage (Deryabina et al., 2015). Meanwhile, many

organisms studied, ranging from bacteria and plants, to arachnids and birds have shown

adaptations to the environment. Across a variety of avian species at Chernobyl, amongst

them barn swallows and great tits, enhanced adaptation to oxidative stresses has been noticed

in populations with chronic radiation exposure (Galván et al., 2014). Despite this positive

adaptation, a significant (23%) fraction of adult barn swallows in the Chernobyl area were

non-reproducing. This is a significantly increased fraction of sterile adults compared to that

in similar unpolluted environments (Møller et al., 2005). The same study finds that annual

adult survival, hatching success and brood size were also reduced amongst barn swallows

in the Chernobyl region. Examining plants, Boubriak et al. (2008) showed that haploid

(birch pollen) and embryo (seeds from evening primrose) cells in γ/β -emitter contaminated

environments adapted to their new radiation environments, possibly by improving their

DNA repair capabilities. Intermediate levels of radiation (450 nGy hr-1) near Chernobyl

caused bacteria found in the feathers of barn swallows to show heightened radioresistance

compared to a control population (Ruiz-Gonzalez et al., 2016). E. coli collected from near the

Chernobyl power station have been shown to be significantly more resistant to X-rays, UVC

radiation and the mutagen 4-Nitroquinoline 1-oxide compared to samples from a control site

(Zavilgelsky et al., 1998).

Work done in underground laboratories supports the idea that changes in the radiation

environment can cause adaptive changes in cells. In Chapter 1 recent research in underground

laboratories has been summarised. Amongst the key findings however have been lower

growth rates for simple organisms such as D. radiodurans and Shewanella oneidensis in

low background environments (Castillo et al., 2015), as well as Paramecium tetraurelia and

Synechococcus lividus (Planel et al., 1987). Reduced tolerance to radiation exposure and

reduced antioxidant abundancies have been noticed in long term experiments in mammalian

cells grown in the Gran Sasso National Laboratory (Carbone et al., 2009; Fratini et al., 2015;

Satta et al., 1995, 2002).

The mechanisms of the changes that occur when cells are introduced to low background

environments remain unexplained. It is quite possible that these responses, taken together

with the ensemble of unorthodox responses of cells to low doses, such as bystander effects

(Morgan, 2003a,b), genomic instability (Dubrova, 2003; Limoli et al., 1999) and radiation

hormesis (Calabrese & Baldwin, 2003; Feinendegen, 2005; Kudryasheva & Rozhko, 2015)
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share a common origin in protecting cells from the rare but catastrophic consequences of

radiation exposure. A key difficulty in assessing this is the lack of a viable model organism

that can serve as an experimental control when radiation backgrounds are changed. It is

possible that such a model species does not exist in a practical sense, and thus biological

processes that are well understood are needed to enable the exploration of the radiation-

response of life at low doses. In this thesis, we examine the extent to which evolution can

be used as a tool to probe the low background radiation response of life on long time scales.

In working with E. coli, we are also able to begin to assess to what extent it is suitable as a

control organism in different low radiation environments.

Examining the role that evolutionary studies can play in assessing the impact of radiation

on life serves two purposes. While in the preceding chapters we have shown that ionising

radiation is unlikely to be a significant contributor to the mutation rate, which is dominated

by biological processes, it can be an agent to which cells adapt. This theoretical assertion

however requires experimental validation. Long term evolution experiments in different

radiation environments can assess this. In relation to low background studies, the first

hypothesis we seek to test then is that reducing the radiation background does not significantly

slow evolution, or more precisely, the rate at which beneficial mutations become fixed in a

clonal population. Answering this question elucidates furthermore, at a crude level, whether

background radiation environment on earth has been a significant driver of evolution.

If it is the case that evolutionary dynamics play out similarly in reduced and normal

radiation background environments, then the mechanisms behind changes that occur in

cellular systems in response to low radiation environments may be able to be explored via

evolutionary experiments. It is not known if the changes that occur in these systems appear

in a binary way, manifesting only below a certain threshold, or gradually. Nor is it clear if

they always appear instantaneously. Resolving the apparition changes in response to a low

background radiation changes in time allows them to be better studied. Combining this with

the common practice of long term evolutionary studies of preserving organisms at various

time points allows genomes and phenotypes before and after the apparition of behavioural

changes to be explored.

In this chapter, we present a brief discussion of fitness trajectories and mutation rates,

as these underpin the observations that we make in our experiments. This discussion draws

on both mathematical predictions and controlled evolution experiments that study changes

in mutation rates. Our specific hypotheses for a long term evolution experiment conducted

in standard and low background radiation environments are then specified, framed by these

works. Next, our experimental methods are presented, before our results. We finish with a

discussion of the results and their implications for both the understanding of evolution at a
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general level and their impact on future long term evolution experiments in varied radiation

environments.

4.1 Fitness Trajectories and Mutation Rates

Fitness is a measure of the competitive advantage of a population in an environment. Naturally

it is a relative measure, detailing the advantage of one population relative to another. An

absolute fitness can be defined however as the advantage of one population relative to its

ancestor at a set time2. The idea of fitness landscapes, and the step-like increases in fitness

that are observed in long term evolutionary experiments have already been presented in

Chapter 1. Here we talk about them specifically in relation to how they relate to an LTEE run

in different radiation environments as an experimental end-point.

In Chapter 2 we quantified the impact of changing the radiation background level on the

time frequency with which radiation tracks hit cells. Between the LPC and LSM, there is

a 7-fold decrease in the frequency with which cells are impacted by ionising radiation. A

7-fold decrease in the mutation rate ought to be experimentally verifiable, however at the

ambient radiation level, endemic biological mutations outstrip any estimated upper limit

on mutations caused by ionising radiation by a factor of at least 100 (Barrick et al., 2009;

Drake, 1991; Lampe et al., 2016). Based on these numbers alone, removing the radiation

background shouldn’t cause a change in the evolutionary comportment of bacterial systems.

While unlikely, it is possible that radiation, by virtue of its ability to significantly damage

DNA can have a much stronger ability to cause unique mutations that confer evolutionary

benefits. A controlled evolution experiment in different radiation environments can show

this. Using the LSM and LPC as environments, this requires that the experiment chosen be

capable of discriminating an approximately 7-fold change in the mutation rate.

LTEE’s have the capacity to distinguish changes in the beneficial mutation rate based on

changes in competitive fitness that occur as a population develops in a fixed environment.

These ideas are introduced in Section 1.4. Specifically, a well designed LTEE that hopes to

observe different fitness behaviours in above and below-ground environments should show

different fitness curves (c.f. Figure 1.9). The dynamics of fitness curves can be understood

mathematically. In particular, the selection rate of beneficial mutations is dependent upon

not just the mutation rate, but also the population size. As the supply of beneficial mutations

increases, either by increasing the mutation rate or the population size, the changes in the

fitness curve become less and less pronounced, as the population becomes overwhelmed by

clones ‘interfering’ with each other.

2In a sense though, this is just fixing one relative fitness as the fitness by which all others are measured.
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Fig. 4.1 Population size and the beneficial mutation rate both impact the rate at which

mutations can become fixed in a population. For large population sizes, even large changes

in the beneficial mutation rate will not necessarily cause a change in the selection (fixation)

rate. (Adapted from Gerrish & Lenski, 1998).

4.1.1 Mathematical Predictions

The dynamics of evolving E. coli populations require an understanding of clonal interference.

In a sexual population, mutations are shared between members during reproduction. In a

clonal population, the mechanisms that permit this are fewer, though horizontal gene transfer

notably can occur in E. coli (we use a strain where this is negligible). As a result, fixation of

a mutation in a population requires that an ancestral bacterium undergoes a mutation, and

that its progeny subsequently come to dominate the population. If one beneficial mutation

arises in one cell, and another in a different cell, the two cells cannot share their mutations

with each other, and for fixation to occur, one cell’s children must ultimately out-compete the

other’s.

A consequence of this is that as the size of a clonal population increases, the rate at which

beneficial mutations are selected decreases. This has been well explored by Gerrish & Lenski

(1998), and its consequences have been widely discussed (Lenski et al., 1998; Sniegowski

et al., 2000). In particular, Gerrish & Lenski built a mathematical model of a competing

asexual population which demonstrates how clonal interference impacts the selection and

fixation of beneficial mutations when the population size, mutation rate, and comparative

advantage of mutations are changed. In Figure 4.1, the impact of the beneficial mutation rate

and population size on the selection rate are shown. The selection rate corresponds to the

rate at which beneficial mutations become fixed in our LTEE, and is thus the determining

parameter for when steps are likely to occur in a fitness trajectory.

We are trying to determine whether radiation-induced mutations are responsible for the

evolutionary behaviour of E. coli. Gerrish & Lenski estimate that in the original LTEE we

mimic (Lenski et al., 1991), the beneficial mutation rate, μB is μB = 2× 10 9 beneficial
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mutations per replication. Given our two radiation environments likely induce a 7-fold change

in the mutation rate, it is important in designing our experiment that the effective population

size we use is not larger than N = 107, or else any changes in the beneficial mutation rate

caused by the radiation environment may go unnoticed due to clonal interference.

Since Gerrish & Lenski’s analysis of clonal interference, other mathematical models have

been developed to explain the behaviour of fitness curve. These are summarised well by

Sniegowski & Gerrish (2010) who highlight that the original work by Gerrish & Lenski is

built around a framework where selection of beneficial mutations is comparatively strong,

while their frequency of occurrence is relatively weak. This contention has become contested

over the last decade, as experimental work has indicated that beneficial mutations may not

be as rare as once thought Perfeito et al. (2007). Experiments in yeast (Joseph & Hall,

2004; Wloch et al., 2001) indicate that between 2% and 5% of mutations are beneficial, and

Sniegowski & Gerrish (2010) were able to model the Lenski LTEE with a beneficial mutation

rate of μb = 5.7×10−5.

These more recent developments complicate the estimates spoken about earlier which

may guide the development of our controlled evolution experiment. Fortunately, experimental

work has been done within the cadre of the Lenski LTEE that can guide us in reproducing

his work at low backgrounds. A key parameter here becomes the supply of mutations S, the

product of the mutation rate μ and the population size:

S = μN (4.1)

At very low mutation supply rates, the speed with which a population adapts to an envi-

ronment will rapidly grow as S increases, whilst at higher mutation supply rates, clonal

interference ought to cap the speed at which populations can adapt to a medium. Ideally, we

would like S to be such that, in our experiment, a 7-fold change in the mutation rate causes a

significant change in the fitness curve. We can turn to the experimental work of de Visser

et al. (1999), who have investigated how varying mutation supply rates impact the rate of

change of fitness.

4.1.2 Experimental Predictions

As part of the Lenski LTEE, de Visser et al. (1999) explored how different mutator genes

spliced into E. coli as well as different population sizes changed the development of fitness

over 1000 generations in a series of LTEE’s with different population sizes and mutation

rates. Mutator genes can disrupt the fidelity of gene transcription or DNA repair to alter the

mutation rate (e.g. Sniegowski et al., 1997). In de Visser et al.’s work, two mutator genes
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Fig. 4.2 When the mutation supply rate is changed, the rate of change of fitness also can

change. The left hand panel shows the fitness relative to the ancestor for (A) small effective

population sizes (hollow diamond sr = 1, hollow squares sr = 3.3, hollow triangles sr = 34.9)

and (B) large effective population sizes (filled diamond sr = 50, filled squares sr = 165, filled

triangles sr = 1745). The right hand panel shows the rate of change of fitness with relative

mutation supply rate in a population that was unadapted to the growth medium (A) and

one that had already spent 10,000 generations adapting to the medium (B). The region

highlighted in red shows the range of relative mutation rates probed by our LTEE if radiation

is a significant driver of beneficial mutations. Relative mutation supply rates Sr are given

relative to that of a population with an effective size of 3.3×105 cells with no introduced

mutator genes. Adapted from de Visser et al. (1999).

were used to vary the mutation rate, mutY, which increases the mutation rate by 3.3, and

mutS, which can increase the mutation rate by a factor of 35. Additionally, one set of cell

lines was studied that had already become well adapted to the growth cycle used in the LTEE,

alongside one set of ancestral REL606/REL607 cells.

