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Résumé

Ces travaux de thése portent sur l'optimisation multi-objectif de fonctions & valeurs réelles sous
contraintes d'inégalités. En particulier, nous nous intéressons & des problémes pour lesquels les
fonctions objectifs et contraintes sont évaluées au moyen d'un programme informatique néces-
sitant potentiellement plusieurs heures de calcul pour retourner un résultat. Dans ce cadre, il
est souhaitable de résoudre le probléme d'optimisation en utilisant le moins possible d'appels
au code de calcul. Par ailleurs, nous nous intéressons & des problémes d'optimisation poten-
tiellement fortement contraints, c'est a dire des problémes pour lesquels satisfaire simultanément
I'ensemble des contraintes est difficile. Ce type de probléme est caractéristique des problémes

d'optimisation de systémes complexes et met en défaut de nombreux algorithmes d'optimisation.

Nous proposons dans cette thése un algorithme d'optimisation Bayésienne baptisé BMOO.
Cet algorithme encode un nouveau critére d'amélioration espérée spécifiquement développé afin
d'atre applicable a des problémes fortement contraints et/ou avec de nombreux objectifs. Ce
critére s'appuie sur une fonction de perte mesurant le volume de 1'espace dominé par les observa-
tions courantes, ce dernier étant défini au moyen d'une régle de domination étendue permettant
de comparer des solutions potentielles & la fois selon les valeurs des objectifs et des contraintes qui
leurs sont associées. Le critére ainsi défini généralise plusieurs critéres classiques d'amélioration

espérée issus de la littérature au cas de l'optimisation multi-objectif sous contraintes d'inégalités.

Ce critére prend la forme d'une intégrale sur 1'espace joint des objectifs et des contraintes
qui n'est pas calculable analytiquement dans le cas général. Par ailleurs, il doit étre maximisé &
chaque itération de 'algorithme afin de sélectionner le prochain point d'évaluation; maximisation
qui est connue pour étre difficile car les critéres d'amélioration espérée ont tendance & étre multi-
modaux. Afin de pallier ces difficultés, nous proposons dans cette thése des algorithmes de
Monte-Carlo séquentiel dans la lignée de travaux précédemment réalisés par Benassi (2013) dans
le cas de l'optimisation globale sans contraintes. FEn particulier, nous proposons une densité Lo—
optimale pour le calcul du nouveau critére pour un ensemble de points candidats, et une densité

dédiée a l'optimisation du critére pour des problémes fortement contraints.

Quatre extensions de l'algorithme sont par ailleurs proposées, ces derniéres pouvant étre vues
comme des contributions indépendantes. Tout d'abord, BMOO est généralisé & des problémes
définis sur des espaces de recherche non-hypercubiques, définis par exemple par une fonction
d'appartenance ou par des contraintes peu cotiteuses a évaluer, ainsi qu'a des problémes ayant
des contraintes cachées. Ces derniéres apparaissent, par exemple, lorsque le code de calcul utilisé

pour évaluer les fonctions du probléme ne permet pas d'obtenir un résultat pour certaines régions



de l'espace de recherche. Par ailleurs, afin de tirer avantage des moyens de calcul paralléle lorsque
ceux-ci sont disponibles, une version multi-point de l'algorithme est proposée. Enfin, un critére
d'amélioration espérée permettant d'orienter la recherche de solutions optimales vers des régions
choisies par l'utilisateur est finalement proposé. Ce critére permet a l'expert métier d'influencer
le processus d'optimisation afin d'obtenir des solutions plus pertinentes.

L'algorithme proposé obtient de meilleurs résultats que des algorithmes d'optimisation “état
de I'art” sur des problémes d'optimisation & la fois mono- et multi-objectifs issus de la littérature.
Nous montrons qu'il peut étre appliqué avec de bons résultats et une bonne répétabilité sur un
large ensemble de problémes. En particulier, 1'algorithme permet de résoudre des problémes
fortement contraints et/ou faisant état de nombreux objectifs, ce qui était 1'objectif initial.

BMOO est également appliqué avec succés & quatre problémes représentatifs des types de
problémes d'optimisation rencontrés dans l'industrie. Il est appliqué au dimensionnement du
systéme de régulation d'air d'un avion commercial (collaboration avec Airbus Group Innova-
tion), au dimensionnement de la chaine de traction d'un véhicule électrique (collaboration avec
Renault), au paramétrage optimal d'un controleur de ligne de visée (collaboration avec Safran
Electronics & Defense), ainsi qu'au dimensionnement d'une aube de soufflante de turbomachine
(collaboration avec Safran Aircraft Engines et Cénaéro). Il est montré en particulier que les
extensions sus-mentionnées sont pertinentes au regard de ce type de problémes d'optimisation.

Certaines limitations intrinséques rendent cependant BMOO inefficace sur certains types de
problémes d'optimisation, qui sont illustrés dans cette thése. Tout d'abord, BMOO n'est pas
adapté a la résolution de problémes ayant des fonctions non-stationnaires. En effet, 1'algorithme
utilise des modeéles de processus Gaussiens et la stationnarité des objectifs et des contraintes
est une des hypothéses de modélisation qui sont faites. Lorsque celle-ci n'est pas respectée,
les modéles ne permettent pas une optimisation efficace. Nous montrons cependant que dans
certains cas, l'utilisation de transformations simples permet de rendre stationnaires certaines
fonctions qui ne le sont pas & 1'origine, et donc d'utiliser BMOO de maniére efficace. Par
ailleurs, 1'algorithme utilise I'hypervolume de la région dominée comme fonction de perte. Or,
I'hypervolume a tendance & favoriser certaines régions du front de Pareto davantage que d'autres,
en fonction de sa courbure. De ce fait, BMOO est sujet & un biais intrinséque et il peut arriver
que sur certains problémes, typiquement des problémes pour lesquels le front de Pareto a des
concavités, la distribution des solutions obtenues par l'algorithme ne représente pas de maniére

satisfaisante certaines régions du front.
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Chapter 1

Introduction



1.1 Context

1.1.1 Industrial design of complex systems

The object of this thesis is the optimal design of complex systems. As an introductory example,
consider the design of a commercial aircraft turbomachine. A turbomachine is a complex system
made of several interacting subsystems. The main components of a typical turbomachine are

represented on Figure 1.1.

Secondary flow
_ Low pressure
Low pressure turbine

Ean compressor Combustion chamber
High pressure High pressure

compressor turbine
n ] 3

Figure 1.1: Global architecture of a turbomachine.

Primary flow

>

When designing such a system, a manufacturer has to make several design choices. What
should be the shape of the combustion chamber? How many compressor stages are required to
achieve a given level of performance? What materials should the fan blades be composed of?
What is the inner blade radius of the first stage of the high pressure turbine? Etc. Those choices
are often made using past experience in designing similar systems and performance assessment
studies. An established practice to assess the performances of a given design, is to rely on numer-
ical models of the physical system. This is in general less costly and less time-consuming than
prototyping. Besides, using numerical models makes it possible to consider far more candidate
designs.

A common approach to cast a design problem into a mathematical framework is to formulate
the decision-maker wishes in terms of objectives and constraints. In the turbomachine example,
objectives for the design of the combustion chamber could be to minimize fuel consumption
or to maximize the mixing of fuel and air inside the chamber. One could also try to do both
simultaneously. Constraints could be to keep the temperature and pressure inside the chamber
below some threshold value to avoid damaging the casing. Naturally, those threshold values may
depend on the design of the casing itself.

Within this framework, a notion of optimal design can be introduced: a design is considered
optimal if it respects all the constraints and achieves an optimal trade-off between the objectives.

From a mathematical point of view, the problem consists in finding an approximation of the set
F'={zeX:c(z)<0and 2’ € X s.t. ¢(2’) <0and f(z') < f(x)}, (1.1)
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where X is a design domain, ¢ = (¢;)1<i<q is a vector of constraint functions, f = (f;)i<j<p is a
vector of objective functions to be minimized, and < is a partial order relation. The elements of
I" correspond to design solutions that both respect the constraints and achieve optimal trade-off
between the objectives, as formulated by the decision-maker!.

In the setting that we consider, for a given design z € X, the values f(z) and ¢(z) in (1.1)
correspond to the outputs of a numerical model that may involve the resolution of partial differ-
ential equations, meshing steps or large matrix inversions. The affordable number of evaluations
of f and c is therefore limited by the computational cost. When it is high, finding I" is a difficult

problem.

1.1.2 A brief literature review of continuous optimization

In the literature, several algorithms have been proposed for solving the optimization prob-
lem (1.1). For the sake of clarity, we limit the scope of our review to the continuous optimization
of deterministic functions, i.e. we consider problems where X is a subset of R? d being the
number of design variables, and for which the vectors f(z) and c(z) for some x € X are deter-
ministic (as opposed to stochastic, see e.g. Fu (2002); Tekin and Sabuncuoglu (2004); Kleijnen
(2008) and references therein). Moreover, we do not consider optimization methods that require
assumptions on the structure of the functions of the problem, such as convexity or linearity for
example, and we do not consider optimization problems with equality constraints. These give
rise to a specific literature that falls out of the scope of this thesis. See, e.g., the book of Bonnans

et al. (2006) for a broader discussion on continuous optimization.

Local and global optimization

Optimization problems with only one objective function fall into the category of the single-
objective optimization problems. This is probably the most documented category and the first
that was addressed in the literature. The solution to a single-objective problem is often a single
point called the global optimizer.

Single-objective problems can be solved using local and global optimization algorithms. Given
a starting point, local optimization algorithms perform a local search and hopefully converge to a
local optimum of the objective function. Algorithms in this class usually have a good convergence
rate and require few objective function evaluations. In this category, we find first and second
order gradient-based optimizers such as the method of steepest descent, the conjugate gradient
method, the modified Newton’s method or the quasi- Newton method, and derivative-free optimizers
such as the Direct Search algorithm of Hooke and Jeeves (1961), the Trust-Region algorithm of
Powell (1964), the Simpler algorithm of Nelder and Mead (1965) or the Generalized Pattern
Search algorithm of Torczon (1997). For more details on these approaches, the reader is referred
to the book of Nocedal and Wright (2006) and references therein.

Global optimization algorithms on the other hand seek a global optimum of the objective

function. They are often population-based and/or introduce some randomness in the optimiza-

!Note that different formulations of the optimization problem can lead to different optimal solutions.



tion process to escape local optima. Among this category of optimization algorithms we find,
for example, the Simulated Annealing algorithm of Kirkpatrick et al. (1983), the Hill Climbing
algorithm of Russell et al. (2003), the DIRECT algorithm of Jones et al. (1993), the Multilevel
Coordinate Search algorithm of Huyer and Neumaier (1999), several genetic and evolutionary al-
gorithms (see e.g. Back (1996)), random search algorithms (see e.g. Zhigljavsky (2012)), Bayesian
optimization algorithms, such as the EGO algorithm of Jones et al. (1998) or the JAGO algo-
rithm of Villemonteix et al. (2009), and surrogate-based optimization algorithms such as the
COBRA algorithms of Regis (2014). Local optimization algorithms can also be made global
by running them several times with different starting points (multi-start approach). For more
details on global optimization methods, the reader is referred to the books of Torn and Zilinskas
(1989); Weise (2009); Zhigljavsky (2012) and Nocedal and Wright (2006).

Multi-objective optimization

Optimization problems with more than one objective are called multi-objective optimization
problems. The term many-objective optimization problems is also used to refer to multi-objective
problems with more than two objectives. Unlike single-objective problems, the solution to a
multi-objective optimization problem is often a set of optimal solutions called a Pareto front.

In the literature, a distinction is made between algorithms that look for a single solution
on the Pareto front and algorithms that build an approximation of the Pareto front. For both
categories, a survey of approaches is provided by Marler and Arora (2004). See also the books
of Miettinen (2012) and Collette and Siarry (2013) for more in-depth discussions on multi-
objective optimization.

The most popular algorithms for approximating Pareto fronts are probably genetic and evolu-
tionary algorithms. Since they are population-based, they are well-suited to approximating a set
of solutions. A comprehensive review of genetic and evolutionary multi-objective optimization
algorithms is provided by Coello (2000) and Coello et al. (2002).

In the Bayesian optimization literature, algorithms for approximating Pareto fronts have been
proposed by Knowles (2006); Svenson (2011); Keane (2006); Hernédndez-Lobato et al. (2015) and
Emmerich et al. (2006), among others. Compared to genetic and evolutionary approaches, these
approaches usually require fewer objective functions evaluations, which makes them particularly

interesting in our context.

Constraint handling

Most of the above cited algorithms can be extended to handle constrained optimization prob-
lems, i.e. problems with at least one constraints. The most popular approach is to penalize the
objective function(s) by a quantity related to the constraints violation. Lagrangian formulations
for example fall in this category.

Among the class of local optimization algorithms that can handle constraints, let us cite, for
example, the Sequential Quadratic Programming algorithm of Han (1977), the COBYLA algo-
rithm of Powell (1994), the Interior-Point algorithm of Byrd et al. (1999) or the Mesh Adaptive

4



Direct Search algorithm of Audet and Dennis Jr (2006). For genetic and evolutionary single-
objective optimization algorithms, a comprehensive review of constraint-handling techniques is
provided by Mezura-Montes and Coello (2011). More generally, see the book of Nocedal and
Wright (2006) for a review of constraint-handling approaches in single-objective optimization.

As regards constrained multi-objective optimization, most of the recent literature comes from
the genetic and evolutionary communities. Popular algorithms for solving constrained multi-
objective problems are the NSGA2 algorithm of Deb et al. (2002) or the SPEA2 algorithm of
Zitzler et al. (2002). For more details about this class of approaches, the reader is referred to
the book of Deb (2001). In the Bayesian optimization literature, constrained multi-objective
optimization algorithms have been proposed by Emmerich et al. (2006); Garrido-Merchan and
Hernéndez-Lobato (2016).

Gradient-based optimization

When gradient information is available, which happens for example when adjoint solvers are
used (see e.g. Giles and Pierce (2000)), it is often advantageous to use it to guide the search for
optimal solutions. In particular when the number d of variables is large, gradient information
can prove invaluable to focus the search in the right direction and solve the problem using few
functions evaluations.

Note that in the case where gradients are not given, they can still be estimated (see e.g. No-
cedal and Wright (2006)). However, gradient approximation methods usually scale unfavourably
with the dimension of the problem (d evaluations are required to estimate a gradient using finite
differences), which often renders them impractical when d is large (say d > 10) and the functions

of the problem are expensive to evaluate.

Population-based optimization

Population-based algorithms such as random search algorithms (see e.g. Zhigljavsky (2012)),
genetic and evolutionary algorithms (see e.g. Coello (2000); Coello et al. (2002)) or Estimation of
distribution algorithms (see e.g. Hauschild and Pelikan (2011)) also form an important subclass of
the derivative-free optimization algorithms which has gained in popularity over the last decades.

One advantage of population-based algorithms is that they are often robust to difficult “land-
scapes” (involving for example discontinuities, irregularities or multiple modes) and high dimen-
sional input spaces (see, e.g., Hansen and Kern (2004)). In a sense, it can be said that they
compensate for the lack of information about the gradients and structure of the functions of the
problem by using statistics (see, e.g., Biack (1996)). This usually comes at the expense of many

functions evaluations though.

Model-based optimization

Many derivative-free optimization algorithms are model-based, in the sense that they rely on a
mathematical model to guide the search for optimal solutions. For example, it can be a statistical

model as in Bayesian optimization algorithms (see, e.g., Mockus (2012); Locatelli (1997); Jones
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et al. (1998)), a local approximation model as in the COBYLA algorithm of Powell (1994), or a
global approximation model, as in surrogate-based optimization algorithms (see e.g. Wang and
Shan (2007); Koziel et al. (2011); Queipo et al. (2005); Booker et al. (1999); Regis (2016)).
Algorithms of this class usually require few functions evaluations. However, some degree of
smoothness from the functions of the problem is often necessary and they do not usually scale

favourably with the dimension. As such, their use remains limited to a certain class of problems.

1.2 Background literature

1.2.1 Bayesian optimization

For this thesis, the choice was made to take a Bayesian approach to the optimization problem
(1.1). Historically, this approach was introduced by Kushner (1964) and developed by Mockus
(1975), Mockus et al. (1978), Archetti and Betro (1979) and Mockus (2012). It was later made
popular by Jones et al. (1998) who proposed the EGO algorithm, which is one of the most
efficient existing algorithms for solving global optimization problems with a small number of
function evaluations.

To present the Bayesian approach to optimization, it is useful to recall the Bayes rule, which
states that given a statistical model where £ is a quantity of interest and Z represents available
information about £, the posterior probability of & knowing the information Z is proportional to

the likelihood of the information Z assuming £ times the prior probability that is placed on &:

p(§|Z) x p(Z[¢) p(&)- (1.2)

In a Bayesian optimization setting, it is assumed that the functions of the problem are
sample paths of a vector valued random process {. Then, p(§) represents a priori knowledge
about these functions, such as regularity for example. Usually, stationary Gaussian process
priors are used because of their flexibility and because they yield good results in practice (see
e.g. Williams and Rasmussen (2006)). The information Z is made of the past observations of
¢. In a sequential optimization procedure, assuming that a set X,, = (X1,...,X,) € X" of n
observations have been made at time n, then Z = Z,, is the information Y, = £(X,,), where
Y, = (Y1,...,Y,) € RPT is the vector of the observed values. Under this framework, p(¢|Z,,)
is the posterior distribution of &, conditional on the past observations. An illustration of this
approach is proposed in Figure 1.2.

In the Bayesian optimization literature, various criteria have been proposed to select the
evaluation points (X7, Xo,...). In this thesis, the choice was made to focus on the expected
improvement (EI) sampling criterion (see, e.g., Jones et al. (1998)) but other approaches based
on stepwise uncertainty reduction (see e.g. Villemonteix et al. (2009); Bect et al. (2012); Chevalier
et al. (2014a); Picheny (2014b); Hennig and Schuler (2012); Hernéndez-Lobato et al. (2015))
constitute alternative directions that may have been taken.

Consider the global optimization setting where the objective is to find the minimum m of a

real valued function f : X — R. The quality of an optimization strategy X : f — (X1, Xo,...)
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Figure 1.2: Realizations of £ under a Gaussian process prior distribution (top). Conditional realizations
of £ when four observations have been made (bottom).



for f after n evaluations, can be measured using the loss function
en(X, f)=my —m, (1.3)

where m,, = f(X1) A--+ A f(X,,) is the best solution that has been observed after n evaluations.
Using the Bayesian formalism, the improvement brought by the observation of a new point z € X

at time n can be measured by the reduction of the loss:
In(x) = 5n()_(a f) - 5n+1()_(7 f) =Mp — My A g(x) = (mn - f(x))-i- (1'4)

Note that since £(x) is a random variable, the improvement (1.4) is a random quantity. Then,
a one-step lookahead optimal choice for the next evaluation point X,y is to take the point that

maximizes the conditional expectation of the improvement I.,:
Xn+1 = argmax ex En (In(x)) ’ (1'5)

where IE,, stands for the conditional expectation with respect to Y,, = f(X,). In the following,
we shall denote py,(z) = E,, (I,(z)), x € X. See Figure 1.3 for an illustration of the operation of

this optimization procedure.

The sampling criterion (1.5) is called the expected improvement. In the Bayesian optimization
literature, it has been extended to constrained single-objective problems by Schonlau et al. (1998)
and to multi-objective problems by Emmerich et al. (2006), among others?. The state-of-the-
art approach to handle constraints in Bayesian optimization consists in multiplying the expected
improvement by the posterior probability of jointly satisfying the constraints, as will be discussed
in more details in Section 2.2.3 of this manuscript. This approach however, is not suitable for

highly constrained problems, where finding a feasible solution is a challenge in itself.

Moreover, note that choosing X, 11 using (1.5) requires to solve an auxiliary optimization
problem. The EI is cheap to evaluate but it is known to be highly multi-modal (see Figure 1.3),
which makes solving this problem difficult in some cases. In the global optimization context, a
review of approaches that have been proposed to solve this problem can be found in the PhD
thesis of Benassi (2013).

In this thesis we address both difficulties. To handle highly-constrained problems, we propose
an extension of the expected improvement criterion. For solving the optimization problem (1.5)

we propose dedicated sequential Monte-Carlo techniques, following in this respect Benassi et al.
(2012).

1.2.2 Previous work on similar topics

This thesis work is a continuation of previous work initiated by Julien Bect and Emmanuel

Vazquez, supervisors of this thesis, on the coupling between Gaussian process models and se-

2See Remark 1 in Section 2.2.2
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Figure 1.3: Bayesian optimization using the EI sampling criterion. On the left column, the function
to be minimized is represented as a dashed blue line, the posterior mean of £ is shown in red and the
shaded region corresponds to a 95% confidence interval of the posterior distribution. The observations
are shown as black disks and the current best observed value is shown as a black dashed line. On the
right column, the values of the EI function are shown as a black curve. On both columns, the location of
the maximizer of the EI (i.e. the next iterate) is shown with a blue vertical line.



quential Monte-Carlo (SMC) techniques®.

In the PhD thesis of Li (2012), a Bayesian approach to the estimation of small probabilities of
failure is developed. The proposed approach is an adaptation of the Subset Simulation algorithm
of Au and Beck (2001), an SMC algorithm for computing small probabilities of failure, to the case
where the functions of the problem are expensive to evaluate, and are modeled using Gaussian

processes.

In the PhD thesis of Benassi (2013), a fully Bayesian approach to global optimization is
proposed and sequential Monte-Carlo techniques inspired from the Subset Simulation algorithm

4

are used for optimizing the EI criterion®. In this thesis, we go a step farther and propose an

extension of the approach to the case of constrained multi-objective optimization.

1.2.3 Illustration

As the name suggests, sequential Monte-Carlo techniques are sequential sampling techniques (see,
e.g., Del Moral et al. (2006)). Given a sequence of distributions (7,,),>1 defined on X, they can be
used to iteratively draw weighted samples (X},)5>1, where X, = (2 i, wn i) 1<i<m € X™ x [0, 1]™
is approximately distributed from m,, i.e. the empirical distribution 7, = Z1§igm wmégcn’i is

an approximation of 7.

In the Bayesian global optimization setting where the objective is to minimize a function

f : X — R modeled by a Gaussian process £, Benassi et al. (2012) define the density m,, n > 1
as:

Tul2) o Po(E() < my), (1.6)

where IP,, denotes the conditional probability knowing the past observations and m, is the
current best solution as in Section 1.2.1. In other words, m, is chosen proportional to the
posterior probability of improving upon the current best solution. Then, using SMC, a weighted
sample distributed from 7, can be obtained and the resulting particles (2, ;)1<i<m can be used

as candidates for the optimization of the EI criterion:
Xn41 = argmax<i<p, Pn(Tn,i) - (1.7)

The operation of this procedure is illustrated in Figure 1.4. Note in particular how the density

of particles follows the concentration of the EI from one iteration to the other.

3This coupling has also been studied by Dubourg et al. (2011) in the context of reliability based design
optimization.

*In the thesis work of Benassi (2013), the EI criterion that is considered is not exactly the one that is introduced
in Section 1.2.1 but the ideas that are used for optimizing the criterion can be generalized to other definitions of
the EI
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1.3 About this thesis work

1.3.1 Main contributions and outline of the manuscript

The main contribution of this thesis is the proposal of an algorithm for solving constrained multi-
objective optimization problems in the case where the functions of the problem are expensive
to evaluate. In particular, our focus is on heavily constrained problems, i.e. problems for which
finding a feasible solution is difficult in itself, and on many-objective problems.

The proposed algorithm, which we call BMOO, implements a Bayesian approach and is
detailed in Chapter 2. This chapter is a reproduction of Feliot et al. (2017) with a few modifica-
tions. It is structured as follows. In Section 2.2, we recall the framework of Bayesian optimization
based on the expected improvement criterion and discuss some of its extensions to constrained
optimization and to multi-objective optimization. Then, we introduce a new EI formulation in
Section 2.3. This new formulation is a generalization of the expected hypervolume improvement
(EHVI) criterion of Emmerich et al. (2006) and is adapted to both the search of feasible solutions
and to the constrained optimization of multiple objectives. For the computation and optimiza-
tion of the criterion, we propose dedicated sequential Monte-Carlo algorithms. These are detailed
respectively in Sections 2.4.1 and 2.4.2. They have applications outside of the framework of the
BMOO algorithm and can be viewed as contributions of independent interest. Then, we present
experimental results in Section 2.5. The BMOO algorithm is shown to compare favourably with
state-of-the-art algorithms for solving constrained single- and multi-objective optimization prob-
lems under a limited budget of function evaluations. Conclusions and perspectives for future
work are discussed in Section 2.6.

In Chapter 3, we propose improvements and extensions of the algorithm. In Sections 3.2
and 3.3, the computation and optimization of the criterion are revisited and novel sampling
densities to be used in the sequential Monte-Carlo samplers are proposed. These new densities
make it possible to improve the performances of the BMOO algorithm. Then, in Section 3.4, the
algorithm is tested on many-objective problems with up to eight objective functions. Finally,
in Section 3.5, we propose extensions of the algorithm. BMOO is extended to handle problems
defined on non-hypercubic design spaces (i.e. design spaces defined by bound constraints, a cheap-
to-evaluate indicator function and/or cheap-to-evaluate constraints) and to problems having
hidden constraints (due to numerical simulation failures for example). Also, to take advantage
of parallel computation facilities when available, a batch version of the algorithm is proposed.
Finally, the new EI criterion is extended to include user preferences into the search for Pareto
optimal solutions.

In Chapter 4, we present applications of the algorithm to real-life design optimization prob-
lems. BMOO is applied to the design of a commercial aircraft environment control system
(Feliot et al., 2016), to the design of an electric vehicle power-train, to the tuning of a line of
sight controller and to the design of a turbo-machine fan blade.

To conclude, in Chapter 5, we make a summary of the manuscript and discuss perspectives

for future work.
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2.1 Introduction

In this thesis, we address the problem of derivative-free multi-objective optimization of real-
valued functions subject to multiple inequality constraints. The problem consists in finding an

approximation of the set
I'={zecX:c(x)<0and 2’ € X s.t. ¢(z') <0and f(a') < f(zx)} (2.1)

where X C R? is the search domain, ¢ = (¢;)1<i< is a vector of constraint functions (¢; : X — R),
c(z) < 0 means that ¢;(z) <0 forall 1 <i <gq, f=(fj)i<j<p is a vector of objective functions
to be minimized (f; : X — R), and < denotes the Pareto domination rule (see, e.g., Fonseca and
Fleming, 1998). Both the objective functions f; and the constraint functions ¢; are assumed to be
continuous. The search domain X is assumed to be compact—typically, X is a hyper-rectangle
defined by bound constraints. Moreover, the objective and constraint functions are regarded as
black boxes and, in particular, we assume that no gradient information is available. Finally,
the objective and the constraint functions are assumed to be expensive to evaluate, which arises
for instance when the values f(x) and ¢(x), for a given & € X, correspond to the outputs of
a computationally expensive computer program. In this setting, the emphasis is on building
optimization algorithms that perform well under a very limited budget of evaluations (e.g., a few
hundred evaluations).

We adopt a Bayesian approach to this optimization problem. The essence of Bayesian op-
timization is to choose a prior model for the expensive-to-evaluate function(s) involved in the
optimization problem-—usually a Gaussian process model (Santner et al., 2003; Williams and Ras-
mussen, 2006) for tractability—and then to select the evaluation points sequentially in order to
obtain a small average error between the approximation obtained by the optimization algorithm
and the optimal solution, under the selected prior. See, e.g., Kushner (1964), Mockus (1975),
Mockus et al. (1978), Archetti and Betro (1979) and Mockus (2012) for some of the earliest refer-
ences in the field. Bayesian optimization research was first focused on the case of single-objective
bound-constrained optimization: the Expected Improvement (EI) criterion (Mockus et al., 1978;
Jones et al., 1998) has emerged in this case as one of the most popular criteria for selecting
evaluation points. Later, the EI criterion has been extended to handle constraints (Schonlau
et al., 1998; Sasena et al., 2002; Gramacy and Lee, 2011; Gelbart et al., 2014; Gramacy et al.,
2016) and to address bound-constrained multi-objective problems (Emmerich et al., 2006; Jeong
et al., 2006; Wagner et al., 2010; Svenson and Santner, 2010).

With this chapter, our contribution is twofold. The first part of the contribution is the
proposition of a new sampling criterion that handles multiple objectives and non-linear con-
straints simultaneously. This criterion corresponds to a one-step look-ahead Bayesian strategy,
using the dominated hyper-volume as a utility function (following in this respect Emmerich et al.,
2006). More specifically, the dominated hyper-volume is defined using an extended domination
rule, which handles objectives and constraints in a unified way (in the spirit of Fonseca and Flem-
ing, 1998; Ray et al., 2001; Oyama et al., 2007). This new criterion is naturally adapted to the

search of a feasible point when none is available, and several criteria from the literature—the EI
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criterion and some of its constrained /multi-objective extensions—are recovered as special cases
when at least one feasible point is known. The second part of the contribution lies in the numer-
ical methods employed to compute and optimize the sampling criterion. Indeed, this criterion
takes the form of an integral over the space of constraints and objectives, for which no analytical
expression is available in the general case. Besides, it must be optimized at each iteration of
the algorithm to determine the next evaluation point. In order to compute the integral, we use
an algorithm similar to the subset simulation method (Au and Beck, 2001; Cérou et al., 2012),
which is a well known Sequential Monte Carlo (SMC) technique (see Del Moral et al., 2006; Liu,
2001, and references therein) from the field of structural reliability and rare event estimation. For
the optimization of the criterion, we resort to an SMC method as well, following earlier work by
Benassi et al. (2012) for single-objective bound-constrained problems. The resulting algorithm
is called BMOO (for Bayesian multi-objective optimization).

This chapter is based on Feliot et al. (2017). Its structure is as follows. In Section 2.2, we recall
the framework of Bayesian optimization based on the expected improvement sampling criterion,
starting with the unconstrained single-objective setting. Section 2.3 presents our new sampling
criterion for constrained multi-objective optimization. The calculation and the optimization
of the criterion are discussed in Section 2.4. Section 2.5 presents experimental results. An
illustration on a two-dimensional toy problem is proposed for visualization purpose. Then, the
performances of the method are compared to those of reference methods on both single- and
multi-objective constrained optimization problems from the literature. Finally, future work is

discussed in Section 2.6.

2.2 Background literature

2.2.1 Expected Improvement

Consider the single-objective unconstrained optimization problem

2* = argmin, ey f(2).

where f is a continuous real-valued function defined over X € R Our objective is to find an
approximation of x* using a sequence of evaluation points X1, X, ... € X. Because the choice of
a new evaluation point X,, ;1 at iteration n depends on the evaluation results of f at Xy, ..., X,
the construction of an optimization strategy X : f — (X1, X2, X3...) is a sequential decision
problem.

The Bayesian approach to this decision problem originates from the early work of Kushner
(1964) and Mockus et al. (1978). Assume that a loss function €,(X, f) has been chosen to
measure the performance of the strategy X on f after n evaluations, for instance the classical
loss function

en(X, f) =my —m, (2.2)

with m,, = f(X1) A+ A f(X,,) and m = mingex f(z). Then, a good strategy in the Bayesian

sense is a strategy that achieves, on average, a small value of ,(X, f) when n increases, where
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the average is taken with respect to a stochastic process model £ (defined on a probability space
(Q, A, Py), with parameter in X) for the function f. In other words, the Bayesian approach
assumes that f = (w,-) for some w € . The probability distribution of £ represents prior
knowledge about the function f—before actual evaluations are performed. The reader is referred
to Vazquez and Bect (2014) for a discussion of other possible loss functions in the context of
Bayesian optimization.

Observing that the Bayes-optimal strategy for a budget of N evaluations is intractable for N
greater than a few units, Mockus et al. (1978) proposed to use a one-step look-ahead strategy (also
known as a myopic strategy). Given n < N evaluation results, the next evaluation point X, 1
is chosen in order to minimize the conditional expectation of the future loss £,41(X,&) given

available evaluation results:

Xp1 = argmingex En(5n+1()_(,f) | Xny1 = $) ) (2.3)

where IE,, stands for the conditional expectation with respect to Xy, £(X1), ..., Xn, £(Xn).
Most of the work produced in the field of Bayesian optimization since then has been focusing,
as the present paper will, on one-step look-ahead (or similar) strategies'; the reader is referred
to Ginsbourger and Le Riche (2010) and Benassi (2013) for discussions about two-step look-ahead
strategies.

When (2.2) is used as a loss function, the right-hand side of (2.3) can be rewritten as

argmin I, (6n+1()_(,§) | Xpt1 = x) = argminlk, (mn+1 | Xpi1 = x)
= argmax B, ((m, —£(2))4) , (2.4)

with zy = max (z, 0). The function

pn(T) 1 @ En((mn - f(x))-i-) (2.5)

is called the Expected Improvement (EI) criterion (Schonlau et al., 1998; Jones et al., 1998).
When ¢ is a Gaussian process with known mean and covariance functions, p,(z) has a closed-

form expression:
pu(@) = 7 (mn — &), o2(@) ) | (2.6)

where

es) = ﬁw(%)#@(%) ?fs>0,
max (z,0) if s =0,

with @ standing for the normal cumulative distribution function, ¢ = ®’ for the normal probabil-
ity density function, &,(z) = E, (£(z)) for the kriging predictor at 2 (the posterior mean of &(z)

after n evaluations) and o2 (x) for the kriging variance at = (the posterior variance of &(z) after

'Mockus (2012, Section 2.5) heuristically introduces a modification of (2.3) to compensate for the fact that
subsequent evaluation results are not taken into account in the myopic strategy and thus enforce a more global
exploration of the search domain. In this work, we consider a purely myopic strategy as in Jones et al. (1998).
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n evaluations). See, e.g., the books of Stein (1999), Santner et al. (2003), and Williams and
Rasmussen (2006) for more information on Gaussian process models and kriging (also known as
Gaussian process interpolation).

Finally, observe that the one-step look-ahead strategy (2.3) requires to solve an auxiliary
global optimization problem on X for each new evaluation point to be selected. The objective
function p,, is rather inexpensive to evaluate when £ is a Gaussian process, using (2.6), but it
is typically severely multi-modal. A simple method to optimize p, consists in choosing a fixed
finite set of points that covers X reasonably well and then performing a discrete search. Recently,
sequential Monte Carlo techniques (see Del Moral et al., 2006; Liu, 2001, and references therein)
have been shown to be a valuable tool for this task (Benassi et al., 2012). A review of other
approaches is provided in the PhD thesis of Benassi (2013, Section 4.2).

2.2.2 El-based multi-objective optimization without constraints

We now turn to the case of unconstrained multi-objective optimization. Under this framework,
we consider a set of objective functions f; : X — R, j = 1, ..., p, to be minimized, and the
objective is to build an approximation of the Pareto front and of the set of corresponding solutions

I'={z e X:32 € Xsuch that f(2') < f(x)}, (2.7)

where < stands for the Pareto domination rule defined by
y=Wi, ..., Yp) R 2=1(21, ..., 2p) = _ B (2.8)

Given evaluation results f(X1) = (fi1(X1), ..., fp(X1)), ..., f(Xyn) =
(fi(Xn), ..., fp(Xp)), define

Hp={y € B;Ji<n, f(X;) <y}, (2.9)

where B C RP? is a set of the form B = {y € RP; y < y"PP} for some y"PP € RP, which is
introduced to ensure that the volume of H,, is finite. H,, is the subset of B whose points are
dominated by the evaluations.

A natural idea, to extend the EI sampling criterion (2.5) to the multi-objective case, is to

use the volume of the non-dominated region as loss function:
en(X, f) = [H \ Hnl

where H = {y € B;3z € X, f(z) < y} and |-| denotes the usual (Lebesgue) volume in RP.
The improvement yielded by a new evaluation result f(X,11) = (f1(Xn+1)s -+ [p(Xnt1))

is then the increase of the volume of the dominated region (see Figure 2.1):
Ly (Xpy1) = [H\ Hy| — [H\ Hyq1| = [Hyy1 \ Hy| = [Hpy1| — [Hal, (2.10)

19



since H,, C Hp41 C H. Given a vector-valued Gaussian random process model & = (1,...,&p)
of f=(f1,...,fp), defined on a probability space (€2, A,Py), a multi-objective EI criterion can

then be derived as

pn(z) = E;(Ip(2))

= B, ( / ]ls(m><ydy>
B\H,,

= [ B ()
B\H,,

_ / P, (£(z) < y) dy, (211)
B\H,

where P,, stands for the probability Py conditioned on X3, {(X1), ..., X, £&(X,). The multi-
objective sampling criterion (2.11), also called Expected Hyper-Volume Improvement (EHVT),
has been proposed by Emmerich and coworkers (Emmerich, 2005; Emmerich et al., 2006; Em-
merich and Klinkenberg, 2008).

Remark 1 A wariety of alternative approaches have been proposed to extend the EI criterion
to the multi-objective case, which can be roughly classified into aggregation-based techniques
(Knowles, 2006, Knowles and Hughes, 2005; Zhang et al., 2010) and domination-based tech-
niques (see e.g. Jeong and Obayashi, 2005; Keane, 2006; Ponweiser et al., 2008; Bautista, 2009;
Svenson and Santner, 2010; Wagner et al., 2010). We consider these approaches are heuristic
extensions of the EI criterion, in the sense that none of them emerges from a proper Bayesian
formulation (i.e., a myopic strategy associated to some well-identified loss function). A detailed
description of these approaches is out of the scope of this thesis. The reader is referred to Wagner
et al. (2010), Couckuyt et al. (2014) and Horn et al. (2015) for some comparisons and discus-
sions. See also Picheny (2014b) and Herndndez-Lobato et al. (2015) for other approaches not

directly related to the concept of expected improvement.

Remark 2 The multi-objective sampling criterion (2.11) reduces to the usual EI criterion (2.5)

in the single-objective case (assuming that f(X;) < y"PP for at least one i < n).

Under the assumption that the components &; of ¢ are mutually independent?, P, (£(z) < y)
can be expressed in closed form: for all z € X and y € B\ H,,

P, (¢ ﬁcb (yza &;) )> : (2.12)

where gm(x) and Jin(x) denote respectively the kriging predictor and the kriging variance at z

for the i*" component of ¢.

2This is the most common modeling assumption in the Bayesian optimization literature, when several objec-
tive functions, and possibly also several constraint functions, have to be dealt with. See the VIPER algorithm
of Williams et al. (2010) for an example of an algorithm based on correlated Gaussian processes.
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Figure 2.1: Example of an improvement of the dominated region. The regions dominated by y; and ys
are represented in shaded areas, with darker shades indicating overlapping regions. The hatched area
corresponds to the improvement of the dominated region resulting from the observation of ys.
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The integration of (2.12) over B\ H,, in the expression (2.11) of the multi-objective EI
criterion, is a non-trivial problem. Several authors (Emmerich and Klinkenberg, 2008; Bader
and Zitzler, 2011; Hupkens et al., 2014; Couckuyt et al., 2014) have proposed decomposition
methods to carry out this computation, where the integration domain B \ H,, is partitioned
into hyper-rectangles, over which the integral can be computed analytically. The computational
complexity of these methods, however, increases exponentially with the number of objectives?,
which makes the approach impractical in problems with more than a few objective functions.
The method proposed in this work also encounters this type of integration problem, but takes a
different route to solve it (using SMC techniques; see Section 2.4). Our approach will make it

possible to deal with more objective functions.

