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qu’on a pu lui imposer. Sans son importante implication, il aurait été impossible d’aller
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s’tasse, Pacôme, Anthony, Estelle, Romain A. et Thomas. Je remercie aussi les quelques
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Roman, et aux doctes théoriciens Tania et Kostya.

De la même manière, j’aimerais exprimer la gratitude que j’ai pour mes collègues
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le réconfort qu’elle apporte quand ça ne va pas, Paul pour ses plans de vacances si
enthousiasmants qu’ils permettent d’endurer n’importe quelle charge de travail, Mélina
pour sa fraicheur authentique et bienveillante, et Simon, le petit nouveau que j’ai eu
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d’indépendance et de liberté.
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Résumé

La découverte du graphène en 2004 constitue une double avancée en physique de la
matière condensée. D’une part, ses propriétés électroniques sont celles d’un gaz de
fermions de Dirac sans masse. D’autre part, sa structure fournit le tout premier exemple
d’un matériau ordonné à deux dimensions.

Cette seconde caractéristique est étudiée dans cette thèse par microscopie à effet
tunnel (STM), dans le cas du graphène synthétisé en ultra-haut vide sur la face (0001)
du rhénium. A deux dimensions, l’ordre cristallin est en effet impossible, et il est prédit
qu’un quasi-ordre à longue distance s’y substitue, où la phase du paramètre d’ordre
fluctue. Le substrat de rhénium intervient alors comme une influence extérieure qui peut
restaurer l’ordre cristallin, en forçant la structure du graphène à épouser une relation
d’épitaxie avec le rhénium.

L’étude proposée de la structure du graphène démontre qu’elle est en fait tribu-
taire de contraintes cinétiques héritées de sa croissance. Plusieurs nanostructures car-
actéristiques ont ainsi été identifiées à l’échelle atomique, permettant de remonter au
mécanisme de croissance. Deux chemins réactionnels y entrent ainsi en compétition.
Le premier aboutit à une famille d’agrégats de carbone métastables, de structures bien
définies, en épitaxie sur le rhénium. Le second mène à la croissance d’̂ılots de graphène
qui s’étendent sur quelques nanomètres. La coalescence de ces ı̂lots et l’incorporation
des agrégats en leur sein conduit à des défauts structurels dont la structure atomique est
détaillée pour la première fois. Cette étude exhaustive révèle la diversité des chemins
réactionnels lors de la croissance de graphène sur rhénium, qui sont autant de compromis
entre cinétique et thermodynamique.

Au terme de cette croissance, le graphène obtenu n’est pas uniforme, mais comme
constitué de domaines s’étendant sur des distances de l’ordre de 10 nm. Chaque domaine
présente une relation d’épitaxie entre le graphène et le rhénium qui lui est propre, où
le graphène s’avère à la fois tourné et cisaillé par rapport à son substrat, comme le
montre une méthode d’analyse d’images STM développée à cet effet. L’élaboration d’une
classification universelle de ces relations d’épitaxie montre leur grande diversité. Deux
interprétations se confrontent alors. Les parois entre domaines de graphène peuvent en
effet être interprétées comme des défauts topologiques dans l’ordre cristallin imposé au
graphène par le substrat de rhénium. Alternativement, ce sont des modes de fluctuations
dont la dynamique est gelée par l’interaction avec le substrat. Ces résultats remettent
donc en question la notion d’ordre cristallin imposé par son substrat à un matériau
bidimensionnel. Ils montrent qu’au lieu de forcer une relation d’épitaxie particulière,
l’interaction du graphène avec son substrat donne lieu à une phase dite chaotique.
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Abstract

The discovery of graphene in 2004 is a two-fold breakthrough in condensed matter
physics. On the one hand, its electronic properties are that of a massless Dirac fermion
gas. On the other hand, its structure is the very first example of an ordered material in
two dimensions.

This second characteristics is studied in this thesis by scanning tunneling microscopy
(STM), in the case of graphene grown in ultra-high vacuum on the (0001) surface of
rhenium. In two dimensions, crystalline order is indeed impossible, and it is predicted
to be replaced by a quasi-long-range order, for which the phase of the order parameter
fluctuates. The rhenium substrate then acts as an outside influence that can restore
crystalline order, as it forces graphene’s structure to adopt an epitaxial relation with
rhenium.

The study of graphene’s structure proposed here proves it actually originates from
kinetic constraints inherited from its growth. Many typical nanostructures have indeed
been identified at the atomic scale, giving access to the growth mechanism. Two reaction
pathways compete. The first one gives rise to a family of metastable carbon clusters
with well-defined structures in epitaxy on rhenium. The second one leads to growing
graphene islands of a few nanometers in size. The coalescence of these islands and the
incorporation of the carbon clusters ends up forming structural defects whose atomic
structure is detailed for the first time. This exhaustive study reveals reaction pathways
in the growth of graphene on rhenium are diverse, and constitute compromises between
kinetics and thermodynamics.

At the end of that growth, the obtained graphene is not uniform, but somehow
made of roughly 10 nm-large domains. Each domain displays a specific epitaxial relation
with rhenium, in which graphene is both twisted and sheared with respect to rhenium,
as revealed a STM image analysis method developed for this purpose. Elaborating a
universal classification of such epitaxial relations shows they are very diverse. Two
interpretations of this morphology are possible. The graphene domain walls can indeed
be interpreted as topological defects in the crystalline order set in graphene by the
rhenium substrate. Otherwise, they are fluctuation modes whose dynamics is frozen
by the interaction with the substrate. These results put into question the notion of
crystalline order set by a substrate to a two-dimensional material. They show that
instead of forcing a specific epitaxial relationship, the graphene-substrate interaction
gives rise to a so-called chaotic phase.
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4.1.3 Number of moiré beatings . . . . . . . . . . . . . . . . . . . . . . 115
4.1.4 Precision on the structure determination . . . . . . . . . . . . . . 117

4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.1 Twisted graphene bilayer . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.2 Graphene on Re(0001) . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.3 Graphene on Ir(111) . . . . . . . . . . . . . . . . . . . . . . . . . 123
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Introduction

Graphene is a two-dimensional material composed of carbon atoms arranged in a honey-
comb lattice. Its discovery in 2004 has triggered scientific interest for two main reasons.
Firstly, its electronic properties are those of a semi-metallic electron gas with a tunable
electron density, thus giving rise to features as unique as the anomalous Quantum Hall
effect. Additionally, due to a simple but particular band structure, electrons in graphene
are analogous to massless relativistic particles.

Secondly, graphene is the first experimentally observed truly two-dimensional ma-
terial. Changing the dimensionality of a system has critical consequences on its prop-
erties. Graphene is then the first experimental testbed of the possible changes due to
two-dimensionality. For example, it was known long before the first studies on graphene
that in two dimensions, systems with finite-range interactions do not break any contin-
uous symmetry. This is especially true for translational invariance, which means that
the long-range order that exists in three-dimensional crystals is impossible in graphene.
Instead, it is predicted to display quasi-long-range order.

This two-fold gallery of uncommon traits motivates the present thesis. Indeed, even
if graphene intrinsically hosts such peculiar properties, they are inevitably altered by
its environment. At the very minimum, graphene has to lie partially on a substrate.
Depending on how intimate the graphene-substrate contact is, the electronic behaviour
may change critically. Besides, when supported by a crystal, conformation of graphene
to the long-range order of the substrate is also expectable. Then, to what extent the
properties of graphene are modified by the interaction with a crystalline substrate? In
this thesis, this question will be answered in the case of the (0001) surface of rhenium.

The apparent simplicity of the electronic band structure of graphene is rich in unusual
properties. The concepts of pseudo-spin and chirality derive from it, and give a far-
reaching understanding of the behaviour electrons in graphene. In the first chapter,
they will be introduced, and a specific attention will be given to the analogy made
between graphene and quantum relativity. But are these notions and analogy suitable
to understand the impact of a substrate on graphene? It will be shown that by relying
on them, effects due to the interaction with its environment can be understood based
on relatively crude models.

Growing graphene on various crystalline substrates has brought considerable insight
on the structure of supported graphene. In particular, graphene is known to be rigid,
so when supported, it tends to maintain its structure rather than adopt that of the sub-
strate. Supported graphene then leads to the superposition of two unmatched lattices
that gives rise to a moiré superlattice. Do the models introduced in the first chap-
ter help to understand the electronic properties of graphene moiré superlattices? This
question will be addressed in the light of current literature. It will actually appear that
many electronic features relate to structural aspects. This connection brings naturally

1



CONTENTS

to the other question of the second chapter: what are the structural phases of supported
graphene? With this focus, supported graphene can be understood as either commen-
surate or incommensurate, or equivalently as displaying long-range or quasi-long-range
order. These notions and their implications will be explained to anticipate experimental
results. In particular, topological defects will be introduced as a possible signature of
commensurate phases.

An introduction to the experimental and numerical tools used here will be given in
the third chapter. It will explain the basic concepts of scanning tunneling microscopy
(STM), of reflection high energy electron diffraction (RHEED), and of the two numerical
methods employed.

Two experimental works will then be presented. The first one is a STM study of
moiré superlattices observed in different supported graphene systems. For each, can
graphene be assumed to be commensurate as it is usually done? The consequences of
this assumption will be tested in the fourth chapter. To that end, an original analysis of
STM images based on commensurability will be presented. When used on graphene on
Re(0001) (and on other metals as well, like Ir(111)), it will show graphene is subjected to
a non-trivial strain distribution. Besides, the very large number of similar commensurate
structures accessible to graphene moiré superlattices will put into question the usual
commensurability hypothesis.

The second study will go further, and interpret the STM results as the signature
neither of a commensurate, nor of an incommensurate phase, but of a chaotic one. From
what does this chaotic state originate? An answer will be given to this final question
in the fifth chapter. A discussion will indeed be provided on why the commensurate
and incommensurate phases fail to account for experimental data. The reason for such
a failure will be detailed in an exhaustive study of graphene growth on Re(0001).

2



Chapter 1

Electronic properties of graphene

Since its first experimental identification in its pristine form in 2004 [152], graphene
has focused scientific and public attention both as a new kind of material with vari-
ous potential applications [46], and as a candidate system to explore exotic electronic
phases [151]. In this Chapter, this second aspect will be presented for both pristine
and supported graphene. In particular, the influence of a substrate on the electronic
properties of graphene will be considered following two elementary models.

1.1 Dirac-Weyl excitations in pristine graphene

Graphene has raised theoretical interest long before its experimental identification [210],
and its electrons have been predicted to mimic massless relativistic particles [180], so
they would be called Dirac-Weyl excitations in a particle physics context.

In this section, the crystal structure and electronic bands of graphene are going to be
introduced, in order to clarify this link to particle physics. This will require to remind
elementary concepts of relativistic quantum mechanics, which find a condensed matter
equivalent in graphene. The experimental signatures and theoretical limitations of this
analogy will also be briefly discussed.

1.1.1 Crystallographic structure of graphene

Graphene is a two-dimensional crystal made of carbon atoms arranged in a honeycomb
lattice. As such, it has a triangular Bravais lattice with two atoms per unit cell, labelled
A and B on Fig. 1.1a. Every A atom has three B atoms as first neighbours and vice
versa, so graphene has a bipartite lattice. As a convention, an A atom is placed on the
origin, and the unit vectors (a1, a2) express according to the basis vectors as:

a1 =
agr
2

ex −
agr
√

3

2
ey and a2 =

agr
2

ex +
agr
√

3

2
ey (1.1)

with agr = 2.46 Å the graphene unit distance, related to the interatomic distance
a = 1.42 Å through agr = a

√
3. This situation can also be considered as two identical

triangular lattices A and B with one atom per unit cell, shifted with respect to each
other, called the A and B sub-lattices of graphene. Owing to its three-fold symmetry,
there are three possible vectors to express the shift between the two sub-lattices:

d1 =
agr
2

ex +
agr
√

3

6
ey , d2 = −agr

2
ex +

agr
√

3

6
ey and d3 = −agr

√
3

3
ey (1.2)

3



Chapter 1. Electronic properties of graphene

b1

b2

kx

ky

K'K

�

M

M'

M"
�

A

B

a1

a2

ex

ey

d1d2

d3

Figure 1.1: Graphene’s direct and reciprocal lattices. Left: the honeycomb
lattice of graphene has a periodicity of unit cell (a1, a2), which contains two atoms
labelled A and B. A and B atoms are coloured respectively in red and blue, making the
decomposition of the honeycomb lattice into two triangular sub-lattices visible. Right:
the periodicity of the reciprocal lattice of graphene is given by (b1,b2), which defines a
hexagonal first Brillouin zone with two inequivalent corners K and K ′.

The reciprocal lattice of graphene can be expressed with its unit vectors (b1,b2)
using ai · bj = 2πδij (δij is the Kronecker delta), which gives:

b1 =
2π

agr
kx −

2π
√

3

3agr
ky and b2 =

2π

agr
kx +

2π
√

3

3agr
ky (1.3)

This definition gives rise to a hexagonal first Brillouin zone, comprising a few high
symmetry points: Γ, M , K, M ′, K ′ and M ′′ as represented on Fig. 1.1b. Among them,
the two corners K and K ′ play a critical role in the electronic properties of graphene.

1.1.2 Band structure of graphene

As a two-dimensional crystal, the electronic properties of graphene can be properly de-
scribed using electronic bands E(k) defined over the periodic two-dimensional reciprocal
space represented on Fig. 1.1b. Their dispersion was first calculated in 1947 by Philip R.
Wallace [210], using a tight-binding model to determine the band structure of graphite.
More recent and exhaustive studies have been published since then [6, 22, 59, 171], and
have served as an inspiration for the following. The tight-binding model provides a sim-
ple and yet rich picture of graphene’s band structure. Before employing it, this model
is going to be briefly presented, and its validity discussed.

The tight-binding model relies on two main hypotheses. As its name suggests, the
tight-binding model is a model where the electrons are strongly bound to the individual
atoms of a solid. The first hypothesis thus consists in building the electronic bands of
this solid, based on the discrete levels of its constituting individual atoms. Consistently,
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1.1. Dirac-Weyl excitations in pristine graphene

Figure 1.2: sp2 hybridization of carbon. Top: to get an in-plane three-fold sym-
metry, the 2s, 2px and 2py atomic orbitals recombine intro three sp2 orbitals, while the
out of plane 2pz orbital remains unchanged. Bottom: for two adjacent carbon atoms,
the large overlap of sp2 orbitals forms σ bonds, while the smaller overlap of 2pz orbitals
leads to a delocalized π bond.

the associated electronic wave functions are assumed to be linear combinations of the
atomic orbitals. This means electrons localized on atomic orbitals are still considered
as a relevant basis for electrons in a solid. This process relies on two basic assumptions.

The first one consists in considering (usually a few) atomic levels close enough in
energy to each other. The second one is to assume the corresponding atomic orbitals of
two neighbouring atoms have only a small overlap. These minimal assumptions mean
that each atom can host electrons in these atomic orbitals – they play a role of possible
sites for the electrons.

As for the chemical bonds sustaining the crystal, they correspond to electrons that are
shared by neighbouring atoms. Therefore, they are modelled by the dynamic exchange
of electrons in between neighbouring sites. In other words, the electrons of the solid are
delocalized over the considered orbitals of all its atoms. Nevertheless, as the overlap
between neighbouring sites is small, this delocalization is weak. As a result, the second
hypothesis of the tight-binding model is to authorize exchange of electrons only between
neighbouring sites.

One may wonder why a model where electrons are tightly bound to atoms is rele-
vant for graphene, where electrons are delocalized as in a two-dimensional electron gas.
Indeed, the tight-binding model was originally used to calculate the electronic band
dispersion associated with weakly overlapping orbitals of the core electrons in metals.
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Chapter 1. Electronic properties of graphene

Their conduction band results on the other hand of highly hybridized orbitals. For gra-
phene, the valence and conduction bands are going to be shown to actually arise from
the out-of-plane 2pz orbitals, which have a smaller overlap than the in-plane orbitals,
thus making a tight-binding approach appropriate.

To use this model in the case of graphene, one has to first consider the atomic orbitals
of its individual atoms, which are carbon atoms. When considered isolated, carbon has
the electronic configuration (1s)2(2s)2(2p)2. Since the 1s electrons are core electrons,
they can be assumed to play no role in the electronic properties, contrary to the 2s
and 2p valence electrons. They are about to be used to build a relevant basis of atomic
orbitals for electrons in graphene.

As it has been presented in the previous section, each carbon atom of graphene is in
a configuration with three-fold in-plane symmetry. Due to this local environment, the
relevant atomic orbitals cannot be the usual 2s, 2px, 2py and 2pz, which do not satisfy
this symmetry constraint: they need to undergo a sp2 hybridization. This means that in
order to account for the three-fold in-plane symmetry, the 2s, 2px and 2py atomic orbitals
linearly recombine into 3 sp2 in-plane orbitals, while the 2pz orbital remains unchanged.
The electronic configuration of carbon can then be rewritten as (1s)2(sp2)3(2pz)

1. In
the framework of the tight-binding model, this operation is a mere change of basis,
but this new basis is more appropriate, as it is compatible with the symmetry of the
crystallographic structure.

The honeycomb structure leads to a large overlap of the sp2 orbitals of the neigh-
bouring atoms, giving rise to 3 strong in-plane localized σ bonds for each carbon atom.
These σ bonds are responsible for the skeleton of the honeycomb lattice. As for the re-
maining electron, the smaller overlap of the neighbouring 2pz orbitals creates a π state
delocalized over the whole lattice. This π band explains the electronic properties of
graphene.

From these considerations, one then needs to take only this last electron into account
in the tight-binding model. In this case, each carbon atom corresponds to one site (its
2pz orbital), and it contributes for one to the total number of electrons in the crystal.
As a consequence, the electronic wave function ψ will be written as a linear combination
of the 2pz orbitals φ of each carbon atom.

It is necessary to distinguish between the A and B sub-lattices, because both hold
a triangular translational invariance, as seen in the previous section. This translational
invariance enables to define the crystal wave vector k as a good quantum number, and
to use the Bloch theorem for each sub-lattice:

ψk (r) = a (k)ψAk (r) + b (k)ψBk (r)

=
1√
N

∑
j

eik·rj (a (k)φ (r− rj) + b (k)φ (r− rj − d)) (1.4)

where ψAk and ψBk are Bloch waves associated to sub-lattices A and B, and φ (r) =
〈r|φ〉 is the 2pz orbital in the r representation. The sum on j runs over the N unit cells
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1.1. Dirac-Weyl excitations in pristine graphene

of the honeycomb lattice. The positions of the A and B atoms are given respectively by
the vectors rj and rj + d, where d is any of the vectors introduced in Equation (1.2).
As a result, Equation (1.4) is a decomposition of the electronic wave function onto the
two Bloch waves, each of them centred on the atoms of a given sub-lattice, with weights
given by the complex coefficients a (k) and b (k).

Since this decomposition on sub-lattice Bloch waves holds the essence of both the rel-
evant electronic properties of individual carbon atoms and the translational invariance,(
ψAk , ψ

B
k

)
is going to be used a basis for the electronic wave function1 as:

ψk =

(
a (k)
b (k)

)
(1.5)

Nonetheless, it should be noted that it is not an orthonormal basis. Indeed, although
ψA∗k ψAk = ψB∗k ψBk = 1 due to normalization, ψA∗k ψBk = SAB 6= 0. Using a wave function
of this form, it is possible to calculate the band dispersion of graphene close to the
Fermi level by solving the time-independent Schrödinger equation Hψk = Ekψk. By
multiplying it by ψ†k, one gets ψ†kHψk = Ekψ

†
kψk, which can be written in a 2 × 2

matrix form:

ψ†k

(
HAA HAB

HBA HBB

)
ψk = Ekψ

†
k

(
1 SAB
SBA 1

)
ψk (1.6)

At this point, a few assumptions can be made to simplify the problem. Since the two
sub-lattices are identical, HAA = HBB, and this value is set to 0 as it will only result
in an additional on-site energy term that shifts the bands rigidly without changing the
position of the Fermi level. Moreover, since a small overlap between the adjacent 2pz
orbitals has been assumed, so SAB = SBA ' 0. Besides, one needs to determine HAB,
which corresponds to the electron hopping term from one Bloch wave to the other. For
simplicity, only nearest-neighbour hopping will be taken into account, so the electron
can hop from A sub-lattice to B sub-lattice via either of d1, d2 or d3 vectors represented
on Figure 1.1 (left).2 Therefore, the tight-binding hamiltonian writes as:

H = −t
∑
〈i,j〉

∣∣φBi 〉 〈φAj ∣∣+ h.c. (1.7)

with t the hopping amplitude (∼ 2.7 eV), and where the sum runs over nearest-
neighbour atoms. Using Equations (1.4) and (1.7), HAB can be calculated as:

HAB = −t
(
1 + e−ik·a1 + e−ik·a2

)
= t (k) and HBA = t∗ (k)

1This time in an arbitrary representation of the Hilbert space, and not necessarily the r representa-
tion as above.

2For further reading, the effects of the overlap correction SAB = SBA 6= 0 and of the next-nearest-
neighbour hopping have been treated in other works [59,171].
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Figure 1.3: Graphene’s band structure close to Fermi energy. Left: π (blue) and
π∗ (red) bands obtained with the nearest-neighbour tight-binding approach. The black
hexagon indicates the first Brillouin zone. Right: a zoom shows the conical dispersion
of the electronic bands around one of the first Brillouin zone corner.

Under these assumptions, the Schrödinger equation in the sub-lattice basis simplifies
drastically, and its solutions are given by the secular determinant:

det

(
−Ek t (k)
t∗ (k) −Ek

)
= 0 (1.8)

which yields:

Ek = ±t

√√√√3 + 2cos (agrkx) + 4cos

(
agrkx

2

)
cos

(
agrky

√
3

2

)
(1.9)

Positive (resp. negative) energy solutions correspond to electrons in the conduction
band (resp. holes in the valence band), as represented on Figure 1.3a. Noticeably, at
the Fermi level, only two states are available, respectively at K and K ′. This vanishing
density of states at the Fermi level makes graphene a semi-metal. Additionally, around
these points, the valence and conduction bands have a conical shape, translating a linear
dependence in k, as emphasized on Figure 1.3b. A Taylor expansion of Equation (1.9)
around K and K ′ can be performed to express this dependence. The crystal wave vector

can then be written k = ξK + q, with ξ = ± and K =
(

4π
3agr

, 0
)

, in order to get the

expression:

Eq = ±agrt
√

3

2
|q| = ±~vF |q| (1.10)

which is independent of ξ. One can then extract vF = agr
√

3t

2~ ∼ 106 m.s−1. This linear
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1.1. Dirac-Weyl excitations in pristine graphene

dependence is at odds with the parabolic bands usually encountered in semiconductors,
where an inertial effective mass m∗ is defined in the form E = E0 + ~2k2

2m∗
. Using this

effective mass picture, electrons in semiconductors are modelled as independent free
electrons with a renormalized mass. No such effective mass can be defined in graphene, so
this analogy breaks3. Instead, Equation (1.10) can rather be compared to the relativistic
energy-momentum relation E2 = m2c4 + p2c2 with rest mass m = 0. From this point
of view, electrons in graphene resemble massless relativistic fermions with an effective
light speed vF . In particle physics, such particles are called massless Dirac fermions,
and the analogy between them and electrons in graphene can be pushed further using a
low-energy hamiltonian of graphene. Before presenting it, the Dirac equation in particle
physics is going to be shortly reminded, so as to make the analogy clearer.

1.1.3 Massless Dirac fermions in particle physics

In 1926, Erwin Schrödinger introduced his famous equation that describes the time
evolution of a quantum state. Although successful to account for the discrete energy
spectrum of the electron of an hydrogen atom and its 1

n2 dependence, it did not satisfy the
requirements of special relativity. Indeed, the Schrödinger equation is not a relativistic
wave equation, so its solutions do not satisfy the relativistic energy-momentum relation:

E2 = m2c4 + p2c2 (1.11)

where E is the energy of a particle, m its rest mass, p its momentum, and c the
celerity of light.

This motivated physicists to provide a relativistic generalization of the Schrödinger
equation. One such is known as the Klein-Gordon equation, which applies to spinless
bosons such as the pi-meson or the Higgs boson. Another one was formulated by Paul
Dirac in 1928, and applies to spin-1

2
particles, like electrons. This so-called Dirac equa-

tion proved to have deeper consequences on the structure of matter, as it predicted the
existence of antimatter.4 The Dirac equation states in its covariant form as:(

i~cγµ∂µ −mc2
)
ψ = 0 (1.12)

where ψ is the wave function for the electron of rest mass m, defined over a 4-
dimensional spacetime with coordinates xµ = (ct, r). Accordingly, ∂µ is the 4-gradient
(∂t
c
, ∂r). ~ and c are respectively the reduced Planck constant and the speed of light.

γµ is a set of 4 “well-chosen dimensionless coefficients” called Dirac matrices, which are
constrained due to the relation (1.11) to the anticommutation rule {γµ, γν} = 2ηµν ,
where ηµν is the Minkowski metric tensor (η00 = −ηii = 1 and ηij = 0 if i 6= j, with
i = x, y, z).

To solve this equation, it is then necessary to identify a set of γµ matrices satisfying
such an algebra. It is emphasized that many possible representations can be chosen.

3Other effective masses can still be defined, like the cyclotron mass.
4In its standard (or Dirac) representation, the negative energy solutions of the Dirac equation for

an electron correspond to the positive energy solutions of the later-discovered positron.
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Chapter 1. Electronic properties of graphene

For ultrarelativistic particles, it is relevant to write the Dirac equation in the so-called
chiral representation. This form will prove useful to compare the Dirac equation with
the low energy hamiltonian of graphene later on. In this representation, the γµ are 4×4
matrices, which can be expressed as tensor products between Pauli matrices that will be
noted σi and τi to distinguish between them. Pauli matrices were originally introduced
to describe the spin of the electron as:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
(1.13)

The γµ then state as:

γ0 = σ0τx =

(
0 σ0

σ0 0

)
and γi = iσiτy =

(
0 σi
−σi 0

)
(1.14)

where σ0 is the 2 × 2 identity matrix. In this representation, the Dirac equation
(1.12) can be decomposed onto the so-called chiral (or Weyl) basis (ψ−, ψ+) associated
to the τi matrices. This notation refers to the chirality (or “handedness”) of the electron,
which is either “left-handed” (−) or “right-handed” (+). This notion is going to get
clearer in the coming lines. The decomposition leads to the following system:{

(i~ σ0∂t + i~c σ · ∂r)ψ+ = mc2 σ0 ψ−

(i~ σ0∂t − i~c σ · ∂r)ψ− = mc2 σ0 ψ+

(1.15)

In this form, the mass term clearly appears as a coupling factor between the two-
component chiral (or Weyl) spinors ψ− and ψ+ of the basis. For massless particles (m =
0), the two equations decouple, so the electronic wave function ψ can be decomposed
into two independent chiral components ψ− and ψ+, whose chiralities are respectively
λ = − and λ = +.5 These chiral components are described by the Weyl equation, which
expresses as:

(σ0∂t + λ c σ · ∂r)ψλ = 0 (1.16)

It can be solved directly, and its solution takes the form of a plane wave ψ =
χ e

i
~ (p·r−Et), where χ is 2-component Weyl spinor. From Equation (1.11), massless

particles have E = pc, so injecting the plane wave solution in Equation (1.16) leads to:

σ · p
p

ψλ = λψλ (1.17)

5To this extent, the chiral representation actually proves relevant when defining the chirality op-
erator γ5 = iγ0γ1γ2γ3 which is then block-diagonal γ5 = −σ0τz =

(−σ0 0
0 σ0

)
. In other words, this

representation defines naturally the chiral basis (ψ−, ψ+), with ψ− and ψ+ eigenvectors of γ5 with
eigenvalues λ = − and λ = +. The residual mass term in (1.15) then translates the fact that γ5

does not commute with the Dirac hamiltonian, and therefore is not a symmetry unless the particle is
massless.

10



1.1. Dirac-Weyl excitations in pristine graphene

S

p

λ = -

p

S

λ = +

Figure 1.4: Chirality for massless Dirac fermions. The chirality of massless Dirac
fermions coincide with their helicity. A left-handed (λ = −) particle has its spin S
anti-aligned with its momentum p (left), while a right-handed (λ = +) particle has its
spin S aligned with its momentum p (right).

which means the right-handed and left-handed states are eigenfunctions of the σ·p
p

operator with opposite eigenvalues. This operator is the helicity operator, and its eigen-
values indicate whether the particle’s spin S is aligned (λ = +) or anti-aligned (λ = −)
with its momentum p. This situation is schematically represented on Figure 1.4.

This last equation calls for two comments. First, the σ operator introduced in
equation (1.14) only aimed at providing a suitable algebraic structure to the γµ matrices.
In the chiral representation of a spin-1

2
massless fermion, it comes to coincide with its

spin operator.

Secondly, in the case of spin-1
2

massless fermions, there is also a coincidence of
chirality and helicity, which provides a convenient picture of spin-momentum alignment
or anti-alignment for + or − chiralities. This picture will prove useful in the next part,
when it comes to the low energy hamiltonian of graphene.

In summary, the Dirac equation provides a quantum mechanical framework for rela-
tivistic particles. In its chiral representation for massless spin-1

2
fermions, Pauli matrices

σi and τi – originally used to account for algebraic reasons – correspond to the spin and
chirality degrees of freedom. Furthermore, due to their zero mass, this kind of particle
decomposes into two independent Weyl particles with opposite chiralities. In that sense,
a massless Dirac fermion is the direct sum of two Weyl fermions.

Although this seems rather unconnected to the condensed matter context of graphene
physics, it appears that from the electronic bands of graphene and its bi-partite lattice
emerge similar properties.

1.1.4 Low-energy effective hamiltonian of graphene

Equation (1.10) shows a linear dispersion relation for electrons in graphene, which is
reminiscent of the relativistic energy-momentum relation of massless fermions E = pc.
As this relation emerges naturally from the Dirac equation, one can seek Dirac fermion
properties in graphene electrons by linearising their hamiltonian at the Fermi level.
First, the nearest-neighbour hamiltonian of Equation (1.7) can be simply rewritten in a

11



Chapter 1. Electronic properties of graphene

Σ↑

Σ↓

Σ

y
x

φ

φ
Σ

Σ↑

Σ↓

Figure 1.5: Pseudo-spin of electrons in graphene. Left: the pseudo-spin of gra-
phene electrons is represented as a vector Σ on the Bloch sphere, in analogy with the
usual 1

2
spin of electrons. Right: wave functions corresponding to typical pseudo-spin

directions are represented on top of the honeycomb lattice of graphene: Σ↑ (resp. Σ↓)
for electrons delocalized only on the A (resp. B) sub-lattice, and an in-plane Σ for
electrons with equal weights on both sub-lattices.

second quantization formalism as:

H = t
∑
〈i,j〉

c†B (ri + d) cA (rj) + c†A (rj) cB (ri + d) (1.18)

with cn (ri + dn) (resp. c†n (ri + dn)) annihilation (resp. creation) operator for an
electron on the ith site of the n sub-lattice (dA = 0 and dn = d). Using Bloch electrons
as in Equation (1.4) is equivalent to performing a Fourier transform6, and leads to:

H =
∑

k∈BZ

(
c†A (k) c†B (k)

)( 0 t (k)
t∗ (k) 0

)(
cA (k)
cB (k)

)
(1.19)

where cn (k) (resp. c†n (k)) stands for the annihilation (resp. creation) operator for
a Bloch electron associated with the n sub-lattice (n = A,B). For each k, one can use
the hamiltonian density:

Hk =
(
c†A (k) c†B (k)

)( 0 t (k)
t∗ (k) 0

)(
cA (k)
cB (k)

)
(1.20)

6It is performed as: cn (k) = 1√
N

∑
j e
ik·rjc (rj + dn), n = A,B, with N the total number of sites in

the lattice, and c (rj + dn) annihilation operator for an electron on the jth site of the n sub-lattice.

12



1.1. Dirac-Weyl excitations in pristine graphene

Secondly, similarly to what has been done for Equation (1.10), this hamiltonian
can be linearised around the K and K ′ points. Rewriting the crystal wave vector as
k = ξK + q, with ξ = ±, one gets the expression:

Hq = ~vF
(
c†A,ξK (q) c†B,ξK (q)

)( 0 ξqx − iqy
ξqx + iqy 0

)
︸ ︷︷ ︸

= ξqxσx + qyσy

(
cA,ξK (q)
cB,ξK (q)

)
(1.21)

where Pauli matrices σi are here again conveniently introduced. In this case, they
refer to the decomposition of the wave function on the two Bloch waves associated to
the A and B sub-lattices, and not to the spin degree of freedom of the electron.7 As
such, they represent a sub-lattice isospin, but in an analogy to the Dirac equation, this
isospin is also called the pseudo-spin of electrons in graphene. Based on this analogy,
the pseudo-spin vector σ = (σx, σy, σz) is defined. In the same way the electronic spin is
represented by a vector on the Bloch sphere, the electronic pseudo-spin in graphene can
be represented by a vector, whose direction depends on the relative weights and phases
of the A and B components of the wave function. For clarity, this vector will be noted
Σ to distinguish it from the Pauli vector operator σ. The pseudo-spin up Σ↑ = ( 1

0 )
and pseudo-spin down Σ↓ = ( 0

1 ) states then correspond to electronic states delocalized
exclusively either on sub-lattice A or on sub-lattice B. In Equation (1.21), there are only
σx and σy terms, so the z component of Σ has to be zero, which means the pseudo-spin
of electrons in pristine graphene lies in the plane, with its direction given by an azimuth
angle ϕq. In other words, the wave function of these electrons has equal weights on
both sub-lattices, although these two components have a phase difference ϕq. This is
pictured on Figure 1.5.

To determine the physical meaning of this phase, one can first see in the hamiltonian
form in Equation (1.21) that there is a coupling between the quasi-momentum q and the
pseudo-spin, given by ξσxqx +σyqy. This is close to the helicity operator σ·p

p
introduced

in the case of massless Dirac fermions in Equation (1.17), but slightly different. The
first difference is the absence of a z term, which limits the analogy to two dimensions.
Secondly, the additional ξ factor makes the coupling between σ and q valley-dependent.
Indeed, the isospin ξ has been introduced as k = ξK + q, and should not be mistaken
with the pseudo-spin. ξ is the valley isospin: it equals + for the K valley, and − for the
K ′ valley of graphene.8 The role it plays in Equation (1.21) reminds that of chirality λ
in the Dirac-Weyl equation (1.16), but one should not be confused, as it acts only on
the qx, and not on the qy components.

In order to apprehend the notion of chirality in graphene, one can use the bi-spinor

7Still, electrons in graphene carry a 1
2 spin, for which a spin vector s = (sx, sy, sz) can be defined.

Yet, due to the weak intrinsic spin-orbit coupling in graphene, in the absence of a magnetic field, the
electronic bands of graphene are spin-degenerate.

8The pseudo-spin σ is a sub-lattice isospin, whereas ξ is the valley isospin. This means σ acts on
the A-B sub-lattices, while ξ acts on the K-K ′ valleys. These are independent degrees of freedom, and
there is no one-to-one correspondence between the two.
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Chapter 1. Electronic properties of graphene

representation c†α (q) =
(
c†A,+K (q) c†B,+K (q) c†B,−K (q) c†A,−K (q)

)
and rewrite the above

hamiltonian density as:

Hq = ~vF
4∑

α,β=1

c†α (q) [(qxσx + qyσy) τz]α,β︸ ︷︷ ︸
= [(σ · q) τz]α,β

cβ (q) (1.22)

which has a form similar to the Dirac-Weyl equation for massless particles (1.16)
where the 4 × 4 matrix is here again decomposed into Pauli matrices tensor products.
In the Dirac-Weyl equation, σ refers to the Pauli vector for spin-1

2
fermions, and τ

corresponds to the Pauli vector for their chirality degree of freedom, with eigenvalues
λ = ±. For electrons in graphene, σ is the Pauli vector for pseudo-spin, related to the
decomposition of the wave function on A and B sub-lattices. As for τ , it appears in
Equation (1.22) as an effective Pauli vector for chirality, due to the specific choice of
representation given by cα (q).

This choice is based on both pseudo-spin and valley isospin, and decomposes elec-
tronic wave functions as ((A,+K) , (B,+K) , (B,−K) , (A,−K)). Two things can be
noticed in this decomposition. First, the two valleys K and K ′ are treated separately,
so Equation (1.22) is equivalent to Equation (1.21) used for both valleys. Secondly, the
decomposition on the A and B sub-lattices is inverted depending on the valley, so the
K ′ valley is the same as its K counterpart, with A and B sub-lattices swapped. This
inversion is indeed necessary to introduce the τz matrix and perform an analogy with
chirality in particle physics. In particle physics, chirality λ has indeed been shown to
be equivalent to helicity, that is to say to the projection of the particle’s spin σ onto
its momentum p, as detailed in Equation (1.17). Similarly, for graphene, chirality λ
corresponds to the projection of the electron’s pseudo-spin Σ onto its quasi-momentum
~q. In other words, the wave function of a right-handed (resp. left-handed) electron is
an eigenfunction of σ · q with λ = + (resp. λ = −). As a consequence, if one considers
an excitation in the conduction band (Eq = +~vF |q|), the effective Dirac-Weyl hamil-
tonian (1.22) imposes it is right-handed around the K point (ξ = +), and left-handed
around the K ′ point (ξ = −). For the same reasons, hole excitations in the valence
band (Eq = −~vF |q|) are right-handed around the K ′ point (ξ = −), and left-handed
around the K point (ξ = +). This means that the two valleys are decoupled, with
corresponding degenerate wave functions written as:

ψK (q) =

(
1

±e−iϕq
0
0

)
eiq·r√

2
and ψK′ (q) =

(
0
0

∓eiϕq
1

)
eiq·r√

2
(1.23)

with ϕq = arctan
(
qy
qx

)
the angle between q and kx. This expression then links

literally the phase difference between the A and B components, i.e. the pseudo-spin,
to the orientation of the wave vector q. The additional ± indicates whether the wave
function corresponds to an electron or a hole state. Consistently, the π shift it creates
reverses the direction of the pseudo-spin.
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1.1. Dirac-Weyl excitations in pristine graphene
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Figure 1.6: Chirality of electrons in graphene. Linearised π (blue) and π∗ (red)
bands have a conical shape and are centred at the K and K ′ points of the first Brillouin
zone (black hexagon). On both bands, the pseudo-spin Σ is represented, and its align-
ment (resp. anti-alignment) with the wave vector q indicates the chirality λ = + (resp.
λ = −).

A straightforward picture for the chirality of Dirac electrons in graphene can be
built, using the representation of pseudo-spin Σ introduced on Figure 1.5 and the spin-
momentum alignment picture of massless Dirac fermions presented on Figure 1.4. In
this picture, right-handed chirality λ = + corresponds to a pseudo-spin Σ aligned with
the wave vector q, and left-handed chirality λ = − corresponds to Σ anti-aligned with
q. When considering an entire band taken around either K or K ′ point, all the pseudo-
spins point either outwards (λ = +) or inwards (λ = −). This picture is sketched on
Figure 1.6.

When considering this global picture, it appears that the emergence of chirality in
graphene is equivalent to locking the electron’s wave vector q to its pseudo-spin Σ over a
whole band. Consequently, in the absence of pseudo-spin flip events and considering no
intervalley scattering, an electron of wave vector q cannot be backscattered to an elec-
tronic state of wave vector −q, as this breaks chirality conservation. This phenomenon –
known as chiral tunneling – has been predicted in 2006 [91] and experimentally observed
in 2009 [224], and is a hallmark of chiral properties of electrons in graphene. This is
analogous to the absence of backscattering in the surface state of a topological insulator.
Indeed, in this class of systems, due to strong spin-orbit coupling, the electron’s wave
vector is locked to its spin. Therefore, as long as time-reversal symmetry is preserved,
backscattering is forbidden. This requires the absence of magnetic field, and of spin-flip
scatterers like magnetic impurities. In both cases, a symmetry prevents backscattering,
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Chapter 1. Electronic properties of graphene

and is therefore responsible for an improved electronic mobility. Yet, this mechanism
is far less efficient in graphene, as many perturbations and defects can break chirality
conservation.9

Although the analogy between electrons in graphene and Dirac physics provides a
good picture for graphene’s exotic electronic properties, it is important to keep two
limitations in mind. To start with, despite the fact the Dirac equation is used for
ultrarelativistic particles, electrons in graphene are not relativistic. Indeed, due to their
high speed, ultrarelativistic particles induce time-retardation delays in the interactions,
as formally established in the Liénard-Wiechert potentials. In graphene however, the
speed of electrons is given by the Fermi velocity vF ∼ 106 m.s−1 � c, so the interactions
can be considered instantaneous. Moreover, due to its light atoms, intrinsic spin-orbit
coupling in graphene is very weak, so this relativistic effect has essentially no impact on
the electrons. In short, electrons in graphene are effectively described by a Dirac-Weyl
equation, but one should not forget this comes from a linearised Schrödinger equation,
and that all relativistic effects are negligible.

Secondly, in Dirac-Weyl equation, both spin and chirality are intrinsic properties
that arise from fundamental symmetries, and they are defined over the whole Minkowski
spacetime. In graphene however, pseudo-spin and chirality exist locally in k-space, as-
suming low energy excitations around K and K ′ points. Additionally, they are defined
provided that A and B sub-lattices are well-defined. Most structural defects in the
honeycomb lattice of graphene locally mix the two sub-lattices, so pseudo-spin is then
ill-defined. Besides, chirality is a relevant tool only if K and K ′ valleys are treated
separately. In other words, all chiral properties of electrons in graphene last as long as
intervalley scattering is weak compared to intravalley scattering. For these reasons, ob-
serving massless Dirac fermions requires graphene samples with high crystalline quality.

1.2 Graphene-based massive Dirac fermions

So far, graphene has been considered as pristine, so its intrinsic electronic properties
have been detailed. Nevertheless, in most experimental works, it relies on a support,
which alters these properties. In the coming section, two effects a substrate can have
on graphene’s electronic properties are going to be considered separately. First, the
different sites the surface of a substrate offers usually lift the A and B sub-lattices
equivalence, leading to a so-called Semenoff insulator. Secondly, when interacting with
a surface or with atomic adsorbates, graphene can have its chemical bonds distorted
periodically, as it undergoes a Kekulé distortion.

9On the contrary, local defects which do not break time-reversal symmetry do not affect the surface
states of topological insulators.
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1.2. Graphene-based massive Dirac fermions

1.2.1 Semenoff insulator

In the model for pristine graphene, both A and B sub-lattices have been assumed iden-
tical, which enabled to consider the on-site energies of an electron on each sub-lattice
HAA and HBB equal, and they have been set to 0. In a more general approach, one can
consider these two energies – hereafter called εA and εB – are different. This is true if
the carbon atoms of each sub-lattice of graphene are surrounded by different local envi-
ronment, as for graphene supported on Ni(111). Another example is given by hexagonal
boron nitride (h-BN), which has the same crystallographic structure as graphene, but
with B as A atoms, and N as B atoms. In such a situation, electrons have a tendency
to localize rather on one sub-lattice than the other. This translates in an additional
hamiltonian term to Equation (1.18):

HS =
∑
i

εAc
†
A (ri) cA (ri) + εBc

†
B (ri + d) cB (ri + d) (1.24)

Since there is a staggered on-site potential on this graphene, only the difference be-
tween these two energies has an influence on the band structure. Introducing µ = εA−εB

2

as a chemical potential difference, this can be rewritten as an additional hamiltonian
density term. Equation (1.20) then becomes:

Hk =
(
c†A (k) c†B (k)

)( µ t (k)
t∗ (k) −µ

)(
cA (k)
cB (k)

)
(1.25)

From this, one can extract the energy dispersion of electrons, which can be linearised
as:

Eq = ±
√

~2v2
Fq2 + µ2 = ±

√
(~q)2 v2

F +m2
Sv

4
F (1.26)

Compared to the linearised dispersion of semi-metallic graphene (1.10), it is clear
a gap µ has opened at the K and K ′ points of the band structure, so this system is
an insulator. Such a staggered on-site potential on A and B atoms of graphene was
first theoretically investigated in 1984 by Gordon Semenoff [180]. For this reason, this
system is sometimes referred to as the Semenoff insulator, and mS = µ

v2
F

is introduced as

the Semenoff mass, in an analogy to the rest mass in the relativistic energy-momentum
relation (1.11). However, this mass is slightly different from that of massive Dirac
fermions as seen in Equation (1.15). Indeed, when using the bi-spinor representation
introduced earlier, the hamiltonian density becomes:

Hq = ~vF
4∑

α,β=1

c†α (q)
[(
qxσx + qyσy +

vF
~
mSσz

)
τz

]
α,β

cβ (q) (1.27)

so the Semenoff mass term has a σzτz form, whereas the rest mass term of a Dirac
particle in the chiral representation states as σ0τx. In both cases, the Pauli matrices
commutation rules show these terms do not commute with the hamiltonian, but not the
same Pauli matrices are at stake. In the context of particle physics, the mass has been

17
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Figure 1.7: Pseudo-spin texture of the Semenoff insulator. Linearised π (blue)
and π∗ (red) bands are centred at the K and K ′ points of the first Brillouin zone (black
hexagon). On both bands, the pseudo-spin Σ is represented, with a tilt θ with respect
to the horizontal plane.

shown to appear as a coupling term between the two chiralities, as expressed by the τx
matrix. As a consequence, chirality is not a good quantum number for massive Dirac
fermions. In contrast, the Semenoff mass term in Equation (1.27) opens a gap because
of its σz matrix. This means the Semenoff term opens a gap only because of its action
on the sub-lattice degree of freedom. Its τz matrix leaves the valley a good quantum
number.

