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Résumé

Ces travaux de thèse portent sur l'optimisation multi-obje
tif de fon
tions à valeurs réelles sous


ontraintes d'inégalités. En parti
ulier, nous nous intéressons à des problèmes pour lesquels les

fon
tions obje
tifs et 
ontraintes sont évaluées au moyen d'un programme informatique né
es-

sitant potentiellement plusieurs heures de 
al
ul pour retourner un résultat. Dans 
e 
adre, il

est souhaitable de résoudre le problème d'optimisation en utilisant le moins possible d'appels

au 
ode de 
al
ul. Par ailleurs, nous nous intéressons à des problèmes d'optimisation poten-

tiellement fortement 
ontraints, 
'est à dire des problèmes pour lesquels satisfaire simultanément

l'ensemble des 
ontraintes est di�
ile. Ce type de problème est 
ara
téristique des problèmes

d'optimisation de systèmes 
omplexes et met en défaut de nombreux algorithmes d'optimisation.

Nous proposons dans 
ette thèse un algorithme d'optimisation Bayésienne baptisé BMOO.

Cet algorithme en
ode un nouveau 
ritère d'amélioration espérée spé
i�quement développé a�n

d'être appli
able à des problèmes fortement 
ontraints et/ou ave
 de nombreux obje
tifs. Ce


ritère s'appuie sur une fon
tion de perte mesurant le volume de l'espa
e dominé par les observa-

tions 
ourantes, 
e dernier étant dé�ni au moyen d'une règle de domination étendue permettant

de 
omparer des solutions potentielles à la fois selon les valeurs des obje
tifs et des 
ontraintes qui

leurs sont asso
iées. Le 
ritère ainsi dé�ni généralise plusieurs 
ritères 
lassiques d'amélioration

espérée issus de la littérature au 
as de l'optimisation multi-obje
tif sous 
ontraintes d'inégalités.

Ce 
ritère prend la forme d'une intégrale sur l'espa
e joint des obje
tifs et des 
ontraintes

qui n'est pas 
al
ulable analytiquement dans le 
as général. Par ailleurs, il doit être maximisé à


haque itération de l'algorithme a�n de séle
tionner le pro
hain point d'évaluation; maximisation

qui est 
onnue pour être di�
ile 
ar les 
ritères d'amélioration espérée ont tendan
e à être multi-

modaux. A�n de pallier 
es di�
ultés, nous proposons dans 
ette thèse des algorithmes de

Monte-Carlo séquentiel dans la lignée de travaux pré
édemment réalisés par Benassi (2013) dans

le 
as de l'optimisation globale sans 
ontraintes. En parti
ulier, nous proposons une densité L2�

optimale pour le 
al
ul du nouveau 
ritère pour un ensemble de points 
andidats, et une densité

dédiée à l'optimisation du 
ritère pour des problèmes fortement 
ontraints.

Quatre extensions de l'algorithme sont par ailleurs proposées, 
es dernières pouvant être vues


omme des 
ontributions indépendantes. Tout d'abord, BMOO est généralisé à des problèmes

dé�nis sur des espa
es de re
her
he non-hyper
ubiques, dé�nis par exemple par une fon
tion

d'appartenan
e ou par des 
ontraintes peu 
oûteuses à évaluer, ainsi qu'à des problèmes ayant

des 
ontraintes 
a
hées. Ces dernières apparaissent, par exemple, lorsque le 
ode de 
al
ul utilisé

pour évaluer les fon
tions du problème ne permet pas d'obtenir un résultat pour 
ertaines régions

v



de l'espa
e de re
her
he. Par ailleurs, a�n de tirer avantage des moyens de 
al
ul parallèle lorsque


eux-
i sont disponibles, une version multi-point de l'algorithme est proposée. En�n, un 
ritère

d'amélioration espérée permettant d'orienter la re
her
he de solutions optimales vers des régions


hoisies par l'utilisateur est �nalement proposé. Ce 
ritère permet à l'expert métier d'in�uen
er

le pro
essus d'optimisation a�n d'obtenir des solutions plus pertinentes.

L'algorithme proposé obtient de meilleurs résultats que des algorithmes d'optimisation �état

de l'art� sur des problèmes d'optimisation à la fois mono- et multi-obje
tifs issus de la littérature.

Nous montrons qu'il peut être appliqué ave
 de bons résultats et une bonne répétabilité sur un

large ensemble de problèmes. En parti
ulier, l'algorithme permet de résoudre des problèmes

fortement 
ontraints et/ou faisant état de nombreux obje
tifs, 
e qui était l'obje
tif initial.

BMOO est également appliqué ave
 su

ès à quatre problèmes représentatifs des types de

problèmes d'optimisation ren
ontrés dans l'industrie. Il est appliqué au dimensionnement du

système de régulation d'air d'un avion 
ommer
ial (
ollaboration ave
 Airbus Group Innova-

tion), au dimensionnement de la 
haîne de tra
tion d'un véhi
ule éle
trique (
ollaboration ave


Renault), au paramétrage optimal d'un 
ontr�leur de ligne de visée (
ollaboration ave
 Safran

Ele
troni
s & Defense), ainsi qu'au dimensionnement d'une aube de sou�ante de turboma
hine

(
ollaboration ave
 Safran Air
raft Engines et Cénaéro). Il est montré en parti
ulier que les

extensions sus-mentionnées sont pertinentes au regard de 
e type de problèmes d'optimisation.

Certaines limitations intrinsèques rendent 
ependant BMOO ine�
a
e sur 
ertains types de

problèmes d'optimisation, qui sont illustrés dans 
ette thèse. Tout d'abord, BMOO n'est pas

adapté à la résolution de problèmes ayant des fon
tions non-stationnaires. En e�et, l'algorithme

utilise des modèles de pro
essus Gaussiens et la stationnarité des obje
tifs et des 
ontraintes

est une des hypothèses de modélisation qui sont faites. Lorsque 
elle-
i n'est pas respe
tée,

les modèles ne permettent pas une optimisation e�
a
e. Nous montrons 
ependant que dans


ertains 
as, l'utilisation de transformations simples permet de rendre stationnaires 
ertaines

fon
tions qui ne le sont pas à l'origine, et don
 d'utiliser BMOO de manière e�
a
e. Par

ailleurs, l'algorithme utilise l'hypervolume de la région dominée 
omme fon
tion de perte. Or,

l'hypervolume a tendan
e à favoriser 
ertaines régions du front de Pareto davantage que d'autres,

en fon
tion de sa 
ourbure. De 
e fait, BMOO est sujet à un biais intrinsèque et il peut arriver

que sur 
ertains problèmes, typiquement des problèmes pour lesquels le front de Pareto a des


on
avités, la distribution des solutions obtenues par l'algorithme ne représente pas de manière

satisfaisante 
ertaines régions du front.
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Chapter 1

Introdu
tion

1



1.1 Context

1.1.1 Industrial design of 
omplex systems

The obje
t of this thesis is the optimal design of 
omplex systems. As an introdu
tory example,


onsider the design of a 
ommer
ial air
raft turboma
hine. A turboma
hine is a 
omplex system

made of several intera
ting subsystems. The main 
omponents of a typi
al turboma
hine are

represented on Figure 1.1.

Fan

Low pressure 
compressor

High pressure 
compressor

High pressure
turbine

Low pressure
turbine

Combustion chamber

Secondary flow

Primary flow

Figure 1.1: Global ar
hite
ture of a turboma
hine.

When designing su
h a system, a manufa
turer has to make several design 
hoi
es. What

should be the shape of the 
ombustion 
hamber? How many 
ompressor stages are required to

a
hieve a given level of performan
e? What materials should the fan blades be 
omposed of?

What is the inner blade radius of the �rst stage of the high pressure turbine? Et
. Those 
hoi
es

are often made using past experien
e in designing similar systems and performan
e assessment

studies. An established pra
ti
e to assess the performan
es of a given design, is to rely on numer-

i
al models of the physi
al system. This is in general less 
ostly and less time-
onsuming than

prototyping. Besides, using numeri
al models makes it possible to 
onsider far more 
andidate

designs.

A 
ommon approa
h to 
ast a design problem into a mathemati
al framework is to formulate

the de
ision-maker wishes in terms of obje
tives and 
onstraints. In the turboma
hine example,

obje
tives for the design of the 
ombustion 
hamber 
ould be to minimize fuel 
onsumption

or to maximize the mixing of fuel and air inside the 
hamber. One 
ould also try to do both

simultaneously. Constraints 
ould be to keep the temperature and pressure inside the 
hamber

below some threshold value to avoid damaging the 
asing. Naturally, those threshold values may

depend on the design of the 
asing itself.

Within this framework, a notion of optimal design 
an be introdu
ed: a design is 
onsidered

optimal if it respe
ts all the 
onstraints and a
hieves an optimal trade-o� between the obje
tives.