Remark 3 Ezact and approzimate implementations of the EHVI criterion are available, together
with other Gaussian-process-based criteria for bound-constrained multi-objective optimization, in
the Matlab/Octave toolbox STK (Bect et al., 2016b) and in the R packages GPareto (Binois
and Picheny, 2015) and mirMBO (Horn et al., 2015). Note that several approaches discussed
in Remark 1 maintain an affordable computational cost when the number of objectives grows,
and therefore constitute possible alternatives to the SMC technique proposed in this paper for

many-objective box-constrained problems.

2.2.3 El-based optimization with constraints

In this section, we discuss extensions of the expected improvement criterion for single- and multi-
objective constrained optimization.

Consider first the case of problems with a single objective and several constraints:

mingex f(7), (2.13)

c(z) <0,

where ¢ = (c1, ..., ¢4) is a vector of continuous constraints. The set C' = {z € X; ¢(x) < 0} is
called the feasible domain. If it is assumed that at least one evaluation has been made in C| it

is natural to define a notion of improvement with respect to the best observed objective value
my, =min{f(z); x € {X1, ..., X, } NC}:

In(Xn+1) = Mp — Mnpt1
= Lex, <o (mn = f(Xnt1))

My — f(Xny1) if Xpp1 € Cand f(Xpg1) < mp,
— (2.14)
0 otherwise .

In other words, a new observation makes an improvement if it is feasible and improves upon

the best past value (Schonlau et al., 1998). The corresponding expected improvement criterion

3See, e.g., Beume (2009), Hupkens et al. (2014), Couckuyt et al. (2014) and references therein for decomposition
algorithms and complexity results.
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follows from taking the expectation:

pn(z) = E, (]1&(%,)SO (1 — §O(x))+) . (2.15)

If f is modeled by a random process &, and ¢ is modeled by a vector-valued random process
& = (&c1, - -+, &q) independent of &, then the sampling criterion (2.15) simplifies to Schonlau

et al.’s criterion:

pn(z) = Pp(&e(z) <0) En((mn - fo(x))—i—) . (2.16)

In other words, the expected improvement is equal in this case to the product of the uncon-
strained expected improvement, with respect to m,, with the probability of feasibility. The
sampling criterion (2.16) is extensively discussed, and compared with other Gaussian-process-
based constraint handling methods, in the PhD thesis of Sasena (2002). More generally, sampling
criteria for constrained optimization problems have been reviewed by Parr et al. (2012) and Gel-
bart (2015).

In the general case of constrained multi-objective problems, the aim is to build an approxi-
mation of T" defined by (2.1). If it is assumed that an observation has been made in the feasible
set C, a reasoning similar to that used in the single-objective case can be made to formulate an

extension of the EI (2.11):
pn(x) =, (|Hn+1| - |Hn|) s (2.17)

where
H,={yeB;3i<n, X, €Cand f(X;) <y} (2.18)

is the subset of BB, defined as in Section 2.2.2, whose points are dominated by feasible evalua-
tions. When &, and . are assumed independent, (2.17) boils down to the product of a modified
EHVI criterion, where only feasible points are considered*, and the probability of feasibility, as
suggested by Emmerich et al. (2006) and Shimoyama et al. (2013b):

pule) =P €@ <0) [ PuGole) <) dy. (219)
B\H,

Observe that the sampling criterion (2.17) is the one-step look-ahead criterion associated
to the loss function €,(X, f) = —|Hy|, where H,, is defined by (2.18). This loss function
remains constant as long as no feasible point has been found and, therefore, is not an appropriate
measure of loss for heavily constrained problems where finding feasible points is sometimes the
main difficulty®. From a practical point of view, not all unfeasible points should be considered
equivalent: a point that does not satisfy a constraint by a small amount has probably more

value than one that does not satisfy the constraint by a large amount, and should therefore

4Note that this modified EHVI criterion remains well defined even when H,, = (), owing to the introduction of an
upper bound y"P? in the definition of B. Its single-objective counterpart introduced earlier (see Equation (2.15)),
however, was only well defined under the assumption that at least one feasible point is known. Introducing an
upper bound y"PP is of course also possible in the single-objective case.

®The same remark holds for the variant (see, e.g., Gelbart et al., 2014) which consists in using the probability
of feasibility as a sampling criterion when no feasible point is available. This is indeed equivalent to using the loss
function e, (X, f) = —13i<n,x,cc in the search for feasible points.
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make the loss smaller. Section 2.3 will present a generalization of the expected improvement
for constrained problems, relying on a new loss function that encodes this preference among

unfeasible solutions.

Remark 4 Other Gaussian-process-based approaches that can be used to handle constraints in-
clude the method by Gramacy et al. (2016), based on the augmented Lagrangian approach of Conn
et al. (1991), and several recent methods (Picheny, 2014a; Gelbart, 2015; Herndndez-Lobato et al.,
2015, 2016a) based on stepwise uncertainty reduction strategies (see, e.g., Villemonteiz et al.,
2009; Bect et al., 2012; Chevalier et al., 2014a, for more information on this topic).

Remark 5 The term E,((m, — &(x))+) in (2.16) can be computed analytically as in Sec-
tion 2.2.1, and the computation of the integral in (2.19) has been discussed in Section 2.2.2. If it
is further assumed that the components of & are Gaussian and independent, then the probability

of feastbility can be written as
q ~
Pu(e(e) <0) = [[ @ (—5—% (2.20)

where Ecjn(x) and o . () stand respectively for the kriging predictor and the kriging variance

C7j7n
of &, at x.

2.3 An EI criterion for constrained multi-objective optimization

2.3.1 Extended domination rule

In a constrained multi-objective optimization setting, we propose to handle the constraints using
an extended Pareto domination rule that takes both objectives and constraints into account, in
the spirit of Fonseca and Fleming (1998), Ray et al. (2001) and Oyama et al. (2007). For ease of
presentation, denote by Y, = R? and Y. = RY the objective and constraint spaces respectively,
and let Y =Y, x Y.

We shall say that y; € Y dominates yo € Y, which will be written as y1 <y, if ¥(y1) < ¥(y2),
where < is the usual Pareto domination rule recalled in Section 2.2.2 and, denoting by R the

extended real line,

- Y, xY — Rp x RY
1/} [¢} c
(y07 O) if Ye <— 07 (221)

(Yo ye)
(400, max(yc,0)) otherwise.

The extended domination rule (2.21) has the following properties:

(i) For unconstrained problems (¢ = 0, Y. = ), the extended domination rule boils down to

the Pareto domination rule on Y = Y,.
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Figure 2.2: Illustration of the extended domination rule in different cases. The region dominated by
each point is represented by a shaded area. Darker regions indicate overlapping regions. (a) Feasible
solutions are compared with respect to their objective values using the usual domination rule in the
objective space—see properties (i) and (ii). (b—c) Non-feasible solutions are compared using the Pareto
domination rule applied to the vectors of constraint violations according to property (iii). Note that y4
dominates points having a higher value of ¢; regardless of the corresponding value of ¢;, and, likewise, ys
dominates points with higher values of ¢;. (d—e) Feasible solutions always dominate non-feasible solutions:
ye is feasible and hence dominates y3, y4 and ys; yg is feasible and dominates both y; and yg as stated in

(iv).

(ii) Feasible solutions (corresponding to y. < 0) are compared using the Pareto domination
rule applied in the objective space (in other words, using the Pareto domination rule with

respect to the objective values y,).

(iii) Non-feasible solutions (corresponding to y. £ 0) are compared using the Pareto domination

rule applied to the vector of constraint violations.
(iv) Feasible solutions always dominate non-feasible solutions.

These properties are illustrated on Figure 2.2.

2.3.2 A new EI criterion

The extended domination rule presented above makes it possible to define a notion of expected

hyper-volume improvement as in Section 2.2.2 for the constrained multi-objective setting. Given

25



evaluation results (f(X1),c(X1)), ..., (f(Xn), (X)), define
Hp={y € B; Ji <n, (f(Xi), c(Xi)) <y}

with B = B, x B, where B, C Y, and B, C Y, are two bounded hyper-rectangles that are intro-
duced to ensure, as in Section 2.2.2, that |H,| < +oo (see Appendix 2.7.1 and subfigures (c) and
(e) of Figure 2.2). Then, define the improvement yielded by a new evaluation (f(X,+1), ¢(Xpn+1))
by

In (Xnt1) = [Hpi1 \ Hy| = [Hpia| — [Hal (2.22)

as in Section 2.2.2. In order to get a meaningful concept of improvement both before and after
the first feasible point has been found, we assume without loss of generality that (0, ..., 0) € R?
is in the interior of B..

If (f,c) is modeled by a vector-valued random process § = (&, &), with & = ({01, - -+, &o,p)
and & = (&1, ,...&cq), then the expected improvement for the constrained multi-objective

optimization problem may be written as

pu(2) = En ((In() =1En</2nna@<ydy)::/ann«xw><z»dy, (2.23)

where G,, = B\ H, is the set of all non-dominated points in B.
Asin Section 2.2.2, under the assumption that the components of £ are mutually independent

and Gaussian, IP,, ({(z) < y) can be expressed in closed form: for all z € X and y = (yo, yc) € G,

( P
f1e(c5) (fto(£2) oo
. 0,%,n Oc,j,n

=1

Pp(&(x) <y) = (2.24)

ﬁ <max Ye,j5 ) — gcvjvn(x)> otherwise .

¢, j,n(T)

The El-based constrained multi-objective optimization procedure may be written as (2.3). In
practice, the computation of each new evaluation point requires to solve two numerical problems:
a) the computation of the integral in (2.23); b) the optimization of p, in the procedure (2.3).
These problems will be addressed in Section 2.4.

Remark 6 When there are no constraints (¢ = 0, Y. = (), the extended domination rule <
corresponds to the usual Pareto domination rule <. In this case, the sampling criterion (2.23)

simplifies to

%wz/\HPMM@<%Nw (2.25)

with
Hn,o = {yo € By; Ji <n, f(Xz) = yo} .

Denote by yl"w yo'? € Y, the lower and upper corners of the hyper-rectangle B,. Then, the sam-
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pling criterion (2.25) is equivalent to the multi-objective EI criterion presented in Section 2.2.2

low
o

i the limit y°Y — —oo. If, moreover, the problem has only one objective function, then the
criterion (2.23) boils down to the original expected improvement criterion as soon as the best

evaluation dominates yo'* (see Remark 2).

2.3.3 Decomposition of the expected improvement: feasible and unfeasible
components

Assume that there is at least one constraint (¢ > 1). Then, the expected improvement p,,(z) can

be decomposed as
pu(a) = p*(a) + pp (@), (2.26)

by splitting the integration domain in the right-hand side of (2.23) in two parts: pf®(z) corre-

n
unf

sponds to the integral on G,,N{y. < 0}, while pi™(x) corresponds to the integral on G,,N{y. £ 0}.

More explicit expressions will now be given for both terms. First,

o) = P (€o(2) £e()) < (900 ) (v )
Grnn{yc£0}

= [Bof- P, (gér(x) = y;L) 1.0 dye
IBC\Hn,c

(2.27)

where yI = max (y.,0) and
Hn,c = {yc € B, | d4i < n, C+(XZ') < y:} .

Let B, = B.N]—00, 0]? denote the feasible subset of B.. Then, assuming that & and &, are

independent,

pens () = / P (€0(2),0(2)) <1 (or ) d(gor )
GnN{yc<0}

— [B] - Pabalz) <0) - / Py (€6(2) < o) dyo

]Bo\Hn,o

(2.28)

where
Hyo={yo€Bo|3i<n, c(X;) <0and f(X;) < yo} -

Remark 7 The set B, \ Hy . is empty as soon as a feasible point has been evaluated. As a

consequence, the component p" of the expected improvement vanishes and therefore, according
to (2.28),

Pn($) X Pn(éc(x) < O) ) /IB \H P, (éo(x) = yo) dyo -

In other words, up to a multiplicative constant, the expected improvement is equal, in this case, to
the product of the probability of feasibility with a modified EHVI criterion in the objective space,
where only feasible points are used to define the dominated region. In particular, in constrained

single-objective problems, the criterion of Schonlau et al. (see Section 2.2.3) is recovered as the

low

oy —o00, as soon as the best evaluation dominates yo'?.

limit case y
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Remark 8 In the numerical experiments of Section 2.5, B, and B. are defined using estimates
of the range of the objective and constraint functions (see Appendiz 2.7.2). Another natural choice
for By would have been to use (an estimate of) the range of the objective functions restricted to

the feasible subset C' C X. Further investigation of this idea is left for future work.

2.4 Sequential Monte Carlo techniques to compute and optimize

the expected improvement

2.4.1 Computation of the expected improvement

Since the dimension of Y is likely to be high in practical problems (say, p+¢ > 5), the integration
of y = P,({(z) < y) over G,, cannot be carried out using decomposition methods (Emmerich
and Klinkenberg, 2008; Bader and Zitzler, 2011; Hupkens et al., 2014) because, as mentioned in
Section 2.2.2, the computational complexity of these methods increases exponentially with the

dimension of Y.

To address this difficulty, we propose to use a Monte Carlo approximation of the inte-
gral (2.23):
T
p(z) = — D Pu(é(@) Qyan), (2.29)
k=1
where YV, = (Yn,k) ;< w<m 18 @ set of particles distributed according to the uniform density ﬂg x
1g, on G,. In prir;cig)le, sampling uniformly over G,, could be achieved using an accept-reject
method (see, e.g., Robert and Casella, 2004), by sampling uniformly over B and discarding points
in H,, (Bader and Zitzler, 2011). However, when the dimension of Y is high, G,, will probably
have a small volume with respect to that of BB. Then, the acceptance rate becomes small and
the cost of generating a uniform sample on G,, becomes prohibitive. (As an example, consider
an optimization problem with ¢ = 20 constraints. If B, = [—v/2, 4v/2]? for some v > 0, then
the volume of B is 220 ~ 10° times smaller than that of B.)

In this work, we use a variant of the technique called subset simulation (Au and Beck, 2001;
Cérou et al., 2012) to achieve uniform sampling over G,,. The subset simulation method is a
well-known method in the field of structural reliability and rare event estimation, which is used

to estimate the volume of small sets by Monte Carlo sampling.

Denote by IIY the uniform distribution over B and assume that the probability ITY (G,,) be-
comes small when n increases, so that sampling G,, using an accept-reject method is impractical.
Observe that the sets G,,, n =1, 2, ... form a nested sequence of subsets of B (hence the name

subset simulation):
B>G DGy D---. (2.30)

Y
n

Denote by ITY the uniform distribution on G,,, which has the probability density function

defined above. Since the addition of a single new evaluation, at iteration n + 1, is likely to yield
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Algorithm 1: Remove-Resample-Move procedure to construct ),

1 if n =0 then

2 ‘ Generate m independent and uniformly distributed particles over Gy = B.
3 else

4 Remowve: Set yg =Vu_1NG, and mg = \yg\.

5 Resample:  Set YL =V U{Gn1,-- -, Unm—mg }> Where Jn1, .., Jnm—m, are

independent and uniformly distributed on Y. (Each Un,k 1s a replicate of a
particle from )9.)

6 Move: Move the particles using a Metropolis-Hastings algorithm (see, e.g, Robert
and Casella, 2004) which targets the uniform distribution over G,. The resulting
set of particles is ),.

only a small modification of the set G,,, the probability

=

0 (Gor) = [ ¥y =

Gn+1

is likely to be high. Then, supposing that a set of particles ), = (yn.x) uniformly dis-

1<k<m
tributed on G,, is already available, one obtains a sample ), 1 uniformly distributed over Gpt1
using the Remove-Resample-Move procedure described in Algorithm 16.

Algorithm 1 obviously requires that at least one particle from )),, which belongs by con-
struction to G, also belongs to G,,+1; otherwise, the set of surviving particles, referred to in the
second step of the algorithm, will be empty. More generally, Algorithm 1 will typically fail to
produce a good sample from H}L{H if the number of surviving particles is small, which happens
with high probability if ITY (G,,11) is small—indeed, the expected number of particles of ), in a

given” set A C B is

E, (N(A, yn)) =, (Z ]lA(yn,k)> =m: sz{(A) s (2'31)
k=1

where N(A; V) denotes the number of particles of J in A. This situation occurs, for instance,
when a new evaluation point brings a large improvement G, \ Gp+1 = Hpt1 \ Hy.

When the number of surviving particles is smaller than a prescribed fraction v of the popula-
tion size, that is, when N(G,4+1; V) < mv, intermediate subsets are inserted in the decreasing
sequence (2.30) to ensure that the volume of the subsets does not decrease too fast. The corrected
version of Algorithm 1 is described in Algorithms 2, 3 and 4. The method used in Algorithm 4

to construct the intermediate subsets is illustrated on Figures 2.3 and 2.4.

Remark 9 The algorithms presented in this section provide a general numerical method for the

approximate computation of the expected improvement criterion, that can be used with multiple

6All the random variables generated in Algorithm 1 are independent of ¢ conditionally on X, &(X1), ...,
Xnt1, E(Xn+1)-

"Equation (2.31) does not hold exactly for A = G,,41 since, conditionally on X1, £(X1), ..., Xn, £(X,), the
set Gny1 is a random set and is not independent of V,,. Indeed, G, +1 depends on £(X,11) and X, 11 is chosen
by minimization of the approximate expected improvement, which in turn is computed using ).
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Figure 2.3: Illustration of the steps 1 — 2 and 3 — 5 of Algorithm 4. The objective is to build
a uniform sample Y3 on G35 from )s. The initial Pareto front Py is determined by evaluation results
y1 = (f(X1),c¢(X1)) and y2 = (f(X2),c(X2)). Pr corresponds to the Pareto front determined by PoU{ys},
with y3 = (f(X3),¢(X3)). At the end of steps 1-9 of Algorithm 3, y3 is not in P because the number of
surviving particles in )s is too small: in (a), there is only one particle (black dot) in G5 (white region).
Thus, intermediate subsets are needed. The main idea here is to build a continuous path between P and
‘P*, which is illustrated in (b). Here, we pick y* = y3 and since y3 is not feasible, ¢* < ¢. Then, we set an
anchor point Yanchor 0N the edge of 1B, as described in step 4, and we build an intermediate Pareto front
P deEermined by y1, y2 and ¢, where g, lies on the segment (Yanchor—y3). The intermediate Pareto
front P, is chosen in such a way that the number of killed particles (grey dots) is not too large.

1

Ci

Figure 2.4: Illustration of the steps 1 — 2 and 6 — 10 of Algorithm 4. The setting is the same as that
described in Figure 2.3, except that the new observation (y in this case) is feasible. Hence, ¢* = ¢q. As
above, the main idea is to construct a continuous path between P and P*, as illustrated in (b).
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Algorithm 2: Modified procedure to construct ),
Notation: Given a set A in Y, denote by Pareto(A) the set of points of A that are not
dominated by any other point of A
if n =0 then
‘ Generate m independent and uniformly distributed particles over Gy = BB.
else

1

2

3

4 Set Pp—_1 = Pareto ({{(X1), ..., &{(Xn-1)}).
5

6

Set P,, = Pareto ({{(X1), ...,&(X,)}) = Pareto (Pn—1 U {&(X,)}).
Construct ), using the adaptive multi-level splitting procedure described in
Algorithm 3, with V,,_1, Pn_1, P, and B as inputs.

objectives, multiples constraints and possibly correlated Gaussian process models. When the ob-
jectives and constraints are independent, the decomposition introduced in Section 2.3.3 makes it
possible to compute two integrals over spaces of lower dimension (over B¢ \ Hy . and B, \ Hy o,
respectively) instead of one integral over Gy, = B\ Hy,. In fact, only one of the two integrals
actually needs to be approzimated numerically: indeed, the term pe® of the decomposition can
be calculated in closed form prior to finding feasible solutions, and the term p* vanishes once
a feasible observation has beem made. We have taken advantage of this observation for all the

numerical results presented in Section 2.5.

2.4.2 Maximization of the sampling criterion

The optimization of the sampling criterion (2.23) is a difficult problem in itself because, even
under the unconstrained single-objective setting, the EI criterion is very often highly multi-
modal. Our proposal is to conduct a discrete search on a small set of good candidates provided
at each iteration by a sequential Monte Carlo algorithm, in the spirit of Benassi et al. (2012), Li
et al. (2012), Li (2012) and Benassi (2013).

The key of such an algorithm is the choice of a suitable sequence (wnx)n>0 of probability
density functions on X, which will be the targets of the SMC algorithm. Desirable but antag-

onistic properties for this sequence of densities are stability—wffgrl should not differ too much
X

from m;>—and concentration of the probability mass in regions corresponding to high values of
the expected improvement. We propose, following Benassi et al. (2012), to consider the sequence
defined by

() o< 1 ifn=0,

() o Py (E(x) €Gy) forn=1,2,...

In other words, we start from the uniform distribution on X and then we use the probability
of improvement x — P, ({(z) € G,,) as an un-normalized probability density function.

A procedure similar to that described in Algorithm 1 is used to generate particles distributed
from the target densities 7X. At each step n of the algorithm, our objective is to construct a set
of weighted particles

Xy = (Tn o, Wnk) ey € (X xR)™ (2.32)

31



Algorithm 3: Adaptive multi-level splitting in the Y-domain

Notations: Given a set A in Y, denote by
e Pareto(A) the set of points of A that are not dominated by any
other point of A,
e G(A):=B\ {y € B; 3y’ € A such that ¢’ <y} the region of B
not dominated by A.
Inputs: )y, Py, P* and B such that
e G(P*) C G(Py), with Py = Pareto (Py) and P* = Pareto (P*),

® Vo= (Yo.k)1<p<,, € Y™ is uniformly distributed on G (Py). Note that )y may contain
replicated values.

o y5" 5™,y and ye such that By = {y € Yo; yg™ <y < g™},

(o]

B. = {y € Y¢; y" <y <y}, and B = B, x B, contains P

C

and P*.

Output: A set of particles Vy = (y¢.x);<p<,, € Y™ uniformly distributed on G(P*).
11+0
2 while P; # P* do
3 Initialize: P < P;.
4 P is the front that we will build upon. First we try to add the points of P* into P:
5 for y € P* do
6 Piry  Pareto (P U {y})
7 Compute the number N (G (Piry); V) of particles of )y in G(Pry)
8 if N(G(Piry); Vi) > vm then
9 L P+ Ptry

At the end of this first step, either P = P* or P* \ P contains points that cannot be added

without killing a large number of particles, in which case we insert intermediate fronts.

10 | if (P*\P) #0 then

11 L P« P, with P, = chooseNextFront ();, P, P*, B)
12 Piy1 <~ P
13 Generate Vyy1 = (Yit1,k) <<,y Uniformly distributed on G (Pgy1) using the

“Remove-Resample-Move” steps described in Algorithm 1.
14 t+—t+1
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Algorithm 4: chooseNextFront

Inputs: ), P, P* and B such that
e G(P*) C G(P), with P = Pareto (P) and P* = Pareto (P*),
® Vi = (Yt.k)1<p<r, € Y™ is uniformly distributed on G (P;) (see Algorithm 3). Note

that ), may contain replicated values.

o y5", 5",y and ye™ such that By = {y € Yo; g™ <y <yo™},
B. = {y € Y¢; yl" <y < 4P}, and B = B, x B, contains P
and P*.

Output: An intermediate front P, such that N(G(P,); Vi) ~ vm.

1 Randomly choose a point y* = (y3,y%) € (P*\ P) toward which we will try to augment
the front P.

Count the number ¢* of constraints satisfied by y*.

if ¢* < g then

Yanchor < (ygppayc) € B, x B, where Yej =Y
l<j=<gq

5 Find P, such that N(G(P,); ;) ~ vm using a dichotomy on u € [0, 1], where

Pu - ParetO(P U {yanchor + u(y* - yanchor)})-

= W N

U.pp

cj if ¥y ;>0 and zero otherwise,
I I

6 else

ygnchor <_ (ygpp7 0) e ]BO X ]BC

ygnchor — (y};pp,yf) € B, x B, where ysj =y
1<j<gand 1<k <gq.

o | if NGyl })i V) > vm then

10 Find P, such that N(G(P,); ;) ~ vm using a dichotomy on u € [0,1], where

upp

py if j = k and zero otherwise, for

,Pu - Pareto('P U {ygnchor + u(y* - ygnchor)})'

11 else
12 Find P, such that N(G(P,); ;) ~ vm using a dichotomy on u € [0,1], where

D 1 0 1
Pu = Pareto(P U {yanchor + u(yanchor - yanchor)} U
0
U {yeqmchor + u(yanchor - ygnchor)})'
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Algorithm 5: Reweight-Resample-Move procedure to construct X,
1 if n =0 then
2 Set Xy = ($07k, %)
on X.

1<k<m with g 1,..., %0, independent and uniformly distributed

3 else
Reweight X, _1 according to Equation (2.33) to obtain .
Resample with a residual resampling scheme (see, e.g., Douc and Cappé, 2005) to

1 1

obtain a set of particles X! = <xn [

> 1<k<m’
6 Mowe the particles with an MCMC transition kernel to obtain

Xo = (Zn s %)gkgm‘

such that the empirical distribution » ; wy, ks, , (where §, denotes the Dirac measure at x € X)
is a good approximation, for m large enough, of the target distribution with density mX. The
main difference with respect to Section 2.4.1 is the introduction of weighted particles, which
makes it possible to deal with non-uniform target distributions. When a new sample is observed

at step n, the weights of the particles are updated to fit the new density 7r§+1:

anﬂ (xnk)

. 2.33

w2+1,k

The weighted sample X,SH = ('In,kafw?H_Lk)lSkSm is then distributed from wnxﬂ. Since the
densities mg, 71, ... become more and more concentrated as more information is obtained about
the functions f and ¢, the regions of high values for 7775;{Jrl become different from the regions of
high values for mx. Consequently, the weights of some particles degenerate to zero, indicating
that those particles are no longer good candidates for the optimization. Then, the corresponding
particles are killed, and the particles with non-degenerated weights are replicated to keep the size
of the population constant. All particles are then moved randomly using an MCMC transition
kernel targeting wnxﬂ, in order to restore some diversity. The corresponding procedure, which is
very similar to that described in Algorithm 1, is summarized in Algorithm 5.

When the densities 7 and wnXH are too far apart, it may happen that the number of particles
with non-degenerated weights is very small and that the empirical distribution >, wy11 53%,c
is not a good approximation of 7735‘“. This is similar to the problem explained in Section 2.4.1,
except that in the case of non uniform target densities, we use the Effective Sample Size (ESS)
to detect degeneracy (see, e.g., Del Moral et al., 2006), instead of simply counting the surviving
particles®. When the ESS falls below a prescribed fraction of the population size, we insert
intermediate densities, in a similar way to what was described in Section 2.4.1. The intermediate
densities are of the form 7,(z) < P,(¢(z) € @u), with Gpp1 € Gu C G,. The corresponding
modification of Algorithm 5 is straightforward. It is very similar to the procedure described in

Algorithms 2, 3 and 4 and is not repeated here for the sake of brevity.

8For a weighted sample of size n, the ESS is defined as the number of random samples that produces Monte-
Carlo estimates with a variance equal to that of the weighted sample. As such, it can be viewed as a measure of
the degeneracy of a weighted sample.
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Remark 10 A closed form expression of the probability of improvement is available in the single-
objective case, as soon as one feasible point has been found. When no closed form expression
1s available, we estimate the probability of improvement using a Monte Carlo approzimation:
1NN 16, (Zy), where (Z)1<p<n is an N-sample of Gaussian vectors, distributed as &(x)
under P,,. A rigorous justification for the use of such an unbiased estimator inside a Metropolis-
Hastings transition kernel (see the Move step of Algorithm 5) is provided by Andrieu and Roberts
(2009).

Remark 11 [t sometimes happens that a new evaluation result—say, the n-th evaluation result—
changes the posterior so dramatically that the ESS falls below the threshold vm (see Algorithm 3)
for the current region Gp_1. When that happens, we simply restart the sequential Monte Carlo
procedure using a sequence of transitions from Py = & to the target front P* (notation introduced
in Algorithm 3).

Remark 12 For the sake of clarity, the number of particles used in the SMC approzimation has
been denoted by m both in Section 2.4.1 and in Section 2.4.2. Note that the two sample sizes are,
actually, not tied to each other. We will denote them respectively by mx and my in the following

sections.

2.5 Experiments

2.5.1 Settings

The BMOO algorithm has been written in the Matlab/Octave programming language, using the
Small Toolbox for Kriging (STK) (Bect et al., 2016b) for the Gaussian process modeling part.
All simulation results have been obtained using Matlab R2014b.

In all our experiments except the illustration of Section 2.5.2, the algorithm is initialized
with a maximin Latin hypercube design consisting of N;n;; = 3d evaluations. This is an arbitrary
rule of thumb. A dedicated discussion about the size of initial designs can be found in Loeppky
et al. (2009). The objective and constraint functions are modeled using independent Gaussian
processes, with a constant but unknown mean function, and a Matérn covariance function with
regularity parameter v = 5/2 (these settings are described, for instance, in Bect et al., 2012).
The variance parameter o2 and the range parameters 6;, 1 < i < d, of the covariance functions
are (re-)estimated at each iteration using a maximum a posteriori (MAP) estimator. Besides,
we assume that the observations are slightly noisy to improve the conditioning of the covariance
matrices, as is usually done in kriging implementations.

In Sections 2.5.3 and 2.5.4, the computation of the expected improvement is carried out using
the SMC method described in Section 2.4.1. Taking advantage of Remark 9, the integration is
performed only on the constraint space (prior to finding a feasible point) or the objective space
(once a feasible point is found). In the case of single-objective problems (Section 2.5.3), we
perform exact calculation using (2.16) once a feasible point has been observed. The parameter

v of Algorithm 3 is set to 0.2 and we take m = my = 1000 particles. The bounding hyper-
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rectangles B, and B, are determined using the adaptive procedure described in Appendix 2.7.2
with A\, = A\¢ = 5.

For the optimization of the sampling criterion, we use the SMC method of Section 2.4.2,
with m = my = 1000 particles, residual resampling (Douc and Cappé, 2005), and an adaptive
anisotropic Gaussian random walk Metropolis-Hastings algorithm to move the particles (Andrieu
and Thoms, 2008; Roberts and Rosenthal, 2009). When the probability of improvement cannot
be written under closed-form, a Monte Carlo approximation (see Remark 10) with N = 100

simulations is used.

2.5.2 Illustration on a constrained multi-objective problem

In this section, the proposed method is illustrated on a two-dimensional two-objective toy prob-

lem, which allows for easy visualization. The optimization problem is as follows:

minimize f1and fo,
subject to  ¢(z) <0 and x = (x1,z2) € [-5,10] x [0,15],

where

f1 : (xl,xg) — —(xl — 10)2 — (xg — 15)2,

f2 : ((L‘l,(L'Q) — —((L‘l +5)2 — (L‘%,

5.1 5 ? 1
c:(x1,m2) (xQ - mx% + - 6> +10 <1 - 8_7T> cos(x1) + 9.

The set of solutions to that problem is represented on Figure 2.5. The feasible subset consists
of three disconnected regions of relatively small size compared to that of the search space. The
solution Pareto front consists of three corresponding disconnected fronts in the space of objec-
tives. (The visualization is achieved by evaluating the objectives and constraints on a fine grid,
which would not be affordable in the case of truly expensive-to-evaluate functions.)

The behavior of BMOO is presented in Figure 2.6. The algorithm is initialized with 5d = 10
function evaluations. Figure 2.6 shows that the algorithm correctly samples the three feasible
regions, and achieves good covering of the solution Pareto front after only a few iterations. Note
that no feasible solution is given at the beginning of the procedure and that the algorithm finds

one after 10 iterations.

2.5.3 Mono-objective optimization benchmark

The first benchmark that we use to assess the performance of BMOO consists of a set of sixteen
constrained single-objective test problems proposed by Regis (2014). Table 2.1 summarizes the
main features of these problems. The input dimension d varies from 2 to 20, and the number ¢
of constraints from 1 to 38. The problems may have linear or non-linear constraints but this

information is not used by the algorithms that we use in our comparisons (all functions are
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Figure 2.5: Figure (a) represents contour lines of the constraint function, and Figure (b) corresponds
to contour lines of the two objective functions. The three gray areas correspond to the feasible region
on Figures (a) and (b), and to the image of the feasible region by the objective functions on Figure (c).
Thick dark curves correspond to the set of feasible and non-dominated solutions on Figures (a) and (b).
On Figure (c), thick dark curves correspond to the Pareto front.
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Figure 2.6: Convergence of the algorithm after n = 10, 20, 40 and 60 evaluations. The left column
shows the input space X, whereas the right one shows the objective space B,. Dominated observations
are represented by triangles (filled or empty), and non-dominated ones by circles (or disks). The sym-
bols are filled for feasible points and empty otherwise. On the left column, the small dots represent
the particles used for the optimization of the expected improvement (see Section 2.4.2). Notice their
progressive concentration in regions where improvements can be made. On the right column, the small
dots represent, the particles used for the computation of the expected improvement (see Section 2.4.1).
Note in particular that they appear only when a feasible point has been observed: before that, the term

feas

Peas (see Section 2.3.3) can be computed analytically.
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Pbm d q I'(%) Best Target
gl 13 9 41074 -15 -14.85
g3mod 20 1 1074 -0.693 -0.33
gbmod 5 8.7-1072 5126.2 5150
g6 2 2 6.6 1073 -6961.8 -6800
g7 10 8 1074 24.3 25
g8 2 2 0.86 -0.0958 -0.09
g9 7 4 0.52 680.6 1000
g10 8 6 7-1074 7049.4 8000
g13mod 5 3 4.5 0.0035 0.005
gl6 5 38 1.3-1072 -1.916 -1.8
gl8 9 13 2.10710 -0.866 0.8
gl19 15 5 3.4-1073 32.66 40
g24 2 44.3 -5.5080 -5
SR7 7 11 9.3-1072 2994 .4 2995
PVD4 4 3 5.6-1071 5804.3 6000
WB4 4 5.6-1072 2.3813 2.5

Table 2.1: Main features of the mono-objective problems of our first benchmark.

regarded as black boxes). Column I'(%) gives the ratio in percents of the volume of feasible
region C to the volume of the search space X. This ratio has been estimated using Monte Carlo
sampling and gives an indication on the difficulty of the problem for finding a feasible point. Note
that problems g1, g3mod, g6, g7, g10, g19 and in particular problem g18 have very small feasible
regions. The last two columns correspond respectively to the best known feasible objective value

9. The target values are the ones used in the work of

and to target values for the optimization
Regis (2014).

BMOO is compared to two classes of algorithms. The first class consists of four local optimiza-
tion algorithms: the COBYLA algorithm of Powell (1994), using the implementation proposed

by Johnson (2012), and three algorithms implemented in the Matlab function fmincon'?

, namely,
an interior-point algorithm, an active-set algorithm and an SQP algorithm. Local optimization
methods are known to perform well on a limited budget provided that good starting points
are chosen. We think that they are relevant competitors in our context. The second class of
algorithms are those proposed by Regis (2014), which are state-of-the-art—to the best of our
knowledge—algorithms for constrained optimization under a limited budget of evaluations.
Each algorithm is run 30 times on each problem of the benchmark. Note that we use a random
starting point uniformly distributed inside the search domain for local search algorithms, and a

random initial design for BMOO, as described in Section 2.5.1. For the local search algorithms

°The introduction of target values makes it possible to assess the convergence of the algorithms. The op-
timization can be stopped once a feasible observation with an objective value below the target value has been
made.

100 ptimization toolbox v7.1, MATLAB R2014b
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the maximum number of evaluations is set to two hundred times the dimension d of the problem.
Concerning the algorithms proposed by Regis (2014), we simply reproduce the results presented
by the author; the reader is referred to the original article for more details about the settings.
Results are presented in Tables 2.2 and 2.3. In both tables, a solution is considered as feasible

when there is no constraint violation larger than 107°.

In Table 2.2, we measure the performance for finding feasible solutions. For local algorithms
and Regis’ algorithms, only the results of the best scoring algorithm are reported in the table.
Full results are presented in Appendix 2.7.4. For local algorithms, the first column indicates the
best scoring algorithm: Cob for the COBYLA algorithm, TP for the interior-point algorithm,
AS for the active-set algorithm and SQP for the SQP algorithm. Similarly, for the algorithms
proposed by Regis (2014), the first column indicates the best scoring algorithm: CG for COBRA-
Global, CL for COBRA-Local and Ext for Extended-ConstrLMSRBF. The second column gives
the number of successful runs—a run being successful when at least one feasible solution has been
found. The third column gives the number of function evaluations that were required to find the
first feasible point, averaged over the successful runs. The corresponding standard deviation is

given in parentheses.

Table 2.3 presents convergence results. Again, for local algorithms and for those proposed
by Regis (2014), the first column indicates the best scoring algorithm. The next columns give
successively the number of successful runs (a run being considered successful when a feasible
solution with objective value below the target value of Table 2.1 has been found), the average
number—over successful runs—of evaluations that were required to reach the target value, and
the corresponding standard deviation (in parentheses). The reader is referred to Appendix 2.7.4
for the full results.

BMOO achieves very good results on most test problems. It very often comes close to the best
algorithm in each of the two classes of competitors, and sometimes significantly outperforms both
of them—see, in particular, the results for gl, g6, g7, g9, gl6 and WB4 in Table 2.3. However,
BMOO stalls on test problems g3mod, gl0, g18 and PVD4. We were able to identify the causes
of theses problems and to propose remedies, which are presented in the following paragraphs. It
can also be observed that BMOO is sometimes slower than the best algorithm of Regis (2014) to
find a first feasible point. In almost all cases (except for gl0, g18 and PVD4, which are discussed
separately below), this is easily explained by the size of the initial design which is Ni,; = 3d in
our experiments (see Section 2.5.1). Further work on this issue is required to make it possible to

start BMOO with a much smaller set of evaluations.

Regarding g3mod, gl0 and PVD4, the difficulty lies in the presence of functions, among the
objective or the constraints, which are not adequately modeled using a Gaussian process with a
stationary covariance function. However, as we can see in Table 2.4, the performances of BMOO
are greatly improved in all three cases if a transformation of the form f — f* (for A > 0) is
applied to the functions that cause the problem (see Appendix 2.7.3 for more details). Thus, we
think that the theoretical foundations of BMOO are not being questioned by these tests problems,
but further work is needed on the Gaussian process models for a proper treatment of these cases.

In light of the results of our experiments, one promising direction would be to consider models

40



v

Pbm Local (best among 4) Regis (best among 3) BMOO

gl IP 30 128.4 (27.8) CG 30 15.0 (0) 30 44.2 (1.9)
g3mod IP 30 342.3 (66.3) Ext 30 31.2 (0.3) 30 63.1 (0.6)
ghmod AS 30 35.0 (5.5) CL 30 6.4 (0.1) 30 13.0 (1.2)
g6 AS 30 29.7 (5.0) CL 30 10.9 (0.3) 30 9.7 (0.7)
g7 SQP 30 107.6 (9.3) CG 30 47.5 (4.6) 30 38.8 (3.3)
g8 IP 30 12.1 (7.7) CL 30 6.5 (0.2) 30 7.0 (0.2)
g9 IP 30 170.9 (42.9) CG 30 21.5 (1.9) 30 21.8 (5.1)
gl0 SQP 25 144.6 (132.3) CG 30 22.8 (1.5) 30 71.5 (28.1)
g13mod IP 30 21.4 (17.1) Ext 30 8.6 (0.7) 30 10.5 (5.6)
g16 Cob 27 31.5 (20.4) Ext 30 19.6 (1.8) 30 21.7 (7.3)
gl8 SQP 30 101.9 (19.8) CL 30 108.6 (6.5 0 - ()
g19 SQP 30 19.7 (6.1) CL 30 16.5 (0.5) 30 46.4 (3.0)
g24 IP 30 4.0 (3.5) G 30 1.3 (0.1) 30 2.6 (1.6)
SR7 SQP 30 27.1 (3.6) CG 30 9.5 (0.1) 30 92.0 (0.2)
WB4 SQP 30 76.6 (21.9) CL 30 37.4 (5.9) 30 19.1 (5.8)
PVD4 SQP 26 7.6 (4.8) CG 30 7.9 (0.4) 30 15.7 (5.7)

Table 2.2: Number of evaluations to find a first feasible point. In bold, the good results in terms of average number of evaluations. We consider the results
to be good if more than 20 runs where successful and the average number of evaluations is at most 20% above the best result. See Tables 2.12 and 2.14 in
Appendix 2.7.4 for more detailed results. Dash symbols are used when a value cannot be calculated.