Still, the Semenoff mass makes the sub-lattices different, therefore influencing the
pseudo-spin Σ of electrons. As their chirality λ is equivalent to Σ·q

q
, this mass may

break chirality conservation. To understand this, the influence of the Semenoff mass on
pseudo-spin is going to be detailed, before getting back to chirality.

One can get back to the definition of the pseudo-spin, which is pointing up for
electrons exclusively on the A sub-lattice, and down for electrons exclusively on the
B sub-lattice. In graphene, identical sub-lattices means the pseudo-spin lies in-plane,
with a polar angle θq = π

2
with respect to the vertical direction. In the Semenoff

insulator, electrons would rather stay on one of the two sub-lattices, so their pseudo-
spin is tilted out of plane, with an angle θq 6= π

2
. The larger this tilting, the more

electrons delocalize on one sub-lattice rather than both. This tilting thus results from
the competition for an electron between staying on-site and hopping to the other sub-
lattice, whose characteristic energies are respectively mSv

2
F and ~ |q| vF . Consistently,

this ratio also corresponds to the ratio of the out-of-plane and in-plane components of

Σ in Equation (1.27), so θq = π
2
− arctan

(
mSvF
~|q|

)
.
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1.2. Graphene-based massive Dirac fermions

This tilting has a direct influence on chirality, because Σ·q
q

is then not equal to ±, but

varies continuously between −1 and +1. Indeed, in the hamiltonian (1.27), the Semenoff
mass corresponds to an additional z component to Σ. However, q is constrained in the
x− y plane, so it can neither align nor anti-align with Σ. Consequently, chirality is not
a good quantum number anymore.

Two comments can be made about the schematic view of the pseudo-spin texture
illustrated on Figure 1.7. First, pseudo-spin tilting affects mostly the electrons close to
the K and K ′ points. Far from the K and K ′ points, the conical dispersion of electrons
in graphene is recovered, as well as the planar orientation of their pseudo-spin. Only the
states at the K and K ′ points have a pseudo-spin exactly vertical, and depending on
whether the A or B sub-lattice has been made more stable, the pseudo-spin up or down
state lies in the valence band. Secondly, it appears that despite the tilting, the pseudo-
spin still points outwards or inwards on entire bands, as it was the case for graphene.
This is not a signature of different chiralities anymore, but the pseudo-spin texture will
serve as a characterization tool for the other hamiltonians in this section.

Beside the formal introduction of a staggered on-site potential on each sub-lattice,
one may wonder about the practical situations where a Semenoff gap opens in graphene.
As mentioned earlier, the presence of a substrate beneath graphene provides the required
modification. Another example is the coupling of the electrons to the out-of-plane optical
(ZO) phonon mode with B2g symmetry at Γ point. Indeed, this vibrational mode
corresponds to the out-of-plane movement of all C atoms, with the two sub-lattices
oscillating in phase opposition, as illustrated on Fig. 1.8 (left). This mode therefore
breaks the sub-lattice equivalence, but one may wonder if the electrons indeed couple
to it.

In pristine graphene, due to symmetry arguments, in-plane phonons couple linearly
to electrons, whereas out-of-plane phonons couple only quadratically [123]. This im-
plies a negligible electron-phonon coupling for the ZO phonon. However, in presence
of a substrate, the horizontal plane symmetry σh is broken, which lifts this symmetry
constraint and makes a substantial electron-ZO phonon coupling possible. In this case,
the associated contribution to the electronic hamiltonian has a σz form [118] identical
to the Semenoff term. Still, these symmetry arguments do not deliver a quantitative
estimate of the electron-phonon coupling.

Determining how much electrons couple to the ZO phonon can be achieved by ob-
serving a Kohn anomaly in the ZO phonon dispersion, as it is a direct signature of
electron-phonon coupling. Indeed, when a phonon of wave vector q connects two elec-
tronic states of the Fermi surface, a Kohn anomaly can occur [99]. It can be understood
with the following picture: because the phonon connects two electronic states, the vibra-
tion of the atoms is screened by the conduction electrons, which dampens the oscillation
and reduces the phonon frequency. As a result, a Kohn anomaly gives rise to a dip in the
phonon dispersion curve. In the case of graphene, there are only two electronic states
at K and K ′ points. Only phonons with q = 0 and q = ΓK can then display a Kohn
anomaly. In the case of the ZO phonon, the presence of a substrate is paramount. In-
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Figure 1.8: ZO phonon of graphene. Left: Sketch of the atomic displacements of
the ZO phonon. The movements of the A (blue arrows) and B (red arrows) atoms
are in phase opposition. Middle: Phonon dispersion in pristine graphene along the
ΓM direction. A Kohn anomaly results in a dip in the LO phonon dispersion at Γ.
Adapted from [204]. Right: HREELS intensity plot for phonon dispersion of graphene
on Pt(111). The LO, LA, ZO, and ZA branches are clearly identified, contrary to the
TO and SH branches whose intensities are reduced by a selection rule. Yellow lines close
to Γ indicate fits to the LO and ZO dispersions, where Kohn anomalies arise at about
q ∼ 0.13 Å−1. Adapted from [167].

deed, DFT calculations performed for pristine graphene and shown on Fig. 1.8 (center)
reveal no Kohn anomaly in the ZO branch. Nonetheless, for graphene lying on a Pt(111)
surface, a Kohn anomaly has been measured by High Resolution Electron Energy Loss
Spectroscopy (HREELS) [167], as illustrated on Fig. 1.8 (right). Due to the slight p-
doping induced by the substrate, it lies 0.13 Å−1 away from the Γ point. The presence
of the substrate therefore enables a large electron-phonon coupling, which means the
ZO phonon plays a role in the opening of a Semenoff gap in supported graphene.

In this first example, a band gap has opened at the Fermi energy due to the difference
in sub-lattices introduced by the Semenoff mass term. In essence, this term actually
breaks the inversion symmetry of graphene. Given the representation chosen here, in-
version operation is given by σzτx, which commutes with the graphene hamiltonian, but
not with the Semenoff mass term.10 This can be comprehended in real space, as the
inversion operation swaps the sub-lattices A and B, which are identical for graphene,

10Under inversion operation, the two sub-lattices A and B are swapped, as well as the two
corners of the first Brillouin zone K and K ′. Due to the choice of representation c†α (q) =(
c†A,+K (q) c†B,+K (q) c†B,−K (q) c†A,−K (q)

)
, swapping both A and B, and K and K ′ is achieved by

the single operator τx. However, an additional σz proves necessary. Indeed, the linearisation of c†n (k)
(n = A,B) yields an additional phase factor, which differs depending on A/B and K/K ′. To com-
pensate them, a − sign has to be added to one of the sub-lattice components when swapping valleys.
Those additional phase factors will be detailed in a more simple 1D case later on.
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1.2. Graphene-based massive Dirac fermions

but different for the Semenoff insulator. This inversion symmetry breaking has been
attributed to the opening of a band gap in various graphene systems, like graphene on
SiC [231] or aligned on h-BN [80,216]. Additionally, the analogy between the Semenoff
insulator and the Dirac equation also shows the electronic excitations are not chiral
anymore, as the pseudo-spin tilts upwards and downwards within the Brillouin zone.
In the case of the Kekulé insulator, a different symmetry is broken, leading to a gap
opening with a completely different nature.

1.2.2 Kekulé insulator

In 1865, the German chemist August Kekulé suggested the long-sought structure of the
benzene molecule was a six-membered carbon ring with alternating single and double
bonds. Since double bonds are shorter than single bonds, this structure is not strictly
hexagonal but a bit distorted, as illustrated on Figure 1.9. This suggestion then leads
to two possible symmetric structures for benzene.

In the light of the tight-binding model exposed earlier, it is now clear the six electrons
involved in the double bonds are actually delocalized within a π orbital all over the
benzene ring. Benzene is thus an aromatic molecule and has a hexagonal shape. Still,
molecular distortions along double bonds can happen via the Jahn-Teller effect, for
instance in the case of antiaromatic molecules.

Nevertheless, one can still imagine a situation where the constituting hexagons of a
graphene sheet would undergo a similar distortion in a permanent way, which is called
the Kekulé distortion, schematically represented on Figure 1.9. In this distortion, carbon
atoms regroup by pairs, where a double bond is drawn, while single bonds elongate: this
is a dimerization process. The elastic energy required to distort graphene’s structure in
such a way is prohibitive at first sight. In order to understand what would be its driving
force, a simplified one-dimensional (1D) system where a similar dimerization occurs can
first be considered: polyacetylene.

Undistorted polyacetylene

Polyacetylene is a polymer chain with repeating unit (C2H2)n, made of carbon atoms
with alternative single and double bonds. As such, it resembles graphene and benzene,
and the dimerization of its atoms leads to a distortion referred to as the Peierls distortion.
To explain its cause, the band structure of undistorted polyacetylene is first going to be
calculated in a tight-binding scheme similar to that used for graphene. The calculations
and discussions provided here are inspired from the SSH model11 [187,188].

For simplicity, polyacetylene can be considered as a 1D chain of carbon atoms indexed
by the integer n. Like graphene, these carbon atoms have sp2 hybridization, so for each
atom, only one electron in a 2pz orbital contributes to electron transport. Besides, only
nearest-neighbour hopping is going to be considered in between these orbitals. Due
to translational invariance along the chain, Bloch’s theorem can be used. Here, the

11This model is called after the name of its authors: Wu-Pei Su, John Robert Schrieffer and Alan J.
Heeger. It provides a simple but rich understanding for the conductive properties of polymers.
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Chapter 1. Electronic properties of graphene

Figure 1.9: Kekulé distortion in graphene. Top: as in the original picture of
Kekulé, a hexagonal benzene ring can be distorted due to its alternated simple and
double bonds. Middle: in polyacetylene, the shortening of double bonds corresponds
to a Peierls distortion. Bottom: a similar distortion on the honeycomb lattice of
graphene is called a Kekulé distortion.

invariance is considered to occur every two atoms, labelled A and B, with a lattice
constant a ∼ 2.42 Å (the C-C distance is ∼ 1.40 Å).12 As a result, the electronic
states ψ of the chain will be linear combinations of atomic orbitals φn, and two Bloch
waves corresponding to either A or B atoms are used, as was done for graphene in
Equation (1.4). In a second quantization approach, the wave function is then given by:

c (k) = a (k) cA (k) + b (k) cB (k)

=
1√
N

(
a (k)

∑
n even

eiknacn + b (k)
∑
n odd

eiknacn

)
(1.28)

As for the hamiltonian, similar to graphene, only the hopping terms influence the
energy dispersion, and here only nearest-neighbour hopping is considered:

H = −t
∑
n

c†n+1cn + c†ncn+1 (1.29)

12Indeed, according to the structure of polyacetylene represented on Figure 1.10, the invariance does
occur every two atoms. Yet, the tight-binding model assumed here neglects the difference between these
two atoms, so a

2 would be a more relevant lattice constant. In any case, this choice is conventional, so
it does not influence the electronic dispersion. Still, as the Peierls distortion will need a two atom unit
cell, a conventional a lattice constant is set here too.
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Figure 1.10: Undistorted polyacetylene. Left: An undistorted polyacetylene chain
hosts two atoms A and B per unit cell with a uniform hopping texture t. Right: this
gives rise to a semi-metallic band structure with two Dirac cones located at k = ±K =
± π

2a
. Dotted lines indicate the Brillouin zone edges. A valley isospin ξ = ± can be

defined decomposing k = ξK + q. The pseudo-spin Σ is represented on both bands,
pointing towards either +x or −x. For each state, the alignment (resp. anti-alignment)
of Σ with q corresponds to a λ = + (resp. λ = −) chirality.

with hopping parameter t ∼ 2.5 eV. Using the Bloch waves introduced above, this
hamiltonian can be rewritten in k space using a decomposition of the wave function on
the A and B atoms. The following hamiltonian density is obtained:

Hk =
(
c†A (k) c†B (k)

)( 0 −2t cos (ka)
−2t cos (ka) 0

)
︸ ︷︷ ︸

= −2t cos (ka)σx

(
cA (k)
cB (k)

)
(1.30)

This holds the electron energy dispersion as:

Ek = ±2t |cos(ka)| (1.31)

Without any surprise, this result is very similar to that found for graphene in Equa-
tion (1.9), as around the Fermi energy, the band structure comes down to a linear
dependence around k = ± π

2a
. This is all the more apparent that the bands are crossing

at these points, mimicking the Dirac cones of graphene in 1D. k = π
2a

and k = − π
2a

then
play the role of the inequivalent K and K ′ points of graphene, and the electron wave
vector k can be rewritten k = ξK + q, with ξ = ± the valley isospin.

Besides, the hamiltonian density is such that the Pauli matrix σx is introduced
conveniently. Once again, this defines a pseudo-spin Σ associated to the wave function’s
relative weights on the A or B atoms. Since only σx is present, the eigenstates have
their pseudo-spin constrained along the x axis, so only two pseudo-spin orientations are
possible. For both, the weights on atoms A and B are equal. However, when Σ points
to +x, the components are in-phase (Σ = 1√

2
( 1

1 )), whereas when Σ points to −x, the

components are out of phase (Σ = 1√
2

( 1
−1 )).

To make the analogy with graphene complete, one can linearise the hamiltonian in
Equation (1.34) using the c†α (q) = (c†A,K (q) , c†B,K (q) , c†B,−K (q) , c†A,−K (q)) representa-
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tion analogous to that used before, and get:

H = ~vF
∑
q

4∑
α,β=1

c†α (q) [q σxτz]α,β︸ ︷︷ ︸
= [(σ · q) τz]α,β

cβ (q) (1.32)

where vF = 2at
~ ∼ 106 m.s−1. This is exactly the same hamiltonian as the one written

for graphene in Equation (1.22) but in 1D.

If this model applied successfully to polyacetylene, the conclusions drawn previously
for graphene would apply to polyacetylene. It appears not to be a realistic model, as
Peierls distortion modifies this picture. Kekulé distortion induces a similar modification
to graphene. Exposing the origin and consequences of Peierls distortion will then provide
some insight on Kekulé distortion in graphene.

Peierls distortion in polyacetylene

As explained in the introduction of this section, under certain circumstances, it proves
more stable for delocalized electrons in a π system to localize on double bonds, which
then shorten, inducing a distortion of the atomic structure. This is especially true for
polyacetylene, which is known to undergo a Peierls distortion, making half of its bonds
shorter and the other half longer.

In the crude tight-binding model presented above, this distortion can be taken into
account with a texture of hopping parameters. In other words, electrons have a higher
probability to hop from site to site for a short bond than for a long bond. Two hopping
parameters t1 and t2 can then be introduced for short and long bonds respectively, as
on Figure 1.11. For simplicity, the displacement u of each atom will be assumed small,
so t1 = t + gu and t2 = t − gu, with g ∼ 4.1 eV.Å−1 the electron-phonon coupling
constant [188]. With this hypothesis, an additional term goes in the hamiltonian (1.29),
which expresses as:

H = −t
∑
n

(
1 +

gu

t
(−1)n

)(
c†n+1cn + c†ncn+1

)
(1.33)

With this formulation, the modulation of bond lengths is translated in the hamil-
tonian, so translational invariance truly occurs once every two atoms, with a period a.
As before, one can use the Bloch basis introduced by Equation (1.28) to rewrite the
hamiltonian density in k space:

Hk = −2t
(
c†A (k) c†B (k)

)(
cos (ka)σx +

gu

t
sin (ka)σy

)( cA (k)
cB (k)

)
(1.34)

The hopping texture adds a σy component, which has a critical impact on the elec-
tronic energy dispersion:

Ek =
√

4t2cos2(ka) + g2u2sin2(ka) (1.35)
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Figure 1.11: Peierls distortion in polyacetylene. Left: one every two bonds of
polyacetylene gets shorter, while the other gets longer, so two hopping parameters t1 and
t2 are needed. Right: as a consequence, a gap opens at the Dirac cones of polyacetylene.

As represented on Figure 1.11, a band gap gu opens at the Dirac cones (k = ± π
2a

).
If one sets the displacement u to zero, the gap closes, and the Dirac cones are recovered,
consistently with Equation (1.31). This shows that the two bands that are merely
crossing for undistorted polyacetylene hybridize due to the Peierls distortion. In other
words, at a given k, the two states of the valence and conduction bands from the original
undistorted chain recombine to give rise to the new states of the distorted chain.

To go one step further, the hamiltonian can be linearised using k = ξK + q, and
rewritten in the representation c†α (q) = (c†A,K (q) , c†B,K (q) , c†B,−K (q) , c†A,−K (q)) as:

H = ~vF
∑
q

4∑
α,β=1

c†α (q)

[(
qσx −

2gu

~vF
σy

)
τz

]
α,β

cβ (q) (1.36)

This raises the question of the pseudo-spin texture in the first Brillouin zone. The
above hamiltonian shows that the pseudo-spin takes an additional y component. As a
result, its orientation is modulated depending on q, as pictured on Figure 1.11. Contrary
to the Semenoff σz term, which tilts the pseudo-spin out of plane, the Peierls distortion
σy term rotates the pseudo-spin in-plane. This means that the states of the undistorted
chains – which have pseudo-spins pointing towards ±x – hybridize in a way that rotates
their pseudo-spins towards the y direction, altering only the phase difference between
their A and B components. In other words, the Semenoff mass term influences the
weights of the wave function on the A and B components while preserving their relative
phases, whereas the Peierls term tunes the phase difference between the two components
while leaving their relative weights equal.13

Now considering fundamental symmetries, the gap opening is actually due to the
distortion imposing a doubled unit cell. It reduces translational invariance, and opens
the band gap. This is clearly different from the Semenoff insulator, for which inversion

13Although giving a simple picture of the situation, it should be emphasized this image is entirely
dependent on the chosen representation. Indeed, contrary to graphene, polyacetylene is 1D, so only
two Pauli matrices are needed: σx for the dispersion term, and σy for the Peierls term. A unitary

transformation of the (c†A (k) , c†B (k)) basis could change these matrices into σx and σz. This means
that in 1D, there is actually no difference between the Peierls and Semenoff masses. The discussion
detailed here serves merely as a preparation for graphene, whose higher dimensionality makes the
Semenoff and Kekulé masses distinct.
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Figure 1.12: Peierls distortion in a band folding approach. An undistorted poly-
acetylene chain is described with either 1 (top left) or 2 (middle left) atoms per unit cell.
The deduced band structure then contains either 1 band with 4π

a
periodicity (top right),

or 2 bands with 2π
a

periodicity (middle right). The two descriptions are equivalent by
folding the single band on itself. When the chain is distorted (bottom), gaps open at
k = ± π

2a
, where the bands of the undistorted chain intersect.

symmetry is broken. In the approach derived here, the symmetry breaking is hardly
apparent for two reasons. First, the same lattice constant was considered for both
undistorted and distorted polyacetylene. Secondly, the above hamiltonian shows a band
hybridization where phase differences are tuned, but does not explain clearly its origin.
These two issues are going to be addressed in the following, using the so-called band
folding model.

Band folding model

In the previous section, the electronic structure of undistorted polyacetylene close to
the Fermi energy has been calculated using two atoms per unit cell. This is artificial,
as the translational invariance in this model occurs every atom. When considering one
atom per unit cell, the use of A and B Bloch waves makes no longer sense, and there is
a single Bloch wave given by:

c (k) =
1√
N

∑
n

eiknacn (1.37)
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1.2. Graphene-based massive Dirac fermions

This enables a simple diagonal expression of the hamiltonian (1.29), as:

H = −2t
∑
k

cos (ka) c†(k)c(k) (1.38)

This means this Bloch wave already provides the relevant states of the system. Their
energy dispersion is deduced from this as:

Ek = −2t cos(ka) (1.39)

This is close to but different from the expression of Equation (1.31). This time,
indeed, there is a single electronic band, and as the lattice constant is a

2
, the first

Brillouin zone extends from −2π
a

to 2π
a

, as represented on the top panel of Figure 1.12.
This situation will then be termed the single band picture, in opposition to the previously
studied two-band picture.

When comparing the undistorted and distorted polyacetylene chain, pseudo-spin
proved to be a useful tool to characterize the electronic states. Here, there is no A and
B atom, so no pseudo-spin. Still, considering that Equation (1.37) can be interpreted as
c (k) = cA (k)+cB (k). This means the two components would always be in phase, so the
pseudo-spin would be Σ = 1√

2
( 1

1 ) over the whole band, as pictured by the right-pointing
black arrows on the band structure of the top panel of Figure 1.12.

With this in mind, one can now get back to the band structure derived in the previous
section for the undistorted polyacetylene chain, which is illustrated on the middle panel
of Figure 1.12. Because the unit cell in direct space is artificially twice larger and
contains two atoms, in reciprocal space, the first Brillouin zone is twice smaller and
contains two bands. As a result, this smaller Brillouin zone is referred to as a reduced
Brillouin zone. As can be expected, in both pictures, the number of electronic states is
the same.

Besides, when comparing the top and middle panels, the orientation of the pseudo-
spin arrows gives the impression that to go from one band structure to the other, one
needs to fold the left and right ends (|k| > π

a
) of the band structure onto its central part

(|k| < π
a
). Although this impression is the reason behind the name of the “band folding

model”, it is in fact not accurate. Indeed, the band portions are actually rigidly shifted
in k: the left end (k < −π

a
) is shifted by +π

a
, while the right end (k > π

a
) is shifted by

−π
a
. When doing this, the original black bands of the top panel do superimpose with

the additional green band on the middle panel, but their pseudo-spins do not match. To
understand this pseudo-spin flip, one can apply a +π

a
shift in k space to an electronic

state delocalized either on the A or B atoms:
cA

(
k ± π

a

)
=

1√
N

∑
n even

eikna (−1)n cn = cA (k)

cB

(
k ± π

a

)
=

1√
N

∑
n odd

eikna (−1)n cn = −cB (k)
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This shows a shift in k yields different additional phase factors depending on the
sub-lattice. In terms of pseudo-spin, this means such a shift turns Σ = 1√

2
( 1

1 ) into

Σ = 1√
2

( 1
−1 ), thus flipping its direction.

This property can be used to re-interpret the hamiltonian expression in Equa-
tion (1.36). Indeed, applying a +π

a
shift in k space brings a state from one valley

to the other, so using the above expressions, one can for instance rewrite c†A,KcB,K =

−c†A,KcB,−K . The hamiltonian density can thus be rewritten as:

H = ~vF
∑
q

4∑
α,β=1

c†α (q)

[
qσxτz −

2gu

~vF
σ0τx

]
α,β

cβ (q) (1.40)

In this formulation, the Peierls term couples both valleys (τx) with no distinction
between the two sub-lattices (σ0). The distortion then results in an intervalley coupling
term, so the gap opening is revealed as the hybridization of the two Dirac cones.

So far, the band folding model has just shown the two faces of the same coin, but
this preliminary step now proves useful to interpret the consequences of the Peierls
distortion. Indeed, in the two-band picture, the gap opening has been interpreted as the
hybridization of states from the valence and conduction bands with opposite pseudo-
spins occurring at each value of k. In the single band picture, for each value of k, there is
only one state. The hybridization actually takes place between states separated by q = π

a

from each other. This is a direct consequence of the reduced translational invariance
implied by the distortion: it induces nesting vectors q = ±π

a
that couple electronic

states by pairs all over the first Brillouin zone. The closer in energy these states are, the
stronger their resulting hybridization. As a result, the most striking consequence of this
distortion is the gap opening at the Dirac cones. A related consequence is the acquired
phase difference between their two sub-lattice components described earlier.

The interpretation of the reduced translational invariance described here is actually
the same as the nearly free electron model in metals. In the nearly free electron models,
a quadratic energy dispersion of free electrons ~2k2

2m
is assumed, and the influence of the

periodic crystal potential is weak enough to be considered as a perturbation. Since
it imposes a reduced translational invariance, this potential defines the first Brillouin
zone and the quadratic band of free electrons folds into it. This is the same effect
as the distortion considered here: states with originally different k wave vectors but
equal energies superimpose due to the band folding and hybridize, resulting in band gap
openings.

Using this simple model, one can get an intuitive idea for the effect of reduced trans-
lational invariance. The large direct space periodicity indeed induces nesting vectors q
between electronic states, which can be visualized conveniently with folded bands in a
reduced Brillouin zone. In the case of polyacetylene, doubling the lattice constant hap-
pens to make electrons scatter in between the two states located exactly at the Fermi
energy. Their hybridization leads to a gap opening, which makes the chain insulating.
As a consequence, the electrons at the Fermi level for the undistorted chain move to
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1.2. Graphene-based massive Dirac fermions

lower energy states when it is distorted. This energy saving actually drives the distor-
tion: the elastic energy spent to distort the bonds is overcome by the electronic energy
gained by opening a gap at the Fermi energy.14

With this underlying mechanism in mind, it is no surprise that not any kind of
distortion occurs. It has to obey two main constraints: the band folding it generates
has to lower the total electronic energy by opening gaps at the Fermi energy, and its
mechanical cost has to be smaller than this lowering of electronic energy. In this case,
the system can be considered as undergoing a phase transition between a undistorted
metallic phase, and a distorted insulating phase. The generated gap ∆ would be the
order parameter of such a phase transition. This formalism will prove useful in the case
of graphene, where the Kekulé distortion is not necessarily favourable.

Kekulé distortion in graphene

Similar to the Peierls distortion in polyacetylene, the Kekulé distortion of graphene
introduced on Figure 1.9 can be included in a tight-binding model resorting to a hopping
texture. This texture reduces translational invariance as indicated by the supercell
(aKek1 , aKek2) on Figure 1.13. Following the original description of the benzene molecule
formulated by August Kekulé, the Kekulé distortion in graphene provides a supercell
whose unit vectors are

√
3 times larger than that of graphene, and rotated by 30°

with respect to them. In Wood’s notation, this triple supercell then corresponds to a(√
3×
√

3
)

R30°. When going to reciprocal space, the unit wave vectors (kKek1 ,kKek2)

associated to this supercell then have to be
√

3 shorter than those of graphene and
rotated by 30° with respect to them. The resulting reduced Brillouin zone is thus three
times smaller and is also rotated by 30° with respect to the graphene Brillouin zone, as
pictured in the lower left panel of Figure 1.13.

Here too, the effect of the reduced translational invariance on the band structure of
graphene can be interpreted in two equivalent ways. Using the graphene first Brillouin
zone, reduced translational invariance gives rise to nesting vectors q in the band struc-
ture, which correspond to linear combinations of kKek1 and kKek2 . Furthermore, the
supercell geometry is such that kKek1 and kKek2 actually connect the K and K ′ points of
the graphene first Brillouin zone, where the Dirac cones originally lie. As a consequence,
reduced translational invariance allows nesting vectors that hybridize electronic states
from the two valleys of graphene, as illustrated on the top right panel of Figure 1.13.
This situation is alike the Peierls distortion in polyacetylene, and therefore results in
gap openings at the K and K ′ points.

This situation is also well explained in a band folding picture. With this model, the
band structure of graphene is folded into the reduced Brillouin zone, as schematically
presented on the bottom right panel of Figure 1.13. There, the reduced Brillouin zone
lies as a smaller hexagon at the center of the larger hexagonal first Brillouin zone of
graphene. Six portions of the graphene first Brillouin zone coloured in red, blue and

14The same behaviour is at stake in the Jahn-Teller effect for molecules: partially filled and degenerate
molecular orbitals get their degeneracy lifted under the effect of a distortion, but more energy is saved
on the electronic side than spent on the mechanical side.
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Figure 1.13: Gap opening due to a Kekulé distortion. Top left: in direct space,
a Kekulé distortion reduces translational invariance, as three different types of hexagon
(red, green, blue) can be found in a tripled unit cell (aKek1 , aKek2). Bottom left: in
reciprocal space, two equivalent scenarios explain the gap opening at two Dirac cones
(red circles) originally located at K and K ′. Top right: on the one hand, in the
graphene Brillouin zone, reduced translational invariance allows nesting vectors q to
couple different states in the band structure, and in particular the states around the K
and K ′ points, which hybridize and open a gap. Bottom right: on the other hand,
using a band folding picture in the reduced Brillouin zone, the cones originally at K and
K ′ are both shifted to Γ, and their superimposition implies they hybridize with each
other, opening a gap.

green lie outside the reduced Brillouin zone. Band folding is achieved by shifting them
rigidly into it using ±kKek1 , ±kKek2 or their combinations. In the process, the Dirac
cones located at each corner of the graphene Brillouin zone get all shifted to the Γ
point of the reduced Brillouin zone. Hence, the two Dirac cones superimpose, and the
distortion induces their hybridization, resulting in a band gap opening.

No matter with which picture this situation is interpreted, a gap opens owing to the
hybridization of electronic states from both Dirac cones, which means there is some cross-
talking between the two valleys of graphene. This can be introduced in the graphene
hamiltonian density in the form of a coupling term [78] similar to the one introduced in
Equation (1.40) as:

Hq =
4∑

α,β=1

c†α (q) [(~vFq · σ τz + ∆ · σ0τ )]α,β cβ (q) (1.41)
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where ∆ is here a 2-component vector that indicates how strong the intervalley
coupling is. Its form is σ0τ with τ = (τx, τy), which shows it couples the K and K ′

valleys (τx and τy), and makes no distinction between the A and B sub-lattices (σ0).
The energy dispersion can be extracted from this as:

Eq = ±
√

~2v2
Fq2 + |∆|2 (1.42)

so a gap of width ∆ = |∆| opens at both Dirac cones. As introduced earlier, ∆
appears as the order parameter of the distortion, when considered as a phase transition.
Similar to the Semenoff mass, ∆ can be expressed with a Kekulé mass term as mKekv

2
F .

The difference with the Semenoff mass lies in the eigenfunctions. In the Semenoff insu-
lator, the relative weights on sub-lattices A and B were different. Here, the valleys are
mixed, so the wave functions from Equation (1.23) become:

ψ1 (q) =


1

±e−iϕq ~vF q√
~2v2

F
q2+∆2

± ∆√
~2v2

F
q2+∆2

0

 eiq·r√
2

and ψ2 (q) =


0

± ∆√
~2v2

F
q2+∆2

∓eiϕq ~vF q√
~2v2

F
q2+∆2

1

 eiq·r√
2

(1.43)

with q = ‖q‖. When ∆ is set to zero, the eigenstates of pristine graphene (1.23)
are recovered, as ψ1 and ψ2 identify respectively to ψK and ψK′ . Besides, the larger the
value of ∆, the more the states originally around K get a contribution around K ′, and
vice-versa. Moreover, one can easily check that the relative weights on the A and B
sub-lattices are equal. Due to the contributions on both valleys however, expressing the
phase difference between the two sub-lattice components is equivocal, so defining the
pseudo-spin is impossible.

In summary, the Kekulé distortion acts as a phase transition from a semi-metallic
to an insulating state, by coupling the states from both valleys. Similar to the Peierls
distortion, this can be interpreted in two equivalent ways: either with nesting vectors
in the graphene first Brillouin zone, or with folded bands in a reduced Brillouin zone.
Once again, it is important to distinguish the Kekulé mass from the Semenoff mass.
On the one hand, the Kekulé distortion influences the valley degree of freedom by
reducing translational invariance, but maintains equal electronic weights on each sub-
lattice. On the other hand, the Semenoff term alters the sub-lattice equivalence by
breaking inversion symmetry, but preserves the valley quantum number.

Experimentally, both effects can be observed simultaneously, which brings a dis-
cussion on how one can observe a Kekulé distortion, and what effects might have an
identical signature. To date, few experimental works could clearly identify a Kekulé
distortion in graphene. Theoretical studies predict it can only be observed close to its
mechanical failure in ideal conditions [82,112,130], unlikely to be tested experimentally.
Nonetheless, this challenge has been circumvented by studying artificial graphene with
STM, which enabled to measure a Kekulé-induced band gap [61]. Finally, since a Kekulé
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Figure 1.14: Biaxial strain-induced Kekulé distortion in graphene. Left:: in-
plane phonon dispersion of graphene with 0% (red) and 20.5% (blue) biaxial strain. The
A′1 phonon at K point is emphasized by a black arrow, with its frequency approaching
0 cm−1 at high strain. Adapted from [130]. Middle: two possible Kekulé distortions
indexed A (inward) and B (outward) can occur, both with a tripled unit cell depicted
in red, but with either positive or negative relative intracell atomic distance ∆aintracell.
Right: energy profile calculated as a function of ∆aintracell with 14, 15, and 16% of
biaxial strain. Below 15% strain, the minimum at 0 indicates undistorted graphene is
the stable configuration, whereas above 15% strain, the two minima A and B become
more favourable. Adapted from [112].

distortion couples electrons from opposite valleys, one has to consider other mechanisms
that couple the K and K ′ valleys. For instance, electronic scattering events induced by
phonons [165, 178] or adatoms [24, 25, 65] have physical origins different from a Kekulé
distortion, but hold similar signatures. These different approaches are now going to be
briefly discussed.

As detailed before, the Peierls distortion is favourable in polyacetylene, and thus
occurs at ambient conditions. On the contrary, a Kekulé distortion at ambient conditions
is not favourable in graphene. Indeed, in the Peierls instability picture, a transition from
the undistorted to the distorted structure requires the lowering of the electronic energy
to outweigh the elastic energy cost of the distortion. In polyacetylene, as the electronic
density of states is flat, the Peierls gap opening contributes to a significant energy gain.
On the contrary, graphene has a linear density of states around the Fermi level, so
a Kekulé distortion provides a marginal electronic energy gain. For the transition to
occur, it is predicted graphene has to be biaxially strained up to either ∼ 16% [112] or
∼ 21% [82, 130]. Indeed, biaxial strain softens the phonons of graphene, as shown on
Figure 1.14. As a result, above a critical strain value, the frequency of a given phonon can
become imaginary: it is called a soft mode. A soft mode is then an atomic displacement
with no energy cost, which triggers a displacive phase transition. In graphene, this
transition is a Kekulé transition, whose soft mode is the transverse optical (TO) phonon
with A′1 symmetry at the K point, as illustrated on Figure 1.14 (left). Moreover, when
considering the energy landscape along the distortion coordinate on Figure 1.14 (right),
the minimum shifts continuously from zero to a finite value, which is the hallmark of a
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1.2. Graphene-based massive Dirac fermions
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Figure 1.15: Kekulé distortion in artificial graphene. Top left: the honeycomb
structure of graphene with a uniform hopping texture (t) gives rise to a linear electronic
density of states. Bottom left: They are effectively reproduced by arranging CO
molecules in a triangular pattern on a Cu(111) surface. On the corresponding STM
image, high electronic density regions appear as bright, while CO molecules appear
as dark spots, schematically represented as gray balls. The associated STS spectrum
reveals the linear dependence of the density of states. Top right: when a Kekulé
hopping texture (t1 > t2) is added to graphene, a band gap opens at the Fermi level.
Bottom right: by regrouping CO molecules in the appropriate pattern, the Kekulé
ordering is observed on the corresponding STM image, and a band gap ∆ appears in
the STS spectrum. Adapted from [61]

second-order transition.

However, although these theoretical works provide a route to the Kekulé distortion,
there are two obstacles. First, in a real graphene sample, high biaxial strain may result
in a mechanical failure below 16%, stemming from any kind of structural defect. This ex-
periment would then require very high crystalline quality samples. Secondly, assuming a
perfect graphene sheet, the strain-induced Kekulé distortion takes place as a preliminary
step to the mechanical breaking of graphene in a tiny window of parameter [112, 130],
making it potentially challenging to observe.

Investigating artificial graphene then appears as an alternative route, which has
achieved success [61]. By arranging CO molecules on a Cu(111) surface, one can indeed
artificially confine the electrons on a honeycomb lattice similar to graphene. More
precisely, the negative potential of CO molecules act as repellents for the electrons of
the Cu(111) surface state, which can be assumed to be two-dimensional electron gas. By
achieving atomically precise positioning with an STM tip, the authors could realize and
probe many exotic electronic phases, including Kekulé-distorted graphene, as illustrated
on Figure 1.15. In particular, the

(√
3×
√

3
)

R30° modulation of electronic density is
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Chapter 1. Electronic properties of graphene

clearly visible on the constant-current STM image, and the associated band gap is
observed in the STS spectrum.

Beside this work, there is little evidence of a Kekulé distortion in graphene. Other
studies have provided examples of an apparent Kekulé order that should not be con-
fused with the distortion itself. The theoretical proposal consists in depositing a low
concentration of adatoms on pristine graphene, so they adopt adsorption sites following
a Kekulé-like

(√
3×
√

3
)

R30° order [24, 25]. As the concentration is low, the ordering
of the adatoms can easily go unnoticed, that is why it has been nicknamed the hidden
Kekulé order.

Although this ordering has a symmetry similar to the Kekulé distortion, it has a dis-
tinct origin. Indeed, the Kekulé insulator is a graphene sheet that is globally distorted,
which induces a hopping texture that reduces translational invariance, leading to the
opening of a band gap. Depositing an adatom on graphene is different. Indeed, it does
not reduce, but breaks translational invariance completely. In other words, while the
Kekulé distortion could be handled with a few appropriate nesting vectors q, broken
translational invariance authorizes every possible q in the first Brillouin zone15. This
means an incoming electron with wave vector k can be scattered to any state of same en-
ergy with wave vector k + q. For pristine graphene, only two states at K and K ′ happen
to be available at the Fermi energy. As a result, in terms of Brillouin zone vectors, only
q = 0 and q = ΓK are possible. A local defect such as an adatom then causes a standing
wave pattern of electronic density to form around it, whose periodicity is given by the
possible q vectors. This standing wave pattern is called Friedel oscillations. Since q = 0
already corresponds to the modulation imposed by the graphene lattice, only q = ΓK
adds a new

(√
3×
√

3
)

R30° electronic modulation, identical to the Kekulé distortion
periodicity, and visible in STM imaging of local defects [125,177]. This electronic mod-
ulation surrounding the adatom promotes specific adsorption sites for other adatoms,
even at a few nm of distance, so below a critical temperature, arranging of the adatoms
following this so-called hidden Kekulé order occurs.

Once again, it should be emphasized this process has little to do with a Kekulé dis-
tortion. The Kekulé distortion corresponds to a phase transition of graphene towards
an insulating phase with

(√
3×
√

3
)

R30° unit cell. On the contrary, here, adatoms

arrange themselves along a
(√

3×
√

3
)

R30° pattern due to the electron density oscil-
lations they create. This pattern of adatoms may in turn slightly distort the chemical
bonds of graphene, but this distortion is not thermodynamically driven over the whole
crystal like in the Peierls mechanism.

With this caveat clarified, it is worth noting this effect has been experimentally
observed by STM [65]. In that study, graphene has been epitaxially grown on Cu(111)
with a particular process resulting in a (1× 1) relationship at the graphene-Cu interface.
As for the deposited adatoms, they actually correspond to copper vacancies below the
graphene sheet, therefore called “ghost adatoms”. They appear as bright features on

15For broken translational invariance, the band folding picture would require to fold the complete
band structure onto the Γ point, which simply means energy bands no longer exist.
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1.2. Graphene-based massive Dirac fermions
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Figure 1.16: Kekulé-like ordering of adsorbates on graphene. Electronic poten-
tial landscape in graphene. (left) Each adatom creates a

(√
3×
√

3
)

R30° modulation
around itself, which leads randomly placed adatoms (A) to occupy equivalent sites of a
Kekulé order(B). Adapted from [24]. Such ordering is experimentally observed on STM
images of substrate vacancies – appearing as bright features – below graphene grown
Cu(111) (right). Adapted from [65]. On both panels, a red-green-blue tiling is overlaid
to emphasize the Kekulé-like ordering.

STM images, and their position can be identified with atomic resolution. As illustrated
on Figure 1.16, these vacancies tend to order along the Kekulé-like

(√
3×
√

3
)

R30°
pattern.

In the previous situation, an apparent Kekulé order can be observed because of
adatom-induced intervalley scattering. A similar result can be obtained when relying
on phonon-induced intervalley scattering. To couple the K and K ′ points of the band
structure, a phonon at the K point is then necessary. Besides, this phonon needs
to display a sufficiently large electron-phonon coupling constant in order to provide an
efficient scattering channel. In graphene, both conditions are fulfilled by the TO phonon
with A′1 symmetry at K point.16 Its coupling to graphene electrons is first going to be
justified in the context of Kohn anomaly, and then its influences on the electronic bands
will be discussed.

In the Born-Oppenheimer approximation, electrons and phonons are considered sep-
arately, assuming their time constants differ significantly. In other words, the atoms
vibrate in a quasi-static manner, so they are slow enough for the electronic properties
to evolve at equilibrium. When this approximation is not valid, electrons and phonons
interact, and in the case considered here, this manifests itself in two ways.

On the one hand, as explained earlier, electrons influence the phonon properties
through a Kohn anomaly [99]. In graphene, only phonons with q = 0 and q = ΓK can
display a Kohn anomaly, which is indeed the case of the LO phonon at Γ and of the TO
phonon at K [165], as visible on Figure 1.17 (left).17 The observation of this anomaly

16Without any surprise, the very same phonon has been introduced earlier as the soft mode involved
in the biaxial strain-induced Kekulé transition. Indeed, the requirements to trigger a Kekulé transition
are the same: a phonon at K so as to couple the two valleys, and a large electron-phonon coupling.

17In Raman spectroscopy, the TO phonon gives rise to both so-called D and 2D peaks. The dip

35



Chapter 1. Electronic properties of graphene

Γ K M Γ

LO

TO

ZO

LA

SH

ZA

A'1

0

1600

1200

800

400

P
ho

no
n 

fr
eq

ue
nc

y 
(c

m
-1
)

Γ

M K

E
 (

m
eV

)

10

5

0

-5

-10

kx (Å
-1) 

0.0
03

5
-0.

003
5

-0.0035

0.0035
ky (Å

-1) 

Figure 1.17: Electron-phonon interaction in graphene. Left: Phonon dispersion
in graphene. A Kohn anomaly gives rise to a dip in the dispersion of the LO phonon
at Γ and TO phonon at K, as emphasized with red lines. Adapted from [204]. Right:
in return, the intervalley scattering promoted by the TO phonon at K induces a small
band gap (< 10 meV) in the band structure of graphene. Adapted from [89].

is the direct proof of a non-negligible electron-phonon coupling for these phonons. As a
side note, although electron-phonon coupling lowers the energy of the phonon, it is not
sufficient to make it a soft mode as earlier considered.

On the other hand, the TO phonon at K point provides a scattering channel for
electrons between K and K ′ points. In order to account for it, a model with both the
electrons and phonons has to be formulated. This has stimulated theoretical work, which
has predicted the opening of a dynamical band gap at K and K ′ points of < 10 meV,
either in a tight-binding approach [178], or with a Fröhlich type hamiltonian [89], as
pictured on Figure 1.17 (right).

As a conclusion, pristine graphene provides a remarkable system, whose conical bands
at Fermi energy give rise to electronic excitations to some extent analogous to Dirac-
Weyl particles. When graphene is supported by a substrate, the pictures provided by
the Semenoff and Kekulé insulators justify a gap opening at the Fermi energy, either due
to inversion symmetry or translational symmetry breaking. Two issues naturally arise
from those considerations. First, one may wonder whether such simple pictures grasp the
properties of supported graphene samples observed in experiments. Second, symmetry
breaking and phase transitions appear as key-concepts with far-reaching consequences
on supported graphene systems. Determining these consequences is the second issue at
stake in this thesis.

induced by the Kohn anomaly is responsible for their high dispersion versus laser wavelength. Combined
with their resonant Raman activation process [204], this dispersion has made the D and 2D peaks in
carbon-based materials a 20-year old puzzle in Raman spectra.
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Chapter 2

Moiré superlattices and topological
defects in graphene

In the previous Chapter, the influence of a substrate on the electronic properties of
graphene has been taken into account with model systems, where this influence translates
as an additional term in the hamiltonian. These models have now to be compared with
more realistic situations. In particular, the structure of graphene on a periodic substrate
is known to give rise to a moiré superlattice, whose structural features will be discussed
first.

Next, the impact of the substrate on the electronic properties is going to be discussed,
and the concept of Semenoff and Kekulé insulators will prove useful under certain hy-
potheses. In particular, these insulators can display topological defects, which dominate
their electronic properties, and which relate to topological defects in their atomic struc-
ture.

This link will then raise the issue of the possible structural phases for supported
graphene, which will be presented in the framework of the Frenkel-Kontorova model.
Describing these phases and their dynamics will require to introduce a few concepts
about phase transitions and symmetry breaking. Finally, a few systems where these
tools may apply will be briefly reviewed.