From a mathemati
al point of view, the problem 
onsists in �nding an approximation of the set

Γ = {x ∈ X : c(x) ≤ 0 and ∄x′ ∈ X s.t. c(x′) ≤ 0 and f(x′) ≺ f(x)}, (1.1)
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where X is a design domain, c = (ci)1≤i≤q is a ve
tor of 
onstraint fun
tions, f = (fj)1≤j≤p is a

ve
tor of obje
tive fun
tions to be minimized, and ≺ is a partial order relation. The elements of

Γ 
orrespond to design solutions that both respe
t the 
onstraints and a
hieve optimal trade-o�

between the obje
tives, as formulated by the de
ision-maker

1

.

In the setting that we 
onsider, for a given design x ∈ X, the values f(x) and c(x) in (1.1)


orrespond to the outputs of a numeri
al model that may involve the resolution of partial di�er-

ential equations, meshing steps or large matrix inversions. The a�ordable number of evaluations

of f and c is therefore limited by the 
omputational 
ost. When it is high, �nding Γ is a di�
ult

problem.

1.1.2 A brief literature review of 
ontinuous optimization

In the literature, several algorithms have been proposed for solving the optimization prob-

lem (1.1). For the sake of 
larity, we limit the s
ope of our review to the 
ontinuous optimization

of deterministi
 fun
tions, i.e. we 
onsider problems where X is a subset of R
d
, d being the

number of design variables, and for whi
h the ve
tors f(x) and c(x) for some x ∈ X are deter-

ministi
 (as opposed to sto
hasti
, see e.g. Fu (2002); Tekin and Sabun
uoglu (2004); Kleijnen

(2008) and referen
es therein). Moreover, we do not 
onsider optimization methods that require

assumptions on the stru
ture of the fun
tions of the problem, su
h as 
onvexity or linearity for

example, and we do not 
onsider optimization problems with equality 
onstraints. These give

rise to a spe
i�
 literature that falls out of the s
ope of this thesis. See, e.g., the book of Bonnans

et al. (2006) for a broader dis
ussion on 
ontinuous optimization.

Lo
al and global optimization

Optimization problems with only one obje
tive fun
tion fall into the 
ategory of the single-

obje
tive optimization problems. This is probably the most do
umented 
ategory and the �rst

that was addressed in the literature. The solution to a single-obje
tive problem is often a single

point 
alled the global optimizer.

Single-obje
tive problems 
an be solved using lo
al and global optimization algorithms. Given

a starting point, lo
al optimization algorithms perform a lo
al sear
h and hopefully 
onverge to a

lo
al optimum of the obje
tive fun
tion. Algorithms in this 
lass usually have a good 
onvergen
e

rate and require few obje
tive fun
tion evaluations. In this 
ategory, we �nd �rst and se
ond

order gradient-based optimizers su
h as the method of steepest des
ent, the 
onjugate gradient

method, themodi�ed Newton's method or the quasi-Newton method, and derivative-free optimizers

su
h as the Dire
t Sear
h algorithm of Hooke and Jeeves (1961), the Trust-Region algorithm of

Powell (1964), the Simplex algorithm of Nelder and Mead (1965) or the Generalized Pattern

Sear
h algorithm of Tor
zon (1997). For more details on these approa
hes, the reader is referred

to the book of No
edal and Wright (2006) and referen
es therein.

Global optimization algorithms on the other hand seek a global optimum of the obje
tive

fun
tion. They are often population-based and/or introdu
e some randomness in the optimiza-

1

Note that di�erent formulations of the optimization problem 
an lead to di�erent optimal solutions.
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tion pro
ess to es
ape lo
al optima. Among this 
ategory of optimization algorithms we �nd,

for example, the Simulated Annealing algorithm of Kirkpatri
k et al. (1983), the Hill Climbing

algorithm of Russell et al. (2003), the DIRECT algorithm of Jones et al. (1993), the Multilevel

Coordinate Sear
h algorithm of Huyer and Neumaier (1999), several geneti
 and evolutionary al-

gorithms (see e.g. Ba
k (1996)), random sear
h algorithms (see e.g. Zhigljavsky (2012)), Bayesian

optimization algorithms, su
h as the EGO algorithm of Jones et al. (1998) or the IAGO algo-

rithm of Villemonteix et al. (2009), and surrogate-based optimization algorithms su
h as the

COBRA algorithms of Regis (2014). Lo
al optimization algorithms 
an also be made global

by running them several times with di�erent starting points (multi-start approa
h). For more

details on global optimization methods, the reader is referred to the books of Torn and Zilinskas

(1989); Weise (2009); Zhigljavsky (2012) and No
edal and Wright (2006).

Multi-obje
tive optimization

Optimization problems with more than one obje
tive are 
alled multi-obje
tive optimization

problems. The term many-obje
tive optimization problems is also used to refer to multi-obje
tive

problems with more than two obje
tives. Unlike single-obje
tive problems, the solution to a

multi-obje
tive optimization problem is often a set of optimal solutions 
alled a Pareto front.

In the literature, a distin
tion is made between algorithms that look for a single solution

on the Pareto front and algorithms that build an approximation of the Pareto front. For both


ategories, a survey of approa
hes is provided by Marler and Arora (2004). See also the books

of Miettinen (2012) and Collette and Siarry (2013) for more in-depth dis
ussions on multi-

obje
tive optimization.

The most popular algorithms for approximating Pareto fronts are probably geneti
 and evolu-

tionary algorithms. Sin
e they are population-based, they are well-suited to approximating a set

of solutions. A 
omprehensive review of geneti
 and evolutionary multi-obje
tive optimization

algorithms is provided by Coello (2000) and Coello et al. (2002).

In the Bayesian optimization literature, algorithms for approximating Pareto fronts have been

proposed by Knowles (2006); Svenson (2011); Keane (2006); Hernández-Lobato et al. (2015) and

Emmeri
h et al. (2006), among others. Compared to geneti
 and evolutionary approa
hes, these

approa
hes usually require fewer obje
tive fun
tions evaluations, whi
h makes them parti
ularly

interesting in our 
ontext.

Constraint handling

Most of the above 
ited algorithms 
an be extended to handle 
onstrained optimization prob-

lems, i.e. problems with at least one 
onstraints. The most popular approa
h is to penalize the

obje
tive fun
tion(s) by a quantity related to the 
onstraints violation. Lagrangian formulations

for example fall in this 
ategory.

Among the 
lass of lo
al optimization algorithms that 
an handle 
onstraints, let us 
ite, for

example, the Sequential Quadrati
 Programming algorithm of Han (1977), the COBYLA algo-

rithm of Powell (1994), the Interior-Point algorithm of Byrd et al. (1999) or the Mesh Adaptive
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Dire
t Sear
h algorithm of Audet and Dennis Jr (2006). For geneti
 and evolutionary single-

obje
tive optimization algorithms, a 
omprehensive review of 
onstraint-handling te
hniques is

provided by Mezura-Montes and Coello (2011). More generally, see the book of No
edal and

Wright (2006) for a review of 
onstraint-handling approa
hes in single-obje
tive optimization.

As regards 
onstrained multi-obje
tive optimization, most of the re
ent literature 
omes from

the geneti
 and evolutionary 
ommunities. Popular algorithms for solving 
onstrained multi-

obje
tive problems are the NSGA2 algorithm of Deb et al. (2002) or the SPEA2 algorithm of

Zitzler et al. (2002). For more details about this 
lass of approa
hes, the reader is referred to

the book of Deb (2001). In the Bayesian optimization literature, 
onstrained multi-obje
tive

optimization algorithms have been proposed by Emmeri
h et al. (2006); Garrido-Mer
hán and

Hernández-Lobato (2016).

Gradient-based optimization

When gradient information is available, whi
h happens for example when adjoint solvers are

used (see e.g. Giles and Pier
e (2000)), it is often advantageous to use it to guide the sear
h for

optimal solutions. In parti
ular when the number d of variables is large, gradient information


an prove invaluable to fo
us the sear
h in the right dire
tion and solve the problem using few

fun
tions evaluations.

Note that in the 
ase where gradients are not given, they 
an still be estimated (see e.g. No-


edal and Wright (2006)). However, gradient approximation methods usually s
ale unfavourably

with the dimension of the problem (d evaluations are required to estimate a gradient using �nite

di�eren
es), whi
h often renders them impra
ti
al when d is large (say d > 10) and the fun
tions

of the problem are expensive to evaluate.

Population-based optimization

Population-based algorithms su
h as random sear
h algorithms (see e.g. Zhigljavsky (2012)),

geneti
 and evolutionary algorithms (see e.g. Coello (2000); Coello et al. (2002)) or Estimation of

distribution algorithms (see e.g. Haus
hild and Pelikan (2011)) also form an important sub
lass of

the derivative-free optimization algorithms whi
h has gained in popularity over the last de
ades.

One advantage of population-based algorithms is that they are often robust to di�
ult �land-

s
apes� (involving for example dis
ontinuities, irregularities or multiple modes) and high dimen-

sional input spa
es (see, e.g., Hansen and Kern (2004)). In a sense, it 
an be said that they


ompensate for the la
k of information about the gradients and stru
ture of the fun
tions of the

problem by using statisti
s (see, e.g., Bä
k (1996)). This usually 
omes at the expense of many

fun
tions evaluations though.