Pbm Local (best among 4) Regis (best among 3) BMOO

gl IP 20 349.7 (57.0) CG 30 125.2 (15.3) 30 57.7 (2.6)
g3mod IP 30 356.9 (65.1) Ext 30 141.7 (8.6) 0 ()
gbmod AS 30 35.8 (4.3) CL 30 12.9 (0.5) 30 16.3 (0.6)
g6 AS 30 29.7 (5.0) CL 30 53.6 (14.0) 30 13.3 (0.8)
g7 sQP 30 107.6 (9.3) CG 30 99.8 (5.7) 30 55.8 (2.8)
g8 IP 18 59.3 (87.0) CL 30 30.3 (2.8) 30 26.3 (10.4)
g9 IP 30 179.3 (42.0) CG 30 176.4 (26.3) 30 61.6 (14.3)
gl0 SQP 18 658.3 (316.7) CG 29 193.7 (-) 0 - ()
g13mod IP 25 122.5 (70.3) Ext 30 146.4 (29.2) 30 180.3 (84.6)
gl6 Cob 27 60.0 (65.2) Ext 30 38.4 (3.6) 30 30.3 (12.3)
gl8 sQP 21 97.5 (23.8) CL 24 195.9 () 0 ()
g19 SQP 30 61.3 (12.4) CL 30 698.5 (75.3) 30 133.3 (6.2)
24 IP 16 10.4 (5.3) CG 30 9.0 (0) 30 9.9 (1.0)
SR7 sQP 30 27.1 (3.6) CG 30 33.5 (1.6) 30 29.3 (0.7)
WB4 SQP 30 78.3 (18.0) CL 30 164.6 (12.2) 30 44.5 (13.3)
PVD4 sQP 23 54.7 (27.5) CG 30 155.4 (38.2) 2 151.0 (21.2)

Table 2.3: Number of evaluations to reach specified target. See Table 2.2 for conventions. See Tables 2.13 and 2.15 in Appendix 2.7.4 for more detailed

results.
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of the form &*, where ¢ is a Gaussian process and \ is a parameter to be estimated from the

evaluation results (see, e.g., Box and Cox, 1964; Snelson et al., 2004).

Regarding the gl8 test problem, the difficulty stems from our choice of a sampling density
derived from the probability of improvement for optimizing the expected improvement. When the
number of constraints is high (¢ = 13 for the g18 test problem) and no feasible point has yet been
found, the expected number of particles in the feasible region C' is typically very small with this
choice of density. Consequently, there is a high probability that none of the particles produced
by the SMC algorithm are good candidates for the optimization of the expected improvement.
To illustrate this phenomenon, consider the following idealized setting. Suppose that ¢ = d,
X =[-1/2,1/2]" and ¢; : & = (21,...,24) — |z;| = 5, j = 1,...,q, for some € € (0;1]. Thus,
the feasible domain is C' = [—¢/2,£/2]? and the volume of the subset of X where exactly k
constraints are satisfied is

Vem (§) b (1—e)1".

Agsume moreover that the Gaussian process models are almost perfect, i.e.,

1, if¢j(x) <0,

Py (6(2) < 0) = (2.34)

0, otherwise,
for j = 1,...,q. Further assume n = 1 with X; = (%,,%) and observe that £(X;) is
dominated by &(x) for any x € X (except at the corners) so that the probability of improve-
ment P, (£(x) € Gy) is close to one everywhere on X. As a consequence, the sampling density 75<
that we use to optimize the expected improvement is (approximately) uniform on X and the ex-
pected number of particles satisfying exactly k constraints is m V. In particular, if ¢ is large,
the particles thus tend to concentrate in regions where k ~ ge, and the expected number mV,
of particles in C' is small. To compensate for the decrease of Vi, when k is close to ¢, we suggest

using the following modified sampling density:

T o B (K (z)! Lewyec, ) s

where K (z) is the number of constraints satisfied by £ at x. Table 2.5 shows the promising results
obtained with this modified density on gl8. Further investigations on this particular issue can

be found in Section 3.2.

2.5.4 Multi-objective optimization benchmark

The second benchmark consists of a set of eight constrained multi-objective test problems from
Chafekar et al. (2003) and Deb et al. (2002). The main features of these problems are given
in Table 2.6. The input dimension d varies from two to six, and the number ¢ of constraints
from one to seven. All problems have two objective functions, except the WATER test problem,
which has five. As in Table 2.1, column I'(%) gives an estimate of the ratio (in percents) of the

volume of the feasible region to that of the search space. Column V gives the volume of the
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Pbm Feasible Target

modified-g3mod 30 63.3 (0.8) 30 151.8 (12.2)
modified-g10 30 48.4 (8.0) 30 63.1 (10.4)
modified-PVD4 30 12.9 (1.6) 30 32.9 (13.2)

Table 2.4: Number of evaluations to find a first feasible point and to reach the target on transformed
versions of the g3mod, g10 and PDV4 problems, using the BMOO algorithm.

Pbm Feasible Target
gl8 30 75.5 (11.5) 30 83.6 (9.1)

Table 2.5: Number of evaluations to find a first feasible point and to reach the target using a modified
probability density function for the criterion optimization.

Pbm d q P I'(%) Vv yref

BNH 2 2 2 93,6 5249 [140; 50]
SRN 2 2 2 16,1 31820 [200; 50]
TNK 2 2 2 5,1 0,6466 [1,2; 1,2]
OSY 6 6 2 3,2 16169 [0; 80]
TwoBarTruss 3 1 2 86,3 4495 [0,06; 10]
WeldedBeam 4 4 2 45,5 0,4228 [50; 0,01]
CONSTR 2 2 2 52,5 3,8152 [1; 9]
WATER 3 7 5 92 0,5138 [1;1; 1; 1,6; 3,2]

Table 2.6: Main features of the multi-objective problems in our benchmark.

ref

11
t (o)

region dominated by the Pareto front™ ", measured using a reference point y.*, whose coordinates
are specified in the last column. As an illustration, the result of one run of BMOO is shown on
Figures 2.7 and 2.8, for each test problem.

To the best of our knowledge, published state-of-the-art methods to solve multi-objective
optimization problems in the presence of non-linear constraints are based on genetic or evolu-
tionary approaches. The most popular algorithms are probably NSGA2 (Deb et al., 2002) and
SPEA2 (Zitzler et al., 2002). Such algorithms, however, are not primarily designed to work
on a limited budget of function evaluations. Some methods that combine genetic/evolutionary
approaches and surrogate modeling techniques have been proposed in the literature (see, e.g.,
Emmerich et al., 2006; Jin, 2011, and references therein), but a quantitative comparison with
these methods would necessitate to develop proper implementations, which is out of the scope of
this work. In this section, we shall limit ourselves to emphasizing advantages and limitations of
the proposed approach. Since the ability of the BMOO algorithm to find feasible solutions has
already been demonstrated in Section 2.5.3, we will focus here on the other contributions of the
chapter: the SMC methods for the computation and optimization of the expected improvement

sampling criterion.

"' This volume has been obtained using massive runs of the gamultiobj algorithm of Matlab. It might be
slightly under-estimated.
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Figure 2.7: Result of one run of the BMOO algorithm on the bi-objective problems of Table 2.6, with
n = 100 evaluations. Black dots represent non-dominated solutions. For bi-objective problems, the set of

feasible objective values is shown in gray. On the subfigure corresponding to the WeldedBeam problem,
a zoom has been made to improve visualization.
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Figure 2.8: Result of one run of the BMOO algorithm on the WATER problem of Table 2.6, with
n = 200 evaluations. Black dots represent non-dominated solutions.

First, we demonstrate the effectiveness of the proposed SMC algorithm for optimizing ex-
pected improvement based criteria. We compare our SMC approach (see Section 2.4.2) with the
approach used by Couckuyt et al. (2014), that we shall call MCSQP (for Monte-Carlo Sequential
Quadratic Programming). This approach consists in selecting the best point out of a population
of candidates uniformly distributed on the search space X, and then running an SQP algorithm
starting from this point. In our experiments, the number of candidates is chosen equal to the
population size my = 1000 of the SMC method.

Table 2.7 presents experimental results obtained with the extended EHVT criterion proposed
in Section 2.3 as a sampling criterion. As a preliminary remark, observe that the finest target
precision is systematically reached by our SMC method in all but three test cases (OSY, Two-
BarTruss and WeldedBeam). The OSY case will be discussed below. On the TwoBarTruss and
WeldedBeam problems, we found out that the poor performances are due to Gaussian process
modeling issues, similar to those encountered earlier on the gdmod, g10 and PVD4 test problems
(see Section 2.5.3). The results on these problems are thus left out of the analyses in the follow-
ing, but will motivate future work on the models, as concluded in Section 2.5.3. Regarding the
optimization of the criteria, the results show that our SMC approach compares very favorably
with MCSQP. More specifically, we note a drop of performance of the MCSQP method com-
pared with the SMC approach as we try to converge more finely toward the Pareto front (see, in
particular, column “Target 99%” of Table 2.7, but this is also visible in the other columns as well
for most of the test cases). Because of its sequential nature, the SMC approach is able to track

much more efficiently the concentration of the sampling criterion in the search domain, and thus

46



makes it possible to reach higher accuracy.

Tables 2.8 and 2.9 provide additional results obtained when performing the same study
with respectively the EMMI and WCPI criteria!? (see Svenson and Santner, 2010; Keane, 2006,
respectively). These criteria are not primarily designed to address constrained problems, but
they can easily be extended to handle constraints by calculating them using only feasible values
of the objectives, and then multiplying them by the probability of satisfying the constraints (as
explained in Section 2.2.3). When no feasible solution is available at the start of the optimization
procedure, we use the probability of feasibility as a sampling criterion, as advised by Gelbart
et al. (2014). The conclusions drawn from Table 2.7 for the extended EHVI criterion carry
through to the results presented in Tables 2.8-2.9. It shows that the SMC algorithm proposed in
Section 2.4.2 can be viewed as a contribution of independent interest for optimizing improvement-

based sampling criteria.

Next we study the influence on the convergence of the algorithm of the number m = my of
particles used in Algorithm 1 for approximating the expected improvement value. In Tables 2.10
and 2.11 we compare the number of evaluations required to dominate successively 90%, 95% and
99% of the volume V of Table 2.6 when using different numbers of particles. As expected, the
overall performances of the algorithm deteriorate when the number mjy of particles used to ap-
proximate the expected improvement decreases. However, the algorithm maintains satisfactory
convergence properties even with a small number of particles. For reference, we have also in-
cluded results obtained by choosing the evaluation point randomly in the set of candidate points.
Notice that these results are always much worse than those obtained using the sampling criterion
with my = 200. This shows that not all candidate points are equally good, and thus confirms
that the sampling criterion, even with a rather small value of my, is effectively discriminating

between good and bad candidate points.

We observe poor performances of the BMOO algorithm on the OSY test problem, regardless
of the number of particles that are used to estimate the expected improvement. Figure 2.9 reveals
that this is due to the choice of a uniform sampling density on B, \ H,, as the target density of
the SMC algorithm used for the approximate computation of the criterion. Indeed, most of the
particles do not effectively participate to the approximation of the integral, since they lie outside
the set of feasible objective values (see Figure 2.7(d)). Further work is required on this topic to
propose a better sampling density, that would concentrate on objective values that are likely to

be feasible (instead of covering uniformly the entire non-dominated region B, \ H,,).

In practice, for problems with a small number of objectives, and especially for bi-objective
problems, we do not recommend the use of our SMC algorithm for the (approximate) computa-
tion of the EHVT criterion since exact and efficient domain-decomposition-based algorithms are
available (see Hupkens et al., 2014; Couckuyt et al., 2014, and references therein). An in-depth
study of the quality of the approximation provided by our SMC method, and a comparison with

exact methods, is therefore needed before more precise recommandations can be made.

12 An implementation of the EMMI criterion is available in the STK. An implementation of the WCPI sampling
crtiterion for bi-objective problems is distributed alongside with Forrester et al.’s book (Forrester et al., 2008).
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Problem optimizer Target 90% Target 95% Target 99%

- SMC 30 8.5 (0.6) 30 12.7 (0.7) 30 34.6 (1.3)
MCSQP 30 8.4 (0.6) 30 12.8 (0.7) 30 38.9 (2.2)

BN SMC 30 16.7 (0.9) 30 22.4 (1.0) 30 52.6 (4.1)
MCSQP 30 20.5 (2.4) 30 35.6 (5.9) 0 > 250 (-)

K SMC 30 35.5 (2.6) 30 44.1 (2.5) 30 1.1 (4.0)
MCSQP 30 43.5 (4.6) 30 71.6 (11.3) 0 > 250 (-)

oSy SMC 30 29.0 (1.7) 30 38.2 (3.4) 13 119.8 (53.0)
MCSQP 0 > 250 () 0 > 250 () 0 > 250 (-)

TwoBarTrss SMC 92 90.9 (62.0) 1 234 (<) 0 > 250 (-)
MCSQP 26 88.7 (68.4) 2 162.0 (29.7) 0 > 250 (-)

M 2 . . .

WoldedBoarn SMC 8 146.5 (41.1) 2 212 (33.9) 0 > 250 (-)
MCSQP 2% 171.3 (46.9) 1 929.0 () 0 > 250 (-)

CONSTR SMC 30 12.4 (1.0) 30 19.2 (1.4) 30 835 (5.9)
MCSQP 30 13.8 (1.4) 30 26.3 (3.3) 0 > 250 (-)

WATER SMC 30 48.3 (3.6) 30 80.7 (5.6) 30 139.1 (3.0)
MCSQP 30 53.5 (4.8) 30 88.7 (7.5) 30 164.3 (9.6)

Table 2.7: Results achieved when using either SMC or MCSQP for the optimization of the extended EHVI, on the problems of Table 2.6. We measure
the number of function evaluations for dominating successively 90%, 95% and 99% of the volume V. For each target, the first column contains the number
of successful runs over 30 runs. The second column contains the number of function evaluations, averaged over the successful runs, with the corresponding
standard deviation (in parentheses). Dash symbols are used when a value cannot be calculated.
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Problem optimizer Target 90% Target 95% Target 99%
NI SMC 30 9.8 (1.1) 30 15.9 (1.5) 30 112 (2.8)
MCSQP 30 9.5 (0.7) 30 15.4 (1.4) 30 12.6 (2.4)
BN SMC 30 15.5 (1.2) 30 21.0 (1.4) 30 18.3 (2.8)
MCSQP 30 18.6 (1.8) 30 29.1 (2.7) 30 90.9 (9.0)
NK SMC 30 477 (3.5) 30 61.8 (4.4) 30 100.2 (5.4)
MCOSQP 30 60.6 (8.2) 30 94.3 (13.2) 5 924.2 (15.0)
sy SMC 30 32.3 (2.9) 30 41.9 (3.9) 2 73.6 (20.8)
MCSQP 0 > 250 (-) 0 > 250 () 0 > 250 ()
SMC 28 116.5 (48.5) 3 199.0 (24.1) 0 > 250 (-)
TwoBarTruss
MCSQP 26 130.9 (63.9) 1 174.0 (-) 0 > 250 ()
. . . . 2
WeldedBeam SMC 16 156.6 (50.5) 4 177.0 (40.5) 0 > 250 (<)
MCOSQP 9 161.9 (60.1) 3 156.0 (35.8) 0 > 250 (-)
. . . . 100.
CONSTR SMC 30 221 (2.5) 30 33.8 (3.0) 30 00.9 (8.6)
MCSQP 30 18.4 (2.1) 30 30.9 (3.1) 30 154.8 (9.0)
WATER SMC 30 60.4 (6.5) 30 93.4 (8.8) 30 153.9 (9.0)
MCSQP 30 68.2 (8.1) 30 103.9 (11.3) 30 172.7 (13.7)

Table 2.8: Results achieved when using the EMMI criterion. See Table 2.7 for more information.




Problem optimizer Target 90% Target 95% Target 99%
. SMC 30 20.9 (8.9) 30 43.4 (7.6) 30 132.4 (15.4)
MCSQP 30 18.7 (8.2) 30 49.0 (14.2) 30 176.1 (29.1)
SEN SMC 30 39.1 (6.0) 30 57.53 (7.5) 30 154.9 (12.8)
MCSQP 20 154.5 (62.1) 1 248.0 (-) 0 > 250 (-)
INK SMC 30 53.3 (6.8) 30 68.3 (6.9) 30 120.8 (13.7)
MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)
oSy SMC 30 39.7 (5.7) 29 61.5 (22.0) 14 123.0 (41.9)
MCSQP 0 > 250 (-) > 250 (-) 0 > 250 (-)
SMC 29 70.1 (40.3) 180.4 (40.0) 0 > 250 ()
TwoBarTruss
MCSQP 29 69.6 (47.3) 1 185.2 (53.0) 0 > 250 (-)
WeldedBearn SMC > 250 (-) > 250 (-) 0 > 250 ()
MCSQP > 250 (-) > 250 (-) 0 > 250 (-)
M 40. . 4 (7. 212.1 (15.6
CONSTR SMC 30 0.0 (5.6) 30 60.4 (7.8) 30 (15.6)
MCSQP 30 42.2 (16.0) 2 150.7 (42.8) 0 > 250 (-)

Table 2.9: Results achieved when using the WCPI criterion. See Table 2.7 for more information.
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Problem EHVI Target 90% Target 95% Target 99%
SMC (my = 5000) 30 8.3 (0.7) 30 12,5 (0.5) 30 32.8 (1.0)
NH SMC (my = 1000) 30 8.5 (0.6) 30 12.7 (0.7) 30 34.6 (1.3)
SMC (my = 200) 30 8.8 (0.6) 30 13.1 (0.7) 30 39.2 (2.0)
random 30 12.8 (2.7) 30 29.6 (6.0) 30 106.8 (13.2)
SMC (my = 5000) 30 16.3 (1.0) 30 216 (1.1) 30 473 (2.1)
- SMC (my = 1000) 30 16.7 (0.9) 30 22.4 (1.0) 30 52.6 (4.1)
SMC (my = 200) 30 16.6 (1.3) 30 23.0 (1.9) 30 60.9 (6.9)
random 30 30.6 (5.2) 30 51.1 (8.2) 30 146.2 (13.2)
SMC (7 = 5000) 30 36.2 (4.4) 30 134 (3.6) 30 65.1 (3.1)
K SMC (my = 1000) 30 35.5 (2.6) 30 4.1 (2.5) 30 71.1 (4.0)
SMC (my = 200) 30 37.7 (4.1) 30 48.4 (5.0) 30 87.3 (5.9)
random 30 64.0 (10.3) 30 94.2 (12.4) 29 193.3 (27.4)

Table 2.10: Results achieved on the BNH, SRN and TNK problems of Table 2.6 when using successively my = 200, 1000 and 5000 particles for the

approximate computation of the extended EHVI criterion.
candidates points are provided (“random” rows). See Table 2.7 for more information.

For reference, results obtained by selecting the evaluation point randomly in the pool of




Problem EHVI Target 90% Target 95% Target 99%
SMC (my = 5000) 30 28.6 (2.0) 30 36.0 (2.8) 22 82.5 (33.5)
sy SMC (my = 1000) 30 29.0 (1.7) 30 38.2 (3.4) 13 119.8 (53.0)
SMC (my = 200) 30 32.4 (3.1) 29 49 (16.0) 164.8 (54.6)
random 30 140.2 (21.0) 2 203.4 (21.4) > 250 (-)
SMC (my = 5000) 30 122 (0.7) 30 18.0 (1.0) 30 68.8 (4.7)
CONSTR SMC (my = 1000) 30 12.4 (1.0) 30 19.2 (1.4) 30 83.5 (5.9)
SMC (rmy = 200) 30 12.9 (1.2) 30 21.0 (1.6) 30 109.2 (10.7)
random 30 31.1 (6.6) 30 58.1 (8.5) 18 235.1 (11.0)
SMC (my = 5000) 30 45.8 (4.0) 30 75.3 (6.2) 30 127 (8.2)
WATER SMC (rmy = 1000) 30 48.3 (3.6) 30 80.7 (5.6) 30 139.1 (8.0)
SMC (rmy = 200) 30 52.5 (4.5) 30 88.6 (6.0) 30 154.8 (8.8)
random 14 223.2 (15.4) 0 > 250 () 0 > 250 ()

Table 2.11: Results achieved on the OSY, CONSTR and WATER problems of Table 2.6 when using successively my = 200, 1000 and 5000 particles for
the approximate computation of the extended EHVI criterion. For reference, results obtained by selecting the evaluation point randomly in the pool of

candidates points are provided (“random” rows). See Table 2.7 for more information.
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Figure 2.9: An illustration, in the objective domain Y,, of BMOO running on the OSY test problem.
The small dots are the particles used for the computation of the expected improvement. They are uni-
formly distributed on the non-dominated subset of B,. Dark disks indicate the non-dominated solutions
found so far, light gray disks indicate the dominated ones and empty black circles are used to indicate
the non-feasible solutions.

2.6 Conclusions and future work

In this chapter, a new Bayesian optimization approach is proposed to solve multi-objective op-
timization problems with non-linear constraints. The constraints are handled using an extended
domination rule and a new expected improvement formulation is proposed. In particular, the
new formulation makes it possible to deal with problems where no feasible solution is available
from the start. Several criteria from the literature are recovered as special cases.

The computation and optimization of the new expected improvement criterion are carried
out using sequential Monte Carlo sampling techniques. Indeed, the criterion takes the form of
an integral over the space of objectives and constraints, for which no closed-form expression
is known. Besides, the sampling criterion may be highly multi-modal, as is well known in the
special case of unconstrained single-objective optimization, which makes it difficult to optimize.
The proposed sampling techniques borrow ideas from the literature of structural reliability for
estimating the probability of rare events, and can be viewed as a contribution in itself.

We show that the resulting algorithm, which we call BMOO, achieves good results on a
set of single-objective constrained test problems, with respect to state-of-the-art algorithms. In
particular, BMOO is able to effectively find feasible solutions, even when the feasible region is
very small compared to the size of the search space and when the number of constraints is high.
In the case of multi-objective optimization with non-linear constraints, we show that BMOO is

able to yield good approximations of the Pareto front on small budgets of evaluations'.

13BMOO ranked 2°¢ at the EMO’2017 Real-world Problems Track BBComp competition (see
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Several questions are left open for future work. First, our numerical studies reveal that
the choice of sampling densities in the input domain (as demonstrated by unsatisfactory results
on the gl8 test problem) and in the output domain (as shown on the OSY case) could be
improved. Suggestions for improvement are proposed in the chapter and will be the object of
future investigations. Second, an in-depth study of the quality of the approximation provided
by our SMC method, and a comparison with exact methods, is needed before recommandations
can be made on when to switch between exact and approximate calculation of the expected
improvement, and how to select the sample size—possibly in an adaptive manner—used for
the SMC approximation. Last, the choice of the random processes used for modeling objective
and constraint functions deserves more attention. Stationary Gaussian process models have
been found to lack flexibility on some single- and multi-objective cases (g3mod, gl0, PVD4,
TwoBarTruss and WeldedBeam). Several types of models proposed in the literature—warped
Gaussian processes (Snelson et al., 2004), non-stationary Gaussian processes (Toal and Keane,
2012, see), deep Gaussian processes (Damianou and Lawrence, 2013), etc.—provide interesting

directions regarding this issue.

2.7 Additional Material

2.7.1 On the bounded hyper-rectangles B, and B,
We have assumed in Section 2.3 that B, and B, are bounded hyper-rectangles; that is, sets of
the form

B, = {y € Yo; ylow <y< y:)lpp}v

[¢]

B, ={yeY YoV <y < PPy,

for some y};)W,y};pp € Y, and yéow, ye'? € Y., with the additional assumption that yé‘);” <0<
Yoo’ for all j < g. Remember that upper bounds only where required in the unconstrained case
discussed in Section 2.2.2. To shed some light on the role of these lower and upper bounds, let
us now compute the improvement I;(X;) = |H;| brought by a single evaluation.

If X7 is not feasible, then
- upp _ low\ " [ upp 1=
(| = [Bof - TT (527 = wy) ™ (w5 = €es(X0) (2.35)

Jj=1

where v; = 1¢_(x;)<0- It is clear from the right-hand side of (2.35) that both B, and B have

to be bounded if we want |H;| < +oc0 for any v = (v1,,..., 74) € {0,1}%. Note, however, that
only the volume of BB, actually matters in this expression, not the actual values of y'°" and yo"".

Equation (2.35) also reveals that the improvement is a discontinuous function of the observations:

indeed, the j*™ term in the product jumps from Yoo t0 Yoi¥ — y}:‘);” > yo when & ;(X1) goes
from 0% to 0. The increment —y!°% can be thought of as a reward associated to finding a point

C?]

https://bbomp.ini.rub.de/results/BBComp2017EM0/summary.html).
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which is feasible with respect to the j*" constraint.
The value of |H;| when X is feasible is

[H1| = [Bo| - (IBe| - |Bc|)

- TT (i (0,5(X0), 9220 ) = maix (€05(X0).wy) ) - [BZ |, (236)
J<p
where |B7| = [[j_, ‘yéojw‘ is the volume of the feasible subset of B., B = B. N]—o0;0]?. The

first term in the right-hand side of (2.36) is the improvement associated to the domination of
the entire unfeasible subset of B = B, x B; the second term measures the improvement in the

space of objective values.

2.7.2 An adaptive procedure to set B, and B,

This section describes the adaptive numerical procedure that is used, in the numerical experi-
ments of Section 2.5, to define the hyper-rectangles B, and B.. As said in Section 2.3.3, these
hyper-rectangles are defined using estimates of the range of the objective and constraint func-
tions, respectively. To this end, we will use the available evaluations results, together with
posterior quantiles provided by our Gaussian process models on the set of candidate points X,
(defined in Section 2.4.2).

More precisely, assume that n evaluation results £(X;), 1 < i < n, are available. Then, we

define the corners of B, by

ytlj(?xn = min (minign éo,i(Xi), minxeXn 50, l,n(x) - )‘OUO,i,n(x)) ) (2 37)
y:)lg% = max (maxign §0,i(Xi), maxzen, Lo, i,n(T) + Aoy, l,n($)> )
for 1 <14 < p, and the corners of B, by
yioyn = min <0, min;<y, & ;(X;), mingex, & jn(x) — )\CO'CJ,n(.%')) , (2.38)
Yoy = Max <07 max;<p &e,j(Xi), maxzex, &, j,n(T) + /\cUc,j,n(w)) ;

for 1 < j < q, where A\, and A, are positive numbers.

2.7.3 Modified g3mod, g10 and PVD4 test problems

We detail here the modified formulations of the g3mod, g10 and PVD4 problems that were used
in Section 2.5.3 to overcome the modeling problems with BMOO. Our modifications are shown

in boldface. The rationale of the modifications is to smooth local jumps.

e modified-g3mod problem

{f(w) = —plog((Vad)T]{ ;)%
cx) = (Cf,ah)-1
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e modified-g10 problem

((f&) = mitmta
c(z) = 0.0025(xg + x6) — 1
ca(z) = 0.0025(x5 +x7 —24) — 1

= 0.01(zg —z5) —1

plog(100x; — x126 + 833.33252x4 — 83333.333)7
plog(zoxy — xox7 — 125024 + 125025)7

= plog(z3ws — w328 — 250025 4 1250000)7

9
w

o
ot

o
/\/\f\/-\/-\/—\
\_/\_/\E:g/\_/\_/\_/

I

Q
=)

e modified-PVD4 problem

f(x) = 0.6224z 7324 + 1.77812923 + 3.166122 24 + 19.8422 23
ci(z) = —x1+0.0193z3

ca(r) = —z2+0.00954z3

cs(w) = plog(—mxizy —4/3mx3 + 1296000)7

Note that the above defined problems make use of the plog function defined below (see Regis
(2014)).

log(l14+z) ifx>0
plog(z) = .
—log(1 —x) otherwise

2.7.4 Mono-objective benchmark result tables

In Section 2.5.3, only the best results for both the “Local” and the “Regis” groups of algorithms
were shown. In this Appendix, we present the full results. Tables 2.12 and 2.13, and Tables
2.14 and 2.15 present respectively the results obtained with the local optimization algorithms
and the results obtained by Regis (2014) on the single-objective benchmark test problems (see
Table 2.1). Table 2.12 and Table 2.13 show the performances for finding feasible solutions and
for reaching the targets specified in Table 2.1 for the COBYLA, Active-Set, Interior-Point and
SQP algorithms. Similarly, Table 2.14 and Table 2.15 show the performances for finding feasible
solutions and for reaching the targets for the COBRA-Local, COBRA-Global and Extended-
ConstrLMSRBF algorithms of Regis (2014).
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Pbm COBYLA active-set interior-point SQP

gl 30 52.3 (102.3) 30 15.0 (0.0) 30 128.4 (27.8) 30 15.0 (0.0)
g3mod 28 386.1 (645.8) 30 643.2 (248.9) 30 342.3 (66.3) 30 794.3 (53.7)
ghmod 22 30.7 (23.0) 30 35.0 (5.5) 30 41.3 (16.9) 30 38.5 (10.5)
g6 26 39.7 (12.7) 30 29.7 (5.0) 30 99.7 (14.3) 30 32.6 (5.4)
g7 28 162.4 (175.7) 30 109.4 (11.2) 30 146.0 (18.1) 30 107.6 (9.3)
g8 28 53.3 (77.1) 28 17.6 (5.0) 30 12.1 (7.7) 30 19.6 (8.5)
g9 25 95.2 (104.7) 30 313.7 (84.4) 30 170.9 (42.9) 30 194.5 (60.2)
gl0 2 14.5 (3.5) 9 53.6 (41.9) 12 469.8 (393.8) 25 144.6 (132.3)
gl3mod 30 53.9 (68.8) 30 74.0 (59.5) 30 21.4 (17.1) 30 69.4 (62.4)
gl6 27 31.5 (20.4) 30 38.0 (15.0) 22 100.9 (160.3) 30 40.7 (17.1)
gl8 26 345.0 (275.7) 30 114.5 (41.5) 30 70.3 (22.2) 30 101.9 (19.8)
g19 19 31.4 (19.5) 30 21.8 (7.5) 30 291.3 (57.9) 30 19.7 (6.1)
g24 30 7.7 (10.2) 30 5.2 (5.3) 30 4.0 (3.5) 30 5.1 (5.2)
SR7 29 30.0 (50.1) 30 27.5 (3.9) 30 78.6 (23.1) 30 27.1 (3.6)
WB4 27 71.8 (82.5) 30 125.7 (71.0) 30 93.5 (48.9) 30 76.6 (21.9)
PVD4 12 50.8 (70.2) 3 51.3 (27.7) 30 59.1 (43.5) 26 7.6 (4.8)

Table 2.12: Number of evaluations to find a first feasible point for the COBYLA, Active-Set, Interior-Point and SQP local optimization algorithms. See

Table 2.2 for conventions.




Pbm COBYLA active-set interior-point SQP

gl 7 212.9 (225.8) 6 22.0 (7.7) 20 349.7 (57.0) 6 22.0 (7.7)

g3mod 16 1312.3 (1123.6) 24 760.5 (79.8) 30 356.9 (65.1) 30 794.3 (53.7)
ghmod 22 53.4 (20.3) 30 35.8 (4.3) 30 54.8 (11.7) 30 41.8 (7.5)

g6 26 41.0 (11.1) 30 29.7 (5.0) 30 99.7 (14.3) 30 32.6 (5.4)

g7 20 495.5 (461.3) 30 109.4 (11.2) 30 147.2 (18.2) 30 107.6 (9.3)
g8 4 79.5 (84.6) 2 30.5 (2.1) 18 59.3 (87.0) 4 55.8 (27.0)
29 22 144.9 (143.7) 30 334.5 (84.0) 30 179.3 (42.0) 30 194.5 (60.2)
gl0 0 - () 0 - () 0 - () 18 658.3 (316.7)
g13mod 23 191.9 (209.7) 24 153.9 (46.6) 25 122.5 (70.3) 22 147.6 (75.1)
g16 27 60.0 (65.2) 14 85.1 (41.1) 13 400.0 (242.1) 30 152.2 (53.2)
gl8 14 383.0 (389.3) 21 101.0 (30.2) 21 149.1 (39.4) 21 97.5 (23.8)
gl9 16 912.1 (685.8) 30 61.3 (12.4) 30 335.5 (65.4) 30 61.3 (12.4)
g24 18 17.5 (8.9) 17 14.7 (3.9) 16 10.4 (5.3) 17 16.4 (5.3)

SR7 28 62.5 (52.1) 30 27.5 (3.9) 30 80.2 (22.1) 30 27.1 (3.6)

WB4 24 247.1 (176.2) 29 162.0 (73.1) 30 168.2 (94.4) 30 78.3 (18.0)
PVD4 2 58.0 (35.4) 3 54.0 (25.1) 26 146.7 (115.2) 23 54.7 (27.5)

Table 2.13: Number of evaluations to reach the target for the COBYLA, Active-Set, Interior-Point and SQP local optimization algorithms. See Table 2.2

for conventions.
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Pbm COBRA-Local COBRA-Global Extended-ConstrLMSRBF
gl 30 15.0 (0.0) 30 15.0 (0.0) 30 19.1 (0.4)
g3mod 30 23.5 (0.2) 30 23.5 (0.2) 30 31.2 (0.3)
ghbmod 30 6.4 (0.1) 30 6.4 (0.1) 30 9.6 (0.3)

g6 30 10.9 (0.3) 30 10.9 (0.3) 30 11.9 (0.2)
g7 30 47.5 (4.6) 30 47.5 (4.7) 30 39.8 (2.9)
g8 30 6.5 (0.2) 30 6.5 (0.2) 30 5.2 (0.2)

g9 30 21.5 (1.9) 30 21.5 (1.9) 30 23.1 (2.3)
gl0 30 22.8 (1.5) 30 22.8 (1.5) 30 51.1 (6.5)
g13mod 30 9.4 (0.8) 30 9.4 (0.8) 30 8.6 (0.7)

g16 30 14.7 (2.4) 30 14.7 (2.4) 30 19.6 (1.8)
gl8 30 108.6 (6.5) 30 108.6 (6.5) 30 122.0 (5.6)
g19 30 16.5 (0.5) 30 16.5 (0.5) 30 20.8 (0.8)
g24 30 1.3 (0.1) 30 1.3 (0.1) 30 1.3 (0.1)

SR7 30 9.5 (0.1) 30 9.5 (0.1) 30 12.4 (0.4)
WB4 30 37.4 (5.9) 30 37.4 (5.9) 30 25.0 (4.1)
PVD4 30 7.9 (0.4) 30 7.9 (0.4) 30 10.4 (0.7)

Table 2.14: Number of evaluations to find a first feasible point for the COBRA-Local, COBRA-Global and Extended-ConstrLMSRBF optimization
algorithms. These results are taken from (Regis, 2014).See Table 2.2 for conventions.




Pbm COBRA-Local COBRA-Global Extended-ConstrLMSRBF
gl 387.8 (-) 30 125.2 (15.3) 0 > 500 (-)
g3mod 6 451.1 (-) 6 440.0 (-) 30 141.7 (8.6)
ghmod 30 12.9 (0.5) 30 16.6 (1.8) 30 40.3 (1.4)
g6 30 53.6 (14.0) 30 62.5 (10.5) 26 101.2 (-)
g7 30 199.5 (20.7) 30 99.8 (5.7) 30 264.5 (34.2)
g8 30 30.3 (2.8) 30 31.2 (2.5) 30 46.2 (6.2)
g9 28 275.5 (-) 30 176.4 (26.3) 29 294.0 (-)
g10 30 276.4 (43.6) 29 193.7 (-) 24 394.3 (-)
g13mod 30 221.7 (35.6) 30 169.0 (19.1) 30 146.4 (29.2)
gl6 30 38.8 (9.3) 30 46.3 (13.5) 30 38.4 (3.6)
g18 24 195.9 (-) 23 212.8 (-) 21 276.0 (-)
g19 30 698.5 (75.3) 30 850.9 (70.6) 0 > 1000 (-)
g24 30 9.0 (0.0) 30 9.0 (0.0) 30 91.9 (6.0)
SR7 30 35.0 (2.7) 30 33.5 (1.6) 0 > 500 (-)
WB4 30 164.6 (12.2) 30 202.0 (13.0) 30 238.6 (20.0)
PVD4 28 212.2 (-) 30 155.4 (38.2) 29 263.5 (-)

Table 2.15: Number of evaluations to reach the target for the COBRA-Local, COBRA-Global and Extended-ConstrLMSRBF optimization algorithms.
These results are taken from (Regis, 2014). See Table 2.2 for conventions.
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Chapter 3

Improvements and extensions of the
BMOO algorithm
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3.1 Introduction

This chapter addresses some of the perspectives raised in Chapter 2. It is organized as follows.

In Section 3.2, we address the limitations regarding the optimization of the new EI criterion.
In Chapter 2 it was empirically demonstrated that the use of the probability of improvement for
optimizing the new criterion yields unsatisfactory results on problems having many constraints.
Here, we design a test problem to validate our hypotheses regarding the causes of this issue. We
show that the performances of BMOO are improved when a more suitable density is used for
optimizing the EI criterion.

In Section 3.3 we discuss in more details the computation of the criterion. It was demon-
strated on the OSY problem in Section 2.5.4 that the uniform density may not be efficient
for approximating the criterion. In this section, we introduce a novel sampling density which
has better approximation performances than the uniform density and discuss the choice of the
sample size to be used in the SMC procedure. A comparison between approximate and exact
computation of the criterion is made and recommendations are given at the end of the section.

In Section 3.4, we assess the performances of the BMOO algorithm on many-objective op-
timization problems. First, a test problem for which the curvature of the Pareto front and the
numbers of objectives can be controlled is introduced. Then, BMOO is compared with a strategy
where the hypervolume indicator is maximized sequentially on this problem. The influence of the
choice of the reference point in the definition of the hypervolume is discussed and the adaptive
procedure to set this reference point is revisited.

Finally, in Section 3.5, we discuss miscellaneous extensions of the algorithm. BMOO is ex-
tended to handle non-hypercubic design spaces and hidden constraints. A multi-point strategy
for batch sequential optimization is proposed and the incorporation of user preferences is dis-

cussed.

3.2 Efficient optimization of the EI criterion

3.2.1 Introduction

In this thesis, we study the possibility of optimizing El-based criteria using sequential Monte-
Carlo techniques. The idea is to exploit the stability in time of the interesting regions during
the optimization process (Benassi et al., 2012). At time n, our objective is to obtain a weighted
sample X, from a density of interest 7\, that concentrates in regions of high EI value and stays
“stable” in time. These are antagonist objectives and the choice of a density 7X that makes a
suitable trade-off between them is crucial to the performances of the optimization algorithm.