Figure 4.2 shows the results of de Visser et al.’s study. The rate of change of fitness, a

proxy for the selection rate of beneficial mutations becomes flat for high effective population

sizes and high mutation rates. The rate of change of fitness was also quite close to zero

for experiments conducted using the populations that were already well adapted to the

experimental conditions.

Influenced partially by these results, we have conducted our evolution experiments with

an effective population size of N = 2.5×106, and our baseline mutation rate is the same as

that in the Lenski LTEE. In Figure 4.2, the span of mutation supply rates that apply to our

experiment is highlighted in red. The upper limit on this marks the relative supply rate of the
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LPC population, where the effective population size is 3.8 times higher than that used by

de Visser et al. for their ‘small’ population. Compared to de Visser et al., the relative mutation

supply rate in the LPC then is sr = 3.8, and in the LSM may be as low as sr = 0.5 if radiation

is significantly responsible for mutations (that is, μB, LPC = 7.3μB, LSM). As this falls in the

region where rate of change of fitness is significantly dependent upon mutation supply, it is

highly likely that our LTEE will show significant differences between the two environments

if ionising radiation plays an important role in the selection of beneficial mutations.

4.1.3 Summary of hypotheses

Based upon these works, we can now write the hypotheses that our experiments hope to show.

From our work in Chapter 2, mutations occur far more frequently than ionising radiation

interacts with cells, thus it is likely that both populations will evolve the same way and their

fitnesses at the end of a 500 generation fitness experiment should be indistinguishable. We

have built our experiment though to detect a difference in the mutation rate between both

environments through the fitness curve. Thus, the hypotheses of our experiment can be

summarised in the following points:

1. A significant difference in the fitness of the two populations after 500 generations

means that radiation environments affect the selection of beneficial mutations.

2. If the fitnesses of the two populations are non-distinguishable after 500 generations,

radiation may affect our populations, but in ways that are not measurable with fitness.

3. The null hypothesis is that the two populations have the same fitness after 500 genera-

tions.

4. Based on our work in Chapter 2, we do not expect to be able to reject the null hypothesis,

as this work suggests that the mutation rate is dominated by biological factors, and

we have no strong a priori reason to believe the radiation damage strongly favours

beneficial mutations.

The last point above is well supported by other LTEE work. Drawing again from de Visser

et al. (1999) we see that changes in the selection of beneficial mutations are achievable by

just changing the mutation rate, independently of the level of radiation. Nevertheless, low

dose radiobiology experiments have shown unorthodox results in the past, so we believe

that despite evidence to suggest that the null hypothesis cannot be rejected, it remains a

possibility.
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Fig. 4.3 Layout of independent bacterial lines on a 96-well microplate throughout the

experiment. The well labelled C-0 contains 1.5 mL of pure DM250 as a control. C-1 also

contains 1.5 mL of DM250 as well as a 5 μL aliquot of the previous days control.

4.2 Method and Experimental Protocols

At both the LPC and LSM, 800 generations of E. coli were grown following a method

similar to that used by Lenski et al. (1991). In each environment, 12 independent lines

of REL606, and 12 independent lines of REL607 were grown. The bacteria were grown

in a 96-well microplate (Greiner Bio-One 780271), in 1.5 mL of Davis Medium (Carlton

& Brown, 1981) containing 250 mg mL 1 glucose (DM250). DM250 typically sustains a

maximum population of 5×108 cells mL 1. Daily transfers to a new medium placed 5 μL of

bacteria from a maximally dense solution into fresh DM250, giving an effective population

size of 2.5×106 cells. Between the start of each daily cycle and the bacteria reaching their

maximum density, 8.23 generations pass. Regular fitness assays were made comparing the

evolved cells to the ancestral strains.

REL606 and REL607 are two near identical E. coli strains derived from E. coli B

(Jeong et al., 2009). Notably, REL606 has the genotype Ara , preventing it from digesting

the sugar arabinose. REL607 is a spontaneous mutant of REL606 that is Ara+ and can

metabolise arabinose. When grown on tetrazolium-arabinose (TA) agar plates, the Ara+

strain excretes acetic acid as a consequence of arabinose metabolisation, which acidifies the

area surrounding the colony. This changes the otherwise red tetrazolium indicator to white.

In this way, REL606 and REL607 are distinguishable when grown on TA plates, as REL606

appear a dark red, whilst REL607 grown a light red or pink. Importantly, this one mutation

does not have any impact on the behaviour of either REL606 or REL607 when grown in

DM250 (the mutation is fitness-neutral).

In the sections below, the overall principal of our LTEE is explained, before detailing the

protocols used within these experiments to grow bacteria daily, pause and restart the experi-
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Fig. 4.4 Bacteria follow a cyclic growth pattern every day, beginning in the lag phase where

they repair damage sustained in the preceding stagnation phase, and prepare to enter the

growth phase. In the growth phase, cells grow exponentially until the nutrients present in the

culture medium are depleted, whereupon the cells enter the stagnation phase. Here growth is

halted, and cells typically enter a stressed state (reproduction of Figure 1.6).

ment using frozen plates, and conduct fitness assays. Additionally, every 100 generations,

the contents of each well was diluted and spread onto a TA agar plate to ensure that there was

no cross-contamination between the REL606 and REL607 lines. All growth experiments are

conducted on a 96-well microplate with 24 independent lines arranged as shown in Figure

4.3.

4.2.1 Experimental Principle

In our LTEE, bacteria undergo repeated 24 hour cycles of acclimatisation to a fresh culture

medium, growth, and then stagnation. This cycle (Figure 4.4) provides a cyclic stress which

acts as a selective pressure on the cells. Every day, a 5 μL aliquot of each bacterial line is

taken from the previous days solution and placed in fresh culture medium. In this way, cells

experience a lag phase, adapting to a new medium, followed by a growth phase before finally

a stagnation phase which occurs when the glucose in the solution is depleted. Following the

daily transfer, cells recommence in the lag phase.

Over time, spontaneous mutations occur in the cell population, some of which are

beneficial. These confer an advantage upon the cell, and there is a chance that a sub-

population of cells with this mutation can dominate the population. When a single, new

mutation is present in the vast majority of cells in a population, it is said to be fixed. This
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Fig. 4.5 In the LTEE we consider, daily transfer are made from a solution saturated with

E. coli to a fresh growth medium each day. Spontaneous beneficial mutations can appear

that over time and repeated transfers come to dominate the population. Here, a mutation

fixing itself in the population is shown using colours, as the fraction of the flask which is red

increases until the red, evolved strain of REL606 dominates entirely the original population

of ancestral (blue) REL606.

scenario is illustrated graphically in Figure 4.5, where a mutation in the ancestral strain of

REL606 comes to dominate the population.

The fixation of a mutation in a population can be measured by studying the fitness of

the bacterial population relative to its ancestor. The mutations that become dominant in

the population typically cause an increase in the fitness of the population, as beneficial

mutations are significantly more likely to reach fixation than non-beneficial mutations. In

order to measure fitness, regular assays are performed every 100 generations which compare

how much better an evolved population grows in DM250 than the ancestral population. As

ancestral REL606 and REL607 have the same behaviour when grown in DM250, the fitness

of evolved REL606 strains is measured against ancestral REL607 strains and vice versa. This

allows the bacteria to be placed in competition and also distinguished when grown on TA

plates. The number of REL606 and REL607 colony forming units (CFUs) is measured by

plating the bacteria at the beginning and end of each growth cycle (Figure 4.6).

The fitness is calculated by considering the relative growth rates of the evolved strain

and the ancestral strain. Growth rates are typically considered in log-space, so considering

the number of evolved NE and ancestral NA CFUs at the beginning and end of the 24-hour

competitive growth cycle, the fitness, F can be calculated as

F =
log(NE, 24h/NE, 0h)

log(NA, 24h/NA, 0h)
. (4.2)

Fitnesses of F = 1 indicate that the growth rate of the ancestor and evolved strains are equal.

If F < 1 the evolved strain is less adapted to the environmental conditions than the ancestor,

and if F > 1 mutations have occurred that increased the growth rate in the environment
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Fig. 4.6 Fitness experiments are conducted by mixing an ancestral bacterial strain with an

evolved strain in a 1:1 ratio. At the start and end of a 24 hr growth cycle, the number of

colonies in the mixed sample are measured by spreading them on a TA plate. From this, the

growth rates for two strains can be found, and the fitness computed.

tested.

4.2.2 Preparation of solutions

DM250 Davis Medium was prepared in 1 L batches using pre-mixed Davis minimal broth

without dextrose (Sigma-Aldrich 15758). Davis Medium can also be prepared from its

constituent chemicals following the recipe in Carlton & Brown (1981). 10.6 g of Davis

broth powder was dissolved in 1 L of water and then autoclaved for 20 min at 121◦C. Next,

under sterile conditions, 1 mL of 0.2% thiamine (Sigma-Aldrich T1270) solution was added,

alongside 2.5 mL of 10% glucose solution (D-glucose, Sigma-Aldrich G7021). The final

solution can be kept refrigerated until needed for use.

TA Plates To prepare approximately 50 TA agar plates, 1 L of agar solution was required.

In a 1 L bottle, 16 g of agar, 5 g of sodium chloride, 10 g of tryptone and 1 g of yeast extract

were combined. The bottle was filled with 500 mL of water, and 1 mL of antifoam was

added, before mixing the solution well. 10 g of L-arabinose (Sigma-Aldrich A3256) was

added to a second 500 mL bottle, before filling the bottle with 500 mL of water. The two

bottles were autoclaved for 20 min at 121◦C.

Immediately after the autoclave cycle had finished, the 500 mL arabinose solution was
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poured into the agar solution, taking appropriate care given the mixtures were very hot.

Under sterile conditions, a workspace was prepared to pour the agar into Petri dishes. When

the agar solution reached 60◦C, 1 mL of a 5% tetrazolium chloride (Sigma-Aldrich T8877)

solution was added to the agar in sterile conditions. It is prudent to keep the agar in a heat

bath to ensure it is at the correct temperature before adding the tetrazolium indicator, as the

indicator is not thermostable and may change colour if it is added to a solution that is too hot.

After adding the tetrazolium to the agar, the solution was poured into Petri dishes. After the

Petri dishes were cooled, they were stored in a refrigerator until needed for use.

It is recommended that when Petri dishes are used in the LSM, they are placed in foil

before being placed in an incubator. The lower humidity inside the LSM has a tendency to

dry out the agar in each plate. This is prevented by wrapping the dishes in aluminium foil.

4.2.3 Starting the experiment from bacterial beads

The independent REL606 and REL607 lines were started from bacterial beads. 2 conical

flasks (25 mL each) were filled with 10 mL of DM2000 (identical to DM250, but with 20 mL

of 10% glucose solution added). Two frozen beads containing REL606 were added to one

flask, and two beads were added to the other. The conical flasks were then incubated at 37◦C

for at least 16 hr, agitated at 170 RPM.

At the end of the incubation period, for each line 100 μL of bacterial culture was mixed

with 900 μL DM250 solution and the optical density of this solution was measured. Based

on the optical density measured, a 25 mL bacterial solution was prepared (diluting the

bacterial culture with DM250) with a final optical density of 0.06. In each well of the 96-well

experimental microplate, the two bacterial lines were distributed according to the scheme

in Figure 4.3. 250 μL of diluted bacterial culture was placed in each well with 1.25 mL of

DM250. The microplate was covered with sterile adhesive film and incubated at 37◦C and

170 RPM for 24 hr, at the end of which the daily growth protocol was followed.

4.2.4 Using lines from a frozen microplate

When recommencing the experiment from lines stored on a frozen microplate, or using

frozen lines in a fitness assay, the frozen microplate was first removed from the freezer and

allowed to thaw for 15 min. Under sterile conditions, 1 μL inoculating loops were used to

transfer the frozen bacteria to the required wells on the new microplate. When this was done

to continue the daily evolution of bacteria, the scheme in Figure 4.3 was always followed on

the target plate.
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4.2.5 Daily Growth

For the daily experimental transfer of bacterial lines, each weekday, 5 μL of bacterial culture

was transferred in a sterile environment from each well on the microplate from the previous

day to a new microplate which had been prepared containing 24 wells filled with 1.5 mL

of DM250. Transfers were made using an 8-channel multipipette, transferring one column

of four wells at a time, so that transfer errors would manifest themselves as contamination

between REL606 and REL607 (these can be distinguished when grown on a TA agar plate).