Model-based optimization

Many derivative-free optimization algorithms are model-based, in the sense that they rely on a

mathemati
al model to guide the sear
h for optimal solutions. For example, it 
an be a statisti
al

model as in Bayesian optimization algorithms (see, e.g., Mo
kus (2012); Lo
atelli (1997); Jones
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et al. (1998)), a lo
al approximation model as in the COBYLA algorithm of Powell (1994), or a

global approximation model, as in surrogate-based optimization algorithms (see e.g. Wang and

Shan (2007); Koziel et al. (2011); Queipo et al. (2005); Booker et al. (1999); Regis (2016)).

Algorithms of this 
lass usually require few fun
tions evaluations. However, some degree of

smoothness from the fun
tions of the problem is often ne
essary and they do not usually s
ale

favourably with the dimension. As su
h, their use remains limited to a 
ertain 
lass of problems.

1.2 Ba
kground literature

1.2.1 Bayesian optimization

For this thesis, the 
hoi
e was made to take a Bayesian approa
h to the optimization problem

(1.1). Histori
ally, this approa
h was introdu
ed by Kushner (1964) and developed by Mo
kus

(1975), Mo
kus et al. (1978), Ar
hetti and Betrò (1979) and Mo
kus (2012). It was later made

popular by Jones et al. (1998) who proposed the EGO algorithm, whi
h is one of the most

e�
ient existing algorithms for solving global optimization problems with a small number of

fun
tion evaluations.

To present the Bayesian approa
h to optimization, it is useful to re
all the Bayes rule, whi
h

states that given a statisti
al model where ξ is a quantity of interest and I represents available

information about ξ, the posterior probability of ξ knowing the information I is proportional to

the likelihood of the information I assuming ξ times the prior probability that is pla
ed on ξ:

p(ξ|I) ∝ p(I|ξ) p(ξ). (1.2)

In a Bayesian optimization setting, it is assumed that the fun
tions of the problem are

sample paths of a ve
tor valued random pro
ess ξ. Then, p(ξ) represents a priori knowledge

about these fun
tions, su
h as regularity for example. Usually, stationary Gaussian pro
ess

priors are used be
ause of their �exibility and be
ause they yield good results in pra
ti
e (see

e.g. Williams and Rasmussen (2006)). The information I is made of the past observations of

ξ. In a sequential optimization pro
edure, assuming that a set Xn = (X1, . . . ,Xn) ∈ X
n
of n

observations have been made at time n, then I = In is the information Yn = ξ(Xn), where

Yn = (Y1, . . . , Yn) ∈ R
p+q

is the ve
tor of the observed values. Under this framework, p(ξ|In)
is the posterior distribution of ξ, 
onditional on the past observations. An illustration of this

approa
h is proposed in Figure 1.2.

In the Bayesian optimization literature, various 
riteria have been proposed to sele
t the

evaluation points (X1,X2, . . .). In this thesis, the 
hoi
e was made to fo
us on the expe
ted

improvement (EI) sampling 
riterion (see, e.g., Jones et al. (1998)) but other approa
hes based

on stepwise un
ertainty redu
tion (see e.g. Villemonteix et al. (2009); Be
t et al. (2012); Chevalier

et al. (2014a); Pi
heny (2014b); Hennig and S
huler (2012); Hernández-Lobato et al. (2015))


onstitute alternative dire
tions that may have been taken.

Consider the global optimization setting where the obje
tive is to �nd the minimum m of a

real valued fun
tion f : X → R. The quality of an optimization strategy X : f 7→ (X1,X2, . . .)

6



ξ

PSfrag repla
ements

(x
)

x

0

0.5 1

-5

0

0

5

ξ

PSfrag repla
ements

(x
)

x

0

0.5
1

-5

0

0

5

Figure 1.2: Realizations of ξ under a Gaussian pro
ess prior distribution (top). Conditional realizations
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for f after n evaluations, 
an be measured using the loss fun
tion

εn(X, f) = mn −m, (1.3)

where mn = f(X1)∧ · · · ∧ f(Xn) is the best solution that has been observed after n evaluations.

Using the Bayesian formalism, the improvement brought by the observation of a new point x ∈ X

at time n 
an be measured by the redu
tion of the loss:

In(x) = εn(X, f)− εn+1(X, f) = mn −mn ∧ ξ(x) = (mn − ξ(x))+. (1.4)

Note that sin
e ξ(x) is a random variable, the improvement (1.4) is a random quantity. Then,

a one-step lookahead optimal 
hoi
e for the next evaluation point Xn+1 is to take the point that

maximizes the 
onditional expe
tation of the improvement In:

Xn+1 = argmaxx∈XEn (In(x)) , (1.5)

where En stands for the 
onditional expe
tation with respe
t to Yn = f(Xn). In the following,

we shall denote ρn(x) = En (In(x)), x ∈ X. See Figure 1.3 for an illustration of the operation of

this optimization pro
edure.

The sampling 
riterion (1.5) is 
alled the expe
ted improvement. In the Bayesian optimization

literature, it has been extended to 
onstrained single-obje
tive problems by S
honlau et al. (1998)

and to multi-obje
tive problems by Emmeri
h et al. (2006), among others

2

. The state-of-the-

art approa
h to handle 
onstraints in Bayesian optimization 
onsists in multiplying the expe
ted

improvement by the posterior probability of jointly satisfying the 
onstraints, as will be dis
ussed

in more details in Se
tion 2.2.3 of this manus
ript. This approa
h however, is not suitable for

highly 
onstrained problems, where �nding a feasible solution is a 
hallenge in itself.

Moreover, note that 
hoosing Xn+1 using (1.5) requires to solve an auxiliary optimization

problem. The EI is 
heap to evaluate but it is known to be highly multi-modal (see Figure 1.3),

whi
h makes solving this problem di�
ult in some 
ases. In the global optimization 
ontext, a

review of approa
hes that have been proposed to solve this problem 
an be found in the PhD

thesis of Benassi (2013).

In this thesis we address both di�
ulties. To handle highly-
onstrained problems, we propose

an extension of the expe
ted improvement 
riterion. For solving the optimization problem (1.5)

we propose dedi
ated sequential Monte-Carlo te
hniques, following in this respe
t Benassi et al.

(2012).

1.2.2 Previous work on similar topi
s

This thesis work is a 
ontinuation of previous work initiated by Julien Be
t and Emmanuel

Vazquez, supervisors of this thesis, on the 
oupling between Gaussian pro
ess models and se-

2

See Remark 1 in Se
tion 2.2.2
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Figure 1.3: Bayesian optimization using the EI sampling 
riterion. On the left 
olumn, the fun
tion

to be minimized is represented as a dashed blue line, the posterior mean of ξ is shown in red and the

shaded region 
orresponds to a 95% 
on�den
e interval of the posterior distribution. The observations

are shown as bla
k disks and the 
urrent best observed value is shown as a bla
k dashed line. On the

right 
olumn, the values of the EI fun
tion are shown as a bla
k 
urve. On both 
olumns, the lo
ation of

the maximizer of the EI (i.e. the next iterate) is shown with a blue verti
al line.
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quential Monte-Carlo (SMC) te
hniques

3

.

In the PhD thesis of Li (2012), a Bayesian approa
h to the estimation of small probabilities of

failure is developed. The proposed approa
h is an adaptation of the Subset Simulation algorithm

of Au and Be
k (2001), an SMC algorithm for 
omputing small probabilities of failure, to the 
ase

where the fun
tions of the problem are expensive to evaluate, and are modeled using Gaussian

pro
esses.

In the PhD thesis of Benassi (2013), a fully Bayesian approa
h to global optimization is

proposed and sequential Monte-Carlo te
hniques inspired from the Subset Simulation algorithm

are used for optimizing the EI 
riterion

4

. In this thesis, we go a step farther and propose an

extension of the approa
h to the 
ase of 
onstrained multi-obje
tive optimization.

1.2.3 Illustration

As the name suggests, sequential Monte-Carlo te
hniques are sequential sampling te
hniques (see,

e.g., Del Moral et al. (2006)). Given a sequen
e of distributions (πn)n≥1 de�ned onX, they 
an be

used to iteratively draw weighted samples (Xn)n≥1, where Xn = (xn,i, wn,i)1≤i≤m ∈ X
m× [0, 1]m

is approximately distributed from πn, i.e. the empiri
al distribution π̃n =
∑

1≤i≤m wn,iδxn,i
is

an approximation of πn.

In the Bayesian global optimization setting where the obje
tive is to minimize a fun
tion

f : X→ R modeled by a Gaussian pro
ess ξ, Benassi et al. (2012) de�ne the density πn, n ≥ 1

as:

πn(x) ∝ Pn(ξ(x) ≤ mn), (1.6)

where Pn denotes the 
onditional probability knowing the past observations and mn is the


urrent best solution as in Se
tion 1.2.1. In other words, πn is 
hosen proportional to the

posterior probability of improving upon the 
urrent best solution. Then, using SMC, a weighted

sample distributed from πn 
an be obtained and the resulting parti
les (xn,i)1≤i≤m 
an be used

as 
andidates for the optimization of the EI 
riterion:

Xn+1 = argmax1≤i≤m ρn(xn,i) . (1.7)

The operation of this pro
edure is illustrated in Figure 1.4. Note in parti
ular how the density

of parti
les follows the 
on
entration of the EI from one iteration to the other.

