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Abstract

In this thesis we investigate experimentally the physics of ultra-cold fermions on an
apparatus designed to create a cold fermionic mixture consisting of 6Li and 40K. After
a short description of the experimental apparatus and of a few technical particularities
implemented during my PhD, for example the light-induced atomic desorption in the
2D-MOT by UV-light, we focus on two main observations of the fermionic nature of
the gas.

The first part describes the quasithermalization of 6Li in a magnetic quadrupole
potential. Even though collisions are absent in a spin-polarized fermionic gas below
a given temperature, the statistical ensemble undergoes energy redistribution after
an excitation within the linear potential. We present an extensive experimental
study as well as a comprehensive theoretical analysis of this phenomenon. Moreover,
the studied Hamiltonian can be canonically mapped onto a system of massless,
harmonically trapped particles and the previously developed results are re-interpreted
in order to describe this experimentally inaccessible system. A further development of
the realized experiment allows even for the implementation of non-Abelian spin-orbit
coupling in a gas of non-interacting fermions.

In the second part, we describe the evaporative cooling of 40K to quantum
degeneracy. Through different evaporative cooling stages we reach with a final number
of 1.5 · 105 atoms in the ground-state a temperature of 62 nK, which corresponds to
17% of the Fermi temperature.
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Résumé

Dans cette thèse, nous avons étudié expérimentalement les propriétés physiques
des fermions ultra-froids grâce à une machine conçue pour refroidir un mélange
fermionique de 6Li et 40K. Après une courte description concernant la construction
de l’expérience et quelques améliorations que j’ai implémentées pendant ma thèse
(telles que la désorption atomique par lumière ultraviolette dans le 2D-MOT),
l’exposé se concentre sur deux observations principales de l’origine fermionique des
gaz de potassium et de lithium.

La première partie présente la quasithermalization du 6Li dans un potentiel
quadrupolaire, créé par un piège magnétique. Malgré l’absence de collisions dans
un gaz fermionique polarisé en dessous d’une température donnée, nous observons
une redistribution d’énergie dans l’ensemble statistique après une excitation dans
le piège linéaire. Une étude expérimentale détaillée ainsi qu’une analyse théorique
du phénomène sont présentées. De plus, une transformation canonique de l’ha-
miltonien du système permet la description de particules sans masses dans un
piège harmonique. Les résultats expérimentaux du système réel (gaz 6Li dans un
potentiel quadrupolaire) sont donc réinterprétés pour décrire ces particules non
massiques, difficiles à observer. Un développement supplémentaire de notre système
expérimental permet également la réalisation d’un couplage spin-orbite non-abélien
dans le gaz fermionique sans interactions.

Dans la deuxième partie, on décrit la réalisation d’un gaz dégénéré de 40K à
l’aide du refroidissement évaporatif. Une succession d’étapes d’évaporation, utilisant
différentes technologies de piégeage, nous permet d’obtenir 1.5 · 105 atomes dans
l’état fondamental à une température de 62 nK, température équivalente à 17% de
la température de Fermi.
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CHAPTER 1

Introduction

Since Max Planck’s prediction of the quantized nature of energy [1], representing the birth of
quantum physics, and the soon to follow discoveries like the photo effect by Albert Einstein
[2] or the first spectroscopic observation by Niels Bohr on hydrogen [3], we know that classical
physics is only a large scale limit of the underlying quantum world. The subsequent formulation
of the mathematical equations describing the time evolution of quantum particles through
wave-equations by Erwin Schrödinger [4] and the complementary introduction of quantum
operators by Werner Heisenberg [5] and Paul Dirac [6, 7] opened up not only a new domain of
physics, but also changed the approach in this field of research. While in classical physics most
discoveries and their mathematical description were based on foregone experimental observations,
the early extensive formulation of quantum mechanical models allowed the prediction of many
phenomena far earlier than their eventual experimental realization. A well known example is the
phase transition to condensation of Bosons at a given density below a threshold temperature,
an effect known as Bose-Einstein condensation. Predicted in works by Albert Einstein [8] and
Satyendranath Bose [9], it was experimentally realized more than 70 years later in the domain
of ultra cold gases [10–12].
Soon, the explored systems became more sophisticated and their mathematical description

within the quantum mechanical formalism more elaborate, which gave rise to problems unsolvable
by numerical methods. A prominent example are Mott insulators, which should be conducting
materials according to their electron band structure, but rather show insulating properties in a
given temperature range [13]. In solid-state physics, these systems are described and explained
by the Hubbard model [14], whose mathematical treatment, either analytically or numerically,
is still challenging. The complexity of the solution scales with the involved particle number
and becomes, even with today’s computational resources, unsolvable on a reasonable timescale.
Based on the several challenges of the evolving quantum world, Richard Feynman stated his
often cited claim, that a simulation of physics and of nature in general should be done by
quantum simulators, rather than classical tools or mathematical engines (like computers) [15].
About 20 years later, the cold atom community approached Feynman’s idea by simulating

the transition from the superfluid phase (equivalent to a perfectly conducting medium) to
a Mott insulator in a Bose-Einstein condensate of 87Rb [16]. In the following, we will recap
the development in the field of ultra cold gases before presenting a short outline of the thesis
manuscript.
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1 Introduction

Quantum gases ...

The modern research domain of quantum gases originated from the branch of spectroscopy of
atoms and molecules. The early absorption and fluorescence experiments showed a discrete
spectrum, which is based on the internal energy level- and spin structure of the atoms. The
study of the spectra confirmed the angular momentum quantization, which states that every
(elementary) particle owns either an integer (therefore called Bosons) or a half integer (named
Fermions) spin, expressed in multiples of Planck’s constant ~.

The parallel advances in laser technology provided narrowband coherent light sources at the
wavelength of the previously studied atomic transitions. Lasers paved the way for a variety of
explorations concerning the atom-light interaction [70]. By addressing distinct transitions of
the atoms, the quantum model of the atoms level structure was confirmed further [71]. The
demand for a longer timescale for the manipulation and observation of coherence phenomena
required additional cooling and even trapping of the atoms. The revolutionary inventions of
the optical molasses [72], the MOT (Magneto Optical Trap) [73], and distinct sub-Doppler
cooling techniques [74] (events, which are marking the beginning of the era of quantum gas
experiments) allowed to reach a temperature range of 10 µK to 300 µK with typical sample sizes
of around few 106 atoms, depending on the utilized species. The alkaline elements play a special
role throughout this historical development, since they have only a single electron in their outer
shell. Being "hydrogen-like", their clear ground-state level structure allows for the usage of
narrow-band laser sources in the visible to the near infrared spectrum in order to realize the
afore-mentioned cooling schemes. Moreover, the cooling attempt changed the viewpoint from a
single atom physics to the description of a statistical ensemble. Here the distinction of quantum
mechanics and classical physics manifests on a many-body level.
In a simplified picture and in absence of collisions, the transition to a quantum-statistically

dominated regime takes place as soon as the inter-particle spacing d (which can be approximated
through the spatial ensemble density n ∼ d−3) becomes smaller than the de-Broglie wavelength
λdB. The latter describes the wave nature of the particles and is calculated by

λdB =
√

2π~2/mkBT ,

with the Boltzmann constant kB, m the mass of the particle and T the ensemble temperature.
The previous statement about the transition to the quantum regime is essentially contained in
the increase of the phase-space density (PSD), a dimensionless quantity calculated as

PSD = n0λ
3
dB .

By entering the quantum regime with an ensemble of atoms, the statistical difference between
Bosons and Fermions becomes drastically evident. While Bosons tend to accumulate in the
lowest energy state (the common ground state), Fermions occupy successively the lowest energy
states due to Pauli blocking (see embedded illustration in fig. 1.1): Bosons undergo a phase
transition to a Bose-Einstein condensate (starting at a PSD > 2.612), while for Fermions in
absence of interactions no phase transition occurs. The latter rather follows a smooth transition
from classical to quantum behavior. For a spin-polarized Fermi-ensemble at zero temperature,
the energy levels get filled one by one up to the Fermi-energy EF , which is dependent on the
trap configuration and notably also on the total atom number.
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Figure 1.1: Periodic table of cooled and trapped (neutral) atoms until today (status March
2017). Orange colors denote Fermions, while blue colors mark bosonic isotopes. Darker tones
denote the achievement of BEC or a degenerate Fermi-gas correspondingly. For the latter the
best achieved T/TF -ratio is mentioned. Black squares and circles mark the mixture of the current
element with fermionic 40K or 6Li correspondingly. The embedded figure demonstrates the
different behavior of trapped non-interacting Bosons and Fermions at absolute zero temperature:
While Bosons condense by occupying a common ground state, only one Fermion per energy level
is allowed.
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However, solely through laser cooling as described above, it is not possible to reach the low
temperatures which are necessary in order to observe the transition to the degenerate quantum
regime in an ensemble. The breakthrough to ultra low temperatures of the order of a few
hundred nK is achieved by subsequent evaporative cooling of the gas. Evaporation is based on
the removal of the ensemble’s most energetic particles and its ensuing rethermalization to a
lower temperature through collisions [75, 76]. In this way, the first Bose-Einstein condensates
(BEC ) were achieved in three groups1 at about the same time in the year 1995. Using similar
cooling techniques as for Bosons, the first degenerate Fermi-gas was produced few years later in
the group of Deborah S. Jin [23] (using 40K as fermionic species). Since then, a great variety of
elements have been cooled down to the quantum degenerate regime (see fig. 1.1).
Of course these states of matter can, in principle, be generated by cooling down any sample

of molecules or atoms without resorting to ultra-cold gas experiments. In reality however,
many-body collisions would lead to the formation of liquids and solids before a sufficiently high
PSD is reached. The dilute gases created in ultra high vacuum experiments have comparably
low densities (n ∼ 1014 cm−3 [77]) and inter-particle interactions are usually weak. In turn, the
time-scale for reaching a solid or liquid phase through three-body collisions is much larger than
the time required for the cooling mechanisms (based on elastic two-body collisions) to achieve
quantum degeneracy.

The additional possibility to trap the atoms by far-detuned laser beams enabled the creation
of different potential arrangements in lattice-forms [78], which are nowadays a major tool of
many experimental setups. As indicated previously, this turned the field of ultra-cold gases
from the simple study of the newly reached quantum phases, to simulating condensed matter
physics [79, 80]. Taking now into account the role of interactions, which might range from simple
isotropic contact interactions to long-range dipolar interactions, enriches the variety of observed
features [81]. Recent progress in the field of dipolar interactions in BECs was reported in [48],
where a sudden emergence of a triangular lattice structure due to the long range interactions
was observed.

... Experiments with Fermions ...

Cold atom experiments with Fermions are more challenging in terms of cooling efficiency, in
particular regarding the evaporative cooling step, which relies on the continuous rethermalization
of the gas through interactions. Due to Pauli-blocking, s-wave interactions are forbidden for
spin-polarized Fermi gases. Therefore, either an equlibrated spin mixture is necessary (like in
[23] for 40K, in [82] using 6Li and in [55] for 173Yb) or a bosonic buffer coolant has to be added.
For the latter case, there is a vast range of experiments using either the bosonic isotope of the
same element or a well studied Boson of a different element, like 87Rb or 23Na (see fig. 1.1).
Remarkably, a recently realized degenerate Fermi gas of 167Er in [51] exploited the strong
magnetic dipole-interactions between the spin-polarized Fermions to reach quantum degeneracy.
The degree of quantum degeneracy of a Fermi-gas is expressed in terms of the Fermi-

temperature. The latter is deduced from the previously mentioned Fermi energy via TF = EF /kB,
with the Boltzmann constant kB. Since every energy state can be occupied by different spin
states, but only by one of each kind, the Fermi temperature is calculated for each spin constituent
1In the groupe of Eric A. Cornell [10] it was achieved in 87Rb, by Wolfgang Ketterle [11] in 23Na and by Randall
G. Hulet [12] in an attractive gas of 7Li.
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Figure 1.2
Illustration of the BEC-BCS crossover
on a Feshbach resonance. A s-wave
Feshbach resonance allows to tune the
interparticle scattering length a of an
optically trapped two-spin state mix-
ture by changing the bias field B. The
resonance is characterized through the
position B, the width ∆B at zero-
crossing and the background scatter-
ing length abg. For an ensemble below
T/TF ∼ 0 .2 a continuous superfluid
transition from the BEC to the BCS
limit is observed, even at the strongly
interacting unitary regime [86].

and can differ, e.g. in the case of an imbalance in atom number per spin state. Expressing
the overall temperature of the gas in terms of the Fermi temperature (i.e. by the ratio T/TF )
illustrates how densely the states below EF are occupied2. We emphasize again that, different
from Bose-Einstein condensation, there is no phase-transition for a spin-polarized fermionic gas
in absence of interactions. However, as will be shown later on, a noticeable deviation from the
classical Boltzmann distribution takes place when T/TF < 0.3, revealing the quantum-statistical
behavior.

Nowadays, The most important and widely used tool in cold atom experiments with Fermions
are Feshbach resonances [85]. At a Feshbach resonance the colliding atoms couple to a molecular
bound state, which results in an increase of the elastic scattering length and therefore stronger
interactions within the ensemble. The energy level of the molecular bound state with respect to
the relative energy of the colliding atoms can be tuned, for example by changing the magnetic
bias field. This affects the Zeeman shifts and therefore the relative internal energy splitting
of the colliding partners, provided that they constitute to different spin states. In summary, a
Feshbach resonances allows for a full control over the scattering length of an optically trapped
two-state spin-mixture, by simply changing the magnetic field. This includes the strongly
interacting case as well as the absence of interaction (zero-crossing - see fig. 1.2).

In the fermionic case, the magnetic sweep to the resonance position is not necessary accompa-
nied by high losses and heating of the gas, in contrast to Feshbach resonances in bosonic gases.
It is suggested to observe pair formation throughout the entire region of a s-wave Feschbach
resonance for fermionic spin mixtures in the zero-temperature limit. By sweeping through the
resonance to positive, but weak scattering lengths, a formation of strongly bound molecules
should occur[87]. Being sufficiently cold, the resulting molecules constitute Bosons and therefore
a BEC of molecules should be observed. Similarly, a sweep through the resonance towards small,
but negative scattering lengths implies the formation of Cooper-pairs, which are long-range
correlations between two Fermions described by the Bardeen-Cooper-Schrieffer (BCS) theory.
The latter is an approach of describing superconductivity [88], the transition to zero electrical
resistance of particular materials cooled below a given threshold temperature. The analogous
effect in liquids and quantum gases is called superfluidity. The emergence of superfluidity in

2A number of proposals, like in [83] and [84], suggest the indirect observation of Pauli-blocking through reduced
photon absorption by energetically low lying states.
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strongly correlated systems can be observed for molecular BECs as well as for BCS pairs. A
direct consequence of a "flow-without-resistance" is the formation of quantized vortex structures
in a stirred superfluid cloud. In [86] the appearance of vortices was presented for the entire range
of the Feshbach resonance, therefore underlining the theory of a smooth crossover from BEC-
to BCS-type superfluids [89]. The unique point of divergent scattering length at the position
of the Feshbach resonance is of particular interest, since the only relevant energy scale of the
gas is given by the Fermi energy in this regime. Arriving at a profound understanding of the
cross-over physics might get us closer to the understanding and production of high-temperature
(even room-temperature) superconductors [90].

A recent approach in Fermi-gas experiments is the implementation of single-atom imaging
techniques in a lattice structure [91–94], adapted from previous bosonic experiments [95]. It
is called quantum-gas microscopes, due to the installation of high-resolution objectives for
fluorescence-imaging near the experimental glass cell.

... including two species

Apart from the simple fact that experiments of two Fermionic species enable to cross-check
the observations against species-specific parameters, e.g. Feshbach-resonance properties, the
composite system promises interesting features: A possible inter-species Feshbach resonance
would allow the formation of heteronuclear bosonic molecules with an electric dipole moment.
In turn, the study of weakly bound trimers is proposed in [96]. So far, experiments including
two different fermionic species are utilizing the only two fermionic alkaline isotopes, 6Li and 40K.
To our knowledge, six groups worldwide have constructed experimental machines to address
these two Fermions simultaneously.

• The experiment at MPQ (Munich) reached as one of the first groups the double degenerate
regime in 2008, using RF-evaporation on 87Rb, which in turn sympathetically cooled
down 6Li and 40K [20]. Even triple degeneracy with a small BEC of 87Rb was achieved in
the magnetic QUIC-trap. After the implementation of an optical dipole trap, the group
reported on the first creation of heteronuclear bosonic molecules in [97] at a previously
determined Feshbach resonance.

• The experiment at the University of Amsterdam (Netherlands) was one of the first to
present a quantitative approach to study and characterize the interspecies Feshbach
resonances between 6Li and 40K. In [98] they determine with high precision the width of
the large Feshbach resonance at B0 = 114.4 G to be ∆B = 1.5 G.

• The experiment at MIT (United states) used 6Li and 40K in conjunction with the bosonic
isotope 41K to reach triple degeneracy, again using a Boson as an efficient coolant during
evaporation. In the same publication [24], the group reports on the observation of various
Feshbach resonances in the two possible types of Bose-Fermi mixtures in this system.
While initially being a triple-species machine, the group studies nowadays ground state
molecules of 23Na and 40K [22].

• The experiment at the IQOQI in Innnsbruck (Austria) was the first one to study Feshbach
resonances in the fermionic mixture of 6Li and 40K [99]. The same experiment reached later
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on in 2010 the simultaneous double degeneracy of both species. The particularity of the
experiment published in [100] is the direct evaporative cooling of the two fermionic clouds
in a (crossed) optical dipole trap loaded from the MOT. The cloud is neither transported to
a separated UHV region, nor another Bosonic element as coolant is being used. Moreover,
any step of pure magnetic trapping is avoided. This group also investigated in [101] the
strongly interacting regime on the interspecies Feshbach resonance and reported in [102]
the first observation of atom-dimer interactions (between 40K and 6Li-40K dimers, created
on the BEC-side of the resonance).

• In Shanghai (China) an experimental apparatus was recently constructed, whose design
and cooling sequence is very similar to ours. The experiment can prepare both fermionic
species. Currently, the group switched from 40K to the bosonic isotope 41K and created
the first double species superfluid of 6Li bound molecules and 41K BEC, proving the
existence of the superfluid phase by creating vortex lattices by stirring the clouds [103].

Our experiment in Paris (France) was initially designed to study the two Fermions in different
dimensions: The heavier 40K would have been confined in a 2D- or 1D-lattice in presence of
a free 6Li gas. While the latter case provides a system similar to the ones studying Anderson
localization [104, 105], the 2D-system is suitable to study long-range multilayer interactions
mediated by the free gas [106].

Outline of this thesis

This thesis presents studies performed on the double-fermionic species ultra-cold gas experiment
in the group of Prof. Dr. Fréderic Chevy and Dr. Christophe Salomon at the Laboratoire
Kastler Brossel in the period of April 2013 until January 2017. The FerMix (FermionicMixture)
experiment is designed to cool and trap 6Li and 40K atoms simultaneously. In this work, we
continued paving the way towards the realization of a double-degenerate two-species Fermi-gas.
The two major results, which were obtained during that time, are the observation of the ensemble
dynamics of non-interacting particles in a non-separable potential (the quadrupole potential)
and the cooling of 40K to quantum degeneracy. The main text of the thesis is split into four
chapters:

Chapter 2 The FerMix Experiment

We first introduce the experimental setup and its key features. Given that the vacuum system,
the dual-species MOT and the magnetic transport were set up by previous PhD-generations [107],
we focus mostly on the improvements of the existing setup. This includes the implementation of
LIAD (Light-Induced Atomic Desorption) for the 40K 2D-MOT, the study of the simultaneous
gray-molasses cooling of 6Li and 40K and the optimization of optical pumping. We also discuss
in greater detail the absorption imaging technique and its implementation.

Chapter 3 Quasithermalization of non-interacting particles in a quadrupole trap

In this chapter, we will discuss one of the main results of this thesis: The energy redistribution
after a momentum kick within a non-interacting gas of spin-polarized 6Li in a non-separable
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trapping potential. Pauli-exclusion forbids interactions through collisions in this scenario.
Nevertheless, we observe a partial energy redistribution after an excitation within the symmetry
plane of the studied quadrupole potential. We develop a comprehensive theoretical model for
the excited trapped gas and verify the results experimentally.

Chapter 4 Quantum simulation in the quadrupole potential - SOC in a non-interacting gas

The absence of an interaction term in the single-particle Hamiltonian of the previously studied
system allows for a canonical mapping, which exchanges the role of momentum and position
coordinates. Owing to the form of the quadrupole potential, we establish an analogy to a system
of harmonically trapped massless particles (i.e. Weyl particles), opening up the possibility
of simulating their dynamics in a cold gas experiment. In turn, the results of chapter 3 can
be reinterpreted for this system. Further developing the idea of canonical mapping in a non-
interacting gas of Fermions, we propose a realization of non-Abelian spin-orbit coupling and
estimate the experimental parameters for an implementation for 6Li.

Chapter 5 Pathway to quantum degenerate 40K

In the last chapter, we present the process of evaporative cooling of 40K to quantum degeneracy.
We reach a temperature of 62 nK with a sample of 1.5 · 105 atoms in the absolute ground state,
which corresponds to T/TF = 0.16 in terms of the Fermi-temperature. We discuss the analytical
methods for evaluating the density profiles as well as the differences emerging in the density
profiles at lower temperatures between the classical- and quantum mechanical regime. We also
briefly address the characterization of a few Feshbach resonances in 40K and the compensation
of magnetic curvature.

Technical notes and supplementary calculations are attached at the end of the manuscript in
the form of Appendix A – J. The appendix is divided in three major parts,

Optical notes In appendix A we discuss the lattice laser, the purpose of which is to confine 40K
in two-dimensional planes. It serves as a general example of a MOPA-laser system. Appendix B
shows the radio-frequency installation we are using to drive the acousto-optical modulators in
our experiment. Finally, in appendix C we present a new mechanical design to support tapered
amplifier chips, which allows for precise optical alignment of the collimation lenses at the in-
and output side of the chip.

Electrical notes We test several optocoupling circuits, for digital as well as for analog signals
(appendix D), and three different applications of micro-controllers: a high-power LED-driver (ap-
pendix E), a versatile security system (appendix F) and a 50Hz mains detection/synchronization
device (appendix G).

Supplementary calculations In order to provide additional information outside of the main
text, the reader will find the calculations concerning time-of-flight expansions (appendix H) and
some supplementary calculations for chapter 3 (appendix I) as well as chapter 4 (appendix J)
in the three last appendix sections.
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CHAPTER 2

The FerMix Experiment

This chapter is dedicated to the description of the experimental apparatus and the preparation
procedure to obtain a cold sample of 6Li- and 40K-atoms. The construction of the experiment
started in September 2007 [108]. Few ensuing generations of PhD-students accomplished the
basic setup of the main machine [109–112], which led to some milestones like the photoassociative
creation of 6Li-40K molecules [113] or the gray D1 molasses [114]. During my thesis I continued
with the implementation of evaporative cooling techniques in the science chamber to realize a
quantum degenerate Fermi-mixture (see chapter 5). In turn, some details of the cooling and
trapping procedures of the atomic clouds were modified during the past four years. Although
the main starting procedure remained principally unchanged, it was optimized to its best
performance. The current chapter recaps the main experimental steps and is structured as
follows:

• Section 2.1 discusses the overall experimental sequence to give an overview of all applied
procedures towards the creation of an ultra cold dual-species gas. One part of the used
techniques will be characterized in the following section, while the second part beyond the
MOT-chamber will be discussed in chapter 5.

• Section 2.2 characterizes the two atomic sources of our experiment, i.e. the 6Li Zeeman
slower and the 40K 2D-MOT.

• Section 2.3 describes the used atomic cooling transitions and the optical setup to generate
the necessary detuning frequencies.

• Section 2.4 summarizes briefly the particular setup of the dual-species MOT and the
key performance numbers.

• Section 2.5 presents the gray-molasses cooling, which was first implemented in our
experiment.

• Section 2.6 provides the basics of magnetic trapping. This will be of particular importance
later on for the chapter 3, where we will discuss the quasi-thermalization in a quadrupole
trap.

• Section 2.7 explains the techniques behind the detection of the atoms by light absorption.
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2 Experimental Setup

• Section 2.8 summarizes briefly the computer control of the experiment. The associated
topic of optocoupling can be found in appendix D.

2.1 Main Experimental Sequence

Figure 2.1 shows a modelized and simplified cross section of the FerMix (Fermionic mixture)
experiment, including the main experimental techniques.
The experiment starts from two (hot) sources: The Lithium (Li) oven on the left hand side

of the picture and the heated glass cell of the two-dimensional magneto-optical trap (2D-MOT )
of Potassium (K ) on the bottom. For both atomic sources, 6Li- and 40K, we use a pre-cooling
stage before loading the common magneto-optical trap (MOT ):

• Hot 6Li atoms get decelerated in the Zeeman slower ZS [115]. A motorized shutter S
allows to block the hot atomic beam after the MOT loading phase, in order to avoid
collisions of the hot stream with the atomic cloud during the further cooling processes.

• 40K atoms are captured and pre-cooled in the 2D-MOT[116].

After the common MOT-phase and a 4ms short compressed MOT-phase (CMOT ), the gray
molasses technique is applied for both species simultaneously. This allows to reach temperatures
of ∼ 50 µK for 6Li and up to 12 µK for 40K. Subsequently, the atoms are optically pumped into
their magnetically trappable hyperfine states and captured in a quadrupole potential created by
the MOT-coils (CMOT).
Both clouds are then magnetically transported to the ultra-high-vacuum (∼ 10−13 mbar)

science cell (SC ). The transport1 incorporates a 90° elbow, which allows for full optical access
around the science cell. Similarly to the initial magnetic trap in the MOT-chamber, the atoms
are again re-captured in a high-gradient quadrupole trap created by the inner-pair of coils (CIC)
around the science cell. To avoid Majorana losses, the magnetic zero of the trap is plugged by a
repulsive (blue-detuned) laser (Verdi-laser at 532 nm).

For precise control of the bias field, two pairs of coils are placed around the science cell (a pair
of inner coils - CIC and outer coils - COC). The design of the coils allows for a perfect canceling
of the magnetic curvature at high bias-fields (up to ∼ 500 G) using both pairs simultaneously.
Once in the science cell, the cloud is further cooled down by evaporation. By driving

radio-frequency hyperfine transitions, hot atoms are removed from the magnetic trap. Once a
sufficiently high phase-space density (PSD) is reached, the cloud is transferred into an optical
dipole trap (ODT ).

Since 6Li possesses only one magnetically trappable low-field seeker state, it cannot be cooled
down alone by evaporation in a magnetic trap: in our case, 40K has to serve as a collision
partner. Therefore, the strategy is roughly the following:

• The RF-evaporation is performed on 40K, which cools down the 6Li-cloud sympathetically.
At this stage a sufficiently higher number of 40K atoms is required to cool down a smaller
sample of 6Li.

1The transport coil color-code in fig. 2.1 is chosen similar to the one in [111], where the transport sequence and
technique is described in great detail.
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Figure 2.1: Schematic cross section of the FerMix-machine and its main experimental setups.
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• After loading both clouds in the ODT, we can take advantage of the broad Feshbach
resonance of 6Li to cool down sympathetically the remaining (smaller) amount of 40K.

Depending on the PSD, either a single mode 10W (YAG-laser, Mephisto-MOPA at 1064 nm)
laser is used or a multimode 300W (IPG-laser at 1070 nm) laser. So far, only 1 · 105 lithium
atoms were loaded into the 10W single-beam ODT at 60µK, without any 40K atoms left after
RF-evaporation. The loading into the high-power IPG-ODT is in preparation at this moment.

The YAG-Laser is also used (in different alignment realizations) as a crossed ODT to increase
the trap depth at the loading stage, or to increase the collision rate at later stages of optical
evaporation stages. In a crossed dipole trap, we cooled down 40K to degeneracy (in absence of
6Li throughout the whole cooling process), reaching a temperature of T/TF ≈ 0.2, where TF is
the Fermi-temperature of the atomic sample in the given harmonic trap.

For the purpose to study the fermionic mixture in two dimensions, a 2D-lattice-laser at 800 nm
was build (appendix A). It should confine 40K atoms in standing-wave "sheets" (quasi 2D-traps),
while 6Li would mediate the interactions between distinct 2D-potassium traps[106, 117–119].

2.2 Vacuum Chamber and Atomic Sources

For the observation of fermions in the deeply quantum degenerate regime, it is required to
cool down the sample to a few hundred nK. The low temperatures are reached by forced
evaporative cooling in either magnetic or optical traps. At this stage, collisions with background
gases lead to losses from the trap and might heat up the trapped sample. The competition
between background collisions and the time required for evaporative cooling (elastic collisions)
might ultimately limit the attainable low temperature. Therefore, a ultra-high vacuum (UHV )
chamber is required for any cold gases experiment. Figure 2.2 shows a 3D-CAD drawing of the
experimental setup with a few length-annotations, to give an impression of the dimensions of
the experimental apparatus.

Obviously, in the source regions the background pressure is higher (∼ 10−8 mbar). Since the
sources need to be heated up either to 80 ◦C for the 40K-2D-MOT glass cell or to a few hundred
◦C in case of the 6Li-oven to provide a sufficient atomic flux. Therefore, the 2D-MOT and the Li-
Zeeman slower are separated from the MOT-chamber by differential pumping stages2. Another
ion-pump (20L/s) near the Li-oven and a following up ion-pump separated from each other by
two additional pumping stages in front of the Zeeman slower assure the low pressure stability
up to ∼ 10−8 mbar. A 40L/s ion-pump attached to the MOT-chamber and two smaller pumps
(20 L/s) at the source entrances maintain a pressure of 10−10mbar in the MOT chamber [108]. A
differential pumping tube between the transport and the MOT-chamber, two ion-pumps at the
elbow of the transport and near the science cell and a special Titanium-Zirconium-Vanadium
getter alloy developped at CERN [110] sustain a background pressure of 10−12mbar.
A good indicator of the vacuum quality is the lifetime of a trapped atomic sample. In our

case, the life-time of 40K in the MOT-chamber is about 4 s in a magnetic trap of 150G/cm at a
sample temperature of ∼ 250 µK. By contrast, in the science cell the lifetime in an optical dipole
trap (ODT ) was measured to be more than 100 s. The latter lifetime is more than sufficient for
an efficient forced evaporative cooling in an ODT.
2In our case a differential pumping stage consists of a tube, which reduces the opening-aperture from one
vacuum region to the next one.
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K-2D MOT

Li-ZS
MOT

SC

Mag. transport

Figure 2.2: CAD-design of the FerMix vacuum assembly (adapted from [111]). The upper
transport plate holding the transport coils is removed for better visibility. The length of the
Zeeman slower and the magnetic transport are given in cm.

2.2.1 Lithium oven and Zeeman slower

Similar to most ultra-cold lithium experiments today, a Zeeman slower is implemented in the
FerMix experiment for the purpose of pre-cooling 6Li atoms [71]. The biggest advantage of the
Zeeman slower is the high flux of pre-cooled atoms.

Originally, the atomic source is a highly enriched 6Li-sample3 which is heated up in a metallic
tube. This oven assembly is heated up to 470 ◦C during the experimental operation and switched
down to 270 ◦C during the night. The oven is never switched off entirely to avoid clogging,
especially around the 6mm-wide aperture through which the atomic jet is released. Likewise,
longer overheating (of few hours) to more than 600 ◦C should be avoided, since the sample can be
depleted and coat the colder vacuum parts around the Zeeman slower, which in turn would need
to be re-heated to port the lithium back to the oven region [120, 121]. An Omega temperature
controller regulates the temperature of the oven tube, operating the heating current-source by
switching a MOSFET.

Once the hot jet of 6Li leaves the oven, it is opposed by a red-detuned (450MHz from the D2-
transition line) circularly polarized laser beam (ZB in fig. 2.1), which enters the MOT-chamber
through the window W3. The slowing process relies on the recoil of the atom, opposite to its
travel direction, once it absorbs a photon from the counter-propagating beam. To adjust the
Doppler-shift along the path, the magnetic field has to be varied: Slowed down atoms require a
smaller Doppler-shift towards the MOT region in order to continue the cooling process. Fig. 2.3
shows the evolution of the magnetic field along the Zeeman slower.
The implemented Zeeman slower is of the "spin-flip" type: This avoids primarily the use

of resonant light in the MOT region and therefore has no disturbing influence on the already
trapped atoms. However, this design-consideration requires an additional repumping beam.
3The natural abundance of lithium is 5% of 6Li and 95% of 7Li.
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Figure 2.3
Magnetic field of the Zeeman
slower, adapted from [108]. In
the MOT region the field is com-
pensated by ZS-3 to zero.

At a particular point, the axial magnetic field crosses zero and changes the sign. In this region the
atoms might not follow adibatically the magnetic field transition, losing their polarization and changing
their spin state over an absorption cycle. That necessitates the generation of an additional repumping
frequency, in contrast to the application of a "classical" Zeeman slower with constant magnetic sign.
Another advantage of the spin-flip design is the lower current used to generate a lower field at the
entrance of the slower for similar capture velocities, thereby reducing the overall heat dissipation of the
coil assembly.

Apart from this, a compensation-coil ZS-3 is placed on the opposite side of the MOT chamber
in order to cancel the residual magnetic field created by the Zeeman slower at the location of the
MOT. The two additionally mounted windows W2 permit the installation of a (short-distance)
transverse-molasses cooling stage, in order to collimate the atomic beam from the oven and
to further increase the loading flux. The only remaining disadvantage of the Zeeman-slowing
technique is the presence of a hot 6Li-beam whose velocity range exceeds either the capture
velocity of the Zeeman slower or later of the MOT. However, in our case this effect is negligible
as it can be observed on the combined (dual-species) MOT-phase: While the loading rate for
40K indeed decreases in presence of the hot 6Li-jet in the MOT chamber, the finally captured
atom number of 40K remains unchanged in the MOT.

2.2.2 Potassium 2D-MOT

The main reason for the implementation of a 2D-MOT for 40K rather than a Zeeman slower
is its very small natural abundance4 [122] and the high pricing for an enriched sample5. Very
recently, it also became difficult to find a company producing enriched 40K samples.
Our enriched 100mg sample of potassium contains 4% of 40K (89.5% of 39K and 6.5% of

41K). The original source was a CF16-tube near the 2D-MOT glass cell (acting as a "oven"),
which was heated moderately to create a sufficient vapor pressure. A malfunctioning of the
surrounding heating caused a migration of the source from the oven. Since that incident, a cold
point was installed as a controllable source (see fig. 2.4): While the 2D-MOT-glass cell and the
surrounding vacuum parts are heated, water-cooled tubes are wound near the entrance of the
2D-MOT. For a sufficiently large temperature gradient, the potassium vapor condenses in the
form of a crystalline deposit around the cold region. Contrariwise, decreasing the temperature
difference between the hot surrounding and the cold point leads to an evaporation of potassium
4The natural abundance of potassium is 93.258% of 39K, 0.012% of 40K and 6.730% of 41K.
5In 2007 / 2008, the price for the originally placed 4% - 40K enriched sample was 4000e per 100mg. The price
and availability discrepancy between 40K and 6Li is due to the significance of lithium in the nuclear industry.
By contrary, pure 40K has no specific industrial application.
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Figure 2.4: Schematic setup of the 40K 2D-MOT. The square glass cell is denoted in blue,
other vacuum parts in black. The abbreviations are: DPT – differential pumping tube; M –
mirror surface of the DPT; UV – UV-LEDs for LIAD; B−/B+ – axial molasses beams; BP –
push beam; BT – transversal cooling beam, the reflection by the prism inverts the helicity of
the circular polarization (the second beam in y-dir. is not depicted); CP – cold point; C2D –
race-track coils (the red arrows denote the current-flow direction).

into the 2D-MOT cell, thereby increasing the vapor-pressure. A chiller (T255P of ThermoTek,
Inc.) stabilizes the temperature of the distilled water or a cooling liquid (inhibited Glycol)
circulating in the tubes around the cold point. During the night, the chiller is set to −2 ◦C,
while during operation of the experiment the temperature of the coolant is kept at 45 ◦C.

The 2D-MOT as a pre-cooling stage for 40K is widely used6 [71] and therefore we will omit a
detailed description at this point. The only peculiarities of our setup are first, the axial molasses,
created by the axial beams B− and B+, and second, the smaller push-beam BP which increases
the atomic flux through the differential pumping tube (DPT ) into the MOT chamber.

Additionally, UV-LEDs (Roithner LaserTechnik LED395-66-60-110 ) shining incoherent light
at 395 nm on the 2D-MOT cell are installed to increase the vapor pressure. The underlying
principle is known as light-induced atomic desorption (LIAD): Similar to the the photo-electric
effect, potassium atoms get released from the illuminated surface by absorbing a photon [123–
125]. In our case, the main deposition of potassium was found on the differential pumping stage
and of course in the region of the cold point. Three of the previously mentioned LEDs, with a
total output-power of ∼ 1.4 W, are directed towards these regions. Nevertheless, we found that
continuous operation of the LEDs can disturb the MOT loading. Therefore, the light is being
pulsed periodically at 12.5Hz during the MOT loading phase (see appendix E for technical
details).

Figure 2.5 shows an example of the MOT fluorescence signal emitted by the cloud and recorded
during loading by a photo diode, with and without the UV-LEDs pulsing throughout the entire
loading process. Keeping in mind, that at this stage the fluorescence signal represents only a
6Another common technique is the implementation of 40K dispensers with a direct loading of the MOT. However,
this leads to lower loading rates and smaller total atom numbers (e.g. compare[123]).
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Figure 2.5: Fluorescence signal during MOT loading: Influence of LIAD through the UV-LEDs.
The figure shows the loading curves for three different cold point temperatures (0 ◦C, 25 ◦C,
45 ◦C), without the UV-LEDs (light blue) and with UV-LEDs (dark blue). The signal is recorded
with the photo diode (PD) indicated in fig. 2.1. In presence of the pulsed blue light, the loading
curves are steeper and a higher fluorescence level, and hence atom number is reached. For a
quantitative analysis, atom-number images were taken to obtain the data points in fig. 2.6b.

qualitative detection method, we still see an increase of up to 20% in the total fluorescence
signal in presence of the UV-light.

For a further quantitative analysis, we record the atom numbers directly by taking absorption
images. The result is summarized in fig. 2.6a, where the variable potassium vapor pressure
in the 2D-MOT cell is depicted as a function of the cold point temperature, both with and
without the application of the UV-light. The partial pressure of 40K is smaller by the abundance
factor 25. The complementary fig. 2.6b shows the loading rate of 40K in the 3D-MOT. At the
operation temperature of 40 ◦C of the cold point, the UV-LEDs increase the peak pressure by
50%. A similar increase is visible in the loading rate. However, the total atom number after
18 s of MOT loading is about 30% higher with the application of UV-light than without.

2.3 Optical System

To operate the Zeeman slower, 2D-MOT and the common 3D-MOT, light of the appropriate
wavelengths and detunings from the respective atomic transitions needs to be generated. For
the cooling techniques mentioned so far, we use the D2-line transitions of 6Li and 40K. In
FerMix, the laser setup follows the MOPA-principle (Master Oscillator – Power Amplifier):
Light from a laser diode (DL), which is frequency locked to an atomic transition, is amplified by
a tapered amplifier (TA). The light is further divided into multiple paths, and the frequencies
of the beams are shifted by acousto-optical modulators (AOM ). To reach large detunings from
the lock-frequency, some AOMs are operated in double-path mode: once the beam got shifted,
it is retro-reflected and diffracted a second time in the AOM on the way back, resulting in a
doubled shift of the light frequency. AOMs are driven by radio-frequency signals projected
on an internal crystal. The driving frequency (60MHz to 300MHz) can be varied by voltage
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Figure 2.6: Characterization of the cold point performance with and without the LIAD-effect:
(a) Potassium vapor pressure as a function of the cold point temperature. The vapor pressure
was measured by light absorption in the 2D-MOT cell according to the technique described
in appendix A in [108]. The error bars arise from the uncertainty of the temperature of the
2D-MOT glass cell walls. From the local heating and cooling, the temperature of the cell is
estimated in between 30 ◦C and 60 ◦C. (b) 40K loading rate into the 3D-MOT as a function of
the cold point temperature.

controlled oscillators (VCO) as well as the RF-power (from 0W to 2W), which is controlled by
current- or voltage-driven attenuators.

Since a single amplification stage results in insufficient power after splitting, the light is again
amplified by a second TA. At this point, repumper and principal frequencies are mixed and
both injected into the TA7 [126].

To avoid stray light during magnetic trapping, transport or further evaporation steps, the
beams can be interrupted either in few µs by AOMs (see in the case of 40K in fig. 2.8b) or by
pre-triggered shutters (few ms-switching time) before being injected into the optical fibers8.

Since the amplification of a TA seeded with two different frequencies is non-linear, the final
frequency composition of the cooling beams is monitored independently on a Fabry-Perot
interferometer.