Two control wells were used containing pure DM250 to identify daily whether an external

contaminant had spread to the plate. Following the transfusion, the plates were agitated for

24 hr at 170 RPM and 37◦C.

At the LPC, the agitation occurred in an incubator, whilst in the LSM cells were incubated

inside lead shielding consisting of a 10 cm lead exterior and 5 cm copper interior, in order to

shield the bacteria from terrestrial radiation in the laboratory.

Every 50 generations, all lineages were grown on TA plates to ensure that they contained

only pure REL606 or REL607. Every 100 generations, bacteria were frozen under glycerol

and stored below −25◦C.

At the end of each week, microplates were placed in a refrigerator at 4◦C until Monday,

when the daily growth was restarted. At the LSM, refrigerated microplates were stored in

copper shielding to provide some protection from ambient radiation. The shielding was a

minimum of 5 cm thick all around the stored microplate. The shielding was used to reduce

the likelihood of radiation-induced damage while the cell lines were under refrigeration,

though shielding during the refrigeration phase isn’t as necessary as it is during the growth

phase, as in this phase, DNA repair mechanisms are not active, making it significantly less

likely that cells that have been damaged while refrigerated can be viable for growth when the

experiment recommences.

4.2.6 Freezing bacterial microplates for storage

Bacteria were stored, frozen, in 96-well microplates following the scheme in Figure 4.3.

Storage in frozen plates was always performed after the transfer of lines to a new daily

growth plate when both storage for freezing, and daily transfers were performed on the same

day. When storing bacterial lines, each of the 24 wells to be filled with culture were first

filled with 300 μL of sterile 50% glycerol (Sigma-Aldrich G5516) solution, and 450 μL

of bacterial culture, in sterile conditions. After all the wells were filled, an adhesive filter

was placed on the microplate and the plate was wrapped in foil before being frozen. In the

LSM, the most recent frozen microplate was kept in a small radiation shield consisting of a
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minimum thickness 5 cm of copper all around the plate.

4.2.7 Fitness Assays

Fitness assays were made following the protocol defined by Lenski et al. (1991). Frozen

ancestral and evolved strains were recovered and grown in 1.5 mL of DM250 for 24 hr at

170 RPM and 37◦C. 6 replicates were made for each line defrosted, each one seeded using a

1 μL inoculating loop. The next day, a transfer was made to a fresh well containing DM250,

allowing the bacteria another 24 hr to grow. This reduces any effects that may bias the

experiment from defrosting the bacteria.

Following this growth, 2.5 μL of one evolved and 2.5 μL of one ancestral strain of

bacteria were mixed within 1.5 mL of DM250. The evolved and ancestral strains were always

chosen to place REL606 in competition with REL607. 6 replicates were made for each

pairing. Specifically, the first evolved replicate was paired with the first ancestral replicate,

then the second evolved replicate was paired with the second ancestral replicate, and so

on. Before incubating these competing lines, a sample was taken from them and diluted,

before spreading 100 μL of diluted culture on TA agar plates. We conducted this dilution in

microplates in two steps to achieve a final dilution factor near 1:1000 (we used 1:1080). The

plates were labelled as T0 and allowed to grow for 24 hr at 37◦C before being photographed.

After incubating the mixed lines for 24 hr, they were again diluted using DM250 and

plated on TA plates, labelled T1. The dilution here was carried out in microplates in three

stages. The final dilution factor should be near 1:5×105 (we used 1:7×105). The T1 plates

were grown for 24 hr at 37◦C before being photographed.

The colonies on the plates at T0 and T1 were counted using OpenCFU (Geissmann

et al., 2013), for which we had developed an extension that performed automatic colour

recognition on colonies. REL606 is identifiable as dark red colonies, and REL607 as light

red colonies. The automated colour counts made in OpenCFU were supervised at all times by

a trained researcher, who corrected for any misidentified colonies (� 5% of the total number

of colonies).

4.3 Colony Counting With OpenCFU

In order to reduce errors when counting colonies and aid the reproducibility of counts, we

used the open source program OpenCFU (Geissmann et al., 2013). OpenCFU is a C++ based

tool that uses the OpenCV library (Itseez, 2015) to process images of Petri dishes and identify

bacterial colonies. To aid in counting our colonies, an extension to OpenCFU was written
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Fig. 4.7 For three different pairs of colours, the RGB and Lab co-ordinates of each colour

pair are shown, along with the distance measure between the two sets of co-ordinates. The

metric in Lab provides a better measure of perceptive colour difference.

that automatically counts the numbers of different coloured colonies3. The extension written

uses the DBSCAN algorithm (Ester et al., 1996) to identify similarly coloured clusters in the

Lab colour space4.

To identify similarly coloured clusters, the Lab colour space is used as it is designed to

have a metric that increases with increasing perceptive difference between colours (Figure

4.7). Most modern cameras save files using the sRGB gamut, which is a standardised RGB

gamut that has been corrected for camera behaviour. OpenCFU measures the mean colour

of each colony found, based on averaging the sRGB encoded pixels that belong to each

colony. The built-in OpenCV methods to convert sRGB to Lab were used to generate a

mean Lab colour for each colony. All the colony colours identified can now be considered as

existing in a three-dimensional space specified by the three colour co-ordinates from their

Lab colours. The DBSCAN algorithm identifies clusters of colonies based on their position

in this three-dimensional colour space.

DBSCAN requires two parameters to run, the minimum number of points per cluster,

and a maximum distance between points for them to be considered clustered. Using the

Lab gamut, a Euclidean distance between two points of around 2 corresponds to a barely

perceptible colour difference. When clustering colonies by colour, a minimum distance in the

Lab space of around 5 typically returns good clustering, but this can be increased by the user

for noisy data. Similarly, the minimum number of points per colony is variable, but should

be at least four (corresponding to one more than the number of dimensions being clustered).

An example of the colour clustering algorithm is shown in Figure 4.8. Generally, the

algorithm can recognise up to 500 colonies of different colours, at which point the Petri

dishes begin to become too crowded. This limit is not intrinsic to the algorithm, but rather

represents the fact that colonies have become sufficiently dense on a standard Petri dish

that their separation cannot be guaranteed. About 5% of colonies are missed, often due to

3The OpenCFU project, with the colour counting extension can be found at

http://github.com/qgeissman/OpenCFU
4Technically we use the L∗a∗b∗ colour space, also referred to as CIELAB
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Fig. 4.8 A plate showing REL606 (dark red) and REL607 (light red) is loaded in OpenCFU

and analysed (left). When colour clustering is enabled (right), the algorithm identifies the

REL606 and REL607 colonies separately based on their colour (orange and green squares).

their morphology being unusual. For this reason, we supervised all our counts in OpenCFU,

correcting the small errors manually made by the classification algorithm.

4.4 Results

At the LPC and LSM, contamination-free lines were selected for fitness measurements. At

the LPC, measurements were made for various lines between generations 0 and 800, while

at the LSM measurements were only made at 0, 200 and 500 generations. Occasionally,

fitness measurements were rejected from our analysis because a very large (> 500) number

of colonies had grown on the Petri dishes, and when this occurs colony counts can become

biased as it is difficult to discriminate between two adjacent colonies or one large colony that

has divided (see Appendix D). Our measurements were motivated by previous experimental

results which suggest that by 500 generations the fitness between the two environments

considered should be different under the hypothesis that radiation significantly affects the

selection of beneficial mutations. Figure 4.9 justifies the selection of measurements at 0, 200

and 500 generations in particular, as we see when compared to the Ara-1 lineage studied by

Lenski & Travisano (1994), the behaviour of fitness at the LPC is roughly similar. Only a

minor disagreement exists at 300 generations, where only two independent lines are present

in the LPC measurement.

Before analysing our data statistically, we present the ensemble of data collected graph-
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Fig. 4.9 We compare the change of fitness averaged across a number of LPC lines and one

single line from Lenski & Travisano (1994). Uncertainties are larger in our lines as each data

point represents multiple independent measurements (6, 3, 8, 2, 4 and 6 independent lines at

0, 100, 200, 300, 400 and 500 generations respectively).

ically. In Figure 4.10, all our fitness measurements are plotted at both the LPC and LSM.

Uncertainties represent the standard deviation of the six replicates used at each measurement.

Particularly large uncertainties are noticeable in the LPC REL606 line at 100 generations.

On this day, this sample showed a greatly elevated colony count compared to other lines, and

was excluded from later analysis on account of this abnormality.

All the lines from the LPC show a similar behaviour, while at the LSM, certain REL607

lines show a slightly depressed increase in fitness (or no increase in fitness for lineage 1),

however these isolated points are not significant enough to say that the LSM lines have a

slower growth in fitness. A much clearer picture comes from considering the mean fitnesses

in each environment (Figure 4.11).

Mean fitnesses and their associated errors were calculated on the assumption that all

the lines measured were independent. Figure 4.11 maintains a separation between REL606

and REL607 in each environment, while the mean fitnesses considered in Figure 4.12 does

not. Considering the mean fitnesses by strain in the LPC (Figure 4.11a), the mean fitness

follows that measured by Lenski & Travisano (1994). The Lenski & Travisano measurements

however refer to only one lineage, while our measurements here are the average of multiple

lines. Notably, an increase in fitness is noticed between 300-400 generations. In the LSM

(Figure 4.11b), the measurements we have made again follow those of Lenski & Travisano.

At 500 generations, the fitness is slightly smaller than that seen in the LPC, but the two data

sets agree within uncertainties.

A statistical analysis was conducted for the LPC and LSM populations at 200 and 500

generations under the assumption that errors are normally distributed. Here, the strains
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Fig. 4.10 Fitness measurements for various lineages made in the LPC and LSM.
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Fig. 4.11 Averaged fitness measurements from the LPC and LSM.
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REL606 and REL607 were combined as their behaviour should be identical, and thus

combining them increases the number of independent replicas that we study. Table 4.1

presents a summary of the likelihood that the mean fitness has changed from that at 0

generations at 200 and 500 generations. An unequal variance (Welch’s) t-test was used to

calculate this based on the number of independent lines at each point and their variance. At

200 generations, in both environments, the fitness is not significantly different to that at zero

generations, however by 500 generations, the distribution of fitnesses of the independent

lines we measured show that in both cases the fitness has significantly increased (> 3σ ).

Table 4.1 Mean fitness, for n independent lines, with the likelihood that the distribution of

fitness has changed since the ancestor in each environment.

Environment Gen. n Fitness p(F > F(0))

0 6 0.99±0.05 -

LPC 200 8 1.02±0.08 0.19

500 6 1.12±0.06 1.2×10−3

0 6 0.99±0.05 -

LSM 200 9 1.02±0.04 0.14

500 9 1.09±0.05 8.7×10−4

This is shown graphically in Figure 4.12, where the mean fitnesses are shown in each

environment. To better illustrate the distribution of fitnesses that are summarised by the

errorbars, the collection of fitnesses used at 0, 200 and 500 generations are also shown. Here,

we can also ask whether the data points for the LPC and LSM are likely to be the same or

not. A two-tailed unequal variance t-test, for 0 (200, 500) generations shows that the points

have the same mean at the p = 0.96 (0.87, 0.37) level. In more conventional terms, this is a

test of a null hypothesis that the two points are the same. If p < 0.05, we could reject this

null hypothesis at the 95% level, in support of the idea that the fitness trajectories in each

environment are different. With the data we have recorded, we cannot do this at any of the

three observation points considered.

It is worth bearing in mind that the LSM data shows a slightly larger spread than the LPC

data, with some lines not greatly increasing in fitness across 500 generations. This is lost

somewhat in the above analysis due to the inherent assumption of a normal distribution for

our data. Implicit in this assumption is that each measurement of a lineage we take is one

attempt to measure the underlying mean fitness of a controlled evolution experiment at a

certain time point, and its variation. In particular, it is possible that the significance of the

separations between distributions at t = 0 and later generations are overestimated, as we may

not have measured enough lineages for the central limit theorem to apply well.



160 Long Term Evolution Experiments in Different Radiation Environments

Fig. 4.12 Competitive fitness averaged across multiple populations at the LPC (red triangles)

and LSM (blue stars) after 0, 200 and 500 generations of growth in each environment. The

fitnesses of each individual lineage sampled are plotted transparently behind the averaged

points.