3

This 
oupling has also been studied by Dubourg et al. (2011) in the 
ontext of reliability based design

optimization.

4

In the thesis work of Benassi (2013), the EI 
riterion that is 
onsidered is not exa
tly the one that is introdu
ed

in Se
tion 1.2.1 but the ideas that are used for optimizing the 
riterion 
an be generalized to other de�nitions of

the EI.
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Figure 1.4: Illustration of the SMC pro
edure for optimizing the EI 
riterion. The parti
les are shown

as red dots. They are distributed from a density proportional to the probability of improvement, whi
h

is shown as a bla
k 
urve in the �gures of the left 
olumn. The maximizer of the EI among the parti
les

is shown with a dashed blue line. See Figure 1.3 for more information.
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1.3 About this thesis work

1.3.1 Main 
ontributions and outline of the manus
ript

The main 
ontribution of this thesis is the proposal of an algorithm for solving 
onstrained multi-

obje
tive optimization problems in the 
ase where the fun
tions of the problem are expensive

to evaluate. In parti
ular, our fo
us is on heavily 
onstrained problems, i.e. problems for whi
h

�nding a feasible solution is di�
ult in itself, and on many-obje
tive problems.

The proposed algorithm, whi
h we 
all BMOO, implements a Bayesian approa
h and is

detailed in Chapter 2. This 
hapter is a reprodu
tion of Feliot et al. (2017) with a few modi�
a-

tions. It is stru
tured as follows. In Se
tion 2.2, we re
all the framework of Bayesian optimization

based on the expe
ted improvement 
riterion and dis
uss some of its extensions to 
onstrained

optimization and to multi-obje
tive optimization. Then, we introdu
e a new EI formulation in

Se
tion 2.3. This new formulation is a generalization of the expe
ted hypervolume improvement

(EHVI) 
riterion of Emmeri
h et al. (2006) and is adapted to both the sear
h of feasible solutions

and to the 
onstrained optimization of multiple obje
tives. For the 
omputation and optimiza-

tion of the 
riterion, we propose dedi
ated sequential Monte-Carlo algorithms. These are detailed

respe
tively in Se
tions 2.4.1 and 2.4.2. They have appli
ations outside of the framework of the

BMOO algorithm and 
an be viewed as 
ontributions of independent interest. Then, we present

experimental results in Se
tion 2.5. The BMOO algorithm is shown to 
ompare favourably with

state-of-the-art algorithms for solving 
onstrained single- and multi-obje
tive optimization prob-

lems under a limited budget of fun
tion evaluations. Con
lusions and perspe
tives for future

work are dis
ussed in Se
tion 2.6.

In Chapter 3, we propose improvements and extensions of the algorithm. In Se
tions 3.2

and 3.3, the 
omputation and optimization of the 
riterion are revisited and novel sampling

densities to be used in the sequential Monte-Carlo samplers are proposed. These new densities

make it possible to improve the performan
es of the BMOO algorithm. Then, in Se
tion 3.4, the

algorithm is tested on many-obje
tive problems with up to eight obje
tive fun
tions. Finally,

in Se
tion 3.5, we propose extensions of the algorithm. BMOO is extended to handle problems

de�ned on non-hyper
ubi
 design spa
es (i.e. design spa
es de�ned by bound 
onstraints, a 
heap-

to-evaluate indi
ator fun
tion and/or 
heap-to-evaluate 
onstraints) and to problems having

hidden 
onstraints (due to numeri
al simulation failures for example). Also, to take advantage

of parallel 
omputation fa
ilities when available, a bat
h version of the algorithm is proposed.

Finally, the new EI 
riterion is extended to in
lude user preferen
es into the sear
h for Pareto

optimal solutions.

In Chapter 4, we present appli
ations of the algorithm to real-life design optimization prob-

lems. BMOO is applied to the design of a 
ommer
ial air
raft environment 
ontrol system

(Feliot et al., 2016), to the design of an ele
tri
 vehi
le power-train, to the tuning of a line of

sight 
ontroller and to the design of a turbo-ma
hine fan blade.

To 
on
lude, in Chapter 5, we make a summary of the manus
ript and dis
uss perspe
tives

for future work.
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Chapter 2

A Bayesian approa
h to 
onstrained

single- and multi-obje
tive optimization
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2.1 Introdu
tion

In this thesis, we address the problem of derivative-free multi-obje
tive optimization of real-

valued fun
tions subje
t to multiple inequality 
onstraints. The problem 
onsists in �nding an

approximation of the set

Γ = {x ∈ X : c(x) ≤ 0 and ∄x′ ∈ X s.t. c(x′) ≤ 0 and f(x′) ≺ f(x)} (2.1)

whereX ⊂ R
d
is the sear
h domain, c = (ci)1≤i≤q is a ve
tor of 
onstraint fun
tions (ci : X→ R),

c(x) ≤ 0 means that ci(x) ≤ 0 for all 1 ≤ i ≤ q, f = (fj)1≤j≤p is a ve
tor of obje
tive fun
tions

to be minimized (fj : X→ R), and ≺ denotes the Pareto domination rule (see, e.g., Fonse
a and

Fleming, 1998). Both the obje
tive fun
tions fj and the 
onstraint fun
tions ci are assumed to be


ontinuous. The sear
h domain X is assumed to be 
ompa
t�typi
ally, X is a hyper-re
tangle

de�ned by bound 
onstraints. Moreover, the obje
tive and 
onstraint fun
tions are regarded as

bla
k boxes and, in parti
ular, we assume that no gradient information is available. Finally,

the obje
tive and the 
onstraint fun
tions are assumed to be expensive to evaluate, whi
h arises

for instan
e when the values f(x) and c(x), for a given x ∈ X, 
orrespond to the outputs of

a 
omputationally expensive 
omputer program. In this setting, the emphasis is on building

optimization algorithms that perform well under a very limited budget of evaluations (e.g., a few

hundred evaluations).

We adopt a Bayesian approa
h to this optimization problem. The essen
e of Bayesian op-

timization is to 
hoose a prior model for the expensive-to-evaluate fun
tion(s) involved in the

optimization problem�usually a Gaussian pro
ess model (Santner et al., 2003; Williams and Ras-

mussen, 2006) for tra
tability�and then to sele
t the evaluation points sequentially in order to

obtain a small average error between the approximation obtained by the optimization algorithm

and the optimal solution, under the sele
ted prior. See, e.g., Kushner (1964), Mo
kus (1975),

Mo
kus et al. (1978), Ar
hetti and Betrò (1979) and Mo
kus (2012) for some of the earliest refer-

en
es in the �eld. Bayesian optimization resear
h was �rst fo
used on the 
ase of single-obje
tive

bound-
onstrained optimization: the Expe
ted Improvement (EI) 
riterion (Mo
kus et al., 1978;

Jones et al., 1998) has emerged in this 
ase as one of the most popular 
riteria for sele
ting

evaluation points. Later, the EI 
riterion has been extended to handle 
onstraints (S
honlau

et al., 1998; Sasena et al., 2002; Grama
y and Lee, 2011; Gelbart et al., 2014; Grama
y et al.,

2016) and to address bound-
onstrained multi-obje
tive problems (Emmeri
h et al., 2006; Jeong

et al., 2006; Wagner et al., 2010; Svenson and Santner, 2010).

With this 
hapter, our 
ontribution is twofold. The �rst part of the 
ontribution is the

proposition of a new sampling 
riterion that handles multiple obje
tives and non-linear 
on-

straints simultaneously. This 
riterion 
orresponds to a one-step look-ahead Bayesian strategy,

using the dominated hyper-volume as a utility fun
tion (following in this respe
t Emmeri
h et al.,

2006). More spe
i�
ally, the dominated hyper-volume is de�ned using an extended domination

rule, whi
h handles obje
tives and 
onstraints in a uni�ed way (in the spirit of Fonse
a and Flem-

ing, 1998; Ray et al., 2001; Oyama et al., 2007). This new 
riterion is naturally adapted to the

sear
h of a feasible point when none is available, and several 
riteria from the literature�the EI
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riterion and some of its 
onstrained/multi-obje
tive extensions�are re
overed as spe
ial 
ases

when at least one feasible point is known. The se
ond part of the 
ontribution lies in the numer-

i
al methods employed to 
ompute and optimize the sampling 
riterion. Indeed, this 
riterion

takes the form of an integral over the spa
e of 
onstraints and obje
tives, for whi
h no analyti
al

expression is available in the general 
ase. Besides, it must be optimized at ea
h iteration of

the algorithm to determine the next evaluation point. In order to 
ompute the integral, we use

an algorithm similar to the subset simulation method (Au and Be
k, 2001; Cérou et al., 2012),

whi
h is a well known Sequential Monte Carlo (SMC) te
hnique (see Del Moral et al., 2006; Liu,

2001, and referen
es therein) from the �eld of stru
tural reliability and rare event estimation. For

the optimization of the 
riterion, we resort to an SMC method as well, following earlier work by

Benassi et al. (2012) for single-obje
tive bound-
onstrained problems. The resulting algorithm

is 
alled BMOO (for Bayesian multi-obje
tive optimization).