2.1 Structure of graphene moiré superlattices

When supported by a substrate, graphene has a crystallographic structure that generally
does not match exactly that of its substrate.1 The superposition of the two lattices then
leads to a long wavelength beating phenomenon called a moiré superlattice. From a
structural point of view, a moiré superlattice has two distinctive features: a large unit
cell with typical periodicity from ∼ 1 to ∼ 15 nm (so-called superperiodicity), and
within this unit cell, a varying local stacking of graphene onto its substrate.

As a starting point, the moiré superperiodicity and its origin can be considered
through two simple situations:

• On the one hand, graphene and its substrate have their atomic rows aligned, but do
not share the same lattice parameter agr 6= as. The moiré superperiodicity is then
defined by the integer number i of graphene cells that match the integer number
m of substrate cells. In this case, graphene is to some extent strained to match

1Exact matching is very rare, and earlier mentioned graphene on Ni(111) is one of the very few
examples.
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Chapter 2. Moiré superlattices and topological defects in graphene

as

agr φ

Figure 2.1: Graphene moiré superlattice. A moiré is a beating phenomenon emerg-
ing from the superposition of two mismatched lattices, and giving rise to a large superpe-
riodicity (green rhombi). Left: the mismatch can be due to different lattice parameters
for graphene (agr) and its substrate (as), as often attributed to graphene on a metal.
Right: it can also be related to a twist angle ϕ, which is typical of twisted graphene
bilayers.

its substrate with commensurate iagr = mas. This situation is usually assigned
to the most commonly observed phases of graphene on metallic surfaces, such as
Ir(111) [31], Ru(0001) [129], Rh(111) [214] or Re(0001) [193], and is sketched on
Fig. 2.1 (left).

• On the other hand, graphene has the same lattice parameter as its substrate, but
is twisted with respect to it by an angle ϕ. This second situation is typical of
graphene bilayers, either stacked artificially, or formed naturally at the surface
of highly oriented pyrolytic graphite (HOPG) or SiC(0001̄) (C-face SiC). It is
represented on Fig. 2.1 (right).

Although these simple situations help to distinguish two possible origins of a moiré
superlattice in graphene, they are actually neither exclusive, nor exhaustive. Both
twisted and strained graphene has indeed been observed for instance on Ru(0001) [12]
and Ir(111) [10]. In the latter case, an additional shear strain contribution could also be
evidenced, thereby showing the two pictures of Fig. 2.1 are not exhaustive. A systematic
analysis method able to quantify all these different contributions will be presented in
Chapter 4.

Beside a moiré superperiodicity, graphene has periodically varying stacking configu-
rations with its substrate within the moiré unit cell [5, 47, 173, 191, 217], as detailed on
Fig. 2.2. This stacking configuration determines how much graphene tends to bind to
its substrate.

For graphene on a metal, out-of-plane bonds are favoured for sites on top of a metal
atom (later on referred to as “top”), where the overlap between the π orbital of graphene
and the d orbital of the underlying metal atom is maximum. On the contrary, carbon
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2.1. Structure of graphene moiré superlattices

Figure 2.2: Varying stacking within a moiré unit cell. Left: Coloured circles em-
phasize different typical stacking configurations of graphene on its substrate. Middle:
for graphene on a metal, they correspond to hcp-fcc (red), top-fcc (green) and top-hcp
(blue) stackings. Right: Respectively, for a twisted graphene bilayer, they correspond
to AA (red), AB (green) and BA (blue) stackings.

atoms are more decoupled from their substrate on hollow sites, as no metal atoms lies
underneath them. Two inequivalent hollow sites exist, depending on the presence (hcp)
or absence (fcc) of a metal atom from the second topmost layer below it. As a result,
when graphene lies on a metallic substrate, its atoms adopt successively hcp-fcc, top-
fcc and top-hcp local stackings, as drawn on Fig. 2.2. Similarly, for graphene lying on
a honeycomb substrate such as another layer of graphene or hexagonal boron nitride
(h-BN), one can define AA, AB and BA local stackings, also drawn on Fig. 2.2.

Beyond this exclusively structural description, the chemical and electronic properties
of graphene can be dramatically affected by the moiré superlattice, and as a result
modify its structure in return. Two extreme regimes can be considered depending on
the coupling between graphene and its substrate:

• Some substrates show only a weak interaction dominated by van der Waals (vdW)
forces, such as graphene on h-BN [36] or multilayer graphene on the C-face of
SiC [70]. In this case, the graphene-substrate distance is of the order of 3.4 Å
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Chapter 2. Moiré superlattices and topological defects in graphene

[68,70], very close to the value 3.3539 Å in HOPG [97], and graphene’s electronic
properties are mostly preserved [68,155].

• Other surfaces interact more strongly with graphene, and are prone to exchange
electrons with it, establishing partially covalent bonds. Graphene-substrate bond-
ing then implies both vdW forces (physisorption) and partial covalent bonds
(chemisorption), and is modulated along the moiré superperiodicity [13, 18, 55,
185, 193]. Graphene is thus nanorippled with short graphene-substrate distances
where the tendency to covalent bonding is more prominent. Nanorippling am-
plitudes varying from 0.03 (on Pt(111) [196]) to 1.6 Å (on Re(0001) [193]) have
been reported depending on the strength of the graphene-substrate coupling [191].
For all those metals, the moiré modulation of graphene’s electronic properties
goes along with a modulation of its chemical reactivity, inducing preferential sites
for adsorption or functionalization. This renders possible to use moiré super-
lattices as a template for self-organized arrays of metallic clusters [37, 147] or
molecules [220,230].

As a first comment, one should be aware of the simplification performed here. Indeed,
instead of two extreme categories, there is rather a continuum of graphene systems with
a varying degree of graphene-substrate interaction, and each with specific properties.

Secondly, with these concepts in mind, one may wonder how the electronic and
chemical properties relate to the structure of the graphene-substrate system. There is
no simple one-to-one correspondence between the weak and strong coupling systems
presented above, and the two structural situations for moiré superlattices detailed ear-
lier. There is rather a complex interplay between structural and electronic/chemical
properties. The intrinsic properties of the substrate such as its band structure and its
electronic surface state favour a specific stacking for graphene. And at the same time,
the local lattice mismatch, twist angle and distance between graphene and its substrate
influence its tendency for physisorption or chemisorption. These mutually influencing
factors result in competing phases in the course of graphene growth, whose understand-
ing requires to consider graphene and its substrate as a single system. Density functional
theory (DFT) calculations then appear as an appropriate tool, but the large moiré unit
cells make them demanding in terms of computing time. Another approach consists in
defining empirical interatomic potentials that match typical results obtained by DFT,
and to use them in more complex situations. Both these methods will be reviewed in
Chapter 3, and used in the case of graphene on Re(0001) in Chapters 4 and 5.

2.2 Electronic properties of graphene moiré super-

lattices

In the current section, a more simple approach is going to be examined to discuss how
moiré superlattices impact graphene’s electronic properties. To start with, the electronic
coupling between graphene and its substrate will be presented, so as to justify the simple

40



2.2. Electronic properties of graphene moiré superlattices

Figure 2.3: Hybridization gap opening. Band structure schemes illustrating the
electronic effect of the chemical bonds between graphene and its substrate. Left: for
graphene on a sp-metal like Al(111), there is only a Fermi level shift ∆EF , visible because
of both the Dirac point and the π band bottom positions. Middle: when lying on a
weakly interacting d-metal such as Au(111), hybridization gaps open at the intersection
of d-bands with graphene π band, well below the Dirac cone. The Dirac cone is then
preserved, and the Fermi level shift ∆EF is generally small. Right: for graphene on a
strongly interacting d-metal like Re(0001), hybridization gaps open at the Dirac cone
and a large Fermi level shift ∆EF is observed. Adapted from [206].

classification of either weak or strong coupling substrates. For weak coupling substrates,
all the effects of the substrate have energy scales much smaller than the typical energy
scale of electrons in graphene, i.e. the hopping amplitude t ∼ 2.7 eV defined earlier. For
instance, electron transfer from/to the substrate will be considered small, so the Fermi
level in graphene lies close to the Dirac cones, whose curvature can also be neglected.
More generally, the substrate will act as a perturbation, which can be analysed in terms
of the Semenoff and Kekulé masses presented earlier.

In that context, the two structural features presented above are going to be reviewed
successively:

• The moiré superperiodicity, which is going to be treated with a band folding model,
similarly to the Kekulé distortion,

• The varying local stacking within the moiré unit cell, which results in a spatially
modulated Semenoff mass.

In this second situation, topological defects host important signatures in the elec-
tronic properties. To get a better grasp of the mathematical objects at stake, solitons
in polyacetylene will be briefly discussed.

2.2.1 Hybridization gaps and charge transfer

Hybridization gaps

As a starting point, the chemical bonds formed between graphene and its substrate
directly alter graphene’s electronic properties. This is revealed by the hybridization
gaps that open where their respective electronic bands intersect. Besides, the energy

41
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Figure 2.4: Band structure of graphene on Re(0001). Left ARPES data of a
Re(0001) single crystal. Re 5d bands extend mainly from E − EF = 0 to −2.5 eV.
Middle: When graphene is grown on Re(0001), they hybridize to the π band of gra-
phene, disrupting the linear dispersion of its Dirac cone at the K point. The bottom
of the π band at Γ lies at E − EF = −10.6 eV, which is 2.9 eV below its value for
pristine graphene. Adapted from [158]. Right: XPS spectrum of carbon 1s core-level
of graphene on Re(0001) (top), revealing two main contributions actually originating
from the continuum of carbon atoms with varying C-Re distance (bottom). Adapted
from [142].

at which these hybridization gaps open determines how strong graphene couples to its
substrate. If they open close to the Fermi level, graphene is strongly bound to its
substrate and its Dirac cones are disrupted. Alternatively, when the hybridization gaps
have a higher binding energy, graphene-substrate coupling is weak, and the Dirac cones
are marginally altered. This is illustrated in the case of graphene on a d-metal on
Fig. 2.3, and offers more generally a convenient classification for supported graphene
systems.

In real space, this electronic coupling corresponds to the chemical bonds, that is to
the overlap of graphene’s π and π∗ orbitals with the substrate electronic states. For
graphene on a metal, such overlap gives rise to hybridized bonding and anti-bonding
states with partially π and d characters. For bilayer graphene or graphene on h-BN, this
overlap is smaller and occurs in between π orbitals, so it is referred to as π-stacking.

In this respect, Re(0001), Au(111), and h-BN as substrates for graphene are going
to be presented as illustrations of different coupling regimes.
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2.2. Electronic properties of graphene moiré superlattices

Graphene on Re(0001)

First, Re(0001) is a 5d-metal whose electronic configuration is [Xe](4f)14(6s)2(5d)5. Due
to this half-filled 5d shell, 5d bands lie in its band structure at energies ranging from
E − EF = 0 to −2.5 eV, as presented on Fig. 2.4 (left). They can then be expected to
open hybridization gaps with graphene at the Fermi level. Instead of a Dirac cone, angle-
resolved photoemission spectroscopy (ARPES) indeed shows that graphene displays a
parabolic π band with maximum at E − EF = −3.9 eV [158], as displayed on Fig. 2.4
(middle). Additionally, the position of the bottom of the π band of graphene at the Γ
point is E − EF = −10.6 eV indicating the Fermi level is 2.9 eV above what would be
the Dirac point in the absence of the Re 5d bands. This means graphene on Re(0001)
is heavily n-doped.2

This strong π − d hybridization and charge transfer are consistent with DFT calcu-
lations, which predict graphene is corrugated by 1.6 Åat the moiré scale, with hcp-fcc
regions with large graphene-Re distance (∼ 3.9 Å) and top-hollow regions with short
graphene-Re distance (∼ 2.3 Å) [142,193]. In the latter, π−d hybridization is maximum,
due to the large overlap of graphene and Re orbitals. These DFT results are justified by
STM measurements, which indeed observe a large corrugation at the moiré scale, with
marked electronic effects at the atomic scale, which are reported in [193], and will also
be detailed in Chapter 4. Furthermore, the varying C-Re chemical interaction results in
a dispersive signature in X-ray photoemission spectroscopy (XPS) [142,143]. As plotted
on Fig. 2.4, carbon atoms close to the Re surface have their 1s core level shifted to
285.6 eV, while those further apart have a 1s core level around 284.4 eV [142], close to
the value of 284.5 eV obtained for HOPG.

In short, both electronic and structural features indicate Re(0001) is a substrate that
binds strongly to graphene, disrupting its electronic properties, as illustrated on the
right panel of Fig. 2.3. As such, one could even say it is the epitome of strong graphene-
substrate interaction, but other metals display similar features, such as Ru(0001) [189]
or Rh(111) [207].

Graphene on Au(111)

Now turning to weakly interacting metallic substrates, many examples have been re-
ported such as Ir(111) [166], Pt(111) [222], Cu(111) [212], Al(111) [208], Ag(111) [98] or
Au(111) [218]. The weakest known interaction with graphene is achieved by Au(111),
which can be considered as the opposite of Re(0001). Indeed, its electronic configuration
is [Xe](4f)14(6s)1(5d)10, so contrary to Re, it has a filled 5d shell. Consistently, ARPES
data reveal its 5d electronic bands lie at binding energies between 3 and 6.5 eV, as visible
on Fig. 2.5 (left). As a consequence, hybridization gaps open in the band structure of
graphene well below its Dirac cone, as measured by ARPES [127,128,183], an example

2Intercalation of a Ag monolayer proves to effectively decouple graphene from Re(0001), as Ag has
d bands extending from E − EF ∼ −4 to −7 eV. Graphene’s Dirac cone is then restored, but with
the Fermi level 0.4 eV above the Dirac point, and with a ∼ 0.45 eV band gap. Consistently, DFT
calculations estimate a graphene-Ag distance close to 3.5 Å [158].

43
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Figure 2.5: Band structure of graphene on Au(111). Left and middle ARPES
data of a Au(111) overlayer on a Ni(111)/W(110) thin film and of a Au-intercalated
graphene over Ni(111)/W(110) thin film, displayed with identical scales for comparison.
Hybridization gaps open at the intersection of the 5d bands of Au with the π band of
graphene at energies around E − EF from −6.5 to −3.5 eV, while the Dirac cone at
K is visible with marginal doping. Adapted from [183]. Right: STM topographs of
graphene grown by PVD on Au(111), revealing the coexistence of the Au(111) herring-
bone reconstruction with moiré superlattices. The angles between graphene [112̄0] and
Au[11̄0] directions is respectively 11° (top) and 0° (bottom). Adapted from [150].

of which is displayed on Fig. 2.5 (middle). The high binding energies at which π − d
hybridization occurs are reminiscent of the middle situation pictured on Fig. 2.3.

When considering the charge transfer between graphene and its Au(111) substrate,
different values have been reported depending on sample preparation. In this regard,
graphene can be prepared on Au(111) by three main methods:

• By intercalation of evaporated Au atoms under graphene grown beforehand on
a strongly interacting metal, such as Ni(111) [127, 183, 202] or Ru(0001) [44].
Graphene on Au(111) then inherits the alignment of graphene with Ni(111) or
Ru(0001), giving rise to the so-called R0 phase. All reported samples of this sort
display a small p-doping of 0.1 eV [44,202].

• By intercalation of evaporated Au atoms under graphene prepared on Si-face SiC
[56, 128]. In that case however, the resulting graphene is rotated by 30° with
respect to Au(111), in a so-called R30 phase [56]. Besides, the charge transfer
with graphene depends critically on the amount of intercalated Au, varying from
strong n-doping of −0.85 eV for sub-monolayer Au, to slight p-doping of 0.1 eV
for a complete monolayer.3

3DFT calculations attribute this behaviour to a significant variation of in-plane strain in graphene
upon intercalation of Au [29]. Nevertheless, this scenario needs to be clarified, as it does not discuss the
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• By evaporation of atomic carbon directly on a Au(111) single crystal (physical
vapour deposition, PVD) [150, 218]. This method forms mainly the R0 phase,
alongside with a non-negligible fraction of R30 phase [218]. Other rotated phases
have also been locally identified by STM [150], as exemplified on Fig. 2.5 (right). It
is worth noting the simultaneous observation of moiré superlattices emerging from
the superposition of graphene onto its Au(111) substrate, with the herringbone
reconstruction of Au(111). It translates the very weak influence that graphene has
on the surface structure of Au(111), giving a higher bound to the graphene-metal
interaction energy of 13 meV/C atom. As for the charge transfer, ARPES data
reveal a p-doping level of 0.1 eV, consistent with samples prepared with other
techniques.

As a side note, graphene cannot be grown by conventional chemical vapour deposition
(CVD) on Au(111), due to its limited chemical reactivity. Still, a modified CVD growth
using ionized fragments of ethylene has been developed to form graphene on Au(111),
leading to various coexisting orientations [132].

In all cases, the high binding energy of hybridization gaps and the weak charge
transfer from graphene to Au(111) translate a remarkably good decoupling of graphene’s
Dirac cones from the influence of its substrate.

Graphene on h-BN

Finally, h-BN can be considered as a reference for even weaker coupling. Its electronic
band structure is that of a Semenoff insulator, which means it is identical to graphene’s,
except for a large band gap at the Fermi level, and for a Brillouin zone rescaling due to
their 1.8 % lattice parameter difference. Consequently, one can expect graphene and h-
BN bands to almost superimpose, except in the large band gap of h-BN, where graphene
should have a pristine-like isolated Dirac cone.

Probing the band structure of graphene on h-BN experimentally with ARPES re-
quires large area samples, which rules out heterostructures prepared by transfer tech-
niques [36]. Therefore, graphene has to be grown on h-BN prepared beforehand on thin
films [197] or single crystals such as Cu(111) [176]. In both cases, d bands arising from
the metallic substrate are visible, but the Au(111) and Cu(111) substrates used have a
filled d-shell, and h-BN acts as a buffer layer, leading to a very weak π − d hybridiza-
tion. As a consequence, the conical dispersion of the π band of graphene is observed
with no band gap, as shown on Fig. 2.6. In the first presented work [197], intercalation
of a Au(111) monolayer between h-BN and its Ni(111) substrate achieves very good
electronic decoupling, so the Dirac point of graphene is found at the Fermi level within
experimental uncertainty. For graphene prepared on h-BN/Cu(111) [176], a Fermi level

non-uniform morphology of partially intercalated graphene on SiC revealed by STM studies [145,169],
nor the critical impact of the graphene-Au distance on the charge transfer [179]. Finally, STM analysis
of graphene on Au(111) moiré superlattices identify very weak strain in graphene [150], questioning
the relevance of these calculations. Without any structural detail on the morphology of the graphene-
Au interface of these strongly n-doped graphene samples, finding a convincing explanation for this
behaviour might remain speculative.

45
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Figure 2.6: Band structure of graphene on h-BN. Left: ARPES data of a
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veals the linear dispersion of the graphene π band, with undetectable doping or band
gap. Adapted from [197]. Middle and right: ARPES data of h-BN/Cu(111) and
graphene/h-BN/Cu(111) single crystal taken along the ΓK direction. The linear π
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shift ∆EF = −0.25 eV is observed, indicating a slight n-doping of graphene, lower than
the ∆EF = −0.38 eV measured for graphene on Cu(111) [62].

In summary, these results show a weak graphene-h-BN hybridization, consistent with
the large 3.3 Ådistance measured by high-resolution transmission electron microscopy
(HRTEM) [68].

These three examples provide insight on how much the electronic bands of the sub-
strate can alter the electronic properties of graphene. In the particular case of graphene
on Re(0001), none of the Dirac properties of graphene can be expected unless it is inter-
calated with another weakly interacting material.4 For this reason, strongly interacting
substrates such as Re(0001) on which graphene is chemisorbed will be momentarily set

4The study of the intercalation of Au under graphene on Re(0001) has been performed in the course
of this Ph.D., but will not presented.
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Figure 2.7: Phenomenological capacitor model. In the limit of weak graphene-
substrate coupling, the charge transfer is accounted for by an effective plane capacitor.
A voltage difference is generated by the different work functions of graphene Wgr and its
metallic substrate Wm. Left: for graphene on Ag(111), this effect should lower the Fermi
level in graphene and p-dope it. Right: additionally, both the charge density difference
in graphene and the metal and their chemical interaction create an electric dipole field
E at the interface. This field lowers the vacuum level Evac with a voltage drop ∆V ,
favouring electron transfer to graphene. For graphene on Ag(111), this contribution
outweighs the work function difference, so graphene is actually n-doped. Adapted from
[57].

aside in the following.

Charge transfer in the capacitor model

In this limit, graphene is physisorbed on its substrate, which influences its Dirac cone
only through charge transfer. This charge transfer can be deduced using a phenomeno-
logical capacitor model, where graphene and its substrate act as two plane electrodes
[57, 94]. The voltage difference between them sets the position of the Fermi level EF in
graphene, which indicates the charge transfer.

Two terms contribute to the voltage difference between graphene and its metallic
substrate. The first one is intuitive, and corresponds to the work function difference
between graphene Wgr and the metal Wm. The work function is the energy required to
extract an electron from the surface of a material and bring it to a vacuum state at rest.
If Wm > Wgr, one would indeed expect electrons to rather populate the metal, where
it is more difficult to extract them. As a result, the electronic states of graphene are
depleted, and the Fermi level in graphene is lowered down to the point where it matches
the Fermi level in the metal. In other words, the work function mismatch between
graphene and the metal is corrected by rigidly shifting the bands of graphene so as to
make them match. This situation is schematically presented on Fig. 2.7 (left).

This naive interpretation actually neglects the second term in the voltage difference:
the voltage drop ∆V at the interface due to charge reordering. Indeed, in the intuitive
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Figure 2.8: Competition between work function difference and interface elec-
tric dipole. Depending on the metallic substrate work function Wm and on the induced
voltage drop ∆V , graphene is either n or p-doped. Left: for Au(111), the large work
function WAu compensates the electric dipole field at the graphene-metal interface, so
graphene is p-doped. Middle: for Ag(111), this electric field outweighs the work func-
tion WAg > Wgr, leading to n-doping of graphene. Right: for Al(111), both the work
function difference WAl −Wgr and the interface electric dipole induce electron transfer
towards graphene. Adapted from [57].

picture described above, the Fermi level in graphene is merely adjusted to make work
functions match. This implies that covering a metal with graphene does not change its
work function at all. However, two major effects contradict this, and are encoded in
∆V = ∆tr + ∆c.

On the one hand, due to the charge transfer driven by the work function difference,
graphene and its substrate carry different charge densities. This creates a capacitive
coupling between graphene and its metallic substrate. Like in a capacitor, graphene
and its substrate are then two charged electrodes creating an electric dipole field which
renormalizes the work functions. This effect is taken into account by the ∆tr term in
∆V .

On the other hand, beyond purely electrostatic effects, graphene and its substrate
also interact chemically, through the overlap of π and d orbitals. This adds a chemi-
cal contribution to the interface electric dipole field, included in the ∆c term.5 For a
graphene-metal distance of 3.3 Å, typical of weakly interacting metals, ∆c ∼ 0.9 eV,
therefore lowering the vacuum level of graphene, and favouring electron transfer towards
graphene.

Taking both the work function difference and the interface electric dipole field into
account, charge transfer at the interface can be deduced, as depicted on Fig. 2.7 (right)
for graphene on Ag(111). In that case, WAg = 4.92 eV > Wgr = 4.48 eV, which

5In [57,94], ∆tr is truly modelled by an effective capacitor, whose charge corresponds to the charge
transferred from/to graphene. Yet, ∆c is fitted with DFT calculations to a phenomenological function
that vanishes exponentially at large graphene-metal distance. Remarkably, this function weakly depends
on the considered metal, making the model versatile.
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means it is easier to extract electrons from graphene, so p-doping of graphene is naively
expectable. Nevertheless, due to the interface electric dipole field, graphene is actually
n-doped.

This competition gives rise to three possible situations illustrated on Fig. 2.8:

• Wm > Wgr +∆V : the work function of the metal is so large that it compensates for
the electric field at the interface, leading to p-doped graphene. This corresponds
to graphene on Au(111).

• Wgr < Wm < Wgr + ∆V : the work function of the metal is larger than that
of graphene, but is outweighed when the interface electric field is accounted for,
leading to n-doped graphene. This corresponds to graphene on Ag(111).

• Wm < Wgr < Wgr + ∆V : the work function difference already favours n-doping of
graphene, and is further favoured by the interface dipole field. This corresponds
to graphene on Al(111).

As a final comment, it should be reminded this model is valid for physisorbed gra-
phene. That means the band structure of graphene is conical with a negligible band
gap. Strongly interacting substrates that open hybridization gaps at the Dirac cones
should thus not be considered.

Beyond hybridizations gaps and charge transfer, a substrate also modifies graphene
due to the moiré superperiodicity and the varying local stacking it adopts with graphene,
as detailed earlier. In the following sections, the influence of these features around the
Dirac cone is going to be considered. There too, the implications will not apply to
strongly interacting substrates.

2.2.2 Superlattice-induced secondary Dirac cones

As shown earlier, a moiré superlattice has a superperiodicity comprising a large number
of graphene unit cells. In reciprocal space, this corresponds to wave vectors (km1 ,km2)
smaller than those of graphene, and defining the reduced Brillouin zone. In the context
of superlattices, this reduced Brillouin zone is also called “mini-Brillouin zone”. When
studying graphene, the mini-Brillouin is often conventionally defined such that its center
Γm matches the original Dirac cone lying at K [154].

The slightest imaginable influence of the superlattice consists in a smooth periodic
superpotential, which reduces the translational invariance of graphene but preserves
chirality.6 As a consequence, in the reduced zone scheme, graphene’s band structure is
folded back into the mini-Brillouin zone defined by (km1 ,km2). When displaying it in

6In the framework of the low-energy effective hamiltonian of graphene, it expresses as an additional
V (r)σ0τ0 superpotential term. This means it acts the same way on both sub-lattices and on both
valleys, with the reduced translational invariance encoded in the periodicity of the V (r) function.
Hence, it trivially commutes with the hamiltonian, so it reduces translational invariance while preserving
chirality as a good quantum number. On the contrary, the Kekulé term considered before also breaks
chirality by explicitly connecting the K and K ′ valleys.
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Figure 2.9: Superlattice-induced secondary Dirac cones in graphene. In both
schemes, the band structure is plotted both in a 2D view from above, and in a 3D view.
Left: in the repeated zone scheme, the original graphene Dirac cone is replicated in
adjacent mini-Brillouin zones at the Γm points. A band gap opens at the intersection
between the original and the replica Dirac cones (thick black lines), except for states
with opposite chiralities, i.e. at Mm and M ′

m points. Right: in the extended zone
scheme, nesting vectors associated to the moiré superperiodicity hybridize states from
the Dirac cone, except in between Mm and M ′

m points.

the repeated zone scheme, new so-called replica Dirac cones lie at ±km from the original
Dirac cone. Equivalently, the km wave vectors of the superpotential can be interpreted
as nesting vectors within the band structure of graphene displayed in the extended zone
scheme. Both situations are schematically represented on Fig. 2.9.

As an analogy to the Kekulé distortion, the reduced translational invariance should
also open a band gap all along the mini-Brillouin zone edge. In the repeated zone
scheme, the Dirac cone indeed intersects its replicas along this edge. Likewise, nesting
vectors in the extended zone scheme connect the corresponding electronic states to each
other.

However, the preserved chirality of electrons forbids electronic states with opposite
wave vectors q and −q to hybridize to each other. In other words, states lying at
opposite sides of the Dirac cone cannot hybridize to each other. When considering
which points of the Dirac cones are connected by the superpotential, it appears only the
Mm points of the mini-Brillouin zone are concerned, as sketched on Fig. 2.9. In other
words, at the Mm points, no band gap opens, and the electronic bands locally have a
conical shape. New so-called secondary Dirac cones are said to be generated at these
points [159, 160].7 It is also worth noting that contrary to the replica Dirac cones, the

7The appearance of new Dirac cones at the Mm points may appear counter-intuitive. Indeed, the M
points of hexagonal systems are time-reversal invariant momenta (TRIM), where no Dirac cone can be
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secondary Dirac cones lie at energies 1
2
~vF |km| above and below the Dirac energy.

In short, like the Kekulé distortion, a moiré superpotential breaks translational in-
variance, which can be accounted for in a band folding model or with nesting vectors.
However, the simple model presented here neglects many aspects of a moiré superlat-
tice, so chirality is preserved. Specific points of the graphene band structure are thus
protected from a gap opening, giving rise to secondary Dirac cones. Many additional
features could be added, some of which open a gap at these new Dirac cones, or move
them to Km points [211]. Among those features, graphene’s stacking onto its substrate
is now going to be introduced.

2.2.3 Mini-gaps due to inversion symmetry breaking

The second structural feature of a moiré superlattice is the varying local stacking of
graphene onto its substrate. While the moiré superlattice acts as a long wavelength
superpotential acting smoothly over a large number of carbon atoms, the local stacking
has an influence at the atomic scale, within the graphene unit cell. This length scale
difference will now be shown to hold different signatures in the electronic properties.

Electrons in graphene are sensitive to the substrate electronic potential, which is
directly related to the substrate atomic structure. Therefore, one has to consider the
detailed stacking configuration. In the previous section, typical adsorption sites for
honeycomb (A and B) and triangular (top, hcp and fcc) substrates have been introduced,
and the latter is going to be considered here as an example.

The difference between top, hcp and fcc sites is crucial. On a top site, the overlap
between the π orbital of graphene and the d orbital of the underlying metal atom
is maximal, while it is less for hcp or fcc sites. Hence, the top sites are where the
π − d hybridization takes place. For weakly interacting substrates at stake here, π − d
hybridization does not affect the Dirac cone. Still, from the perspective of the capacitor
model, the larger overlap between π and d orbitals means a local electric dipole of higher
magnitude, so a larger charge transfer. The charge transfer is thus higher on a top site
than on a hollow hcp or fcc site. As a result, the stacking of graphene results in a
modulation of the chemical potential of each carbon atom depending on its adsorption
site.

Any given stacking of graphene on a triangular substrate breaks inversion symmetry
like in a Semenoff insulator. As an example, when graphene lies on a metallic substrate
with a top-hcp stacking, the atoms of the A sub-lattice are on a top site, while those
of the B sub-lattice adopt a hcp hollow site. The staggered electron transfer on each
sub-lattice alters their respective chemical potential as in a Semenoff insulator. Con-
sequently, a gap opens at the Dirac energy and chirality is no longer a good quantum

expected [58]. Nevertheless, the Mm points at stake here are those of the conventional mini-Brillouin
zone, so they do not need to be TRIM. Moreover, depending on the superpotential term V (r), the
position of the secondary Dirac cones is predicted at the Mm or Km points [211].
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Figure 2.10: ARPES-measured mini-gaps at the secondary Dirac cones in
graphene. Left: ARPES data of clean Ir(111) (a) and gr/Ir (b,c,d) along different
azimuths defined on the lower panel. K points of Ir and graphene are marked as KIr

and Kg, respectively. S1 – S3 are Ir surface states, while R is a replica Dirac cone. Hor-
izontal arrows denote the mini-gap. The dashed lines are tight-binding-approximation-
calculated bands for Dirac cones. Adapted from [166]. Middle: Tomographic view of
the gr/Ir band structure around K. The lower panel shows the mini-gap dispersion and
size along the mini-Brillouin zone edge. Adapted from [184]. Right: ARPES data of
gr/h-BN through the secondary Dirac cones along different directions indicated on the
lower panel. Black dashed lines indicate the fitted band dispersion. Horizontal arrows
denote the mini-gaps. Adapted from [216].

number.

As a consequence, so-called mini-gaps also open at the secondary Dirac cones. This
is consistent with ARPES data taken on graphene supported by weakly-interacting
substrates, such as Ir(111) [104, 166, 184, 198] or h-BN [216], as shown on Fig. 2.10.
In both cases, a band gap opens along the edge of the mini-Brillouin zone, with no
secondary Dirac cone.

In the case of a moiré superlattice, the local stacking varies continuously over the
moiré unit cell. This means the inversion symmetry breaking imposed by the substrate
is modulated at the moiré scale, or equivalently that the Semenoff mass follows the
moiré superperiodicity. One can then model how graphene’s local stacking impacts its
electronic properties with a spatially-dependent Semenoff mass field. This Semenoff
mass field is periodic in the case of a moiré superlattice, but can have a more complex
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Figure 2.11: Soliton in Peierls-distorted polyacetylene. Top: polyacetylene can
be dimerized in two equivalent ways, associated with their uniform displacement fields
u = ±1, which constitute degenerate stable vacua. Middle and bottom: two soli-
ton solutions called kink and antikink are also possible, and connect respectively the
boundary conditions u (−∞) = −1 and u (+∞) = +1 (middle), and u (−∞) = +1 and
u (+∞) = −1 (bottom).

dependence. In particular, while areas with non-zero Semenoff mass hold an insulat-
ing behaviour, places where it changes sign need to be metallic [22, 181]. Such places
actually correspond to topological defects called solitons. The concepts of soliton and
topological defect will also prove necessary to understand some structural aspects of
supported graphene. They will be introduced formally in the next section, but in order
to apprehend them, a simple analogous system already introduced before is now going
to be reviewed: Peierls-distorted polyacetylene.

2.2.4 Solitons in polyacetylene

It has been discussed earlier that a trade-off between the electronic and elastic energies
favours a spontaneous bond distortion in polyacetylene. This distortion consists in a
dimerization: one bond out of two shortens while the other one stretches. However,
there are two equivalent ways of performing this dimerization, as sketched on Fig. 2.11.
From this picture, a continuous displacement field u can be defined considering the
position of the B atoms with respect to their A counterparts. With this definition, the
two degenerate distortions correspond to uniform displacement fields labelled u = −1
and u = 1. Since these fields are uniform, from the point of field theory, they can be
interpreted as empty of any source term, and called stable vacua.

Beside these two degenerate vacua, two soliton solutions are also possible, when
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considering appropriate boundary conditions. By setting u (−∞) = −1 and u (+∞) =
+1, a kink in the displacement field has to be added somewhere for these conditions
to be matched. The associated solution is therefore simply called a kink. Similarly, an
antikink results from the boundary conditions u (−∞) = +1 and u (+∞) = −1. The
kink and antikink fields are shown on Fig. 2.11.

Three important comments have to be made about these additional solutions. First,
to address their nature, one has to consider that contrary to the vacua fields, the kink
and antikink fields both contain a singular source term.8 It is visible either as a smooth
jump in u, or as an unpaired electron on Fig. 2.11. It is quite intuitive such a singularity
has an energetic cost. Still, the boundary conditions force its existence: this property is
the hallmark of a soliton.

Secondly, when considering its properties, it is worth noting the unpaired electron
associated with a soliton and the spin it carries can easily be moved along the chain.
Since polyacetylene is insulating, the solitons are responsible for its charge and spin
transport properties. Additionally, they are topological defects in the displacement
field: they cannot be removed by a continuous transformation of the field. A way to
visualize a continuous transformation is to consider the displacement field u. It consists
in distorting the u (x) curve without cutting it. No matter how it is distorted, the
final u (x) curve is always equivalent to the step-like kink on Fig. 2.11. In short, the
properties of the solitons persist no matter what their detailed geometrical configuration
is. This behaviour is related to topology, so the solitons of polyacetylene are also called
topological defects.9

Thirdly, the topological solitons of polyacetylene have been predicted to carry a
fractional charge 1/2 [74]. They indeed correspond to stable excitations of a system with
a broken symmetry [83] – here by the dimerization.

As a final comment, the topological solitons described here constitute the charge
carriers in polyacetylene. When pristine, it is insulating because of the Peierls distor-
tion. But doping polyacetylene leads to soliton formation, so its conductivity increases
dramatically, as was measured in 1977 by Alan J. Heeger, Hideki Shirakawa, Alan G.
MacDiarmid and co-authors [28]. The underlying mechanism was explained theoreti-
cally short after by the already mentioned SSH model [187, 188]. The outcome of this
work is the Nobel prize in chemistry awarded to Heeger, Shirakawa, MacDiarmid in 2000
for opening the field of conductive polymers [74]. From a physicist point of view, their
work provides a simple system whose properties are well accounted for by topology.

In summary, when supported by a substrate, graphene acquires additional structural
features related to a moiré superlattice. For substrates such as Re(0001), these features
come along a strong hybridization that disrupts its electronic properties. Other materials
only give rise to a marginal charge transfer, so effects related to the moiré superlattice are

8This formulation in terms of fields containing source terms is usual in classical electrodynamics,
where charges indeed act as singular source terms in the electromagnetic field.

9As a counter-example, a kink-antikink pair is not a topological defect, because when they are
brought together, the kink and antikink annihilate each other and the displacement field is equivalent
to a vacuum field.
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2.3. Structural phases of supported graphene

observed, such as band folding and mini-gap openings. In particular, a moiré superlattice
can be interpreted as periodically modulated Semenoff mass field. In analogy to the kink
and antikink in polyacetylene, this interpretation raises a fundamental question: does
supported graphene host topological solitons?

To formulate this question, the electronic properties of supported graphene have been
understood based on its structural features: superperiodicity and local stackings. To
elaborate an answer, it is then logical to address the issue of topology in the structural
phases of supported graphene.

2.3 Structural phases of supported graphene

The topological solitons of polyacetylene bridge two degenerate vacua solutions of the
Peierls distortion. They constitute a simple and illustrative example because two de-
generate vacua is the smallest possible number of vacua to have solitons. Similarly, in
order to determine the possible topological defects in supported graphene, it is necessary
to enumerate its degenerate vacua. This may appear a complicated task, as graphene
moiré superlattices have been showed to display an extensive variety of phases. With
the motivation of simplifying this problem, the Frank and van der Merwe model and its
application to supported graphene will be presented here.

2.3.1 Frank and van der Merwe model

Yakov Frenkel and Tatyana Kontorova are Soviet physicists who formulated a 1D model
that accounts for dislocations in crystals, published in 1938 [51], and best-known as the
Frenkel-Kontorova model. In 1949, this model has been extended by Frederick Charles
Frank and Jan van der Merwe with an emphasis on crystal growth and epitaxy [49,50]. It
provides a simple picture where the concepts introduced earlier of moiré superlattices and
solitons find a natural framework. More recent reviews have since then reformulated this
model [3], benefiting from discussions on the nature of the involved phase transitions.
In the following, the Frank and van der Merwe model is going to be presented. Its
solutions in the continuum approximation will be derived, in order to present the possible
commensurate and incommensurate ground states. The commensurate-incommensurate
transition will be addressed in particular.

Although supported graphene is a 2D problem, the more simple 1D picture as formu-
lated by Frank and van der Merwe is going to be addressed for simplicity. As schemat-
ically drawn on Fig. 2.12, graphene then simplifies to a chain of atoms indexed by their
position xn and held together by harmonic springs, with spring constant µ. This har-
monic chain imposes an interatomic distance a, and displacement from this value costs
an elastic energy T . As for the substrate, it is considered infinitely rigid, and acts
on the chain as a periodic potential energy landscape of amplitude 1

2
V , whose minima

correspond to the stable adsorption configurations of the substrate. For simplicity, a
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Figure 2.12: Frank and van der Merwe model. Top: the structure of an overlayer
on a lattice-mismatched substrate is modelled by a 1D chain of atoms on a sinusoidal
potential. The interatomic distance results from a competition between the harmonic
springs (a) and the substrate potential (b). Bottom: this model gives rise to many
possible phases, characterized by phase profiles in the continuum approximation: a
strictly commensurate (C) phase where each potential minimum hosts a single atom
(a = b), assuring translational invariance at every atom; a high order commensurate
(HC) phase where translational invariance occurs every few atoms; an incommensurate
(I) phase, where the lattice mismatch is such that no translational invariance ever occurs.
In the soliton incommensurate phase (S), an average a/b ratio can be made equal to the
latter I phase.

harmonic potential will be considered.10 The interatomic distance b imposed by the
potential landscape is thus that of the substrate, and displacement from this value costs
a potential energy U . Identifying the stable phase requires to find the positions xi
minimizing the total energy of the system:

H = T + U =
µ

2

∑
n

(xn+1 − xn − a)2 +
V

2

∑
n

(
1− cos

(
2π
xn
b

))
(2.1)

This model obviously features a competition between elastic and potential energies,
each promoting a different lattice constant. One naturally expects the emergence of dif-
ferent phases depending on the lattice mismatch and ratio between elastic and potential
energy. For a soft chain on a sharp potential, the potential energy term forces a lattice
constant a = b, corresponding to a strictly commensurate (C) phase. If the chain is
more rigid or the lattice mismatch larger, the commensurate matching occurs with a

10It can be considered as the first-order harmonic of the potential Fourier series.
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larger unit cell such that Ma = Nb, with N and M two integers. The ratio a/b then
corresponds to a rational number N/M ∈ Q, and this is called a high order commensurate
(HC) phase. On the contrary, for very rigid interatomic bonds on a shallow substrate
potential, the elastic energy term imposes a lattice constant a with no influence of the
substrate. This situation shall be called an incommensurate (I) phase, as the ratio a/b
can take any value in R. This latter phase may be considered as academic or naive. It
is academic, because any real number can be considered rational with infinitely small
error, so the slightest influence of a substrate could lock the chain to a sufficiently high
order commensurate phase. On the other hand, it is naive, since one can imagine the
ratio a/b to be irrational only on average. The chain would then be composed of areas
locked to a strictly commensurate relation to the substrate, and of other areas locally
strained to relieve the elastic energy build-up. This last situation will be shown to be
a soliton solution to the Frank and van der Merwe model, and will therefore be called
soliton incommensurate (S). Those four phases are schematically drawn on Fig. 2.12
(bottom).

The simple model at stake holds some of them. This can be revealed by first rewriting
the hamiltonian to make it dimensionless, introducing the so-called geometrical phase
ϕn as xn = nb+ b

2π
ϕn:

H =
V

2

∑
n

l2 (ϕn+1 − ϕn − δ)2 + (1− cos ϕn) (2.2)

where δ = 2π a−b
b

is the mismatch between graphene and its substrate in units of

phase, and l = 1
2π

√
µb2

V
. For now, l corresponds to the ratio between elastic and potential

energy, but it will prove to have additional significance. As for the geometrical phase
ϕn, it translates as a phase the position of the carbon atom relative to the unit cell
of substrate, as indicated on Fig. 2.12 (top). For the harmonic potential used here,
the stable adsorption site corresponds to ϕn = 0, while the unstable site is ϕn = π.
Minimization of the hamiltonian requires the condition ∂H

∂ϕn
= 0, which results in:

ϕn+1 − 2ϕn + ϕn−1 =
1

4l2
sin ϕn (2.3)

Solutions of this equation can be built iteratively given a choice for ϕ1 and l (ϕ0 = 0
as a phase reference). Among them, the most obvious is given by setting ϕ1 = 0, which
results in a uniform vacuum solution ϕn = 0, where all atoms adopt the stable site of
the substrate. This corresponds to the strictly commensurate (C) phase. In the context
of epitaxy, a layer growing on its substrate with such strictly commensurate relation is
called pseudomorphic.

2.3.2 Continuum limit: the Sine-Gordon equation

Finding analytical solutions of Equation (2.3) is very challenging in the discrete case,
but it can be achieved easily in the continuum limit. Although convenient, the contin-
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Figure 2.13: Continuum kink and antikink solutions. Left: the Sine-Gordon
equation has a kink (red) and an antikink (blue) solutions. Right: they correspond to
misfit dislocations, respectively adding or removing an atom to the chain.

uum limit is an approximation, which assumes the local variation of ϕn is slow enough
to interpolate it with a continuous function ϕ(x), with x an dimensionless space coor-
dinate.11 The above difference equation then becomes a differential equation, which is
the time-independent version of the Sine-Gordon equation:

d2ϕ

dx2
=

1

4l2
sin ϕ (2.4)

Integration of the above equation yields:(
dϕ

dx

)2

= ε2 +
1

2l2
(1− cos ϕ) (2.5)

where ε is an integration constant corresponding to an additional phase modulation
at ϕ = 2kπ, k ∈ Z. For simplicity, ε will be set to 0, which means wherever the atoms lie
in the minima of the substrate potential (ϕ = 2kπ, k ∈ Z), there is no additional phase
modulation (dϕ

dx
= 0). The corresponding solution will then have most of its atoms in

the minima of the substrate potential. From the above equation, one gets:

dϕ

dx
= ±1

l
sin

ϕ

2
(2.6)

In the following, the ± sign is included inside l. This sign corresponds to positive or
negative mismatch δ, i.e. to a chain with a > b or a < b respectively. This last equation
can be integrated into the so-called misfit dislocation solution:

ϕ(x) = 4 arctan
(
e
x/2l
)

(2.7)

where the choice ϕ(0) = π has been made for simplicity. This solution is plotted on
Fig. 2.13 (left, in blue). As a first comment, it clearly reminds of the soliton solution
seen for polyacetylene. It indeed corresponds to a solution joining the two degenerate

11In the continuum limit, abrupt variations of ϕn induced by sharp minima of the substrate potential
are excluded. Such minima would lock the atoms to given positions and act as a pinning potential.
This effect will be considered later in a different context.
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vacua ϕ(x) = 0 and ϕ(x) = 2π. Besides, in this context, the term “soliton” also comes
from the fact it is a non-dispersive solution of the non-linear Sine-Gordon equation (2.4).

When getting back to the atomic structure underlying this soliton, it corresponds
to a misfit dislocation. In the solution (2.7), the +2π jump between − inf and + inf
indicates an atom is missing, as sketched on Fig. 2.13 (right, in blue). Depending on the
sign of l, one atom is either added or removed, thus giving rise to a kink or an antikink.

