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General Introduction

MFCs have gained a great importance as a nanostructured material thanks to their property to be
natural, renewable, biodegradable, sustainable and biocompatible. In addition, they have a high
strength and Young modulus and due to their functionality, they can be easily chemically modified.

For the past years, techniques to deconstruct the walls of cellulosic fibers and liberate the microfibrils
have been improved to reduce the energy consumption from 27 MWh/t down to 0.5-2.3 MWh/t
(Ankerfors 2015) and thus are able to produce nano-objects at a competitive price. Until 2013, MFC
had been mainly manufactured at lab scale, in kilogram batches. Nowadays, several production
facilities are being built worldwide with up to 3 tons per day capacities. This recent development of
large pilot/industrial facilities (Future markets 2015) open the way for the use of these materials in the
manufacture of industrial products.

CTP recently carried out a study on eight different commercial pulps as raw materials for MFC
production. MFC were manufactured by intensive mechanical treatment including refining with
enzymatic pretreatment to weaken the structure, followed by a homogenization with a GEA Niro Soavi
homogenizer. The results highlighted a “pulp origin” effect, mainly due to the pulping process and also
to the pulp drying. The presence of hemicelluloses seems to have a major influence on the pulp
behaviour during homogenization. Pulps with higher hemicelluloses content led to more
homogeneous MFC suspensions and higher strength were observed when MFC were added to the fiber
matrix. These previous results led to the goal of this PhD project, which is to study the influence of the
interactions between the structural components of the fibers, on the cellulose microfibril (MFC)
production process.

In this framework, the main objective has been to develop a fundamental knowledge about the
interactions between the principal components of the secondary wall fibers i.e. the cellulose —
hemicellulose interaction in the MFC. Solving this would help to better select fibers pretreatment to
reduce the energy consumption for the MFC production.

The main steps of this project will be (Figure 1)

e The identification and characterization of the different constituents of the MFC

o The development of a test and a model structure to understand and measure the adhesion
between the main constituents of the MFC

e The modeling of the interactions between the MFC constituents
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Figure 1: Illustration of the main steps of the project.

In the present manuscript, the first chapter corresponds to a general introduction and a bibliographic
survey.

The second chapter describes the isolation and characterization of the different MFC constituents.
The dispersion of the MFC in relation with the hemicelluloses content and the pulp drying history are
analyzed by UV spectroscopy in the third chapter.

The interaction between the cellulose and one of the main hemicelluloses content in MFC, the xylan is
studied by 3C solid state NMR and atomistic simulation in the fourth chapter.

In the fifth chapter, a model with films made of pure cellulose MFC and xylan layers was built and some
peeling tests on this layered structure were performed to directly measure the interactions between
cellulose and xylan.

As a manuscript conclusion, a production of MFC with a combination of xylanase and cellulase as a
pulp pretreatment will be proposed.
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Economic Context

In view of their outstanding physical properties, the interest for biosourced nanomaterials is growing
as they are frequently proposed as an alternative to petroleum products. In this context,
nanocelluloses, composed of NanoCrystalline Cellulose (NCC), MicroFibrillated Cellulose (MFC) and
Bacterial Cellulose (BC) appear very promising. They have a high strength, high Young modulus, high-
aspect ratio, together with dimensional and thermal stability, interesting optical and surface area
properties. In addition, they can be chemically functionalized and used as moisture absorbent material.

In 2008, the main actors in the nanocellulose production were located in North America, Europe, East
Asia and South America (Figure 2).
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Figure 2: Centers for microfibrillated production and development (adapted from Future
Market 2015).

In 2015, the current nanocellulose production was estimated to be 25-80 tons per annum and in this,
MFC accounted for approximately 45-50 tons of this estimate (Future Markets Inc. 2015). For the next
coming year, the company FP Innovations estimates the market to be worth $250 million in North
America by 2020 and the USDA (United State Department of Agriculture) has forecasted that the global
nanocellulose market could amount to over 35 million tons per annum by 2040 (Future Markets Inc
2015).
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1. Potential markets for nanocelluloses

The nanocellulose applications are divided into three domains: high-volume applications, low-volume
applications and novel applications. For each of these, the progression is mentioned from "Research
basic concept" to "Commercial in operation" (Table 1). In the high-volume applications, nanocelluloses
are already at the commercialization step: as cement additives, pharmaceutical and self-cleaning
coating. They are also used as prototype in anti-static coating, transparent barrier films in food
packaging, paper composites and filtration. In low-volume application, they are found as insulation
and medical implants, but they are still at research and development stage. In novel applications, we
find them in electronics and drug delivery.

Table 1: Nanocellulose applications: Stage of commercialization (Adapted from Future
Markets 2015).

Applied research
Applications Research and Demonstration Commercial
development

Progression Basic concept Proof of concept Basic prototype Fully tested

High Volume Applications

Cement additives
Anti-static coatings

Transparent  barrier
films in food packaging

Polymer composites
Printing paper
Pharmaceutical (filler)
Paper composites
Self cleaning coatings

Filtration

Low Volume Applications

Insulation
Medical implants

Flexible circuits,
printable electronics,
conductive substrates

Drug delivery

Developed In progress Future
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Nanocellulose potential applications can be summarized in 6 main areas ranging from pulp and paper
to electronics and additives (Figure 3).
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Figure 3: Potential markets for MFC applications (adapted from Future Markets 2015).

2. Nanocellulose production

In 2015, the worldwide nanocellulose production was estimated to be between 400 and 1700 tons,
depending on optimistic or conservative point of views. In the next ten years, it is supposed to reach
between 2 200 and 10 500 tons, which means a 5-fold increase in production (Figure 4).
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Figure 4: Global nanocellulose production in tons/year, 2010-2025. Conservative
estimate (blue), optimistic (red) (adapted from Future Markets 2015).

In 2015, the prices for MFC were approximately 4 - 40 $/kg (Future Markets Inc 2015).
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3. Zoom on potential markets for MFC in papers and boards

3.1 General definition of paper and challenges

Paper is formed on a fine screen —the wire- from an aqueous suspension of wood pulp and mineral
pigments (fillers). The mineral pigments are usually made from high-brightness calcite (ground marble
or limestone), of china clay (kaolin), which has undergone various grinding and separation processes,
precipitated calcium carbonate or titanium dioxide. To improve gloss, shade, opacity, and printing
properties, paper is often coated with a coating layer, consisting of an aqueous dispersion of mineral
pigments with a finer particle size distribution than those used as filler. To increase the gloss and/or
paper opacity, around 10% by weight of adhesive (binder) are added in form of synthetic latex particles
or synthetic plastic pigment (polystyrene spheres). Additives may also be present to enhance the
binding and/or provide flocculation, which affects the paper structure on drying (Gane et al. 1996).

Major development trends for the principal paper sectors, namely the "Packaging" and "Printing and
writing paper", are to increase the materials performance itself and to decrease the production cost
by reducing the basis weight of the product (Table 2). Since paper is not considered only as a support,
new functionalities are now promoted, such as active packaging and intelligent papers, which generate
new challenges.

Table 2: Major development trends for principal paper's sectors.

Sectors Major development trends
. » higher performance materials: better mechanical and barrier properties
Packaging > lower basis weight
» bio-sourced raw materials products

Printing and writing > lower production cost: cheaper materials, higher filler content
paper > lower basis weight
» multi-printability products
Active packaging » extended protection for food product with active substances included in the

packaging (Lavoine et al. 2014; Lavoine and Desloges 2014)

» cheaper electronic devices: paper cost 10 times less per square meter than PET
(polyethylene terephthalate) commonly used in electronic (Pereira et al. 2014)
» electronics devices with light weight, flexibility and ability to be recyclable

Intelligent paper

In this context, the use of MFC is one of the most appropriate solutions to improve the papermaking
process. MFCs can be added either at the wet-end or at the coating step, which means that they can
be directly added into the paper matrix (as additives) or coated at the paper surface as a
supplementary layer (Beneventi et al. 2014).
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3.2 MFC use at the wet-end

In papermaking, it is a very demanding task to enhance the physical properties of paper without
simultaneously deteriorating the drainage characteristics: indeed it is this drainage that limits the
production efficiency of a paper machine (Norell, Johansson, and Persson 2009). Non-chemically
modified MFCs have a negatively charged surface (zeta potential about - 25mV) and can be used as
carrier of cationic products (Ahola, Osterberg and Laine 2008). This could greatly improve the
retention and location of the product in the paper sheet, leading to a more efficient use of conventional
paper additives and a decrease in the basis weight (Esser 2012). For the reinforcement of mechanical
properties of paper, MFCs can be added to the pulp slurry, together with cationic polyelectrolytes,
used in papermaking process, such as cationic starch (Taipale et al. 2010) and polyamideamine
epichhlohydrin (PAE).

In literature, it has been reported that 1% to 6% of MFC with 0.5% of PAE, improved the dry and wet
tensile strength from 2.5 to 3 times but these results are sensitive to the formulation preparation
(Ahola, Osterberg and Laine 2008). The improvements of the mechanical properties have been only
observed, when PAE and MFC were added one by one to the pulp slurry, allowing a stirring time
between each product addition, and not when they were first mixed together. These conditions,
observed at lab-scale, could potentially induce a flocculation on the paper machine at pilot and
industrial scales. Finally, the use of MFC could dramatically decrease the dewatering of the fibrous mat
(drainage). Taipale et al. (2010) has demonstrated a severe loss in drainage rate but a 1.4 time increase
in the mechanical properties of paper, with a mixture of 3% MFC and 1.5% starch. But this performance
is very sensitive to the MFC grades. So the use of MFC, at the wet-end, is in competition with the use
of other cationic polyelectrolytes. It will increase only if the cost/performance chart is proven to be
substantially profitable.

3.3 MFC coating layer

3.3.a Barrier coating material and reinforcement layer

Cellulosic fibers have traditionally been used in packaging for a wide range of food categories such as
dry, frozen, or liquid foods and beverages. For example, cellophane, which is regenerated cellulose
obtained from wood pulp, is extensively used as a material for food packaging (Del Nobile, Fava, and
Piergiovanni 2002), as it presents a low water vapor permeability of 1.25.10° mol.cm/(cm?.s.atm).
Similarly, parchment paper is also known for its low water permeability.

Many publications present the interest of using MFCs as a barrier material thanks to their film forming
behaviour (Syverud and Stenius 2009). Indeed, they display excellent barrier properties towards grease
and oxygen (Aulin, Gillstedt, and Lindstrém 2010). Typically, a MFC film with a basis weight of 35 g/m?
had tensile index of 146 + 18 Nm/g and elongation of 8.6 * 1.6%. The E modulus (17.5 + 1.0 GPa) of a
film composed of randomly oriented fibrils was comparable to the values obtained with those of
cellulose fibers with a fibril angle of 50°. The oxygen transmission rates (OTR) as low as 17 ml/m?.day
were obtained for films prepared from pure MFC (Syverud and Stenius 2009). This value was
comparable to those observed for synthetic packagings based on oriented polyester coated with
polyvinylidene chloride. Despite all this, the use of MFC as barrier is limited due to their poor water
and water vapor resistance: indeed at 30°C and 90% RH, the equilibrium moisture content is around
15% (Henriksson and Berglund 2007). This is too high for packaging but could be improved by treating
the MFC film surface with hexamethyldisilazane (HDMS). Thanks to the silylation process, the sylilated
surface of the treated MFC films becomes hydrophobic and thus its water wettability is reduced
(Chinga-Carrasco et al. 2012).
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However the most common way to use MFC as reinforcement layer is to coat them at the paper surface
with a dynamic sheet former (Syverud and Stenius 2009) at lab scale or with a spray coating
(Beneventi et al. 2014) at pilot scale. MFC can be used alone (Beneventi et al. 2014) but fillers, such
as kaolin, will increase the film density, while decreasing the water vapor sensitivity
(Spence et al. 2011). It is also possible to replace the filler with some natural polysaccharide-based
hydrocolloids such as starch (Ankerfors et al. 2009).

3.3.b Receiving ink

One of the difficulties during paper printing is the occurrence of lint and dust, which result from the
tendency of a paper surface to loose weakly bonded particles, which will accumulate on the blanket
during offset printing. Ideal printing paper must absorb ink very quickly, without a high penetration.
The ink absorption action is generally controlled by a latex layer, which is a common adhesive used in
coating at the ink interface (Gane and Koivunen 2010). In literature, coated MFC or coated cationic
starch are compared in their propensity to adsorb selectively different pigment sizes (Ridgway and
Gane 2013). It is reported that MFC tend to stay on top of the pigment layer, whereas cationic starch
is completely adsorbed. It was found that papers coated with polysaccharides hydrocolloid (starch),
then coated with MFC improve their surface dry-pick resistance and thus reduce the linting and dusting
phenomena ( Ankerfors et al. 2009).

3.4 Active packaging

The idea of active packaging is to add an active substance into the packaging material itself instead of
incorporating an active compound into the food formulation and promote a longer protected food
product. Recent studies have reported the development of antibacterial packaging using MFC coatings
as delivery system, which provide a slow and continuous release of active substance thanks to their
nanometric dimension and porous system and their ability to form strong films (Lavoine et al. 2014).
It was shown that a MFC-coated packaging is able to release antimicrobial molecules over 1 month
compared to 18 days without MFC (Lavoine et al. 2014). These results are promising for future food-
packaging applications.

3.5 Intelligent paper

The paper applications in electronics described in literature are: dielectrics for super capacitors
(Pushparaj et al. 2007), permeable membranes in liquid electrolyte batteries (Nystrém et al. 2009),
microfluid channels (Carrilho, Martinez, and Whitesides 2009), organic thin film transistors and printed
sensors (Yang et al. 2007), batteries (Hilder, Winther-Jensen, and Clark 2009) and foldable circuit
boards (Siegel et al. 2010).

A recent study has shown that paper can not only be used as a substrate but also as the dielectric for
devices based on semiconductor oxides (Pereira et al. 2014). This semiconductor performance has
been improved by using MFC sheet. Thanks to their homogenous surfaces and dense structures, the
highest resistivity was obtained with MFC due to the low mobility of H*and OH~, as these ions make
an important contribution to the electrical conductivity. This field of application is promising but still
limited by the rather slow switching time (time for the command execution) of the MFCs.

10
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4.

Challenges for the MFC markets

MFC is a promising material for many applications but its development is limited by the lack of
characterization and standardization. The first point of improvement is thus to establish global
standard and characterization methods for MFC (structure, surface properties, performance) to enable
reproducibility and comparative analysis.

The second point is to improve the MFC production and quality along different axes devoted to:

The decrease in the damages in MFC due to the extraction process

The control of the dispersions and the quality of MFC: particle size, aspect ratio, rheology,
which directly influence the MFC properties

The reducing of the cost of extraction process and the energy consumption

The scale-up of the production to industrial scale

Despite these priorities materials based on MFC will have to deal with some limits:

e The hydrophilic and polar nature limit their exploitation (too low solids content in MFC and too

high moisture sensitivity)

e The new regulations about the use of nanoparticles

11
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Structure and composition of wood fibers

1. Wood chemical composition

Wood is mainly composed of polysaccharides (cellulose, hemicelluloses and pectins) and lignin, which
represent more than 90% of the wood dry mass. It also contains a low percentage of extractible
compounds and minerals. Their proportions vary as a function of the wood species: hardwood or
softwood (Table 3).

Table 3: Wood composition in percentage of dried mass adapted from Thomas 1977.

Chemical composition Hardwood Softwood
Cellulose 43 -47% 40 -44%
Hemicelluloses 28-32% 25-29%
Lignin 17 - 23% 25-31%
Extractible compounds 2-8% 1-5%

1.1  Wood polysaccharides

1.1.a Cellulose

Cellulose is the main constituent of the plant cell wall. It is a linear homopolymer (Figure 5) consisting
of glucosyl unit connected through a B-(1,4) type of linkage (Timell 1967). The cellulose chemical
formula corresponds to (CsH100s)n where n is the number of glucosidic units corresponding to the
degree of polymerization (DP). The cellulose DP is strongly dependent on the cellulose origin. In wood,
the cellulose native chains have a DP estimated between 2500 and 4500 while the DP may increase to
20 000 in cotton and even more in some seaweed cellulose.

OH OH OH
OH OH 4 1 OH
HO o) 0 HO o Q HO o !
HO HO o HO o) HO OH
© OH © OH © OH
HO HO HO

Non- reductive Cellobi Reductive
extremity Elakgse extremity

Figure 5: The cellulose chain structure.

The cellulose chains are oriented with two non-equivalent extremities. One extremity is called
reductive and is terminated by a hemiacetal group at C1, whereas in the other extremity, called non-
reductive, the C4 is part of a secondary alcohol moiety (Figure 5).
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1.1.b Hemicelluloses

Hemicelluloses are the second polysaccharides present in the wood after the cellulose. They represent
a large group of heteropolymers, which differs from each other with their sugar backbones and their
branches.

The different sugar constituents of hemicelluloses (Figure 6) have been classified in four general groups
(Timell 1967):

e hexose (D-glucose, D-mannose and D-galactose)

e pentose (D-xylose, L-arabinose and D-arabinose)

e deoxyhexose (L-rhamnose and L-fucose)

e hexenuronic acids (D-glucuronic acid, 4-O-methyl-D-glucuronic acid and D-galacturonic
acid) .

CH,0H COOH

Q. OH O OH O OH OH Q. OH
OH OH OH CHy
QH OH OH
OH OH QH OH OH
B-D-Xylase B-D-Glucose  B-D-Glucuronic acid  a-L-Rhamnose
CH,0H COOH
OH O_ CH O_ OH o] O_ OH
OH OH OH OH CH, oOH
OH H,CO OH  oH
OH OH OH
a-L-Arabinopyranose  B-D-Mannose a-D-4-0-Methyl- a-L-Fucose

glucuronic acid

OH g OH CH.CH COOH
= OH ¢} OH e}
OH OH
CHCH - A OH OH
OH OH

a-L-Arabinofuranose  o-C-Galctose  a-D-Galacturonic acid

Figure 6: Sugar constituent of the hemicelluloses.

The hemicellulose chains are shorter compared to those of cellulose and their DP in native wood is
estimated between 100 and 200 (Timell 1967). According to the different cell walls, hemicelluloses can
be divided into four general classes of polysaccharide types: xylans, mannans, B-glucans with mixed
linkages, and xyloglucans (Ebringerovd, Hromadkova, and Heinze 2005). In the case of secondary cell
wall, the main hemicelluloses are the O-acetyl galacto-glucomannan and the arabino-4-O-
methylglucuronoxylan in softwood, while the O-acetyl-4-O-methylglucuronoxylan and glucomannan
without substitution are dominating in hardwood.

15
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The O-acetyl-4-O-methyl-glucuronoxylan (Figure 7 A) contains a backbone of B-D xylosyl residues
linked in B-(1,4) and substituted with a—D-4-O-methylglucuronic acid and acetate groups. Glucuronic
acid is only branched in 02 of xylosyl for steric reasons, while the acetates are linked without
preference to 02 and O3 (Ebringerova, Hromdadkova, and Heinze 2005).

By comparison, in softwoods, the arabino-4-0O-methyl-glucuronoxylan (Figure 7 B) consists of a similar
-(1,4)-xylan backbone but a-L-arabinofuranosyl residues present in hardwood xylan mainly replace
the acetate substitutions. Softwood xylan can also be acetylated but in lower proportion than the
hardwood xylan counterpart (Ebringerova, Hromadkova, and Heinze 2005).

In contrast with B-1,4-xylan, glucomanans (Figure 7 C) have a backbone of glucosyl and mannosyl
linked in B-1,4. The distribution of glucosyl and mannosyl is not regular and the ratio of
mannosyl/glucosyl is generally of the order of 1:2 (Timell 1967). In the case of softwoods, galacto-
glucomanans are slightly branched with a-D-galactosyl in O6 of the mannosyl residues only. Some
acetyl substitutions are also found in 02 or 03 while no branching is observed for hardwood
glucomannans (Ebringerova, Hromadkova, and Heinze 2005).

A: O-acetyl-4-O-methyl- glucuronoxylan Acetat 02
¥ Y-8 Xy O ru_ cetate groupin 4,fAce'cate groupin O3
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OH

Ho 4«— 4-O-methyl-glucuronic acid in 02

H,CO
o
COOH

2 Arab inosein 02
B: Arabhino-4-0O-methyl- glucuronoxylan — methyl-glucuronic

WOH HJCO,E\ ;O acidin 02
HO

B-1,4-xylan backbone t. w /X z w

C: Galacto-glucomannan

o4 ©OH
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Ho
OH
06 OH
_ OH q OH
B-1,4-linked glucose HO o] S io HO o °©
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0 3 1.2 OH
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Figure 7: Softwood and hardwood hemicelluloses structures (Ebringerovd and Heinze
2000).

1.1.c Pectins

The last group of wood polysaccharides is pectins, which represent only 1 to 2% of the wood dry-mass.
Pectins mainly consist of a-D-galacturonic acids linked in a-(1,4) and branched with acetyl and methyl
groups. It is also possible to find in their backbone, a-L-rhamnosyl residues bound in a-(1,2) to the
galacturonic acids moieties. The rhamnose may be sometimes substituted with lateral chain made of
arabinose and galactose.
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1.2 Lignin

Lignin confers to the plants their rigidity, reduces the water permeability of the plant tissues and
renders the wood more resistant to microorganisms attack and oxidative phenomena. The lignification
of the cell wall is one of the last steps of the wood cell construction, which happens after the
polysaccharides depositions in the cell wall. The lignin is a complex non-polysaccharidic polymer (Lewis
and Yamamoto 1990). It is based on three units of hydrophenylpropane (Figure 8):

e the p-coumarylic alcohol (4-hydroxycinnamique alcohol), also called p-hydroxyphenyl (H)
e the coniferylic alcohol (4-hydroxy-3-methoxycinnamic alcohol), also called gaiacyl (G)
e the sinapylic alcohol (4-hydroxy-3,5, dimethoxycinnamic), also called syringyl (S)

The softwood lignin is characterized with more than 90% of G units while the hardwood lignin contains
a mixture of G and S. For both hardwoods and softwoods, the H units have the lowest proportion
(Thomas 1976).

p-coumarylic alcohol  coniferilic alcohol sinapylic alcohol o § & ¢ 6
bo- 1] B¢

p-hydroxyphenyl (H) gaiacyl (G) syringyl (S) @04

Figure 8: Hydrophenylpropane units of lignin and main linkages.

The lignin structure is still not fully understood and its final composition may result from the
condensation of three hydrophenylpropane units hooked together by ether (C-O-C) and carbon-carbon
(C-C) bonds. Different possible linkages between the three units are considered and presented in
Figure 8. The linkages B-O-4 and a-O-4 are dominant in hardwoods and softwoods respectively. They
are labile because they are non-condensed and may be cleaved more easily than the other condensed
linkages (Lewis and Yamamoto 1990).

1.3 Extractible compounds and minerals

The extractible compounds or extractives represent a large group of low molecular material, which
vary as a function of the wood species, the age of wood and of the wood constituting parts. Even if
they are in minor quantity in wood, they can induce an increase in chemical consumption during the
pulping process. They are most often removed from wood by water or organic solvents (Thomas 1976).
Minerals are normally characterized as ash content. There is less than 1% of mineral in wood but they
are essential for the wood structure. The main components are calcium, potassium, magnesium,
manganese and sodium ions, but some traces of other constituents such as aluminum or copper may
be also found.
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2. Association between wood constituents

This exact organization of the plant cell wall is not fully understood but it is admitted that it is made of
a network of cellulose microfibrils included in a matrix of pectin, hemicelluloses and lignin. The
cohesion of this network results from a series of rather weak bonds, namely Van der Waals
interactions, hydrogen bonds and a few covalent bonds.

The cellulose chains are organized into microfibrils. Within a given microfibril, the cellulose chains are
hooked to one another by hydrogen bonds to form layers, which themselves are stabilized on top of
one another by Van der Waals interactions. This organization confers to the microfibrils hydrophobic
and hydrophilic surfaces. Thanks to the combination of this duality, the cellulose microfibrils are able
to interact with hemicelluloses by interactions of either Van der Waals or hydrogen bonding types.

Regarding the lignin, it is susceptible to interact with the hemicelluloses through covalent linkages,
commonly named Lignin-Carbohydrate-Complexes (LCC). In these, three linkages have been identified
between the hemicellulose branches or their reductive extremity and the lignin (Figure 9). In
softwoods, benzylic ether linkages have been characterized between the carbon Ca of the lignin and
the arabinosyl or galactosyl units of the arabino-xylan and of the galactoglucomannan. The carbon Ca
of the lignin may also interact with the glucuronic acid branches of xylan in hardwoods and softwoods
through a benzylic ester linkage (Joseleau and Gancet 1981). Phenol glycosidic ether linkage may be
also formed between the hydroxyl phenol group of the lignin and the reductive extremity of
hemicelluloses (Merewether, Samsuzzaman, and Cooke 1972; Joseleau and Kesraoui 1986).

Benzylic ether Benzylic ester Phenol glycosidic ether
CH,OH ¥yian CH,0H CH,OH

Oown HO o Ow

o OH
OH
OH
H,CO n OCH,
lucomannan
OH g HO 0
OH

Reductive extremity

Figure 9: Main LCC linkages between lignin and polysaccharides.

With similar linkages, the lignin may also be associated with pectins, containing arabinan or galactan
backbones (Meshitsuka et al. 1982) and possibly cellulose (Jin et al. 2006).
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3. Fiber cell wall structure

Fiber cell walls have multi-scale dimensions with length of 1 to 3 mm, width of 10 to 50 um and wall
thickness of 1to 5 um (Figure 10 A). They are composed of a cell lumen (L), a middle lamella also called
intercellular material, a primary wall, and a secondary wall, which is subdivided into three secondary
layers S1, S2 and S3 (Figure 10 B).

Cell
corner
Secondary wall
$1,52 andS3
Primary wall
Middle lamella
Raycell

Figure 10: Fibers and cell wall structure, (A): Fibers cross section (B): Zoom on the cell
corner (Adapted from Meyer-Pinson 2001).

The intercellular cohesion is given by the middle lamella, which is a very thin layer from 0.5 to 1.5 um
(Plomion, Leprovost, and Stokes 2001). The primary wall, which consist also of a very thin layer (0.3 to
1 um), promotes the cellular growth. The thick secondary wall represents 75 to 85% of the whole cell
wall volume and is the most important part for the mechanical support of the tree. In the secondary
wall, the S2 layer is the thickest layer (1 to 10 um) than S1 and S3 from 0.1 t0 0.35 pm and 0.5to 1.1 um
respectively (Plomion, Leprovost, and Stokes 2001).

The major component of the S1, S2 and S3 layers, consist of cellulose microfibrils. In the opposite of
the primary wall where they are disordered, cellulose microfibrils are in parallel arrangement in the
secondary wall but with different orientation angles from one layer to another. Indeed the microfibrils
in S1 and S3 layers are oriented from 60° to 80° and from 60° to 90° (with respect to the cell axis) while
in S2 layer, the microfibrils are oriented from 5° to 30° (Plomion, Leprovost, and Stokes 2001). The
microfibrils orientation in the S2 layer has a strong influence on the wood mechanical properties, as
the wood becomes less rigid (e.g. in juvenile wood) as the microfibrils angle increases.
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The repartition of lignin, cellulose and hemicelluloses varies according to their localization in the cell
wall. The lignin content is maximal in the middle lamellae, which also contains pectins. The primary
wall is made of lignin, cellulose microfibrils, hemicelluloses and pectins, with xyloglucan being the main
hemicellulose, representing 20 to 25% of the primary wall dry mass (Hayashi 1989). The maximum of
cellulose content is found in the S2 layer. Because it is also the thicker layer of the cell wall, it contains
most of the lignin, cellulose and hemicelluloses of the wood. On the other hand, even if the lignin
content in the middle lamellae is estimated to be 70% in softwoods, it only represents 10% of the
whole wood lignin because of the low thickness of the lamellae. In the S2 layer, only xylans and
mannans are represented as hemicelluloses (Table 4) and their proportions vary with wood species
(Meier 1985).

Table 4: Polysaccharides composition of the S2 layer of hardwoods and softwoods (adapted
from Meier 1985).

Hardwood Softwood

Polysaccharides Birch Pine Spruce

Cellulose 48.0% 64.3% 66.5%
Glucurono-xylan 47.7% 10.7% 15.7%

(gluc) (O-acetyl-4-O-methyl-gluc)  (Arabino-4-O-methyl-gluc)  (Arabino-4-O-methyl-gluc)
Glucomannan 2.1% 24.4% 24.6%

Arabinan 1.5% 0.8% 0.0%

Galactan 0.7% 0.0% 1.6%

The softwood hemicelluloses are characterized by a high proportion of glucomannans (24.5%), slightly
branched with galactose (in spruce) and a smaller proportion of arabino-4-O-methyl- glucuronoxylan
(11 to 16%), while in hardwoods, they are mainly composed of O-acetyl-4-O-methyl- glucuronoxylan
(48%).
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4. Secondary cell wall biosynthesis

The organization of the different constituents of the secondary cell wall (cellulose microfibrils
embedded in a matrix of hemicelluloses, pectins and lignin) is directly related to the biogenesis of the
wall.

4.1 Biosynthesis of cellulose

In the case of wood, the only known component identified in the cellulose biosynthesis is the Cellulose
Synthase Catalytic (CESA) protein (Pear et al. 1996) but mutations in genes indicate that several other
proteins are also involved in the overall process of cellulose synthesis (Somerville 2006). The cellulose
chains are synthesis at the plasma membrane, using uridine diphosphate activated glucose (UDP-Glc)
as a monomer. As soon as the monomer is present, the CESA units secrete the cellulose chains, which
collapse into microfibrils under Van der Waals forces.

In the case of higher plants (such as wood or cotton, Figure 11 A), the CESA subunits are believed to
be organized in hexametric rosettes containing 36 CESA subunits according to cryo-fracture TEM
observations performed on the plasma membrane (Saxena and Brown 2005; Herth 1983). Larger
structures of rosette, with more than 1000 CESA, have been also observed in the case of the alga
Valonia ventricosa synthases (Iltoh and Brown 1984). The formation of the rosette is supposed to
originate from the Golgi apparatus, from where they migrate toward the plasma membrane along
cortical microtubules (Figure 11 B). It is only in the plasma membrane that the rosette becomes active
and synthesizes cellulose chains (Somerville 2006).
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Figure 11: Schematic representation of wall polysaccharides biosynthesis (adapted from
Saxena and Brown 2005; Lerouxel et al. 2006), A: In vitro synthesis of cellulose
microfibrils of cotton, B: Ultrathin section through the plasma membrane of an alga
(Boergesenia forbesi).
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The orientation and the position of the cellulose chain in the microfibrils are determined by the CESA
subunit (Figure 12). The 3-1,4-glucan chains are formed by adding one by one the glucosyl units from
the non-reductive end of the emerging chain.

In the case of wood, it is admitted that 30 to 40 cellulose chains are assembled into one elementary
microfibril. Two types of CESA subunits, a and 3, would be required to allow such a structure to
spontaneously assemble in microfibrils. Each B subunit needs to interact with two others and two
different a isoforms can be distinguished: o which interacts with two 3 isoforms and o, which
interacts with three isoforms, another a, and two 3 isoforms (Scheible et al. 2001).

Elementary fibrils:
36 cellulose chains

[(-(1,4)-glucan 6 cellulose
chains chains
| 7\
/ |"{ Il‘l!\
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— [ J —_— 1] J
1) L o |/
Cellulose synthase Rosette ”
catalyticsubunit subunit L =

Rosette Rosette

Figure 12: A model for the structure of the rosette. A CESA is believed to contain 8 helices
defining a pore through which the nascent cellulose chain is spun. 6 CESA subunits are
assembled to form a rosette subunit. These subunits are themselves assembled to form
the rosette containing 36 CESA from where emerges the cellulose elementary microfibril,
(adapted from Doblin et al. 2002).

At present, the molecular description of the functioning of CESA is not known. However, the
functioning CESA is believed to be quite similar to that of the cellulose synthase system in cellulose
producing bacteria, namely the BcsA/BscB. A recent spectacular crystallographic study describes the
molecular mechanism that converts the UDP-glucose into a cellulose chain emerging from a tunnel
located at the center of the BcsA/BscB. Structural snapshots of the biosynthesis process indicate that
cellulose is translocated one monomer at a time, via a ratcheting mechanism involving a proteinaceous
“finger helix” that contacts the polymer terminal glucosyl and pushes the nascent chain toward the
exit of the tunnel. (Morgan et al. 2016).

To the opposite of the cellulose chain, the hemicelluloses are synthesized in the Golgi apparatus and
delivered to the wall by secretory vesicles (Figure 11). With hemicelluloses, the biosynthesis may start
with the backbone synthesis and then the branches such as acetates and glucuronic acids are added
by glucuronyltransferase catalyzed reactions. The main constituents of the lignin (three
hydrophenylpropanes) are synthesized inside the cell and thus the lignin polymerization appears
outside the plasma membrane, following a mechanism, which is still unknown.

22



General Bibliography: Structure and composition of wood fibers

4.2 Cellulose crystallinity and microfibrils structure

One of the first cellulose crystalline characterizations was done on cotton, due to the lack of lignin and
of the high cellulose content. Solid state 3C NMR spectra (Teeédir, Serimaa, and Paakkari 1987) have
revealed the presence of amorphous and crystalline parts with a ratio determined by peak integration
of the NMR resonances. For cotton, this gave an amorphous/crystalline ratio of 3.1/6.9, which was
confirmed by X-ray measurements: 3.3/6.7.

Two different crystalline phases of cellulose, namely lo. and I, were revealed by *C NMR
spectroscopy, X-ray, neutron and electron diffraction, together with FTIR. From electron micro
diffraction diagrams obtained on individual cellulose microfibrils of disencrusted Microdictyon tenuis
cell wall, the unit-cell parameters and symmetry elements of both cellulose lo. and I} could be resolved
(Sugiyama, Vuong, and Chanzy 1991) . la has a P1 triclinic structure with one cellulose chain per unit
cell whereas I} has a P2; monoclinic structure with two chains per cell and the axis of the cellulose
chain located on the 2; screw axes. The unit cell and symmetry elements of both crystalline structures
are given in Table 5 (Sugiyama, Vuong, and Chanzy 1991) and represented in Figure 13. Both structures
share the same fiber axis parameter ¢ of 1.036 nm, corresponding to a cellobiosyl unit. Remarkably,
the crystalline density of cellulose If is of 1.63 and that of cellulose la is only of 1.61. This difference
clearly indicates that cellulose I is more stable than la. In fact, cellulose la can be converted into I by
a hydrothermal treatment, but the reverse is not possible.

Table 5: Io and IP unit-cell parameters (adapted from Sugiyama, Vuong, and Chanzy 1991).
Unit cell parameters

Lengths (nm) Angles (degree)
Crystalline forms a b c o B Y
IB monoclinic structure 0.801 0.817 1.036 90 90 97.3
la triclinic structure 0.674 0.593 1.036 117 113 81
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Figure 13: Cellulose unit cells: Ia and I forms (Nishiyama et al. 2002,Nishiyama et al.
2003)
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The ratio of the cellulose crystalline forms la and Ip varies with the cellulose origin according to solid
state NMR (Lennholm, Larsson, and Iversen 1994), X-ray measurements (Wada, Okano, and
Sugiyama 2001) and FTIR data (Sugiyama, Persson and Chanzy 1991). Cellulose samples can be then
sorted in two groups: the algae and bacterial types, where the la crystalline form is predominant
(around 90%) and the cotton/ramie types with the I} form predominant. Tunicin, the animal cellulose,
is considered as the model of cellulose If} since it is not only of high crystallinity, but contains more
than 90% of this allomorph (Nishiyama et al. 2002). For cellulose la, samples extracted from the highly
crystalline cell wall of the alga Glaucocystis nostochinearum are considered as model of this allomorph
(Nishiyama et al. 2003).

However, it is more difficult to evaluate the lo/If ratio in the case of wood because of the presence
of other components like lignin and hemicelluloses but it has been estimated to be I3 predominant by
X-ray measurements (Wada, Okano, and Sugiyama 2001).

Cellulose microfibrils from wood can be modeled as a semi-crystalline system possessing a crystalline
core and amorphous surface due to the organization of the cellulose chains (Figure 14).
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Figure 14: Microfibril model with 36 cellulose chains. Cross-section view along c axis
right: Disordered surface and crystalline core (adapted from Chen 2013); left:
Hydrophilic (110) and (1-10) surfaces and hydrophobic (100) surfaces (Mazeau 2011).

The squarish representation of the wood microfibril section is hypothetical since it is too small to be
directly confirmed by diffraction contrast TEM images, as in the case of algal cellulose (squarish) or
that of tunicin (lozenge-like). The representation, shown in Figure 14, limits the percentage of
hydrophobic surface, which is only found at the corner of the section. Other authors favor a hexagonal
section, which gives much more ground for the (100) hydrophobic surface. At present, it is not clear
whether the squarish or the hexagonal model is the most realistic for wood cellulose.
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Pulping process

The word "pulping" refers to the process of fiber liberation from the wood structure. It can be carried
out mechanically, thermally, chemically or by combination of these treatments. The resulting product
of pulping process is called "pulp", which corresponds to a fibrous raw material. In this study, we will
focus only on "wood pulp" produced by chemical pulping.

The chemical pulping consists in lignin removal to facilitate the wood fiber separation. To attack the
lignin structure and solubilize it, the wood chips are cooked in aqueous solution with chemicals at
elevated temperature (100 to 175°C) under pressure for several hours. The cooking can be achieved
under alkaline or acidic conditions, using respectively, sodium hydroxide and sodium sulfide
(kraft cooking) or aqueous sulfur dioxide (SO;) and a base such as calcium, sodium, magnesium or
ammonium (sulfite cooking).

None of the cooking process is completely selective to the lignin structure and both of them also attack
the hemicelluloses and decrease the cellulose DP. Nevertheless the alkaline conditions are anyway
milder than the acidic ones. The kraft cooking is the predominant chemical pulping process for paper
industry (around 90% in the world) principally because it better maintains the mechanical pulp
properties than the sulfite counterpart.

1. Sulfite cooking pulp

The pH requested during the sulfite cooking is between 1.5 to 4.0, which induces the hydrolysis of
the B 1-4 glucosidic linkages and decreases strongly the cellulose DP. The hemicelluloses are also
degraded and about 70% of the glucomannans and 50% of the xylans can be lost in a spruce sulfite
pulp (Gellerstedt 2007b). In the case of dissolving pulp production, the sulfite cooking is usually
followed by alkali treatments to remove the residual hemicelluloses and obtain a pulp suitable for the
production of viscose or cellulose derivative products such as carboxymethylcellulose and cellulose
acetate. For these, obtaining high mechanical properties is not the interest, but the goal is to obtain
pure cellulose, also called "specialty cellulose" devoided of hemicelluloses, which disturb the
dissolution during the derivatization processes. In some cases, the hemicelluloses are recovered from
the cooking liquor and effluents from alkaline treatments and are commercialized as high added value
specialty products (e. g. xylitol).
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2. Kraft cooking pulp

During the kraft cooking, the lignin is not the only wood component to be degraded. Even if it is not
desired, a part of hemicelluloses and low molecular polysaccharides, such as pectins, are also removed
during the cooking. The chemical pulping yield is around 40% to 50% of the initial raw material (Smook
2002), whereas lignin represents only 20 to 30% of wood component.

2.1 Carbohydrates degradation

Under alkaline conditions, the pectins are easily dissolved in the cooking liquor and the acetyl groups
are also removed quite instantly from the hemicelluloses backbone (Aurell and Hartler 1965). The
cellulose and hemicelluloses are also degraded because of a peeling reaction at the beginning of the
cooking, then with alkaline hydrolysis at higher temperature (Aurell and Hartler 1965).

2.1.a Peeling reaction

The peeling reaction starts from the reducing end groups of the hemicelluloses chain and cleave them
one monomer at a time (Aurell and Hartler 1965). The reaction is initiated by a keto-enol
tautomerization (Figure 15), which opens the pyranose ring into aldehyde and alcohol (a). In the case
of no branches in 02 and 03, the chain ends are reorganized with a benzylic rearrangement (b) and
the B-H elimination in C4 take place (c). One free monomer is generated (d) and reorganized into
isosaccharinic acid (e), while the rest of the chain (R-OH) turns back to the first step of reaction.
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Figure 15: Peeling reaction (adapted from Gellerstedt 2007b).

The hemicellulose chains can be cleaved monomer by monomer until the B-H elimination in C3 (f)
became more favored than in C4 (c) and this induces the end of the peeling reaction. Elimination in C3
(f) happens when 03 is branched with an arabinosyl residue (Aurell and Hartler 1965). In this case,
arabinose is a better leaving group. Its elimination is favored in comparison with the hemicellulose
depolymerization. Then the resulting chain end (g) is reorganized into metasaccharinic acid as a new
reducing end group (h). The peeling reaction is prevented when 02 is branched with 4-O methyl-
glucuronic acid (Aurell and Hartler 1965) because the keto-enol tautomerization equilibrium is no more
possible (Figure 14 a).
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The glucomannans, which have no branches in 02 and 03, are the most sensitive to the peeling
reaction and are eliminated at the beginning of the kraft cooking while xylans are protected thanks to
their arabinosyl and glucuronic acid substitutions (Aurell and Hartler 1965 ; Wigell, Brelid, and
Theliander 2007). However, the arabinosyl residues are removed when the temperature increases
during the cooking process and xylans are exposed to alkaline hydrolysis, also called secondary peeling
(Aurell and Hartler 1965; Hansson and Hartler 1968).