The optimized values for the frequency composition for the operation of the 2D-MOT, Zeeman
slower and MOT can be found in previous works, like [108] or [111]. The actual total powers and
frequencies of the different AOMs can be deduced from fig 2.8 and fig. 2.7. An example scheme
of a MOPA-setup can be found in the appendix A, where the lattice laser setup is described.
Some technical notes about AOM-VCOs are attached in appendix B. Moreover, a new design
study for a TA-setup is described in appendix C.

7The only exception is the Zeeman slower repumper. Injecting the repumper frequency together with the
principle frequency creates a side-band (+228MHz) which would be resonant with the MOT-cooling transition
and heat the 6Li-MOT during loading.

8The resulting, not compensatable frequency shift by available AOM-models, makes it inconvenient to use
AOMs as switches in the 6Li setup in fig. 2.7b
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(b) Schematic setup of the optical table
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(c) Power splitting after the first TA and total fiber-output powers.

Figure 2.7: Optical setup for 6Li D2-transitions. (a) Hyperfine structure of the D2-line and used cooling / imaging transitions. The
master laser DL is locked on the crossover of 6Li. (b) Schematic setup of the optical table and the AOM-frequencies to generate the cooling
light transitions. Red (blue) AOMs symbolize the repumper (principal)-light generation. IMPORTANT: The AOM at the entrance of the
spectroscopy path shifts all frequencies by -330MHz. (c) Power-splitting after the first TA for generating the different beams and total fiber
output.
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(c) Power splitting after the first TA and total fiber-output powers.

Figure 2.8: Optical setup for 40K D2-transitions. (a) Hyperfine-structure of the D2-line and used cooling / imaging transitions. The master
laser DL is locked on the crossover of 39K. (b) Schematic setup of the optical table and the AOM-frequencies to generate the cooling light
transitions. Red (blue) AOMs symbolize the repumper (principal)-light generation. In case of the repumper light two (double-path) AOMs are
needed to generate the large frequency shift of ∼ 800MHz. The second AOM (−440MHz)in the imaging path is used for imaging at high
bias-fields. IMPORTANT: The AOM at the entrance of the spectroscopy path shifts all frequencies by +240MHz. (c) Power-splitting after
the first TA for generating the different beams and total fiber output.

19



2 Experimental Setup

2.4 Common MOT

The magneto-optical trap is the first trapping and cooling step of any modern cold atom
experiment nowadays. Three pairs of counter-propagating, circularly polarized, red-detuned
beams and a magnetic quadrupole field, created by a pair of coils (CMOT in fig. 2.1), cool and
trap the atoms around the magnetic field’s zero.

The MOT optics, especially the λ/4 plates for the preparation of circularly polarized light, are
optimized for the wavelength of 40K (766.7 nm)[127]. As it is very common, the horizontal beams
are retro-reflected, while the vertical pair of beams are aligned independently (not depicted
in fig. 2.1). The cooling light for 6Li (671 nm)[128] is first overlapped with the 40K-beam by
dichroic mirrors, before it is splitted in totally four MOT-beams. Two windows, W4 and W5,
allow for a "live" observation during the loading process. A camera (Cam) directly records the
two fluorescing clouds. Additionally, two photo-diodes (PD) record the fluorescence of each
MOT separately (for an example of the recorded signal see above fig. 2.5). The fluorescence
signals are easily distinguished by laser line filters for either 671 nm or 767 nm. Finally, an
absorption picture of the cloud in the MOT chamber can be taken by a charge-coupled device
(CCD 1 ). We capture about 2 · 109 atoms of 6Li and 3.2 · 109 atoms of 40K simultaneously. The
single-species operation shows, on average, a slight increase of 10% in atom numbers.

The MOT cooling scheme possesses a lower limit of the achievable temperatures, the so-called
Doppler-limit,

kBTDoppler = ~Γ/2 ,

which is ≈ 144 µK for both, 6Li and 40K, approximating the linewidth by Γ/2π ≈ 6 MHz.
However, due to technical constraints in the dual-species operation, the reachable temperatures
after the MOT-phase are higher than these limits (∼ 800 µK for 6Li and ∼ 300 µK for 40K). As
a result, the clouds are too hot after the common MOT phase to either undergo a magnetic
transport without high losses or to have an ensuing efficient forced evaporation inside a magnetic
trap.

Therefore, the gray molasses, which is the subject of the next section, was implemented. How-
ever, for a better capture efficiency of the molasses, we increase the atomic density (atoms/cm3)
of the cloud in a 4ms long compressed MOT step (CMOT). During this step, the MOT-coil
gradient increases linearly from 9G/cm (the usual MOT gradient) to 40G/cm, which results in
a ∼ 10-times higher atomic density.

2.5 Gray Molasses Cooling

The gray molasses method on the D1 transition line was first implemented in the FerMix machine
[114], and is now used in many experiments to reach sub-Doppler temperatures. During this
PhD, some investigations on the simultaneous operation of the cooling scheme on 40K and 6Li
[129] and their possible mutual influence have been performed. We will keep the description
short and only mention the significant parameters. A detailed discussion can be found in [111]
and [110].

20



2.5 Gray Molasses Cooling

2.5.1 Motivation and main idea

A common technique to reach sub-Doppler temperatures is the Sisyphus cooling mechanism
implemented in the form of a bright molasses [74]: Two counter-propagating, red-detuned
(single-frequency) beams create a standing wave with a spatially periodic modulation of the
polarization9. This in turn creates a spatially dependent Zeeman shift, resulting in a sinusoidal
potential-form seen by the atoms. Together with the resulting light-shift of the addressed
closed transition between the two involved states, a moving atom occupying a given stretched
Zeeman state is more likely to be pumped into the other involved Zeeman state at the potential
maximum than in the potential minimum. Therefore, a travelling atom "climbs" potential hills
before being optically pumped back into the energetically lower lying state and repeating the
trajectory in the periodic potential. On average, the atom climbs more potential "hills" than
rolling down into "valleys", thereby transferring kinetic energy to potential energy. In a σ−–σ+

configuration of the counter-propagating beams the theoretical temperature limit is given by
[71]:

kBTMolasse = 0.097 · ~Γ2

4∆
I

Isat
(∆� Γ) ,

where ∆ is the detuning of the two beams from the resonance, Γ the width of the transition
and Isat the corresponding saturation intensity10. For vanishing intensities, the temperature
limit is given by the photon-recoil limit,

kBTRecoil = 2π2 ~2

mλ2 ,

which in our case is 3.5µK for 6Li and 0.4 µK for 40K.
The narrow structure of the excited state of the D2 transition (at least for 6Li, see fig. 2.7)

compared to the linewidth of ∼ 6 MHz rules out the implementation of a classical single frequency
molasses: A closed transition is not present and the transition into other Zeeman sublevels leads
to heating11.

A solution is to use the D1-transition, which has the advantage of a larger hyperfine splitting
of the excited state. Unfortunately, the D1-line does not provide a closed transition and therefore
a single frequency molasses is not possible.
To overcome this problem, we can use a two-frequency beam which includes an additional

repumping part (see fig. 2.11). Different from the bright molasses, where the repumper is used
to pump atoms back on the closed transition, the resulting system in our case is known as
a Λ-transition cycle [132, 133] (see embedded diagramm in fig. 2.9). Turning to the dressed
state picture, it can be shown, that the chosen Λ-scheme with the main "cooling" transition
on either F → F ′ = F (6Li) or F → F ′ = F − 1 (40K) involves multiple12 dark-states [135,

9Therefore the initially counter-propagating beams are either of orthogonal linear polarization or opposite
circular polarization [71].

10Compared with the formula given in [71], we assumed a closed transition, setting the Clebsch-Gordoan coefficient
to Cge = 1.

11In case of 40K, a molasses cooling-scheme involving two frequencies (principal and repumper) was implemented
on the D2-line for a small atomic ensemble containing only 5 · 107 atoms, reaching temperatures as low as
15 µK [130, 131]. As will be mentioned later, we reach a similar temperature range with two magnitudes higher
atom number.

12The mentioned transitions contain already at least one dark state even in presence of only one driving transition
[134]. The implementation of the Λ-transition enhances the coherence of the bare states for a special choice of
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Figure 2.9
Illustration of the gray-molasses cooling scheme,
adapted from [137]. The embedded figure in
the left upper corner depicts a Λ transition in
Raman-condition (∆ = 0). In a simplified man-
ner, the dressed state picture includes a dark
|ψNC〉 state, which is not coupled to the light
field and a bright state |ψC〉, whose eigenenergy
is spatialy modulated. Due to motional coupling,
the atom gets transfered into the bright state val-
ley (A). After losing kinetic energy by climbing
the hill, the atom gets optically pumped back into
the dark state (B). Being far detuned from the
excited state, it is effectively never populated.
Repetition of this cycle leads effectively to cool-
ing, similar to the Sisyphus-effect in the bright
molasses.

136]: eigenstates of the atom-light-interaction Hamiltonian that are linear combinations of the
involved Zeeman sublevels of the ground-state with eigenenergy zero. Dark states do not interact
with the light field. The remaining bright states (also linear combinations of the Zeeman levels
in the ground-state manifold) contains a similar potential-modulation as in the case of the bright
molasses scheme. Here the blue-detuning with respect to the excited state in the Λ-scheme is of
special importance. In the blue-detuned case the bright state is light-shifted to positive energies,
thus lying energetically higher than the dark state.
The resulting cooling mechanism, known as gray molasses [137], is a combination of the

classical molasses (i.e. polarization-gradient cooling) and velocity-selective coherent population
trapping (VSCPT) [138]. The mechanism is explained in a simplified manner in fig. 2.9: A
hot atom, initially in the dark state, is primarily transferred into the bright state by motional
coupling in a region of a bright state minimum. Since the energy difference between the bright
state "valley" and the dark state is minimal at this point, the transfer probability is the highest.
Once in the bright state the atom travels along its initial direction "uphill" in the potential
energy evolution before it is pumped back to the dark state with highest probability at the
maximum of the bright state potential13. As previously encountered in the bright molasses
scheme, the atom loses kinetic energy by gaining potential energy over multiple cycles (Sisyphus
effect).

2.5.2 Experimental realization

The resulting gray molasses picture in the dressed states shows that the attribution by cooling
and repumping to the involved transitions is misleading. Nevertheless, we will keep these
attributions to indicate the cooling beam as the the one with higher intensity and the repumping
beam as the one with lower intensity. The implemented transitions are depicted in fig. 2.11a and
fig. 2.11b. For 6Li (40K) the power ratio of principal to repumper is found to be optimal (for
cooling and atom capture efficiency) at a value of 20 : 1 (8 : 1). Regarding the total intensity I,

the detuning δ and therefore increases the number of dark states [114].
13The excited state is effectively never populated, due to high detuning from the common excited-state in the

Λ-scheme.
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Figure 2.10: Performance of the gray molasses (atom number and temperature) of 6Li and
40K for different detunings δ (from [111]). For the current measurement, the atom number of
the CMOT was reduced to 8 · 108 for 6Li and 6 · 108 for 40K. Additionally, the cooling time is
extended in case of 40K to 9ms. The final optimization of the cooling-intensity ramp and the
residual bias compensation leads to slightly lower temperatures than indicated in this figure.

it can be shown that the capture velocity vc of the gray molasses as well as the final equilibrium
temperature Tmol are proportional to the intensity [111],

vc ∼ I/δ2 and kBTmol ∼ I/δ ,

with δ being the detuning from the common excited state (see fig. 2.9). Consequently, at the
beginning of the molasses stage, a higher intensity is required to capture the hot atomic cloud,
while afterwards, the intensity has to be lowered in order to achieve lower temperatures. The
final optimized intensity ramp can be found in the summary in fig. 2.21.

Two important quantities to tune are the relative detuning of the repumper and principal
beam ∆ as well as the common detuning δ, since both set the coherence between the addressed
bare ground states, and therefore define the emergence of dark states. The lowest temperatures
are achieved in the Raman condition, where the detuning ∆ is zero,

∆ = |ωcool − ωrepump| −
(
E|g1〉 − E|g2〉

)
/~ ≡ 0 .

An extensive study of the detuning δ [114, 129] yields the optimum values of δ = 4Γ ∼ 151 MHz
for 6Li and δ = 2.3Γ ∼ 87 MHz for 40K (see fig. 2.10). At these values the atom number is
maximized, while the temperatures are near their minimal asymptotic values. The frequency
shift δ is accounted for within the locking part of the corresponding D1 diode laser and the
switching AOMs (which are also used to ramp down the intensity). The repumping frequency
of the 6Li-molasses beam and the cooling frequency in the case of 40K are created as frequency
side-bands of an electro-optical modulator (EOM ) of either 228MHz or 1286MHz, respectively.
Figure 2.11c shows the implementation in case of 6Li with the corresponding frequencies. In
the particular situation of 6Li, we take advantage of the small frequency difference of ∼ 10 GHz
between the D1 and D2 transition lines, to offset-lock the D1-system electronically on the
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(b) 40K D1-line
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Figure 2.11: Gray molasses setup. (a) and (b) are depicting the transitions used for the gray molasses. In the 6Li-scheme, the non-zero
Raman-detuning ∆ and the two hyperfine ground-states are labeled according to the Λ-scheme in fig. 2.9. (c) shows the 10GHz offset-locking
scheme for 6Li. The EOM creates the "repumping" frequency side-band. The zeroth order of the first D1 switching AOM also passes through
the EOM and is used later on for optical pumping (see sec. 2.6.2). (d) characterizes the temperature dependence of the molasses on parasitic
magnetic fields which influence the light-induced Zeeman-shifts on which the molasses scheme is based. The atom number (measured after a
subsequent optical pumping step) does not vary within error bars.
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2.6 Magnetic Trapping

absorption spectroscopy of the D2-transition [110]14.
The spatial Zeeman splitting created in the molasses should be light induced only, thus any

parasitic magnetic field has to be canceled. Therefore, we use three compensation coils around
the optical table. The scan of the bias in one compensation coil in case of the 6Li molasses is
shown in fig. 2.11d. While the atom number is constant within error bars, the temperature
increases by a factor three from 50 µK to 150µK by having only a small bias of 0.6G present.
After the 5ms long gray molasses step we obtain 4 · 108 atoms of 6Li and 1.4 · 109 atoms of

40K at a usual temperature of ∼ 60 µK and ∼ 20 µK respectively. It remains unclear, why the
reached temperatures are so far from the recoil-limit.

An alternative to the D1 gray molasses, at least for 6Li, is the implementation of an UV-MOT,
which takes advantage of a smaller line-width and therefore a reduced Doppler-temperature
limit [139, 140]15. However, the UV-technique requires a more complicated expensive laser
setup, while in average not reaching better performances than the D1-cooling scheme. Numerous
experiments around the world are now using the gray molasses technique for cooling down other
species than the two presented above [142–146]. In [147] the gray molasses was continued to
further cool the atomic ensemble after it had been loaded into an optical dipole trap.

2.6 Magnetic Trapping

The techniques of magnetic trapping and optical pumping described in this section prepare
the basis for the chapter 3, where we will analyse the quasithermalization of non-interacting
particles in a quadrupole-trap.
Magnetic trapping by a pair of coils in anti-Helmholtz configuration was one of the first

trapping techniques for neutral atoms [148]: The magnetic field is created by having the same
current flowing in opposite directions in the coaxial-arranged coil pair. It is one of the simplest
magnetic trap implementations and it was the first trap in which quantum degeneracy was
realized [149]. The pure setup of a coil-pair in anti-Helmholtz configuration is also referred to as
a quadrupole trap.

The field near the origin O created by a pair of axially aligned coils [150] can be expressed by

B ∼= b ·

 x

y

−2z

 . (2.1)

The geometrical properties of the coil assembly can be summarized in the constant b, describing
the gradient of the magnetic field (in units of G/cm). Atoms with a magnetic moment µ obtain
a potential energy of

E = −µ ·B = −µBgFmF |B| . (2.2)

Thereby µB = e~/2me is the Bohr magneton, gF the Landé factor of the hyperfine state and mF

14It should be emphasized, that the AOM in the locking-path of the D2 systems shifts the locked frequency by
+330 MHz (see fig. 2.7b) compared to the crossover-transition. Thus the first D1-switching AOM in fig. 2.11c
(−110 MHz) together with the fine tuning of the 10GHz-oscillator (∼ 60 MHz) corrects the offset in order to
achieve the cooling marked "cooling" transition in fig. 2.11a.

15The only approach of a narrow line cooling for 40K published so far, can be found in [141]. While the 405 nm
transition has a line-width of 1.2MHz in this case, the blue transition at 323 nm for 6Li has a line-width of
160 kHz only.
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d 

Figure 2.12
Illustration of a coil-pair of radius R and mutual distance 2d
in anti-Helmholtz configuration. Blue lines denote magnetic
field lines. Adapting the geometrical constraint from the
Helmoltz-configuration, where d = R, the gradient-factor b
of eq. (2.1) is in this particular approximation

b = 48
25
√

5
µ0I

R2 ,

taking into account a single winding of radius R.

the number of the Zeeman sub-level, where the atomic state is quantized along the magnetic field.
For the stretched states with the highest mF number the magnetic moment is maximized, being
µ ≡ µB. The potential energy of an atom with magnetic moment µ, which follows adiabatically
the magnetic field near the trap center is given by:

U(r) = µb
√
x2 + y2 + 4z2 . (2.3)

The adiabatic following is important, since the scalar product in eq. (2.2) was simplified in
eq. (2.3) to the simple product of the absolute values of the magnetic field B and the magentic
moment of the atom µ: the magnetic moment of the atom is all the time aligned with the
magnetic field. In the next section we will discuss, which states mF can be trapped in the
magnetic quadrupole potential.

2.6.1 Trappable ground states of 6Li and 40K

Depending on the sign of the magnetic moment and its evolution as a function of the magnetic
field B, some atomic states can be trapped in magnetic minima (low-field seeking states). Other
states (high-field seeking states) follow the magnetic fields towards its maxima. Local magnetic
field maxima in static fields are forbidden by Maxwells equations, hence high-field seeking states
are not trappable by static magnetic fields. Figure 2.13 shows the energy evolution of the ground
states of 6Li and 40K. States with continuously increasing energy as a function of the magnetic
field strength are low-field seeking states.
For 6Li (fig. 2.13a) the ground state 22S1/2 contains four low-field seeking states in the low

bias region. The Zeeman-state |F = 1/2,mF = −1/2〉, is in a trappable low-field seeking-regime
up to ∼ 30 G. With further increasing bias it becomes a not-trappable high-field seeking state.
Up to the turning point, the trap depth16 for this state is only 0.3mK, which is lower than the
achieved steady state temperatures in the experiment. On the contrary |F = 3/2,mF = −1/2〉
16The trap-depth is calculated by the energy difference between the state at zero-field and the given magnetic

field:
T = h

kB
·∆E = h

kB
·
[
E (B = 30 G)− E (B = 0 G)

]
,

where h = 2π~ is the Planck constant and the B-field dependency of E(F,mF , B) can be obtained by the
Breit-Rabi formula or from fig 2.13a.
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Figure 2.13: Zeeman-splitting of the hyperfine-ground states of 6Li (a) and 40K (b). The
energy evolution of each Zeeman-state as a function of the bias field is calculated by applying
the Breit-Rabi formula [151].

is a high-field-seeking state (having a negative-slope in fig. 2.13a) until ∼ 25 G. From the
remaining two states, |F = 3/2,mF = +1/2〉 is not stable against spin-exchange collisions:

|F = 3/2,mF = +1/2〉+ |F = 3/2,mF = +1/2〉 →
|F = +3/2,mF = +3/2〉+ |F = 1/2,mF = −1/2〉+ Ekin .

(2.4)

The released kinetic energy is of the order of the hyperfine splitting (228.2MHz), which
corresponds to ∼ 11 mK. This is sufficient to expel the colliding atoms from the trap. Finally,
the only stable magnetically trappable Zeeman ground-state of 6Li is the stretched state
|F = 3/2,mF = +3/2〉. It is energetically the highest Zeeman state of the 22S1/2 ground state.
For 40K (fig. 2.13b) the picture is different, due to the inverted hyperfine structure: The

hyperfine state with the larger magnetic moment is the energetically lower-lying |F = 9/2〉 man-
ifold. This manifold contains the low-field seeking states |F = 9/2,mF = +9/2〉 and |9/2,+7/2〉
which are important for the further evaporative cooling process. A sample consisting only of this
two Zeeman-states is stable against spin-exchange collisions. However, in case of the presence of
|F = 9/2,mF = +5/2〉 states, spin-exchange collisions of the form

|9/2,+7/2〉+ |9/2,+5/2〉 → |9/2,+9/2〉+ |9/2,+3/2〉

are possible [152]. The heating and loss-rate for this process was studied in [149].
Clearly, in the previously discussed magnetic trapping potential described by eq. (2.1), the

low-field seeking states will experience a resetting force towards the trap center. At the center,
where the magnetic field vanishes, the atomic spin might not follow adiabatically the magnetic
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field and thus the spin might flip to another state. This state in turn might be a high field
seeking state and therefore the atom gets expelled from the trap. This mechanism is called
Majorana losses and will be discussed in sec. 5.2.

2.6.2 Optical pumping

In the presence of the molasses-light, the atoms occupy a dressed state consisting of the two
hyperfine ground states of 22S1/2 for 6Li and 42S1/2 in the case of 40K. Additionally, no magnetic
field is present during the molasses phase. Once the molasses light is switched off, the atoms
are distributed within the two hyperfine-state occupying a random Zeeman-state.
During 470 µs, we switch on a magnetic field of few Gauss (generated by the coils CSP in

fig. 2.1). Once the field is established (after ∼ 400 µs), we apply optical pumping with a σ+-
polarized beam to pump the atoms into the stretched, trappable Zeeman states |F = 3/2,mF = +3/2〉
for 6Li and |F = 9/2,mF = +9/2〉 for 40K.

• For 6Li we use the D1 -transition, since the hyperfine-structure of the D2-line is too narrow
compared to the linewidth (5.9MHz). The main pumping transition is F = 3/2→ F ′ = 3/2. It is
not a closed transition and atoms decaying in the F = 1/2 state are repumped to F ′ = 3/2 by
the second frequency generated in the D1 molasses beam (see scheme in fig. 2.11a). Recycling the
molasses setup, the optical pumping beams are blue-detuned in this case. The spin polarization
pulse is chosen to 50 µs for 6Li.

• For 40K, we use the MOT-light to drive optical pumping on the D2-line. The detuned principal
beam (see fig. 2.8a) drives the closed transition F = 9/2→ F ′ = 11/2 and F = 9/2→ F ′ = 9/2.
While the first transition is closed, and therefore no rempumping is needed, it will lead to heating
once the atom is in mF = +9/2. In the second proposed transition the absorption cycle stops
once the atom reaches mF = +9/2, since no further state can be adressed by σ+-light in F ′ = 9/2.
Meanwhile, atoms initially in the F = 7/2 hyperfine state or atoms which decayed within the
∆F = 0 process, are addressed by the repumping beam and eventually decay into the F = 9/2
state. The principal-beam power is reduced to avoid excessive heating during the pumping process
(for the optimized values see fig. 2.21). Also, the light pulse is applied during the last 70 µs of the
spin-polarization step to reduce the heating.

The slightly different detunings from the usual MOT/D1-transitions can be deduced from
fig. 2.11a, fig. 2.8a and fig. 2.21. The duration of the spin-polarization step should be short,
since the atoms are not trapped during this stage. Experimentally, the shortness is limited by
the switch-on time of the previously mentioned magnetic field. Nevertheless, the power of the
pumping beam can be varied: Figure 2.14 shows the total atom number captured subsequently
in a magnetic trap of a gradient of 150G/cm as a function of the optical pumping intensity. We
fix the total pumping powers in terms of the saturation intensity17 at 2Isat for 6Li and 7Isat for
40K. In fig. 2.14b we observe a continuous increase in temperature by increasing the intensity of
the pumping beam.

2.6.3 Spin-composition test

The trapped spin composition of the 40K cloud can be tested to some extent by decreasing
the magnetic trap gradient b. Indeed, atoms with different spin states have different potential
17For the D1-line of 6Li the saturation intensity is Isat = 7.59 mW/cm2 [128]. For the D2-line of 40K the value is

Isat = 1.75 mW/cm2 [127].
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Figure 2.14: Number of magnetically trapped atoms (blue / green dots) as a function of optical
pumping intensity. In (b) the temperature of the 6Li cloud along the pumping direction is
measured (red triangles) additionally. Both pumping beams have a waist of ω0 ∼ 5.1mm. The
intensity is calculated as peak-intensity, 2P/πω2

0, where P is the total power of the beam.

energies in the magnetic trap. Combining eq. (2.2) and eq. (2.3) regarding the z-direction only:

Etrap-z = µb′|z| = µBgFmFb
′|z| ,

{
Ftrap-z = −µBgFmFb

′ez z > 0 ,
Ftrap-z = +µBgFmFb

′ez z < 0 ,

we will use b′ = 2b to denote the gradient along the strong-confining axis z. The second
expression shows the restoring force of the trap along the z-direction (ez is the unity-vector in
z-dir.). Now, including the gravitational force, we can formulate the following trapping condition
for z < 0:

µBgFmFb
′ > mKg , (2.5)

where g = 9.81 m/s2 and mK is the atomic mass of 40K. Reducing the gradient b′ of the trap
will lead to spilling of the spin states with smaller Zeeman-number mF first. Ideally, spin states
with mF = 5/2 are lost at b′ = 12.8 G/cm, states with mF = 7/2 at b′ = 9.1G/cm and finally at
b′ = 7.1 G/cm, the stretched state mF = 9/2 is not trapped anymore against gravity.
In fig. 2.15a the atom number as a function of the magnetic trap gradient b′ is plotted. In

the experimental sequence, the atoms are first trapped in a confining trap of high gradient of
b′ = 150 G/cm. Afterwards, the gradient is reduced in 100ms to the different gradient-b′ values
and held at this value for another 500ms before a picture is taken. Different from the previously
described ideal picture, the atomic cloud has a non-zero temperature, and therefore obeys the
Boltzman velocity distribution. At a given temperature, the finite size of the created trap
gradient or even the boundaries of the experimental chamber compared to the cloud size lead
to spilling of atoms from the trap before the values discussed above are reached. Additionally,
ongoing evaporation, due to the lowered magnetic gradient (a process, which is performed not
sufficient adiabatically in this case) leads to the washing out of discrete steps in fig. 2.15a. The
complication of the idealized picture allows only a rough ratio estimation of the spin population.
We estimate the proportion of a given spin state by averaging the atom number value in the
vicinity of the corresponding calculated magnetic field gradient. However, it is so far the only
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Figure 2.15: Spin composition analysis for 40K: (a) Example of an "opening" experiment for
40K. Lowering the gradient b′ let the different spin states fall out of the trap against gravity.
Green dotted lines mark the gradients (lower bound) at which the indicated spin-spates are not
held against gravity in the ideal case of zero temperature. (b) Polarization / total atom number
for various repumper / principal proportion (the x-axis denotes the proportion of repumper to
the total beam power in %). The red line is a polynomial fit to the total atom number trapped
in a confining trap of 150G/cm. Green triangles denote the proportion of mF = 9/2 to the
total atom number (in %). The optimum lies at ∼ 90% repumper with ∼ 70% of atoms in the
stretched state.

spin detection method of the relatively hot cloud (∼ 250 µK) in a magnetic trap.
The used spin-polarizing beam is bichromatic (see sec. 2.6.2) and the relative composition

of principal and repumping beam is not obvious. In figure 2.15b this ratio was varied, while
the total power was constant within 30%. Apparently, most atoms are captured having the
majority of 80% to 90% of repumper power in the pumping beam. The spin proportion of 9/2
in the total atom number fluctuates about ±15% not at least because of the above described
difficulties to extract the spin composition. Nevertheless, at the above region of maximally
loaded atom number, about 70% of the atoms are in the stretched mF = 9/2 state.
The optimal spin polarization at this stage is important, since it affects the later RF-

evaporation in the science cell (see sec. 5.3.2). Afterwards, the only precise spin manipulation
can be done once the atoms are loaded in an ODT.

2.6.4 Transport

In cold gases experiments, there are in principle different approaches to transport a cold cloud
from the MOT-region to an UHV-section with better vacuum quality and greater optical access.
The transport can be done optically by moving the focal point of a high-power laser beam
[153, 154], by moving magnetically the trap center of a quadrupole trap [155] or even by a
simple ballistic flight [156]. While the setup of an optical transport is comparably smaller and
easier to implement, an advantage of a magnetic transport is its robustness: Once installed, no
maintenance, like realignment of optics, is needed. Also going along angled trajectories is easily
feasible with magnetic transports.
One realization of magnetic transport consist of a pair of coils mounted on a mechanical
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A B C 

Figure 2.16: Principle of magnetic transport. The cloud is transported from A to C, while
always three coil pairs are operated. This is necessary to keep the aspect-ratio of the trap constant
as well as to allow for smooth switching of the currents. The length of the green arrows indicate
the current direction and strength in each coil. The cloud is attracted towards the center of a
quadrupole trap, which is a superposition of the three traps at each time. For more details see
[111].

translation stage [157–159]. This design demands high mechanical stability and controlled
acceleration behavior of the stage. In the FerMix experiment, the magnetic transport uses a
different technique to avoid mechanical limitations: Twelve fixed pairs of partially overlapping
coils are switched smoothly to move the magnetic trap center towards the science cell. Three
coil pairs are always active at the same time to ensure a continuous movement without changing
the trap aspect-ratio in order to avoid heating of the cloud. Figure 2.16 shows the principle of
the magnetic transport. For a detailed discription of the transport implementation, the reader
is referred to [111].

The transport plate holding the coil assembly is water cooled by a chiller (Termotek P1020 ).
However, running consecutive transport sequences heats up the plate. By construction constraints
the cooling plate is a solid brass-alloy block with a limited number of holes. This creates
unavoidable Eddy-currents and therefore persistent magnetic fields (up to 12ms around the
science cell) depending on the strength of the switched gradient- or bias-fields.
The complete transport sequence takes 5.3 s during which the atoms are guided over a total

distance of 64.7 cm including a 90° turning. Approximately 70% of all 40K and 6Li arrive from
the MOT chamber in the science cell. The clouds are heated18 by ∼ 200 µK.

2.7 Absorption Imaging

In the FerMix experiment, we use absorption imaging to detect the atomic cloud. Therefore,
the atoms are illuminated by a near resonant beam, whose profile is then recorded on a CCD
camera. At the location of the atomic cloud the light is absorbed, which casts a shadow in the
profile of the imaging beam. According to Beer-Lambert’s law, the transmission of a sample
T (x, y) is related to its optical depth OD(x, y) by:

T (x, y) = e−OD(x,y) . (2.6)
18The arriving temperature is difficult to measure by the TOF-method, since the cloud dimensions exceed the

capture region of the imaging system. For longer TOF-times the arriving cloud hits the walls of the science
cell.
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If the probe beam-intensity is below the saturation intensity Isat of the given atomic transition
line, the optical density of the cloud can be approximated as:

ODcloud(x, y) = σn(x, y) , (2.7)

where n(x, y) is the integrated column density along the beam direction z,

n(x, y) =
∫
n(x, y, z) dz , (2.8)

and σ the absorption cross section:

σ = σ0
1

1 + (2∆Img/Γ)2 + (I/Isat)
(2.9)

of the atoms. In eq. (2.9), Γ denotes the linewidth of the imaging transition, ∆Img = ω− ω0 the
detuning of the imaging beam frequency ω from resonance ω0 = 2πc/λ, I the imaging beam
intensity and σ0 the resonance cross section of the used transition. The latter can be expressed
as:

σ0 = C2 · 3λ2

2π . (2.10)

The last expression holds for circular polarized light-transitions, where C is the Clebsch-Gordon
coefficient. For an unpolarized cloud, we average over all possible transitions revealing C2 = 0.4
for 40K and C2 = 0.5 for 6Li [108]. Furthermore, we drop the last term in the denominator of
eq. (2.9) in the approximation of I � Isat.

In the science cell, the cloud is imaged spin-selectively at high magnetic fields. Due to
technical constraints, the imaging light is propagating orthogonal to the magnetic field and
is superimposed with other beams on a polarization beam splitter. As a result, the imaging
light is linearly polarized with the polarization orthogonal to the magnetic field B. Locally, the
polarization p⊥ can be decomposed into an equal superposition of σ+ and σ− light. Figure 2.17
depicts the case of imaging for example a cloud of 40K in the ground state mF = −9/2. Provided
that the splitting of the Zeeman states is larger than the linewidth of the imaging laser (typically
6MHz), only the σ+ part will be absorbed, forming a closed imaging transition cycle with the
excited state mF = −11/2. The scattering cross section is effectively reduced and hence the
squared Clebsch-Gordon coefficient for 40K in this case is C2 = 0.5.
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2.7 Absorption Imaging

2.7.1 Technical realization

The aim of the technical realization of the absorption imaging is to deduce the pure transmission
T (x, y) of the atomic sample. Thus, eq. (2.6) and eq. (2.7) would allow to calculate the integrated
column density n(x, y).

Commonly, three images are necessary for reconstruction of Tcloud(x, y) by absorption-imaging:
In the first image the atoms absorb the imaging beam, hence casting a shadow on the image
at their position. The absorbed light transfers sufficient kinetic energy to the atoms to leave
the imaged area (therefore the absorption imaging is destructive). The second image records
the light reference of the probe beam in absence of the atoms. The third image traces the dark
noise on the camera, also including ambient light not originating from the imaging probe.
In our experiment we use a camera with double-shutter mode option (Pixelfly QE 270XD):

During the electronic readout of the first taken image, the CCD-camera is ready for the exposure
of a second image. This allows for consecutive imaging of either two species or two different spin
states at high magnetic field within one experimental sequence only. Figure 2.18a shows the
image taking sequence: The camera provides three TTL-outputs, "BUSY", "CCD-Exposure" and
"CCD-Readout", signalizing different operation states of the camera [160]. The CCD-Exposure
TTL marks the exposure of the first image texp1 = t2 − t1, which can be set by software (in our
case ∼ 100 µs). The first exposure is followed by a "dead time", tdead = t3 − t2 ∼ 5 µs, during
which no exposure should be done. The ensuing TTL-signal of CCD-Readout can be divided
into two parts, each 88ms long. During the first part tread1 = t4 − t3 the first image, exposed
during texp1, is read out. At the same time the CCD is ready for the exposure of the second
image, texp2 = tread1. The final timing part, tread2 = t5 − t4 is used to read out the previously
taken picture in texp2.
It takes only two triggers of the CCD to collect four images and to reconstruct the cloud

transmission profile Tcloud(x, y): At trigger 1 the image A is recorded. The for the first 80µs
present laser pulse is absorbed by the atoms. The following dead time of the CCD is practically
increased to 11µs. During the first readout a second laser-pulse of 80µs is shone on the camera
to create the reference image B. Since in the double-shutter mode the camera is ready for the
second exposure during the whole readout time of 88ms, we can delay the second pulse which is
much shorter. The delay is important and depends on the cloud temperature: Having absorbed
the first probe-beam pulse, the cloud needs some time to leave the line of sight and therefore
not to appear again on the second laser pulse at a shifted position. The delay is usually set to
60ms.

At trigger 2, the noise / ambient-light images C and D are taken. Taking into account, that
each time the second exposure time is much longer than the first one (∼ 100 µs compared to
88ms), the collected ambient-light differs. As clearly apparent from the images of fig. 2.18a the
longer exposure by ambient light is sufficient to resolve even the layout of the picture edges.

The final transmission (image E) is calculated by normalizing the absorption by the reference
without the noise included:

Tcloud(x, y) = IA − IC
IB − ID

≡ IE , (2.11)

where IA−D are the intensities recorded by the CCD.
The sequence of imaging 40K and 6Li quasi-simultaneously within one sequence is shown in

fig. 2.18b. The procedure is similar to the the one described above, with the only difference, that
the first exposure is used to record all images (absorption, reference and noise) for 40K, while each
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Figure 2.18: Imaging with PCO pixelfly CCD in double shutter mode. (a) Sequence of image-taking steps for absorption imaging of a 40K
cloud. The horizontal time axis is not scaled. Pictures A-D are the bare images collected by the camera, while E is the transmission image of
the cloud, calculated by eq. 2.11. (b) Sequence for double-imaging: 40K and 6Li are imaged consecutively within one sequence.
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second exposure is dedicated to collect the images of 6Li. In contrast to the single-species/-state
imaging, now only three images per cloud are required to reconstruct the transmission-image
(since there is only one noise / background image to collect). Also the delay between the first
light-pulse (of 40K) and the subsequent one (for 6Li) has now to be as short as possible to not
increase the relative TOF between the two clouds.

2.7.2 Calibration of the magnification

The atomic cloud is imaged through a lens system on the CCD. This allows for different
magnification in different experimental regions. In the MOT chamber, where the hot cloud can
extend during TOF over a 1 cm, it is even necessary to demagnify the captured region to image
it entirely on the CCD chip19. One possibility to measure the magnification is by focusing a
target of known size on the CCD and to compare its image to the actual target size. However,
the problem remains that the target needs to be placed near the imaging plane, thus as close as
possible to the imaged cloud. Regarding the dimensions of the vacuum chamber this might be
challenging.
Even if the target measurement delivers a quite accurate first estimate of the magnification,

there is a second possibility to check the magnification by free fall. A cold atomic sample has to
fall in absence of any magnetic fields and its trajectory has to be recorded through time. Such a
cold sample can be obtained after the gray molasses (sec. 2.5) or after some evaporative cooling
in a ODT (sec. 5.3.4). In both cases the presence of magnetic fields, which could trap the cloud
must be suppressed. Switching off magnetic fields would create eddy-currents and therefore
unwanted gradients and acceleration forces.

Figure 2.19 shows the result of a free fall measurement for two different CCDs in our system.
The dashed line shows the free fall with gt2/2 at magnification 1 : 1. Parabolas below this line
correspond to demagnifying imaging lens-systems, while free-fall parabolas above the indicated
dashed line are obtained by magnifying imaging systems.

19The chip of the used Pixelfly QE 270XD has a pixel-matrix size of 1392px× 1024px with a squared pixel size
of 6.45µm. Thus the overall chip-size is ∼ 9 mm× 6.6 mm.
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2.7.3 Image analysis and temperature measurement

From the captured 2D cloud profiles, one can deduce the total atom number and temperature
of the ensemble. The first quantity can be obtained by simply numerically integrating the
profile. For non-degenerate clouds, we can fit a Gaussian function to the profile and integrate
the fit to obtain the atom number and, depending on the confining potential, additionally
the temperature. To decrease computational effort, the 2D-profile can be further numerically
integrated to a 1D-profile:

n(x) =
∫
n(x, y) dy ≡

∑
pixel-raws

ODcloud(x, y)
σ

× pixel-size×magnification . (2.12)

Supposing an harmonically trapped cloud, the profile can be fitted by a gaussian profile,

n(x) = Ae(x−x0)2/2σ2
0

with amplitude A, shifted by x0 and the width σ0. In absence of interactions, the width of the
cloud, 〈∆x2〉 = σ2, will expand with time t according to

σ2(t) = σ2
0 + kBT

m
t2 , (2.13)

where T is the temperature of the cloud (see appendix sec. H.1.1 for a detailed derivation).
Therefore is is possible to determine the temperature by fitting a Gaussian distribution function
to cloud images taken at different TOF times t and by applying the above relation to the series
of fitted widths σ(t).
In case of a non-harmonically trapped cloud (and in absence of interactions), it is necessary

to increase sufficiently the TOF-time, t2 � mσ2
0/kBT , such that the initial shape and width

can be neglected [108]. In this limit a Gaussian-fit can still be used to approximate the cloud
shape, and the temperature can be estimated according to eq. (2.13). For long TOFs t the
temperature can be estimated by

T6Li ≈ 7 · 10−4 ms2/mm2 × σ2

t2
, T40K ≈ 5 · 10−3 ms2/mm2 × σ2

t2
.

2.8 Computer System

The whole experimental machine is controlled by two National Instruments PXI systems which
are connected to a PC. The system is widely expandable, but in our case we use only digital-card
extensions (NI PXI-6533 20 and NI PXIe-6536 ) and analog-output cards (NI PXI-6713 ). The
latter has a 12bit resolution on a voltage range from −10V to 10V. For an easier connectivity,
we use a BNC adapter-card (BNC-2110 ) for the analog channels and a shielded connector-
extension (SCB-68A) which includes screwable wire-to-board connectors. The current drain
should not exceed 10mA per analog or digital channel to ensure reliable control of the complete
card-system.

20The digital I/O card NI PXI-6533 is an old model and not available anymore. It has a voltage TTL-level
output of 5V. The follow-up model NI PXIe-6536 uses the modern TTL-level convention of 3.3V.
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Figure 2.20: Schematic description of the computer control of the experiment. The CCD-
camera is decoupled from the main operating computer and the NI-system. A second computer
handles the CCD-software and hardware once receiving a trigger signal from the NI-system.