Furthermore, the parameter l finds a new meaning here. Its definition sets it as
the ratio between elastic and potential energies. In Equation (2.7), it also sets the
width of the soliton. Indeed, if l � 1, it is favourable to put as many atoms in the
substrate potential minima as possible, resulting in a soliton in the shape of a sharp
step. Alternatively, when l � 1, the atomic chain rigidity forces a smooth evolution of
ϕ, resulting in a soliton with a large width.

As a final remark about this solution, a lattice of such kinks or antikinks is possible
(by setting ε 6= 0 [50]). For a lattice of well separated kinks, the solution with a sin-
gle kink derived here is a suitable approximation. These kink and antikink lattices are
solutions corresponding to a chain where the lattice mismatch induces respectively com-
pressive or tensile strain, and introduced earlier as the soliton incommensurate phase
and drawn on Fig. 2.14. One may wonder what difference lies between this kind of
incommensurate phase and a commensurate phase of sufficiently order to hold the same
strain. A first answer is now going to be provided by investigating the transition be-
tween a commensurate and an incommensurate phase. A complementary answer will
be provided on thermodynamic grounds in the next section.

2.3.3 Commensurate-incommensurate transition

This question motivates the determination of the critical values of l and δ inducing the
transition between the strictly commensurate phase and this incommensurate phase.
In this regard, it is worth noting that the differentiation leading to the Sine-Gordon
equation (2.4) removes all reference to the mismatch δ. Determining critical parameters
for the transition then requires to get back to the total energy (2.2). From it, the force
exerted by the springs on the atoms is derived as:

F = µ (xn+1 − xn − a) =
µb

2π
(ϕn+1 − ϕn − δ) = 2π

V l2

b

(
dϕ

dx
− δ
)

Using Equation (2.6), one gets:

F = 2π
V l2

b

(
1

l
sin

ϕ

2
− δ
)

(2.8)

From this, the energy required to add a misfit dislocation can be deduced as:

W =

∫ 2π

0

Fdϕ =
2πl2V

b

∫ 2π

0

(
1

l
sin

ϕ

2
− δ
)

dϕ =
8πl2V

b

(
1

l
− πδ

2

)
Misfit dislocations are added to a strictly commensurate phase if W 6 0, which

is achieved when l is in absolute value larger than a critical lc given by the misfit δ.
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Figure 2.14: Phase diagram of the 1D atomic chain. For a given mismatch
δ, depending on the energy ratio l, the atomic chain undergoes a commensurate-
incommensurate transition, as schematically indicated with either a drawing (top) or
a phase plot (bottom). Left and right: for |l| >

∣∣ 2
πδ

∣∣, the elastic energy overcomes
the potential energy, so an incommensurate lattice of solitons is favoured. Middle: for
|l| <

∣∣ 2
πδ

∣∣, the substrate potential forces the atoms to sit on its minima, leading to a
strictly commensurate phase.

Alternatively, the transition to an incommensurate phase occurs as soon as the misfit δ
gets larger than δc given by l, as:

lc =
2

πδ
and δc =

2

πl
(2.9)

The Frank and van der Merwe 1D model gives therefore a qualitative description
of the system. The competition at stake between the elastic and potential energies is
quantified by the value of l. Depending on its value with respect to 2

πδ
, the competition

results in two possible regimes: either a strictly commensurate phase, or an incommen-
surate phase comprising a lattice of solitons of width l. This situation is schematically
presented on Fig. 2.14. For small enough |l|, the system lies in the stability domain of
the commensurate phase, and it turns into an incommensurate phase when |l| > |lc|. It
can be noted that for an infinite |l| (respectively an infinitely small substrate potential),
all solitons of the lattice overlap each other, and the naive incommensurate phase is
recovered. Hereafter, no distinction will be made between this naive incommensurate
(I) and the soliton incommensurate (S) phases.

To assess whether the commensurate-incommensurate transition is continuous or
not, the continuity of the soliton density at the transition should be assessed. It is
rather straightforward that the soliton density equals the average mismatch δ̄ = 2π ā−b

b
,

with ā the average lattice parameter of the chain. One can also get an intuitive idea of
its evolution with respect to δ. Indeed, for δ < δc, no soliton is found, so δ̄ = 0. As for
the situation of very large δ, it is equivalent to very large l. As pictured on Fig. 2.14,
one then expects ā = a, so δ̄ = δ. The exact evolution between the two is continuous
and plotted on Fig. 2.15 (left).12

12The proof is quite simple, and requires to solve Equation (2.5) for any value of ε, as performed
in [50].
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Figure 2.15: Dynamics of commensurate and incommensurate lattices. Beyond
the commensurate-incommensurate transition, three typical situations depict the evo-
lution of the soliton density δ̄ under the change of an external parameter, chosen to
be the mismatch δ. Left: for an incommensurate (I) phase, no locking ever occurs, so
its is also called a floating phase. Middle: transitions through an infinite number of
high order commensurate (HC) phases leads to a quasi-continuous evolution of δ̄ called
the devil’s staircase. Right: a behaviour alternating between these two situations is
referred to as the incomplete devil’s staircase.

Although simple, this model contains the single necessary physical concept to an-
ticipate the commensurate-incommensurate transition: the competition between two
energy scales and their associated length scales.13

It could be argued, however, that high order commensurate phases are not accounted
for. In this perspective, the smooth variation of δ̄ on Fig. 2.15 (left) translates the
independence of the chain from the substrate potential, as it does not lock on any high
order commensurate. Based on this independence, the incommensurate phase is also
called the floating phase.

The Frank and van der Merwe model can actually be adapted by replacing the
strict commensurate relation b = a with any higher order relation Nb = Ma [3]. The
associated calculation can be found in [192], and results in a condition on l and δ similar
to Equation (2.9). It defines a stability domain for the high order commensurate phase

whose width is of the order of δc,(M,N) ∼ δ
M/2
c .

One then expects the system to lock on successive high order commensurate phases.
If l is small, the width of each stability domain is large enough, so the evolution δ̄ goes
through a series of plateaus, as illustrated on Fig. 2.15 (middle). If the number of such
plateaus is infinite, the evolution is an almost-continuous devil’s staircase, in analogy
to Cantor’s function. For larger values of l, each stability domain shrinks, and their
total sum is small enough to promote transitions through incommensurate phases. The

13A more complete discussion is provided in the original publication [49,50], as well as a generalization
to two dimensions in a later work [200].
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variation of δ̄ switches from a smooth evolution to discrete jumps, called an incomplete
devil’s staircase, as depicted on Fig. 2.15 (right).

Getting back to the question motivating this discussion, the difference between a
high order commensurate phase and the floating incommensurate phase lies in their
dynamics. Over a variation of an outside parameter, a floating phase adapts its average
lattice parameter ā continuously, whereas for a high order commensurate phase, ā is
locked to the commensurate relationship with the substrate. This key-difference has
been used experimentally to investigate the transition between the two in the case of
Kr atoms lying on Pt(111) [93].

In summary, the Frank and van der Merwe model provides a simple framework to
overview the structural phases of supported graphene systems and their dynamics. It
includes naturally the solitons to its phase diagram, which decomposes into two kinds
of phases: commensurate (strictly or high order) and incommensurate. Transitions be-
tween these phases gives rise to smooth, discontinuous or almost-continuous evolutions,
the latter of which corresponds to a fractal pattern analogous to a devil’s staircase.

The classification between commensurate and incommensurate phases raises the is-
sue of sorting the variety of supported graphene systems introduced earlier. As already
mentioned, only graphene supporting on Ni(111) unambiguously matches a strictly com-
mensurate phase. On the other hand, the very large majority of systems displaying moiré
superlattices may either be sufficiently high order commensurate phases, or incommen-
surate lattices of solitons.

To elaborate further, a deeper understanding of phase transitions, and in particu-
lar of the commensurate-incommensurate transition is necessary. Besides, determining
whether supported graphene can host topological defects with peculiar properties also
requires the introduction of these notions, which are now going to be addressed.

2.4 Phase transitions and topological defects

So far, a 2D material supported by a substrate has been described using an intuitive
model that resorts to classical mechanics. Although simple, this model enables to antic-
ipate the more modern concept of phase transition. In the following, the early theories
proposed by Ehrenfest and Landau will first be briefly reminded. From that, more at-
tention will be devoted to the concept of order parameter, which will prove useful to
introduce topological defects. A few examples will be given, in particular of topologi-
cal defects in graphene and supported graphene systems. Finally, to get more insight
on the incommensurate phase and the phase transitions occurring in 2D, the so-called
Berezinskii-Kosterlitz-Thouless transition and Hohenberg-Mermin-Wagner theorem will
be presented.
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2.4.1 Classification of phase transitions

A phase transition of a system is the abrupt change of its state and properties upon
the continuous variation of an outside parameter. Many examples correspond to this
description: the freezing of water below 0°C at ambient pressure, displacive transitions
in crystals upon application of pressure, or the suppression of the superconducting state
by a sufficiently large magnetic field. This concept is ubiquitous in physics, and a large
variety of phase transitions exist, thus calling for a classification.

One of the earliest classifications was formulated by Paul Ehrenfest in 1933, and
relies on thermodynamic grounds. As the system at equilibrium undergoes a phase
transition, its thermodynamic potential evolves continuously, but one of its derivatives
is discontinuous. The order of the phase transition is then given by the lowest derivative
of the thermodynamic potential that is discontinuous at the transition. As an example,
the transition from a liquid to a gas can be shown to be of first order. Its elementary
change of Gibbs free enthalpy G upon variation of temperature T and pressure p states
as:

dG = −SdT + V dp

with S and V the entropy and molar volume, respectively. This relation is valid for
both phases labelled A and B, and in particular along the transition line in a (p, T )
diagram, one has dGA = dGB. This translates into the Clapeyron relation:(

dp

dT

)
transition

=
SB − SA
VB − VA

=
L

T

1

∆V

where L = T∆S is the latent heat at the phase transition. It translates a disconti-
nuity both in S and in V , which are first derivatives of G. This is therefore a first-order
transition.

The Ehrenfest classification has been introduced only to illustrate that multiple
classifications of phase transitions exist. The most relevant to the problem exposed here
has been proposed by Lev Landau in 1937, and is based on symmetry groups. Each
phase of a system has a symmetry group, which contains all the symmetry operations
that leave the system invariant. These symmetry operations are translations, rotations,
space inversion, time reversal, etc.

For a phase transition between two phases A and B, their symmetry groups ΓA
and ΓB are most likely different. The Landau theory applies in the case when ΓB is a
subgroup of ΓA (or vice-versa). This means the B phase is less symmetric, and needs
more variables than the A phase to be fully described. This additional information is
stored inside the so-called order parameter. For symmetry reasons, the order parameter
equals zero in the high symmetry phase (A), and is non-zero in the low symmetry phase
(B).14

14This needs not be the case. For the liquid-gas transition mentioned earlier, both phases have
the same symmetries. Moreover, a phase transition can occur between two crystalline phases where no
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Figure 2.16: First and second order transitions. The free energy density functional
F is expanded with respect to the order parameter m close to the transition. Each
curve corresponds to F at a given value of the parameter driving the transition (from
blue to red). The stable configuration is given by the minimum of F (identified by a
circled black dot) and determines the value of m. Left: when m is discontinuous from
0 to m0, the transition is of first order. Right: when m is continuous at the transition,
the transition is of second order.

A simple example is the transition of a crystal like α-iron from a paramagnetic
to a ferromagnetic state. In the paramagnetic state, because the nuclear magnetic
moments are randomly distributed, all the directions of space are equivalent. Below
the Curie temperature, magnetic moments align, so iron spontaneously magnetizes. A
specific direction of magnetization M is chosen by the system, so the equivalence of all
directions is lifted. In this example, it is intuitive that by lowering the temperature, the
rotation symmetry has been broken, and the additional information needed to describe
the system is encoded in the magnetization direction. Magnetization appears therefore
as a suitable order parameter.

This example illustrates the meaning of the term “order parameter”. Indeed, the
lower symmetry phase is the ferromagnetic state, as the rotational symmetry is broken,
but it is also an ordered phase. Indeed, the existence of a global magnetization emerges
from the ordering of the individual magnetic moments at a local scale. The order
parameter thus translates the degree of order that arises in the system.

The concept of order parameter is central to the Landau classification. Phase tran-
sitions are indeed sorted depending on the continuity of the order parameter at the

symmetry group is the subgroup of the other. In both situations, there is no order parameter associated
with the phase transition.
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transition. If the order parameter m jumps abruptly from 0 to a finite value m0, the
transition is of first order. On the contrary, if m grows gradually from 0 to m0, it
is of second order. Second order transitions are also referred to as continuous. Both
situations are schematically represented on Fig. 2.16.

The Landau theory actually goes beyond this classification. The equilibrium state
of a system indeed corresponds to the minimum of its free energy F in phase space.
Close to the phase transition, the dependence of F with respect to the order parameter
m must then be of importance. Following this, Landau’s idea consists in defining a free
energy density functional F that depends on the order parameter configuration m(r).
Landau imposed that F is both invariant under the symmetries of the system, and
analytical and expandable in powers of m close to the phase transition.15 These strong
assumptions enable to exclude certain terms from the expansion of F in powers of m,
and to deduce qualitative properties about phase transitions. It should be noted that F
is a thermodynamic quantity, whereas F is a functional that depends on the considered
micro-state. Calculating F requires to calculate the partition function based on F ,
which is beyond the scope of this thesis. For further reading, one can refer to [79, 182],
from which this introduction to phase transitions is inspired.

Back to the focus of this Chapter, the density of solitons δ̄ seems an appropriate order
parameter for the commensurate-incommensurate transition described in the framework
of the Frank and van der Merwe model. From this perspective, the continuity of δ̄
illustrated on Fig. 2.15 (left) indicates it is a second order transition. On the contrary,
a transition between adjacent commensurate phases is of first order.

From these considerations, it is clear that although the phases at stake hold very
strong similarities, different phase transitions occur between them. It is worth defining
more formally the order parameter.

2.4.2 Order parameter space

Landau classification is based on symmetry groups, so the order parameter appears as
the quantity describing the symmetry breaking in the ordered phase. The larger the
breaking, the larger the space of order parameter. As a first example, the distortion
of polyacetylene reduces translational invariance by doubling the size of the unit cell.
All the translations by an odd number of unit cells are no longer symmetry operations
in the distorted state. The associated order parameter is the elongation of the bonds
between each pair of A and B neighbouring atoms, noted u on Fig. 2.11. As seen earlier,
the possible values of u are limited to ±1 – to this extent, the free energy density profile
of Fig. 2.16 (right) fits the situation of polyacetylene, with m0 = 1.

This example calls for two comments. First, one should notice the symmetry breaking
is rather “small”, as only a numerable number of symmetry operations is broken, that
is why the space on which the order parameter is defined is minimal: {−1, 1}. Secondly,
all the symmetry operations that are broken are also those who transform the u = −1

15The schematic plots of Fig. 2.16 are drawn in the spirit of this theory.
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state into the u = +1 state (and vice-versa). These two comments indicate a direct
correspondence between the order parameter space and the more intuitive ensemble of
broken symmetries.

The paramagnetic-ferromagnetic transition can be considered as a second example.
As explained above, the rotational symmetry along an infinite number of axes is reduced
to a rotational symmetry along the single axis given by the magnetization direction.
In other words, the symmetry breaking is “larger”, as an infinite number of symmetry
operations has been broken in the ferromagnetic state. Consistently, the order parameter
is the magnetization M, which is a vector defined in 3D space. Here again, there is an
intuitive proportionality between the extent of the broken symmetry and the order
parameter space. Moreover, here too, none of the broken rotations leave the direction
of M unchanged.

Those two striking features actually arise from more formal considerations. Let
us consider a phase transition between a high symmetry disordered phase of symmetry
group G, and a low symmetry ordered phase of symmetry group H. The order parameter
space is given by the quotient group G/H [139]. This means that all the symmetry
operations of H act as equivalence relations between the elements of G. G/H is then
the group of the associated equivalence classes. For instance, the equivalence class of
the identity, noted [Id], contains all the symmetry operations of G equal to Id modulo a
symmetry operation of H. Therefore, [Id] is H itself. The broken symmetry operations
of G are all contained in the other equivalence classes of G/H. Many illustrations and
a more mathematically accurate discussion can be found in Section IV of [139].

Polyacetylene shall now be reconsidered in the light of the quotient group. Since the
reduction of translational invariance is at stake, only translations need to be considered
in G and H. G is the symmetry group of the undistorted chain, and its translations can
be indexed with an integer in Z. On the other hand, H is the symmetry group of the
distorted chain, and due to the doubling of the unit cell, the allowed translations are
those indexed with an even number in 2Z. The resulting quotient group G/H is therefore
isomorphic to the cyclic group (Z/2Z,+), which is the additive group of integers modulo
2. This is written G/H ∼= (Z/2Z,+). For simplicity, the operation of the group will be
implicit in the following. Z/2Z contains two equivalence classes: [0], which contains all
even numbers ([0] = 2Z), and [1], which contains all odd numbers ([1] = 2Z + 1). This
matches the situation of polyacetylene, where the translations are indexed either with
an even or with an odd number. Finally, here, one can check that the order parameter
space of the Peierls distortion of polyacetylene {−1, 1} is indeed isomorphic to G/H. In
general, one notes G/H ∼= Z2.

Similarly, the paramagnetic-ferromagnetic transition can be reconsidered. In the
paramagnetic phase, all rotations are symmetry operations, so G ∼= SO(3), the group
of rotations in 3D, whereas only one rotation axis remains in the ferromagnetic phase,
so H ∼= SO(2), the group of rotations in 2D. As a result, the order parameter space is
isomorphic to SO(3)/SO(2), which can be proved to be isomorphic to S2, the sphere in
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2D. This is consistent with the magnetization taking any direction on the sphere S2.

So far, formally introducing the order parameter space has not brought more infor-
mation than what intuition could provide. However, it is critical to properly define it
when dealing with topological defects, as it is now going to be presented.

2.4.3 Topological defects

Topological defects have been introduced earlier when discussing the properties of poly-
acetylene, in Sect. 2.2.4. In this particular case, the topological defect is an unpaired
electron on the chain, which induces different dimerization patterns on its sides. This
can be interpreted as a spatial distribution of u(x) containing a singularity: a point in
space where u is not defined. Because of this singular character, the topological defect
cannot be removed by a continuous transformation of the u field. Here, one would need
to abruptly change u from −1 to 1 on half of the 1D space.

In the previous section, u has been proved to be a suitable order parameter for
the Peierls distortion of polyacetylene. From this example, it is intuitive to extend
the definition of a topological defect. One then has to consider a continuous spatial
distribution of order parameter m(r) in a space of dimensionality d within the system.
The vacuum solution, or topologically trivial state, is a uniform distribution m(r) = m0.
On the contrary, in presence of a topological defect, the system is in a topologically non-
trivial state, which means it is in a distinct state where the distribution m(r) cannot be
continuously deformed into the vacuum solution. A topological defect then corresponds
to a singular region of dimensionality d′ 6 d − 1 in the spatial distribution of order
parameter.

The essence of a topological defect is its non-equivalence to the vacuum solution
under continuous transformation. This means that its existence is independent of its
detailed geometrical configuration. No matter how exactly the order parameter field is
distributed around such a defect, the singularity cannot be removed. This also means
that the presence of a topological defect can be deduced “from afar” by looking at the
order parameter distribution m(r).

In the case of polyacetylene, the boundary conditions u(−∞) = −1 and u(+∞) = +1
imply the presence of a kink topological defect somewhere on the chain, as illustrated
on Fig. 2.17 (left). A more complicated example consists in a dislocation in graphene,
as represented on Fig. 2.17 (right). By performing a contour around the dislocation and
counting the number of unit cells, one can see an additional vector has to be added to
close the contour. This additional vector characterizes the dislocation, and is called its
Burgers vector, noted b, and the contour is a Burgers contour.16 No matter how far
from the dislocation this contour is drawn, as long as it circles around it, it will not be
able to close.

16These names refer to the Dutch physicist Jan Burgers for his pioneering work on dislocations in
crystals [17].
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Figure 2.17: Topological defects in polyacetylene and graphene. Left: in poly-
acetylene, a change in the dimerization pattern induces a kink (blue, top) or an antikink
(red, bottom), which is related to a non-trivial distribution of u(x). Right: a pentagon-
heptagon pair in graphene is a dislocation. A contour around it does not close unless
the Burgers vector b of the dislocation is added.

As seen in these examples, there are two fundamental properties of topological de-
fects. First, they induce a peculiar distribution of order parameter around them, which
is why they are inequivalent to the topologically trivial state. For the kink in poly-
acetylene, this is the step-like function in u(x), and for the dislocation, it is the strain
field created around it. Secondly, topological defects can always be assigned an integer
quantity that characterizes them. For polyacetylene, the kink and anti-kink create a ∆u
jump which is either +2 or −2. For dislocations, the coordinates of the Burgers vector
in the Bravais lattice of the crystal give two integers. Since the detailed geometrical
configuration of a topological defect does not matter, this integer quantity – called the
winding number – is all one needs to know.

These properties have an underlying origin, which are the homotopy groups of the
order parameter space, noted πn(G/H), n ∈ N. Before using them on a few examples,
they are first going to be briefly introduced. For a more accurate definition than what
is presented below, one can refer to [139].

Homotopy groups

The definition of homotopy groups rely on the homotopy equivalence of paths. Two
paths connecting two points A andB are homotopic if they can be continuously deformed
into each other. The same can be said about loops, which are paths with identical initial
and termination points M . This homotopy equivalence is illustrated on Fig. 2.18 (left).
In the following, only loops will be considered.

Based on this equivalence, one can define equivalence classes, which regroup all
homotopic loops of a given space X. For instance, the [0] class consists of all the loops
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Figure 2.18: Homotopy equivalence and classes. Top left: the red and blue paths
connecting the points A and B are homotopic, as they can be distorted into one another.
Bottom left: similarly, the red and blue loops are homotopic. Right: in presence of
a hole, different classes of loops can be found, depending on their winding number w,
that is, the number of times they circle around the hole. Only loops with w = 0 can be
deformed into a point.

that can be deformed into a point, as drawn on 2.18 (right). For a space containing a
hole, the loops circling around this hole cannot be reduced to a point, and therefore are
not part of the [0] class. Depending on the number of times they circle around the hole,
they can be sorted into classes: [1] for loops circling once, [2] for those circling twice,
[−1] for those circling once in opposite direction, etc. This number, noted w, is literally
a winding number. The ensemble of all loops can then be separated into classes, here
indexed by the winding number w.

When this ensemble is endowed with the summation law which consists in concate-
nating loops, it forms a group, called the 1st homotopy group π1(X,M) of X. In this
case, M is the point from where all loops depart, and the index 1 specifies that 1D loops
are considered. This group is also known as the fundamental group. For a connected
space X, reference to M is not necessary, and the 1st homotopy group is simply noted
π1(X). Other homotopy groups can be defined by extending the definition of a loop
to other dimensions. π0(X) is the homotopy group for equivalence between 0-loops, or
points, and π2(X) is the homotopy group associated to 2-loops, or closed surfaces. In
general, the nth homotopy group πn(X) is the group of homotopy classes of n-loops in
X.

At this point, one can already sense a strong similarity between the homotopy classes
and the topological defects. Like topological defects, loops within the same homotopy
class defer in their geometric aspect, but hold the same winding number. Moreover,
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while a loop from the [0] class can be deformed to the trivial point-like loop, a loop from
another homotopy class cannot. This would require to cut it somewhere and reconnect it
somewhere else. This property is analogous to the impossibility to remove a topological
defect from a medium by a continuous transformation of the order parameter field. One
then has the intuition that the vacuum order parameter distributions correspond to the
elements of the [0] class, while topological defects with a given winding number w have
an associated homotopy class [w].

This correspondence is actually a strict isomorphism. Topological defects of dimen-
sionality d′ in a medium of dimensionality d are given by the elements of the (d−d′−1)th

homotopy group of the order parameter space πd−d′−1(G/H) [139]. A few examples are
now going to be reviewed.

Kinks in polyacetylene

Once again, the simple 1D case of polyacetylene distortion can be discussed. It has
been shown in the previous section that the order parameter space G/H is isomorphic
to Z2. This group contains two elements, which stand for the two possible dimerization
patterns.

Since d = 1, only 0D defects are at stake, so d′ = 0 is the only option. One then
has to evaluate π0(Z2), which is the homotopy group of points. Since Z2 is made of two
elements, there are only two disjoint points, so π0(Z2) ∼= Z2. This means that there
are also two elements in π0(Z2). The neutral element stands for all the configurations
equivalent to the vacuum solution, which is the uniformly distorted chain. This includes
chains containing kink-antikink pairs. The other element contains all configurations
equivalent to the chain containing a single kink or antikink.

It is worth noting no distinction is made between the kink and the antikink. Indeed,
they correspond to two symmetrical situations, which are therefore equivalent. There
is no difference between the two on topological grounds. The result obtained based on
homotopy groups is thus consistent with previous discussions.

Dislocations in graphene

Determining the existence of topological defects in the structure of graphene is a more
complicated task. Indeed, the procedure used so far is straightforward once the order
parameter space is defined. The challenge then consists in identifying properly the sym-
metry groups of the ordered and disordered phases, so as to find the possible topological
defects.

Here, a solid-liquid transition is going to be considered, so the high symmetry dis-
ordered phase is a liquid, whereas the low symmetry ordered phase is a solid. This
situation actually pushes the use of homotopy groups to its limits. Indeed, the order
parameter field is continuous, which is at odds with the discrete nature of crystals. A
naive extension to this situation can be used, with some limitations pointed out by
David Mermin [139]. Still, it successfully anticipates dislocations, which is what is going
to be presented here.
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A second major objection that can be raised when dealing with crystalline order
in 2D is the so-called Hohenberg-Mermin-Wagner theorem [138, 140]. It states that
crystalline ordering is impossible in 1D and 2D, so long-range order is replaced by so-
called quasi-long-range order. The term “solid” will then be used instead of “crystal”,
and its underlying meaning will be addressed later in this thesis.

As it freezes, a liquid gets the rotational and translational orders of a solid. Here,
only the translational invariance will be retained. This means that instead of taking the
full Euclidian group E(2) as the symmetry group G of the liquid phase, only the group
of continuous planar translations T (2) will be considered. Consistently, the solid phase
symmetry group H contains only the discrete planar translations. With these strong
assumptions, one can consider the translations of G can be indexed by the two real
coordinates of their vector. This implies that G ∼= R2. Following the same principle, the
translations of H are those permitted by the Bravais lattice of graphene, so H ∼= Z2.

From this, the order parameter space can be deduced as G/H ∼= R2/Z2. This
group contains the equivalence classes of pairs of real numbers modulo a pair of integer
numbers. This equivalence is well-known as the congruence relation. It is quite familiar
that any real number is equal to a number within [0, 1] modulo an integer, with 0 and
1 superimposed. This coincides with the circle S1. In other words, the quotient group
R/Z ∼= S1. For the same reasons, R2/Z2 ∼= S1 ⊗ S1 = T 2. As a result, the order
parameter space is isomorphic to the torus: G/H ∼= T 2.

Beside this mathematical approach, the order parameter space can be made more
intuitive by proceeding as follows. If one imagines building the solid phase atom per
atom, once the first one is placed, the origin of space (0, 0) is set. As a consequence, all
other atoms are placed deterministically by translational invariance at (m,n) positions,
with m and n integers. Setting the absolute coordinates of the first atom is therefore the
choice of order parameter. Its coordinates are unique modulo a Bravais lattice vector,
so the choice reduces to a point in the Bravais unit cell. Due to the periodic boundary
conditions on this unit cell, the space on which the point is chosen is indeed isomorphic
to a torus T 2. The order parameter then corresponds to a two-component phase –
called geometric phase – indicating the position of the crystal with respect to the origin
of space.

In fact, the order parameter of the solid phase consists of the peaks in its structure
factor.17 The peak positions are determined by the lattice parameter and the absolute
orientation of the solid.18 The absolute position of the solid lies in the phase reference
of the peaks. In 2D, two peaks are needed to define translational invariance, so two
phases are set when choosing this order parameter. Since the space for these two phases
is [0, 2π] × [0, 2π], with 0 and 2π superimposed, one finds again it is isomorphic to a
torus T 2.

17For a crystal, those are Bragg peaks.
18The choice of the absolute orientation is related to the rotational order of the crystal that has not

been considered here.
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(0,1)

(1,0)

b = (0,1)

b = (1,0)

Figure 2.19: Dislocations as topological defects in graphene. Left: like all solids,
graphene has a lateral positioning degree of freedom, illustrated by green arrows. Mid-
dle: this degree of freedom is that of the order parameter of the liquid-solid transition,
which is then defined on a torus. Topological defects are then sorted by homotopy
classes of loops on the torus. Right: They can circle through (red) and around (blue)
its hole, which therefore corresponds to different topological defects, here dislocations.

The topological defects in graphene are then given by the homotopy groups of T 2.
As graphene is a 2D material, its dimensionality is d = 2. Topological defects can then
either be 1D or 0D (d′ = 1 and d′ = 0), so π0(T 2) and π1(T 2) should be considered
respectively. As T 2 is a connected space, all points are equivalent, so π0(T 2) ∼= {0}.
Consequently, there is no 1D topological defect in the structure of graphene.

For 0D topological defects, loops homotopy classes on the torus have to be considered.
The hole of the torus reminds of that seen on Fig. 2.18, so non-homotopic loops can
be expected. Indeed, as drawn on Fig. 2.19, two kinds of loops are possible: those
circling around the hole (blue), and those circling through it (red). Two integers are
then necessary to count each kind of rounds. Additionally, the order in which the rounds
are performed does not matter, so π1(T 2) is abelian. Altogether, π1(T 2) ∼= (Z2,+). This
means 0D topological defects carry a couple of integer numbers as a winding number.
This clearly corresponds to the integer coordinates of the Burgers vector of a dislocation,
as represented on Fig. 2.17 (right).

With these two examples, homotopy groups appear to provide a general tool to
anticipate and classify topological defects. Graphene systems more relevant to this
thesis are now going to be briefly reviewed with this scheme.

Semenoff and Kekulé insulators

In the previous Chapter, the Semenoff and Kekulé gaps have been presented as typical
consequences of the graphene-substrate interaction. Such gaps were underlined to open
due to a symmetry breaking. The associated order parameter space and topological
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defects they can host are now going to be presented.

The Semenoff insulator can first be treated as a 2D analogue of polyacetylene. It
has indeed been emphasized earlier the added staggered potential µ can be considered
as the order parameter of the transition from graphene to the Semenoff insulator. The
associated broken symmetry is the discrete space inversion symmetry. For this reason,
the order parameter space is G/H ∼= Z2, consistent with the fact that µ can be chosen
either positive or negative.

As for the possible topological defects, graphene has d = 2 dimensions, so they can
have d′ = 0 or d′ = 1 dimension. For d′ = 0, topological defects are sorted along the
homotopy classes of loops on Z2. As Z2 is a discrete space, loops are reduced to points
on each of its 2 elements, which we call e and a. As a result, π1(Z2, e) = π1(Z2, a) ∼= {0},
so no topological line point defect exists in the Semenoff insulator.

The situation is different for d′ = 1, since π0(Z2) ∼= Z2. The underlying algebra shows
this 1D defect is analogous to the kink in polyacetylene. This line defect separates two
semi-infinite regions of the 2D space with opposite Semenoff mass mS. This topological
soliton is then a metallic wire where mS equals zero [181,219].

Realizing experimentally such a system proves challenging, as one would need to
only influence graphene with a Semenoff term. It has been claimed in the case of a line
defect in graphene on a Ni(111) surface [108]. However, it was noted that the underlying
metal would shunt the transport properties of this 1D metal. Actually, strong π − d
hybridization dopes graphene by about 2 eV, and opens a gap at the Dirac cone [203],
so this system does not correspond to a Semenoff insulator.

To achieve the needed decoupling from the substrate, Bernal-stacked bilayer gra-
phene systems have been proposed [131, 199, 229] and realized [87, 115, 223]. In this
case, the Semenoff insulator model is insufficient, as both graphene sheets have to be
accounted for. Still, the underlying Z2 space inversion-related order parameter holds,
because bilayer graphene under a transverse electric field is insulating [21]. The sign of
the gap changes sign depending either on the direction of the applied electric field, or
equivalently, on the AB or BA stacking of the bilayer. A 1D domain wall between two
regions with opposite gaps have therefore been proposed, relying either on the direction
of the electric field [131, 229], or on the stacking sequence [199, 229]. Both proposi-
tions have been realized experimentally, and the properties of the 1D topological wire
have then been probed by quantum transport [87,115] and STM [223], as illustrated on
Fig. 2.20.

As a final comment, one should be aware that although this 1D domain wall is topo-
logical, its transport properties are very “fragile”. Indeed, like in the Semenoff insulator,
they suppose intervalley scattering is absent, which requires very high quality samples.
Any localized defect could promote scattering between K and K ′ valleys, against which
the “topological protection” granted by space-inversion symmetry breaking is useless.19

19To this extent, the deliberate use of terms such as “quantum valley Hall insulators” and “valley
Chern numbers” is misleading [199,229].
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Figure 2.20: Topological gapless channels at a bilayer graphene domain wall.
(a) Under a transverse electric field, the band structure of bilayer graphene has a gap ∆,
which changes sign upon reversing of stacking AB to BA. At the interface between AB
and BA domains, topological states lie at the Fermi level. (b-c) Ball model and STM
topograph (Vb = 0.4 V, It = 0.25 nA) of such a domain wall. The dashed line indicates
its edges. (d) dI/dV map of the domain wall at Vb = 30 mV, showing the location of
the conducting channels at the domain wall edges. (e) They are no longer visible for
Vb = 300 mV as the Fermi level lies in the conduction band. Adapted from [223]. (f)
Optical image of a dual-gated field effect transistor of bilayer graphene. White dashed
lines denote the bilayer flake, and a green line indicates the domain wall. (g) Side-view
of the device. Gate-dependent resistance is measured with (h) and without (i) a domain
wall. The resistance peak indicates the energy of the Dirac point. Applying a backgate
voltage induces a transverse electric field that opens a band gap, thus increasing the
resistance at the Dirac point. The lower resistance in (i) indicates the presence of the
1D conducting channel. Adapted from [87].

Now turning to the Kekulé insulator, it is a phase of graphene with a lowered trans-
lational invariance. In analogy to polyacetylene, one may expect the order parameter
space to be G/H ∼= Z3, because of the tripled unit cell of the Kekulé-distorted graphene.
This implies that under the distortion, carbon atoms move only along their chemical
bonds. It actually neglects the bond angle degree of freedom, which, if taken into ac-
count, results in G/H ∼= S1 [23]. This means there is an infinity of Kekulé dimerization
patterns, which can be indexed by a parameter ϕ parametrizing S1.

In the previous Chapter, the Kekulé order parameter introduced in the low-energy
effective hamiltonian of graphene was a 2-component vector ∆. When taken in polar
coordinates, its modulus ∆ = |∆| is related to how much the atoms are displaced from
their positions in a honeycomb lattice. ∆ then indicates the amplitude of the Kekulé
band gap. On the other hand, the phase of ∆ is ϕ, which corresponds to the chosen
dimerization pattern.

When considering topological defects, homotopy groups of S1 should be considered.
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For d′ = 1, as S1 is a connected space, one finds π0(S1) ∼= {0}, so no 1D topological
defect exists. On the contrary, π1(S1) ∼= Z. Indeed, loops on a circle belong to different
homotopy classes depending on how many rounds they make. 0D topological defects
in a Kekulé insulator are thus possible, and correspond to vortices in their field of
dimerization pattern [78].

No report of an experimental realization of such topological defects could be found.
Indeed, as discussed earlier, the realization of a Kekulé insulator is already challenging.
Still, a theoretical proposal has been put forward based on artificial graphene made of
CO molecules on Cu(111) [8].

As a conclusion, domain walls in Semenoff insulators and vortices in Kekulé distorted-
graphene are topological defects one can expect in the electronic properties of supported
graphene. They can be expected in more realistic systems. Furthermore, moiré superlat-
tices have been presented as a phenomenon arising from the superposition of graphene on
its substrate. The Frank and van der Merwe model has also proved a possible transition
from commensurate to incommensurate superstructures. Topological defects associated
with these structural aspects can also be expected.

Graphene moiré superlattices

Topological defects in moiré superlattices can be considered on a two-fold basis. As
explained in Section 2.2, moiré superlattices influence graphene’s electronic properties
by breaking inversion and translational symmetries. The order parameter resulting from
inversion symmetry breaking results is a Semenoff gap, which will be considered first.
Reducing translational invariance to the moiré superperiodicity yields other topological
defects that will be considered afterwards.

Due to the varying stacking sequence of graphene on its substrate, a moiré super-
lattice can to some extent be considered as an insulating phase of graphene with a
superperiodically modulated order parameter. This possibility has been suggested in
the case of a Semenoff mass field. Other such terms can be added to the low-energy
effective hamiltonian of graphene. It has indeed been generalized with effective scalar
and vector potential terms Veff and Aeff for twisted bilayer graphene [95] and graphene
on h-BN [96].

In the light of possible topological defects in Semenoff insulators, moiré superlattices
could then be expected to display a periodic array of 1D conducting channels, where
mS = 0. For a twisted bilayer graphene, the symmetry between AB and BA stackings
implies this array is a percolating triangular lattice, hence of metallic character. On the
contrary, for graphene on h-BN, the conducting channels form individual loops due to
the asymmetry between B and N atoms, making the system insulating. Such situations
are sketched on Fig. 2.21, and remain valid as long as the twist angle between the two
layers is sufficiently small [96].

It should be reminded that the theoretical approach underlying these effects requires
preservation of the Dirac cone and marginal doping from the substrate. Substrates such
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Figure 2.21: 1D Z2-topological defects array in moiré superlattices. (a) A
twisted layer of graphene on a weakly interacting substrate such as h-BN is considered
as a model system. Due to the different stacking configurations within the moiré super-
cell (red rhombus), inversion symmetry is broken, giving rise to a Z2 order parameter.
1D conduction is achieved wherever this order parameter is zero. (b) When graphene
lies twisted on another layer of graphene, the AB and BA stackings lead to exactly
opposite order parameters, so a percolating array of conducting channels arise. (c-d)
For graphene on h-BN, asymmetric B and N atoms induce individual conducting loops,
which are more separated (d) when the asymmetry is stronger. Adapted from [96].

as h-BN or Au(111) appear as suitable candidates.

A second type of topological defects can be found in a moiré superlattice, this time
related to its superperiodicity. It assumes a high-order commensurate relation between
graphene and its substrate. For simplicity, the situation when n × n cells of graphene
match p × p cells of substrate will be considered. The moiré unit cell is then given by
unit vectors am,1 = n agr,1 and am,2 = n agr,2. Generalizing what has been detailed for
polyacetylene, the order parameter space is G/H ∼= (Z/nZ)2. The additional square is
due to the 2D character of the moiré. Using properties of cyclic groups, one can rewrite
G/H ∼= Z/n2Z. In other words, there are n2 different but equivalent ways of designing
such a moiré, which are due to discrete translations of vector t = i agr,1 + j agr,2, with
i, j ∈ J0, n− 1K2. This is sketched on Fig. 2.22 (top).

Loops on Z/n2Z are all reduced to points on individual subsets, so no 0D defect
exists. As for points, π0(Z/n2Z) ∼= Z/n2Z, so there are n2 − 1 different types of 1D
topological defects. They are domain walls between shifted moiré domains, as illustrated
on Fig. 2.22 (bottom).

This section has provided many examples of topological defects. Their definition
relies on the notion of order parameter, which originates from the context of phase tran-
sitions. They indeed correspond to non-trivial spatial distributions of order parameter.
As it is now going to be presented, it appears they also play a fundamental role in phase
transitions, as was predicted by 2016 Nobel laureates John M. Kosterlitz and David J.
Thouless.
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Figure 2.22: 1D Z/n2Z-topological defect in a moiré superlattice. A moiré
superlattice of unit vectors am,1, am,2 corresponding to 9 × 9 cells of graphene stacked
on 8× 8 cells of substrate is considered. Top: two domains (blue and black) are shifted
with respect to each other by a vector t (green arrow). Bottom: the coordinates of t
are the winding numbers of the topological domain wall between the two domains.

2.4.4 Berezinskii-Kosterlitz-Thouless transition

A system containing a single topological defect is in a non-trivial state that cannot be
continuously deformed to the state free of defects, or vacuum state. Equivalently, it is
impossible to add topological defects to a system continuously one by one. Nonetheless,
one can imagine adding pairs of topological defects with opposite winding numbers.
This corresponds to a kink-antikink pair in polyacetylene, or to a dislocation pair with
opposite Burgers vectors in solids.

In 1972, Kosterlitz and Thouless proved that in 2D, pairs of topological defects
could actually unbind above a critical temperature [102]. The underlying mechanism
applies with generality to multiple systems: the XY model of spins in 2D, superfluid
helium films, or 2D solids. The driving mechanism can be justified by a simplified
explanation involving the free energy F of a single topological defect. On the one hand,
the topological defect has an energetic cost U – for a dislocation in graphene, this cost
corresponds to the strain induced in the layer. U grows as:
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U = U0 ln

(
A

A0

)
where U0 is a typical energy related to the system under consideration, A is the size

of the 2D system, and A0 is the typical size of the topological defect.
On the other hand, since this topological defect can be placed anywhere in the

system, the number of configurations Ω is proportional to the size of the system. The
associated entropy S then writes as:

S = kB ln Ω = kB ln

(
A

A0

)
Importantly, the entropy also grows logarithmically with the sample size. As a result,

when considering the free energy, one gets:

F = U − TS = U0 ln

(
A

A0

)
− kBT ln

(
A

A0

)
(2.10)

A critical temperature Tc = U0/kB defines the change of sign of F . For T < Tc, the
energetic cost of a topological defect overcomes the disorder favoured by the entropic
term. But for T > Tc, it becomes preferable to create topological defects. This gives a
simple explanation for the Kosterlitz-Thouless transition to occur. It should be noted it
neglects the interaction between topological defects though, as well as the renormaliza-
tion of the system’s constants they induce.20 A more thorough account of these effects
can be found elsewhere [79,103].

While John M. Kosterlitz and David J. Thouless predicted this transition in 1972,
Vadim Berezinskii pointed out in 1970 the importance of weak and local external fields
in the phase diagram of 2D systems at low temperature [7]. The work of Berezinskii
was of important inspiration for Kosterlitz and Thouless to formulate their theory, as
they attributed such local external fields to topological defects. The transition triggered
by topological defects pairs unbinding at T = Tc is therefore called the Berezinskii-
Kosterlitz-Thouless (BKT) transition.

Following the BKT transition theory, developments in the case of 2D solids have
led to a microscopic picture of their melting into 2D liquids [69, 148], referred to as the
Kosterlitz-Thouless-Halperin-Nelson-Young theory [186]. Two BKT transitions indeed
occur. First, dislocation pairs unbind, which fully breaks translational invariance. The
system is no longer a solid, but rather an anisotropic liquid called a liquid crystal, which
preserves some rotational correlations. In a second stage, individual dislocations break
up in pairs of disclinations. Disclination pairs unbinding constitute the second BKT
transition that brings the system to a liquid state.

The BKT transition has a rather peculiar status among phase transitions. Indeed,
from the point of view of thermodynamics, it can be shown that no discontinuity occurs

20For instance, a high concentration of dislocations induces considerable strain in a 2D solid, and
therefore reduces its shear modulus K, which in turn reduces U0.
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in any of the thermodynamic potential derivatives. As such, it is a transition of infinite
order in the Ehrenfest classification [79]. As far as the Landau classification is concerned,
the BKT transition cannot be sorted, as no symmetry is actually broken across it.
Equivalently, this means no order is destroyed or created at the BKT transition.

This last statement may appear counter-intuitive. In the case of graphene, the hon-
eycomb arrangement of its atoms leaves the impression it displays crystalline long-range
order. Actually, because of its 2D character, no such order can occur, and graphene
should display a so-called quasi-long-range order that preserves the continuous transla-
tional symmetry. This explains why no symmetry is broken across the BKT transition,
and it is the consequence of the so-called Hohenberg-Mermin-Wagner theorem [140]. Its
origin and its consequences for graphene are now going to be introduced.

2.4.5 Goldstone mode and quasi-long-range order

Before considering the specificities of a 2D system, the concept of Goldstone mode is
first going to be introduced briefly. Its name originates from Jeffrey Goldstone, who
theorized this collective excitation that emerges following a phase transition that breaks
a continuous symmetry [60]. An illustrative example of historical importance [140] is
going to be considered.

Goldstone theorem

This example is the so-called 2D XY model. It considers a 2D lattice of spins whose di-
rections are confined to the plane coupled to each other via a ferromagnetic interaction.
Because of this interaction, one would naively expect that below a certain temperature
Tc, a transition from a paramagnetic to a ferromagnetic state occurs. Due to the Gold-
stone mode and to the specific d = 2 dimensionality of the system, this actually does
not occur [140].