Fig. 4.13 Distributions of fitness in the LPC and LSM at 0, 200 and 500 generations. The

p-value represents the likelihood that the distributions of fitness in each environment belong

to the same mother distribution, measured via a bootstrapped KS test. Histograms were

produced by weighting all individual measurements so that each lineage carries an equal

weight.
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Fig. 4.14 Distributions of fitness at 200 and 500 generations compared to 0 generations,

for the LPC and LSM, with p-values indicating the probability that the two distributions in

each panel come from the same mother distribution, measured via a bootstrapped KS test.

Histograms were produced by weighting all individual measurements so that each lineage

carries an equal weight.

A more detailed statistical analysis is presented in Figures 4.13 and 4.14. Here, we show

histograms of the distribution of fitnesses recorded at various times in the LSM and LPC.

As a different number of replicates were sometimes used for each measurement (ideally six

replicates were made, but sometimes the experiment was either repeated, yielding more than

six, or some measurements failed), each replicate was weighted so that each independent

line carried a weight of one in each environment at each time point. It can be seen that the

distribution of fitnesses does not follow a Gaussian curve well, though it is possible that

more observations would accelerate the convergence of these distributions towards a normal

distribution. Ideally, a non-parametric test should be used to compare the LPC and LSM

fitness measurements, as each individual measurement of colonies on a Petri dish has no

uncertainty, and normality shouldn’t be presumed. The two sample Kolmogorov-Smirnov

(KS) test is often used in these cases however it cannot easily be used with weighted data

points. To circumvent this, a bootstrapped version of the KS test was used, resampling the

empirical distribution function generated by all our individual measurements.

Bootstrapping is the process whereby a distribution is randomly resampled with replace-
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ment many times in order to estimate what other distributions are likely observable, when

only one measured distribution exists. In the context of a a bootstrapped KS test, the empirical

distribution function of the weighted measurements we have made is sampled randomly a

number of times (the number of samplings corresponds to the number of independent lines

in the distribution). This resampling is done for both distributions that are being considered,

and the resampled values are compared using a two sample KS test. This procedure was

repeated 2000 times to yield a distribution of KS statistics and their associated p-values

(these distributions are discussed and presented in Appendix E). These p-values are not

normally distributed, so when we present the likelihoods that the two samples compared in

this way the media p-value is presented alongside its distance to the upper and lower quartile

p-values.

The likelihoods that our measurements differ between the LSM and LPC are different

from those presented above, but the conclusions from the data remain the same. No significant

difference is noticed between the LSM and LPC at any time point measured. Due to the nature

of a bootstrapped KS-test, p-values in agreement with the null hypothesis tend to produce

a uniform distribution, which is the cause of the large interquartile ranges seen in Figure

4.13. We also find that the measured differences between the LSM population at 0 and 500

generations, and the LPC population at 0 and 500 generations are less significantly different

than the normal distribution based analysis would suggest (c.f. Table 4.1). In particular,

we find that the likelihood that the LSM population at 500 generations is distributed with

a median of p = 0.04 and lower and upper quartiles p = 0.14 and p = 0.01, rather than

p = 8.7×10−4 as the normally distributed analysis would indicate.

MALDI-TOF Mass Spectrometry Measurements The changes in fitness in the popula-

tions studied may have a few causes. Most likely, they follow the developments noticed

in the populations studied by Lenski & Travisano, where early fitness gains are driven by

changes in cell membrane proteins that optimise the transport of glucose into the cell (Trav-

isano & Lenski, 1996). MALDI-TOF (Matrix Assisted Laser Desorption/Ionisation-Time

Of Flight) mass spectrometry can be used to identify biomolecules including proteins. The

method was used for four LPC lineages (REL606/607 lineage 1 and lineage 4) and four LSM

lineages (REL606/607 lineage 1 and lineage 4). LPC measurements were made at 0 and

800 generations, and LSM measurements were made at 100 and 800 generations. While

differences in the MALDI-TOF spectrum were noted between the REL606 and REL607

lineages, and between the early (0-100 generations) and late (800 generations) measurements,

no significant difference was visible between the two environments. This strengthens our

conjecture that the selection of beneficial mutations between the LSM and LPC environments
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is, within the uncertainty of our experiments, the same.

4.5 Discussion

The main aim of this experiment was to determine whether the level of ionising radiation

has a significant impact on the speed of evolution through the beneficial mutation rate. Such

changes ought to be pronounced in a fitness experiment conducted under the conditions that

we have used. Of course, earlier experiments showing under similar hypothetical changes

in the beneficial mutation rate have revealed that the beneficial mutation rate likely scales

with the overall mutation rate rather than the level of ionising radiation (de Visser et al.,

1999). Nevertheless, given the propensity of ionising radiation to affect living systems in

unexpected ways, this was a hypothesis that was in need of testing. From our simulations,

we have already shown that ionising radiation likely causes mutations in E. coli 100 times

less frequently than other processes (such as ROS attack and transcription errors), so it isn’t

too surprising that ionising radiation does not measurably affect the beneficial mutation rate.

While clear evidence exists that changing radiation environments can impact cell phe-

notypes, this is not clearly seen in any of our measurements. No clear sign of different

biomolecule expression was seen in a preliminary MALDI-TOF analysis. Further phenotypic

studies could be conducted to identify changes in cell behaviour between the environments,

this could include more detailed growth analyses and measurements of cell size, following

Elena et al. (1996).

Two important conclusions can however be reached based on the unchanged fitness

behaviour between the two environments. The first is that it is unlikely that natural levels

of ionising radiation significantly affect the beneficial mutation rate of microbial life. This

is important in ecological studies of radiation affected regions, where ionising radiation

becomes an evolutionary pressure. Adaptations noticed in cells in response to ionising

radiation are not likely to be dependent on radiation as a cause of the mutation. Based on our

results in Chapter 2, radiation levels around 20 μGy hr−1 are required in E. coli in order for

the rate of radiation-cell interactions to be equivalent to the mutation rate from endogenous

cell processes. At these levels, enhanced radio-resistance is inconsistently observed in cells

chronically exposed to these dosages (Ruiz-Gonzalez et al., 2016; Zavilgelsky et al., 1998),

suggesting that radiation dosages at this level are beginning to become an evolutionary

pressure in bacteria. This however is likely independent of any change in the mutation

rate. As has been previously mentioned, there is no strong a priori reason to think that

ionising radiation should play a pivotal role in supplying beneficial mutations. It is more

likely that DNA damage induced by ionising radiation causes a higher ratio of deadly and
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detrimental mutations than endogenous cell processes, due to its high propensity to cause

spatially co-located DNA damage and double strand breaks.

As dose rises above the background level, measurements of radiation’s role in changing

mutation rates become possible. If the impact on evolutionary dynamics was to be explored

at higher doses than ambient, methods that specifically probe the mutation rate and the

beneficial mutation rate, such as fluctuation analysis (Foster, 2006) are more appropriate than

fitness experiments. Such methods are far more valuable than LTEEs here as (barring an

LTEE with a population size specially chosen to avoid a cap on the selection rate from clonal

interference) LTEEs can become saturated with mutations to the point where increasing

the mutation rate will not change the evolutionary dynamics. One other possibility to work

around this barrier is to use a sexually reproducing population. One advantage of sex is that

beneficial mutations are shared between population members, removing the evolutionary

bottleneck that occurs in an LTEE based upon a clonal population. Drosophila melanogaster
the common fruit fly, is an excellent candidate for a study along these lines, as it has already

been used in past evolution experiments (Burke et al., 2010).

The second important conclusion from this study is more subtle than the first. A major

difficulty of underground biological experiments in the past has been determining the mecha-

nisms by which cells change in response to their radiation environment. These mechanisms

are sometimes often epigenetic, and their onset can occur across short and long durations.

LTEEs provide a way of probing the evolutionary dynamics of a population. This could be

applied to underground experiments to identify how and when adaptations to the underground

environment occur. This could not be easily done however if radiation backgrounds strongly

alter evolutionary behaviour or selection. At least across the first 500 generations of an

LTEE, it seems here that a 7-fold reduction in the radiation background does not change

evolutionary behaviour nor selection, so any changes in populations in response to similar

changes in their radiation environment likely come from other sources.

4.6 Perspectives for Future Experiments

Small differences in radiation backgrounds seem to affect bacterial life, but this is not what we

have seen here. Castillo et al. (2015) have seen changes in protein expression and growth rates

in S. oneidensis and D. radiodurans, and Ruiz-Gonzalez et al. (2016) and Zavilgelsky et al.

(1998) have both noticed increased radiation resistance in bacteria found in the chronically

elevated radiation environment around Chernobyl. Here, we have shown a situation where

reductions in the ionising radiation level do not change the evolutionary behaviour of E. coli.
Is this because E. coli is robust to radiation changes, or because the changes that would
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have occurred in the bacteria were not measured? If radiation environments do not affect

selection, but only growth rates, this is likely to be unidentifiable in an LTEE. Establishing

that E. coli does not show strong variation between radiation in terms of its growth rate and

evolutionary behaviour would establish it as a strong control candidate for low background

biology experiments.

Growth rate measurements of E. coli in different radiation environments are thus of

significant interest in continuing the research done here. Some preliminary investigations

have already been completed, growing bacteria that had spent time adapting to the LPC or

LSM in both these environments. Little evidence for a change in growth rate was noticed,

however when conducting experiments in the LSM, strains that had already grown in the

LSM showed shorter lag times, and similarly strains grown in the LPC showed shorter lag

times when grown in the LPC, than the LSM strain. As these changes could be linked to

physically transporting cells between environments, it would be of interest to grow cells both

inside and outside of lead shielding in the LSM, to note whether this changes cell growth

rates. Whether or not this supports or contradicts the behaviours noticed in other cell lines

by Planel et al. (1987) and Castillo et al. (2015) is of scientific interest for the field. In the

case where growth rate does not change, we can more strongly affirm E. coli’s potential as a

control in low radiation background studies.

In the case where growth rate does change, the causes of this could be well explored in E.
coli where the mechanisms behind many cell behaviours are well known. Additionally, if

there are traits that we have not explored that do change between radiation environments,

studying their onset is important. Evolution experiments can effectively "save" bacterial

cultures at regular intervals. This permits the origin of changes to be explored and also

sometimes ‘replayed’ - from a starting point 100 generations before a change occurred, its

reproducibility from that point can be ascertained. Seeing how small changes in radiation

environment then affect these changes would allow researchers to see whether retardation of

the growth rate due to the radiation environment is a binary phenomenon, or occurs gradually

over a range of radiation levels. It would be interesting to see if there was one particular

radiation level, or range, that living systems in general prefer.

One logical extension of this study is to conduct LTEEs at high radiation backgrounds,

trying to force a change in the evolutionary behaviour. This has merit though only in a small

sense. The dynamics of LTEEs are such that, working with the experimental method we

have chosen here, increases in the radiation level would not increase the selection rate of

beneficial mutations. LTEE’s would however permit the emergence of mutations which

favour radioresistance to be studied, in a high dose regime. Seeing where these adaptations

occur in relation to the more canonical LTEE mutations would provide information about
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the nature of radiation as an evolutionary pressure, and could complement the work of

Harris et al. (2009), who studied the directed evolution of radioresistance in E. coli. In

particular, they used comparative genome sequencing to identify that mutations that occurred

in radioresistant E. coli correlated with genes present in D. radiodurans. Genome sequencing

allows a very fine resolution of changes that occur in a population that may not necessarily

manifest themselves in fitness assays. Applying it across our and future evolution experiments

could yield information about environment dependent changes that were invisible to this

study.



Conclusions and Perspectives

One hundred and something pages after writing: this thesis considers just one simple question;

it’s probably time to write something of an answer. Does ambient ionising radiation have

a measurable impact on the pace of evolution? As far as this work is concerned, and the

measurements made within it are concerned, no. We could not measure any impact of the

natural radiation background upon the evolutionary behaviour of bacteria.

Through Chapter 2, we explored in simulation the physical limits on how much the

radiation background can interact with cells, and we compared this to the mutation rate.

From this, we showed that even in the event that all interactions between the radiation

background and cells cause mutations, mutations caused by endemic processes in bacterial

cells will still dominate the mutation rate. We extended this by developing a computational

representation of bacterial DNA, and then simulating the relationship between dose and

strand break yield for electrons in bacteria in Chapter 3. This allowed us to verify that

the small number of energy depositions from ionising radiation in bacterial cells do not

cause an unexpectedly large amount of DNA damage. As part of this work, we developed a

flexible simulation platform for mechanistic DNA simulations, to be released as part of the

Geant4-DNA project.