This 
hapter is based on Feliot et al. (2017). Its stru
ture is as follows. In Se
tion 2.2, we re
all

the framework of Bayesian optimization based on the expe
ted improvement sampling 
riterion,

starting with the un
onstrained single-obje
tive setting. Se
tion 2.3 presents our new sampling


riterion for 
onstrained multi-obje
tive optimization. The 
al
ulation and the optimization

of the 
riterion are dis
ussed in Se
tion 2.4. Se
tion 2.5 presents experimental results. An

illustration on a two-dimensional toy problem is proposed for visualization purpose. Then, the

performan
es of the method are 
ompared to those of referen
e methods on both single- and

multi-obje
tive 
onstrained optimization problems from the literature. Finally, future work is

dis
ussed in Se
tion 2.6.

2.2 Ba
kground literature

2.2.1 Expe
ted Improvement

Consider the single-obje
tive un
onstrained optimization problem

x⋆ = argminx∈X f(x) ,

where f is a 
ontinuous real-valued fun
tion de�ned over X ⊂ R
d
. Our obje
tive is to �nd an

approximation of x⋆ using a sequen
e of evaluation points X1, X2, . . . ∈ X. Be
ause the 
hoi
e of

a new evaluation point Xn+1 at iteration n depends on the evaluation results of f at X1, . . . , Xn,

the 
onstru
tion of an optimization strategy X : f 7→ (X1, X2, X3 . . .) is a sequential de
ision

problem.

The Bayesian approa
h to this de
ision problem originates from the early work of Kushner

(1964) and Mo
kus et al. (1978). Assume that a loss fun
tion εn(X, f) has been 
hosen to

measure the performan
e of the strategy X on f after n evaluations, for instan
e the 
lassi
al

loss fun
tion

εn(X, f) = mn −m, (2.2)

with mn = f(X1) ∧ · · · ∧ f(Xn) and m = minx∈X f(x). Then, a good strategy in the Bayesian

sense is a strategy that a
hieves, on average, a small value of εn(X, f) when n in
reases, where
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the average is taken with respe
t to a sto
hasti
 pro
ess model ξ (de�ned on a probability spa
e

(Ω,A,P0), with parameter in X) for the fun
tion f . In other words, the Bayesian approa
h

assumes that f = ξ(ω, ·) for some ω ∈ Ω. The probability distribution of ξ represents prior

knowledge about the fun
tion f�before a
tual evaluations are performed. The reader is referred

to Vazquez and Be
t (2014) for a dis
ussion of other possible loss fun
tions in the 
ontext of

Bayesian optimization.

Observing that the Bayes-optimal strategy for a budget of N evaluations is intra
table for N

greater than a few units, Mo
kus et al. (1978) proposed to use a one-step look-ahead strategy (also

known as a myopi
 strategy). Given n < N evaluation results, the next evaluation point Xn+1

is 
hosen in order to minimize the 
onditional expe
tation of the future loss εn+1(X, ξ) given

available evaluation results:

Xn+1 = argminx∈XEn

(
εn+1(X, ξ) | Xn+1 = x

)
, (2.3)

where En stands for the 
onditional expe
tation with respe
t to X1, ξ(X1), . . . , Xn, ξ(Xn).

Most of the work produ
ed in the �eld of Bayesian optimization sin
e then has been fo
using,

as the present paper will, on one-step look-ahead (or similar) strategies

1

; the reader is referred

to Ginsbourger and Le Ri
he (2010) and Benassi (2013) for dis
ussions about two-step look-ahead

strategies.

When (2.2) is used as a loss fun
tion, the right-hand side of (2.3) 
an be rewritten as

argminEn

(
εn+1(X, ξ) | Xn+1 = x

)
= argminEn

(
mn+1

∣∣ Xn+1 = x
)

= argmaxEn

(
(mn − ξ(x))+

)
, (2.4)

with z+ = max (z, 0). The fun
tion

ρn(x) : x 7→ En

(
(mn − ξ(x))+

)
(2.5)

is 
alled the Expe
ted Improvement (EI) 
riterion (S
honlau et al., 1998; Jones et al., 1998).

When ξ is a Gaussian pro
ess with known mean and 
ovarian
e fun
tions, ρn(x) has a 
losed-

form expression:

ρn(x) = γ
(
mn − ξ̂n(x), σ2n(x)

)
, (2.6)

where

γ(z, s) =





√
sϕ
(

z√
s

)
+ z Φ

(
z√
s

)
if s > 0,

max (z, 0) if s = 0,

with Φ standing for the normal 
umulative distribution fun
tion, ϕ = Φ′
for the normal probabil-

ity density fun
tion, ξ̂n(x) = En (ξ(x)) for the kriging predi
tor at x (the posterior mean of ξ(x)

after n evaluations) and σ2n(x) for the kriging varian
e at x (the posterior varian
e of ξ(x) after

1

Mo
kus (2012, Se
tion 2.5) heuristi
ally introdu
es a modi�
ation of (2.3) to 
ompensate for the fa
t that

subsequent evaluation results are not taken into a

ount in the myopi
 strategy and thus enfor
e a more global

exploration of the sear
h domain. In this work, we 
onsider a purely myopi
 strategy as in Jones et al. (1998).
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n evaluations). See, e.g., the books of Stein (1999), Santner et al. (2003), and Williams and

Rasmussen (2006) for more information on Gaussian pro
ess models and kriging (also known as

Gaussian pro
ess interpolation).

Finally, observe that the one-step look-ahead strategy (2.3) requires to solve an auxiliary

global optimization problem on X for ea
h new evaluation point to be sele
ted. The obje
tive

fun
tion ρn is rather inexpensive to evaluate when ξ is a Gaussian pro
ess, using (2.6), but it

is typi
ally severely multi-modal. A simple method to optimize ρn 
onsists in 
hoosing a �xed

�nite set of points that 
overs X reasonably well and then performing a dis
rete sear
h. Re
ently,

sequential Monte Carlo te
hniques (see Del Moral et al., 2006; Liu, 2001, and referen
es therein)

have been shown to be a valuable tool for this task (Benassi et al., 2012). A review of other

approa
hes is provided in the PhD thesis of Benassi (2013, Se
tion 4.2).

2.2.2 EI-based multi-obje
tive optimization without 
onstraints

We now turn to the 
ase of un
onstrained multi-obje
tive optimization. Under this framework,

we 
onsider a set of obje
tive fun
tions fj : X → R, j = 1, . . . , p, to be minimized, and the

obje
tive is to build an approximation of the Pareto front and of the set of 
orresponding solutions

Γ = {x ∈ X : ∄x′ ∈ X su
h that f(x′) ≺ f(x)} , (2.7)

where ≺ stands for the Pareto domination rule de�ned by

y = (y1, . . . , yp) ≺ z = (z1, . . . , zp)⇐⇒




∀i ≤ p, yi ≤ zi ,

∃j ≤ p, yj < zj .
(2.8)

Given evaluation results f(X1) = (f1(X1), . . . , fp(X1)), . . . , f(Xn) =

(f1(Xn), . . . , fp(Xn)), de�ne

Hn = {y ∈ B;∃i ≤ n, f(Xi) ≺ y} , (2.9)

where B ⊂ R
p
is a set of the form B = {y ∈ R

p; y ≤ yupp} for some yupp ∈ R
p
, whi
h is

introdu
ed to ensure that the volume of Hn is �nite. Hn is the subset of B whose points are

dominated by the evaluations.

A natural idea, to extend the EI sampling 
riterion (2.5) to the multi-obje
tive 
ase, is to

use the volume of the non-dominated region as loss fun
tion:

εn(X, f) = |H \Hn| ,

where H = {y ∈ B;∃x ∈ X, f(x) ≺ y} and | · | denotes the usual (Lebesgue) volume in R
p
.

The improvement yielded by a new evaluation result f(Xn+1) = (f1(Xn+1), . . . , fp(Xn+1))

is then the in
rease of the volume of the dominated region (see Figure 2.1):

In (Xn+1) = |H \Hn| − |H \Hn+1| = |Hn+1 \Hn| = |Hn+1| − |Hn| , (2.10)
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sin
e Hn ⊂ Hn+1 ⊂ H. Given a ve
tor-valued Gaussian random pro
ess model ξ = (ξ1, . . . , ξp)

of f = (f1, . . . , fp), de�ned on a probability spa
e (Ω,A,P0), a multi-obje
tive EI 
riterion 
an

then be derived as

ρn(x) = En (In(x))

= En

(∫

B\Hn

1ξ(x)≺y dy

)

=

∫

B\Hn

En

(
1ξ(x)≺y

)
dy

=

∫

B\Hn

Pn (ξ(x) ≺ y) dy , (2.11)

where Pn stands for the probability P0 
onditioned on X1, ξ(X1), . . . , Xn, ξ(Xn). The multi-

obje
tive sampling 
riterion (2.11), also 
alled Expe
ted Hyper-Volume Improvement (EHVI),

has been proposed by Emmeri
h and 
oworkers (Emmeri
h, 2005; Emmeri
h et al., 2006; Em-

meri
h and Klinkenberg, 2008).