In the paramagnetic-ferromagnetic transition, a rotational symmetry is broken. In-
deed, as all spins si align and acquire an average value s, a global magnetization M
emerges. Here, s will be regarded as the order parameter. As s can take any direction
in the plane, it is intuitive that the order parameter space is the circle S1, that is why
this transition involves a continuous symmetry breaking.

To investigate this further, following Landau theory, a free energy functional F can
be expanded as a Taylor series in powers of s near T = Tc, as:

F(s, T )−F(0, T ) =
a

2
(T − Tc) s · s +

b

4
(s · s)2 (2.11)

with a and b positive coefficients. For T > Tc, s = 0 minimizes F , which is consistent
with a zero order parameter in the high symmetry phase. For T just below Tc, this
Equation (2.11) yields the so-called “Mexican hat” potential, represented on Fig. 2.23

(a). F is then minimized for |s| =
√

a(Tc−T )
b

= s0. This means s takes any value on

the red circle indicated on Fig. 2.23 (a). This result is consistent with the S1 order
parameter space.
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Figure 2.23: Goldstone mode with a “Mexican hat” free energy functional.
(a) The free energy landscape of the low temperature phase of the XY model is plotted
with respect to its order parameter s. (b) The ground state of the disordered phase
corresponds to an unstable extremum of free energy. (c) One possible ground state of
the ordered state has its spins aligned, for instance in the y direction. (d) Due to the
ground state degeneracy, a continuous rotation of all spins does not cost any energy.
The associated Goldstone mode has a vanishing frequency at infinite wavelength.

It is clear that the ground state is infinitely degenerate on all the angles ϕ that
parametrize S1. As indicated with a green arrow on Fig. 2.23 (a), a rotation of the
order parameter s does not cost any energy. It is equivalent to a uniform rotation of
the spins si, as drawn on Fig. 2.23 (d). For the same reason, a non-uniform rotation of
the spins with smooth spatial variation will be long to relax. This corresponds to a long
wavelength mode with low energy, called a spin wave or a magnon. For an infinitely
long wavelength, the energy of this mode is vanishingly small.

The Goldstone theorem generalizes this last statement to any broken continuous
symmetry, to which is associated such a mode, thus called a Goldstone mode. This
theorem has been introduced in a context of field theory, so the term Goldstone boson is
also used [60].21 Because of its infinitely small frequency, the Goldstone mode is excited

21The existence of this Goldstone mode is not always guaranteed. When it interacts with a gauge field,
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at any non-zero temperature, and induces fluctuations of the order parameter. In the
previous example, this means the average spin direction s wiggles because of thermally
excited spin waves.

The small energy cost of a Goldstone mode with q 6= 0 is due to the gradients of
order parameters it creates. In other words, there is some resistance of the spins to
wiggle collectively. This behaviour is analogous to the rigidity of a solid material, which
opposes an elastic deformation. Following Landau theory, one can define a generalized
rigidity K in an additional elastic free energy term of the form:

Fel =
1

2

∫
V

ddr K (∇ϕ(r))2 (2.12)

with V the volume of the system. In reality, K depends of the order parameter
distribution ϕ(r), but this effect will not be discussed at this point. Consequently, K
will be treated as a thermodynamic constant.22

There are also Goldstone modes in 2D solids. When considering topological defects
in graphene, it was shown its order parameter space is T 2. In fact, the order parameter
is the two-component geometric phase indicating the position of the crystal with respect
to the origin of space. In analogy to the XY model, it should then have two Goldstone
modes associated with each component. Indeed, two in-plane acoustic phonons make
the atoms wiggle around their average position. For low values of q, they induce long
wavelength fluctuations of the geometric phase with a vanishing frequency, since ω =
cphq, with cph the celerity of the phonons. Besides, in this context, the generalized
rigidity K corresponds to the solid shear modulus.

Hohenberg-Mermin-Wagner theorem

Between 1966 and 1968, David Mermin, Herbert Wagner and Pierre Hohenberg under-
lined in a succession of papers the crucial role of Goldstone modes in 1D and 2D sys-
tems [77,138,140]. While the original paper of Mermin and Wagner focused on the XY
model [140], it was generalized to superfluids and superconductors by Hohenberg [77],
and to 2D solids by Mermin [138]. The generality of this result is now commonly
known as the Hohenberg-Mermin-Wagner (HMW) theorem. It states that because of
the reduced dimensionality, thermal fluctuations associated with the Goldstone modes

the Goldstone boson becomes an additional component of the gauge boson (it gets “eaten”). This is
the so-called Higgs mechanism, which makes the gauge boson massive. It is famous for the Higgs boson,
which makes the W and Z gauge bosons massive. In condensed matter, superconductivity provides a
similar example. A superconductor breaks the continuous electromagnetism gauge symmetry, so one
would expect a Goldstone mode. Actually, it interacts with the photon, hence “gets eaten”, making
the photon massive. As a consequence of this mass, the photon field decays exponentially inside a
superconductor: this is known as the Meissner effect.

22The energy cost of a topological defect U0 introduced earlier originates from the elastic energy term
(2.12) integrated over a contour enclosing the defect. For a topological defect of winding number w,
one then has U0 = πw2K.
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hinder long-range order at T 6= 0. That appears counter-intuitive given the existence of
graphene, which could be taken as a counter-example of a 2D crystal.

To understand its implications, the HMW theorem requires to remind what short
and long-range orders are. Order is a notion introduced earlier as opposed to symmetry.
It relies on the (equal-time) correlation function g(r), normalized here as:

g(r) =
〈m(0)m(r)〉
〈m(r)〉2

(2.13)

where 〈 〉 indicates the average on configurations of m(r). Clearly, the correlation
function indicates how much the order parameter at a certain position m(r) is the same
as that at the origin m(0). It is related by Fourier transform to the structure factor
S(q), which is accessible experimentally by diffraction techniques. It expresses as:

S(q) =
1

V

∫
V

ddr e−iq·r g(r) (2.14)

where V is the volume of the system, and d its dimensionality. In the following, the
order parameter m will be the direction given by ϕ, with ϕ the phase corresponding
for instance to the direction of a spin in the XY model, or to one component of the
geometric phase of a 2D solid.

For a system with short-range order, like a gas or a liquid, no correlation subsists at
large distances, so for |r| sufficiently large, one has:

g(r) ' 1

r2−d+η
e−

r/ξ and S(q) =
∑
G

AG

1/ξ2 + |q−G|2
(2.15)

where ξ is the correlation length, η a critical exponent that depends on the transition,
and AG the peak amplitude. S(q) appears as a series of lorentzian peaks, whose widths
are given by the correlation length 1/ξ. Such g(r) and S(q) are plotted on Fig. 2.24
(left). When approaching the transition, ξ diverges as 1

(T−Tc)ν , with ν another critical
exponent. This has two consequences. First, when close to Tc, the lorentzian peaks in
S(q) get sharper and sharper, which is consistent with a transition to a set of Bragg
peaks. Secondly, the exponential term in g(r) vanishes, so exactly at the transition,
one has g(r) ' 1

r2−d+η . In this case, correlations scale following the critical exponent η,
which characterizes the universality class of the transition.

In a system with long-range order, correlations extend to infinite distance. For
example, in a crystal, the positions of the atoms are given by translational invariance
up to infinite distances. In diffraction, this results in a structure factor composed of
Bragg peaks. It can be shown to express as:

g(r) ' e−2W and S(q) =
∑
G

e−2W δ(q−G) (2.16)

where G are the vectors in the reciprocal lattice and e−2W is the Debye-Waller
factor. It is the impact of thermal fluctuations on the structure factor. The role of the
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Figure 2.24: Correlation function g(r) and structure factor S(q) for different
kinds of order. Left: short-range order shows an exponential decay of correlations on a
typical correlation length ξ, yielding lorentzian peaks in the structure factor. Middle:
for a system with long-range order, correlations preserve a finite value up to infinite
distances, hence having a structure factor composed of Bragg peaks. Right: for quasi-
long-range order, this correlation length extends to infinity, so correlations decay as a
power-law of exponent η, giving rise to peaks following a power-law of exponent −2 + η.

Goldstone mode lies therefore in this term. It relates to the generalized rigidity K and
to temperature T through:

W =
kBT

2

∫ Λ

0

ddq

(2π)d
1− eiq·r

Kq2
(2.17)

where Λ is the cut-off wave vector corresponding to the edge of the first Brillouin
zone. The integration in Equation (2.17) depends critically on the dimensionality d. For
d > 2, it converges to a finite value, as expected for long-range order:

W ' kBT

2

Λd−2

K(d− 2)
(2.18)

For d = 2, W can be seen to diverge, so the system is disordered. A direct integration
of Equation (2.17) actually gives:

W ' kBT

2πK
ln(Λ r) (2.19)

The reduced dimensionality of the phase space on which is performed the integration
is key to this result. It leads to thermal fluctuations of the order parameter which grow
logarithmically with the size of the sample. This also leads to a power law dependence
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Chapter 2. Moiré superlattices and topological defects in graphene

of the correlation function and structure factor:

g(r) ' 1

rη(T )
and S(q) =

∑
G

|q−G|−2+η(T ), with η(T ) =
kBT

2πK
(2.20)

Except for T = 0, correlations do not have a finite value at infinity. This is the clear
signature that thermal fluctuations destroy long-range order in 2D. These fluctuations
correspond to the low-energy Goldstone modes. Nevertheless, although long-range order
is absent, correlations do not decrease exponentially with distance, but as a power law.
In a diffraction experiment, the measured structure factor should display peaks with a
power-law dependence, rather than Bragg peaks or lorentzian peaks. This intermediate
situation between short and long-range order is called quasi-long-range order.23 As a
side note, this situation is somehow similar to the critical case mentioned above, but
with a temperature-dependent exponent η, thus not related to a universality class.

The description of quasi-long-range order gives a better understanding of 2D solids
like graphene. A naive description would consider it as a 2D crystal where translational
symmetry is broken. Two in-plane acoustic phonon branches play the role of Goldstone
modes associated with the broken continuous symmetry. In virtue of the HMW theorem,
the thermal fluctuations of the acoustic phonons actually exclude long-range crystalline
order. Atoms in a 2D solid therefore sit on average positions, but fluctuate around it
with amplitudes growing as the logarithm of the sample size ln L.

Moreover, although graphene is an example of 2D solid, it is worth noting it exists
in a 3D world. The out-of-plane dimension should further impede long-range order, as
the out-of-plane acoustic phonon – so-called ZA phonon, or flexural mode – is very soft:
it has a frequency dependence ω ∝ q2. This would lead to out-of-plane fluctuations
that grow as L2, which are responsible for the so-called ripples in suspended graphene
samples. Rippling of graphene has been observed by TEM measurements [141], and
the associated power-law dependence in q of the structure factor has been confirmed by
Monte-Carlo simulations [45]. This first approach should be nuanced, as strain-induced
renormalization of mechanical constants and anharmonic coupling of the in-plane and
out-of-plane acoustic phonons result in a change of the exponents involved in power-
laws and in fluctuation amplitudes [90]. As a final remark about pristine graphene,
accounting for ∼ 1% strain is enough to both suppress the anharmonic coupling and
renormalize the ZA phonon dispersion, blocking graphene’s spontaneous rippling [175].

When supported by a substrate, one can wonder whether quasi-long-range order is
preserved in graphene. The Frank and van der Merwe model introduced earlier provides
a qualitative answer. In a commensurate phase, graphene locks its periodicity to a
commensurate relation with the substrate, and therefore acquire long-range order. In
this case, 1D topological solitons analogous to kinks in polyacetylene can be expected
between shifted domains. On the contrary, in the incommensurate phase, quasi-long-
range order is maintained, giving rise to a floating incommensurate order. Without long-

23It has originally been referred to as “topological order” [102, 103], but this expression has taken a
different meaning that goes beyond the Landau theory of phase transitions.
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range order, the 1D solitons are no longer topological, but a mere signature of thermal
fluctuations. They are Goldstone modes analogous to acoustic phonons, which are called
phasons. One can then wonder on which side of the commensurate-incommensurate
transition supported graphene sits.
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Chapter 3

Experimental techniques and
methods

3.1 Scanning Tunneling Microscopy (STM)

In 1981, Gerd Binnig and Heinrich Rohrer invented scanning tunneling microscopy
(STM), and developed the first scanning tunneling microscope with Christopher Gerbel
and Edmund Weibel. Soon later, it enabled them to resolve the atomic structure of
the (7× 7)-reconstructed surface of Si(111) [9], which had been a long-standing puzzle.
In the following years, they have invented many other microscopes, such as the atomic
force microscope (AFM), the scanning near-field optical microscope (SNOM) and the
magnetic force microscope (MFM). For all of them, a very sharp probe is scanned above
a surface to measure its local properties with atomic resolution. Data is collected at
each point of a grid, and then converted to an image representing the physical property
measured at each point. That is why this family of microscopes is called scanning probe
microscopy. For all these contributions, Binnig and Rohrer shared the Nobel Prize in
Physics in 1986.

In the following, an elementary introduction is given about STM. Further information
can be found in dedicated books and reviews, among which [26] and [48].

3.1.1 Working principle

Quantum tunneling

The physical phenomenon at stake in STM is quantum tunneling. In STM, the metal-
lic tip and the conducting sample are separated by vacuum over a small distance, of
the order of few Å. When a voltage bias is applied between the two, the absence of
tip-sample contact means no current should flow according to classical accounts of elec-
trodynamics. From a quantum mechanical point of view, however, electrons are similar
to waves, and can be described as wave functions indicating their probability amplitude
distribution in space. In particular, at the end of the STM tip and at the surface of
the sample, wave functions decay exponentially like evanescent waves. Due to the small
distance between the two, there is a non-zero overlap of the electronic wave functions,
and therefore a non-zero probability for electron transfer between the tip and sample.
This mechanism is known as quantum tunneling, and results in a tunnel current It that
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Figure 3.1: Basic principle of a scanning tunneling microscope: a tip is scanned
using three piezoelectric actuators (x, y, z) above a sample positioned by inertial motors
(X, Y , Z). During the scan, a voltage bias Vb is set between the sample and tip, so
a tunnel current It can be measured. A feedback loop compares the measured current
to a setpoint value, so their difference drives the z piezoelectric actuator to maintain a
constant tip-sample distance. The imposed z displacement is displayed as a topograph
on the control computer.

depends exponentially on the tip-sample distance d [26, 48]:

It ∝ e−2κd, with κ =

√
2mφ

~2
(3.1)

with m the electron free mass, and φ the work function of the tip and sample. For
a metal, φ ∼ 5 eV, so κ ∼ 1 Å−1, so variation of d of only 1 Å would result in an order
of magnitude variation of It. This exponential dependence is at the origin of the very
high vertical resolution of STM, whose experimental aspects are now introduced.

STM principle

STM relies on quantum tunneling to probe the topography of a surface. Its elementary
principle consists in maintaining a constant tunnel current I, called current setpoint,
so the tip-sample distance is kept constant. While scanning the tip, adjustments of its
vertical position z then directly translate the topography of the sample surface. This
method is known as the constant-current imaging mode, which provides topographs
z(x, y).

88



3.1. Scanning Tunneling Microscopy (STM)

It is also possible to scan the tip while maintaining a setpoint tip position z. This is
known as the constant-height imaging mode. The variations of tunnel current are then
acquired during the scan, providing It(x, y) maps. In the following, only the constant-
current imaging mode will be discussed.

With this basic principle, the experimental apparatus of an STM has the following
requirements and components:

• Scanning, approaching and retracting the STM tip with Å resolution. This re-
quirement is met by three-dimensional piezoelectric actuators, which enable very
fine positioning using voltage biases.

• Coarse positioning of the STM tip with respect to the sample, in order to approach
it down to the to a distance where a tunnelling current becomes measurable. It
is realized using inertial piezoelectric motors, with various possible configurations
depending on STM design.

• Measuring the tunnel current, which relies on a current-voltage amplifier. It con-
verts the tunnel current of the order of 0.05− 30 nA into a voltage with a typical
gain of 108 V/A.

• Maintaining the tunnel current to its setpoint value. For this, a feedback system
compares the measured current to the setpoint value, and amplifies the difference
to drive the z piezoelectric actuator. The feedback is negative, so a too large (resp.
small) current implies retracting (resp. approaching) the tip.

This basic apparatus is sketched on Fig. 3.1, where the role of each component is
summarized.

Topographic and electronic contributions

In the simple explanation given so far, STM gives access to the topography of the surface.
Nevertheless, it relies on a quantum electronic effect, which can affect non-trivially the
measured topographs. In this short section, an introductory account of this effect is
given.

From an experimentalist point of view, STM offers a long list of tunable parameters.
The most elementary parameters are the tunnel current setpoint It and bias voltage Vb
(here applied to the sample), which play a fundamental role.1

As far as the current setpoint is concerned, it is related to the tip-sample distance.
Setting a high current setpoint requires the tip to be close to the sample, so electrons
are likely to tunnel between the two. On the other hand, the role of Vb is more subtle.
The tunneling hamiltonian [4] clarifies it.

1Other parameters affect the measurements, such as the feedback loop gains, which relate to the
tip-sample distance stability.
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For a tunnel junction between two normal metals separated by an insulating layer,
the tunnel current I expresses in this formalism as a function of the bias voltage Vb as:

I(Vb) =
4πe

h
|M |2

∫
dε ρtip(ε)ρsample(ε+ eVb) [ftip(ε)− fsample(ε+ eVb)] (3.2)

where the integration runs on all the electronic energies, |M |2 is the tunneling pa-
rameter (related to the tip-sample distance), f(E) is the Fermi-Dirac distribution, and
ρ the electronic density of states. It means that a at a given energy ε, electrons that
tunnel from the tip to the sample have to leave a filled state of the tip to enter an empty
state of the sample. The number of such electrons is thus proportional to the density
of states of the tip and sample at that energy, and their filled/empty character is given
by the Fermi-Dirac distribution.

As a consequence, in a STM measurement, the tunnel current is proportional to the
product of tip and sample electronic densities of states over an energy window set by Vb.
It is often assumed that the tip has a constant density of states for energies around its
Fermi energy, which appears a legitimate approximation for common metallic tips made
of W or PtIr. The tunnel current is then directly proportional to the integrated density
of states of the sample. When Vb is raised, It increases due to the additional states
that can be probed in the electronic density of states. Due to the spatial dependence
of these electronic states, some areas of the sample may appear higher or lower. This is
commonly referred to as an electronic density of states effect, and it plays an important
role in the apparent morphology of supported graphene samples.

3.1.2 Experimental setup

In the experimental data presented in this thesis, STM measurements were performed
at room temperature under UHV, using a commercial Omicron UHV-STM 1, with a W
chemically etched tip. In particular, when studying moiré superlattices (see Chapter 4),
thermal drift and miscalibrations have been corrected before analysing STM images.

In that chapter, a STM topograph of multilayer graphene grown on C-face SiC is
also presented. It has been measured in a different home-made He-cooled STM at 4 K,
using a commercial PtIr tip bought from Bruker.

3.2 Ultra High Vacuum (UHV) techniques

3.2.1 Multi-purpose UHV system

UHV techniques are absolutely necessary to prepare samples in a clean and controllable
environment. In the work presented here, a UHV system encompassing four chambers
connected to each other by a transfer tunnel shown on Fig. 3.2 has been employed.
At the end of this tunnel, a chamber kept at ∼ 10−8 mbar is used to introduce sam-
ples. Samples are mounted onto molybdenum Omicron plates, which are adapted to
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Introduction chamber
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Figure 3.2: Multi-purpose UHV system: The UHV system is composed of 4 cham-
bers arranged around a transfer tunnel. From left to right, the STM chamber, the
analysis chamber, the growth chamber and the PLD chamber.

either single crystals or to thin films. These plates are themselves held onto 1-inch large
molybdenum blocks that are transferred from chamber to chamber with magnetic trans-
fer rods. Among the four chambers, two have been used extensively: one is dedicated
to STM measurements, whereas the other is used to grow 2D materials like graphene.
This second chamber is now going to be quickly presented.

To perform graphene growth in this chamber, Omicron plates are transferred onto a
heating stage, where they can be heated radiatively up to ∼ 400°C, and by an electron
beam up to ∼ 1300°C. Temperature was controlled using both an infra-red pyrometer,
and a thermocouple mounted on the heating stage and in contact with the Omicron
plate. A gas line is connected to the UHV system by a leak valve, so various gases can
be controllably introduced, such as C2H4 or O2. Purity of the introduced gases was
systematically checked with a quadrupole mass spectrometer.

Single crystal preparation was also performed in this chamber using Ar+ ion sputter-
ing, both for the Re(0001) and Ir(111) surfaces presented. Argon was introduced with
a dedicated valve and gas line, and bombardment was performed using a Gen 2 (Tectra
GmbH) plasma source. The Re single crystal cut in the (0001) surface purchased from
Surface Preparation Laboratory was cleaned by cycles with 2 keV ion energy at 750 °C
and subsequent annealing at ∼ 1300 °C. As for the Ir single crystal cut in the (111)
surface purchased from Surface Preparation Laboratory, it was cleaned by cycles with
1 keV ion energy and subsequent annealing at 1200 °C.

The growth chamber is also equipped with an electron gun and a phosphor screen,
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Figure 3.3: RHEED setup. Left: Geometry of a typical RHEED setup. A monochro-
matic beam of electrons is aimed at the sample surface in grazing incidence, resulting in
a diffraction pattern made of streaks observed on the screen. Top middle: Energy con-
servation implies wave vector conservation, which is equivalent to the Ewald’s sphere
construction. Bottom middle: The structure factor probed by RHEED is made of
truncation rods that extend along kz. Right: Intersections of the Ewald’s sphere with
the crystal truncation rods indicate the wave vectors taken by diffracted electrons. Suc-
cessive rows of truncation rods define the successive Laue zones. For clarity, the radius
of the Ewald’s sphere is reduced by an order of magnitude.

so as to perform reflection high energy electron diffraction (RHEED), as is now going
to be presented.

3.2.2 Reflection High Energy Electron Diffraction (RHEED)

RHEED is a surface science technique commonly used to characterize and monitor thin
films growth. It is indeed popular for in operando studies. Unfortunately, few reviews are
dedicated to it. Here, [124] has been mainly used, as it delivers an intuitive description,
which is summarized here.

Experimental setup

RHEED uses high-energy electrons, typically a few 10 keV (E = 10 keV for all RHEED
patterns shown in Chapter 5) produced by thermionic emission, accelerated and focused
with electrostatic lenses. In normal incidence, such electrons penetrate deep inside
matter, but in RHEED, the scattering geometry corresponds to grazing incidence and
exit (typically ∼ 1°), so the sample is probed only over a few atomic planes in depth.
The larger the incident angle, the more electrons probe the bulk of the sample. For a
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surface-sensitive analysis, the incident angle should then be chosen as small as possible.
The schematic geometry of a RHEED setup is illustrated on Fig. 3.3 (left).

Due to this peculiar scattering geometry, electrons are mostly sensitive to the peri-
odicity of the atomic rows lying parallel to the incident beam of electrons. Diffraction
of electrons by parallel rows of atoms is analogous to the diffraction of visible light by
an optical grating. A RHEED diffraction pattern thus consists of a set of streaks whose
separation is inversely proportional to the distance between adjacent rows. With a single
RHEED pattern, only a cut through the 2D reciprocal lattice is measured. By rotating
the sample with respect to its z axis, different azimuths can be probed, so the full 2D
reciprocal lattice can be deduced. For this reason, the heating stage can be rotated
so as to probe different azimuths with different incident angles, and moved in all three
directions of space to facilitate alignment of the electron beam, sample, and screen.

For a more precise understanding of this surface diffraction technique, the kinematic
theory of diffraction applied to the RHEED geometry is now presented.

Kinematic theory of diffraction

In kinematic theory, only elastic single scattering events are considered. This two-fold
hypothesis is going to be detailed. First, elastic scattering means that electrons have the
same energy before and after scattering. Following Equation (1.11), the electron energy
expresses as E =

√
m2c4 + ~2k2c2, with m the free electron mass, and c the celerity of

light. Conservation of energy then implies conservation of its wave vector k. Second,
with only one scattering event, only two wave vectors have to be considered: those of
the incident and diffracted electrons.

Using both hypotheses, diffraction can be simply explained using the so-called Ewald’s
sphere construction. Due to energy conservation, if the incident electron has a wave vec-
tor ki, the diffracted electron has a wave vector kd of equal modulus k. When setting the
center of reciprocal space at the apex of ki, this means kd defines a sphere of modulus
k known as the Ewald’s sphere, and represented on Fig. 3.3 (top middle). A condition
is fixed on kd by energy conservation: its apex has to sit on the Ewald’s sphere.

The second condition is set by the crystal reciprocal lattice. RHEED is a surface
sensitive technique which probes the few topmost layers of a sample. This means that
within the coherence length of the electron beam, a perfect crystal is indeed sensed by
the electrons as a system with long-range x and y translational invariance, but short
range z invariance. Hence the structure factor shows narrow intensity maxima in the
(kx, ky) plane, and broad maxima in the kz direction. This is illustrated in the case of
a triangular lattice, disregarding the z periodicity for simplicity, on Fig. 3.3 (bottom
middle). In a first-order approximation the position of these maxima match that of the
Bragg peaks of the bulk sample, yet surface relaxation effects usually slightly shift the
position of the maxima in the kz direction with respect to the bulk case.

The wave vectors kd taken by diffracted electrons have to fulfil both conditions, and
then correspond to the intersection of the Ewald’s sphere with the truncation rods. This
is shown on Fig. 3.3 (right). The kinematic theory therefore accounts for the position of
the streaks observed on a RHEED pattern and will be used to deduce precisely lattice
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parameters based on streak positions.

However, many other features of RHEED patterns are not explained by the above
simple description. On the one hand, some effects are related to imperfections of the
RHEED scheme. For instance, the electron beam is not strictly monochromatic, so the
Ewald’s sphere is rather a shell with non-zero thickness. The intersection of the crystal
truncation rods with this shell are thus the observed streaks rather than points. Another
imperfection originates from the slight divergence of the electron beam, which blurs out
the origin of the reciprocal space, and therefore the Ewald’s sphere position.

On the other hand, some features are directly related to necessary refinements of
the kinematic theory. For example, when surface roughness is below the electron beam
coherence length (of the order of 10 nm), sharp mounds are present on the surface, so
grazing incidence electrons can penetrate inside them from their side. Instead of reflec-
tive, diffraction is then transmissive, hence sensitive to the crystal bulk. As a result, the
truncation rods are replaced by a set of Bragg peaks, and RHEED patterns display dots
instead of streaks. Similarly, when the beam incident angle is raised, surface sensitivity
of RHEED is reduced, and the bulk contribution is more important. The truncation
rods then become strongly modulated along kz, as the probed sample depth is interme-
diate between a 2D and a 3D crystal. Furthermore, for samples composed of structurally
coherent domains smaller than the coherence size of the beam, the diffraction signal is
broadened by finite-size effects.

In practice, kinematic theory is satisfactory to understand the (kx, ky) position of the
diffraction peaks, hence to extract average lattice parameters, and provides a qualitative
information regarding the width of the diffraction peaks, which relates to strain fields
and/or finite size effects. A comprehensive quantitative interpretation of the RHEED
diffraction patterns would require a careful account of the geometry effects, and to go
beyond the kinematic theory framework. A dynamical theory is actually needed to take
multiple scattering events into account. Within this framework, the broad curved lines
across the RHEED patterns of highly crystalline samples, called Kikuchi lines, are also
understood.

RHEED data analysis

For an accurate determination of streak positions, a systematic RHEED pattern fit-
ting procedure has been developed. In short, specific parts of the RHEED pattern are
averaged to define line profiles. A well-suited fitting function is then selected, and a
least-squares fitting procedure gives access to the streak intensity, position and width.
A graphical user interface has also been designed for user-friendly batch-analysis of
RHEED patterns and movies. Details about each step of this procedure are now given.

First, when RHEED patterns are obtained on the phosphor screen, they are captured
using a CCD camera, which provides images with 1280× 960 pixels, with the intensity
on each pixel I(x, y) coded on 10 bits (from 1 to 1024). To maximize the signal to noise
ratio, intensity is adjusted with the camera shutter. Moreover, to analyse each streak
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Figure 3.4: RHEED pattern analysis. (a) RHEED pattern obtained for a clean
Re(0001) surface. The central intense specular streak lies in between two less intense Re
streaks in the first Laue zone, on which white rectangles define regions of interest. At
the bottom of the pattern, four shorter streaks correspond to Re streaks in the second
Laue zone. (b-d) Close-up views of the regions of interest. Line profiles are extracted
from them by line averaging along the vertical direction. (c-e) Extracted profiles (blue
points, error bars are a blue shade) are fitted by lorentzian peaks on a linear background.
Low intensity rods have been chosen so error bars are visible.

with the maximum signal to noise ratio, a different image is taken for each streak with
its intensity adjusted just below the camera saturation level.

Second, to perform fits, one needs to define a statistical model. The intensity of
each pixel I(x, y) is assumed to be random, and since it takes large values (> 20),
it is modelled with a normal law: I(x, y) ∼ N (Ĩ(x), σ̃2), with Ĩ(x) and σ̃ the physical
intensity and its intrinsic standard deviation. Rectangular regions of interest are selected
on the RHEED pattern, as represented with white rectangles on Fig. 3.4a. Its height is
set so all lines are close to identical. As a consequence, each line can be considered as
an independent measurement of Ĩ(x). Its unbiased estimator Ī(x) is given by the mean
of I(x, y) along the y direction, so line averaging is performed in the vertical direction
over the N lines of the region of interest. This translates as:

Ī(x) =
1

N

N∑
y=1

I(x, y) (3.3)

Ī(x) then follows a normal law Ī(x) ∼ N (Ĩ(x), σ̃2/N), so its standard deviation is
σ̃/
√
N. Getting an unbiased estimator of the standard deviation σ̃ is more challenging.

Nevertheless, as a normal law is used here, the so-called rule-of-thumb applies [16], and
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the corrected biased estimator σ̄(x) writes:

σ̄(x) =

√√√√ 1

N − 1.5

N∑
y=1

(
I(x, y)− Ī(x)

)2
(3.4)

This estimator is slightly biased, but the bias is below 0.1 % for N > 9 lines. For
the regions of interest magnified on Fig. 3.4b,d, Ī(x) and σ̄(x) correspond to the blue
data points and error bars of Fig. 3.4c,e.

Third, and finally, a fitting function is picked and fitted to the data using a least-
squares algorithm. Lorentzian profiles appear to provide satisfactory fits, although this
choice is difficult to justify on physical grounds. As for the background, typical shapes
are used: flat, linear, quadratic or lorentzian. The origin of this background is usually
the intense specular streak or Kikuchi lines, which are both well-fitted with lorentzian
profiles.

Using this method, streak positions can easily be determined with sub-pixel resolu-
tion, which typically translates into lattice parameter uncertainty in the range of few
0.001 Å.

As a side note, when RHEED patterns of high quality epitaxial graphene on a metal
are investigated, the moiré superperiodicity gives rise to a succession of evenly-separated
rods sharing the same width, as can be seen on Fig. 5.1. Dedicated fitting functions
fulfilling these conditions have been designed for such profiles.

3.2.3 Graphene growth on Re(0001)

While the properties of graphene epitaxially grown on various metals have been discussed
in Chapter 2, its preparation has been omitted. In all cases, it requires to expose the
clean metallic surface to a carbon-containing precursor at sufficiently high temperature.2

If the carbon precursor is a molecule, the growth technique is commonly referred to as
chemical vapour deposition (CVD), because chemical reactions implying cracking of this
molecule are involved in graphene growth. When the precursor is atomic carbon, it is
then called physical vapour deposition (PVD), as no chemical reaction is needed and
thermal energy is brought only to activate the mobility and attachment of carbon atoms.
More information about the different growth techniques and underlying mechanisms can
be found in dedicated review publications [5, 191]. In the following, only CVD will be
introduced in order to discuss the particular case of graphene on Re(0001).

Three typical CVD recipes can be distinguished. The first one consists in covering
the surface with precursor molecules at room temperature first, then interrupt its ex-
position to the precursor, and finally anneal it, so only the adsorbed species react and
form graphene patches. Since the final annealing step is the one triggering graphene

2Graphene preparation on SiC is usually different, as at high temperature, Si sublimates from the
SiC crystal and C atoms rearrange at the surface to form graphene layers [42,47].
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formation, this method is called temperature-programmed growth (TPG). It can be
employed to obtain a partial graphene coverage [32, 114, 209], or to use the patches as
seeds to grow high quality graphene [84].

A second recipe consists in exposing the surface to the precursor when it is already at
high temperature. This way, as the growth takes place, new molecules are continuously
provided by the gas phase. This second method is called CVD by specialists, as in
this case, chemical reactions occur while the gaseous and solid phases coexist. It is the
most well-known one, because it is widely employed on polycrystalline Cu without UHV
requirement [116], as well as in various systems under UHV [191].

To understand the third method, it should be specified that in the above-described
CVD, graphene growth competes with other processes, such as carbon dissolution and
precursor desorption. Indeed, thermodynamics shows that solubility of atomic carbon
in metals increases exponentially with temperature. For metals of sufficiently high
solubility, purposeful dissolution of carbon atoms can be achieved at high temperature,
so when the sample is slowly cooled down, carbon segregates at the surface and forms
graphene. This has for example been achieved with polycrystalline Ni [225] and single
crystal Ru(0001) [135,170].

With this distinction in mind, details about graphene preparation on Re(0001) are
now going to be given. Few works are devoted to graphene supported by this substrate
[1, 142, 158, 193], and only one to its growth [143]. As a general trend, interaction of
carbon with rhenium results in three competing processes depending on temperature:
graphene growth, bulk dissolution, and carbide formation. To avoid the two latter,
relatively low temperatures have to be used, resulting in a non-trivial growh process,
with many competing reaction paths, as will discussed in Chapter 5.

Applying a TPG method to Re(0001) with annealing temperature between 850 and
1100 K does not lead to graphene, but to a surface carbide [143], with a (7 ×

√
19)

structure that has been reported by LEED studies [143, 232] illustrated on Fig. 3.5d.
Besides, this carbide is stable at high temperature, so it does not convert to graphene,
contrary to other systems like Ni(111) [109,161]. On the contrary, graphene on Re(0001)
converts into this surface carbide at temperatures above 1200 K [143]. Above 1350 K,
this carbide dissolves into the bulk of the Re crystal [143].

Graphene growth then requires to avoid high temperature carbide formation. One
growth recipe is a hybrid TPG-CVD method, which consists in a succession of rapid
annealing cycles between 300 and 1100 K, in a C2H4 background [142, 143]. At each
cycle, in operando LEED studies have proved graphene’s crystalline quality to improve,
as visible on Fig. 3.5a-b. This method was therefore used to produce the full layer
graphene sample presented in Chapters 4 and 5. An additional sample partially covered
with graphene is studied in Chapter 5, and has been obtained following a simple TPG
method at 800 K.
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Figure 3.5: Graphene and carbide formation on Re(0001). (a) LEED line profile
evolution during graphene growth on Re(0001), following annealing-cooling cycles indi-
cated by the temperature evolution (b). (c) LEED pattern for high quality graphene
on Re(0001), with the cut taken for the profile (a). Spots due to graphene, rhenium are
indicated, while all the others are due to the moiré superlattice. (d) LEED pattern of
the surface carbide, with six-fold symmetry due to the coexistence of rotated carbide
domains. Adapted from [143].

3.3 Simulation

3.3.1 Density functional theory (DFT)

Calculations shown in Chapters 4 and 5 have been performed in the framework of Den-
sity Functional Theory (DFT). The used code – VASP – enables to relax the atomic
structure, so as to determine the equilibrium atom positions, and calculate the sys-
tem electronic band structure. Solving the Schrödinger equation of a complex system
with interacting electrons is a difficult task, which requires many steps and levels of
approximation.

The first step separates the electronic and ionic parts of the problem. Indeed, the
mass ratio between an electron and the lightest of all ions (H+) is of 1/1832. This small
ratio results in different typical time scales for electrons and ions, so electrons can be
considered to react instantly to any ion displacement. In other words, for any ionic
behaviour, electrons can be considered as in their ground state. This means that the
electronic part and ionic parts can be decoupled, and is known as the Born-Oppenheimer
approximation.

The ionic part is treated by classical equations of movement, and their positions
define the electric potential experienced by the N electrons of the system. Their con-
figuration is deduced from the electronic Schrödinger equation. Some approaches are
based on the electronic wave functions, but even for slightly complex systems, this re-
quires very large computation time and memory. Hohenberg and Kohn have suggested
a different approach based on the charge density. They have first proved that every term
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of the Schrödinger equation, including the electron-ion interaction, are a functional of
the charge density. Solving the Schrödinger equation is then equivalent to minimize the
energy with respect to the charge density functional – a problem that can efficiently be
solved numerically. The obtained energy minimum and associated charge density are
that of the ground state.

Still, calculating the charge density is a difficult problem for a system of N in-
teracting electrons. To achieve this, Kohn and Sham have re-introduced an approach
based on atomic orbitals, which consists in building the system wave function on a
basis of one-electron orbitals. The electronic Schrödinger equation then rewrites as a
set of one-electron Schrödinger-like equations, known as the Kohn-Sham equations [100].
They contain an additional term accounting for electron-electron interactions, called the
exchange-correlation potential, to which the exchange-correlation energy is associated.

Except for very simple systems, calculating the exchange-correlation term is too com-
plex, so the exact theory explained so far has to be simplified using some approximation.
One is the local density approximation (LDA), which is based on a homogeneous electron
gas. At each point r of the system, the charge density expresses as n(r). The exchange-
correlation energy of the system at r is then set equal to that of a homogeneous electron
gas with density n(r) [100]. This crude approximation provides very good results, and
its successes have made DFT famous. As it is based on a homogeneous electron gas, it
tends to simulate the system more homogeneous than what it really is, underestimating
interatomic distances and overestimating binding energies. For this reason, corrections
have been proposed, such as the generalized gradient approximation (GGA), which not
only takes the density n(r) into account, but also its gradient ∇n(r) [163].

With the description provided so far, the total energy of the system can be derived.
From that, it is possible de calculate its variations upon atomic displacements, and to
deduce the forces applied to these atoms. By minimizing the forces, the equilibrium
atomic structure can be deduced.

As for the electronic structure, its calculation relies on the Kohn-Sham orbitals. They
are in principle intermediates in the derivation of the charge density. Indeed, the Kohn-
Sham equations are Schrödinger-like equations whose eigenenergies and eigenvectors are
those of an effective electronic system with same charge density as the real system.
Given the formalism of DFT, only the total energy and Fermi level are meaningful.
Nonetheless, the dispersion of these quantities in the Brillouin zone is often very relevant
to the band structure of the real system.

In the calculations presented in this thesis, the Vienna Ab initio Simulation Package
(VASP) code has been used. As one might guess, it has been developed in the Technical
University of Vienna, in Austria. It relies on a basis of plane waves, and the electron-ion
interaction is described using the projected augmented wave (PAW) formalism [106].
This well-optimised approach enables to deal with relatively large systems like surfaces
or interfaces.
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This feature is valuable, as VASP can only calculate periodic systems. For systems
with broken translational invariance, such as defects or surfaces, large supercells are
then needed. The defect is put at the center of a unit cell, and surrounded with a
certain number of additional cells, constituting one large supercell. As an example, the
graphene on Re(0001) supercell contains a few Re planes, on which is set a graphene
plane, as well as a vacuum slab. This design is chosen to compensate for the periodic
boundary conditions in the vertical direction of space. Indeed, the central Re plane
should have properties similar to a bulk crystal, and the vacuum slab prevents from
spurious interactions between graphene and the backside Re.

In all calculations shown, five planes of Re have been chosen, as well as a vac-
uum slab of at least 25 Å. These calculations are based on the GGA approach with
Perdew–Burke–Ernzerhof (PBE) functional, which is well-suited to surfaces and inter-
faces [164]. Van der Waals interactions are also taken into account semi-empirically
using Grimme approach [64].

3.3.2 Parametrized atomistic potentials

When larger systems on larger time scales have to be considered, DFT calculations
become intractable in terms of computational time. One can then turn to molecular
dynamics (MD), which solves the classical equation of atomic motion using empirical
interatomic potentials. As such potentials are analytical, and depend only on interatomic
distances, calculating the forces exerted to atoms can be done efficiently. However, they
contain empirically adjusted parameters and correction terms. This implies this method
must not be used in a situation deviating too much from the one used to adjust these
potentials.

Here, a Brenner bond-order potential (BOP) has been used and adjusted for Ru-C
systems [52]. BOP is a class of empirical potentials that is based on the Pauling concept
of bond order, which means the strength of a bond depends on its local environment.
Highly-coordinated atoms indeed establish weak bonds, as opposed to lowly-coordinated
atoms. Thus, BOP can efficiently describe different bonding states of an atom. Within
the BOP class, the specificity of a Brenner BOP is to account well for some carbon
properties, such as the formation of radicals, and the difference between conjugated and
non-conjugated systems [14].

To give an elementary picture of the potential form, the Brenner BOP decomposes
into two parts: one repulsive and one attractive. Both have an exponential form with
adjustable parameters, so the total potential has a Morse-like expression. In this formu-
lation, the bond order is the weight attributed to the attractive part of the potential: the
more coordinated the bond is, the more attractive it is. The bond order also contains an
angular dependence in order to account for the bending rigidity of the bonds. Finally,
lower and upper smooth cutoff distances are set in the model, consistent with the local
environment dependence.

Three kinds of bonds have to be parametrized: Ru-Ru, Ru-C and C-C. For Ru-
Ru, the BOP can be brought back to the second moment approximation to the tight-
binding scheme, which has been parametrized for Ru. For C-C, the original BOP has
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been used. As for the Ru-C bond, its parameters have been fitted to values obtained
by DFT calculations. Finally, as the BOP depends on the local environment only, an
additional correction is needed for van der Waals forces. Here, the empirical Grimme D2
correction is added as a non-bonding interaction term, with parameters taken from [64].
The nonadditive character of the van der Waals forces is also taken into account.

Overall, the parametrized atomistic potentials presented here obtain very good agree-
ment with DFT results of bare graphene on Ru(0001), therefore justifying its use in
situations where DFT would be too demanding [52].

In the context of Chapter 5, configurations inferred from STM observations of gra-
phene on Re(0001) are calculated in the case of graphene on Ru(0001). Two reasons
support the validity of this modification. Indeed, Ru(0001) and Re(0001) both have
a tendency for strong graphene-metal interaction, giving rise to large moiré corruga-
tions [193, 213]. Moreover, the defect reported in Chapter 5 for graphene on Re(0001)
has been observed on Ru(0001) as well in similar situations [129,146,209].

These results, presented on Fig. 5.19, have been obtained in the context of a collabo-
ration. Many possible configurations have been provided to Daniel Förster and Florent
Calvo, who performed the calculation using parametrized atomistic potentials.
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Chapter 4

Classification of commensurate
graphene moiré superlattices

The 2D character of free-standing graphene is the reason for its non-crystalline state,
called a floating order, where the atoms fluctuate in position with a logarithmic depen-
dence on sample size. When supported, one can wonder if this floating order survives
the irruption of a 3D substrate, or if graphene tends to lock with a (high-order) com-
mensurate relation to the substrate. In the framework of the Frank and van der Merwe
model, these are the two sides of the commensurate-incommensurate transition. If in-
commensurate, one would expect to observe Goldstone modes as a signature of thermal
fluctuations. If otherwise commensurate, a given translational superperiodicity in the
structure should be detectable. In this Chapter, a method to identify by STM and
analyse with very high precision the commensurate structure is presented and exempli-
fied [1].

The usual structural model used to describe moiré superlattices assumes (Fig. 4.1,
top left) that a single moiré beating occurs within a moiré period and that the graphene
and moiré lattices are commensurate (integer multiples of their lattice parameters can
be found to make them match). This superlattice model was for instance often used
to describe graphene on Ir(111), but eventually proved too restrictive, as the variety of
situations observed in experiments [72,76,84,120,136,205] depends critically on growth
conditions [10] and sample history [73,84]. Accordingly, more general models have been
proposed. Some simply assume that the graphene and moiré lattices are incommensurate
[147]. Others assume commensurability, yet without the constraint of a single moiré
beating within the moiré unit cell. This situation is sketched in Fig. 4.1 (bottom left)
and accounts for experimental data obtained with graphene on Ru(0001) and on Ir(111),
for which four beatings were proposed in case of the zigzag rows of graphene aligning
the close-packed ones of the metal [10, 81, 84, 134] and even more for graphene whose
zigzag rows are ∼ 30° rotated [120].