2.1.b Alkaline hydrolysis

The alkaline hydrolysis affects the DP of both xylan and cellulose (Hansson and Hartler 1968) by cutting
the chain (Figure 16). The hydrolysis is initiated by a nucleophilic attack of the hydroxide ion 02 on C1
position (a) and an epoxy linkage (b) is formed by the chain elimination (R-OH). The epoxy is opened
with sodium hydroxide ion and forms a new reducing end group (c).

oY b €

Decrease the DP

Figure 16: Alkaline hydrolysis or secondary peeling (adapted from Gellerstedt 2007b).

The cellulose DP, estimated between 7 000 to 10 000 in wood (Thomas 1976), is reduced from
2 000 to 800 in kraft pulp because of the combination of alkaline hydrolysis and peeling reaction on
the new reducing end group (Figure 16 c). The residual xylan, which stays in the pulp at the end of the
cooking, seems to be less impacted than cellulose and its DP is reduced from 200 to 140-160
(Hansson and Hartler 1968).

2.2 Hexenuronic acid formation

Under alkaline condition, the 4-O-methyl-glucuronic acids branched on xylans (Figure 17 a), are
converted into hexenuronic acids (Johansson and Samuelson 1977; Buchert et al. 1995) by methanol
elimination (b) even if at first it was believed that it were removed during cooking (Hansson
and Hartler 1968). This confusion is explained by the degradation of hexenuronic acid (Figure 17) into
5-formylfuronic acid (c) and furanic acid (d) under acidic conditions used in conventional glucuronic
acid analyses (Li and Gellerstedt 1996).
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Figure 17: Hexenuronic acid formation in xylan and degradation (adapted from Johansson
and Samuelson 1977; Li and Gellerstedt 1996).

More recently, hexenuronic acids have been characterized both in the pulp after kraft cooking
(Buchert et al. 1995) and in the cooking liquor (Teleman et al. 1995). The presence of hexenuronic
acids in the pulp is not suitable because of their unsaturation. Indeed they have similar reactive
unsaturation properties than in the lignin.
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Consequently, the determination of the residual lignin (Kappa number) can be overestimated and the
demand in bleaching chemicals is increased because the hexenuronic acids consume a part of
chemicals instead of lignin (Li and Gellerstedt 1996). Some studies highlighted that it is possible to
remove them before bleaching or at the beginning of the bleaching sequence with mild acidic
treatment, especially for hardwoods pulps (Bergnor-Gidnert, Tomani, and Dahlman 1998).

2.3 Xylans adsorption on cellulose fibers

During the kraft cooking, a part of the hemicelluloses is dissolved in the cooking liquor. A part is
degraded because of the peeling reaction and the alkaline hydrolysis but another may also be
redeposited at the fiber surfaces. Indeed, it is believed that the arabinose and acetyl removal,
decreases the xylan solubility in the cooking liquor and thus favors its recrystallization and precipitation
onto cellulosic fibers (Yliner and Enstrom 1957). The xylan re-adsorption on the fibers during kraft
cooking has been extensively studied before the discovery of the glucuronic acids conversion into
hexenuronic acids. At that time, the glucuronic acids were considered to be removed from the xylans
under alkaline condition (Hansson and Hartler 1968) and it was difficult to investigate the role of the
hexenuronic acids in the xylans redeposition. More recently, the xylans re-adsorption scheme gains a
new interest because it improves the yield of chemical pulping by increasing the final pulp weight at
the end of the cooking (Danielsson and Lindstrém 2005). This new study observes similar conditions
for the xylans re-adsorption.

As previously described, the xylans are better redeposited onto the cellulose fibers at 140°C to 160°C
under low alkaline concentration (Aurell 1965; Hansson and Hartler 1969). However the xylans re-
adsorption only occurs in the first hour of cooking (Danielsson and Lindstrém 2005) and then the
degradation reactions, such as alkaline hydrolysis, in the black liquor,are found to be dominant (Figure
18). After 3h at 165°C, the xylan DP in the cooking liquor is determined to be around 45 by
Size Exclusion Chromatography (SEC) which is 3 to 5 times smaller than the xylan DP in wood
(Danielsson and Lindstrém 2005; Jacobs and Dahlman 2001).
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Figure 18: Xylan concentration evolution: in pulp and black liquor during kraft cooking
at 165°C (adapted from Danielsson and Lindstrém 2005).
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3. Bleaching

At the end of the cooking process, most of the lignin is degraded but some residual groups, also called
chromophore groups, stay into the pulp and color it. To remove the residual lignin groups and provide
a colorless pulp, the cooking process is always followed by a bleaching step including oxidative and
extraction treatments (Gellerstedt 2007a).

The lignin content in the pulp after cooking (unbleached pulp) and after bleaching (bleached pulp) is
determined with the Kappa number. The pulp brightness is also used to determine the pulp ability to
reflect monochromatic light compared to a standard. Because the sulfite cooking is more efficient to
remove the lignin than the kraft process the sulfite pulps before bleaching are lighter in color,
compared to the unbleached kraft pulps (Figure 19).

Unbleached kraft pulp (Brightness, 30% 1SO) Unbleached Sulfite pulp (Brightness, 46% ISO)

Figure 19: Images of unbleached kraft and sulfite pulp (CTP).

The bleaching sequences are proper to each mill. In principal, the bleaching process is common with
kraft and sulfite pulp regardless of the wood species and the sequence is modulated to achieve the
pulp properties and the targeted applications. Common bleaching sequences start with a
complementary delignification stage, called also O-stage (O for oxygen), which oxidizes the residual
lignin unsaturations using dioxygen. Then chlorine dioxide stage (D-stage) and alkaline extraction
sequences (E-stage) are repeated to solubilize and dissolve the oxidized lignin residues. One example
of a bleaching sequence can be ODED. In some cases, the first oxidation stage, the O-stage, can be
replaced by chlorine dioxide and alkaline extraction steps like DEDED.

But nowadays, all the modern chemical pulp mills possess an O stage at the beginning of the bleaching
sequence. In some companies, a mild acid treatment may be also added after the delignification stage
(O stage) to remove the hexenuronic acids formed during the kraft cooking (Buchert et al. 1995;
Dahlman et al. 2003).
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Today, the common bleaching ECF (elemental chlorine free), using chlorine dioxide (D) and alkaline
treatments (E) is still the most used. It is called "elemental chlorine free", because it was initially
developed to replace the first bleaching step, which uses chlorine gas to solubilize the lignin and thus
emits more toxic byproducts such as dioxin.

Totally chlorine free bleaching (TCF) is proposed to avoid the chlorine emission by replacing chlorine
dioxide treatment (D) with ozone (Z) and peroxide (P) stages. An example of bleaching TCF sequence
could be OZP. However, the applications of TCF bleaching sequences are still limited because ozone
and peroxide treatments decrease the cellulose DP (and the pulp viscosity) and limit the final
brightness of the pulp. As in the cooking process, the bleaching ECF modifies the cellulose and the
residual hemicelluloses contents in the pulp (Gellerstedt 2007a). If they have not been removed with
mild acid treatment at the beginning of the bleaching sequence, the hexenuronic acid groups,
branched on xylans, are most often degraded during the oxidation (O-stage).

The cellulose DP is reduced during the oxidation (O-stage) and the alkaline extraction (E-stage) because
of oxidative cleavages (Figure 20 A). Indeed, hydroxyl groups along the cellulose chain are oxidized
during the O-stage (a), then the alkaline conditions of the E-stage favored the B-H elimination in C4
and the chain is cut (b). The new reducing end is reorganized into pentose ring (c).
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Figure 20 : Oxidative cleavage of a polysaccharide chain and oxidative stabilization of
reducing end group (adapted from Gellerstedt 2007b)

During the bleaching, the oxidative stabilization (Figure 20 B) protects the cellulose chain from the
peeling reaction (Gellerstedt 2007a). In the O-stage, the reducing end groups of the cellulose chain (d)
are oxidized and rearranged in the aldonic acid form (e), which avoids the chain degradation monomer
by monomer as at is the case during the cooking.
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4. Final remarks on sulfite pulp (specialty cellulose) and kraft pulp

The fiber are longer in the kraft pulp than in the sulfite one (Figure 21) because the cooking conditions
are less destructive in the case of the kraft process. In both cases, the lignin is fully removed after the
bleaching and the bleached pulps may be considered as consisting of cellulose and hemicelluloses.

Kraft pulp Sulfite pulp

Figure 21: Optical microscopic examinations of kraft and sulfite pulp (CTP).

The drastic conditions applied in the case of the sulfite pulp for specialty cellulose production are
responsible of the very low hemicelluloses content to the opposite of the kraft pulp where the
hemicelluloses are less degraded even if a part of them are eliminated during the cooking (Table 6).
The cellulose DP is also more damaged in the sulfite cooking due to the acid hydrolysis and the fibers
are more deconstructed.

Table 6: Sulfite and kraft pulps characteristics.

Pulp grade Hemicellulose Content (%) Cellulose DP Fiber length (um)
Softwood sulfite pulp 4 760 1900
Softwood kraft pulp 16 1100 2400

To sum up the kraft and sulfite pulps have different advantages and defects, which make them suitable
for different applications (Table 7).

Table 7: Kraft or sulfite process.

Kraft process Sulfite process

acidic cooking: H2SO3™ and counter ion

Chemicals Ikali king: NaOH and Na>S
e alkaline cooking: NaOH and Na2 (Na*, Ca*, Mg", or NHs"), pH 3-5

d bright bleached pul
e produces highest strength pulp proguces brighter unbleached pulp

Advantages . removes hemicelluloses and cut cellulose chain
keeps hemicelluloses . .
(decreases mechanical paper properties)
Applications e strongest paper e specialty cellulose
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MFC production

1. Difference between microfibrils and microfibrillated cellulose (MFC)

The term "microfibril" designs one of the main components of the cell wall. In the case of wood, the
microfibrils correspond to an assembly of elementary fibrils, each of them constituted of 30 to 40
cellulose chains as a result of the biosynthesis by the rosette complex (Saxena and Brown 2005;
Herth 1983). The wood microfibrils size has been first estimated to 3.5 nm (Meier 1962) and since the
diameter of one cellulose chain is around 0.1 nm, the number of cellulose in the elementary is around
35, in agreement with the biosynthesis model of the rosette. A recent study (Chinga-Carrasco 2011)
has provided size estimation with TEM images of 28 nm for the microfibril and 3.5 nm for the
elementary fibrils (Figure 22 left) which is in good correlation with previous values.

Fibrillar fines ==

Fibre fragment

Figure 22: Difference between microfibrils and microfibrillated cellulose (MFC);

left :Pinus radiata microfibril image (TEM); right: microfibrillated cellulose suspensions,
dried on glass slides (homogenization 5 passes at 1000 bar), (Adapted Chinga-Carrasco
2011).

The first MFC suspensions were produced in 1977 at the ITT Rayonier Eastern Research laboratory in
Whippany, USA by Turbak and his team (Turbak, Snyder, and Sandberg 1983; Herrick et al. 1983). Their
elegant method consisted in running a 3% slurry of chopped pulp fibers through a high pressure
Manton Gaulin milk homogenizer where a large pressure drop facilitated the microfibrillation. As the
slurry reached 80°C at 8,000 psi, the fibers started to undergo a total phase change and turned into a
translucent firm “gel” that they called microfibrillated cellulose (MFC). An example of MFC is shown in
Figure 22 right. It is a non-homogeneous system mainly composed of microfibrils but also containing
some residual larger structures such as fibers, fiber fragments and fibrillar fines. The microfibrils
present in the MFC have diameters less than 100 nm, which explains why they are sometimes called
nanofibrils, where “nano” refers to sizes between 0.001 and 0.1 um (Chinga-Carrasco 2011).

Even if wood was the principal source of cellulosic materials, MFC can also be produced from a large
panel of non-woody sources (Lavoine et al. 2012) such as sugar beet pulp (Dinand, Chanzy, and
Vighon 1999), straw (Alemdar and Sain 2008), bagasse (Bhattacharya, Germinario, and Winter 2008),
palm tree rachis (Bendahou, Kaddami, and Dufresne 2010) or even banana tree fibers
(Deepa et al. 2011).
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To avoid confusion between microfibrils, as a cell wall component, and microfibrils as a part of the
microfibrillated cellulose (MFC), a list of terminology has been established with size correlation
(Chinga-Carrasco 2011) and will be used in the rest of the manuscript (Table 8).

Table 8: Sizes according to terminology and morphology (adapted from Chinga-Carrasco
2011).

Diameter (um) Biological structures Technological terms
10to 50 Tracheid Cellulose fiber
<1 Macrofibrils Fibrillar fines, fibrils

Microfibrilated cellulose (MFC),
microfibrils, nanofibril, nanofibers
<0.035 Microfibrils /

Elementary fibril ,
36 to 40 cellulose chains

<0.1 /

3.5.10°% Elementary fibril

0.1.10° B-1,4-glucan Cellulose chain

2. Pre-treatment before MFC production

Because any process of MFC production has never succeeded in a perfect fiber deconstruction, it is
generally needed to repeat the mechanical shearing several times to promote a good microfibrillation.
This mechanical treatment consumes a large amount of energy: about 27 000 kWh per ton of MFC
were necessary to produce a suspension from a sulfite pulp (Klemm et al. 2011).

To reduce the energy need, three categories of pretreatments were developed in order to facilitate
the fiber deconstruction (Nechyporchuk, Naceur, and Bras 2016).

e Mechanical treatment with a mechanical cutting (Nakagaito and Yano 2004)

e Chemical treatment with carboxymethylation (Wagberg et al. 2008) or TEMPO-mediated
oxidation (Saito et al. 2006)

e Enzymatic pre-treatment with cellulases (Pdakko et al. 2007)

2.1 Mechanical pretreatment

The microfibrillation may be improved by reducing the fiber length by mechanical cutting prior to the
homogenization (Herrick et al. 1983). A combination of repeated mechanical forces was developed to
promote the fibrillation of cellulose fibers with 30 passes through a refiner and then 14 passes in a
homogenizer (Nakagaito and Yano 2004). More recently, a general mechanical method was developed
and scaled-up industrially (Zimmermann, Bordeanu, and Strub 2010). First, the pulp was milled in a
preliminary step to reduce the fiber dimensions and improve the swelling capacity in water, and then
a mechanical pre-treatment was conducted in a thermostatic reactor with on-line dispersing system.
After cooling to 15°C and dispersion at 20.000 rpm, cellulose fibril bundles were obtained. Then, these
suspensions were introduced in a microfluidizer high shear processor.

The mechanical technique has its limits and the energy consumption is always high.
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2.2 Chemical pretreatment

The fibers' deconstruction can be facilitated by chemical modification of cellulose before the
homogenization. The TEMPO oxidation and carboxymethylation pretreatments both generate charges
at the fibers surface, which improve the microfibrillation. The carboxymethylation consists in the
substitution of the hydroxyl groups by carboxymethyl groups (CH2COOH) while the TEMPO oxidizes
selectively the primary alcohol groups of cellulose into carboxylic acids. Indeed, the introduction of
charged groups into the fiber pulp has long been known to enhance delamination of the fiber walls.
With the carboxymethylation pretreatment, the liberated fibrils had diameters of 5-15 nm and a length
of more than 1 pm with a charge density about 0.5 meq/g.

The TEMPO oxidation presents the advantage of disintegrating fibers into microfibrils with width of
10-20 nm, using a much lower energy input. The dispersion of the fibers into microfibrils are facilitated
by electrostatic repulsions caused by the anionic carboxylic groups between the TEMPO-oxidized
cellulose microfibrils and the consequent decreases of the number of hydrogen bonds present in the
wood cell walls (Saito and Isogai 2006). It is today a very common technique for producing well-
dispersed MFC.

2.3 Enzymatic pretreatment

The combination of enzymatic hydrolysis and mechanical shearing has been developed for the MFC
production (Paakko et al. 2007; Henriksson et al. 2007) and patented (Lindstrom, Ankerfors, and
Henriksson 2007). Padkko et al. proposed a method to produce MFC with refining, enzymatic
hydrolysis, second refining then homogenization of 2 wt.% aqueous suspension by 8 passes through a
microfluidizer, while Henriksson et al. (2007) applied different enzyme concentrations, and use a
homogenizer for 20 passes.

Commonly the enzymatic pretreatment performed are using celllulases which can be divided into
three groups:

e the B-(1,4)-endoglucanases
e the exoglucanases
e the B-glucosidases.

The endoglucanase hydrolyzes randomly, the accessible intramolecular 3-(1,4)-glucosidic bond of the
cellulose chain and generates oligosaccharides. In the opposite of the “endo”, the exoglucanase is
acting processively from the chain extremity and releases cellobiose (two units of glucose bond with
B-(1,4) or glucose units in function if the enzyme is a cellobiohydrolase or a glucanohydrolase
respectively. The -glucosidases hydrolyze each -(1,4)-glucosidic bond into glucose: it is particularly
effective to break the cellobiose released by the other enzymes when multi-enzymatic cellulases are
used. Comparative studies have shown that the endoglucanase had better effect on the microfibril
separation (Nechyporchuk and Belgacem 2015).
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2.4 Conclusion on the pretreatment

The use of pretreatment decreases the energy consumption of the MFC production (Table 9). The
lowest energy requirement for the MFC production is obtained with chemical modification such as
TEMPO and carboxymethylation. However, the TEMPO- MFC are the most expensive to produce
because of the chemistry cost.

To produce MFCs with enzymatic pretreatment requires three times more energy than that of a
chemical pretreatment. Nevertheless the cost for the enzymatic treatment is lower than that for the
TEMPO chemistry. At least, the use of an enzymatic pretreatment shows advantages from the
environmental point of view, compared to chemical methods

Table 9: Influence of pre-treatment on the energy consumption and the cost.

MFC diameter (d) Energy requirement
Pretreatment Bleached Pulp type and length (1) (kWht)
None Kraft/Sulfite Plugging problems
Carboxymethylation . d=5-15nm
(DS=0.1) Kraft/Sulfite I>1um -
TEMPO d=10-20 nm 4 000
Enzymatic Sulfite d =20-50 nm 10 000

3. MFC production process

Different processes to generate MFC have been developed with the same idea of microfibril
individualization.

Steam explosion, ball milling and blending have been used to deconstruct the fibers under the
mechanism of pressurized steam then rapid release of pressure (Deepa et al. 2011). Mechanical
crushing, with balls collision in a rotating cylinder (Zhang, Tsuzuki, and Wang 2015) and speed blender
are also applied (Shahril et al. 2015). However, these processes are still limited by the MFC quality and
homogeneity and the most common ways to produce MFC are the homogenization and grinding
process (Figure 23).

The grinding system consists in a strong and ultra-fine refining system where the wood pulp is passed
through static and rotating disks (Nechyporchuk and Belgacem 2015) whereas the pulp is injected
through a small gap at high pressure (1500 bar) in the homogenization process. Two types of
homogenization process have been developed, using homogenizers or microfluidizers. In the
homogenizer, the pulp fibers are delaminated in the contact of the impact ring, while in the
microfluidizer the pulp is circulating in the thin chamber, with specific geometry (Z or Y).
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Both homogenization and grinding processes are available at pilot and industrial scale even if the
microfluidizer is more dedicated to lab scale.

Homogenization with Homogenization with
homogenizer microfluidizer

Grinding
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Figure 23: Process of MFC production (adapted from Nechyporchuk, Naceur, and Bras 2016).

More recently, new processes to produce MFC have been proposed, namely an extrusion process
where the pulp is injected into a twin screw (Ho et al. 2015) or ultrasonication (Saito et al. 2013;
Kaboorani, Riedl, and Blanchet 2013), which delaminates the fibers thanks to small vacuum bubbles
created by the ultrasonic waves. The extrusion process is interesting because it allows working at
25 to 40% consistency whereas the pulp in the homogenizers needs to be injected at only 2-3%.
Another industrial process has also been developed by FP Innovation, which produces
"cellulose filaments" thanks to a long high consistency refining. The final product differs from MFC by
their micro length size.

Each aforementioned process of MFC production and pre-treatment provides different types of MFC
with different quality and properties. In this study, we will focus only on MFC produced by the
homogenization process with homogenizer and refining as pretreatment, together with enzymatic
step. The wood pulps used for the MFC production result from chemical pulping,
(kraft or sulfite cooking) and bleaching.
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Cellulose - xylan interaction

The interactions between the cellulose and hemicelluloses are of main interest due to their application
for the paper industry as well as for cellulose-based materials. Indeed, this interaction may enhance
the paper strength properties but negatively leads to increases in (i) the energy consumption for the
fiber liberation and (ii) the chemical consumption.

Xylans were first supposed to induce the microfibrils helicoidal rotation as twisting agent and to
maintain spaces between the microfibrils thanks to the glucuronic acid branches (Reis and Vian 2004).
It is now admitted that xylan helps for the microfibrillar cohesion by bonding cellulose microfibrils
together, but the role of the xylan branches in the interaction with cellulose is still under discussion.
Some recent investigations performed with simplified model, e.g. Arabidopsis thaliana, highlight the
fact that two kinds of glucuronic acid situation can be defined regarding the regularity of their
arrangement along the xylose backbone (Bromley et al. 2013). It is then proposed to divide the xylan
chain in different zones, with minor or major glucuronic acid content. Even it was first believed that
the glucuronic acids favor the xylan interaction with cellulose, thanks to its negative charges, it is more
admitted today that xylans interact better with cellulose when they are branch-free or with a minor
amount residues. It was recently proposed that a xylan chain might be bonded on two cellulose
microfibrils. In that case, the xylan part in interaction with the cellulose corresponds to that with the
minor glucuronic content while the part between the microfibrils are those, which are branched in
majority (Busse-Wicher et al. 2016).

The tridimensional conformation of xylan is not fully elucidated when it is in interaction with cellulose.
Indeed, crystalline xylan has been described to be in a left-handed 3 fold helical system (3:)
(Nieduszynski and Marchessault 1972), which corresponds to its most stable conformation in water
(Figure 24 A) while cellulose is in a 2 fold helical screw conformation (2).

A

3, conformation 2, conformation

3residues perturn (360°), left rotation 2 residues perturn (360°)

Figure 24: Two fold (21) and three fold (31) conformations of a homoxylan (with 6
residues).

By atomistic simulation, it was found that xylan was able to modify its conformation in some specific
cases, e.g. when it is branched, and to adopt the 2; conformation (Figure 24 B) (Mazeau et al. 2005).
Recent studies on Arabidopsis thaliana, have also suggested that xylan was preferentially in the 2;
conformation in the presence of cellulose (Dupree et al. 2015; Busse-Wicher et al. 2016). Different
techniques have been used to better understand the interactions between cellulose and
hemicelluloses.
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1. Spectroscopy techniques

The solid state NMR interaction was used to understand the cellulose structure and its interaction with
the other components of the wood pulp. The solid-state 3C NMR signal of cellulose is made of six
signals related to the 6 carbons of the anhydroglucose unit. The signal at carbon C4 presents sharp
resonances at 86 - 92 ppm, attributed to crystalline cellulose together with broad resonances
attributed to amorphous domains (80 - 86 ppm). The C4 resonances may be subdivided into signals
with the contribution of the cellulose crystalline forms la and I, the paracrystalline cellulose, and the
cellulose accessible and inaccessible surfaces (Larsson et al. 1999). Larsson's study revealed that
hemicelluloses contribute to the amorphous cellulose signal, with a specific signal at 82 ppm and
84 ppm, by comparing the spectra of wood pulp spectrum with that of pure cellulose taken from cotton
linters. A new signal appears at 82 ppm when xylan, isolated from wood pulp is adsorbed on cotton
linters (Larsson et al. 1999). A diminution of the peak intensity at 82 ppm is observed on NMR pulp
signal after xylan removal by alkali treatment (Teleman, Larsson, and Iversen 2001). Compared to the
first study, the contribution of xylan in the pulp spectrum is better noticed because the NMR analysis
was performed on never dried samples.

More recently, 2D solid state NMR with 13C labeling was used to characterize the organization of the
primary cell wall of Brachypodium grass (Wang et al. 2014) and the secondary wall of
Arabidopsis thaliana (Wang et al. 2014; Dupree et al. 2015). In the first study, the Brachypodium was
prefered to the Arabidopsis thaliana because of the highest concentration in glucuroarabinoxylan and
the lowest content in pectins and proteins. It was reported that the 2D NMR 3C -13C correlation
showed unambiguous interactions between cellulose and xylan and cellulose and arabinose branches.

Dupree et al. (2015) performed similar 2D NMR 3C -13C correlation experiment on Arabidopsis thaliana
but only on dry samples. They reported that the two cellulose domains with the interior crystalline
chains and the amorphous surface chains could by identified with 2D NMR. The cellulose was found to
be spatially close to pectins and lignin and different conformations of xylan were observed but among
these, very few were in the 3; conformation. However the effect of drying on the results and especially
on the spatial proximity of the different constituents of secondary wall was not detailed.

The hemicelluloses and cellulose interactions were also studied with dynamic Fourier Transformed
Infrared (FTIR) spectroscopy. Akerholm et al. (2001) compared the glucomannan and xylan interaction
with cellulose thanks to their specific wavenumber on FTIR signal: cellulose (1300 cm™), glucomannan
(870 and 810 cm™) and xylan (1735, 1600 and 1245 cm™). Xylan and glucomannan appeared to be
organized differently with the IR polarization (parallel or perpendicular). Glucomannan was found to
be in closer association with cellulose than xylan as it was moving synchronously with the cellulose
fibers while the xylan interaction seemed to be more indirect.
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2. Microscopy or piezoelectric techniques

Models were built to study the interaction between cellulose and xylan with atomic force microscopy
(AFM) or quartz crystal microbalance with dissipation (QCM-D) where the change in frequency is
proportional to the adsorbed mass. Xylan coated on mica surfaces, which were studied by surface force
apparatus (SFA) (Osterberg et al. 2001), showed that xylan adsorption was minor and mainly controlled
by the low xylan solubility (Tammelin, Paananen, and Osterberg 2009).

Xylan adsorption on cellulose-coated surface was also observed with AFM and QCM-D techniques
(Paananen et al. 2003). Xylan was adsorbed at the cellulose surface even when it was negatively
charged. However, the swelling of cellulose in water and the problem of xylan solubility seemed to be
limited factors. More recently, QCM-D techniques were used to characterize the adsorption of various
hemicelluloses isolated from spruce pulp, on cellulose spun-coated film and compared with the
adsorption of commercial galacto-glucomannan and xylan on cellulose film (Tammelin, Paananen, and
Osterberg 2009 ; Eronen et al. 2011). Cellulose film models were obtained by MFC spin coating then
characterized by AFM visualization (Ahola et al. 2008). These model surfaces were found to be stable
in QCM-D swelling experiments at different electrolyte concentration and pH.

Adsorption at the cellulose surface was observed with hemicelluloses extracted from spruce pulp and
compared with the adsorption of commercial xylan and glucomannan. The extracted hemicelluloses
were found to be strongly adsorbed onto cellulose, even it was noticed that the pulp treatment
(peroxide) prior to the extraction may have an influence on their adsorption. It seems that the
hemicellulose adsorption driving force is not electrostatic. However the xylan adsorption at the
cellulose surface seems to be due to the lack of solubility of xylan into water, which favored its
deposition on cellulose.

The influence of xylan branches on its adsorption at the cellulose surface has been also evaluated by
QCM-D. It was found that debranched xylan is better adsorbed than arabinose-xylan on the cellulose
coated surface (Bosmans et al. 2014). However this debranched xylan was deposited at the cellulose
as aggregated particles. The influence of branches on the xylan adsorption was also studied with
various commercial xylans (from corn cob, oat, spelt, wheat birch wood and beech wood) grafted with
model branches to simulate the glucuronic acid and arabinose substitution (Littunen et al. 2015). All
the xylans were grafted successfully, but only the wheat xylan was water dispersible. In this case the
grafting may decrease the adsorption of xylan at the cellulose surface.
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3. Biosynthesis models

Some studies have proposed to add hemicelluloses, such as xyloglucan, arabinoxylan and
glucomannan to the cultivating medium of bacterial cellulose and to observe the influence of these
additives on the cellulose microfibril organization, the cellulose crystallinity and the mechanical
resistance of cellulose films made from these microfibrils (Tokoh et al. 2002; Martinez-Sanz et al. 2015;
Mikkelsen et al. 2015). Microscopy examinations of the hemicelluloses deposition along the cellulose
microfibrils with gold labelling led to similar conclusions: the xylan and xyloglucan were deposited as
nodules along the cellulose microfibrils and are believed to bridge adjacent cellulose microfibrils
(Martinez-Sanz et al. 2015; Mikkelsen et al. 2015), while glucomannan was more distributed all along
of the fibers (Tokoh et al. 2002).

Tokoh’s study demonstrated by XRD that xylan and mannan affected the cellulose crystallinity.
Martinez-Sanz’s study relying on SANS and SAXS measurement indicated that only xyloglucan altered
the lateral crystallite dimension of cellulose and that there was no clear evidence of the crystallinity
modification with arabinoxylan. It was concluded that during the biosynthesis, the arabinoxylan-
cellulose interactions were developed after the cellulose microfibrils assembly while the xyloglucan
incorporation was helpful for the inter microfibrillar cohesion.

The points of view are also divergent regarding the hemicelluloses influence on the solid state NMR
signal of cellulose. In Tokoh's study (Tokoh et al. 2002), signal modification was observed at 82 ppm
with additional xylan in the cultivated medium while Mikkelsen et al. (2015) did not observe it but
detected xylan or xyloglucan in the mobile phase. Furthermore, in Mikkelsen's study, no improvement
in mechanical test performed on film was noticed in presence of hemicelluloses and the best
properties were obtained with pure cellulose without any addition of xylan and xyloglucan. The limit
of this system may be explained by the repartition of the xylan as nodules in the cellulose matrix, which
induce heterogeneity in the composites. A better dispersion of hemicelluloses in the cellulose, as it is
the case for initial MFC produced from kraft pulp (high hemicelluloses content) improves the
mechanical resistance compare to the MFC produced from sulfite pulp (low hemicelluloses content).

4. Improvement in mechanical properties

Another way to characterize the cellulose/xylan interactions is to study the influence of hemicelluloses
content on the pulp mechanical properties. The influence of xylan content on the water stability of
MFC film was studied by removing xylan from the initial pulp with enzymatic treatment prior the MFC
production (Tenhunen et al. 2014). It was found that xylan prevents the MFC aggregation but the water
permeability and oxygen barrier were only slightly impacted by the decrease in xylan content. AFM
was used to characterize the cellulose fibers modification after xylan precipitation at the surface of
wood pulp and viscose (Miletzky, Punz, et al. 2015). The xylan adsorption only occurs in the case of
wood pulp but no improvement in tensile index was observed. As previously described with
hemicelluloses addition in cultivated medium of bacterial cellulose, a heterogeneous dispersion of
xylan particles, with diameter from 10 to 15 nm, is observed at the cellulose surface, which may limit
the mechanical properties. The measurement of the tensile strength of single fibers or fiber-fiber joint
resistance was measured with micro-bond tester (Miletzky, Fischer, et al. 2015). The hemicelluloses
content in the initial pulp was varied with alkali extraction or xylan precipitation at the fibers surface
and their influence on the mechanical resistance of the fibers was observed. The modulus of elasticity
of individual fibers was not affected by the extraction or precipitation of xylan, however the additional
xylan improved the resistance of the fiber-fiber joints.
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Materials

1. MFC suspensions

From the market bleached pulp, MFC were prepared according to the STFl/Innventia patent
(Lindstrom, Ankerfors, and Henriksson 2007) based on a mechano-enzymatic pre-treatment,
optimized at CTP and followed by homogenization at high pressure, thanks to A. Janodet and F. Cottin
(CTP).

1.1 Pre-treatment of the pulp
After pulp rehydration in a conventional pulper, the suspension at 4.5% consistency was pre-refined
with a 12” single disc (30 cm) refiner at a speed of 1500 rpm (Figure 25).

This pre-treatment was dedicated to open the fiber structure in order to facilitate the penetration of
the enzymes into the fiber wall and to improve the efficiency of this enzyme treatment.

Tank 2 i

Tank 1

Flowmeter .

Figure 25: Lay-out and picture of the refining pilot plant (CTP)

The pre-refined pulp, in one of the tank of the refining pilot was treated with a commercial solution of
endoglucanases (FibreCare R from Novozyme) at pH 5.0 at 50°C for one hour.

A final post-refining was carried out in the 12” single disc refiner at a speed of 1500 rpm to reach the
highest possible drainage index.

The pulp was pre-treated with this mechano-enzymatic protocol in order to obtain a suspension of
fibers with a mean fiber length lower than 300 um.
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1.2 Homogenization of the pre-treated pulp

The pre-treated pulp was transferred from the refining pilot to one of the tanks of the NaMiCell pilot.
The suspension was adjusted at 2% consistency before starting the homogenization.

The production of MFCs was obtained by submitting the fiber fragments to high pressure in a specific
chamber. Anindustrial homogenizer, supplied by GEA Niro Soavi, with a capacity of 1000 L/h, equipped
with a 55 kW motor, was used for this production (Figure 26). Different passes were done to reach the
MFC level: one pass at 1000 bar and then four passes at 1500 bar.

At the output of the homogenizing zone, the suspension was cooled with cold water in order to limit
an important increase in temperature.

Figure 26: GEA Ariete homogenizer and picture of the NaMiCell pilot plant (CTP)

In this study, eight MFC suspensions with four different wood species were produced under the
conditions described below (Table 10) from sulfite/kraft pulp and dried/never dried pulps.

Table 10: Panel of produced MFC

MFC from Wood species Pulping process Pulp drying history

birch-kra-nd birch kraft never dried pulp
birch-kra birch kraft dried pulp
spruce-kra spruce kraft dried pulp

pine96-sul-nd pine (96% of cellulose) sulfite never dried pulp
pine96-sul pine (96% of cellulose) sulfite dried pulp

pine92-sul-nd pine (92% of cellulose) sulfite never dried pulp
pine92-sul pine (92% of cellulose) sulfite dried pulp
euc-sul eucalyptus sulfite dried pulp
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2. Pulp samples from CTP

Three different market wood pulps were selected to perform xylan extraction. They correspond to
those used to produce MFC (Table 11).

Table 11: Panel of pulp

Pulp from Wood species Pulping process Pulp drying history PuI:isr::irr;ing

birch-kra-nd birch kraft never dried refined pulp

birch-kra birch kraft dried refined pulp
birch-kra-nd-nr birch kraft never dried non refined pulp

Samples were taken at different steps during the pulps pre-treatment prior to the MFC production
(conditions described above in Figure 25). The initial never dried non refined pulp, the never dried pulp
after refining and the dried pulp after pulping and refining were selected to evaluate the impact of
each steps on the xylan extraction yield and on xylan structure.

3. Xylans samples

Xylans extracted from the birch kraft samples (pulp and MFC) were compared with a commercial
arabino-xylan extracted from an oat species (Avena) from Janssen Chemica and an arabino-xylan
extracted at CTP from birch wood chips.

The xylan extraction from birch wood chips was performed with optimized conventional procedure.
The wood chips were cooked with 5% of sodium hydroxide then the xylan dissolved in the sodium
hydroxide solution was separated from the insoluble wood chips by centrifugation. The pH of the xylan
solution was neutralized with hydrochloric acid then the xylan was precipitated for one night with
ethanol/water mixture at 5°C. The xylan precipitate was isolated and washed by repeated
centrifugation and redispersion of the pellet in ethanol. The recovered solid xylan was dried in the
oven at 55°C.

4. Solvents and materials

Dimethylsulfoxide (DMSO - analytical grade), tert-buthyl alcohol (TBA - 99.5%) and lithium chloride salt
(LiCl - 99%) were purchase at Fisher Chemical, Acros-organics and Sigma Aldrich respectively. After
opening the flask, the DMSO was kept with molecular sieves from Aldrich (4 A).

Deionized water was produced by water circulation on column aquadem-E300 from Véolia. Dialysis
membranes cellulose, with cut-off of 12000 Da were purchased from Roth.

The centrifugations were performed on Sigma Laboratory Centrifuges 6K15 (rotor 12256, 11 200 rpm
tube polypropylene copolymer 250 mL), 3K30 (rotor 12158, 23793 rpm, tube polypropylene copolymer
30 mL) and 2-16P (rotor 12139, 15000 rpm, tube polypropylene copolymer 30 mL).
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Methods

1. Samples characterization

1.1 Chemical composition with sugar analysis

The chemical composition of pulp, MFC and xylan was analyzed using high-pressure liquid
chromatography (HPLC) Dionex DX500, column Carbopac PA10 with water/NaOH 150 mM gradient
thanks to the kind helps of Dr M. Schelcher and A. Janodet (CTP). Prior to the analysis, the MFC samples
were freeze-dried, dissolved and hydrolyzed by sulfuric acid. Fucose (Sigma Aldrich) was used as
internal standard.

1.2 Morphological analysis of residual coarse elements

The MorFi laboratory version analyzer was designed and developed for the morphological
characterization of fibers and fines. The analysis is done on a fiber network (precisely 0.4 g of dry
matter is diluted in about 700 mL of water), so that the measurement occurs in the fibers' natural
unrestrained environment. This approach allows reliable statistical measurement of thousands of
fibers at high speed and accurate determination of important characteristics such as curl and kinks.
The optical system is composed of a high-resolution CCD camera, a measurement cell avoiding cell
plugging and a light source. Images acquired by the camera are immediately treated by a computer.
The measurement is a statistically accurate view of the fiber characteristics: fiber content
(length > 80 um), fines content (length < 80um) and mean area-weighted length, among others, are
the three characteristics studied in this report (each sample measured twice).

1.3 MFC dispersion with UV visible spectroscopy

The MFC suspensions were diluted at 1% and introduced into a UV quartz cell with cover (dimension
of 44.5 x 12.5 x 3.5 mm and layer thickness of 1 mm). A concentration below 0.5% resulted in
sedimentation, and higher concentration suffered from too strong attenuation resulting in non-
linearity with respect to the concentration. The optical density of each sample was measured at
wavelength of 200 to 800 nm using a UV - visible spectrometer (Varian Carry-50 Bio). The data were
collected at the scan speed of 600 nm/min and a resolution of 1 nm.

1.4 Samples freeze- drying

The samples were placed in round bottom flask. In the case of pulp or MFC, the initial suspension at
2%, was diluted to 1% with deionized water to facilitate its manipulation.

The suspension was frozen in liquid nitrogen then freeze-dried at 100 mili-torr for two days.
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1.5 Samples composition and structure by '3C solid state NMR

NMR experiments were performed on a Bruker Avance spectrometer (**C frequency of 100 MHz), using
magic angle spinning (MAS) and cross-polarization (CP). The spinning speed was set at 12 kHz, sweep
width 29761 Hz, and recycle delay 2s. Each sample was analyzed under dry and wet conditions. The
MPFC spectra were averaged over 24 kscans and 5 kscans for wet and dry samples respectively. The
xylan spectra were averaged over 2 kscans. The *C chemical shifts were calibrated with the glycine
carboxyl group (176.03 ppm).

The spectra were normalized with respect to the integrated intensity between 50 and 120 ppm.

The dried samples of pulp, MFC and xylan were prepared by freeze-drying the initial suspension in
water. The wet samples of pulp, MFC and binary system of MFC samples with re-adsorbed xylan were
obtained as centrifugation pellet (13 500 rpm 2 h) of the suspension and the water excess was blotted
with filter paper. Xylan wet samples were prepared by rehydrating the freeze-dried samples at 97%
relative humidity in a desiccator using saturated potassium sulphate aqueous solution.

2.  MFC and pulp components isolation
2.1 Solvent exchange (tert-butyl alcohol =TBA) and aerogel formation

» Harsh exchange:
Water contain in the MFC suspensions (2% solid content) was replaced with tert-butyl alcohol (TBA)
by repeated centrifugation (11 200 rpm, 2 h, 25°C) and redispersion of the pellet in TBA using a double
cylinder type disperser, Ultra-turrax.
After the third centrifugation, the MFC were suspended in TBA at 1.25wt% (Fumagalli et al. 2013) and
frozen with liquid nitrogen and freeze-dried at 100 mili-torr for two days.

> Soft exchange:
To avoid interface tension between water and TBA which might induce irreversible aggregation among
cellulose fibrils, the water of the MFC suspensions (2% solid content) was replaced with ethanol
(3 times) prior to TBA (3 times) and the centrifugation speed was decreased to 2000 tr/min. The rest
of the procedure is identical of the harsh exchange.