Remark 1 A variety of alternative approa
hes have been proposed to extend the EI 
riterion

to the multi-obje
tive 
ase, whi
h 
an be roughly 
lassi�ed into aggregation-based te
hniques

(Knowles, 2006; Knowles and Hughes, 2005; Zhang et al., 2010) and domination-based te
h-

niques (see e.g. Jeong and Obayashi, 2005; Keane, 2006; Ponweiser et al., 2008; Bautista, 2009;

Svenson and Santner, 2010; Wagner et al., 2010). We 
onsider these approa
hes are heuristi


extensions of the EI 
riterion, in the sense that none of them emerges from a proper Bayesian

formulation (i.e., a myopi
 strategy asso
iated to some well-identi�ed loss fun
tion). A detailed

des
ription of these approa
hes is out of the s
ope of this thesis. The reader is referred to Wagner

et al. (2010), Cou
kuyt et al. (2014) and Horn et al. (2015) for some 
omparisons and dis
us-

sions. See also Pi
heny (2014b) and Hernández-Lobato et al. (2015) for other approa
hes not

dire
tly related to the 
on
ept of expe
ted improvement.

Remark 2 The multi-obje
tive sampling 
riterion (2.11) redu
es to the usual EI 
riterion (2.5)

in the single-obje
tive 
ase (assuming that f(Xi) ≤ yupp for at least one i ≤ n).

Under the assumption that the 
omponents ξi of ξ are mutually independent

2

, Pn (ξ(x) ≺ y)

an be expressed in 
losed form: for all x ∈ X and y ∈ B \Hn,

Pn (ξ(x) ≺ y) =
p∏

i=1

Φ

(
yi − ξ̂i,n(x)
σi,n(x)

)
, (2.12)

where ξ̂i,n(x) and σ
2
i,n(x) denote respe
tively the kriging predi
tor and the kriging varian
e at x

for the ith 
omponent of ξ.

2

This is the most 
ommon modeling assumption in the Bayesian optimization literature, when several obje
-

tive fun
tions, and possibly also several 
onstraint fun
tions, have to be dealt with. See the VIPER algorithm

of Williams et al. (2010) for an example of an algorithm based on 
orrelated Gaussian pro
esses.
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The integration of (2.12) over B \ Hn, in the expression (2.11) of the multi-obje
tive EI


riterion, is a non-trivial problem. Several authors (Emmeri
h and Klinkenberg, 2008; Bader

and Zitzler, 2011; Hupkens et al., 2014; Cou
kuyt et al., 2014) have proposed de
omposition

methods to 
arry out this 
omputation, where the integration domain B \ Hn is partitioned

into hyper-re
tangles, over whi
h the integral 
an be 
omputed analyti
ally. The 
omputational


omplexity of these methods, however, in
reases exponentially with the number of obje
tives

3

,

whi
h makes the approa
h impra
ti
al in problems with more than a few obje
tive fun
tions.

The method proposed in this work also en
ounters this type of integration problem, but takes a

di�erent route to solve it (using SMC te
hniques; see Se
tion 2.4). Our approa
h will make it

possible to deal with more obje
tive fun
tions.

Remark 3 Exa
t and approximate implementations of the EHVI 
riterion are available, together

with other Gaussian-pro
ess-based 
riteria for bound-
onstrained multi-obje
tive optimization, in

the Matlab/O
tave toolbox STK (Be
t et al., 2016b) and in the R pa
kages GPareto (Binois

and Pi
heny, 2015) and mlrMBO (Horn et al., 2015). Note that several approa
hes dis
ussed

in Remark 1 maintain an a�ordable 
omputational 
ost when the number of obje
tives grows,

and therefore 
onstitute possible alternatives to the SMC te
hnique proposed in this paper for

many-obje
tive box-
onstrained problems.

2.2.3 EI-based optimization with 
onstraints

In this se
tion, we dis
uss extensions of the expe
ted improvement 
riterion for single- and multi-

obje
tive 
onstrained optimization.

Consider �rst the 
ase of problems with a single obje
tive and several 
onstraints:





minx∈X f(x) ,

c(x) ≤ 0 ,
(2.13)

where c = (c1, . . . , cq) is a ve
tor of 
ontinuous 
onstraints. The set C = {x ∈ X; c(x) ≤ 0} is

alled the feasible domain. If it is assumed that at least one evaluation has been made in C, it

is natural to de�ne a notion of improvement with respe
t to the best observed obje
tive value

mn = min {f(x); x ∈ {X1, . . . ,Xn} ∩ C}:

In(Xn+1) = mn −mn+1

= 1c(Xn+1)≤0 ·
(
mn − f(Xn+1)

)
+

=





mn − f(Xn+1) if Xn+1 ∈ C and f(Xn+1) < mn,

0 otherwise .
(2.14)

In other words, a new observation makes an improvement if it is feasible and improves upon

the best past value (S
honlau et al., 1998). The 
orresponding expe
ted improvement 
riterion

3

See, e.g., Beume (2009), Hupkens et al. (2014), Cou
kuyt et al. (2014) and referen
es therein for de
omposition

algorithms and 
omplexity results.
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follows from taking the expe
tation:

ρn(x) = En

(
1ξc(x)≤0 ·

(
mn − ξo(x)

)
+

)
. (2.15)

If f is modeled by a random pro
ess ξo and c is modeled by a ve
tor-valued random pro
ess

ξc = (ξc,1, . . . , ξc,q) independent of ξo, then the sampling 
riterion (2.15) simpli�es to S
honlau

et al.'s 
riterion:

ρn(x) = Pn(ξc(x) ≤ 0) En

(
(mn − ξo(x))+

)
. (2.16)

In other words, the expe
ted improvement is equal in this 
ase to the produ
t of the un
on-

strained expe
ted improvement, with respe
t to mn, with the probability of feasibility. The

sampling 
riterion (2.16) is extensively dis
ussed, and 
ompared with other Gaussian-pro
ess-

based 
onstraint handling methods, in the PhD thesis of Sasena (2002). More generally, sampling


riteria for 
onstrained optimization problems have been reviewed by Parr et al. (2012) and Gel-

bart (2015).

In the general 
ase of 
onstrained multi-obje
tive problems, the aim is to build an approxi-

mation of Γ de�ned by (2.1). If it is assumed that an observation has been made in the feasible

set C, a reasoning similar to that used in the single-obje
tive 
ase 
an be made to formulate an

extension of the EI (2.11):

ρn(x) = En (|Hn+1| − |Hn|) , (2.17)

where

Hn = {y ∈ B;∃i ≤ n, Xi ∈ C and f(Xi) ≺ y} (2.18)

is the subset of B, de�ned as in Se
tion 2.2.2, whose points are dominated by feasible evalua-

tions. When ξo and ξc are assumed independent, (2.17) boils down to the produ
t of a modi�ed

EHVI 
riterion, where only feasible points are 
onsidered

4

, and the probability of feasibility, as

suggested by Emmeri
h et al. (2006) and Shimoyama et al. (2013b):

ρn(x) = Pn (ξc(x) ≤ 0)

∫

B\Hn

Pn (ξo(x) ≺ y) dy. (2.19)

Observe that the sampling 
riterion (2.17) is the one-step look-ahead 
riterion asso
iated

to the loss fun
tion εn(X, f) = − |Hn|, where Hn is de�ned by (2.18). This loss fun
tion

remains 
onstant as long as no feasible point has been found and, therefore, is not an appropriate

measure of loss for heavily 
onstrained problems where �nding feasible points is sometimes the

main di�
ulty

5

. From a pra
ti
al point of view, not all unfeasible points should be 
onsidered

equivalent: a point that does not satisfy a 
onstraint by a small amount has probably more

value than one that does not satisfy the 
onstraint by a large amount, and should therefore

4

Note that this modi�ed EHVI 
riterion remains well de�ned even whenHn = ∅, owing to the introdu
tion of an

upper bound yupp in the de�nition of B. Its single-obje
tive 
ounterpart introdu
ed earlier (see Equation (2.15)),

however, was only well de�ned under the assumption that at least one feasible point is known. Introdu
ing an

upper bound yupp is of 
ourse also possible in the single-obje
tive 
ase.

5

The same remark holds for the variant (see, e.g., Gelbart et al., 2014) whi
h 
onsists in using the probability

of feasibility as a sampling 
riterion when no feasible point is available. This is indeed equivalent to using the loss

fun
tion εn(X, f) = −1∃i≤n,Xi∈C in the sear
h for feasible points.
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make the loss smaller. Se
tion 2.3 will present a generalization of the expe
ted improvement

for 
onstrained problems, relying on a new loss fun
tion that en
odes this preferen
e among

unfeasible solutions.