There are many ways the above assumption for commensurability can be fulfilled,
as can be shown by considering strains and rotation of the graphene with respect to
its substrate [137]. For substrates exerting a weak bonding with graphene, rotations
readily occur [120, 190]. Strain, on the contrary, is more energetically costly in reason
of the high mechanical stiffness of graphene [111]. It appears that strains beyond few
percents are not achievable in graphene synthesized on a substrate. Formal treatments
of strain so far exclusively assumed biaxial strain. One noticeable exception is the
description given by Hermann [75]. This description relates geometrical transformations
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Figure 4.1: Moiré superlattice and beatings. Left: ball model of a chain of (small)
carbon atoms in graphene on top of a chain of (large) atoms from the support, both
having different lattice parameters agr and as, whose commensurability define a moiré
superlattice with period am. Right: Corresponding fast Fourier transform (FFT). For 6
graphene periods matching 5 support periods (orange), a single beating occurs within the
moiré period, and the FFT reveals a fundamental harmonic defined by k = (kgr−ks)/(6−5).
For 11 graphene periods matching 9 support periods (purple), two beatings occur within
the moiré period, with similar stacking configurations at the edges and at the middle
of the ball model. The corresponding FFT reveals a fundamental harmonic at k =
(kgr−ks)/(11−9).

to a set of indices characterizing the commensurability between two triangular lattices.
Among the transformation considered in Hermann’s work is a shear strain, applied
with a similar magnitude for the two lattices. No account for the recently observed
case of sheared graphene onto a rigid lattice [10], such as a metallic substrate whose
deformations induced by graphene can be neglected, has been found.

Here the straightforward extension of Hermann’s formalism to the latter case is pre-
sented. Besides, the relationships that establish the consistency between this formalism
and another one are derived. This other formalism has been recently presented by Zeller
and Günther to describe the number of beatings a moiré can comprise [228]. Overall,
with the help of geometrical transformations, a fully-consistent description of the full
complexity of commensurate moiré superlattices is provided, relating the graphene, sub-
strate, and moiré, for the general case of an arbitrary strain (including shear, uniaxial,
biaxial) and of superlattices having any number of beating. This transformation is ex-
pressed within a matrix formalism and in an extension of the so-called Wood’s notation,
which gives the angles formed between the unit cell vectors of graphene and the moiré as
well as the ratio between these vectors’ length. The latter notation is used to construct
maps of the possible commensurate moiré superlattices and to revisit previously pub-
lished analysis of experimental observations. It shows supported graphene is subjected
to strain levels far below what is usually assumed.

This description is applied to resolve the structure of the moiré superlattices in gra-
phene on multilayer graphene prepared on SiC, and in monolayer graphene grown on
Re(0001) and Ir(111). For this purpose, STM is used in both direct and reciprocal
(Fourier) space, in the latter case achieving better than 0.1 pm precision on the lattice
parameter determination, owing to distortion-less imaging with atomic resolution across
several 10 nm fields of view. Rotated and sheared moiré superlattices are found. Simi-
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larly to the rotation, shear appears more obviously in the moiré than in the graphene,
as confirmed by DFT calculations. Some of these moirés comprise several beatings in
the case of metal substrates. Strikingly, commensurability between graphene and moiré
superlattices provides a fine description of even very large moiré supercells, comprising
above 1, 000 carbon atoms.

4.1 General framework

In this section, the (sometimes heavy) algebra underlying the interpretation of the STM
results is detailed. In short, graphene will always be considered uniform, and a high
order commensurate relation with its substrate will be assumed. Under this assump-
tion, a general analysis scheme can be used on both diffraction patterns and Fourier-
transformed atomically-resolved images to extract the commensurate relation. One can
then relate it to other parameters such as a Wood’s notation or strain levels. The reader
is warned that until the end of subsection 4.1.3, this section is rather heavy in terms of
algebra and mathematical details. All details are included, so all necessary equations to
analyse moiré superlattices are provided to the reader. The essential formulae that will
most often be sufficient to interpret experimental results are given in Equations (4.5),
(4.15a−4.15d) and (4.16a−4.16d), and (4.32).

In most cases, supported graphene and its substrate do not share the same lattice
parameter and/or graphene lies twisted by some angle with respect to its support.
Assuming commensurability between the two lattices, a supercell can be defined which
comprises the smallest integer numbers of unit cells of both graphene and the support.
This supercell defines the moiré superlattice. Formally, in a 1D picture, the moiré
superlattice parameter am is an integer number times graphene’s (agr) or the support’s
(as) lattice parameters: am = i agr = m as, with i and m two coprime integers.

Still in 1D, the reciprocal space unit vectors of the moiré superlattice (km), of gra-
phene (kgr) and of the support (ks) hence fulfil i km = kgr and m km = ks. It should be
emphasized that these two equations constitute the general definition of a moiré super-
lattice. On the contrary, the definition usually proposed in the literature is that of the
beating period (ab), kb = kgr − ks, which does not require commensurability. km = kb

can be obtained in the particular case of a commensurate system, with i − m = 1,
i.e. with i and m two consecutive integer numbers. This particular case is sketched in
Fig. 4.1 (top left). Figure 4.1 (bottom left) shows a different situation with i−m = 2.
Strikingly, at first sight the two moiré superlattices in Fig. 4.1 are very similar. Indeed,
at the middle of both linear ball models, the stacking of the carbon atoms onto the
substrate ones is similar. In an analogy with optics, beatings between the two lattices
seem to occur at the same location. Careful inspection however reveals that, for the
i−m = 1 moiré (Fig. 4.1, top left), the central carbon atom sits exactly on top of the
atom underneath, while for the i−m = 2 moiré (Fig. 4.1, bottom left), the coincidence
is only approximate. The difference is most often subtle in a scanning probe microscopy
experiment [81] (similar graphene/support stackings yield similar signals), and usually

105



Chapter 4. Classification of commensurate graphene moiré superlattices

overlooked, so the i−m = 2 is generally (erroneously) described as a i−m = 1 moiré.

In fact it has a richer Fourier spectrum than the latter, as can be seen on Fig. 4.1
(right). The fundamental Fourier harmonic of the i−m = 2 moiré is km = (kgr−ks)/(i−m) =
(kgr−ks)/2, and not (kgr − ks) as is the case for the i −m = 1 moiré. The predominant
intensity of the second harmonic (kgr − ks) translates nothing else than the close (but
not exact) lattice coincidence observed at the beating period (Fig. 4.1, bottom left).
The Fourier description of moiré superlattices naturally makes the distinction between
both, the i −m = 1 moiré containing only one beating, and the i −m = 2 comprising
two distinct ones. For this reason, experimental data will be analysed in Fourier space.

In 2D, the generalization of the above relations resorts to (2 × 2) matrices. For
example, the unit cell of graphene is related to that of its substrate as:(

agr1

agr2

)
=

(
a b
c d

)(
as1

as2

)
(4.1)

This translates into reciprocal space as:(
ks1

ks2

)
=

(
a c
b d

)(
kgr1

kgr2

)
(4.2)

where (a, b, c, d) are four numbers with no assumption made on a possible high order
commensurate relation. The existence of such a relation is actually not always assumed,
i.e. the sole beating phenomenon is sometimes considered [221,228]. To avoid any con-
fusion, a distinction is going to be made between the beating period, which corresponds
to the strongest contribution in the Fourier transform, and the moiré superperiodicity,
which is the translational invariant.

Besides, graphene is generally assumed to be six-fold D6h symmetric, yielding c = −b
and d = a− b. In this case, a rather simple formalism is used to interpret the structure
of a moiré superlattice, which is going to be summarized first.

4.1.1 Moiré superlattices without commensurability

With no commensurability hypothesis and assuming unsheared structures, the plane
transformations relating graphene and its support is a rotation-scaling:(

kgr1

kgr2

)
= P

(
p 0
0 p

)(
cosϕ −sinϕ
sinϕ cosϕ

)
P−1

(
ks1

ks2

)
(4.3)

With P =

(
1 0
−1/2

√
3/2

)
the matrix that links a hexagonal to an orthonormal basis,

and p =
agr

as

defined as the scaling factor. p is related to biaxial strain εb in graphene.

Moreover, in reciprocal space, the beating has the visible Fourier component with
lowest frequency, and its wave vector along one direction usually corresponds to the

106



4.1. General framework

wave vector mismatch:

kb1 = kgr1 − ks1 (4.4)

Using Equations (4.3) and (4.4), kb1 is decomposed on the support reciprocal basis
(ks1 ,ks2), which gives:

kb1 = kgr1 − ks1

=

(
p cosϕ− p

√
3

3
sinϕ− 1

)
ks1 +

2p
√

3

3
sinϕ ks2

From which the beating period ab =
4π
√

3

3
√

kb1 · kb1

is extracted and expressed as a

function of as, p and ϕ:

ab = as

√
1

1− 2p cosϕ+ p2

This relation is the most commonly used one [221]. Assuming there are N beatings
per moiré supercell (

√
N km1 = kb1), it can be extended straightforwardly to the moiré

period:

am = as

√
N

1− 2p cosϕ+ p2
(4.5)

This simple model has also been extended to account for more general situations
[228]. Indeed, the beating arises from a mismatch between two spatial frequencies.
Higher order Fourier components1 than in Equation (4.4) may be considered as well and
the reciprocal lattice unit vectors along one direction of the first three of them (2nd to
4th order) are defined by:

√
N km1 = kb1 = kgr1 + kgr2 − 2ks1√
N km1 = kb1 = kgr1 + 2kgr2 − 3ks1√
N km1 = kb1 = kgr1 + 3kgr2 − 4ks1

Using these particular relations for higher order beatings, one gets:

1This term reminds the high order commensurate relations of the Frank and van der Merwe model.
In that context, it corresponds to the integers i and m defining the moiré superlattice. On the contrary,
for beatings, “high order” refers to the order of the taken harmonics. These numbers are not related.
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φ(°)

am
 (n

m)
(a) gr/Re, 1st order

N = 1

agr (Å)

ε (%)

am
 (n

m)
(b) gr/Re, 2nd order

am
 (n

m)
(c) gr/Re, 3rd order

Figure 4.2: Moiré superperiodicity for beatings of each Fourier order. Depend-
ing on the definition chosen for a beating, the relation between the moiré superperiodicity
am, the twist angle ϕ, and the strain level ε (given by colour for a N = 1 moiré super-
lattice) changes drastically. N > 1 moiré superlattices are indicated by only a gray line.
Left: 1st order beating (see Equation (4.5)) with maximum of am at ϕ = 0°. Middle:
2nd order beating (see Equation (4.6)) with a maximum of am at ϕ = 30°. Right: 3rd

order beating (see Equation (4.7)) with a maximum of am at ϕ ∼ 19°.

2nd order : am = as

√
N

4− 6p cosϕ+ 2p
√

3 sinϕ+ 3p2
(4.6)

3rd order : am = as

√
N

9− 12p cosϕ+ 6p
√

3 sinϕ+ 7p2
(4.7)

4th order : am = as

√
N

16− 20p cosϕ+ 12p
√

3 sinϕ+ 13p2

For a substrate with given as, these Equations express the dependence of am on the
twist angle ϕ, the scaling factor p and the number of beatings N . Examples of this
dependence are given on Fig. 4.2 for moirés of graphene on Re(0001) with beatings
defined with Fourier components of 1st, 2nd and 3rd orders.

Following this method, any beating order can be accounted for. The most general
case can then be considered, with a relation such as

√
N km1 = kb1 = g1kgr1 + g2kgr2 +

s1ks1 + s2ks2 . According to this convention, beatings defined with 1st and 2nd orders
components correspond respectively to (g1, g2, s1, s2) = (1, 0,−1, 0) and (g1, g2, s1, s2) =
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N = 1 N = 4 N = 9

N = 12

N = 3

N = 7

N = 13

Figure 4.3: Possible numbers of beatings. Scheme enumerating the hexagonal moiré
cells for an increasing value of beatings N per moiré unit cell. Each beating is displayed
as a black circle. For isotropic superlattices, only solutions of the Diophantine equation
a2 + b2 − ab = N , a, b ∈ N, are allowed.

(1, 1,−2, 0). In the general case, the period am is:

am = as

√
N

(s2
1 + s2

2 + s1s2) + (2(g1s1 + g2s2) + g1s2 + g2s1)p cosϕ

N

+(g1s2 − g2s1)p
√

3 sinϕ+ (g2
1 + g2

2 + g1g2)p2

(4.8)

The integer values taken by N are constrained by the hexagonal lattice through
the following Diophantine equation: a2 + b2 − ab = N , where a and b are integers. A
geometrical picture of this problem is given on Fig. 4.3.

4.1.2 Moiré superlattice with commensurability

The use of two integers i and m in 1D to express the commensurate relation, as on
Fig. 4.1, can be generalized to the 2D case. In order to account for its structural
complexity, a set of eight integers (i, j, k, l,m, n, q, r), which are determined through
atomically-resolved microscopy, is then necessary (only four are needed to describe gra-
phene maintaining theD6h symmetry, i.e. when it is only strained biaxially and rotated).
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The commensurate relation then expresses in the matrix form as:(
am1

am2

)
=

(
i j
k l

)
︸ ︷︷ ︸

= Mgr

(
agr1

agr2

)
=

(
m n
q r

)
︸ ︷︷ ︸

= Ms

(
as1

as2

)
(4.9)

This translates into reciprocal space as:(
kgr1

kgr2

)
=

(
i k
j l

)
︸ ︷︷ ︸

= MT
gr

(
km1

km2

)
and

(
ks1

ks2

)
=

(
m q
n r

)
︸ ︷︷ ︸

= MT
s

(
km1

km2

)
(4.10)

The (i, j, k, l,m, n, q, r) integers used here correspond to the decomposition of the su-
perstructure lattice vectors am1 and am2 into the basis formed by the graphene lattice
vectors (i, j, k, l), and the supporting material lattice vectors (m,n, q, r), as sketched
on Fig. 4.4 (left). This decomposition is in practice performed more conveniently but
equivalently in reciprocal space (Equation (4.10)).

When a structure is isotropic, the commensurability relation simplifies. Instead of
eight integer parameters (i, j, k, l,m, n, q, r), only four of them (i, j,m, n) are sufficient,
since both directions am1 and am2 are identical. Matrices in Equations (4.9) and (4.10)
then become:

Mgr =

(
i j
−j i− j

)
, Ms =

(
m n
−n m− n

)
(4.11)

and MT
gr =

(
i −j
j i− j

)
, MT

s =

(
m −n
n m− n

)
(4.12)

Although using a set of eight integers is efficient to describe a moiré superlattice,
it is a relatively cumbersome notation that does not give an immediate picture of the
structure. A clearer formulation of such sheared structures is then desirable. In the
following, two complementary pictures are going to be presented. First, a rather intuitive
one is based on the Wood’s notation commonly used in surface science. Secondly, the
commensurate relation will be decomposed into elementary geometrical deformations,
so strain levels can be extracted from them.

Generalized Wood’s notation

In the simple case of graphene experiencing only deformations preserving its pristine
D6h symmetry, the Wood’s notation provides a straightforward image of the structure.
It describes the length and orientation of the superstructure lattice vectors compared to
that of graphene or its supporting material. In the more general case addressed here,
where the lattice vectors are allowed to vary in length and orientation independently as
a result of shear and/or uniaxial strains, an extension of the Wood’s notation is required,
which is derived here. As depicted on Fig. 4.4 (middle), agr1 and agr2 are rescaled (resp.
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as2

ε
b

θ
1

θ2

εu×p2

�2

×p1

�1

(i,
j) 

=
 (
4,
-1
)

(m
,n
) 
=
 (
3,
-1
)

(k,l) = (1,5)

(q,r) = (2,4)

(i,j,k,l,m,n,q,r) = (4,-1,1,5,3,-1,2,4)

agr2

as1agr1as2

agr2

as1

agr1

am1

am2

as2

agr2

as1agr1

Figure 4.4: Structural interpretation of a moiré superlattice. Left: the lattice
vectors of the moiré superlattice decompose into both graphene and support bases,
giving (i, j, k, l,m, n, q, r) = (4,−1, 1, 5, 3,−1, 2, 4). Middle: corresponding extended
Wood’s notation: (p1 Rϕ1 × p2 Rϕ2), where p1 and p2 are scaling factors, and ϕ1 and
ϕ2 are rotation angles. Right: the transformation relating graphene lattice vectors
(agr1 ,agr2) to those of its support (as1 ,as2) can be decomposed into four steps. (1)
Graphene vectors are isotropically rescaled with respect to those of the support (light
red). (2) Graphene is rotated with respect to its support (red), in order to determine the
direction in which (3) a horizontal rescaling is applied (dark red). (4) A final rotation
is applied (black).

rotated) with respect to as1 and as2 by factors p1 and p2 (resp. angles ϕ1 and ϕ2). The
extended Wood’s notation reads as (p1 Rϕ1× p2 Rϕ2). This notation straightforwardly
captures the graphene-substrate relation, and pictures how sheared it is by comparing
p1 and p2, and ϕ1 and ϕ2. Once again, these quantities relate to the (i, j, k, l,m, n, q, r)
integers.

The core idea of the relation between the generalized Wood’s notation and the
(i, j, k, l,m, n, q, r) integers is to express the graphene-substrate commensurate relation
in both pictures, and then to relate the two.

A direct relation between the lattice vectors of graphene and its support is deduced
from the above Equation (4.9) as:

(
agr1

agr2

)
=

1

il − jk

(
lm− jq ln− jr
−km+ iq −kn+ ir

)(
as1

as2

)
=

(
a b
c d

)(
as1

as2

)
(4.13)

On the other hand, the (2 × 2) matrix that links (agr1 , agr2) and (as1 , as2) can be
written in the formalism of an extended Wood’s notation. For a (p1 Rϕ1×p2 Rϕ2), and
assuming a hexagonal support lattice, this matrix rewrites as:

(
agr1

agr2

)
=

 p1

(
cosϕ1 + sinϕ1√

3

)
2p1√

3
sinϕ1

−2p2√
3
sinϕ2 p2

(
cosϕ2 − sinϕ2√

3

) ( as1

as2

)
(4.14)

To extract the values of parameters p1, p2, ϕ1 and ϕ2, the matrices from Equa-
tions (4.13) and (4.14) are identified. This gives rise to two non-linear systems of two
equations with two unknowns each. It can be solved by considering:

111



Chapter 4. Classification of commensurate graphene moiré superlattices

a

b
=

√
3

2

1

tanϕ1

+
1

2
=⇒ ϕ1 = arctan

(
b
√

3

2a− b

)
In order to get p1, the expression of ϕ1 is inserted into that of b so:

b =
2p1√

3
sin

(
arctan

(
b
√

3

2a− b

))
=⇒ p1 =

√
a2 + b2 − ab

Similarly, one can express p2 and ϕ2 as functions of c and d. The commensurability
relation of any anisotropic superstructure can then translated into an extended Wood’s
notation. The same can be done to relate the moiré unit vectors to those of the support,
as (P1 RΦ1 × P2 RΦ2). This is summarized as:



p1 =
√
a2 + b2 − ab (4.15a)

ϕ1 = arctan

(
b
√

3

2a− b

)
(4.15b)

p2 =
√
c2 + d2 − cd (4.15c)

ϕ2 = arctan

(
c
√

3

c− 2d

)
(4.15d)

and



P1 =
√
m2 + n2 −mn (4.16a)

Φ1 = arctan

(
n
√

3

2m− n

)
(4.16b)

P2 =
√
q2 + r2 − qr (4.16c)

Φ2 = arctan

(
q
√

3

q − 2r

)
(4.16d)

When a structure is isotropic, the commensurability relation simplifies into Equa-
tions (4.11) and (4.12). In this case, all equations detailed above can be taken with
c = −b and d = a − b, and the Wood’s notation gets back to its usual form (p × p)Rϕ
and (P × P )RΦ, with:


p =

√
m2 + n2 −mn
i2 + j2 − ij

(4.17a)

ϕ = arctan

(
(in− jm)

√
3

2(im+ jn)− (in+ jm)

)
(4.17b)

and
{
P = P1 (4.18a)

Φ = Φ1 (4.18b)

Strain levels in a moiré superlattice

So far, the analysis of the moiré superlattices has been performed by expressing the
moiré superlattice unit vectors as function of those of the graphene and support unit
cells. The analysis is now going to be expressed as function of elementary geometrical
deformations.

In the most general case, graphene is twisted, strained and sheared with respect to
its substrate. The combination of all these contributions can be separated into four
elementary geometrical transformations represented on Fig. 4.4 (right):
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• An isotropic rescaling by a factor piso corresponding to biaxial strain (1),

• An anisotropic rescaling by a factor pan in a direction given by an angle θ1 (2-3),

• An additional rotation by an angle θ2 (4).

These transformations translate in mechanical terms as biaxial strain εb (1), uniaxial
strain in a given direction εu (2 and 3), and a rotation (4) of the graphene layer. It
can be noted that the so far overlooked shearing contribution is taken into account by
combining a rotation, biaxial and uniaxial strains. The impact of such a combination
on a moiré has only been predicted [75].

In the following calculations, εb and εu are going to be determined. Setting HOPG
as a reference of zero-strain (an arbitrary one, in fact), they are defined as:


εb =

agrmin
− aHOPG

aHOPG

=
as

aHOPG

piso − 1 (4.19a)

εu =
agrmax − agrmin

aHOPG

=
as

aHOPG

piso (pan − 1) (4.19b)

As can be seen, they depend straightforwardly on piso and pan, θ1 and θ2. Here
again, to relate these four parameters to (i, j, k, l,m, n, q, r), the (2 × 2) matrix that
links (agr1 , agr2) and (as1 , as2) is going to be identified with that of Equation (4.13).
Considering this matrix as a plane transformation, one gets:

(
agr1

agr2

)
= P

(
cosθ2 sinθ2

−sinθ2 cosθ2

)(
pan 0
0 1

)(
cosθ1 sinθ1

−sinθ1 cosθ1

)
piso︸ ︷︷ ︸

= piso

(
pancosθ1cosθ2 − sinθ1sinθ2 pansinθ1cosθ2 + cosθ1sinθ2

−pancosθ1sinθ2 − sinθ1cosθ2 −pansinθ1sinθ2 + cosθ1cosθ2

)P−1

(
as1

as2

)

(4.20)

With P =

(
1 0
−1/2

√
3/2

)
the matrix that links a hexagonal to an orthonormal basis.

Identifying Equations (4.20) with (4.13) leads to a non-linear system of four equations
with four unknowns. By linearly combining them, one gets:



cos (θ1 + θ2) piso (pan + 1) = a+ d (4.21a)

sin (θ1 + θ2) piso (pan + 1) =
−a+ 2b− 2c+ d√

3
(4.21b)

cos (θ1 − θ2) piso (pan − 1) = a− b− d (4.21c)

sin (θ1 − θ2) piso (pan − 1) =
a+ b+ 2c− d√

3
(4.21d)

θ1 + θ2 and θ1 − θ2 can readily be extracted from Equations
(4.21b)

(4.21a)
and

(4.21d)

(4.21c)
,

which are then linearly combined to get:
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tan (2θ1) = −

√
3 +

2
√

3((a2 + c2 + ac)− (b2 + d2 + bd))

2(a2 + c2 + ac)− (b2 + d2 + bd)− 2(ab+ cd)− (ad+ bc)

tan (2θ2) =
√

3− 2
√

3((a2 + b2 − ab)− (c2 + d2 − cd))

(a2 + b2 − ab)− 2(c2 + d2 − cd)− 2(ac+ bd) + (ad+ bc)

Moreover, the determinants of the matrices from Equations (4.20) and (4.13) also
have to be equal as:

p2
isopan = ad− bc (4.22)

This latter equation relates piso and pan directly. In order to get another relation
relating piso to pan, one can calculate Equations (4.21a)× (4.21c)+(4.21b)× (4.21d) and
(4.21b)× (4.21c)− (4.21a)× (4.21d) as:


p2

iso

(
p2

an − 1
)

cos (2θ2) =
2

3

(
(a2 + b2 − ab)− 2(c2 + d2 − cd)

+(ad+ bc)− 2(ac+ bd))
(4.23a)

p2
iso

(
p2

an − 1
)

sin (2θ2) =
−2√

3

(
(a2 + b2 − ab)− (ad+ bc) + 2(ac+ bd)

)
(4.23b)

And then combine them as Equation
√

(4.23a)2 + (4.23b)2:

p2
iso

(
p2

an − 1
)

=
2

3

√
[a2 + b2 − ab+ c2 + d2 − cd+ 4(ac+ bd)− 2(ad+ bc)]2

+3 [a2 + b2 − ab+ c2 + d2 − cd]2
(4.24)

Another relation is obtained using Equation (4.21a)2 + (4.21b)2:

p2
iso (pan + 1)2 =

4

3

[
(a2 + b2 − ab) + (c2 + d2 − cd) + ac+ ad− 2bc+ bd

]
(4.25)

Using p1 =
√
a2 + b2 − ab and p2 =

√
c2 + d2 − cd and A = 2(ac + bd) − (ad + bc),

these two latter relations can be rewritten as Equation 1/2(4.25) + 1/2(4.24)− (4.22):

p2
isop

2
an =

2(p2
1 + p2

2) + A

3

(
1 +

√
1 + 3

A2 − 4p2
1p

2
2

(2(p2
1 + p2

2) + A)2

)
(4.26)

Finally, piso and pan can be calculated as Equations
√

(4.26)− (4.24) and√
(4.26)

(4.26)− (4.24)
:
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piso =

√
2(p2

1 + p2
2) + A

3

√√√√1−

√
1− 3

4p2
1p

2
2 − A2

(2(p2
1 + p2

2) + A)2

pan =
2(p2

1 + p2
2) + A√

3(4p2
1p

2
2 − A2)

(
1 +

√
1− 3

4p2
1p

2
2 − A2

(2(p2
1 + p2

2) + A)2

)

Using B =
2(p2

1 + p2
2) + A

3
and C =

√
4p2

1p
2
2 − A2

3
, this can be written simply as:


piso =

√
B −

√
B2 − C2

pan =
B +

√
B2 − C2

C

One can deduce biaxial and uniaxial strain levels εb and εu using Equations (4.19a)
and (4.19b):


εb =

as

aHOPG

√
B −

√
B2 − C2 − 1 (4.27a)

εu =
as

aHOPG

(√
B +

√
B2 − C2 −

√
B −

√
B2 − C2

)
(4.27b)

In other words, graphene is strained anisotropically, and the strain level ranges from
ε = εb to ε = εb + εu depending on the in-plane direction. Although cumbersome,
these formulae relate directly the commensurate relation to the uniform strain fields in
graphene, and are hence of practical interest.

For an isotropic structure, there cannot be any anisotropic strain (εu = 0), and
isotropic strain εb is simply given by Equation (4.27a) with c = −b and d = a− b:

εb =
as

aHOPG

p− 1 =
as

aHOPG

√
m2 + n2 −mn
i2 + j2 − ij

− 1 (4.28)

4.1.3 Number of moiré beatings

Moiré superlattices have been considered either as some supercell comprising a cer-
tain number of beatings, or as a commensurate supercell defined by a set of integers
(i, j, k, l,m, n, q, r). No link has been established between the two, and in fact, it lies in
the number of beatings N per moiré supercell. In anisotropic moiré superlattices, the
number of beatings along am1 and am2 may be different, and will be noted N1 and N2,
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with N ' N1N2. For simplicity, one will assume the commensurability along each direc-
tion can be approximated by that of isotropic moiré superlattices with indices (i, j,m, n)
and (k, l, q, r).

To calculate them, one has to combine the two approaches developed so far. Indeed,
the Fourier components defining the beating kb1 (resp. kb2) also define the number of
beatings N1 (resp. N2), and relate kb1 to elementary wave vectors kgr1 , kgr2 , ks1 and
ks2 . Additionally, these vectors are linked to the moiré wave vector km1 (resp. km2)
through the integers (i, j,m, n) (resp. (k, l, q, r)). Combining these two relations gives
access to N1 (resp. N2).

Based on the definition of a beating, the number of beatings of any order N1 along
the first moiré direction is simply obtained with:

N1 =
|g1kgr1 + g2kgr2 + s1ks1 + s2ks2|

|km1 |
(4.29)

The commensurability relation can be expressed in reciprocal space, as in Equa-
tion (4.10). It can be seen as a decomposition of kgr1 , kgr2 , ks1 and ks2 on the (km1 ,km2)
basis using integer values. Injecting this into Equation (4.29), the number of beating
N1 of any moiré order given by (g1, g2, s1, s2) is:

N1 =

√
(g1i+ g2j + s1m+ s2n)2

+ (g1j − g2(i− j) + s1n− s2(m− n))2

− (g1i+ g2j + s1m+ s2n) (g1j − g2(i− j) + s1n− s2(m− n)) (4.30)

In particular, for the aforementioned beatings based on 1st, 2nd, 3rd and 4th order
Fourier components, this results in:


N1 =

√
(i−m)2 + (j − n)2 − (i−m)(j − n)

N1 =
√

(i+ j − 2m)2 + (2j − 2n− i)2 − (i+ j − 2m)(2j − 2n− i)
N1 =

√
(i+ 2j − 3m)2 + (3j − 3n− 2i)2 − (i+ 2j − 3m)(3j − 3n− 2i)

N1 =
√

(i+ 3j − 4m)2 + (4j − 4n− 3i)2 − (i+ 3j − 4m)(4j − 4n− 3i)

Equivalent relations can be written for N2 by substituting (k, l, q, r) to (i, j,m, n).2

As a final remark, Equation (4.30) can be used to calculate the number of beatings
for any order of the Fourier components defining the beating. Nevertheless, from the
electronic point of view, the 1st order beating contribution is the one that dominates in
the modulation of the potential the electrons are subjected to. They are given by:

2It can be noted that for each of these relations, the number of beatings N1 is different. For instance,
the so-called R30 phase of graphene on Ir(111) ((i, j,m, n) = (14, 9, 12, 2)) contains N = 39 beatings in
a 1st order beating picture, but N = 1 beating using the 2nd order beating relation, which enabled its
identification [120].
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4.1. General framework

N1 =
√

(i−m)2 + (j − n)2 − (i−m)(j − n) and

N2 =
√

(k − q)2 + (l − r)2 − (k − q)(l − r) (4.32)

Beatings defined with higher order Fourier components can be considered as small
corrections to this modulation. Equation (4.30) gives the number of moiré cells N that
a correction of nth order has in the moiré unit cell.

4.1.4 Precision on the structure determination

The geometrical developed so far proves necessary to properly interpret the refined
twist angles and shearings observed in atomically-resolved microscopy images. The
experimental uncertainty on the identification of the (i, j, k, l,m, n, q, r) integers is here
discussed to justify this necessity.

Quantitatively, the uncertainty on (i, j, k, l) can be lowered by precisely determining
(kgr1 ,kgr2) and (km1 ,km2). In practice, the distance between the moiré spots and the
graphene spots in the Fourier transform image (each spot corresponding to a Fourier
component) is measured. Due to the moiré periodicity, such spots are expected to be
evenly separated. The sharpness of the spots is inversely proportional to the size of
the atomically resolved image, and the number of spots increases with the contrast of
the moiré with respect to the atomic lattice. The former effect sets a precision in the
determination of the spacing between two spots of 6% in the case of graphene on Ir(111)
that will be discussed later, for which an image with a field of view of ∼ 500 nm2 has
been used. The latter effect translates into an uncertainty as low as 1/

√
50× 6% ∼ 1% in

the case of graphene on Ir(111). Indeed, around the center of the reciprocal space, there
are ∼ 60 Fourier components, which corresponds to ∼ 50 Fourier component spacings
along one direction. The same is true around the graphene harmonics, so overall, in our
example, the precision over km and kgr is ∼ 1%. For (i, j, k, l), this precision translates
through propagation of uncertainty into 2%.

The above described determination of (i, j, k, l,m, n, q, r) is liable to put shears in
evidence. At first thought, atomic resolution imaging can artificially produce sheared
images. Such shears may result from imaging artefacts, for instance, in the case of
scanning probe microscopy, thermal drift of the piezoelectric scanners or inequivalent
calibration of these scanners along the two scan directions. However, these artefacts
have no influence on the decomposition of kgr1 and kgr2 onto km1 and km2 .

In the following, STM topographs of graphene on C-face SiC, Re(0001) and Ir(111)
are exposed. For multilayer graphene on C-face SiC, STM measurements were performed
at 4 K. For graphene on Re(0001) and Ir(111), STM measurements were performed
at room temperature under UHV. Before analysing STM images, thermal drift and
miscalibrations have been corrected.
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(7,-4)
(7,-3)

(4,-7)

(3,-7)

(4,7)

(-7,-3)

0.5 nm 10 nm-1

am1

agr2
up

kgr2
up kgr1

up

agr1
up

am2

kgr2
low

kgr1
low

km2

km1

Figure 4.5: STM analysis of multilayer graphene on C-face SiC. Left:
(3.2 × 3.8 nm2) STM topograph (Itunnel = 10 nA, Vbias = 100 mV) with emphasized
upper graphene lattice (black), moiré superlattice cell (blue rhombus) and lattice vec-
tors of upper graphene and moiré (red and blue respectively). Right: corresponding
FFT-image with emphasized moiré reciprocal lattice (black) and lattice vectors of moiré
and upper and lower layers of graphene (blue, red and green respectively).

4.2 Experimental results

4.2.1 Twisted graphene bilayer

First, the case of multilayer graphene on the C-face of SiC sample is considered. It has
been grown on undoped double-polished 4H-SiC(0001̄), purchased from Novasic and cut
into 5 × 5 mm2 pieces. The growth has been performed in a RF-furnace following the
recipe in Ref. [42]. SiC surface was first cleaned in H2 and Ar atmosphere at 1, 560 °C,
and subsequently annealed in Ar atmosphere at the same temperature.

On Fig. 4.5 (left), a moiré with ∼ 1.5 nm beating is observed. In the present case, the
relationship between the lattice vectors of the upper graphene layer and of the moiré can
be read on the fast Fourier transform (FFT) of the STM image shown on Fig. 4.5 (right)
to deduce matrix MT

grup
. Here, this matrix indicates the coincidence of the graphene and

moiré lattices in reciprocal space. In direct space, this means that the moiré has only one
beating per unit cell, so N = 1. For a N = 1 moiré, km1 = kup

gr1
−klow

gr1
, as the lower layer

of graphene is the support material. From this, the matrix MT
grlow

between the lattice
vectors of the lower graphene layer and of the moiré is obtained. Transposing matrices
MT

grup
and MT

grlow
gives access to Mgrup and Mgrlow

, which hold the decomposition of the
moiré unit vectors on the upper and lower graphene lattices in direct space:
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MT
grup

=

(
4 −7
7 −3

)
and MT

grlow
=

(
3 −7
7 −4

)
so Mgrup =

(
4 7
−7 −3

)
and Mgrlow

=

(
3 7
−7 −4

)
This commensurability relation gives a complete structural description, by decom-

posing the moiré lattice vectors in the basis of each graphene layer, using the set
of integers (i, j, k, l,m, n, q, r) = (4, 7,−7,−3, 3, 7,−7,−4). Using Equations (4.15a),
(4.15b), (4.15c) and (4.15d), such a structure can be analysed as two graphene lay-
ers sharing the same lattice parameter aup

gr = alow
gr (p1 = p2 = 1), and rotated by

ϕ = ϕ1 = ϕ2 = arctan
(

7
√

3/73
)
∼ 9.43° with respect to each other. This falls in the

regime where the two graphene layers interact weakly, leading to Fermi velocity renor-
malization around the Dirac cones [122,154,194].

4.2.2 Graphene on Re(0001)

The case of multilayer graphene on C-face SiC has shown a situation where a moiré
superlattice is related to a single structural parameter: the twisting angle ϕ. Now we
report a situation where graphene is not only twisted, but also strained and sheared
with respect to the substrate, a Re(0001) surface. A full monolayer of graphene forms
on Re(0001) through a self-limiting process [143], and the dominant Fourier component
is found to correspond to a beating with ∼ 2.2 nm period.

Here, graphene was grown on a Re(0001) single crystal following the recipe presented
in Section 3.2.3, by saturating the surface with C2H4 at room temperature (introduced
with a 3 · 10−8 mbar pressure), and two subsequent cycles of flash-annealing/cooling at
750 °C with a 5 · 10−7mbar C2H4 pressure.

A direct analysis of the STM topograph along the same lines as for Fig. 4.5 is
here challenging. Fig. 4.6 (left) highlights two additional phenomena, which have been
discussed in the context of graphene on metals [38,129].

First, depending on the position within the moiré superlattice, the apparent height
accessed by STM shows a varying number of visible C: in a valley, only 3 atoms out
of a 6-C ring are seen, whereas on a hill, all 6 are observed. This is due to the sites
occupied by the C atoms on the terminal metallic layer, which are either atop, hcp or
fcc (see Section 2.1). In a valley, the sites occupied by the C atoms are either atop and
hcp, or atop and fcc. The overlap of the pz-like orbital of a C atom in atop position
with the d-like orbitals of the underlying metal atom is then maximal. Consequently,
the local electronic density of states is modified, making it appear low in STM [213].
This explains why, for strongly-interacting substrates, only half the C atoms appear
as protrusions in a moiré valley, while all of them can be identified on top of a moiré
hill (see Refs. [129, 134, 157, 230] for graphene on Ru(0001), Ref. [207] for graphene on
Rh(111), and Ref. [193] for graphene on Re(0001)).

Second, the apparent atomic rows of C oscillate with the same periodicity as the
beatings. This phenomenon has been reported and discussed in the case of graphene on
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Figure 4.6: STM analysis of graphene on Re(0001). Left: (5.6 × 5.2 nm2) STM
topograph (Itunnel = 6 nA, Vbias = 30 mV) with overlaid graphene lattice (black), and
lattice vectors of graphene and N = 2 superlattice (red and blue arrows respectively).
Moiré cell (blue full line) and its closest unsheared approximation with N = 1 beating
(green dashed line), with the coordinates of its corners in the graphene basis. The ”odd-
even” transition along lines of carbon atoms is also emphasized, as well as the either 6
or 3 C atoms observed in a moiré hill or valley. Right: corresponding FFT-image with
emphasized moiré reciprocal lattice (black) and lattice vectors of moiré, graphene and
Re (blue, red and green respectively). Inset shows the kgr−kRe harmonics surrounding
the center of the FFT-image with improved contrast.

Ru(0001) [129], and observed as well in many instances before and since then. A detailed
account of this effect has been published after the work presented here [38]. Still, it is
known since the 1990s as the ”odd-even transition” in the case of graphite [144,153,156].
Its origin is well illustrated in the case of the two distinctive moiré valleys. Indeed, they
differ only in the site of the remaining visible C atom: hcp or fcc. Depending on
whether the site is hcp or fcc, the corresponding C atom belongs to sub-lattice A or B of
graphene. As a consequence, when moving from one beating to the other, the C atoms
that are observed switch continuously from one sub-lattice to the other. This induces
an apparent oscillation of the rows of C atoms. Therefore, these two effects are related
to a modulation of the electronic density of states on the two sub-lattices of graphene,
which is correlated with the moiré periodicity.

Density functional calculations have been performed in order to provide a qualitative
interpretation of the effect of shear strain, in the case of graphene on Re(0001), on the
observed STM images. The large size of the N > 1 beatings moiré superlattice observed
experimentally is not affordable for DFT calculations, due to a too large number of
atoms. A smaller moiré superlattice was hence considered, comprising only one beating.
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Figure 4.7: DFT simulation of graphene on Re(0001). Left: schematic view of
the (i, j, k, l,m, n, q, r) = (9, 3,−2, 7, 8, 3,−2, 6) N = 1 moiré superlattice used for DFT
calculations. Right: cross-section of the square modulus of the converged wavefunction
integrated between EF and EF + 0.5 eV. On both images, the superlattice unit cell
is emphasized with a blue rhombus. In both moiré valleys, only one C out of two is
seen (right), contrary to the moiré hill, as indicated by red triangle and hexagon. This
alternative appearance of either one C sub-lattice or the other gives rise to an effective
C row oscillation (green dots, left), emphasized by a green dotted line (right).

A cross-section in the electronic density map, computed from the relaxed structure,
integrated between Fermi level and 0.5 eV above it, is shown on Fig. 4.7.

DFT calculations were performed using the VASP code, with the projector aug-
mented wave (PAW) approach [105,106]. The exchange correlation interaction is treated
within the general gradient approximation parameterized by Perdew, Burke and Ernz-
erhof (PBE) [164]. The Methfessel Paxton method is used to calculate the total energy
with a smearing of 0.2. The cut-off energy is of 400 eV. The supercell consists in four
Re layers and one C layer with an empty space of 9 Å to avoid spurious interactions.
Re atoms are kept fixed in the bottom second Re layer, all other atoms are allowed to
relax. Due to the size of the supercell, calculations are performed using the K point
only. After convergence, residual forces are lower than 0.03 eV/Å.

Using DFT calculations, the two effects explained above have been reproduced in
the case of a sheared and twisted N = 1 moiré superlattice of graphene on Re(0001),
comprising a sufficiently small number of atoms to be treated numerically. This moiré
is characterized by the set (i, j, k, l,m, n, q, r) = (9, 3,−2, 7, 8, 3,−2, 6). On Fig. 4.7
(right), one can see that the moiré reproduces the two anomalies described above. Only
one C sub-lattice is observed in each moiré valley. Within the unit cell, this causes
an effective oscillation of the atomic C row, which is actually related to the varying
contribution of each sub-lattice to the electronic density, as can be checked on Fig. 4.7
(left).

On Fig. 4.7 (right), it can be noted that the hills of the beating are not circular,
but appear rather elliptical. This is attributed to the small shearing that graphene

121



Chapter 4. Classification of commensurate graphene moiré superlattices

undergoes in this superstructure, whose effect is enhanced on the moiré. Similar non-
circular hills can be observed on Fig. 4.6a, which is another clue that indicates graphene
structure is sheared on this STM topograph.

Fig. 4.6 displays an analysis taking the two STM electronic effects into account. The
FFT image is analysed similarly to Fig. 4.5 (right), although the situation is different.
Indeed, in two directions, the graphene spots do not superimpose with the extrapolated
reciprocal space lattice paved with the kgr1 − kRe1 and kgr2 − kRe2 vectors. This
means that the moiré is not a N = 1 superlattice (cf. Fig. 4.1 bottom). Moreover, the
positions of the graphene spots with respect to the moiré reciprocal network vary for the
three main directions. Consequently, based on the reciprocal space analysis, the moiré
structure considered here is sheared. The commensurability relation of this structure
reads as:

MT
gr =

(
9 −1
1 17

)
and MT

Re =

(
8 −1
1 15

)
so Mgr =

(
9 1
−1 17

)
and MRe =

(
8 1
−1 15

)
Therefore (i, j, k, l,m, n, q, r) = (9, 1,−1, 17, 8, 1,−1, 15) is the corresponding set of

integers. As a signature of the anisotropy, the moiré cell contains a different number
of beatings N1 = 1 and N2 = 2 in each of its main directions, as can be deduced
from Equation (4.32). This analysis is displayed in direct space on top of the original
STM topograph on Fig. 4.6 (left), where the superstructure lattice vectors are explicitly
decomposed on the graphene lattice.

To get a more simple grasp of this structure, the moiré can be described using
the (P1 RΦ1 × P2 RΦ2) extended Wood’s notation, with P1 =

√
82 + 12 − 1× 8 ∼

7.55, P2 =
√

(−1)2 + 152 − (−1)× 15 ∼ 15.52, Φ1 = arctan
(√

3/15
)
∼ 6.59°, and

Φ2 = arctan
(√

3/31
)
∼ 3.20°, as deduced from Equations (4.16a), (4.16b), (4.16c) and

(4.16d). This notation makes clear the twice larger size of the moiré compared to a
N = 1 superlattice, comprising 308 carbon atoms, as well as a sizeable shear. The
corresponding shear of the graphene lattice is obvious in the corresponding extended
Wood’s notation (p1 Rϕ1 × p2 Rϕ2). Using Equations (4.15a), (4.15b), (4.15c) and

(4.15d), one gets p1 =
√

1372+22−2×137/154 ∼ 0.883, p2 =
√

(−1)2+1362+1×136/154 ∼ 0.886,
ϕ1 = arctan

(√
3/136

)
∼ 0.73° and ϕ2 = arctan

(√
3/271

)
∼ 0.36°. This is summarized as

(0.883 R0.73°× 0.886 R0.36°). This structure is close but different from the previously
reported assignment of a (7 × 7)R0° N = 1 moiré [193].

Overall, the structure is a superlattice both sheared and twisted with N1 = 1 beating
in one direction and N2 = 2 in the other, giving rise to N = 2 beatings in the moiré cell.
This is significantly more complex than the N = 1 twisted superlattices discussed in
many reports, and even than the N = 4 untwisted superlattices reported in graphene on
Ir(111) [11] and graphene on Ru(0001) [134], or than a solely sheared superlattice [75].

A more physical description of such a structure is given by comparing the graphene
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Figure 4.8: STM analysis of graphene on Ir(111). Left: (13.5 × 7.4 nm2) STM
topograph (Itunnel = 20 nA, Vbias = 60 mV) with highlighted graphene lattice (black),
and lattice vectors of graphene and N = 9 moiré (red and blue arrows respectively).
Moiré cell (blue line) with the coordinates of its corners in the graphene basis, and
its closest unsheared approximation (green dashed line). It should be noted the con-
trast is inverted compared to Fig. 4.6, so hills appear as dark. Right: FFT-image
obtained from a 15.6 × 30 nm2 STM topograph, and overlaid with the lattice paved
with kgr−kIr vectors, and lattice vectors of moiré, graphene and Ir (blue, red and green
respectively). Inset shows moiré spots surrounding the center of the FFT-image with
improved contrast.

overlayer with its HOPG counterpart, and decomposing the strain in terms of a uni-
axial and a biaxial contributions. Using Equations (4.27a) and (4.27b) in the case of
graphene on Re(0001), graphene is biaxally compressed by εb ∼ −0.14% and uniaxially
compressed by εu ∼ −0.84%. This shows that a moiré is actually related to a non-trivial
distortion of the graphene lattice.