2.2 MFC specific surface measured with BET

Specific surface area of freeze-dried samples (MFC or pulp) were measured using adsorption-
desorption isotherms of nitrogen with the kind help of Dr. Sonia Molina-Boisseau (CERMAV). The
freeze dried samples (0.07 — 0.15 g) was first degassed in the Nova 1200e surface area analyzer
(Quantachrome instruments) at 105°C for 15 h and the adsorption-desorption isotherms were
measured at 77 K in the pressure range of 0.01-0.3 bar. The specific surface area was calculated using
BET equation (Braunauer, Emmett, and Teller 1938) as described by Fumagalli et al. 2013.
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2.3 Optimized protocol of xylan extraction

The freeze-dried MFC or pulp samples were subjected to the extraction of residual xylan. They were
first suspended in DMSO-5% LiCl at the concentration of 8 g/L (i.e. 0.7 wt%), then the suspensions were
stirred at room temperature for 20 h.

Then the xylan extracted in DMSO was separated from the MFC and pulp samples by centrifugation
(20000 g, 15 h, 25°C). The extracted xylan and the MFC after extraction were regenerated separately
by dialysis against water using dialysis membrane with cut off of 12000 Da, which excluded DMSO and
LiCl from the specimen.

After dialysis for 7 days, the MFC suspension was kept at the wet state and the xylan suspension was
concentrated by rotary evaporator (30°C, 7 mbar) and then freeze-dried.

2.4 Xylan composition and structure with liquid state NMR

The freeze-dried xylan samples (10 to 15 mg) were dissolved in 0.75 mL of deuterated solvent under
agitation at room temperature for 12 h. Then the spectra of proton (*H) and carbon (**C) NMR were
recorded at 353 K with a Bruker Advance spectrometer at 400 MHz and 100 MHz respectively.

Proton-carbon correlation (HSQC) NMR was also performed with proton probe at 400MHz at 353 K
with a Bruker Advance spectrometer. Because of solubility, the xylan extracted from pulp or MFC
samples and the commercial xylan extracted from oat were dissolved in deuterated-dimethylsulfoxide
(DMSO-ds- 99.9% deuterium- Aldrich) while the xylan extracted from birch wood chips was dissolved
in deuterated water (D;0 - 99.96% deuterium - Euriso-top).

3. Xylan DP characterization

3.1 Liquid NMR

The freeze-dried xylan extracted from MFC from birch kraft never dried pulp (10 to 15 mg) is dissolved
in 1 mL of deuterated water (D,0 - 99.96% deuterium - Euriso-top) and 9% of sodium deuteroxide
(NaOD - 40% wt solution in D,0 - <99% deuterium - Aldrich) under agitation at room temperature.
Then the proton (*H) liquid NMR was directly recorded after the xylan dissolution at 25°C because the
xylan solubility in deuterated water and sodium deuteroxide mixture was very low. A xylan precipitate
was formed when the temperature was increased from 298 K to 353 K or if too much time (< 1h) was
left between the disolution and the measurement.

The degree of polymerization was determined from the relative intensities of the signals from the
anomeric protons. Spectral deconvolution was performed with the"peak fitting" Mestrenova tool.
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3.2 Viscosimetry

Viscosimetry measurements were performed in the laboratory of rheology and process (LRP), thanks
to Dr. Denis Roux on the Microviscosimeter (Anton Paar Louis 2000ME), using a capillary
(diameter 1.59 mm) and a steel ball (ref 19847023).

The density of the DMSO was fixed at 1.100 (g/cm3®) and the temperature at 20°C on the
Microviscosimeter.

Xylan solutions were prepared by dissolving freeze-dried xylan extracted from MFC from birch kraft
never dried pulp at different concentration in DMSO at room temperature for 12h.

The solutions were centrifuged 1h at 50 000 g to remove the residual cellulose contamination (less
than 2%). The supernatants were gently collected and poured in capped tube at room temperature.
The exact xylan concentration was recalculated by dialysis and freeze-drying of a fixed volume of each
xylan solutions.

The xylan concentrations in DMSO solutions after the centrifugation step were: 3.7 g/L ; 8.2 g/L ;
11.4 g/L and 13.4 g/L.

The dynamic viscosity was measured on each xylan solutions and the DMSO pure at the three angles
of 20°, 50° and 80°. Each measurements corresponds to the average of 20 values with 10 measures at
20°, 50° and 80° and 10 measures at -20°, -50° and -80°.

3.3 SEC- MALS

This analysis was performed in the Paper Science Laboratory, Tokyo University, thanks to Yuko Ono.
The existing procedure developed for cellulose DP characterization with DMAC -LiCl was followed in
the case of xylan (Ono et al. 2016).

Freeze dried xylan (200 mg) was dissolved in 5 mL of DMAC - 8%LiCl for one week at room temperature.
Then the solution was injected on SEC columns (KD-806M KD-802M, Shodex, Japan), with
1.0% w/v LiCI/DMAC as solvent and the detection was performed with MALLS detector (DAWN
HELEOS-II, A = 658 nm, Wyatt Technologies, USA), and Rl detector (RID-10A, Shimadzu, Japan).
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4. MFC films production

Two techniques were employed to produce MFC films: the casting-evaporation method, also simply
called casting and the handsheet method.

4.1 MFC films by casting

In order to obtain a homogeneous suspension, the MFC suspension at 2 wt% was preliminary diluted
to 0.5 wt% and magnetically stirred for 30 min. Then, the desired amount of suspension was poured
into polystyrene petri dishes (Thermo Fisher Scientific) with a diameter of 9 cm (Figure 27).

Petri dish
] — e
25°C—3 to 5 days

MFC suspension MEFC film
30 g at0.5% 24 g/m?

Figure 27: Casting process
MFC films with varied density were obtained after a few days of drying at room temperature.

4.2 Deionized MFC films by casting

To provide ion surface contamination of the film, the MFC suspensions were rinsed by repeated
centrifugation and redispersion of the pellet into hydrochloric acid solution at 0.5%. At the end of the
third centrifugation, the MFC pellet were rinsed by repeated redispersion in deionized water and
centrifugation until the neutral pH is recovered.

The MFC casting films were performed with this deionized MFC suspension with the same procedure
described above.

4.3 MFC films by handsheet method
The handsheet method used a semi-automatic sheet former (Rapid-Khoten) to produce MFC films. This
device is currently used to produce model paper sheet, called handsheet, at lab scale (Figure 28).

Figure 28: Handsheet formers
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4.3.a Classic MFC films
This method for films formation was adapted from the protocol already described in literature
(Sehaqui et al. 2010) and the main steps were illustrated in Figure 29.

e
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‘xL ==
1- Stirring 2- Filtration
MFC suspension at0.5% 20 min
Cover paper and blotting paper
were added on the upper face Wi
of the wet MFC film
. MFC wet film
MFC wet film k =
dry matter content of 10% 4 + cover paper below
Membrane — Blotting paper
porasily .22 um ~ Then the ensemble was flipped "
4- Peeling

3- Gel cake

MFC dried film
+ 2 cover papers

Cover paper

MFC dried film

carrier boards
paper

5- Drying
15 min at92°C and 1 bar 6- MFC film

Figure 29: MFC films formation with handsheet formers

The MFC suspension was firstly prepared at 0.5% and stirred using a disperser for 30 min. The MFC
suspension at 0.5% was always kept stirring and the desired amount of suspension was sampled and
weighted just before the film formation to avoid sedimentation and concentration fluctuation in the
suspension (Figure 29 -1).

The sampled MFC suspension was then poured into the bottom of a hollow cylinder (Figure 29 -2)
containing a metallic sieve at its bottom covered with a mixed cellulose ester (nitrocellulose, cellulose
acetate) membrane with 0.22 um pore size (Milipore GSWP29325).

The suspension was vacuum sucked for 20 min.

After filtration, the MFC wet film (Figure 29 -3) had a dry matter content closed to 10%. One cover
paper was placed at the upper face of the wet MFC film then a blotting paper was used to flip the
system including, membrane, MFC wet film and cover paper.

The membrane was gently peeled off from the wet film (Figure 29 -4) after that a pressure was applied
with a roller. A second cover paper was then added on the wet MFC film. Then the MFC wet film
between the two cover papers was positioned between two carrier boards and dried in a sheet dryer
for 15 min at 93°C under 1 bar of vacuum.(Figure 29 -5).

At last, the carrier boards were removed and the dried MFC films were separated from the two cover
papers (Figure 29 -6).
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The diameter of the films reached 20 cm with this method. Therefore, MFC films with density of 25,
50 and 100 g/m? were respectively obtained by filtration of around 157 g, 314 g and 618 g of the MFC
suspension at 0.5%.

Because the smallest elements contained in MFC suspensions might be eliminated during the filtration,
the initial filtrated amount of MFC suspension at 0.5% (Mass i.) must be reevaluated to achieve the
desired film density. The dried MFC film (Mass of dried film exp.) was weighted and compared with
the desired mass of dried film.

The corrected mass of MFC suspension at 0.5% (Mass corrected) was calculated in Table 12 with:

4 Mass of dried film — Mass of dried film exp.

M ted =M .
ass correcte ass i 05%

The mass of dried film corresponded to: Mass of dried film = film density x film surface
Then the corrected mass was used for the films formation with the corresponding desired density.

In the case of handsheet former, the surface of the MFC film corresponded to 3.14 102 m? and the
expected films density and example of corrected mass are summarized in Table 12.

Table 12: Film density and MFC suspension sampled

Film density desired 100 g/m? 50 g/m? 25 g/m?
Mass i. of MFC sampled 618 g 314 g 157 g
Mass of dried film desired 3.14¢g 157¢g 0.79g
Mass of dried film exp. 3.05g

Mass corrected 636¢g

4.3.b Reinforced MFC films
MFC films supported with coated calendered paper were produced according to the CTP patent
(B248470-D34495FD-2015).

The wet MFC film was obtained with MFC suspension at 0.5% by the same procedure as described
above for classic MFC films formation. The upper face of the wet film was covered by the coated
calendered paper instead of the cover paper (Figure 29 -3), then same procedures for membrane
removing and film drying were used as it was described above.

Finally, the dried MFC film was separated from the only cover paper and the coated calendered paper
stayed on the other face of the film as a support (Figure 29 -6).
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5. MFC film examinations with SEM-FEG

MFC films were first coated with 2 nm of Au/Pd to prevent spurious charging. MFC films surfaces were
then examined with the kind help of Christelle Boucherand and Caroline Duprat (CERMAYV using a
Scanning Electron Microscope (SEM) equipped with a Field Emission Gun (FEG SEM Ultra55, Zeiss)
enabling the visualization of elements at the nanoscale.

Energy dispersive spectroscopy analyses (Silicon Drift Detector, Bruker) on SEM were also performed
to identify the origin of inorganic particles at the surface of MFC films.

6. Three layers systems of MFC films and xylan

6.1 Xylan gel formation

The xylan was dissolved in dimethylsulfoxide (DMSO) by stirring at 25°C for 12h. The xylan extracted
from birch kraft samples (MFC and pulp) was dissolved at the concentration of 60 g/L (i.e. 5.2 wt%)
while the commercial one extracted from oat was dissolved at 80 g/L (i.e. 6.7 wt%).

The xylan solutions were poured into a Teflon hollow rectangle (60 x 40 x 2 mm), put on a dialysis
membrane (cut-off of 12000 Da) which was in contact with a bath of water/DMSO mixture (Figure 30).

A: In cross section: B: In upper view:

Xylan solution in DMSO

% Teflon hollow rectangle

Grill . Dialysismembrane
Ieflonsupport - SN «— Water/DMSO bath

Figure 30: Experimental system for xylan gelation A: illustration B: photograph

In the case of extracted xylan from birch kraft samples, the water/DMSO proportion of the dialysis
bath corresponded to 9:1 while with the commercial xylan the proportions were 1:1.

Both xylan gels were formed after 1h of contact with the dialysis bath, then they were transferred to
a deionized-water bath to remove the DMSO completely from the gel.
The water bath was changed 3 times for 3h then the dialysis was extended for 12h.

The xylan gels were used directly after their formations.
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6.2 Optimized protocol of three layers system formation System 1 (for peeling test)
The MFC dried handsheet films reinforced with coated calendered paper are cut with scissors into
rectangles of 6 x 6.5 cm. Then the xylan gel was rolled out on the upper side of the MFC films in order
to cover a rectangle of 4.5 x 6 cm (i.e. a surface of 27 cm?).

To improve the rolling out, the gel of commercial xylan is crushed using a double cylinder disperser,
Ultra-turrax, prior to its deposition at the MFC film surface.

The xylan covering surface was voluntary smaller than the total surface of the MFC films and a band of
1 x 6 cm of MFC film was let uncovered (Figure 31 A).
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Figure 31: Illustration of the three layers system 1 formation

A second MFC film, with same dimensions than the first one (6 x 6.5 cm), was positioned above the
xylan gel layer to form a three layers system. This complex was then dried at room temperature under
constrain for 12h.

The three layers dried system was divided into 6 smaller systems of 15 mm width and 22.5 mm length
with a razor blade. (Figure 31 B).

The smaller systems were cut from 0.75 mm from the extremity to avoid border disturbances.

A tab cardboard was fixed on the uncovered MFC film surface with Loctite super glue (Figure 32).

In cross section:

Xylan MEC film supported with coated calendered paper
- I_ | 7 - /'Eab cardboard
0 [ 1
<
! 225 0

dimensions are inmm

Figure 32: Illustration of the final three layer system 1

The final systems were kept dried in desiccator with silica gel or they were rehydrated at 75%, 85% or
97% relative humidity in desiccators using, respectively saturated sodium chloride solution (Sigma
Aldrich > 99%), potassium chloride solution (Sigma Aldrich > 99%) and potassium sulphate aqueous
solution (Merck, > 99%).

To reduce the time of humidity equilibration, ventilators were installed inside the desiccator.
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6.3 Optimized protocol of three layers system formation System 2 (for shearing test)
The MFC handsheet film without reinforcement was fixed on a flat surface and covered with epoxy
glue obtained by mixing resin Araldite AW 106 and Hardener HV 953 U BD (from Huntsman Advanced
Materials) in mass ratio 4:5.

The spatula, (Roth, oral spatula - rotilabo- 150 x 18 x 2 mm) with initial length of 150 mm were divided
with cutting pliers in two parts of 75 mm. Then they were placed on the epoxy layer and the system
was dried at room temperature for 5h (Figure 33 A).

Prior to their deposition at the epoxy layer surface, the spatula were heated at 120° for 40 min with
hydraulic press (carver Laboratory Press) at 10 bar then cooled under constraints to avoid
deformations during the final heating.

A MFC film Wood spatula

C

In cross section:

i Wood wedge
B Xylan gel  MFC film glued on In upper view:

wood spatula below

20 55 1 MFC film glued on
75 wood spatula below

dimensions are in mm

Figure 33: MFC films glued on wood spatula

MFC films glued on spatula, were isolated from the other with razor blade cutting. Then 75 mg of xylan
gel at 10 wt % was rolled on each delimited surface (Figure 33 B) on the spatula (18 x 20 mm, i.e
360 mm?). To improve the rolling out, the gel of commercial xylan was crushed using a double cylinder
type homogenizer, Ultra-turrax, prior its deposition at the MFC film surface.

The spatula were assembled by pairs with superimposition of the xylan gel to achieve a final amount
of xylan gel in the system of 150 mg at 10 wt %. The whole assembly was dried at room temperature
under constraints for 4h then heated at 120° for 3h with a hydraulic press at 10 bar then cooled under
constraints. Some wedges (18*20*2 mm) were glued with Superglue Loctite at both end of the spatula
to avoid any high difference and to provide a good alignment in the pulling jaws (Figure 33 C). The
wedges are made off by cutting the wood spatula with cutting pliers.

The final systems were kept dried in desiccator with silica gel (orange from Roth).

6.4 Three layers system formation System 2 (for shearing test) with hot melt glue

The same three layer system with MFC supported on wood spatula was made- of hot melt glue instead
of xylan. The hot melt glue (Technomelt cool 120 E3525101 from Henkel) was crushed with a razor
blade then 5 mg was deposed on the MFC film prior be assemblinge by pairs. Then the system was
placed in a hot press at 130°C for 10 min to melt the glue.

The final systems were kept dried in a desiccator with silica gel (orange from Roth).
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6.5 Adhesion on the three layer model

6.5.a Peeling test

The three layer system was fixed on cardboard with paper clip to provide alignment into the pulling
clamp and avoid deformation of the system during the peeling test (Figure 34).
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Figure 34: A: Photograph of a three-layer sample for peeling test and B: scheme of the
experimental set-up used for the peeling test

The peeling test was performed at room temperature and atmosphere with the tensile testing machine
Shimadzu AGS-X with the load cell of 20 N at the speed of 1 mm/min.

6.5.b Shearing test

The sample was placed in the pulling clamp with the Teflon wedges glued at the both extremity of the
spatula. The initial displacement between the pulling clamps was 70 mm (Figure 35).
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Figure 35: A: Photograph of a three-layer sample for shearing test and B: scheme of the
experimental set-up used for the shearing test

The shearing test was performed at room temperature and atmosphere with the tensile testing
machine Shimadzu AGS-X with the load cell of 500 N at the speed of 5 mm/min.
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MFC components isolation and characterization

Various bleached chemical pulps, differing in wood species (softwood/hardwood), pulping processes
(sulfite/ kraft) and drying history (never dried/dried) were used as raw materials for MFC production.

Both kraft and sulfite pulps (dissolving cellulose) originated from softwood (spruce and pine) and
hardwood (birch and eucalyptus) were selected.

Two grades of pine sulfite pulps were used with different cellulose contents, namely 92 and 96 %. Birch
kraft pulps were used both never dried and after one drying step (Figure 36).

MFC produced from

birch kraft pulps spruce kraft pulp pine sulfite pulps eucalyptus sulfite
96% of cellulose 92% of cellulose pulp
Never dried 3 Dried Dried Dried Dried
pulp . ) pulp pulp pulp pulp
MFC from MFC from MFC from MFC from MFC from MFC from
birch-kra-nd birch-Kra spruce-kra pine96-sul pine92-sul euc-sul

Figure 36: Panel of MFC and abbreviation names

The characteristics of the starting pulps are summarized in Figure 36 along with their abbreviations
used in the manuscript. For example, “MFC from birch-kra-nd” corresponds to “MFC produced from
never dried birch kraft pulp” and “MFC from birch-kra” means “MFC produced from dried birch kraft
pulp”.
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1. Initial composition of MFC

1.1 MFC characterization by solid state NMR of dry sample

Solid state NMR spectra of five different types of freeze-dried MFC are shown in Figure 37. The spectra
were normalized with respect to the integrated intensities ranging between 55 and 155 ppm.
Assignment of the peaks was done according to Kono et al. (2002) and Larsson et al. (1999).

The peaks with chemical shifts from 57 to 67 ppm correspond to the carbon C6 and the one at 105
ppm to the carbon C1. The peaks of carbons C2, C3 and C5 are overlapping and match the signals
appearing between 69 and 79 ppm. The resonances from 80 to 92 ppm correspond to the C4 carbon
atom of the glycosyl residue in the cellulose chains constrained in a two-fold helical conformation in
the solid state, while the resonance in dissolved state occurred at the higher-magnetic field end,
typically at around 81 ppm (Isogai 1997).

Within this broad chemical shift range, the crystalline core and the disordered / surfaces of the
cellulose microfibrils were distinguished as lower (86 to 92 ppm) and higher (80 to 86 ppm) magnetic
field contributions respectively.

C2,C3and C5

C1

c4 c4 Cc6
&7 ppm 57 ppm

crystalline disordered

MEC from:
pine96-sul
euc-sul

pine92-sul

spruce-kra
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Chenmical shift (ppm)

Figure 37: 13C CP-MAS solid state NMR spectra of dry MFC samples from sulfite (pine 96,
pine 92 and eucalyptus) and kraft (birch and spruce) pulps

According to Larsson et al. (1999), different contributions can be distinguished in this so-called
disordered peak regions as follow: two signals from accessible fibril surfaces (at 84.4 ppm and
83.4 ppm), and a broad contribution from the inaccessible fibril surfaces in the same range. An
additional contribution from interacting xylan chains is also expected around 82 ppm, as concluded
from cotton cellulose/xylan interaction, and further confirmed by alkali extraction of xylan chains
(Teleman, Larsson, and lversen. 2001).

A first visual inspection reveals clear differences between MFC from kraft pulp and MFC from sulfite
pulp at around 82 ppm and 62 ppm (Figure 37). Sulfite pulps showed much smaller intensity compared
to kraft pulps, but the lack of spectral details hampered a quantitative discussion of the differences.
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The initial hemicelluloses/cellulose compositions of the various MFC normalized with the total sugar
content is presented in Table 13. The non-normalized compositions together with the hydrolysis yields
are also available in Annex 1.

Table 13: Neutral sugar compositions of MFCs

MFC from MFC from MFC from MFC from MFC from

birch-kra spruce-kra pine92-sul pine96-sul euc-sul
Glucose (%) 76.6 84.0 93.8 97.5 96.7
Hemicelluloses (%) 234 16.0 6.2 2.5 3.3
Xylose (%) 225 8.7 2.5 1.5 2.4
Mannose (%) 0.9 6.5 35 1.0 0.9
Arabinose (%) 0.0 0.6 0.1 0.0 0.0
Galactose (%) 0.0 0.2 0.1 0.0 0.0

As expected, MFC from sulfite pulps had the lowest hemicelluloses content, accounting for 2.5 % up
to 6.2 % whereas those from kraft pulps contained from 16.0 % to 23.4 % of hemicelluloses.

Birch kraft pulp had the highest amount of hemicellulose (23.4%), in which xylan was dominant
representing more than 95 % of hemicellulose. Spruce kraft pulp contained significant amount of
glucomannan as suggested by the presence of mannose residues.

Arabinose and galactose were undetected in the MFC from hardwood pulps indicating that the xylan
and glucomannan are not branched, contrary to the hemicelluloses extracted from wood. Considering
that arabinose and galactose groups are more sensitive to hydrolysis, they were most probably
removed during the pulping process by both alkaline (kraft) and acid (sulfite) cooking conditions.

The small hemicellulose content in sulfite pulps corroborates with the reduced NMR resonance peak
intensities at 82 ppm when compared to the kraft pulps.
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1.2 Influence of drying history and the presence of salts on the solid state NMR
spectra

In order to investigate the effect of the physico-chemical conditions on the spectral features, we

recorded a series of NMR spectra with different preparation conditions. The preparation included wet

or freeze-dried sample and salt removal (Figure 38).

Indeed the MFC production was performed with tap water and the MFC suspensions contain salts. We

tried to remove them with dialysis against deionized water or by rinsing with 0.5% HCI solution.
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Figure 38: 13C CP-MAS solid state NMR spectra of wet MFC samples from kraft birch pulp
in different physic-chemical conditions

The spectra of freeze-dried MFC (Figure 38 a and b) were identical and did not show any evidence of
the effect of dialysis. The spectral details are obviously lost compared to wet samples, probably due
the constraints induced by strong cellulose-cellulose interaction upon drying resulting in a broad
distribution of chemical shifts (Larsson et al. 1999). The effect of drying has been highlighted in the
context of study on the hornification phenomena by (Newman 2004) . In this case the peak intensity
at 84 and 84.9 ppm was shown to decrease during drying and did not fully recover its intensity after
subsequent uptake of humidity, suggesting an occurrence of co-crystallization eliminating part of
accessible surface. We didn’t observe a similar effect in our samples.

The presence of water revealed spectral details that were previously hidden by the broadening of the
peaks. At least three independent contributions could be identified in the so-called disordered
contribution of the C4 peak between 80 and 85 ppm. The effect of the initial pulp compositions will be
discussed in more details in the next paragraph.

Subtle differences could also be seen on the other contributions among the preparations measured
under wet conditions (Figure 3 ¢, d, e, f) such as the line shapes of C1 and its subpeak at 102 ppm and
the overall shape of C6. However, the origin and nature of these differences are not clear for the
moment and needs further analysis based on relaxation measurements.
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1.3 Solid state NMR spectra of wet MFC: effect of the cooking process

Figure 4 displays the spectra obtained in wet conditions on the five samples already analyzed in
paragraph 1.1. As previously observed in the case of the birch kraft sample, the presence of water
revealed different spectral details depending on the cooking process.

First, the C4 contributions (Figure 4, right) appeared very different for the sulfite and kraft pulps, for
which two or three distinct contributions can be observed respectively. The xylan content in the MFC
was indeed correlated to the intensity of the C4 peak at 82 ppm (Figure 39 right).

In the case of MFC from sulfite pulp, which contained a maximum of 2.5% xylan, the signal of C4
disordered region contained two peaks at 84.4 and 83.4 ppm. A third peak at 82 ppm was observed on
the spectra of MFC from birch-kra and the MFC from spruce-kra containing respectively 22.5% and
8.7% of xylan.

This is in good agreement with Teleman’s study (Teleman, Larsson, and lversen. 2001), in which a
decrease in the peak intensity at 82 ppm was observed after removal of xylan from the pulp by sodium
hydroxide solution.

The presence of xylan also influenced the intensity of the C6 and C1 carbon contributions. Two
additional peaks were observed at 64 ppm and 102 ppm (Figure 39 left). The presence of galactose
was not evidenced in this study, as it was not detected in the MFC chemical compositions analyzed in
paragraph 1.1.
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Figure 39: 13C CP-MAS solid state NMR spectra of wet MFC samples from sulfite (pine 96,
pine 92 and eucalyptus) and kraft (birch and spruce) pulps

Consequently, solid state NMR can be used to trace the presence of xylan in MFC using the intensity
of the peak at 82 ppm. A method for quantitative evaluation of the xylan content will be presented in
Chapter 3.
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2. Xylan extraction from birch kraft MFC

In order to understand the interaction between the hemicelluloses chains and the microfibrils, we
developed and optimized a protocol of xylan extraction from the MFC from kraft pulps, which had the
highest xylan content of 22.5% according to sugar analysis. We restricted the study to the pulp from
birch as the composition of the remaining hemicelluloses was shown to be almost pure xylose. The
presence of xylan was traced by the peak intensity at 82 ppm of the solid-state NMR spectrum and
related to the sugar composition.

2.1 Protocol description

The most efficient way to perform the xylan isolation from MFC is to dissolve the xylan chains without
dissolving cellulose, then to separate the undissolved cellulose from the xylan solution by
centrifugation.

Xylan is commonly extracted from wood by alkali treatments with potassium hydroxide (Timell 1967)
or sodium hydroxide (Teleman, Larsson, and Iversen. 2001). However, in the case of this study, the
pulp used to produce MFC had already undergone an alkaline cooking which is renowned to degrade
hemicelluloses by peeling reactions and alkaline hydrolysis. Thus, we tried dimethylsulfoxide (DMSO),
which is a polar aprotic organic solvent, and was previously used to dissolve residual xylan (Hagglund,
Lindberg, and McPherson 1956).

First the wet MFC suspension was used in order to keep the open structure and facilitate the xylan
extraction. Indeed the drying would irreversibly close the structure and potentially prevent the xylan
to be extracted. However, when large amount of DMSO was added to the wet MFC, a viscous gel like
substance was formed, and no liquid could be separated even after long centrifugation times.
Therefore we first dried the MFC, then dispersed it in DMSO and finally centrifuged the mixture to
separate the xylan solution in DMSO and the MFC (Figure 40 a and b).

a- Dried MFC are b- Centrifugation ¢- Dialysis againstwater  d- Xylan suspension e- Xylan freeze-dried
redispersed in DMSQO concentrate

o

| xylan solution

P
in DMSO
| residual MFC

<} residua Xylan precipitate

after DMSO dialysis
Figure 40: Illustration of the main steps of the protocol of xylan extraction

The xylan solubilized in DMSO was then recovered by replacing DMSO with water by dialysis against
deionized water. Xylan extracted with this procedure was not soluble in water contrary to the one
extracted from wood chips using sodium hydroxide. Indeed, the xylan chains precipitates in contact
with water during dialysis in the form of colloidal particles and a xylan suspension in water was
obtained at the end of process (Figure 40 c).

Because the volume of the suspension strongly increased during DMSO dialysis, the xylan suspension
was first concentrated by water-evaporation then freeze dried (Figure 40 d and e).
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2.2 Optimization of the extraction protocol

The xylan extraction was optimized by considering the influence of three different parameters: the
drying step or accessibility (never dried and dried pulps, lyophilized from water or after solvent
exchange with tert-buthyl-alcohol), the extraction conditions (solvent, temperature, time), the
centrifugation set-up (speed and time) and the presence of aiding salts (LiCl). As the quantitative
exploitation was tedious to implement (the recovery of the extracted and remaining part is
complicated by the non-volatility of DMSO), only few experiments have been tested.

For calculating the yield of extraction, we considered that the total xylan content was given by the
sugar analysis and called Xy. The yield of each xylan extraction was then calculated from the ratio of
the mass of extracted xylan (M xylan ex.) to the xylan content in the MFC calculated from the sugar
analysis (Xy) that gives the equation below:

Vield = M xylan ex. 100
= MMEC x Xy /100 ¥

All the different extraction conditions are reported in Table 14 along with the corresponding yield of
xylan extraction.

Table 14: Optimization of the protocol xylan extraction

MEC from Freeze-drying Extraction Centrifugation MMFC Xy Mxylanex. Yield

solvent conditions conditions (g) (%) (g) (%)
. DMSO,
P1 birch-kra water 70°C, 2h30 11200 rpm,1h 0.25 225 0.014 25
. DMSO,
P2 birch-kra water 130°C, 2h30 11200 rpm, 1h  0.28 225 0.010 16
. DMSO, 11 200 rpm, % *
P3 birch-kra -nd TBA 25°C, 48h < 14h 0.40 23.7 / /
. DMSO, 11 200 rpm,
P4 birch-kra-nd TBA 25°C, 48h 14h 3.00 23.7 0.183 26
. DMSO - 5% 11 200 rpm, * "
P5 birch-kra -nd TBA Licl, 25°C, 48h <14h 0.84 23.7 / /
. DMSO - 5% 11 200 rpm,
P.Op. birch-kra-nd TBA Licl, 25°C, 48h 14h 2.77 23.7 0.434 66

*xylan is contaminated with cellulose

The impacts of the different parameters on the xylan extraction yield will be discussed here under.

2.2.a Extraction temperature

In the two first protocols, P1 and P2, MFC were freeze dried in water, then redispersed in DMSO and
heated at 70°C (Groendahl and Gatenholm 2005) or 130°C for 2h30. The xylan solution in DMSO was
then isolated from the residual MFC by 1h centrifugation at 11 200 rpm.

The yield of extracted xylan was quite low and the temperature increase from 70°C to 130°C further
reduced the mass yield from 25% to 16% (Table 14 — P2). Consequently, the temperature increase did
not improve the extraction of xylan.
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2.2.b Xylan accessibility

We thought that the hornification during the pulp drying or freeze drying might partially hinder the
xylan extractability. To minimize the drying effect, we performed the extraction procedure on MFC
from never dried pulp (MFC from birch-kra-nd) instead of MFC from dried pulp. Furthermore, a solvent
exchange from water to tert-buthyl-alcohol (TBA) was performed to reduce collapse of the cellulose
chains during the MFC freeze-drying (Fumagalli et al. 2013).

Scanning electron micrographs of the MFC from birch-kra-nd freeze-dried from water and from TBA
are shown in Figure 41. As expected, a much open structure was obtained with MFC freeze-dried from
TBA (Figure 41 B) compared to the one freeze-dried from water (Figure 41 A).

Figure 41: SEM images on MFC freeze-dried in A: water and B: TBA

The solvent-exchanged freeze-dried MFC were easily and well redispersed in DMSO. However, they
were also more difficult to sediment by centrifugation. It was necessary to centrifuge at least for 15h
at 11 200 rpm to settle all the residual MFC and to avoid cellulose contamination in the xylan solution
supernatant as confirmed by 13C NMR spectra (Figure 42).
13C solid state NMR of xylan
C2and C3

Cellulose
contamination

Xylan extracted from |
MFC from birch-kra-nd

< 14 h of centrifugation at 11 200 rpm
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Figure 42: 13C CP-MAS solid state NMR spectra of freeze-dried xylan extracted with
centrifugation conditions: (a) bellow 14h at 11 200 rpm and (b) 14h at 11 200 rpm

The three main peaks centered at 102.0, 74.4 and 63.5 ppm are assigned respectively to the C1, C2
and C3 then C5 of the B-(1->4)-linked D-xylose residues (Teleman, Larsson, and Iversen 2001;
Habibi et al. 2008). The shoulder at 82 ppm of the C2 and C3 peak at 74.4 ppm corresponds to the C4
of dried xylan, which moved to 74.4 ppm when it is hydrated.
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When xylan was isolated with a centrifugation time lower than 14 h (Table 14 — P3), the cellulose C4
peak appeared in the 80 to 92 ppm range. In contrast, xylan isolated after 15 h of centrifugation (Table
14 — P4) was free from this kind of contamination and was considered pure (Figure 42 b).

The yield of xylan extraction was however not improved by the freeze-drying solvent modification and
by the use of never dried MFC (Table 14 — P4). It remains around at the same value of 25% already
obtained with the condition P1, using MFC from birch kraft dried pulp, freeze-dried in water.

2.2.c Role of LiCl

Lithium chloride salt (LiCl) is often added to polar aprotic solvent to improve polymer solubility. One
example is LiCI/DMAC which is a solvent of cellulose (McCormick and Dawsey 1990). But LiCl/DMSO is
also known to dissolve ethylene diamine treated cellulose (Wang, Yokoyama, and Matsumoto 2010).

Based on the previous conditions, the addition of 5% lithium chloride salt (LiCl) increased the yield up
to 66% (Table 14 — P.Op.) from 26 %. Two centrifugation conditions were also tested, but as shown
previously the xylan isolated with centrifugation time lower than 15h is contaminated with cellulose
(Table 14 — P5).

To recover a maximum of dissolved xylan, the MFC were redispersed a second time in DMSO, after the
centrifugation step. This optimized conditions illustrated in Figure 43, will be used in the rest of the
study.

a- MFC are redispersed in b- Centrifugation
DMSO - 5% LiCl, 25°C, 24h 15h,11 200rpm
—
Freeze dried |::> |:> E> 1%t xylan batch
MFCin TBA +—|-xvlan solution Residual MFC
in DMSO-5% LiCl
«— residual MFC
a’- residual MFC are b’- Centrifugation
rinsed with DMSO 15h, 11 200 rpm
---------- nd
Residual MFC |:> o E:> _ E> 2" xylan batch
Wik «—-Xlan solution Residual MFC
in DMS0
\ "TreSidual R [ E c’- Dialysis against
water
c- Dialysis against water d- Xylan suspension e- Xylan freeze-dried

concentrate

1%t xylan batch E>

2" xylan batch

Figure 43: Illustration of the optimized xylan extraction protocol P.Op.

68



Chapter 1: MFC components isolation and characterization

2.3 Extracted MFC characterization
Characterization by solid state NMR of MFC after the xylan extraction under the optimized conditions
were performed on dried and wet samples and compared with the initial MFC (Figure 44).

13C solid state NMR
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Figure 44: 13C CP-MAS NMR spectra of freeze dried MFC (A) and wet MFC (B) before (red)
and after (black) extraction of the MFC with the DMSO/LiCl.

The spectrum modifications due to xylan removal can be readily noticed on hydrated and dried
samples even if the intensity changes of C6, C4 and C1 peaks are clearer on the hydrated spectra.

The spectrum of wet MFC after xylan extraction showed a characteristic intensity decrease of the peak
at 82 ppm similar to that previously described by Teleman, Larsson, and Iversen (2001) who extracted
xylan from pulp using sodium hydroxide.

The extinction of the C1 peak at 102 ppm and the modification of the C6 peak at 64 ppm were also
observed on the signal of wet MFC after the xylan extraction.

The signal of C4 disordered at 84.4 ppm corresponding to the accessible fibril surfaces, according to
Larsson et al. (1999), was also modified; its intensity increased after the xylan extraction. Indeed, the
xylan removal from the surface should enhance the number of accessible cellulose chains at the
microfibrils surfaces.
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The evolution of the signals identified previously for tracing the xylan extraction behaves as expected
from the mass yield results: the decreasing of the signal at 82 ppm, revealing the presence of xylan,
was moderate for the two non-optimized protocols, whereas the intensity of the signal assigned to the
accessible surface was only slightly increasing. Interestingly, in the case of the more open structure
(MFC lyophilized from TBA, protocol P4), this signal from accessible surface appeared higher compared
to the one obtained with more collapsed structures (MFC lyophilized from water, protocol P1).

13C solid state NMR of wet MFC
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protocol P1

initial composition

i ' '
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115 110 105 100 95 90 85 80 75 70 65 60 55 92 90 88 86 84 82 80
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Figure 45: 13C CP-MAS NMR spectra of freeze dried MFC with different xylan extraction
protocols

To conclude, xylan could be extracted from MFC from never dried birch kraft pulp with a yield of 66%
thanks to an optimized protocol using DMSO with 5% LiCl salt at 25°C for 24h. The solvent exchange
from water to TBA had apparently little effect on the extraction yield, but the number of conditions
that have been explored was small enough to remain cautious in terms of generalized conclusions.
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2.4 Determination of extraction yield
Chemical compositions of the MFC after the xylan extraction were determined by sugar analysis
(cf. Annex 2) and were compared with the initial compositions of the MFC before extraction (Table 15).

Assuming that we are dealing with a binary system of cellulose and xylan, and that only xylan is
extracted by the process, the yield of xylan extraction was calculated from the initial xylan content in
the sample (Xy i.) and the xylan content after the xylan extraction (Xy ex.) using the following equation:

Xyex. (1—Xyi)
Xyi. (1—Xyex)

Yield S.A.= (1 - ) x 100

This yield estimated from sugar analysis will be noted yield S.A. and it was compared in Table 15 with
the yield calculated from the mass of the isolated xylan.

Table 15: Chemical composition of MFC by sugar analysis

. MFC after xylan extraction
MFC after xylan extraction v

Initial MFC with protocol P4 with optimized protocol

P.Op

Glucose (%) 75.0 83.6 88.7

Xylose (%) 23.7 16.3 9.2

Mannose (%) 1.0 0.1 1.5

Arabinose (%) 0.1 0 0.1

Galactose (%) 0.2 0 0.5

Yield S.A. (%) / 37 67

Yield (%) / 26 66

As expected, the xylose content, initially quantified at 23.7% in the MFC from never dried birch kraft
pulp decreased to 16.3 % after the non-optimized extraction (P4), which corresponds to a yield S.A. of
37 %. The lowest xylose concentration of 9.2% was obtained after the extraction with the optimized
protocol P.Op and corresponds to a yield S.A. of 67%. Due to handling problems the weight of xylan
extracted was under -estimated, but the overall results were still in the same range.

In order to confirm the complete removal of LiCl salt by dialysis, mineral impurities characterization
have been performed on extracted xylan (cf. Annex 3) and revealed that xylan was mainly polluted by
LiCl metal impurities or salt coming from MFC production in tap water.

In Teleman's study, (Teleman, Larsson, and lversen. 2001) xylan has been extracted from birch kraft
pulp with 9% of sodium hydroxide with a yield of 80% determined from sugar analysis corresponding
to a decrease of the xylose content in the pulp from 26% to 5%. However, this was done at expense of
a slight but discernible mercerization of the native microfibrils, whereas our process maintains the
native character of the objects.

Whatever the process used to extract xylan from kraft MFC, it seems that a fraction of xylan remained
inaccessible to the extraction procedures. Xylan might be irreversible attached to cellulose because of
oxidative treatment during pulp bleaching or trapped in inaccessible regions after the collapse of the
microfibrils, during freeze-drying.
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3. Extension of the extraction protocol

The protocol of extraction, which has been first optimized on MFC from never dried birch kraft pulp,
was extended to other substrates to test the possible generalization of the procedure on samples from
different origin (birch and spruce) or form (non-refined and refined pulp, MFC suspensions). However,
it has been limited to kraft samples due to their high content in hemicelluloses (Figure 46).

Xylan is extracted from
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Pulp from Pulp from Pulp from MEFEC from MFC from MEFEC from
Birch-kra-nr-nd Birch-kra-nd birch-kra birch-kra-nd birch-kra spruce-kra
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Figure 46: Summary of the different substrates extracted with the optimized protocol

Six xylan fractions were isolated after the extraction from the various kraft samples and the yields of
extraction were determined by sugar analysis (Table 16). The non-normalized compositions as well as
the hydrolysis yields are also available in Annex 4.