Remark 4 Other Gaussian-pro
ess-based approa
hes that 
an be used to handle 
onstraints in-


lude the method by Grama
y et al. (2016), based on the augmented Lagrangian approa
h of Conn

et al. (1991), and several re
ent methods (Pi
heny, 2014a; Gelbart, 2015; Hernández-Lobato et al.,

2015, 2016a) based on stepwise un
ertainty redu
tion strategies (see, e.g., Villemonteix et al.,

2009; Be
t et al., 2012; Chevalier et al., 2014a, for more information on this topi
).

Remark 5 The term En

(
(mn − ξo(x))+

)
in (2.16) 
an be 
omputed analyti
ally as in Se
-

tion 2.2.1, and the 
omputation of the integral in (2.19) has been dis
ussed in Se
tion 2.2.2. If it

is further assumed that the 
omponents of ξc are Gaussian and independent, then the probability

of feasibility 
an be written as

Pn(ξc(x) ≤ 0) =

q∏

j=1

Φ

(
− ξ̂c, j, n(x)
σc, j, n(x)

)
(2.20)

where ξ̂c, j, n(x) and σ
2
c, j, n(x) stand respe
tively for the kriging predi
tor and the kriging varian
e

of ξc, j at x.

2.3 An EI 
riterion for 
onstrained multi-obje
tive optimization

2.3.1 Extended domination rule

In a 
onstrained multi-obje
tive optimization setting, we propose to handle the 
onstraints using

an extended Pareto domination rule that takes both obje
tives and 
onstraints into a

ount, in

the spirit of Fonse
a and Fleming (1998), Ray et al. (2001) and Oyama et al. (2007). For ease of

presentation, denote by Yo = R
p
and Yc = R

q
the obje
tive and 
onstraint spa
es respe
tively,

and let Y = Yo ×Yc.

We shall say that y1 ∈ Y dominates y2 ∈ Y, whi
h will be written as y1⊳y2, if ψ(y1) ≺ ψ(y2),
where ≺ is the usual Pareto domination rule re
alled in Se
tion 2.2.2 and, denoting by R the

extended real line,

ψ : Yo ×Yc → R
p ×R

q

(yo, yc) 7→





(yo, 0) if yc ≤ 0,

(
+∞, max(yc, 0)

)
otherwise.

(2.21)

The extended domination rule (2.21) has the following properties:

(i) For un
onstrained problems (q = 0, Yc = ∅), the extended domination rule boils down to

the Pareto domination rule on Y = Yo.
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evaluation results (f(X1), c(X1)), . . ., (f(Xn), c(Xn)), de�ne

Hn = {y ∈ B; ∃i ≤ n, (f(Xi), c(Xi)) ⊳ y}

with B = Bo×Bc, where Bo ⊂ Yo and Bc ⊂ Yc are two bounded hyper-re
tangles that are intro-

du
ed to ensure, as in Se
tion 2.2.2, that |Hn| < +∞ (see Appendix 2.7.1 and sub�gures (
) and

(e) of Figure 2.2). Then, de�ne the improvement yielded by a new evaluation (f(Xn+1), c(Xn+1))

by

In (Xn+1) = |Hn+1 \Hn| = |Hn+1| − |Hn| (2.22)

as in Se
tion 2.2.2. In order to get a meaningful 
on
ept of improvement both before and after

the �rst feasible point has been found, we assume without loss of generality that (0, . . . , 0) ∈ R
q

is in the interior of Bc.

If (f, c) is modeled by a ve
tor-valued random pro
ess ξ = (ξo, ξc), with ξo = (ξo,1, . . . , ξo,p)

and ξc = (ξc,1, , . . . ξc,q), then the expe
ted improvement for the 
onstrained multi-obje
tive

optimization problem may be written as

ρn(x) = En

(
(In(x)

)
= En

(∫

Gn

1ξ(x)⊳y dy

)
=

∫

Gn

Pn(ξ(x)⊳ y) dy , (2.23)

where Gn = B \Hn is the set of all non-dominated points in B.

As in Se
tion 2.2.2, under the assumption that the 
omponents of ξ are mutually independent

and Gaussian, Pn (ξ(x)⊳ y) 
an be expressed in 
losed form: for all x ∈ X and y = (yo, yc) ∈ Gn,

Pn(ξ(x)⊳ y) =





(
p∏

i=1

Φ

(
yo, i − ξ̂o, i, n(x)

σo, i, n(x)

))


q∏

j=1

Φ

(
− ξ̂c, j, n(x)
σc, j, n(x)

)


if yc ≤ 0 ,

q∏

j=1

Φ

(
max(yc, j, 0)− ξ̂c, j, n(x)

σc, j, n(x)

)
otherwise .

(2.24)

The EI-based 
onstrained multi-obje
tive optimization pro
edure may be written as (2.3). In

pra
ti
e, the 
omputation of ea
h new evaluation point requires to solve two numeri
al problems:

a) the 
omputation of the integral in (2.23); b) the optimization of ρn in the pro
edure (2.3).

These problems will be addressed in Se
tion 2.4.

Remark 6 When there are no 
onstraints (q = 0, Yc = ∅), the extended domination rule ⊳


orresponds to the usual Pareto domination rule ≺. In this 
ase, the sampling 
riterion (2.23)

simpli�es to

ρn(x) =

∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo, (2.25)

with

Hn,o = {yo ∈ Bo; ∃i ≤ n, f(Xi) ≺ yo} .

Denote by ylowo , yuppo ∈ Yo the lower and upper 
orners of the hyper-re
tangle Bo. Then, the sam-
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pling 
riterion (2.25) is equivalent to the multi-obje
tive EI 
riterion presented in Se
tion 2.2.2

in the limit ylowo → −∞. If, moreover, the problem has only one obje
tive fun
tion, then the


riterion (2.23) boils down to the original expe
ted improvement 
riterion as soon as the best

evaluation dominates yuppo (see Remark 2).

2.3.3 De
omposition of the expe
ted improvement: feasible and unfeasible


omponents

Assume that there is at least one 
onstraint (q ≥ 1). Then, the expe
ted improvement ρn(x) 
an

be de
omposed as

ρn(x) = ρfeasn (x) + ρunfn (x), (2.26)

by splitting the integration domain in the right-hand side of (2.23) in two parts: ρfeasn (x) 
orre-

sponds to the integral onGn∩{yc ≤ 0}, while ρunfn (x) 
orresponds to the integral onGn∩{yc 6≤ 0}.
More expli
it expressions will now be given for both terms. First,

ρunfn (x) =

∫

Gn∩{yc 6≤0}
Pn ((ξo(x), ξc(x))⊳ (yo, yc)) d(yo, yc)

= |Bo| ·
∫

Bc\Hn,c

Pn

(
ξ+c (x) ≺ y+c

)
1yc 6≤0 dyc

(2.27)

where y+c = max (yc, 0) and

Hn,c =
{
yc ∈ Bc | ∃i ≤ n, c+(Xi) ≺ y+c

}
.

Let B
−
c = Bc ∩ ]−∞, 0]q denote the feasible subset of Bc. Then, assuming that ξc and ξo are

independent,

ρfeasn (x) =

∫

Gn∩{yc≤0}
Pn ((ξo(x), ξc(x))⊳ (yo, yc)) d(yo, yc)

=
∣∣B−

c

∣∣ · Pn(ξc(x) ≤ 0) ·
∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo ,
(2.28)

where

Hn,o = {yo ∈ Bo | ∃i ≤ n, c(Xi) ≤ 0 and f(Xi) ≺ yo} .

Remark 7 The set Bc \ Hn,c is empty as soon as a feasible point has been evaluated. As a


onsequen
e, the 
omponent ρunf of the expe
ted improvement vanishes and therefore, a

ording

to (2.28),

ρn(x) ∝ Pn(ξc(x) ≤ 0) ·
∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo .

In other words, up to a multipli
ative 
onstant, the expe
ted improvement is equal, in this 
ase, to

the produ
t of the probability of feasibility with a modi�ed EHVI 
riterion in the obje
tive spa
e,

where only feasible points are used to de�ne the dominated region. In parti
ular, in 
onstrained

single-obje
tive problems, the 
riterion of S
honlau et al. (see Se
tion 2.2.3) is re
overed as the

limit 
ase ylowo → −∞, as soon as the best evaluation dominates yuppo .
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Remark 8 In the numeri
al experiments of Se
tion 2.5, Bo and Bc are de�ned using estimates

of the range of the obje
tive and 
onstraint fun
tions (see Appendix 2.7.2). Another natural 
hoi
e

for Bo would have been to use (an estimate of) the range of the obje
tive fun
tions restri
ted to

the feasible subset C ⊂ X. Further investigation of this idea is left for future work.