4.2.3 Graphene on Ir(111)

The anisotropy of the graphene and moiré lattices is also encountered when the graphene-
substrate interaction is much weaker, e.g. for graphene on Ir(111). The graphene on
Ir(111) was prepared by exposing to 10−8 mbar of C2H4 at 1, 000 °C for 15 minutes.

Similarly to graphene on Re(0001), the FFT-image of Fig. 4.8 (right) shows the
graphene spots do not superimpose with the extrapolated reciprocal lattice paved with
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kgr1−kIr1 and kgr2−kIr2 , which means the moiré comprises more than a single beating
(N > 1). In addition, the position of the graphene spots with respect to the moiré
reciprocal lattice is not the same in each main direction, which means the structure is
sheared. Actually, along the close-to-horizontal direction in reciprocal space (center-
right in Fig. 4.8 right), the set of harmonics around kgr1 are for instance found right at
the center of mass of the triangles defined by the extrapolated lattice. On the contrary,
for the second direction (top-right in Fig. 4.8 right), the set of harmonics around kgr2

lie in between two nodes of the extrapolated reciprocal lattice. This translates into the
commensurability relation as:

MT
gr =

(
29 2
−3 32

)
and MT

Ir =

(
26 2
−3 29

)
so Mgr =

(
29 −3
2 32

)
and MIr =

(
26 −3
2 29

)
This description of the superlattice can be summarized with (i, j, k, l,m, n, q, r) =

(29,−3, 2, 32, 26,−3, 2, 29), as interpreted in Fig. 4.8 (left). Such a moiré comprises
three beatings in each direction (Equation (4.32)), in total 1, 868 carbon atoms. In
the extended Wood’s notation, this superlattice is described with (P1 RΦ1 × P2 RΦ2),
with P1 =

√
262 + (−3)2 + 26× 3∼ 27.62, P2 =

√
22 + 292 − 2× 29 ∼ 28.05, Φ1 =

arctan
(
−3
√

3/55
)
∼ −5.40°, and Φ2 = arctan

(
−
√

3/28
)
∼ −3.54°, as deduced from Equa-

tions (4.16a), (4.16b), (4.16c) and (4.16d). This is very close but still different from
the so-called incommensurate (9.32 × 9.32) R0° structure [147]. The graphene struc-

ture is similarly described with (p1 Rϕ1 × p2 Rϕ2), with p1 =
√

8382+(−9)2−838×(−9)/934 ∼
0.902, p2 =

√
62+8472−6×847/934 ∼ 0.904, ϕ1 = arctan

(
−9
√

3/1685
)
∼ −0.53°, and ϕ2 =

arctan
(
−3
√

3/844
)
∼ −0.35°, as deduced from Equations (4.15a), (4.15b), (4.15c) and

(4.15d). These values are in excellent agreement with the 0.903 ratio recently measured
by means of surface X-ray scattering [85].

Using Equations (4.27a) and (4.27b), this shearing translates into a combination of
biaxial compression εb ∼ −0.29% and uniaxial compression εu ∼ −0.41% (expressed
using HOPG as a reference for unstrained graphene). Shear and strain of such extents
have already been reported before [10], but no quantitative analysis was provided.

4.3 Moiré superlattice classification

Table 4.1 gives the list of moiré superlattices that have been explicitly reported for
graphene on Ir(111) and Pt(111). These structures cover the full 0− 30° range for ϕ =
(as, agr). Similarly, the strain level ε = (agr−aHOPG)/aHOPG goes up to 4.5%. Given the high
number of degrees of freedom epitaxial graphene has to relax strain, it appears unrealistic
to consider interpreted superlattices with ε & 1%. Instead, more complex superlattices,
with greater moiré periods am, and numerous moiré cells should be considered.

Three support lattices have been considered so far, revealing that a moiré structure
can be rotated, strained and sheared. It also demonstrates that moiré superlattices
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4.3. Moiré superlattice classification

Figure 4.9: Moiré lattice constant am versus angle ϕ between graphene and
its support. Each point corresponds to a commensurate superlattice of given am and
ϕ, with its colour indicating the strain level of graphene. The full lines indicate the
superlattices containing N beatings within the moiré cell. The coloured ones add a strain
information, and for clarity are only shown for the N = 1 case. Graphene on (a) Ir(111),
(b) Pt(111) , (c) Re(0001) (with lattice parameters aIr = 2.7147 Å, aPt = 2.7744 Å, and
aRe = 2.7609 Å, see Ref. [97]). For graphene on Ir(111) and Pt(111), black stars index
reported unsheared structures, while for graphene on Re(0001), they index the sheared
structure analysed here.
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comprising more than one beating are commonly encountered. Three equivalent ways
have been presented to describe moiré superlattices with ease:

• Using an extended Wood’s notation for a pictorial description using two scaling
factors and two angles,

• In more physical terms with rotation angles, and uniaxial and biaxial strains,

• With eight integers that decompose independently the two moiré lattice vectors
onto those of graphene and of its support.

The use of eight integers proves necessary for a universal description of all moiré
superlattices, in particular of N > 1 beatings superlattices, and of sheared superlat-
tices, which both display specific properties. N > 1 beatings superlattices indeed ex-
hibit inequivalent moiré hills [81]. Additionally, the geometrical description of a moiré
superlattice has a direct link with the position of its replica bands and mini-gaps in
reciprocal space. Angle-resolved photoemission spectroscopy [154,166] and Raman spec-
troscopy [19, 20] probe the former, while conductance measurements [35, 80, 168] are a
precise mean to measure the latter. If sufficiently sensitive and resolved, these techniques
will detect the fundamental component of N > 1 beatings superlattices.

As for sheared superlattices, their broken three-fold symmetry reshapes the Brillouin
zone, which shifts K and K ′ points, and therefore the position of the graphene Dirac
cones [30]. Upon large shear strains, they are predicted to merge, so a band gap opens.
Additionally, even marginal shear strain should shift the position of the superlattice
mini-gaps in k. As a consequence, for twisted bilayer graphene, this broken-symmetry
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4.3. Moiré superlattice classification

gr/Ir (i, j,m, n) ϕ (°) N am (nm) agr (Å) ε (%) Reference
1 (10, 0, 9, 0) 0 1 2.44 2.4432 −0.73 [136,227]
2 (11, 0, 10, 0) 0 1 2.71 2.4679 0.27 [10]

(21, 0, 19, 0) 0 4 5.16 2.4562 −0.20 [10]
3 (11, 4, 10, 4) 2.4 1 2.37 2.4541 −0.29 [84]
4 (4, 0, 4, 1) 13.9 1 0.98 2.4470 −0.58 [120,136,227]
5 (7, 3, 6, 1) 16.3 1 1.51 2.4849 0.96 [136]
6 (13, 1, 13, 5) 18.5 16 3.08 2.4607 −0.02 [120]
7 (3, 0, 3, 1) 19.1 1 0.72 2.3941 −2.73 [136,227]
8 (5, 2, 4, 0) 23.4 1 1.09 2.4912 1.22 [136]
9 (14, 9, 12, 2) 29.6 37 3.02 2.4601 −0.04 [120]
10 (2, 0, 2, 1) 30 1 0.47 2.3510 −4.48 [136]

gr/Pt (i, j,m, n) ϕ (°) N am (nm) agr (Å) ε (%) Reference
1 (9, 0, 8, 0) 0 1 2.22 2.4661 0.20 [110,137]
2 (9, 1, 8, 1) 0.8 1 2.09 2.4516 −0.39 [43,55,137]
3 (10, 2, 9, 2) 1.3 1 2.27 2.4778 0.67 [137]
4 (9, 2, 8, 2) 1.7 1 2.00 2.4442 −0.69 [110,137]
5 (10, 3, 9, 3) 2.1 1 2.20 2.4776 0.67 [137]
6 (9, 3, 8, 3) 2.7 1 1.94 2.4468 −0.59 [43,137]
7 (9, 4, 8, 4) 3.7 1 1.92 2.4611 −0.004 [43,55,133,137]
8 (8, 4, 7, 3) 4.7 1 1.69 2.4358 −1.03 [137,220]
9 (8, 3, 7, 2) 5.7 1 1.73 2.4752 0.57 [190]
10 (7, 3, 6, 2) 6.2 1 1.47 2.4135 −1.94 [55]
11 (8, 2, 7, 1) 6.3 1 1.82 2.5229 2.51 [43]
12 (7, 2, 6, 1) 7.2 1 1.54 2.4735 0.50 [137]
13 (6, 1, 5, 0) 8.9 1 1.39 2.4915 1.23 [43,137]
14 (5, 1, 4, 0) 10.9 1 1.11 2.4217 −1.60 [137,196]
15 (4, 0, 4, 1) 13.9 1 1.00 2.5008 1.61 [55,137,195]
16 (7, 0, 7, 2) 16.1 4 1.73 2.4752 0.57 [137]
17 (3, 0, 3, 1) 19.1 1 0.73 2.4468 −0.59 [43,55,133,137]

[190,196,220]
18 (8, 5, 7, 2) 22.1 7 1.73 2.4752 0.57 [137]
19 (5, 0, 5, 2) 23.4 4 1.21 2.4187 −1.73 [43,63]
20 (5, 2, 4, 0) 23.4 3 1.11 2.5460 3.45 [43]
21 (2, 0, 2, 1) 30 1 0.48 2.4027 −2.38 [55,110,137]

Table 4.1: Noticeable graphene on Ir(111) and Pt(111) moiré superlattices:
each considered superlattice is labelled with its (i, j,m, n) integers, and the correspond-
ing graphene-substrate angle (ϕ), graphene and moiré lattice constants (agr and am),
and biaxial strain (ε) are indicated. Indices correspond to those appearing in Fig. 4.9.
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Chapter 4. Classification of commensurate graphene moiré superlattices

is predicted to give rise to multiple Van Hove singularities in the electronic density
of states [149]. The geometrical analysis presented here is thus a tool towards the
quantitative prediction of such effects.

The notation relying on eight integers enables to enumerate all the possible structures
by combining every possible value for each integer. The system can further be treated
by addressing two independent directions separately, i.e. by considering two sets of
four integers, (i, j,m, n) and (k, l, q, r), which obey the same equations. One can then
rely on the equations established in Sect. 4.1 for isotropic structures. In particular,
the commensurability is given by Equations (4.11) and (4.12), the Wood’s notation by
Equations (4.17a) to (4.18b), and the biaxial strain by Equation (4.28).

With increasing values of (i, j,m, n), it is then possible to enumerate every possible
structure. Using a limited set of parameters such as ε and ϕ allows for a graphical
representation of the strain of every possible moiré superlattice in a given direction.
Fig. 4.9 gives this representation in the case of graphene on dense-packed surfaces of Ir,
Pt and Re. Fig. 4.9 also displays the parametrized curves associated with a first order
beating. They correspond to the one-dimensional formula

√
Nkm = kb = kgr − ks, and

they are defined by Equation (4.5). This series of parametrized curves highlights moiré
superlattices with increasing numbers of beatings N .

In the case of graphene on Pt(111), the interpretation in terms of sub-3 nm period
superlattices corresponds to suspiciously high strains for a system with such a weak
interaction between graphene and the metal. For instance, the phases indexed as 11,
19, 20 and 21 on Fig. 4.9 have been interpreted as moiré superlattices with respectively
ε = 2.51% (11), ε = −1.73% (19) and ε = 3.45% (20), and ε = −2.38% (21). Higher
number of beatings are in fact probable for such structures. Such a high number of beat-
ings was determined in the case of the so-called R30 phase of graphene on Ir(111) [120]. A
combined micro-spot low energy electron diffraction (µ-LEED) and STM study showed
that within a moiré unit cell of ∼ 3.02 nm lattice parameter, N = 39 beatings sepa-
rated by ∼ 0.47 nm occur (N1 = N2 =

√
39). This N = 39 moiré is described with

(i, j,m, n) = (14, 9, 12, 2) (indexed as 9 on Fig. 4.9), which corresponds to ε = −0.04%.
This moiré was also described as a N = 1 moiré [136] with (i, j,m, n) = (2, 0, 2, 1) (in-
dexed as 10 on Fig. 4.9a), for which ε = −4.48%, which is questionable. Similarly, the so-
called R18.5 of graphene on Ir(111) was interpreted as either (i, j,m, n) = (13, 1, 13, 5),
ε = −0.02% [120], or (i, j,m, n) = (3, 0, 3, 1), ε = −2.73% [227], respectively labelled as
6 and 7 on Fig. 4.9.

The analysis performed here demonstrates the rich variety of moiré superlattices to
be expected for graphene on a substrate, well beyond the simple case of N = 1 unsheared
cases. Although many structures are possible from the geometrical point of view, few of
them have actually been reported in the literature. This state of fact can be interpreted
in two different ways: either differentiating some very similar structures has not been
considered or is not possible due to too limited space resolution, or only a few of them
are stable enough to actually exist.

Graphene on Ir(111) and Pt(111) are typical of the first situation. Numerous moiré
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4.3. Moiré superlattice classification

phases have been reported for them, as shown on Fig. 4.9. The majority of them is
identified as N = 1 moiré superlattices, nevertheless, this description appears sometimes
unrealistic. For graphene on Re(0001), like on Ru(0001) and Ni(111), graphene tends
to align its zigzag rows to the close-packed rows of the metal (ϕ ∼ 0°), even in growth
conditions quite far from thermodynamic equilibrium. Presumably, the strong bonds
of covalent character between carbon and metal atoms inside the growing flake are not
readily broken, as would be required for twisting.

Although large-angle twists are almost prohibited for graphene on Re(0001), slightly
twisted graphene phases coexist. These numerous very similar structures can be as-
sumed to be local minima in the energy landscape. Their coexistence then implies a
high activation energy between each of them, so the formation of a large-scale uniform
graphene phase is kinetically limited. In other words, graphene needs to be heated
to high enough temperature to rearrange into the most stable phase of graphene on
Re(0001). However, at high temperature, graphene growth competes with bulk dissolu-
tion and carbide formation, so the growth is performed by annealing cycles [143]. Over
each cycle, graphene’s crystallinity progressively improves, which supports this simple
kinetic scenario. To go further, one can compare this situation with that of graphene
on Ru(0001), where domains slightly rotated around ϕ ∼ 0° can be grown, as observed
in STM [146] and µ-LEED [126]. By tuning the growth to higher temperature, large
domains of one specific structure tend to form [146, 157], which has been analysed as
a N = 4 (N1 = N2 = 2) superlattice ((i, j,m, n) = (25, 0, 23, 0)) using surface x-ray
diffraction [134]. Such similar behaviours may lead to the conclusion that the mecha-
nism presented here is common to every system where graphene is in strong interaction
with its substrate.

Graphene on C-face SiC grows with rotational disorder between the adjacent gra-
phene layers [71], so the terminal layers exhibit many possible twisted phases [201]. Even
though all kinds of twists are encountered in experiments, it seems that certain twist
angles are preferential. It is very likely that these twist angles correspond to commen-
surate moiré superlattices such as the one reported here. Since both graphene layers
share the same lattice parameter, the situation can be depicted with two integers (i, j),
such that (i, j,m, n) = (i, j,−j, i − j). For instance, (i, j) = (4, 7) in the present work,
and (i, j) = (4, 1) in Ref. [71]. It should be noted that the observation, with diffraction
techniques, of a continuum of twist angles (e.g. see Ref. [71]) does not necessarily imply
that the twist angle can take random values. Indeed, the existence of a multitude of
commensurate superlattices discretely spanning the 0−60° twist range could as well ac-
count for the observation due to the finite size of the diffraction spot (set by the domain
size or the instrumental resolution) that they yield. Further pushing this idea suggests
to revisit the so-called van der Waals epitaxy. This concept has been introduced decades
ago [101], and is attracting a renewed interest in the context of 2D materials growth one
onto another, so as to describe the preferential alignment of two lattices “without the
need of lattice coincidence”. In fact, van der Waals epitaxy seems to be nothing more
than a standard epitaxy characterised by a large supercell that does not always appear
straightforwardly in experiments.
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Chapter 4. Classification of commensurate graphene moiré superlattices

In conclusion, different supported graphene systems have been studied with STM.
A consistent analysis of moiré superlattices involving both direct and FFT STM images
has been presented. The geometry of the superlattices, as apparent in STM images, has
been rationalized by calculating electronic density maps derived from DFT calculations.
A spatial precision of a tenth of 1 pm is achieved, revealing that graphene lying on a
substrate is actually twisted, strained and sheared, which breaks its rotational symme-
try. A geometrical model enables to classify all moiré superlattices. This model gives a
global picture assuming commensurability between graphene and its substrate (and con-
sequently between graphene or the substrate, and the moiré), yielding various numbers
of beatings. While a very large number of structures is possible, only a few have actually
been reported. In the case of strong graphene-substrate interaction, it is unlikely that
all predicted superlattices are discovered, since for instance phases corresponding to a
substantial rotation of graphene with respect to the substrate do not tend to form. For
low interaction graphene-substrate systems, the complexity of the moiré superlattices
has been undetected or overlooked, leading to possibly simplified interpretations.

Surprisingly, no matter how strong the interaction between graphene and its sub-
strate, no clear preferential commensurate structure seems to be observed. This appar-
ently contradicts the Frank and van der Merwe model, which predicts that a strongly-
interacting substrate should have large stability domains for commensurate structures.
In particular, graphene on Re(0001) displays a very large number of possible orienta-
tions, where graphene undergoes complex strain fields such as the shearing identified
here. The reason for this apparent paradox is explained in the next Chapter.
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Chapter 5

Competing structural orders in
graphene on Re(0001)

When suspended, graphene would behave, if it were not held at its edge (like is usually
the case in experiments), as a pristine 2D solid with quasi-long-range order, owing to
the HMW theorem (see Section 2.4.5). This state of matter exhibits a characteristic
power-law decay over distance in the correlations of its order parameter, here atomic
displacements with respect to their rest positions. In reciprocal space, this translates into
power-law peaks in the structure factor. In direct space, it means that although graphene
has local translational order, there is no coherence of this order at larger distances. In
other words, due to the 2D character of graphene, there is no absolute reference for the
positions of its C atom positions, and their thermally-induced displacements diverge at
any non-zero temperature.

When supported by a substrate, an explicit reference is set to C atoms, so one
naively expects them to lock on the substrate crystalline order. However, the lattice
parameter mismatch and the graphene-substrate interaction play a critical role that can
be qualitatively understood with the Frank and van der Merwe model (see Section 2.3.1).
Two possible structural orders are expected as possible ground states of this model: a
(possibly high-order) commensurate phase where graphene is locked on the long-range
order of the substrate, and an incommensurate phase where its own quasi-long-range
order survives.

In the previous Chapter, the STM-observation and analysis of moiré superlattices
have been interpreted as a signature of complex high-order commensurate phases, sub-
mitted to non-trivial strain fields. Here, the study of larger-scale STM images shows
static disorder is also present in graphene on Re(0001) samples. Although both commen-
surate and incommensurate phases can display disorder, neither of them accounts fully
for the reported observations. Graphene on Re(0001) rather corresponds to a metastable
so-called chaotic phase, where static disorder is quenched, as if it were in a frozen, glassy
configuration, due to the large number of local minima in the free energy landscape.

The origin of this peculiar state is rationalized through a detailed analysis of the
species and processes involved in the growth of graphene on Re(0001). Growing graphene
on a substrate interacting strongly with carbon such as Re is revealed to be kinetically
blocked. As a result, multiple reaction paths compete. In particular metastable carbon
nanoclusters form, and prove difficult to incorporate in graphene due to high activation
energies. This gives rise to the static defects and disorder underlying the chaotic phase.
The atomic structure of both the carbon nanoclusters and resulting defects in graphene
are presented exhaustively for the first time, with consistency between STM and DFT.
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Figure 5.1: Periodic features in the final steps of graphene growth. (a)
RHEED pattern of the graphene-covered Re(0001) surface with [112̄0] incident azimuth.
Coloured lines indicate the specular rod (white), as well as the position of Re (orange),
graphene and moiré (blue) truncation rods. Inset shows a schematic top view of the
reciprocal space with all observed rods and a cut of the Ewald’s sphere in white. (b-g)
Profiles extracted from the rectangular cuts are fitted with lorentzian peaks on a flat
(b), quadratic (c) or linear (d-g) background.

5.1 Metastable chaotic phase

To investigate this structural order, graphene was grown on a Re(0001) single crystal,
following the method described in Chapter 3. The sample studied here is the same as
the one of Section 4.2.2, and the presented STM topographs have been acquired dur-
ing the same experimental run. To assess the kind of order of the obtained graphene,
electron diffraction measurements have been performed, and show an overall good struc-
tural quality. Complementary atomically-resolved STM investigation reveals that some
disorder is actually still present at the local scale. When qualifying this type of disor-
der, it appears graphene on Re(0001) corresponds neither to a commensurate, nor to an
incommensurate layer, but is in a chaotic state.

5.1.1 Experimental observation of static disorder

Sharp truncation rods attributed to Re, graphene and moiré periodicities are typical of
RHEED patterns taken at the end of graphene growth, as visible on Fig. 5.1a. In the

132



5.1. Metastable chaotic phase

Figure 5.2: Coexisting moiré superlattices. Left: STM topograph (Vb = 20 mV
and It = 10 nA, scale bar 2 nm) of graphene on Re(0001) displaying domains of different
moiré superlattices. Right: corresponding interpretation, where green lines following
the moiré hills show the difference between adjacent domains. Blue lines indicate two
types of domain walls: either grain boundaries (solid) where the honeycomb structure
is disrupted, or continuous domain walls (dashed) across which the structural coherence
of graphene is preserved.

first Laue zone (Fig. 5.1f,g), sharp lorentzian profiles match the Re and graphene rods,
with additional equidistant lorentzian contributions sharing the width of the graphene
rod and related to the moiré superperiodicity. Their sharpness translates the large size
of graphene crystallites. Besides, the large number of equidistant moiré-related rods
observed in the first (Fig. 5.1c,f,g) and second Laue zone (Fig. 5.1b,d,e) is a signature
of the large-scale moiré regularity.

As RHEED probes mm2-areas of the sample, the rods fitted positions give access to
average lattice parameters. Assuming the Re substrate as unstrained (aRe = 2.7609 Å
[97]), the lattice constant of graphene is found to be agr = 2.481±0.002 Å, corresponding
to a lattice extension of 0.8 ± 0.1 % with respect to HOPG (aHOPG = 2.4612 Å [97]).
The average moiré superperiodicity is then am = 2.44± 0.02 nm, which corresponds to
an average commensurability of 9.85 graphene cells on 8.85 Re cells.

When considering the fitted amplitudes, since RHEED is a surface-sensitive probe,
one would expect the graphene rod to be more intense than that of Re. This is indeed
the case, consistently with a high graphene coverage. In short, RHEED measurements
indicate graphene covers most of the surface with rather high crystalline quality and a
regular moiré superperiodicity.

These results are consistent with atomically-resolved STM imaging, a typical exam-
ple of which is given on Fig. 5.2 (left). A monolayer of graphene covers the Re(0001)
surface, giving rise to a am ∼ 2.4 nm moiré superlattice, except on the bare top-left
hand corner. However, close inspection of the beating periodicity and orientation re-
veals slight variations, emphasized with green lines on Fig. 5.2 (right). These variations
seem to follow domains identified with blue lines, which are either grain boundaries (full
lines) between graphene crystallites, or domain walls (dashed lines) between different
moiré phases. Grain boundaries disrupt the carbon lattice, featuring holes and defective
structures, as can be seen on the bottom of Fig. 5.2. On the contrary, no such discon-
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t

Figure 5.3: Disorder in commensurate and incommensurate phases. Left: For
a commensurate phase, disorder manifests itself as degenerate domains shifted with
respect to each other, as indicated by green lines. The domain walls (dotted blue lines)
are static and correspond to topological defects in the commensurate order. Right:
For an incommensurate phase, thermal fluctuations generate zero-mass phasons (dotted
blue lines), which upon propagation make C atoms wiggle. This phase is disordered in
itself, and disorder is dynamic.

tinuity can be identified along domain walls, which therefore preserve the honeycomb
lattice coherence. Between two adjacent domains, the beatings are rotated of at most
5 °, and variations of am stay within ±0.1 nm.

As the beating arises from the superposition of graphene and its Re substrate (see
previous Chapter), the observed slight variations originate from even slighter modula-
tions in the structure of graphene and/or Re. Since the beating periodicity is about 10
times that of graphene, the rotations and lattice parameter variations are . 0.5° and
0.1 Årespectively.

5.1.2 Disorder in commensurate and incommensurate phases

Beyond this order of magnitude estimation, a more detailed structural analysis is de-
sirable to evaluate whether graphene is commensurate or incommensurate on Re(0001).
Both phases can host disorder, but of two different kinds, as illustrated on Fig. 5.3.

Let us first consider a commensurate phase. In such a phase, graphene locks on
a specific commensurate relation with the substrate, which is the absolute minimum
in its free energy landscape. This relation corresponds to a single moiré superlattice,
while other possible moiré superlattices are at best metastable. Still, even with a single
possible moiré superlattice, disorder is possible, as a domain of graphene can be shifted
with respect to another one. The interface between two such domains is a domain
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wall, and constitutes a topological defect in the commensurate order (see Section 2.4.3).
Therefore, for a commensurate phase, domain walls can be expected between shifted
domains of the same moiré superlattice, as illustrated on Fig. 5.3 (left) with blue dotted
lines.

On the contrary, thermal fluctuations play a key-role in an incommensurate phase, as
the C atom displacements they induce prohibit graphene from locking to a commensurate
relation. In other words, there is no long-range order, so the concepts of domain and
domain wall are ill-defined. This absence of long-range order can be seen as arising
from Goldstone modes called phasons (see end of Chapter 2), whose thermally-induced
generation and propagation cause C atoms to wiggle. In this case, disorder is dynamic,
so the blue dotted lines on Fig. 5.3 (right) bend and move continuously over time, and
correspond to propagating phasons.

With this distinction in mind, one can wonder whether the variations observed on
Fig. 5.2 mimic domain walls between degenerate commensurate domains, or phasons in
an incommensurate solid. Due to the small size of the identified domains, an analysis
similar to the one detailed in the previous Chapter is impossible, because a small field
of view would lack resolution, whereas a large one would average out different domains.

Still, elliptic moiré hills associated to shear can be observed on Fig. 5.2 (left). This
means non-trivial strain fields are distributed over the entire field of view. Moreover,
no specific high-order commensurate structure is observed in more occurrences than
any other, which contradicts the existence of a single stable commensurate phase of
graphene on Re(0001). In these conditions, continuous domain walls do not correspond
to topological defects between degenerate domains of this stable phase. They are rather
domain walls between non-degenerate metastable phases of graphene on Re(0001).

Intuitively, the absence of a privileged commensurate phase supports the scenario of
incommensurate graphene. However, the observed disorder is static, and therefore does
not correspond to dynamic disorder expected from an incommensurate phase. Indeed,
no change of the moiré superlattices could be detected in the course of STM imaging or
in between two STM topographs, which means no movement in the underlying atomic
structure takes place. It can be argued that the typical time scale of atomic displace-
ments is well shorter than the acquisition time scale of conventional STM, so the effect
of fluctuations should be averaged out. Here, one can exclude thermal fluctuations of
the atomic positions in the Å-range, which would prevent to even define average atomic
positions at all, according to the HMW theorem applied to an incommensurate phase.

In the end, the observations correspond neither to a commensurate, nor to an incom-
mensurate configuration. Commensurability is excluded, because disorder is such that
no unique stable phase of graphene on Re(0001) can be identified. This does not exclude
the existence of such a stable phase in other circumstances, but simply means that many
metastable features are instead observed here. It is not incommensurate either, as the
observed disorder is static rather than dynamic. This does not exclude graphene could
be incommensurate, but implies that fluctuations are pinned to the Re lattice because of
the strong graphene-substrate interaction. These two alternative descriptions – highly
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disordered commensurate and frozen incommensurate – are the two faces of the same
coin: a kind of intermediate state called the chaotic phase [3].

A chaotic phase in supported 2D solids has been discussed in two contexts. On the
one hand, appropriate tuning of interaction strengths in the system can lead to frus-
tration. In the discrete 1D Frank and van der Merwe model (see Section 2.3.1), elastic
and potential energy terms compete, so a given configuration of the system cannot in
general satisfy both at the same time.1 With the right tuning of parameters, chaotic
metastable solutions can be found [2], where either compressive or tensile phasons are
randomly pinned to the lattice [15]. The chaotic character of these solutions can be
understood when considering their spatial evolution as a time evolution. Following
the relative atomic positions along the chain is then equivalent as studying its time
evolution. As there is no periodicity along the chain, the situation is analogous to a
chaotic time evolution. The frustration at the origin of this behaviour is analogous to
the anisotropic next-nearest-neighbour Ising model, where competition between ferro-
magnetic nearest-neighbour and antiferromagnetic next-nearest neighbour can also give
rise to chaotic phases [3]. In this model too, chaotic phases appear as kinks randomly
pinned by the Peierls potential [86]. In this context, chaos originates from frustration
in the interactions.

On the other hand, a chaotic phase can also be stabilized upon a temperature quench
of a liquid into a (disordered) glass. In that case, even though a crystalline phase is
favoured at low temperature, the out-of-equilibrium evolution of the system quenches
disorder in the low temperature phase. Quenched disorder is then metastable. For 2D
solids, the transition is the commensurate-incommensurate transition (see Section 2.3.3),
where the disordered phase is the incommensurate one, and the ordered phase is the
commensurate solid. Disorder is due to the phasons (see Section 2.4.5). If abruptly
cooled down from the incommensurate to the commensurate phase, quenched disorder
should be expected as phasons with frozen dynamics: this corresponds to the chaotic
phase. It has for instance been reported as a “soliton glass” in surface X-ray diffraction
experiments of Pb atoms adsorbed on Cu(110) when varying temperature and coverage
[117]. In this situation, chaos relates to quenched disorder resulting from an abrupt
phase transition.

Although the final state observed is much alike a glass, scenarios of the kind involved
in the liquid-to-glass and incommensurate-to-“phason glass” transitions are not at play
here. As it is now going to be presented, the static disorder on Fig. 5.2 is due to growth
constraints. Indeed, this chaotic disorder is kinetically blocked as graphene grows on
Re(0001).

1In Section 2.3.2, the continuum approximation removes the discrete character, thereby avoiding
issues of frustration, and providing simple analytical solutions. This approximation relies on the hy-
pothesis of smooth variation of phase ϕ, which is no longer valid for frustrated configurations.
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5.2 Kinetically blocked disorder in graphene

To understand the static disorder observed in a full layer of graphene, the first steps of
the growth will have to be addressed. Instead of a Re single crystal, here a 50 nm thick
Re(0001) film has been used. It has been deposited by molecular beam epitaxy (MBE) on
a polished α-Al2O3(0001) single crystal, which had been previously cleaned by annealing
under UHV for 5 h at T = 573 K. Rhenium deposition was performed at 773 K with a
rate of 8 Å/min. The obtained Re(0001) film has its 〈11̄00〉 crystallographic directions
aligned with the 〈112̄0〉 ones in α-Al2O3. After deposition, its crystalline quality has
been checked by RHEED and AFM.

To grow graphene, it has then been exposed to air, and transferred to another UHV
system via a bottle under static vacuum. A sub-monolayer coverage of graphene has
been obtained by annealing at T = 800 K for 4 h (base pressure 4 · 10−10 mbar). The
carbon precursor is attributed to airborne adsorbates as well as possible residual CO of
the UHV chamber.

5.2.1 Species coexistence

After annealing, RHEED patterns of the Re(0001) surface have been acquired at two
different incident angles, as shown on Fig. 5.4a,b. Fig. 5.4a displays streaks revealing
truncation rods associated with the Re and graphene periodicities. Fitting their posi-
tion and using Re’s lattice constant as a reference, the lattice constant of graphene is
extracted: agr = 2.479 ± 0.006 Å, corresponding to a lattice extension of 0.7 ± 0.3 %
with respect to HOPG. This value is consistent with the lattice constant measured in
the final steps of graphene growth. As for the fitted amplitudes, due to the low gra-
phene coverage, the Re rod is more intense even at fairly low incident angle, as visible
on Fig. 5.4c-d.

Moreover, at more grazing incidence, intermediate streaks can be identified halfway
between the specular and the Re streaks on Fig. 5.4b. This is consistent with either a
(2 × 2) or a (2 × 1) superstructure, attributed to C adatoms (see below). Two main
reasons support a (2×2) superstructure. First, in a (2×1) superstructure, C atoms are
arranged on neighbouring Re sites. However, no such neighbouring atoms are observed
on STM topographs. Besides, DFT calculations performed for various coverages of C
atoms on Rh(111), another metal surface known for its high affinity to carbon, show
there is a repulsion energy between C atoms [215]. Preliminary DFT results obtained
for Re(0001) not shown here support a similar trend, therefore favouring a (2× 2) over
a (2× 1) superstructure.

Although those (2 × 2) rods are difficult to notice on the raw RHEED pattern on
Fig. 5.4b, the average line profiles on Fig. 5.4e-f show they are actually hidden by the tail
of the lorentzian-fitted specular rod. Their fitted width is larger than those of graphene
and Re on Fig. 5.4c-d, which can attributed to a disordered arrangement of carbon
adatoms. This ordering is consistent with DFT calculations published earlier [67].

In situ STM corroborates the interpretation of RHEED patterns. It reveals three
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Figure 5.4: Periodic features in the first steps of growth. (a-b) RHEED patterns
of the Re(0001) surface after 800 K annealing, with [112̄0] incident azimuth, at two
different incidence angles. Coloured lines indicate the specular rod (white), as well as the
position of Re (orange), graphene (blue) and the carbon adatoms (2×2) superstructure
(red) truncation rods. Inset shows a schematic top view of the reciprocal space with
all observed rods and the Ewald’s sphere in white. (c-f) Profiles extracted from the
rectangular cuts are fitted with lorentzian peaks on a lorentzian background.

kinds of species, as visible on Fig. 5.5 (left). Graphene flakes with several nanometers of
extension are readily identified by their typical moiré superlattice. In addition to these
flakes, smaller objects are observed, which have the size of molecules. The smallest
dimer-like ones will be disregarded. Their aspect strongly changes depending on imaging
conditions, as shown on Fig. 5.6, and at present the (already high) lateral resolution
obtained in the STM images only allows for speculations regarding their nature. The
other molecule-like objects remind of similar ones, which have been observed on other
metal surfaces following the breaking of carbon molecules [33, 121] or during chemical
vapour deposition [34,107,215]. While it is accepted that they consist of sp2-hybridised
carbon, and form strong bonds at their edges with the metal surface, their structure and
their binding geometry remain unclear. These details are however crucial to understand
the disorder quenching during further stages of graphene preparation.

A small detour is now taken to reach such degree of detail, focusing on the third
kind of species present at the surface. Close inspection of Fig. 5.5 (left) reveals a dilute,
partially ordered phase of even smaller features of atomic size around the molecules
and graphene islands. They provide the key that has been missing to unambiguously
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Figure 5.5: Carbon species formed on Re(0001). Left: 3D STM topograph (Vb =
−2 V and It = 1 nA, 20 × 20 nm2) of graphene on Re(0001) revealing three kinds
of species: graphene islands, carbon adatoms, and carbon nanoclusters. The latter
are numbered from 1 to 5 by increasing size. Top right: close-up view (scale bar
1 nm), overlaid with a triangular grid whose vertices are hcp sites. The locations of hcp
and fcc sites are indicated. Bottom right: number of occurrences for each graphene
nanocluster.

elucidate the nature and bonding of the nanoclusters in previous works.

5.2.2 Carbon adatoms

Upon annealing at 800 K in UHV, only few atomic species can still be expected on a
Re(0001) surface. Indeed, H2 desorbs completely after an annealing at 800 K [40]. On
the contrary, S atoms stick to Re(0001) for temperatures up to 1600 K [92], even if isola-
tion from outdoors atmosphere makes exposure to sulfur-compounds unlikely. Molecular
adsorption of N2 on Re(0001) is possible, but it is fully removed at 200 K [66]. As for
dissociative adsorption of N2, although N atoms desorption requires 1200 K annealing,
it has a sticking coefficient below 10−5 [66]. At room temperature, O2 adsorbs dissocia-
tively [39]. Similarly, CO2 molecules adsorb dissociatively into CO and O fragments at
room temperature [162]. As for CO molecules, they are known to bind at any temper-
ature, and dissociate at temperatures above 450 K [41]. In the end, only individual C
and O atoms are reasonable candidates for these atomic features.

DFT studies predict they both bind preferentially on hcp hollow sites to form a (2×2)
superstructure [67, 88]. This is consistent with the disordered (2 × 2) arrangement of
atoms observed by both RHEED (Fig. 5.4b) and STM (Fig. 5.5a). Since most atoms
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Figure 5.6: STM tip artefact. Successive STM topographs (Vb = −2 V and It = 1 nA,
scale bar 2 nm) taken in the same scanning direction before (left) and after (right) a tip
change.

should sit on hcp hollow sites, a triangular mesh extrapolating the adatoms can be
superimposed on STM images, as illustrated on Fig. 5.5b and 5.7c-e. Most atoms are
found on the nodes of this mesh, which therefore correspond to hcp sites of the substrate
(see Section 2.1 for site denomination). The second preferred site for C and O adatoms
is the fcc hollow site, which is thus attributed to the fraction of atoms found not to
match the nodes of the mesh. Consistently with DFT calculations, no individual atom
is found on top sites, although few multimers sometimes comprise atoms on top sites, as
can be seen on Fig. 5.7c,e. The number of occurrences for each type of site is reported
on Fig. 5.7b, and shows in particular a ratio between atoms in fcc and hcp sites of
0.13± 0.03.

This ratio provides strong hints concerning the nature of the atoms bound to the
surface, C or O. Indeed, the binding energy difference ∆Ehcp−fcc between hcp and fcc
hollow sites is ∼ 0.1 eV for C and ∼ 0.6 eV for O [67]. It is reasonable to assume atoms
can diffuse on the Re(0001) surface at 800 K, so their distribution on hcp and fcc sites
should follow a Maxwell-Boltzmann distribution. The ratio of atoms in fcc and hcp sites
should then be of the order of exp (−∆Ehcp−fcc/kBT). For C, this yields a fcc/hcp ratio of
∼ 0.2, whereas this ratio is ∼ 10−4 for O. The dilute atom phase is hence identified as
a phase of C atoms.

The attribution of hcp, fcc and top sites is further confirmed using the STM contrast
of the graphene moiré superlattice. A moiré superlattice contains three typical stacking
configurations that correspond to the moiré hill and valleys (see Section 2.1), easily
distinguished on STM topographs. Indeed, both topographic and electronic effects con-
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Figure 5.7: Substrate extrapolation. (a) STM topograph (It = 5 nA, Vb = 0.5 V, all
scale bars 1 nm) of coexisting carbon adatoms, carbon nanoclusters, and nanometer-size
graphene islands. (b) Number of occurrences of adatom adsorption sites. (c-e) Close-up
views of (a), where adatoms on hcp (green), fcc (orange) or top (red) sites are indicated.
A black mesh is extrapolated from them and used to interpret the adsorption sites of
H- (c) or T- (d) carbon nanoclusters. The consistency of this analysis is checked on (e)
by confronting the extrapolated mesh to the circled typical areas of the moiré pattern,
where graphene (grey honeycomb lattice) adopts top-hcp (orange), top-fcc (green) and
hcp-fcc (red) local stackings.
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Figure 5.8: Calculated valley contrast. Left: ball model of 4 moiré supercells, as
emphasized by gray lines. For each supercell, 8 cells of graphene match 7 cells of Re. The
three typical areas of the moiré superlattice are circled depending on their local stacking
configuration: top-hcp (orange) and top-fcc (green) for the valleys, and hcp-fcc (red) for
the hill. Right: cross-section just above the valley atoms of the square modulus of the
corresponding electronic wave function integrated from EF−0.25 eV to EF . A difference
in electronic density between the two valleys is responsible for the contrast between the
dark top-hcp valley (circled in orange) and the brighter top-fcc valley (circled in green).
Such contrast could be reproduced no matter the height where the cross-section was
taken, or what energy window was chosen for the integration. Here, the cross-section is
taken close to the atoms in the moiré valleys, so because of graphene corrugation, it is
below the atoms in the moiré hill. Therefore, this cross-section does not simulate the
moiré hill correctly.

tribute to make moiré hills look bright and moiré valleys appear dark.2 The top-hcp and
top-fcc valley areas partially bond to Re, so they lie close to the substrate, and due to
π − d hybridization, their electronic density of states above the Fermi level is depleted.
Unlike them, the hcp-fcc hill area lies further apart from Re with a relatively intact
density of states. One can then use the STM contrast to extrapolate the underlying
substrate sites.

While the attribution of the top sites is rather straightforward in link with the moiré
hills, distinguishing hcp from fcc sites requires to distinguish the top-hcp from top-fcc
valleys of the moiré. To this end, DFT calculations of a moiré cell of graphene on
Re(0001) have been performed. The moiré cell consists of 8 graphene cells aligned with
7 cells of rhenium and contains 5 layers of rhenium. In the converged structure, carbon
atoms are closer to Re in the top-hcp valley than in the top-fcc one. Beside, cuts in the
electronic density show top-hcp areas are depleted in electrons with respect to top-fcc
areas, as illustrated on Fig. 5.8. For both reasons, the top-hcp valley appears lower
(darker) than the top-fcc valley in STM topographs of graphene on Re(0001). It is also

2Contrary to graphene on Ir(111) [147], no inversion of the moiré contrast of graphene on Re(0001)
has been observed in experiments.
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known that top-hcp areas tend to appear lower by STM on the similar system graphene
on Ru(0001) [213]. This attribution confirms the identification of hcp and fcc sites, as
detailed on Fig. 5.6e.

In short, the smallest features observed on Fig. 5.5a are C adatoms forming a disor-
dered (2× 2) superstructure, and sitting preferentially on hcp hollow sites. Due to the
relatively small binding energy difference between hcp and fcc sites, they also occupy
fcc sites in non-negligible proportions. Not only does this feature distinguish C from O
atoms, it also provides a way to extrapolate the atomic structure of the Re(0001) sub-
strate. This extrapolation will be the key to analyse the identified carbon nanoclusters.

5.2.3 Carbon nanoclusters

Turning back to the carbon nanoclusters, their structural analysis is going to be detailed
in four steps. First, their epitaxial character is going to be justified. Then, size and
symmetry constraints will show only two families of configurations can match the STM
features. Using the disordered (2 × 2) C superstructure, the adsorption sites of each
possible configuration will be deduced. Finally, confrontation of those interpretations
with DFT simulations will provide the details of the atomic structures.

First, the nanoclusters observed on Fig. 5.5 (left) are systematically found on the sur-
face (yet their observation has long been hampered by the difficult imaging conditions),
with always the same shape and orientation. The associated statistics are displayed on
Fig. 5.5 (bottom right). This systematics in the observation of the nanoclusters shows
they have a well-defined structure in epitaxial relation with the Re(0001) substrate.

Another proof of the epitaxial relation between the carbon nanoclusters and their
substrate is given on Fig. 5.9, where carbon nanoclusters observed on one side of an
atomic step all look like the symmetric of those observed on the other side of this step.
Since they are all observed on the same STM topograph, this symmetry is neither an
electronic density of state effect nor a tip effect. It is actually well accounted for on
crystallographic grounds. Indeed, Re is a hcp crystal, i.e. it is a stacking of close-
packed atom planes along the [0001] direction, indexed as ABABAB... At an atomic
step edge, the lower terrace can be labelled as an A plane, whereas the upper terrace is a
B plane. This different labelling translates the two-fold rotation symmetry that relates
an A plane to a B plane. Essentially, it inverts the hcp and fcc hollow sites, as pictured
on Fig. 5.9 (bottom). As a consequence, going through an atomic step is equivalent to
applying a 180°-rotation operation to the substrate. Since the carbon nanoclusters are
epitaxially attached to it, they are also rotated by 180° when going through an atomic
step, as observed on Fig. 5.9 (top). This observation is thus consistent with the fact
that carbon nanoclusters have a well-defined structure epitaxially formed on Re(0001).

Close-up views of the nanoclusters indexed 1, 2, 4, 5, on Fig. 5.5 (left) are displayed
on Fig. 5.10a. The structure of nanocluster 3 will be discussed later on Fig. 5.12.
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Figure 5.9: Carbon nanocluster inversion through an atomic step. Top: STM
topographs (It = 1 nA, Vb = −2 V) of carbon nanoclusters observed on each side of an
atomic step. Top middle: (scale bar 5 nm) black rectangles indicate areas of lower and
upper terraces displayed with better contrast on each side. Top left and right: (scale
bars 1 nm) Both the shape and the atomic structure of the carbon nanoclusters look
inverted. Bottom : ball model clarifying this inversion based on the substrate atoms
stacking. Two black rhombi indicate the hcp and fcc hollow sites are inverted, so the
epitaxial carbon nanoclusters are also inverted.