We use the programs Cicero Word Generator and Atticus Server developed by Aviv Keshet
at MIT to operate the NI-system [161]. The server / client architecture facilitates programming
of experimental sequences and provides a clear user-interface. Once the sequence is set, it is
uploaded in form of buffers onto the NI-system which outputs the set values inside each buffer
in time order at each clock cycle. Even if the NI-system, being a fully-operational FPGA,
provides its own clock-source, we use an external FPGA (Opal Kelly XEM 3001 ) with variable
clock speed. The variable clock speed allows for different resolution of experimental steps and
therefore also for longer experimental sequences.

To protect the controlling unit from high voltages, for level shifting, to provide higher switching
currents or even to simply avoid unwanted ground-loops, it is necessary to use optocoupling
devices in between the NI-cards and the controlled devices. Each time only moderate switch-
speed is required (0.5µs for TTL or 20µs for analog signals) an optocoupler should be used. In
appendix D few well known industrial test circuits with some modifications are presented for this
reason. Finally fig. 2.20 summarizes the the actual computer setup of the FerMix experiment.

In the scope of this work, an additional device was build, which measures the 50Hz oscillation
of the mains voltage and emmits a trig once a the maximum of the waveform is reached. This
synchronization becomes important for precise measurements, where the magnetic field need
to be controlled up to ∆B = 100 mG (e.g for measurements using the inter-species Feshbach
resonances of 6Li and 40K, which are only few G large [99]). At this level of magnetic field
precision any electrical source running from the mains supply nearby the experiment creates a
perturbation. The only solution to obtain reproducible conditions, is to start the experimental
sequence synchronized to a fixed point of the oscillation waveform of the mains-supply in the
laboratory. A description of the device can be found in appendix G.

2.9 Summary of the Sequence

At the end of this chapter, the reader can find the main starting experimental sequence,
graphically summarized from the MOT-loading step until the final magnetic trap from which
the atoms are magnetically transported to the science cell (fig. 2.21). It should be emphasized,
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that in difference to the previous presentations in fig. 2.8 and fig. 2.7, where some indicated
AOM-frequencies already included the double passage, the AOM frequencies in fig. 2.21 are the
controlling frequencies, and hence always indicating the frequency shift during a single passage.
Table 2.1 summarizes characteristic temperatures and atom numbers after the discussed

experimental stages. The temperatures are measured by successive TOF images. Hence the
expansion velocity, fitted in the integrated 1D-profiles, can reveal two different temperatures.
In the case of the spin-pol step, the asymmetry is clear, since the pumping beam is vertically
aligned and heats the cloud only in one direction. The TOF-images are taken directly after
the optical pumping, thus no time is left for thermalization. The particular case of the striking
difference between the vertically and horizontally measured temperatures of 6Li trapped alone
in the magnetic quadrupole trap will be investigated in the following chapter 3.
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Figure 2.21: (b) Controlling parameters of the experimental sequence from MOT loading to the magnetic trapping in the MOT chamber -
part one: AOM-controlling values for 6Li. Additionally to closing shutters and blocking the light by the corresponding AOM switches, we
detune the cooling light from resonance and turn down the RF-power of the double-path AOMs. This in order leaves the TA-chips for some
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Table 2.1: Average temperatures and atom numbers in single and dual-species operation in the MOT chamber at different experimental stages.
The atom number after the molasses is omitted, since during the cooling the atoms are occupying a dressed state, which is a linear combination
of the two hyperfine ground states. By switching off the molasses beams, the state is projected in one of the hyperfine states. For the detection
of the total atom number, the cloud needs to be pumped into the F = 3/2 -state of the 2S1/2 ground state in case of 6Li or the F = 9/2 -state
of the 4S1/2 ground hyperfine state for 40K (see fig. 2.7 and fig. 2.8) during the subsequent spin-pol step. The temperature in the magnetic
trap is recorded after a 100ms hold-time in a trap gradient of b′ = 150G/cm, which is the gradient at the beginning of the transport sequence.
The temperatures are measured as expansion velocities of integrated 1D-profiles in each direction of the image through TOF and can thus can
differ. The particular difference of 90 µK in case of 6Li trapped without 40K in the quadrupole trap will be investigated in the next chapter 3.

6Li 40K
without 40K with 40K with 6Li without 6Li

Molasses 68± 3 µK 60± 3 µK 32± 4 µK 22± 4 µK

Spin-pol. 143µK / 283± 10µK 135µK / 278± 6 µK 38 µK / 75± 4 µK 28µK / 74± 3 µK
(4.6± 0.6) · 108 (4.5± 0.7) · 108 (1.3± 0.2) · 109 (1.4± 0.1) · 109

Mag.-trap 230 µK / 316± 8 µK 270µK / 260± 8 µK 287 µK / 270± 4 µK 291µK / 264± 7µK
(4.6± 0.4) · 108 (3.7± 0.6) · 108 (1.3± 0.2) · 109 (1.4± 0.1) · 109
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CHAPTER 3

Quasithermalization of Non-Interacting Particles in a Quadrupole
Trap

Thermalization is a well known process in nature: Two local thermal reservoirs, which are
brought to contact thermalize towards a common temperature through collisions or radiative
transfer. After some time, the ensemble reaches equilibrium and retrieves a classical Boltzmann
distribution, well described by one single parameter - the temperature T .
However, sufficient interactions between the particles to exchange kinetic energy seem un-

avoidable to reach the new equillibrium. But what happens if the gas is collisionless? Does such
a gas relax towards a steady state after an external excitation, even in absence of collisions? If
it does, how will that steady state be described? In an isotropic harmonic trap and in absence
of collisions, an excited breathing mode of the cloud would perform an undamped oscillation
without directional change. However, for a harmonic trapping potential, it was shown by Kohn
in [162] that even in presence of interactions, the center of mass of a particle cloud would
oscillate endlessly and therefore the imparted energy would not be redistributed within the
entire ensemble.
Owing to the large control over their physical properties, cold gases experiments are the

predestined systems for the observation of principles of statistical physics and thermodynamics
in particular [163].
In our experiment, the fermionic nature of the gas allows us to mimic the situation of a

collisionless system: According to the Pauli exclusion principle, there are no s-wave collisions
in a spin-polarized fermionic gas. In this chapter we will study the equilibrium properties of
this collisionless ensemble inside a linear trapping potential as implemented by a magnetic
quadrupole trap. The following results will show that a partial thermalization and energy
redistribution takes place, even though the particles in the cloud do not interact. The underlying
physics is given by the complexity of the single particle trajectories inside the trapping potential.

After a short motivation and the presentation of few preliminary observations (sec. 3.1), we
will first develop a theoretical model describing the energy redistribution within the quadtupole
trap in absence of interactions after an ideal excitation (sec. 3.2). We further discuss the
corresponding experimental results and compare them with a more adjusted model (sec. 3.4).
Even though the quadrupole trap is a well-established experimental tool in cold gases experiments
[164], the following presented detailed study - as well theoretically as experimentally, extends to
our knowledge the findings of cloud dynamics in the quadrupole potential that have so far been
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y 

Figure 3.1
Creating a magnetic gradient field with a pair of
coils in anti-Helmholtz configuration: The same
current is running in opposite direction in the
coils. The inlay shows a slice made in the func-
tion of the potential energy. In this projection,
the potential is linear as a function of chosen co-
ordinate. The cloud is depicted more compressed
in z-direction, emphasizing the twice larger gradi-
ent factor in this direction. For a more detailed
discription of the magnetic field see sec. 2.6 of
the previous chapter 2.

published.

3.1 First Experimental Observations

The first insight of an absence of energy redistribution in a cloud of 6Li below a given temperature
in our experiment was presented in [111] (page 104): The experimental observation of two
different expansion velocities for a thermal cloud of 6Li appears as a contradiction to the coupled
equation of motion in the quadrupole potential at first sight. To create a clear picture of the
first experimental observation (also regarding the upcoming experiments), we will review briefly
some experimental steps, which were described in chapter 2.
After the gray-molasses cooling stage (sec. 2.5), the atomic cloud obeys the Boltzmann

distribution law, showing a symmetric expansion during TOF (table 2.1). Therefore, we
attribute to the whole ensemble a given temperature (∼ 60 µK for 6Li). In order to trap the
cloud, we pump the atoms in the stretched Zeeman state by shining an optical pumping-beam
along a given z-axis, which corresponds to the symmetry axis of the quadupole trap used later
on. Obviously, the cloud gets kicked and heated up, due to the recoil-energy of the absorbed
photons during the 50µs long pumping process – mostly along the direction of the pumping
beam (up to 280 µK, see table 2.1). Subsequently, a gradient field of 40G/cm is switched on
and adiabatically increased during 500ms to a value of 150G/cm. This field is created by a pair
of coils operated in anti-Helmholtz configuration: same currents flowing in opposite directions
(fig. 3.1).

The potential energy of an atom, which follows adiabatically the magnetic field created by
the coil assembly is given by the quadrupole potential in eq. (2.3),

Upot(r) = µb
√
x2 + y2 + 4z2 .

From this expression, the symmetry properties of the trap are clearly visible: The confinement
in z-axis direction is twice as large as in x- or y-direction.
In the first experiment, a cloud of 6Li was loaded alone in the magnetic trap and trapped

44



3.1 First Experimental Observations

Tver 
Thor 

Te
m

pe
ra

tu
re

 [µ
K

]

200

400

600

800

Hold-time [s]
0 0.5 1 1.5

(a) 6Li alone

Tver 
Thor 

Te
m

pe
ra

tu
re

 [µ
K

]

200

400

600

800

Hold-time [s]
0 0.5 1 1.5

(b) 6Li and 40K

Figure 3.2: (a) 6Li alone is captured in the magnetic trap for different hold times. The
expansion velocity in vertical (z-dir. / red triangles) and in horizontal (x-dir. / blue circles)
direction is measured by TOF experiments for each wait time in the trap. The expansion is
expressed in effective temperatures Tver and Thor. (b) The same experiment is repeated with 40K
in addition being present in the trap. The inter-species collisions equilibrate the vertical and
horizontal temperatures after t ≈ 1.5 s. In both situations the magnetic gradient is compressed
linearly from 40G/cm to 135G/cm in the first 450ms. This adiabatic compression increases
the temperature linearly during the first 0.5 s.

there for different hold times (fig. 3.2a). For each hold time the expansion is measured by taking
a series of TOF-images. For each expansion direction, vertical (z-axis along the quadrupole
coils) and horizontal (x-axis), we attribute a distinct effective 1D-temperature by

1
2kBTi = 〈p

2
i 〉

2m . (3.1)

It is important to emphasize, that the (effective) temperatures Ti defined above and treated
later on, do not fulfill the well defined notion of a isotropic temperature T : Given a Boltzmann
distribution, the temperature is defined to be a isotropic quantity over the whole ensemble (heat
bath). Conversely, distributions with different effective temperatures Ti are non-Boltzmann.
In fig. 3.2a, 6Li alone does not thermalize towards a complete Boltzmann distribution: The

temperatures between the two axis differ by ∆Ti ≈ 400 µK. On the other hand, the same
experiment performed with 40K being present in the magnetic trap additionally, shows a
different behavior (fig. 3.2b): After 1.5 s of hold time the temperature of 6Li measured in the
two orthogonal directions equilibrates towards a common value of T ≈ 450 µK. In this case, we
have indeed a thermal Boltzmann distribution.
The shown behavior can be qualitatively explained by taking into account some trapping

and collision properties of 6Li. First, following the discussion of sec. 2.6.1, the ground state
22S1/2 of 6Li contains only one stable trappable low field seeking state – the stretched state
|F = 3/2,mF = +3/2〉. Since we are working with Fermions, Pauli exclusion forbids s-wave
interactions. Furthermore, p-wave collisions are suppressed below T ∼ 6 mK for 6Li, which
applies to our temperature range. Considering this, we can assume that there are no collisions
in the case of fig. 3.2a, where only 6Li is trapped. Regarding the case of fig 3.2b, where 40K
is added, the collisions allowing thermalization are provided by the newly introduced species.
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3 Quasithermalization of Non-Interacting Particles in a Quadrupole Trap

The collision process results in a complete thermalization of the 6Li cloud towards one common
temperature after 1.5 s.

On a single-particle level, the result of fig. 3.2a seems surprising, since the equations of motion
in x- and z-directions are coupled. The total energy, i.e. the single-particle Hamiltonian, is
described by:

H (r,p) = p2

2m + U
(
r
)

= p2

2m + µb
√
x2 + y2 + 4z2 , (3.2)

where the first term is the kinetic and the second the potential energy of the particle. It is
important to emphasize, that due to the spin-polarized sample of 6Li and the suppression
of p-wave collisions in the relevant temperature range of ∼ 300 µK − 500 µK the system is
collisionless: It poses a perfect mechanical system. Consequently, the equations of motion can
be derived to

m
d2x

dt2 =− µbx√
x2 + y2 + 4z2 ,

m
d2z

dt2 =− 4µbz√
x2 + y2 + 4z2 ,

(3.3)

where the equation for the y-coordinate was dropped, due to its similarity to the one in x-
direction. Compared to the case of a pure harmonic trapping, where the equation of motion
decouple and the trap is clearly showing a non-ergodic (separable) behaviour1, the different
directions are coupled in our case of the quadrupole potential. Due to the non-separable
Hamiltonian in eq. (3.2), the observed absence of complete thermalization and energy exchange
between the axial direction and the horizontal plane is not obvious.
The absence of interactions allows to solve eq. 3.3 for a large particle number and average

over the statistical ensemble using a manageable amount of computing power. This was done
in [118] to explain results similar to fig. 3.2a and the following experimental findings. After
proposing a more systematic experiment in the next section, we will explain theoretically the
thermal decoupling of the directions z and the xy-plane by studying the phase space distribution
function f (r,p, t).

3.2 Experimental Concept

To study the evolution of an imparted momentum in the cloud, we propose a rather simple
experiment (fig. 3.3): The cloud is in thermal equilibrium initially and therefore described by
the Boltzmann distribution,

f0(r,p) = 1
Z
e−βH(r,p) , (3.4)

with the fugacity Z = exp(βµc), where µc is the chemical potential, β = 1/ (kBT ) the usual
temperature coefficient and H (r,p) the single particle Hamiltonian from eq. (3.2). The fugacity

1In a harmonic potential U =
∑

i
mω2

i x
2
i /2, the equation of motions (in absence of interactions) are simply

m
d2xi
dt2 = −mω2

i xi .

The equation for xi does not couple to other directions xj (i 6= j). The particle stays on a given trajectory
without discovering the whole phase space (we call the underlying Hamiltonian in the harmonic case separable).
Thus the harmonic trap is considered as non-ergodic.
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3.2 Experimental Concept

𝒇(𝒙, 𝒑𝒙) 

𝒙 𝒑𝒙 
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B 

C 

Figure 3.3
Concept of the "kick"-experiment – simpli-
fied illustration with only one momentum
px and one space coordinate x. The intial
thermal Boltzmann distribution A gets ide-
ally shifted to B by the momentum qx. The
question: How will this shifted distribution
evolve in time? The experimentally feasible
kick will also effect a spatial displacement
of the cloud, and eventual heating, which
will lead to an overall spread and a spacial
shift of the distribution in position space
(case C).

Z can be used to normalize the distribution function f0(r,p) either to 1, as a probability
distribution, or to the total atom number2.

At the time t = 0, we excite the cloud by giving the same momentum q to each atom. As a
result, the distribution function is shifted in phase space:

f(r,p, t = 0) = f0(r,p− q) . (3.5)

The question to investigate will be: How does the shifted distribution evolve in the quadrupole
potential? In this way, we should understand the origin behind the previously mentioned
decoupling of the thermalization directions. Therefore, the final (t → ∞) momentum re-
distribution of the imparted momentum q is of particular interest.

The sudden momentum transfer is an idealized procedure. In the experimental procedure
discussed later on, the momentum transfer will take some time τ during which the cloud will be
also displaced in position space by δ, which is equivalent to an increase in potential energy. We
will first discuss the momentum redistribution in case of the ideal kick situation and present
the experimental results, before we will come back to the issue of the realistic kick situation in
sec. 3.4.4.

2In the following we will normalize the distribution function f0 to the total atom number N throughout this
manuscript, hence

Z =
√

2
π

(
m

~2

)3/2
β−9/2 (µb)−3 1

N
,

which is, as expected, a dimensionless quantity. For consistency, we will use the normalization factor of
(2π~)−3 while integrating over the momentum space. However, in upcoming calculations, where dimensions
play no role, we will omit this factor to shorten the notation.
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3 Quasithermalization of Non-Interacting Particles in a Quadrupole Trap

3.3 Analytical Calculation of the Time Evolution of the Momentum

For a small imparted momentum |q|, we can expand the initial kicked distribution from eq. (3.5)
in a Taylor series3 up to second order in q:

f(r,p, t = 0) ≈ f0(r,p)
{

1− β

2mq2 + β

m
(p · q) + β2

2m2 (p · q)2 + . . .

}
= f0(r,p) α0(r,p) .

(3.6)

The solution of the collisionless Boltzmann equation describes the evolution of the density
distribution in time:

∂f(r,p, t)
∂t

=−
{
p

m
· ∂r −∇U (r) · ∂p

}
f(r,p, t)

=− L̂f(r,p, t) ,
(3.7)

with the initial condition at t = 0 satisfying eq. (3.6). Some of the properties of the Liouville
operator L̂ are discussed in section I.2. We assume the time evolving distribution f(r,p, t)
being of a similar product form as the initial condition:

f(r,p, t) = f0(r,p) α(r,p, t) . (3.8)

Since the initial Boltzmann distribution f0(r,p) is a stationary solution, L̂f0 = 0, equation (3.7)
breaks down to

∂tα(r,p, t) = −L̂α(r,p, t) , (3.9)

with the the initial condition α(r,p, t = 0) = α0(r,p). A formal solution of the last equation
can be given in form of

α(r,p, t) = exp
(
−tL̂

)
α0(r,p) . (3.10)

In the experiment, there is no direct access to measure the density distribution function, but
rather averaged quantities such as position 〈x2

i 〉 or momentum 〈p2
i 〉 can be deduced from cloud

images. Knowing the underlying phase space distribution, the expectation value of a physical
quantity G(r,p) is calculated by

〈G〉 =
∫

d3r d3p f(r,p)G(r,p)

=
∫

d3r d3p f0(r,p)α(r,p)G(r,p)

= 〈G| α(r,p)〉 .

(3.11)

3We have to use the multi-dimensional Taylor expansion up the second-order term, which is given by:

f(q) ≈ f(0) + ∂f

∂q

∣∣∣∣
0
· q + 1

2
∑
ij

qi
∂2
ijf

∂qi∂qj

∣∣∣∣
0
qj .

Hence the second order term is given by:

∂2
ijf

∂qi∂qj

∣∣∣∣
0

=
(
β2

m2 pipj −
β

m
δij

)
.

48



3.3 Analytical Calculation of the Time Evolution of the Momentum

In the last line, by means of the solution-ansatz (3.8), the expectation value is re-interpreted as
a scalar product (see appendix I.1), which will simplify the further calculation. With eq. (3.6)
and the time evolution from eq. (3.10), the momentum expectation value results in

〈p2
i 〉t =

〈
p2
i

∣∣∣∣ e−tL̂ α0

〉
=
〈
p2
i

∣∣∣ 1
〉(

1− β

2mq2
)

+ β

m

〈
p2
i

∣∣∣∣ e−tL̂ (p · q)
〉

+ β2

2m2

〈
p2
i

∣∣∣∣ e−tL̂ (p · q)2
〉
.

(3.12)

The second term is odd in the momentum coordinates pj . Taking into account the symmetry
properties of L̂ and the operator expression exp(−tL̂), the integral in eq. (3.11) and therefore
the second summand vanishes (appendix I.3). For the last term in eq. (3.12), we can expand
the scalar product to distinguish odd and even terms in momentum:

β2

2m2

〈
p2
i

∣∣∣∣ e−tL̂ (p · q)2
〉

= β2

2m2
∑
j,k

qjqk

〈
p2
i

∣∣∣∣ e−tL̂ (pj pk)
〉
.

With similar argumentation, terms with j 6= k are odd in momentum coordinates and the
corresponding integrals will vanish. With the remaining terms, j = k, we rewrite the last term
of eq. (3.12) as

β2

2m2

〈
p2
i

∣∣∣∣ e−tL̂ (p · q)2
〉

= 1
2
∑
j

q2
j

〈
βp2

i

m

∣∣∣∣∣ e−tL̂
(
βp2

j

m

)〉
,

and the momentum width simplifies to

〈p2
i 〉t =

〈
p2
i

∣∣∣ 1
〉

+ 1
2
∑
j

q2
j

〈
βp2

i

m

∣∣∣∣∣ e−tL̂
(
βp2

j

m

)
− 1

〉
. (3.13)

Initially at t = 0−, before the kick, the cloud is not excited and the expectation value of the
momentum is given by 〈p2

i 〉0− =
〈
p2
i

∣∣ 1
〉
. Following the previous description of the ideal kick, at

t = 0 each atom receives a momentum q, thus 〈p2
i 〉0 = 〈p2

i 〉0− + q2
i . Hence, setting t = 0 imposes:

q2
i

!= 1
2
∑
j

q2
j

〈
βp2

i

m

∣∣∣∣∣ βp
2
j

m
− 1

〉
, ⇔

〈
βp2

i

m

∣∣∣∣∣ βp
2
j

m
− 1

〉
!= 2δij . (3.14)

The last identity allows to recast eq. (3.13) to

〈p2
i 〉t = 〈p2

i 〉0− + 1
2
∑
j

q2
j θij(t) , (3.15)

where the matrix θij(t),

θij(t) =
〈
βp2

i

m

∣∣∣∣∣
[
e−tL̂ − 1

](
βp2

j

m

)〉
+ 2δij , (3.16)

describes the distribution of the imparted momentum q on the average momentum 〈p2
i 〉 in all

three directions. In sec. I.4, we show that θij is an even function of time t and more importantly,
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3 Quasithermalization of Non-Interacting Particles in a Quadrupole Trap

that the distribution matrix is symmetric:

θij(t) = θji(t) . (3.17)

This already reduces the number of matrix elements, which have to be determined, to six.

3.3.1 Analytical prediciton of the steady state

To predict the final steady state in the limit of t→∞, where we expect the excited cloud to be
in equilibrium, we take advantage of the Virial theorem. Applied to our case of a quadrupole
potential (n = 1, see sec. I.5) it states:

2〈Ekin〉 = 〈Upot〉 , (3.18)

i.e. the expectation value of the kinetic energy Ekin is twice as large as for the potential energy
Upot. Thus the expectation value of the total energy right after the kick (i.e., the momentum
transfer q) can be expressed as:

〈Etot〉0 = 〈Etot〉0− + q2/2m = 3〈Ekin〉0− + q2/2m , (3.19)

where, t = 0− denotes the moment in time directly before the kick, similar to the discussion
preceding eq. (3.15). On the other hand, the Virial theorem also holds for the total energy of
the steady state at t→∞, so that eq. (3.15) can be expressed in multiples of the kinetic energy:

〈Etot〉+∞ = 3〈Ekin〉+∞ = 3〈Ekin〉0− + 3
2
∑
ij

θij(∞)
q2
j

2m . (3.20)

Considering energy conservation, we can compare the energy after the kick, eq. (3.19), to the
total energy of the steady state to deduce the condition

∑
i

θij(∞) = 2
3 . (3.21)

Additionally to eq. (3.17), this condition reduces the number of unknown matrix elements of θij
to three. Taking into account the rotational symmetry of the quadrupole potential around the
coil-axis z, it is justified to assume, that there should be no difference between an imparted
momentum in x- or y-direction. Hence, we will set for the steady state

θxx(∞) = θyy(∞) . (3.22)

Together with eq. (3.17), only two parameters, ν1 and ν2, remain undetermined in the momentum
distribution matrix:

θij(∞) =

 ν1 1/3− ν1 + ν2/2 1/3− ν2/2
1/3− ν1 + ν2/2 ν1 1/3− ν2/2

1/3− ν2/2 1/3− ν2/2 ν2

 (3.23)

It turns out to be difficult to solve the problem strictly analytically. We take advantage of
the collisionless nature of the system and its simplicity in order to perform computational phase
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Figure 3.4
Time evolution of the expectation value of
〈p2
i 〉t for each direction ( i = x, y, z) af-

ter a momentum kick q = (1 , 0 , 0 ) in
x-direction. The curves are results of com-
putational simulations of the phase space
trajectories of 10 4 particles. Clearly, the
x-dir. (black line) gets heated up, but a
part of the energy gets redistributed into the
y-dir. (blue line), in that way equilibrating
the expectation values 〈p2

x〉∞ = 〈p2
y〉∞ after

sufficient time. The kinetic energy contri-
bution in z-dir. (green line) is not affected
by the kick.

space trajectory calculations for 104 particles, by applying the equations of motion from eq. (3.3)
to each of them4. For an initial kick in x-direction, q = (1 , 0 , 0), we record the expectation
value of the momentum squared 〈p2

i 〉t after each time step, i.e. simulating the unknown evolution
of eq. (3.15). The result of one such computational run is presented in fig. 3.4. Clearly, a
steady state is reached after some time, and while 〈p2

z〉 remains unchanged, the imparted kinetic
energy gets distributed equally among the x- and y-directions. The first condition of unchanged
z-momentum squared directly yields ν2 = 2/3 and the second observation of 〈p2

x〉∞ = 〈p2
y〉∞

for the unity x-kick reveals ν1 = 1/3. To obtain all the missing information, a simulation of a
kick along the x-direction is sufficient and an additional simulation for an excitation along the
symmetry-axis z is not necessary.
Finally the predicted ideal kick transfer coefficients are:

〈p2
x〉∞ = 〈p2

x〉0− + 1
6 q

2
X and 〈p2

z〉∞ = 〈p2
z〉0− for a x-kick qX = (qX , 0 , 0)

〈p2
z〉∞ = 〈p2

z〉0− + 1
3 q

2
Z and 〈p2

x〉∞ = 〈p2
x〉0− for a z-kick qZ = (0 , 0 , qZ)

(3.24)

We only mentioned the relations between the x- and z-directions explicitly, since these will be
the observation-axis in the experimental realization later on.

3.4 Experimental Study of the Momentum Transfer

To verify the momentum redistribution behaviour and the decoupling of the momentum transfer
between the xy-plane and the z-symmetry axis, we need to transfer instantaneously a momentum
q to the atomic cloud, which is previously in thermal equilibrium.
There are two ways to excite a magnetically trapped cloud in the experiment: Either by

shining in resonant light or by magnetically distorting the trap itself. The first variant led to
uncontrollable losses from the magnetic trap: The applied near-resonant beam depumped the
6Li-atoms from the trappable streched state to untrapped Zeeman states and led to excessive
heating for stronger momentum-excitations. Also, the current experimental setup around the
MOT-chamber, where the kick experiments are performed, does not allow for an independent
excitation beam within the xy-plane.
4For a detailed description of the applied numerical tools and further performed simulations see [118]
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Figure 3.5
Trap displacement by the push coil of the
quadrupole trap formed by the MOT coils
CMOT (see fig. 2.1). The position of the
trap center is recorded by imaging in situ
a cloud of 6Li, which is adiabtically dis-
placed by continously (∼ 300ms) turning
on variable current values in the push coil.
In contrast to the kick measurements per-
formed later on, the cloud has sufficient
time to follow the displaced trap center. The
measurement proves that the trap center can
be displaced by multiples of the cloud size
r0 from eq. (3.26).

We therefore use the second possibility of a magnetic "kick"-realization, which will be described
in the following sections.

3.4.1 Magnetic kick

For a magnetic kick of the trapped cloud, we use two different coils in the MOT chamber: The
cloud is initially trapped in a quadrupole trap with strong gradient b′ (gradient value along z,
b′ = 2b) created by the MOT coils (see fig. 2.1). We use the single Push coil of the transport to
kick the atoms in x direction and the pair of spin-pol coils CSP in Helmholtz configuration to
perform a kick in z-direction. In this way, the magnetic trap center is displaced by an offset
bias B0 (see eq. (2.1)) leading to

Bshifted-grad. = b ·

 x

y

−2z

+B0 . (3.25)

As shown in figure 3.5, the trapped cloud and therefore the center of the quadrupole potential
can be displaced by up to 2.4mm in x-direction without changing the z-position of the cloud
by using the push coil. Similar displacement is possible with the Helmoltz-configuration of
the spin-pol coils. We compare these displacements with the extension of the cloud in the
quadrupole trap, which can be approximated by

r0 = kBT/µBb . (3.26)

For a 6Li cloud with a temperature of T = 300 µK, confined in a trap with a gradient factor
of b′ = 2b = 120 G/cm, the extension of the cloud is r0 ≈ 0.74 mm. Hence following the result
from fig. 3.5, the cloud can be displaced by more than three times the estimated cloud size.

Other useful orders of magnitude for scaling the kick process are the average atomic velocity,

v0 =
√
kBT/mLi ≈ 0.64 m/s , (3.27)

and the time it takes an atom to travel through the extension r0 of the whole trapped cloud,

t0 = r0/v0 ≈ 1.16 ms . (3.28)

52



3.4 Experimental Study of the Momentum Transfer

U1D 

z 

Ⅰ 

U1D 

z 

Ⅱ 
δz 

U1D 

z 

Ⅲ qz 

Figure 3.6: Illustration of the magnetic kick procedure. For simplification, the situation is
depicted in 1D. (I) Initially, the cloud is trapped in the minimum of the linear potential U1D(z).
(II) During a short duration τ , the center of the trap is shifted by δz using the spin-pol coil pair
(CSP in fig. 2.1) in case of a z-displacement. Sitting on the gradient slope, the cloud acquires a
momentum qz. (III) The offset-bias is switched off after the kick time τ and the cloud evolves
with momentum qz in the initial trap geometry.

Figure 3.6 illustrates the kick procedure: During a short time τ the initial trapping potential U
created by the magnetic field B is displaced by an constant magnetic offset-field B0. According
to eq. (3.25), this results in a shift of the trapping minimum by an amount of

δ = − (B0x , B0y , B0z/2) /b (3.29)

in position space. In order to avoid unwanted oscillations through the trap center during the
displacement and therefore in turn a non uniform force acting on the atoms, we need to ensure
the condition δ > r0. Without crossing the new displaced zero, the cloud experiences a force
given by −∆U(r − δ), which is either

Fδx = −µBb êx , or Fδz = −2µBb êz

for a pure displacement in x-direction or z-direction respectively.

The displacement duration τ ranges from 100 µs to 1.2ms depending on the applied kick
direction or rather displacement coil(s) in use. Ideally, the kick time τ is short enough, so that
the displacement of the cloud d (not to be confused with the trap displacement δ > r0) in the
shifted potential can be neglected in comparison to the cloud extension:

dx ≈
µBb

m

τ2

2 6 r0 , or dz ≈
2µBb
m

τ2

2 6 r0 . (3.30)

Using the estimated cloud size from eq. (3.26), the upper bound for the kick time is given
by τx < 1.6 ms and τz < 1.2 ms. This condition is similarly expressed by comparing the
displacement time to the characteristic time-scale from eq. (3.28), τ 6 t0.

After the time τ , the shifting offset bias-field B0 is switched off. The acquired momentum
during the kick phase is thus roughly estimated by qx ∼ µBbτ and qz ∼ 2µBbτ . In section 3.4.4,
we will discuss a more accurate estimation of the acquired energy during the described kick
procedure.
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Figure 3.7: Experimental sequence for the "kick"-measurements. The sequence follows the
steps described in fig. 2.21. We first prepare a well thermalized sample of 6Li through collisions
with the simultaneously trapped 40K-cloud (I-III). After depleting 40K from the trap (IV) by
shining in resonant light, we perform the actual kick measurement (V-VI). For the experimental
evaluation, we perform TOF-measurements directly after the kick and after a wait time of 500ms.
This allows the determination of the imparted velocity by the kick and of the temperature increase
in the newly reached steady state.

3.4.2 Experimental sequence

The experimental sequence to test the predicted energy redistribution and direction decoupling
from eq. (3.24) is illustrated in fig. 3.7. The depicted experimental steps follow the usual
experimental procedure summarized in sec. 2.9.
We start with 6Li and 40K loaded in the magnetic quadrupole trap which is created by the

MOT-coils (I ). To obtain a well thermalized cloud of 6Li through inter-species collisions (see
discussion in sec. 3.1 and temperatures in table 2.1), we hold both clouds for 700ms in the
compressed trap (II ). Afterwards, we lower the trapping gradient within 250ms to a value at
which the final kick experiment will be performed (e.g. b′ = 80 G/cm in III ). At this gradient,
we hold both species for additional 250ms, before 40K gets removed from the trap by shining in
a resonant light pulse (IV ). After this procedure, we usually obtain a cloud of 6Li with ∼ 1 · 108

atoms, well thermalized at a temperature slightly below 300 K 5. In step V , the actual kick
is performed: Asking the maximal current value from the power supplies we close either the
MOSFET or the IGBT, which are used as switches for the current in the push- or spinpol-coil
respectively, for a short duration of τ = 0.3 ms− 1.2 ms.
The current increase in the coils as well as the decrease after a 1ms kick are depicted in

fig. 3.8. It should be emphasized at this point, that the depicted current curves are measured
5The atom number and temperature for 6Li are measured after step IV in a quadrupole trap gradient of
b′ = 150 G/cm. In case of adiabatic compression / decompression from a gradient b′i to a value of b′f , the
temperature changes from Ti to Tf according to

Tf/Ti = (bf/bi)2/3 ,

due to phase space density conservation within an adiabatic process.
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Figure 3.8
Switching dynamics of the coils performing
the kick. For the magnetic kick, we con-
tinuously ask the maximum current from
the power supplies and just switch a MOS-
FET (spin-pol coils) or an IGBT (push coil)
during the kick time τ . For the diagram,
we switch on at 0ms and off after 1ms and
record the current in the coils by using a cur-
rent transducer. Knowing the maximal cur-
rent, we rescale the diagram with the maxi-
mal recorded displacement (see fig 3.5). The
push coil, which is used for x-kicks, shows
a slower overall switching performance, by
taking up to 230 µs to switch off.

by a current transducer attached around the power supply cables leading to the coils. As will
be described later on, it does not represent the real magnetic field. So far, we can only claim
that kicks along the x-direction performed by the push coil need to have a duration of at least
300 µs, to allow for a displacement larger than r0 (eq. (3.26)) – a limitation imposed by the slow
rise of the current in the particular coil.
We record the initial temperature Tini and velocity vini by measuring the expansion and the

center position of the cloud directly after the kick through TOF-images. By adding a 500ms
wait step (VI ), we permit the cloud to reach a steady state6 and record the final temperature
Tf and velocity vf again by taking successive TOF images. According to sec. 2.7.3, we integrate
the 2D-absorption images either along the x-axis to analyze the 1D-z-profile or along the z-axis
to obtain the 1D-x-profile and its evolution. Thus, we deduce two 1D-quasi temperatures and
the velocities along each direction.
A major experimental problem are eddy currents supported by the steel chamber itself and

by the large metal surface of the optical table underneath the experimental chamber. The
duration of the remaining magnetic fields depends of the amplitude of the switched gradient
or constant magnetic fields and is estimated to be up to 5ms. This time scale is comparable
to the executed TOF times for 6Li and thus, images show a deformed cloud shape due to
inhomogeneous temporary Zeeman shifts, which in turn complicates the evaluation (i.e. fitting a
Gaussian profile). Higher TOF-times at the given temperature (∼ 300 µK) show a diluted cloud
and hence a low detectivety, due to the low mass and therefore higher expansion velocity of
the 6Li-gas (compared to a cloud of 40K at the same temperature). Since we are not interested
in the atom number as an observable, we use a highly saturated imaging probe-beam with a
saturation parameter of s = 24 to image the cloud7. This results in a power-broadening of
the absorption resonance from the natural linewidth of the used D2-line (of Γ ≈ 6 MHz) to
Γ′ = Γ

√
1 + s = 30 MHz. The broadening is found to be sufficient to smear-out the temporary

spatially-varying Zeeman shifts, created by the eddy currents over the extension of the cloud.
However, considering the kick procedure during which the quadrupole trap gets displaced by

an additional offset bias, we have to take into account the unavoidable effect of eddy currents as

6See the next section, where fig. 3.10 justifies the choice of the wait duration.
7The increased saturation parameter corresponds to an increase of the imaging beam power from usually 100µW
to 1.2mW.
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Figure 3.9
Estimation of the influence of eddy cur-
rents on the kick displacement for the push
coil (x-kick). The solid lines are blind es-
timates of the displacement evolution, re-
lated to the build up of parasitic magnetic
fields around the MOT chamber for a kick of
1ms and 0.5ms. The estimation is built on
the recorded current evolution in the push
coil from fig. 3.8 (here as dashed / dot-
ted lines). Surely, the induced fields will
first work against the current increase (thus
δK < δ) and afterwards sustain the rapidly
descending field (τK = τ + τtd + τE > τ).

well. This might be crucial especially for x-displacements, since according to fig. 3.8 the current
rises slowly towards the maximum value in the particular case of the push coil. Figure 3.9
shows an estimated picture of the eddy currents affecting the x-kick displacement through
time: First the surrounding conducting surfaces try to compensate the increase of the magnetic
field, hence the reached maximal displacement δK will be smaller than assumed. Similarly, the
switching-off time will be extended over the intrinsic turn down time τtd of the coil towards
τE. In total, we will have underestimated the kick time τK > τ and overestimated the achieved
displacement δK < δ. Unfortunately, it is not possible to measure the influence and the form of
the eddy-current induced magnetic field distortion at the place of the atoms directly, notably
at this time scale. However in sec. 3.4.4, we will calculate the transferred energy as a function
of the kick displacement δK and therefore infer the magnitude of the realistically performed
displacement in presence of the parasitic magnetic fields.
At the end, we mention the peculiarity of the line of sight of the imaging system in fig. 2.1

in the MOT chamber: While the kick directions are well aligned with the x and z-axis, the
imaging plane is turned by 45° around the z-axis. Consequently, for x-kicks we observe along a
rotated direction the redistribution of the energy in the xy-plane. It should be noted, that under
these circumstances, the the dimensions need to be rescaled by a factor of

√
2 to determine the

kick velocity.

3.4.3 Experimental results

Figure 3.10 shows the evolution of the center-of-mass position as well as the transformation of
the cloud width σ through time after a kick in x-direction performed by the push coil. As already
indicated by the preliminary results from sec. 3.1 and suggested by the numerical simulation
in fig. 3.4, the oscillations of the center of mass are damped and the cloud reaches a steady
state after ∼ 60 ms. The fitted decay time by exp(−t/τdecay) varies for different kick durations
between 10ms to 30ms. Hence the expected wait time of 500ms before recording the steady
state 1D-temperatures (mentioned in fig. 3.7) is largely sufficient.

In the x-kick situation presented in fig. 3.10, the z-position of the cloud center is not affected,
as justified by symmetry arguments. We observe a similar behavior in case of a z-kick, where the
oscillations are restricted to the z-center-of-mass position only. Regarding the cloud width after
TOF in the depicted x-kick-case, we see a clear spread of the x-width σx after few oscillations,
resulting in a higher momentum-spread. Therefore, we expect a temperature increase in the
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Figure 3.10: Cloud oscillation after performing a kick in x-direction with the push coil. The
main figure (a) shows the damped oscillation in x-position of the center of mass of the cloud
through time, performed in a trap of a gradient b′ = 80G/cm. By contrast, there is barely any
movement on the z-axis. The embedded figure presents the corresponding evolution of the cloud
width σ. Center-of-mass position and width are recorded after a TOF of 1ms. On the left side,
the decay time (b) and the oscillation period (c) as a function of the performed kick time τK are
depicted. The last two figures are deduced from measurements in a gradient of b′ = 150G/cm.

x-direction. In contrast, the width σz along the orthogonal direction is only affected right after
the kick, but stabilizes at a slightly smaller width (1.8mm at the kick start to 1.6mm at the
end). This partial cooling effect will be discussed in greater detail further on in the text.
Fig. 3.10 verifies experimentally, that the cloud relaxes towards a new steady state, despite

the absence of collisions. The only acting force is due to the confining linear potential and
there is no further correlation between the single particles. But yet the rethermalization effect
is purely statistical and is based on the dephasing of the single-particle trajectories as they
oscillate in the potential.