Table 16: Chemical composition before and after xylan extraction

MFC from pulp from MFC from pulp from pulp from

birch-kra-nd birch-kra-nd spruce-kra birch-kra birch-kra-nd-nr
Glucose (%) 75.0 88.7 75.3 89.8 84.0 90.2 74.1 89.3 72.3 88.5
Xylose (%) 23.7 9.2 234 9.1 8.7 3.2 25.5 9.9 25.2 10.2
Mannose (%) 1.0 1.5 1.0 1.1 6.5 6.5 0.3 0.7 1.2 1.2
Arabinose (%) 0.1 0.1 0.1 0.0 0.6 0 0.1 0 0.9 0.1
Galactose (%) 0.2 0.5 0.2 0.0 0.2 0 0.0 0 0.4 0.0
Yield of xylan 67 67 65 68 66

extraction (%)
i.: initial pulp or MFC composition; ex.: pulp and MFC composition after xylan extraction

The xylose contents in birch kraft samples decreased after the xylan extraction and similar extraction
yields of 67% are remarkably obtained regardless the samples degree of fineness (non-refined pulp,
refined pulp and MFC) and the drying pulp history (never dried and dried). Interestingly, the spruce
MFC obtained the same score, without any change in the mannose content, suggesting a mode of
interaction of glucomannans with cellulose substantially different from xylan.
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Solid state NMR characterization of the samples before and after xylan extraction was performed
(Figure 47). As expected, the results confirmed the first observations deduced from the sugar analysis.
The diminution of C4 peak intensity at 82 ppm and 84.4 ppm, the modification of C6 peak at 64 ppm
and the extinction of C1 peak at 102 ppm were observed on all birch kraft samples spectra after the
xylan removal and confirmed the yield of around 2/3 of extracted xylans.
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Figure 47: 13C CP-MAS spectra of kraft pulp and MFC before and after xylan extraction

An intriguing result came from the MFC from spruce kraft pulp, containing glucomannan, but leading
to similar yield of xylan extraction (67 %) than the birch samples. Indeed, even if small differences
persist at 64 ppm, the NMR spectra after xylan extraction were quite similar, regardless of the initial
wood species (birch or spruce) and the samples degree of fineness (pulp or MFC).

However the xylan purity extracted from the different samples will be discussed in the following
paragraphs.

In conclusion, the protocol of xylan extraction can be extended to different kraft processed products
from different physical forms and wood species. The typical extraction yield was around 67%, pointing
out the impressing invariability of the extraction procedure. In all cases, the xylan removal resulted in
very similar solid-state NMR spectra, with the same modification between 82 and 64 ppm. This last
feature is in favor of an intrinsic association of xylan with cellulose.
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4. Characterization of the extracted xylans

4.1 Chemical composition of the extracted xylans

The sugar composition of the xylans extracted from pulps and MFC were compared with a xylan
extracted from birch wood chips using 5% sodium hydroxide at CTP and with a commercial xylan
extracted from oat (Table 17).

Table 17: Chemical composition of the extracted xylans by sugar analysis*

Xylan extracted from

MFC from  pulp from  pulp from pulp from MFC from oat birch wood

birch-kra-nd birch-kra-nd  birch-kra birch-kra-nd-nr spruce-kra (commercial) chips
Glucose (%) 5.1 25 21 5.9 34.2 13.0 1.6
Xylose (%) 94.4 97.0 97.6 93.5 54.7 76.5 53.1
Other (%) 0.5 0.5 0.3 0.6 11.1 10.5 45.3
Mannose (%) 0.0 0.0 0.0 0.0 4.5 0.0 0.7
Arabinose (%) 0.3 0.3 0.2 0.0 5.5 9.6 2.7
Galactose (%) 0.2 0.2 0.1 0.6 1.1 0.9 6.6
Lignin (%) / / / / / / 35.3

*Details about the non-normalized compositions and the hydrolysis yields are available in Annex 5.

All xylans extracted from birch kraft samples are pure at 93.5 to 97.6%, regardless the size of the
substrate (MFC, refined pulp or non-refined pulp) or the pulp drying history (dried or never-dried pulp).
Contaminations by cellulose, which accounts for 2.1% to 5.9%, are probably due to handling problems.
The xylan extracted from birch wood chips was mixed (35%) with residual lignin because of sodium
hydroxide extraction.

As already observed in the preceding paragraphs, the hemicellulose extracted from birch kraft samples
did not have any arabinose side groups and can be considered as pure xylan at the sensibility of the
experiment. By contrast to the hemicelluloses extracted from birch kraft samples, those extracted
from spruce kraft MFC were a mixture of 60.2% of arabino-xylan and 6.7% of galacto-glucomannan,
and were also contaminated with 33.1% of cellulose.

The contribution of the galacto-glucomannan in the glucose content is determined with the following
equation, where b is a correcting factor, that corresponds to the proportion of glucose and mannose
in the glucomannan chain fixed at 4.15 in the case of softwood (Genco et al. 1990).

1
[Galacto — glucomannan] = [Mannose] X (1 + E) + [Galactose]

[Mannose]

[Cellulose] = [Glucose] — b

The glucomannan extraction was first not detected by chemical composition performed on MFC
(cf. paragraph 3. - Table 16) but it might be negligible as it represented only 1/10 of extracted xylan.
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Xylan is often decorated by 4-O-methyl D-glucuronic acid residues and O-acetyl groups in hardwood,
while L-arabinosyl residues are also found as pendant groups in softwood xylan (Pinto, Evtuguin, and
Neto 2005; Ebringerova and Heinze 2000; Timell TE 1964). However, the O-acetyl group is very labile
and should be easily removed by the basic conditions during the kraft pulping process (Aurell and
Hartler 1965).

The arabinose branches are also affected by the kraft cooking (Hansson and Hartler 1968; Aurell and
Hartler 1965) which explain that no arabinose group were found in xylan extracted from birch kraft
pulp or MFC, but some 2.7% were found in the xylan extracted from birch wood chips.

Because xylan from softwood is initially more substituted with arabinose residue than the one from
hardwood, some residual arabinose branches may be conserved after the kraft cooking and the xylan
extracted from MFC from spruce kraft pulp contained 5.5% of arabinose.

To compare, the commercial xylan extracted from oat is the most branched with 9.6% of arabinose
residues but it is also less pure with 13.0% of cellulose. Therefore, the xylan extracted from birch kraft
samples (pulp or MFC) is the purest in xylose, its maximal cellulose contamination of 5.9% is two times
lower than in the commercial xylan extracted from oat.

4.2 Solid state NMR characterization of the extracted xylan
The xylans structure was also analyzed by solid state NMR (Figure 48) and the peak attribution is
performed according to the literature (Teleman, Larsson, and Iversen 2001; Habibi et al. 2008).
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Figure 48: 13C CP-MAS spectra of hemicelluloses extracted by DMSO from MFC from oat,
MFC from spruce kraft pulp, MFC and pulp from never dried birch kraft pulp.

The cellulose contamination is apparent on NMR spectra of xylan extracted from MFC from spruce
kraft pulp (33.1%) and the commercial one extracted from oat (13.0%) by the signal from 79 ppm to
92 ppm.
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The NMR spectra from xylan extracted from birch kraft samples (pulp and MFC) were similar. They
differed from the xylan extracted from birch wood chips by the absence of signal at 177 ppm attributed
to the carboxylic acids of the 4-O methyl-glucuronic acid branches.

In some preparations (Figure 49), DMSO contaminations due to incomplete dialysis, were visible with
a distinct peak at 40 ppm on NMR spectra and were taken into account in the mass calculation for
chemical composition determination.
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Figure 49: 13C CP-MAS spectra of xylan extracted from non-refined never dried pulp from
birch kraft, dried pulp from birch kraft and MFC from birch kraft never dried pulp

The spectral profiles were different depending on the sample preparations, especially on the shape of
the C1 peak and C4 shoulder at 83 ppm. The xylan peaks were narrower in presence of DMSO and the
xylan conformation might be also modified by the presence of DMSO and water.

Since no arabinose could be detected by sugar analysis (below 0.5%) and no signal of 4-O methyl-
glucuronic acid branches was detected by solid state NMR (at 177 ppm), we considered the xylans
extracted from birch kraft samples as a homopolymer of xylose.
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4.3 Liquid state NMR characterization of the extracted xylan

In order to confirm the absence of branches, further analysis are performed by liquid state NMR
(proton H and carbon 3C) on the xylan extracted from birch kraft samples (pulp and MFC) and
compared with the xylan extracted from birch wood chips and the commercial one extracted from oat.

The xylan extracted from birch wood chips was easily dissolved in heavy water (D,0) while the one
extracted from birch kraft samples (pulp and MFC) was only soluble in DMSO among the solvents
tested, including other polar aprotic organic solvents such as dimethylformamide (DMF) or
tetrahydrofurane (THF). All the liquid NMR analysis of the extracted xylan from kraft samples were
thus performed in deuterated dimethylsulfoxide (DMSO-ds). The peaks attribution of the liquid NMR
spectra proton H and carbon 3C, (Figure 50 and Figure 51) have been established according to the
xylan already described in the literature (Teleman et al. 2000; Habibi and Vignon 2005) and with
proton-carbon correlation (HSQC) measurements (cf. Annex 6).

4.3.a Carbon *C NMR

The carbon (3C) NMR spectrum of xylan extracted from birch kraft samples (pulp or MFC) shows a
pure signal of unsubstituted xylose residue (Teleman et al. 2000; Habibi and Vignon 2005) and the
peaks at 101.4 ; 75.2; 73.7; 72.3 ppm and 62.9 ppm are attributed to C1, C4, C3, C2 and C5.
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Figure 50: Carbon (13C) liquid NMR of xylan extracted from birch wood chips, oat and
birch kraft samples (pulp and MF(C)
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It is noticed that similar chemical shift was observed between the carbon (**C) NMR liquid spectrum
and the one of 13C solid state NMR. The only difference was observed for the signal of C4 which is
shifted from 75.2 ppm to 82.0 ppm. The two other NMR spectra of xylan extracted from oat and birch
wood chips had in common with the xylan extracted from birch kraft samples, the signal of
unsubstituted xylose residue. A shift from 1 to 2 ppm was observed on the spectrum of xylan extracted
from birch wood chips, but it must be attributed to the difference in solvent used to perform the NMR
analysis from DMSO-de to D,0. The presence of 4-O methyl glucuronic acid branches in xylan extracted
from birch wood chips, already observed on solid state NMR with the carboxylic acid peak at 177 ppm
was confirmed by carbon (*3C) NMR (Figure 50). The two characteristic peaks of carboxylic acid (COOH)
and methoxy group (OCHs) were detected at 176.9 ppm and 60.0 ppm.

Furthermore, three distinct resonance peaks of C1 at 102.3 ppm, 101.7 ppm and 98.1 ppm can be
respectively attributed to the unsubstituted xylose residue, the xylose residue branched in O3 with
glucuronic acid and the 4-O methyl-glucuronic acid branches itself (Habibi and Vignon 2005).

For steric reason, no glucuronic acid was branched in the O2 of xylose contrary to the xylan extracted
from oat which was substituted with arabinose group in 02 and in O3 position. Four different signals
on NMR spectrum corresponding to the unsubstituted xylose residue, the xylose branched in 02, the
one branched in O3 and the arabinose branches were observed.

The peaks at 61.6 ppm and 107.0 ppm respectively corresponded to the C5 ethoxyl goup (CH,OH) and
C1 of the arabinose branches. The attribution of the peaks at 77.6 ppm, 80.2 ppm and 85.7 ppm to the
C3, C2 and C4 of the arabinose residue may be commutable.

However other carbon signal which were not visible on carbon (**C) NMR were detected by HSQC
measurement, further described in Annex 6. Two peak characteristics of 4-O methyl glucuronic acid
branches were visible at 60.31 ppm - 3.42 ppm and 99.62 ppm -5.14 ppm and corresponded to the
methoxy group (OCHs) and the (C1,H1) of the 4-O methyl glucuronic acid branches.

Then the small peak at 60.3 ppm visible on carbon (*C) NMR was attributed to the methoxy group
(OCHs) of the 4-O methyl glucuronic acid branches. The other signal at 72.7 ppm, 73.1 ppm and
73.9 ppm may be commutable and corresponded to the C2, C3 and C4 the xylose residue substituted
in O3 with arabinose or glucuronic acid.
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4.3.b Proton '"H NMR

Similar observations are performed on proton (*H) NMR spectra (Figure 51) where the signal of
unsubstituted xylose residue visible on spectrum of xylan extracted from birch kraft samples is
common with the two other spectra. As for carbon (**C) NMR spectrum, this signal was shifted in the
case of xylan extracted from birch wood chips due to the change of deuterium solvent.

The peaks were attributed according to literature (Habibi and Vignon 2005) and the signal at 4.3 ppm,
3.5ppm, 3.3 ppmand 3.1 ppm corresponded to the proton H1, H4, H3 and H2. The characteristic signal
of non-equivalent CH, protons in C5 position were noticed with H5 in equatorial position (H5eq) at
3.9 ppm and H5 in axial position (H5ax) at 3.2 ppm.

The two peaks at 4.8 ppm and 4.6 ppm corresponding to the hydroxyl protons linked to C2 (OH2) and
to C3 (OH3) and attribution may be commutable. It is only occurred when spectrum was recorded in
DMSO-d¢ solvent because of proton-deuterium exchange in D0.

Proton 'H attribution
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Figure 51: Proton ('H) liquid NMR of xylan extracted from birch wood chips, oat and birch
kraft samples (pulp and MFC)

The presence of the 4-O methyl glucuronic acid branches was detected on the proton (*H) NMR
spectrum of xylan extracted from birch wood chips with the singlet peak at 3.4 ppm and the three
different protons signals H1.

79



Chapter 1: MFC components isolation and characterization

They were attributed to the unsubstituted xylose residue (4.4 ppm), the xylose residue branched in O3
with glucuronic acid (4.6 ppm) and the 4-O methyl-glucuronic acid branches itself (5.2 ppm).

The degree of branching of xylan can be evaluated by peaks integration of the three protons (cf. Annex
6). In that case, the ratio between the 4-O methyl glucuronic acid residue, the xylose branched with
glucuronic acid and the unsubstituted xylose was 6.1.1 and corresponded to the previous one
determined in the literature (Habibi and Vignon 2005).

In the case of xylan extracted from oat, four different signals of H1 were respectively attributed to the
unsubstituted xylose (4.3 ppm), the xylose branched in O3 (4.4 ppm), the glucuronic acid branches
(5.1 ppm) and the arabinose branches (5.3ppm). The signal of xylose substituted in 02 was not clearly
detected in proton NMR spectrum but was visible on HSCQ at 4.51 ppm -101.42 ppm.

The smaller peaks which cannot be linked with the unsubstituted xylan backbone correspond to the
9.5% of arabinose branches determined by sugar analysis and the 4-O methyl glucuronic acid residue.
The signal at 3.4 ppm may be attributed to the methoxy group (OCHs) and correspond to the one
detected on HSQC at 3.42 ppm - 60.31 ppm.

4.3.c Xylan NMR characterization conclusion

To conclude, after sugar analysis and NMR performed in liquid and solid states, the xylan extracted
from birch kraft samples (MFC and pulp) showed pure xylose spectra and a chemical structure
corresponding to a homopolymer of xylose at the sensibility of the experiment.

The two other xylans were found to be branched with glucuronic acid and arabinose residues. In any
case no acetyl group was detected. They have been most probably removed during the pulping
chemistry (Aurell and Hartler 1965) for the xylan extracted from birch kraft samples or during the
extraction with sodium hydroxide for the other xylans (Ebringerova, Hromadkova, and Heinze 2005).

4.4 Conclusion on the xylan extracted from birch kraft samples

A homopolymer of xylose has been extracted with a yield of 60% from various birch kraft samples
including non-refined pulp, refined pulp and MFC with or without drying step. To reach this yield of
extraction it was necessary to use as solvent the mixture of DMSO with 5% of LiCl salt. The xylan purity
was from 93% to 97% based on sugar analysis when cellulose microfibrils were eliminated by
centrifugation at 11 200 rpm for 15h.

This homopolymer of xylan was found to be only soluble in DMSO and not at all in water contrary to
the xylan with side groups extracted from wood chips with sodium hydroxide.

The unsubstituted xylan extracted from the pulp and MFC may have resisted to the cooking conditions
while the one extracted from wood chips would have been eliminated during the cooking process.

There are two possibilities for the origin of non-branched homo-xylan we extracted. (a) Two types of
xylan are biosynthesized, a homopolymer resisting to extraction and a branched xylan easier to be
extracted, or (b) xylan are all branched in the wood cell wall, but the pulping processes chop all side
groups leaving the bare homopolymer backbone.
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5. Characterization of the xylose homopolymer

5.1 Crystallinity

The crystallinity of the xylan extracted from birch kraft samples (pulp and MFC) has been characterized
by solid-state NMR and X-Ray Diffraction measurements (XRD) on the dried sample and after its
rehydration at 97% of relative humidity (Figure 52).
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Figure 52: 13C CP-MAS spectra (A) and XRD measurement (B) of freeze-dried and wet (97%
of RH) xylan extracted from MFC from birch kraft never dried pulp (*I wet =1 real/5)

As previously described by (Teleman, Larsson, and lversen 2001; Habibi et al. 2008), xylan is more
organized in the hydrated state than in the dried one as thinner peaks are observed on solid state NMR
spectrum of the hydrated sample (Figure 52 A). Compared to the dried sample spectrum, no
characteristic peak of C4 at 82 ppm was observed when the sample was rehydrated which may
represent a strong conformational change in the xylan structure.

Previously, similar peak evolution was observed on the xylan fractions contaminated with DMSO
(Figure 48). It may come from residual water in the DMSO or that the DMSO itself provides some
conformational change in the xylan structure.

The corresponding X-ray diffraction spectra were provided for the dried and rehydrated samples
(Figure 52 B). No sharp peak can be observed in the dried sample spectrum while a number of
diffraction peaks can be seen in the humidified sample. The two strongest peaks at 11° and 19°
corresponded to the Miller indices of (1-10, 010) (110, -120) according to (Nieduszynski and
Marchessault 1972) the structure in which the xylan forms a three fold helix 3,.

In conclusion, the extracted xylan is crystalline in presence of water as a three-fold helix 3; and its
structure is less organized when it is dried.
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5.2 Degree of Polymerization

The DP of hardwood xylan in its native state in the wood is estimated in the range of 100 to 200
(Koshijima, Timell, and Zinbo 1965; Westbye, Svanberg, and Gatenholm 2006). The DP of an extracted
xylan from birch kraft pulp by sodium hydroxide treatment, was also estimated to 70 by peak
integration on liquid NMR spectrum (Teleman, Larsson, and lversen 2001).

In this study, the DP of the xylan extracted from birch kraft samples (pulp and MFC) was calculated
from three different techniques: by peak integration on liquid NMR, by viscosimetry measurement on
a range of xylan solution in DMSO and by SEC-MALS analysis with xylan dissolved in DMAC-LICl.

5.2.a Determination of DP with liquid NMR

The peak integration was performed by integrating the proton of the chain end and comparison with
the signal from the main chain. The ratio between the two forms a and B of the chain end in the case
of xylan was estimated at 35/65.

The peak of proton o is observed at 5.18 ppm and the one of 3 at 4.15 ppm (Figure 53).
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Figure 53: Proton ('H) liquid NMR spectrum of xylan extracted from birch kraft (D20 +
9% NaOD, 298 K)

Because the peak of the proton o was too close to the signal of D,0, the deconvolution was performed
on the signal of proton f3.

Two subdivided peaks were attributed at 4.12ppm and 4.10 ppm for the proton H1 of xylose residue
and 4.02 ppm and 3.99 ppm for the proton . Then the intensity of each peak was adjusted in order to
fit the original spectrum with signal resulting from the sum of intensity of the four subdivided peaks.
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The area was calculated from the width and the intensity of each subdivided peaks. Then the area for
each proton was determined with the sum of the area of each contribution (Table 18).

Table 18: Peak integration of the two protons H1 and Hf

Proton Chemical shift Intensity Width L/G Area per Area per
(ppm) peak proton
4.12 3099 10.1 0.18 784534
H1 4.10 2942 8.6 0.10 640154 1424688
4.02 78 5.1 0.60 9347
Hp 3.99 84.8 6.6 1.0 12251 21598

The number of chain ends was calculated with the area of H1 and HP3 and the proportion of chain ends
in the 3 form (65%):

area HB

Number of chain ends = area HL x 065

Then a rough estimation of the DP of xylan was calculated from the inverse of the number of the end
of the chain. In that case, the DP of xylan extracted from birch kraft samples was around 43, which
corresponds to a molar mass of 5600 g/mol. This first DP estimation is smaller than previous
determined in Teleman study's (Teleman, Larsson, and Iversen 2001) where xylan DP was around to
70 but it is in the same range of value.

However, one has to emphasize that liquid sate NMR give an average value of the DP, which is not able
to discriminate between a mix of oligomers and very long chains, and an average number of middle
sized chains.

5.2.b Viscosimetry

The dynamic viscosity was measured for a range of xylan concentration solution at the different angles.
Then the average value of dynamic viscosity (Xyl visco) was calculated for each xylan concentration
and is presented in Table 19.

Table 19: Dynamic viscosity at different angles

c Dynamic Dynamic Dynamic . Reduced Inherent
xyl A A R Xyl visco L o
(e/dL) wscosfy wscosfy wscosfy (mPa-s) viscosity viscosity
(at 80°) (at 50°) (at 20°) (dL/g) (dL /g)
0.37 2.696 2.759 2.761 2.739 0.506 0.464
0.82 3.239 3.303 3.300 3.281 0.512* 0.427*
1.14 4.112 4.231 4.238 4,194 0.714 0.522
1.34 4,714 4.851 4.866 4.810 0.809 0.548
DMSO visco
(mPa-s)
DMSO pure 2.273 2.320 2.331 2.308 / /

*Points are removed because there are too different from the others.
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The reduced viscosity and the inherent viscosity in Table 19 are calculated from the dynamic viscosity

(Xyl visco), the xylan concentration in the solution (Cxyl) and the dynamic viscosity of the DMSO (visco
DMSO) with the following equation:

(Xyl visco — DMSO visco)
DMSO visco X Cxyl

. . Xyl visco
Reduced viscosity = ) yl

Inh tvi ity = L (—
nherent viscosity n DMSO visco

The reduced and inherent viscosity are plotted as a function of the xylan concentration (Figure 54) and
the intrinsic viscosity corresponded to the average value of the interception at the origin of both curves
which is egal to 0.412 dL /g.

0.800 + Reduced viscosity

y=0.03x + 0.3911
R? = 0.9865

i Inherent viscosity
) y=0.0083x + 0.4319
0.500 .,// RZ=(0.9881

3.0 5.0 7.0 9.0 11.0 13.0 15.0
Xylan concentration (dL/g)

Figure 54: Intrinsic viscosity determination of xylan solution in DMSO

The DP of the xylan was calculated from the equation of Mark—Houwink where the values of o and k,
depend on the particular polymer-solvent system.
For most flexible polymers a value is between 0.5 and 0.8 depending on the quality of the solvent
0.5 < a £0.8. For semi-flexible polymers, a. is higher than 0.8, (o =2 0.8) and polymers with an absolute
rigid rod behavior get o value equal to 2 (o = 2.0).

Intrinsic viscosity]/*
DP = [ K

The o and k parameters have been determined by Lebel, Goring, and Timell (1963) for xylan and
correspond to:

o=0.94andk=5.9103g/dL

The DP of xylan extracted from birch kraft sample was 91, which corresponded to a molar mass of
12 000 g/mol. The difference in the obtained value of molar mass obtain may be justified by fact that
small molecules contribute a lot in the liquid NMR determination which provide only a rough
estimation of the DP, but also inherent problems of viscosity measurements, especially with low DP.

Furthermore, the viscosimetry average molar mass (M,) determined by viscosimetry measurement is
not an absolute value because it depends on the quality of the solvent used to perform the measure
and will be always higher than the mass average molar mass (My).
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5.2.c SEC- MALS measurement (Tokyo)

To determine the molecular weight distribution, the xylan sample was dissolved in DMAC — 8%LiCl and
measured using Size Exclusion Chromatography with Multiple Angle Light Scattering and refractive
index detector (SEC- MALS-RI instruments - Tokyo), with the kind help of Dr. Yuko Ono of the University
of Tokyo.

Two peaks are visible with light scattering detectors at retention times of 25.5 min and 31 min (Figure
55). Only the peak at 31 min has reflective index signal, which means that it corresponded to the
majority of xylan molecule while the peak at 25.5 min was not associated with an increase in refractive
index and represented only negligible amount of xylan, probably in aggregated form.
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Figure 55 SEC-MALS-RI curve of xylan solution in DMAC-LiCl. Light scattering signal (red)
and refractive index (blue)

The number average molecular weight (Mn) is calculated from the peak at 31 min as

3! NiMi
Mn =
=TSN

where Mi is the molecular weight of a chain and Ni is the number of chains

A series of weighted average molecular weights defined as:

_ X NiMim+
Y NiMi

were also calculated where: n = 1 gives Mw, n = 2 gives Mz and n = 3 gives Mz+1

The molecular weight of the highest peak (Mp) may be quoted for very narrowly distributed polymers
and is fixed by the peak intensity at 31 min.

85



Chapter 1: MFC components isolation and characterization

The different weighted molecular weights are listed in (Table 20):

Table 20: Xylan molecular weights

Molar mass moment Mn Mp Mw

Mz Mz+1

(x 10*g/mol) 1.058 1.133 1.089

1.117 1.143

The polydispersity index of the xylan was:

Mw _ 103
Mn =

The value is very closed to 1, which means it is quite monodisperse.

The molar mass of the xylan was measured at around 10 000 g/mol and corresponded to a DP of 75
which is in good agreement with DP determined by viscosimetry measurement and it was in the same

range as the liquid NMR estimation.

The value of DP 75 for a xylan extracted from birch kraft samples (pulp and MFC) was also in agreement
with the DP of the original xylan in the hardwood estimated between 100 and 200 (Koshijima, Timell,

and Zinbo 1965, Westbye, Svanberg, and Gatenholm 2006).
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Annex 1: MFC chemical composition by sugar analysis

The chemical composition of the five different types of MFC are summarized in the table below.

The composition of sugar residues (glucose, xylose, mannose, arabinose and galactose) and the yield
of hydrolysis are presented in the upper table.

Then the normalized sugar content is calculated in the lower table as:

[Glucose normalized] =

[Glucose] x 100

Yield of hydrolysis

Table 21: Chemical composition by sugar analysis

MFC from MFC from MFC from MFC from MFC from
birch-kra spruce-kra pine92-sul pine96-sul euc-sul
Glucose (%) 71.7 74.7 78.5 91.6 93.8
Xylose (%) 21.0 7.8 2.1 1.4 2.3
Mannose(%) 0.9 5.8 3.0 0.9 0.9
Arabinose (%) 0.0 0.5 0.1 0.1 0.0
Galactose (%) 0.0 0.2 0.0 0.0 0.0
\f/\i;’cllfolysis (%)Of 93.6 89.0 83.7 94.0 97.0
Normalized
Glucose (%) 76.6 84.0 93.8 97.5 96.7
Xylose (%) 22.5 8.7 2.5 1.5 24
Mannose(%) 0.9 6.5 3.5 1.0 0.9
Arabinose (%) 0.0 0.6 0.1 0.0 0.0
Galactose (%) 0.0 0.2 0.1 0.0 0.0
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Annex 2: MFC chemical composition by sugar analysis for
xylan extraction protocol optimization

The chemical composition of the MFC before and after xylan extraction are summarized in the table
below.

The composition of sugar residues (glucose, xylose, mannose, arabinose and galactose) and the yield
of hydrolysis are presented in the upper table.

Then the normalized sugar content is calculated in the lower table as:

[Glucose] x 100
Yield of hydrolysis

[Glucose normalized] =

Table 22: Chemical composition by sugar analysis

Initial MEC MFC af.ter xylan extraction MFC af?er' xylan extraction
with protocol P4 with optimized protocol P.Op

Glucose (%) 67.2 81.8 78.6

Xylose (%) 21.3 15.9 8.2

Mannose (%) 0.9 0.1 1.4

Arabinose (%) 0.1 0 0.1

Galactose (%) 0.1 0 0.4

z';’;folysis (%)°f 89.6 97.8 88.7
Normalized

Glucose (%) 75.0 83.6 88.6

Xylose (%) 23.7 16.3 9.2
Mannose(%) 1.0 0.1 1.6
Arabinose (%) 0.1 0 0.1
Galactose (%) 0.2 0 0.5
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Annex 3: Characterization of xylan mineral impurity

Elementary analysis and ash content (Table 23) are performed on the xylan extracted by using the
optimized procedure with LiCl (xylan 1) and compared with the xylan from the procedure (P4) without
LiCl (xylan 2).

Chloride anion (CI') and lithium cation (Li*) content were quantified by elementary analysis in Institut
des Sciences Analytiques (ISA-Lyon) to ensure that dialysis eliminates the lithium chloride salt (LiCl).
Similarly, concentration of hard water cations such as, calcium (Ca*), sodium (Na*) and potassium (K*)
were also analyzed to confirm if they are efficiently removed by dialysis against deionized water or if
part of them remained in the xylan samples as in the case for the MFC suspension.

Table 23: Elementary analysis and ash content

Xylan extracted with LiCl Xylan extracted without LiCl
(Xylan 1) (Xylan 2)
Ash content* 7% 0.4%
Lithium cation (Li*) <20 ppm** <20 ppm
Chloride anion (CI) 1700 ppm 1300 ppm
Calcium cation (Ca*) 1320 ppm 1074 ppm
Sodium cation (Na*) 210 ppm 54 ppm
Potassium cation (K*) 209 ppm 77 ppm

*More details about ash content experiment are available bellow in part 1.
**ppm corresponds to parts per million in this table

The ash content varied from 0.4% to 7% depending on whether or not LiCl salt was used for the
extraction. The residual LiCl in xylan 1 cannot explain such difference as elementary analysis shows
that the two samples contain less than 20 ppm of lithium (Li*) anion.

High content of chloride (CI) anion is found in both xylan fractions regardless whether it is extracted
with LiCl salt or not. The principal counter ions were calcium (Ca*), sodium (Na*) and potassium (K*)
cations in both xylan cases.

The chloride contamination and its counter anions: calcium (Ca*), sodium (Na*) and potassium (K*) may
come from hard water which were not completely removed by simple dialysis as it was the case for
MEFC.

Higher contamination of chlorides and counter anion is observed in xylan extracted with LiCl. It may
come from the fluctuation in the hardness of tap water, and also from LiCl salt impurities as its nominal
purity was 99% and added in large amount compared to xylan.

The main impurities of the LiCl salt is written to be NaCl salt and KCl salt but also metals traces, which
have been noticed on Energy Dispersive X-Ray Analysis (EDXA details bellow in part 2.) on xylan ash

The relatively high ash content and variation implies that the weight yield has to be taken with care
and has to be combined with sugar analysis for reliable yield estimation.
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1. Ash content of extracted xylan
In order to characterize the influence of mineral impurity on the yield of xylan extraction, three
different batches of xylan are analyzed by ash content: Xylan 1a and 1b have been extracted with LiCl

salt (protocol P.Op.) while xylan 2 is extracted with the non-optimized protocol P4 using only DMSO.

Table 24: Determination of ash content of xylan

sample Initial mass of Mass of Dry mass Dry mass of Mass of ash ash
xylan (mg) water (mg) content (%) xylan (mg) (mg) content(%)
Xylan 1a 33.92 2.50 92.6 31.42 2.39 7.6
Xylan 1b 28.27 2.30 91.9 26.0 1.22 4.7
Xylan 2 226.00 28.20 87.5 197.80 0.80 0.4

To perform the ash analysis, the wet xylan mass (around 200 mg) was placed in the oven at 105°C for
4h to determine the dry matter content with:
Dry mass of xylan

) o — x 100
TV Mass CoMtent = 1 itial mass of xylan

where the dry mass of xylan is correspond to:

Dry mass of xylan = Initial mass of xylan — mass of water

Then the sample was replaced in the oven from 0°C to 525°C and kept at 525°C for 4h. The mass of ash
is weighted and the percentage of ash is determined with:
Mass of ash

Ash content = x 100
Si conten Dry mass of xylan

Because this methods is quite material consuming compare to the amount of extracted xylan, the ash
content is also determine with Thermogravimetric Analysis (TGA) from Setaram-9212 without nitrogen
to avoid ash modification (under atmosphere). In this case, around 30 mg of xylan was placed in the
TGA basket, then the temperature was increased from 0°C to 780°C with a slop of 1°C/min. The
evolution of mass was reported each 4 seconds. The mass diminution may be plotted in function of
temperature:
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Figure 56: TGA curve example

The mass of water and the mass of ash are deduced from the curve then the dry mass of xylan and the
percentage of ash were determined with the same equation than described above.
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2. Energy Dispersive X-Ray Analysis of xylan ash

Ash from xylan were analyzed using energy dispersive spectroscopy detector (Silicon Drift Detector,

Bruker) mounted in a Scanning Electron Microscope (JEOL 6400).

This technique allowed identifying the elemental composition of ash.
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Figure 57: Energetic spectrum of the X-ray photons detected at the surface of xylan ash
with xylan extracted without LiCl salt (up) and with LiCl salt (down)
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Annex 4: Chemical composition of MFC before and after xylan

extraction

The chemical composition of the birch kraft samples is determined by sugar analysis before (i.) and

after xylan extraction (ex.).

The composition in five sugar residues (glucose, xylose, mannose, arabinose and galactose) and the
yield of hydrolysis are presented in the upper table. Then the normalized sugar content is calculated

in the lower table with: [Glucose normalized] = [Glucose] / (yield of hydrolysis / 100)

The yield of xylan extraction is now determined with the initial xylan content in the sample (Xy i.) and

the xylan content after the xylan extraction (Xy ex.).

Xyex. (1 —Xyi)

Yield S.A. = (1— Xy i (1—Xyex)

Table 25: Chemical composition by sugar analysis

)x 100

MFC from pulp from MFC from pulp from pulp from
birch-kra-nd birch-kra-nd spruce-kra birch-kra birch-kra-nd-nr

i. ex. i. ex. i. ex. i. ex. i. ex.
Glucose (%) 67.2 78.6 67.2 78.6 74.7 88.9 69.8 86.5 62.3 81.3
Xylose (%) 21.3 8.2 21.3 8.2 7.8 3.1 24.1 9.6 21.7 9.4
Mannose (%) 0.9 1.4 0.9 1.4 5.8 6.4 0.2 0.7 1.1 1.1
Arabinose (%) 0.1 0.1 0.1 0.1 0.5 0 0.1 0 0.7 0.1
Galactose (%) 0.1 0.4 0.1 0.4 0.2 0.1 0.0 0.1 0.3 0.0
vield —  of 96 887 896 887 949 985 942 969 8.1 919
hydrolysis (%)

i.: initial pulp or MFC composition; ex.: pulp and MFC composition after xylan extraction

Normalized:

Glucose (%) 75.0 88.7 753 89.8 84.0 90.2 74.1 89.3 723 88.5
Xylose (%) 23.7 9.2 23.4 9.1 8.7 3.2 25.5 9.9 25.2  10.2
Mannose (%) 1.0 1.5 1.0 11 6.5 6.5 0.3 0.7 1.2 1.2
Arabinose (%) 0.1 0.1 0.1 0.0 0.6 0 0.1 0 0.9 0.1
Galactose (%) 0.2 0.5 0.2 0.0 0.2 0.1 0.0 0.1 0.4 0.0
Yield of xylan 67 67 68 68 66

extraction (%)
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Annex 5: Extracted xylan chemical composition by sugar

analysis

The chemical composition of the xylan extracted from the birch kraft samples is determined by sugar
analysis. The mineral impurities as well as DMSO contamination are taken in account in the mass of

xylan weight to perform the sugar analysis as:

Mass of xylan S.A.= Mass of xylan — (Mass of xylan x 0.07) — (Mass of xylan X %DMSO )

The composition in five sugar residues (glucose, xylose, mannose, arabinose and galactose) and the

yield of hydrolysis are presented in the upper table.
Then the normalized sugar content is calculated in the middle table with:

[Glucose] x 100
Yield of hydrolysis

[Glucose normalized] =

Table 26: Chemical composition by sugar analysis

Xylan extracted from

MFC from  pulp from  pulp from pulp from MFC from oat birch wood

birch-kra-nd birch-kra-nd  birch-kra birch-kra-nd-nr spruce-kra (commercial) chips
Glucose (%) 4.5 23 2.0 5.2 27.2 10.1 1.4
Xylose (%) 84.0 88.4 94.8 82.0 43.6 59.6 45.2
Mannose (%) 0.0 0.0 0.0 0.0 3.6 0.0 0.6
Arabinose (%) 0.3 0.3 0.2 0.0 4.4 7.5 2.3
Galactose (%) 0.2 0.2 0.1 0.5 0.9 0.7 5.6
Lignin (%) / / / / / / 30
:"i:::olysis (°/°o‘; 89.0 91.2 97.1 87.7 79.7 77.9 85.1
Normalized:
Glucose (%) 5.1 2.5 21 5.9 34.2 13.0 1.6
Xylose (%) 94.4 97.0 97.6 93.5 54.7 76.5 53.1
Mannose (%) 0.0 0.0 0.0 0.0 4.5 0.0 0.7
Arabinose (%) 0.3 0.3 0.2 0.0 5.5 9.6 2.7
Galactose (%) 0.2 0.2 0.1 0.6 1.1 0.9 6.6
Lignin (%) / / / / / / 35.3
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Annex 6: Xylan peaks attribution on NMR liquid spectra

The proton (H) and carbon (*3C) chemical shifts are calibrated with the solvent deuterium peak with
temperature dependence taken into account (Fulmer et al. 2010).

In the 3C NMR analysis, an equivalent carbon atom of the sample always gives a single resonance peak,
while with 'H NMR analysis, the signal of each proton of the sample differs with the number of non-
equivalent proton. On *H NMR spectrum, the number of peaks per signal of proton, corresponded to
the number of the non-equivalent protons plus one (n+1).

A proton without a non-equivalent proton, such as a hydroxyl group, gives a single resonance peak on
the 'H NMR spectrum and is called a singlet (s). A proton with one non-equivalent proton emits a signal
with two peaks and is called a doublet (d) and a proton with two non-equivalent protons emits a signal
of three peaks and is called a triplet (t).

Due to the ring nature of xylose residue, it is very common to have different types of non-equivalent
proton, as it can correspond to the proton bond to the next carbon but also to the proton spatially
closed in the ring.

In that case of two different kind of non-equivalent proton, the signal is doubled and the peak number
of each signal corresponds to the number of the respective non-equivalent proton plus one (n+1).
When there is only one proton per type of non-equivalent proton, the signal emits have four peaks
and is called a doublet of doublet (dd).

Finally, the signal may be too noisy to distinguish the number of the peak and is called a massif (m)
when the number of the non-equivalent proton is too high, when there is too many quid of non-
equivalent proton or when different proton signals are superimposed.

One of the xylose residue particularity is to have a CH; in position five of the ring. This two protons H5
are not equivalent in *H NMR analysis, as one is in axial position (H5 ax) and the other one in equatorial
position (H5 eq).

Due to this, each proton H5 will have its own signal in *H NMR spectrum.
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1. Xylan extracted from MFC from birch kra-nd

All the spectra are calibrated with DMSO-ds peak at 2.50 ppm for proton and 39.52 ppm for carbon.

Proton 'H attribution

Table 27: Proton NMR analysis

Carbon 13C attribution

OH

4
1
HO 2 o] o

OH

Residues Cher(’r;i;:l\)shift Peak | Integral Coulping constante J (Hz) Attribution
3.11 m / / H2
3.20;3.23; 3.25 t T f’(":; ai?afq:i;i”lazl) "2 Hs axial
3.33 m 1H / H3
Xy 3.55 m 1H / H4
3.89;3.91;3.92,394  dd T “ﬁjggt:’;gﬂ:‘? ?—1):?2 . 12 45 equatorial
4.31;4.33 d 1H J (H1 - H5 axial) = 12 H1
4.64 m 1H / OH2
4.79 m 1H / OH3
Xy : 1,4 B-D-Xylose; J = chemical shift difference x 400 Hz
Table 28: Proton, Carbon and HSQC NMR analysis
Residues Chemical Attribution Chemical Attribution Chemical Attribution
shift (ppm) HSQC shift (ppm) carbon shift (ppm) proton
3.11;72.03 H2; C2 72.34 Cc2 3.11 H2
3.23;62.63 H5 ax ; C5 62.95 (o) 3.23 H5 ax
3.32;73.44 H3;C3 73.72 c 3.33 H3
3.55;74.96 H4;C4 75.24 Ca 3.55 H4
Xy 3.91;62.63 H5 eq; C5 / / 3.91 H5 eq
4.32,;101.13 H1;C1 101.43 c1 431 H1
4.64 OH2
4.79 OH3

Xy : 1,4 B-D-Xylose
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2.  Xylan extracted from birch wood chips

All the spectra are calibrated with the D,0O peak at 4.20 ppm for proton (353K)

Proton tH attribution

Table 29: Proton NMR analysis:

Residues Chemical shift Peak Integral Attribution proton
(ppm)
3.27 m / H2
3.35 m / H5 axial
3.53 m / H3
Xy
3.73 m H4
4.07 m / H5 equatorial
4.42;4.44 d 1H H1
3.27 m / H5” axial
3.35 m / H2”
3.59;3.62; 3.64 t / H3”
Xy - 2-0 Glc
3.73 m H4”
4.07 m / H5” equatorial
4.57;4.59 d 0.16 H H1”
3.20; 3.22 d H4'
3.41 s / OCHs
3.53 m H2’
4-0Glc
3.73 m H3'
4.25 m / H5’
5.19 massif 0.16 H H1’

Xy : 1,4 B-D-Xylose

Xy - 2-0-Glc : 1,4 B-D-Xylose branched in 02 with 4-O-methyl-glucuronic acid

4-0 Glc: 4-O-methylglucuronic acid
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Carbon 13C attribution

Proton H attribution

RO—{—5+0 Ho—7 2 A OR
Hgsmowbo ¥ 5 d
Table 30: Proton, Carbon and HSQC NMR analysis
Residues Chemical Attribution Chemical Attribution Chemical Attribution

shift (ppm) HSQC shift (ppm) carbon shift (ppm) proton

3.28;73.42 H2; C2 73.32 Cc2 3.27 H2
3.36; 63.62 H5 ax ; C5 63.64 c5 3.35 H5 ax

3.54;74.40 H3;C3 74.40 c3 3.53 H3

X 3.74,;77.08 H4 ; C4 77.05 ca 3.73 H4
4.06;63.64 H5 eq; C5 63.64 c5 4.07 H5 eq

4.44;102.28 H1;C1 102.27 Cc1 4.43 H1
3.44;63.51 H5”ax ; C5”ax 63.45 Cc5" 3.35 H5”ax

3.44;77.61 H2” ; C2” 77.48 c2" 3.35 H2”

Xy - 2-0 Glc 3.55;77.03 H3”; C3” 76.86 c3" 3.62 H3”

3.65;77.22 H4” ; C4” 77.42 ca" 3.73 H4”
4.12;63.54 H5”eq ; C5” 63.45 c5" 4.07 H5”eq

4.59;101.63 H1” ; C1” 101.74 c1" 4.58 H1”

3.25;82.79 H4’ ; c4’ 82.78 c4' 3.21 H4'
3.43;59.98 OCH;s 60.00 OCH;s 3.41 OCH;3

3.54;72.18 H2’; C2’ 72.02 c2' 3.53 H2’

4-0Gle 3.74;72.96 H3’; C3’ 72.79 c3' 3.73 H3’

4.21;73.28 H5’; C5’ 73.08 c5' 4.25 H5’

5.18 ;98.29 H1’; C1’ 98.17 c1 5.19 H1’
/ / 176.90 COOH / COOH

Xy : 1,4 B-D-Xylose
Xy - 2-0-Glc : 1,4 B-D-Xylose branched in 02 with 4-O-methyl-glucuronic acid
4-0 Glc: 4-O-methylglucuronic acid
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3. Commercial xylan extracted from oat

All the spectra are calibrated with DMSO-ds peak at 2.50 ppm for proton and 39.52 ppm for carbon.