Simulation can only tell us so much about the real world - experiments must be done

to verify our presumptions. This was the subject of Chapter 4 of this thesis. We conducted

controlled evolution experiments in E. coli in the Modane Underground Laboratory, and

Clermont-Ferrand Particle Physics Laboratory in order to see if the radiation background

could have a measurable impact on the evolutionary behaviour of bacteria across 500 gen-

erations. Evolutionary differences were measured by considering changes in competitive

fitness between evolved and ancestral bacterial strains every 100 generations. Despite an

8-fold difference in the radiation background between the two environments, and a 7.3 fold

difference in the estimated radiation-induced mutation rate, no significant change was able to

be observed between the cell lines grown in the low radiation background provided by the

underground laboratory, and the reference radiation background in Clermont-Ferrand.

None of this is to say though that pursuing biological experiments in underground envi-
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ronments is without merit. Our quantification of the rate of interactions between the radiation

background and cells highlights why further research is needed in this field. Namely, the

impact of ionising radiation from the background is so small that cells should be hardly

sensitive to it. Even where cells are sensitive they shouldn’t respond quickly to the back-

ground. Nevertheless, cell populations have been observed, repeatedly, to rapidly respond

to reductions in the radiation background. This hints at the existence of a rich regulatory

network that determines the radiation response of cells, that could implicate cell signalling

and epigenetics. Understanding and explaining these processes is a significant challenge

for the field, and requires careful, repeated experiments to assess under what conditions the

radiation background can impact cellular growth, gene expression and antioxidant regulation.

Cell communication and epigenetic regulation are increasingly seen as important in a

variety of low dose radiation effects, many of which have implications for human health.

As an example of cell communication, the bystander effect provides evidence that cells

communicate information about their radiation environment with each other. Exploring

how this communication manifests itself at low doses may explain observations of the

radiation background behaving hormetically, apparently accelerating the growth of unicellular

organisms (Castillo et al., 2015; Planel et al., 1987). Cells grown underground have shown a

memory of their radiation environment (Fratini et al., 2015), possibly an epigenetic response

to the radiation background. In addition to providing a mechanism for cellular responses to

radiation environments, epigenetics deserves exploration as at low doses it can be implicated

in the formation of cancers, where cells inherit a memory of radiation damage that doesn’t

manifest itself until many generations after the initial radiation event.

The simulation tools developed in Chapter 3 represent a rich terrain for future simulation

development. Up to now, mechanistic simulations of radiation induced DNA damage have

remained difficult for most researchers to access, requiring both programming expertise, and

access to a closed-source simulation toolkit. By creating a Geant4 application controllable

entirely through user facing macro commands, both of these limitations are lifted. A flexible

interface for DNA geometries has been created, that is generic enough to accept a variety of

DNA confirmations, while remaining fast enough to simulate early stage DNA damage in a

reasonable time period on high end consumer-grade computers. Advancing such simulations

requires simulators and experimentalists to work together to determine what parameters are

most relevant in such simulations, and then to develop ways of bridging the gap between

very early stage cellular damage calculations, and biological cellular outcomes, particularly

beneficial mutations, harmful mutations and cell death. The next step in this direction is the

incorporation of DNA repair modelling, based upon break complexity.
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Appendix A

DNA level simulation commands

Here we briefly detail the commands made available in our application for simulating DNA

damage mechanistically. Optional commands are placed in square brackets ([]).

A.1 Command Line Options

The application is launched from the command line with the following syntax:

molecular -t <int> -p <int> -m <str>
This permits the user (when running in Geant4 multithreaded mode) to set the number of

threads (-t), the Geant4-DNA physics list option (-p, 0 is the default list), and the macro file

to be executed (-m).

A.2 Geometry Related Commands

• /world/worldSize <s> <unit> Side length for the world.

• /dnageom/setVerbose <int> Print verbose debugging information in related to the

DNA geometry.

• /dnageom/definitionFile <filepath> Path to file that defines placement loca-

tions.

• /dnageom/placementVolume <name> <filepath> [<twist>] Set a placement

volume, twist is an optional boolean parameter (written as true or false).

• /dnageom/fractalScaling <x> <y> <z> <unit> Scaling and units for the fractal

along each axis.
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• /dnageom/placementSize <x> <y> <z> <unit> Side length for each placement.

• /dnageom/checkOverlaps <bool> Check overlaps of molecules and fractal place-

ments being placed for debugging.

• /dnageom/setSmartVoxels <int> Change the amount of voxelisation in the Geant4

geometry optimisation for a faster simulation initialisation, but slower overall simula-

tion (1 refers to maximal optimisation in initialisation).

• Chromosomes can be added to define regions of interest. For all chromosome types, a

name is required. The x, y and z variables refer to the translation of the chromosome,

and the optional rotations in x, y and z are Euler rotations.

– /chromosome/add sphere <name> <rad> <x> <y> <z> <unit>
[<rx> <ry> <rz>] Add a spherical chromosome with a specified radius.

– /chromosome/add cyl <name> <rad> <height> <x> <y> <z> <unit>
[<rx> <ry> <rz>] Add a cylindrical chromosome with a specified height and

radius.

– /chromosome/add rod <name> <rad> <height> <x> <y> <z> <unit>
[<rx> <ry> <rz>] Add a rod shaped chromosome. This is a cylinder of a

specified height, with two hemispherical end caps. The radius of the cylinder and

end caps is specified.

– /chromosome/add ellipse <name> <sx> <sy> <sz> <x> <y> <z>
<unit> [<rx> <ry> <rz>] Add an ellipsoidal chromosome, with semi-major

axes <sx> <sy> and <sz>.

• /chromosome/plotData <filename> Save a scatter plot (x,y,z data points) of all

chromosome positions.

A.3 Damage Model Related Commands

• /dnageom/interactionDirectRange <d> <unit> Distance from DNA molecules

at which energy deposits count towards DNA damage.

• /dnageom/radicalKillDistance <d> <unit> Distance from DNA at which to

stop tracking radicals.

• /dnadamage/directDamageLower <d> Minimum Energy required for an SSB.
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• /dnadamage/directDamageUpper <d> Energy required for an SSB to definitely

occur.

• /dnadamage/indirectOHBaseChance <d> Chance ∈ [0,1] of a •OH damaging a

base.

• /dnadamage/indirectOHStrandChance <d> Chance ∈ [0,1] of a •OH damaging a

sugar-phosphate moiety.

• /dnadamage/inductionOHChance <d> Chance ∈ [0,1] of a reaction between a base

and •OH yielding a strand break.

• /dnadamage/indirectHBaseChance <d> Chance ∈ [0,1] of a H• damaging a base.

• /dnadamage/indirectHStrandChance <d> Chance ∈ [0,1] of a H• damaging sugar-

phosphate moiety.

• /dnadamage/inductionHChance <d> Chance ∈ [0,1] of a reaction between a base

and H• yielding a strand break.

• /dnadamage/indirectEaqBaseChance <d> Chance ∈ [0,1] of a e−aq damaging a

base.

• /dnadamage/indirectEaqStrandChance <d> Chance ∈ [0,1] of a e−aq damaging

sugar-phosphate moiety.

• /dnadamage/inductionEaqChance <d> Chance ∈ [0,1] of a reaction between a

base and e−aq yielding a strand break.

A.4 Analysis Related Commands

• /analysisDNA/saveStrands <bool> Boolean for whether text representations of

strand damage ought be saved.

• /analysisDNA/strandDir <directory> Directory to save text representations of

DNA damage fragments.

• /analysisDNA/fragmentGap <int> Integer for the gap required between DNA frag-

ments, that they be classified as separate damage events (ds in the text). A value of

zero will use placement boundaries to separate fragments (useful for plasmids).
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• /analysisDNA/diagnosticChain <int> Accepts an integer referring to the index

of one chain. In saved histograms, only that strand is saved (useful for debugging).

• /analysisDNA/dsbDistance <int> Set the maximum separation of damage events

(in base pairs) for two nearby SSBs to be considered a DSB (referred to as dDSB in the

text). Must be less than 31.

A.5 Testing related commands

• /dnatests/chromosome Test Chromosomes are correctly positioned.

• /dnatests/basepairs Test data structures for reconstructing base pairs all work.

• /analysisDNA/testClassifier Run unit test of the break classification routine.
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DNA level simulation class summary

A brief description of the classes in our molecular level simulations is provided here.

• MolecularActionInitialization Geant4 required class, which instantiates custom ac-

tion classes.

• MolecularAnalysisManager Handles all the analysis done in the application. Param-

eters inside this class can be altered based on messages from the analysis messenger.

To aid analysis, the class file defines individual damage records which represent each

damage event. A binary tree is also implemented in this class to rapidly identify

spatially correlated damage events.

• MolecularAnalysisMessenger Defines the macro commands that can be used to

interact with the analysis manager.

• MolecularChemistryConstructor Instantiates the chemistry processes, and defines

the reaction rates used in the simulation.

• MolecularChromosomeFactory Interprets the chromosome definition mini-language.

This class can take a chromosome definition string, and return a chromosome object

based on the strings contents.

• MolecularChromosomeHit Geant4 hit class that holds energy depositions in chromo-

somes across an entire event.

• MolecularChromosomeMapper Manages chromosome definitions, mapping spatial

positions onto chromosome locations.

• MolecularChromosomeMessenger Messenger class that handles macro commands

for all calls related to chromosomes.
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• MolecularCylindricalChromosome Defines a cylindrical chromosome.

• MolecularDamageModelMessenger Messenger class that handles macro commands

related to the damage model.

• MolecularDetectorConstruction Implementation of the Geant4 detector construction

class, responsible for instantiating the MolecularDNAGeometry class, which builds

the DNA geometry.

• MolecularDetectorMessenger Messenger class for handling non-DNA related geom-

etry macro commands.

• MolecularDNAGeometry Here the DNA geometry is built, and a large part of the

information related to is stored, or is passed through. Can be accessed through the

detector construction class.

• MolecularDNAGeometryMessenger Messenger class for handling DNA related ge-

ometry macro commands.

• MolecularDNAHit Hit class for hits on DNA molecules. Hits can be added together

(via a method), which makes sure that two hits on the same base pair are properly

combined to be consistent with the damage model.

• MolecularDNAWorld Definition of the parallel which contains the physically placed

DNA geometry.

• MolecularEllipticalChromosome Defines an ellipsoidal chromosome.

• MolecularEventAction Implementation of the Geant4 event action class, which pro-

vides hooks at the start and end of each event.

• MolecularOctreeNode Defines the octree nodes that hold the position of each molecule

in a placement volume.

• MolecularParallelWorldPhysics Physics list to ensure that parallel worlds function

correctly.

• MolecularPhysicsList Geant4 required class, defining the physics to be used, and

instantiating the chemistry processes.

• MolecularPlacementVolumeInfo DNA helper class that holds information related to

each placement volume, so that base pairs can be properly indexed.
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• MolecularPrimaryGeneratorAction Geant4 required class that generates primary

particles. Instantiates a general particle source.

• MolecularPrimaryGeneratorMessenger Messenger class that can be used to store

any macro commands related to the generation of primary particles.

• MolecularRodChromosome Defines a rod shaped chromosome.

• MolecularRunAction Class that allows hooks into the start and end of each run, used

to initialise the analysis manager.

• MolecularSphericalChromosome Defines a spherical chromosome.

• MolecularStackingAction The stacking action provides hooks that run after all

physics has been completed. These are used to start the chemistry simulation.

• MolecularSteppingAction Provides user hooks for every physical step. Here, physical

damage is recorded and stored in MolecularDNAHit objects.

• MolecularTimeStepAction Provides user hooks for every chemistry time-step and

chemical reaction. Here, chemical damage is recorded and stored in MolecularDNAHit

objects.

• MolecularUtilityFunctions This file provides useful methods as free functions in the

namespace utility

• MolecularVirtualChromosome Provides the abstract definition of a chromosome.