In the work of Benassi et al. (2012), the probability of improvement is used as an un-
normalized probability density function, and good results are obtained in the single-objective
case: this is the path that we followed in Chapter 2. However, the numerical experiments of
Section 2.5.3 revealed issues with this choice of density when dealing with problems having nu-
merous constraints, as observed on the gl8 problem. An alternative density was proposed to

better concentrate the particles in regions of high EI values, with promising results.
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In this section, we further study alternative densities to optimize the EI criterion. In par-
ticular, we focus on the optimization of the criterion before feasible solutions are known, i.e.
in the phase where the points are compared using the Pareto domination rule applied to the
vector of constraint violations (see Section 2.3.1). The section is organized as follows. After
having presented a test problem crafted to exhibit small feasibility regions and a large number of
constraints, we propose three novel sampling densities. A comparison of performances is made
and one particular density is shown to outperform the others. This density, that we call PICPI,
achieves very good results both on the test problem and on the problems of Section 2.5.3. Besides,
it can be computed in closed form when independence between the functions of the problem is

assumed, which makes it computationally efficient.

3.2.2 The YUCCA test problem

We define the following single-objective test problem:

YUCCA (d,k) :
[—1,1]¢ — R
2
t

f(z) = Z1§i§d <$l —z® > )

r=(21,...,7q) c2i-1(z) = sin $i—$?pt—€ , 1<i<d,
coi() = sin x?pt—xi+e , 1<i<d,

where ¢ = 107% and 2P = —1 + 2211 < i < d. The parameter d (the dimension of the search

space) also controls the number of constraints of the problem since ¢ = 2d. The parameter

controls the size of the excursion set of the constraints below zero. For this problem, the feasible

region is an hypercube of side length 2¢, centred on z°P', which is the global optimum of the

optimization probleml.dThe ratio between the volume of the feasible set and the volume of the
(2¢)

design space is r = 55— = ¢?. Tt becomes small when k and d increase. An illustration of the

YUCCA test problem with x € {1,2} and d = 2 is presented in Figure 3.1.

The constraints of the problem only depend on one variable at a time and they are easily
modeled using Gaussian processes. Besides, the minimization of the objective is straightforward.
The difficulty of the problem lies in the simultaneous satisfaction of all constraints when d and
k increase. Indeed, the constraints are pairwise antagonist and satisfying simultaneously co;—1
and co;, for a given i € [1,d], is difficult. As an example, consider the problem with k = 2
and d = 20. Then, the ratio between the volume of the feasible region and the volume of the

0—40

design space is r =1 and one cannot expect to find a feasible solution without an efficient

optimization procedure.

'Here it is implicitly assumed that e < %. Otherwise, the feasible region is located near the border of the
domain.
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Figure 3.1: Illustration of the YUCCA test problem with d = 2 and x = 1 (top) or kK = 2 (bottom). The
regions where constraints are satisfied are represented in shades of gray. Darker shades of gray indicate
overlapping regions. The optimum is represented as a red disk.
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3.2.3 Failure of the probability of improvement sampling density on the
YUCCA test problem

Here we explain the causes of the failure of the probability of improvement on the YUCCA test
problem.

Consider a set of N points Xy = (X;1, ..., Xpa), k € [1, N], uniformly distributed on X.
For every point Xy, k € [1, N], only constraints co;—1 and cg;, @ € [1,d], depend on the value
of z, ;. Thus, the simultaneous satisfaction of the pairs of constraints (cg;—1,c2;) and (c;—1, c25)
when ¢ # j are two independent events. Assume for simplicity that e < % so that the feasible
region is not near the boundary of the domain. Since xy, ; is uniformly distributed on the interval
[—1, 1], the probability that both co;—1 and co; are satisfied is equal to 2¢ and the probability that
only one of the two is satisfied is equal to 1 — 2¢ (any = € [—1,1]? satisfies at least d constraints,

see Figure 3.1). The probability p; that xj satisfies exactly [ constraints is thus

=0 if l <d
{Pl i <a, (3.1)

o= (o) (2071 =227 ifd<1<2d,

Observe in particular that p; = (1 — 2¢)?, which is large if € is small. Consequently, if ¢
is small, it is most likely that x; satisfies exactly d constraints. As an example, consider the
problem with x = 3. Then € = 1073 and py > 0.9 for all values of d inferior to 50.

For the YUCCA test problem, the number of possible combinations of d constraints is equal
to 2¢ (for all i € [1,d], choose either co; 1 or cy;), which is large when d is large. As a consequence,
as long as N < 29, then with high probability, all the points X}, k € [1, N|, satisfy a different
combination of d constraints when e is small and d is large?. Furthermore, in that case, with
high probability, any new point Xxy1 uniformly drawn on X will satisfy a combination of d
constraints that is different from what was previously observed, i.e. it will be non-dominated. In
other words, when e is small, d is large and N < 2¢, then with high probability, any new point
Xn11 uniformly drawn on X makes an improvement. Assuming the models are almost perfect
(so that ¢;(z) < 0= & i(x) < 0), the probability of improvement is therefore close to uniform
on X.

Consider now the hypervolume improvement I(z) yielded by the observation of a point x € X
that satisfies exactly d constraints. Assuming that B, = [—1,1]?¢, which is a reasonable choice
for the YUCCA problem, then the ratio between I(z) and the volume of B, i.e. the volume

dominated by a feasible solution is given by

1
ﬁ )

1 2d
I(x? < c(x)EB. (3.2)

B 92d H (2 X Lej(a)<o + (1- Ci(ﬂf))]lci(zpo) <
i=1

which is small when d is large. In other words, the improvement yielded by points drawn from

the probability of improvement is likely to be small when d is large and € is small, and the

probability of improvement is not suitable for optimizing the EI in that case.

2Due to the way z°P' is defined, not all combinations have the same probability of occurence. To simplify the
analysis, we neglect this effect.
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Remark 13 Note that estimating the improvement (3.2) using a sample uniformly distributed on
B. \ Hy,c as proposed in Section 2.4.1 would require a large number of particles. In Section 3.3,
a density will be proposed that can be used to compute small improvements with a reasonable

number of particles.

3.2.4 Novel sampling densities

On the YUCCA test problem, the EI criterion is likely to be high only in regions where a large
number of constraints are simultaneously satisfied. Therefore we need a density that concentrates
in regions where the probability of jointly satisfying the constraints is high. In this section, we

consider the following three densities defined on X:

([ PIEK1(z) « PI(z

=

n (K o) g (x e]BC\Hm)

PIEK2(z) o« PIO(z)-E, (K(x 1 Geal@)+ llgc(x>elsc\Hn,c),

=

::]Q

PICPI(z) o PIO() P, (&i(z) <ri),

\ 1

.
Il

where PI)(z) = Py, (§(x) € B, \ Hy,) denotes the probability of improvement with respect
to the objectives, K (z) = # {i € [1,d],&c,i(z) < 0} denotes the number of constraints satisfied
by &c(r) as in Section 2.4.2, and r; = mingx,  x,yci(X)4, 1<i<gq.

The PIEK1 density corresponds to the density introduced in Section 2.4.2. It is a form
of expected improvement where the term K (z)! is used to concentrate the density in regions
where more constraints are simultaneously satisfied. It achieved good results on the g18 problem
(see Section 2.5.3). On the YUCCA test problem, the probability that x satisfies more than d
constraints is small when € is small (1 — p; &~ 2de in that case, see (3.1)), because the regions
where constraints are simultaneously satisfied are small bands of width 2¢. The PIEK1 density is
based on a discontinuous improvement function and on this problem, it is close to uniform on X,
except in the small regions of width 2e¢ where it will have high plateaus. This is a “landscape”
that is very difficult to sample using SMC, because there is no slope toward the regions of high
density.

The PIEK2 density is similar to PIEK1 but it is smoother. The parameter 7 in its expression
allows to control the slope of the density. A sharp slope, i.e. a large 7, will concentrate the
density mass in regions of low constraint violation whereas a smooth slope, i.e. a small 7, will
make the concentration of the density more progressive. Sampling the PIEK2 density with SMC
is therefore easier than it is with the PIEK1 density.

The PICPI density is based on the product of the probabilities of improvement on each
constraint. It can be seen as a form of expected improvement where the improvement is one
when we improve upon all the constraints simultaneously and zero otherwise. As such, this is a
very “optimistic” density. As will be seen in Section 3.2.5, sampling the PICPI density is simpler
than sampling the PTIEK1 and PIEK2 densities because it is possible to define a sequence of
easy-to-sample densities that converges to the PICPI density.
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Prior to finding feasible solutions, Hj , is empty and the term PI}(z) in the expressions of
the PIEK1, PIEK2 and PICPI densities can be computed in closed form when independence

between the objectives is assumed:

P (z) = Pp(&o(r) € Bo)
R
- H(I) ( Uo7z,n(x) > ’

where gom(a:) and O'OZ n(7) denote respectively the kriging predictor and the kriging variance
at x for the i'" component of &,.

Once feasible solutions are known, H,, , is no longer empty and PI; (z) has to be estimated.
The Monte-Carlo approximation technique refered to in Remark 10 of Section 2.4.2 can be used
in this case. Some authors refer to this Monte-Carlo approximation technique as the Sample
Average Approximation (SAA) technique (see, e.g., Svenson (2011)). In the following, we will
use this terminology as well.

There exist no closed forms of the expectations in the expressions of the PIEK1 and PTEK2
densities. Again, they can be computed approximately using the SAA technique. The product

term in the expression of the PICPI density on the other hand, can be computed in closed form:

i=1 i=1

where gcm(x) and O’C i n( ) denote respectively the kriging predictor and the kriging variance

at x for the i*" component of &.

Remark 14 Observe that all the densities considered in this section default to the probability of
improvement as soon as a feasible solution has been observed. Our focus here is on optimizing
the EI criterion prior to finding feasible solutions. There is no indication in our experiments
that the probability of improvement is not suitable for optimizing the EI once a feasible solution

has been identified (see experiments of Section 3.2.6).

3.2.5 Sampling procedure

In Section 2.4.2, the sampling procedure to construct the successive (X}, ),>1 from the PI density
has not been detailed because it is very similar to what is described in Algorithms 2, 3 and 4. It
consists of two ingredients. First, an initialization procedure is required to produce Xy from 7.
Then, a specific strategy for making transitions between two successive densities m, and m,11
is necessary because it may happen that the two densities are too different to produce A},
from A&, in one step using Algorithm 5.

For initialization, we used a sample X, independently and uniformly distributed on X in
Algorithm 5. This was possible for the PI density because mp(z) < P, ({(x) € B) is close to
one for every x € X when y"PP is set high enough (it is equal to one in the limit y"P? — +00),

i.e. my is almost uniform. Then, to make transitions, a procedure based on intermediate fronts
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of non-dominated points was proposed in Algorithms 3 and 4.

When the PIEK1, PIEK2 and PICPI densities are used, this sampling procedure has to be
adapted. Indeed, mg is not in general uniform on X when the PIEK1 and PIEK2 densities are
used, and transitions based on intermediate fronts of non-dominated points are not suitable for
the PICPI density.

A more general initialization procedure that makes it possible to handle non-uniform initial
densities mq is proposed in Algorithm 6. It implements a tempering procedure to construct Xy
from mg starting from a sample uniformly distributed on X.

For making transitions with the PIEK1 and PIEK2 densities, Algorithms 3 and 4 can be used
as is. The structure of the PICPI density is different. It is not defined with respect to fronts of
non-dominated points as the other densities. Only one reference point r = (r1,...,7r¢) € Ri is
necessary to define the PICPI density (see (3.3)). A procedure to make transitions in that case
is provided in Algorithm 7.

Algorithm 6: Tempering procedure to construct a sample X = Xy approximately dis-
tributed from a target density m = .

Notations: Let X' = (zy, wg);<j<,, be a weighted sample
distributed from a density 7 and let w* = (w}), ., be the normalized update weights
for the cloud X and a density 7* (see Equation (2.33)). We shall denote ESS(X, )

the effective sample size of X with respect to density 7*:

-1

ESS(X,m)=| Y (wp)’

1<k<m

Input: A target initial density 7, a sample size m and a threshold value v.
Output: A weighted sample X of size m drawn from 7.

ag <0

Draw A&, of size m uniformly distributed on X.

while oy < 1 do

if ESS(Xy,,m) > vm then

‘ ag 1

else

L Find « such that ESS(X,,, ) ~ vm using a dichotomy on a € [ag, 1].

® g O oW N =

ap — &

©

Draw a sample X, distributed from 7° using steps 4 — 6 of
Algorithm 5 (Reweight-Resample-Move steps).

10 X < X,

3.2.6 Numerical experiments

We make two successive benchmarks. First, the performances of BMOO using the PI, PTEKI,
PIEK2 and PICPI densities are compared on the YUCCA test problem for different values of d
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Algorithm 7: Procedure to construct X,, n > 1 when the PICPI density is used.

Notations: Given z € X and r = (r1,...,r,) € R%, denote by
7, (x) the PICPI density at location x for a reference r:

q

() oc P () - [ P (€eilz) <74

i=1

Inputs: A sample size m, a threshold value v, and Xp, rg and r* such that
e 79 =(r0,1,---,70,¢) and r* = (r{,...,7y) with rf <o, for all i € [1,¢].

e Xy = (mO,k‘)lgkgm e X™ is distributed from m,,. Note that Xy may contain replicated
values.

Output: A sample X* distributed from 7.«.

11+0

2 while t <1 do

3 if ESS(X;, m+) > vm then

4 | t+1

5 else

6 Find u € [t,1] such that ESS(X;,7,,) ~ vm using dichotomy, where

Ty =1+ ulr* —ry).

7 t<u

8 Draw a sample &} distributed from 7, using steps 4 — 6 of
Algorithm 5 (Reweight-Resample-Move steps).

9 X"« X

69



and k. The results of this first benchmark are presented in Tables 3.1, 3.2 and 3.3. The PICPI
density is shown to outperform the other three densities on this problem. To see if its good
results generalize to other problems, we redo the experiments of Section 2.5.3 with BMOO using
the PICPI density. The results are compared with the results obtained with the PI density
in Section 2.5.3, to the results of Regis (2014) and to results obtained with BMOO using the
expected improvement as a sampling density for optimizing the criterion once a feasible solution
has been found.

In Table 3.1, we set xk = 1 and d varies from d = 2 to d = 100. In tables 3.2 and 3.3, k is set
successively to k = 3 and x = 5 and d varies from d = 2 to d = 50. We do not run the algorithm
with d = 100 for x > 1 because then the ratio r between the volume of the feasible region and
that of the design space is too small (Note that when x = 5 and d = 50, r = 1072 already).
The algorithm is run with the settings described in Section 2.5.1, except for the parameter v
which is set to ¥ = 0.05. When the dimension of the problem augments, the ratio between the
volume of the feasible region and the volume of X decreases very fast and the SMC algorithm
has to make many transitions between two iterations of the algorithm. Taking v = 0.05 instead
of v = 0.2 permits to speed up the algorithm by decreasing the number of SMC transitions.

In our experiments, we stop the algorithm as soon as a feasible point is found and measure
the number of samples that were required. The runs are repeated 30 times each with different
initial design of experiments and with a limiting number of affordable functions evaluation of
Nz = 200. For reference, results obtained using the four local optimization algorithms of
Section 2.5.3 are shown in the tables. These are run 30 times each with different starting points
and with a limiting number of affordable functions evaluation of N,,4, = 1000. Only the results
of the best scoring algorithm are shown in the tables; see Section 3.6.1 for more detailed results.

For each density, the first column corresponds to the number of successful runs (a run is
considered successful if a feasible solution has been found). A value of 30 thus indicates that
all runs were successful in finding a feasible solution. The second column contains the average
number of function evaluations that were required to find a feasible solution, where the average
is taken over successful runs only. The corresponding standard deviation is given in parenthesis.
For the local optimization algorithms, the name of the best scoring algorithm is given in the first
column (Cob stands for the COBYLA algorithm, IP stands for the interior-point algorithm, AS
stands for the active-set algorithm and SQP stands for the SQP algorithm). The informations
in the other two columns are the same as for the densities®.

The PICPI density clearly outperforms the other densities on the YUCCA problem. The
algorithm is able to solve the problem very efficiently up to x = 5 and d = 50 when it is used.
When the other densities are used, the algorithm stalls for x > 1 (see Tables 3.2 and 3.3).
Looking at the results of Table 3.1 where k = 1, we observe a clear hierarchy between the four
densities. The PI density works up to d = 5, the PIEK1 density works up to d = 10 and the
PIEK?2 density works up to d = 20. The PICPI density on the other hand works up to d = 100.
The introduction of a slope in the PTIEK2 density seems to help but it is not sufficient to achieve

3Some of the local optimization algorithms used in this study allow some tolerance on the constraints violation.
In the tables, a solution is considered as feasible when there is no constraint violation larger than 107°. The
parameters of the local optimization algorithms are set accordingly.
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d Ninit Local (best among 4) PI PIEK1 PIEK2 PICPI

2 10 SQP 30 7.2 (1.6) 30 10.7 (1.3) 30 10.6 (1.4) 30 10.3 (1.9) 30 10.9 (0.4)
5 20 SQP 28 16.2 (3.0) 30 26.8 (2.7) 30 21.2 (0.7) 30 21.0 (0.0) 30 21.0 (0.0)
10 30 SQP 25 31.4 (5.8) 0 - () 30 58.0 (17.9) 30 31.5 (0.9) 30 31.0 (0.0)
20 40 SQP 16 70.6 (12.6) 0 - () 2 134.5 (79.9) 30 81.2 (18.1) 30 41.0 (0.0)
30 50 SQP 11 191.1 (23.8) 0 - () 0 - () 0 - () 30 51.0 (0.0)
100 60 SQP 1 405.0 (0.0) 0 - () 0 - () 0 - () 30 65.4 (2.4)

Table 3.1: Results obtained by the local optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test
problem with x = 1. In bold, the good results in terms of average number of evaluations. We consider the results to be good if more than 20 runs where
successful and the average number of evaluations is at most 20% above the best result. Dash symbols are used when a value can not be calculated.




d Ninit Local (best among 4) Pl PIEK1 PIEK?2 PICPI

2 10 sQp 27 9.4 (2.4) 30 16.8 (1.3) 30 15.4 (1.5) 30 13.8 (1.0) 30 11.0 (0.0)
5 20 sQp 24 21.8 (3.1) 0 - () 0 - (5) 0 - (5 30 21.0 (0.0)
10 30 sQp 19 40.9 (5.5) 0 - () 0 - (5 0 - (5 30 31.4(0.5)
20 40 sQp 17 85.0 (0.0) 0 - () 0 - () 0 - () 30 42.0 (0.0)
50 50 sQp 3 205.0 (0.0) 0 - () 0 - (5 0 - (5 30 56.2 (7.6)

Table 3.2: Results obtained by the local optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test
problem with x = 3. See Table 3.1 for conventions.
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d Ninit Local (best among 4) PI PIEK1 PIEK2 PICPI

2 10 sQp 27 10.1 (1.6) 30 398 (45)| 30  351(43)| 30  306(32) | 30 12.0 (0.0)
5 20 sQqp 21 21.6 (3.6) 0 - () 0 - (9) 0 - () 30 22.4 (0.5)
10 30 sQP 20 42.2 (4.9) 0 - (9) 0 - (-) 0 - (5 30 32.9 (0.3)
20 40 SQp 10 80.8 (8.9) 0 - () 0 - (9) 0 - () 30 43.0 (0.0)
50 50 sQp 3 205.0 (0.0) 0 - () 0 - (9) 0 - () 10 65.4 (37.8)

Table 3.3: Results obtained by the local optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test
problem with k = 5. See Table 3.1 for conventions.




good optimization performances?.

Among the four local optimization algorithms, the SQP algorithm achieves the best results
on the YUCCA test problem for all values of x and d considered in this study. It achieves good
results up to d = 5 but is outperformed by BMOO using the PICPI density for higher values of d.
In particular, its performances strongly depend on the starting point, with many unsuccessful
runs.

To see if the goods results obtained with BMOO using the PICPI density generalize to other
problems, we redo the experiments of Section 2.5.3. The results are given in Tables 3.4 and 3.5. In
the tables, BMOO using the PICPI density is compared to the results presented in Section 2.5.3
using the PI density, to the results of Regis (2014) and to results obtained by BMOO using the

following density:

q

BICPI(2) o< By ((yn — &o(@)).,) [ Pu (ea(@) < 7). (3.4)
i=1
where y, = min ({£(X;) s.t. &(X;) < 0,1 <i <n}U{yo""}) is either the upper corner of B,
when no feasible solution is knwon or the current best feasible objective value and, as for the
PICPT denisty, r; = mingx,  x,)c(X)4, 1 <i<gq.

The EICPI density is similar to the PICPI density except that it is proportional to the ex-
pected improvement once a feasible solution is known. Indeed, on single-objective problems,
once a feasible solution is known, the EI criterion can be computed in closed form with a low
computational cost. Therefore, one may wonder if using the expected improvement as a sam-
pling density for optimizing the EI criterion would yield better results than the probability of

improvement.

Remark 15 In the unconstrained single-objective setting, Benassi (2013) observed in Section
4.8.1 of his thesis that the probability of improvement favours regions close to the current mini-
mum, whereas the expected improvement tends to be more explorative and, hence, more “unsta-
ble”™. In a constrained setting, this argument may not hold anymore. Indeed, when the feasible
region is small, the EI is likely to favour local (feasible) solutions as well. In a multi-objective
setting, the question arises anew because the concepts of exploitation and exploration take a dif-
ferent form (see, e.g., Bosman and Thierens (2003)). We do not, in this thesis, advance any
argument other than implementation complezity (see Section 3.3) to motivate our choice of us-
ing the probability of improvement instead of the expected improvement for optimizing the EI on

multi-objective problems.

Several observations can be made based on the results of this experiment. First, it can be seen
that the good performances of the PICPI density generalize to the problems of this benchmark.
On the problems where we had good results with the PI density, the PICPI density does just as

“In our experiments, the parameter 7 that controls the slope of the PIEK2 density is set to 7 = 5.

®The “unstability” of the sampling density is not necessarily an issue for BMOO because it has a restart
capability (see Remark 11 in Section 2.4.2). However, the accumulation of restarts increases the computing time
of the algorithm.
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Pbm Ninit PICPI EICPI PI Regis (best among 3)

gl 39 30 40.4 (0.5) 30 405 (0.5) 30 442 (1.9) CG 30 15.0 (0)
gbmod 12 30 13.0 (0.0) 30 13.0 (0.3) 30 13.0 (1.2) CL 30 4 (0.1)
g6 6 30 9.4 (0.7) 30 9.2 (0.7) 30 9.7 (0.7) CL 30 10.9 (0.3)
g7 30 30 31.0 (0.0) 30 31.0 (0.0) 30 38.8 (3.3) CG 30 475 (4.6)
g8 6 30 7.1 (0.4) 30 6.7 (1.6) 30 7.0 (0.2) CL 30 5 (0.2)
g9 21 30 23.1 (1.7) 30 22.9 (4.3) 30 21.8 (5.1) CG 30 21.5 (1.9)
g13mod 15 30 11.5 (5.4) 30 12.0 (5.6) 30 10.5 (5.6) Ext 30 6 (0.7)
g16 15 30 20.8 (4.3) 30 21.8 (5.3) 30 21.7 (7.3) Ext 30 19.6 (1.8)
gl8 27 30 32.0 (1.7) 30 32.7 (1.7) 0 () CL 30 108.6 (6.5) (-)
g19 45 30 46.0 (0.0) 30 46.0 (0.0) 30 46.4 (3.0) CL 30 16.5 (0.5)
g24 6 30 2.2 (1.5) 30 2.1 (1.3) 30 2.6 (1.6) CG 30 1.3 (0.1)
SR7 21 30 21.9 (0.4) 30 21.2 (3.4) 30 22.0 (0.2) CG 30 5 (0.1)
WB4 12 30 17.5 (4.9) 30 18.2 (7.0) 30 19.1 (5.8) CL 30 37.4 (5.9)

Table 3.4: Number of evaluations to find a first feasible point. See Table 3.1 for conventions.




Pbm Ninit PICPI EICPI PI Regis (best among 3)

gl 39 30 55.1 (2.0) 30 54.8 (2.0) 30 57.7 (2.6) CG 30 125.2 (15.3)
g5mod 12 30 15.5 (0.5) 30 15.2 (0.4) 30 16.3 (0.6) CL 30 12.9 (0.5)
g6 6 30 13.5 (0.7) 30 13.2 (0.8) 30 13.3 (0.8) CL 30 53.6 (14.0)
g7 30 30 50.4 (2.0) 30 50.7 (1.6) 30 55.8 (2.8) CG 30 99.8 (5.7)
g8 6 30 27.3 (7.8) 30 26.1 (7.3) 30 26.3 (10.4) CL 30 30.3 (2.8)
g9 21 30 59.5 (11.9) 30 63.4 (16.3) 30 61.6 (14.3) CG 30 176.4 (26.3)
g13mod 15 26 133.9 (38.8) 24 128.7 (41.4) 30 180.3 (84.6) Ext 30 146.4 (29.2)
g16 15 30 32.1 (9.9) 30 33.3 (9.0) 30 30.3 (12.3) Ext 30 38.4 (3.6)
gl8 27 30 58.3 (4.9) 30 59.3 (3.9) 0 ) CL 24 195.9 (-)
g19 45 30 131.5 (5.4) 30 132.4 (5.4) 30 133.3 (6.2) CL 30 698.5 (75.3)
24 6 30 9.4 (1.5) 30 9.8 (1.1) 30 9.9 (1.0) CG 30 9.0 (0)
SR7 21 30 28.4 (0.8) 30 27.8 (0.6) 30 29.3 (0.7) CG 30 33.5 (1.6)
WB4 12 30 51.4 (24.9) 30 54.5 (17.5) 30 44.5 (13.3) CL 30 164.6 (12.2)

Table 3.5: Number of evaluations to reach specified target (see Table 2.1). See Table 3.1 for conventions.
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well and on the gl18 problem, it does much better. In particular, BMOO using the PICPI density
obtains results consistently better or as good as the best results of Regis (2014) (see Remark 16).
Note that since the PICPI density can be computed in closed form prior to finding feasible
solutions, we also have a gain in terms of computing time. Regarding the comparison between
the PICPI and the EICPI densities, we do not observe any noticeable difference in performances

on the problems of this benchmark.

Remark 16 We do not consider the g3mod, g10 and PVD) test problems in this benchmark.
Recall from Section 2.5.83 that BMOO failed on these problems because of modeling issues. Since
nothing was done to improve the algorithm on this particular aspect, it cannot be expected to

perform any better.

Remark 17 Note the mitigated results obtained on the gi8mod problem. The algorithm either
solves the problem in about 130 evaluations or stalls. This happens because the target is set very
close to the true optimum for this problem (see Table 2.1). A more in depth study of the behaviour

of the algorithm close to convergence would be required to better understand this phenomenon.

3.2.7 Conclusions

The main result of this section is the proposal of a novel sampling density for optimizing the
EI criterion on problems with many constraints. This new density, which we call the PICPI
density, makes it possible to improve the performances of the BMOO algorithm on the problems
of Section 2.5.3. As an additional benefit, it can be computed in closed form prior to finding
feasible solutions and a simplified sampling procedure can be used.

We believe that there is room for further improvement of the proposed strategy for optimizing
the EI criterion. In this thesis work, we use a simple algorithm to perform the move step of
Algorithm 5 (see Section 2.5.1). While it is sufficient in most situations, it is not computationally
efficient and better performances could probably be achieved using a more suitable algorithm.

Additionally, in this section, we discuss the pertinence of using a sampling density propor-
tional to the probability of improvement instead of the expected improvement for optimizing
the EI criterion in the single-objective case. No evidence emerges and a more in-depth compari-
son between the two strategies would be required to better understand the consequences of this

choice.

3.3 Efficient computation of the EHVI criterion

3.3.1 Introduction

In this section, we study in more details the computation method of the EI criterion presented
in Section 2.4.1.
As briefly discussed in Section 2.3.3, the computational effort can be reduced if independence

between the objectives and constraints is assumed. In that case, the EI criterion (2.23) can be
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decomposed as a sum of two terms by splitting the integration domain in two parts:

pula) = p5(2) + o™ (@), for any € X,

unf
n

feas
n

to the integral on G, N {y. £ 0}, where G,, = B\ H,, denotes the set of all non-dominated

points in B as in Section 2.3.3. In other words, the term p

where the term p,o® corresponds to the integral on G, N {y. < 0}, and the term pi™ corresponds

feas

w2 corresponds to the contribution

unf

nnt corresponds to the contribution on the

on the feasible region of B = B, x B, and the term p

unfeasible region of IB:

peas() = / P (60(2), £0(2)) <1 (4o ve)) dyiode
Gnﬁ{ycfo}

= Pn((fo(x)756(x)) < (y070))dy0dyc’

Gnﬂ{yCSO}
= P, (éo(x) < yo) Pn(éc(x) < 0) dyodye ,
Gnﬂ{yCSO}
= Bo] Pale@ <00 - [ Pale(e) <) due.
IBo\I{n,o

and
() = / Po((60(2), £0(2)) < (or ) dyiodye

= P (¥(&o (), Ec()) < (‘}'OO,?JS_)) dyodyc,
GnN{yc£0}

= Pn(gér ((L‘) = y;r) dyodyC7

— (B /B P EE) <) o due

Using this decomposition, two successive phases of the optimization process can be distin-

guished. Prior to finding a feasible solution, the set H,,, is empty and the terms p®(x) and

P () can be rewritten in the following form:

p%as(x) = ‘IB;‘ : ]Pn(gc(x) < 0) : / P, (éo(x) = yo) dyo ,
Bo (3.5)
pre) = Bl [ Pu(Eh@) <) Lo due
]Bc\Hn,c
feas

The term p,®(x) can be computed in closed form for all € X when independence between

n
the functions of the problem is assumed. It is the product of the volume of BZ, which is
known, with the probability of feasibility and with an integral over B,. The probability of
feasibility can be computed in closed form when independence between the constraints is assumed

(see Remark 5) and the integral over B, can be computed using the following formula when
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independence between the objectives is assumed:

[ Patel <y an = T [ Pueosta) <v) dy

low
° =1 0,%,m
y:;g?n
= HEn (/bw o<y dy)
i=1 yo,i,n
3.6
_ HE” <<y3fz’% — max (§o,i(ﬂ:), y}fx’n))Jr) (3.6)
z:pl
= I]|En <<y3€pn - 50,1‘(90)) >
i=1 N

By (%~ o), )]

Remark 18 Notice the terms corresponding to the expected improvement with respect to the

low

oin I (8.6). These are a consequence of introducing lower bounding

lower bounding values y
values in the definition of the EI. They are necessary in the first phase of the optimization

process because the volume of By appears in the expression of p};”f.

unf

uii(z) on the other hand has to approximated because there exists no exact

The term p
computation method for this term. Developing a domain decomposition method in the spirit
of what is done for the exact computation of the EHVI criterion would be possible. However,
in most applications, the number of constraints is likely to be high and such a method would

probably be too costly to be practical.

Remark 19 Note that in the beginning of the optimization process, the term P, (é.(z) < 0)
in the expression of pn"(x) is likely to be small when the problem is highly constrained. The
optimization process is then mostly driven by pgnf(x), which depends only on the constraints.
Once progress has been made on the resolution of the constraints and we are close to finding
a feasible solution, the term pj;fas(x) then permits to discriminate between potentially feasible
solutions (i.e. solutions for which Py (&.(x) < 0) is close to 1), by considering the improvement
with respect to the upper corner of By, thus rewarding more generously candidates with good
objectives values. This observation holds for reasonable B, and B¢, the choice of which can

mnfluence the optimization process though.

Once a feasible solution has been observed, the second phase of the optimization process

corresponds to minimizing the objectives. In that situation, the set B. \ Hy, ¢ is empty and the

terms pfe2s(x) and pi™(x) take the following form:
p(e) = [Be] P <0) - [ Pa(6ole) < o) duo.
Bo\Hn,o (3.7)
pp(x) = 0.
The term p‘,llnf(x) vanishes and the expected improvement is equal to the product of a constant

with the probability of satisfying the constraints and with a modified EHVI criterion defined using
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feas = {IB_‘ P, (&(x) <0) / Py, (&o(x) < yo) dyo Exact
Phase I Bo
put = | B, | P, (65 (x) < yf) Lyz0dye Approx.
B Hn,c
pl:;eas ‘IB_{ P, (&(z) <0) / P, (& () < yo) dyo Exact or approx.
Phase II Bo\Hn,o
pirf(z) =0 Exact

Table 3.6: Formulas used in the computation of pf*2(z), z € X. Phase I corresponds to a situation
where no feasible solution is known. Phase II corresponds to a situation where a feasible solution is
known. During Phase II, the term pf®(z) can be computed exactly using the procedure described in
Section 3.3.3 or approximated using the proposed SMC procedure.

feasible values of the objectives only. Note that the constant term |B_ | does not influence the
location of the maximum of the EI. Therefore it doesn’t affect the optimization process.

feas(z) can be done exactly using

The computation of the integral in the expression of p
an EHVI computation method (see Section 2.4.1), or approximately by using either the SMC
technique proposed in Section 2.4.1 or the SAA technique (see Section 3.2.4). See Table 3.6 for

a summary of the above mentioned results.

eas

Remark 20 Note that different techniques can be used for the computation of the integral in
unf

once a feasible observation has been made and for the computation of the integral in py " prior to
observing a feasible solution. The first can be done exactly and the second can be approxrimated.
Besides, one can switch from exact computation to approximate computation or the opposite
depending, for example, on the number of non-dominated solutions and the dimension of the

problem.

In this section, we address questions related to the computation of the new EI criterion. First,
we introduce in Section 3.3.2 a novel sampling density specifically designed for the approximate
computation of the EI criterion for a set of candidate solutions. The new density, which we
call the LY density, does not suffer from the limitations of the uniform density observed in
Section 2.5.4 on the OSY test problem. Then, we discuss in Section 3.3.3 the computational
complexity of the exact method and compare it with the complexity of the approximate method.
It is shown that for problems with more than five objectives, it rapidly becomes impractical to
use the exact computation method when the number of non-dominated observations augments.
Finally, we discuss the choice of the number of particles used in the approximation method in
Section 3.3.4. A simple control strategy based on the variance of estimation is proposed and

illustrated on a toy example.

3.3.2 The LY density

Let Xy = (Tpk); < <my € X"™X be a set of mx particles for which we want to compute the value

of the EI criterion. As recalled in the introduction, the problem reduces to the computation of
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integrals of the form
o= [ Pu(Elong) <) dy,1 <k < my. (38)

where £ = &, or £ and G,, = B, \ Hy, 0 or B\ H,, ¢, depending on which phase of the optimization
process is considered. In this work, we consider approximations of the integral in (3.8) of the

form

- 1 &XP x = Yn.i

I™ = — Z n (E(@nk) < Yn) 1<k <mx, (3.9)
’ my i1 7Tn(yn,i)

where ), = (yn7i)1<i<mY € GV is a set of my particles distributed from a density 7, on Gj,.

Under the assumption that the (yy ;) are identically and independently distributed from

1<i<my
Tn, the importance sampling estimator (3.9) of (3.8) is unbiased®. However, the quality of the

approximation depends on the choice of the sampling density .

In Section 2.4.1, a uniform density was used for simplicity but limitations were identified.

Indeed, it may happen that a large proportion of the particles (v ;) have a very small

1<i<my
probability of being dominated by the (§(2y,k))1<k<myx When the uniform density is used (see the
results on the OSY problem in Figure (2.9)). This happens, for example, close to convergence

when the improvements that can be expected from observations at the (zy, 1) are small,

1<k<mx

low are set too low. These two situations are illustrated in

or when the lower bounding values y

Figure 3.2.

In this section, we introduce a new sampling density that is more concentrated in the regions
of importance for computing the integral (3.8). First, consider a single candidate solution z € X
for which we want to compute an estimator 1™ () of the form (3.9) of the integral I,(z) =
Je, Pn(&(z) < y) dy using the density m,. The variance of the estimator I™ (z), when the

(Un,i) 1< <my are identically and independently distributed from m,, is

E <(f;;n () — In(x)>2> - (/ Pu(€@) <9)° g, In(x)2> . (3.10)

my Tn(y)?

Then, an optimal choice 7}, , for m,, i.e. a choice that minimizes the variance of estima-
tion (3.10), is
Mo < P (§(2) < y), (3.11)

which is a well-known result stemming from the Cauchy-Schwarz inequality.

Consider now the simultaneous estimation of all I,, , 1 < k < mx, using a common set of
particles (yn i)1<i<my . Naturally, the above mentioned result can not be used in this case because

the regions of high density differ from one x,, ; to the other. As an alternative, we propose to

®In practice, V), is obtained using SMC and the (y»,;)
from 7.

1<i<my are not identically and independently distributed
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Figure 3.2: Examples of situations where the uniform density is likely to fail to produce good estimates
of the EI criterion. In the figures, the non-dominated observations are represented as red disks and the
dominated set H, is represented as gray rectangles. The green area corresponds to the region dominated
by the (§(xnk))1<k<my, Which are shown as black dots. In the top figure, only small improvements can
be expected from the (g(:cn,k))lgkgmx and in the bottom figure, 3'°% = (—0.5, —0.5) is set too low. For
the approximation (3.9) to be of good quality, it is necessary that a significant population of the particles

(Yni)1<icmy D€ in the green area.
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minimize the sum of squared approximation errors:

B (|72, - o)
=FE (Z <IAﬁfk - Ink)2> ’
k=1
-2 ([ P d) |
([ S Pa (€ <) zz,z ) ,

I;lik - Invk

(3.12)

my Gn W(y)z

which leads, using the same argument as above, to the definition of the following optimal density
on Y:

L (y) o Z]P (Tnp) <y)*1g. (3.13)

The LSP" density concentrates in regions likely to be dominated by the (£(25,x))1<k<my, thus
alleviating the issue raised in Section 2.5.4 and recalled earlier in this section. The use of this
new density on the problem introduced in Section 2.5.2 is illustrated in Figure 3.3. Observe in
particular the concentration of the density when the number of evaluations increases, and its

independence to the lower bounding values y'°%

Remark 21 The Lgpt density is not in general uniform when G = By or B. because of its
dependence on the (xy.,)1<k<my- In the sampling procedure, an initialization step similar to that
described in Algorithm 6 for the optimization of the criterion is thus required. Then, to make
transitions, Algorithms 2, 8 and 4 can be adapted to non-uniform densities using the effective

sample size as it is done for the criterion optimization.

The right-hand side of (3.13) can be computed in closed form for a given set X, when
independence between the components of £ is assumed. However, in practice, the computation
of the Lgpt density is not cheap enough to be used in an SMC procedure, because it requires
a large number of evaluations of the normal cumulative distribution function. To alleviate this
issue, we propose to use the following approximation of the normal cumulative distribution

function in the definition of the L3P density:

0 if y <26
0.01 if —2.6<y<—22
B(y) ~ 0.5—-0.1y(44 —y) %f —-22<y<0 (3.14)
054+01y(44 —y) if0<y<22
0.99 if 2.2 <y < 2.6
1 otherwise

This approximation makes it possible to lower the computational cost of the procedure with-

out affecting too much its performances (see Figure 3.4).
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Figure 3.3: Illustration of the use of the Lgpt density on the problem introduced in Section 2.5.2.
Non-feasible observations are shown as circles and feasible ones as disks. The red color is used for non-
dominated observations and the blue color is used for dominated ones. On the left column (input space),
the particles used for optimizing the EI are shown as small dots, the color of which indicates the EI
value. On the right column, the particles used for computing the EI are shown as black dots. They are
distributed from the L3P* density.