Proton H attribution

OH

Table 31: Proton NMR analysis

Residues Chemical shift (ppm) Peak Integral Attribution proton
3.13 m / H2
3.23 m / H5 axial
3.32 m / H3
Xy

3.55 m H4
3.91 m / H5 equatorial

4.33;4.31 d 1H H1
3.13 m / H2”
3.23 m / H5”ax
3.32 t / H3”

Xy -2-0 Ar

3.62 m H4”
4.01 m H5”eq

4.35,;4.37 d H H1”
3.62 m / H5'ax
3.04 m / H2'
3.70 m H5'eq

Xy - 3-0O Ar
3.40 m / H4'
3.64 H3'
5.13 m H H1'
3.50 d / CH:
3.69 m / H3a
Ar 3.87 m H2a

4.05 m / H4a
5.34 m H Hla

Xy : 1,4 B-D-Xylose ; Xy - 2-O Ar: 1,4 3-D-Xylose branched in 02 with arabinose;
Xy - 3-0 Ar: 1,4 B-D-Xylose branched in O3 with arabinose; Ar: arabinose
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Proton 'H attribution

OH

Table 32: Proton, Carbon and HSQC NMR analysis

Carbon BC attribution

OH

1a
4' . g
o 5 = o} OH3 =, 2
om/" o)
3 OH2 g o

HO

2a 3a CH,OH
4a
O%oH
"
OR

o]

Residues Chemical Attribution Chemical Attribution Chemical Attribution
shift (ppm) HSQC shift (ppm) carbon shift (ppm) proton
3.13;73.39 H2; C2 73.35 Cc2 3.13 H2
3.24;62.93 H5 ax ; C5 62.95 c5 3.23 H5 ax
3.36;73.72 H3;C3 73.73 c3 3.32 H3
3.57;75.26 H4;C4 75.26 Ca 3.55 H4

Xy 3.94;62.95 H5 eq; C5 62.95 c5 3.91 H5 eq
4.33;101.42 H1;C1 101.45 Cc1 4.32 H1
4.64 OH2
4.79 OH3
3.16;76.11 H2” ; C2” (76.30) c2" 3.13 H2”
3.27,;62.90 H5”ax; C5”ax 62.72 c5" 3.23 H5”ax
3.34,;75.84 H3"” ; C3” (76.30) c3" 3.32 H3”
Xy - 2-O Ar:
3.63;75.43 H4” ; C4” 75.51 ca" 3.62 H4”
4.01;62.81 H5”eq ; C5” 62.72 c5" 4.01 H5”eq
4.51;101.36 H1”; C1” 101.32 c1" 4.51 H1”
3.62;60.31 H5'ax ; C5'ax 60.35 C5' 3.62 H5'ax
3.04;72.66 H2'; C2' 72.72 c2' 3.04 H2'
3.71,60.36 H5'eq ; C5' (60.35) C5' 3.70 H5'eq
Xy - 3-O Ar
3.34,;73.72 H4'; c4' 73.93 ca' 3.37 H4'
3.64;73.11 H3'; C3' 73.13 c3' 3.64 H3'
4.38; 101.42 H1'; C1' / c1' 4.37 H1'
3.52;61.58 CHz; C5a 61.61 C5a 3.50 CH:
3.70,;77.57 H3a; C3a 77.57 C3a 3.69 H3a
Ar 3.88;80.29 H2a; C2a 80.21 C2a 3.87 H2a
4.03;85.63 H4a; C4da 85.69 Cda 4.05 H4a
5.35;107.11 Hla;Cla 106.98 Cla 5.34 Hila
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3.42;60.31 OCHs / OCHs 3.40 OCHs
5.15; 99.62 H1;C1 / C1 5.13 H1
Xy : 1,4 B-D-Xylose ; Xy - 2-O Ar: 1,4 3-D-Xylose branched in 02 with arabinose;

Xy - 3-0 Ar: 1,4 B-D-Xylose branched in O3 with arabinose; Ar: arabinose

4-0 Glc
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Chapter 2: Characterization of MFC dispersion in suspension and in dried forms

Characterization of MFC dispersion in suspension and dried
forms

The CTP recently carried out a study on different pulps as raw materials for MFC production and
compared parameters such as the number of residual fibers and fines in the suspension as well as the
physical properties of handsheets when MFC are added to unrefined fibers (Tapin-Lingua, Meyer, and
Petit-Conil 2013). In this study, the hemicellulose content in the pulp was spotted as an important
factor of the properties of MFC suspension and handsheets. As a general rule, the studies revealed
that pulps with higher hemicelluloses content led to more homogeneous MFC suspensions with less
residual coarse elements and higher strength enhancement of handsheets.

In order to have a better understanding of these different MFC potentials we sought for robust and
rapid measurement to qualify the MFC suspensions that correlates well with existing methods and
investigated different characterization approaches for evaluating the dispersion characteristics of the
different MFC suspensions.

The first one is an optical measurement of the turbidity of MFC suspensions. It is empirically known
that when cellulose is dispersed at the microfibrils level, the suspension becomes
translucent/transparent (Saito and Isogai 2006), while heterogeneous suspensions appeared opaque.

However the optical properties have not been used for qualitative analysis of microfibrillated cellulose.
Only recently Shimizu et al. (2016) demonstrated that nanocellulose width can be obtained from
turbidity measurement, applying a method on fibrin gel, first by Carr and Hermans (1978) then recently
developed by Ferri et al. (2015). In collaboration with Dr. Y. Nishiyama, we have taken advantage of
this new formalism to revisit the Carr and Hermans method accounting for porosity in the case of MFC
suspensions.

The second one is based on the measurements of the specific surface of aerogels of MFC obtained
after freeze-drying of tert-Butyl Alcohol solvent exchanged suspensions, reported to preserve the
overall shape of nanocelluloses suspensions (Fumagalli et al. 2013). The specific surface of the different
grades of suspensions has been evaluated and compared to the results obtained by scattering
techniques.

Both characteristics will be related to the performance of MFC in handsheets reinforcement and to
their morphological analysis (MorFi) already studied at CTP.
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1. Light scattering of fibrillar objects

In the first part, we will present the major trends that can be expected from the scattering on a
heterogeneous suspension made of a dispersion of elongated objects of very different sizes and
shapes.

The light scattering by a very small object compared to the wavelength of the light, A, is inversely
proportional to A% A rough physical explanation can be given as the bound electron oscillation induced
by the electric field of light. When the angular frequency of the light w is much smaller than the natural
frequency of the system, the oscillation amplitude is governed by polarizability and the emitting
electromagnetic radiation will be proportional to w? (second derivative).

This is the typical case of visible light scattered by a molecule. The intensity of the light is proportional
to the square of amplitude, and since the angular frequency is corresponding to w = 2rtc/A, where c is
the speed of light, we get the scattering cross-section inversely proportional to A* with w? (second
derivative).

For fibrillar objects, the segments inside the fibrils are correlated and we need to consider the structure
factor.

In the case of infinitely long thin rod, the scattering intensity becomes inversely proportional to the
amplitude of scattering vector g which corresponds to:

q = 4msin (6/2)/A (1)
and the scattering intensity is proportional to the weight per length.

The form factor of infinitely long cylinder in the plane perpendicular to the cylinder can be expressed
as:

F(g) =2Ji(qR)/qR (2)

The structure factor of suspension with random orientation can be obtained by integration over all
orientations

nF 2 F 2
P(q)=f (@ dy = (@“m 3)
0

q q

As the fibril diameter R approaches zero, F approaches 1 and thus P approaches 1/q.

105



Chapter 2: Characterization of MFC dispersion in suspension and in dried forms

2. Wave-length dependence of the turbidity with the size of the objects

The turbidity, T, is a measure of attenuation of transmitted light due to elastic light scattering coming
from the heterogeneous character of the suspension. The light going through a suspension through a
path length of w, attenuates as

I =1,exp(—Ttw) (4)

For an unpolarized beam, the scattering power as a function of scattering angle S(8) is

S(6) = (1+cos?0)KPcu/n (5)

where the term (1 + cos®0) is the polarization factor, c and u are the concentration and the mass per
volume length respectively and K is the constant of Rayleigh scattering.

d
K = 2m?n? (d—Z)zA“l (6)

where A is the wavelength, n the refractive index of the medium and dn/dc the refractive index
increment

The MFC suspensions contain three classes of elements (1) microfibrils aggregates that have
nanometric width, (2) fines with thicknesses in the micrometer length scale, and (3) residual fibers that
have diameter of the order of tens of micrometers and wall thickness in microns, i.e. much larger than
the wavelength, and the turbidity would reflect the relative amount of the elements as well as their
size distributions.

2.1 Very thin fibrils

For very thin fibrils with R<<A, the fibrils radius R may be negligible and the structure factor of the
suspension P (3) approaches /g which after combination with the scattering vectors expression g (1)
lead to P:

A
P~ Tsin(a/2) (7)

After replacing this expression of P in (5), the turbidity may be expressed as a function of K and A by
replacing (6) in (5). In the case of very thin fibrils, the turbidity 7 is proportional to KA. As K is
proportional to ™% (6), the turbidity is proportional to 173 (A).

T= (%) m’n (%) cA3n (A)
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2.2 Thin fibrils

When the fibril radius R is small but is no more negligible in the structure factor of suspension P
equation (3), the Bessel function J; (2) can be approximated as:

2(J1(qR)/qR)* ~ 1 — (qR/2)?

which leads to a second expression of the turbidity:

88 dn\* 92
T= (E) mn <E> cA3n [1 - ﬁnzanzl—z (B)

In this case, the turbidity deviates at shorter wavelength from the &< 173 tendency towards smaller
values.

2.3 Thick fibrils
For a fibril diameter much thicker than the wavelength, there is no analytical solution but Ferri et al.
(2015) reports a numerical integration of somehow arbitrary scattering behavior at low g leading to:

d
T=4m (8.41)n (d—:)chR A2 (€
where p is the density of the particle.

Thus, depending of the dispersion state of the suspension and the relative amount of each category of
different elements, referred to as fibers, fines and microfibrils, a complex behavior of the scattered
light is expected. The wavelength dependency will depend on the diameter of the objects, and thus
will give statistical information on the aggregation state of the dispersion.

3. MFC suspension analysis with turbidity measurements
In order to explore different aggregation situations, we measured the turbidity (Table 33) of a series
of MFC selected from different wood sources, pulping process, drying history and with different

hemicellulose contents (cf. Chapter 1).

Table 33: abbreviation used for MFC and pulp

Hemicellulose

MFC from Wood species Pulping process Pulp drying history content
birch-kra-nd birch kraft never dried pulp 24%
birch-kra birch kraft dried pulp 24%
spruce-kra spruce kraft dried pulp 16%
pine96-sul-nd pine (96% of cellulose) sulfite never dried pulp 2.5%
pine96-sul pine (96% of cellulose) sulfite dried pulp 2.5%
pine92-sul-nd pine (92% of cellulose) sulfite never dried pulp 6%
pine92-sul pine (92% of cellulose) sulfite dried pulp 6%
euc-sul eucalyptus sulfite dried pulp 3%
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For all samples, the turbidity Tt monotonically decreased as a function of wavelength A as expected
from the Rayleigh scattering cross-section, but did not follow a A3 or even A2 tendency as expected
from cylinder scattered of diameters small compared to their lengths (cf. paragraphs 2.2 thin fibrils
and 2.3 and thick fibrils).

Thus to enhance the contrast among different samples and get rid of the overall decrease with A, we
defined a reduced turbidity At/c, normalized against solid content c as a function of A in order to
discriminate different behaviors and dispersions states. We do not have a descriptive dedicated model
that explains the type of A dependency we observe, but it allowed us to discriminate different types of
MFC suspension in the first place. At least, we expected that the suspension containing the largest
quantity of objects close to the infinite long rods approximation will have a behavior closer to A7,
whereas more aggregated samples will more or less deviate from this behavior.

Figure 58 presents the evolution of this reduced turbidity against A for different types of wood species
and pulping process.
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Figure 58: Reduced turbidity as a function of A for MFC from: kraft pulps from birch
(d and e), spruce (g), sulfite pulps from pine (b and f; and ¢ and h) and eucalyptus (a).

The curves we measured can be roughly separated in two categories: (i) concave monotonically
increasing curves and (ii) convex monotonically decreasing curves. All MFC suspensions from dried
sulfite pulps were in the (i) type whereas MFC suspensions from kraft pulps and never dried sulfite
pulps were in type (ii). Although less drastic, the effect of drying history could be seen on MFC from
kraft pulps where the never-dried pulps show steeper decrease in the plot.

Thus both drying history and hemicellulose content had a strong influence on the turbidity of MFC
suspension. A low hemicellulose content is enhanced the drying history impact and leads to less
dispersed MFC suspensions.

108



Chapter 2: Characterization of MFC dispersion in suspension and in dried forms

These results may be compared with the ones obtained at CTP with morphological analysis where the
number of fines and fibers was counted by MorFi for each MFC sources (Table 34). It’s worth to note
that with this optical technique, the finest elements at a submicronic size are not detected.

Table 34: Fine and fibers content according to MorFi analysis

MEC from Fiber content Fines content
(millions/g of MFC) (x 102 millions/g of MFC)

birch-kra-nd 5.0 2.2
birch-kra 9.1 49
spruce-kra 9.4 6.2
pine96-sul-nd 4.8 5.7
pine96-sul 16.7 11.0
pine92-sul-nd 5.5 4.6
pine92-sul 11.9 11.3
euc-sul 49.5 14.3

Concerning the drying history, the number of bigger elements (fibers and fines) systematically
increases when MFC are processed from dried pulp. Similarly, the sulfite process appeared to favor
the presence of coarse elements compared to the kraft one and the presence of hemicelluloses seems
to be in favor of a better dispersion. However, when combining both parameters, the influence of the
drying history on the fibers and fines content in the MFC suspensions is stronger in the case of sulfite
pulps, i.e. with low hemicellulose content. Indeed the MFC from sulfite dried pulp shows the highest
number of big elements while the corresponding MFC from sulfite never dried pulp is in the same
range of value than the MFC from kraft pulp.

A similar trend can be extracted from the turbidity measurements: the MFC containing the higher
number of fibers and fines showed higher turbidity at longer wavelength.
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4. Specific surface area and dispersion of MFC

As mentioned above, previous works have shown that the overall shape of MFC can be preserved in
aerogels when freeze-drying them from tert-butyl alcohol (TBA) suspensions after solvent exchange
(Fumagalli et al. 2013). We thus processed aerogels from MFC suspensions and compared their specific
surface areas with the turbidimetry.

The specific surface area (Sspe) Was determined by nitrogen adsorption for the MFC with different

parameters: pulp drying history, solvent exchange process and hemicelluloses content (Table 35).

Table 35: Specific surface area of MFC

MFC from

Solvent exchange

Specific surface area

Hemicelluloses content

conditions (m?/g) (%)

pine96-sul-nd TBA-harsh 156.3 2.5

pine96-sul TBA-harsh 119.4 2.5
pine92-sul-nd TBA-harsh 141.8 6
pine92-sul TBA-harsh 100.9 6
pine92-sul-nd TBA-soft 159.6 6
spruce-kra TBA-harsh 168.5 16
birch-kra-nd TBA-harsh 158.0 24

TBA-harsh: 13500 tr/min, 3 times TBA; TBA-soft: 2000 tr/min, 3 times EtOH, 3 times TBA

The Sspe of MFC aerogels seems to be correlated with the presence of hemicelluloses and drying history.
It appears that the sulfite pulps from pine (i.e. the lowest hemicelluloses content) exhibited the lowest
surface area when coming from dried pulps, whereas never dried pulps lead to aerogels with higher
specific surface. It has to be noticed that a smoother exchange process gave an aerogel with a slightly
higher specific surface, pointed out the complex interplay between the behavior in suspension and the
exposed surface in the dry form (cf. Annex 7).
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Although the series is not complete, it appeared also that the aerogels obtained from pulps with high
hemicelluloses content resulted in the aerogels with the highest specific surface, whatever the drying
history. Those results can be compared to the turbidity curves of the suspension (Figure 59).
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Figure 59: Reduced turbidity as a function of A for the various MFC and corresponding
specific surface area (m?/g)

Two groups of MFC can be clearly distinguished among the different samples under study. The more
opaque suspensions, such as MFC from sulfite dried pulp with a concave monotonically increasing
turbidity, resulted in aerogels with specific surface around 100 to 120 m?/g. The less turbid suspensions
from kraft pulp and never-dried sulfite pulp with decreasing convex turbidity gave specific surface
values of the resulting aerogels in the range of 140 to 170 m?/g. Thus the two types of MFC
suspensions, distinguishable by the turbidimetry have different specific surface area range. Both
characteristics seems to be strongly related to the dispersion state of the MFC, which depends on

drying history and hemicelluloses content.
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5. Correlation of MFC dispersion with reinforcement capacity

As aforementioned in the introduction, a recent study at CTP pointed out the role of pulping chemistry
and drying history on the mechanical properties of handsheets made of unrefined fibers supplemented
with MFC suspensions as a mechanical reinforcing additive. In this study, both tear and tensile indexes
were measured and correlated with the hemicelluloses content and drying history.

In the light of the preceding observations on the MFC dispersion behavior, we compared the
mechanical performance with the aerogels specific surface and turbidity behavior (Table 36).

Table 36: Hemicellulose content, specific surface of aerogels of different MFC and
mechanical performance of supplemented handsheets

MEC from Hemicelluloses Specific surface Tear index Tensile index
content (%) area (m?/g) (mN.m?/g) (N.m/g)
pine96-sul-nd 2.5 156.3 9.2 60.8
pine96-sul 2.5 119.4 7.1 43.8
euc-sul 3 / 7.5 45.3
pine92-sul-nd 6 141.8 8.6 60.4
pine92-sul 6 100.9 8.0 52.0
spruce-kra 16 168.5 8.5 55.0
birch-kra-nd 24 158.0 / /

birch-kra 24 / 8.7 60.9

The tear and tensile indexes of handsheets supplemented with MFC are well correlated with the
specific surface measured on the aerogels. Indeed, MFC suspensions that resulted in aerogels with the
highest specific surfaces (> 120 m?/g) led to handsheets with tear index higher than 8 mN.m?/g and
tensile index higher than 50 N.m/g, whereas the reverse trend was observed for the MFC suspensions
with corresponding aerogels of lower specific surfaces.
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As this series was incomplete for practical reasons, we proceeded to the comparison with the turbidity
measurements for which the complete set of values was available (Figure 60 B). Because the difference
in turbidity among different samples was most pronounced at higher wavelength, the values of the
reduced turbidities at 800 nm were plotted against the tensile index of the supplemented handsheets,
as an indicator of the degree of dispersion (Figure 60 A).

From the general inspection of both graphs, it appears that two groups of MFC suspensions can be
clearly distinguished: the more heterogeneous suspensions with the concave shape exhibited
obviously the highest reduced turbidity at 800 nm, and the poorest tensile index, whereas well
dispersed suspension with the convex turbidity curves resulted in lower reduced turbidity at 800 nm

and better mechanical properties.
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Figure 60: A: Reduced turbidity as a function of A for the various MFC, B: Correlation
between tensile index and MFC aggregation for t at 800 nm

We propose that the key point for the reinforcing effect of the MFC suspensions is their dispersion
state, which in turn depends on the hemicelluloses content and drying history. Indeed a suspension of
MFC resulting from never dried sulfite pulp has the same effect on the mechanical properties as the
one from dried birch kraft pulp or spruce kraft pulp and they share the same aggregation behavior as
observed from the reduced turbidity curves. They also exhibit very similar surface area of the
corresponding aerogel, illustrating the impact of the dispersion behavior of the suspensions on the
final material properties.

Our first intuitive guess was that the nature of the surface of the cellulose microfibrils be the key
parameter governing the reinforcing effect of MFC added to handsheets. However, it appears from
this analysis that the mechanical properties are dominated by the dispersion state of the suspensions,
for which the nature of surfaces would play a role, but not as the only factor, explaining the relative
dispersion of the results.
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6. Conclusion

In this chapter, we have shown that the dispersion behavior of the suspensions can be followed by
turbidity measurements that accounts for the presence of elements of different sizes. Distinct behavior
can be observed depending on the quality of the suspensions, particularly enhanced by the
representation of the reduced turbidity (At/c) as a function of the wavelength. Concave behavior with
monotonically increasing values has been observed for the more suspensions containing fibers and
fines, whereas convex decreasing curves have been observed for dispersion of better quality.

These behaviors correlate well with the pulping and drying history of the initial pulps from which the
microfibrils originate: hemicellulose-rich pulps and/or never dried pulps gave rise to more
homogeneous suspensions whereas pulps poor in hemicelluloses that had been dried resulted in highly
opaque suspensions.

The quality of the suspensions has consequences on the physical properties of materials made thereof.
We showed that the aerogels made with procedures that roughly preserve their aggregation state
exhibited the highest specific surface when originating from more homogenous suspensions.

Concomitantly, the complex role of the MFC as a reinforcing agent in handsheets of unrefined fibers
can be rationalized with regard to their dispersion behavior. We also proposed to use the value of the
reduced turbidity at 800 nm as a marker of the quality of the suspension that correlates well with the
mechanical properties of the reinforced handsheets. We believe that this turbidity measure represents
a robust and simple way of testing the quality of the suspensions, and hence their ability to exhibit
better performance in a wide range of physical properties that requires the largest exposed surface,
as in the case of the aerogels or the interaction with unrefined fibers.
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Annex 7: Influence of solvent exchange by turbidimetry

The influence of the solvent exchange on the different MFC suspension in TBA was analyzed with
turbidimetry. Two solvent exchange conditions were tested:

1. Harsh exchange:
Water contained in the MFC suspensions (2% solid content) was replaced with tert-butyl alcohol (TBA)
by repeated centrifugation (11 200 rpm, 2 h, 25°C) and redispersion of the pellet in TBA using a double
cylinder type disperser, Ultra-turrax.
After the third centrifugation, the MFC were suspended in TBA at 1.25wt% (Fumagalli et al. 2013) and
frozen with liquid nitrogen and freeze-dried at 100 mili-torr for two days.

2. Soft exchange:
To avoid interface tension between water and TBA which might induce irreversible aggregation among
cellulose fibrils, the water of the MFC suspensions (2% solid content) was replaced with ethanol
(3 times) prior to TBA (3 times) and the centrifugation speed was decreased at 2000 tr/min. The rest
of the procedure was identical to the harsh exchange.

When aqueous MFC suspensions were solvent exchanged into TBA using harsh centrifugation all
samples showed almost constant At (the turbidity inversely proportional to A) after this solvent
exchange (Figure 61), while only the MFC suspensions coming from the never dried birch kraft pulp
showed a behavior close to the initial features. In this situation, the low polarity of the solvent most
probably promotes the flocculation of the suspensions.
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Figure 61: Reduced turbidity of TBA exchanged MFC suspensions as a function of A.

The strong centrifugal force and/or the interface tension between water and TBA might have induced
some associations among cellulose fibrils, modifying their overall structure in the suspension. The high
hemicelluloses content (25%) of the MFC from birch-kra-nd seems to prevent this effect.
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To reduce the centrifugal force and interface tension, we used the soft centrifugation condition
(2000 tr/min - 40 times reduction in force) and added an intermediate solvent exchange with ethanol
before TBA to reduce the interfacial tension.

These conditions were tested on MFC from pine92-sul-nd, which have low hemicelluloses
content (6%). Figure 62 shows the reduced optical density after solvent exchange compared with the
one obtained in water after reflective index correction.
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Figure 62: Influence of solvent exchange condition on the reduced turbidity of MFC from
pine 92-sul-nd as a function of A.

The correction for reflective index was considered as follows. The refractive index of TBA is 1.385,
(O’Neil and Chemistry 2013), while water is 1.33 and cellulose 1.55 (Krishna, Neelakantan, and
Radhakrishnan 1968). Taking the crystal density of cellulose IB, 1.63 g/cm?3, the theoretical dn/dc for
cellulose in TBA and cellulose in water is 0.135 and 0.101 respectively. As the scattering is proportional
to (dn/dc)?, the turbidity profile should match with a scaling of 1.77 if the spatial arrangement of the
suspension is identical.

This is indeed the case as shown in Figure 62, where a step-wise solvent exchange and slow
centrifugation is enough to preserve the structure of the initial MFC suspensions and to prevent the
flocculation of the suspensions.

116



Chapter 2: Characterization of MFC dispersion in suspension and in dried forms

Annex 8: Influence of xylan extraction

The turbidity of suspensions of birch kraft pulps and MFC with different drying history and their
corresponding MFC were measured using UV-vis spectrometer, before and after xylan extraction,
(cf. Chapter 1) to evaluate the influence of hemicelluloses on the suspensions’ dispersion state.
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Figure 63: Reduced turbidity as a function of A for the various samples in water showing
the influence of xylan extraction on: A: pulp and B: MFC

The optical density of pulps generally decreased by the xylan extraction while the general shape of
wavelength dependency was maintained, regardless of the pulp origin and drying history (Figure 63 A).
The decrease can be explained by swelling leading to decrease in average of the pulp refractive index,
while maintaining the overall morphology.

When xylan was extracted from MFC by DMSO, the general aspects of the turbidity curve were
modified and resulted in flattened curve (Figure 63 B). This effect can happen during the centrifugation
in DMSO as in the case of TBA exchange.

The corresponding specific surface area of MFC and birch kraft never dried pulp before and after xylan
extraction estimated by nitrogen adsorption isotherm are presented in Table 37.

Table 37: Specific surface area before and after xylan extraction of MFC and pulp from birch
kraft never dried

Solvent exchange Xylan Hemicelluloses Specific surface area
Sample .. . 2
condition extraction content (%) (m?/g)
before 24 96.7
;?ulp from TBA-harsh
birch-kra-nd after 9 70.2
before 24 158.0
MFC from TBA-harsh
birch-kra-nd after 9 134.6

TBA-harsh: 13500 tr/min, 3 times TBA; TBA-soft: 2000 tr/min, 3 times EtOH, 3 times TBA
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The xylan extraction resulted in decrease of specific surface area of MFC and pulp. The decrease was
accompanied by increase in turbidity at longer wavelength for MFC, but pulp suspension decreased in
turbidity although the specific surface area decreased (Figure 64).
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Figure 64: Reduced turbidity as a function of A for pulps and MFC showing the correlation
between water optical density and specific surface area (m?/g) and hemicelluloses
content
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Chapter 3: Conformational Adaptation of B-(1->4) Xylan at the Cellulose Surface in Nature and
Biomimetic Reconstruction

We have previously shown that the MFC differ by their proportions of hemicelluloses. The MFC
resulting from kraft pulp have the highest content of hemicellulose while that from sulfite pulp, also
called dissolving pulp have the lowest.

Thanks to the extraction and characterization performed in chapter 1, it was found that the main
hemicellulose of MFC from birch kraft pulp is a pure homopolymer of xylan with DP 75.

In chapter 2, we found good correlation between the mechanical properties, the turbidity and the
specific surface area measurements.

Indeed, the most influent factor responsible for the decrease of the mechanical properties is the pulp
drying in the case of low hemicellulose content. The MFC from sulfite dried pulp, which have the lowest
hemicellulose have the lowest specific surface and lowest tear index resistance compared to the MFC
from kraft pulps, which are less sensitive to the drying process.

Because hemicelluloses seem to have a strong influence on the MFC mechanical resistance to provide
fibers aggregation during pulp drying, it is the topic of the next chapter.

The xylan influence on the MFC structure studied by solid state NMR then the xylan adsorption at the
cellulose surface and its conformational adaptation performed by atomistic simulation is presented
bellow as a publication.
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Cellulose Surface in Nature and Biomimetic Reconstruction
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ABSTRACT

The conformational adaptation of a linear B-(1—4) xylan extracted from microfibrillated birch pulp to
crystalline cellulose surfaces, was investigated using solid-state CP/MAS *C NMR spectroscopy,
specific surface area measurements and atomistic molecular dynamics (MD) simulations. The NMR
spectra confirmed that when in contact with cellulose, in newly formed biomimetic nanocomposites,
the xylan molecules altered their conformation from the classical bulk left-handed three-fold to a
different conformation, presumably a cellulose-like two-fold one. Combining these data with specific
surface area measurements, this conformational adaptation was observed only when the xylan
amount was limited to the first adsorbed layer in direct interaction with the cellulose surface. It is only
when an excess xylan was present and after full cellulose surface coverage, that the subsequent
deposited layers took the classical three-fold organization. The MD simulations confirmed that xylan
in three-fold conformation had a weaker affinity for the cellulose surface than its two-fold counterpart,
thus supporting the hypothesis of the two-fold conformation for xylan at the cellulose surface. When
adsorbed on the hydrophobic surface of crystalline cellulose, the MD simulation showed that xylan
maximized its hydrophobic interaction with cellulose by superposing its xylosyl rings on those of the
glucosyl of cellulose. The MD simulations also showed that in contact with cellulose, the adsorbed
xylan was mainly organized as extended molecular chain aligned parallel to the cellulose chain
direction.
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INTRODUCTION

In lignocellulosic plants, the cell wall is composed of two distinguishable layers, namely an external
extensible thin primary wall surrounding a rigid and thick secondary wall.? The secondary wall confers
mechanical strength, robustness and durability to the plant body, these properties being essentially
derived from the wall structure and ultrastructure.> Commonly, the secondary cell wall consists of
three major components: cellulose, hemicellulose, and lignin. Hemicelluloses and lignin are covalently
and non-covalently linked, while cellulose and hemicelluloses are connected exclusively by non-
covalent interactions.® With the current goal of finding new uses for plant cell walls, and in particular
for wood fibers, it is important to clarify the molecular interactions existing between these wall
components, not only for the fundamental understanding of the cell wall architecture and
ultrastructure, but also for finding the most cost-effective way for converting them into bio-based
advanced materials.

Xylan is the most abundant hemicellulose in plants.* This polysaccharide with a degree of
polymerization (DP) in the range of 100 to 200 when extracted from hardwood chips,>® is considered
as being essentially linear even if short xylan branches attached to its backbone- reported at least in
aspen cell wall’-are likely to occur in other hardwood samples. The backbone of xylan consists of poly
B-(1—4) linked D-xylopyranosyl units, to which are attached a variety of side groups. In hardwood,
xylan is often decorated by 4-O-methyl D-glucuronic acid residues and O-acetyl groups, while L-
arabinosyl residues are also found as pendant groups in softwood xylan.#*° The crystalline organization
of xylan hydrate in the solid state was investigated by fiber diffraction analysis of samples extracted
from birch wood.% In these, xylan adopts a left handed 3-fold conformation with a periodicity of 1.48
nm. Such a 3-fold helical conformation is also found in the stacking of xylopentaose in the binding cleft
of a xylan carbohydrate-binding module (CBM) from Pseudomonas cellulosa.'! Even if the 3-fold helical
structure of xylan is well comforted by computational studies,>*3 several X-ray and electron diffraction
diagrams of xylan cannot be resolved with the unit cell and symmetry deduced from the established
crystal structure of birch xylan hydrate.}*!> These different patterns, which have not been fully
explained, indicate that other crystalline allomorphs, with probable conformations different from that
of the 3-fold one are likely to exist for xylan.

1618 and its co-alignment with cellulose has

Xylan is renowned to have a strong affinity for cellulose
been indicated by polarized infrared spectroscopy.’®?° The adsorption of xylan on cellulose, which is
quite important for the pulp and paper process,?! can be related to the similarity existing between the
chemical structures of these two molecules. It is also this strong adsorption, which is believed to act
as the limiting factor in the enzymatic hydrolysis of cellulose.?? Despite this affinity, the difference
between the dominant molecular conformations of xylan into 3-fold helix 1° and that of cellulose in 2-
fold helix 2%in the bulk states, likely implies a structural conformational adaptation of xylan to form
strong interaction with cellulose. Such possible conformational adaptation has been proposed in
several reports. In solid-state >*C NMR studies by Larsson et al. 2* and Teleman et al., % it was shown
that a specific resonance at 81.7 ppm could be assigned to birch xylan in contact with cellulose, thus

suggesting a different conformation for the adsorbed xylan.
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In their molecular dynamics (MD) investigation of the adsorption behavior of xylan molecules on the
hydrophilic surface of cellulose, Mazeau and Charlier 2° found preferential molecular orientation of a
xylopentaose along the cellulose chains at the (110) hydrophilic surface of crystalline cellulose, with
possibilities for 2-fold and 3-fold conformations. Busse-Wicher et al. ¥ suggested a 2-fold helical
conformation of xylan molecules decorated by acetyl and glucuronic acid groups, as a stable structure
on both hydrophilic and hydrophobic cellulose surfaces, based on biochemical analysis and molecular
dynamics simulations.

As mentioned in these reports a conformational adaptation of xylan molecules to crystalline cellulose
surfaces appears feasible, but is not clear whether this adaptation is solely due to physico-chemical
interaction or to the biosynthetic mechanisms, including for instance xylan decoration and/or co-
crystallization with cellulose during the hemicellulose secretion. In the present study, a solid-state
13C nuclear magnetic resonance (NMR) study on mixtures of un-decorated xylan and cellulose was
undertaken to investigate the conformational adaptation of the xylan molecules at the cellulose
surface. With this spectroscopic study, the main idea was to mimic by physico-chemical means the
interaction of xylan at the cellulose surface and hence propose a biomimetic reconstructed model. By
sequential re-depositions coupled with specific surface area measurements, it was possible to see
whether this adaption was only limited to the first adsorbed layer or also to the next ones. We have
constructed a MD model system based on un-decorated xylan molecule and modelled its interaction
with the hydrophilic and hydrophobic surfaces of crystalline cellulose. This allowed us to follow the
conformational modifications of the xylan backbone, when adsorbed on cellulose.

EXPERIMENTAL SECTION
Materials

In this study, two types of pulp were used: a bleached never-dried birch kraft pulp, provided by UPM
and a dried bleached pine sulfite dissolving pulp from Tembec. These samples were subjected to a
mechano-enzymatic treatment, adapted at the Centre Technique du Papier, from the method
described by Paikké et al. 2 In short, the pulp samples were refined at a 4.5% consistency with a 12”
single disk refiner for 25 min for the pine pulp and 45 min for the birch pulp after being incubated for
1h at 50°C with a solution of endoglucanase FiberCare R® from Novozyme, buffered at pH 5.0. The
digested samples were further refined with the disk refiner to obtain a pulp suspension of Shopper
Riegler (SR) drainability number (ISO 5267-1) greater than 80 and mean fiber length lower than 300 um
when analyzed with an optical MorFi camera, considering as fiber each element longer than 80 um.
The fiber suspensions were then diluted to a 2% concentration and processed with an Ariete
homogenizer. This treatment involved one pass at 1000 bar followed by 3 passes at 1500 bar. The
resulting suspensions of microfibrillated cellulose (MFC) were solvent exchanged to t-BuOH (TBA) by
successive centrifugations/ re-dispersions. At the end of the third centrifugation, the MFC were
suspended into TBA at a 1.25% concentration and freeze-dried at 100 mil-torr for 2 days.

For the extraction of xylan from the birch kraft pulp, the freeze-dried MFC samples were dispersed, at
a 1% concentration, into a solution of 5% LiCl/DMSO and, stirred at room temperature for 20 h. The
MFC and dissolved xylan were then separated by ultracentrifugation at 20 000 g for 15 h at 25°C.
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The supernatant xylan and the MFC pellet were recovered separately and subjected to a 7 day dialysis
against water using a dialysis membrane with a cutoff of 12 000 Da, to remove LiCl and DMSO from
the specimens. The xylan in the form of a precipitate was concentrated with a rotary evaporator
(Rotavapor, Bichi), freeze-dried and kept over P,Os until further use. The MFC pellet was kept under
wet state at the end of the dialysis. From sugar analysis coupled with liquid **C NMR data, the extracted
xylan consisted essentially of xylosyl residues and was devoid of (i) OAc moieties, (ii) arabinosyl and
(iii) glucuronic acid substituents.

From the sugar composition (Tables 1 and 2, Supporting Information) it was found that the MFC pellet
from birch kraft pulp still contained 9.2% xylan after extraction, down from 24% before extraction.
Thus a substantial amount of xylan, likely strongly bound in between the fasciated microfibrils
remained unaccessible in this extraction. The MFC from Tembec dissolving pulp initially contained less
than 2.5% xylan.

Re-adsorption of Xylan on Extracted MFC

The experiments involved the re-adsorption of xylan on either the MFC from birch kraft pulp after
xylan extraction or the MFC from Tembec pulp. Both MFC samples were re-dispersed into DMSO at a
concentration of 5 g/L. Various quantities of freeze-dried xylan were then added to the suspensions,
which were kept under stirring for 20 h at room temperature. These samples were dialyzed for 7 days
followed by concentration with a rotatory evaporator (Rotavapor Biichi) and freeze dried until further
use. Each sample was analyzed by solid-state 3C NMR spectroscopy to determine the amount of
adsorbed xylan.

Solid-state 3C NMR Spectroscopy

All the solid-state 3C NMR spectra were recorded on wet samples: the initial MFC samples in
suspension were concentrated by centrifugation and the water in excess in the pellet was wicked away
with a filter paper. The freeze-dried MFC specimens with xylan re-adsorbed were rehydrated with
water and the water in excess was wicked away. Wet samples of the extracted xylan were prepared
by rehydrating the freeze-dried samples at 97% relative humidity in a desiccator containing saturated
potassium sulfate aqueous solution.

Al 3C solid-state NMR spectra were recorded with a Bruker Avance Il spectrometer (**C frequency of
100 MHz), using the combination of magic angle spinning (MAS) and cross-polarization (CP). For this,
the spinning speed was set at 12 kHz, the sweep width at 29761 Hz, the recycle delay at 2 s and the
cross-polarization contact at 2 ms. The MFC spectra were averaged over 24 k, whereas the pure xylan
spectra were averaged over 2 k scans. The *C chemical shifts were calibrated with the glycine carboxyl
group at 176.03 ppm.

Specific Surface Area

The specific surface areas of freeze-dried MFC samples from birch pulp (before and after xylan
extraction) and the original Tembec pine pulp were measured using adsorption-desorption isotherms
of nitrogen. For this, 0.07-0.15 g of freeze-dried samples were analyzed, using a Surface Area and Pore
Analyzer Nova 1200e from Quantachrome instruments. The samples were first degassed at 105°C for
15 h and the adsorption-desorption isotherms were measured at 77 K in the pressure range of 0.01-
0.3 bar. The specific surface areas were calculated using the BET equation as described elsewhere.?®30
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Molecular Dynamics (MD) Simulation

MD simulations were achieved with GROMACS tools. The molecular structures were visualized using
the VMD and PyMOL softwares. In this MD work, we used the GROMACS 5.0 package®! using the
Gromos 56Acme force field®? with a modified Lennard-Jones repulsive parameter for the CH1 atom
type.® In the simulations, the motion equations were solved by a standard leapfrog algorithm with
integration step of 1 fs. The length of covalent bonds involving hydrogen atom was constrained by
using the LINCS algorithm.3* All the equilibration and production runs were achieved in the NPT
(constant number of particles, pressure, and temperature) ensemble. The velocity-rescaling
algorithm®® was used for temperature control with a coupling time of 0.1 ps. The pressure was
regulated to 1 bar using a Berendsen pressure coupling algorithm3® with a pressure coupling constant
of 2.0 ps. The pressure regulation was done semi-isotropically: it was regulated isotropically in lateral
(x-y) dimensions, but independently along the longitudinal chain (z) direction, with compressibility of
2.5x10” and 7.9x107 bar?, respectively. The long-range interactions were calculated by using the
particle-mesh Ewald summation method®” with a cut-off distance of 0.9 nm and the long-range
dispersion force was corrected for both energy and pressure.