Appendix C

Model Parameter Sweep Tables

The following pages provide a number of tables that are referenced in text (and some that

aren’t) from the parameter sweeps we run.
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Table C.1 Parameter sweep of direct damage for a 3 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 3 12.60 12.60 3347 1784 73 11 71 4 0 24.91

e− 500 2000000 3 12.60 12.60 3312 1922 72 19 60 0 1 33.00

e− 1000 1000000 3 12.60 12.60 3357 1933 76 13 55 5 0 33.70

e− 3000 333333 3 12.60 12.60 3904 2100 60 15 38 4 0 51.79

e− 4500 222222 3 12.60 12.60 4034 2190 59 10 45 5 0 45.18

e− 300 3333333 3 15.00 15.00 4177 1107 30 4 26 0 0 43.88

e− 500 2000000 3 15.00 15.00 4263 1118 38 6 13 2 0 77.47

e− 1000 1000000 3 15.00 15.00 4428 1154 26 6 22 0 0 53.91

e− 3000 333333 3 15.00 15.00 4785 1264 31 1 16 1 0 76.24

e− 4500 222222 3 15.00 15.00 5016 1246 20 8 17 1 0 70.78

e− 300 3333333 3 17.50 17.50 4612 772 13 0 14 0 0 56.07

e− 500 2000000 3 17.50 17.50 4564 670 14 3 10 0 0 68.70

e− 1000 1000000 3 17.50 17.50 4745 725 15 1 11 0 0 67.36

e− 3000 333333 3 17.50 17.50 5292 713 8 0 7 1 0 90.12

e− 4500 222222 3 17.50 17.50 5381 733 9 1 9 0 0 82.56

e− 300 3333333 3 21.10 21.10 4863 440 5 1 4 0 0 111.50

e− 500 2000000 3 21.10 21.10 4940 446 5 1 2 0 0 226.00

e− 1000 1000000 3 21.10 21.10 5189 487 7 0 4 0 0 123.50

e− 3000 333333 3 21.10 21.10 5584 439 2 0 2 0 0 220.50

e− 4500 222222 3 21.10 21.10 5867 463 1 0 3 0 0 154.67

e− 300 3333333 3 30.00 30.00 5272 166 0 0 0 0 0 -

e− 500 2000000 3 30.00 30.00 5155 214 0 1 2 0 0 107.50

e− 1000 1000000 3 30.00 30.00 5282 215 0 0 1 0 0 215.00

e− 3000 333333 3 30.00 30.00 5971 257 0 0 0 0 0 -

e− 4500 222222 3 30.00 30.00 6177 249 1 0 1 0 0 250.00

e− 300 3333333 3 5.00 37.50 4304 1066 31 5 17 3 0 55.10

e− 500 2000000 3 5.00 37.50 4343 1072 25 7 13 1 0 78.86

e− 1000 1000000 3 5.00 37.50 4483 1116 21 7 11 0 0 104.00

e− 3000 333333 3 5.00 37.50 4839 1163 29 3 13 1 0 85.36

e− 4500 222222 3 5.00 37.50 5039 1197 21 3 10 1 0 111.00
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Table C.2 Parameter sweep of direct damage for a 4 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 4 12.60 12.60 4768 3837 396 61 294 59 16 11.64

e− 500 2000000 4 12.60 12.60 4699 3873 401 67 261 69 14 12.62

e− 1000 1000000 4 12.60 12.60 5186 4014 431 81 286 46 12 13.16

e− 3000 333333 4 12.60 12.60 6161 4577 300 55 226 45 7 17.74

e− 4500 222222 4 12.60 12.60 6493 4837 268 39 215 39 9 19.56

e− 300 3333333 4 15.00 15.00 6542 2705 169 34 136 17 0 19.01

e− 500 2000000 4 15.00 15.00 6310 2665 179 36 126 15 3 20.00

e− 1000 1000000 4 15.00 15.00 6915 2792 192 29 122 12 5 21.68

e− 3000 333333 4 15.00 15.00 8094 2994 150 30 97 13 2 28.34

e− 4500 222222 4 15.00 15.00 8671 3024 149 32 89 6 1 33.39

e− 300 3333333 4 17.50 17.50 7319 1989 92 11 78 7 0 24.61

e− 500 2000000 4 17.50 17.50 7251 1923 97 19 59 9 1 29.55

e− 1000 1000000 4 17.50 17.50 7986 1874 87 10 56 6 0 31.79

e− 3000 333333 4 17.50 17.50 9401 1880 75 14 40 2 0 46.88

e− 4500 222222 4 17.50 17.50 9882 1979 60 5 28 2 0 68.13

e− 300 3333333 4 21.10 21.10 7976 1355 54 4 37 2 0 36.23

e− 500 2000000 4 21.10 21.10 8137 1257 42 3 33 1 2 36.17

e− 1000 1000000 4 21.10 21.10 8682 1255 39 6 27 0 1 46.43

e− 3000 333333 4 21.10 21.10 10101 1235 31 4 19 1 0 63.50

e− 4500 222222 4 21.10 21.10 10500 1243 27 9 17 0 0 75.24

e− 300 3333333 4 30.00 30.00 8874 546 2 0 10 0 0 54.80

e− 500 2000000 4 30.00 30.00 8985 611 9 1 4 0 0 155.25

e− 1000 1000000 4 30.00 30.00 9350 641 11 1 7 0 0 93.29

e− 3000 333333 4 30.00 30.00 10720 644 5 2 6 0 0 108.50

e− 4500 222222 4 30.00 30.00 11284 736 8 2 3 0 0 248.67

e− 300 3333333 4 5.00 37.50 6672 2502 130 30 109 12 2 21.64

e− 500 2000000 4 5.00 37.50 6930 2455 163 23 118 10 4 20.01

e− 1000 1000000 4 5.00 37.50 7079 2423 131 32 100 14 0 22.68

e− 3000 333333 4 5.00 37.50 8614 2749 114 26 85 6 1 31.40

e− 4500 222222 4 5.00 37.50 9044 2798 92 31 76 4 0 36.51
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Table C.3 Parameter sweep of direct damage for a 5 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 5 12.60 12.60 5272 5246 819 122 621 205 41 7.14

e− 500 2000000 5 12.60 12.60 5238 5232 777 150 601 202 56 7.17

e− 1000 1000000 5 12.60 12.60 5874 5664 773 170 557 180 43 8.47

e− 3000 333333 5 12.60 12.60 7491 6649 666 115 492 127 29 11.47

e− 4500 222222 5 12.60 12.60 8087 7028 640 105 482 120 25 12.40

e− 300 3333333 5 15.00 15.00 7347 4110 465 63 330 80 18 10.84

e− 500 2000000 5 15.00 15.00 7451 4003 463 79 310 67 22 11.39

e− 1000 1000000 5 15.00 15.00 8386 4221 419 73 295 55 14 12.95

e− 3000 333333 5 15.00 15.00 10412 4673 359 70 235 48 10 17.41

e− 4500 222222 5 15.00 15.00 11149 4708 314 57 241 41 7 17.57

e− 300 3333333 5 17.50 17.50 8559 3229 276 41 195 28 4 15.62

e− 500 2000000 5 17.50 17.50 8732 3074 254 48 194 23 9 14.94

e− 1000 1000000 5 17.50 17.50 9758 3054 217 52 153 14 2 19.66

e− 3000 333333 5 17.50 17.50 12097 3166 204 32 113 21 1 25.20

e− 4500 222222 5 17.50 17.50 13209 3151 161 31 116 24 0 23.88

e− 300 3333333 5 21.10 21.10 9812 2292 136 23 113 10 1 19.77

e− 500 2000000 5 21.10 21.10 9897 2170 163 20 89 9 2 23.53

e− 1000 1000000 5 21.10 21.10 10659 2211 134 19 85 4 1 26.27

e− 3000 333333 5 21.10 21.10 13331 2171 86 7 56 3 0 38.37

e− 4500 222222 5 21.10 21.10 14019 2238 78 11 61 4 1 35.26

e− 300 3333333 5 30.00 30.00 10896 1140 33 2 19 0 0 61.84

e− 500 2000000 5 30.00 30.00 10994 1108 40 6 18 2 0 57.70

e− 1000 1000000 5 30.00 30.00 12273 1126 28 9 22 1 0 50.57

e− 3000 333333 5 30.00 30.00 14413 1185 17 5 14 1 0 80.47

e− 4500 222222 5 30.00 30.00 15351 1205 23 1 10 0 0 122.90

e− 300 3333333 5 5.00 37.50 7937 3784 355 49 289 45 8 12.25

e− 500 2000000 5 5.00 37.50 7890 3648 333 61 276 53 8 11.99

e− 1000 1000000 5 5.00 37.50 8636 3797 307 64 260 28 11 13.94

e− 3000 333333 5 5.00 37.50 10779 4258 264 52 213 21 4 19.22

e− 4500 222222 5 5.00 37.50 11691 4381 236 49 209 30 8 18.89
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Table C.4 Parameter sweep of direct damage for a 6 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 6 12.60 12.60 5514 6334 1336 185 992 410 107 5.21

e− 500 2000000 6 12.60 12.60 5382 6257 1280 208 980 439 115 5.05

e− 1000 1000000 6 12.60 12.60 6352 6971 1192 246 854 336 85 6.60

e− 3000 333333 6 12.60 12.60 8376 8431 1094 230 797 257 81 8.59

e− 4500 222222 6 12.60 12.60 9092 9090 1084 182 729 232 60 10.14

e− 300 3333333 6 15.00 15.00 7812 5072 823 115 587 186 40 7.39

e− 500 2000000 6 15.00 15.00 7970 5027 746 136 531 155 39 8.15

e− 1000 1000000 6 15.00 15.00 8967 5461 714 117 507 123 32 9.50

e− 3000 333333 6 15.00 15.00 11762 5993 570 112 407 85 16 13.14

e− 4500 222222 6 15.00 15.00 13153 6269 567 118 412 78 24 13.53

e− 300 3333333 6 17.50 17.50 9528 4264 522 80 326 88 11 11.45

e− 500 2000000 6 17.50 17.50 9692 4216 468 96 340 79 19 10.91

e− 1000 1000000 6 17.50 17.50 11070 4207 440 84 284 48 16 13.59

e− 3000 333333 6 17.50 17.50 14181 4451 335 75 243 43 15 16.15

e− 4500 222222 6 17.50 17.50 15355 4370 288 49 220 35 8 17.90

e− 300 3333333 6 21.10 21.10 11355 3136 294 39 194 30 5 15.15

e− 500 2000000 6 21.10 21.10 11028 3054 275 43 193 27 6 14.92

e− 1000 1000000 6 21.10 21.10 12550 3111 255 45 154 27 6 18.24

e− 3000 333333 6 21.10 21.10 15748 3128 160 30 120 16 5 23.53

e− 4500 222222 6 21.10 21.10 17110 3132 167 30 115 14 3 25.22

e− 300 3333333 6 30.00 30.00 12889 1705 64 7 51 3 0 32.89

e− 500 2000000 6 30.00 30.00 12814 1669 75 7 58 3 2 27.79

e− 1000 1000000 6 30.00 30.00 14239 1695 60 12 39 5 0 40.16

e− 3000 333333 6 30.00 30.00 17435 1765 35 6 29 1 0 60.20

e− 4500 222222 6 30.00 30.00 18869 1799 48 6 26 2 0 66.18

e− 300 3333333 6 5.00 37.50 8809 4752 647 87 476 100 26 9.11

e− 500 2000000 6 5.00 37.50 8775 4745 585 115 448 99 33 9.39

e− 1000 1000000 6 5.00 37.50 9856 4966 548 129 427 87 25 10.47

e− 3000 333333 6 5.00 37.50 12664 5451 478 95 311 59 11 15.81

e− 4500 222222 6 5.00 37.50 13869 5780 447 82 339 60 16 15.20
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Table C.5 Parameter sweep of direct damage for a 7 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 7 12.60 12.60 5679 7113 1788 259 1338 726 185 4.07