84



-—— exact cdf

— approx cdf

0

-9

Figure 3.4: Comparison between the exact normal cumulative distribution function and the approxi-
mation (3.14).

In Figures 3.5 and 3.6, we show the results of experiments using the Lgpt density and the
uniform density in the situations illustrated in Figure 3.2. In Figure 3.5, we compute the estimates
provided by the approximation method when the number my of particles increases, and compare
them to their exact values. For this experiment, we consider a bi-objective problem with fi(x) =
71 and fa(z) = x5 and we take X = B, = [0,1]?. The front of non-dominated points is made
of 50 points randomly distributed on the first quadrant of a circle of radius » = 0.8 and we
consider one thousand candidates distributed between the first quadrants of two circles of radii
0.75 and 0.8, as illustrated in Figure 3.2. The GP models are built using 20 points randomly
distributed on X. As expected, the uniform density fails to provide good estimates in this case,
and better results are obtained with the Lgpt density. For both densities, the quality of the
prediction increases when the number of particles used in the approximation increases.

Then in Figure 3.6, we show the results of experiments when 3'° is set too low and the number

low

of objectives augments. For this experiment, y'°% = (—0.5,...,—0.5) and the approximation is
made using my = 1000 particles. We consider problems with p objectives f;(z) =z;, 1 <i<p
and we take X = [0,1]P. The front of non-dominated points is made of 20 points randomly
distributed on the first quadrant of an hypershpere of radius » = 0.8 and we consider one
thousand candidates distributed between the first quadrants of two hyperspheres of radii 0.5 and
0.8, as illustrated in Figure 3.2. The GP models are built using 10p points randomly distributed
on X. Again, as expected, the uniform density fails to provide good estimates in this case, in
particular when the number of objectives increases. Better results are obtained with the Lgpt
density, which is not sensitive to the choice of y'°¥. Note in particular that the quality of the

approximation is maintained even when the number of objectives increases.

Remark 22 In this section, it is implicitly assumed that 7, can be computed exactly. However, it
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is defined using an unnormalised probability density function, the normalizing constant of which
1s unknown. In our erperiments, we use an approximation of the normalizing constant. The

details about the approximation procedure can be found in Appendiz 3.6.5.

3.3.3 Complexity of the exact and approximate computation methods

The exact computation of the EHVI criterion for an arbitrary number of objectives is a challeng-
ing problem because the complexity of the integration domain rapidly grows when the number of
objectives is greater than three. This problem has been addressed by Emmerich and Klinkenberg
(2008); Emmerich et al. (2011); Couckuyt et al. (2014); Hupkens et al. (2015) and Emerich et al.
(2016).

The method usually consists in a two-stage procedure (see, e.g., Couckuyt et al. (2014)). The
dominated region is first decomposed into a set of (possibly overlapping) cells of rectangular shape
over which the integration can be performed analytically. Then, the computation is done for the
different candidate solutions by summing the contributions of each cell. Domain decomposition
methods usually apply to the dominated set, whereas the EHVI criterion is defined on the non-
dominated region. Therefore, in this section, we consider the following transformation of the

integral in the expression of the EHVI:

/ P, (€o(z) < o) dyio
]Bo\Hnyo

/ P, (50( = ?/o dyo — / ]Pn ‘< ?/0) dyo

Zﬁ[E <(y35’p Eo,i(@ +> B, (v — éo,i(x))_i_)}_ / n’oan(so(xHyo) o -

(3.15)

Let D = (sg,Ck) << be a signed decomposition of Hy, , composed of K cells with Cj, =
U1, upa] X ... X [lk,p_,u_k,p] and s € {-1,1}, 1 < k < K such that ), splc, = 1p,, .
Such a decomposition can be obtained using a modified hypervolume computation algorithm as
explained in Couckuyt et al. (2014). We do not detail this particular point in this work. The
interested reader is referred to the work of Lacour et al. (2017) and references therein for an
up-to-date review of existing hypervolume computation algorithms. The EHVI criterion can

then be computed exactly for any x € X by summing the (possibly negative) contributions of
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Figure 3.5: Comparison of accuracy between the estimates provided by the SMC procedure when the
uniform density is used (left) and when the LS”" density is used (right).
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Figure 3.6: Comparison of accuracy between the estimates provided by the SMC procedure when the
uniform density is used (left) and when the L3”" density is used (right).
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each cell:

/H P, (£o(x) < yo) dyo = Py, (§o(x) < %o) dyo

V2]
Bl
Q\

ol

K

>

k=1

K P Uk, i

Z Sk H/ P, (SO,i(x) <y)dy

k=1 =17k

K p Uk,

> sk ][ En ( /l Lig, (2)<y) dy)

k=1 ] ki

K

> s IT [Bn (b = €0i(@)), ) = B (i — €ou@)), )| -
(3.16)

The exact computation of the EHVI for a given candidate solution x € X thus requires
Nexact = 2p(K +1) calls to the 7 function defined in Section 2.2.1, which means that Nexact eval-

uations of the normal cumulative distribution function have to be performed for every candidate

»
=
==
—

solution. This is actually responsible for most of the time required for computing the EHVI. In-
deed, obtaining the decomposition D is fast when an efficient algorithm is used (see Figure 3.8).
Besides, it has to be done only once at each iteration of the algorithm, and solely if the last
evaluation brought an improvement. The number K of cells in the decomposition however, can
be quite large, especially when the number of objectives and the number of non-dominated points
are high, which causes both memory storage and computing time issues.

In Figure 3.8 we show the typical values of K for different number of objectives and non-
dominated points, when the points are randomly distributed on the first quadrant of an hy-
persphere of radius 0.8 and B, = [0,1]?, as illustrated in Figure 3.7 (procedure detailed in
Section 3.4.2). The algorithm used to compute the decomposition is an adaptation of the WFG
algorithm of While et al. (2012), available in the Matlab/Octave STK toolbox of Bect et al.
(2016b). Each experiment is repeated 30 times with different random seeds. As expected, the
number of cells in the decomposition increases rapidly when the number of non-dominated points
and the number of objectives augment. The time required to compute the decomposition remains
reasonable in the ranges considered in the experiment.

The proposed approximation method also consists in a two-stage procedure. First, an SMC
algorithm has to be run to obtain a cloud ), of my particles distributed from a density ﬂg.
Then, the approximation is carried out using (3.9), which requires Nuypprox = myp evaluations
of the normal cumulative distribution function for each candidate solution. Sampling ), takes a
few seconds at most when the uniform density is used. It is more time consuming when the Lgpt
density is used, because each evaluation of the density requires N = mxp evaluations of the
normal cumulative distribution function (see (3.13)). In practice, we use the approximation (3.14)
to lower the computational cost of the procedure.

When the optimization of the criterion is performed using the SMC procedure of Section 2.4.2,
the EHVI has to be computed exactly mx times at each iteration to select the best candidate
solution. The total cost of using the exact computation method is thus approximately Nt =

2pmx (K + 1) if we neglect the time required to compute the decomposition. In comparison, the
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Figure 3.7: Illustration of the settings of the experiments of Figure 3.8 and 3.9 when p = 2. The
non-dominated points are drawn randomly on the first quadrant of an hypershere of radius 0.8 and are
represented as red disks. The decomposition of the dominated region is shown as gray faced rectangles.
The black dots are the candidates used in the experiments of Figure 3.9. They are randomly distributed
between the first quadrants of two hypershperes of radii 0.5 and 0.8 (dashed lines).

total cost of using the approximation method is approximately N{xP'* = mxmyp if we neglect

the sampling time, which is much lower when K is large.

In Figure 3.9 we show the typical time required to compute the EHVI for a population of
one thousand candidates when the exact and approximate methods are used. The times that
are reported include both stages of the computation for both methods. For this experiment, we
consider a simple problem where X = [0,1]) and f;(x) = z; for i € [1,p]. The GP models are
built using Latin-hypercube designs of N = 10p experiments and the candidates are drawn ran-
domly between the first quadrants of two hyperspheres of radii 0.5 and 0.8. The non-dominated
points are randomly distributed on the first quadrant of the hypershpere of radius 0.8 and we
take B, = [0, 1]P as previously (see Figure 3.7). The number p of objectives varies from 4 to 6
and the number my of particles used in the approximate computation methods is successively
200, 500, 1000 and 2000. For each pair (p, my), we repeat the experiment 30 times with different
random seeds.

Note the rapid increase of the exact method computation time when the number of objectives
and non-dominated points augment. In practice it is impractical for problems with more than
five objectives. As regards the computation time of the approximate method, we note a strong
dependence to the density that is used. When the uniform density is used, the computation
is almost instantaneous which is a quality that is expected from Monte-Carlo approximation
methods. When the Lgpt density is used on the other hand, the computing time is affordable but

not negligible. More work would be required on the Lgpt density to make it as computationally
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efficient as the uniform density and this shall motivate future work on this aspect of the BMOO
algorithm.

Remark 23 For the approxzimate computation method, we start the procedure from scratch, i.e.
with Yo uniformly distributed on By. Note that in this setting, the time required to compute the
approximate EHVI is overestimated because the algorithm has to make more transitions to reach

the target density during the sampling phase than it would in a sequential optimization scenario.

3.3.4 Toward a better control of the sample size

Looking at the results of Figure 3.5, and in particular the results with my = 200, it can be
seen that the choice of the number of particles in the approximate EI computation method has
a strong influence on the quality of the approximation. In our experiments, we often use one
thousand particles and we obtain good results with this choice.

In fact, the problem is not so much to obtain a good approximation of the EI for all candidate
points, but rather to identify with a good confidence its maximizer. In practice, very close points
may have very similar Els and a large sample size would be required to distinguish them. It
seams more reasonable then, to only look for a good candidate point, i.e. a point for which the
EI value is likely to be high. In this section, we propose a simple quantile based approach to this
purpose.

As before, let (2 1)1<k<my € X™ be a set of points at which we want to estimate the
value of the EI criterion, and denote (p, k)i<k<my the vector of the estimates produced by
the proposed sequential Monte Carlo procedure, i.e. ppr = pn(@nk), K € [1,mx]. Under an
idealized setting where the successive clouds of particles (Vj)o<k<n are independent and where,
for every k € [0,n], the particles (y i)1<i<my are independently and identically distributed from
a density 7y, it is possible to produce a closed form formulation of the covariance structure of
(Pn,k)1<k<my- In Appendix 3.6.3, we show that in this setting

Cov(ﬁni’ﬁnj) 2 Nij N 9
’ Lo AL (A (g, ) + (1 + A (2, 25) ) - Ay ) 3.17

where A, is computed recursively using (3.57), and A%/ (xi,x;) is computed using (3.63). The
term A, is equal to |B,| in the first phase of the optimization process, i.e. prior to finding a
feasible solution, and to |B_ |- P, (&(x) < 0) in the second phase of the optimization process,
i.e. once a feasible solution is known.

In the idealized setting mentionned above, the proposed SMC approximation method can be
viewed as a multi-level version of the ideal adaptive algorithm studied by Cérou et al. (2012).
In their work, they show that in this setting, the distribution of the estimators is asymptotically
normally distributed with a bias that is negligible compared to its standard deviation. Motivated
by these results, we shall assume in the following that (p,k)1<k<my is distributed from a mul-
tivariate Gaussian distribution W, with mean g, = (pn(2nk))1<k<my and a covariance matrix
Yn € My xmy computed from (3.17).
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illustrated in

Time required for the computation of the EHVI for one thousand candidates (settings
Figure 3.7). On each subfigure, the results of the exact method are compared with the
results of the approximate method using successively (from bottom to top) my = 200, 500, 1000 and
2000 particles. The density used in the approximate method is either the uniform density (left column)
or the Lgpt density (right column). The boxplots represent the distributions obtained over 30 repetitions
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Let x}; denote the maximizer of p, among the (2, %)1<k<my and a € [0,1], and consider the
quantile g, of level o of the empirical distribution of the (py k)i1<k<my. We shall say that my
is sufficiently large to accept z}, with a confidence of level « if p,,(z};) — 3Std(pn(x])) > go. In
other words, we decide to accept z} only if the probability that its EI value is larger than g,
is greater than «. Otherwise, we decide that the sample size is not sufficiently large, i.e. the
variance is not small enough, to conclude that z} is indeed a good point. When this happens,

we propose to simply restart the SMC procedure with a larger number of particles.

As a proof of concept, the operation of the proposed approach is illustrated in Figure 3.10.
The experiment is made using the same settings as in Figure 3.7 with p = 6 and we consider
the cases where o = 0.95 and a = 0.99. It can be seen that for both values of «, the method
refuses x} when my = 200 because the estimate cannot be trusted. When my = 500, z} is
accepted when the threshold it set to ¢g.95 but refused when it is set to gg.g9. It is accepted in
both cases when my = 1000.

3.3.5 Conclusions

In this section, we discuss the computation of the new EI criterion in the case where indepen-
dence between the functions of the problem is assumed. First, a novel sampling density, called
the Lgpt density, to be used in the sequential Monte-Carlo approximation procedure proposed in
Section 2.4.1, is introduced. It is shown that the new density does not suffer from the limitations
of the uniform density observed in Section 2.5.4. Then, an empirical study of the computational
complexity of the exact computation method is made and it is shown that it is not practical for
problems with more than five objectives. Finally, a simple online strategy to control the quality

of the approximation is proposed.

Unlike the uniform density, the L** density takes the information about the points at which
the criterion is to be computed into account in its definition. This permits to achieve very good
approximation performances in most situations. However, it is not cheap-to-evaluate enough to
be used as is within a sequential Monte Carlo algorithm and some approximations are necessary
in its definition to make it computationally efficient. That being said, the time required to
compute the criterion for a set of candidate solutions when this density is used remains in the
order of the minute, which is negligible in the case where the functions of the problem are truly
expensive to evaluate. Still, we believe that there is room for improvement of its computational
efficiency. In particular, more work is required on the sampling process to lower the cost of the

approximation procedure.

To control the quality of the approximation, a simple approach using the variance of the
estimation at the maximizer of the criterion is proposed. However, more information could
probably be extracted from the covariance between the approximations for all candidates. This
could motivate future work on a strategy to determine adaptively the number of particles that

should be used in the approximation procedure.

94



0.8

exact

(b) my

0.8

Empirical CDF

0.6

e =
= =
Aiqeqoad

N
<]

200

= 200

(a) my

xoxdde
=
al...
O
=
L
B
= ——
gl
=
— ® © <+ N e
o (=) o (o=}
Ayiqeqord

0.4

0.2

0.8

0.6

exact

(d) my

500

= 500

(c) my

®
o
xoxdde
©
o
|+
&3] o
a
O]
=
Q
=
Al
g1l I,
& S
: : : : o
— ® © < o e
o (o) o o
Aymiqeqord

exact

= 1000

(f) my

= 1000

(e) my

Mlustration of the operation of the approach proposed for controling the quality of the

Figure 3.10

estimation of the EI.

95



3.4 BMOO for Bayesian Many-Objective Optimization

3.4.1 Introduction

In this section, we assess BMOO on many-objective problems. Such problems often emerge
in engineering design optimization (see, e.g., Fleming et al. (2005)). However, they are often
reformulated in a less complex form (functions that should be objectives are aggregated or
formulated as constraints for example) because high dimensional objective spaces are difficult
to handle (see, e.g., Ishibuchi et al. (2008)) and because the exploitation of many-objective
optimization results is not straightforward.

Most of the documentation on many-objective optimization can be found in the evolutionary
multi-objective (EMO) literature. An up-to-date review of approaches that have been proposed
in this setting can be found in the PhD thesis of Li (2015). The reader is also referred to the
works of Wagner et al. (2007); Ishibuchi et al. (2008); Bader and Zitzler (2011) and Yang et al.
(2013) for more details about this class of approaches. In the Bayesian literature, the many-
objective optimization problem has been studied, e.g., by Shimoyama et al. (2013a); Couckuyt
et al. (2014) and Luo et al. (2015).

The section is organized as follows. In Section 3.4.2, we introduce the FICUS problem. This
problem is a configurable test problem for which it is possible to control the number of objectives
and the curvature of the Pareto front. Also, the Pareto front for this problem is known explicitly.
A closed form expression of the hypervolume it dominates is known and independent samples
can be drawn on its surface with a simple procedure. The FICUS test problem is thus convenient
for evaluating the performances of many-objective optimization algorithms. In Section 3.4.3, the
FICUS problem is used to empirically study the distribution of solutions obtained by sequentially
maximizing the hypervolume indicator (see, e.g., Auger et al. (2009c)). The influence of the choice
of the reference point and the influence of the curvature of the Pareto front are discussed. Then,
experimental results obtained by the BMOO algorithm on the FICUS test problem are presented

in Section 3.4.4. Conclusions are drawn in Section 3.4.5.

3.4.2 The FICUS test problem

We define the following test problem:

FICUS (p,r,c) : [0, 1J? — R
fl(x) = 1,
r=(21,...,3p) > Y
’ fo(@) = @,
c(z) = re=>" a5,

The features of the FICUS problem are represented on Figure 3.11 for p = 2 and for different
values of r and ¢. The Pareto front for this problem is the first quadrant of an hypersphere of
dimension p and radius r, in the norm L.. It is concave for ¢ > 1, linear for ¢ = 1 and convex

for ¢ < 1.
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This problem is interesting in particular for two reasons. First, the volume Vji(r) of the

region dominated by the Pareto front of the FICUS (p,r,c) can be computed in closed form:

p 1\P
r(1+1)
Vir) =] Ri — =577, (3.18)
P E r(1+2)
where R = (Ry, ..., R)) is the reference point and I" denotes the Gamma function”. In practice,

the volume V(1) can be used as a reference to assess the performance of an optimization strategy
with respect to the hypervolume indicator.

Second, it is possible to draw samples distributed on the Pareto front of the FICUS problem.
Let (Z;)i<i<p be random variables independently and identically distributed from a centred

reduced normal distribution. Then,

VA Z,
S:( ;‘ 1 —_ ;’ vl > (3.19)
(Xim1 Z5)e (> im1 Z5)

o=

is distributed on the Pareto front of the FICUS (p,r,c) problem®. Let then (S;)i<i<m be m
independent copies of S. The (S;)1<i<m can be used to optimize the hypervolume indicator or

to evaluate the quality of Pareto approximation sets.

3.4.3 Empirical study of the hypervolume

The hypervolume indicator has several desirable properties. First, it is the only known Pareto-
compliant unary indicator (see Zitzler et al. (2003)). Second, it was shown by Fleischer (2003)
that the hypervolume dominated by a set of p points, p > 0, is maximal only if all u points
are Pareto-optimal. Third, the distribution on the Pareto front of points resulting from the
maximization of the hypervolume is unchanged by a linear scaling of the objectives. As such, it
has become very popular both as a measure to determine the quality of a Pareto approximation
set (see, e.g., Zitzler and Thiele (1998); Laumanns et al. (1999); Knowles and Corne (2002))
and to design efficient multi-objective optimization algorithms (see, e.g., Beume et al. (2007);
Emmerich et al. (2005); Knowles et al. (2003); Zitzler and Kiinzli (2004); Igel et al. (2007)).
In particular, hypervolume-based optimization algorithms have been shown to outperform other
algorithms on many-objective problems (see, e.g., Wagner et al. (2007); Brockhoff et al. (2008)).

In the EMO literature, optimal pu-distributions, i.e. sets of p points that maximize the
hypervolume indicator (the term can be generalized to other indicators as well), have been
studied for the bi-objective case by Auger et al. (2009c); Friedrich et al. (2009); Bringmann and
Friedrich (2010) and for three objectives by Auger et al. (2010). It was shown by Auger et al.
(2009c) in the bi-objective case and for continuous fronts, that the distribution of solutions along
the front is asymptotically proportional to the square root of the negative of the first derivative
of the front. In the same paper, it is shown that for some fronts, it is not possible to include

the extreme points in the p-optimal distribution, regardless of the choice of the reference point

"For simplicity, it is assumed that R; > r for all 5 € [1, p].
8The distribution is uniform for ¢ = 2 but this result does not extend to ¢ # 2.
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Figure 3.11: Illustration of the features of the FICUS test problem for p = 2 and for different values
of r and ¢. The grey area represents feasible objectives values and the Pareto front is represented in red.
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used to define the hypervolume. This last statement is shown to extend to problems with three
objectives by Auger et al. (2009c).

To the best of our knowledge, such theoretical results on the distribution of solutions obtained
by sequentially maximizing the hypervolume (one point at a time) are not available, and there
is no guarantee that the aforementioned results extend to this case. In general, algorithms max-
imizing the hypervolume achieve well-spread Pareto front approximation sets (see, e.g., Knowles
et al. (2003); Emmerich et al. (2005)). However, Zitzler and Thiele (1998) report on the tendency
of the hypervolume to favor convex regions over concave ones and Deb et al. (2005) point out
the bias of the hypervolume toward boundary solutions on some problems.

For the FICUS problem, a sequential (approximate) maximization of the hypervolume indica-
tor can be achieved using a large number of samples independently distributed on the Pareto front
as said in Section 3.4.2. For better performances, in our experiments, we use Sobol sequences to
build the samples and manually add the extreme points of the front. Pareto approximation sets
obtained using this procedure over 50 iterations for the FICUS problem with p = 3, » = 0.5 and
different values for ¢ and for the reference point R are shown in Figure 3.12.

Several observations can be made based on the results of this experiment. First, we note
that, as reported by Zitzler and Thiele (1998), the spread of the distribution is not satifactory on
concave problems (corresponding to the subfigures (e) and (f) with ¢ = 2). Large regions between
the boundaries and the center of the Pareto front are not represented in the approximation set.
This observation holds independently of the choice of the reference R. As regards the results
when ¢ = 0.6 (convex front) and ¢ =1 (linear front), we obtain a better spread of solutions. We
observe that when the reference point is chosen as the nadir point, i.e. R = (r,r,r) for the FICUS
problem, the extreme points of the Pareto front are not contained in the Pareto approximation
set and that when it is set far from the front, the distribution tends to concentrate near the
boundaries of the front. This is in line with the observations of Deb et al. (2005) about the bias
of the hypervolume toward boundary solutions.

In higher dimension, assessing the quality of a Pareto approximation set is difficult and a
variety of metrics have been proposed to measure different quality aspects. The reader is referred

to Jiang et al. (2014) for a review of such metrics. In this work, we consider the following three

metrics. H, |
M(Y,) = 22
1( n) ‘/pc(r)7
Mp(Yn) = > min dly, f"), (3.20)
1<i<p
My(Yn) = 2 max min d(Si,yr).
where Y, = (y1,...,yn) € Y2 denotes a set of n observations, d denotes the Euclidean distance,

fi® € Y7 denotes the extreme point of the front in the direction of the objective ¢ € [1,p] and
(Si)i<i<m is a large sample distributed on the Pareto front and augmented with the extreme
solutions”. The metric M; measures the convergence with respect to the hypervolume indicator,

using R = (1, ..., 1) as a reference. It should tend to one when n augments. The metric Ms

°In our experiments, we take m = 10000 + p and S is obtained using the procedure described in Section 3.4.2.
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Figure 3.12: Pareto approximation sets obtained by sequentially maximizing the hypervolume over 50
iterations for the FICUS problem with p = 3, » = 0.5 when different values for ¢ and for the reference
point R are used. The grey region represents the Pareto front. The red dots are the iterative maximizers
of the hypervolume.
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is used to assess whether the extreme points of the front are well represented by the Pareto
approximation set Y,,. The optimal value for this metric is zero, which indicates that all extreme
solutions are contained in the approximation set. Last, the metric M3 measures the approximate
diameter of the largest ball centred on the Pareto front that can be inserted between elements
of Y,,. It should be as small as possible.

Experimental results obtained by sequential maximization of the hypervolume over 100 itera-
tions for p = 10 are presented in Figures 3.13, 3.14 and 3.15. Different values for ¢ and R are used
and the approximation sets are evaluated using the metrics M7, Ms and Ms. Additional results
for p = 6 and p = 8 can be found in the additional material of this chapter, in Section 3.6.4.

As a reference for the M3 metric, we consider a strategy where Y,, is initialized with the ex-
treme solutions and enriched sequentially by taking Y, 41 = argmax(g,), . mini<x<n d(Si, yr).
In other words, Y,,4; is chosen as the point in (S;)1<i<m that is farther from the points in Yj,.
This strategy corresponds to a one-step lookahead minimization of the M3 metric. The results
obtained with this strategy are shown as a dashed line in Figures 3.13, 3.14 and 3.15.

First, we look at the left columns in Figures 3.13, 3.14 and 3.15. For all considered values of ¢
and R, we observe a rapid convergence of the M; metric (hypervolume). Regarding the results
for the M5 metric, we note a dependence to the choice of the reference R and, to a lesser extent,
to the curvature of the front. When R is set at the nadir point (subfigure (a) in Figures 3.13, 3.14
and 3.15), the M5 metric does not converges to zero. This indicates that the extreme solutions
of the front are not well represented in the Pareto approximation set. When R is set away from
the nadir point (subfigures (c) and (e) in Figures 3.13, 3.14 and 3.15), the metric converges
to zero. In particular when R = (1,...,1) (subfigure (c)), the extreme solutions are the first
points selected by the hypervolume. When R is set far from the Pareto front (subfigure (e)), the
extreme solutions are among the first selected points when the front is concave but take more
time to be selected when the front is more convex.

The results for the M3 metric (right column in the figures) are close to those obtained by
the reference strategy, which indicates that maximizing the hypervolume indicator sequentially
yields a good coverage of the Pareto front on the FICUS problem. Contrary to our expectations,
we do not observe the phenomenon observed in Figure 3.12 when ¢ = 2 (empty regions between

the boundaries and the center of the Pareto front).

Remark 24 Observe that the results for the Ms metric are slightly better when R = (0.5,... ,0.5)
or R=(1,...,1) than when R = (50,...,50), and that the results for the My metric are better
when R = (1,...,1). In practice, this means that it is better to chose a reference a little away
from the Pareto front but not too far, to favour both the extreme solutions and a good coverage
of the front. On some problems though, it cannot be said in advance what will be the range of
variation of the objectives along the Pareto front. In particular, when dealing with constrained
problems, the objectives values corresponding to feasible solutions can be severely restricted (see
the results of Section 4.3). The adaptive procedure proposed in Section 2.7.2 to set B, is not
suitable on such problems, because it does not aim at setting the reference close to the Pareto
front. In Section 3.6.2, we propose a procedure that makes use of the information provided by

the models to sequentially adapt the reference to keep it close to the Pareto approrimation set.
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Figure 3.13: Results obtained on the FICUS (10, 0.5,0.6) problem (convex front) by the optimization
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strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.14: Results obtained on the FICUS (10,0.5,1) problem (linear front) by the optimization
strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.15: Results obtained on the FICUS (10, 0.5,2) problem (concave front) by the optimization

strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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3.4.4 Numerical experiments

In Section 3.4.3, we study a strategy which consists in using a large number of samples distributed
on the Pareto front for maximizing the hypervolume indicator. This strategy can be seen as an
idealized version of the BMOO algorithm where the GP models are perfect, the criterion is
computed exactly and its maximization is made almost perfectly. As such, the results presented
in Figures 3.13, 3.14 and 3.15 and in Section 3.6.4 constitute a reference that can be used to
assess the performances of BMOO on the FICUS problem.

In Figures 3.16, 3.17 and 3.18 we show the results of experiments made with BMOO on the
FICUS problem when the number of objectives is p = 6, the radius is 7 = 0.5 and ¢ € {0.6,1,2}.
Additional results for p = 8 can be found in Section 3.6.4'°. For this experiment, the algorithm
is initialized with N;,; = 30 experiments and run over 100 iterations. For the computation of
the EI criterion, we use the L3P" density (see Section 3.3) with my = 1000 particles. To set B,
we use the procedure detailed in Section 3.6.2 with v = 0 and v = 1. For the optimization of
the criterion, we use the PICPI density (see Section 3.2) with mx = 1000 particles. For every
value of ¢, the experiment is repeated 30 times with different random seeds to account for the
randomness of the algorithm.

BMOO achieves satisfying results on the FICUS problem. In particular, the results for the M3
metric are close to those of the strategy where the hypervolume is maximized sequentially, which
indicates that BMOO is able to find solutions close to the Pareto front and well distributed.
However, BMOO is not able to capture the extreme points of the front on this problem, as can
be observed through the My metric. This observation holds for both values of the parameter
~ considered in this study. Therefore it does not seem related to the choice of B,. Regarding
the convergence with respect to the M; metric, observe that about 100 iterations are necessary
for p = 6 and about 200 for p = 8. The convergence is much slower than the reference strategy
and this is partly a consequence of the extreme solutions not being captured by the algorithm.
Our belief is that the SMC procedure that we use for optimizing the criterion is not proposing
candidates near the boundaries of the domain, where the extreme solutions can be found. It

could also be due to imprecisions of the models in those regions.

3.4.5 Conclusions

The gist of this section is to evaluate the performances of BMOO on many-objective problems.
In particular, we are interested in the quality of the Pareto approximation sets obtained by the
algorithm. To this purpose, we introduce the FICUS problem. This problem is a configurable test
problem for which it is possible to control the number of objectives functions and the curvature
of the Pareto front. Moreover, a closed form expression of the hypervolume dominated by its
Pareto front is known, and it is possible to draw samples on it with a simple sampling procedure.

First, the FICUS problem is used to empirically study the characteristics of distributions

of Pareto-optimal solutions obtained by sequential maximization of the hypervolume indicator.

10%e do not provide results for p = 10 because BMOO requires about 300 functions evaluations and the
computing time becomes prohibitive for the M; metric and for the strategy where the hypervolume is maximized
sequentially (see Figure 3.8).
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Figure 3.16: Results obtained by the BMOO algorithm on the FICUS (6,0.5,0.6) problem (convex
front) when the procedure of Section 3.6.2 to set B, is used with v = 0 (left column) or v = 1 (right
column). The reference for the M3 metric is shown as a dashed line and the shaded region corresponds
to a 95% confidence interval empirically computed from 30 runs of BMOO.
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Figure 3.17: Results obtained by the BMOO algorithm on the FICUS (6,0.5,1) problem (linear front)
when the procedure of Section 3.6.2 to set B, is used with v = 0 (left column) or v = 1 (right column).

The reference for the M3 metric is shown as a dashed line and the shaded region corresponds to a 95%
confidence interval empirically computed from 30 runs of BMOO.
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Figure 3.18: Results obtained by the BMOO algorithm on the FICUS (6, 0.5, 2) problem (concave front)
when the procedure of Section 3.6.2 to set B, is used with v = 0 (left column) or v = 1 (right column).
The reference for the M3 metric is shown as a dashed line and the shaded region corresponds to a 95%
confidence interval empirically computed from 30 runs of BMOO.
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Three evaluation metrics are considered. They measure respectively the convergence with respect
to the hypervolume indicator, the membership of the extreme solutions of the Pareto front to a
Pareto approximation set and the presence of “holes” in a Pareto approximation set distribution.
It is shown that for problems with convex and linear fronts, satisfactory distributions are obtained
when the hypervolume indicator is maximized sequentially. For problems with three objectives
and a concave front, it is observed that maximizing the hypervolume does not yield good Pareto
approximation sets. Our experiments do not permit to conclude that this behaviour also exists
in higher dimensions.

As regards the choice of the reference point, it is shown that it mostly influences the represen-
tation of extreme solutions in the Pareto approximation set. When it is chosen as the nadir point,
these are not included in the approximation set. When it is chosen at a “reasonable” distance
from the Pareto front, the extreme solutions are the first points selected by the hypervolume.
When it is chosen far from the Pareto front, the extreme solutions are eventually selected by the
hypervolume indicator but not necessarily at the begining of the optimization process.

The results obtained by sequential maximization of the hypervolume indicator are then used
as a reference to evaluate the performances of the BMOO algorithm on the FICUS problem.
Indeed, this procedure can be viewed as an idealized version of BMOO where the GP models
are perfect, the criterion is computed exactly and its optimization is made almost perfectly. It is
shown that for the FICUS problem with up to eight objectives, BMOO achieves results relatively
close to this ideal reference. Its convergence with respect to the hypervolume indicator is slower
but effective and the distributions of the solutions found by the algorithm seem close to those
obtained by the reference (as measured by the size of the “holes” in the distributions). However,
BMOO is not able to correctly capture the extreme solutions for the FICUS problems. It could
be due to imprecisions of the models near the boundaries of the domain or it could be that the
SMC procedure used for optimizing the criterion fails to propose candidates near the boundaries

of the domain. More work is required to better understand this phenomenom.

3.5 Extensions of the BMOO algorithm

3.5.1 Introduction

In this section, we propose extensions of the BMOO algorithm that are necessary to address the
problems of Chapter 4, along with other useful extensions which come as a by-product of the
algorithm. The section is organized as follows. In Section 3.5.2, we extend BMOO to address
problems defined on non-hypercubic design spaces and to problems having cheap-to-evaluate
constraints. In Section 3.5.3 we study the case where f and/or ¢ cannot be computed for some
x € X. This happens for example when a computer program fails to return a result for some
combinations of the design parameters. Then we propose a multi-point version of the algorithm
in Section 3.5.4. Finally, in Section 3.5.5 we propose an extension of the EHVTI criterion that
makes it possible to encode user preferences into the sampling criterion.

Throughout the section, the proposed extensions are illustrated on simple test problems; see

Chapter 4 for applications to real-life problems.
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3.5.2 Non-hypercubic design spaces

In this section we extend the BMOO algorithm to address the following problem:

minimize  f(x),

subject to x € X ={r € H; 1s(z) =1and e(z) <0}, (3.21)

c(z) <0,
where f = (f1,..., fp) and ¢ = (c1, ..., ¢q) are vectors of expensive to evaluate objectives and con-
straints as in Section 2.1, I € R? is an hypercube defined by bound constraints, e = (eq, ..., e;)

is a vector of real valued cheap-to-evaluate!! constraint functions defined on H (e; : H — R)
and § is a subset of H which is not given explicitly, in the sense that the membership of x to S
can only be assessed by means of a membership function 1s. In the following, we assume that
the membership function is also cheap to evaluate. The case where 1 is expensive to evaluate
will be addressed in Section 3.5.3 with a different approach. An example of such problem can be
found in Section 4.2.

In this work, we propose to view the constraints (e;)1<;<s and the membership function 1s
as restrictions of the design space. In this setting, the objectives (f;)1<i<p and the constraints
(¢j)1<j<q may indifferently be or not be observable outside of X. In practice, this requires two
adaptations of the BMOO algorithm. First, a dedicated procedure is required to build an initial
design of experiment (DOE) on X. Secondly, it is necessary to prevent the algorithm from going
outside of X in the subsequent iterations.

Usually, the initial DOE is chosen to be both space filling and well spread in all dimensions.
So far, we have been using pseudo-maximin Latin hypercube designs because they achieve a good
trade-off between these two properties and the computing time required to chose the points of
the DOE. However, it is not possible in the general case to build a Latin hypercube design on
a non-hypercubic design space. Besides, this would not be desirable anyway. As an example'?,
consider the case where X = {(z1,22) € [0,1]*; 1 — 32 < 0}. Then the only possible Latin
hypercube design is a set of points falling close to the diagonal x1 = x9, which, of course, is not
desirable because it is not a space filling design.

In the literature, maximin designs on non-hypercubic sets have been studied by e.g. Stinstra
et al. (2003); Auffray et al. (2012) and Chen et al. (2014). The methods that have been proposed
usually involve complex optimization steps and developing such methods falls out of the scope
of the present work.

We propose a simpler approach based on a three-step procedure. The first step consists in
building a large sample uniformly distributed on {z € H; e(z) < 0}. This can be achieved using
SMC by considering a sequence of transition densities of the form 1 . e, (x)<a,1<i<s}, Where
a € RT is chosen sequentially in order to keep a significant population of particles between two

iterations (this is very similar to Algorithm 7, that is used to make transitions with the PICPI

HTypically, we consider a function to be cheap to evaluate if its evaluation takes in the order of the millisecond,
or less. More generally, a function may be considered as cheap to evaluate when no restriction is placed on the
number of affordable evaluations of this function.

2This example is taken from Auffray et al. (2012).
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density). Then, the population is pruned to keep only particles falling in S. The resulting sample
is uniformly distributed on X = {z € H; e(z) < 0,1s(z) = 1}. Note that for this procedure to
be effective, it is necessary that the volume of X be not too small compared to the volume of
{z € H; e(z) < 0}. Finally, the population is pruned again by sequentially removing the samples
that are closest to their neighbours until the required sample size is reached. The resulting set
is a pseudo-maximin DOE on the domain X.

Staying within the limits of the X domain is straightforward when the density .\ is defined on
X because then, the sequential Monte-Carlo procedure used for optimizing the EI criterion never
proposes candidates outside of X. In practice though, X is not known explicitly and membership
to X has to be checked within the SMC algorithm'®. Besides, an initialization procedure starting
from a sample uniformly distributed on H is required to construct X from 7r())K defined on X.
As mentioned above, it is possible to build a sample (of size mx) uniformly distributed on
{r € H; e(z) < 0}. Then, Algorithm 6 can be used to build Ay from 7‘. Note that, again, for
this procedure to be effective, it is necessary that the volume of X be not too small compared
to the volume of {x € H; e(x) < 0}.

To illustrate the proposed approach, we consider an unconstrained single-objective optimiza-

tion problem formulated as (3.21) with

(

H = [-5,10] x [0, 15],

S = {(z1,72) € H; 22 + (22 — 15)% < 25},

- (3.22)

5 2 1
) 2
iz, 20) — <x2 — 2 + —&1 — 6) +10 <1 — §> cos(z1) + 9,

[ e: (71, 22) = 21 — X2,

The features of this problem and the operation of the BMOO algorithm are illustrated re-
spectively in Figures 3.19 and 3.20. For this experiment, the initial DOE is a pseudo-maximim
design of 10 experiments chosen using the three-step procedure detailed above (Iteration 0 in

Figure 3.20) and the algorithm is run over 10 iterations.

3.5.3 Hidden constraints management

We now turn to the case where the membership function 1g is expensive to evaluate. This
happens, for example, when a time-consuming computer program is used to evaluate the ob-
jectives and/or the constraints, and fails to return a result for some combinations of the design
parameters which are not known beforehand.

When the objectives and constraints are modelled using random processes as it is the case for
BMOQO, regions that can not be observed are problematic because the variance of the processes
can not be decreased in those regions. Therefore, if nothing is done, the EI criterion is likely
to become significant in those regions at some point during the optimization process. In the

Bayesian literature, this problem has been addressed in the unconstrained single-objective setting

3Note that since both e and 1s are cheap to evaluate, this is not an issue to check the membership of the
particles to X several times within an SMC algorithm.
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Figure 3.19: Illustration of the features of the optimization problem defined by (3.21) and (3.22). The
contours of the objective function are shown as colored lines and the set H \ X is shaded. The optimum
of the objective function on X is shown as a red disk.

as a missing data problem by Roy (2006) and as a problem having hidden constraints by Lee
et al. (2011).

In Roy (2006), it is proposed to impute well-chosen values at missing data locations to
artificially decrease the variance of the processes and thus prevent the algorithm to return in the
regions that can not be observed. In our experiments, we found this approach difficult to extend
to problems having possibly several objectives and several constraints.

Lee et al. (2011) propose a different approach based on a statistical model: A soft classifier
of the observed /non-observed data is used to produce for every point of the design space x € X
a "probability of observability" p,(x € S§). The authors then propose to multiply the expected

improvement by this probability to prevent it from rewarding regions that can not be observed:
pn(x) = pu(x) - pp(z € S). (3.23)

In their work, a Random Forest classifier is used but the approach can be extended to other
kinds of soft classifiers such as support vector machines, nearest-neighbours classifiers, neural
networks, etc.