We further studied the steady state temperature as a function of the acquired kick momentum.
According to the theoretical prediction from eq. (3.24), the relation to test is summarized by

〈p2
i 〉∞ = 〈p2

i 〉0− + αX/Z i · q2
X/Z ⇔ 1

2kB∆Ti = αX/Z i ·
q2
X/Z

2m , (3.31)

where we used eq. (3.1) to convert kinetic energy into an effective temperature for one degree of
freedom. The capital lettersX or Z in the index indicate the kick direction, e.g. qX = (qX , 0 , 0),
while the following lower case i = x, z marks the detection direction of the redistributed imparted
momentum qX/Z . To work in dimensionless units and to have a better overview over the
magnitude of the imparted momentum and temperature increase, we divide eq. (3.31) by the
initial temperature of the cloud:

∆Ti
T0i

= αX/Z i ·
(

qX/Z√
mkBT0i

)2
= αX/Z i · η2

X/Zi . (3.32)

In this way the kick momentum qX/Z is expressed in units of the average atomic velocity v0
from eq. (3.27), η = qX/Z/(mv0).

The relation in eq. (3.32) translates to the recorded experimental quantities from fig. 3.7 for
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Figure 3.11: Momentum transfer measurements for x-kicks. Figure (a) and (b) depict each a
measurement for the temperature increase / decrease in x and z-dir. as a function of the kick
strength η. Thea kicks are performed in x-dir. in a particular trap gradient of b′ = 80G/cm and
b′ = 155G/cm correspondingly. The dashed lines are fits according to eq. (3.34). The rightmost
plot (c) summarizes the fitted parameters αX i for measurements performed in different gradients.
As before, blue color tones correspond to the x-dir., while the z-dir. is represented in green
colors.

example in the case of a kick in x-direction by

∆Ti
T0i

= Tfin i
Tini i

− 1 and ηXi =
√

m

kBTini i
(vinix − vfinx) , (3.33)

where Tini and vini are the temperature and velocity recorded directly after the kick is performed,
while Tfin and vfin are recorded after a 500ms wait time, when the cloud reached the new steady
state. Even though we supposed to start from a thermalized cloud of 6Li, there might be a small
discrepancy between Tinix and Tini z, which leads to slightly different ηXx and ηXz coordinate
for the same kick strength.

Figure 3.11 shows the result for a x-kick performed in different trap gradients b′: The figures
(a) and (b) depict two examples of kick measurements in a gradient of b′ = 80 G/cm and
b′ = 155 G/cm. Each temperature, Tfin and Tini, is deduced from 10 different TOF-times (for
TOFs in between 1.5ms and 3.2ms), whereby each TOF is repeated 8 times. The linear fit,
either for the center position as a function of time or for σ2(t2) as described by eq. (2.13), yields
the velocity and temperature respectively and the corresponding error. We fit the parabolic
function from eq. (3.32) with an additional offset a,

∆Ti
T0i

= a+ αX i · η2
Xi , (3.34)

which accounts for residual heating sources during the 500ms wait time, which are not kick
related (e.g. parasitic light sources or current fluctuations in the coils). The value of a is not
relevant for the later evaluation (as it is found to be of a magnitude smaller than α).
The same measurement is performed in different magnetic trap gradients. Each time we

observe clear decoupling between the kick-direction x and the z-axis. Only for the lowest trap
gradient of b′ = 80 G/cm, we witness a minor cooling effect in z-dir. with increasing kick
strength ηX (fig. 3.11 (a)). The last diagram (c) in fig. 3.11 summarizes the fitted kick transfer
factors αX for all the utilized gradients. Following the discussion of sec. 3.3, the theoretical
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Figure 3.12: Momentum transfer measurements for z-kicks. Similar to fig. 3.11, the left figure
shows a measurement for a z-kick performed in a trap of gradient b′ = 120G/cm, while the
right one summarizes the corresponding fit-parameters αZ i along x and z, for kicks along z
performed in different trap gradients.

energy redistribution (3.24) does not depend on the trap gradient b′. Interpreting the observed
gradient dependency as the influence of eddy currents during TOF, we can average over the
recorded factors to derive the energy transfer coefficients for the x-kick:

x -kick: ∆Tx
T0x

= (0.68± 0.13) · η2 ,
∆Tz
T0z

= (−0.02± 0.06) · η2 . (3.35)

It is important to emphasize once again, that the deduced 1D-temperatures are not classical
temperatures of a Boltzmann distribution: The final, steady state cloud shows two different
expansion velocities in x and z-direction after the kick and hence an isotropic temperature in
the sense of a Boltzmann distribution can not be attributed. However, in terms of kinetic energy
we can attribute two different quasi-temperatures to the cloud.

The corresponding results for the z-kick are presented in fig. 3.12. We observe again a clear
decoupling between the kick direction and the orthogonal axis x. In difference to the previously
discussed x-kick situation, we always observe pronounced cooling for increasing kick strength on
the orthogonal direction – for all gradients b′, the fitted coefficients αZx < 0. The corresponding
averaged transfer coefficients are:

z -kick: ∆Tx
T0x

= (−0.19± 0.06) · η2 ,
∆Tz
T0z

= (0.55± 0.1) · η2 . (3.36)

We attribute the pronounced cooling to the imperfection of the magnetic-kick performed by the
spin-pol coil pair. Regarding the error bars, the cooling effect becomes negligible at gradients
above b′ = 100 G/cm.

Apart from a more pronounced cooling effect in the z-kick situation, we observe quantitatively
very well an anisotropy in the energy redistribution in both kick cases. This behavior suggests a
well approximated decoupling of the symmetry axis z and the xy-plane of the trapping potential,
even though the trapping potential itself is non separable (see eq. (3.3)). Numerical simulations
show a slight cooling effect as well, but only on the order of αXz ≈ αZx ≈ −0.006 [118]. We
attribute the more pronounced cooling in the z-kick-case to cloud distortions during switching-off
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of the magnetic field gradient before TOF, since the axial gradient b′ is twice as large as along
the x- or y-axis.

Clearly, the experimentally observed coefficients are not in agreement with the (ideal) theoret-
ical predictions of eq. (3.24), where the z-transfer coefficient is αZz = 1/3 and the x-coefficient
αXx = 1/6. In order to investigate this contradiction, we have to find the right estimation of
the transferred energy during our particular kick procedure, which will be the subject of the
next section.

3.4.4 Realistic kick estimation

As stated in sec. 3.2 and has become apparent in the description of the kick procedure in fig. 3.6,
we do not transfer the same momentum q to each single atom. Rather an average energy, kinetic
and potential, is transferred to the cloud during the described kick process. Still holding on
to the ideal prediction developed in sec. 3.3, we can reformulate eq. (3.24) as a dependence
on the imparted energy rather than as a function of the transferred momentum. In order to
achieve this, we will have to determine the relation between the average acquired total energy
〈∆Ekick〉 during the kick and the kick momentum 〈q〉, which being an easily accessible quantity
is measured directly in the experiments performed in sec. 3.4.3. Once this relation is established
for our kick process, the rewritten redistribution relations (eq. (3.31)) in terms of imparted total
energy,

1
2kB∆Ti = αX/Z i ·

q2
X/Z

2m ⇒ 1
2kB∆Ti = αX/Z i · 〈∆Ekick(qX/Z)〉 = α′X/Z i ·

q2
X/Z

2m ,

will account as well for the imparted potential energy and allow an estimation of the performed
cloud displacement during the kick.

Acquired average momentum

In the displaced trap (during the time τ) the acquired average momentum q is calculated
accordingly to eq. (3.11) by:

〈q〉 =
∫

d3r d3p f (r,p, τ) p =
∫

d3r0 d3p0 f0 (r0,p0) p(τ,p0, r0); . (3.37)

Instead of determining the phase space distribution f (r,p, τ) in the displaced trap, we will
assume only short excitation times τ and perturbatively develop the momentum coordinate
through time in the displaced potential:

p(τ,p0, r0) ≈p0 + τ ∂tp+ τ2

2 ∂2
t p

=p0 + τ Fδ + τ2

2
1
m

(p0 ·∇r) Fδ .
(3.38)

Thereby the acting force is given by the displaced trapping potential,

Fδ = −∇r U(r − δ) . (3.39)
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Due to symmetry reasons, the integral over p0 f0 (r0,p0) vanishes. Thus, the average transferred
momentum is linear in τ :

〈q〉 = τ

∫
d3r0 d3p0 f0 (r0,p0) Fδ . (3.40)

The linear dependence on the excitation time τ is not surprising, since even in the rough
estimation of the imparted momentum at the end of sec. 3.4.1 by 〈q〉 ∼ µbτ , the transferred
momentum scaled linear with the kick time.

Acquired kinetic energy

Proceeding similarly to the estimation of the imparted average momentum in the average trap,
we can calculate the average kinetic energy:

〈Ekin〉 =
∫

d3r0 d3p0 f0 (r0,p0) p(τ)2

2m

=
∫

d3r0 d3p0 f0

{
p2

0 + 2τp0Fδ + τ2
(
F 2
δ + p0

m
(p0 ·∇r) Fδ

)}
.

(3.41)

In the last step we inserted the developed momentum expression from eq. (3.38) and kept only
terms up to second order in τ . The first term represents the expectation value of the kinetic
energy in the unshifted trap. In the second term, we will introduce the Liouville operator,
eq. (3.7), to replace the spacial derivative

L̂− F0∂p0 = p0
m
·∇r , F0 = −∇r U(r) . (3.42)

Since f0 (r0,p0) is a stationary solution of the Liouville operator, we can use the identity shown
in eq. (I.6) to rewrite∫

d3r0 d3p0 f0
p0
m

(p0 ·∇r) Fδ =
∫

d3r0 d3p0 f0

(
p0
m
·∇r

)
(p0Fδ)

= −
∫

d3r0 d3p0 f0 (F0∂p0) (p0Fδ)

= −
∫

d3r0 d3p0 f0 F0Fδ .

Putting it all together, the expectation value of the kinetic energy is given by:

〈Ekin〉 = 〈Ekin 0〉+ τ2

2m

∫
d3r0 d3p0 f0 (r0,p0) Fδ (Fδ − F0) . (3.43)

In case of zero displacement, δ = 0, the kinetic energy remains unchanged and there is obviously
no heating.
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Acquired potential energy

For the expectation value of the potential energy, we will develop the displacement r, similar as
it was done for the kinetic energy and the momentum p in eq. (3.38):

r(τ,p0, r0) ≈ r0 + τ ∂tr + τ2

2 ∂2
t r

= r0 + τ
p0
m

+ τ2

2
Fδ
m

.

(3.44)

Inserting this evolution in the potential energy U (r(τ)), we can further develop the potential
around the unperturbed energy U(r0). Keeping only terms up to second order in τ , we obtain
the approximation (see appendix-sec. I.6 for more details):

U (r(τ)) ≈ U(r0) + τ
p0
m
∂rU(r0) + τ2

2

{
Fδ
m
∂rU(r0) +

(
p0
m

∇r

)2
U(r0)

}
. (3.45)

The average acquired potential energy is calculated through

〈Epot〉 =
∫

d3r0 d3p0 f0 (r0,p0)U (r (τ,p0, r0)) . (3.46)

Inserting the previously discussed evolution of U (r(τ)) from eq. (3.45), the first term, U(r0),
will represent the average potential energy in the unshifted trap, while the second term, which is
linear in p0, will vanish throughout the integration over momentum. Therefore, the transferred
potential energy shows only a second order dependency on the kick time τ , similar to the case
of the kinetic energy in eq. (3.43).
Once again, introducing the Liouville operator through the substitution of eq. (3.42), we

obtain ∫
d3r0 d3p0 f0

(
p0
m

∇r

)2
=∫

d3r0 d3p0 f0

{
L̂

(
p0
m

∇r U(r0)
)

+ 1
m

(
∇r U(r0)

)2}
.

Applying L̂ on the stationary solution f0 (r0,p0) through the scalar product property shown in
eq. (I.6), the first summand vanishes. Thus, the potential energy in eq. (3.46) results in

〈Epot〉 = 〈Epot 0〉+ τ2

2m

∫
d3r0 d3p0 f0 (r0,p0) F0 (F0 − Fδ) . (3.47)

Acquired total energy and relation to average momentum

Combining the results of the estimated acquired kinetic and potential energies from eq. (3.43)
and eq. (3.47), the increase in energy 〈∆Ekick〉 through the kick procedure yields

〈∆Ekick〉 = τ2

2m

∫
d3r0 d3p0 f0 (r0,p0) (F0 − Fδ)2 . (3.48)
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The idealized kick picture deals with the average momentum 〈q〉 (eq. (3.40)), which can be
interpreted as kinetic energy

〈q〉2

2m = τ2

2m

{∫
d3r0 d3p0 f0 (r0,p0) Fδ

}2
, (3.49)

obtained by each single atom. Following the motivation at the beginning of this section, we
are interested in the relation of the ideally estimated kick momentum (3.49) and the imparted
energy (3.48). Indeed, since in the experiment we measure the initial cloud velocity right after
the kick and consequently set this velocity into relation to the acquired heating, we need to find
the transfer factor between the imparted momentum and the imparted total energy.
In both integrals above, we can evaluate the momentum integration. Together with the

normalization of f0 (r0,p0) through the fugacity Z, we obtain:

εδ = 〈∆Ekick〉
/(
〈q〉2

2m

)
= 4π

(βµb)3

∫
d3r0 e

−βU(r0) (F0 − Fδ)2
/{∫

d3r0 e
−βU(r0)Fδ

}2

(3.50)
In the present approximation, the adjustment factor εδ depends solely on the displacement δ
and not on the kick duration τ . The integrals are evaluated numerically for different x and
z-kicks, by displacing either in x-dir. by δX = (δ , 0 , 0) or in z-dir. by δZ = (0 , 0 , δ). The
results are multiplied by 1/6 or 1/3, for a x-kick or for a z-kick correspondingly, according to
the ideal kick relations from (3.24), resulting in the corrected transfer factors:

α′Xx = 1
6εδX , and α′Zz = 1

3εδZ . (3.51)

The new transfer factors α′Xx/Zz incorporate the relation between the (also measured) momentum
of the cloud transferred through the kick and the entirely transferred energy, which includes
also the previously neglected potential part.
Figure 3.13 shows the transfer factors α′ as a function of the displacement δ in mm for

the different trap gradients b′ applied in the corresponding experiments. For the z-kick, the
experimental value of α′Zz = (0.55± 0.1) from eq. (3.36) is, within error bars, in very good
agreement with the transfer factors for all displacements larger than δ > 0.5 mm.
In case of the x-kick, fig. 3.13b suggests that the large transfer factor found in eq. (3.35),

α′Xx = (0.68± 0.13), can be justified only for displacements smaller than δ 6 0.5 mm. Indeed,
recalling the discussion at the end of sec. 3.4.2, where the influence of parasitic magnetic fields
on the kick displacement was estimated (see fig. 3.9), we assumed already smaller displacements
than indicated by the push coil current value. Now we can tell, that the displacement δ realized
experimentally is below the estimated cloud extension of r0 ≈ 0.74 mm (see sec. 3.4.1 and
fig. 3.6). During the kick we transferred both, potential and kinetic energy to the cloud rather
than momentum solely. Remarkably, in the realized displacement range the two transfer factors
get adjusted around a value of ∼ 0.5: While the pure decoupling model distributes the energy
in the entire plane in case of a x- or y-kick, therefore leading to a transfer factor αXx = αZz/2
(see eq. (3.24)), the weaker confinement of the quadrupole potential along the x- and y-axis
(b = b′/2) favors a larger potential energy transfer compared to the z-kick in the performed
experiment.

The gradient dependence of the α′X/Z-coefficients in fig. 3.13 is much less pronounced than in
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Figure 3.13: Corrected kick transfer factors α′Zz (a) and α′Xx (b) according to eq. (3.51) as a
function of the trap displacement δ in mm for the different corresponding experimental gradients
b′. The dashed straight lines and the green / blue colored regions indicate the experimentally
measured transfer factors and the corresponding error bar regions from eq. (3.36) and eq. (3.35).
The gray regions mark the approximate extension of the cloud, r0 ≈ 0.74mm.

the experiment. Thus the recorded deviation of the transfer factors for different trap gradients
b′ in fig. 3.11 and fig. 3.12 (c) is rather attributed to the eddy current imperfections during the
final switching of the quadrupole trap before TOF than to differently acquired potential energy
contributions for different gradients.
In conclusion we should point out, that even though the momentum transfer factors of the

ideally kicked system needed to be adjusted to explain the experimental results, due to the
imparted potential energy, the physics of the energetically decoupled symmetry axis z from
the transverse xy-trapping plane in the quadrupole potential remains unchanged and was well
reproduced by the experimental findings.

3.5 Conclusion

In summary, this chapter treated the thermalization of a cloud in a magnetic quadrupole trap in
absence of interactions. Indeed, in the quadrupole potential a excited cloud of non-interacting
spin-polarized 6Li fermions relaxes towards a steady state. Unlike a Boltzmann distribution,
this equilibrium state is not described by an isotropic temperature anymore, but rather by
two distinct effective temperatures along the symmetry axis z and the orthogonal xy-plane of
the trapping potential. We experimentally observe the decoupling between these directions
after a magnetic kick of the cloud. Either the imparted energy is redistributed within the
xy-plane, in case the kick direction was within the plane or we observe a spread of the momentum
distribution along the (trapping) symmetry-axis only, provided that the kick was performed along
this axis. We call this observation a quasi-thermalization effect, since a classical thermodynamic
equilibrium is only achieved within the xy-plane.
The observations are well described by a theoretical model, taking into account realistic

excitations in the experimental setup. However, a completely analytical derivation of the
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3.5 Conclusion

momentum transfer in eq. (3.24) can be the subject of further theoretical work8. A possible
approach could be to explore the role of the entropy in this system. Indeed, since the cloud is
collisionless the entropy is a conserved quantity. Besides, ensembles of non-interacting particles
provide an example of generalized Gibbs ensembles as studied in [165].

The results of this section in conjunction with the interpretation of the system as harmonically
trapped Weyl-fermions, which will be the subject of the next chapter (see sec. 4.1), are published
in [166].

8We remind, that at the end of sec. 3.3, we used the result of a numerical simulation to deduce the coefficients
of the momentum transfer matrix θij from the final analytical result in eq. (3.23).
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CHAPTER 4

Quantum Simulation in the Quadrupole Potential -
Spin-Orbit-Coupling in a Non-Interacting Gas

We mentioned in the introduction (ch. 1), that nowadays ultra-cold gases experiments serve as
tunable simulation tools for a wide range of otherwise not accessible systems. In this chapter,
we will show how a experimental setup can serve for this purpose in two particular cases.

In the first example, we will revisit the properties of magnetically trapped non-interacting
spin polarized 6Li atoms in a quadrupole potential. With a particular canonical mapping this
system can be interpreted as a harmonically confined ensemble of non-interacting massless
particles (sec. 4.1). A second more elaborate example will allow us to study a non-Abelian
potential in form of a spin-orbit coupled (SOC ) system.

4.1 Simulation of Massless Harmonically Trapped Non-Interacting Particles

The peculiarity of the experimentally realized single particle Hamiltonian from eq. (3.2),

HLi (r,p) = p2

2m + µb

{ 3∑
i=1

γ2
i x

2
i

}1/2

with γ1 = γ2 = 1 and γ3 = −2 , (4.1)

to exclude any form of interaction term, allows for a canonical mapping to an analogous system.
Following the slightly changed notation convention above, we are defining new position and
momentum coordinates {Xi, Pi}, exchanging the previously attributed roles of the phase space
coordinates:

Xi = c
pi
µbγi

and Pi = −1
c
µbγixi . (4.2)

The newly introduced constant c represents an arbitrary velocity scale and adjusts the dimen-
sionality of the new coordinates. We recall that the above transformation is canonical, because
the new coordinates inherit the same Poisson-bracket relation as the original coordinates xi and
pi,

[Xk, Pl] = [xk, pl] = i~δkl .
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4 Quantum Simulation in the Quadrupole Potential - SOC in a Non-Interacting Gas

Inserting the canonical mapping into eq. (4.1) reveals the transformed Hamiltonian,

Hm=0 (R,P ) = c · |P |+ k0
2
∑
i

γ2
iX

2
i , k0 = (µb)2

mc2 . (4.3)

The first term describes the kinetic energy of a massless particle traveling at a constant velocity1
c, while the second term corresponds to an anisotropic harmonic trapping potential with
frequencies ωi = γi

√
k0/m along the directions Xi. A peculiarity of the massless particle in a

harmonic trap, compared to a massive particle in the same trapping situation, is manifested in
the first term of eq. (4.3): While a massless particle moves at constant velocity c its massive
harmonically trapped counterpart would rather oscillate at a constant frequency.
Due to this canonical mapping the studied system of an ensemble of massive particles in a

quadrupole potential is equivalent to the case of massless particles confined in an harmonic
trapping potential2. We can now translate our findings directly on the second case, by inverting
the role of momentum and position.

The performed (ideal) momentum kick of the 6Li-cloud corresponds to a spatial displacement
of the massless particle ensemble. The different equilibrium temperatures of the cloud, Ti =
〈p2
i 〉∞/mkB, will translate into final widths of the spatial distributions, k0γi〈X2

i 〉∞.
Transferring the observed dynamics of 6Li in the quadrupole potential, we can conclude that

the displaced massless ensemble will not oscillate forever, but rather converge to a steady state.
This behavior conflicts with the physics of a massive particle, which once excited in a harmonic
potential will oscillate forever on a given trajectory in the harmonic trapping potential.
The steady state of the massless particle ensemble, described by the position spread 〈X2

i 〉∞
along the three spatial directions, will show a decoupling of the symmetry axis Z from the
XY -plane: If the initial displacement excitation is performed in X or Y -dir. the ensemble will
relax towards an distribution with increased spread within the XY -plane,

〈X2〉∞ = 〈Y 2〉∞ > 〈X2〉t=0 ,

without influencing the Z-direction.

The analogy can be pushed further, by considering the atomic spin, which does not necessarily
follow the magnetic field adiabatically. The general Hamiltonian describing an atom with
magnetic moment µ = µσ̂ in this setup is given by (see eq. (2.2))

HMag. general (r,p) = p2

2m − µ σ̂ ·B (r) , (4.4)

where σ̂ is a vector consisting of Pauli-matrices and Bi = bγixi. Contrary to the previously
presented case of eq. (4.1) (or following the discussion preceding eq. (2.2)), the second term
1We recall the relativistic energy-momentum relation,

E =
√

(pc)2 + (mc2)2 ,

for a particle with momentum p and mass m. In this formulation, c represents the speed of light. For a
massless particle, only the first summand remains.

2A first trapping of quasi-particles by an external potential was purposed in [167] as an application on quantum
dots.
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above does not a priori assume adiabatic following of the magnetic field by the atomic spin.
We can still use the canonical mapping from eq. (4.2) obtaining the spin-including version of
eq. (4.3),

HWeyl (R,P ) = c σ̂ · P + k0
2
∑
i

γ2
iX

2
i , k0 = (µb)2

mc2 . (4.5)

The particular form of the first term corresponds to the kinetic energy of a massless Weyl
particle (see for example [168]). Weyl particles were introduced as massless solutions to the
Dirac equation [169]3 and provide a description for spin 1/2 matter fields. However, in the
particular form as written down above, Weyl fermions are described as low energy excitations of
electrons in crystalline structures (Dirac semimetals) obeying a linear dispersion relation around
so-called Weyl point [170]. The observation of this excitation spectra is currently a hot-topic in
solid state physics and material sciences [171–173].
Using the Heisenberg picture, we derive the following two equivalent equations for the time

evolution of the spin-observable in addition to the previously discussed behavior of momentum
and position coordinates:

σ̇ Mag.-general = 2µ
~

(σ̂ ×B) ⇔ σ̇Weyl = 2c
~

(P × σ̂) . (4.6)

The first equation describes the coupling of the spin to the magnetic field B in the classical system,
while the canonical mapping of the same equation describes the coupling of the momentum
P to the spin of the Weyl particle. We remind ourselves of the previously mentioned effect of
Majorana losses: If the classical spin of an atom does not follow adiabatically the magnetic field
(for example at the trap center of the quadrupole trap, where the magnetic field vanishes and
the potential slope changes the sign), the spin might flip to a not trappable state and the atom is
lost from the trap. Now in analogy, we can state that if the rate of change of the Weyl-particle’s
momentum P is too fast, the spin will not follow adiabatically the momentum and the helicity
of the Weyl-particle will not be conserved. A changed helicity suppresses back scattering of the
particle from potential wells and leads to 100% transmission of the trapping potential. This
effect is known as the Klein paradox [174]: Originally describing electron-tunneling through an
infinitely large potential barrier, it applies in a similar way to massless particles, which tunnel
through a barrier by flipping to negative energy states (thus changing the helicity). So far, the
only existing experimental realization of the Klein-paradoxon was achieved in trapped 40Ca+
ions [175]. Ref. [176] proposes to observe the Klein-paradoxon in a setup of graphene-layers.
The relation between Majorana losses and the breakdown of adiabatic following between

momentum and the spin of a Weyl-fermion opens up new possibilities to study an otherwise not
accessible system.

4.2 Spin-Orbit Coupling

In recent years, the topic of spin-orbit coupling (SOC ) particularly attracted the attention of the
cold-gas community, proposing the design and observation of so far not directly accessible and
tunable systems. The initial ("historical") motivation was to mimic various quantum phenomena
3The Weyl particle was introduced through Hermann Weyl in 1929 on the attempt to find an unified theory for
gravity and electromagnetic fields.
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Figure 4.1
Aharonov-Bohm experiment in a non-Abelian vector field
from eq. (4.9) [183]. We imagine a particle with the state
↑= (1 , 0 ) traveling from A to C along two different paths
– green, through B1 and red, passing B2. On the green path,
the spin is manipulated first by σ̂y and subsequently by σ̂x,
while on the red path the action is inverted. This yields a
phase shift of π at the end between two particles travelling
on the two distinct trajectories. Practically, this could result
in interference effects in this kind of non-Abelian vector
fields.

which involve charged particles in an external magnetic field, like the fractional quantum Hall
effect [177, 178]. Since today’s typical cold gas experiments are performed with neutral atoms,
the first approach was to design an implementation, which could be interpreted effectively as an
action on a charged particle. Following this path, the action of the Coriolis force on a stirred
BEC can be interpreted similarly to the action of a magnetic field forcing a charged particle to
travel along a circular trajectory by means of the Lorentz force. However, the maximal reachable
rotation frequency in such a system is limited by the trapping confinement [179]. To overcome
this limitation, a light-induced coupling scheme, including a Raman transition was proposed in
[180], which showed the same appearance of vortices as the previously actively stirred cloud
[181]. The realized Hamiltonian included a coupling of the atomic spin to its external motion,
giving rise to a band-structure-like dependence of the eigenenergy on the particle’s momentum
[182]. This effect is called spin-orbit coupling. In difference to the coupling of the electron’s spin
to its angular momentum (leading to the fine structure of the atomic spectrum), in the present
case the spin of the atom (as an "internal" degree of freedom) couples to its "external" motion.
A more general form of SOC is known as the Rashba-Dresselhaus effect (based on the work

of G. Dresselhaus [184] and E. I. Rashba, see [185] and earlier publications), which arises in
two-dimensional semiconductors and explains phenomena related to topological insulators [186,
187]. Currently, this research area is of great interest, since it serves for technical realizations in
the domain of spintronics [188], a promising approach to increase computational power in the
future. The Hamiltonian describing these systems contains the Rashba-Dresselhaus SOC-term,
which recasts to the common form [189]

Unon-Abelian = κ (pxσ̂x + pyσ̂y) , (4.7)

with the Pauli-matrices
σ̂x =

(
0 1
1 0

)
and σ̂y =

(
0 −i
i 0

)
(4.8)

and the coupling-strength parameter κ. The entire Hamiltonian (including the kinetic energy)
can be brought to the form [190]

H ∼ 1
2m (p−A)2 with A = −~κ (exσ̂x + eyσ̂y) , (4.9)

where ex,y are unit-vectors in x- or y-direction. The last Hamiltonian is similarly used to
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4.3 Realization of Non-Abelian Spin-Orbit-Coupling

describe a charged particle in a magnetic field represented by a vector-potential A. Notably, in
our case the two components of the vectorfield do not commute,

[σ̂x, σ̂y] = 2iσ̂z = 2i
(

1 0
0 −1

)
, (4.10)

thus A is referred to as a non-Abelian vectorfield. The phase acquired by a particle traveling
in such a vector field is trajectory dependent and can be exploit in an Aharonov-Bohm-like
experiment [183] (see fig. 4.1). Non-Abelian vector fields are also used for the discription of
magnetic monopoles [191, 192]. For the sake of completeness, we mention that the associated
artificial magnetic field of a non-Abelian potential A is obtained by

B = ∇×A+ 1
i~
A×A .

As mentioned in the beginning, there are multiple proposals of implementing non-Abelian SOC
in ultra-cold gases [193]: Most of them suggest a realization either by driving Raman transitions
in geometrically arranged beam configurations [194–196] or by tailored lattice implementation
[197]. In interacting 2D-Bose-Einstein condensates, the non-Abelian SOC promises a rich ground
state structure [198] and even the emergence of various lattice-structures [199].
In the following, we will propose an implementation of non-Abelian SOC in a gas of non-

interacting fermions.

4.3 Realization of Non-Abelian Spin-Orbit-Coupling

Our particular realization of the SOC-Hamiltonian consists of the combination of an optical
dipole trap potential (ODT ) and a magnetic field configuration created by four Ioffe bars. We
will first discuss the two potentials separately and then present the mapping of the combined
potential onto a SOC-system.

4.3.1 ODT potential

The dipolar potential exerted by a linear polarized laser beam on an atom is described by [200]

Udip (r) = πc2Γ
2ω3

0

{ 2
∆D2

+ 1
∆D1

}
I (r) . (4.11)

In the expression, ω0 = 2πc/λD1 denotes the resonance frequency of the atomic D1-transition, Γ
the corresponding line-width, ∆Di = ωL − ω0 Di the detuning of the laser-frequency ωL with
respect to the corresponding Di-transition line and I (r) the intensity profile of the beam. Given
a Gaussian beam with total power P propagating in z-direction, the intensity profile is expressed
as

I (r, z) = 2P
πw2 (z) exp

(
− 2r2

w2 (z)

)
with w (z) = w0

√
1 +

(
z

zR

)2
, (4.12)
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Figure 4.2
Magnetic field derivation for a setup of four Ioffe bars.
Through symmetry considerations and Maxwell’s equa-
tions we derive the magnetic field in the xy-plane close
to the origin, supposing infinitely long bars. The four
bars (indicated by the cylinderic cross sections) are
symmetrically aligned, parallel to the z-axis. Opposite
bars support the same current (I) but in different direc-
tions (green bars in −z and red bars in z-dirrection).
Small arrows within the xy-plane indicate the mag-
netic field-lines near the bars, while the broad blue
arrows illustrate the asymptotic field directions near
the x- and y-axis.

where w0 is the beam waist and zR = πw2
0/λL the Rayleigh length. At the vicinity of the origin,

we can approximate the potential of eq. (4.11) by an harmonic potential,

Udip-harm. (r, z) = U0 ·
{

1− 2r2

w2
0
− z2

z2
r

}
with U0 = Udip(0) . (4.13)

For red-detuned laser beams (ωL < ω0), U0 < 0 and the potential is attractive (trapping-case),
while for blue detuned frequencies (ωL > ω0), U0 > 0 and the potential is repulsive. The
corresponding frequencies in the trapping case (U0 < 0) are

ω2
r = −4U0/mw

2
0 and ω2

z = −2U0/mz
2
R (4.14)

in radial and in axial direction respectively.
In the following SOC-scheme, we will consider a far red-detuned ODT (λL = 1064 nm

compared to the D1-6Li wavelength of λD1 = 671 nm). Hence the amplitude U0 of the dipole
potential will be negative, according to the previously decided sign-conventions.

4.3.2 Potential created by four Ioffe bars

The potential created by four Ioffe bars, as they are depicted in fig. 4.2, can be easily approximated
in the vicinity of z-axis of the setup, by applying simple symmetry arguments to the solution of
Maxwell’s equations.
Supposing, that the same current I circulates in the four bars in the directions indicated in

fig. 4.2, we can approximate the field far away from the bars by a linear ansatz,

B(r) = bjir , (4.15)

with a 3 × 3 matrix of constant elements bji (j marks the row- and i the column number).
Furthermore, we will assume the bars to be much longer than the expansion of the cloud. In
that way, no magnetic field component is found in z-direction and the field does not depend on
the z-coordinate,

bzk = 0 , k ∈ {x, y, z} and bxz = byz = 0 .

The problem is now fully reduced to the xy-plane. Moreover, following the asymptotic behavior
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4.3 Realization of Non-Abelian Spin-Orbit-Coupling

of the magnetic field lines near the symmetry x-axis (y-axis), the field should have a vanishing
y-component (x-component) for y = 0 (x = 0), hence

byx = 0 and bxy = 0 .

Finally, from the Maxwell equation divB = 0, we obtain b = bxx = −byy. In summary, the
magnetic field evolution from the ansatz in eq. (4.15) for four symmetrically arranged Ioffe bars
reduces to

B = b (x ex − y ey) , (4.16)

with unit vectors ex and ey along the x- and y- axis. According to eq. (2.2), the potential
energy of an spin-1/2-atom with arbitrary spin orientation µ = µ σ̂ in the field described by
eq. (4.16) results in

UIoffe (x, y) = −µb (xσ̂x − yσ̂y) . (4.17)

As usually, σ̂x,y denote the first two 2×2 Pauli matrices mentioned earlier in eq. (4.8). Regarding
the linear form of the trapping potential in eq. (4.17), it resembles the potential of the previously
treated quadrupole trap for z = 0 4.
In order to realize the spin-1/2-system, we will apply the potential on 6Li in its lowest

hyperfine state F = 1/2. The magnetic moment5 for each of the two possible Zeeman states
yields |µ| ≈ µB/3.

4.3.3 SOC-Hamiltonian through canonical mapping

Superimposing the potential created by the four Ioffe bars with a red-detuned single beam ODT,
aligned along the z-axis, we obtain the single particle Hamiltonian of the form

HSOC (r,p) = p2

2m + mω2
r

2
(
x2 + y2

)
+ mω2

z

2 z2︸ ︷︷ ︸
single-beam ODT

−µb (xσ̂x − yσ̂y)︸ ︷︷ ︸
Ioffe-bars

. (4.18)

We perform an equivalent canonical mapping to the one realized in eq. (4.2), which exchanges
the role of momentum p and position r by defining the new momentum coordinates P ,

Px = mωrx , Py = −mωry , Pz = pz , (4.19)

4In the case where the spin of the atom follows the magnetic field adiabatically, thus if the spin state is the
eigenstate of eq. (4.17), the potential energy seen by the atom is the eigenenergy of the potential,

UIoffe Eigenstate (x, y) = µb
√
x2 + y2 .

5The magnetic moment is calculated by µBgFmF with

gF ≈ 2F (F + 1)− I(I + 1) + J(J + 1)
2F (F + 1) ,

where we ignored the contribution from the nuclear spin (gI � gJ) and approximated gJ ≈ 2. For 6Li the
nuclear spin is I = 1 and J = 1/2 (for F = 1/2).
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and position coordinates X,

X = −px/mωr , Y = py/mωr , Z = z . (4.20)

This time, the mapping translates to the appropriate units and we omit the introduction of an
arbitrary scaling constant. It is easily verified that the new coordinates P ,X satisfy the same
commutation relations as the old ones, [Xi, Pj ] = [xi, pj ] = i~δij . In the new coordinates, the
Hamiltonian is rewritten as

HSOC-mapped (R,P ) = P 2

2m + mω2
r

2
(
X2 + Y 2

)
+ mω2

z

2 Z2 − µb

mωr
(Pxσ̂x + Pyσ̂y) , (4.21)

where we identify the Rashba-Dresselhaus spin-orbit coupling expression from eq. (4.7) in the
last term. The mapped system in eq. (4.21) describes spin-orbit coupled harmonically trapped
spin-1/2 particles in absence of interactions. The advantage of the "real" system in eq. (4.18) lies
in the opportunity to observe the effect of SOC directly in position space, without reducing the
momentum picture from the imaged cloud distribution (i.e. through a series of TOF-images).
Therefore the particular donut-shaped ground state distribution of the momentum, which will
be discussed in the next section, can be observed directly in position space.

4.4 Ground State of a SOC System

The eigenenergies of eq. (4.18) can be calculated readily by diagonalisation of the involved Pauli
matrices, which yields

E± = p2

2m + Udip (r)± µb
√
x2 + y2 . (4.22)

The corresponding normalized eigenstates are

e± = 1√
2

(
(x+ iy) /

√
x2 + y2

∓1

)
, (4.23)

which is a combination of the spin-up and down states6.
The lower energy branch E− is depicted in fig. 4.3a as a function of the position coordinates
{x, y} for a fixed momentum p. It shows a minimum on a ring of radius r

rmin e
−2r2

min/w
2(z) = −1

4 µb
w4(z)
w2

0 U0
, (4.24)

Whereby we used the exact expression of the dipolar potential from eq. (4.12) and used as
previously defined U0 = Udip(0) < 0, due to the red-detuned (attractive) ODT. The exact
solution of eq. (4.24) is described by a Lambert-W function, which will be treated later on in a
different context in sec. 5.4.3. For the current discussion, we can simply calculate the maximum
value of the left-hand side of eq. (4.24) and therefore formulate the condition

µb < 2 e−1/2 |U0|/w0 , (4.25)
6The spin-up (1 , 0) and spin-down (0 , 1) states are the eigenstates of σ̂z and are used as the basis of the
representation of the Hamiltonian in eq. (4.18).
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Figure 4.3: Eigenenergy branches of the SOC-system. (a) Sombrero-hat potential of the lower
energy branch E−(x, y) at the waist position (z = 0) for an ODT power of 50W focused to
w0 = 120 µm with a gradient b = 400G/cm. The embedded figure depicts a 1D-cut (blue line)
through the axial symmetric potential, which posses a ring-shaped minimum of radius rmin and
a maximal potential barrier at rmax. For large gradients, the trapping barrier is smaller than
the energy-gap ∆U calculated by the harmonic approximation (dashed line) in eq. (4.27). The
red line shows the E+-branch. (b) Maximal applicable gradients (in the range of b < 0.1T/cm)
to observe a ring structure within the lower branch E− as a function of the waist w0 for two
ODT-powers, 10W and 50W.
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Figure 4.4: Characterization of the ring structure of the lower SOC energy branch. (a) depicts
the radius rmin of the ring for an ODT of 50W and four different waist sizes as a function of
the gradient b. The radii are calculated according to eq. (4.26), while for three waist sizes the
thinner lines depict the non-approximated radii supposing the realistic Gaussian ODT-potential
form. In (b), the trap depth E+(0 )− E−(rmin) for the same waist sizes is shown as a function
of the gradient. For the largest two waist sizes, we included the trap depth E−(rmax)−E−(rmin),
where rmax denotes the potential height of the lower branch (see fig. 4.3a).

for which a solution for rmin in eq. (4.24) exists. Eq. (4.25) imposes an upper bound on the
gradient b. We will analyze a possible experimental realization in spin-polarized non-interacting
6Li in one of the two Zeeman states of the F = 1/2 hyperfine state. For the absolute ground state
|F = 1/2,mF = +1/2〉, we find µ = −µb/3 < 0, which leads to a sign exchange in eq. (4.22)
and the inversion of the two energy bands, but otherwise does not affect the physics of the lower
energy branch. Concerning the optical confinement, we suppose a red-detuned, high power ODT
of 1064 nm. Figure 4.3b shows the maximal possible gradient b in the technically feasible range
(up to 0.1T cm) as a function of different waist sizes w0 for two power values of the ODT.

Applying the harmonic approximation of the ODT potential, the radius of the ring of minima
for the lower energy branch yields

rmin = µb/mω2
r . (4.26)

Hence the energy gap between the upper branch E+(0) and the lower one at the minimum
E−(rmin) is

∆U = 1
2

(µb)2

mω2
r

. (4.27)

Fig. 4.4 depicts the radius rmin (a) and the lower-branch-depth according to the last equation
(b) as a function of the applied gradient b for different waists of a 50W-ODT. Additionally, we
included the exact solution for the ring radius in fig. 4.4a, supposing the exact Gaussian shape
of the ODT potential. Similarly, in fig. 4.4b we plotted the potential depth in the lower energy
branch for the two waists of 120µm and 100µm. Indeed, for increasing gradients, the larger
ring distance reduces the potential barrier of the ODT, which leads to a lower temperature
limit. Therefore for large gradients b the temperature limit is governed not by the energy gap
between E+ and E− (in order to avoid the population of the upper branch), but rather by the
reduced ODT height (in order to maintain a sufficient confinement of the cloud – see fig. 4.3a).
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4.4 Ground State of a SOC System

Clearly, the whole lower-energy-band structure becomes smaller with decreasing waist size –
therefore we will consider a quite powerful ODT of 50W and a larger waist of 120µm as the
optimal realization scenario. In a gradient of about 380G/cm, we expect to observe a ring
structure on the order of rmin = 25 µm, provided the confined gas is sufficiently cold (T < 10 µK).