On STM topographs, carbon nanoclusters appear as bright protusions with an atom-
ically resolved apparent structure, as visible on Fig. 5.10,1-5,a. To make this atomic
structure more visible as on Fig. 5.10,1-5,b, a paraboloidal background has been sys-
tematically fitted and subtracted.

STM does not give direct access to atomic structures, but probes the electronic
wave function integrated over an energy window. In general, these protusions cannot
be straightforwardly interpreted as atoms, and require comparison with DFT calcula-
tions as will be detailed later on. Nevertheless, it can be reasonably argued that the
observed three-fold symmetry of all carbon nanoclusters is inherited from the symmetri-
cal structure of their stacking onto the substrate. The possible structures are therefore
constrained by size and symmetry arguments.

Given these constraints of symmetry and size, only two options can reasonably be
considered for each observed carbon nanoclusters. This leads to two families represented
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Figure 5.10: Two possible sets of interpretations of carbon nanoclusters on
Re(0001). Raw (1-5,a) and background-subtracted (1-5,b) STM topographs (It =
1 nA, Vb = −2 V, all scale bars 0.5 nm) of carbon nanoclusters indexed from 1 to 5
sorted by increasing size, either interpreted as T-nanoclusters (1-5,c) or H-nanoclusters
(1-5,e). Their corresponding ball and stick models (respectively 1-5,d and 1-5,f) show
their attachment sites are systematically top and fcc, and top and hcp. Note that for
T- and H-series, a fcc (bright) and a hcp (dark) site respectively lays beneath the center
of a carbon ring.
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on Fig. 5.10. All carbon nanoclusters of the first one have the shape of triangles (here-
after labelled T), with sharp apices each constituted of a single six-membered carbon
ring (C6 ring). The second possible family is also composed of carbon nanoclusters with
the shape of triangles, but with apices made of two C6 rings. Due to this more hexagonal
shape, they will then be labelled H. These structures overlay the experimental images
on Fig. 5.10,1-5,c and 1-5,e.

Using the disordered superstructure of C adatoms, the substrate atomic structure can
be extrapolated, in order to identify the adsorption sites of each carbon nanocluster. An
example of this process is illustrated on Fig. 5.7. On Fig. 5.7a, the two smallest carbon
nanoclusters (labelled 1 and 2 on Fig. 5.5) are identified on the left part of the image.
Their two possible configurations are superimposed on Fig. 5.7c,d in white. Using the
triangular mesh extrapolated from the C adatoms and the moiré superlattice, the atomic
sites of the substrate can also be deduced. Confronting the T- and H-configurations to
the mesh reveals their adsorption sites are respectively top and hcp, and top and fcc.
This process has been repeated on multiple STM topographs, yielding equivalent results
for each configuration of the family. The results are summarized in the ball models shown
on Fig. 5.10,1-5,d and 1-5,f.

In order to confront these two interpretations, DFT calculations have been per-
formed. The apparent height contrast within the clusters clearly supports H-configurations.
Obviously, this assertion only holds if the height contrast mainly translates the carbon-
rhenium bonding, and not the spatial modulations of a truly molecular orbital, i.e. a
collective state of an object that would be decoupled from the metal surface. DFT cal-
culations unveil strong hybridization between carbon and rhenium, ruling out the latter
possibility.

The largest carbon nanoclusters cannot be considered, as they would require very
large unit cells and thus prohibitively long computation times. Every possible symmetric
configuration of the smallest graphene nanocluster (indexed as 1 earlier) has then be
calculated. The obtained results are summarized on Fig. 5.11, in particular the H- and T-
configurations (d and e respectively) interpreted from STM topographs are tested. Their
relative stability will be commented later. Strong structural differences can be observed
from configuration to configuration. In particular, the side-views of the converged hcp-
fcc configurations (a,b) show a pronounced dome-like shape, with their central atom
lying further apart from Re. This dome-like shape is also marginally found in the H-
configuration (d), while all three remaining configurations (c,e,f) are rather flat. For
the four latter configurations, all C atoms then lie close to the Re surface. These
qualitative differences due to different adsorption sites are similar to that calculated on
Rh(111) [215]. In general, whatever the considered configuration, carbon atoms seem
to bond strongly to Re, as indicated by the short C-Re distances.

The resulting integrated electronic density of states is consistent with this interpre-
tation. For each configuration, all observed features are indeed in one-to-one correspon-
dence with the atomic structure. This is in sharp contrast with STM measurements of
isolated molecules on an insulating substrate [172]. They are featureless for bias voltages
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Figure 5.11: DFT results for the smallest nanocluster on Re(0001). A nan-
ocluster made of three fused benzene rings has in principle six possible configurations
on Re(0001), which have been calculated by DFT. For each (a-f), the total energy per
C atom, schematic atomic structure, side and top-views of the converged structure, and
deduced electronic density are displayed. The energy indicated uses the most stable
configuration (a) as a reference, and the cut in electronic density is taken above the
highest atom and integrated between EF and EF + 0.25 eV.
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in between the highest occupied and lowest unoccupied molecular states, and display
features similar to molecular orbitals of the free molecule for large bias voltages. This
important difference strongly suggests that the observed carbon nanoclusters lose their
molecular electronic spectrum due to their strong bonding to the Re surface. As the ob-
served bright protusions in STM topographs are directly related to the molecular shape,
orientation and atomic structure, DFT calculations therefore support H-configurations.

Although scarce, contradictory literature can be found on carbon nanoclusters. Nan-
oclusters 1 and 2 have been invoked without much justifications in STM studies on
Ru(0001) [33,121], while nanocluster 2 has been discussed in detail on Rh(111) [215]. In
the latter case, their structure was interpreted as symmetric molecules made of fused C6
rings,3 as done here. However, those conclusions were later put into question by DFT
calculations and STM image simulations [53,54,226]. The simulations indeed show that
for any number of carbon atoms, carbon nanoclusters containing C5 or C7 rings are
more stable by several eV. In particular, nanocluster 2 is not interpreted as a molecule
composed of seven fused C6 rings, with its zigzag rows aligned with the metal dense-
packed rows (see Fig.5.10,2f). It is instead assigned to a curved molecule where three of
the edge C6 rings are replaced by C5 rings, rotated by 30° with respect to the substrate.
They also attribute the STM data to electronic density of states effects [226]. As will be
explained later, important arguments were lacking to give full credit to this DFT-based
view.

The electronic density of states effects in STM images are disproved for Re(0001)
by the DFT calculations performed here. Nonetheless, the greater stability of the C5-
containing carbon nanocluster is confirmed. It is not attributed to nanocluster 2, as
claimed by the authors [226] on Rh(111), but to another one indexed 3 on Fig. 5.5.
In fact, its atomic structure can be extracted from the STM topograph, as detailed on
Fig. 5.12a-c. Using the same method as before, its adsorption sites are interpreted as
shown on Fig. 5.12d. DFT calculations complement this analysis, as they reveal a strong
distortion of the molecule edges, so its constituting atoms all adopt a hcp hollow site.
A dome-like shape of the nanoclusters is also evident on the side-view of the atomic
structure. Moreover, when comparing Fig. 5.12a and e, a very good agreement is found.
Only the positions of the C6 and C5 rings at the periphery of the nanocluster look
inverted based on their apparent heights. Nonetheless, the larger shape of the C6 rings
is observed on both the STM image and the calculated electronic density image. As
a result, a one-to-one correspondence between STM features and atomic structure is
concluded for this nanocluster too.

5.2.4 Growth process

Two extreme scenarios can explain the coexistence of the carbon nanoclusters and gra-
phene. On the one hand, as depicted on Fig. 5.13 (top), the carbon nanoclusters can
be thought to act as intermediate building blocks. As suggested by Loginova et al.

3The discussion on adsorption sites in the literature, however, is either missing or questionable.
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Figure 5.12: Strongly-bound nanocluster 3 on Re(0001). Raw (a) and
background-subtracted (b) STM topographs (It = 1 nA, Vb = −2 V, all scale bars
0.5 nm) of carbon nanocluster indexed 3. It is interpreted as a molecule made of four
C6 rings and three C5 rings arranged with three-fold symmetry (c), with adsorption
sites shown on the corresponding ball model (d). The electronic wave function (e) of
the DFT-converged structure integrated between EF −0.25 eV and EF is in good agree-
ment with STM measurement. Side-view (f) of the structure shows a dome-like shape
of the nanocluster, with short C-Re bonds. Top-view (g) reveals large distortions of the
molecule edge structure so all edge C atoms sit on hcp hollow sites.

in a LEEM study of graphene growth on Ru(0001) [119], direct integration of carbon
adatoms into graphene flakes may be unfavourable, so mobile 5-atom carbon species
have been interpreted from a kinetic model as the necessary intermediates. This argu-
ment seems to hold generality for other metal surfaces. It proved right on Ir(111) [120],
a surface with much lower affinity to C than Ru(0001), and it may well apply to Rh(111)
and Re(0001), which are of similar structure and have, like Ru(0001), good affinity with
C. Yet, that LEEM study could not provide a direct observation of such clusters at the
atomic scale, and the observation of carbon nanoclusters on Rh(111) was later claimed
as their identification [215]. In this case, the single carbon adatoms would first assemble
into carbon nanoclusters, which would then diffuse on the surface and attach to each
other, thus forming a graphene layer.

On the other hand, the coexistence of graphene and carbon nanoclusters can be seen
as the result of their competitive formation, as schematically represented on Fig. 5.13
(bottom). Then, carbon adatoms can either assemble into graphene or carbon nanoclus-
ters, but the incorporation of the latter into graphene is hindered due to its prohibitively
high activation energy.
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Figure 5.13: Growth scenarios: ball and stick models representing the two typical
growth scenarios, with chronological order from left to right. Top: carbon nanoclusters
as intermediates. Carbon adatoms first form a (2×2) superstructure, then assemble into
carbon nanoclusters, which act as necessary intermediates in the growth of a graphene
layer. Bottom: carbon nanoclusters as competitors. Carbon adatoms, initially in a
(2× 2) arrangement, form simultaneously carbon nanoclusters and graphene. However,
the carbon nanoclusters are kinetically blocked from incorporating the graphene layer.

Three different reasons tend to support the second scenario over of the first one.
First, the surface mobility of carbon nanoclusters is presumably very limited, even at
high temperature. Indeed, they establish strong C-Re bonds, as indicated by DFT
calculations. It is more likely carbon nanoclusters do not diffuse on the surface, and are
not able to assemble into graphene.

Second, the model used by Loginova et al. indicated the intermediate carbon cluster
would have a typical size of 5 carbon atoms [119]. Yet, all reported carbon nanoclusters
are at least made of 13 carbon atoms (up to 51 for the largest identified in the present
work). This discrepancy suggests that another type of carbon species is involved in
the growth of graphene, such as carbon chains, as suggested in the case of graphene on
Ni(111) [27]. Following this idea, DFT calculations have been performed in order to
compare the relative stability of carbon adatoms, carbon nanoclusters, carbon chains,
and graphene, but are not shown here as this work is ongoing.

Third, direct experimental evidence contradicts the first scenario. This brings back to
the first sample presented on Fig. 5.1 and 5.2, for which a full layer of graphene is grown.
In the final steps of graphene growth, graphene and carbon nanoclusters are found
coexisting, as on Fig. 5.14a, where graphene completely surrounds two small carbon
nanoclusters. If such carbon nanoclusters were mobile intermediates in the growth of
graphene, they would have been incorporated into the graphene layer surrounding them,
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Figure 5.14: Carbon nanocluster incorporation. (a) STM topograph (Vb = 30 mV
and It = 6 nA, 20 × 20 nm2) showing two of the smallest carbon nanoclusters (cir-
cled) surrounded with a continuous graphene layer. (b) Close-up view of one of the
nanocluster, where the typical hcp-fcc, top-fcc and top-hcp of the moiré superlattice
are circled respectively in red, green and orange. (c) Ball and stick interpretation of
the graphene and substrate atomic structures. (d-e) Tentative incorporation of either
T- or H-configured nanocluster. Only the H-configuration yields the observed blocked
incorporation.

and should not be observed at this stage.
This leads to the conclusion that the observed carbon nanoclusters compete with

graphene growth, and that nanocluster incorporation is a limiting step in the growth of
high quality graphene.

As a complementary comment, interpretation of this blocked situation can be pushed
to the atomic scale to support the identified nanocluster structure. Using the moiré su-
perlattice, one can extrapolate the substrate atomic lattice, as schematically done on
Fig. 5.14c. When fitting the possible T- and H-configurations of the observed nanoclus-
ter, its registry can be compared with the surrounding graphene layer. It appears the
T-configuration could be easily incorporated in the graphene layer, as indicated by the
smooth extrapolation of blue sticks from graphene to the nanocluster on Fig. 5.14d. On
the contrary, the H-configuration is considerably shifted with respect to the graphene
registry, as visible on Fig. 5.14e. Bridging it to the surrounding graphene would then
require either unrealistic strain fields in graphene, or a huge shift of its attachment sites
from top-fcc to top-hcp, which is unlikely due to its strong bonding to the surface hin-
dering its mobility. In short, this situation is blocked owing to the off-registry of the
carbon nanocluster with respect to surrounding graphene. This picture is consistent
with the interpreted growth scenario, further supporting H-configurations as the correct
atomic structures.
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Although the competition of graphene growth with nanocluster formation explains
the observed species coexistence, the question of their nucleation remains to be ad-
dressed. Indeed, a graphene island expands starting from a small seed, which should be
made of a few C6 rings. Then, what is the difference between a graphene seed and a
carbon nanocluster?

The answer to that question lies in the adsorption sites. To discuss graphene seeds,
the smallest nanocluster (labelled 1) is the logical object to consider. Due to its small
size, all its six possible configurations have been calculated by DFT, as presented on
Fig. 5.11. Earlier discussion concluded the experimentally observed configuration is
the one on Fig. 5.11d. However, its total energy is shockingly higher than most other
configurations. In particular carbon nanoclusters lying on hcp-fcc sites (Fig. 5.11a,b)
have similar energies, more than 2 eV below the H-configuration.

This apparent paradox has also been mentioned for carbon nanoclusters on Rh(111),
although not discussed [215]. Actually, it is the key-difference between a graphene seed
and a blocked nanocluster. Indeed, the more stable hcp-fcc configurations correspond to
graphene seeds, whereas the less stable H-configuration is a carbon nanocluster whose
lateral extension is blocked. Consequently, hcp-fcc configurations are not observed ex-
perimentally, because they evolve into larger size graphene islands. On the contrary,
carbon nanoclusters with lower stability can be identified because their evolution is
kinetically blocked. It should therefore be emphasized that the species experimentally
observed by STM are not the most stable ones, but the metastable ones whose dynamics
is the slowest.

All these considerations can be summarized in an elementary energetic model, where
multiple reaction paths of C species on Re(0001) compete. At this point, a distinction
should be made between thermodynamically and kinetically controlled reactions. Under
thermodynamic control, the reaction passes through the most stable species no matter
how high the activation energies. On the contrary, under kinetic control, metastable
products with the lowest activation energies are formed. Some reaction paths followed
in this system are sketched on Fig. 5.15.

At low concentration, isolated adatoms in hcp hollow sites are the most stable C form.
At higher concentration, their stability is reduced, as C adatoms interact repulsively.
Chains of N× C atoms then form. They can assemble following different reaction paths.
The one displayed in green is that of graphene growth. It involves graphene seeds in
the form of nanoclusters in hcp-fcc registry, whose stability increases with size, as they
extend into a graphene layer. The activation energies involved along this path are
bound to 800 K. This means that in the experimental conditions chosen here, none of
the intermediates is kinetically blocked, and therefore observed.

Two other paths are also shown in red. One in the background forms the series
of metastable nanoclusters in top-fcc registry. Although they have high energy, low
activation energies favour their formation at lower temperature. As such, it is under
kinetic control. For higher carbon density, incorporation of carbon nanoclusters into
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Figure 5.15: Possible reaction paths for carbon on Re(0001). Multiple reaction
paths are sketched in a Gibbs free energy G diagram, where one axis stands for the
C concentration on the surface, and the other is a reaction coordinate axis. Full lines
are portions of the G landscape, while dotted lines merely indicate possible reaction
paths. Indicated local minima of G correspond to local minima in DFT calculations,
while activation energies account for the observation or absence of species at the sur-
face. At low concentration, isolated adatoms and chains of N× C atoms (blue) are
the most stable C forms, which assemble following different reaction paths. The green
one leads to graphene seeds in hcp-fcc registry, which grow into graphene (grey) as the
carbon concentration is raised. Red paths lead to metastable carbon nanoclusters (see
main text). When carbon concentration is raised, their stability decreases, but their
transformation into graphene is kinetically blocked (red dotted crosses).
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a b c d

Figure 5.16: Schematic graphene growth on Re(0001). Growth of graphene pro-
ceeds in four steps pictured from left to right with grey carbon species on an orange Re
substrate. (a) Graphene islands and carbon nanoclusters form. (b) Graphene islands
grow, and incorporate some nanoclusters. (c) As graphene covers almost all the surface,
its growth is blocked at some remaining nanoclusters and grains boundaries, leaving
nm-scale gaps on the surface. (d) Gap bridging is a limiting step which can produce
defective structures (light grey).

graphene has such a high activation energy that they are kinetically blocked. Few
blocked nanoclusters are observed at the end of graphene growth on Re(0001). The
activation energies can then be inferred to be of the order of growth temperature, so
around 1100 K.

Another red path is represented in the foreground, and leads to a stable carbon
nanocluster, which has been discussed on Fig. 5.12 as nanocluster 3. Its energy per C
atom is found lower than the hcp-fcc graphene seeds, so under thermodynamic control,
it should be the majority product. However, above some critical carbon density, this
carbon nanocluster should become less stable than graphene patches (green reaction
path). At this point, thermodynamic control supports a transformation of nanocluster
3 into the more stable graphene patches in hcp-fcc registry. In experimental conditions
chosen here, such transformation is likely kinetically blocked. Additionally, like nan-
oclusters in top-fcc registry, the incorporation of this nanocluster into graphene is also
kinetically blocked.

Finally, special emphasis is put on the fact that on Re(0001), graphene has to be
grown at relatively low temperature to avoid surface carbide formation [143]. This makes
activation energies large with respect to thermal energy. Hence, the kinetically controlled
paths are favoured, leading to carbon nanoclusters, rather than graphene. Growth of
large area uniform graphene would require higher temperatures, which are not attainable
for Re. As a result, long growth durations are necessary so thermodynamics drive the
incorporation of nanoclusters into graphene.

Now that the formation of metastable species on Re(0001) is rationalized, their
transformation into more stable graphene has to be considered. This process is not
necessarily seamless, and in fact produces typical defects, which underlay the quenched
disorder of the chaotic phase. In the following and final section, those defects are going
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Figure 5.17: Easier incorporation of carbon nanoclusters in early steps of
graphene growth. Left: STM topograph (Vb = −2 V and It = 1 nA, 20× 20 nm2) of
the three coexisting species: graphene islands, carbon adatoms, and carbon nanoclusters.
The latter are numbered from 1 to 5 by increasing size. Middle: Same topograph
where nanoclusters are outlined with coloured frames. Similar frames are added at the
edges of some graphene islands, where the shapes and apparent heights of nanoclusters
2, 4 and 5 can be recognized. Other colour-circled nanoclusters are identified at the
edges of graphene flakes due to their shape, but have their apparent height partially
or completely altered. Right: Close-up views (scale bars 1 nm) on the largest isolated
nanocluster (top), and its counterpart found at the edge of a graphene island (bottom).
Once incorporated, the apparent height of the nanocluster decreases to equal that of
the low-lying part of the graphene layer.

to be addressed.

5.2.5 Quenched disorder

Based on the growth process presented above, many defects can be expected, as il-
lustrated on Fig. 5.16. It summarizes graphene growth in four steps, which are now
detailed. First, graphene and carbon nanoclusters are formed on the surface depending
on which reaction path is locally taken. The exact process at stake is difficult to de-
termine. Short carbon chains appear as a likely intermediate in the formation of larger
carbon species.

Second, graphene seeds expand, while nanoclusters are kinetically blocked and bound
to the surface. In this step, incorporation of carbon nanoclusters into graphene is not a
critical step, as the free edges of graphene can support strain to some extent. Supporting
this claim, the STM topograph shown on Fig. 5.5 can be re-interpreted, focusing now on
the graphene islands edges. As indicated on Fig. 5.17, their shape, their atomic contrast,
and their apparent height are all reminiscent of the neighbouring nanoclusters. The
deformed or absence of moiré superlattice surrounding these regions is also a signature
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Figure 5.18: Grain boundary structure. Two degenerate graphene flakes sharing
the same commensurability with Re are shifted with respect to each other. For each
configuration, the shift is analysed as a two-component phase. Left: a slight shift only
strains the honeycomb lattice of graphene. Middle: a Stone-Wales defect-line results
in a ϕ = (2π

3
, 4π

3
) grain boundary. Right: a defect-line made of series of octagon and

double-pentagon defects gives rise to a ϕ = (4π
3
, 2π

3
) grain boundary.

of the strain field needed to incorporate the nanocluster.

Third, graphene flakes grow up to the point the edges of each flake meets either
a remaining nanocluster or the edge of another flake. Considering as an example the
central nanocluster of Fig. 5.16, it is surrounded by graphene, similar to what is observed
on Fig. 5.14. In that case, the atomic structure depicted on Fig. 5.14e shows that the
nanocluster and graphene layer are too shifted for the incorporation to take place. A
similar situation can be imagined at a grain boundary between two graphene flakes,
when they are shifted with respect to each other for example by half a graphene unit
vector. In short, the limiting step of growth occurs in its final steps and is attributable
to shifted species, and leaves gaps between them.

Eventual bridging of the gaps may occur in a fourth and final step. Fig. 5.18 considers
the simplified 1D case of two adjacent zigzag-edged graphene flakes holding the same
commensurate relation with Re. Their relative shift is given by a vector indicating the
translation needed to superimpose both domains. An analogy can be made between
this shift between two domains of identical periodicity in space, and a delay between
two signals of same frequency in time. This delay is commonly interpreted in terms of
phase shift. Similarly, a geometric phase ϕ = (ϕx, ϕy) can be defined to characterize
the grain boundary, where two components are needed to account for the shift in x and
y directions of space. Here, the geometric phase has been introduced on geometrical
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grounds, but it has also been introduced in Section 2.4.3 when discussing topological
defects.

For small shifts (ϕ ∼ (0, 0)), the honeycomb lattice of graphene can be preserved
accounting for a static strain field at the interface, as illustrated on Fig. 5.18 (left).
Larger shifts require to break the honeycomb topology of the lattice and to resort to
defective structures. Among them, two are of particular relevance, as they are reminis-
cent of previously reported defects. The first one is composed of so-called Stone-Wales
defects, which are pairs of upside-down heptagon-pentagon pairs, as drawn on Fig. 5.18
(center). Stone-Wales defects have been observed in TEM studies [113], which enable
to determine the phase shift of this grain boundary as ϕ = (2π

3
, 4π

3
). The second one

is made of octagons and pairs of pentagons of carbon atoms, as has been observed in
STM [108] and TEM works [174], corresponding to a ϕ = (4π

3
, 2π

3
) shift. Due to their

particular phase shift, they will be referred to as 2π
3

- and 4π
3

-grain boundaries in the
following.

The simple image of a 1D grain boundary presented here actually is not directly
relevant for graphene on Re(0001). Indeed, no such defective grain boundary is observed
on STM images. Instead, Fig. 5.2 shows gaps between graphene islands and continuous
domain walls. It is likely the formation energy of an extended defect line is too high here.
Instead, large strain fields created at the interface between shifted domains extend over
few nm distances. This description corresponds to the phasons with frozen dynamics
discussed earlier. This alternative description then not only explains an aspect of the
quenched disorder in graphene on Re(0001), but also justifies why a sheared moiré
superlattice could be analysed in the previous Chapter.

Beside the strain fields distributed over the sample, another kind of defect is com-
monly found, which has been reported in many STM works on graphene on strongly-
interacting metals, such as Ru(0001) [129] or Re(0001) [193]. It is easily identified in
continuous graphene samples as a “missing hill” in the moiré superlattice, as exemplified
on Fig. 5.19. As often in STM imaging, direct determination of the atomic configuration
is made difficult by the local electronic density of state effects. Yet, as visible on the
close-up view shown on Fig. 5.19, the core of the defect seems to comprise carbon rings
whose zigzag rows align those of the surrounding graphene lattice.

To clarify the atomic structure of this defect, a preliminary comment can be made
based on Fig. 5.17, illustrating carbon nanocluster incorporation in the early stage of
graphene growth. Most of the nanoclusters identified along the edges of graphene islands
are the larger ones (indexed 2 and 4), but never correspond to the smallest and most
often observed nanocluster 1 (see statistics on Fig. 5.5b) reported so far. As nanocluster
3 is 30°-rotated with respect to the substrate, it is expectable that its incorporation into
a graphene layer aligned with the substrate is limited.

This striking feature can be understood by inspecting the incorporated nanoclusters
circled on Fig. 5.17. Contrary to those highlighted with coloured frames, their apparent
height differs from their isolated counterpart. In particular, two close-up views compare
nanoclusters in an isolated state of incorporated at an edge on Fig. 5.17 (right). At
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Figure 5.19: Missing hill defect. Left: STM topograph (Vb = 30 mV and It = 6 nA,
scale bar 1 nm) of full layer graphene with a defect positioned where a moiré hill is
expected, lowering its apparent height. Middle: interpreted atomic structure of this
kind of defect, where a grain boundary loop stabilizes the core of the defect on top-fcc
sites instead of the hcp-fcc registry of intact neighbouring moiré hills. Right: atomic
structure converged by atomistic simulations of a large unit cell containing 1 defective
missing hill and 15 intact moiré hills. Carbon atoms are coloured depending on their z
position (taken from substrate, in Å), revealing the atoms in the missing hill lie close to
the substrate.

their edge facing the bare Re substrate, they display the bright signature of an isolated
nanocluster, while at the edge connected to the graphene island, the apparent height
is similar to the low-lying continuous graphene. Given the small length scales at stake,
this change of contrast cannot be assigned to a change in the carbon atom registry.
In other words, the apparently lower area of the incorporated nanocluster still lies on
top-fcc adsorption sites. This alteration of the apparent height therefore relates to an
electronic density of states effect.

The density of states change is due to the transition from an isolated top-fcc nanoclus-
ter to a top-fcc moiré valley. The key-difference is the modification of the edge carbon
atoms coordination as the nanocluster is incorporated. When isolated, DFT calculations
show all its edge atoms establish strong C-Re bonds. As they have two neighbouring
carbon atoms, their stable adsorption sites are the highly coordinated sites of Re, i.e.
hcp and fcc hollow sites. This line of reasoning is supported by Fig. 5.10, on which
the hcp-fcc nanoclusters are the most stable, and adopt a dome-like structure indicative
of high coordination of edge carbon atoms with Re. Upon incorporation, the situation
changes drastically. At the edge of the nanocluster, some C-Re bonds are broken, and
new C-C bonds are created with the host graphene flake. The corresponding edge atoms
then have three neighbours in a sp2 configuration, so C-Re bonds are oriented out of the
plane and are sp3-like. As a result, the attachment site between C and Re switches from
hollow to top. In other words, even when they both sit on top-fcc sites, a nanocluster
and graphene do not bind to Re in the same way, because of a difference in carbon
coordination. Stronger binding of the nanocluster to the surface results in a different
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electronic density of states, which explains the change in apparent STM height observed
upon nanocluster incorporation.

The missing hill defect is now analysed. As we will see, even if the real height might
not be measured by STM, a true topographic picture is relevant here. Instead of the high-
lying (bright) hill with hcp-fcc registry, this defect shows an apparent height similar to a
moiré valley with top-hollow registry. This change is not attributable to a coordination
issue. Indeed, no interruption similar to a vacancy where graphene would bind to Re
can be seen. Instead, the STM topograph on Fig. 5.19 (left) points to a continuous
layer with a depression at the position where a moiré hill is expected. Furthermore, at
the very core of the defect, few C6 rings having their zigzag rows aligned with those of
graphene can be identified.

A different atomic registry then appears as a suitable explanation for the observed
depression. Replacing the hcp-fcc configuration of a moiré hill with the top-fcc registry
of a nanocluster in principle results in a short graphene-metal distance, while keeping
the zigzag rows in the same direction. It also suggests that this defect originates from
the limiting final step of graphene growth, when isolated nanoclusters are incorporated
and shifted graphene flakes are bridged.

The atomic structure of the defect is difficult to infer from STM images, which seem
to reveal strong local electronic density variations not obviously related to height vari-
ations. The previous considerations about grain boundaries are now going to prove
relevant. Indeed, in order to bridge a nanocluster in top-fcc sites to a graphene flake
where atoms in hcp-fcc registry are expected, 2π

3
- and 4π

3
-grain boundaries are needed. A

schematic model is shown in Fig. 5.19 (middle). It features a loop of such grain bound-
aries surrounding a carbon nanocluster of type 2 placed where a moiré hill would be
expected. This structure is continuous and dense, and it satisfies the stacking constraint
at the core of the defect.

To check the stability of this defect, DFT calculations are not suited, since pro-
hibitively large ensembles of atoms would be needed to rule out interactions between
defects associated with the periodic boundary conditions. Instead atomistic simulations
accounting for covalent bonding based on bond-order-potentials have been used. The
bond-order potentials are parametrised against DFT calculations (see Section 3.3.2), and
take into account a correction for dispersion forces that have been carefully adjusted for
graphene on Ru(0001) [52].4 The similarity of graphene on Ru(0001) and Re(0001),
both exhibiting the same kind of defects, and governed by carbon-metal interactions
of similar magnitude [193, 213], gives confidence in the relevance of the comparison be-
tween the experimental results obtained on graphene on Re(0001) and the simulations
performed for graphene on Ru(0001). The lowest-energy configuration of a possible de-
fect is shown in Fig. 5.19 (right). The simulation reproduces the decreased height at the
defect location, which is, as expected, only occurring when the defect replaces a hcp-fcc

4Parametrised potentials have not yet been optimised for the C-Re system. This represents a
considerable effort and will become more legitimate when more experimental data with complementary
approaches will be available.
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region of the pristine graphene.

Other similar configurations have been tested, yielding similar results, but not shown
here. Supercells containing one defective missing hill and 8 intact moiré hills were found
sufficiently large to avoid substantial interactions due to boundary conditions. For each
configuration, calculations were performed with and without dispersion forces correction,
which provided a similar trend in both cases. Both top-fcc and top-hcp defect cores
have been investigated, reproducing similar low C-Re distances at the defect core. This
suggests there is not a single possible structure for this kind of defect, but rather a family
of structures, which share the common feature to stabilize a defect core in a top-hollow
registry.

The present investigation gives a detailed atomic structure for an almost 0D defect
observed commonly at the surface of strongly-interacting metals. This atomic struc-
ture proves to host defective structures such as Stone-Wales defects. Such structures
break the topology of the honeycomb lattice, and therefore constitute topological defects
similar to dislocations (see Section 2.4.3). But contrary to the frozen phasons consid-
ered earlier, which relate to the possible commensurate order of graphene on Re(0001),
missing hills are topological defects which may be regarded as native to the graphene
layer itself (they would still be relevant if the graphene layer would be transferred and
suspended for instance). Two ways exist for such defects to be removed: either diffuse
to a graphene edge, or annihilate when groups of them with zero total winding number
merge. Both mechanisms require them to diffuse inside graphene. At moderate temper-
atures, this process may be time-consuming. Consequently, growth constraints not only
prevent graphene on Re(0001) to reach its ground state (either commensurate or in-
commensurate), but they are also an obstacle to the formation of a defect-free graphene
layer.

In conclusion, the kinetic barriers to chemical processes at stake during graphene
growth have a critical and non-trivial impact on the degree of order of the final gra-
phene layer. Due to the relatively low temperature required to avoid carbide formation,
reactions at the surface of Re(0001) are under kinetic control, leading to multiple com-
petitive reaction paths.

Among them, it is shown that graphene flakes grow out of seeds – namely carbon
nanoclusters in hcp-fcc registry with respect to the metallic surface. A family of other
metastable species – carbon nanoclusters in top-fcc registry – are also identified. For
the first time, their atomic structure, adsorption sites, and relative stabilities have been
rationalized self-consistently by DFT calculations and atomically-resolved STM mea-
surements performed at different stages of growth.

Beyond the study of the coexisting carbon species on Re(0001), it is shown that the
high activation energies at stake result in various types of defects. On the one hand,
nanocluster incorporation into graphene can lead to a type of defect here referred to as
a “missing moiré hill”, which corresponds to loops of defects that break the topology
of the graphene lattice. In the growth conditions studied here, such topological defects
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are a serious obstacle to the formation of a high quality graphene layer. On the other
hand, coalescence of different graphene flakes gives rise to 1D domain walls where strain
is stored. This leads to a non-uniform distribution of strain in graphene.

Finally, understanding the origin and atomic structure of these defects provides new
insight on the very essence of supported graphene systems. While it is usually assumed
they are in their ground state, leading to a debate over their commensurate or incom-
mensurate nature, it appears the defects formed because of the growth maintain the
system in a metastable state. In particular, the non-uniform strain field distributed on
the surface corresponds to an array of phasons with frozen dynamics. Due to this pecu-
liar static disorder, graphene on Re(0001) is not in its ground state, but in a metastable
chaotic phase.

This conclusion opens new questions. One can indeed wonder whether graphene on
Re(0001) can be brought to its ground state, or if it is truly a “phason glass” that will
always be disordered to some extent. Generalization of the considerations developed
here to other systems where a 2D material may or may not interact as much with its
substrate could also be of general interest to fully grasp the diversity of phases specific
to 2D systems.
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Conclusion

In this manuscript, the nature of graphene supported by a crystal has been discussed.
Graphene is known both as a 2D material and as semi-metal with exceptional electronic
properties. It has been explained that the effect of a substrate not only modifies both,
but that the induced modifications are deeply correlated. In other words, the electronic
properties can only be understood in the light of a fine structural analysis.

Indeed, the tight-binding model presented in Chapter 1 accommodates to the ef-
fects of a substrate with the Semenoff and Kekulé insulator models. In Chapter 2, a
completely different approach is taken, where placing graphene on a substrate deforms
its structure. This can be interpreted as a phase transition from pristine to deformed
graphene. When it comes to the electronic properties, the order parameter of this phase
transition is a combination of the Semenoff and Kekulé masses, showing the consistency
of both approaches.

Going further, topological defects associated to those structural phase transitions
should have an electronic counterpart. As an example, 1D strain kinks in bilayer gra-
phene have been proved to behave as 1D metallic wires. Extending this equivalence to
moiré superlattices and structural defects, exotic electronic properties are anticipated
for graphene supported by weakly interacting substrates, and constitute a perspective
of this thesis.

In the case of graphene on Re(0001), strong π− d hybridization disrupts graphene’s
band structure, so no such effect can be expected. Still, focusing on structural aspects,
the commensurate-incommensurate transition is a fundamental problem, which – sur-
prisingly – is seldom discussed in the graphene community. Indeed, it is often assumed
graphene has a commensurate relation to its substrate, but little experimental evidence
supports this claim. Hence, it is worth wondering whether supported graphene locks on
a commensurate relation to its substrate, or preserves its quasi-long-range order in an
incommensurate phase.

In the experimental work presented in Chapter 4, the commensurability hypothe-
sis has been tested by atomically-resolved STM measurements. A FFT-based analysis
developed for this purpose gives quantitative analysis of strain fields distributed in the
interpreted moiré superlattices. Using this method, it is worth noting shearing strain is
reported for the first time. Such six-fold symmetry breaking strain is unexpected from
the superposition of two six-fold symmetric solids, and casts doubt on the commensu-
rability hypothesis.

When pushing this hypothesis even further, it is possible to extrapolate all the possi-
ble commensurate phases, and to classify them. This classification has two consequences.
The first one puts into question past interpretations where graphene is strained up to
4 % with respect to a HOPG reference. Considering there are possible commensurate
phases with two orders of magnitude lower strain calls for a re-examination of those in-
terpretations using the methodology provided here. The second consequence is related
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to the commensurability hypothesis. Indeed, if it is true, the ground state of a sup-
ported graphene system would be one given commensurate phase among an infinitely
large number of closely related metastable phases. In that case, it would be very difficult
to stabilize the ground state.

The experimental data presented in Chapter 5 strongly support this claim. Indeed,
the static disorder observed on STM images correspond to the coexistence of different
moiré superlattices. In the commensurate scenario, this means metastable phases are
still present, questioning the validity of the commensurability hypothesis. Moreover, the
incommensurate scenario is not compatible either with this situation, as in this case, its
Goldstone modes have frozen dynamics. Graphene on Re(0001) is therefore interpreted
as a metastable chaotic phase.

It is finally proved that the chaotic phase originates from growth constraints. A
detailed STM and numerical study reveals it features competing reaction paths, some of
which are favoured because of low activation energies. However, they lead to metastable
carbon nanoclusters that are kinetically blocked from incorporating graphene at the
end of its growth. This can result in nanoscale defects called “missing moiré hills”,
whose atomic structure is provided for the first time. This growth scenario also gives
a prototypical example of how graphene forms at moderate temperature on strongly-
interacting substrates.

The main question addressed in this manuscript deals with the structural ground
state of supported graphene systems. Two scenarios have been put forward, but neither
of them fits experimental results, which support metastable configurations. In the end,
this conclusion does not rule out either scenarios, but claims the ground state of graphene
on Re(0001) is not reached in the conditions investigated here. Further improvements of
the growth recipe could provide more insight, although it is likely some minor disorder
may always be present.

A more promising perspective would rely on in operando studies at varying temper-
ature. Indeed, commensurate and incommensurate phases are easily distinguished by
their dynamic properties. For instance, measuring the coefficients of thermal expansion
of graphene and its substrate simultaneously can inform on the chosen phase [93]. In-
deed, for a commensurate phase, locking of graphene on its substrate yields identical
coefficients, whereas an incommensurate phase implies two different coefficients. Based
on previous works [11], in operando RHEED measurements could provide a satisfying
resolution.
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of the graphene/Ir(111) moiré studied by surface x-ray diffraction. Phys. Rev. B,
91(24):245424, June 2015.

[86] M. H. Jensen and P. Bak. Pinning and annealing of solitons in modulated systems.
Phys. Rev. B, 29(11):6280–6284, June 1984.

[87] L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A.
Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang. Topological valley
transport at bilayer graphene domain walls. Nature, 520(7549):650–655, Apr.
2015.

[88] P. Kaghazchi and T. Jacob. Structure of rhenium surfaces in an oxygen environ-
ment. Phys. Rev. B, 83(3):035417, Jan. 2011.

[89] B. Kandemir and A. Mogulkoc. Zone-boundary phonon induced mini band gap
formation in graphene. Solid State Commun., 177:80–83, Jan. 2014.

[90] M. I. Katsnelson and A. Fasolino. Graphene as a Prototype Crystalline Membrane.
Acc. Chem. Res., 46(1):97–105, Jan. 2013.

[91] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the
Klein paradox in graphene. Nature Phys., 2(9):620–625, Sept. 2006.

[92] D. G. Kelly, A. J. Gellman, M. Salmeron, G. A. Somorjai, V. Maurice, M. Huber,
and J. Oudar. Adsorption and coadsorption of sulfur and carbon monoxide on
rhenium single crystal surfaces. Surf. Sci., 204:1–25, 1988.

[93] K. Kern, P. Zeppenfeld, R. David, and G. Comsa. Incommensurate to high-order
commensurate phase transition of Kr on Pt(111). Phys. Rev. Lett., 59(1):79–82,
July 1987.

[94] P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and
P. J. Kelly. First-principles study of the interaction and charge transfer between
graphene and metals. Phys. Rev. B, 79(19):195425, May 2009.

[95] M. Kindermann and P. N. First. Local sublattice-symmetry breaking in rotation-
ally faulted multilayer graphene. Phys. Rev. B, 83(4):045425, Jan. 2011.

[96] M. Kindermann, B. Uchoa, and D. L. Miller. Zero-energy modes and gate-tunable
gap in graphene on hexagonal boron nitride. Phys. Rev. B, 86(11):115415, Sept.
2012.

[97] H. W. King. CRC Handbook of Chemistry and Physics. CRC Press 74th edition,
Lide D. R. edition, 1993.

[98] B. Kiraly, E. V. Iski, A. J. Mannix, B. L. Fisher, M. C. Hersam, and N. P.
Guisinger. Solid-source growth and atomic-scale characterization of graphene on
Ag(111). Nat. Commun., 4:2804, Nov. 2013.

172



BIBLIOGRAPHY

[99] W. Kohn. Image of the Fermi Surface in the Vibration Spectrum of a Metal. Phys.
Rev. Lett., 2(9):393, 1959.

[100] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and
Correlation Effects. Phys. Rev., 140(4A):A1133–A1138, 1965.

[101] A. Koma. Van der Waals epitaxy—a new epitaxial growth method for a highly
lattice-mismatched system. Thin Solid Films, 216(1):72–76, Aug. 1992.

[102] J. M. Kosterlitz and D. J. Thouless. Long range order and metastability in two
dimensional solids and superfluids. J. Phys. C: Solid State Phys., 5:L124–L126,
1972.

[103] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions
in two-dimensional systems. J. Phys. C: Solid State Phys., 6:1181–1203, 1973.
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A. Taleb-Ibrahimi, and L. Simon. High van Hove singularity extension and Fermi
velocity increase in epitaxial graphene functionalized by intercalated gold clusters.
Phys. Rev. B, 85(24):245421, June 2012.

[146] F. D. Natterer, S. Rusponi, M. Papagno, C. Carbone, and H. Brune. Optimizing
long-range order, band gap, and group velocities for graphene on close-packed
metal surfaces. J. Phys. Condens. Matter, 24(31):314203, Aug. 2012.

[147] A. T. N’Diaye, J. Coraux, T. N. Plasa, C. Busse, and T. Michely. Structure of
epitaxial graphene on Ir(111). New J. Phys., 10(4):043033, Apr. 2008.

[148] D. R. Nelson and B. I. Halperin. Dislocation-mediated melting in two dimensions.
Phys. Rev. B, 19(5):2457–2484, Mar. 1979.

[149] V. H. Nguyen and P. Dollfus. Strain-induced modulation of Dirac cones and van
Hove singularities in a twisted graphene bilayer. 2D Mater., 2(3):035005, July
2015.

[150] S. Nie, N. C. Bartelt, J. M. Wofford, O. D. Dubon, K. F. McCarty, and
K. Thürmer. Scanning tunneling microscopy study of graphene on Au(111):

176



BIBLIOGRAPHY

Growth mechanisms and substrate interactions. Phys. Rev. B, 85(20):205406,
May 2012.

[151] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless
Dirac fermions in graphene. Nature, 438(7065):197–200, Nov. 2005.

[152] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon
films. Science, 306:666–669, 2004.

[153] B. Nysten, J.-C. Roux, S. Flandrois, C. Daulan, and H. Saadaoui. AFM-STM
studies of carbonization and graphitization of polyimide films. Phys. Rev. B,
48(17):12527–12551, Nov. 1993.

[154] T. Ohta, J. T. Robinson, P. J. Feibelman, A. Bostwick, E. Rotenberg, and T. E.
Beechem. Evidence for interlayer coupling and moiré periodic potentials in twisted
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Quasi-ordre à longue distance et défauts topologiques

dans le graphène sur rhénium étudié par microscopie

à effet tunnel

La matière telle que nous en faisons l’expérience au quotidien se présente sous différents
états : solide, liquide, gazeuse, etc. Parmi ces états, l’état cristallin présente un ordre
régulier des atomes à grande échelle. Cependant, lorsque la matière est confinée dans
un plan, comme dans le cas du graphène, elle ne peut pas être cristalline. L’ordre
des atomes, bien que régulier localement, fluctue à grande échelle, donnant lieu à un
quasi-ordre à longue distance.

Dans cette thèse, la structure du graphène sur rhénium est étudiée à l’échelle atom-
ique par microscopie à effet tunnel (STM). Le rhénium peut être considéré comme une
influence extérieure qui altère le quasi-ordre en imposant son ordre cristallin.

Il est déduit des images STM que des réactions chimiques entrent en compétition lors
de la croissance du graphène. Cela aboutit à une structure présentant un ordre local,
mais pas global. Ainsi, au lieu d’imposer un ordre cristallin, le rhénium donne lieu à un
état dit chaotique.

Quasi-long-range order and topological defects in gra-

phene on rhenium studied by scanning tunneling mi-

croscopy

Matter as we experience it on a daily basis exists in different states: solid, liquid, gaseous,
etc. Among these states, the crystalline state displays a regular order of atoms on a
large scale. However, when matter is confined to a plane, like for graphene, it cannot
be crystalline. Although regular locally, the order of atoms fluctuates on a large scale,
giving rise to so-called quasi-long-range order.

In this thesis, graphene’s structure on rhenium is studied at the atomic scale us-
ing scanning tunneling microscopy (STM). Rhenium can be considered as an outside
influence that alters quasi-long-range order by imposing its crystalline order.

Chemical reactions that compete during graphene growth are deduced from the STM
images. This ends up forming a structure with local but not global order. Thus, instead
of imposing crystalline order, rhenium gives rise to a so-called chaotic state.
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