The adaptation of this approach to the constrained multi-objective case is straightforward.
In our context, it corresponds to multiplying both the EI function and the density 7 used to
optimize the EI by p,. In this work, we use a simple k-nearest-neighbours classifier to produce
this probability. Observed samples are given the label one and non-observed samples are given
the label zero. Then, the probability of observability at a location z € {2’ € H; e(2) < 0} is
computed as the mean of the labels of the k nearest neighbours of z, as given by the Ly norm.
This model has the advantage of simplicity and does not require any assumption on the shape
of the set §. Besides, there was no evidence in our experiments that a more elaborate statistical
model is required.

An illustration of the operation of this procedure is provided in Figure 3.21 for the optimiza-
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Figure 3.20: Illustration of a run of BMOO on the optimization problem defined by (3.22) and (3.21).
Black disks represent the initial DOE and blue disks represent subsequent evaluation points. The current
best evaluation point in shown as a red disk. See Figure 3.19 for more details.
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tion problem defined by (3.21) with

H = [-5,10] x [0,15],

S ={(z1,12) € H; 22 + (22 — 15)?2 < 25, x5 — x1 < 0}, (3.24)
5.1 5 ? 1

iz, m2) — <x2 - Hx% + e 6> + 10 <1 - 8_7T> cos(z1) +9.

For this experiment, we take k = 5, the initial DOE is a pseudo maximin set of 20 experiments,
and the algorithm is run over 20 iterations. Note that unlike this test problem, it is unlikely in

practice that the optimum lies at the boundary of the non-observable domain.

3.5.4 Batch sequential multi-objective optimization

Throughout this manuscript, we have been using the number of function evaluations as a measure
of the cost of an optimization process. However, when parallel computation facilities offer the
possibility of evaluating several design solutions simultaneously, i.e. within the same time lap, it
can be very advantageous to take advantage of it to lower this cost.

In this section, we propose a batch version of the algorithm that relies on a multi-points
version of the EI criterion inspired from the ¢-EI criterion of Ginsbourger et al. (2010b). The
problem consists in selecting at each iteration of the algorithm a batch of ¢ points to be evaluated
simultaneously. We consider a synchronous approach where the evaluations of the g selected
points are made in parallel and take approximately the same time (see Remark 26).

Denote X,, = (X1,...,X,) the set of observations available at time n > 1 and Y,, = £{(X,,).
In the unconstrained single-objective context, Ginsbourger et al. (2010b) define the ¢-EI criterion

Pan(T1, ..., xq) = By ((my — min (£(z1),. ... ,f(xq)))+) , (3.25)

where my, = §(X1) A--- A&(X,,) is the current best solution as in Section 2.2.1 and E, stands
for the expectation conditional on the information (X,,Y,) available at time n. The strategy to
choose the batch of experiments then naturally consists in selecting the ¢ points that maximize

the ¢-EI criterion.

(Xnt1,- s Xngg) = argmax,, o yexa Pan(T1,- -+, Tq)- (3.26)

The criterion (3.25) is appealing because it corresponds to the Bayes-optimal one-step looka-
head strategy for the loss function (2.2). However, it is difficult to use in practice for two reasons.
First, its computation is not simple. A closed form formula is provided by Chevalier and Gins-
bourger (2013) but it becomes computationally intensive for large values of ¢ and is therefore
limited to small batch sizes (say ¢ < 10). For larger batch sizes, approximate computation
procedures have been proposed by Ginsbourger et al. (2010b) and Marmin et al. (2016) and
can be used with a moderate computational cost. Secondly, solving the auxiliary optimization
problem (3.26) is challenging because the size of the search space is d x ¢, which can be quite

large even for moderate batch sizes when d is already rather large. To solve this problem, Frazier
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and Clark (2012); Wang et al. (2016a) and Marmin et al. (2016) propose multi-start stochastic
gradient algorithms relying on approximate gradient computation methods. Note that a closed
form expression of the gradient of the ¢-EI criterion has been developed by Marmin et al. (2015)

but again, the approach is limited to small batch sizes.

To circumvent these difficulties, Ginsbourger et al. (2010b) propose to use a sequential ap-

proximation of (3.26) where the X,,;, ¢ € [1, ¢], are chosen one after the other using the following

procedure.
X1 = argrr;&ax E, ((mn - §(x))+) )
re
Xpvi = argrr;gaXIE}n ((min(mn, €(Xn1)s - EXnti-1)) = €(2)) 1 [ X, (327
Te

ooy Xngic1), 2<i<gq

Observing that (3.27) still poses computational difficulties, the authors further simplify the

procedure as

Xn+1 = arg&ax E, ((mn - 5($))+) 5
Xnpi = arg&axEn ((min(myp, £(Xng1), -y EXnpio1)) =€) [E(Xnt1) = 1,

ey S(Xn-i-i—l) :y’i—l)7 2 SZ §q7
(3.28)

where the (y;)1<i<q € R? are values imputed to the successive (§(X,+i))1<i<q. The authors then
propose two strategies for setting the (y;)i1<i<q. The Constant Liar (CL) strategy consists in
lying with the same value y; =y, € R, @ € [1,¢], each time. For examples they study the cases
where y, = min(Y,,), y, = mean(Y,) and y, = max(Y,,). The Kriging Believer (KB) strategy
consists in setting y; as the kriging mean at X,,1;: y; = E(X,Hi), i € [1,q]. Note that with this
strategy, the computation problem reduces to the computation of the EI function and that the

optimization problem reduces to g optimizations in dimension d.

To the best of our knowledge, the problem of selecting batches of experiments in a Bayesian
multi-objective context has only been addressed by Zhang et al. (2010). This is somewhat sur-
prising because, unlike the single-objective case where a single best point will eventually emerge
from the observation of ¢ new points, in a multi-objective context, the newly observed points can
potentially all simultaneously improve upon the current front of non-dominated observations if
they do not dominate each other. Hence, it makes a lot of sense to consider batch strategies in a
multi-objective context and it seems plausible that a good batch strategy could outperform the
sequential strategy in terms of number of iterations, which is not so evident in the single-objective

case.

A natural extension of (3.25) to a constrained multi-objective setting where the improvement
is measured using the hypervolume measure defined using the domination rule (2.21) is to consider

the following criterion.

Pan(@1,. ., 7q) = By (([H((Yn, €(z1),- -, 8(xq)))] — [Hal),) | (3.29)

116



Algorithm 8: Sequential procedure to select a batch of ¢ experiments for evaluation.

11

Xnq1 = argmax,cy, pn()

while i < ¢ do

141+ 1

Generate (Y1,...,Yi—1) from (§(Xp+1),...,&(Xnti—1)) conditional on
Y, = (f(Xn), c(Xn)).

Yn,i — (Yn, Yl, . Y;’_l)

Xn,i <~ (Xna Xn—f—ly v Xn—i—i—l)

s | Ko o argmasaen, B ((H((Ys €@))] — [HYni)]), 16(Xns) = Yis)

[ SN SN VUR R

N o

where H(Y) = {z € B;3y € Y s.t. y < z} is the subset of B made of the points dominated
by the elements of a vector Y of elements of IBB. Observe in particular that for ¢ = 1, the
criterion (3.29) corresponds to the expected improvement (2.23).

As in the single-objective case, the computation and optimization of the criterion (3.29) are
difficult problems and an in depth study of these two aspects falls out of the scope of this thesis
work. We limit ourselves to proposing a sequential procedure in the spirit of the KB strategy
of Ginsbourger et al. (2010b). The proposed procedure is summarized in Algorithm 8. Note
that unlike the KB strategy, in the proposed algorithm, we use conditional realisations of £ to
produce the (y;)1<i<q that are imputed to the model. As such, (3.28) is an unbiased estimator
of (3.27). In Algorithm 8, a single realisation of £ is used at each iteration but of course, it it is
possible to use more draws to improve the robustness of the approach.

In Figures 3.22 and 3.23, we show an illustration of one run of the BMOO algorithm on
the BNH problem introduced in Section 2.5.4. Batches of ¢ = 10 experiments selected using
Algorithm 8 are evaluated simultaneously at each iteration. The algorithm is initialized using
a pseudo-maximin latin hypercube design of 10 experiments (Iteration 0 of Figure 3.22) and is
run over 5 iterations. Note how most of the points in the batches contribute to the Pareto front

discovery. For comparison, the same experiment but with ¢ = 25 is shown in Figure 3.24.

Remark 25 See Azimi et al. (2010); Viana and Haftka (2010); Zhang et al. (2010); Desautels
et al. (2014); Chevalier et al. (2014b); Shah and Ghahramani (2015); Gonzdlez et al. (2015);
Guerra (2016); Wu and Frazier (2016); Kathuria et al. (2016); Habib et al. (2016); Li et al.
(2016b) and Dazberger and Low (2017) for alternative approaches to select batches of experiments

not directly related to the concept of expected improvement.

Remark 26 In this work, we consider synchronous batches of experiments. See the works of
Ginsbourger et al. (2010a); Janusevskis et al. (2012); Girdziusas et al. (2012) and Le Riche

et al. (2012) for asynchronous batch selection approaches.

3.5.5 User preferences in multi-objective optimization

Sometimes, the end-user is able to say in advance what part of the Pareto front is more interesting

for his particular application. For example, he might be interested more in extreme solutions
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Figure 3.22: Illustration of one run of the BMOO algorithm on the BNH problem. Batches of ¢ = 10
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ones as black disks.
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Figure 3.23: Illustration of one run of the BMOO algorithm on the BNH problem. Batches of ¢ = 10

experiments are made at each iteration. Non-dominated solutions are shown as red disks and dominated
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Figure 3.24: Illustration of one run of the BMOO algorithm on the BNH problem. Batches of ¢ = 25
experiments are made at each iteration. Non-dominated solutions are shown as red disks and dominated

ones as black disks.
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or prefer the improvement of one objective over the improvement of another. To encode this
preference, in this section, we propose the expected weighted hypervolume improvement (EWHI)
criterion. This criterion is an extension of the weighted hypervolume indicator (WHI) introduced
by Zitzler et al. (2007) to a Bayesian setting where the functions of the problem are modeled by
Gaussian processes.

The hypervolume indicator naturally introduces an implicit preference toward certain regions
of the Pareto front'®, as discussed in Section 3.4 (see Figure 3.12). Based on this observation,
Zitzler et al. (2007) proposed to introduce a weight function in the definition of the hypervolume

indicator to orient this preference!®:

I} = / w(y)dy, (3.30)

where H,, is the dominated subset of B, as defined in the unconstrained case in Section 2.2.2,
and w : R? — R™ is a positive weight function. In this setting, the value w(y) for some y € RP

can be seen as a reward for dominating y.

Remark 27 Observe that, up to a constant, the usual hypervolume indicator is recovered with

the weight function w = 1. The WHI is thus a generalization of the hypervolume indicator.

Later, Emmerich et al. (2014) showed that for weight functions possessing the bounded
improper integral (BI) property (see Definition 1), the introduction of a reference point in the
definition of the WHI is not required.

Definition 1 A positive weight function w : R™ — R™ is said to possess the bounded improper
integral property if for all « € R™

/> w(y)dy < +o0. (3.31)

The generalization of (3.30) to the constrained multi-objective case is straightforward when
the extended domination rule (2.21) is used. It corresponds to taking H,, and B as in Section 2.3.2
and to consider weight functions defined on RP*9. Then, to get rid of the reference points y'°%
and y"PP, it is required that w be a measure on RP+916. Based on these remarks, we define the

EWHI criterion in the constrained multi-objective setting as:

pule) = [ () Pu(€la) @) (3.32)

n

where H,, = {y € RP™%; 3i <n, (f(X;), ¢(X;)) < y} and w: RPT? — R™" is a measure on RPT7.

1411 the bi-objective case and for continuous fronts, Auger et al. (2009c) made explicit this preference and
showed that it is related both to the choice of the reference point and to the shape of the Pareto front.

'5Tn the original definition of the WHI, the authors introduce additional terms to weight the axis. In this work,
one of our objective is to get rid of the reference point, as proposed by Emmerich et al. (2014). Therefore we do
not consider these terms.

!6Note that in the constrained setting, lower bounding values are required and the BI property is not sufficient
to insure that the integral is well defined in the absence of reference points.
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Observe that this definition of the EI corresponds to the loss function

gn()_(, (f’ C)) = M(H \ Hn)a (333)

where H = {y € RP™%;, 3z € X, (f(z), c(x)) < y} is the region of RP*Y that is dominated by
the Pareto front, X = (X3, Xy,...) is an optimization strategy for (f,c) and p is the measure

with density w with respect to the Lebesgue measure.

If it is assumed that the objectives and constraints are independent and that w can be put

under the product form:

w : RPxR? — R*

(3.34)
(yOa yc) = Wo(yo) : Wc(yc) )

where wy is a measure on RP and w. is a measure on R?, then a decomposition similar to that

introduced in Section 2.3.3 is possible:

pal@) = p*(2) + o™ (), (3.35)

where

pfleas(x) = Q- Pn(fc(x) < O) : /]RP wo(yo) Py, (fo(x) = yo) dyo,

; N (3.36)
p];zn ((L‘) = Q- /H wc(yc) P, (fc(x) =Y ) ]lycﬁo dye,
prior to finding a feasible solution and
P(a) = 05 Palela) S0+ [ o) P (oli) < ) e, .

Pﬁnf(x) = 0,
once a feasible solution is known, where Qo = [, wo and QF = [o\ (. gja We-
The extension of the SMC procedure proposed in Section 2.4.1 to the approximate com-
putation of the integrals in (3.36) and (3.37) is straightforward. It consists in introducing the

respective weight functions in the estimator (3.9). Note that in this case, prior to finding a

feas
n

unf
n

feasible solution, both pi™ and p,°# are computed approximately.

As regards the sampling density ) to be used in the SMC procedure, a development similar
to that used in Section 3.3.2 for the L** density leads to the definition of the following optimal
density:

mx

() o | Y w®)? P (E(zn) < v)° - e, (3.38)
k=1

where £ = &, or &, w = w, or w. and G, = HS _ or HE ., depending on which phase of the

7,0 n,co

optimization process is considered, and the (z, 1)1<k<m are candidates for the optimization of

the criterion (see Section 3.2).

In a bi-objective context, Zitzler et al. (2007) propose three weight functions that encode
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respectively preference for extremal solutions, preference for one of the objective functions and
bias toward a reference point (see also Auger et al. (2009a)). The authors point out that it is
possible to define w as a combination of these three weight functions to combine their effects.
Based on these results, in Figure 3.25, we illustrate the operation of the EWHI criterion on the
BNH problem of Section 2.5.4 for the two following weight functions defined on RP x R?, with
p=2and q=1:

! _yi)_él . ]1[0’150} (yovl) ) ]1[0,60} (yo,2)

g —_ . ]l
wl(yoayc) 156 150 60 ]R(yC)a (339)
1
w2(y0ayc) = 5 (90 (yOaMI’C) +Q0(yonu’2ac)) : ]l]R(yC)’

where ¢(y, u, C') denotes the Gaussian probability density function with mean p and covariance
matrix C, evaluated at y. The w; weight function is based on an exponential distribution and
encodes preference for the minimization of the first objective. The ws weight function is a sum
of two bivariate Gaussian distributions and encodes preference for improving upon two reference
points p11 and us'7. For this experiment, BMOO is initialized with a pseudo-maximin design of
N = 10 experiments and is iterated over 20 iterations and we take p; = (80,20), pe = (30,40)
and C' = RS(RS)T, where

c§s( ) —Sin(%)] and S — [ 20 0] , (3.40)

As expected, the resulting distributions of solutions are concentrated in the regions of the

Pareto front that dominate the regions of high weight values.

Remark 28 In the EMO literature, an up-to-date review of approaches that have been proposed
to incorporate user preferences into the optimization scheme is provided by Li et al. (2016a) and
theoretical results on optimal p-distributions (see Section 3.4.3) for the weighted hypervolume
indicator are provided by Auger et al. (2009b).

Remark 29 An alternative approach based on desirability functions (see Harrington (1965)) is
proposed by Wagner and Trautmann (2010). In their approach, each objective is mapped to a
(nonlinear) desirability function that is comprised between 0 and 1, a value of 1 indicating full
satisfaction of the end-user. The authors then propose the DF-SMS-EMOA algorithm, which
extends the SMS-EMOA algorithm of Beume et al. (2007) to this setting. This approach was
shown by Emmerich et al. (2014) to be a special case of the WHI approach. Furthermore the
authors make explicit the relationship between desirability functions and weighted hypervolume
indicator for desirability functions of the Harrington type and of the Derringer-Suich type (Suich
and Derringer, 1977) and show how they can be used to define weight functions. By extension,

these can be used to define weight functions for the EWHI criterion as well.

"Note that in this example, we take w. uniform over the entire R domain. In that case, w. is not a measure.
However, observe that on problems where a feasible solution is known from the initial DOE, which is the case for
the BNH problem, the EWHI is equal to the term p®® in (3.37). In that case, we omit the term QS because it
does not influence the maximizer of the EWHI.
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Figure 3.25: Distributions obtained after 20 iterations of the BMOO algorithm on the BNH problem
when the weight functions w; and wy are used. The results obtained using the EHVI are shown for
reference. The contours of the weight functions are represented as black lines and the non-dominated
solutions as red disks. Black disks indicate dominated solutions.
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Remark 30 In a Bayesian setting, Yang et al. (2016a,b) define the truncated expected hypervol-
ume improvement. This criterion can be used on bi-objective problems to encode preference
toward a domain of the objective space defined by bound constraints of the form (yi,y2) €
[A1, B1] x [Aa, Bs]. Note that a similar preference can be encoded using the EWHI criterion

by taking wo(y1,y2) o< Lja, (Y1) - Lja,,B,y) (y2)-

3.6 Additional material

3.6.1 Local optimization algorithms results

Tables 3.7, 3.8 and 3.9 present the results obtained by the Cobyla, Active-Set, Interior-Point
and SQP local optimization algorithms on the YUCCA test problem with x = 1, Kk = 3 and
k = 5. In Section 3.2, only the results of the best scoring algorithm are given in the tables.
Here, we present the full results. The algorithms are run with their default values, except for
the maximum number of functions evaluations, which is set to Ny, = 1000, and the tolerance

to constraint violation, which is set to 107° on each constraint. See Section 3.2 for more details.

3.6.2 Correction of the adaptive procedure to set B,

A preliminary adaptive procedure to set B, has been introduced in Section 2.7.2. In this proce-
dure, for every objective f;, 1 <14 < p, the upper bounding value yggp is set as an approximation
of maxx f;. However, in Section 3.4, it is empirically shown that for better performances, it is
advisable to set the upper bounding values yo"" higher than the nadir point but not too far from
the Pareto front (see Remark 24 in Section 3.4.3). This procedure is therefore not suitable for
problems where the maximum of f; over the entire X domain is large compared to its maximum
value on the Pareto front. This happens, for example, when the maximum of f; over the feasible
set is small compared to its maximum over X. Such a situation occurs, for the FICUS problem,
when the parameter r is set small compared to one, as illustrated in Figure 3.26. Here, we

propose a new adaptive procedure to set B, that better adapts to this potential difficulty.

Assume that a set of n evaluation results £(X;), 1 < i < n, are available and recall from
Section 3.3 that, assuming independence between the objectives and constraints, prior to finding

a feasible solution, the EI at some point z € X is a sum of two terms:

pu(x) = pif(z) + plss(x),
1

x
!BS | Be\Hp e

Py (&5 (2) < uF) Lyogodye + W [ Palla) < ) due.

o

The EI value of points that have a small probability of feasibility is not strongly influenced by

unf
n

feas

" (x). For points with a significant

B, because then p;7®5(x) is likely to ba small compared to p

feas
n

when the volume between min(max(&,(x), y'°%), yo"?) and yoP? is larger. To avoid truncating

probability of feasibility on the other hand, the term p,75(x) can be seen as a reward that is larger
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d COBYLA active-set interior-point SQP

2 28 8.7 (5.5) 27 7.7 (2.1) 30 11.0 (6.4) 30 7.2 (1.6)

5 25 21.9 (10.7) 27 20.6 (7.7) 28 24.9 (24.7) 28 16.2 (3.0)
10 17 80.6 (88.4) 17 37.4 (7.7) 25 50.0 (18.4) 25 31.4 (5.8)
20 14 168.2 (84.3) 10 77.0 (14.8) 19 108.2 (42.6) 16 70.6 (12.6)
50 4 593.8 (191.9) 5 298.4 (154.8) 14 491.6 (234.2) 11 191.1 (23.8)
100 0 - () 0 - () 0 - () 1 405.0 (0.0)

Table 3.7: Results obtained using the Cobyla, Active-Set, Interior-Point and SQP algorithms on the YUCCA test problem with £ = 1. In bold, the good
results in terms of average number of evaluations. We consider the results to be good if more than 20 runs where successful and the average number of

evaluations is at most 20% above the best result presented in the table. Dash symbols are used when a value cannot be calculated.
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L2l

d COBYLA active-set interior-point SQP

2 27 17.2 (5.2) 27 10.1 (2.7) 27 20.6 (4.0) 27 9.4 (2.4)
5 19 51.7 (52.2) 17 25.2 (6.8) 25 52.1 (11.0) 24 21.8 (3.1)
10 15 72.6 (30.4) 14 56.4 (54.5) 22 109.5 (40.9) 19 40.9 (5.5)
20 8 242.2 (208.5) 6 148.3 (63.8) 17 223.3 (37.4) 17 85.0 (0.0)
50 1 227.0 (0.0) 0 - () 4 752.0 (174.9) 3 205.0 (0.0)

Table 3.8: Results obtained using the Cobyla, Active-Set, Interior-Point and SQP algorithms on the YUCCA test problem with x = 3. See Table 3.7 for

conventions.




d COBYLA active-set interior-point SQP

2 24 23.8 (6.0) 22 12.0 (5.6) 28 30.9 (7.3) 27 10.1 (1.6)
5 16 54.1 (26.9) 13 24.0 (6.0) 25 67.4 (18.2) 21 21.6 (3.6)
10 15 91.1 (31.4) 8 47.9 (12.8) 23 120.0 (26.5) 20 42.2 (4.9)
20 1 102.0 (0.0) 2 116.5 (44.5) 12 261.7 (26.5) 10 80.8 (8.9)
50 0 - () 0 - () 5 752.8 (117.5) 3 205.0 (0.0)

Table 3.9: Results obtained using the Cobyla, Active-Set, Interior-Point and SQP algorithms on the YUCCA test problem with x = 5. See Table 3.7 for
conventions.
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0 1

Figure 3.26: Illustration of a situation where the procedure of Section 2.7.2 to set B, is not suitable
because the size of the Pareto front is small compared to the size of the domain of variation of the
objectives (gray region). The illustration is based on the FICUS (2,0.1,2) problem.

this volume, in that case, we propose to set y'PP and y'°% as follows:
yg?fn = min <mini§n §o,i(Xi), mingex, &o,i,n(x) — Aoao,i,n(@) ) I<i<p, (3.41)
?/EIZ)I; = max <maXi§n &o,i(Xi), maxgex, &o.in(T) + )\Oo'o,i’n(x),) , 1<i<p,

where ), is a positive number as in Section 2.7.2 and X, = (mn,i)1<i<m is a cloud of particles
approximately distributed from a density mw,, on X. In other words, BB, is taken in that case as

an hyper-rectangle likely to contains both the past and future observations.

Once a feasible solution has been found, it is possible to adapt B, to keep it close to the
set of feasible and non-dominated solutions. To this purpose, we consider the two following

approximations of the Pareto set:

Prnax = Pareto <{£O(X_]) ) gc(X]) < 0, 1< J < ’I’L} U {go,n(xn,i) + )\oao,n(xn,i), 1<:< m})
Pmnin = Pareto <{50(X]) 5 gc(Xj) < 07 1 S] < TL} U {é\o,n(wn,i) - )‘oao,n(xn,i)7 1< < m})
(3.42)

The set Ppax can be seen as a pessimistic approximation of the Pareto front and the set Pyin
as an optimistic one. Then, for every objective function f;, i € [1,p], we define upper and lower

bounding values

i,max — PimaX7
{ Ji max A, (3.43)

fi,min = min Pi,min,
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where P; jax and P i, denote the vectors made of the ith components of Pyax and Py, respec-

tively. The upper and lower bounds y'*" and y'°¥ i € [1,p] can then be set as

0,2,n)

{ ?/ES,I;L = fi,max + UPP (fi,max - fi,min) ) (3 44)

yg??fn = fi,min - '710W (fi,max - fi,min) s

where 7"PP and 4'°" are scaling parameters. In our experiments, we often set y'PP = 41o% = (),

which corresponds to choosing y,"", = fi max and yg);"n = fi.min-

Remark 31 As regards the choice of B¢, there is no indication in our experiments that the

adaptive procedure proposed in Section 2.7.2 is not suitable.

3.6.3 Variance of the EI estimator

Here, we derive formulas that can be used to estimate the covariance between the estimators of
the EI obtained using the proposed sequential Monte Carlo approach. To simplify the analysis,

we consider the following form of the estimator (3.9):

Lo(2) ~ 0 f: 2l (i(”(”) = Yn.i) (3.45)

E =1 n yn,i)

where 2 € X is a candidate point and the (y ;) € G are particles approximately dis-

1<i<m
tributed from a density m,, « 7, on G,, where GG,, denotes the non-dominated set. With these

notations,

r, = / () dy, (3.46)

is the normalizing constant for the unnormalized probability density function ~,. In this work, ,
can be, for example, equal to 1, when the uniform density is used or to (3.13) when the Lgpt
density is used but the results of this section extend to other densities as well.

In the setting that we consider, the (yn, ;) are obtained using SMC by considering a

1<i<m
sequence of densities (m,, ¢)o<t<7 With 7, o uniform and Tn, T = . The sequence (my, ¢)o<t<T
comprises both initialization steps and intermediate transitions (see, e.g., Remark 21 in Sec-
tion 3.3). In this setting, it is convenient to introduce the notations (v, +)o<t<7 and (I'y, ¢)o<i<T
to refer to the associated sequences of unnormalized probability density functions and normaliz-
ing constants. In this framework, I';, = 1", 7 and 7, = v, 1.

No closed form expressions of the normalizing constants (I'y, +)1<¢<7 are known in the general

case. In practice, they have to be approximated. Observe that, for ¢ € [1,7]]

Fn,t = / Vn,t(y)dy

_ /G %wn, o 1(y)dy (3.47)

Y, t(Y)

e F -1 . -1 d .
n,t G 'Yn,t—l(y) n,t (Z/) Yy
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For all t € [1,T7], an approximation of I'y, ¢, ¢ > 0, can thus be produced using the following

~ ~ 1 & L
Fn,t = Fn,tfl —_ 'Yn,t(yn,t 1’2) s (348)
m i—1 'Yn,tfl(yn,tfl,i)

recursion formula:

where the (yn ¢+—1,i)1<i<m are particles distributed from m, ;1 (see, e.g., Bect et al. (2016a)).
The estimator that we actually consider in the approximate computation of the integral in the

EI expression is then

7 _ In P (€(2) < yn,i)
N (1)

1 Ui IPn Xz n,i T 1 - n,t\Yn,t—1,1
_ (Ez (&( ){y >H<mz In, y ))>F07

i—1 'Vn(yn,z) iz Tn,t—1 ynt 1,4

(3.49)

where I'g = |B,| or |B. \ B_ | since m, ¢ is uniform in the settings that we consider.

To the best of our knowledge, without further assumptions, there exists no closed form
expression for the variance of such an estimator (asymptotic results exist in some particular
cases). To go farther, a common practice in the literature on sequential Monte Carlo is to make

the following assumptions (see, e.g, Cérou et al. (2012)):
(i) The samples (Vp, +)o<t<T are independent.

(ii) For all ¢t € [0,T], the particles (yn, ¢ i)1<i<m are independently and identically distributed

from mp, ;.

To simplify the analysis, we introduce the following notations:

n 1 = n n,t—1,4
Gy = L5 Imtlnic1d) oy gy, (3.50)

m i=1 Tn,t—1 (yn, t—1, ’L)

and

1 - TL TLZ
(2)==%" ) X Yni) (3.51)
m = Yn(Yn,i)

Observe that, under (ii), é\mt is an unbiased estimator of 6, ; = FF”ttl, 1<t <T (see
Equation (3.47)), and that &n( ) is an unbiased estimator of ay,(z) = IF(JC) (see Equation (3.45)).

Moreover, under (i), the (Hn t)1<t<r and @, (x) are all independent. Then denote, for all ¢t €
[1,717,

t
+=To H é\n,u, (352)
u=1

and observe that, under both (i) and (ii), (:)n,ta t € [1,T], is the product of unbiased and

independent estimators. As such, @n,t is an unbiased estimator of ©,, ; = I'g H’;Zl On,u =Tt
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Moreover, §n7t+1 and (:)n,t are independent and, for all ¢ € [1,7T7],

Var (8,,0) = Var (B0 6p,01)
= B(82,82,,) B0, 8,)
()26 B0 (6 )
(Var (Bn.0) +62.) - (Var (8n11) +02,01) — 6200214
= Var (O,0) - Var (8p,01) + 02, - Var (8,01 ) + 02,y - Var (G0 -

For all t € [1,T], the variance of @n,t can thus be expressed in an elegant form using the

coefficients of variation of ©,, 4, ©, ;—1 and 0, ;:
AL =00+ (L4600 0) A% 1, (3.53)

Var(@n t)
@2

Var( )

where A2 and 52 7

Applying the same treatment to I,,(z) = an () - (:)an, we obtain

Var (fn(aﬂ)>

L@? Ap(2)® + (14 Ap(2)?) - A2 7, (3.54)

where A, (x) denotes the coefficient of variation of &, (x).

Estimators for the terms &3 ;, and A2 , in Equation (3.53) and for the term A, (z)? in Equa-

tion (3.54) can be derived when (ii) is assumed. Observe that, in this case,

) Var <§nt)
e = g
1 Va; (’Yﬁyntt(lzz;nttllll > (3-55)

m E< Yt (Yn, ¢ 11)))2 ’

Yn, t—l(yn, t—1,1

and an estimator of 02 ,, ¢t € [1,T], is

)2
Z,:il 'Yn,t(yn,tfl,z)' . 1
S?L’t _ ( 'Yn,tfl(yn,t—l,z) > = (356)

m 'Yn,t(yn,t—l,i) 2 m
(Zi:l 'Yn,t—l(yn,tfl,i))
This estimator can then be plugged in Equation (3.53) to obtain an estimator of A?N
ﬁgm - %z,t + (1 + gr%t) An t—1- (3-57)
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Using a similar reasoning, under (ii), an estimator of A, (z)? is

2
R sm Pn(f(xHynéi) 1
An(@)? = (o ™50 >2 . (3.58)
<Zm Pn(f(w)‘ﬂ/n,i)) m

=1 Tn (yn, z)

To summarize, the variance of the estimator (3.49) can be estimated using

Var (fn(m)) ~ <f;T i P (§(z) < y’“‘)>2 : (Kn(m)Q + <1 + Kn(m)Q) : Agj) . (3.59)

i1 'Yn(yn,i)

where fmT and ﬁiT are obtained recursively using (3.48) and (3.57), and A, ()% is computed
using (3.58).

Let us now consider a pair (z1,22) € X2. The covariance between I, (z1) and I,,(z2) is given

which, again, can be formulated in a more elegant form as

Cov <Tn(£1)’ f"(m2)> 1,2 1,2 2
T, To(a) = Ay (1, ) + (A (w1, 22) + 1) - A 7, (3.60)
where Cov (& R
Ay (w1, a2) = o (@n(z1), Bn(2)) (3.61)
an(z1) - ap(x2)
As previously, observe that under the assumption (ii),
Cov (IPn(g(mHyn,l) Pn(ﬁ(x2)<yn,1)>
A1’2(x1 29) = 1 Yo @n, 1) 0 An(¥Un, 1) . (3.62)
" 7 m E(Pn (é(xl) '<yn,1)) 'E(Pn (f($2) = yn,l))
An estimator of Ay?(z1,22) can thus be written as
~ S Pr (£(21)=Yn, ) -Pf§5(12)<yn,¢)) .
A1’2 _ < - 'Yn(yn,z) = -
w1, x2) <Zm IPn(f(J:1)-<yn,i)> (Zm Pn(g(m)@n,j)) - (3.63)
=1 yn(yn,s) J=L n(yn, ;)
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Therefore, the covariance between fn(wl) and fn(xg) can be approached using

~ ~ fZ m x ; " T n, i
Cov <In($1)a In($2)> ~ 7;:2T (Z Pnllr) = ?/n,l)> (Z Pl )> (3.64)

i1 Wn(yn,i) i—1 'Yn(yn,i)
<K}L’2(x1,x2) + (1 + 1A\111’2($1,$2)) : ziT) )

where fn,T and ﬁiT are obtained recursively using respectively (3.48) and (3.57) as before, and
K}L’Q(.%'l,.%'g) is computed using (3.63).

Notice that we plug the estimates I,, of I,, in the expressions (3.59) of the variance and (3.64)
of the covariance. When the estimates are of poor quality, this can lead to very unreliable results.

The results of this section should thus be used with caution.

3.6.4 Experimental results for p =6 and p =8

This section contains additional results that go along with Section 3.4. Results obtained when
sequentially maximizing the hypervolume indicator on the FICUS problem with » = 0.5 and
¢ € {0.6,1,2} are shown in Figures 3.27, 3.28 and 3.29 for p = 6 and in Figures 3.30, 3.31
and 3.32 for p = 8. Results obtained with BMOO on the FICUS problem with r = 0.5, p = 8
and ¢ € {0.6,1,2} are shown in Figures 3.33 and 3.34.
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Figure 3.27: Results obtained on the FICUS (6,0.5,0.6) problem (convex front) by the optimization
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strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.28: Results obtained on the FICUS (6,0.5,1) problem (linear front) by the optimization

strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.29: Results obtained on the FICUS (6, 0.5,2) problem (concave front) by the optimization
strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.30: Results obtained on the FICUS (8,0.5,0.6) problem (convex front) by the optimization

strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.31: Results obtained on the FICUS (8,0.5,1) problem (linear front) by the optimization

strategy where the hypervolume indicator is maximized sequentially using a large number of samples
uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.

139




—M
-~ My
4 L
30
27
0 ‘ ‘
0 50 100
Number of iterations

(a) R = (0.5,0.5,0.5)

5 -
— M,
-~ My
4 L
3F
2
i'g
0 : ; !
0 50 100
Number of iterations
(¢c) R=(1,1,1)
5 -
M 1.5
-~ My
4 L
3H 1
2
| 0.5
i'g
0 : ! 0
0 50 0
Number of iterations

(e) R = (50,50,50)

Figure 3.32: Results obtained on the FICUS (8,0.5,2) problem (concave front) by the optimization
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uniformly distributed on the Pareto front. The reference for the M3 metric is shown as a dashed line.
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Figure 3.33: Results obtained by the BMOO algorithm on the FICUS (8,0.5,0.6) problem (convex
front, left column) and on the FICUS (6,0.5,1) problem (linear front, right column). The reference for
the M3 metric is shown as a dashed line and the shaded region corresponds to a 95% confidence interval
empirically computed from 30 runs of BMOO.
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Figure 3.34: Results obtained by the BMOO algorithm on the FICUS (8,0.5,2) problem (concave
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a 95% confidence interval empirically computed from 30 runs of BMOO.
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Applications
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4.1 Introduction

In this chapter, we present four real-life design optimization studies led using the BMOO algo-

rithm and its extensions presented in Section 3.5.

The first study is on the design optimization of a commercial aircraft environment control
system and is presented in Section 4.2. It is a reproduction of Feliot et al. (2016) with little
modifications. This study was led within the framework of the Technological Research Institute
SystemX (IRT SystemX), in collaboration with Airbus Group Innovation. The considered op-
timization problem has d = 18 design variables, p = 2 objectives and ¢ = 15 constraints. It
features a non-hypercubic design space defined by cheap-to-evaluate constraints and has hidden

constraints.

The second study presented in this chapter is on the design of an electric vehicle powertrain
and is presented in Section 4.3. It was also led within the framework of the IRT SystemX and
is the fruit of a collaboration with Renault. The considered optimization problem has d = 33
design variables, p = 2 objectives and it features a non-hypercubic design space. For this
study, the simulator implements numerical solving of Maxwell’s equations using a finite elements
method, which makes the functions of the problem expensive to evaluate. Moreover, it involves
equality constraints. To handle these, a relaxation method is used to transform them into pairs
of inequality constraints. As a consequence, the simultaneous satisfaction of all constraints is

difficult for this problem because the feasible region is small.

The third study is on the tuning of a line of sight controller. It can be found in Section 4.4.
This study was led at CentraleSupélec in collaboration with Sophie Frasnedo (CentraleSupélec,
Safran Electronics & Denfense) and is based on her thesis work (Frasnedo et al., 2015a,b;
Frasnedo, 2016). The optimization problem has d = 7 design variables, ¢ = 15 constraints,
and it features a non-hypercubic design space and hidden constraints. For this study, we con-
sider two optimization problems: one with three objective functions and one with five objective
functions. Also, we compare results obtained when the points are chosen one at a time and

results obtained using batches of 50 experiments on a seven-objective formulation.

Finally, the fourth application is on the design of a turbomachine fan blade and is presented
in Section 4.5. This study was led in collaboration with Cénaéro, and Safran Aircraft Engines.
The problem is multi-physic. It involves mechanical, acoustic and aerodynamic computations.
The underlying simulation chain relies on several softwares and takes approximately four hours
to return a result. In this setting, it is highly desirable to propose design solutions using few
functions evaluations. The formulation of the optimization that is considered in this study has

d = 26 design variables, p = 3 objectives, ¢ = 9 constraints and it features hidden constraints.

For all applications presented in this chapter except that of Section 4.2, the PICPI density
is used for optimizing the expected improvement, as recommended in Section 3.2. For the
computation of the criterion, as recommended in Section 3.3, we use the sequential Monte-Carlo
approximation procedure with the Lgpt density prior to finding feasible solutions and exact
computation afterwards when the problem has less than five objectives. To compute the EI for

the seven-objective formulation, the SMC procedure using the Lgpt density is used during the
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whole optimization process. When the problem has cheap-to-evaluate constraints, they are seen
as restrictions of the design space, as discussed in Section 3.5.2. To handle hidden constraints,
the procedure of Section 3.5.3 is used. Otherwise, the settings of the algorithm are as described
in Section 2.5.1.

4.2 Design of a commercial aircraft environment control system

4.2.1 Introduction

The purpose of the environment control system (ECS) of a commercial aircraft is to provide
a certain level of comfort to the passengers by regulating the temperature and pressure of the
air injected into the cabin. The system is based on an inverse Brayton thermodynamic cycle.
Hot and pressurized air is taken from the engines at the compressor stage through the bleed
and ram air from the outside of the aircraft is used as coolant. For safety reasons, the hot air
from the engines passes through a first heat exchanger where it is cooled down below the critical
fuel ignition temperature. Then it is pressurized through a compressor and cooled again using
a second heat exchanger. It then passes through a turbine where work is extracted to propel
the compressor. The cooled and expanded air exiting the turbine is eventually mixed with hot
air from the first heat exchanger outflow to reach the desired temperature and pressure before
injection into the cabin.