The cellulose model in this study was derived from the experimental structure of cellulose 1B.%2 Only
the dominant hydrogen bond network, namely pattern A, was considered. A cellulose model was
constructed with 24 molecular chains having a degree of polymerization (DP) of 12. The chosen model
had an approximate hexagonal cross section with exposed hydrophilic (110) and (1-10) surfaces,
together with the hydrophobic (100) one (see Fig. S1, Supporting Information). This model, which was
selected to study the adsorption behavior of xylan on different cellulose surfaces, may be different
from reality since the cross sectional shape of the wood cellulose microfibril is still under debate. Each
molecular chain was covalently bonded to its periodic images at its both ends to mimic the infinite
length of the molecular chain along the fiber direction. This semi-infinite cellulose model was solvated
with SPC water,® followed by energy minimization calculation using conjugate gradient algorithm with
the convergence criterion for force of 1.0 ki/mol/nm. The energy-minimized (EM) system was
equilibrated by MD for 20 ns at 300 K.

The force field parameters for the B-xylosyl residue are not available in the native Gromos 56Acaro
force field data bank. Thus, the residue was constructed by removing the hydroxymethyl group from
the B-glucosyl unit, transforming the CsH, group into a regular CH; moiety. A linear xylan molecule,
having 10 B-xylosyl residues (Fig. S1), was solvated in a SPC water box. The hydrated system was
energy-minimized and then equilibrated for 10 ns at 300K. The equilibrated xylan molecules took an
approximate 3-fold conformation as described below. To simulate the 2-fold helical conformation of
the xylan molecule, the two dihedral angles at the glycosidic linkage, ¢ (05-C1-01-C4) and ¢ (C1-01-
C4-C5) were subjected to harmonic restraints with a force constant of 200 kJ/mol/nm and target values
of 90° and 140° for the g and ¢ angles, respectively. The molecules were then equilibrated under the
dihedral restraints in a SPC water box for 10 ns at 300 K.

The adsorption simulation of the xylan molecule on the cellulose surface was performed using these
equilibrated cellulose and xylan models. In this study, we investigated the adsorption behavior of xylan
under the influence of (i) different molecular conformations of xylan (System 1), (ii) different cellulose
surfaces (System 2), and (iii) different initial orientations of the xylan chain with respect to the cellulose
chain direction (System 3).
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In all these systems, the simulation box size was approximately 7 x 7 x 6.3 nm? and periodic boundary
conditions were applied to x, y, and z directions. The resulting semi-infinite cellulose crystal was
positioned at the center of the box and the xylan chain was inserted at the position approximately 1
nm away from the cellulose surface of interest. The system was then solvated with SPC water
molecules and equilibrated at 300 K for 10 ns, unless otherwise specified.

In System 1 and 2, the xylan molecule was oriented with its chain direction parallel to the longitudinal
direction of cellulose. In System 1, the xylan chains with 3, and 2; conformations were subjected to
the adsorption simulation. For the chain in the 2, conformation, the initial adsorption was performed
with the dihedral constraints for 10 ns. Then the further 10 ns simulation was performed without the
constraints at 300 K. In System 2, the xylan chain in the 2; conformation was positioned close to the
three different surfaces, (100), (110) and (1-10). Then the energy minimization calculation and
equilibration simulation with the dihedral constraints were performed as aforementioned. After the
adsorption, a 10 ns production run was achieved without the constraints. In System 3, the xylan chain
was positioned closed to the (100) cellulose surface with different angles between the xylan and the
cellulose chains. Then, the energy minimization and MD simulations were performed with the dihedral
constraints for 10 ns, followed by the unconstrained 10 ns production simulation. In terms of
interaction energy of the adsorbed state, Coulomb and Lennard-Jones (or electrostatic) values were
considered. They were calculated by summing up the corresponding non-bonded interaction energies
between the constituting atoms of the molecules in the system.

RESULTS AND DISCUSSION

1. Solid-state 3C NMR Spectral Analysis of Xylan onto Cellulose Surface.

1.1 Conformational Diversity of Xylan

Figure 1 shows the 3C solid-state NMR spectra of the wet extracted xylan (Fig 1A), and MFC samples
from birch kraft pulp before (Fig. 1B) and after (Fig. 1C) xylan extraction. For comparison, the spectra
of the samples in Figures 1B and 1C were normalized with respect to one another, by equalizing their
integral intensities in the range 55 to 115 ppm. The spectrum of xylan (Figure 1A) was normalized with
its integral intensity being 13.5% of that of each MFC sample, this percentage corresponding to the
amount of xylan extracted (see below).

The spectra of both MFC samples (Figure 1B and 1C) show similar spectral features: well separated C1
peak of cellulose at 106 ppm together with overlapped peaks between 68 and 80 ppm originating from
the C2, C3, and C5 of cellulose. Clear differences before and after the extraction are found in the C4
(80-92 ppm) and C6 regions (57-68 ppm) of cellulose, with a relative intensity decrease at 64, and 82
ppm, and a slight increase at 84.2 ppm upon xylan extraction.
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Similar spectral modification of wood cellulose upon hemicellulose removal using alkaline solution has
been reported by Teleman et al.%, who suggested that the signal at 82 ppm could be assigned to the
C4 of xylan in interaction with the cellulose surface. On the other hand the resonance at 84.2 ppm
presumably corresponds to the C4 of the accessible cellulose surface.?* It is thus logical to observe its
increase when some cellulose surface is liberated by the departure of xylan.
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Figure 1. CP/MAS *CNMR spectra of wet samples: (A) extracted xylan hydrated at 97% relative humidity; (B) MFC
from birch kraft pulp before extraction of xylan; (C) as in (B) but after xylan extraction; (D) linear combination of
(A) and (C); (E) as in (C) but after re-adsorption of xylan, with xylan/cellulose ratio of 0.28/1. (F) as in (C), but after
re-adsorption of of xylan with xylan/cellulose ratio of 0.39/1. Enlargements of the C4 region are presented in the
right column.

The spectrum of the extracted bulk xylan (Fig. 1A) is typical of that of the hydrated crystalline B-1,4
xylan.?® Three sharp signals occur at 63, 73.5, and 101 ppm: they are respectively assigned to C5, an
overlapped contribution of C2-C3-C4, and C1. Although the molecular structure of xylan is very similar
to that of cellulose except for the hydroxymethyl C6 group, its chemical shifts at C1 and C4 are very
different from those of cellulose and therefore point to a molecular environment different from that
of cellulose at the glycosidic linkage.
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Based on the sugar analysis (see Tables S1 and S2, Supporting Information), the MFC from birch kraft
pulp contained 24% of xylose and 75% of glucose (w/w) before the extraction and 9% of xylose and
89% of glucose after the extraction. The xylan ratios normalized to the cellulose mass is of 0.31(w/w)
before extraction and 0.1 after extraction, this last part being considered as inaccessible xylan. Thus,
68% of the xylosyl residues -i.e. more than two third- in the initial MFC sample (1B) was removed as
extractible xylan fraction by the DMSO/LiCl treatment. The carbon molar fraction of the removed xylan
was therefore 13.5 % of the whole carbon content of the initial MFC. Assuming that the contribution
of each component to the signal intensity is proportional to its respective number of carbon atoms and
if the mixture of xylan and cellulose did not alter the samples conformation, the NMR spectrum of the
mixture should be expressed by a linear combination of the two reference spectra. For a carbon molar
fraction of xylan, a in the binary system, the expected signal intensity of the binary system /ni» should
be:

Ibin = (1 - &)l cer +0lyy
where I and Iy are signal intensities of cellulose and xylan, respectively.

Thus the spectrum before extraction (1B) should be a linear combination of the spectra of the MFC
after extraction (1C) and of xylan (1A). This linear combination is given in Figure 1D, taking the
normalized intensity as 0.865x1C, accounting for the respective amount of cellulose and xylan. In
comparing the spectrum 1D with the one in 1B, a clear increase of the intensity is observed at 62, 73.5,
and 101 ppm, corresponding to the added xylan. Such difference is not observed when comparing the
MFC spectra before (1B) and after (1C) xylan extraction, which thus clearly confirms that when
adsorbed on cellulose, xylan adopts a conformation different from the one it has in its bulk state.

1.2 Conformational Adaptation of Xylan upon Re-adsorption on MFC

In order to further investigate the conformational change of xylan in the presence of cellulose, we have
rebuilt xylan-cellulose complexes by re-adsorption of xylan to the MFC samples where xylan had been
initially extracted. In order to do so, the accessible xylan chains were first solubilized in DMSO and then
allowed to interact with cellulose surfaces by slowly exchanging DMSO by dialysis against water and
thus allowing a conformational freedom. Two different amounts of xylan were used for the re-
adsorption experiments (see Table S3 in the Supporting Information). The first complex was
constructed to yield an amount of xylan close to what it was in the initial MFCs: a xylan/cellulose mass
ratio of 0.28 (22% of total weight). In a second complex, more xylan was added to increase this ratio
to 0.39 (28% of total weight). Thus, this second complex contained an excess of xylan/cellulose in mass
ratio of 0.11, compared to what it was in the initial MFCs.

The spectrum of the first complex (Fig. 1E) was almost identical to the one of MFC before the extraction
(Fig. 1B). The signal intensity increased at 64 and 82 ppm, and no trace of bulk xylan was present in the
spectrum unlike in the case of the artificial linear combination of the spectra of the xylan and MFC
(Fig. 1D). In Figure 1E, the C1 signal of xylan at 101 ppm is absent upon the adsorption, presumably
due to its downfield shift, with the consequence of its merging with the C1 signal of cellulose at
106 ppm. The increase of the signal at 82 ppm is explained as a downfield shift of C4 of the xylan from
73 ppm, as the signal is assigned to the C4 of xylan in interaction with the cellulose surface.?*?*
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These downfield shifts of C1 and C4 signals of the xylan are indicative of a conformational departure
from the classical three-fold helical structure observed in the bulk xylan, presumably to adopt a
cellulose-like two-fold helical structure. In this respect, our results are in line with to those of Larsson
et al 2* who have mixed xylan from bleached birch kraft pulp with disintegrated cotton linters in the
presence of water for 48 h at 90°. Despite the dissimilarity between their experimental protocol and
ours, the onset of the signal at 82 ppm in their case and its increase in our re-adsorption experiment
point toward the same behavior of the adaptation of xylan at fresh cellulose surface.

In the spectrum of the second complex, with the xylan/cellulose ratio of 0.39 (Fig. 1F), an additional
signal becomes visible at 101 ppm, and the intensity increased at near 62 ppm. Since the chemical
shifts of these signals are very similar to those of the bulk hydrate xylan, the additional intensities likely
originate from an excess of xylan in an environment typical of bulk xylan. The amount of this excess
xylan in spectrum 1F could be determined by a peak deconvolution of the C1 region (110-95 ppm)
using a Gaussian function. The peak at 106 ppm contains the signals of both cellulose and xylan directly
adsorbed on cellulose. The ratio between the integral areas of the peaks at 106 and 101 ppm is
estimated at 1: 0.13. Thus, the relation between the molar mass of cellulose (mcu), xylan in bulk
conformation (mpux) and xylan in interfacial conformation (miner) is given as:

(mcell+ minter)/ Mpuik = 1/013
The molar ratio of cellulose and xylan is deduced from their weight ratio 1:0.39 as
mcel//(mbulk+ minter) = 1/039 X ny|/ch[/

Where W,y and W correspond to the molecular weight of xylosyl (132) and glucosyl (162) residues.
With respect to cellulose, mpukand minerare estimated at 0.17 and 0.31 respectively, which correspond
to 0.14 and 0.25 weight of xylan per weight of cellulose (see Table S3 in the Supporting Information).

The conformational adaptation of xylan in the re-adsorption experiments clearly indicates that this
specific feature is due to the physical affinity of xylan for cellulose and this is what it likely occurs during
the biogenesis of the wood secondary cell wall. The ratio of the bulk state xylan to cellulose: 0.13,
calculated from the NMR spectrum is very close to the ratio of excess xylan: 0.11 that was added in
the second complex. Since in this experiment, only 66% of xylan was able to conform to cellulose, one
can surmise that only the first layer of xylan in contact with cellulose is able to do so, this amount of
xylan being enough to saturate the accessible cellulose surface. Following this hypothesis, the
remaining 34% will not have any access to the saturated cellulose surface and thus will conform into
the classical 3-fold conformation observed in the bulk xylan.

The re-adsorption experiment was also performed with the MFC from pine sulfite pulp as shown in
Figure S2 in the Supportding Information. The adsorbed xylan on the MFC from pine sulfite pulp
showed a similar conformational change, but only 9% xylan appeared sufficient to saturate the MFC
surface.
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2. Estimation of the Surface Area of MFC Samples Accessible to Xylan.

In order to quantitatively evaluate the cellulose surface available for xylan interaction, we measured
the specific surface area of the DMSO extracted birch kraft and pine sulfite pulps by nitrogen
adsorption measurements, using the BET method. The specific surfaces area (Sspe) Of the freeze-dried
MFC samples are given in Table 1. Whereas the MFC from birch pulp presents a S value of 158 m?/g,
the MFC from pine pulp has only 119 m?/g, i.e. a value 30% lower. From these data, an estimation of
the maximum coverage of the cellulose surface by a typical xylan monolayer can be calculated
attributing a surface of 0.25 nm? to each xylosyl residue, as evaluated by MD simulation.?® This
maximum Xyl, expressed in gram of xylan per gram of cellulose can be deduced from the equation:

Xylm: :I.Ol8 (Sspe / 0.25) X (mxy|/NA)
where myy (132) is the weight of a xylosyl residue and N is the Avogadro’s number.
Tablel. Xylan amount adsorbable as a monolayer on cellulose, deduced from (i) the specific surface area of the

MFC samples after xylan extraction (ii) the percentage xylan in the interfacial conformation, deduced from *3C
NMR data following the re-adsorption experiments.

. g xylan adopting the interfacial
g xylan/g cellulose in a

MFC Sepe (M?/g) conformation/g cellulose in the re-
monolayer . .
adsorption experiment
Birch pulp 158 0.14 0.15
Pine pulp 119 0.10 0.09

From this equation, we see that a full covering of the MFC from birch pulp by a xylan monolayer will
be obtained with 0.14 g xylan per g of cellulose, as opposed to 0.10 for the MFC from pine pulp. Quite
remarkably, these values are very close to those deduced from the 3C NMR data about the percentage
of xylan, getting organized into the specific interfacial conformation during the re-adsorption
experiment: 0.15 g xylan per g cellulose from birch pulp MFCs and 0.09 g xylan per g cellulose for the
pine pulp counterpart. The amount of xylan in the interfacial conformation was calculated by omitting
the amount of inaccessible xylan that was permanently adsorbed on inaccessible cellulose surface,
which therefore was not detected by the specific surface measurements. This concordance strongly
substantiates the above hypothesis stating that it was only the first layer of xylan adsorbed at the
cellulose surface, which could be converted into this specific interfacial conformation. In the re-
adsorption experiment, this is obtained by replenishing the free cellulose surface created by the
removal of the accessible xylan from the initial MFCs during the DMSQ/LIiCl extraction step. When the
full cellulose surface is replenished, adsorbed xylan in excess is not influenced any more by this surface
and thus is free to adopt the classical 3-fold conformation of the bulk state identified by its specific
solid-state *C NMR signature.
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3. Molecular Dynamics (MD) Simulation of Adsorption of Xylan on Cellulose

In order to characterize the interactions of xylan and cellulose at the molecular level, in terms of
conformation and interaction energy, we have performed MD simulation to recreate the situation of
a xylan chain interacting with surfaces of a cellulose crystal. In the simulation, we have first considered
the behavior of a xylan molecule in water, but without cellulose and then in the presence of crystalline
cellulose.

3.1 Molecular Conformation of Xylan in Water without Cellulose

The simulated conformation of a xylan molecule in water, defined by the distribution of the two
glycosidic dihedral angles, ¢ (05-C1-01-C4’) and ¢ (C1-01-C4’-C5’), during a 10 ns run is shown in
Figure 2A. This simulation clearly indicates that the molecule of xylan adopts a left-hand three-fold
helical (3,) conformation through almost the entire period of the simulation, and that a two-fold (21)
conformation does not appear. This observation is consistent with the results of a previous MD study
performed by Almond and Sheehan, * who used the CHARMM force-field different from ours. To
examine the energy difference between the molecular chains of xylan in 3, and 2; conformations in
water, the two glycosidic dihedral angles ¢ and ) were constrained to force the molecule to be in the
2; conformation. This constrained conformation reverted instantly to the 3, structure upon removal
of the dihedral constraints (Fig. S3, Supporting Information). Energetically, the 3, conformation was
much more stable than the 2, showing an energy difference of 10 kJ/mol/xylosyl residue, a value
significantly large, considering 2.5 kJ/mol for k,T at 300K.
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Figure 2. Distribution of the dihedral angles, @ (05-C1-01-C4’) and ¥ (C1-01-C4’-C5’) at the glycosidic linkage of
xylan: (2A) xylan in water and (2B) xylan adsorbed on the hydrophobic (100) surface, without restraint; (2C) as in
2B, but after first applying a 21 dihedral restraint and then removing it. The color code denotes the population at
each dihedral pair. The dashed lines correspond to the 2- and 3-fold helicity of the xylan chain: from left to right:
®+W = 50° (31), 120° (21), and 190° (32).
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3.2  Adsorption Simulation of Xylan on the Cellulose Surfaces

Figure 3 shows some snapshots of xylan molecules on different cellulose surfaces. In all the adsorption
simulations a given xylan molecule was immediately adsorbed at the cellulose surface and did not
dissociate from the surface during the 10 or 20 ns production runs.

W ®)

T M S TS
Ry %m\., X&wmk‘n é

o e =
li'g—viw-&g‘&l&( 'Qi'\}"
(E) v I | | |

Interaction emﬂvy (kJ/mol(xylos

-~ ~ oy
B“WW - - e
S RGBSR AR A\\:ﬁ"wf\o@ I~ e 5
e e e SJM‘»A,,N.-JQG;-&-*%\« o v @ T T BT 2 A 2 S TN = v v & iy 100(32) 100(2) 110

Figure 3. Snapshots of xylan adsorbed on cellulose surfaces in cross-sectional (upper) and side (lower) views. (3A)
Adsorbed on the (100) surface without dihedral restraints throughout the simulation. (3B) Same as in (3A) but
with restraints at the first adsorption, followed by unconstrained equilibration. (3C) As in 3B, but adsorption on
the (110) surface. (3D) As in 3B, but adsorption on the (1-10) surface. (E) Interaction energy between xylan and
cellulose: the Lennard-Jones and Coulomb contributions are denoted with green and red colors, respectively.

3.2.a Adsorption of Xylan on the Hydrophobic (100) Surface.

First, we examined the adsorption of xylan with the different molecular conformations, namely 2- and
3-fold conformations on the hydrophobic (100) surface of cellulose: snapshots are given in Figures 3A
and 3B. When the restraints were not applied to the glycosidic dihedral angles, the xylan chain
remained in its initial 3, conformation after the adsorption (Fig. 2B) even if the distribution of the
glycosidic dihedral angles became slightly wider on the cellulose surface in comparison to the
corresponding distribution in water. With the restraint applied to the glycosidic dihedral angles, the
xylan molecule was initially adsorbed in the 2-fold conformation. This conformation was maintained
even after the removal of the dihedral restraints over the whole simulation time as shown in the
dihedral distribution of xylan (Fig. 2C) and the evolution of ¢ + ¢ with simulation time (Fig. S4 C,
Supporting Information), unlike in the case of xylan in water without cellulose (Fig. S3, Supporting
Information). This indicates that the 2-fold conformation of xylan molecule is stabilized by the presence
of the cellulose surface and thus, the interaction between xylan and cellulose is stronger when xylan
is in the 2-fold conformation than when it is in the 3-fold one (Fig. 3E).
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This stronger hydrophobic interaction may arise from the more compact and close packing of xylan to
the cellulose surface, when the interaction between the rings of xylan and those of cellulose are
maximized. It is worth also mentioning that the water molecules, which were initially associated with
bulk xylan for the stabilization of the 3, conformation, become expelled when the 2-fold conformation
is reached.

The organization of adsorbed xylan on the cellulose surface was characterized as shown in Figure 4. An
end-to-end vector, r, of xylan was defined as a vector starting at the C1 of the second residue from the
reducing end and ending at the C4 of the ninth residue. The first and last residues were omitted from
the analyses as they were occasionally disorganized due to their higher flexibility. The end-to-end
distance was defined as amplitude of the end-to-end vector, and the chain orientation angle, & was
defined as the angle between the chain direction of cellulose and this vector (Fig. 4A). Considering the
length of a xylosyl residue along chain direction to be about 0.5 nm, an r-value of 4 nm means that the
molecular chain is fully extended. Note that the xylan was initially arranged with ¢ being roughly 0° in
the adsorption simulations unless otherwise specified. The planar orientation angle, y was defined as
the angle between the glycosidic mean ring planes of cellulose and xylan (Fig. 4B).
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Figure 4. (A) Schematic image of chain orientation angle ¢, and end-to-end distance, r, and (B) planar orientation
angle, y. (C) chain orientation (red) and end-to-end distance (purple) of adsorbed xylan on the (100) cellulose
surface as a function of simulation time. (D) Planar orientation angles of selected xylan residues as a function of
simulation time.

On the (100) surface of cellulose, the xylan molecule was adsorbed with its chain axis roughly parallel
to that of the cellulose surface (Figure 3). This adsorption behavior, which is consistent with data from
spectroscopic measurements,*2° is similar to the one observed in a previous MD study, where the
axes of the xylan molecules were preferably aligned with the cellulose chain direction.?®

In addition, the adsorbed xylan in 2-fold conformation was also aligned parallel to the chain direction
of cellulose with the ¢ value of 0° throughout the simulation, and almost fully extended as the r-value
was about 3.9 nm (Fig. 4C). No kinking or bending was observed through the simulation. The planar
orientation angle y was close to 180° (Fig 4D), which means that the pyranosyl mean plane of the xylan
residues were parallel to those of cellulose yielding hydrophobic stacking as in the native cellulose
crystal.
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This stacking accounts for the stronger hydrophobic interaction between the cellulose surface and
xylan in the 2-fold conformation as opposed to the weaker when xylan was in the 3-fold counterpart
(Fig. 3E).

To investigate the preferential chain orientation of xylan on the cellulose surface, we performed a
series of adsorption simulations on the (100) cellulose surface using a xylan chain positioned with
different initial chain orientation angles, at 9 = 30, 60, 90°.
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Figure 5. Time evolution of the chain orientation angle, ¢ (in red) and end-to-end distance, r (in purple) during the
adsorption simulation with starting & values of (A) 30°, (B) 60°, and (C) 90°.

Figure 5 shows the evolution of the chain orientation angles, ¢ and that of the end-to-end distance, r
of the adsorbed xylan chain as a function of the simulation time. In the initial orientation with ¢ = 30°
and 60°, the xylan chain was rotated during the time course of the MD simulation to be aligned along
the cellulose chain direction with a ¢ value of 0° (Figures 5A and 5B). After the rotation, the xylan chain
was almost fully extended with the r-value of about 3.9 nm. On the other hand, the xylan chain
remained perpendicular to the microfibrils when the initial orientation was ¢ = 90° (Figure 5C). This
simulation was prolonged to 30 ns, but the system kept the same organization during the whole
simulation time. The end-to-end distance of the xylan with & = 90° fluctuated more than those where
¥ took the initial value of 30° and 60° (see Fig. 5A-5C).
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The xylan was bent at the edge of the cellulose microfibril and temporarily covered the adjacent
surfaces, so that the r-value changed quite frequently. Thus the parallel alignment of the xylan
molecules with those of cellulose and the xylan extended organization seems to be generally favored
on the cellulose surface.

3. 2. b. Adsorption of Xylan on the Hydrophilic (110) and (1-10) Surfaces.

Snapshots of the adsorption states on these surfaces are given in Figures 3C and 3D. The sum of the
glycosidic dihedral angles ¢ + ¢y and the planar orientation angle, y as a function of simulation time are
given in Figures S4A, S4B, S5A, S5B in the Supporting Information. We can observe that the adsorbed
xylan molecules were less organized than in the case of the adsorption on the (100) surface, as ¢ + ¢
and y values fluctuated during the simulation. On these surfaces, the xylan molecules became
reorganized from the 2- to 3-fold conformations on both chain ends, while the chain middle remained
in the initial 2-fold conformation (Figs. S4A and S4B, Supporting Information). This partial
reorganization probably arises from high flexibility of the chain ends, so that this type of the adsorption
state may be observed particularly with a short xylan chain, and more residues in the 2-fold
conformation may be observed for longer xylan chains. The hydrophobic stacking between xylan and
cellulose was not clearly formed on these hydrophilic surfaces (Figs. SSA and S5B, Supporting
Information), as the glucosidic rings of cellulose were not fully exposed in these hydrophilic surfaces
unlike in the case of the hydrophobic (100) surface. Thus, in the case of the adsorption on the two
hydrophilic surfaces (110) and (1-10), the interaction energy is controlled essentially by electrostatic
forces, which dominate the hydrophobic interaction (Figure 3E). This is the result of the strong
hydrogen bonding associating the hydroxyl groups of xylan and cellulose.

Interestingly, the adsorbed xylan chains on these two surfaces tend to be less extended as in the case
of the adsorption on the (100) surface (Figure 4C). Indeed a substantial shrinkage of the end-to-end
distance occurs on these hydrophilic surfaces during the simulation time. This is clearly exemplified in
Figures S6 A and S6B when the xylan chains with an initial r-value of 3.9 nm shrank by 0.2 [on the (110)
surface] and 0.4 nm [on the (1-10) surface] after a simulation time of 10 ns. Such shrinkage is consistent
with the scheme of xylan adsorption, which on these two surfaces depends less on a hydrophobic
stacking and more on a hydrophilic one. Also the presence of few xylosyl residues in the 3,
conformation is likely to locally lift the xylan chains from the surface and thus favor their shrinkage.
Nevertheless, a global rearrangement of the whole xylan chains into a 3-fold conformation was not
observed on these surfaces, justifying the absence of the 3, xylan signal in the 3C CP/ MAS NMR spectra
(1B and 1E) of the initial and reconstructed samples.
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CONCLUSION

The conformational adaptation of undecorated linear 3-(1—4) xylan upon its adsorption on the surface
of microfibrillated cellulose was investigated by means of solid-state *C NMR spectroscopy, specific
surface area measurement, and atomistic MD simulations. The solid-state NMR data confirmed that
xylan was able to adapt its molecular conformation in presence of cellulose surface, from a bulk-like
3-fold conformation to a presumed cellulose-like 2-fold one. By sequential re-depositions, coupled
with specific area measurements, it was possible to see that in these biomimetic reconstructed
models, this adaption was only limited to the first adsorbed layer, where xylan was in direct contact
with the cellulose surface. With atomistic MD simulations, we followed the adsorption behavior of
xylan molecule on various cellulose surfaces and found that the presence of cellulose could stabilize
the 2-fold conformation of the xylan molecules in aqueous environment on the hydrophobic surfaces
of cellulose. In that case, the adsorbed xylan was preferentially arranged with its chain axis parallel to
that of cellulose and formed hydrophobic stacking structure with the xylosyl mean planes stacked
parallel to the glucosyl units of the cellulose crystal surfaces. Our study shows that this structural
adaptation from 3-fold to the presumable 2-fold conformation was solely due to physicochemical
interactions and corresponds to what is observed during the biosynthesis of the plant cell walls.
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SUPPORTING INFORMATION
Chemical Composition of the MFC

The sugar composition of the MFC from birch kraft pulp before (i) and after xylan extraction (ex) and
one from pine dissolving pulp was determined by classical sugar analysis, using high-pressure liquid
chromatography (HPLC) with a Dionex DX500 apparatus, equipped with a Carbopac PA10 column, with
water/NaOH 150 mM gradient as eluent. Prior to the analysis, the MFC samples were freeze-dried and
then dissolved/hydrolyzed in/by sulphuric acid. Fucose (Sigma Aldrich) was used as internal standard.

The composition in five sugar residues namely: glucose, xylose, mannose, arabinose and galactose and
the yield of hydrolysis are presented in Table S1. The normalized sugar content is calculated in Table S2
as [Glucose normalized] = [Glucose] / (yield of hydrolysis / 100)

The yield of xylan extraction (Table S2) is determined from the initial xylan content in the sample (Xy i.)
and the xylan content after the xylan extraction (Xy ex.).

Yield (%) = (Xy i. - Xy ex.)/ Xy i.x100

Table S1. Sugar composition of the various samples used in this work

MFC from birch kraft pulp MFC from pine sulfite pulp

(w/w %) i ex i

Glucose % 67.2 78.6 91.6
Xylose % 21.3 8.2 14
Mannose % 0.9 1.4 0.9
Arabinose % 0.1 0.1 0.1
Galactose % 0.0 0.1 0.1
Hydrolysis yield % 89.6 88.7 94
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Table S2. Normalized sugar composition of the various samples used in this work

MFC from birch kraft pulp MFC from pine sulfite pulp

(w/w %) i ex i

Glucose % 75 88.7 97.5

Xylose % 23.7 9.2 1.5

Mannose % 1.0 1.5 1

Arabinose % 0.1 0.1 0.0

Galactose % 0.2 0.5 0.1

Yield of xylan 61

extraction %

Table S3. Correspondence between the xylosyl/xylan and glucosyl/cellulose contents in the different birch pulp
samples used in this study

Xylosyl/glucosyl Xylan ratio Xylan in interfacial
(w/w) normalized to conformation normalized to
cellulose (w/w) cellulose (NMR)
from sugar
analysis

Initial sample 24% [/ 75% 0.31 0.31

After DMSO/LICI 9% / 89% 0.1 0.1
extraction

Readsorption 21% / 79% 0.28 0.28
system |

Readsorption 28% / 72% 0.39 0.25
system Il
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Figure S1. Models of xylan and cellulose microfibrils used in this study. 24-chain cellulose I model in (A) lateral
view and (B) side view. (C) Molecule of xylan with DP of 10.
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Figure S2. CP/MAS 3C NMR spectra of wet samples. (A): extracted xylan hydrated at 97% relative humidity. (B):

MFC from pine sulphite dissolving pulp after re-adsorption of 9% of xylan. (C): MFC from pine sulphite dissolving
pulp after re-adsorption of 13.5% of xylan.
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Figure S3. Change in sum of glycosidic dihedral angles (¢p+{) of a xylan molecule during 10-ns equilibration run in
water. At t = 0 ns, the dihedral constraints which forced the xylan to the 21 conformation was removed. The color

code for the linkages corresponds to the succession of the xylosyl residues along the xylodecaose chain, starting
from the non-reducing end.
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Figure S4. Changes in the sum of the glycosidic dihedral angles (¢ + ) of adsorbed xylan on different cellulose
surfaces as a function of simulation time. A: (110) surface. B: (1-10) surface. C: (100) surface. The color code for
the linkages corresponds to the succession of the xylosyl residues along the xylodecaose chain, starting from the

non-reducing end.
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Figure S5. Changes in the planar orientation angle, y between adsorbed xylan and cellulose as a function of
simulation time. A: (110) surface. B: (1-10) surface. The color code of the residues corresponds to the succession
of the xylosyl residues along the xylodecaose chain, starting from the non-reducing end.
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Figure S6. Chain orientation, 6 (red) and end-to-end distance, r (purple) of adsorbed xylan on the cellulose surface
as a function of simulation time. A: (110) surface. B: (1-10) surface.
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Annex 9: Xylan-cellulose adsorption energy

The binding energy between adsorbed xylan and cellulose, AGying Was calculated by pulling simulations
using the pull code in GROMACS.

The starting coordinates were the last frame of each adsorption simulation of xylan adsorbed on 100
surface in 3; conformations (System 1) and xylan adsorbed in 2; conformation on 100, 110 and 1-10
surface (System 2).

The reaction coordinate was set as a direction orthogonal to the pyranoside plane of cellulose then
the xylan residue at the reducing end was pulled off with a harmonic force constant of 200 kJ/mol/nm?
and a displacement rate of 0.01 nm/ps (Figure 65).

Umbrella sampling simulations were then performed for 1-2 ns at each configuration with every 0.2 nm
displacement intervals.

The potential of mean force (PMF) represented in Figure 66 shows the dissociation energy of xylan and
cellulose crystal from each different adsorption state.

[y
[==]
o

200 ki/mol/nm

(6]
o

60

40

— 100 (2,)
100 (3,)

i 1]

R

20

(3
Potential mean force (k/mol/10 xyloses)

-10
O 05 1.0 15 2.0 25 3.0 35 40 45

Distance (nm)

Figure 65: Snap shot of pulling Figure 66: Potential of mean force of xylan
simulation dissociated from different cellulose surfaces.

The adsorption system between the xylan in 2; conformation and the 100 surface gave the highest
value of AGying, 9 klJ/mol/xylose residue, while the lowest value, 6.2 kJ/mol/xylose residue was found
in the xylan in 3; conformation on the 100 surface. Thus the xylan in 2; conformation has stronger
interaction and affinity to the cellulose surface in comparison to that in 3; conformation.

The stronger affinity found in the adsorption with 2; conformation may come from the stronger
hydrophobic interaction between the glycosidic rings. Owing to this strong interaction the xylan was
packed tightly and water molecules were excluded between xylan and cellulose.

On the other hand, the adsorbed xylan in 31 conformation showed more bulky nature and interacted
with surrounding water molecules, which consequently reduced the effective interaction between
xylan and cellulose.

The AGping values for the adsorption on 110 and 1-10 surfaces were nearly the same, at
7.5 kl/mol/xylose residue, and smaller than xylan in 2; conformation at the 100 surface. This weaker
interaction was presumably due to the partial disorganization of the adsorption state at the chain ends.
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Annex 10: Re-adsorption after TBA freeze-drying

In the above publication, we found that xylan adsorbed amount is correlated with the specific surface
of MFC and only the first layer of xylan adsorbed on cellulose adapt its conformation. The xylan in
excess kept its preferred 3; conformation.

Note that the xylan readsorption shown in the publication was only performed with MFC freeze-dried
in water and redispersed in DMSO in presence of xylan. Then the DMSO is removed by dialysis and the
sample is freeze-dried and rehydrated prior the NMR analysis.

We also performed the same experiment with MFC freeze-dried in TBA prior its redispersion in DMSO
with xylan to see if the amount of reabsorbed xylan may be increased as the specific surface of MFC
freeze-dried in TBA is higher than the one in water.

This experiment has been performed on MFC from pine sulfite dissolving pulp. Figure 67 shows the
comparison of NMR solid state spectra of: (A) the initial MFC (2.5% of xylan), (B) MFC with 16% of
xylan, MFC freeze-dried in water prior the readsorption, (C) MFC with 16% of xylan, MFC freeze- dried
in TBA prior the readsorption.

101 82
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(A)

115 110 105 100 95 90 8 80 75 70 65 60 55
Chemical shift (ppm)

Figure 67: CP/MAS 13C NMR spectra of wet samples. (A): MFC from pine sulfite dissolving
pulp. MFC from pine sulfite dissolving pulp after re-adsorption of 13.5% of xylan (B) with
classic protocol. (C) with MFC freeze-dried in TBA

According to our previous observations, the freeze-drying in TBA prior the xylan readsorption in DMSO
did not improve the amount of xylan in interaction with cellulose. The peak at 101 ppm which
represent the xylan in excess have similar intensity in both spectrum B and C. Furthermore, the same
amount of xylan is adsorbed at the cellulose surface according to the peaks intensity at 84.4, 82 and
64 ppm. Thus, redispersion of freeze-dried MFC in DMSO is the limiting factor, regardless of the solvent
used for MFC freeze-drying. The amount of reabsorbed xylan might be linked to the specific surface of
MFC in DMSO suspension, which is so far unknown, as specific surfaces were measured on solids.
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Annex 11: Arabino-xylan re-adsorption

It was previously shown by solid-state NMR experiments that the xylan adapted its conformation from
31 to 21 in presence of cellulose. However this modification is only observed for the first layer of xylan
which is directly in contact with cellulose surface.

Indeed the amount of readsorbed xylan in 2; conformation is correlated with the MFC specific surface.
The readsorption of xylan on MFC from birch-kra-nd after extraction was performed with a maximum
cellulose/xylan ratio at 0.28/1 while it is limited at 0.12/1 in the case of MFC from pine96-sulf.

In order to study the influence of the xylan origin on the readsorbed amount, the xylan extracted from
MFC from birch -kra-nd was replaced by commercial arabino-xylan extracted from oat.

The main difference between these two xylans is the presence of 9.6% of arabinose group in the xylan
extracted from oat while no branches has been characterized on xylan extracted from MFC from birch-
kra-nd as described in chapter 1 (NMR and sugar analysis).

The procedure for xylan readsorption is the one described in the publication. Different amounts of
arabino-xylan (extracted from oat) were dissolved in DMSO in presence of MFC from birch-kra-nd after
xylan extraction (i.e.MFC with 9% of residual xylan content). Then this system was dialysed to remove
DMSO and freeze-dried in water.

Solid state NMR was performed on rehydrated samples (Figure 68).

101 82

84.4 | ' 64
b 162
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Figure 68: CP/MAS 13C NMR spectra of wet samples. (A): MFC from birch-kra-nd after
xylan extraction. (B) as in (A) but after re-adsorption of xylan with xylan/cellulose ratio
0f 0.28/1. (13.5%) (C) as in (A) but after re-adsorption of xylan with xylan/cellulose ratio
0.53/1 (30%)

No difference in xylan readsorbed amount are observed. According to NMR spectra, the arabinose
branches did not increase or decrease the xylan adsorption. When arabino-xylan is added at 0.53/1
(i.e. 22% of excess compared to the initial xylose MFC content before xylan extraction of 0.31/1), the
xylan that does not interact with cellulose is clearly visible with the peaks at 62, 73.5 and 101 ppm.

The limit of xylan conformational change from 3; to 2; is still at 0.28/1 even with arabinose branches.
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It seems that xylan readsorption in this case, is more controlled by the specific surface area of the MFC
than the xylan branches.

It is also possible that 9.6% of arabinose branches is not sufficient to create a significant difference
with the unsubstituted xylan.

Furthermore the initial xylan present in wood chips is renowned to be one of the less substituted and
the MFC from birch-kra might be not the most suitable choice to study the influence of branches on
xylan adsorption.
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Adhesion between cellulose and xylan

This chapter is devoted to an explorative study of the adhesive properties of xylan onto cellulose
surfaces. Part of the work was the subject of the Master Thesis of Louis Gbodossou from Grenoble-INP
between March and August 2016.

In order to evaluate the interaction between cellulose and xylan at a macroscopic scale, we intended
to design experiments aimed to measure the adhesion between cellulose and xylan by mechanical
measurements. One of the greatest difficulties was to build a system that allows the evaluation of the
adhesion forces by mechanical measurements. This chapter begins with a rapid description of the
adhesion mechanisms and adhesion tests. We will first present the experimental set-ups that has been
developed in the particular case of cellulose/xylan interaction, and then the two types of experiments
that have been investigated to acquire experimental data.

1. Adhesion mechanisms

The adhesion of polymers onto paper is a broad topic that has been largely studied since it concerns a
large set of application in paper and cellulose materials (Zhao and Kwon 2011). The adhesion may be
defined as the ensemble of physico-chemical phenomena that prevent the separation of two surfaces.
The work of adhesion or failure energy is often given by a symbol G (J/m?) and corresponds to the work
required to separate two surfaces in contact. As the Joule corresponds to N.m, the work of adhesion
G may be also express in N/m.

The adhesion results from three main factors: the non-covalent bonds, the covalent bonds and
entanglement. The non-covalent bonds are due to electrostatic attraction such as ionic linkages or
hydrogen bonds, it - minteractions and London dispersion interactions collectively called Van der Waals
(VdW) interactions. In the case of the three layers system made of cellulose and xylan, the main weak
interactions are the hydrogen bonds and London dispersion interactions. Beyond the molecular
interactions, the physical properties of the substrates (roughness, micro-asperities or mechanical
anchoring) will bring an additional contribution to the measured energies. Details of the different
theories of adhesion mechanisms can be found in classical textbooks such as that by Kinloch (1987).

The mode of failure is very informative to characterize the adhesion between two materials (Figure
69). The adhesive failure corresponds to a failure at the material interface and is due to the low
adhesion between the two materials. The cohesive failure appears when the interface is stronger than
the interlayer material itself. In this last case, the energy that is measured depends on the viscoelastic
properties of the material itself and its mode of failure, as recently reviewed by Creton and Ciccotti
(2016).