e− 500 2000000 7 12.60 12.60 5566 7165 1759 319 1269 671 219 4.28

e− 1000 1000000 7 12.60 12.60 6509 7975 1626 328 1282 565 197 4.86

e− 3000 333333 7 12.60 12.60 9140 10060 1503 279 1132 441 135 6.93

e− 4500 222222 7 12.60 12.60 10249 10802 1404 258 1140 395 99 7.63

e− 300 3333333 7 15.00 15.00 8317 6113 1186 172 799 318 74 6.27

e− 500 2000000 7 15.00 15.00 8368 6171 1129 211 850 321 85 5.98

e− 1000 1000000 7 15.00 15.00 9710 6525 1065 212 730 251 63 7.47

e− 3000 333333 7 15.00 15.00 13314 7358 868 173 673 165 47 9.49

e− 4500 222222 7 15.00 15.00 14834 7819 878 173 687 165 42 9.92

e− 300 3333333 7 17.50 17.50 10281 5177 782 116 583 134 36 8.07

e− 500 2000000 7 17.50 17.50 10465 4940 729 140 570 158 38 7.58

e− 1000 1000000 7 17.50 17.50 11941 5077 647 128 463 94 23 10.09

e− 3000 333333 7 17.50 17.50 16001 5448 539 101 383 72 18 12.87

e− 4500 222222 7 17.50 17.50 17583 5512 475 98 365 75 15 13.37

e− 300 3333333 7 21.10 21.10 12163 4104 459 53 333 69 18 10.99

e− 500 2000000 7 21.10 21.10 12236 3934 440 81 322 57 20 11.17

e− 1000 1000000 7 21.10 21.10 13698 3847 360 72 273 45 14 12.89

e− 3000 333333 7 21.10 21.10 17993 4025 301 72 226 30 3 16.98

e− 4500 222222 7 21.10 21.10 19653 4085 277 42 209 29 7 17.98

e− 300 3333333 7 30.00 30.00 14606 2345 120 15 92 4 0 25.83

e− 500 2000000 7 30.00 30.00 14219 2378 152 16 89 8 0 26.25

e− 1000 1000000 7 30.00 30.00 15853 2252 111 20 71 7 2 29.79

e− 3000 333333 7 30.00 30.00 20063 2319 79 14 63 3 0 36.55

e− 4500 222222 7 30.00 30.00 21821 2424 84 15 62 5 2 36.57

e− 300 3333333 7 5.00 37.50 9381 5792 858 144 599 168 48 8.34

e− 500 2000000 7 5.00 37.50 9359 5654 874 168 645 191 51 7.55

e− 1000 1000000 7 5.00 37.50 10848 6020 813 163 627 154 44 8.48

e− 3000 333333 7 5.00 37.50 14202 6774 690 150 473 102 30 12.59

e− 4500 222222 7 5.00 37.50 15696 7101 638 128 453 74 25 14.25
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Table C.6 Parameter sweep of direct damage for a 8 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E(eV) n Rad E1 (eV) E2 (eV) None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

e− 300 3333333 8 12.60 12.60 5807 7825 2224 313 1603 1041 321 3.49

e− 500 2000000 8 12.60 12.60 5691 7852 2130 395 1655 968 370 3.47

e− 1000 1000000 8 12.60 12.60 6646 8726 2136 441 1646 879 306 3.99

e− 3000 333333 8 12.60 12.60 9397 11428 1945 368 1580 629 218 5.66

e− 4500 222222 8 12.60 12.60 11041 12494 1803 349 1517 614 173 6.36

e− 300 3333333 8 15.00 15.00 8605 7109 1539 236 1166 514 129 4.91

e− 500 2000000 8 15.00 15.00 8537 6866 1465 276 1055 477 146 5.13

e− 1000 1000000 8 15.00 15.00 10003 7332 1415 300 1048 397 135 5.73

e− 3000 333333 8 15.00 15.00 14430 8637 1195 232 927 280 95 7.73

e− 4500 222222 8 15.00 15.00 16205 9109 1122 251 837 284 82 8.71

e− 300 3333333 8 17.50 17.50 10769 6164 1108 169 859 269 76 6.18

e− 500 2000000 8 17.50 17.50 10892 5866 1059 189 755 256 73 6.56

e− 1000 1000000 8 17.50 17.50 12703 6148 950 238 650 199 63 8.04

e− 3000 333333 8 17.50 17.50 17864 6674 689 133 573 139 37 10.01

e− 4500 222222 8 17.50 17.50 19573 6783 658 144 492 120 37 11.69

e− 300 3333333 8 21.10 21.10 12753 4890 688 108 560 114 31 8.07

e− 500 2000000 8 21.10 21.10 13023 4774 662 109 553 124 31 7.83

e− 1000 1000000 8 21.10 21.10 14701 4885 569 127 439 75 26 10.34

e− 3000 333333 8 21.10 21.10 20095 5105 443 107 341 57 20 13.53

e− 4500 222222 8 21.10 21.10 21988 5210 416 75 305 42 14 15.79

e− 300 3333333 8 30.00 30.00 15608 3002 235 28 164 17 2 17.84

e− 500 2000000 8 30.00 30.00 15741 2930 226 42 165 20 3 17.01

e− 1000 1000000 8 30.00 30.00 17528 3046 180 43 127 14 4 22.54

e− 3000 333333 8 30.00 30.00 22656 3021 162 25 106 4 6 27.66

e− 4500 222222 8 30.00 30.00 24671 3064 137 33 96 8 0 31.10

e− 300 3333333 8 5.00 37.50 9672 6581 1173 225 916 329 100 5.93

e− 500 2000000 8 5.00 37.50 9883 6587 1142 223 935 304 82 6.02

e− 1000 1000000 8 5.00 37.50 11379 7069 1069 265 855 256 81 7.05

e− 3000 333333 8 5.00 37.50 15867 8105 911 207 734 158 50 9.79

e− 4500 222222 8 5.00 37.50 17517 8551 855 192 648 155 71 10.98
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Table C.7 Parameter sweep of direct damage for a 9 Å damage radius, using the physics

constructor G4EmDNAPhysics_option4.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 9 12.60 12.60 5757 8496 2585 327 2000 1504 520 2.83

e− 500 2000000 9 12.60 12.60 5614 8194 2539 458 2065 1430 537 2.78

e− 1000 1000000 9 12.60 12.60 6695 9492 2540 495 1987 1181 533 3.38

e− 3000 333333 9 12.60 12.60 10225 12772 2408 448 1965 953 372 4.75

e− 4500 222222 9 12.60 12.60 11446 14218 2305 414 1885 830 309 5.60

e− 300 3333333 9 15.00 15.00 8953 7742 1860 306 1520 773 236 3.92

e− 500 2000000 9 15.00 15.00 8993 7539 1823 377 1472 691 268 4.01

e− 1000 1000000 9 15.00 15.00 10560 8077 1776 393 1307 569 204 4.93

e− 3000 333333 9 15.00 15.00 15333 10101 1527 306 1240 423 148 6.59

e− 4500 222222 9 15.00 15.00 17562 10408 1442 287 1164 413 154 7.01

e− 300 3333333 9 17.50 17.50 11018 6679 1475 233 1067 443 112 5.17

e− 500 2000000 9 17.50 17.50 11071 6522 1396 267 1026 411 135 5.21

e− 1000 1000000 9 17.50 17.50 13360 6988 1193 251 946 301 114 6.20

e− 3000 333333 9 17.50 17.50 19018 7873 1057 206 765 243 68 8.49

e− 4500 222222 9 17.50 17.50 21337 8097 918 198 685 195 70 9.70

e− 300 3333333 9 21.10 21.10 13363 5689 989 133 778 174 56 6.76

e− 500 2000000 9 21.10 21.10 13533 5636 963 167 703 188 47 7.21

e− 1000 1000000 9 21.10 21.10 15331 5685 773 178 560 126 45 9.08

e− 3000 333333 9 21.10 21.10 21667 5934 621 114 459 112 30 11.10

e− 4500 222222 9 21.10 21.10 23919 6169 613 116 422 81 29 12.97

e− 300 3333333 9 30.00 30.00 16616 3860 359 42 240 26 9 15.49

e− 500 2000000 9 30.00 30.00 16786 3674 323 73 264 33 7 13.39

e− 1000 1000000 9 30.00 30.00 18881 3582 305 61 207 26 8 16.38

e− 3000 333333 9 30.00 30.00 25270 3647 217 57 160 18 3 21.66

e− 4500 222222 9 30.00 30.00 27660 3736 197 35 140 12 2 25.77

e− 300 3333333 9 5.00 37.50 10182 7541 1557 271 1273 482 167 4.87

e− 500 2000000 9 5.00 37.50 10125 7339 1489 294 1150 425 152 5.28

e− 1000 1000000 9 5.00 37.50 11862 7743 1419 331 1087 383 138 5.90

e− 3000 333333 9 5.00 37.50 17149 9423 1288 290 921 270 79 8.66

e− 4500 222222 9 5.00 37.50 19021 9875 1125 242 907 246 84 9.09
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Table C.8 Parameter sweep of direct damage for a 5 Å damage radius, using the physics

constructor G4EmDNAPhysics (Default). Fewer DSBs are recorded compared to the option4

constructor.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e− 300 3333333 5 12.60 12.60 24943 4941 710 117 521 144 37 8.22

e− 500 2000000 5 12.60 12.60 23033 5103 715 160 545 136 36 8.34

e− 1000 1000000 5 12.60 12.60 23712 5478 663 147 470 106 40 10.21

e− 3000 333333 5 12.60 12.60 27296 6278 601 112 445 104 21 12.26

e− 4500 222222 5 12.60 12.60 28651 6553 555 120 388 82 23 14.66

e− 300 3333333 5 15.00 15.00 27304 3739 387 62 249 32 7 14.54

e− 500 2000000 5 15.00 15.00 25211 3644 374 76 269 41 2 13.12

e− 1000 1000000 5 15.00 15.00 25962 3874 347 78 228 34 11 15.75

e− 3000 333333 5 15.00 15.00 30406 4203 272 59 194 23 4 20.52

e− 4500 222222 5 15.00 15.00 31618 4251 257 47 163 19 6 24.23

e− 300 3333333 5 17.50 17.50 28083 2633 200 32 117 17 1 21.22

e− 500 2000000 5 17.50 17.50 26654 2609 161 46 126 10 0 20.71

e− 1000 1000000 5 17.50 17.50 27425 2501 140 28 94 7 3 25.66

e− 3000 333333 5 17.50 17.50 32121 2547 115 27 77 6 1 32.01

e− 4500 222222 5 17.50 17.50 33700 2565 127 22 85 11 3 27.41

e− 300 3333333 5 21.10 21.10 29295 1889 104 16 68 4 1 27.52

e− 500 2000000 5 21.10 21.10 27436 1760 96 15 58 7 0 28.78

e− 1000 1000000 5 21.10 21.10 28445 1813 81 10 43 4 1 39.67

e− 3000 333333 5 21.10 21.10 33068 1746 62 17 42 1 0 42.44

e− 4500 222222 5 21.10 21.10 34537 1755 76 11 41 0 0 44.93

e− 300 3333333 5 30.00 30.00 30063 899 20 1 18 0 0 51.11

e− 500 2000000 5 30.00 30.00 28422 934 15 3 17 2 0 50.11

e− 1000 1000000 5 30.00 30.00 29190 990 26 3 10 3 0 78.38

e− 3000 333333 5 30.00 30.00 33892 981 22 3 8 0 0 125.75

e− 4500 222222 5 30.00 30.00 35596 1045 19 1 5 0 0 213.00

e− 300 3333333 5 5.00 37.50 27369 3631 286 62 227 28 9 15.07

e− 500 2000000 5 5.00 37.50 25274 3508 303 68 202 26 10 16.30

e− 1000 1000000 5 5.00 37.50 26409 3696 251 59 184 21 7 18.90

e− 3000 333333 5 5.00 37.50 30359 3957 224 61 148 21 6 24.24

e− 4500 222222 5 5.00 37.50 31718 4222 208 43 153 12 2 26.78
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Table C.9 Parameter sweep of direct damage for a 6 Å damage radius, using the physics

constructor G4EmDNAPhysics (Default). Fewer DSBs are recorded compared to the option4

constructor.