As a last remark, it should be mentioned that we omitted the effect of gravity in the y-direction,
which breaks the cylindrical symmetry. Indeed, it should be negligible compared to the magnetic
gradient term for large b-values. Otherwise, the z-axis (axial ODT-direction) can be oriented
along gravity and in case of a weak axial confinement supported by an additional crossed ODT
beam with larger waist.

4.4.1 Density distribution

In the harmonic approximation, it is possible to determine analytically the spatial density
distribution, assuming a thermal Boltzmann distribution. Integrating the distribution in
eq. (3.4) over the momentum coordinates p reveals

n(r) =
∫ d3p

(2π~)3
1
Z
e−βHSOC(r,p) =

(
m

2π~2β

)3/2 1
Z
e−βU(r) , (4.28)

where U(r) contains both trapping potentials from eq. (4.18) and Z normalizes the density to
the atom number. We will observe the atom distribution by taking images along the ODT
z-axis. Further integration along the z direction, expanding the exponential in a Taylor-series
and using the property σ̂2

i = 1 the 2D-density yields

n(r) = m

2π~3β2ωz

1
Z
e−β

m
2 ω

2
rr

2
{

cosh (βµbr) + 1
r

sinh (βµbr) (σ̂xx− σ̂yy)
}
. (4.29)

Strictly speaking, the last expression is rather a density operator than a pure observable. Only
after projecting on the eigenstates, we obtain the spatial 2D-density distribution

n±(r) ≡ e†±n(r)e± = m

2π~3β2ωz

1
Z
e−β

m
2 ω

2
rr

2 {cosh (βµbr)∓ sinh (βµbr)} . (4.30)

The total atom number in the upper and lower energy branches is obtained through

N± = 2π
∫ ∞

0
n±(r) r dr

= 1
~3β3ω2

rωz

1
Z

[
1 +
√
πηeη

2 {Erf(η)∓ 1}
]

with Erf(x) = 2√
π

∫ x

0
e−t

2 dt ,
(4.31)

where we introduced the error-function Erf(x) and the dimensionless quantity

η = bµ

√
β

2mω2
r

, (4.32)

to shorten the notation. Under the previously considered experimental circumstances (b =
600 G/cm, P = 50 W, w0 = 80 µm and a cloud temperature of T < 40 µK), the parameter η
takes values η < 2. Finally, the fugacity Z can be eliminated in eq. (4.30) and the density

77



4 Quantum Simulation in the Quadrupole Potential - SOC in a Non-Interacting Gas
C

on
tr

as
t K

0.4

0.6

0.8

1

Temperature [µK]
0 5 10 15

Figure 4.5
Density contrast between the maximum den-
sity at rmin and the minimal density at
the origin of the lower energy branch E−,
supposing the suggested experimental con-
ditions of P = 50W, w0 = 120 µm and
b = 380G/cm. In the supposed temperature
range (fig. 4.4b), the contrast is K > 0 .5
(dashed line) for temperatures T < 11 µK.

distributions of the upper and lower energy branches can be expressed by

n±(r) = N±
2π ζe

− ζ2 r
2 cosh (κr)∓ sinh (κr)

1 +
√
πηeη2 {Erf(η)∓ 1}

with κ = βµb , ζ = mβω2
r = 1

2
κ2

η2 . (4.33)

For the lower energy branch density distribution n−(rmin), we find a density maximum at the
previously calculated position rmin = κ/ζ from eq. (4.26). The density expression in the last
equation allows to calculate (within the harmonic approximation) the contrast between the
potential maximum at the origin and the ring structure at rmin by

K =n−(κ/ζ)− n−(0)
n−(κ/ζ) + n−(0)

=
e−κ

2/2ζ
{

cosh
(
κ2

ζ

)
+ sinh

(
κ2

ζ

)}
− 1

e−κ2/2ζ
{

cosh
(
κ2

ζ

)
+ sinh

(
κ2

ζ

)}
+ 1

.

(4.34)

The contrast is plotted in fig. 4.5 for the previously suggested experimental situation as a
function of temperature. An acceptable contrast (K > 0.5) is achieved for temperatures below
11µK. To be able to judge if such a temperature is achievable, it has to be compared to the
Fermi temperature TF−, which gives the threshold for the onset of quantum behavior in the
gas. The Fermi temperature will be discussed in greater detail in the following chapter 5. In
appendix J, we show that for the proposed experimental parameters TF− < 1 µK. The discussed
range is therefore still in the classical regime, and should be experimentally achievable with a
reasonably large ensemble of ∼ 105 atoms.

In case the temperature of the spin-polarized 6Li ensemble is below the mentioned thresholds,
it should be possible – the necessary imaging resolution provided – to observe a donut-shaped
density distribution by imaging along the z-axis. Particular caution should be taken to the
spin orientation within the distribution regarding the probe-beam polarization during imaging:
Since the atoms are in the eigenstate e−, their spin follows basically the magnetic field lines. In
order to avoid spatial variation of the Clebsch-Gordon coefficient during imaging, it might be
necessary to switch adiabatically from the magnetic gradient b to a constant magnetic field (e.g.
created by a coil pair in Helmholtz-configuration), thus orienting the spins along the same axis.
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4.5 Conclusion

In this chapter, we presented two examples for quantum simulations using a spin-polarized
non-interacting 6Li in two different potentials. The first implementation of the non-interacting
gas in a quadrupole potential can be canonically mapped to a harmonically trapped system of
massless particles. It allows the direct translation of the experimentally observed behavior of 6Li
from chapter 3 to the properties of the trapped mass-less particles, like the observed isotropic
distribution of the imparted energy within the xy-plane in case of an excitation within the plane.
In the massless counterpart system, the imparted energy would similarly be redistributed within
a plane of equal harmonic trapping frequencies – an effect which is contrary to the physics of
harmonically trapped massive particles.

In the second implementation, we proposed the simulation of a non-Abelian spin-orbit coupling
potential, also based on the mapping of the Hamiltonian of non-interacting 6Li atoms in a
tailored potential, which combines a 2D-linear quadrupole trap and a single-beam ODT. This
Hamiltonian possesses a non-trivial momentum ground state, which in our proposal can be
directly deduced from the real-space image of the atoms. We estimated the effect for realistic
experimentally reproducible parameters and therefore prepared the path for future experimental
observations.
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CHAPTER 5

Pathway to Quantum Degenerate 40K

The first chapters of the manuscript were devoted to classical phenomena arising at low phase
space density (PSD). When temperature is further reduced, we enter the quantum regime,
where interactions and quantum statistics become dominant. In this chapter we will discuss
the cooling proceedings performed in the science cell of the experiment. Since the limitations
of the active laser cooling techniques presented in chapter 2 do not allow to reach the desired
region of phase space density, we continue the cooling process of the atoms by evaporation. The
better vacuum in the science cell allows for long evaporation times, and the full optical access
of the glass cell permits for a versatile optical setup for high power lasers and imaging from all
directions. Implementing different stages of evaporation as well as spin manipulation techniques,
we will show how 40K is cooled down to the quantum degenerate regime in its absolute ground
state.
The current chapter is dedicated to the evaporation process implemented for 40K only. As

far as it concerns 6Li, the arrival conditions in the science cell will be mentioned as well as the
application of the plug beam on the cloud.
After the presentation of the actual technical setup around the science cell in sec. 5.1, the

chapter is split into four major parts:

• Section 5.2 continues the discussion of the magnetic quadrupole trap, this time by
focusing in more detail on the previously mentioned Majorana losses at the trap center.
We present measurements quantifying the losses, as well as a solution in form of a repulsive
potential barrier, which plugs the zero magnetic field.

• Section 5.3 discusses the evaporation as a method of cooling. In the course of the
section we develop a simplified model, which is further on used to quantify the evaporation
sequences performed on the 40K cloud. We perform RF-evaporation in the magnetic trap,
as well as optical evaporation in a single and crossed ODT. In this section we also briefly
address the spin manipulation performed on 40K.

• Section 5.4 presents the effects of the magnetic field on the evaporated cloud. Here, we
will characterize the magnetic curvature created by the bias coils and perform a qualitative
detection of Feshbach resonances in two different spin mixtures.

• Section 5.5 presents the experimental characterization of the quantum degenerate Fermi
gas of 40K, obtained at the end of the evaporation sequence. Particularly, we discuss
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Figure 5.1: Details of the optic and magnetic setup around the science chamber. The RF-
antennas and three compensation coils which are placed around the U-table for compensat-
ing/creating an offset bias in each direction are not depicted. The mirrors M3 and M4 are held
in piezoelectric mounts and can be readjusted during the experimental sequence. The photodiode
D3 captures a back reflection of the science cell. For further details see description in the text.

the distinction of a thermal Gaussian distribution and its quantum degenerate Fermi
counterpart at low temperatures.

5.1 Setup Around the Science Cell

The setup of all the implemented devices, either optical or magnetic, which will be presented
throughout this chapter, are depicted in fig. 5.1. On the high-power laser side it includes
a crossed dipole trap (Innolight Mephisto MOPA 25W) and a plug-laser for the magnetic
quadrupole trap (Coherent Verdi V12 ).
The beams for the crossed dipole trap are split from the same laser by a high power AOM:

The first order of the crossed dipole trap is fibered (ODT1 ), while the zero order is once again
switched by an AOM and serves after free propagation as a second arm (ODT2 ). The later beam
is aligned with respect to ODT1 by a piezoelectric mirror (M3 ). The approximated waists of the
high power lasers are summarized in table 5.1. The power of both trapping lasers, ODT1 and
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ODT2, are monitored by photo diodes D3 and D2 through logarithmic amplifiers, and stabilised
by PID-circuits acting on the corresponding AOMs in a feedback-loop over the complete power
range (from ∼ 10 W down to ∼ 10 mW) [110]. For the ODT1-beam, an additional linear-response
photo diode D1 is installed for monitoring. Since the plug-beam is used at a constant power
throughout the evaporation sequence, we only monitor its position on a four-quadrant photo
diode 4Q-D4. Therefore, the plug position can be marked and re-adjusted by a piezoelectric
mirror M4.

Table 5.1: Technical characteristics of the high power lasers and the magnetic field coils,
mentioned in the setup of fig. 5.1. For the magnetic fields the indicated values correspond to a
current of 1A in the coils.

Lasers ODT 1 ODT 2 Plug beam

Wavelength λL 1064 nm 1064 nm 532 nm

Waist w0 ∼ 40 µm ∼ 300 µm ∼ 20 µm

Magnetic Gradient b′ = 2b Bias B0 Curvature B′′0 (axial)

Inner coil CIC 2.5G/cm 8G +0.31 G/cm2

Outer coil COC 0.24G/cm 2.05G −0.026 G/cm2

On the magnetic field side, two pairs of coils (inner- CIC and outer-coils COC) can be used
either in anti-Helmholtz (for magnetic trapping) or in Helmholtz-configuration (for generating a
constant bias field). The related curvature in the latter configuration is of opposite sign and
therefore can be compensated (see sec. 5.4.2). The corresponding technical parameters for the
gradient and bias configuration can be extracted from table 5.1.
The three different RF-antennas installed around the science chamber are not depicted in

fig. 5.1. These antennas are used to drive magnetic dipole transitions, either for RF-evaporation
in the magnetic quadrupole trap (1GHz to 1.3GHz in case of 40K), for adiabatic Landau-
Zeener transfer from positive to negative Zeeman sublevels (1MHz to 15MHz) or for creating
balanced mixtures of neighboring Zeeman levels (20MHz to 50MHz). Each antenna and the
corresponding RF-source covers one of the mentioned frequency scopes.

The current setup contains two imaging axes: One along the x- and another along the y-axis
of the system. Both possess different magnifications, which are calibrated according to the
free-fall experiment presented in sec. 2.7.2. An additional access along the z-axis is possible,
but is reserved for the future installation of a high resolution imaging system with an objective
near the glass cell. The same fibers (for both installed imaging axes) provide resonant light for
imaging at zero bias, as well as light at higher shifted frequency for the purpose of spin selective
imaging in presence of a high bias field (220G to 280G, see corresponding AOM in fig. 2.8b).
The imaging beams, just like the different high power laser beams of the plug and the ODT, are
overlapped by means of dichroic mirrors.
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5.2 Majorana Losses and Plugged Quadrupole Trap

At the end of the transport to the science cell, the atomic cloud is transferred into the final
quadrupole trap, which is created by the inner coils CIC (see fig. 5.1). In this trap, the radio
frequency driven (RF) evaporation is performed, in order to reach sufficient low temperatures
for a subsequent loading of the atomic cloud into an optical dipole trap.
As indicated at previous points, apart from background collisions, Majorana losses are the

main loss mechanism in the quadrupole trap: When the oscillation frequency is small compared
to the Larmor frequency, the trapped spin states follow adiabatically the local magnetic field.
However, for rapid spatial field variations, given at the trap center where the magnetic field
vanishes, the spin of the atom might flip to a not trappable high field seeking spin state.

For the estimation of the limit for the adiabatic following, the magnetic field-changes, seen by
the atom, are compared to the Larmor frequency [201]

ωL = µB

~
.

This conditions links the kinetic energy of the atom (and thus the temperature T of the trapped
cloud) to the loss rate ΓMaj by [202]:

ΓMaj = χ
~
m

(
µb

kBT

)2
, (5.1)

where χ ≈ 0.16 is a dimensionless geometrical factor, which might depend on the actual value
of the spin (see following up experimental results). Since Majorana losses affect mostly the low
energy atoms of the thermal distribution, which are occupying lower regions of the trap, and
therefore most likely cross the zero of the magnetic field, an effective heating is associated with
the loss mechanism [203]:

Ṫ

T
= 4

9ΓMaj . (5.2)

Regarding the RF-forced evaporative cooling in a quadrupole trap, the Majorana losses can be
crucial, as they increase quadratically with decreasing temperature and most likely limit the
achievable lowest temperature in the trap. Applying eq. (5.2) and eq. (5.1) the temperature
evolution of the trapped gas through time results in

T (t) =
√
T 2

0 + γt , with γ = 8
9χ

~
m

(
µb

kB

)2
. (5.3)

Figure 5.2 shows the atom number decay and heating evolution of 40K cloud, trapped in a
trap of strong gradient b′ = 2b = 250 G/cm. Two temperature-cases are distinguished: Once
the experiment is performed after arrival in the science cell (∼ 500 µK, blue dots / curve) and
another time after an RF-evaporation to ∼ 200 µK. Similar to [203], we use the temperature
evolution to fit the geometrical factor χ, using eq. (5.3) with T0 and γ as free parameters. In
the first case of the hot cloud, we fit a factor of χ|500 µK = 0.110± 0.002, while in the second
colder ensemble the factor yields χ|200 µK = 0.043± 0.001. We explain the discrepancy from the
observation of a constant factor χ in 87Rb (see [203]) by the fact, that more than one spin state
is trappable in the case of 40K (see sec. 2.6.1). Hence, the spin-flip at the trap bottom does
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Figure 5.2: Lifetime and heating rate of 40K in a (not plugged) quadrupole trap. The diagrams
show the result of two measurements at different temperatures (∼ 500 µK blue circles and 200 µK
green triangles). The lower temperature is reached by a foregoing RF-evaporation. For fitting
the heating rate in (b), eq. (5.3) was applied. With the obtained parameters, we determine the
background collision rate Γb = 1/τ , by fitting eq. (5.5) to the atom number evolution in (a).

not necessary lead to losses, since the new spin state might remain trapped. We assume the
loss rate in eq. (5.1) to be smaller than in case of single spin state trappable cases. However,
the possible temperature dependence of the χ-factor is not obvious and can be part of future
investigations on 6Li (which possesses only one trappable Zeeman state in the ground state).
The atom losses are governed by the collision rate Γb with the background gas (vacuum

quality) and of course the Majorana losses ΓMaj,

Ṅ

N
= −Γb − ΓMaj(T ) . (5.4)

The collisions with the background lead to losses only, and do not heat up the cloud in this
model. The solution of eq. (5.4) is obtained by

N(t) = C
(
T 2

0 + γt
)−9/8

exp
(
−Γb
γ

(
T 2

0 + γt
))

, (5.5)

where C is a free parameter, related to the initial atom number. The initial temperature T0 of
the gas and the parameter γ were obtained through the fits in fig. 5.2b. We use C and Γb = 1/τ
as the only free parameters in eq. (5.5) to obtain through fitting of the atom number evolution
in fig. 5.2a the "vacuum"-lifetimes τ |500 µK ≈ 170 s and τ |200 µK ≈ 196 s.
Finally, from eq. (5.1) it is obvious, that the loss rate increases for higher trap confinement

(which might be important in order to increase the collision rate during evaporation), and is
inversely proportional to the atomic mass m. At similar gradients the loss rate is about 7 times
higher for 6Li than for 40K.
To avoid Majorana losses, we installed a green laser with a total output power of 12W),

plugging the center of the quadrupole trap. After passing a switching AOM and some beam
shaping optics we focus the remaining P = 7 W of green light at a wavelength of 532 nm to a
waist of w0 ≈ 20 µm on the trap center. The laser is blue detuned with respect to the D1 and
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D2 transitions of both 6Li and 40K, acting as a repulsive dipole force. The barrier height of the
plug is calculated by eq. (4.11) and eq. (4.12) to

U0 = πc2Γ
2ω2

0

{ 2
∆D2

+ 1
∆D1

}
· 2P
πw2

0
. (5.6)

Transforming the potential energy into temperature, it results in a barrier of 803µK for 40K
and 776 µK for 6Li.
The total trapping potential changes in presence of the plug beam. The setup geometry is

depicted in fig. 2.1 and fig. 5.1: The green laser propagates in y-direction, while the quadrupole
coils are aligned along the z-axis. Including gravity the total potential in the xz-plane is given
by:

U(x, y, z) =Umag + Uplug +mgz =

=µb
√
x2 + y2 + 4z2 + U0e

−2(x2+z2)/w2
0 +mgz .

(5.7)

In this expression we omitted the y-dependency of the optical potential Uplug compared to
eq. (4.12), supposing that the Rayleigh length yR = πw2

0/λ (in our case 2.4mm) is much larger
than the trapped atomic sample (about 0.2mm). The potential profile is depicted in fig. 5.3a
setting y = 0: Around the two symmetric minima the resulting trap can be approximated by a
harmonic potential.
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Figure 5.3: Potential of a plugged quadrupole trap. (a) Contour plot of the potential energy
(U/kB in µK) for 6Li as a function of the position (in µm) around the magnetic trap center at
the origin. The trap gradient is set to b′ = 250G/cm. The plug-beam at 532 nm is assumed to
be perfectly aligned on the zero of the magnetic trap with a waist of 20 µm and a total power
of 7W. In this configuration the trap height created by the green laser at the origin is about
780 µK. The embedded figure shows a harmonic approximation of the resulting trapping potential
at one of the two minima. (b) In situ (top) and 1ms TOF image (bottom) of a 6Li cloud in the
plugged trap.

Finally, the right part of fig. 5.3b depicts a 6Li cloud imaged in situ, with the plug well aligned
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at the center of the trap (top) as well as the cloud after a short TOF (1ms) expansion. In the
TOF picture the separation of the cloud into two parts, which have previously occupied the two
potential minima, is clearly visible.
Unfortunately, the setup shows a limited pointing stability: The heating of the transport

plate (thus movement of the magnetic field zero) and optical instability obliges to realign the
beam after approximately 40min of experimental operation. The pointing stability can be
"increased" by increasing the waist of the plug beam at the expense of the trap height. However,
the used waist of w0 = 20 µm was found to be already the upper limit to significantly reduce
the Majorana loss rate in our experiment. Nevertheless, it was possible to cool about 1 · 106 6Li
atoms down to ∼ 100 µK by sympathetic cooling with 40K. At that point most of the initially
loaded 2 · 109 40K atoms were lost (1 · 105 remained) throughout the RF-evaporation sequence1.
In the upcoming sections we will consider working with 40K solely, in order to achieve a

large quantum degenerate sample. The stabilization of the plug and the improvement of the
sympathetic cooling of 6Li in the magnetic trap, as well as the efficient loading of both species
in an ODT, will be the subject of future work in our group.

5.3 Evaporative Cooling of 40K

The main objective to reach the quantum degenerate regime is equivalent to the effort to increase
the phase space density PSD, which is generally defined as:

PSD = n0λ
3
dB , (5.8)

where n0 is the peak density and λdB =
(
2π~2/mkBT

)1/2 the de-Broglie wavelength of an atom
of mass m at temperature T . In the course of this section we will derive more convenient
expressions for the PSD which will be trap related. As mentioned previously in chapter 1, we
enter the quantum degenerate regime, once the PSD ≈ 1. So far, the only known way to achieve
the desired densities at low enough temperatures is evaporative cooling.

In the next section we will first present a (simplified) theory of evaporative cooling, before we
discuss in detail the experimentally achieved evaporation performances in the magnetic and
optical traps.

5.3.1 Principle of evaporative cooling

Evaporation is a well known process of the daily researchers life: A hot cup of coffee (or tea) gets
colder, while parts of the hot exposed liquid phase convert to the gaseous state and leave the cup.
The remaining part thermalizes through interactions towards a colder temperature. Nothing else
than the described process happens during evaporative cooling of an atomic ensemble in a trap
potential. Generally speaking, evaporation describes the process of energetic particles leaving a
system with a finite binding energy [76]. The remaining ensemble relaxes through inter-particle
collisions towards a thermal distribution of lower temperature. The rethermalization is based on
elastic collisions. Dealing with Fermions at lower temperatures, where p-wave collisions vanish

1We remind, that due to the p-wave scattering threshold at ∼ 6 mK and the single trappable spin state for 6Li,
only sympathetic cooling is possible in the magnetic trap.
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Figure 5.4
Illustration of the evaporation process of
trapped atoms. The total trap height is
given by ηkBT , where T is the temperature
of the ensemble. Colder atoms are located
at lower potential energies, thus lying lower
in the trap. Atoms which are exceeding with
their kinetic energy the potential height, are
lost from the trap, owning an energy in the
range of (η+κ) kBT . During an evapora-
tion process, elastic collisions at the rate
of γel lead to cooling of the gas: In a colli-
sion process an atom leaves the trap carying
away part of the ensembles energy.

[204], it is important to ensure, that the spin mixture is well balanced, in order to provide
sufficient collision partners and maintain the thermalization dynamics.
The strategy for evaporative cooling, is to cut the thermal distribution at a given energy

bound ηkBT , which is higher than the average thermal energy kBT (see fig. 5.4). The cut is
performed by either transferring the attributed share of the ensemble to not trapped states (in
case of the radio-frequency driven (RF -) evaporation in a magnetic trap – see sec. 5.3.2) or by
lowering the energy height of the trapping potential (in case of the evaporation in an optical
dipole trap – see sec. 5.3.4). We will briefly recap the simplified description of the evaporation
process presented in [205], providing in that way a theoretical framework for the performed
measurements.

Supposing a trapping potential in 3D of the form U (r) ∼ r3/δ, we can express all important
quantities as functions of the temperature T and atom number N . Table 5.2 summarizes this
quantities of which the phase space density PSD, as well as the elastic collision rate γel, are of
special interest for our discussion.

We will consider a simplified picture, taking into account only elastic collisions. We consider
that only a small part of the particles dN , dN � N , leaves the trap, therefore having each one
at least an energy of (η + κ) kBT , slightly higher than the potential height (κ� η). In order to
leave the trap, the dN atoms took away the necessary energy dE from the rest of the ensemble.
Since each of the leaving atoms had the same average contribution to the internal energy of the
cloud, which is according to the Virial theorem

(
3
2 + δ

)
kBT , the energy taken away form the

ensemble is given by:
dE = dN

[
(η + κ)−

(3
2 + δ

)]
kBT .

The remaining (N − dN) particles, which had former the total energy

E = (N − dN)
(3

2 + δ

)
kBT ,

will thermalize from the temperature T to T − dT , provided that sufficient elastic collisions take
place within the remaining ensemble. Hence, energy conservation imposes

(N − dN)
(3

2 + δ

)
kBT − dE = (N − dN)

(3
2 + δ

)
kB (T − dT ) .
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Internal energy E = N
(

3
2 + δ

)
kBT

Spatial volume V` ∼ T δ

Spatial density n ∼ N · T−δ

Phase space density PSD ∼ N · T−(δ+ 3
2 )

Average velocity v ∼ T 1/2

Elastic collision rate nσelv ∼ N · T
1
2−δ

Table 5.2
Scaling of different evaporation
related quantities with atomnum-
ber N and temperature T for a
power law potential in 3D of the
form ∼ r3/δ. In case of a linear
potential (magnetic quadrupole
trap) δ = 3 , while for a harmonic
potential we set δ = 3/2 . The
expression for the internal energy
follows directly from the viral the-
orem. For a detailed derivation
and further discussion see [205].

Inserting dE from the previous equation and simplifying the expression, results in

dT
T

= α
dN
N

, with α = η + κ
3
2 + δ

− 1 . (5.9)

The relation between an intial temperature T1 and a final temperature T2 after evaporation
is governed by a power-law relation to the corresponding change in atom number, T1/T2 =
(N1/N2)α. For an evaporation process, which includes elastic collisions only, all the quantities
in table 5.2 can be related directly to the atom number, by replacing T ∼ Nα. Accordingly, the
phase space density will scale as

d (PSD)
PSD = α′

dN
N

=
[
1−

(
δ + 3

2

)
α

] dN
N

. (5.10)

If the PSD has to increase with decreasing atom number, the prefactor has to be negative.
According to the analysis in [206] and [207] we can set κ ≈ 1 for very large η values. Therefore
neglecting κ with respect to η, we thus formulate the necessary condition

η > δ + 5
2 . (5.11)

As stated before, the evolution of the elastic collision rate γel through time is also an important
benchmark quantity of the evaporation. We will approximate the collision rate, by [208]

γel = nσelv ≈
1
2〈n〉〈σelvrel〉 ≈

1
2
n0
2δ σ0

√
2〈v〉 , (5.12)

where the average density, 〈n〉 = n0/2δ, with the peak density n0, and the average relative
velocity, 〈vrel〉 =

√
2〈v〉 with 〈v〉 = (8kBT/πm)1/2, are calculated by means of the corresponding

phase space distributions2. The average collision cross section σ0 in eq. (5.12) is obtained

2The average quantities are deduced from the phase space distribution function of the form f(r,p) =
exp {−βH(r,p)} /Z, where Z normalizes the function to the atom number N . The expectation value
of a quantity A is calculated by

〈A(r,p)〉 = 1
(2π~)3

∫
d3r d3p A(r,p)f(r,p)/N .

For the density, A is set to n = n0 exp {−βU (r)}, while for the velocity it is simply replaced by |p|/m.
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through the corresponding scattering length a for sufficiently small momenta by [85]

σ(k) = gα
4πa2

1 + k2a2 for k = p/~� 1/a , σ0 = 4πgαa2 , (5.13)

with gα = 1, except for special cases, like the thermalization of a single-species Boltzmann gas
of identical spin states, where gα = 2. Since we will always use a spin mixture in the trap, we
will set gα = 1 for the further calculations. It should be mentioned, that in eq. (5.12) the first
factor of 1/2 avoids the double counting of the collision by integrating over all the possible
collision partners. Hence, in the presented form, eq. (5.12) is only valid in case all particles can
interact with each other. Dealing with two fermionic spin states with densities 〈n1〉 and 〈n2〉,
which can only interact through s-wave collisions, the collision rate is approximated by

γel = 1
2

2〈n1〉〈n2〉
〈n1〉+ 〈n2〉

〈σelvrel〉 . (5.14)

While the first 1/2-factor avoids again the double counting, the collision rate 〈nj 6=i〉〈σelvrel〉 for
each spin state i is weighted by 〈ni〉/〈ntotal〉. Indeed, for a balanced mixture with 〈n1〉 = 〈n2〉 =
〈ntotal〉/2, the collision rate scales as 〈ntotal〉/4, in contrast to the case of eq. (5.12), where the
rate would be twice as large, since all particles are possible collision partners. According to the
preceding discussion, the elastic collision rate γel scales as

d γel
γel

=
[
1−

(
δ − 1

2

)
α

] dN
N

(5.15)

throughout the evaporation.
Demanding an increasing collision rate (with decreasing atom number) through the evaporation

process, reaching thereby the runaway regime, requires according to this simple model a slightly
higher cut-values than described by eq. (5.11)3. More precisely, the comparison of the elastic
collision rate to inelastic collisions or trap losses, like Majorana spin-flips, are an indicator for
the efficiency of the process. If the loss processes dominate, the temperature will not decrease
accordingly to the described scaling. Since losses directly influence the lifetime of the gas in the
trap, a basic thumb rule tells that the evaporation sequence should be shorter than the lifetime.
A more detailed model describing the evaporation, which also includes inelastic collisions,

can be found in [206, 209] or in the publications [205] and [76]. Within the scope of the current
thesis, we will use the presented simplified relations eq. (5.11) and eq. (5.10) for deducing the
relevant quantities from the experimental measurements.

5.3.2 RF evaporation in a magnetic trap

After the transport from the magnetic trap in the MOT chamber to the science cell, the atoms
are trapped and evaporated in a quadrupole trap of b′ ≈ 250 G/cm. The arriving cloud of 40K
has a spin composition of 65% of the atoms being in the stretched mF = +9/2 Zeeman state,
30% in the mF = +7/2-state and 5% of a mF = 5/2 minority in the common hyperfine ground
state F = 9/2. These numbers are obtained by the method described in sec. 2.6.3 and might
fluctuate by less than 10% from shot to shot.

3The values in this case are η > 6.3 for the quadrupole trap (δ = 3) and η > 6 for the harmonic trap (δ = 3/2).
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In this spin composition, s-wave collisions between the two different spin-state majorities,
as well as p-wave collisions between two mF = 9/2-atoms, lead to the thermalization of the
gas. Even though the p-wave scattering cross section is strongly temperature dependent, we
will approximate the total scattering process by the s-wave scattering length a = 169.7a0 [210],
expressed in terms of the Bohr-radius a0 ≈ 52.92 pm and use for the collision rate estimation
the equation (5.12)4.
The PSD of the gas is determined by eq. (5.8), with the peak density n0 calculated by5

n0 = 1
4π

(
µBb

kBT

)3
·N , (5.16)

where we took into account only the magnetic moment of the stretched state.
During the evaporation sequence, we emit radio frequency (RF) in the range of 1150MHz to

1286MHz through an antenna near the science cell on the atoms. The RF drives transitions
from the lower ground state manifold F = 9/2 to the energetically higher lying F = 7/2 (see the
ground state scheme in fig. 2.13b). Hotter atoms are occupying higher regions of the magnetic
trapping potential and therefore subjected to a higher bias field. Hence, only a given energy
contingent of the cloud is resonant to the RF transition. These atoms are transferred to the
|F = 7/2,mF = +7/2〉 state (which is a high field seeking state) and are lost from the trap.
Technically, both trapped spin states, |F = 9/2,mF = +9/2〉 and |F = 9/2,mF = +7/2〉, can
be addressed by the RF. However, for a fixed RF-value the transition

|F = 9/2,mF = +9/2〉 → |F = 7/2,mF = +7/2〉

has the lowest energy and therefore addresses a lower temperature range in the trap, compared
to the possible transitions from the |F = 9/2,mF = +7/2〉 state. Using the Breit-Rabi formula,
we can link the driving resonant transition frequency ν at a given bias value Bcut to a "cut"
temperature Tcut through

2π~ ν = E0 − ~
[
δ+9/2(Bcut)− δ+7/2(Bcut)

]
with Bcut = kBTcut/µB . (5.17)

The relevant Zeeman shifts δ+7/2(B) < 0 and δ+9/2(B) > 0, as well as the energy splitting
E0 between the two hyperfine ground states at zero magnetic field are illustrated in fig. 5.5.
The mapping of the cut-temperature does not depend on the particular gradient. The arriving
40K cloud is fully depleted from the trap by driving a RF-ramp adiabatically from a low value
1100 MHz→ Tcut ≈ 5 mK up to 1285.8 MHz→ Tcut ≈ 0 K.

Two examples of the temperature and atom number evolution through two different evaporation
sequences are depicted in fig. 5.6 (a) to (c). For both sequences we perform a linear RF-ramp
from 1150MHz (Tcut ≈ 3.7 mK) to 1260MHz (Tcut ≈ 0.7 mK). The main difference is the
4By presuming the triplet scattering length and neglecting the singlet scattering length as = 104.4a0, we follow
the discussion in [204], where the collision process is found to be strongly triplet-dominated for our spin
mixture of mF = +9/2 and mF = +7/2.

5The peak density n0 is deduced from the integral over the phase space density f(r,p) = exp (−βH(r,p)) /Z,
which is normalized to the atom number N ,

n(r) = 1
(2π~)3

∫
d3p f(r,p) = n0e

−U(r)/kBT .

U(r) denotes thereby the trapping potential.
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Figure 5.5
RF transition in magnetically trapped 40K.
Driving RF at the frequency ν, transfers the
atoms at a bias Bcut, which are resonant to
the depicted transition from the +9/2 state
into the +7/2 of the higher lying mani-
fold. The energy evolution of the two states
with the bias field is calculated by the Breit-
Rabi formula (fig. 2.13b). Eq. 5.17 links the
resonant Bcut position to an effective cut
temperature Tcut.
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Figure 5.6: Characterization of the RF-evaporation in the magnetic trap. (a)–(b) depict
the performance of two RF-sequences, both performing a linear RF-ramp from 1150MHz to
1260MHz but with different speed: One in 5 s (blue squares) and the other in 14.2 s. For the
shorter sequence the temperature is determined by RF-thermometry, while the shorter sequence
is characterized by TOF measurements. (d) presents the dependence of the RF-evaporation
performance on variable initial atom numbers. For the last measurement the initial temperature
and the linear RF-ramp are kept constant.
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duration of the RF-ramp: Blue data points depict the characterization of a ramp of 5 s-total
duration, while orange points are representing a ramp of 15 s. Another important distinction
is the determination of the cloud temperature. While the orange data points are obtained
by TOF measurements, the blue data is measured by RF-thermometry in the magnetic trap
[110]. The latter method applies short RF-sweeps to different final frequencies, measuring
subsequently the remaining atom number in the trap (compare fig. 5.5). This allows a direct
probing of the thermal distribution of the cloud. Nevertheless, the RF-method is accompanied
by a weak evaporation process, whereas the TOF method overestimates the temperature for
hotter ensembles, due to fitting-issues of the large expanding cloud. At the beginning of the
evaporation, the temperature lies in between the two measured data sets, leading to ∼ 0.5 mK,
which is by the way in good agreement with the arrival temperature in fig. 5.2a. For the following
discussion, we will take the measurement related peculiarity aside, which is only relevant for the
first second of the performed evaporation ramp.

Regarding the first 5 s of both evaporation sequences, the collision rate is lower in the case of
the 14.2 s long sequence (see embedded figure in fig. 5.6a). Meanwhile, the blue data points of the
short ramp show a continuous increase in the collision rate. Similarly, the η-parameter, indicating
the truncation temperature in relation to the cloud temperature, exceeds the minimally indicated
value of ηmin ≈ 6 only after 6 s for the longer sequence. After the first 6 s, the longer ramp has
a slightly better RF-performance, than the shorter sequence: This benchmark gets revealed by
the fitted slope of α′ = −2.7± 0.2, compared to α′ = −1.5± 0.1 for the shorter sequence in the
logarithmic plot of the PSD as a function of the atom number in fig. 5.6b (see eq. (5.10)). From
the fit we calculate an effective cut parameter of η ≈ 7 for the 5 s sequence and η ≈ 8 for the
longer sequence (in the limit of κ� η). However, this values are averaged values over the entire
evaporation cycle.
Regarding the cut range in MHz, the last 7 s of the longer sequence are equal to the last
∼ 3.5 s of the short sequence. Since the finally reached PSD is within error bars similar, we use
the shorter 5 s-RF sequence to evaporate the atomic cloud to 100µK, leaving about 2 · 108 40K
atoms. Concerning the gradient field, we found the value of b′ ≈ 250 G/cm a good compromise
between collision rate and lifetime at lower temperatures6. Using the repulsive green laser to
plug the center of the magnetic trap, we achieve similar temperatures with 20% higher atom
numbers.
Finally, another important relation is the evaporation performance for different initial atom

numbers. Fig. 5.6d shows the reached final temperatures and PSD values as a function of
initially loaded atom number at the beginning of the evaporation ramp. The ramp itself and
the temperature of the initial cloud were not varied. Clearly, for smaller atom numbers the
collision rate gets reduced and therefore the evaporation becomes less efficient.

5.3.3 Loading a single beam ODT from a quadrupole trap

In order to reach lower temperatures and higher PSD values, we need to overcome the constraint
of increasing Majorana losses and reduced lifetime. Therefore, we load the atoms into an ODT
and continue there the evaporation. Generally, the advantage of an ODT in comparison to the
magnetic quadrupole trap is its Zeeman-state-independence: especially the absolute ground
state |F = 9/2,mF = −9/2〉, which is a high-field seeking state, can now be trapped and studied.
6In the current setup a gradient of b′ = 370 G/cm can be created by the inner coils.
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Figure 5.7
Loading a single-beam ODT from
the magnetic trap. The gradient
is continuously reduced from b′ =
250G/cm to b′ = 5G/cm within
800ms. During the "opening"
of the magnetic trap, atoms fall
into the 10W-single-beam ODT,
which is aligned 2w0 ≈ 80 µm
below the magnetic trap center.
Since the ODT is present dur-
ing the entire RF-evaporation, an
overlap with the magnetic trap
center would attract atoms and
increase Majorana losses.

The application of an ODT becomes unavoidable in case a constant bias field has to be applied
for using Feshbach resonances (see sec. 5.4.3).
To describe the ODT potential, we will utilize for simplicity the harmonic approximation of

an ODT propagating in z direction, which is according to eq. (4.13),

Udip-harm. (r, z) = m

2
{
ω2
rr

2 + ω2
zz

2
}
− U0 , (5.18)

where, compared to eq. (4.14), we absorbed the negative sign of Udip(0) < 0 for a red detuned
ODT into the radial (ωr) and axial (ωz) frequencies, redefining U0 = |Udip(0)|. For the sake of
completeness, we repeat the expressions for the frequencies,

ωrad ≡ ωr =
√

4U0/mw2
0 and ωax ≡ ωz =

√
2U0/mz2

R , (5.19)

where the waist w0 for the particular ODT configuration is given in table 5.1, while the trap
depth U0 is calculated by eq. (5.6), inserting the corresponding D1- and D2-line data of 40K
and the laser wavelength of λ = 1064 nm.
To load the single-beam ODT from the magnetic trap, we do not switch off abruptly the

magnetic field in order to load the ODT1. We rather adiabatically reduce the trapping gradient
(see fig. 5.7) from its initial value of b′ = 250 G/cm to b′ = 5 G/cm in 0.8 s and let the atoms
"fall" into the ODT1 potential. The ODT1 is displaced spatially by d ≈ 2w0 ≈ 80 µm below the
magnetic trap center: A direct overlap with the center of the quadrupole trap would drastically
increase the Majorana losses during the opening process of the trap. The relative position of
the trap center and the ODT beam is fine tuned by three compensation coils surrounding the
science cell.

The detailed analytic description of the dynamic transfer is more complicated and goes beyond
the scope of this thesis. An theoretical approach, which analyzes the combined optical and
magnetic potentials by adiabatic opening of the quadrupole trap can be found in [211] and
[110]. Experimentally we manage to transfer 3 · 107 of the magnetically trapped atoms into the
ODT1, which is about 15%. Overall, we observe experimentally a not trivial dependence of the
transfer efficiency on the temperature and PSD after the RF-evaporation for loading the ODT
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from the magnetic trap.
At the end of the adiabatic opening we leave a small gradient of b′ = 5 G/cm in combination

with the ODT1, thereby increasing the otherwise weak axial confinement to ωmag.-ax ≈ 25 Hz.
During the loading process a part of the cloud gets evaporated, so that in turn after a hold time
of 100ms in the final hybrid-trap, the cloud temperature decreases to 60 µK.

5.3.4 Evaporative cooling in an ODT

The forced evaporation process in an ODT is driven by lowering the trapping potential height
U0 through the laser power P (see eq. (5.6) and eq. (5.18)). Thus, at every evaporation step
the trapping frequencies ωi will change according to eq. (5.19). The peak density, necessary in
order to calculate the PSD throughout the evaporation process is determined by

n0 = 1
2
√

2

(
m

πkBT

)3/2
ωxωyωz ·N . (5.20)

A precise determination of the trap frequencies is possible by exciting an oscillation of the
cloud inside the ODT, either magnetically or by a short compression / decompression of the
trap itself (i.e. by increasing / decreasing the power P ). Unfortunately, reliable results of this
frequency measurements can be only obtained for an already sufficiently cold cloud (see fig. 5.17
in sec. 5.5.4) and scaled back for the high-power case. Still, in this section we will estimate the
frequencies through the measured power and waist size.