The design of an optimal ECS is a complex problem in practice. It has been addressed
in previous studies under different optimality conditions and modelling assumptions (see, e.g.,
Vargas and Bejan (2001); Bejan and Siems (2001); Pérez-Grande and Leo (2002)). In their article,
Pérez-Grande and Leo (2002) study an aircraft-on-cruse scenario and propose a one dimensional
model of the two heat exchangers. The system is designed in order to achieve minimal mass and
entropy generation, two objectives that are shown to be antagonistic and which both affect the
overall performance of the aircraft.

In this section, we extend their work by considering also the sizing of the rotating machines
and by considering an aircraft-on-ground scenario, which corresponds to the most critical sit-
uation for the ECS in terms of cold production, and is therefore dimensioning. The design
optimization of the system is performed using the BMOO algorithm (Feliot et al., 2017), which
implements a Bayesian approach to the multi-objective optimization problem in the presence of

non-linear constraints. The problem consists in finding an approximation of the set
I'={zeX:c(z) <0and #z’ € X such that c¢(2') <0 and f(2') < f(x)}

where X € R%is the search domain, ¢ = (€¢i)1<i<q is a vector of constraint functions (¢; : X — R),
c(x) < 0 means that ¢;(x) <0 forall 1 <i<gq, f=(fj)i<j<p is a vector of objective functions
to be minimized (f; : X — R), and < denotes the Pareto domination rule (see, e.g., Fonseca and
Fleming (1998)).

The section is organized as follows. First we detail in Section 4.2.2 the model that is used to

estimate the performances and main characteristics of the system. A one-dimensional analysis is
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Figure 4.1: Architecture of the environment control system of a commercial aircraft

performed to establish the state equations of the system and link the physical values of interest
to the geometrical parameters of the system components. Then we introduce in Section 4.2.3
the optimization algorithm that is used to conduct the system optimization. The results of
the optimization are analyzed and possible directions for future work are discussed. Finally,

conclusions are drawn in Section 4.2.4.

4.2.2 Thermodynamic analysis of the ECS
Sizing scenario

The architecture of the ECS is represented on Figure 4.1. Bleed air from the engines arrives into
the system at location 1. Ram air from the outside of the aircraft is levied at location Or and is
used as coolant. The hot air enters a first heat exchanger where it is cooled down below the fuel
ignition temperature. A by-pass at location 2 then permits to regulate the system by controlling
the air flowrate entering the air cycle machine (ACM). Cooled and expanded air exits the ACM
at location 5 and is mixed with warm air from the by-pass to reach the desired pressure and
temperature before injection into the cabin at location 6.

In practice, the system must be able to satisfy strict specifications under different environ-
mental conditions and operating situations. In this work, we consider a scenario where the
aircraft is on ground, full of passengers, equipments running, and with an outside temperature of
50°C. In that situation, the ECS must be able to maintain the cabin temperature at T, = 24°C.
This scenario corresponds to the most demanding specification in terms of cold production, and
is therefore dimensioning for the system. Formally, this means that the ECS must be able to
dissipate enough heat to compensate for the thermal power Py produced by the passengers,

the crew, the equipments and the environment:

’PHT = Pout + Peq + Npazppaz + Ncrewpcrew’
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where P, is the outside flow dissipation, Pe, is the thermal power produced by the equipments,
Ppaz and Perey, are the thermal powers produced by a passenger and by a crewmember and Ny,
and N,y are the number of passengers and the number of crewmembers in the aircraft.

In this scenario, the by-pass is wide open so that all the air from location 2 goes to the ACM.
Also, there is no relative velocity between the aircraft and the ambient air when it is grounded
and therefore there is no natural coolant flowrate. In this work, we consider a system where the
ram flowrate is created by an auxiliary fan placed at the ram air entrance and powered by the
turbine of the ACM. The sizing of this auxiliary fan is not taken into account in this study but

we will assume that the ram flowrate can be controlled.

Heat exchangers

We now detail the model that is used to emulate the system. For the heat exchangers HX1 and
HX2, we use a model from Pérez-Grande and Leo (2002). The two heat exchangers are compact
cross-flow heat exchangers with unmixed fluids. For this kind of heat exchangers, the energy

exchanged per unit time between the ram and bleed air can be formulated as:

mcp(Tﬂ - Tt?) = mrcp(TtST - Tt2r)a (4.1)
mcp(Tt3 - Tt4) = mrcp(TtQT - Ttlr)a (4.2)

where i and 7, denote respectively the bleed and ram air flowrates, ¢, is the thermal capacity
of the air and is assumed constant, and T}; represents the stagnation temperature at location
i € {1,2,3,4,5,1r,2r,3r}. Besides, we can define the efficiencies €; and ey of the two heat
exchangers HX1 and HX2 as the ratio between the energy effectively exchanged and the total

energy exchangeable:

(T —Tp) = ecy(Tn — Tior), (4.3)
Cp(Ttg — Tt4) = GQCp(Tt?, — Ttlr)- (44:)

Note that Eq.(3-4) only hold when m < rh,.. Otherwise, T3; — T2, should be replace by
Tisr — Tior in Eq.(3) and T3 — Ty, should be replaced by Tio, — T11, in Eq.(4). The efficiencies
€1 and € of the two heat exchangers depend on their geometry and we use the e-Ntu model
detailed in Pérez-Grande and Leo (2002) to estimate them.

In this study, the pressure drops as the air passes through the heat exchangers are considered

constant:

Py — P4 = APpyyx, (4.5)
Py —Ps = APpx, (4.6)

where P,; represents the stagnation pressure at location ¢ and APpx is a constant pressure
loss. While this permits to simplify the model, it is inaccurate because the pressure losses do

also depend on the geometries of the heat exchangers and are responsible for a non-negligible
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Figure 4.2: Compressor (left) and turbine (right) velocity triangles.

proportion of the entropy generated by the system. In particular, the frictions are expected to
rise as the volume of the heat exchangers decreases, which further increases the necessary balance
between entropy generation and mass. Again, the reader is referred to Pérez-Grande and Leo

(2002) for a discussion on a possible model of the pressure drops.

Compressor and turbine

We consider a centrifugal compressor and an axial flow turbine. It is assumed that the air enters
the compressor axially and exits parallel to the blades (the slip factor is neglected), with an angle
(B3 as illustrated on Figure 4.2. Similarly, it is assumed that the air enters the turbine with an
angle a4 corresponding to the stator blades angle and goes out axially. The rotational speed
of the shaft linking the compressor with the turbine is denoted w. The letters C', U and W on
Figure 4.2 denote respectively the air absolute velocity vector, the blade tip speed vector and the
relative velocity vector, such that C'=U + W. In the following, the subscripts u, m, and x will
stand respectively for the tangential, meridional and axial components of the velocity vectors.
The power exchanged per unit time between the machines and the fluid and the change of

momentum of the fluid are related by Euler’s theorem as:

We = m(UsCsy — UaCay),
Wr = 1(UsCsy — UsCly),

where We and Wy denote respectively the power received by the fluid from the compressor and
from the turbine. Note that with this convention Wr < 0 and W¢ > 0. The turbine is converting
part of the fluid energy into rotation speed, and the compressor is augmenting the energy of the
fluid through its mechanical work, which increases the temperature of the fluid.

Under the assumption that the flow enters the compressor and exits the turbine axially, the
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tangential components of the air velocity vectors are neglected and Cy, = C5, = 0. The Euler

theorem simplifies to:

We = mUsCs,,
Wr = —1UsCyy,

The conservation of the mass at locations 3 and 4 gives the following additional equations,

relating the air flowrate to its velocity and a control surface.

m = 27Tp7’3b3W3m,

m = 2mprabsCum,

where p is the air density (which is assumed constant), r3 and r4 are respectively the compressor
outlet blade radius and turbine inlet blade radius, and b3 and b4 are respectively the compressor
and turbine tip blade heights (see Figure 4.3). Using the velocity triangles of Figure 4.2, the Euler

theorem can then be rewritten using the rotating machines geometries and rotational speed:

. . ] tan(ﬂg)
— 2 2 mtan{pz) 4.7
We m (rgw 27 pbs w> ) (4.7)
. m? tan(ay)
W = 4.
r 2mpby (48)

Besides, the work extracted from the turbine is used to propel the compressor and the aux-

iliary fan. Writing down the conservation of energy per unit time we get:

: : 1o}
Wo+Wr+ 5 5 =0 (4.9)

where A, is a control surface at the ram air entrance and ng is the ratio between the kinetic
energy per unit time produced by the auxiliary fan and the power furnished by the turbine to
the fan.

The powers W and Wy can also be expressed as functions of the stagnation temperatures
by considering the change in total enthalpy of the fluid passing through the rotating machines

(the other contributions are neglected):

We = normey(Tiz — Tia), (4.10)
. 1
WT = —me(TtE) — Tt4), (4]_].)
nr

where n¢ and nr are respectively the compressor and turbine isentropic efficiencies. Finally, the
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Figure 4.3: Geometrical parametrization of the compressor (left) and of the turbine (right).

stagnation pressure ratios are given by the isentropic relations:

5
Pi3 ( Tts—Tt2>“

R a2 412
Pio g To (4.12)
5

P, 1 T — T, y—1
b5 _ <1+—7t5 t4>” : (4.13)
Py nr Ty

where ~y is the air isentropic coefficient.

Mass and entropy generation rate of the system

The mass of the system can be approximated by considering estimates of the volumes of its
components and representative densities. For the two heat exchangers, we consider rectangular

volumes and a representative density pgx (see Table 4.3).

Mux1 = pux - LaLyL:,
Mpuxs = pux - LyLyL,s,

where Lyi, Ly, L.1, La2, Ly2, L.o are the heat exchangers dimensions (see Table 4.1), and
Mpx1 and Mpxo are the mass of the heat exchangers. For the compressor and turbine of the
ACM, we consider separately the volumes of the blades and the volume of the machine body

(see Figure 4.3):

v hers(rs —rap) (13 — 72¢) (hersz — b3)
C\blade €c 2 - 2 )
7T7’§hc(7”3 + 7“21,) thrgp
VC,body 3 - 3 ;
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for the compressor, and

v B hera(ry —rsp) (14 — 7r5¢)(hers — by)
Tblade — €t B - 9 >

wriht(m + 75p) B Whtrg?,’p
3 3 7’

VT ,body

for the turbine, where e, and e; are the compressor and turbine blades thickness, and A, and h;

are aspect ratios. The mass of the system is then given by the following.
M= MHXl + MHXZ + psteel(ZC’VC,blade + VC,body)
+ psteet(ZT VT blade + VT pody), (4.14)
where Z¢ and Zp are respectively the number of blades of the compressor and of the turbine.

The entropy generation rate of the ECS is the sum of the contributions along the bleed stream

and along the ram stream, from entrance to exit:

S = m <cp log% — Rlog %) + <cp log 1;?: — Rlog %:) ) (4.15)
where R is the perfect gas constant, T, and P, are the ambient temperature and pressure, and
T; and P; are respectively the static temperature and the static pressure at location i € {5, 3r}.
The equations giving the static properties for the bleed stream are gathered in Table 4.3 in
the additional material. For the ram stream, it is assumed that the Mach number remains low
through the heat exchangers. Thus, T35, = Tisy, Tor = Tior, 11 = Tt1,. For the static pressures
P, and Py, the law of perfect gas is used.

4.2.3 Optimization of the system
Formulation of the optimization problem

We consider an optimization problem using the 18 design variables given in Table 4.1. All other
design parameters and physical properties are fixed (see Tables 4.4, 4.5 and 4.6 in Section 4.2.5).
Under the model developed in Section 4.2.2, the ECS is thus ruled by a system of 13 equations
(Eq. (4.1)-(4.13)) with 13 unknowns, which are the stagnation temperatures and pressures,
the powers exchanged between the fluid and the compressor and turbine, and the rotational
speed of the rotating ensemble: Tio, T3, Tia, Tts, Tior, Tisr, Pia, Pi3, Pu, Pis, WC, WT and
w. Eq.(4.14) and Eq.(4.15) give respectively the mass and the entropy generation rate, which

are the objectives of the optimization. Additionally, we formulate the following 15 inequality
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constraints (see Table 4.3):

ci—2 : Thpin < Ts < Thazs
34 : Ppin < Py < Pz,
cs_g : 05 < €1 < 0.9,
cr_g : 05 < €9 < 0.9,
co : ||Cof] < 0.95V/yRTy,

cio ¢ Gl < 0.95V4RT,

e ¢ |G < 0.95VRTy,

caz IG5 < 0.95V/yRT5,

ci3 1 raw < VRT3,

c14 2 mw < VYRTy,

cis5 Pur < nep (Te —1T5) .

The constraints ¢; to ¢4 are standard specifications. The air injected into the cabin must lie
between T,,;, = 15° C and T4, = 25° C and at a pressure close to the atmospheric pressure.
Thus we take P,,;, = 101.3 kPa and P,,,; = 1.05FP,,;,. The constraints cs to cg are on the
heat exchangers efficiencies. The design should be efficient enough but not too expensive to
manufacture. The constraints cg to c¢j5 are on the air velocity. In the model, we have assumed
that the air density remains constant throughout the bleed stream, which is inaccurate if the flow
becomes supersonic. We take a 5% margin to account for the possible variations of uncertain
parameters and avoid numerical instabilities. Similarly, it is required via constraints ci3 and c14
that the compressor and turbine blade tip speeds be subsonic. Constraint c¢;5 stems from the
sizing scenario considered in this study: The dissipated power must be greater than the power
produced by the passengers, the crew, the equipments and the environment (see Section 4.2.2).
Note that an equality constraint is not necessary because the constraint is expected to be active

at the optima.

To ensure the feasibility of the system and avoid numerical issues, we enforce the following

restrictions on the design variables (see Figure 4.3):

dy : m < my,

dy b3 < hers,

ds by < gy,

dy—s : 12p+0.02 < Top < rs,
de—7 : 15 +0.02 < T5¢ <y,
dg : A > 0,

do : % > —%.

where A in dg is the discriminant of Eq (4.7)—(4.9), seen as a second order polynomial equation
in w. The conditions dg and dg are necessary to ensure that there exists a real solution w > 0
to Eq (4.9). When two such solutions are possible, we take the largest one. Note that this

parametrization implies that the optimization needs to be performed on a non-hypercubic design
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Description Not. Domain

Bleed flowrate (kg.s™) m 2, §]
Ram flowrate (kg.s') 1y 2, §]
Compressor outlet radius (m) T3 [0.1, 0.3]
Turbine inlet radius (m) T4 [0.1, 0.3]
Compressor inlet foot radius (m) Top [0.03, 0.1]
Turbine outlet foot radius (m) T5p [0.03, 0.1]
Compressor inlet tip radius (m) Toy [0.04, 0.2]
Turbine outlet tip radius (m) 5t [0.04, 0.2]
Compressor outlet blade height (m) b3 [0.01, 0.1]
Turbine inlet blade height (m) by [0.01, 0.1]
Compressor outlet angle (rad) B3 -3, 5l
Turbine inlet angle (rad) ay [0, §
Heat exchanger 1: x length (m) Ly [0.025, 0.7]
Heat exchanger 2: x length (m) Lo [0.025, 0.7]
Heat exchanger 1: y length (m) Ly [0.025, 0.7]
Heat exchanger 2: y length (m) Ly [0.025, 0.7]
Heat exchanger 1: z length (m) L, [0.025, 0.7]
Heat exchanger 2: z length (m) Lo [0.025, 0.7]

Table 4.1: Design variables description

domain.

Optimization algorithm

The optimization is performed using the BMOO algorithm (Feliot et al., 2017). This algorithm
implements a Bayesian approach to the multi-objective optimization problem in the presence of
non-linear constraints. The objectives and constraints of the problem are modeled using Gaus-
sian process emulators (see, e.g., Williams and Rasmussen (2006)) and the algorithm performs
a sequential optimization procedure where the next sample is chosen as the maximizer of an ex-
tended version of the expected improvement sampling criterion (see, e.g., Jones et al. (1998)). In
practice, this requires to solve an auxiliary optimization problem at each iteration. The BMOO
algorithm uses sequential Monte Carlo techniques to conduct this auxiliary optimization (see,
e.g., Del Moral et al. (2006)). A population of candidate designs distributed according to a
density of interest in the design space is sampled at each iteration and the maximizer of the
extended expected improvement is chosen out of this population.

We take advantage of this to handle non-hypercubic design domains by truncating the density
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of interest so as to propose only candidates that lie in the desired region. This is straightforward
because sequential Monte Carlo methods do not require that the normalizing constant of the
target density be known. For initialization, a pseudo maximin design of experiments on the
non-hypercubic design domain (see e.g. Auffray et al. (2012)) can be achieved using rejection
sampling. A large population of particles is sampled uniformly on the containing hypercube
defined using the values of Table 4.1. The particles which do not respect the constraints d;
to dg are then discarded and the population of surviving particles is pruned until the desired
population size is reached. During the pruning step, particles that are too close to other particles
are discarded, thus raising the maximin distance. Note that in practice, this requires that the
volume of the design domain be not too small compared with the volume of the containing
hypercube (the ratio of volumes was estimated close to 6% for this particular application).
Because the computation of the objectives and constraints values for a given design requires
to solve the non-linear system formed by Eq.(4.1) to Eq.(4.13), it may happen that no solution
can be found, in which case it is not possible to provide values of the constraints and objectives for
the design under study. Also, some designs can lead to supersonic solutions for which the values
of temperatures and pressures predicted by the model can be inaccurate. When this happens, we
prefer to consider such designs as simulation failures and not use the values returned by the model.
In the optimization procedure, this is taken into account in order to prevent the optimizer to
explore regions where simulation failures are likely, by multiplying both the sampling criterion of
BMOO and the density in the sequential Monte Carlo procedure by a probability of observability.
This technique has been proposed by Lee and co-authors Lee et al. (2011). A statistical model
is learned on the observed /non-observed data and provides a probability of satisfying the hidden
constraints leading to simulation failures. In this work, a nearest-neighbours classifier using 5

neighbours and the Lo distance is used to that purpose.

Optimization results

The algorithm is run with a limiting budget of Ny, = 500 calls to the simulation model, and
an initial design of N;,;; = 90 samples. The set of optimal trade-off solutions found by the
algorithm is shown on Figure 4.4.

Among the initial design of experiments, 44 experiments led to simulation failures and 92
additional failures occurred during the optimization process. Further investigation revealed that
most of the simulation failures occurred because the flow was supersonic in the compressor, which
happens with high probability when the bleed flowrate is high and the compressor radii are low.
Regarding the constraints satisfaction, no feasible observations were made in the initial sample
and the algorithm found one after 25 iterations.

The design parameters associated to 7 trade-off solutions chosen along the Pareto front are
given in Table 4.2. Several observations can be made on these results. First we note that the bleed
flowrate remains constant along the front. This is because ¢;5 is active (see Section 4.2.3) and
Ts = Tyin for optimal designs, which forces the value of the bleed flowrate. The ram flowrate is
less constrained and varies along the front. We note its strong influence on the entropy generation

rate (see Eq.(15)). The variation of the mass on the other hand mostly comes from the variations
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Figure 4.4: Pareto front obtained with the BMOO optimizer using 500 samples. Empty circles are
non-feasible solutions. Grey disks are feasible but dominated solutions. Black and red disks are feasible
and non-dominated solutions.

of L, and L,s. As the heat exchangers height is raised, the entropy generation rate is lowered
but the mass augments. The values of Lz, Lyi, Lg2, and Lyo are set close to their maximal
values, which permits to achieve efficiencies between 0.7 and 0.8. Note that the pressure losses
are assumed constant in this study. Further work is required to better understand their impact
on the entropy generation rate when the heat exchangers dimensions become small. Regarding
the turbine and compressor dimensions, they are set as small as possible, which keeps the mass

low and augments the fluid velocity, thus achieving good performances.

4.2.4 Conclusions

In this section, a one dimensional model of the environment control system of a commercial
aircraft is proposed. The model permits to emulate the behaviour of the system when the ge-
ometries of its components vary, for a scenario where the aircraft is on ground, full of passengers,
equipments running, and with an outside temperature of 50°C. The system is optimized using
the BMOO algorithm, which implements a Bayesian approach to the multi-objective optimiza-
tion problem in the presence of non-linear constraints, and trade-off design solutions in terms of
mass and entropy generation rate of the system are identified.

As a particularity, the optimization is performed on a non-hypercubic design domain and
involves hidden constraints. This is a situation that is often encountered in engineering design
optimization. The BMOO algorithm is successfully adapted to this new setup, which makes
it possible to conduct a multi-objective optimization using a reasonable number of calls to the

numerical simulation model.
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1 2 3 4 5 6 7

m 2.95 2.92 2.94 2.94 2.94 2.95 2.94
My 7.74 6.86 5.63 5.06 4.64 4.40 4.27
T2p 0.07 0.05 0.05 0.03 0.03 0.07 0.04
Toy 0.10 0.08 0.08 0.08 0.06 0.09 0.10
r3 0.10 0.11 0.10 0.10 0.12 0.12 0.13
bs 0.01 0.01 0.05 0.05 0.04 0.02 0.03
B3 0.36 0.74 0.97 -0.16 0.61 0.94 0.48
T5p 0.03 0.03 0.03 0.03 0.03 0.03 0.03
T5¢ 0.05 0.05 0.05 0.05 0.05 0.05 0.05
T4 0.10 0.10 0.11 0.12 0.11 0.10 0.11
by 0.02 0.02 0.04 0.02 0.04 0.03 0.03
oy 1.04 0.50 0.89 1.01 0.44 0.79 0.30
Ly 0.67 0.65 0.68 0.68 0.63 0.69 0.70
Ly 0.65 0.68 0.61 0.67 0.67 0.66 0.65
L, 0.03 0.04 0.07 0.12 0.17 0.20 0.32
Lo 0.66 0.69 0.66 0.66 0.70 0.68 0.69
Ly 0.69 0.53 0.68 0.65 0.65 0.68 0.65
Lo 0.03 0.06 0.09 0.10 0.17 0.25 0.36
M 49.78 7713 117.00 156.57 240.03 312.40 466.69
S 0.47 0.45 0.43 0.43 0.42 0.41 0.41

Table 4.2: Optimal design variables values found by the optimization algorithm for the points 1 to 7
(in red) of Figure 4.4. The values of the most influential variables are in bold.

The BMOO algorithm is primarily designed to address problems where the computational
time associated to the model evaluation is high, which is not the case here. In this study, most
of the computational time required to conduct the optimization was taken by the optimizer and
more work is needed to make the implementation of the algorithm more efficient. Nevertheless,
the algorithm achieves very satisfactory results and is a competitive algorithm to address multi-

objective optimization problems with several constraints.
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4.2.5 Additional material

Static temperatures

Static pressures

Fluid velocities

2\ 71
— 05290 Pt5 — 0 C5x E — #
T5 =Tis 2 Ps 1+ 2 YRTs sz = W(Tgt*rgp)p
v
2\ v—1
— (O Py _ o Ca 7 _ m
Ty =Ty — 2m P 1+ 2 ’yR’jﬁ 047” T 2mrabapcos ag
ol
2 2\ v—1 . 2 . 2
= Tha — 23 Pz _ =1 (Cs — raw—rn tan f3 i
T3 = Tt3 = Py (1 + P} <q/R$3> > 037” - \/( 27rabsp + 2mr3bzp
C2 P, ol C 2\ 71 jar)
— _ 2x 4i2 S = 2z = ————
T2 T‘t2 P} P 1+ 2 <'yRT2 > 021' W(rgtfrgp)p

Table 4.3: Static properties equations

Description Not Value
Ambient temperature (K) T, 323
Ambient pressure (Pa) P, 101.3e3
Number of passengers Npaz 120
Number of crewmembers Nerew 5
Thermal power passengers (W) Ppaz 70
Thermal power crew (W) Perew 100
Thermal power equipments (W) Peg 4800
Outside flow dissipation (W) Pout 3000
Bleed temperature (K) Ty 473
Bleed pressure (Pa) P 260e3
Pressure losses (Pa) APyx 40e3
Valve opening 0 0
Ram stream cross surface (m?) A, 0.20
Fan efficiency nr 0.95
Air specific heat (J.kg'. K1) Cp 1004
Air isentropic coefficient y 1.4
Perfect gaz constant (J.kg'. K1) R 287

Table 4.4: Simulation parameters values used in the experiments of Section 4.2.3
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Description

Not. Value

Viscosity bleed (kg.m™.s)
Viscosity ram (kg.m™t.s1)

H.T. ratio bleed stream (m™')
H.T. ratio ram stream (m™)
Plate spacing bleed stream (m)
Plate spacing ram stream (m)
Prandtl number bleed stream
Prandt]l number ram stream
Hydraulic diameter bleed (m)
Hydraulic diameter ram (m)
Convection length bleed (m)
Convection length ram (m)
Representative density (kg.m™)
Fin thickness (m)

Wall thickness (m)

Thermal conductivity (W.m™1.K!)

7 2.28e-5
L 2.28e-5
I3 2231
By 1115
b 5.21e-3
by 12.3e-3
Pr 0.7
Pr, 0.7
Dh 1.54e-3
Dh,. 3.41e-3
A 0.035
Ar 0.035
PHX 1415
1) 0.102e-3
tw 6e-4
kyw 237

Table 4.5: Heat exchangers parameters values used in the experiments of Section 4.2.3

Description Not. Value
Compressor adiabatic efficiency Ne 0.8
Turbine adiabatic efficiency Nt 0.92
Compressor aspect ratio he 0.7
Turbine aspect ratio h 0.5
Compressor blades thickness (m) €c 0.01
Turbine blades thickness (m) et 0.01
Compressor number of blades Ze 21
Turbine number of blades Iy 21

Table 4.6: Compressor and turbine parameters values used in the experiments of Section 4.2.3
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4.3 Design of an electric vehicle powertrain
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Figure 4.5: Architecture of the Twizzy powertrain.

4.3.1 Introduction

This study deals with the design of the powertrain of an electric vehicle. It was led within the
framework of the Technological Research Institute SystemX in collaboration with Renault.

The vehicle that is considered is a Twizzy, and we place ourselves in the situation of Renault
in the early stages of the development of the Twizzy 2. The architecture and the technological
choices are imposed—they are the same as for the first version of the vehicle (see Figure 4.5)—
and the objective is to assess the possibility of improving certain characteristics of the original
vehicle, such as its autonomy for example, early in the design process, i.e. using simple numerical
models.

The structure of the section is as follows. First, we present the specifications of the study in
Section 4.3.2. Then, in Section 4.3.3, we detail the numerical model that was developed to meet
the requirements of the study. The formulation of an optimization problem and the optimization

results are presented in Section 4.3.4. Finally, conclusions are drawn in Section 4.3.5.

4.3.2 Specifications
Customer use cycles

In this study, we consider data that is representative of a customer’s typical use of the vehicle
in urban and in jammed traffic situations. The data takes the form of recorded speed over time
and is shown in Figure 4.6. For the comfort of the driver, it is required that the vehicle be able
to mimic these driving cycles.

Let t = (t1,...,t,) and v = (vy,...,v,) denote respectively the measurements times and
measured speeds for one of the two driving cycles (urban or traffic jam). The acceleration of the

vehicle over time can be computed using a first order finite differences approximation:

U Y e n—1]. (4.16)
tit1 — 1
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Figure 4.6: Customer use data in urban situation and in jammed traffic situation.
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Using Newton’s second law, the force F; that is necessary to produce the acceleration a;,
i €[1,n—1],is then

1
F; = Myen (K cos(asin(a)) + ga) + Myena; + ipC’xv?, (4.17)

where M}, is the mass of the vehicle, K is a coefficient of friction with the ground, « is the
slope of the road, g is the gravity acceleration, p is the air density and C,, is the drag coefficient
of the vehicle (see Table 4.11).

Denote I = {i € [1,n — 1]; a; > 0} the set of the indices that correspond to a positive
acceleration. For every ¢ € I, the force F; and the vehicle speed v; can be linked respectively to

the torque 7; produced by the electric machine and to its rotation speed wj:

Ry F;
T = )
TTred
4.18
30 rv; ( )
W, = =
i p Rwa

where R,, is the vehicle’s wheels radius, 7,eq is the efficiency of the reducer and r is its reduction
ratio. Using this transformation, the raw data (t,v) can be represented in a diagram (w,7), as

illustrated in Figure 4.6.

The specifications can thus be formulated as |I| equality constraints of the form
Nwi, &) =7, 1€, (4.19)

where &;, ¢ € I, denotes the set of parameters other than the rotation speed that influence the

torque I' produced by the electric machine. These will be detailed in Section 4.3.3.

For every ¢ € I, denote P; the power associated to the data point (w;, 7;):

2 .
P = %win, 1e1. (4.20)
Further denote
Wmax = MaXjej Wi,
Tmax — MaXier Ty, (421)
,Pmax = maX;erg ,Pz 3
and introduce 50
Whase = — ——% (4.22)
Tmax

To reduce the number of constraints (4.19), in this work, we consider, for each cycle, only the
four representative points defined in Table 4.7. The eight points thus defined are represented in
Figure 4.6. In the following, we shall denote respectively Ayban and Ajam the sets made of these

points for both driving cycles.
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w T
Whase Tmax
2
Whase TWmax 15Pmax
2 7"-(Wbase‘FU‘JmaX)
Whase 3Tmax
2 4
Whase TWmax 45Pmax
2 7"'(Wbase‘FU‘-’maX)

Table 4.7: Representative points in the diagram (w, 7).

Additional requirements

In addition to the driving cycles, the specifications impose the following requirements:
e The maximum speed on flat ground must be greater than 85 km /h.

e The maximum speed on a 5% slope must be greater than 65 km /h.

The hill start acceleration for a 20% slope must be greater than 1.5 m/s?.

The vehicle must be able to go from 0 to 45 km/h in less than 3 s.

The autonomy of the vehicle should be greater than 100 km.

The first four requirements can be formulated as inequality constraints on the torque of the
electric machine using (4.17) and (4.18). As regards the constraint on the autonomy, it can be

written as:
K

3.6
Fiax

> 100, (4.23)

where Fiax = max;er F; and k is the capacity of the battery (see Section 4.3.3).

To summarize, the specifications for this study take the form of eight equality constraints of
the form (4.19) with (w,7) € Ayban and (w,7) € Ajam plus four inequality constraints on the
torque of the electric machine and one inequality constraint on the autonomy of the vehicle given
by (4.23).

4.3.3 Numerical model

Battery

The battery is a lithium-ion battery. It is characterised by its number ng of cells in series and

its number n,, of cells in parallel. From these, we compute the following quantities:

Number of cells D Ne = NNy,
Vacuum voltage (V) : FE = Eynsg,

. . _ E,
Capacity (Wh) D k=5,
Resistance () : R= ROZ—;,
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where Ry is the internal resistance of a cell, Fy is the vacuum voltage of a cell and k¢ is the
capacity of a cell (see Table 4.9). For this study, we take ny = 22 and n, = 2. Note however

that these could be optimized as well.

Inverter and reducer

In our model, the inverter is characterised by its maximum effective current ¢

oaxs its voltage

factor per phase k and its efficiency 7i,,. The reducer is characterised by its reduction ratio r

and its efficiency 7eq. Both 7 and I¢f

oax are considered as design variables. The efficiencies

of the inverter and of the reducer; and the voltage factor per phase of the inverter, are fixed
parameters (see Tables 4.10 and 4.12).

Under this model, the maximum effective voltage U

that can be applied to the machine

and the maximum available power P are given by:

vt = kE,
eff _ 31[?’)%)([]1?1%)( (424)
7Dmax - 1000

Electric machine

The magnetic torque produced by the electric machine is a function of its geometry, its rotation
speed, and of the intensities of the current passing through the coils. To parametrize its geometry,

we use the following seven design variables:

L :  Length of the machine.

Trot . Rotor inner radius.

€rot :  Rotor thickness.

€gap : Air gap.

€mag . Magnet thickness.

Omag ©  Magnet angular spread.

Onoteh : Opening ratio between notch and dent gap.

The geometry of the machine thus parametrized is illustrated in Figure 4.7. To help the

understanding of the parametrization, the following radii are shown in the figure:

Ry = 1o,

Ry = Ri+ 6o,

R3 = Ra+ €mag,
Ry, = Rs3-+ €gap

4.2
Rs = R4+ €mouth > ( 5)

2 (B
Snotch +R5 sin ( %t':h

Ry = \/ <1+% sin(ﬁ“%“h >> sin( Bn%td‘ ) ’

R; = Rg (1 + sin (—Bn%td‘)) + €rot ,

where €pouth 18 the mouth depth and Bhoten and Spoten are respectively the angular spread and

the total section of a notch.
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Figure 4.7: Geometry of the electric machine.
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These are computed using

— 21
Buotch = Omnotch IN,N, °
(4.26)
notch — Teopper \ Jmax w s

where NN, is the number of pairs of poles, NN, is the number of notches per pole, Teopper is the
notch copper ratio, Jyax is the maximum current density and N,, is the number of electric wires
per notch (see Table 4.13).

To compute the magnetic torque I' produced by the electric machine and the iron losses L,

we use a generalized Bertotti model (Bertotti, 1985):

[(w,ig,iq) = Np[palia,iq)iq — ¢q(ia,iq)ia] — Lg(w,iq,iq)

(4.27)
L¢(w, id, iq) = Zér_ow |:04hys(id7 iq) + Oéexc(id7 Z‘q) \/ Zér_ow + afou(idv ZQ)QZST_SJ] )

where (d, ¢) is a referential attached to the rotor (Park transform; see, e.g., Cardoso et al. (1999)),
¢q and ¢, are the components of the magnetic flux in the referential (d,q), iq and i, are the
components of the current intensity in the referential (d,q), and Ohys, Qexe and gy, are loss

coefficients associated respectively to the loss by hysteresis, excess and Foucault currents.

Note the dependence of I' and Ly to the current intensities iq and i, and to the rotation
speed w of the machine. For better performances, the currents must be chosen as a function
of w (recall that the specifications impose constraints on the torque for twelve different values
of w) to minimize the losses and maximize the torque, which is an optimal control problem. For
this study, the choice was made to consider this auxiliary optimization problem as part of the
main optimization problem. In other words, the currents iy and ¢, for the twelve values of w
that are considered (see Section 4.3.2) will be design variables, which augments the dimension of
the problem of 24. This is done to lower the computational cost of the simulation and to avoid
having to use an auxiliary optimization procedure, which may result in simulation failures in

cases where it does not converge.

To compute the magnetic flux ¢4 and ¢, and the loss coefficients ayys, Qexe and ayoy, it is
necessary to solve Maxwell’s equations (see Figure 4.8). To this end, we use a finite element
method implemented in the FEMM open source solver (Baltzis, 2008). This step is responsible
for most of the computing time of the simulation chain. Besides, for each tested geometry, it has
to be done twelve times for the different values of w, iq and %,. For better performances, these

computations are performed in parallel in our implementation.

In addition to the constraints placed on the torque for the differents values of w, iy and 7,

constraints on the voltages and intensities are required to ensure the feasibility of the system:

w22 [02 2 &
5 P Reay 75 S Una (4.28)

i?l'Hg < Ieff

3 max ?
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Figure 4.8: Tllustration of the magnetic flux passing through the machine in the absence of currents.
These are obtained using a finite element method to solve Maxwell’s equations.

where Ry is the external resistance of the machine:

R

Tlinv

Rext = 3k? (4.29)

and u4 and u, are voltages associated to the intensities ig and i4:

ug = Rig— pr¢q(idaiq) ;
u, = Rig+ pr¢d(id, iq) .

Masses and costs

To compute the mass My, of the vehicle and the cost Cp of the powertrain, it is necessary to

compute the masses and costs of their components:

{ Mveh = wat + Mbat + Minv + Mred + Mem ) (4-30)

Cpt = Cpat + Cinv + Cred + Cem s

where Mypt, Mbat, Minv, Mreqa and Moy, are respectively the mass of the vehicle without the
powertrain, the mass of the battery, the mass of the inverter, the mass of the reducer and the
mass of the electric machine, and Cpat, Cinv, Cred and Cep, are respectively the cost of the battery,

the cost of the inverter, the cost of the reducer and the cost of the electric machine.
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For the battery, the inverter and the reducer, we use simple linear models:

{ Mypay = )‘bat,massMOnca (4 31)
Chat = Abat,cost,15 + Abat,cost,2Mc 5 .
for the battery,
{ Miny = Ainv.mass, 1P 4 Ainy,mass.2 » (4.32)

Cv = Ainvieost 1 PEE + Moy cost.2 » -
for the inverter and

Mred = )‘red,mass,lpgfgx + Ared,mass,Q ) (4 33)

Cred = Avedcost1Poby + Ared.cost.2 » '

for the reducer, where Apat mass, Ainv,mass,15> Ainv,mass,2; Ared,mass,1 a0d Ared mass,2 are mass coeffi-
cients, )\bat,cost,la )\bat,cost,27 )\inv,cost,la )\inv,cost,Qa )\red,cost,l and )\red,cost,2 are cost coefficients and
My is the mass of a cell (see Tables 4.9, 4.10 and 4.12).

For the electric machine, it is necessary to compute the mass Mcopper Of copper, the mass

Mteel Of steel and the mass Myyagnet of magnet the machine is composed of:

Msteel = (7T (R% - R%) + 7 (R% — Ri) — QSnotcthNn) Lpsteel . 1079 ,
Mcopper = 27'CopperSnotch]Vp]\rn (L + ﬁ(RS + RG)) Pcopper * 1079 ) (434)
Mmagnet = 7 (R% - R%) mag L pmagnet * 107° )

where pmagnet, Peopper and pseel are respectively the magnet, copper and steel densities (see

Table 4.14). The mass and cost of the electric machine are then given by

{ Mem = Mcopper + Msteel + Mmagnet ) (4 35)

Cem = Mcopperccopper + Msteelcsteel + Mmagnetcmagnet s

where Ceoppers Csteel and Cragnet are respectively the magnet, copper and steel costs per kilo-
gram (see Table 4.14).

4.3.4 Optimization of the system
Formulation of an optimization problem

The design variables are the seven electric machine parameters, the inverter maximum effective

eff
current I3,

associated to the different pairs (w,7) in Ayrpan and Ajam. See Table 4.8 for a description of the

the reducer reduction ratio r and the twelve pairs of intensities (iq (. r);iq,(w,r))

design variables ranges of variation.

The problem features eight equality constraints coming from the customer use cycles (four
constraints by cycle, see Section 4.3.2), twenty four inequality constraints on the voltages and in-
tensities given by (4.28), and five inequality constraints coming from the additional requirements
(four on the torque plus one on the autonomy of the vehicle given by (4.23), see Section 4.3.2).

To handle the equality constraints, we formulate them as eight pairs of inequality constraints
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Description Nb Not. Range

Length of the machine (mm) x1 L [50, 250]
Rotor inner radius (mm) x1 Trot (30, 125]
Rotor thickness (mm) x1 €rot [10, 30]
Air gap (mm) x1 €gap [0.3,2]
Magnet thickness (mm) x1 €mag [2,10]
Magnet angular spread x1 Omag [0.75,0.9]
Opening ratio between notch and dent gap x1 Qnoteh [0.3,0.9]
Maximum effective current (A) x1 et [40, 160]
Reduction ratio x1 T [5, 20]
Current intensity on axis d (A) x12 iq [—160/3, 0]
Current intensity on axis g (A) x12 iq [0,160+/3]

Table 4.8: Design variables description.

of the form:
(@ i ) dgomn) < THe, (4.36)
T (@ id ) igwr) =2 T—¢

where I' is the torque as given by (4.27), ¢ is a relaxation parameter and (w,7) € Ayban U Ajam-

In our experiments, we take € =1 Nm.