Adhesive failure Cohesive failure
—
— — ; - —t
—_— ———————

Figure 69: Scheme of adhesive and cohesive failures
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There are also several types of experimental set-ups for adhesion measurements (Figure 70). To
choose among the different types of tests, the adhesive properties and the substrate properties have
to be taken into consideration. Figure 70 gives the three main types of adhesion tests that are
commonly used in the field of paper adhesives.
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Figure 70: Three typical adhesion tests: (a) JKR-adhesion testing, (b) single-lap shear
testing and (c) peel adhesion testing, and their force curves: (d) JKR-type plot of contact
radius a vs load L, (e) shear force vs displacement curve and (f) peel force vs displacement
(or peel distance) curve. (Adapted from Zhao et al, 2011)

We selected the peel and tensile shear test for our three-layer systems, as they can be adapted on
tensile machine and flexible films.

2. Three layer system formation

We chose a three layered system with a xylan film in between two cellulose films (Sulfite MFC) to
evaluate adhesion forces through different classical mechanical tests, i.e. peeling and shear tests.
Model cellulosic surface has been extensively used to study the interaction of polymers with cellulose,
that were obtained from the hydrolysis of cellulose derivatives like trimethysillyl cellulose
(Holmberg et al. 1997; Rehfeldt and Tanaka 2003) or from spin coated CNC (Edgar and Gray 2003) or
NFC (Olszewska et al. 2013), but those surfaces, well adapted for adsorption studies by AFM or QCMD
techniques, are too thin to allow the elaboration of self-standing films. We then chose to process films
from our own MFC suspensions. The first difficulty was to process MFC films able to bear the loads of
the adhesion tests and dense enough to avoid the diffusion of xylan into the MFC sheets. Another
problem arose from the generation of a contact between cellulose and xylan, since few solvents are
available for xylan.

We thus first tried to characterize and optimize the surface roughness of MFC films.
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2.1 MFC films

We chose MFC from pine96 sulfite pulp because of their high purity in cellulose (97.5% cf. chapter 1).
The MFC films were produced by handsheet formers according to the procedure adapted at CTP
(Sehaqui et al. 2010). The MFC suspensions were diluted to 0.5 wt%, and filtrated through handsheet
formers with a 0.22 um mesh membrane to limit the loss of the smallest elements. The wet MFC film
with 10% solid content was covered with two carrier board paper and dried in a sheet dryer.

The films thickness (grammage) was varied by changing the initial volume of MFC suspension to be
filtrated. We prepared MFC films of 25, 50 and 100 g/m?2. It was difficult to further reduce the thickness
below 25 g/m? by this method because the MFC suspension started to form flocks below 0.5 wt% and
a reduction in MFC suspension volume led to inhomogeneous coverage of the filtration membrane, as
already described in the literature by Rodionova et al. (2012).

We also used casting technique to make thin MFC films without loss in elements. A 0.5% MFC

suspension was poured in a polystyrene Petri dish and left at ambient conditions (23°C, for 72 hours)

until complete water evaporation.

Visual aspects of the resulting MFC films were very different depending on the process (Figure 71).
MFC film with handsheet former

Fine

MFC

Mineral §
mpurities |

Figure 71: MFC films observations: (A) and (D) at macroscopic scale (B), (C) (E) and (F)
with SEM

The handsheet films (Figure 71 A) had more matt appearance than the casted films which were glossier
(Figure 71 B). In the casted films, the roughness of the cover paper was "printed" on the surface of the
MFC film during the drying, while the Petri dish surface was smooth.

On the SEM images (Figure 71 B and C), the influence of the heterogeneity of the MFC suspension was
clearly visible and the presence of larger elements, called fines, confirmed the incomplete
microfibrillation during the homogenization. The SEM images of casted films (Figure 71 E) showed
coverage by granular objects. These objects were mainly constituted of calcium according to the
energy dispersive X-ray analysis (cf. Annex 12). Indeed, the MFC were produced in hard water and any
mineral water impurities were kept in the casting process, while filtration by handsheet formers would
eliminate most of them.

To remove the mineral salts, the MFC suspensions were washed prior casting by repeated
centrifugation and redispersion in a solution of 0.5 wt% HCIl then in deionized water until neutral pH.
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The SEM image of casting film after this procedure (Figure 71 F) confirmed the absence of salt and the
fine details reflecting the heterogeneity of the MFC suspension were also observed.

2.2  Xylan deposition

Xylan previously extracted (cf. Chapter 1) from MFC from birch kraft never never-dried pulp and the
commercial arabino-xylan extracted from oat were used to make the internal layer of the system. The
methods used for MFC films formation were not applicable to xylan, which is not soluble in water, and
then precipitates, and will not have the suitable conformation for interacting with cellulose
(cf. Chapter 3).

As the extracted xylan is only soluble in DMSO, which is nonvolatile, the casting method was not
adapted to produce films of xylan. However, we occasionally observed that concentrated solution of
xylan in DMSO led to thick gels with high viscosity when dialyzed against water.

Thus we tried to deposit the xylan gel in water between the two MFC films and let it dry. To restrain
the swelling by osmotic pressure the solution was placed in a hollow rectangle. Different xylan
concentrations were tested and the best gelation was observed at 60 g/L and 80 g/L for the xylan
extracted from MFC from birch kraft and the commercial one extracted from oat, respectively.

To characterize the three-layers structure formation, we observed the cross section of the assembly
made of fluorescent-labeled xylan using fluorescence microscopy (cf. Annex 13).
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3. Peeling test results

3.1 Peeling test principle

The peeling test consists of pulling out the adhesive from its substrate at 90° or 180° (Figure 72). The
adhesion G (N.m) may be determined from force of peeling according to the relation (1) where b is the
adhesive width (m), 8 is the peeling angle (°) and F, the requested pulling force for the system
delamination. During the test, the pulling force (F,) reaches a plateau and this value is reported in (1)
for the adhesion calculation.

Peel at 180°
Peel at 90° Rigid fixed plate
Fp
Fp sz
F G=—(1—-cosb) — (1)
Rigid fixed plate y b ( )= ( 2btE )
>~
I

Figure 72: Different configuration of peeling tests

The second term of the equation (1) refers to the elastic deformation of the substrate during the
peeling test. Indeed, the work required to pull out the adhesive from its substrate corresponds to the
sum of the adhesion and the plastic deformation work of the substrate (Satas 1989). In the case of
MFC films, this second term will be negligible as the plastic deformation of MFC is negligible. As the
pulling force (F,) changes with peeling angle (the peeling at 90° requires a pulling force two times larger
than the peeling at 180°), the peeling angle must be stabilized during the measurement.

We chose the peeling at 180° which was easy to achieve on a tensile testing instrument. A cardboard
was placed to maintain the system and a cardboard tab was glued at the end of MFC film supported
with coated calendered paper (50 g.cm? of grammage) to be fixed to the clamp (Figure 73).

A: System photography: B: In cross section:

Load cell
N
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<—>

Cardboard Cardboard i

Three layers

structure Tab cardboard

MFC film + coated

fixed with calendered paper z
the grip on crosshead -/Gl'lp on crosshead
Xylan
Y «—— Tab cardboard
MFC film extremity
attached to -
the fixed grip Fixed grip Ry

dimensions are in mm

Figure 73: A: Photograph of a three-layer sample and B: scheme of the experimental set-
up used for the peeling test

The speed of the peeling has also a strong influence on the adhesion measurement. The pulling force
increased with the speed as a function of the viscoelasticity of the adhesive. Indeed, at low speed from
10 to 150 mm/min, the adhesive is deformed plastically, which increases the pulling force required for
system delamination.
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For higher speed, the constraint applied on the system is too fast and the plastic deformation of the
adhesive layer may be limited. At this stage, the pulling force measured is independent of the speed.

3.2 Preliminary study

Peeling test measurements were performed at 180° (Figure 74) with adhesive tape (Advance AT206
PVC color coding Gaffa Tape) on steel plate (90 x 90 mm) at different speed of peeling (1, 10, 50, 100
and 200 mm/min). Then the adhesion values (G) were calculated from the measured pulling force (Fp)
using equation (1) and were compared with the data sheet of the manufacturer (cf. Annex 14).
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Figure 74: A: Illustration of the peeling test at 180° with adhesive tape. B: Adhesive tape
adhesion as a function of peeling speed

As expected, the adhesion increased for the lowest peeling speeds from 1 to 50 mm/min and remained
constant for higher speed from 50 to 200 mm/min. The adhesion measured was 2.65 N.cm, which is
close to the data sheet value of 2.4 N.cm.

This experiment revealed the instability of the test for the highest speeds, which induced higher
standard deviation on the adhesion measurement and confirmed the adhesion variation with the
peeling speed (Figure 75).
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Figure 75: Peeling test curves at the peeling speed of A: Imm/min and B: 100 mm/min

The best adhesion value estimation and the lowest standard deviation was found with a speed of
50 mm/min, this condition will be used for the peeling at 180° of the three layer systems even though
the characteristics of the adhesive tape are very different from those of xylan.
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3.3 Peeling test on three layer system

Two types of xylan were used as adhesive layer of the three-layer system: the arabino-xylan extracted
from oat (commercial) and the homopolymer of xylan extracted from MFC from birch kraft pulp. The
film MFC supported with coated calendered paper was fixed at 50 g/cm? of grammage. The three-layer
systems were conditioned at different relative humidities prior to testing (Table 38).

Table 38: Peeling test conditions

Xylan sources Relative Humidity Failure types
95% No-adhesion
Failure inside the MFC film +
. 0,
A;rablno-xylan 85% adhesive failure
(form oat) 70% Failure inside the MFC film
room (46%) Failure inside the MFC film
95% No-adhesion
Failure inside the MFC fil
Xylan from birch kraft 85% ailure inside the MFC film +

adhesive failure
70% Failure inside the MFC film

The peeling test performed at relative humidities below 70%, induced a failure inside the MFC film
regardless the xylan source (Figure 76 A). This means that xylan adhesion on the cellulose film was
stronger than the cohesion of the film itself. It was not possible to evaluate the adhesion between
xylan and cellulose from these experiments as the measured pulling force corresponded to the intrinsic
resistance of the MFC film (Figure 76 B).
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Figure 76: Photograph of three layer systems after peeling test at A: 70% of RH, C: 85%;
Adhesion curve of peeling test at B: 70% of RH, D: 85% of RH

However, the maximum pulling force obtained in this test is around 3N (the peak force), which
corresponds to a value of 4.5 N.cm (i.e. 45mJ/m?) that can be considered as a lowest limit of the
adhesion value, so higher than the common adhesive that was tested in the preliminary study.
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Comparison with values obtained in the literature is problematic as very few studies report
guantitative measurement from adhesion tests. One has to mention Gustafsson et al. (2012) who
measured directly from a JKR test the interaction between a model surface made of NFC multilayers
on PDMS caps and model surface deposited on silica and found work of adhesion of around 50 mJ/m?
for cellulose/glucomannan interaction, that is in good agreement with our own finding.

Double cantilever beam (DCB) method has been also used to evaluate adhesion in NFC—PLA laminates
(Siro et al. 2013), but the author argued a discrepancy between their experimental values and
commonly measured adhesion energies that comes from the interpenetration of PLA and NFC films.

Delamination between the xylan layer and the cellulose film has been observed with both xylan
sources at 85% of relative humidity. However this adhesive failure was always mixed with failure inside
the MFC film (Figure 76 C). It seems that in some part of the sample the adhesion between xylan and
cellulose was still stronger than the cellulose film itself. The resulting pulling force (Figure 76 D) showed
too high fluctuation to give a reliable value of adhesion.

At the relative humidity of 95%, the opposite situation was observed and the force was not detectable,
as the xylan film detached almost spontaneously from the cellulosic substrate.

3.4  Conclusion on peeling test

The peeling test did not provide adhesion values between the xylan and cellulose film in the three-
layer system as no pure adhesive failure was achieved. Nevertheless the following conclusions can be
drawn:

1 The adhesion between xylan and cellulose was unexpectedly high at relative humidity below
85% RH. It was not possible to delaminate the system without any failure inside the cellulose
film, but a minimal value of 4.5 N.cm was derived from the tests.

2 The humidity of the system dramatically reduces the adhesion. When equilibrated at 95%
relative humidity, the peeling tests were unable to measure any adhesion between the layers.

The main limitation of the peeling test on the tensile instrument is the fixed angle at 180°. In this
geometry the MFC film is more subjected to tear stress, to which MFC films are very sensitive. It was
tried to limit this fragility by decreasing the thickness of the adhesive layer in order to decrease the
dissipation within the xylan layer. The peeling tests were also performed on three layer system made
of films of 25 g/cm? of grammage, to reduce the deformation of the MFC films. However, no
improvement was observed and the failure still occurred inside the cellulosic film.

Casted films were also used to further reduce the film thickness in the three-layer system but the film
was deteriorated when the xylan gel was deposited on it, due to its high water content. As the tensile
strength of MFC film is higher than their shear strength, we implemented an experiment in which the
solicitation of the cellulose films was more adapted to their properties. This was the shearing test as
will be explained in the following section. Moreover, shearing is probably more representative of the
forces exerted on the microfibrils during the homogenization process.
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4, Shear test

41 Shear test principle

Shear test is a common method to compare adhesive resistance by applying deformation in the
longitudinal direction and measuring the maximum force before failure (Fn) (Zhao and Kwon 2011).
However, it is not possible to calculate an adhesion value from shearing test. Shear strength (Gsheqr) can
be determined as:

Fm

(2)

o shear =

where (L x W) corresponds to the adhesion surface.

In this experiment, rigid supports are required to exert the shearing force on the substrate. The three-
layer system was modified to avoid any deformation of the supports during test. First, the MFC films
were glued on wood spatula, then xylan layer was deposited on surface of 18 x 20 mm (i.e 360 mm?).
Wood spatulas were assembled by pairs with xylan layer inside and some wood wedges were added
at both wood spatula ends to provide sample alignment in the clamp (Figure 77).

A: System photography: B: In cross section:

In cross section: Load cell

Grip on crosshead

MFC film
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In upper view:

70 Xylan
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MFC film glued on

wood spatula below
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Figure 77: A: Photograph of a three-layer sample for shearing test and B: scheme of the
experimental set-up used for the shearing test

To limit the influence of the roughness on the shear test result, MFC film with grammage of 100 g/m?
was used to avoid transfer of roughness from the wood spatula to the film upper surface. The MFC
films were fixed with epoxy resin on the wood spatula. Direct casting of MFC films on the spatula or
wet film MFC (handsheet formers) deposited on wood spatula prior drying were also tried.

1. Casting:
The MFC suspension (at 0.5%) was poured on the wood spatula deposited at the bottom of a beaker.
Then the water was able to evaporate at room temperature until the film formation on the upper layer
of the spatula.

2. Handsheet formers:
The wet MFC mat obtained after filtration on handsheet formers was covered with wood spatula then
placed in the sheet dryer.
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The MFC films obtained by casting were highly heterogeneous (Figure 78 A). In the case of film
formation in Petri dish, the adhesion of the cellulose film to the polystyrene surface was strong enough
to compensate the retraction forces generated during water evaporation due to the capillary forces.
The adhesion on wood spatula was probably lower due to its high surface roughness compared to the
Petri dish surface.

When the wet film was dried in the sheet dryer with wood spatula at the surface, the MFC film was
partially take- off from the spatula after the drying (Figure 78 B). Again, the roughness of wood spatula
might lead to the reduced adhesion. Only the epoxy glue provided a homogenous, flat MFC film surface
(Figure 78 C).

MFC films fixed on wood spatula with

A: Casting B: Handsheet formers C: Epoxy glue

lcm

Figure 78: Illustration of MFC film fixed on wood spatula with A : casting, B : handsheet
formers, C : epoxy glue

It is postulated that no contamination of the upper surface of the MFC film happened as MFC films are
known to have high barrier properties with very low permeability even against oxygen permeation.

To perform a complete drying of the system prior the shearing test, the three layer systems were
placed on the hot press at 120°C, 10 bars for 40 min then they were kept in desiccator with controlled
relative humidity for further conditioning. Because the wood spatula were deformed during the first
drying, they were pre-dried at 120°C for 40 min on the hot press prior the three layer system formation.

The glass transition temperature (Tg) of xylan was evaluated using modulated Differential Scanning
Calorimetry (DSC) by Dr. Augstin Rios des ANDA. A Tg at 140°C was detected in the case of xylan
extracted from MFC from birch kraft pulp (cf. Annex 15).
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4.2  Shear test results

The hot melt glue (Technomelt cool 120 E3525101 from Henkel) with melting temperature of 130°C
and viscosity (1050 mPa.s at 130°C) was chosen as a control sample. The results of the shearing test
performed on the three layer system made with hot melt were compared with those obtained with
the systems made with the two xylan types. The influence of the relative humidity on the shear
strength was also studied.

Cohesive failure in xylan layer and hot melt layer was observed in all shearing test measurements at
any humidity conditions (Table 39).

Table 39: Shearing test conditions

Intern layer Relative Humidity Failure types Shear strength
(Oshear)
. 15% 760 + 50 MPa
Ar(?slrr::::tlfn 45% Cohesive failure 540 + 60 MPa
95% 0-5 MPa
15% 910 £ 10 MPa
)g:r? Itrr(;?: 45% Cohesive failure 650 + 15 MPa
95% 40+ 5 MPa
15% 2200 MPa
Hot melt 45% Cohesive failure 1800 MPa
95% 1400 MPa

The maximum force before failure was measured (Figure 79) and the shear strength was calculated
with the equation (2).

— = Xylan from oat

Hot melt
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Figure 79: Shear curves at 15%, 45% and 95% of relative humidity (RH) with the three
layer system made-of xylan from oat and xylan extracted from MFC from birch kraft pulp

For the xylan extracted from birch Kraft pulps, the measured shear strength values were found
between 910 MPa and 650 MPa at 95% and 45 % RH respectively, a little more than twice as low as
the commercial hot-melt glue.

Slightly lower shear strengths were observed for xylan, which contains arabinose side groups. Further
studies are needed to check whether the presence of the side groups can reduce the shear strength.

However, for both substrates, the shear strength strongly fell down to very low values (for extracted
xylan) or even closed to zero (for the commercial one) at 95% RH. This result is in agreement with the
observations made for the peeling test, for which a strong transition in the behavior was observed
between moderate and high relative humidity.
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5. Conclusion on peeling and shear tests

The peeling test did not lead to an adhesion value between xylan and cellulose layer as the failure
always occurred inside the MFC film and not at the interface between xylan and cellulose film. This is
mainly because the peeling at 180° leads to high shear stress inside MFC, but is a clear sign of the high
level of interaction between xylan and cellulose surfaces.

The shear test performed on the adapted three-layer system allowed us to compare xylan with hot
melt glue, as the MFC films were much more resistant to this mode of solicitation. The values obtained
with xylan were in the same range as the hot melt resin on dried systems. However the humidity has
a strong influence on the systems and the shear strength was close to 0 at high humidity.

The results obtained in this chapter are too preliminary to draw any firm conclusions on the interaction
of cellulose and xylan at the macroscopic level. The macroscopic model of xylan-cellulose interaction
demonstrated the high affinity of xylan to cellulose in dry condition as the interfaces never failed even
at high stress. However, major drawbacks come from the geometry of the solicitation. In the case of
peeling test, the MFC films were solicited by tear forces, for which they were found to be very sensitive,
while in the case of shearing tests it was the xylan cohesion that was the limiting factor. At high
humidity, both substrates are highly plasticized and failed to support the deformation imposed during
the test. It is an indirect sign that the adhesion between xylan and cellulose is very strong.

In order to be closer to the interaction of xylan with cellulose at the molecular level, nanocomposite
film were formed with redispersed MFC and different xylan fractions. Tensile test experiments were
performed on these composite films but the results still suffered from statistical fluctuations due to
the heterogeneity of the film and to the low dispersibility of the MFC (cf. Annex 16).
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Annex 12: Energy dispersive X-ray analysis (EDXA) on MFC
film casting

Observation and surface analysis were performed on MFC films produced by casting with Scanning
Electron Microscopy (SEM) and the EDXA.

The surface chemical composition of the film made of MFC rinsed with HCI 0.5 wt % solution then
deionized water was compared with the one made of MFC in hard water.
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12
10 Ca (ka)
8
=
> 6
&
& o]
4 c
21 Ca (kB)
0 -
0 1 2 3 4 5 6 7 7]

MFC rinse with 0.5 wt% HCI prior casting

Cps/fev

Figure 80: Energetic spectrum of the X-ray photons detected at the surface of the MFC
films

The presence of calcium anion was detected on the film when the MFC was not rinsed with HCI
solution. This explains the pollution, which is visible in SEM on the film surface.
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Annex 13: Xylan non penetration control

1. Xylan grafting with fluorescein isothiocyanate isomer |

The fluorescein isothiocyanate isomer 1 (FITC) is a fluorescent label with different isomer according to
the pH (Figure 81). For pH below 4.3 or above 6.6, the FITC exists under the carboxylic acid and the
lactone isomer respectively while for pH between 4.3 and 6.6 both of isomers co-exist. The di-anionic
lactone isomer which exists for pH 2 11, have been described in literature (Dong and Roman 2007;
Nielsen et al. 2010) to provide good correlation between the FITC fluorescence and UV spectroscopy
absorbance measurement.
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Figure 81: FITC isomers form with pH

Because xylan was not soluble in water, the freeze-dried xylan (550 mg, i.e. 3.7 10* mol of xylose) was
dissolved in 150 mL of DMSO (i.e. concentration of 4 g/L) at room temperature in presence of 0.55 mL
(i.e. 0.55 eq [EtsN]/[OH]) of triethylamine (EtsN, from Sigma Aldrich >99%) added in excess for full
hydroxyl deprotonation (Figure 82). Then FITC was added with different concentrations: 0.3%, 1.25%

and 5%.
ge) o o
0.55 eq [EtN]/[OH] O O
o 0
RO 03%,125%or5%FTC RO 0
HO CR HO OR
o

OH DMSO, 25°C, 72h
*
HN-R WithR =

No preferential position on hydroxyl group is observed

Figure 82: Reaction of xylan labelling with FITC

After keeping 72h at room temperature, the DMSO, EtsN and the non-reacted FITC were removed by
dialysis against water. A slightly yellow-orange solid was recovered after freeze-drying of the xylan
precipitate in water.

2. Xylan substitution degree measurement with UV-vis spectroscopy

2.1 Calibration curve
Four FITC solutions (0.25 mg/L ; 0.5 mg/L; 1.25 mg/L and 2.5 mg/L) were prepared by dilution of the
initial FITC solution at 1.00 g/L in DMSO (10.0 mg in 10.0 mL with volumetric flask). Then 4 mL of each

diluted FITC solutions were basified with triethylamine (4 UL) to provide the di-anionic FITC form.
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A straight calibration curve (Figure 83) could be obtained by using the value at the maximum of
absorbance of the FITC (A= 521 nm).

y =0.2544x
R%=0.9993

0.700
0.600
& 0.500

80400
—

2 0.300

£

<L 0.200-

0.100 -

0 0.50 1.00 150 2.00 2.50 3.00
Concentration of FITC (mg/L)

Figure 83: Calibration curve of FITC in DMSO

The data were performed by using a UV quartz cell with cover (dimension of 44.5x 12.5 x 13.5 mm and
layer thickness of 1 cm) and UV - visible spectrometer (Varian Carry-50 Bio). They were collected at the
scan speed of 600 nm/min and a resolution of 1 nm. The blank was performed with a solution of 4 mL
of DMSO with 4 pL of Et;N.

2.2  Xylan substitution degree

The labeled xylan was dissolved in DMSO and the solution was basified with triethylamine to provide
the di-anionic form of the FITC. Then the FITC contents measured by UV-vis absorbance were
converted to percentage of FITC and degrees of substitution per hydroxyl group (i.e [FITC]/ [OH])
thanks to the following equations:

Percent prrc = WS OT T 100
= T
ercentage of Mass of xylan

2 X Mass of FITC/M FITC

FITC]/[OH] =
[ 1/[0H] Mass of xylan / M xylose

where the mass of FITC is deduced from the concentration of FITC determined with the calibration
curve (Figure 83). Because, the FITC should not interfere with the cellulose - xylan interaction in the
three layers systems, the xylan extracted from MFC from birch-kra-nd was grafted in presence with
0.3% of FITC. It was previously established with xylan from oat (commercial) that 0.3 % of FITC
corresponded to the lowest substitution degree (Table 40).

Table 40: Degree of substitution of FITC per hydroxyl group on xylan

Xyl D f
ext:,a::e d Percentage of  Absorbance Concentration Percentage of su;gtri:t?on
from FITC introduced measure of FITC grafted  FITC grafted [FITC]/[OH]
oat 0.3% 0.309 1.22 mg/L 0.07 % 0.05%
oat 1.25% 0.456 1.79 mg/L 0.18% 0.14%
oat 50% 0.587 2.31 mg/L 0.54 % 0.42 %
b'l\:'CF:kf:;’r: y 03% 0.071 0.28 mg/L 0.01 % 0.01 %

The DS of xylan extracted from MFC from birch-kra-nd was lower than the one of xylan from oat. The
FITC might be also grafted on arabinose branches that are only present on xylan extracted from oat.
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3. Fluorescence microscopy observation of three layers structure

Three layer structures were built with FITC labeled xylan according to the same protocol described for
System 1 formation (section 6.2 in materials and methods). In order to obtain the fluorescence form
of the FITC fixed on xylan, some sodium hydroxide (from VWR Chemical-analysis grade) solution at
1 g/L is added until pH 10 in the final water bath of xylan gel formation.

The three-layer system was then included in a matrix of resin (resin epoxy LR White) and semi-thin
cross sections (1um) were cut with ultra-microtome (Leica EM UC6) at CTP thanks to Christelle
Boucherand and Caroline Duprat.

The cross sections were then examined with fluorescence microscopy (ZEISS- AXIO green A1) with FITC
channel.

Film of xylan

Films of MFC
Film of xylan

Films of MFC

Figure 84: Cross section (1um) of three-layer system labeled with FITC

The micrographs in Figure 84 show relatively well-defined three layers and with limited penetration of
xylan into the MFC layers.
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Annex 14: Technical informations on Tape AT-206

TECHNICAL DATA
wsms  AT206 PVC Colour Coding Gaffa® Tape

General Description
A PVC Electrical Insulation Tape coated with pressure sensitive adhesive.

Flame retardant

Self-extinguishing

Easy unwind

Easy tear

Conformable to awkward shapes
Good abrasion resistance

Water resistant in situ

UV resistant

Non-corrosive adhesive

Wide colour range in stick packaging

Specification
Certification® to the following standards may be available on request.
BS EN 60454-3-1/Type 2.

. " 8 " 8 8 B8 s

Technical Details
Typical Values
Thickness 0.13mm
Breaking Load 26 Nicm
Elongation 180%
Adhesion
Steel 2.4 Nfcm
Self 2.1 Nfem
Water Extract
pH 6.8
Conductivity Max 2mS/im
Electrical Properties
B/down Voltage 8.0kV
1 Min Proof Test 6.0 kV
Insulation Resist 1011 ohms
Cu Corrosion No Staining ADVANEE {era
/
Flame Retardancy Self extinguishing
f AFERA
FIGHE Driemploen s Associalion des Fabricants Europeens de Rubans
Service Temperature -5°C to +70°C e
Application Temperature 0°C to +40°C
Storage Temperature +12°C to +25°C

*Standard charge for certificate: £25.00.
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Annex 15: DSC measurement on xylan

Differential Scanning Calorimetry (DSC) analysis was performed on freeze dried xylan extracted from
MPFC from birch kraft pulp. Samples (between 7 and 15 mg) were introduced in non-hermetic aluminum
pans then temperature was increased from -80°C to 200°C with a slop of 10°C/min with the DSC from
TA instruments Q 200.

Thanks to Agustin Rios de Anda, temperature-modulated mode was also used on xylan samples
(freeze-dried and gel) with the DSC from TA instrument Q2000 in the Laboratoire des Polymeres et
Matériaux Avancés (LPMA Lyon).

The samples were heated from 0°C to 140°C with a heating rate of 3°C/min and temperature
modulation of +2°C every 60 s.

The glass transition (Tg) at 140°C was only observed with the DSC modulated mode.
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Figure 85: A : DSC and B: DSC modulated of xylan
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Chapter 4: Adhesion between cellulose and xylan

Annex 16: Composite films and tensile test

MFC films were produced by casting with additional amount of xylan (extracted from birch kraft
samples or commercial) to the MFC from birch kraft pulp after xylan extraction.

As it was described for the xylan re-adsorption experiment, the freeze-dried MFC samples were
suspended in DMSO at the concentration of 5 g/L (i.e. 0.45 wt%) with varied amount of dried xylan and
stirred for 20 h at room temperature then stirred with a double cylinder type disperser, Ultra-Turrax.

The gel of MFC - xylan recomposed system was obtained with the same procedure than xylan gel
formation detailed above. The suspension of MFC - xylan system was first placed 1h in contact of water
bath thanks to the dialysis membrane. Then the DMSO was completely removed from the system by
dialysis against deionized-water as it was described above.

The system was gently transferred from the Teflon hollow rectangle to the Petri dish surface and dried
for 12h days under constraint (Figure 86).

Petri dish

| MFC-xylan
Petri dish < +———— MFCxylan | recomposed films

recomposed films

Figure 86: Illustration of recomposed film drying

The proportions of xylan added into the MFC suspension corresponded to the cellulose /xylan ratio
where the xylan is in excess (0.39/1) or is fully adsorbed on cellulose surface (0.28/1) as established in
Chapter 3.
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General Conclusion and Perspectives

This project was at first devoted to bring some knowledge on the interactions between cellulose
microfibrils and hemicelluloses, in order to better understand the key parameters on which one can
play to help the microfibrillation process. For that, we designed an approach at different levels,
including a classical characterization of the individual components and their interaction at the
molecular level, mainly by solid state NMR, their simulation by molecular modeling at an atomistic
level and the evaluation of their properties at the macroscopic level (General Introduction), in order
to guide operating conditions on the pilot installation. Meanwhile, we discovered that a pure
homopolymer of xylan can be extracted from the MFC produced from kraft pulps (Chapter 1). Models
could be reconstructed and the role of the conformational change of xylan chains was studied by solid
state NMR and atomistic simulations (Chapter 3), whereas macroscopic models were experimentally
difficult to implement and the results dominated by the dissipation in the reconstructed system
(Chapter 4). Incidentally, careful turbidity measurements of different MFC suspensions allowed us to
point out the relationships between the quality of the dispersions and the properties of handsheets
supplemented with MFC (Chapter 2). At the end of the work, the main results can be described as
follow.

In Chapter 1, the hemicelluloses/cellulose compositions of the different MFC, in terms of wood species
and pulping processes, were determined by sugar analysis. We observed that the main hemicellulose
present in MFC from hardwoods is xylan and a mixture of xylan and glucomamans in the case of
softwoods MFC. The hemicellulose/cellulose ratio is mainly affected by the pulping process and the
MFC from kraft pulp have the highest hemicellulose content, close to 25%, while the hemicellulose
content of MFC produced from sulfite pulp (dissolving pulp) is below 5%.

The MFC suspensions were also characterized by solid state NMR spectroscopy in wet and dry
conditions. As already observed by Larsson et al. (1999) and Teleman, Larsson, and lversen (2001), the
xylan has a specific signature and the xylan content in MFC may be quantified by the peak intensity at
82 ppm on the NMR signal with wet MFC.

A protocol of xylan extraction, including a freeze-drying step in tert-buthyl alcohol and a redispersion
in DMSO-LICI 5 wt % was established from the MFC produced from never dried birch kraft pulp. The
yield of extraction of 65% determined with the xylan mass isolated and sugar analysis performed on
MFC after xylan extraction was confirmed by solid state NMR. Indeed a peak intensity diminution in
the signal of MFC was observed at 82 ppm after xylan extraction and the change was in good
agreement with the yield of 65% of xylan extracted.

The protocol was extended to MFC from spruce kraft and to pulp from birch kraft: refined and non-
refined, dried and never dried. As the yield of 65% of extracted xylan is conserved, the particle size,
the wood species and the drying history did not influence the xylan extraction.

The chemical composition of extracted xylan was determined from sugar analysis and liquid and solid
state NMR. The extracted xylan contained in MFC and bleached pulp is a highly pure homopolymer of
B-1,4 linked xylan, at the opposite of the xylan extracted from birch wood chips and xylan from oat
(commercial) which contain 4-O-methylglucuronic acids and arabinose substitutions, respectively.
One of the hypotheses, explaining these results, is that the most accessible xylan substituted with
arabinose and 4-O-methylglucuronic acids is eliminated from the wood pulp during the pulping process
and the less accessible xylan is unsubstituted and could be only extracted using DMSO.

The polymerization degree of this extracted xylan was estimated by liquid NMR then was determined
by viscosimetry and SEC-MALS measurement. The three methods converged to a DP of 75
corresponding to a molar mass of 10 000 g/mol which is in good correlation with the established DP of
xylan in wood of 100 to 200 (Koshijima, Timell, and Zinbo 1965).
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To complete the MFC characterization, the quality of the dispersion was evaluated in Chapter 2 by
turbidity measurement performed with UV visible spectrometer. The turbidity of MFC suspensions had
high correlation with their residual content in coarse elements, their paper reinforcement potential
and the specific surface area measured with nitrogen adsorption on resulting aerogels.

The pulp drying history is the most impacting factors on the dispersion state in the case of low
hemicellulose content. Indeed the highest turbidity level was observed for the MFC from sulfite dried
pulp while the MFC from sulfite never dried pulp exhibit the lowest turbidity level whereas the MFC
from kraft pulp (higher hemicellulose content) were not influenced by the pulp drying. Furthermore
good correlations were found between the dispersion level evaluated with turbidity and the specific
surface area of MFC. The lowest turbidity corresponded to the highest specific surface.

These results were compared with fibers and fines content in MFC suspensions and with MFC potential
as a strengthening agent in handsheets of unrefined fibers. This comparison revealed a strong
correlation between the aggregation level of MFC, represented by the turbidity and the specific area
measurement, and the mechanical resistance. The better tear and tensile indexes of handsheets were
provided by the addition of the most dispersed MFC with lowest fines and fibers content.

The turbidity measurement and the specific surface area are global methods that require little
preparation to characterize the dispersion level of MFC and predict their impact as additive on paper
mechanical properties. They might be used as standard methods for the MFC characterization in
complement of MorFi analysis and mechanical tests.

In Chapter 3, the cellulose-xylan interactions were first studied by combination of solid state NMR,
specific surface area measurement and atomistic simulation.

The isolated xylan, in the wet state, exhibited a typical solid-state NMR spectrum of three-fold helix
with a C4 contribution at 75 ppm whereas the MFC before xylan extraction had a supplementary
component at 82 ppm.

The putative conformational adaptation of xylan in presence of cellulose from a bulk-like 3-fold
conformation to a presumed cellulose-like 2-fold one was confirmed by solid-state NMR spectroscopy
on biomimetic models made of xylan readsorbed on MFC with varied proportions. By sequential xylan
re-depositions, coupled with MFC specific area measurements, it was possible to show that the
conformational adaptation was only limited to the first adsorbed layer, where xylan was in direct
contact with the cellulose surface.

With atomistic MD simulation, we followed the adsorption behavior of xylan molecules of DP 10 on
various cellulose surfaces and found that the presence of the surface could stabilize the 2-fold
conformation of the xylan molecules in aqueous environment. The adsorbed xylan was preferentially
arranged with its chain axis parallel to that of cellulose and formed hydrophobic stacking structure
with the xylan pyranosyl mean planes stacked parallel to those of the cellulose crystal surfaces.

A pulling test was proposed further in this work and consisted of pulling out the xylan chain from the
cellulose surface where it was adsorbed. The energy of adhesion between the two parts may be
followed during the pulling tests and varied with the cellulose surface.

The highest adhesion force was observed for xylan in 2; conformation on hydrophobic cellulose surface
(100) and corresponded to 9 kJ /xylose residue. Because we still do not understand the
thermodynamics behind the pull code used in this simulation, further study is needed to confirm these
first results. It might be a powerful technique to study interaction between xylan and cellulose and it
might be also extended to study the influence of xylan branches on the adsorption on cellulose and
other hemicellulose adsorption such as glucomannan.
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A third model was designed in Chapter 4 to study the cellulose xylan interaction and adhesion using
mechanical test.

A three layer system was built with two cellulose films and one of xylan inserted between them. The
cellulose films were obtained by filtration of MFC from pine sulfite pulp with handsheet formers and
drying with sheet dryer. Then a xylan gel in water previously obtained from the dialysis against water
of a DMSO-xylan solution, was deposited at the cellulose film surface. The ensemble was covered with
a second cellulose film then dried.

Peeling tests at 180° were performed on the three-layer structure after conditioning at various relative
humidities. Failure inside the MFC film were always obtained for relative humidity (RH) < 85% and
complete loss of adhesion between the system layer were observed for RH equal of 95%.

Because the peeling test at 180° was testing the MFC film along its tear resistance which is lower
compared to its shear one, the three layer system was modified and adapted to a shearing test. The
MFC was supported on wood spatula and two of them were assembled with xylan film in the middle.
The shearing test did not provide adhesion measurement but it was used to compare the resistance of
the three-layer system with a hot melt glue at different relative humidity.

At moderate relative humidity, the shear strength of the hot melt glue system is twice time higher than
the three layer system made with xylans in the same range. However the humidity condition highly
affected the resistance of the three-layer system. The shear strength is close to zero at 95% which
revealed the intrinsic plasticization of xylan with water.

This model might not be the most accurate as the main factors governing the adhesion were shown to
come from the resistance of the bulk. However it provided some comparison with standard glue on a
macroscopic model with established mechanical test, at least in the shearing configuration.

The interaction of xylan with cellulose at the microfibrils level has been contemplated but was
hampered by the insolubility of xylan in water, which hampers a classical film casting experiments.
Indeed the spectacular adaptation of the conformation of the xylan chain on the cellulose surface, and
its intrinsic resistance to water is appealing in terms of material design, to obtain strong and water
resistant nanomaterials, as wood can be, but difficult to implement experimentally.

In order to stick to the initial objective of facilitating and enhancing the microfibrillation process and
in view of the above results, we intended to explore the potentiality of the use of xylanase that could
weaken this strong hemicellulose glue thus facilitating the liberation of microfibrills. The results of
these attempts have been gathered in the following section, as a conclusive chapter.
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Xylanase pre-treatment before MFC production

Regarding the results on the interaction between hemicelluloses and cellulose in the fiber wall, it was
underlined that presence of xylan in the initial pulp had a strong influence on the resulting MFC quality
(Meyer et al. 2016; Tapin-Lingua, Meyer, Petit-Conil 2013). According to correlations found between
mechanical resistance of MFC, turbidimetry and specific surface measurements, the presence of xylan
clearly helps in the separation of cellulose microfibrils by protecting them against the irreversible
hornification occurring during pulp drying.

Besides, xylan extracted from kraft pulp-based MFC was a particular homopolymer of xylose which
strongly interact with cellulose surface according to experiments carried out on three layer models and
atomistic simulation. When xylan is in presence of cellulose, it adopts a particular conformation of 2-
fold helix.

Thanks to these observations, a never dried birch kraft pulp was selected (rich in xylan) and xylanase
reaction was proposed as pulp pretreatment prior to homogenization to weaken xylan structure and
facilitate the liberation of microfibrils from the fiber wall.

This new pretreatment was tested and compared with the common endoglucanase pre-treatment.
The synergistic effect of both enzymes was also evaluated.

The characterization methods developed during the previous parts of this work as solid state NMR and
turbidimetry analyzes will be applied on this MFC production.

1. MFC production

MFCs were produced from a never-dried birch Kraft pulp provided by Stora Enso according to
conventional methods adapted by the Centre Technique du Papier, from the method described by
Padkko et al. (2007).

Endoglucanase treatment was performed with FiberCareR® from Novozymes and xylanase treatment
with Xylanase2##SPW from Metgen:

1. Mechano-enzymatic treatment
For each treatment, 5 kg of o.d. pulp was rehydrated in a pulper at 4.5% consistency for 10 minutes.
Then four different treatments were carried out before refining: water, endoglucanase 2.5 L/t,
xylanase 10 L/t and a mix of both previous enzymes. The enzymatic treatments were applied for 1h at
pH 5 and 50°C. At the end of the reaction time, a 12” single disk refining was performed to reach the
targeted fiber length of 300 um of the pre-treated suspension before homogenization. The refined
pulp was then boiled for 10 minutes to inactivate the residual enzymes.

2. Homogenization
The four different pre-treated fiber suspensions were then diluted to 2% consistency and processed
with a high pressure homogenizer (NSO06 apparatus from GEA Niro Soavi). This treatment was
performed in one pass at 1000 bar followed by 4 passes at 1500 bar.
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2. Chemical composition of MFC

2.1 Sugar analysis

The composition in five sugar residues namely: glucose, xylose, mannose, arabinose and galactose and
the yield of hydrolysis of the MFC from birch bleached kraft pulp pretreated with the different
enzymatic pre-treatments are presented in Table 41.

The normalized sugars content is calculated as:

[Glucose] x 100
Yield of hydrolysis

[Glucose normalized] =

Table 41: Sugar composition of the MFC from birch kraft pulp.