Evaporation in the single ODT

The first evaporation step follows directly the previously described loading step in the hybrid
trap: the axial confinement of the ODT1 is reinforced by a low magnetic curvature. The
evaporation sequence is performed by reducing the ODT1 power exponentially within 5.5 s
from 10W to 250mW. The evolution of the temperature, total atom number and PSD are
characterized on the left side of fig. 5.8: The loaded atom number of ∼ 2 · 107 reduces by a
factor three to ∼ 7 · 106 (fig. 5.8b), while the temperature decreases by a factor 30 from initially
60µK to 2 µK (fig. 5.8a). The logarithmic plot of the PSD as a function of the atom number
reveals a slope of α′ = −3.3± 0.1 (fig. 5.8c), which corresponds to η+ κ ≈ 7. This is a relatively
high value, compared to the directly evaluated decreasing η-values from the embedded diagram
in fig. 5.8a. Hence, with decreasing trap height the exceeding energy of the atoms leaving the
trap (κkBT ) increases.
Since shortly after loading the ODT1 the temperature drops below 100 µK, we can neglect

p-wave interactions [212] and use eq. (5.14) for estimating the purely s-wave collision rate. The
composition of the gas is approximately 70% in the |F = 9/2,mF = +9/2〉-Zeeman state and
30% in |F = 9/2,mF = +7/2〉. The small proportion (< 5 %) of mF = +5/2 can be neglected.
Contrary to the case of the magnetic evaporation, the collision rate decreases with the lowered
confinement in case of the ODT evaporation [213] (see embedded figure in fig. 5.8b). Especially
the low axial confinement and frequency (compared to the radial ones) makes it difficult to
continue the evaporation efficiently. We stop the evaporation at this point and switch on a
second ODT beam in y-direction, before continuing the evaporation in a crossed ODT.
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(e) Atom number evolution – crossed ODT
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Figure 5.8: Characterization of the ODT evaporation, in a single-beam ODT (left part, (a)–(c))
and positive spin states, and in a crossed ODT after a spin-flip to negative spin states (right
part, (d)–(f)). In the latter case we image spin selectively mF = −9/2 (orange dots) and
mF = −7/2 (green triangles).
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Figure 5.9: Spin manipulation of 40K. (a) shows Stern-Gerlach expansions of the spin mixtures
after a Landau Zeeman transfer performed with the same linear RF-ramp from 6.5MHz to
5.5MHz in 10ms but at different bias values. The transfer starts with a mixture of |mF = +9/2 〉
and |mF = +7/2 〉 solely. At 25G, we obtain an imbalanced mixture of |mF = −9/2 〉 and
|mF = −7/2 〉 only (see image A in (b)). Afterwards, we balance the mixture by driving
a triangle-wave-form RF-signal for different time duration (b). The optimal equilibrium is
obtained after ∼ 10ms.

Spin-flip and mixture preparation

Prior to the loading of the crossed ODT and the continuation of the evaporation, we perform
a spin manipulation step: First, after the remaining gradient is switched off, a bias is applied
to maintain the quantization axis. Subsequently, we perform a Landau-Zener transfer of
the spin state by driving a linear RF-ramp from 6.5MHz to 5.5MHz in 10ms [214]. In that
way we transfer the ensemble within the F = 9/2-hyperfine manifold from |mF = +9/2〉 and
|mF = +7/2〉 to the lower lying states |mF = −9/2〉 and |mF = −7/2〉 (fig. 5.9a). For the given
frequency range, the optimal bias field to mirror the positive spin states into the negative ones
is found to be at 25G. Afterwards, at a higher bias field of 117G, we balance the population
of the new spin mixture in the two lowest negative states. This is accomplished by driving a
triangle-wave-form of the RF-signal in-between 28.5MHz and 30MHz at a rate of 1 kHz for
20ms. The high rate of the signal ensures that the atoms do not follow adiabatically the
frequency in form of Rabi-oscillations, but rather incoherently populate both spin states.
The complete spin preparation process takes about 200ms. During the procedure the cloud

heats up from ∼ 2 µK to 3 µK to 4 µK, and less than 20% of the initial atoms get lost. Finally
this leaves us with ∼ 5 · 106 atoms in the two lowest Zeeman states for the rest of the evaporation
towards quantum degeneracy.

Evaporation in the crossed ODT

After the first evaporation sequence and the spin preparation in the single-beam ODT1, we
load the atoms in a crossed ODT by switching on the second perpendicular ODT arm (ODT2
in fig. 5.1). In that way we increase the axial confinement at low power for the rest of the
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evaporation. The new trapping frequencies are a composition of the two traps,

ωx =
√
ω2
ax-1 + ω2

rad-2 ≈ ωrad-2 ,

ωy =
√
ω2
rad-1 + ω2

ax-2 ≈ ωrad-1 ,

ωz =
√
ω2
rad-1 + ω2

rad-2 .

(5.21)

To mark the frequencies, we used the notation corresponding to the directions indicated in
fig. 5.1, while the index numbers indicate the corresponding ODT beam. Regarding the beam
power at the start, the ODT2 is linearly turned up to 4.8W, while the ODT1 remains at its
final power of 250mW, which is reached at the end of the first evaporation step. Following
eq. (5.21), the axial frequency of ODT1 increases from ∼ 1 Hz (or ∼ 25 Hz in presence of the
magnetic gradient in case of the hybrid-trap) to ωx ≈ 190 Hz. Since the axial frequencies of each
laser are negligible compared to the radial ones, the frequencies ωx and ωy can be approximated
by the dominating corresponding radial confinement.

The second part of the optical evaporation is done in the two lowest negative Zeeman states,
|mF = −9/2〉 and |mF = −7/2〉, by decreasing exponentially the power of ODT1 from 250mW
down to 40mW solely. We increase the bias field to 240G to apply spin selective imaging7,
thereby detecting the atom number and temperature evolution (right side of fig. 5.8) for both
populations separately.
After loading the crossed ODT, we lose about half of the atoms, but manage to reduce the

temperature: The recorded evaporation process in fig. 5.8e starts with 2.2 · 106 atoms in total
(compared to 5 · 106 after the spin preparation in the single ODT1), while the temperature at
the beginning is ∼ 2.2 µK for each spin state (compared to the heated cloud at 3 µK to 4µK
after the spin preparation). We attribute this observation to a fast evaporation during the
compression along the ODT1 axis, which is done by increasing the power of the second ODT2
arm.

During the depicted 5 s long evaporation, the two spin composition remains balanced (fig. 5.8e)
and both spin states reach a temperature of 0.5µK (fig. 5.8d) with 2 · 105 atoms per state.
Judging on the PSD evolution, the evaporation is less efficient than in the previous case of the
single ODT. We fit a slope of α′−9/2 = −1.5± 0.1 for the PSD evolution of |mF = −9/2〉 and
α′−7/2 = −1.2± 0.1 for the increase in the logarithmic plot of |mF = −7/2〉 (fig. 5.8f).

Evaporation sequence overview

In the depicted characterization, we reach approximately T/TF ≈ 1, with TF being the Fermi
temperature (see eq. (5.50)). We achieve much higher PSD by increasing the evaporation time of
the second step to 14 s. In fig. 5.10 we present a summary of the experimental sequence, which
was performed for obtaining a degenerate sample of 40K in the lowest two spin states,mF = −9/2
and mF = −7/2. The evaluation of the results will be discussed later in sec. 5.5. The chosen
bias field splitting between the two coil pairs and its evolution in the sequence, will be the
subject of the next section.

7The bias value of 240G is lying on the BCS side of the ∼ 7 G-wide Feshbach resonance, located at 202G.
Hence the scattering length corresponds to the background value of abg = 167a0 [212].
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Figure 5.10: The final optimized evaporation sequence. The power evolution of the two dipole trap beams, ODT1 (in logarithmic scale)
and ODT2, as well as the bias field distribution between the two coil pairs, inner coils CIC and outer coils COC is depicted. The bias field
is switched in such a way, that the curvature is compensated and appearing Feshbach resonances are avoided (for further details see next
section). The insets show real cloud TOF images after RF-evaporation (A), after loading the single-beam ODT (B), after evaporation in the
single-beam ODT (C), after loading the crossed ODT (D) and after the complete evaporation cycle (E). For the last image the cloud expands
very slowly due to the low temperature and falls visibly during the 20ms TOF through the imaged area.
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Figure 5.11
RF-spectroscopy for precise bias measure-
ment: At a fixed bias value we scan the
RF-transition between the −9/2 and −7/2
Zeeman states. Afterwards, we image at
the same bias spin selectively the −7/2
state. The measurement was performed for
a mixed bias of inner and outer coils to
compensate the magnetic curvature. The
Loretzian fit reveals a center frequency of
50.642MHz which corresponds to 241.6G
according to the Breit-Rabi formula.

5.4 Magnetic Field Effects

In this section we will explore the influence of magnetic curvature and Feshbach resonances
on the optically trapped atoms. Regarding the technical setup described in sec. 5.1, we have
two pairs of coils (inner and outer coils) to adjust the magnetic field. We will first present a
method to measure precisely the magnitude of the created bias field and then discuss a method
to quantify the curvature of the same. In the last part, we present the measurement of the
Feshbach resonances between the two mixtures mF = {+9/2,+7/2} and mF = {−9/2,−7/2}.

5.4.1 Precise measurement of the bias field

The bias values given in tab. 5.1 are values measured by a Hall-sensor, done before the coils
were installed in the experimental setup. They are in good agreement to the calculated values,
based on the coil design [111]. Performing spin sensitive measurements on the atoms allows for
a more precise determination of the bias field magnitude. One possibility is to use the spin
selective imaging at a high bias field. In this case the resonance imaging frequency is Zeeman
shifted according to the Breit-Rabi formula. This method is only limited by the linewidth of
the probe-laser.

A more precise determination is possible by RF-spectroscopy, driving magnetic dipole transi-
tions between two neighboring hyperfine states. The measurement starts with an unbalanced
mixture of the two spin states mF = −9/2 and mF = −7/2 at an expected bias value of 240G,
with the minority of the atoms in the −7/2-state (30%). Similar to an optical imaging frequency
scan, we shine for a duration of 300ms constant RF in the range of 49MHz to 52MHz on the
optically trapped cloud, suspecting the resonance at 50.42MHz at a bias field of 240G for the
transition −9/2→ −7/2, based on the Breit-Rabi formula. After a short TOF we image (at the
same bias field) spin selectively the −7/2 population. Fig. 5.11 depicts the result of the RF-scan.
A Lorentz-function fit reveals the resonance frequency of the transfer at ωRF = 50.642 MHz
and a width of ΓRF ≈ 44 kHz. To avoid broadening of the transition-width, sufficiently weak
RF-signal should be applied. Converting then again the resonance value according to the
Breit-Rabi formula to a bias field, which corresponds to a particular Zeeman splitting between
the states mF = −9/2 and mF = −7/2, yields the exact field value of 241.6G.

The precise determination and knowledge of the bias field is important for the application of
narrow Feshbach resonances and the high field imaging.
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5.4 Magnetic Field Effects

5.4.2 Role of magnetic curvature

By creating a high homogeneous magnetic field B with a pair of coils in Helmholtz-configuration,
we have to take into account the curvature of the magnetic field. Indeed, due to Maxwell’s
equation the value of the magnetic field close to the coil center is given by the general expression
[215]

B = B0 ·

0
0
1

+B′′0 ·

 −zx
−zy

z2 − r2/2

 , (5.22)

with B0 ([G]) and B′′0 (
[
G/cm2]) being geometry specific and current dependent coefficients and

r2 = x2 + y2 being the usual radial coordinate. The values per 1A for the two coil pairs nearby
the science cell are listed in table 5.1. As mentioned in sec. 2.6 the energy of an atom, which
follows adiabatically the magnetic field is calculated by E = −µBgFmF|B|. We can approximate
the absolute value of the magnetic field |B| near the origin by neglecting terms of second order
in B′′0/B0,

|B| ≈ B0 +B′′0

(
z2 − r2

2

)
. (5.23)

In this approximation we deduce a harmonic potential form, by introducing the trapping
frequency ωcurv = (µBgFmFB

′′
0/m)1/2,

Umag-curv = U0 + m

2

{
ω2
curvr

2 −
(√

2ωcurv
)2
z2
}
, (5.24)

with U0 = −µBgFmFB0. For negative Zeeman states (mF < 0) and in case of negative curvature
B′′0 < 0, the frequency ωcurv is a real number, while for B′′0 > 0 the two terms in curly brackets
in eq. (5.24) exchange their sign: Either the potential is trapping in the xy-plane and repulsive
in z-direction or the other way around, depending on the sign of the curvature B′′0 and the
actual Zeeman state.
In our experiment we are constrained to the maximum currents of 30A in the inner coils

and about 150A in the outer coils in Helmholtz-configuration, which corresponds to curvature
frequencies of ωcurv/2π = 5.7 Hz and ωcurv/2π = 3.6 Hz. Following the discussion in the
appendix-sec. H.2, where we derive the TOF expansion of the cloud in a curvature field (see
eq. (H.18) and eq. (H.19)), we need to perform TOF’s, which are longer than 25ms, in order
to distinguish the curvature effect from a free expansion. The TOF, in turn, is limited by the
reachable temperatures and by the expansion of the cloud in the anti-trapping directions of the
curvature. Therefore the direct measurement of the curvature through the TOF expansion is
only possible to a limited extend.
However, the experiment presented below reveals clearly the influence of the curvature on

the trapping as well as its effect on the evaporation process: After loading the crossed ODT
we have a strong confinement along the y- and z- directions of ωy,z/2π ≈ 350 Hz, while the
confinement along the x-axis is comparably smaller, ωx/2π ≈ 30 Hz. Under this conditions we
increase each time the bias field to 240 G using both coils, the inner and outer ones, but in
different proportions. According to table 5.1 the current in the inner (IIC) and the outer coils
(IOC) has to be chosen by IIC = (240 − 2.05 IOC)/8 to realize always a magnetic field value
of 240G. For each combination we hold the atoms for 3 s in the crossed trap. To ensure the
same imaging conditions, we switch each time back to the outer coils only and record the atom
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Figure 5.12: Curvature compensation experiment: The cloud is held in the crossed ODT for 3 s at 240G, created by the inner and outer
coils, both contributing to the field value in different proportions. For the TOF and imaging we switch to 240G created by the outer coil pair
only and record the atom number (green squares) and width (red triangles) along the weakest trapping axis (ωx ≈ 190Hz) of the mF = −9/2
spin state. The influence of the curvature on the trapping frequency manifests as an evaporation process on the atom number and temperature.
The insets A–C show TOFs performed at the marked mixed bias values: Due to the stronger curvature of the inner coils the difference in the
cloud expansion along the two orthogonal axis x and z is more pronounced in A than in B.
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5.4 Magnetic Field Effects

number (of mF = −9/2) and the width of the cloud along the x-axis.

The results are shown in fig. 5.12. For a bias field created by the inner coils, the curvature is
confining in the x-direction for negative spin states, therefore increasing the trapping frequency
along x. In the opposite case of outer coils usage only, the curvature is repulsive in the same
direction and hence decreases the trapping frequency ωx. We observe a higher atom number
and greater cloud width σx in the predominant use of the inner coils to create the field of 240G,
due to the higher trap frequency, while the opposite effect – atom losses and evaporation to
lower temperature and smaller cloud width σx – is observed for the dominating outer coils.
The effect is still weak and the smooth increase of the frequency ωx is beyond the error bars.
Nevertheless, the fitted error functions allow for an estimation of the transition point, where
the two curvatures compensate each other at BOC = 180± 2 G and similarly BIC = 60± 2 G.
Using the theoretical curvature values of tab. 5.1, we can easily formulate the condition of zero
curvature for an arbitrary field B, finding that for 240G we require a partition of the bias field
by BOC = 181 G and BIC = 59 G, in good agreement with the performed experiment. For an
arbitrary field B the currents in the coils have to be chosen according to

IOC(B) = B/

(
2.05 + 8 · 0.026

0.31

)
and IIC(B) = IOC(B) · 0.026

0.31 , (5.25)

following the values in tab. 5.1.
The additionally performed TOF measurements at 240G in presence of the inner coils (A),

outer coils (C ) and at the compensated curvature (B) confirm the previous behavior (see
embedded diagrams in fig. 5.12): In the cases A and C we observe different expansion velocities
of the width along the two directions, whereby in case of A the effect is more pronounced since
the curvature of the inner coils is stronger than the one of the outer coils. By contrary in the
compensated case B we observe a uniform expansion along the x- and z-directions. Besides, the
fitted models (orange and blue curves), are the ones for the free expansion according to eq. (2.13)
and fit very well the data points as mentioned in the beginning to this section, underlining the
difficulty of the curvature determination by pure TOF recording.
The compensation of the curvature is not only important during the evaporation process, in

case when a strong bias field is applied (see fig. 5.10), but especially during TOF, when the
precise determination of the cloud profile is necessary, as we will see later by evaluating the
Thomas-Fermi profile of a degenerate ensemble.

5.4.3 Feshbach resonances

Feshbach resonances are a well known and established technique for tuning the interaction
strength between the atoms in cold gas experiments [85]. By modifying the energy level of the
common molecular bound state potential of the colliding partners, one effectively controls the
scattering length in the gas. The tuning of the scattering length is most commonly achieved by
applying a magnetic bias field B and therefore changing the Zeeman splitting and the energy
level of the bound state of the collision partners. For s-wave scattering resonance, the evolution
of the scattering length a(B) can be described in the simple form [216]:

a(B) = abg

(
1− ∆B

B −B0

)
, (5.26)
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Figure 5.13: s-wave Feshbach resonance in the mF = {−9/2 ,−7/2} mixture. The bias scan
during evaporation is performed on a balanced mixture of the two lowest negative Zeeman
states. We image spin selectively the −7/2 -state by ramping in 15ms the bias field above the
resonance to 240G. The center of the loss feature in (a) coincides within error bars with the
fitted resonance characteristics from (b) according to eq. (5.35). The fit parameters are found to
be B0 = 203.2G, ∆B = 5.5G, P1 = 0 .58 ± 0 .2 , P2 = 0 .71 ± 0 .24 and S0 = 0.25± 0.03mm
for the cloud size at zero-crossing. The literature values are B0 = 203.2G and ∆B = 7.8G
[217] (green dashed line). The omitted gray data point in (b) arises from heating due to three
body loses through the neighboring p-wave resonance for mF = −7/2 -states.

with the background scattering length abg and the two quantities B0 (resonance position) and
∆B (resonance width), which characterize the Feshbach resonance entirely. In this section we will
present two characterizations of Feshbach resonances, namely in case of scattering in the positive
spin state mixture mF = {+9/2,+7/2} and the negative counter-part, mF = {−9/2,−7/2}.
This are the two mixtures which appear in the previously discussed evaporation sequence.

We perform an evaporation step in the crossed ODT at different bias values B in order to
determine the effect of variable scattering length and to measure experimentally the position
B0 and width ∆B of the resonance. In case of the positive spin state mixture we switch off
the bias field to record the atom number (fig. 5.14), while for the negative spin mixture we
always ramp in 15ms to a field of 240G and image the −7/2 spin state only (fig. 5.13). For the
depicted measurements we balance the negative spin mixture (50% in mF = −9/2 and 50% in
mF = −7/2) but do not balance the positive one (∼ 2/3 of the atoms are in mF = +9/2 and
the rest is occupies the mF = +7/2 state).
The center and width of the resonance can be identified either from the atom-loss feature

or from the width evolution. The latter one allows a more precise determination, since the
final cloud width S is related to the temperature T by S ∼

√
T (see eq. (2.13)), which in turn

depends on the collision properties during the evaporation sequence. We follow the discussion
presented in [212] to derive a similar fit-model for the width evolution through a s-wave Feshbach
resonance scan.

Through the evaporation cycle we lower the trap depth U(t) through time according to

U(t) = U0 e
−t/τevap ,

with the evaporation time constant τevap. This time is chosen to be much longer than the timescale of
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elastic collisions,
τevap � τel = 1/γel . (5.27)

Additionally, the cut parameter η = U(t)/kBT is supposed to be large to neglect non-evaporation related
spilling of the atoms from the trap and to be constant through the sequence. We assume a constant cut
parameter η throughout the entire evaporation, therefore setting

Ṫ

T
≈ U̇(t)

U(t) = −1/τevap . (5.28)

During the evaporation the temperature scales with the atom number according to eq. (5.9) (δ = 3/2 for
a harmonic trap and κ ≈ 1 for large η [206, 207]) as

Ṫ

T
≈ 1

3 (η − 2) Ṅ
N

+ U̇

2U . (5.29)

The last term accounts for the adiabatic decompression of the cloud, which scales the temperature T in
the case of an harmonic trap as T ∼

√
U .

For η � 1 the evolution of the atom number through the evaporation can be approximated by the
elastic collision γel rate from eq. (5.12) by [75, 205]

Ṅ

N
≈ −γel e

−η (η − 4) = −nσelv e
−η (η − 4) . (5.30)

The last three equations determine the dependency of η on the cross section σ in case of adiabatic
decompression of the trap during evaporation:

eη = 2
3τevap nσelv (η − 2) (η − 4) ≈ 2

3τevap nσelv η
2 , (5.31)

whereby we approximated in the last step the expression for large η-values. This is a very rough
approximation and ideally valid for very large η only. The solution of the last equation is defined as
Lambert-W function [218] or product logarithm function. The W(x)-functions are defined as a solution
of the equation

x =W(x) · eW(x) . (5.32)

In terms of the Lambert-W function the solution of eq. (5.31) restricted to positive η-values yields

η(σel) = −2W
(
−s0

2
1
√
σel

)
with 1

s2
0

= 2
3τevap n v . (5.33)

Finally, through the exact expression of σel(k, a) in eq. (5.13) we establish the relation between the cut
parameter η and the field dependent scattering length a(B). The missing link between η and the recorded
final cloud width S can be deduced from the definition of η at the previously mentioned condition of
constant η throughout the evaporation,

S ∼ 1/√η .

At zero-crossing of the resonance the scattering length vanishes and σel = 0. Thus the adiabatic
compression would lead to the maximum recorded size S0. In all the other cases, the variable scattering
cross section reveals a cooling effect. We expect therefore a simple model of the form

S(B) = S0

(
1− 1√

η(B)

)
, (5.34)

to describe the width evolution as a function of the magnetic field B. Inserting eq. (5.33), the general
cross section from eq. (5.13) and the expression of eq. (5.26) for the scattering length across a Feshbach
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Figure 5.14
d-wave Feshbach resonances in the mF =
{+9/2 ,+7/2} mixture. The diagram de-
picts the final atom number recorded after a
5 s long evaporation step in the crossed ODT
preformed at different bias values. The mea-
surement is done in an imbalanced mixture,
containing ∼ 70% of a +9/2 -spin state
majority. Two atom-loss features at 9G
and 160G mark the positions of two Fesh-
bach resonances (red lines). In the current
experiment we do not image spin selectively.

resonance, results in a model of the form

S(B) = S0

1−

−2W

− 1
2P2

√√√√1 + P 2
1

(
1−

∆B
B −B0

)/(
1−

∆B
B −B0

)−1/2 (5.35)

The parameters P1, P2 incorporate the background scattering length abg, the evaporation time
τevap, the density n, the relative velocity v and the momentum dependency of the scattering. The
first parameter S0 denotes the hypothetical cloud width at zero-crossing of the resonance, since
thermal equilibrium cannot be maintained in absence of interactions. It should be emphasized at
this point, that the model is only valid in case of s-wave Feshbach resonances, since we applied
the corresponding expression from eq. (5.26).

In fig. 5.13b we fit the derived model to the width evolution across the resonance for the negative
spin mixture mF = {−9/2,−7/2}. We find the resonance position at B0 = 203.2± 0.7 G and
a width of ∆B = 5.5± 0.4 G, which is not far from the previously determined values in [219,
220] (B0 = 202.10± 0.07 G and ∆B = 7.8± 0.6 G [217]). One particular data point (gray in
fig. 5.13b) is omitted from the analysis: A nearby p-wave resonance of mF = −7/2-states
(B0 ∼ 198.8 G) leads to heating through two-body losses [221]. For the negative spin mixture,
the central position of the atom loss feature in fig. 5.13a coincides within error bars with the
width-determined resonance position.

During the preparation of this manuscript we discovered that the two observed resonances
in the positive state mixture mF = {+9/2,+7/2}, which are depicted in fig. 5.14, were not
reported so far8. After a private communication with Dr. Eite Tiesinga, who provided us
thankfully some theory scattering data, we identified the two loss features around 9G and
160G as d-wave Feshbach resonances. Since in this cases the scattering is strongly temperature
dependent, we can not apply the model above. For an extensive study it is necessary to record
the lifetime of the ensemble around the loss features at variable temperatures, in order to obtain
the loss-parameters of the resonance [223].
In the evaporation sequence (see fig. 5.10) we avoid long hold-times nearby the Feshbach

resonances due to the observed atom losses: The spin-flip from positive to negative Zeeman
states is performed at 25G, well above the Feshbach resonance from fig. 5.14 and the entire
8We refer to [222] for a summary of so far experimentally observed Feshbach resonances.
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evaporation in the crossed ODT in the negative spin states is completed at high bias field of
240G, above the resonance of fig. 5.13. For the mentioned evaporation step, the increase of the
scattering cross section nearby the resonance was not favorable compared to the observed atom
losses9.

5.5 Degenerate Fermi Gas in a Harmonic Trapping Potential

Once we have reached the ultra low temperature regime, it becomes necessary to describe the
fermionic ensemble by the Fermi-Dirac statistics, rather than by a Boltzmann distribution. An
important measure, describing by how far the gas is determined by the quantum statistics, is its
temperature T in relation to the Fermi temperature TF . This quantity will depend on the atom
number and the trapping frequencies.
In the course of this section, we will derive the appropriate density profile and perform a

benchmark for the deviation of the Gaussian profile from the corresponding quantum-model as
a function of the cloud temperature. Later on, we will apply the derived profile functions to
real cloud images and evaluate the T/TF -value of the ensemble.

5.5.1 Fermi-Dirac distribution

The Fermi-Dirac distribution is described by the phase space density

fFD(r,p) =
1

1
Z e

βH(r,p) + 1
, (5.36)

with the usual notation of β = 1/(kBT ). The fugacity Z = exp (βµc), which depends on the
chemical potential µc will be used to normalize the phase space density in eq. (5.36) to the
total atom number N . In the following, we assume a harmonic trapping potential with distinct
frequencies ωi,

H(r,p) = p2

2m + m

2
∑
i

ω2
i x

2
i . (5.37)

Furthermore, we will consider sufficiently low temperatures from now on, and a spin polarized
ensemble, in order to neglect any interaction terms.
To obtain the density profile, we integrate the phase space density over the momentum

coordinates,

n(r) = 1
(2π~)3

∫
d3pfFD(r,p) = − 1

~3

(
m

2π kBT
)3/2

Li3/2

[
−Z exp

(
−βm2

∑
ω2
i x

2
i

)]
.

(5.38)
In the last expression we used the polylogarithmic function Lin of order n, which is defined by
the integral expression

Li1+n [−Z] = − 1
(kBT )1+n Γ (1 + n)

∞∫
0

dε
εn

1
Z e

βε + 1
, (5.39)

9This behavior is contrary to the experimental observation in 6Li [224, 225], where the large Feshbach resonances
are used to increase the collision rate during evaporation in order to decrease the evaporation time [226, 227].

107



5 Pathway to Quantum Degenerate 40K

where Γ(n) is the Gamma-function with the relevant value of Γ (3/2) =
√
π/2. For the further

calculations, the series expansion of the polylogarithmic functions is particularly important,

Lin [Z] =
∞∑
k=1

Zk/kn . (5.40)

Applying the last identity we determine the 2D- and 1D-density profiles by further integrating
eq. (5.38) to

n2D(x, y) =
∫
n(r) dz = − 1

~3
m

2πωz
(kBT )2 Li2

[
−Z exp

(
−βm2

{
ω2
xx

2 + ω2
yy

2
})]

, (5.41)

and

n1D(x) =
∫
n(x, y) dy = −

√
m

2π
(kBT )5/2

~3ωyωz
Li5/2

[
−Z exp

(
−βmω

2
xx

2

2

)]
. (5.42)

The corresponding TOF evolutions in free space are given in the appendix sec. H.1.1.
Finally, integrating over the last coordinate, reveals the relation of the fugacity Z to the total

atom number,
N = − 1

~3ωxωyωz
(kBT )3 Li3 [−Z] . (5.43)

A direct replacement of the fugacity Z by the total atom number N is not trivial. After a brief
discussion of the particular case of zero-temperature, we will link the fugacity Z directly to
the temperature T in terms of the Fermi temperature TF , which is the desired measure for the
quantum nature of the gas.

5.5.2 At zero temperature - The Fermi energy

At T = 0, we can distinguish two cases for the density distribution in eq. (5.36),

E > µc ⇒ lim
T→0

fFD(E) = 0

E < µc ⇒ lim
T→0

fFD(E) = 1

 fT=0 = Θ (µc − E) , (5.44)

where we replaced the Hamiltonian H(r,p) in the phase space density fFD by the total energy
E, obeying the same expression in eq. (5.37). The phase space distribution is now given by
a step-function, describing the occupation of all possible energy levels E below an energy
bound, given by the chemical potential µc. This is valid for a spin-polarized gas: for two spin
components each energy level can be occupied twice – by two different spin states each time.
As previously, we calculate the density distributions for the harmonic potential by simple

integration. The integral over the momentum is performed over a sphere in momentum space,
which sets the condition

µc >
m

2
∑

ω2
i x

2
i .

We will only mention the 3D- and 1D-cases for the density distribution, which are

nT=0(r) =
√

2m3/2

3π2~3

{
µc −

m

2
∑

ω2
i x

2
i

}3/2
Θ
(
µc −

m

2
∑

ω2
i x

2
i

)
, (5.45)
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Figure 5.15
1D-Fermi profiles for different T/TF val-
ues. For the plot, we chose later-on relevant
experimental parameters of N = 1.5 · 105

and the trap frequencies ωx = 2π · 154Hz,
ωy = 2π · 160Hz and ωz = 2π · 25Hz.

and
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. (5.46)

The complete integration yields the atom number N , or equivalently

µc = EF = kBTF = ~ω̄ (6N)1/3 with ω̄ = (ωxωyωz)1/3 . (5.47)

At zero temperature, the chemical potential µc is equal to the Fermi energy EF , which describes
the highest occupied energy level in the ground state (T = 0). Indeed, since all fermions
occupying lower levels than EF can not acquire the next, already occupied, energy level (due
to the Pauli blocking), the potential to undergo a phase transition or reaction of any kind, is
limited to the outer-energy-shell EF -fermions. For the sake of completeness, we mention the
expression of the Fermi temperature in a magnetic quadrupole trap of gradient b, derived in the
same way to

TF−Mag.-trap = 32/3

2kB

(35π
2 N

)2/9 (~µb)2/3

m1/3 . (5.48)

Eliminating the atom number dependency in eq. (5.43) by means of the definition of the
Fermi temperature TF in eq. (5.47), we link the fugacity Z at any temperature T to the ratio
T/TF :

Li3 [−Z] = −
1

6 (T/TF )3 . (5.49)

Therefore, fitting the fugacity Z as a free parameter to a real atom clouds, reveals directly the
wanted T/TF -parametrization of the imaged cloud distribution.

It is now possible to formulate more precisely the condition for entering the quantum regime,
by relating the temperature to the Fermi temperature through T/TF 6 1. Furthermore, we
can link the PSD from eq. (5.8) in case of a harmonic trapping to the T/TF ratio in case of an
non-degenerate sample (fitted by a Gaussian distribution), by replacing the atom number N
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with eq. (5.47)10,
PSD = 1

6
1

(T/TF )3 = −Li3 [−Z] , (5.50)

thereby including the frequency and atom number dependency in the Fermi temperature TF . In
conclusion, the statement of T/TF 6 1 for entering the quantum degenerate regime is equivalent
to PSD > 1/6 in case of harmonic trapping. Figure 5.15 shows 1D-Fermi profiles for different
temperatures T , but fixed trapping frequencies ωi and atom number N (therefore at same Fermi
temperature TF ).

5.5.3 Comparison of Fermi and Gaussian profiles

In order to demonstrate the deviation of the Fermi profile from a Gaussian-fit, we generate the
1D-profiles according to eq. (5.42) for different T/TF factors. Therefore, we fix the atom number
to 1.5 · 105 and the trap frequencies to ωx = 2π · 154 Hz, ωy = 2π · 160 Hz, ωz = 2π · 25 Hz and
vary only the temperature T as a free parameter. The chosen frequencies and atom number
correspond to experimentally realized conditions later-on. For different T , we sample each time
the 1D-Fermi density distribution in steps of 2 µm, cutting the distribution below a fixed density.
Afterwards, the resulting data is fitted by a normalized Gaussian distribution,

nGauss(x) =
√
m

2π
ωxN

(kBT )1/2 exp
(
−βmω

2
xx

2

2

)
. (5.51)

We fix the frequency ωx and fit the atom number N and temperature T as the only free
parameters in the Gaussian model above. While the resulting atom number is within few percent
in good agreement with the fixed one in the Fermi model (1.5 · 105), the temperature TGauss
shows an important deviation with decreasing T/TF . Figure 5.16 shows the fit results of the
temperature TGauss (expressed in units of the Fermi temperature TF ) in relation to the true
T/TF values. Around T/TF ∼ 0.3 the Gaussian temperature starts to deviate from the true
result approaching a limit of TGauss/TF ≈ 0.3 for further decreasing temperature. The deviation
of the Gaussian profile from the quantum degenerate Fermi profile at low T/TF manifests on
the wings of the density distribution: The Gaussian function shows a greater width and lower
steepness.

5.5.4 Evaluation of the experimental results

At the end of the current section, we will present the evaluation of the experimentally obtained
density distributions after the evaporation sequence presented in sec. 5.3. We let the cloud
evolve during a long TOF of 20ms, in order to avoid over saturation on the imaging (appearing
due to the high cloud-density). The cloud expands freely in a curvature-compensated bias field
of 240G. The bias allows to perform spin selective imaging of the two component gas. We will
neglect for the current analysis the s-wave interactions between the mF = −9/2 and mF = −7/2
10Similarly we find the relation for the magnetic quadrupole trap to be

(T/TF )Mag.-trap = 2
32/3

(√
2
π

1
35PSD

)2/9

.
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Figure 5.16: Gaussian-fits to Fermi profiles – deviation at the low temperature limit. For the
diagram we generated Fermi profiles according to eq. (5.42) for different T/TF temperatures
(x-axis of the diagram above) and used the sampled data to fit a Gaussian distribution, according
to eq. (5.51). We suppose the same trapping frequency ωx, but leave the atom number N and the
temperature TGauss as a free parameter. The fitted "Gaussian" temperature, in units of the Fermi
temperature, is depicted on the y-axis. Around T/TF ≈ 0 .3 the fitted Gaussian temperature
deviates from the real temperature T (the dashed line marks T = TGauss). The fit-deviation gets
visually pronounced on the wings of the distribution function (see embedded figures).

states, by fitting the profile derived in eq. (5.42). Strictly speaking, we would have to turn
the bias field to the zero-crossing of the Feshbach resonance before imaging, in order to have
indeed no interactions present during TOF. However, far away from the Feshbach resonance,
the interaction energy V0 can be neglected in comparison to the total energy of the gas:

kBT � V0 , V0 = 4πa~2

m
. (5.52)

For the estimation, we used the background scattering length a ≈ 167a0 and an approximate
temperature of T/TF = 0.2.

Different from a temperature measurement by a TOF series, we can normally determine the
temperature in the quantum degenerate regime directly from one fit to an image of the density
profile of the distribution. To allow for a representative fit result, we average over 3 to 4 images
with same experimental conditions. For this purpose, each image gets fitted by a Gaussian, in
order to find the center of the distribution and to overlay the images accordingly.

The so obtained 2D-profile is further integrated into two 1D-profiles, in order to reduce the
noise and to facilitate the computational effort of the fit procedure (see sec. 5.5.1). The TOF
evolution of the density profile from eq. (5.42) is derived in the appendix sec. H.1.1, leading to
eq. (H.11):

nfit(x, t) = − A(t) · Li5/2
[
− Z exp

(
−(x− x0 )2/2 σ2(t)

)]
+ κ · x+ ε . (5.53)

On one side, there are the pure image related fit parameters, like the position offset x0 of the
distribution in the chosen coordinate system, the background offset ε and finally the tilt κ,
originating from the decline of light power on the image by an off-centered probe beam. At the
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Figure 5.17: Measurement of trap frequencies in the crossed ODT. By switching off the ODT
beams for 0.8ms and on again we induce either center-of-mass oscillations (a) or a breathing-
mode (b). In the first case we obtain through fitting directly the trap frequency, while in the
second case the fit is twice as large as the trap frequency (width oscillations).

same time, the remaining three parameters, A(t), Z and σ(t) are distribution related quantities,

A(t) =
√
m

2π
(kBT )5/2

~3ωyωz

1√
1 + ω2

xt
2 , and σ2(t) = 1 + ω2

xt
2

mω2
x

kBT . (5.54)

In return, the atom number N is included (in combination with the trap frequencies – see
eq. (5.47) and eq. (5.49)) within the fit parameter (fugacity) Z. Unlike for a Gaussian fit
function, we have two variables which directly modify the fit amplitude, namely Z and A,
while the latter one is restricted after all by the width σ through its common relation to the
temperature T . Hence, we fix A(t) by the fit value of the width σ,

A(t) = m3
√

2π~3
ω5
x

ωyωz

σ5(t)
(1 + ω2

xt
2)3 . (5.55)

To further reduce the number of fitting parameters and in particular to ensure that the amplitude
A(t) is determined by σ, we measure experimentally the final trap frequencies and insert them
as fixed parameters into the model.
The trapping frequencies of the crossed ODT are measured by exciting an oscillation of the

cloud within the trap. Therefore, the ODT is switched off abruptly for ∼ 0.8 ms and then
switched on again to its initial power. The evolution of the cloud is recorded after various hold
times, showing two kinds of oscillatory behaviors: Either the entire cloud moves, therefore the
fit to the trajectory of the center-of-mass of the cloud reveals the frequency, or a breathing-mode
is excited, where the width of the cloud oscillates. In the latter case, the fitted oscillation of the
width through time yields twice the trapping frequency. In this way, we determine the three
frequencies ωx/2π ≈ 25 Hz, ωy/2π ≈ 154 Hz and ωz/2π ≈ 160 Hz.
We use as fitting program Mathematica (by Wolfram Research), since it includes the poly-

logarithmic functions of half-integer order out of the box, as well as highly developed fitting
routines. To accelerate the fitting routine, we first fit to the integrated 1D-profiles a Gaussian
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5 Pathway to Quantum Degenerate 40K

function and extract x0, κ, ε and σ which are subsequently passed as initial guesses to the fit
routine, which fits in turn directly eq. (5.53).

The result of the Fermi fit to a degenerate ensemble in the mF = −9/2 ground state is shown
in fig. 5.18. The depicted 2D-image is an average of four experimental runs with same conditions.
The image shows an expansion to a total size of 0.4mm after 20ms of TOF. The two integrated
1D-profiles show similar fit results of T/TF ≈ 0.16± 0.01 for an ensemble of 1.5 · 105 atoms at
a temperature of 62± 5 nK as a lower bound. Slightly higher temperatures are obtained for
the mF = −7/2-state, due to a small imbalance in atom number, and therefore lower Fermi
temperature. In fig. 5.18 we plotted in dashed lines the equivalent Gaussian distributions in the
underlying harmonic trapping potential, which would correspond to the same temperature and
atom number obtained by the Fermi fit. Neglecting the fermionic nature and hence the blocking
of already occupied states, the Gauss distribution shows a narrower profile than the Fermi one.
The absence of curvature facilitates the fit function and reduces the required parameters:

In presence of curvature we would have to know precisely the curvature frequencies in a more
complex fit function (see appendix sec. H.2.2).

5.6 Conclusion

In this chapter we analyzed theoretically and experimentally the evaporative cooling of 40K to
quantum degeneracy. Therefore, we implemented a RF-forced evaporation step in the magnetic
quadrupole trap, as well as evaporative cooling stages in two different ODT geometries. A
careful choice of the bias field during the sequence is required, since on the one hand, it effects
the trapping and expansion of the cloud (through not compensated curvature effects), and on
the other hand reduces atom losses (through Feshbach resonances). By designing a suitable
experimental sequence, we achieve a degenerate sample of mF = {−9/2,−7/2} ground state
mixture, where a precise analysis of the −9/2 density profile reveals a temperature of 62 nK,
which corresponds to T/TF ≈ 0.16 in terms of the Fermi temperature.

In a next experimental step, we can ramp adiabatically the bias field from 240G to the Feshbach
resonance characterized in fig. 5.13b in order to observe directly a superfluid of fermions at the
unitarity regime[228, 229], since the achieved temperature is below the condensation temperature
TC of the fermionic pairs[230].
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CHAPTER 6

Summary and Outlook

In this manuscript we discussed two experiments, carried out with two different ultra-cold
fermionic species discovering the effects of two distinct statistical regimes.