In the settings that we consider, the pairs (ig (w r): %, w,r)), (@, 7) € Awban U Ajam and the
inverter maximum effective current I¢% are design variables. Therefore, the constraints (4.28)

on the intensities can be considered as cheap to evaluate. The problem can thus be formulated

using g = 33 expensive-to-evaluate constraints and twelve cheap-to-evaluate constraints.

We consider an optimization problem where the objectives are to minimize the cost Cp of
the powertrain, which is given by (4.30), and the average electromagnetic losses szg. To get
a meaningful expression of the average electromagnetic losses szg , the losses associated to the
two driving cycles are agregated as follows:

Ly =0.6Ly7%,, +04L07% (4.37)

Vg

where L;‘jfrban and L;j -, are the average losses associated respectively to the urban cycle and

to the traffic jam cycle. To compute these, we attribute to each pair (w,7) € Auyrban U Ajam the
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following coefficients:

Z Pi
E( Yhase Tmax) — 7]lw¢§wbase,n§0.57max ’
2T — tiy1 — U
i€l
E(“’base"'“’max ( 15Pmax )) = t+1 t ]]'wi>wbase7PiS0.5PmaX ’
2 ? m(Whagse TwWmax X 7 — U
i€l (4 38)
E = — 1
(“’base 3‘"m_ax) - w;i<whpase,Ti >0.5Tmax »
2 0 4 - tz‘—f—l - ti
el
‘E’<“"base+“"max 45Pmax > = t: t: ]]'wi>wbaseypi>0~5pmax ‘
L 2 7 (Whase +wmax) icl i+1 7 U3

The average electromagnetic losses associated to both driving cycles are then computed as

Lz‘:ﬁrban = Z E(w,’r) |:R (icgi,(w;r) + ig,(w;r)) + L¢(w, Z.cl,(w,T)’Zlq,(wn’))] s
(va)eAurban_ (4-39)
Lotm = D EBwn [R (13,(%7) ”3,(%7)) +L¢(w7id7(w,r)7iq,(w,r))] :
(w,T)EAjam

where the overline symbol indicates that the coefficients E, ;), (w,7) € Auwpan O Ajam, are
normalized to sum to one.

To summarize, the optimization problem that is considered in this study has d = 33 design
variables, p = 2 objectives and ¢ = 33 constraints. The design space is defined using bound
constraints on the design variables (see Table 4.8) and twelve constraints on the intensities of

the current passing through the coils. It does not feature hidden constraints.

Optimization results

In Figures 4.9 and 4.10 we show the results obtained by BMOO on this problem. The algorithm is
initialized using N;,;: = 100 experiments and run with a limiting number of functions evaluations
Nipaz = 500. See Section 4.1 for more details about the settings of the algorithm.

In the figures, we show the progress of the algorithm every fifty iterations. The two phases
of the optimization process clearly appear in the figures. First, the algorithm makes progress on
the resolution of the constraints. This phase corresponds to subfigures (a) to (d) in Figure 4.9.
It can be seen that the algorithm progressively focuses the search in the regions of low constraint
violation until finding a feasible solutions, which happens at N = 202. Among the 298 subsequent
iterations, only 42 resulted in non-feasible solutions, which indicates that the algorithm correctly
identified the feasible region. Then, the algorithm makes progress on the minimization of the
objectives. It can be seen in the figures that it explores simultaneously the different regions of
the Pareto front.

Observe in particular the difference of scale between subfigures (a) of Figure 4.9 and (c) of
Figure 4.10. This is typically a situation where the maximum of the objectives over the entire
X domain are large compared to their maximum value on the Pareto front. In this study, we
use the adaptive procedure described in Section 3.6.2 to keep y"PP at a “reasonable” distance

of the set of non-dominated observations during the optimization process, as recommended in
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Section 3.4.

4.3.5 Conclusions

In this section, BMOO is applied to the design of an electric vehicle powertrain. The problem
takes the form of a bi-objective optimization problem defined on a non-hypercubic design space
and subject to both equality and inequality constraints. To handle equality constraints, a re-
laxation method is used. This makes it possible to transform equality constraints as pairs of
inequality constraints.

For better performances of the system, it would be interesting to consider also the sizing of
the battery. However, it is defined using discrete variables which BMOO cannot handle in its
present form. Extending BMOO to this new setup could be an interesting direction for future
research work.

Acknowledgements: The authors would like to thank Amin El-Bakkali (Renault), who
developped the simulation model and formulated the specifications, Karim Cammoun (IRT Sys-

temX), who made it available to the institute, and Yves Tourbier (Renault).
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4.3.6 Additional material

Description Not. Value
Vacuum voltage of a cell (V) Ey 3.75
Capacity of a cell (Ah) Ko 43

Mass of a cell (kg) M 1.05
Internal resistance of a cell (€2) Ry 0.001
Mass coefficient Abat, mass 1.65
Cost coefficient 1 Abat cost, 1 160

Cost coefficient 2 Abat,cost,2 6.95

Table 4.9: Battery parameters.

Description Not. Value
Voltage factor per phase k 1.3505
Efficiency Ninv 0.9
Mass coefficient 1 Ainv,mass,1 0.06
Mass coefficient 2 Ainv,mass,2 1.1
Cost coefficient 1 Ainv,cost, 1 1.4
Cost coefficient 2 Ainv,cost,2 150
Table 4.10: Inverter parameters.

Description Not. Value
Drag coefficient (m?) Cy 0.64
Friction coefficient (N.kg™!) K 0.07
Wheel radius (m) Ry, 0.2811

Table 4.11: Vehicle parameters.
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Description Not. Value
Efficiency Nred 0.95
Mass coefficient 1 Ared,mass, 1 0.15
Mass coefficient 2 Ared,mass,2 10
Cost coefficient 1 Ared,cost,1 1.75
Cost coefficient 2 Ared,cost,2 130
Table 4.12: Reducer parameters.

Description Not Value
Number of pole pairs N, 2
Number of notches per pole N, 4
Number of wires per notch Ny 12
Maximum current density (A.mm™2) Jmax 10
Notch copper ratio Tcopper 0.5
Mouth depth (mm) €mouth 1.2
Opening ratio between mouth and notch Tmouth 0.25
Maximum rotation speed (rpm) Qmax 7000
Steel plate thickness (mm) €plate 0.35
Thickness ratio between plate and insulator Tplate 0.97
Section ratio between copper and notch Tcopper 0.5
Loss coefficient Ohhys 2
Loss coefficient Fnys 0.003
Loss coefficient Kexc 0.004

Table 4.13: Machine parameters.
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Description Not. Value
Air density (kg.m™3) P 1.2
Gravity acceleration (m.s~?) g 9.81
Electrical vacuum permeability 1o 1.2571076
Copper cost (euros.kg™!) Ceopper 6.7
Steel electrical conductivity (M.S.m™!) Osteel 0.5
Steel density (kg.m™3) Psteel 0.5
Steel control parameter Jsteel 2
Steel relative permeability fr steel 7000
Steel H definition H ax steel 8000
Steel cost (euros.kg=!) Csteel 1.2
Magnet electrical conductivity (M S.m™!) Tmagnet 0.667
Magnet density (kg.m~=3) Pmagnet 3500
Magnet relative permeability Lr,magnet 1.05
Magnet value of B for H=0 B: magnet 1.27
Magnet cost (euros.kg™t) Cragnet 125
Coil electrical conductivity (MS.m™1) O coil 58
Coil density (kg.m~=3) Peoil 8920

Table 4.14: Miscellaneous parameters.
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4.4 Tuning of a Line of Sight controller

Figure 4.11: Example of an application where an inertially stabilized platform is required. The optronic
device is a tracking camera mounted on an helicopter. The line of sight of the camera must be isolated
from the perturbations induced by the movements and vibrations of the helicopter and aligned with the
target line of sight. On the illustration, € is the angular error between the target line of sight and the
actual line of sight. The objective is to control ¢ to obtain a good image quality. Illustration reproduced
from Frasnedo (2016).

4.4.1 Introduction

This study is part of a joint work between CentraleSupélec and Safran Electronics & Defense on
the development and tuning of the controller of an inertially stabilized platform (ISP). It is the
fruit of a collaboration with Sophie Frasnedo and is based on her thesis work (Frasnedo et al.,
2015b,a; Frasnedo, 2016).

The purpose of an ISP is to isolate an optronic device from the movements of its support, in
order to obtain a good image acquisition quality. An example of a situation where such a system
is required is illustrated in Figure 4.11. In this section, we limit ourselves to presenting results
obtained using the BMOO algorithm to optimize the parameters of the controller of the system.
For more details on the system itself, the interested reader is referred to the the PhD thesis of
Frasnedo (2016).

The section is organized as follows. First we present in Section 4.4.2 the architecture of a
typical ISP and introduce its main components. The model that is used to emulate the system
is also briefly discussed. Then, we discuss in Section 4.4.3 the choice of image quality criteria
to be used as objectives of the optimization problem. The full formulation of the optimization
problem and the optimization results are presented in Section 4.4.4 and conclusions are drawn
in Section 4.4.5.

4.4.2 Stabilization architecture model

The schematic architecture of an inertially stabilized platform is represented in Figure 4.12. Two
pivot connections in pitch and yaw are used to isolate the platform from the movement of the

support. The optronic device and a gyrometer are fixed on the yaw gimbal. The gyrometer
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Figure 4.12: Architecture of the inertially stabilized platform. Illustration reproduced from Frasnedo
(2016).
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Figure 4.13: Block diagram of the inertially stabilized platform. Illustration reproduced from Frasnedo
(2016).

measures the rotational speed of the gimbal and provides feedback to a controller which is not
represented in the illustration. Actuators placed at the pivot connections and monitored by the
controller are then used to compensate the movements of the support and stabilize the platform.
For the sake of simplicity, in the following, the two rotations are assumed independent and only
the pitch is considered (the yaw gimbal is fixed).

The system is emulated using a Simulink model based on the block diagram of Figure 4.13.

The actuator is a DC motor with a torque constant K, = 0.9N.m/A and a transfer function

H, =K, , 4.40
)= A6+ B 40
where s is the Laplace variable and
A(s) = 0.012-(1+40.088s) - (1 +0.001s) - (1 + 0.126s), (4.41)
B(s) = (1+0.0955) (14 0.031s) -0.088s - 0.001s. '
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The load that is put in motion by the actuator is the pitch gimbal, which supports the yaw
gimbal, the optronic device and the gyrometer. If the mechanical resonant modes are neglected,

it can be modelled as a pure inertia.

Hypec(s) = ﬁ. (4.42)

The movement of the support is represented as a torque disturbance 74 (low frequency per-
turbation) and its vibrations are represented as a rotation speed disturbance wy (high frequency
perturbation).

A gyrometer placed in the same referential as the optronic device is used to evaluate its
rotation speed with respect to an inertial referential and provide feedback to the controller. The
transfer function Hgy., of the gyrometer is taken as the product of two first order filters of
respective cut-off frequencies fyyro and frier-

1 1
Hgyro(s)

(4.43)

1 + 27rfj7y'ro 1 + 27Tf;ilte'r

It is assumed that the measures of the gyrometer are subject to a white noise which is
Gaussian with a variance ggym which has been estimated empirically beforehand (see Section 2.4
of Frasnedo (2016)). The drift dgy, of the gyrometer is given by the constructor and is taken
into account in this study.

Finally, the controller controls the torque delivered by the actuator. It is composed of four
terms. First, a double integrator is used to obtain a zero steady state position error for a
torque disturbance step (final value theorem). To compensate the negative effect of the double
integrator on the system stability, a second order numerator parametrized by w; and &; is used.
A phase advance function parametrized by a and T is also introduced to further reinforce the
stability margins of the system. Finally, a gain K is used to adjust the bandwidth and a second
order denominator parametrized by w,, and &, permits to attenuate high frequencies. This last

term is introduced to lower the effect of the noise and account for potential dynamics otherwise

neglected.
l4aTs 1HE0+ 5 1
al s w; w;
Ky(s) =K - . 5 : TR (4.44)
14+ Ts s 1+ et 4 5

TO

In the following, we denote n = (K,w;, &, a, T, wro,&ro) the vector of the parameters of the

controller and the goal of the study is to tune 7.

4.4.3 Image quality criteria

The influence of an error in position of the line of sight over time on the image quality is twofold.
First, the optronic device has a certain acquisition time and if the line of sight moves during
this time, it introduces a blur in the image because the pixels receive overlapping information.
To quantify this effect, in this work, the motion transfer function (MTF) is used. This function

provides a measure of the degradation of the contrast in the image as a function of the spatial
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Figure 4.14: Attenuation of constrast caused by the movement of the line of sight during its acquisition
time. The motion transfer function measures the attenuation in intensity of the contrast as a function of
the spatial frequency. In general, high frequencies are more attenuated than low frequencies, i.e. small
details of the image are lost in the blur of the image. Tllustration reproduced from Frasnedo (2016).

frequency of the image details and of the movements of the line of sight. A detailed description of
the origin of this function and of its computation is out of the scope of this report and the reader
is referred to Section 3.3 of Frasnedo (2016) for more details on the MTF. Here, we limit ourselves
to illustrating how this function can be used for evaluating the attenuation of the contrast in
Figure 4.14.

The second criterion that we consider is related to the integration time 7.y of the human
eye. When the magnitude of the movement of the line of sight is too important during this time,
this introduces a frame-to-frame shift that is perceptible to the human eye and constitutes a
nuisance. To measure this effect, we consider the amplitude d; of the movement of the line of
sight over intervals of time [t; —7,;], with 7 < Teye, ¢ € [1,n] and t; € [, T]. Then, to summarize
the information measured at all ¢; and to be conservative, we consider the maximum movement

magnitude dy,q; = maxi<;<p d; as unique criterion (see Figure 4.15).

These two criteria may seem redundant since they are both related to the movement of the
line of sight during a time interval. However, in general, the eye integration time is higher than
the optronic device acquisition time (0.1s < 7¢ye < 0.2s for most people whereas the acquisition
time of the optronic device is of the order of the millisecond) and the two criteria are defined over
different different time scales. Besides, the MTF depends on the characteristics of the optronic
device and on the spatial frequency whereas the d,,,, criterion is a general image quality metric

that is solely related to the operator.
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Figure 4.15: Angular movement of the line of sight over time. The magnitude of the movement in the
time interval [t; — 7, ;] is measured by d;. When d; is large, it causes a frame-to-frame shift during the
eye integration time. Illustration reproduced from Frasnedo (2016).

4.4.4 Tuning of the controller

Besides maximizing the motion transfer function and minimizing the d,q; criterion to obtain
a good image quality, the tuning of the controller should also take into account the power
consumption of the system. Indeed, the ISP is an embedded system powered by a battery
and it has a limited autonomy. Therefore, in this work, the minimization of the mean power
consumption P, of the system is also considered in the tuning of the controller.

Furthermore, the system should respect specifications. The current intensity I applied to the
motor coils should not exceed a threshold value to avoid damages, the eigenvalues of the closed
loop system must be lower than a fixed threshold, and the damping and the modulus margin of
the system must be greater than fixed thresholds. Additionally, constraints are placed on the
objectives dpaz; Pmoy and on the MTF to restrict the range of the Pareto front to acceptable
designs (see Remark 33). To constrain the MTF, we consider its values at eight equally spaced
frequencies between 0 and 1 and impose that they be above the values of a template function at
the same frequencies (see Figure 4.17).

For this application, most of the computing time comes from the evaluation of the MTF and
of dypaz, which requires simulating the whole trajectory of the line of sight (this takes a few
minutes). In comparison, the constraints placed on the eigenvalues of the closed loop system, on
the damping, and on the modulus margin of the system are cheap to evaluate (in the order of
the millisecond). Therefore, in this work, they are considered as restrictions of the design space
(see Section 3.5.2). As an additional benefit, this prevents the code to be subject to simulation
failures, which may happen otherwise when the system is unstable.

We consider two formulations of the optimization problem. First, we consider a bi-objective
formulation where only d,q; and P, are minimized. The MTF is constrained to be above
the template function of Figure 4.17 but we do not try to maximize its values. In the second

formulation, we consider the simultaneous optimization of dp,qz, Proy and of the values of the
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MTF at three equally spaced frequencies (see Figure 4.16). The problem is thus a five-objectives
optimization problem. For both formulations, the optimization problem has d = 7 design vari-
ables (the parameters of the controller) and ¢ = 13 expensive to evaluate constraints (dpqz,
Proy, I and ten constraints on the MTF). Additional results obtained with the batch version
of the BMOO algorithm presented in Section 3.5.4 for a formulation with p = 7 objectives are
presented in Section 4.4.6.

The results obtained with BMOO for the two formulations are reported in Figures 4.16
and 4.17. For both formulations, the algorithm is initialized with a pseudo-maximin Latin-
hypercube design of N;,;; = 30 experiments and run with a limiting number of functions evalu-
ations Ny, = 500. See Section 4.1 for more details about the settings of the algorithm.

In Figure 4.16, we show the projection of the non-dominated solutions found by BMOO in
the plan of dy,q, and Py,y. The value of the MTF at the Nyquist frequency (corresponding to
fn = 0.5 in Figure 4.17, see Section 3.4 of Frasnedo (2016)) is shown in color. The solutions with
the lowest d;,q, value and the solution with the highest MTF value at the Nyquist frequency are
numbered from 1 to 3 in the figure and their MTF are represented in Figure 4.17. The MTF
values of the other non-dominated solutions found by BMOO are shown as a shaded area in
Figure 4.17.

In the light of these experiments, it appears that the objectives are not strongly antagonists.
The results obtained for the first formulation with p = 2 show that it is possible to minimize d,,q;
without impacting too much on the mean power consumption (the specification only imposes
Ppoy < 0). The results obtained for the second formulation with p = 5 show that the maxi-
mization of the MTF is not strongly concurrent with the minimization of dy,,, either. Indeed,
the loss in terms of Py,4y and dyqz is negligible when the solution with the highest MTF value
at the Nyquist frequency is chosen (point 3 in Figure 4.16). Then, looking at the MTF curves
represented in Figure 4.17, it can be seen that the maximization of the MTF values at different
frequencies are not concurrent objectives either. Indeed, the solution that maximizes the MTF
value at the Nyquist frequency (curve 3 in red in Figure 4.17) also maximizes the MTF at the
other frequencies (it is above the shaded region).

For this problem, a three-objectives formulation would thus have been sufficient to highlight
the trade-off between dy,4z, Pnoy and the MTF. However, this information was not known

beforehand; it is a result of the many-objective formulation.

Remark 32 Numerical values such as the constraints thresholds and the variables range of varia-
tion are either not given or normalized when they are. This is done to preserve the confidentiality
of the results.

Remark 33 Note that for this application, constraints are placed on the objectives and the two
are not independent. Besides, the eight constraints placed on the MTF are not independent either.
In practice though we use the algorithm as if it was the case because taking this information into
account would require a significant work. A rigorous treatment of such situations is left for future

work.
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Figure 4.16: Fronts of non-dominated solutions found by the BMOO algorithm when the number of
objectives is p = 2 (top) and p =5 (bottom). The color bars on the right side of the figures indicate the
value of the MTF at the Nyquist frequency (the higher the better). On each figure, the numbered dots
correspond to the solutions with the lowest dy,q. values (1 & 2) and with the highest MTF value at the
Nyquist frequency (3). Their MTF are shown in Figure 4.17.
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Figure 4.17: MTF associated with the three numbered solutions in Figure 4.16. The shaded region
corresponds to the MTF values of the other non-dominated solutions found by BMOO on the problem
with p = 5, i.e. the solutions represented in Figure 4.16. The dashed vertical lines correspond to the
frequencies at which the MTF is optimized. The black curve is the template function and the MTF is
constrained to remain over it.

4.4.5 Conclusions

In this section, the BMOO algorithm is applied to the tuning of a line of sight controller based on
image quality criteria. The problem takes the form of a constrained many-objective optimization
problem defined on a non-hypercubic design space. Two formulations of the optimization problem
are considered: a bi-ojective formulation and a five-objective formulation. The results obtained
for the two formulations reveal that a good image quality can be achieved with a small cost in
terms of mean power consumption. In particular, the use of a many-objective formulation makes
it possible to determine that the objectives are not strongly antagonists; information which was
not known beforehand.

Also, additional experiments with the batch version of the algorithm presented in Section 3.5.4
are made on a seven-objective formulation of the problem. The results are consistent with those
found sequentialy, which validates the proposed approach for selecting batches of experiments.

In the considered optimization problem formulations, constraints are placed on the objectives
to limit the range of the Pareto front. This defeats the assumption made in this work that the
functions of the problem are independent. It is our belief that such a situation often occurs
in real-life applications and this shall motivate future work on the algorithm to address this

particular issue more rigorously.

4.4.6 Additional material

In Figures 4.18 and 4.19 we present additional results obtained with BMOO in batch mode (see

Section 3.5.4). This time, we consider an optimization problem with p = 7 objectives: minimizing
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dimaz and P,y , and maximizing the values of the MTF at five equally spaced frequencies. For this
experiment, BMOO is initialized with an initial design of N;,; = 50 experiments and run with
a limiting number of functions evaluations N, = 500. At each iterations of the algorithm,
batches of N = 50 points are chosen using the procedure of Section 3.5.4. Note that in this
setting, the algorithm makes only nine iterations.

The results obtained in batch mode are close to those obtained sequentially, which validates
the batch selection procedure of Section 3.5.4. A small loss can be observed on the MTF but
the overall shape of the Pareto front is well captured. For this application, we do not actually
simulate the fifty new samples in parallel. However, if it was the case, significant savings in terms

of computing time could be achieved.
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Figure 4.18: Fronts of non-dominated solutions found by the BMOO algorithm when the number of
objectives is p = 5 (top) and p = 7 (bottom). The color bars on the right side of the figures indicate the
value of the MTF at the Nyquist frequency (the higher the better). On each figure, the numbered dots
correspond to the solutions with the highest MTF value at the Nyquist frequency. Their MTF are shown

in Figure 4.19.
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Figure 4.19: MTF associated with the solutions numbered 3 and 4 in Figure 4.18. The shaded region
corresponds to the MTF values of the other non-dominated solutions found by BMOO on the problem
with p = 5, i.e. the solutions represented in Figure 4.18. The dashed vertical lines correspond to the
frequencies at which the MTF is optimized in the formulatin with p = 7. The black curve is the template
function and the MTF is constrained to remain over it.
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4.5 Design of a turbomachine fan blade

Secondary flow
_ Low pressure
Low pressure turbine

Ean Compressor Combustion chamber
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compressor turbme

Primary flow
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Figure 4.20: Global architecture of a turbomachine.

4.5.1 Introduction

This study deals with the design of a commercial aircraft turbomachine fan blade. It is the
fruit of a collaboration between the Technological Research Institute SystemX, CentraleSupélec,
Cénaéro and Safran Aircraft Engines.

A typical aircraft turbomachine is made of several components (see Figure 4.20): a fan, a
low pressure compressor, an high pressure compressor, a combustion chamber, an high pressure
turbine, a low pressure turbine, and several equipments and integration systems not represented
in the figure. The fan is one of the most dimensioning components of a turbomachine. It is
composed of several blades of high dimension (the diameter of the fan inner inlet can reach up
to 1.80 m on recent engines), the profile of which varies from foot to head (see Figure 4.21).

The design of a turbomachine fan blade is made difficult by the fact that it requires an op-
timization of its aerodynamic performances under multiple mechanical and acoustic constraints,
such as impact of foreign bodies, frequency margins, fatigue resistance and noise at take-off
and landing. Its optimization is multi-disciplinary and possibly multi-scale, depending on the

materials characteristics (composite material for example) and on the regions under study.

4.5.2 Simulation chain

In this study, we consider different regimens of the turbomachine, which correspond to different

phases of the aircraft flight:

landing,

cruise,

take-off,

- and redline (maximum operating regime).
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Figure 4.21: Typical shape of a turbomachine fan blade.

The thrust is subject to constraints at take-off, the efficiency must be maximal on cruise
and the noise must be bellow an acceptance threshold at landing. For these four regimens, we
consider different operating conditions, that correspond to different values of pressure and mass
flows (see Figure 4.22). Two operating points are considered at landing, four on cruise, two at
take-off and only static and dynamic mechanical computations are made at the redline.

A schematic view of the architecture of the simulation chain used in this study is proposed
in Figure 4.23. First, a cold blade geometry is built based on the chosen geometrical parameters
(design variables and fixed parameters). This geometry corresponds to the geometry of the blade
in the absence of rotation. After this first step, nonlinear static and dynamic computations are
made at all considered regimens to determine the mechanical constraints, the deformations, and
to infer the blade natural frequencies. Then, aerodynamic computations based on the deformed
geometries are made for the 8 operating points considered in the study. These computations
deliver the mass flow, efficiencies, noise, etc, at the different regimens. This step is distributed
on 192 processors. Even then, it is responsible for most of the computing time of the simula-
tion chain (approximately 4h30 in total for one simulation). The values of the objectives and

constraints are obtained from these computations after a post-processing step.

4.5.3 Blade optimization

We consider an optimization problem with p = 3 objectives and ¢ = 9 constraints. The objectives
are the maximization of the efficiencies on cruise and at take-off and the maximization of the
natural frequency of the blade at the redline. The constraints are five mechanical constraints,
two aerodynamic constraints and two geometrical constraints. For the parametrization of the

blade, d = 26 variables subject to bound constraints are used:
e incidence and trailing angles at five levels along the blade height (10 variables in total);

e skeleton parameters at four levels along the blade height (16 variables in total).
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Figure 4.24: Non-dominated solutions obtained with the BMOO algorithm (red disks). To help the
visualization, projections in the coordinates planes (f1, f2) and (fi, f3) are shown as blue disks. The
values are scaled around one to preserve the confidentiality of the results.

The optimization is made using the BMOO algorithm. The algorithm is initialized using an
initial design of 120 experiments that were computed beforehand. Among these, 25 resulted in
simulation failures. These can be due to a combination of the design parameters resulting in a
non-feasible blade geometry, to an insufficient meshing quality or to a failure of the aerodynamic

computations to converge.

Due to complications, the optimization was run over 77 iterations only. The non-dominated
solutions found by the algorithm are shown in Figure 4.24. The results reveal that the maximiza-
tion of the efficiencies at take-off f; and on cruise fy are antagonist objectives, which was not
obvious beforehand. Also, we note a drop of the values of the natural frequency of the blade at
the redline f3 when the values of the efficiency at take-off become high. The presence of an out-
lier with an high value of this frequency and an high value of efficiency seems to contradict this
observation though, which may indicate that the algorithm was stopped too prematurely. Nev-
ertheless, the shape of the front seems established even though further refining would certainly

be possible.

Among the 77 additional evaluations, 28 resulted in simulation failures, which seems to
indicate that the region of optimal solutions is close to the non-observable region. This could
also be due to a failure of the classification model'. However, such a behaviour was not observed
in the other applications presented in this chapter. An expert analysis of the causes of failure of
the simulation would be required to better understand this particular point but it could not be

made during this thesis.

'In this work, we use a nearest neighboor classifier with k = 5 neighboors (see Section 3.5.3).
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4.5.4 Conclusions

In this section, BMOO has been applied to the design of a turbomachine fan blade. This
component of the turbomachine is one of the most dimensioning and its optimization has to
take into account mechanical, aerodynamic and acoustic aspects for different regimens of the
turbomachine. Besides, the optimization is made difficult by the heavy computational cost
associated with the numerical simulation of the system.

The considered optimization problem takes the form of a constrained multi-objective problem
with three objectives and twenty six design variables. BMOO obtains a satisfying approximation
of the Pareto front using only 77 iterations, hence achieving a significant reduction of the com-
puting time required for solving this kind of problem. In particular, the analysis of the results
provides a better understanding of the interactions between the objectives.

Acknowledgements: The authors would like to thank Emmanuel Cheriere (Cénaéro), Car-
oline Sainvitu (Cénaéro), Vincent Baudoui (Cénaéro) and Abdelkader Otsmane (Safran Aircraft

Engines) for their contributions to this work.

4.6 Conclusions

In this chapter, we have presented applications of the BMOO algorithm to design problems that
are representative of the kind of optimization problems encountered in the industry. The appli-
cations feature different physics: thermodynamics, mechanics, aerodynamics, acoustics, electro-
magnetism and automatic control and it is shown that BMOO is a transverse algorithm that can
be used to solve this kind of problems using a reasonable number of functions evaluations.

For all four considered applications, the use of a multi-objective formulation enables the user
to choose design solutions with a posteriori knowledge about the possible trade-off between the
objectives. In particular, the analysis of the variation of the design variables along the front of
non-dominated solutions makes it possible to better understand the influence of design choices
on the performances of the system.

Furthermore, these applications were the opportunity to emphasize the effectiveness of the
algorithm’s extensions presented in Section 3.5. First, viewing the cheap-to-evaluate constraint
functions as restrictions of the design space makes it possible to decrease the size of the optimiza-
tion problem and to avoid regions where the physical model’s assumptions are not met. This
results in fewer simulation failures and a better control over the simulator. Second, to address
simulation failures, in this work, a simple classification model is used (see Section 3.5.3). This
makes it possible to perform the optimization despite the presence of non-observable regions.
However, the results obtained on the turbomachine fan blade application seem to indicate that a
more elaborate approach might be required on some problems. This shall motivate future work
on the handling of the hidden constraints. Finally, as regards the use of batches of experiment,
it is shown on the line of sight control problem that significant savings can be achieved in terms
of computing time without impacting too much on the quality of the optimization. We believe
that the use of batch approaches within multi-objective formulations such as the one we propose

should receive more attention in the near future because they are very effective.
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Chapter 5

Conclusions
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5.1 Summary of contributions

In this thesis, we address the problem of the derivative-free multi-objective optimization of real-
valued functions subject to multiple inequality constraints. More specifically, we consider a
setting where the objectives and constraints of the problem are evaluated simultaneously using
a potentially time-consuming computer program. In this setting, it is highly desirable to solve
the optimization problem using as few functions evaluations as possible. Morevover, we focus on
problems that are heavily constrained, in the sense that finding feasible solutions; i.e. solutions
that respect all the constraints of the problem, is difficult. This is a setting that one often
encounters when dealing with the design optimization of complex systems and which poses
difficulties to many optimization algorithms.

To solve this problem, we propose a Bayesian optimization algorithm called BMOO!. This
algorithm implements a new expected improvement sampling criterion crafted to apply to poten-
tially heavily constrained problems and to many-objective problems, i.e. problems with several
objective functions. This criterion stems from the use of the hypervolume of the dominated region
as a loss function, where the dominated hypervolume is defined using an extended domination
rule that applies jointly on the objectives and constraints. Several criteria from the Bayesian
optimization literature are recovered as special cases.

The criterion takes the form of an integral over the space of objectives and constraints for
which no closed form expression exists in the general case. Besides, it has to be optimized at
every iteration of the algorithm to select the next evaluation point, which is known to be difficult
because expected improvement criteria tend to be sharp multi-modal functions. To solve these
difficulties, original sequential Monte-Carlo algorithms in line with previous work carried out by
Benassi (2013) in the unconstrained global optimization setting are developped.

Moreover, four extensions of the algorithm are proposed, which constitute each a contribution
of independent interest. First, BMOO is extended to handle problems defined on non-hypercubic
design spaces. These can be defined by cheap-to-evaluate constraints and/or membership func-
tions. Second, it is extended to handle problems with hidden constraints. These arise, for exam-
ple, when the computer program used to evaluate the functions of the problem systematically
fails to return a result for some combinations of the design variables. Third, to take advantage of
parallel computation facilities when available, a multi-point version of the algorithm is proposed.
Last, we propose an alternative sampling criterion called the expected weighted hypervolume
improvement criterion. This criterion makes it possible to orient the search for optimal solutions

according to user preferences, thus allowing the expert to step in the optimization loop.

5.2 Main achievements and limitations

The proposed algorithm achieves good results on classical single- and multi-objective test prob-
lems from the literature when compared with state-of-the-art algorithms. It is shown to apply

to a large class of problems with a good repetability. In particular, it is capable to solve heavily

'BMOO stands for Bayesian Many-Objective Optimizaton.
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constrained problems using few functions evaluations, which was one of the objectives of this
work; and to address many-objective problems, which was another one.

BMOO is also successfully applied to four industrial-like design optimization problems from
different fields. It is applied to the design of a commercial aircraft environment control system
(collaboration with Airbus), to the design of an electric vehicle powertrain (collaboratin with
Renault), to the tuning of a line of sight controller (collaboration with Safran Electronics &
Defense) and to the design of a turbomachine fan blade (collaboration with Cénaéro and Safran
Aircraft Engines). It is shown that the proposed extensions are valuable tools that can be used
to help solve complex optimization problems.

The algorithm is subject to limitations though, which are highlighted throughout the manuscript.
First, it is not suitable for problems having non-stationary objectives and/or constraints, which
is typical of Bayesian optimization algorithms relying on stationary Gaussian processes if noth-
ing is done on the modelling aspect to address this limitation. Secondly, the algorithm uses
the dominated hypervolume as a loss function. As such, it can achieve mitigated results on

multi-objective problems with concave Pareto fronts. Again, this is an expected behaviour.

5.3 Perspectives for future work

Several research tracks could be explored in the futur. In this work, we have been focusing on
El-based approaches. However, other approaches in the Bayesian optimization literature, such
as Stepwise Uncertainty reduction approaches (see e.g Villemonteix et al. (2009); Vazquez and
Bect (2014); Chevalier et al. (2014a); Picheny (2014a,b); Herndndez-Lobato et al. (2015, 2016b);
Garrido-Merchédn and Hernandez-Lobato (2016)) and the Augmented Lagrangian approach of
Gramacy et al. (2016), and, more generally, in the model-based optimization literature (see e.g.
Regis (2016) and references therein), provide interesting alternatives that call for a comparison
of optimization performances.

As dicussed above, the proposed algorithm is subject to limitations. First, stationary Gaus-
sian process models are not suitable for problems with non-stationary functions. In Section 2.5.3
of this manuscript it is shown that this issue can sometimes be solved using simple transforma-
tions of the non-stationary functions. However, finding such a transformation is not straightfor-
ward and it remains up to the practitionner. Several types of models proposed in the literature—
warped Gaussian processes (Snelson et al., 2004), non-stationary Gaussian processes (Toal and
Keane, 2012), deep Gaussian processes (Damianou and Lawrence, 2013), etc.— provide interest-
ing directions regarding this issue that could be the object of future work.

Secondly, as mentionned in Section 4.4, the proposed algorithm is not suitable as is for
problems having constraints on the objectives, situation that often occurs in practice when one
is interested in discovering the optimal trade-off between different objectives but does not want
to deteriorate one in favour of an other too much. Recent work from Yang et al. (2016a,b)
provide interesting directions for future work on this issue.

Computational aspects could also be discussed. While the overall computing time of the

algorithm remains reasonable on small to medium size problems such as the ones adressed in
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this manuscript, it can become prohibitive on large problems (this is to be balanced with the
computing time of the functions of the problem). In this work, we do not challenge our choice
of an anisotropic Gaussian random-walk Metropolis-Hastings algorithm to move the particles
within the sequential Monte-Carlo algorithms used for the computation and optimization of the
expected improvement criterion. However, much improvement could probably be achieved by
using more suitable algorithms. In particular, the choice of the number of particles to be used
in the algorithms, though briefly discussed in Section 3.3 for the criterion computation problem,
remains empirical and improvements could probably be achieved on this aspect.

The extensions proposed in Section 3.5 deserve more attention. Empirical evidence of their
effectiveness is given in Chapter 4 but they could be improved. First, the choice was made to
consider applications where the objectives and constraints are obtained simultaneously from one
call to some possibly computationaly intensive computer program. This assumption was relaxed
to allow for the introduction of cheap-to-evaluate constraint functions that can be evaluated
separately, these being considered as restrictions of the search space, or expensive-to-evaluate.
In some applications though, it may happen that the computational cost associated with the
problem’s functions vary from one function to the other and that these functions can be evaluated
independently. In such a setting, significant time savings could probably be achieved by using a
more adapted strategy.

Secondly, the choice of a nearest-neighboor classifier to handle hidden constraints is ques-
tioned in Section 4.5. More sophisticated approaches such as random forest classification, support
vector machines or artificial neural network classification might be required on some problems
and could trigger further improvement of the proposed algorithm.

Third, much work remains to make the EWHI criterion proposed in Section 3.5 usable in
practice. In particular, the choice a priori of the weight function, i.e. before the position of the
Pareto front is known, is an open research question.

Other extensions could be developped to make BMOO applicable to a broader range of
problems, such as problems featuring equality constraints, discrete variables (see Section 4.3)
or noisy functions. The capability to use gradient information when available, to deal with
multi-fidelity models, to stop the algorithm when knowledge of the Pareto front is sufficient and
to adress high dimensional problems would also be useful extensions. Recent works from Binois
et al. (2015b,a); Wang et al. (2016b); Azzimonti et al. (2016); Roy et al. (2017); Garrido-Merchan
and Hernandez-Lobato (2017); Wu et al. (2017); Qian and Yu (2017) on some of these aspects

could be a start point for further investigations.

Acknowledgements: This research work has been carried out within the Technological
Research Institute SystemX, using public funds from the French Programme Investissements

d’Avenir.
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Résumé: Ces travaux de thése portent sur l'optimisation multi-objectif de fonctions & valeurs réelles
sous contraintes d'inégalités. En particulier, nous nous intéressons & des problémes pour lesquels les
fonctions objectifs et contraintes sont évaluées au moyen d'un programme informatique nécessitant
potentiellement plusieurs heures de calcul pour retourner un résultat. Dans ce cadre, il est souhaitable
de résoudre le probléme d'optimisation en utilisant le moins possible d'appels au code de calcul. Afin
de résoudre ce probléme, nous proposons dans cette thése un algorithme d'optimisation Bayésienne
baptisé BMOO. Cet algorithme est basé sur un nouveau critére d'amélioration espérée spécifiquement
développé afin d'étre applicable a des problémes fortement contraints et/ou avec de nombreux objectifs.
Le critére proposé généralise plusieurs critéres classiques d'amélioration espérée issus de la littérature. Il
prend la forme d'une intégrale définie sur l'espace des objectifs et des contraintes pour laquelle aucune
forme fermée n'est connue dans le cas général. De plus, il doit étre optimisé & chaque itération de
'algorithme. Afin de résoudre ces difficultés, des algorithmes de Monte-Carlo séquentiel sont également
proposés. L'efficacité de BMOO est démontrée & la fois sur des cas tests académiques et sur quatre

probléme d’optimisation représentant de réels problémes de conception.

Title: A Bayesian approach to constrained multi-objective optimization
Keywords: Bayesian optimization, multi-objective, sequential Monte Carlo

Summary: In this thesis, we address the problem of the derivative-free multi-objective optimization
of real-valued functions subject to multiple inequality constraints. In particular, we consider a setting
where the objectives and constraints of the problem are evaluated simultaneously using a potentially
time-consuming computer program. To solve this problem, we propose a Bayesian optimization al-
gorithm called BMOO. This algorithm implements a new expected improvement sampling criterion
crafted to apply to potentially heavily constrained problems and to many-objective problems. This
criterion stems from the use of the hypervolume of the dominated region as a loss function, where the
dominated region is defined using an extended domination rule that applies jointly on the objectives
and constraints. Several criteria from the Bayesian optimization literature are recovered as special
cases. The criterion takes the form of an integral over the space of objectives and constraints for
which no closed form expression exists in the general case. Besides, it has to be optimized at every
iteration of the algorithm. To solve these difficulties, specific sequential Monte-Carlo algorithms are
also proposed. The effectiveness of BMOO is shown on academic test problems and on four real-life

design optimization problems.
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