Primary E n Rad Emin Emax None SSB SSB+ 2SSB DSB DSB+ DSB++ SSB/DSB

(eV) − (Å) (eV) (eV) − − − − − − − −
e- 300 3333333 6 12.60 12.60 26825 6135 1132 238 794 306 78 6.37

e- 500 2000000 6 12.60 12.60 24361 6155 1137 250 757 252 92 6.85

e- 1000 1000000 6 12.60 12.60 25327 6639 1049 278 690 233 80 7.94

e- 3000 333333 6 12.60 12.60 29846 8049 908 229 614 177 57 10.83

e- 4500 222222 6 12.60 12.60 31489 8533 825 200 643 152 47 11.35

e- 300 3333333 6 15.00 15.00 29114 4903 660 134 430 121 17 10.03

e- 500 2000000 6 15.00 15.00 26876 4703 636 159 392 104 25 10.55

e- 1000 1000000 6 15.00 15.00 28061 4896 553 147 373 71 22 12.01

e- 3000 333333 6 15.00 15.00 33700 5358 478 113 303 57 21 15.61

e- 4500 222222 6 15.00 15.00 35141 5618 471 120 321 55 18 15.76

e- 300 3333333 6 17.50 17.50 31223 3605 366 82 227 39 6 14.90

e- 500 2000000 6 17.50 17.50 29356 3442 337 83 239 40 9 13.41

e- 1000 1000000 6 17.50 17.50 30114 3514 284 78 181 29 13 17.38

e- 3000 333333 6 17.50 17.50 35890 3548 225 50 152 18 5 21.85

e- 4500 222222 6 17.50 17.50 37599 3568 206 53 148 18 8 21.99

e- 300 3333333 6 21.10 21.10 32100 2655 189 34 168 11 3 15.81

e- 500 2000000 6 21.10 21.10 30288 2655 205 28 156 14 1 16.89

e- 1000 1000000 6 21.10 21.10 31701 2540 176 34 114 10 1 22.00

e- 3000 333333 6 21.10 21.10 36834 2586 147 23 99 8 0 25.76

e- 4500 222222 6 21.10 21.10 39603 2538 116 24 78 11 4 28.80

e- 300 3333333 6 30.00 30.00 33643 1450 52 9 34 2 0 41.97

e- 500 2000000 6 30.00 30.00 31515 1437 62 9 35 0 0 43.09

e- 1000 1000000 6 30.00 30.00 32688 1424 52 14 28 1 0 51.38

e- 3000 333333 6 30.00 30.00 38478 1495 52 7 31 2 0 47.09

e- 4500 222222 6 30.00 30.00 40429 1485 30 7 28 3 0 49.10

e- 300 3333333 6 5.00 37.50 29562 4683 486 94 373 61 10 11.85

e- 500 2000000 6 5.00 37.50 27567 4596 539 127 353 55 26 12.12

e- 1000 1000000 6 5.00 37.50 28361 4966 485 127 311 48 18 14.80

e- 3000 333333 6 5.00 37.50 33852 5428 411 104 234 45 16 20.15

e- 4500 222222 6 5.00 37.50 35630 5646 374 88 263 37 7 19.90
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Table C.10 Break classifications by source for 4.5 keV electrons in a test geometry.

Radius SSBi SSBd SSBm DSBi DSBd DSBm +DSBhyb SSBs DSBs

0.0 0.0 100.0 0.0 0.0 100.0 0.0 2823 203

1.0 34.0 56.2 9.8 5.7 22.6 71.7 3746 508

2.0 66.8 23.6 9.6 25.8 10.1 64.0 6560 948

3.0 79.5 12.7 7.8 39.9 4.5 55.6 10123 1478

4.0 85.8 8.3 6.0 51.4 3.8 44.8 13695 1853

5.0 89.0 5.9 5.0 56.6 3.6 39.8 17102 2249

6.0 91.1 4.6 4.3 59.9 3.4 36.7 20764 2555

7.0 92.2 3.9 4.0 63.7 2.2 34.0 24363 2945

8.0 93.5 3.0 3.5 68.3 1.7 30.0 28035 3140

9.0 94.3 2.7 3.0 69.3 2.1 28.7 32132 3426

N97 37 62 1 15 74 11 4209 236

Table C.11 Break classifications by source for 4.5 keV electrons in a test geometry, ending

the simulation at 1 ns.

Radius SSBi SSBd SSBm DSBi DSBd DSBm +DSBhyb SSBs DSBs

(nm) (%) (%) (%) (%) (%) (%) - -

0.0 0.0 100.0 0.0 0.0 100.0 0.0 2740 182

1.0 36.3 54.8 8.9 5.9 25.1 69.0 3758 506

2.0 66.7 24.3 9.0 23.9 9.3 66.9 6495 893

3.0 78.0 14.2 7.9 40.9 5.5 53.7 9469 1314

4.0 82.5 11.4 6.1 44.9 5.1 50.0 11419 1583

5.0 82.9 10.7 6.4 44.9 3.8 51.2 12509 1602

6.0 83.3 10.4 6.3 45.2 5.3 49.5 12983 1576

7.0 83.6 10.5 5.9 44.3 4.8 50.9 13082 1541

8.0 83.9 10.1 5.9 46.7 4.3 48.9 13057 1568

N97 37 62 1 15 74 11 4209 236

Table C.12 Break classifications by complexity when reproducing Nikjoo et al. (1997)

Energy None SSB SSB+ 2SSB DSB DSB+ DSB++ Complex DSB
Total DSB Hits SSBs DSBs

(eV) (%) (%) (%) (%) (%) (%) (%) (%) - (Gy−1 Mbp−1) (Gy−1 Mbp−1)

300 82.41 12.59 2.07 0.68 1.56 0.38 0.31 30.46 105792 0.265 0.039

500 80.73 13.53 2.23 0.96 1.80 0.38 0.37 29.39 90105 0.246 0.038

1000 80.24 14.22 2.24 0.92 1.68 0.33 0.36 29.11 90236 0.257 0.035

3000 82.69 13.51 1.56 0.62 1.22 0.22 0.19 24.92 115684 0.297 0.031

4500 83.97 12.80 1.33 0.53 1.06 0.18 0.13 22.51 127151 0.305 0.028
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Table C.13 Break classifications by source when reproducing Nikjoo et al. (1997)

Energy SSBi SSBd SSBm DSBi DSBd DSBm +DSBhyb SSBs DSBs

(eV) (%) (%) (%) (%) (%) (%) - -

300 76.9 14.7 8.4 9.9 36.8 53.3 16229 2380

500 76.7 14.7 8.6 9.4 37.6 53.0 15060 2300

1000 76.5 15.2 8.4 8.6 37.7 53.7 15692 2140

3000 78.2 15.6 6.2 7.9 40.7 51.4 18152 1874

4500 78.7 15.5 5.8 8.3 39.3 52.4 18639 1737



Appendix D

Rejection of Data Points In Fitness
Analysis

The rejection and acceptance of data points is often a contentious subject, and so we address

the points rejected in our experiment in the following pages. We rejected a number of

measurements in our analysis, as too many colonies had grown on some Petri dishes, which

can bias the colony count. In particular, this causes the spread of fitnesses measured on a

particular day within one lineage at a given time point to be very large. When this occurs, the

noise in the count yields a very noisy fitness measurement (δF > 0.1) between replicates,

and as this noise is bigger than the change we seek to observe in our experiment, it permits

one or two very noisy measurements to bias the entire experiment.

Thus, points were rejected when they showed large colony counts and large variations

in fitness between replicates. Rejection of points primarily affected the LSM lines where

a number of measurements were made (up to six lines) with high quantities of colonies

on March 3rd, 2016 and March 10th, 2016. At the LPC, a measurement of from Line

1 in REL606 was rejected due to highly varied colony counts at 100 generations. For

completeness, we show in Figure D.1 the variation in fitness between locations, without any

rejection of data points. Here, a difference between the fitness at the LPC and LSM begins

to become visible. This is because of the noisiness of the data that was added. Across the

measurements on March 3rd and March 10th, the number of colonies in some replicates

varied greatly. Some Petri dishes showed over 800 total colonies, whilst the same dilution

on another dish would have less than 80. The variability of our fitness assays in these

circumstances is ultimately what caused us to reject these points as unreliable. The high

colony count we observed strengthens this rejection, as the accuracy of counts when there are

more than 500 colonies on a plate begins to become questionable, as close colonies become

difficult to distinguish. The correlation of these events in time also leads us to believe that
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Fig. D.1 The top panel reproduces Figure 4.13, showing the distributions of fitness in the

LPC and LSM, with the significance that they are different. No data points were rejected here,

which causes the LSM measurements in particular to be flatter, and increases the distance

between the LSM and LPC distributions at 500 generations.

Fig. D.2 The top panel reproduces Figure 4.14, showing the likelihood that the evolved and

ancestral fitnesses in each environment have changed. The flatter distribution of fitness at

500 generations at the LSM means that a majority of bootstrapped KS tests have p > 0.15,

indicating the change in fitness between 0 and 500 generations is more consistent with these

two distributions being drawn from the same mother.
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these points are experimental errors, rather than a biological signal.

In Figure D.2, the changes in fitness with time at each location are considered. The

distribution of fitness in the LSM at 500 generations is closer to the distribution at 0 gen-

erations than it was when the data points mentioned above were rejected. The changes in

the fitness distributions when the rejected points are included in our analysis is consistent

with the addition of very noisy data, flattening the distribution of fitness, though the increase

in histogram points at F = 1.1 in the 500 generation data set may indicate that their is still

some signal buried amongst the noise. Nevertheless, it seems clear that the inclusion of the

rejected points adds a set of data that doesn’t follow the same distribution of the other points

we considered. This second distribution is quite possibly tied to whatever introduced the

enormous variations in cell colony counts on March 3rd and 10th.





Appendix E

P-values from Bootstrapped KS tests

In order to estimate the likelihood that fitness had changed between the LPC and the LSM

in Section 4.4, a bootstrapping was applied to a two sample Kolmogorov-Smirnov (KS)

test so that each independent line could be modelled statistically with the same weight.

Bootstrapping resamples (with replacement) a distribution many hundreds to thousands

of times to assess how the selection of data from an underlying distribution impacts a

measurement. It considers the idea that if the empirical distribution of values we have

measured represents the true distribution, then sampling that distribution differently by a

random process could impact our results. In the context of a KS test, bootstrapping gives a

range of possible probability values (p-values), one for each test that was run, by resampling

the empirical distribution function of the observed sample. The distribution of these values is

shown in Figures E.1 and E.2. The two sample KS test, which tries to ascertain whether two

measured distributions were drawn from the same mother distribution. The KS statistic is

distributed in two sample tests such that sampling the same measured distribution repeatedly

via bootstrapping will produce p-values of 1, while sampling different distributions will

give p-values of 0. If two different measured distributions drawn from the same mother

distribution are considered however, the randomness inherent in the bootstrapped samplings

will yield p-values that are uniformly distributed.

This is clear considering the p-values in Figure E.1 where the measurements at the LPC

and LSM are compared at 0, 200 and 500 generations. Here, no significant difference is

seen in the three comparisons made, so we expect to see a uniform distribution of p-values,

or even a distribution skewing towards p = 1. Immediately though, it’s clear that neither a

uniform, nor ‘continuous’ distribution of p-values is realised. This comes from the nature

of the empirical distribution function, which can have a stepped behaviour1. This structure

1We linearly interpolate between fitness measurements when sampling the empirical distribution function,

but when two measurements measure the same fitness, a step results
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Fig. E.1 The top panel reproduces Figure 4.13, showing the distributions of fitness in the

LPC and LSM, with the significance that they are different. The p-values used here show the

median and upper and lower quartiles of the p-value distribution from 2000 bootstrapped KS

tests. The distribution of p-values is shown in the bottom panel.

strongly favours some KS statistics over others, which leads to some p-values being strongly

favoured compared to others, giving a non-uniform distribution. The errors in the p-values

shown on the graphs better illustrate the uniformity or not of the p-value distribution, as

they indicate the first and third quartiles of the p-value distribution, with the primary value

representing the median.

Figure E.2 shows the differences between the strains at 0, 200 and 500 generations

grown at the LPC and LSM. A clear difference is difference in the fitness is apparent at 500

generations. This is reflected in the p-values, which are clustered towards zero. The LSM

case at 500 generations is interesting because the median p-value is p = 0.04, slightly below

the threshold for canonical acceptance, with an upper quartile near p = 0.14. While this is

not as strong a separation as is seen in the LPC at 500 generations, it is worthwhile to note

that the measured median p-values and interquartile ranges are robust. In the LSM at 500

generations for example, even after removing all data points with fitnesses of F ≥ 1.2, we

still recover p = 0.04+0.1
0.03.
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Fig. E.2 The top panel reproduces Figure 4.14, showing the likelihood that the evolved and

ancestral fitnesses in each environment have changed. The distributions of p-values from

these measurements, based on 2000 bootstrapped KS tests are shown in the bottom panel.