First, we studied the energy redistribution within an ensemble of non-interacting particles,
realized by spin-polarized 6Li, in a non-separable potential in the classical regime (described
initially by a Boltzmann-distribution). We have shown that, even in the absence of interactions,
such a system relaxes towards a steady-state after an excitation and that the energy is not
equally redistributed within the cloud. We observe a spatial separation of the thermalization
into the xy-plane and the symmetry z-axis. Consequently, we describe the resulting distribution
with two distinct quasi-temperatures in the plane and along the symmetry axis (thus we refer
to the effect of the energy-redistribution after excitation as quasi-thermalization).
The problem of quasi-thermalization can be further extended by analyzing the dependence

on the trap-anisotropy and dimensionality of the system, which is partially discussed in [118].
Indeed, the quadrupole-trap can be generalized to the potential

Upot =
√
x2 + y2 + γz2 with γ > 1 .

The behavior in the limit of γ → 1 becomes particularly interesting, due to the symmetry-
breaking of the potential. First numerical results show a sudden change in the energy-distribution
coefficients at γ = 1, being similar to the coefficients 1/6 and 1/3 derived in sec. 3.3.1 (see
eq. (3.24) of the final "kick"-evaluation). Nevertheless, in the case of a spherically symmetric
potential (γ = 1), the energy imparted through a momentum-kick along a distinct direction
is not redistributed equally over the entire trap sphere. In this case, only a minor part of the
energy is redistributed in the plane perpendicular to the kick-direction, therefore remaining a
non-isotropic problem.
The absence of interactions and the particular form of the quadrupole potential allows to

map the single-particle Hamiltonian to an analogous system of a harmonically trapped massless
particles. The interpretation of the previous results permits a unique insight into an otherwise
not accessible system, like the Weyl-particles. Furthermore, based on a similar idea, we propose
the realization of a non-Abelian potential. As stated in the introduction, these two examples
are perfect illustrations of a cold gas experiment serving as a simulation tool. It should be
emphasized, that here it operates as a classical simulation tool, since we use the quantum nature
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of 6Li as a Fermion to avoid interactions only.

In the second part we reached the quantum-degenerate regime with 40K. At this point,
interactions become important in order to perform efficient evaporative cooling. We characterized
the evaporation in three different trap configurations: the quadrupole trap, the single beam
optical dipole trap and the crossed dipole trap. In difference to Bosons, Fermions to not condense
into a common ground-state, but rather occupy one by one the lowest lying energy states at
zero-temperature. We demonstrated how the (classical) Gaussian distribution deviates from the
(quantum) Fermi-Dirac-distribution by lowering the ensemble temperature. We finally obtained
a spin-mixture in the two lowest Zeeman-states at T/TF ≈ 0.16.

This opens the way to study superfluidity in the BCS-BEC crossover [89] by sweeping the bias
field to different values around the Feshbach resonance, characterized in sec. 5.4.3. Using the
lattice-laser at 808 nm (which is described in appendix A) these observations can be extended
to the quasi-two-dimensional case.
Another step is the sympathetic cooling of 6Li to achieve double-degeneracy in the FerMix

experiment. Based on the observations of the sympathetic cooling of 6Li by 40K during the
RF-evaporation (see sec. 5.2), we decided to install a high-power optical dipole trap (300W
IPG multi-mode fiber-laser) to transfer both atomic species at a higher temperature from the
quadrupole trap of the science cell into an optical dipole trap. Longer life-times and the use of
the broad Feshbach resonance of 6Li will facilitate further the sympathetic evaporation. Later
on, the colder atomic sample can be transferred into the previously used crossed-dipole trap
(see fig. 5.1) in order to work in a single-mode dipole-trap stabilized at low power.

Again implementing the 2D-lattice setup opens up the possibility to study a mixed dimensional
system with a free 6Li gas surrounding multilayers of confined 2D 40K. By tuning the interaction-
strength of the 3D 6Li gas, theoretical models suggest the observation of long-range interactions
between the 2D layers [117].

Finally, being one of few experimental machines world wide operating with two fermionic
species simultaneously, FerMix owns the flexibility to explore and simulate a vast range of
physical systems in the universe of ultra cold atomic gases.
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APPENDIX A

Lattice Laser Setup

In this appendix section we will discuss some details of the constructed 808 nm laser system,
which should be implemented as a lattice in our experiment. Apart from a short motivation of
the intended application, the current chapter serves especially as an example of a typical MOPA
system (Master Oscillator – Power Amplifier setup).

A.1 A Lattice Laser for 40K in Presence of 6Li

The desired experimental realization requires to generate a standing wave, what would confine in
its maxima 40K atoms but ideally not 6Li. The latter should represent a free 3D-gas around the
confined multiple 2D-40K systems (see fig. A.1). Even in absence of 6Li this allows to investigate
for example the superfluid transition by tuning the interaction via a Feshbach resonance in a
pure 2D-40K fermionic system [231].
Another suggested application, which includes a composite system of both species, is the

observation of mediated interactions between neighboring 2D-40K sites through the free 6Li gas,
by tuning the interactions within 6Li or 6Li and 40K by a possible Feshbach resonances [118], in
order to simulate multilayer systems in analogy to condensed matter topics [117].

The trapping laser beam of wavelength λL will be retro-reflected, in order to create a standing
wave. According to the discussion in sec. 4.3.1, the trapping potential of a standing wave optical

Lattice Lattice 

𝝀𝑳/𝟐 

6Li 40K 

Figure A.1
2D-lattice illustration: 40K is
captured in the maxima of the
standing wave, while 6Li consti-
tutes a free gas, which can be
used to mediate long range in-
teractions between the layers of
40K.
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dipole trap in z-direction can be approximated by [200]

Usw-ODT(r, z) = Usw 0 · cos2 (kLz)
{

1− 2r2

w2
0
− z2

z2
r

}
with kL = 2π/λL and Usw 0 = 4U0 ,

(A.1)
forming pancake-like traps at a periodic distance of λL/2. Compared with the expression for a
single beam ODT in eq. (4.13) the trap depth Usw 0 is four times larger due to the interference
effect of the incoming and retro-reflected beam (four times the intensity at the place of the
antinodes of the standing wave). We find the radial frequency

ω2
r = −4Usw 0

mw2
0
· cos2 (kLz) , (A.2)

which is similar to the expression in eq. (4.14) modulated by the standing wave term along the
z-direction1. For the axial direction the frequency at the center of the trap (z = 0) yields

ω2
z = −2Usw 0

m

{
k2
L + 1

z2
R

}
≈ −2Usw 0

m
k2
L (A.3)

where, for reasonable waist sizes w0, the Relay-length zR-related term can be neglected, since
1/λL � 1/zR. The heating rate in the optical lattice is related to the average scattering rate
Γsc, describing the rate of absorbing a lattice photon and hence heating of the ensemble by
3kBTR/2 = ER [200],

Ṫ = 1
3 TR Γsc with Γsc = ΓD1

~|∆D1 |
|Usw 0| . (A.4)

To obtain the scattering rate we use the linewidth and detuning from the element specific D1
transition line. For different lattice wavelengths λL we plot in fig. A.2a the heating rate and the
trap depth Usw 0 for a fixed waist of w0 = 100 µm and total power of P = 250 mW. A sufficient
difference in the trap depth for 6Li and 40K is found in the marked region of 790 nm to 840 nm,
while the heating rate diminishes towards larger detunings from the atomic transitions. We
decided to chose a wavelength of 808 nm, taking into account the availability of diodes and TAs
in the mentioned wavelength range.
Apart from the trap depth and the heating rate, another important quantity for the lattice

choice for the desired two species experiment is the tunneling time between neighboring sites
and the heating rate of the lattice trap. The tunneling time τ ultimately limits the experimental
sequence duration and is calculated through the parameter J , which describes the kinetic energy
gain through the hopping between nearest neighbor sites [232]

τ ≈ ~
4J ≈

√
π

16
~
ER

(
ER
Usw 0

)3/4
exp

[
2
√
Usw 0
ER

]
for Usw 0 � ER = ~2k2

L/2m . (A.5)

The above approximation is only valid if the recoil energy ER of an absorbed lattice photon is
much smaller than the lattice potential height. In table A.2b we summarize the experimental
quantities for a lattice of 808 nm with a power of P = 250 mW focused on a waist size of
w0 = 100 µm.
1We follow here the conventions taken in sec. 4.3.1, where U0 < 0 for attractive, red detuned dipole traps. Hence,
the frequencies are well defined positive quantities.
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(a) Trap depth and heating rate

808nm 6Li 40K

Depth Usw 0 6.8 µK 41µK

Heating rate Ṫ 0.04µK/s 0.14µK/s

Radial ωr 3.1 kHz 2.9 kHz

Axial ωz 1670 kHz 1600 kHz

Tunneling time 5 µs 100 s

(b) Lattice at 808 nm

Figure A.2: Choosing the lattice wavelength: (a) Lattice trap depth Usw 0 (in µK) and heating
rate Ṫ (in µK/s) as a function of the lattice wavelength λL. In (b) we calculate the characteristic
quantities for a lattice choice of λL = 808 nm and a total beam power of P = 250mW, focused
on a waist of w0 = 100 µm.

A.2 An Example of a MOPA System

The entire MOPA setup for the 2D-lattice laser is depicted in fig. A.3. The master oscillator is
represented by a self-injected single-mode diode (Thorlabs M9-808-0150, total output power
150mW at 808 nm) together with a grating (Thorlabs GH13-18U ) in Littrow configuration,
which builds up an external cavity. This narrows the linewidth and allows for a (not yet
implemented) locking scheme through driving the grating with an piezoelectric actuator [233].
We implemented a compact wavelength meter (Thorlabs CCS175/M ) and a scanning Fabry-
Perot interferometer (Thorlabs SA200-5B) in the setup to monitor the wavelength position
and stability. The signal of the two devices can be used further to stabilize the wavelength
trough the diode current or the grating. At the moment we are using a laser line filter (Semrock
LL01-808-12.5 ) in front of the fiber output. A possible frequency drift in the MHz-range is less
crucial, due to the far detuning of the laser compared to the D1 and D2 transition lines of 40K
and 6Li.
The tapered amplifier (TA, model EYP-TPA-080-0100-4006-CMT04-0000 fabricated by

Eagleyard photonics) serves as the power amplifier of the system. The initial diode output
power of max. 30mW (in the self-injection-grating application) can be amplified up to 1W. The
temperature and power characteristics of the used TA chip model are depicted in fig. A.4. The
output of the TA and the diode are protected by optical isolators (Thorlabs IOT-5-780-VLP
and Isowave I-80-SD-5M ) against high power back reflections, which would damage the chips
and decrease their lifetime and stability. A λ/2-wave plate in front of the TA allows to adjust
the polarization of the seed beam, since the TA possesses a preferred polarization axis for
amplification. We do not implement additional beam shaping through lenses for the seed beam
and focus the collimated beam on the TA input-aperture through a 4.51mm lens, the same
focal length which is used for previously collimating the diode output. The output lens L4 in
conjunction with the cylindrical lens L5 collimates the amplified output beam of the TA, which
by design has two differently fast diverging axis. The additional telescope consisting of L5 and
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Figure A.3: Optical setup of the 808 nm MOPA laser system: The light of the diode is amplified
by the TA chip. Later on, the light is sent through a single-mode polarization maintaining fiber
to the science cell, where it is focused on the atomic cloud and retro-reflected to create the
previously described 2D-lattice system. See text for further description of the MOPA setup.
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Figure A.4: TA performance for variable currents and chip temperature, recorded for the TA
chip EYP-TPA-080-0100-4006-CMT04-0000 of Eagleyard photonics. (a) Output power of the
TA for variable supply current at two different temperatures. (b) Output power for fixed supply
current of 2A as a function of chip temperature. The seed power was fixed for all measurements
at 25mW.

L6 decreases further the beam size for an optimal fiber coupling.
Finally, an AOM (IntraAction ATM-1101A2 – 110MHz) allows for switching of the light

beam (and a possible intensity stabilization) before it is coupled into a fiber and send to the
optical table around the science cell.
The optical setup near the science cell is planned for a self-interfering retro-reflected beam

with a waist of 100µm at the location of the atomic cloud.
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APPENDIX B

Notes on AOM Drivers

In all cold atom experiments AOMs are used to either vary the light frequency and intensity
or simply for fast switching of light beams. Apart from the fast switching, all mentioned
operations are ruled out trough the driver, which is basically the RF-source for the AOM-
crystal. Figure B.1a shows a scheme of an AOM-driver. It consists of a voltage controlled
oscillator VCO and a voltage variable attenuator VVA. Previously, we used in our experiment
the bare components POS-200 (100MHz to 200MHz VCO) and PAS-2 (Attenuator/Switch) of
Mini-Ciruits. The PAS-attenuator is current-controlled and thus can not be directly operated
by the analog voltage control-channels of our experiment. An additional circuit including an
operational amplifier is advisable. Also the POS VCO-component needs sufficient screening:
Two POS operated in the same enclosure pick up each others RF-output. The main difficulty is
the pin-package, which needs to be soldered to a custom printed circuit board, which in turn
need to be designed in a way to reduce power losses.

An easier implementation can be done by using the screened Mini-circuit models ZX95-310A
for the VCO and ZX73-2500 for the VVA. These models are slightly more expensive1 but offer
directly a SMA connection. Only the control and supply voltage leads need to be soldered
to the components. The frequency-voltage dependence of the ZX95-310A VCO can be well
approximated by one, or even more precisely by two linear functions. By contrast, the attenuator
ZX73-2500 shows a highly non linear behavior towards higher attenuation (see figure. B.1b).
The full function can be programmed in the experimental controlling system, but since the
complete off-switching is accomplished by an additional switch (ZAS-1 of Mini-Circuits) placed
before the amplifier, higher attenuation than −10 dBm is not required. Hence we can limit in
our application the operation to the linear regime in fig. B.1b. Nevertheless, the additional
switch can be omitted by introducing for instance a multiplexer before the control-channel of
the VVA: At a high-TTL signal it would connect the voltage control of the VVA to zero, thus
asking the maximal attenuation of ∼ 47 dBm. Otherwise, (for a low-TTl signal,) the multiplexer
would forward the usual analog-control voltage, which will operate as previously on the linear
regime of the VVA. This solution requires some additional electronics, but avoids RF-power
losses on the ZAS-1 switch.
Finally, in order to optimize the light power distribution between the different orders of

refraction in the AOM crystal, we mount the AOM on a tilt mount (KM100PM/M of Thorlabs)
1The ZX95-310A and ZX73-2500 cost about 50e each. It is more expensive than the POS-VCO (15e) but
comparable to the attenuator PAS, which is about the same price.
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Figure B.1: AOM driver setup and VCO / VVA characterization. The graphs are inverted,
since on the computer-controll-side we are interested in the voltage which needs to be applied to
receive the desired output power.

to adjust precisely the incident angle of the beam. To mount the standard AOMs of Crystal
Technology on the Thorlabs tilt-mount, we use a self made adapter plates (see fig. B.2).
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APPENDIX C

New TA Support Design

In this appendix section a new design for a support of a C-mount type tapered amplifier (TA)
is presented. TA’s are widely used to increase the total light power in a given wavelength range.
Therefore a low-power seed beam (15mW–30mW) is injected into the TA chip and amplified
up to 0.5W–3W, depending on the TA model, the injected wavelength and the current applied
to the chip.
The C-mount TA chip design, fabricated by eagleyard photonics, is depicted in fig. C.1. For

amplifying the 40K cooling light at 767 nm we use the particular model EYP-TPA-0765-01500-
3006-CMT03-0000, which dimensions are depicted in the previously mentioned figure. Apart
from the mechanical support of the chip itself, the mounting need to provide some space for the
electrical wiring options including the necessary connectors and a temperature stabilization of
the chip through a thermoelectric cooler (TEC or Peltier-element). The most challenging part
of the design is the implementation of collimating lenses nearby the in- and output of the TA:
We use lenses of the focal length f = 4.51 mm (Thorlabs C230TMD-B) to focus the seed beam
on the input aperture (3 µm wide) of the chip and to collimate the fast diverging output beam.
The precise positioning of the lenses is crucial for the optimal seeding of the chip on one side, in
order to inject all the seed power as well as for the collimating of the output beam on the other
side, in order to realize an optimal beam shaping for an injection into an optical single-mode
fiber later on.

By the notion of a "new" design, we refer to the TA support realized earlier in our group (see
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Figure C.1
Dimensions and design of C-mount
TA chip as fabricated by eagleyard pho-
tonics. The dimensions are taken from
the particular model EYP-TPA-0765-
01500-3006-CMT03-0000. TA chips,
which are designed for different output-
power or wavelength may vary in the
dimensions noted in blue. For more
information see [234].

127



C New TA Support Design

[108]) which, in a similar but slightly elaborated form, is presented in [235]. In both cases an
optimal positioning of the lenses presents few difficulties: In our home-made design the lenses,
which are mounted in a aluminum cylinder, are simply clamped in metallic parts and fixed by
a screw. Hence, after collimation the lenses move significantly during the fixing process and
therefore the optimal collimation position gets lost. In [235] a precise machining of the parts
and a thread positioning system avoids this issues. However, apart from the requirement of
precise machining of the parts, the system is also lacking in a full range xy-positioning of the
lenses, in order to align the chip center and the lenses concentrically.

Presentation of the new design

The new design of the TA support, including all technical drawings, which are realized by the
departments engineer Arnaud Leclercq (apart from the Thorlabs parts), are presented on the
following pages. For the precise positioning of the lenses we use the following Thorlabs parts
(fig. C.2):

• For the z-alignment we implement the translation stage DT12/M. The stage has a travel
range of 12.7mm.

• To fix the translation stage accordingly, we use few parts sold in combination with the
base plate DT12B/M. The intended parts are the two mounting-cleats for a part fixing
by M3 screws.

• For the xy-concentric alignment of the lenses and the TA chip we utilize the translation
precision lens-mount LM05XY/M. It permits a fine adjustment of ±1 mm.

• We use the adapter S05TM09 in order to install the used lens (C230TMD-B) in the
previously mentioned xy-translation mount.

All parts together with the lens cost about 300e and need to be bought twice (for the input-
and output side). The mounting-cleats, mentioned at the second bullet-point above, are included
in the first version of the design, but seem not to be necessary for the fixing of the z-translation
stage, due to the large travel range and the additional M4 thread at the bottom of the stage.
The mounted assembly of the two stages by an adapter plate is depicted in fig. C.3. It is

mounted to the left and right side walls of the TA mount (see fig. C.9 or fig. C.11). It should be
noted, that the mounting of the lens inside the xy-translation stage should be done in such a
way, that the flat surface of the plan-convex lens can be brought as close as possible to the TA
ship on both sides. If necessary we use additional 0.5 "-lens tubes of Thorlabs (see fig. C.11 C
and E).
The main part of the design is the base unit (fig. C.4–fig. C.6). The massive block acquires

the heat from the TA chip through a Peltier-element. A water cycle with three connectors (1/8 "
NPT 27 connectors) is provided in order to avoid the heating of the optical table around the
mount. Thereby it is recommended to turn the two water connectors to the injection side of the
complete installation. In that way the water connections are not hindering the installation of
an additional collimation lens on the output side beyond the TA mount. This will be anyway
necessary to further collimate the fast diverging output beam. The mount provides recesses for
two BNC-connectors and two D-Sub-15 (DA-15 ), symmetrically arranged by the sides of the
mount. The base unit was machined in our workshop using duralumin as material.
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C New TA Support Design

The chip is mounted on a two-part holder, consisting of a small base (fig. C.7) and the actual
TA chip holder (fig. C.8). Both pieces are aligned by means of two metal pins (embedded
drawing in fig. C.7) and three M3 screws. Heat conducting compound (thermal paste) should be
applied between the two parts to assure a sufficient thermal transfer. Both parts are machined
using brass as material for optimal heat transfer from the TA chip.
The base plate is mounted on the previously mentioned base unit by six M4-screws, thereby

clamping the Peltier-element between the two parts (the green marked surface recess in fig. C.4
allows for the placement of 40 mm × 40 mm TEC elements). We use the TEC model TEC1-
12705T125 of Roithner Lasertechnik GmbH with total cooling power of 52W at maximal 5A.
The complete TA holder serves as anode (positive pole) of the TA chip. Plastic screws should
be used to fix the TA holder base-plate (fig. C.7) to the base unit (fig. C.4) in case an isolation
to the base unit and the optical table is desired.
Concerning the electric wiring of the chip, the anode (+) is directly connected through the

body to the chip holder. Therefore the anode is connected by attaching a cable through a lug
/ crimp terminal to one of the two side screws (M3) of the chip holder in fig. C.8. We solder
directly a cable to the cathode (-). It is recommended to realize the connection form the chip to
the external connector in "two steps" by two distinct cables (see fig. C.11 D) in order to avoid
stress to the chip cathode during the mounting of the connector. Therefore an isolation piece
(made from plastic – see embedded CAD in fig. C.5) is screwed (by a plastic M3-screw) in the
base unit and presents an isolated area to connect two terminals. We use drivers from Newport
(500B series) to provide a regulated current to the TA chip.

The temperature of the chip is measured either through a NTC thermistor (e.g. B57861S
series of EPCOS) placed inside the 2.5mm side hole in the chip holder in fig. C.8 or by clamping
an isolated thermistor (e.g. B57703M series of EPCOS) under one of the M3 side screws of the
same part (similar to the anode connection). The part in fig. C.8 has large 2mm left and right
cutouts on the sides to place M3-lugs. We use temperature controllers from Thorlabs (TED350
or the smaller model TED200C ) to stabilize the temperature through the TEC element.

At the moment of preparation of the present manuscript, the new TA support is tested for its
long-time stability in our experiment.
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APPENDIX D

Optocoupling of Signals

Optocoupling (or opto-isolation) is a well known technique to galvanically isolate two communi-
cating circuits. A high/low signal or even analog-signals can be transferred by means of a LED
and a photo-diode (or photo-transistor).
On the consideration side, an optocoupler is similar to a relay (mechanical or solid-state)

with the major improvements in switching times (tens of ns compared to few ms), the switching-
power consumption (the LED in an optocoupler needs only few mA and less than 2V to switch,
compared to up to 50mA for a similar voltage for relays) and higher duty cycles. Analog signal-
transfer is not possible at all with mechanical relays. However, different to relays a common
optocoupler can not switch directly high-voltage or high-current circuits. An additional wiring
in this cases is necessary (usually using an additional external power source and a transistor
operated in saturation).
Summing up the advantages and applications, optocouplers should be used to:

• Protect low-current / voltage (controlling) signals from high-current / voltage sources.

• Avoid ground loops for unconnected (not linked) devices, especially in the case of electrically
noticeable mismatch in signal distances. In this case we avoid leakage current, which could
damage the controlling electronics.

• Provide a stage for level-shifting of the controlling signals.

The only cases where optocoupler usage should be reconsidered, is if the required switching
time is below the specifications of the optocoupling device and, in case of the analog circuit (see
sec. D.2), if the introduced signal error is intolerable by the requested application.

D.1 TTL Signal Optocoupling

Figure D.1 shows the basic wiring of a TTL-logic optocoupler, which consist of a LED and a
phototransistor. The usage of two different 5V power sources, VCC1 and VCC2, as well as two
galvanically decoupled grounds (zero-reference potentials), GND1 and GND2, are indispensable.
The first ground is marked as real earth, since in most applications the input side is connected
to the main operating computer or FPGA, which controls the entire experiment. These devices
in turn relate their zero-references to the mains-ground. Two galvanically decoupled power
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Figure D.1: Basic TTL optocoupling circuit, which can be used for example to wire the
optocoupler models 6N137 or 4N25. (For different models the current limiting resistance R1
might need to be adapted.) LED1 and LED2 are used for monitoring high-level signals on the in-
and output. The capacitors C1 and C2 are used to smooth out the signals and to avoid voltage
overshoots. They also ultimately limit the switching time. Typical values range from 50 pF to
0.1 µF.

supplies are easily obtained by using two separated step-down transformers to generate the
necessary DC voltages from common AC mains. Of course the created DC 0-potential level
should not be connected accidentally to earth.
The most preferred wiring solution in case of the application of a npn-like phototransistor

within the optocoupler is the one with an inverted output (depicted in fig. D.1): Once a level-high
(5V) is applied to the input, the npn-transistor Q2 switches on the LED of the optocoupler. The
signal is picked up by the phototransistor, which in turn switches the input of the hex-inverting
buffer (74HCT04 ) form usually high (5V) to low (0V). Thus in turn, the inverted output of
the optocoupler is again inverted by the buffer. The two external LEDs (LED1 and LED2 )
monitor the high-level of the signals at the input and output.
The switching time of the circuit is determined by the used optocoupler model and the

smoothing capacitors at the input (C1 ) and output (C2 ). Typical values for the used average
optocoupler models are ranging in between 50 pF and 0.1µF for the present circuit. This allows
switching times up to 10 kHz, which corresponds to a maximally distinguished delay of 0.1ms
in between two consecutive TTL pulses.
Figure D.2 shows a faster optocoupling implementation by using the HCPL-2201 model.

Actually, the delay time ∆t1 of the optocoupler reacting on the applied square signal (rising slope)
already defines the maximum signal switching speed1 allowed by the optocoupler. Figure D.3
illustrates the reaction dynamics of the faster HCPL-2201 optocoupling circuit. The delay time
is ∆t1 ≈ 130 ns on the rising slope and ∆t2 ≈ 180 ns on the falling one. Hence, taking the larger
delay, the maximum switching speed is about 5.5MHz. The circuit from fig. D.2 showed even
at 6MHz a suitable response signal.

The use of hex-(inverted) buffers at the input side of the circuit poses the advantage to switch
1The smallest time interval in between two consecutive TTL high-levels on the input, which are still distinguished
by the optocoupler on the output, defines the switching speed.
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from 3.3V TTL-logic level to 5V at the output without additional wiring.
A faster optocoupling is possible with the HCPL-7721 model. The realized circuit in fig. D.4

is according to [237]. Once again, only the capacitors C1 and C2 were added at the input and
output. Their values are optimized to still allow a propagation velocity of 7.5MHz, thereby
minimizing voltage spikes and oscillations at the in- and output signals. Unfortunately, the
promised delay time of only 40 ns and thus a possible speed of 25MHz was not observed with
the circuit in fig. D.4. It is possible that a basic wiring, as suggested in the datasheet [238]
generates the promised delay time. However, this simplified realization showed in our setup
high voltage overshoots at the in- and output.

All previously presented solutions are made for the optocoupling of a 5V signal, providing the
same output voltage level. For application with a higher voltage level at the output, a switching
stage in form of a transistor and an additional higher voltage source might be used. However,
some optocoupler models provide the possibility to directly handle or switch higher voltages
on the output side. We will discuss one simple realization used in our experiment to switch
insulated-gate bipolar transistors (IGBT ).
The IGBT operation requires a 15V for switching-on and a negative voltage (−12V to

−15V) to compensate for switching losses due to the Miller-effect which appears as an emerging
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collector-base capacity in the IGBT [239]. The applied negative voltage discharges the gate of the
IGBT and therefore maintains the switching dynamics. We use the ACPL-3130 as optocoupler
model, which is predestinated to operate IGBTs and therefore to switch between the positive
and negative voltage levels at the output [240]. The photodiode inside the optocoupler operates
a npn-transistor and a n-JFET (n-channel junction gate field-effect transistor). If no voltage is
applied to the gate of the n-JFET, it is conducting. By contrary, the resistance increases by
applying voltage to the gate, up until the n-JFET becomes an insulator. In this case no current
passes through the drain-source connection. According to this pure switching application, the
n-JFET is similar but inverse in its action to a npn-transistor. Now, the operation of the
ACPL-3130 optocoupler in fig. D.5 becomes clear: If there is no voltage induced on the PD
(LED off) the npn-transistor is off, while the n-JFET is conducting. Hence, the output is
pulled to −15V. In the opposite case, when the LED is on and the PD-voltage is applied
simultaneously to the gates of the n-JFET and the npn-transistor. The first isolates while the
latter one conducts, thus pulling the output to 15V. Again, both possible voltage-levels are
with respect to the common ground GND2, which is isolated from the input side GND1.

D.2 Analog Signal Optocoupler

Analog signal optocoupling is slightly more complicated than the transmission of pure digital
signals, which distinguish only high and low voltage levels. Additionally, there are less devices
on the market which are providing an "out-of-the-box" analog signal transmission. The main
technical reason for this mismatch in product range is the way analog signals are created by an
computer (or micro-controller, FPGA, etc.) in first place: Usually an digital-to-analog converter
(DAC ) is implemented and therefore generally the preceding digital signal is optocoupled.

We will present here the analog optocoupling circuit based on the HCNR200, which alows for
the transmission of signals over the range of 0V to 10V. Figure D.6 depicts the realized circuit
suggested in [241]. The circuit operation is well described in the cited datasheet and will not be
repeated here. In [241] it is indicated that the capacitors C1 and C2, which are used to smooth
voltage overshoots at the in- and output, are the main response speed limitations of the circuit.
We reduced the recommended values of 47 pF and 33 pF to C1 = C2 = 3.3 pF to allow for higher
frequency signals. Furthermore we use faster operational amplifiers than the suggested model
LT1097. The OPA37GP provides the necessary speed and precision over the complete range of
0V to 10V. With the mentioned modifications we reach excellent performances already around
20 kHz for a 0V to 10V square signal (see fig. D.7), which is double of the speed proposed
in [242] for the original components in the discussed circuit. The maximum reachable speed
with still adequate signal transmission over the complete 10V-range is 94 kHz. Using a faster
operational amplifier, like the AD845 [243], we even reached (with slight signal distortions)
110 kHz.

In cases where not the entire range of 0V to 10V of an analog channel (e.g. the NI-card)
is required, it can be scaled down without precision losses by the simple operational amplifier
circuit presented in fig. D.8. It contains first an inverting part (OP1 ), which re-scales the input
voltage by − (R2−R1) · Vin. A second part provides a constant 10V-reference [244], which is
further on split by an voltage divider (R6 ). The previously scaled voltage from OP1 and the
adjusted part of the voltage reference are summed on a second operational amplifier stage OP2.
The complete re-scaling of the input voltage is therefore set by the two variable resistances R1
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APPENDIX E

UV-LED Driver

In sec. 2.2.2 the influence of LIAD (light-induced atomic desorption) on the 2D-MOT vapor
pressure and therefore the increased MOT-loading rate were presented. The light sources for
the LIAD are powerful UV-LED arrays, which require a current driver. In this section the
realization of such a high-power LED driver is discussed. The presented driver is used to power
three LEDs of the type LED395-66-60-110 of Roithner LaserTechnik [247].
The UV-LED is composed of an array of totally 60 LED’s emitting light at a wavelength of

395 nm. Depending of the model, the UV-LEDs are emitting 250mW or 600mW of total power
in a divergent beam. The characteristics of the UV-LED are determined by the forward voltage
VF and the forward current IF . For the UV-LED models used the values are

VF = 18 V IF = 240 mA / 500 mA .

For supplying the UV-LED we use a constant current source (fig. E.1): A constant voltage
source of 12V (Vigortronix VTX-214-015-124 1) is powering a regulator (LM317 ), the output of
which is reconnected to the adjust-pin. In this configuration the LM317 is supplying a constant
current to the circuit determined by the resistances R1 and R2 [248]:

I[A] = 1.25/
(
R1 +R2

)
.

The small resistance R1 (2W-3.3W) is a high power resistance (3W) and limits the maximal
current to Imax ∼ 600mA. Owning to this precaution the following potentiometer R2, which
adjust the desired current value, is a low power model (1W). The current through the UV-LED
is switched, or might be further on adjusted by the Darlington-transistors T1 and T2 (NPN
epitaxial Darlington transistor TIP 122 ). The shunt-resistance R3 is used to measure the
current in the circuit according to Ohm’s law. Since the voltage drop on this 1W shunt-resistance
is small (max. ∼ 600mV), the signal is amplified by OP2 (quad-operational amplifier LM324N )
by a factor of [249]

Vout/Vin = 1 +
(
R2/R1

)
= 8.5 .

This stretches the voltage scale up to 5V, which is the analog voltage-range of the used

1We used the more powerful version of the AC-DC converter Vigortronix VTX-214-020-124 to power two LEDs
from one supply only.
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microcontroller unit (MCU ) ATmega328 2.
Both transistors, T1 and T2, were mainly used in saturation mode, acting as switches. The

choice of Darlington-transistors is necessary due to their high gain (for TIP 122 the factor is
hFE = 1000, compared to hFE ∼ 70 of usual bipolar transistors), which allows to switch the
desired LED currents with only few mA. The Transistor T2 is connected to a digital pin of the
MCU ATmega328. Multiple tasks can be accomplished by the ATmega328:

• Temperature monitoring
Each UV-LED is equipped with a temperature sensor in form of a thermistor (NTC -
resistance with Negative Temperature Coefficient, EPCOS 10 kW B57703M -series type).
The MCU measures the voltage drop on the NTC and deduces the temperature of the
LED. The maximal operation temperature of the UV-LED is rated to 80 ◦C. In addition
to the heat produced by the UV-LEDs themselves, they are placed in an approximate
distance of 3 cm from the glass cell of the 2D-MOT which is heated up to 60 ◦C. Once the
UV-LED reaches ∼65 ◦C it is switched of by the MCU through T2 and switched on again,
either after a given time passed by (10min) or the temperature dropped below a given
threshold (50 ◦C). This secure operation ensures a long life-time of the UV-LED.

• Strobe the UV-LED
It was observed, that the continuous operation of the UV-LEDs reduces the MOT capture
efficiency. The MCU is used to flash the UV-LEDs through the transistor T2. The task is
managed by a timer-interrupt function (generally ISR - Interrupt Service Routine): In
fixed time-intervals the MCU processor gets interrupted to process a different short task.
In the present case the digital state for switching T2 gets simply switched to the opposite
state of the respective current state, once the interrupt is fired. Thus, flashing and other
tasks (i.e. measuring the current in the circuit and the temperature of the UV-LED) can
be performed as "quasi"-parallel tasks.
The fastest flash-time observed is ∼ 10ms ( =̂ 100Hz), even though the rise time of the
UV-LED is characterized by the manufacturer to be on the nano-second scale. The slower
switching can be attributed to the rise-time / behavior of the Darlington-transistor.

• Current adjustment
Operating T2 in the not-saturated limit of the transistor would allow to adjust the current
in the circuit. Therefore the MCU-pin controlling T2 is equipped with the possibility
of pulse-width modulation (PWM ): The MCU produces a periodic square-signal (of 5V
amplitude) with an asymmetric width. The time average of this signal simulates different
voltage levels in between 0V to 5V, depending on the width of the 5V-plateau inside the
period of each square pulse. However, in the present circuit realization using Darlington-
transistors, it would be necessary to drive the base on a very small scale (few hundred
mV) with a high precision (up to 1mV). Since a current stabilization / controlling is not
necessary in the application of the UV-LEDs, this was not realized to keep the circuit
simple.

• Display the parameters
2Pins of the MCU are indicated by µC in fig. E.1
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Additionally, a liquid crystal display module (LCD) is attached to the MCU, which displays
alternately the temperature and current on the three UV-LEDs. The MCU uses the
two-wire communication interface (I2C protocol) to control the display (by a remote 8-bit
expander PCF8574 ).

In case of malfunction of the MUC, its operation can be bridged by the switch S2, putting T2
permanently on.

The other Darlington-transistor T1 is used to switch the UV-LED externally: Either manually
by switching S1, or by a TTL-signal through a BNC connector. Both signals are compared by
an OR-gate (74HC32N ), leading to a high-output either when the switch is operated, or a high
TTL-signal is present. Since the output current of the OR-gate might be to low (max. 5mA),
it is amplified by an operational amplifier (OP1 ), which is connected as voltage follower. Two
standard LEDs are build in for indication: LED1 indicates when the UV-LED is switched on
through T1, while LED2 is on, as soon as a signal on the BNC input is present. In that way it
is possible to identify if the LEDs are in "security-cooling-down" mode.

The realized driver included three times the circuit from fig. E.1, in order to drive simultane-
ously three UV-LEDs. All three UV-LEDs share one MCU which measures all three temperature
sensors and three current sensors successively. The pinout of the MCU is given in fig. E.2a.
Figure E.2b shows the "triple" driver and the pinout of the 5-pole DIN-connector (NYS 325
series) used to connect the UV-LEDs. In section 2.2.2 the performance of the UV-LEDs on the
vapor-pressure in the 2D-MOT is documented in great detail.

152



TXO 

RXI 

RST 

GND 

2 

3 

4 

5 

6 

7 

8 

9 

RAW 

GND 

RST 

VCC 

A3 

A2 

A1 

A0 

13 

12 

11 

10 

SCL / A5 

SDA / A4 

A7 A6 

DTR GND 

T
X

O
 

R
X

I 

+
5

V
 /
 V

C
C

 

G
N

D
 

I2C - display 

USB - communication 

+ 8V reg. 

LED A contr. 

LED B contr. 

LED C contr. 

LED A T-sens. 

LED B T-sens. 

LED C T-sens. 

LED C I-sens. LED A I-sens. 

LED B I-sens. 

1 

4 5 

3 

2 

LED - 

GND 

LED + 

GND 

NTC + 

NTC - 

(a) MCU pinout

TXO 

RXI 

RST 

GND 

2 

3 

4 

5 

6 

7 

8 

9 

RAW 

GND 

RST 

VCC 

A3 

A2 

A1 

A0 

13 

12 

11 

10 

SCL / A5 

SDA / A4 

A7 A6 

DTR GND 

T
X

O
 

R
X

I 

+
5

V
 /
 V

C
C

 

G
N

D
 

I2C - display 

USB - communication 

+ 8V reg. 

LED A contr. 

LED B contr. 

LED C contr. 

LED A T-sens. 

LED B T-sens. 

LED C T-sens. 

LED C I-sens. LED A I-sens. 

LED B I-sens. 

1 

4 5 

3 

2 

LED - 

GND 

LED + 

GND 

NTC + 

NTC - 

(b) The realized driver

Figure E.2: (a) MCU pinout in the UV-LED driver. In the current realization of the driver
three circuits of the kind of fig E.1 are included. All three UV-LED are monitored and controlled
by one MCU. For easier implementation we use an Arduino Mini-Pro, which includes a pre-
compiled ATmega328. (b) Driver realization: Photo of the build driver and the DIN-connector
pinout, used to connect the UV-LEDs. On the top of the photo the 16 × 2 LCD is visible, which
indicates the temperature and current of each LED.
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APPENDIX F

Microcontroller Based Security System

Modern cold gases experiments are technically complex machines, build, improved and modified
over many years by different generations of researchers. Over a life-span of at least 10 years it
can consume easily 0.5 to 1Me of material and construction costs.
Most experiments include high-power lasers and water-cooled high-bias field magnetic coils,

supplied by few hundred amps. These constitute major heat sources, which need to be monitored
permanently in order to assure a secure operation of the experimental system. Therefore most
experiments today involve a security system.

While the so far easiest systems implemented similarly in our current experimental setup are
entirely analog, based on comparators (e.g. LM393 ), which compare the resistance of a NTC-
thermistor (Negative Temperature Coefficient thermistor) with a fixed resistance value, these
systems are not very flexible in their operation. Neither a direct read-out of the temperature
can be implemented (without major electronic effort), nor a variably customized switching-logic
in case of multiple sensors is easily realizable.
Both, a menu based, adjustable switching- or "reaction"-logic as well as direct calculation of

physical quantities (e.g. temperature or water flow) from electronic measures (e.g. resistance or
voltage) are straightforward in their implementation in digitally programmable devices. In this
chapter we will present a miniaturized realization of a security system.

Device selection

Three kind of programmable devices possessing digital (and analog) in- and outputs (I/O) are
available on the market. The oldest and simplest member of this family are microcontrollers
(µC), followed by FPGAs (Field Programmable Gate Array) and the SoCs (System on a Chip).
The latter was technically introduced through the implementation in handheld devices and can
be bought in form of e.g. the Raspberry Pi platform to realize custom projects. The boards
have an operational system already installed and have multiple digital outputs. Depending on
the level of the model, FPGAs represent similar systems but mostly without an operational
system installed. Both systems can process parallel tasks, while FPGAs are more reliable in
their timing. Therefore, FPGAs are used for the overall experimental control.
On the downside both platforms are comparably more difficult to program, compared to

µC. Projects on µC can be written in C. Through the Arduino platform the compilation and
communication with the boards allows for an easy implementation of the security projects.
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Figure F.1: Mini security system – circuit parts. The main parts of the security system circuit
are the relay switching (left part), the temperature measurement through a NTC thermistor,
the push-button detection at an external interrupt pin and the activation of an acoustic piezzo
buzzer through a npn-transistor (all last three items are on the right part). In the realization
within the "mini" security system we implemented three relay switches, six NTC sensors and
two push buttons. Not depicted are the power supply circuit (8V and 5V from AC) and the
I2C-connection for the LCD.