MFC from birch kraft pulp
Endoxylanase and

Pre-treatment Without enzyme Endoglucanase Endoxylanase Endoglucanase
Glucose (%) 73.2 72.0 73.1 70.5
Xylose (%) 20.6 21.8 20.8 216
Mannose (%) 0.0 0.0 0.0 0.0
Arabinose (%) 0.0 0.0 0.0 0.0
Galactose (%) 0.0 0.0 0.0 0.0
Yield of hydrolysis (%) 93.8 93.8 93.9 92.1
Normalized:
Glucose (%) 78.0 76.8 77.8 76.5
Xylose (%) 22.0 23.2 22.2 23.5
Mannose (%) 0.0 0.0 0.0 0.0
Arabinose (%) 0.0 0.0 0.0 0.0
Galactose (%) 0.0 0.0 0.0 0.0

Regardless the type of enzyme used before refining, the xylose content is around 23%. It is in good
correlation with MFC produced form never-dried birch bleached kraft pulp where the xylose content
was 23.7% (cf. Chapter 1). Applied xylanase and endoglucanase charges did not lead to more sugar
hydrolysis.
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2.2 Solid State NMR analysis
Solid state NMR analysis was performed on the four wet MFC samples (Figure 87). As the chemical
composition of MFCs are not impacted by the pre-treatment used for the pulp refining, the spectra of
the different MFCs are quite identical.

13C solid state NMR of wet MFC

C2,C3andC5

MFC from birch-kra-nd

Enzymatic pre-treatment
Endoglucanase + endoxylanase

endoxylanase

endoglucanase

without enzyme
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Chemical shift (ppm) Chemical shift (ppm)

Figure 87: MFC morphology and structure linked to enzymatic pre-treatment.

The conformation and crystallinity of the MFCs are not modified by the enzymatic pre-treatment
regardless of the enzyme chosen.
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3. Energy consumption

The impact of the enzymatic pretreatments was first evaluated on the energy consumed during
refining (Figure 88 A) and in total (refining + homogenization) (Figure 88 B).

A: Refining energy consumption (kWh/t) B: Total energy consumption (kWh/t)
1000 12000
900 —
800 100001 H H ——
700 A
80007 1 1
600
580 6000 1 H H
400 i
300 ] ! 4000 - H H
200
2000+ M M
100
B : v v 0 T 7
2 5 8 % 2 g 9 o9
% % 2 % % % % B 8 %
=z =) o, o “ C o, ©
3 o L) < (o) ©. % C 3
= G % % > Z L <
(] D, = o, D =
% % B %% 5 % 3 %%
Ly % %% L R e %%
‘»}@ © © O ’z}s © © &

Figure 88: A: Energy consumption after refining of the different pre-treated pulps, B: Total
energy consumption after refining and MFC production from the different pre-treated

pulps.

As it was already demonstrated, endoglucanase led to a drastic energy savings during refining. Half of
the electricity was saved after endoglucanase treatment compared to the reference pulp. On the
contrary, xylanase treatment alone showed no effect on the behavior of the fibers into the refiner and
the final energy was not impacted by this enzyme. When a combination of both enzymes was applied,
refining energy was close to endoglucanase alone.

Concerning the total energy consumption after refining and homogenization at 2% consistency, a clear
synergistic effect of both enzymes was noticed. It represented 870 kWh/t (8%) of energy saved
compared to endoglucanase treatment alone and even twice compared to the reference pulp with a
reduction of 1800 kWh/t (17%). This additional benefit of xylanase treatment was mainly due to a
higher flow rate into the homogenizer due to less viscous suspension. An increase in initial pulp
consistency could be envisaged to enhance again some energy savings.
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4. MorFi analysis and optical microscopy

To evaluate the impact of the enzymatic pretreatments on MFCs quality, an indirect measurement
consists in quantifying the residual coarse elements (residual fines and fibers) into the homogenized
suspensions thanks to morphological analysis (Figure 89).

Because the MFC sizes are too small to be detected by the optical camera of the MorFi analyzer, it was
not possible to directly count the number of MFCs after the homogenization. However, it is possible
to determine the residual number of fibers (elements with a length > 80 um) and fines (elements with
a length< 80 um) into the MFC suspensions.
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Figure 89: Residual fibers (A) and fines content (B) into MFC suspensions produced from
different pre-treated pulps.

The residual fibers content into MFC suspensions (Figure 89 A) was directly impacted by the
endoglucanase action through the fiber wall. Compares to the MFCs produced from pulp refined
without enzymatic pre-treatment, the fibers content was divided by two when endoglucanase was
used before pulp refining (from 12 to 5 million/g). Some cuttings occurred into the cellulose chains,
leading to an easier separation of the microfibrils from the fiber wall into the homogenizer. This
residual fibers content was very low and an additional xylanase treatment did not affect this value. It
was interesting to note that the xylanase pretreatment alone was not sufficient efficient for decreasing
the fibers content, indicating that a cellulase pretreatment was needed for MFC production.

On the contrary, xylanase treatment combined with endoglucanase one has a positive effect on the
residual fines content. The final MFC suspension contained 30% fewer fines than the endoglucanase
treatment alone, traducing a better homogeneity of the suspensions and a higher content of nanoscale
elements.

Xylanase pretreatment may facilitate the endoglucanase penetration into the fiber walls by cutting the
xylan chain around the fibers. As the endoxylanase had no effect towards the cellulose structure, it
was expected to see no improvement in the microfibrillation efficiency when it was used as
pretreatment alone.
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Figure 90 presents some light microscopy examinations of the different elements observed into the
MFC suspensions after 5 passes into the homogenizer. Images were in line with MorFi analyzes
highlighting the presence of long fibrillary fines when no enzymatic pretreatment (A) or with a xylanase
one alone (C) was carried out. On the contrary, endoglucanase pre-treatment or endoglucanase +
xylanase pretreatments led to more homogeneous suspensions, richer in nanoscale elements with
smaller fines elements.

Figure 90: Microphotographs of the MFC suspensions from different pulp pretreatments
after the fifth homogenizing pass at 1500 bar A: without enzyme, B: endoglucanase,
C: xylanase, D: endoglucanase + xylanase.
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5. Turbidity analysis

It was previously visualized that pulp drying history and hemicelluloses content in MFC had a strong
influence on the turbidity of MFC suspension. When the hemicelluloses content is low, the drying
history has a strong impact. For the reduced turbidity (At/c), normalized against solid content (c) as a
function of the wavelength (A), MFC from sulfite dried pulps showed concave increasing curve while
all others showed convex decreasing curves and the value at 800 nm was identified as a good number

of the quality of the dispersions (Figure 58).
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Figure 91: Reduced turbidity as a function of A for the various MFC and corresponding
hemicelluloses' content (%) cf Chapter 2.

In the case of this experiment, the MFCs were produce from never-dried birch bleached kraft pulp with
highest hemicelluloses content (24%) and the endoxylanase pre-treatment may decrease the xylan
content and influence the MFC aggregation level.

Figure 92 shows that no concave curves were obtained and all MFC curves were convex regardless the

pre-treatments.
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Figure 92: MFC pulp aggregation linked to enzymatic pre-treatments.

However, the turbidity level of the MFC suspension was in good correlation with the fibers and fines
contents. Indeed, the MFCs produced from pulp refined without enzyme or with endoxylanase showed
the highest turbidity and the MorFi analyzes observed the highest fibers and fines contents. On the
opposite, the MFCs produced from pulp refined with endoglucanase alone or mixed with endoxylanase
had the lowest turbidity and the lowest fibers content.
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The diminution of the fines content, observed by MorFi analysis in the MFCs resulting from the pulp
refined with endoxylanase and endoglucanase together, was in good correlation with the lowest
reduced turbidity.

6. Conclusion

The chemical composition of the MFCs, according to solid state NMR and sugars analysis, were not
influenced by the enzymatic pre-treatment of the pulp.

Different residual fibers and fines contents were observed with MorFi analyzes and influenced the MFC
suspension turbidity. The endoxylanase pre-treatment alone did not improve the microfibrillation
process as the fibers content and the turbidity level were higher than those produced without
enzymes. However, the lowest fines content and the lowest turbidity level were observed when the
endoglucanase was mixed with endoxylanase.

Consequently, this new pre-treatment seemed promising as this better MFC quality was obtained with
a reduction of 8% of the energy compared to the conventional endoglucanase treatment. Deeper
investigations should be done to characterize the MFCs produced in terms of mechanical resistance
for example and to understand the right role of each enzyme. Based on these results, a sequential pre-
treatment could be envisaged to reveal the best potential of each enzyme that was not optimized so
far.
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Le cadre de cette étude est le colt énergétique lié a la production des Microfibrilles de Cellulose (MFC)
qui est aujourd’hui un facteur limitant a son développement a I’échelle industrielle. Le but de cette
étude est de caractériser les interactions cellulose/hémicellulose au sein de ces systémes.

Des MFC provenant de différentes pates a papier chimiques ont été caractérisées par RMN du solide
afin d’obtenir des informations a I’échelle moléculaire. Suite a I'optimisation d’un protocole
expérimental, les hémicelluloses contenues dans les MFC issues de pate kraft de bouleau ont ensuite
été extraites avec un rendement de 67% et sont composés uniquement d’un homopolymére de xylane
de DP 75. La turbidimétrie a été utilisée pour qualifier la qualité des suspensions, dont il a été montré
gu’elle dépend fortement du procédé de mise en pate et du séchage. Des corrélations positives ont
été établies entre I'état de dispersion des MFC et les propriétés mécaniques de feuilles de papier
renfermant ces microfibrilles. L’analyse RMN de modeles biomimétiques reconstitués a confirmé le
changement de conformation du xylane lorsqu’il est adsorbé sur la cellulose et les mesures de surface
spécifique ont montré que seule la couche de xylane en contact avec la cellulose était concernée par
ce changement.

Les interactions cellulose/xylane ont été étudiées par RMN du solide et par dynamique moléculaire
atomistique (MD). Les simulations MD ont montré que le xylane s’adsorbe parallélement aux chaines
de cellulose. Des mesures d'interaction sur ce systeme ont conduit a une mesure d'énergie de
9klJ/résidu de xylose. Des tests de mesure d’adhésion ont également été réalisés a partir d’'un modéle
trois couches constitué de xylane entre deux films de cellulose et une forte adhésion a pu étre
observée. Enfin, I'utilisation de xylanase dans le prétraitement des fibres semble une voie prometteuse
pour diminuer la consommation d’énergie et améliorer la qualité des MFC.

Caractérisation des MFC et isolement des principaux
composants

1. Préparation des suspensions de MFC

Les suspensions de MFC sont préparées a partir de pates chimiques blanchies commerciales selon le
procédé breveté par STFI/Innventia et optimisé au CTP consistant a réaliser un prétraitement mécano-
enzymatique de la pate (Endoglucanase 1h puis raffinage poussé) suivie d’'une homogénéisation a
haute pression (1 passage a 1000 bar + 4 passages a 1500 bar).

Dans le cadre de ce projet, 8 suspensions de MFC ont été utilisées. Elles proviennent de 4 essences de
bois, de 2 procédés de cuisson kraft/sulfite et de pates séchées ou jamais séchées (Tableau 1).

Tableau 1: Panel des suspensions de MFC

MFC de Essence de bois Procédé de mise en pate Séchage de la pate
bouleau-kra-js bouleau kraft pate jamais séchée
bouleau-kra bouleau kraft pate séchée
épicéa-kra épicéa kraft pate séchée
pin96-sul-js pin (96% of cellulose) sulfite pate jamais séchée
pin96-sul pin (96% of cellulose) sulfite pate séchée
pin92-sul-js pin (92% of cellulose) sulfite pate jamais séchée
pin92-sul pin (92% of cellulose) sulfite pate séchée
euc-sul eucalyptus sulfite pate séchée
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2. Caractérisation des suspensions de MFC

La composition chimique (teneur en hémicellulose) de cing suspensions de MFC a été déterminée et
reliée aux spectres obtenus en RMN du solide (Figure 1). Les spectres ont été normalisés par rapport
a la somme de l'intensité du signal entre 55 et 155 ppm et I'attribution des pics a été réalisée selon
Kono et al. (2002) et Larsson et al. (1999).

C2,C3 and C5 C4

g

MFC from: Hemicellulose

content
pine96-sul 2.5%
euc-sul 3%
pine92-sul 6%
spruce-kra 16%
birch-kra 23%

.
T T T 1 [ o S o o P e ] T i e )

r T T T T T T T T
115 110 105 100 95 90 85 80 75 70 65 60 55 92 90 88 86 84 82 80
Chemical shift (ppm) Chemical shift (ppm)

Figure 1: Spectre RMN 13C CP-MAS d’échantillons humides de MFC issus de pate sulfite (pin96, pin92 et
eucalyptus) et de pate kraft (bouleau et épicéa)

Le signal RMN au niveau du carbone C4 est trés différent suivant I'origine de la pate (kraft ou sulfite)
utilisée pour produire les MFC (Figure 1, droite). L'intensité du pic a 82 ppm est directement corrélée
a la teneur en xylane des MFC. En effet les spectres RMN des MFC de pates sulfites, qui contiennent
un maximum de 2,5% de xylane, n’ont que deux pics a 84.4 et 83.4 ppm alors que les MFC de pates
kraft, qui contiennent entre 8,7% et 22,5% de xylane, en ont un troisieme a 82 ppm.

La présence de xylane influence aussi les signaux des carbones C6 et C1 ou deux pics supplémentaires
sont observés a 64 et 102 ppm (Figure 391 gauche) dans le cas des MFC de pate kraft. En conclusion,
la RMN du solide peut étre utilisée pour suivre la teneur en xylane au sein des MFC en utilisant
I'intensité du pic a 82 ppm.

3. Protocole optimisé d’extraction du xylane

Dans le but de comprendre les interactions entre les chaines de cellulose et celles d’hémicelluloses, un
protocole d’extraction de xylane a été développé a partir des MFC issues de pate kraft de bouleau
jamais séché (22,5% de xylane). La teneur en xylane est suivit par analyses de sucres et RMN du solide.

L’échantillon de MFC kraft de bouleau a été lyophilisé aprés un échange de solvant eau-ter-butanol
(TBA). Il a été redispersé dans un mélange DMSO-5% LiCl (dimethylsulfoxide, sel de chlorure de lithium)
a la concentration de 8 g/L et agité pendant 20h a température ambiante. Le mélange est ensuite
centrifugé (20 000 g, 15 h, 25°C) pour séparer le xylane en solution dans le DMSO-5% LiCl des MFC
insolubles. Le DMSO est éliminé du xylane extrait (surnageant) et des MFC (culot) par dialyse contre
I’eau (membrane 12 000 Da) pendant 7 jours. La suspension de MFC est gardée a |'état humide. Le
xylane au contact de I'’eau pendant la dialyse forme un précipité, qui a I'issu des 7 jours, est concentré
(évaporateur rotatif, 30°C, 7 mbar) et lyophilisé.
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4, Caractérisation du xylane extrait

La pureté du xylane est caractérisée par analyse de sucres et RMN du liquide. Le xylane extrait a partir
de MFC de bouleau kraft est comparé a un xylane commercial extrait d’avoine (Figure 2).

Le xylane extrait de MFC de bouleau kraft est dépourvu de ramification arabinose, contrairement au
xylane extrait d’avoine qui en contient 9,6% mais aussi 13,0% de contamination de cellulose.

Les pics sont attribués en accord avec la littérature (Habibi et Vignon 2005) et les signaux a 4,3 ppm,
3,5 ppm, 3,3 ppm et 3,1 ppm sont attribués aux protons H1, H4, H3 et H2. Les signaux caractéristiques
des protons CH; (carbone C5) sont observés a 3,9 ppm et 3,2 ppm pour le proton équatorial (H5eq) et
I’axial (H5ax) respectivement. Les deux pics a 4,8 ppm et 4,6 ppm correspondent aux deux groupes
hydroxyles (OH2) et (OH3). lls sont seulement observés lorsque le solvant utilisé est le DMSO-ds a cause
de I'’échange de proton-deutérium dans D,0.

"H liquid state NMR (in D11S0-d; at 353K) Sugar Analysis

. H,0
Xylan from birch kraft MFC

Ha H1

HSeq H2 OH
RO -0, wm OH2OH3
OH3 o \
| OH2) o
HS5ax
H3 H1

Xylan from oat

Xylose 98-94%

Cellulos'e  26%
contamination

H3 H1

H5ax op2
OH3 {4\0 .
RO 4 omw _oR
H5eq |
Th2 /

H4
HO

7%
10%

Xylose
Arabinose

-0 Cellulose
. 13%
contamination

HO

OH,
Arabinose ﬂ /\ )b\ﬂk
substitutions AN AN W AN Y, Ay
r T T T - - . -
54 52 50 48 46 44 42 40 38 38 34 32
Chemical shift (ppm)

3.0 28

Figure 2: Spectre RMN liquide proton (1H) de xylane extrait a partir copeaux de bouleau d’avoine
(commercial) et de MFC de pate kraft de bouleau

Dans le cas du xylane extrait d’avoine, quatre signaux de protons H1 peuvent étre attribués au résidu
de xylose seul (4,3 ppm), au xylose branché en O3 (4,4 ppm) par une ramification arabinose et par un
acide glucuronique (5,1 ppm) et au xylose branché en 02 par un arabinose (4,5 ppm —HSQC).
L'influence de cette différence de structure du xylane sur les propriétés d’adhésion cellulose-xylane
sera étudiée dans le paragraphe suivant.
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Interactions cellulose-xylane

L’adsorption du xylane a la surface de la cellulose et son adaptation conformationnelle a été étudiée
par RMN du solide et simulation atomistique (dynamique moléculaire MD). Le xylane a tout d’abord
été ajouté aux MFC extraites en quantité égale a ce qui a été extrait soit 14% puis en exces (20%).

Afin d'évaluer les forces d’adhésion entre la cellulose et le xylane a I'échelle macroscopique, un
systeme trois couches (cellulose-xylane-cellulose) a été développé. Deux types de tests mécaniques,
par pelage ou cisaillement, ont été mis en ceuvre. Seul le test de cisaillement a permis d’obtenir des
valeurs d’énergie d’adhésion.

1. RMN du solide et simulation atomistique

Les spectres de RMN ont confirmé que le xylane adaptait sa conformation lorsqu’il était en présence
de cellulose (Figure 3). Initialement en conformation d’hélice a trois résidus par tour (hélice 3), il
semblerait qu’il adopte une conformation d’hélice a deux résidus par tour (hélice 2), identique a la
conformation des chaines de cellulose. La combinaison de ces données avec les mesures de surface
spécifique, a montré que cette adaptation conformationnelle était limitée a la premiére couche de
xylane adsorbée, en interaction directe, avec la surface de la cellulose. L'excés de xylane conserve la
conformation initiale d’hélice 3.

Xylan
conformations

Mix of 2 + 3-fold helices
. MFC initial sgetagetaget
#B +20% of xylan |:> b X5

MFC initial |:> 2-fold helix

=B + 14% of xylan N , qﬁ

B: MFC after extraction

i 7 ‘ T — T T ‘ : . , C: Xylan
115 110 105 100 95 90 85 80 75 70 65 60 55
Chemical shift (ppm)

Figure 3: Spectre RMN 13C CP-MAS d’échantillon humide : de MFC initial comparé au MFC extraite (B), au
xylane humide seul (C) et aux spectres de MFC apres réabsorption de 14 et 20% de xylane

Les simulations MD ont confirmées que le xylane en hélice 3 avait une plus faible affinité pour la surface
de la cellulose que son homologue en hélice 2, soutenant ainsi I'hypothése de la conformation d’hélice
2 du xylane lorsqu’il est adsorbé a la surface de la cellulose.

Les simulations ont aussi montré que seul le xylane en hélice 2 s’adsorbé a la surface de cellulose. Il
est parfaitement étendu, aligné parallelement a la direction de la chaine de cellulose et dans un plan
paralléle a celui de la cellulose. Adsorbé sur les surfaces hydrophobes de la cellulose, il maximise ses
interactions avec la cellulose en superposant ces cycles xylosyl sur les cycles glucosyl de la cellulose.
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2. Test d’adhésion macroscopique

Formation du modéele trois couches pour le test de cisaillement

Les films de MFC a 50 g/m? réalisés par filtration et séchage sur I'appareil a formette Rapid-Khoten
sont fixés a I'aide de colle époxy sur des spatules en bois coupées en leur milieu (75 mm). L’ensemble
est séché a température ambiante pendant 5h.

Le gel de xylane (75 mg a 10%) extrait des MFC (kraft bouleau) ou commercial (avoine) est ensuite
déposé sur une surface délimitée du film de MFC (18 x 20 mm, soit 360 mm?). Pour améliorer, le dépot
du gel de xylane, il est préalablement broyé a I'ultra-turrax. Les spatules sont ensuite assemblées par
paires et la quantité finale de xylane dans le systeme correspond a 150 mg a 10%. Le systéme trois
couches est séché a température ambiante 4h puis a la presse chauffante (120°C, 3h, 10bar) et refroidit
a température ambiante sous contrainte.

Des calles en bois (18*%20*2 mm) sont collées a la super glue Loctite a chaque extrémité des spatules
pour assurer l'alignement du systéme dans les mors de la machine de traction (Figure 4 A). Les
systémes sont ensuite conservés dans des dessiccateurs a différentes humidités.

Les méme systemes trois couches sont réalisées avec de la colle hotmelt a la place du xylane pour
servir de référence.

A: Tensile tester: B: In cross section:

Load cell

Grip on crosshead

MFC film
Wood spatula

70 Adhesive

Wood wedge
Fixed grip

dimensions are in mm

Figure 4: Schéma du test de cisaillement

Le systeme trois couches est placé avec les calles en bois fixées dans les mors de la machine de traction
(Shimadzu AGS-X). L’écart initial entre les mors est fixé a 70 mm (Figure 4 B). Le test de cisaillement
est réalisé a température ambiante avec les cellules de mesures de 500 N a la vitesse de 5 mm/min.
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La force maximale (Fm) avant la rupture est mesurée puis la contrainte de cisaillement est calculée a
partir de I’équation suivante, ou (I x L) correspond a la surface de gel de xylane déposé sur le film de
MFC soit 3,6 cm?.

Fm
o cisaillement = ——
| XL

Les modes de ruptures observés sur tous les systemes sont uniquement cohésifs (dans la couche de
xylane ou de colle hot melt). Les valeurs de cisaillement (Figure 5) obtenues avec les systémes
contenant du xylane sont inférieures a celles de la colle hot melt mais reste dans le méme ordre de
grandeur dans le cas des essais réalisés a 15% d’humidité.

= = Xylan from oat

Hot melt
—— Xylan from birch kraft MFC glue (ref)
350
910 MPa o
300 — 1 |360 Mpa  15% RH | 2200 Mpa
250 ez’ i
= 650 MPa
< 20 / 240 MPa  45% RH | 1800 Mpa
£ 150 P
s b
100 ———
% E - 40 MP
e ———— = b Y Mpe  95% RH | 1400 MPa
0 02 0.4 0.6 08 1 1.2

Figure 5: Courbes de cisaillement des modeles 3 couches (xylane extrait ou commercial) a 15%, 45% et
95% d’humidités relatives (RH) et les valeurs d’énergie pour la référence avec la colle

En revanche pour les taux d’humidité supérieurs, une forte diminution du cisaillement est observée,
jusgqu’a une perte complete d’adhérence a 95% d’humidité. Néanmoins, I"'augmentation d’humidité
mets en évidence un phénomene de plastification, visible par la diminution de I'élongation, sur les
systemes constitués de xylanes.

Le type de xylane utilisé dans la couche adhésive du systéme semble influencer le cisaillement : des
valeurs légerement inférieures sont observées avec les systéemes composés de xylane d’avoine. Cette
différence peut étre expliquée par la présence de branchements arabinoses sur ce type de xylane mais
nécessite des études supplémentaires pour confirmer l'influence des groupements arabinoses sur
I’adhésion cellulose-xylane.
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Etat de dispersion des MFC

L'influence de I'essence de bois et du procédé de mise en pate sur le nombre d’éléments grossiers
résiduels dans les suspensions de MFC et sur les propriétés mécaniques des papiers renforcés avec des
MFC, a récemment été étudiée au CTP (Tapin-Lingua, Meyer, et Petit-Conil 2013).

Au cours de cette étude, il est apparu que les hémicelluloses avaient un réle important dans
I’'homogénéité des suspensions de MFC et ainsi dans la résistance des papiers renforcées par MFC.

Dans le but de mieux comprendre le role de ces hémicelluloses dans les suspensions de MFC, des
méthodes de caractérisation de la dispersion de suspensions de MFC contenant plus ou moins
d’hémicelluloses ont été développées.

La premiere est basée sur la mesure de turbidité par spectroscopie UV - visible des suspensions
initialement développée par Carr et Hermans (1978) puis adapté récemment sur des gel par
Ferri et al. (2015). Cette méthode repose sur le principe qu’'une suspension est d’autant plus
transparente qu’elle est homogéne. Inversement une solution est d’autant plus opaque qu’elle est
hétérogene (Saito et Isogai 2006).

La deuxieme méthode s’appuie sur la mesure de surfaces spécifique d’aérogel de MFC, obtenu aprés
lyophilisation dans le ter-butanol, récemment décrite comme préservant la structure des suspensions
de cellulose a I'état sec (Fumagalli et al. 2013).

1. Préparation des aérogels et des suspensions de MFC

Les aérogels de MFC sont préparés par échange de solvant eau-ter butanol par centrifugations
(112 200 rpm, 2 h, 25°C) et redispersions successives dans le ter-butanol. Apres la troisieme
centrifugations, les MFC sont redispersées a 1,25% en masse dans le ter-butanol, puis congelées a
I'azote liquide et lyophilisées 100 mili-torr pendant deux jours (Fumagalli et al. 2013).

Les mesures de surface spécifique ont été réalisées par mesure d’adsorption-désorption d’azote en
utilisant I'équation BET (Braunauer, Emmett, and Teller 1938). Les échantillons lyophilisés dans le ter-
butanol (0,07 — 0,15 g) sont dégazés a 105°C pendant 5h puis I'isotherme d’adsorption-désorption est
mesuré a 77K a la pression de 0,01-0,3 bar.

Pour la mesure de turbidité, les suspensions de MFC sont diluées a 1% : en dessous de 0.5% la
sédimentation est trop importante et perturbe la mesure ; au-dessus de 1% la suspension est trop
opaque et I'atténuation du rayon lumineux est trop importante.

Les mesures de turbidité sont réalisées avec des cuves UV en quartz sur un spectrométre UV visible
sur la gamme de longueur d’onde de 200 a 800 nm. Les mesures sont collectées a la vitesse de
600 nm/min avec une résolution de 1 nm.

2. Corrélation entre la surface spécifique et la turbidité des MFC

Les suspensions de MFC étudiées, peuvent étre séparées en deux groupes selon leurs courbes de
turbidité (Figure 6): (1) les suspensions les moins bien dispersées avec des courbes de turbidité concave
qui augmente avec la longueur d’onde ; (2) les suspensions les mieux dispersées, ayant des courbes de
turbidité convexe qui diminuent avec la longueur d’onde.

Tous les suspensions des MFC issues de pates sulfites séchées font partie du groupe (1) alors que les
MPFC produites a partir de pates krafts et de pates sulfites jamais séchées correspondent au groupe (2).
Méme si I'effet est bien moins important que sur les pates sulfites, une faible variation dans I'allure de
la courbe est visible pour les MFC de pates kraft séchées.
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Il semble donc que I'état de dispersion des MFC soit aussi lié au séchage de la pate. L'effet du séchage
sur la dispersion des MFC est d’autant plus marquant que la teneur en hémicellulose est faible.

Hemicellulose

MFC from SSA
750 content
— euc-sul: 3
’:5 — pine96-sul: 2.5 120 m¥g
=
£ pine92-sul: 6 100 m?/g
(@]
- —  birch-kra: 24%
~ == birch-kra-nd:  24% 160 m?/g
- pine96-sul-nd: 2.5 160 m*/g
- spruce-kra: 16% 170 m?/g
200 300 400 500 600 700 800 pine92-sul-nd: 6% 140 m?*/g

A Wavelength (nm)

Figure 6: Turbidité des MFC en fonction de la longueur d’onde (A) corrélé a leurs surfaces
spécifiques (m?/g)

Ce premier résultat est confirmé par les analyses de surfaces spécifiques. Les suspensions les moins
bien dispersées (MFC de pates sulfites séchées) avec des courbes de turbidité concave (1) ont des
surfaces spécifiques comprises entre 100 et 120 m?/g.

Au contraire, les MFC les mieux dispersées, ayant des courbes de turbidité convexe (2) ont des surfaces
spécifiques plus élevées, comprises entre 140 et 170 m?/g.

3. Corrélation entre la turbidité des MFC et leur potentiel de renfort des papiers

Pour faciliter la comparaison, la turbidité des MFC a la longueur d’onde de 800 nm est tracée en
fonction de la valeur d’élongation des films renforcés (Figure 7).

Il semble que I'effet de renfort mécanique des papiers par des suspensions de MFC soit directement
lié a leur état de dispersion, qui a son tour dépend de la teneur en hémicelluloses et du séchage de la
pate. En effet, une suspension de MFC résultant de la pate sulfite jamais séchée a le méme effet sur
les propriétés mécaniques que celles issues de pate kraft séchée de bouleau ou d'épicéa et elles
partagent le méme comportement d'agrégation (courbes de turbidité).

Les aérogels correspondant présentent également des surfaces spécifiques trés proches, illustrant
I'impact positif de la dispersion des suspensions sur les propriétés du matériau final.

750 7 MFC from
. - y =-21.3x + 1520 )
S 650 | 2078 ® euc-sul
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E 550 - ® pine96-sul
0 .
= 450 A pine92-sul
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< 2501 *+ pine96-sul-nd
*  spruce-kra
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Figure 7: Corrélation entre I’indice de rupture des formettes et la turbidité des suspensions
de MFC a 800 nm
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Nouveau prétraitement avant production de MFC

La pate kraft de bouleau jamais séchée a été utilisée pour évaluer I'impact d’un traitement par la
xylanase sur le potentiel de séparation des microfibrilles de cellulose dans I'homogénéiseur. Ce
nouveau prétraitement a été testé seul ou en combinaison avec le prétraitement conventionnel par
une endoglucanase et comparé a une pate non prétraitée ou prétraitée par I’endoglucanase seule. La
pate prétraitée enzymatiquement a été raffinée avant production de MFC en 5 passages dans
I’'homogénéiseur haute pression (GEA NS3006) selon la séquence suivante : 1 passage a 1000 bar puis
4 passages a 1500 bar. Les suspensions de MFC ainsi produites ont été caractérisées en termes de
teneur résiduelle en éléments grossiers (analyse MorFi), turbidité et composition en sucres.

1. Caractérisation des MFC

Quel que soit le prétraitement utilisé, aucune variation de la teneur en xylane n’est observée (Figure 8).
Les charges en enzymes utilisées ici sont volontairement faibles afin de rester compétitif par rapport
au co(t du raffinage seul. De plus 'utilisation d’enzyme ne vise pas I'extraction compléte du xylane
mais seulement sa fragilisation afin de préserver les propriétés des MFC en présence d’hémicelluloses.
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500 - _ )
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© 300 Without - enzyme  22% 390 12
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Figure 8 : Impact des différents prétraitements sur la turbidité, la teneur en xylane et la quantité résiduelle
des fibres et de fines dans les suspensions de MFC.

Les courbes de turbidité sont convexes et correspondent a des suspensions bien dispersées. |l apparait
toutefois une turbidité plus élevée et donc une dispersion un peu inférieure pour les MFC sans enzyme
ou les MFC issues de pate prétraitée par la xylanase seule. Ce résultat est corrélé avec une teneur en
fibres (longueur>80 um) et fines (longueur<80 um) résiduelles supérieures. La combinaison d’un
prétraitement endoglucanase + xylanase conduit a la meillleure qualité de MFC : cette suspension est
la mieux dispersée et contient un maximum de microfibrilles.

La xylanase semble faciliter I'action de I’endoglucanase. Elle pourrait fragiliser la structure du xylane
et ainsi en permettant une meilleure accessibilité de la cellulose pour I'endoglucanase.
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2. Impact sur la consommation d’énergie

Au niveau de I'étape de raffinage, seule I'endoglucanase a un effet majeur en réduisant de 50% la
consommation d’énergie par rapport a la référence sans enzyme (Figure 9). Par contre, si I'on
considére I'énergie totale incluant ’homogénéisation, le mélange endoglucanase/xylanase conduit a
la plus forte économie d’énergie : 1800 kWh/t (soit 17%) par rapport a la référence sans enzyme et
870 kWh/t (soit 8%) par rapport a un traitement endoglucanase seul. Un traitement
endoglucanase/xylanase facilité donc la libération des microfibrilles dans I’homogénéiseur ce qui se
traduit par un gain énergétique et une qualité de MFC supérieure.
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Figure 9 : Impact des différents prétraitements sur la consommation d’énergie apres raffinage seul et apres
raffinage et homogénéisation
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Conclusion générale

Ce projet avait pour but de développer les connaissances sur les interactions entre les microfibrilles de
cellulose et des hémicelluloses, dans le but de mieux cibler les parametres pour améliorer le processus
de microfibrillation.

Pour cela, une approche a différents niveaux a été envisagée, comprenant une caractérisation
classique des composants individuels et de leurs interactions au niveau moléculaire, principalement
par RMN du solide, leurs simulations par modélisation moléculaire a un niveau atomistique et
I'évaluation de leurs propriétés a I'échelle macroscopique. Sur la base des résultats obtenus un
nouveau prétraitement des fibres avec une xylanase a été proposé.

e Le xylane extrait des MFC est différent du xylane natif du bois
L’optimisation du protocole d’extration du xylane des MFC a permis d’atteindre un rendement
d’extraction de 67%. La pureté du xylane obtenu est trés élevée, entre 93% et 97%. Ce xylane est
soluble uniqguement dans le DMSO et il est cristallin en présence d’eau.

Aprés caractérisation, il est apparu que ce xylane était dépourvu de branchement arabinose
contrairement a son état natif dans le bois. Deux hypothéses sont alors envisagées pour expliquer cette
absence de ramifications : (a) Il y a deux types de xylanes synthétisés dans le bois : un homopolymere
de xylane dépourvu de ramification et un xylane branché plus facile a extraire. (b) Tous les xylanes sont
branchés a I'état natif dans le bois mais les procédés de mise en pate modifient ces ramifications sans
toutefois éliminer le xylane.

e Le xylane interagit tres fortement avec la cellulose
La caractérisation des MFC apres extraction et les modeéles de ré-adsorption de xylane suggerent une
modification de conformation du xylane lorsqu'il s'adsorbe a la surface de la cellulose. Initiallement,
sous forme d’hélice a trois résidus par tour, il change sa conformation pour adopter celle de la cellulose
en hélice a deux résidus par tour

Les résultats des simulations atomistiques montrent que le xylane s'adsorbe en conformation d’hélice
2, (similaire a la cellulose) parallelement a la direction de la chaine de cellulose et dans un plan paralléle

e L’état de dispersion des MFC est un paramétre clé

Cet état de dispersion des MFC peut étre suivi par turbidimétrie qui reflete de maniere qualitative
I’'homogénéité de la suspension. Les allures de courbes de turbidité ont pu &tre mises en relations avec
des mesures de surface spécifiques d’aérogel et de propriétés mécaniques de papiers renforcés par
des MFC. Il est apparu que les MFC les mieux dispersées, provenaient de pates krafts ou sulfites jamais
séchées. Leurs turbidités sont les plus faibles et leurs surfaces spécifiques les plus élevées. La valeur
de turbidité des MFC a 800 nm est donc un bon indicateur pour estimer les propriétés mécaniques des
films renforcés.

e Laxylanase permet d’améliorer la microfibrillation
Le pré-traitement des fibres par un mélange endoglucanase et xylanase permet d’obtenir des MFC plus
homogenes refermant moins d’éléments grossiers résiduels et montrant un état de dispersion plus
élevé. De plus, des économies d’énergie de I'ordre de 17% par rapport a une pate non traitée et de 8%
par rapport a une pate traitée seulement par I'endoglucanase ont été mesurées lors de la production
des MFC.
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Résumé court anglais :

The Micro-Fibrillated Cellulose (MFC) are a derivated product from the wood paper industry with
nanoscale dimensions, mainly composed of cellulose and hemicelluloses. They found interesting
applications as they can enhance materials properties, like the paper strength for example, but their
development at industrial scale is still challenging because of the cost of the production. Indeed the
MFC are resulting from the wood pulp deconstruction which consume a lot of energy due to the
interaction between the cellulose and the hemicelluloses. In this project, hemicelluloses were first
isolated by an optimized process from the MFC and analyzed separately. We investigated the
hemicelluloses/cellulose interactions by spectroscopy and molecular modeling. Systems made of
cellulose and hemicelluloses were then developed at macroscopic scales to evaluate the adhesion
between hemicelluloses and cellulose. A solution with enzymatic treatment has been proposed.

Résumé court frangais :

Les Micro-fibrilles de cellulose (MFC) sont un produit dérivé de I'industrie papetiere de dimensions
nanométriques et principalement composées de cellulose et d’hémicelluloses. Elles ont des
applications dans le renfort de matériaux, comme celles du papier par exemple, mais leur
développement a I’échelle industrielle est encore limitée par leurs co(ts de production. Les MFC sont
issues de la déconstruction de pate a papier par un procédé limité par les interactions
cellulose/hémicelluloses. Dans ce projet, les hémicelluloses ont d’abord été isolées des MFC par un
procédé optimisé puis caractérisées séparément. Nous avons ensuite étudié les interactions
cellulose/hémicelluloses par des techniques de spectroscopie et de modélisation moléculaire. Des
modeles reconstitués ont ensuite été étudiés a I'échelle macroscopique pour évaluer I'adhésion entre

les hémicelluloses et la cellulose. Une solution de traitement par des enzymes a été proposée.



Résumé anglais :

The study was motivated by the necessity to reduce the high energy costs of Micro-Fibrillated Cellulose
(MFC) production, which is a limiting factor for its industrial development and aimed at understanding
the cellulose/hemicelluloses interaction within this system. MFC resulting from different chemical
pulps were characterized by solid-state NMR spectroscopy to get information on the hemicelluloses
content and molecular conformation. By optimizing an extraction protocol, more than 60% of the
residual hemicelluloses were extracted from birch kraft MFC and characterized as a high purity
homopolymer of B-1,4 linked xylan of DP 75.

Turbidimetry was used to qualify the quality of the suspensions, which strongly depended on the
pulping and drying history. Positive correlations between the state of dispersion, specific surface and
mechanical properties of MFC-reinforced handsheets were evidenced.

Cellulose/xylan interactions were investigated using solid-state NMR and atomistic molecular
dynamics (MD) simulation. NMR spectra confirmed that xylan in contact with cellulose altered its
conformation, from the three-fold helix to a presumable cellulose-like two-fold one. In combination
with specific surface area measurements, the conformational change was shown to happen only for
the first layer of xylan adsorbed in direct interaction with the cellulose surface. MD simulations showed
that adsorbed xylan tends to align parallel to the cellulose chain direction fully extended. Interaction
energy between xylan chain and cellulose surface estimated with MD was 9klJ/xylose. Then a three-
layers system made of xylan between two cellulose films were built to perform adhesion tests that
showed strong adhesion between xylan and cellulose surfaces. Xylanase was proposed as a pulp
pretreatment for MFC production.

Résumé frangais :

Le cadre de cette étude est le colt énergétique lié a la production des Microfibrilles de Cellulose (MFC)
qui est aujourd’hui un facteur limitant a son développement a I'échelle industrielle. Le but de cette
étude est de caractériser les interactions cellulose/hémicellulose au sein de ces systémes. Des MFC
provenant de différentes pates a papier chimiques ont été caractérisées par RMN du solide afin
d’obtenir des informations a I’échelle moléculaire. Suite a I'optimisation d’un protocole expérimental,
les hémicelluloses contenues dans les MFC issues de pate kraft de bouleau ont ensuite été extraites
avec un rendement de 60% et sont composés uniquement d’un homopolymére de xylane de DP 75.
La turbidimétrie a été utilisée pour qualifier la qualité des suspensions, dont il a été montré qu’elle
dépend fortement du procédé de mise en pate et du séchage. Des corrélations positives ont été
établies entre I'état de dispersion et les propriétés mécaniques de feuilles de papier additionnées de
microfibrilles. L’analyse RMN de modeles biomimétiques reconstitués a confirmé le changement de
conformation du xylane lorsqu’il est adsorbé sur la cellulose et les mesures de surface spécifique ont
montré que seule la couche de xylane en contact avec la cellulose était concernée par ce changement.
Les interactions cellulose/xylane ont été étudiées par RMN du solide et par dynamique moléculaire
atomistique (MD). Les simulations MD ont montré que le xylane s’adsorbe parallelement aux chaines
de cellulose. Des mesures d'interaction sur ce systeme ont conduit a une mesure d'énergie de
9kJ/résidu de xylose.Des tests de mesure d’adhésion ont également été réalisés a partir d’'un modéle
trois couches constitué de xylane entre deux films de cellulose et une forte adhésion a pu étre
observée.

L'utilisation de xylanase comme prétraitement est proposé pour améliorer la production des MFC.