The Atmel µC installed on the boards already includes at least 8 analog inputs. Compared to
FPGAs and SoC, µC are slower in their calculation power and allow only consecutive tasks
within a logic-loop. However, parallel tasking can be implemented through interrupts of the
main routine to some extend.

The mini security system

The first realized mini security system within this thesis is based on the Arduino Mini-Pro, the
same board used for the LED-driver in appendix E, which includes the ATmega328 µC chip.
As any project realized on a µC, it contains a wiring- and a coding- (or "logic") part.

Circuit

The Arduino-board pin assignment can be found in appendix E, fig. E.2a. Digital-I/O pins are
just numbered, while analog inputs carry a capital A in front of their associated pin number.
The relevant circuit parts are shown in fig. F.1. The entire system contains three relay switches
and six voltage-measurement connections, designated to be applied with 10 kW-NTC thermistors.
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Each relay is switched by a digital I/O pin trough a npn-transistor (Q1 ). Thereby the
resistance R1 reduces the current-drain from the µC-pin, while R2 discharges the basis of
the transistor for off-switching. The diode D1 allows for discharging of the relay coil in case
the npn-transistor interrupts the supply of the relay. The switching of the power supplies or
laser interlocks in case of an alarm through a mechanical relay allows for an absolute galvanic
decoupling of the distinct systems. This becomes crucial in order to avoid ground-loops and
voltage leaks in the experiment, which would be otherwise conducted through the security
installation in this case. A similar npn-transistor circuit is used to activate a buzzer for acoustic
signalization of an alarm.
The NTC thermistors are used to transform temperature into a corresponding resistance

value. In turn, the resistance is detected through the voltage drop at the NTC through one
of six possible analog connections of the µC. There are many kinds of NTCs on the market,
but the current system was optimized for the usage of NTCs featuring a resistance of 10 kW
at room temperature. But it is possible to adapt the system for any kind of NTCs later-on,
simply through the code of the µC, since the determination of the temperature in dependence
of the measured resistance is calculated through a formula given in the data sheets. Yet, the
usual operation resistance should be comparable to the additionally wired fixed resistance value
of R4 near the 5V supply. Otherwise the exploited voltage / temperature range of the sensor
and hence the sensitivity of the circuit will decrease. In addition to NTCs we also detect the
resistance of a water-flow sensor-switch, in our case a simple two state (open or closed) switch.
Although this task could be accomplish by a digital pin, the system was originally designed
to detect the real flow rate by a different sensor and hence the usage of the analog µC-input
became more convenient.
The two analog inputs A4 and A5 are used to control a 16 × 2 LCD display through a

two-wire communication (I2C ).
For the navigation through the menu and settings of the security systems we implemented

two push-buttons. Both are connected to the external interrupt (INT ) pins of the µC. These
pins are continuously monitored by the µC, independent of its actual task and thus a pressed
button will neither be missed nor a special wait-and-check routine is later on necessary in order
to obtain an user input. Additionally to a software implementation, we debounce the push
button on the hardware side by the small capacitor C1.

Security loop and menu

In the principle operation, the µC measures consecutively the voltage drop on the NTC sensors
and calculates the corresponding temperature. After comparing the temperature with the
maximally allowed set-temperature, the system decides if an alarm has to be set. In case of
an alarm the corresponding relays are switched. The user has to connect the corresponding
interlock in that way, that the normal operation is provided only when the relay is switched
actively by the security system. This ensures, that an operation is impossible in case the security
system is accidentally not operational. Figure F.2 shows the main security loop. The diagram
includes the task of the two buttons during the permanent µC main-loop operation.

If an alarm is detected the system remains in the switched relay-state, but monitors continu-
ously all of the (active) sensors, including the one which previously caused the alarm. Even if
the temperature drops below the set value, the alarm remains: The reset has to be accomplished
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Figure F.2: Main security loop program. In the main loop the µC records in an array all active
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the values to the set temperatures. One selected sensor is permanently displayed on the LCD.
The second push button allows to access the menu. If a sensor causes an alarm the previously
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Alternatively it is possible to jump directly to the settings of the alarming sensor.
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by the user in the current version of the program. If an additional sensor detects an alarm, the
switched relay state is the one corresponding to the last detected alarm state.
Settings, like the maximal threshold temperature, the relay state at the start as well as

the relay switching in case of an alarm can be done by accessing the menu function from
the main-loop. At this point a timer interrupt function (Timer-INTR) is activated: During
the navigation through the menu the internal timer stops each 3 s the actual operation and
overwrites a boolean variable. In each menu or input sub-loop this variable is continuously
controlled and in case of being true, the actual function is left for performing a security check of
the active sensors. In this way we ensure the security operation even during user-input tasks
(quasi-parallel tasking).

The menu function is a rather complicated nesting of separate sub-loops (see diagram in
fig. F.3). Each sub-menu has its own appearance on the two-line LCD and the corresponding
button functions. The sub-menus are closed "while"-loops, which are running for a given time
(8 s) or as long as a button input from the user is detected. In case no input is detected through
the buttons, the program jumps to the following sub-menu according to the diagram in fig. F.3.
After each input the settings are stored in the µC internal storage (EEPROM ) and available as
initial settings even after powering off the µC.

A more versatile system would include two microcontrollers. One would measure and ensure
the security in a continuous loop, while the other one would be used for the displaying of data
and customer input.
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Figure F.3: Menu loop and sub-items. The menu itself and each sub-item is a while-loop with
multiple arguments: Either time-bound or depending on the user input the while-loop will be left
and the program proceeds to the next item. Depending on the main-menu item-number different
sub-menus are called. A timer interrupt function stops the sub-loops each 3 s and runs the main
security loop. Once leaving the menu, the program continuous in the main security loop (see
fig. F.2).
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APPENDIX G

50Hz Mains Synchronization Device

The 50Hz-mains synchronization device was built to synchronize the start of an experimental
sequence with the mains wave form, in order to avoid magnetic field fluctuations in cases
where a high precision of the field is required. Additionally, the realized circuit allows for
regulating the MOT loading for 6Li and 40K by two distinct digital PID-circuits. The regulation
is achieved by monitoring the two fluorescence signals of the clouds (compare fig. 2.5) and
adjusting the amplitudes of the light sources through AOMs in the 2D-MOT and the Zeeman
slower. Since both tasks, the synchronization to a 50Hz-signal and the MOT-loading dynamics
in dependence of the pre-cooling sources, are comparably slow in their dynamics, the challenge
can be accomplished in a flexible way by means of a microcontroller (µC). We use an Arduino
UNO board, which includes the ATmega328P chip, which has the same specifications as the
previously introduced ATmega328.
The 50Hz-mains synchronization part of the circuit is depicted in fig. G.1: Part of the

transformer circuit, which creates all the necessary DC-voltages for the remaining PID section,
is used to monitor the AC-mains signal (BNC – AC monitor). For fitting the AC-signal into
the analog input of the µC, we cut the negative part of the wave signal (diode D1 ) and turn
down the voltage level by a simple divider circuit (resistances R1 and R2 ). An additional Zener
diode (D2 ) protects the analog input (A0 ) of the microcontroller against voltage overshoots.
The µC detects first the peak voltage of the AC-waveform (in average around 2.4V for the

circuit in fig. G.1). In a second step, given a fixed small margin (20mV typically, reaching
thereby the limit of the resolution), the µC routine searches for the re-appearance of half of
the maximum voltage level. Additionally, we ensure during the search of the required voltage
range that the values increase. In that way we trigger always on the rising slope (see embedded
image in fig. G.1). Alternatively, an interrupt routine on a digital pin can be implemented for
the triggering routine, detecting the rising (falling) voltage over (below) the TTL threshold of
the µC. However, the present solution on an analog pin allows for sampling the entire (half-)
waveform of the AC signal.

The PID-control part of the circuit for regulating the MOT-loading of 6Li and 40K is depicted
in fig. G.2. In case the regulation is activated, the two relays (Relay 1 and Relay 2 ) are
switching the outputs (BNC OUT 1 and BNC OUT 2 ) from an external AOM-driver source
to the internal control. The fluorescence signals from both MOTs, ranging from 0V to 3V,
are detected by two distinct 16-bit analog-to-digital converters (ADC 1 and ADC 2 ) through
the two inputs BNC IN 1 and BNC IN 2. The detected voltage is transmitted by a two wire
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Figure G.1: 50Hz mains synchronization circuit. The 230V AC voltage is stepped down by a
transformer to either 15V or 9V AC. One output is used to directly monitor the AC-signal. For
the detection through an analog input of the µC we cut the negative voltage part. The circuit
also shows the realization of a DC-power source of 12V from the 15V AC input. In the entire
system we use an additional transformer to create all the necessary voltages for the PID circuit
in fig. G.2 and the µC itself. The embedded picture shows the monitored AC signal (the µC
detects only the positive voltage part) and the trigger is fired at half of the detected maximal
peak value.
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Figure G.2: 50Hz mains synchronization box - regulation part.
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protocol (I2C ) to the µC. Through the same communication line the µC sends the calculated
PID response to the two 12-bit digital-to-analog converters (DAC 1 and DAC 2 ). The output of
each DAC is amplified by a factor two by an operational amplifier (OpAmp) in order to realize
the entire voltage control scope up to 10V. Finally this signal is conducted in the two output
BNCs. Once a desired fluorescence level is reached for both MOTs, the µC fires a trigger.
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APPENDIX H

Time-of-Flight Expansions

In this section we present some details on the derivation of the density evolution during time of
flight (TOF) for different trapping potentials and different underlying statistical distributions,
i.e. the Boltzmann and Fermi-Dirac distribution. In the experiment the gas expands either
freely during TOF or under the influence of a bias curvature. The relevant cases, which are
mentioned in the main text will be presented in this section.

H.1 Free Expansion during TOF

Once the cloud is released from the trap, it expands freely during TOF. The expansion velocity
in direction xi takes place with the acquired momentum pi. After the time t the new position
of an atom x′i, previously being at xi is given by:

x′i(t) = xi + pi
m
t . (H.1)

For the corresponding momentum we derive p′i = pi, again due to the free expansion. Now we
have to substitute the position coordinate in the underlying phase space density distribution
function and recalculate the momentum integrals, in order to obtain the changed density profile
through time.

H.1.1 TOF evolution from a harmonic trapping potential

The Hamiltonian describing a particle of mass m in a harmonic trap with frequencies ωi is well
known to be

Hharm. = p2

2m + m

2
∑
i

ω2
i x

2
i . (H.2)

After some free expansion the position coordinate transforms according to eq. (H.1):

Hharm.(t) = p′2

2m + m

2
∑
i

ω2
i x
′2
i =

= 1
2m

∑
i

pi
√

1 + ω2
i t

2 +mω2
i

xit√
1 + ω2

i t
2


2

+ m

2
∑
i

ω2
i x

2
i

1 + ω2
i t

2 .

(H.3)
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In case of a thermal cloud we will integrate the Boltzmann phase space distribution function,

fB(r,p) = 1
Z
e−βH(r,p) with Z = eβµ , β = 1/kBT ,

over the momentum coordinates to obtain the density distribution,

n(r, t) = 1
(2π~)3

∫
d3p

1
Z

exp
(
−βH(r,p, t)

)
. (H.4)

The integration is performed by substituting the first sum expression of Hharm.(t) in eq. (H.3) by
a new momentum coordinate. The simple gaussian integral over the absolute value of momentum
releases

n(r, t) = 1
2π2~3

1
Z

√
π

2

(
β

m

)−3/2∏
i

exp
(
−βmω2

i x
2
i /2

(
1 + ω2

i t
2))√

1 + ω2
i t

2
. (H.5)

Integrating further over one or two spatial coordinates results in the 2D- and 1D-density
distribution projections respectively:

2D: n(x, y, t) =
∞∫
−∞

n(r, t) dz = 1
2π~3

1
Z

m

β2ωz

∏
x,y

1√
1 + ω2

i t
2

exp
(
−β 1

1 + ω2
i t

2
mω2

i x
2
i

2

)
.

(H.6)

1D: n(x, t) =
∞∫
−∞

n(x, y, t) dy = 1√
2π~3

1
Z

m1/2

β5/2ωyωz

1√
1 + ω2

xt
2 exp

(
−β 1

1 + ω2
xt

2
mω2

xx
2

2

)
.

(H.7)

The fugacity Z is used to normalize the distributions to the total atom number N . The time
dependency can be found as well in the amplitude as in the width of the time evolving density
distributions. Having a Gaussian function of the form A · exp(−x2/2σ2) we can deduce the
evolution of the width σ from the equations above to

σ2 (t) = σ2
0 ·
(
1 + ω2

i t
2
)

with σ2
0 = 1

βmω2
i

, (H.8)

which was stated in a similar form in eq. (2.13).
Similar calculations can be performed for the Fermi-Dirac destribution,

fFD(r,p) =
1

1
Z e

βH(r,p) + 1
,

which is valid in the quantum degenerate regime and used to describe the ultra cold sample of
40K in sec. 5.5. The integration over the momentum coordinates in the case of the Fermi-Dirac
distribution fFD under the expanding Hamiltonian of eq. (H.3) yields

n(r, t) = − 1
~3

(
m

2π kBT
)3/2

∏
i

1√
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i t
2

Li3/2

[
−Z exp
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−βm2

∑
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i x

2
i

1 + ω2
i t

2

)]
, (H.9)

where Lin denotes the polylogarithmic function of order n introduced in the main text in
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eq. (5.39). By further integrating the 3D-density profile above, we obtain the 2D and 1D
profiles:

2D: n(x, y, t) = −m2π
(kBT )2

~3ωx

∏
x,y

1√
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[
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1D: n(x, t) = −
√
m

2π
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2 Li5/2

[
−Z exp
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Comparing the resulting density distributions in the particular discussed case of the harmonic
trapping potential with the corresponding distributions at t = 0 (in absence of TOF), we can
formulate the following transformation

xi → xi/
√

1 + ω2
i t

2 and n0 → n0 /
∏

i=dim.

√
1 + ω2

i t
2 , (H.12)

which allows to obtain the TOF distributions from the in-situ ones. The number of factors
included in the peak density n0 transformation depends on the dimension of the considered
density profile.

H.2 TOF Evolution in Presence of a Magnetic Curvature

If we apply a constant bias field, created by a pair of coils in Helmholtz configuration, for
example to distinguish two different spin states during the imaging, we have to take into account
that the coil-pair creates also terms of second order, known as magnetic curvature (see sec. 5.4.2).
The corresponding potential is derived in eq. (5.24) to

Umag-curv = m

2

{
ω2
cr

2 −
(√

2ωc
)2
z2
}
. (H.13)

According to Newton’s equations a particle with initial (t = 0) position r and momentum p will
follow the new trajectory described by

r′(t) = r cos (ωct) + pr
mωc

sin (ωct)

z′(t) = z cosh
(√

2ωct
)

+ pz

m
√

2ωc
sinh

(√
2ωct

) (H.14)

The corresponding momentum evolution p′(t) is simply derived by differentiation. Furthermore,
it can be shown, that the infinitesimal phase space element remains unchanged through time,
i.e. dx′i dp′i = dxi dpi.

The new position r′ and momentum p′ coordinates need to be inserted in the corresponding
phase space distribution function, in order to integrate out the density distribution function
n (r, t) through TOF and obtain the corresponding cloud profile evolution, similar to the cases
of free expansion discussed before.
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H.2.1 Case of Boltzmann distribution

In the first case the thermal cloud leaves a harmonic trap with frequencies ωi to expand in the
curvature potential from eq. (H.13), being described by a Boltzman distribution function. Hence,
we insert the expressions from eq. (H.14) and the corresponding momenta into the Hamiltonian
of eq. (H.2),

Hharm.-curv.(t) =
∑
i=x,y
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i

2m

{
cos2 αc + ω2

i

ω2
c

sin2 αc
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(H.15)
We introduced the expressions αc = ωct and α2c =

√
2ωct to shorten the notation. The terms for

the trapping curvature and the anti-trapping z-direction are quite similar - only the trigonometric
functions has to be replaced by their hyperbolic counterparts and the curvature frequency ωc by√

2ωc.

We will skip the intermediate steps and mention directly the two possible 1D-density profiles,
where we either integrated along both trapping direction, or one trapping and one anti-trapping
direction. The corresponding integrals reveal
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(H.16)

and

Anti-trapping dir.: n(z, t) = 1
Z

√
m

2π
(kBT )5/2
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If we now fit a Gaussian function, A · exp(−x2/2σ2), to the imaged distributions, we might
observe two different expansions for the width σ(t). Along the trapping axis x the width will
oscillate,

σ2
x(t) = σ2

0x ·
{

cos2 (ωct) + ω2
x

ω2
c

sin2 (ωct)
}
, (H.18)
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while along the anti-trapping direction z we will observe an expansion,

σ2
z(t) = σ2

0z ·
{

cosh2
(√

2ωct
)

+ ω2
z

2ω2
c

sinh2
(√

2ωct
)}

. (H.19)

In the limit of ωct� 1, or equivalently for sufficient short TOF times t compared to the curvature
frequency scale 1/ωc, we find again the result of eq. (H.8), which would be independent of the
curvature value in this particular case.

H.2.2 Case of Fermi distribution

The derivation of the density profile for a degenerate cloud obeying the Fermi-Dirac distribution
follows similar steps as above. However, the results are expressed by rather longer formulas, so
that we will just mention the relevant expressions of the 1D-profiles at this point. For the two
possible curvature scenarios we find
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(H.20)
and

Anti-trapping dir.: n(z, t) =−
√
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~3ωxωy
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(H.21)
The final expressions are very similar to the Boltzmann case. An expansion in curvature demands
a precise knowledge of the curvature frequency ωc. Otherwise, it adds up as a fit parameter in
the analysis for the density distribution. Therefore, the determination of Z (see sec. 5.5.4) gets
more complicated, leading to imprecise T/TF estimations.
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APPENDIX I

Supplemental Calculations for Chapter 3

I.1 Scalar Product from Eq. (3.11)

In sec. 3.3 we introduced the scalar product eq. (3.11):

〈α(r,p)| β(r,p)〉 =
∫

d3r d3p f0(r,p)α(r,p)β(r,p) . (I.1)

Theorem. The above expression satisfies the definition of a scalar product.

Proof. The symmetry property,

〈α(r,p)| β(r,p)〉 = 〈β(r,p)| α(r,p)〉 ,

is simply given by the integral properties1. In the same way the linearity is easy to show:

〈α(r,p)| β(r,p) + λ γ(r,p)〉 =
∫

d3r d3p f0(r,p)α(r,p) (β(r,p) + λ γ(r,p))

=
∫

d3r d3p f0(r,p)α(r,p)β(r,p)+

+ λ

∫
d3r d3p f0(r,p)α(r,p) γ(r,p)

= 〈α(r,p)| β(r,p)〉+ λ 〈α(r,p)| γ(r,p)〉 .

The scalar product is positive definite, since for 〈α(r,p)| α(r,p)〉 we integrate over α2 and the
quantity α(r,p) is real-valued. Similar argument hold for

〈α | α〉 = 0 ⇔ α = 0 .

�

1It should be reminded, that the quantities α and β are real-valued functions in all our calculations
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I.2 Properties of the Liouville Operator

In sec. 3.3 we introduced the Liouville operator,

L̂ = p

m
· ∂r −∇U (r) · ∂p . (I.2)

Here we will prove some important properties of the operator which were used in the previously
mentioned section.

Theorem. The operator L̂ commutes with the parity operator Π̂i, applied on a pair of spatial
and momentum coordinates at once,

Π̂i f(pi, xi) = f(−pi,−xi) . (I.3)

(point reflection at the origin in phase space).

Proof. We proof the statement by direct calculation:

L̂ Π̂if(pi, xi) =L̂ f(−pi,−xi)

=
{
pi
m
∂xi − ∂xiU (r) · ∂pi

}
f(−pi,−xi)

=
{
p′i
m
∂x′i − ∂x′iU

(
r′) · ∂p′i

}
f(p′i, x′i)

= Π̂i L̂f(p′i, x′i) = L̂f(p′i, x′i) .

From the second to the third line we replaced pi = −p′i and xi = −x′i. The sign of the potential
energy U (r′) does not change under the assumption of a symmetric potential, which is the
case for the quadrupole potential in eq. (2.3). Thus, the operator L̂ is invariant under the
simultaneous sign change of the space and momentum coordinates. By renaming the coordinates
the statement is shown. �

Theorem. If only the parity of all position or momentum coordinates is changed, the sign of
the operator L̂ changes, e.g. for the momentum coordinates p:

p→ −p ⇒ L̂→ −L̂ . (I.4)

Proof.
L̂ Π̂pf(p,x) =L̂ f(−p,x)

=
{
p

m
· ∂r −∇U (r) · ∂p

}
f(−p,x)

=
{
−p

′

m
· ∂r + ∇U (r) · ∂p′

}
f(p′,x)

=− L̂f(p′,x) .

The theorem can be shown in the same way for x→ −x, supposing the spatial symmetry of
the potential, U (−xi) = U (xi). �
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I.3 Vanishing Intergral Terms in Eq. (3.12)

Theorem. The operator L̂ is antisymmetric under the scalar product defined in eq. (I.1),〈
α(r,p)

∣∣∣ L̂β(r,p)
〉

= −
〈
L̂α(r,p)

∣∣∣ β(r,p)
〉

(I.5)

Proof. By usage of partial integration we proof the statement:〈
α
∣∣∣ L̂β〉 =

∫
d3r d3p f0(r,p)α(r,p) L̂β(r,p)

=
∫

d3r d3p f0(r,p)α(r,p)
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m
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m
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−
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f0(r,p)α(r,p) p

m
β

] ∣∣∣∣∣
∞

−∞

−
∫

d3r d3p f0(r,p) p
m
β · ∂rα−

−
[
f0(r,p)α(r,p) ∇U (r) β

]∣∣∣∣∣
∞

−∞

+
∫

d3r d3p f0(r,p) ∇U (r) β · ∂pα =

=−
∫

d3r d3p f0(r,p)β(r,p)
{
p

m
· ∂rα−∇U (r) · ∂pα

}
=−

〈
L̂α

∣∣∣ β〉 .

In the fourth step we assumed that the functions α and β, as well as the normalized distribution
function f0 vanish at least as 1/p2 at the infinite limits of the phase space.

A special case of the current theorem is the scalar product with 1, i.e.∫
d3r d3p f0(r,p) L̂α(r,p) = 0 , (I.6)

since f0(r,p) is a stationary solution of the time independent Boltzmann equation (L̂ f0(r,p) =
0). �

I.3 Vanishing Intergral Terms in Eq. (3.12)

In sec. 3.3 it was mentioned, that the second term in eq. (3.12) vanishes due to symmetry
considerations, 〈

p2
i

∣∣∣∣ e−tL̂ (p · q)
〉

= 0 .

We will perform at this point the calculation explicitly. The Taylor expansion of the exponential
function and the rewriting of the definition of the scalar product (eq. (3.11)) unfolds the
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expression to 〈
p2
i

∣∣∣∣ e−tL̂ (p · q)
〉

=
∞∑
n=0

(−t)n
n!

〈
p2
i

∣∣∣ L̂n (p · q)
〉

=
∞∑
n=0

(−t)n
n!

∫
d3r d3p f0(r,p) p2

i L̂
n (p · q) .

(I.7)

We regard particularly the integration over pj with j 6= i. The n-th integration term is calculated
by

∫
k 6=j

d2pk

∫
k 6=j

d2rk p
2
i


∞∫
−∞

drj
∞∫
−∞

dpjf0 L̂
n(pjqj)

 =

=
∫
k 6=j

d2pk d2rk p
2
i


∞∫
−∞

drj
∞∫

0

dpj f0 L̂
n(pjqj)−

∞∫
−∞

drj
−∞∫
0

dpj f0 L̂
n(pjqj)


=
∫
k 6=j

d2pk d2rk p
2
i


∞∫
−∞

drj
∞∫

0

dpj f0 L̂
n(pjqj)−

−∞∫
∞

(
−dr′j

) ∞∫
0

(
−dp′j

)
f0 L̂

n(−p′jqj)


=
∫
k 6=j

d2pk d2rk p
2
i


∞∫
−∞

drj
∞∫

0

dpj f0 L̂
n(pjqj) +

∞∫
−∞

dr′j
∞∫

0

dp′j f0 L̂
n(−p′jqj)

 = 0 .

Using one of the properties of the operator L̂ shown in eq. (I.3), we can flip the signs of
momentum and position simultaneously in the second integral in the third line, leading to
L̂[pj , rj ] = L̂′[p′j , r′j ]. The linearity of L̂ leads to the annihilation of the two integrals in the last
line. Similar calculations can be done for the term j = i, leading to the same result.
The same arguments can be used to show〈

p2
i

∣∣∣∣ e−tL̂ (pj pk)
〉

= 0 , for j 6= k .

Indeed, we would split out the integration over drj and dpj and follow the argumentation similar
to the integration presented above.

I.4 Properties of the Momentum Redistribution Matrix θij from Eq. (3.16)

In this section we will show the symmetry property of the θij matrix, which is defined in sec. 3.3
by

θij(t) =
〈
βp2

i

m

∣∣∣∣∣
[
e−tL̂ − 1

](
βp2

j

m

)〉
+ 2δij .

First, we will proof the following statement:

Theorem. The momentum redistribution matrix θij(t) is an even function of time t.

This will later on simplify the proof of the symmetry property of the matrix.
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Proof. In order to deal with the simplified integral, we will expand the e function:

θij(t) = 2δij + β2

m2
∑
n≥1

(−t)n

n!

∫
d3r

∫
d3p f0(r,p) p2

i L̂
n p2

j ,

where we will now further split-off the dpj integration,∫
d3p f0(r,p) p2

i L̂
n p2

j =

=
∫
k 6=j

d2pk


∞∫

0

f0(r,p) p2
i L̂

n p2
j dpj −

−∞∫
0

f0(r,p) p2
i L̂

n p2
j dpj

 (p′j = −pj) ⇒

=
∫
k 6=j

d2pk


∞∫

0

f0(r,p) p2
i L̂

n p2
j dpj +

∞∫
0

f0(r, pk, p′j) p2
i (−1)nL̂n p′2j dp′j

 .

We applied eq. (I.4) in the last step, since we exchanged the sign of pj only (without flipping
the spatial coordinate rj). Taking into account the form of f0(r,p) (i.e. f0 depends only on the
absolute value of the momentum p, which is invariant under the transformation in the integral
above), all terms with odd n vanish. The result can be summarized to

θij(t) =2δij + β2

m2

∞∑
n=1

(−t)2n

(2n)!

∫
d3r d3p f0(r,p) p2

i L̂
2n p2

j

=δij + β2

m2

∞∑
n=1

(−t)2n

(2n)!
〈
p2
i

∣∣∣ L̂2n p2
j

〉
.

(I.8)

�

Theorem. The momentum redistribution matrix θij(t) is symmetric,

θij(t) = θji(t) .

Proof. We will continue the discussion of the previous proof, using directly eq. (I.8). By applying
successively eq. (I.5) we deduce〈

p2
i

∣∣∣ L̂2n p2
j

〉
= −

〈
L̂ p2

i

∣∣∣ L̂2n−1 p2
j

〉
= · · · = (−1)2n

〈
L̂2n p2

i

∣∣∣ p2
j

〉
=
〈
L̂2n p2

i

∣∣∣ p2
j

〉
.

The scalar product itself is symmetric for real-valued functions. Furthermore, taking into
account the symmetry of the Kronecker-delta δij , the statement of the theorem is shown. �

I.5 The Virial Theorem

We will study the expectation value of the quantity C (t) 〈r · p〉, in order to derive the Virial
theorem. For a steady state the time derivative vanishes, ∂tC(t) = 0. Rewriting the expectation
value as an integral over the distribution f yields:

∂tC(t) =
∫

d3p d3r ∂tf (r · p) = −
∫

d3pd3r (r · p) L̂f =
∫

d3p d3r f L̂ (r · p) != 0 . (I.9)

175



I Supplemental Calculations for Chapter 3

In the second step we used the Boltzmann equation, while in the last step we utilized the
previously shown identity eq. (I.5). We can now apply directly L̂ from eq. (I.2),

L̂ (r · p) = p2

m
− r · ∂rU .

If we assume a potential of the form U(r) = rn, the last identity inserted in eq. (I.9) reveals the
Virial theorem,

2〈Ekin〉 − n〈U〉 = 0 . (I.10)

In the case of the quadrupole potential we have n = 1, and the Virial theorem is 2〈Ekin〉 = 〈U〉,
as stated in eq. (3.18).

I.6 Approximation of the Potential Energy in Eq. (3.45)

For the Taylor approximation of the potential energy U (r(τ)) we insert the developed spatial
coordinate from eq. (3.44) in the argument:

U (r(τ)) ≈U
(
r0 + τ

p0
m

+ τ2

2
Fδ
m

)

=U(r0) +
{
τ
p0
m

+ τ2

2
Fδ
m

}
∂rU(r0)+

+ 1
2

∑
i

(
p0i
m
τ + τ2

2
Fδi
m

)2

∂2
riU(r0)+

+ 2
∑
i 6=j

(
p0i
m
τ + τ2

2
Fδi
m

)(
p0j
m
τ + τ2

2
Fδj
m

)
∂ri∂rjU(r0)


≈U(r0) +

{
τ
p0
m

+ τ2

2
Fδ
m

}
∂rU(r0)+

+ τ2

2m2

∑
i

p2
0i∂

2
riU(r0) + 2

∑
i 6=j

p0ip0j∂ri∂rjU(r0)

 .

(I.11)

In the last step we retained only terms up to second order in τ . Sorting the last expression
yields eq. (3.45).
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APPENDIX J

Fermi-Temperature of the SOC System in Sec. 4.3

In this appendix section we derive the Fermi-temperature in the modeled system of spin-orbit
coupling which is presented in sec. 4.3. The designed Hamiltonian is given by eq. (4.18),

HSOC (r,p) = p2

2m + mω2
r

2
(
x2 + y2

)
+ mω2

z

2 z2 − µb (xσ̂x − yσ̂y) = p2

2m + U(r) , (J.1)

thereby we will continue using the harmonic approximation of the ODT potential within the
entire present section.

We will follow the discussion in sec. 5.5.2 in order to derive the Fermi-temperature. Therefore,
we use the step function Θ(x) to describe the density distribution at zero temperature,

fT=0 = Θ (µc − E) . (J.2)

At T = 0 the fermions occupy the energy levels E from the lowest possible up to the Fermi-energy
EF = µc, which is hence by definition the last occupied energy level.
The spatial density distribution n(r) is obtained directly from the integration over a sphere

of occupied momentum values,

nT=0(r) =
∫

p2<2m(EF−U(r))

d3p

(2π~)3 = 1
6π2~3 {2m (EF − U(r))}3/2 (J.3)

Further integration along the imaging direction z, which is not affected by the SOC terms yields
the 2D-density,

nT=0(x, y) =
∫

mω2
z

2 z2≤EF−U(x,y)

nT=0(r) dz = 1
4π~3

m

ωz
{EF − U(x, y)}2 . (J.4)

In the following we will calculate the Fermi-temperature for the two eigen-energy branches,
determined in eq. (4.23) for the Hamiltonian in eq. (J.1), separately by calculating the total
atom number,

N± =
∫
e†±nT=0(x, y)e± dx dy =

∫
EF±>E±

n±(T=0)(x, y) dx dy . (J.5)
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This will allow us to calculate the dependency of the Fermi-temperature on the atom number in
each energy branch.
We will shift both eigen-energy branches by the same constant energy amount (µb)2/2mω2

r

compared to eq. (4.22), in order to avoid sign changes of the energy (E′−(r) > 0 for r ∈ [0 ,∞]),

E′±(r) = mω2
r

2 r2 ± µbr + (µb)2

2mω2
r

. (J.6)

At T = 0 the Fermi-energy EF± fixes the last populated level in the system. Thus, we fix the
boundary at EF± > E′± for the further integration in eq. (J.5) for the calculation of the total
atom number,

EF± >
mω2

r

2 r2 ± µbr + (µb)2

2mω2
r

, ⇔[
r − ∓µb−

√
2mω2

rEF±
mω2

r

]
·
[
r − ∓µb+

√
2mω2

rEF±
mω2

r

]
6 0 .

(J.7)

The upper sign belongs to the upper branch E′+, the lower sign to the lower branch E′−. We will
integrate in the following the atom number for the two energy branches in two separated parts.

Fermi-energy of the upper branch E′F+

For the upper branch the first zero-crossing of the r-axis (first term in eq. (J.7) in square
brackets) ranges at r < 0. Hence, the integral in eq. (J.5) is calculated within the non-symmetric
boundaries

0 6 r 6 −µb+
√

2mω2
rEF+

mω2
r

. (J.8)

This reveals the rather complicated expression for the total atom number N+ as a function of
the Fermi-energy EF+,

N+ ~3ω2
rωz = 1

120ζ ′3
[
κ′6 − 10κ′4ζ ′EF+ + 60κ′2ζ ′2E2

F+ + 40ζ ′3E3
F+ − 64

√
2κ′(ζ ′EF+)5/2

]
,

(J.9)
where we used similar definitions as in eq. (4.33) to shorten the notation,

κ′ = µb , ζ ′ = mω2
r . (J.10)

The eq. (J.9) can be only solved numerically for EF+(N+, κ′, ζ ′).

Fermi-energy of the lower branch E′F−

For the integration limits on the lower energy branch we have to consider two cases (see fig. J.1).
In case of

EF− 6
(µb)2

2mω2
r

⇒ µb−
√

2mω2
rEF−

mω2
r

6 r 6
µb+

√
2mω2

rEF−
mω2

r

Case 1 , (J.11)
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Figure J.1
Illustration of the two integration
cases for calculating the total atom
number at zero temperature in the
lower energy branch. Depending on
the atom number N− for fixed poten-
tial parameters, the occupation is ei-
ther symmetric with respect to the po-
tential minimum rmin (Case 1) or not
(Case 2). In the latter case the Fermi-
temperature will be higher than the
potential gap between the upper and
lower branch,
kBTF− > E+(0)− E−(rmin).

the integration boundaries in eq. (J.5) are symmetric and the atom number yields

N− = 2π
∫

Case 1

n−(r) r dr = 1
~3ω2

rωz

8
√

2
15

µb√
mω2

r

E
5/2
F− for EF− 6

(µb)2

2mω2
r

. (J.12)

Knowing the relation between the Fermi-energy and the atom number allows to translate the
constraint "Case 1 " in eq. (J.11) to an upper bound for the particle number N−,

EF− = kBTF− =
{

15
8
√

2

√
mω2

r

µb
~3ω2

rωzN−

}2/5

for N− 6
16

15~3ω2
rωz

(
µb√
2mω2

r

)6

. (J.13)

In the second case, we use similar considerations as we used to determine the integration
boundaries in eq. (J.8) for the upper branch. Indeed, the integration goes in the second case
over the following interval:

EF− >
(µb)2

2mω2
r

⇒ 0 6 r 6 µb+
√

2mω2
rEF−

mω2
r

Case 2 , (J.14)

which leads to the atom number – Fermi-energy relation

N− = 2π
∫

Case 2

n−(r) r dr

= 1
120ζ ′3

1
~3ω2

rωz

[
κ′6 − 10κ′4ζ ′EF− + 60κ′2ζ ′2E2

F− + 40ζ ′3E3
F− + 64κ′

√
2(ζ ′EF−)5/2

]
,

(J.15)
where we used again the quantities from eq. (J.10) to shorten the notation. We note, that the
only difference between the second case in eq. (J.15) and the expression eq. (J.9) for the upper
branch is the sign of the last term. The only relevant case is Case 1, since we want to explore
the lower band structure and therefore avoid the occupation of the higher band. Indeed (see
fig. J.1), for the second case the Fermi-temperature is already larger than the energy branch-gap
∆U from eq. (4.27).

For the lower energy branch we evaluate the Fermi-temperature for the relevant experimental
conditions, which were mentioned in sec. 4.4. Fig. J.2a presents the Fermi-temperature TF−

179



J Fermi-Temperature of the SOC System in Sec. 4.3

120 µm
100 µm
  80 µm
  60 µm

Fe
rm

i-t
em

pe
ra

tu
re

 [µ
K

]

0

0.2

0.4

0.6

0.8

1

Gradient b [G/cm]
0 200 400 600 800 1000

(a) TF− as function of the gradient b

120 µm
100 µm
  80 µm
  60 µm

Fe
rm

i-t
em

pe
ra

tu
re

 [µ
K

]

0

0.5

1

1.5

Atom number [104]
1 10 100 1000

(b) TF− as function of the atom number

Figure J.2: Fermi-temperature TF− characterization for an ODT potential of total power of
50W and different waist sizes. In (a) we fix the atom number to 2 · 105 and calculate TF− for
different gradients b according to the presented analysis. The trapping frequencies ωr and ωz are
obtained from eq. (4.14). For (b) we vary the atom number, fixing the gradient to b = 380G/cm.

as a function of the gradient b for different ODT potentials, but for a fixed atom number of
2 · 105 spin-polarized 6Li atoms. On the other hand, fig. J.2b depicts the Fermi-temperature as
a function of the atom number for a fixed gradient of 380G/cm and same ODT parameters. For
the relevant experimental scenarios we find TF− < 1 µK and therefore the Fermi-temperature is
by far lower than the proposed temperature range T < 11 µK in fig. 4.5. The latter one was
determined as an upper bound for an optimal resolution of the ring structure of the density in
the lower energy branch.
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Photo of the blue UV-LEDs shining on the heated 2D-MOT glass cell for the application of
LIAD (see section 2.2.2).





Résumé
Dans cette thèse, nous avons étudié expérimentalement
les propriétés physiques des fermions ultra-froids grâce
à unemachine conçue pour refroidir un mélange fermion-
ique de 6Li et 40K. Après une courte description concer-
nant la construction de l’expérience et quelques amélio-
rations que j’ai implémentées pendant ma thèse (telles
que la désorption atomique par lumière ultraviolette dans
le 2D-MOT), l’exposé se concentre sur deux observa-
tions principales de l’origine fermionique des gaz de potas-
sium et de lithium.

La première partie présente la quasithermalization
du 6Li dans un potentiel quadrupolaire, créé par un piège
magnétique. Malgré l’absence de collisions dans un gaz
fermionique polarisé en dessous d’une température don-
née, nous observons une redistribution d’énergie dans
l’ensemble statistique après une excitation dans le piège
linéaire. Une étude expérimentale détaillée ainsi qu’une
analyse théorique du phénomène sont présentées. De
plus, une transformation canonique de l’hamiltonien du
système permet la description de particules sansmasses
dans un piège harmonique. Les résultats expérimentaux
du système réel (gaz 6Li dans un potentiel quadrupo-
laire) sont donc réinterprétés pour décrire ces particules
non massiques, difficiles à observer. Un développement
supplémentaire de notre système expérimental permet
également la réalisation d’un couplage spin-orbite non-
abélien dans le gaz fermionique sans interactions.

Dans la deuxième partie, on décrit la réalisation d’un
gaz dégénéré de 40K à l’aide du refroidissement évapo-
ratif. Une succession d’étapes d’évaporation, utilisant dif-
férentes technologies de piégeage, nous permet d’obtenir
1.5 · 105 atomes dans l’état fondamental à une tempéra-
ture de 62 nK, température équivalente à 17 % de la tem-
pérature de Fermi.

Mots Clés
Atomes froids, gaz de fermions dégénéré, refroidisse-
ment par évaporation, quasithermalization, particules de
Weyl, couplage spin-orbite

Abstract
In this thesis we investigate experimentally the physics of
ultra-cold fermions on an apparatus designed to create a
cold fermionic mixture consisting of 6Li and 40K. After a
short description of the experimental apparatus and of a
few technical particularities implemented during my PhD,
for example the light-induced atomic desorption in the
2D-MOT by UV-light, we focus on two main observations
of the fermionic nature of the gas.

The first part describes the quasithermalization of 6Li
in a magnetic quadrupole potential. Even though colli-
sions are absent in a spin-polarized fermionic gas below
a given temperature, the statistical ensemble undergoes
energy redistribution after an excitation within the linear
potential. We present an extensive experimental study
as well as a comprehensive theoretical analysis of this
phenomenon. Moreover, the studied Hamiltonian can be
canonically mapped onto a system of massless, harmon-
ically trapped particles and the previously developed re-
sults are re-interpreted in order to describe this experi-
mentally inaccessible system. A further development of
the realized experiment allows even for the implementa-
tion of non-Abelian spin-orbit coupling in a gas of non-
interacting fermions.

In the second part, we describe the evaporative cool-
ing of 40K to quantum degeneracy. Through different
evaporative cooling stages we reach with a final number
of 1.5 · 105 atoms in the ground-state a temperature of
62 nK, which corresponds to 17 % of the Fermi tempera-
ture.

Keywords
Cold atoms, degenerate Fermi gas, evaporative cooling,
quasithermalization, Weyl particles, spin-orbit coupling
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