2.4 Sequential Monte Carlo te
hniques to 
ompute and optimize

the expe
ted improvement

2.4.1 Computation of the expe
ted improvement

Sin
e the dimension of Y is likely to be high in pra
ti
al problems (say, p+q ≥ 5), the integration

of y 7→ Pn(ξ(x) ⊳ y) over Gn 
annot be 
arried out using de
omposition methods (Emmeri
h

and Klinkenberg, 2008; Bader and Zitzler, 2011; Hupkens et al., 2014) be
ause, as mentioned in

Se
tion 2.2.2, the 
omputational 
omplexity of these methods in
reases exponentially with the

dimension of Y.

To address this di�
ulty, we propose to use a Monte Carlo approximation of the inte-

gral (2.23):

ρn(x) ≈
1

m

m∑

k=1

Pn(ξ(x)⊳ yn,k), (2.29)

where Yn = (yn,k)1≤k≤m
is a set of parti
les distributed a

ording to the uniform density πYn ∝

1Gn on Gn. In prin
iple, sampling uniformly over Gn 
ould be a
hieved using an a

ept-reje
t

method (see, e.g., Robert and Casella, 2004), by sampling uniformly over B and dis
arding points

in Hn (Bader and Zitzler, 2011). However, when the dimension of Y is high, Gn will probably

have a small volume with respe
t to that of B. Then, the a

eptan
e rate be
omes small and

the 
ost of generating a uniform sample on Gn be
omes prohibitive. (As an example, 
onsider

an optimization problem with q = 20 
onstraints. If Bc = [−v/2, +v/2]q for some v > 0, then

the volume of B
−
c is 220 ≈ 106 times smaller than that of Bc.)

In this work, we use a variant of the te
hnique 
alled subset simulation (Au and Be
k, 2001;

Cérou et al., 2012) to a
hieve uniform sampling over Gn. The subset simulation method is a

well-known method in the �eld of stru
tural reliability and rare event estimation, whi
h is used

to estimate the volume of small sets by Monte Carlo sampling.

Denote by ΠY
0 the uniform distribution over B and assume that the probability ΠY

0 (Gn) be-


omes small when n in
reases, so that sampling Gn using an a

ept-reje
t method is impra
ti
al.

Observe that the sets Gn, n = 1, 2, . . . form a nested sequen
e of subsets of B (hen
e the name

subset simulation):

B ⊃ G1 ⊃ G2 ⊃ · · · . (2.30)

Denote by ΠY
n the uniform distribution on Gn, whi
h has the probability density fun
tion πYn

de�ned above. Sin
e the addition of a single new evaluation, at iteration n+ 1, is likely to yield
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Algorithm 1: Remove-Resample-Move pro
edure to 
onstru
t Yn
1 if n = 0 then

2 Generate m independent and uniformly distributed parti
les over G0 = B.

3 else

4 Remove: Set Y0
n = Yn−1 ∩Gn and m0 =

∣∣Y0
n

∣∣
.

5 Resample: Set Y1
n = Y0

n ∪ {ỹn,1, . . . , ỹn,m−m0}, where ỹn,1, . . . , ỹn,m−m0 are

independent and uniformly distributed on Y0
n. (Ea
h ỹn,k is a repli
ate of a

parti
le from Y0
n.)

6 Move: Move the parti
les using a Metropolis-Hastings algorithm (see, e.g, Robert

and Casella, 2004) whi
h targets the uniform distribution over Gn. The resulting

set of parti
les is Yn.

only a small modi�
ation of the set Gn, the probability

ΠY

n (Gn+1) =

∫

Gn+1

πYn (y) dy =
ΠY

0 (Gn+1)

ΠY
0 (Gn)

is likely to be high. Then, supposing that a set of parti
les Yn = (yn,k)1≤k≤m
uniformly dis-

tributed on Gn is already available, one obtains a sample Yn+1 uniformly distributed over Gn+1

using the Remove-Resample-Move pro
edure des
ribed in Algorithm 1

6

.

Algorithm 1 obviously requires that at least one parti
le from Yn, whi
h belongs by 
on-

stru
tion to Gn, also belongs to Gn+1; otherwise, the set of surviving parti
les, referred to in the

se
ond step of the algorithm, will be empty. More generally, Algorithm 1 will typi
ally fail to

produ
e a good sample from ΠY
n+1 if the number of surviving parti
les is small, whi
h happens

with high probability if ΠY
n (Gn+1) is small�indeed, the expe
ted number of parti
les of Yn in a

given

7

set A ⊂ B is

En

(
N(A; Yn)

)
= En

(
m∑

k=1

1A(yn,k)

)
= m ·ΠY

n (A) , (2.31)

where N(A; Y) denotes the number of parti
les of Y in A. This situation o

urs, for instan
e,

when a new evaluation point brings a large improvement Gn \Gn+1 = Hn+1 \Hn.

When the number of surviving parti
les is smaller than a pres
ribed fra
tion ν of the popula-

tion size, that is, when N(Gn+1; Yn) < mν, intermediate subsets are inserted in the de
reasing

sequen
e (2.30) to ensure that the volume of the subsets does not de
rease too fast. The 
orre
ted

version of Algorithm 1 is des
ribed in Algorithms 2, 3 and 4. The method used in Algorithm 4

to 
onstru
t the intermediate subsets is illustrated on Figures 2.3 and 2.4.

Remark 9 The algorithms presented in this se
tion provide a general numeri
al method for the

approximate 
omputation of the expe
ted improvement 
riterion, that 
an be used with multiple

6

All the random variables generated in Algorithm 1 are independent of ξ 
onditionally on X1, ξ(X1), . . . ,

Xn+1, ξ(Xn+1).
7

Equation (2.31) does not hold exa
tly for A = Gn+1 sin
e, 
onditionally on X1, ξ(X1), . . . , Xn, ξ(Xn), the
set Gn+1 is a random set and is not independent of Yn. Indeed, Gn+1 depends on ξ(Xn+1) and Xn+1 is 
hosen

by minimization of the approximate expe
ted improvement, whi
h in turn is 
omputed using Yn.
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Algorithm 2: Modi�ed pro
edure to 
onstru
t Yn
Notation: Given a set A in Y, denote by Pareto(A) the set of points of A that are not

dominated by any other point of A
1 if n = 0 then

2 Generate m independent and uniformly distributed parti
les over G0 = B.

3 else

4 Set Pn−1 = Pareto ({ξ(X1), . . . , ξ(Xn−1)}).
5 Set Pn = Pareto ({ξ(X1), . . . , ξ(Xn)}) = Pareto (Pn−1 ∪ {ξ(Xn)}).
6 Constru
t Yn using the adaptive multi-level splitting pro
edure des
ribed in

Algorithm 3, with Yn−1, Pn−1, Pn and B as inputs.

obje
tives, multiples 
onstraints and possibly 
orrelated Gaussian pro
ess models. When the ob-

je
tives and 
onstraints are independent, the de
omposition introdu
ed in Se
tion 2.3.3 makes it

possible to 
ompute two integrals over spa
es of lower dimension (over Bc \Hn,c and Bo \Hn,o,

respe
tively) instead of one integral over Gn = B \ Hn. In fa
t, only one of the two integrals

a
tually needs to be approximated numeri
ally: indeed, the term ρfeas of the de
omposition 
an

be 
al
ulated in 
losed form prior to �nding feasible solutions, and the term ρunf vanishes on
e

a feasible observation has been made. We have taken advantage of this observation for all the

numeri
al results presented in Se
tion 2.5.

2.4.2 Maximization of the sampling 
riterion

The optimization of the sampling 
riterion (2.23) is a di�
ult problem in itself be
ause, even

under the un
onstrained single-obje
tive setting, the EI 
riterion is very often highly multi-

modal. Our proposal is to 
ondu
t a dis
rete sear
h on a small set of good 
andidates provided

at ea
h iteration by a sequential Monte Carlo algorithm, in the spirit of Benassi et al. (2012), Li

et al. (2012), Li (2012) and Benassi (2013).

The key of su
h an algorithm is the 
hoi
e of a suitable sequen
e

(
πXn
)
n≥0

of probability

density fun
tions on X, whi
h will be the targets of the SMC algorithm. Desirable but antag-

onisti
 properties for this sequen
e of densities are stability�πXn+1 should not di�er too mu
h

from πXn �and 
on
entration of the probability mass in regions 
orresponding to high values of

the expe
ted improvement. We propose, following Benassi et al. (2012), to 
onsider the sequen
e

de�ned by 



πXn (x) ∝ 1 if n = 0,

πXn (x) ∝ Pn(ξ(x) ∈ Gn) for n = 1, 2, . . .

In other words, we start from the uniform distribution on X and then we use the probability

of improvement x 7→ Pn(ξ(x) ∈ Gn) as an un-normalized probability density fun
tion.

A pro
edure similar to that des
ribed in Algorithm 1 is used to generate parti
les distributed

from the target densities πXn . At ea
h step n of the algorithm, our obje
tive is to 
onstru
t a set

of weighted parti
les

Xn = (xn,k, wn,k)
m
k=1 ∈ (X×R)m (2.32)
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Algorithm 3: Adaptive multi-level splitting in the Y-domain

Notations: Given a set A in Y, denote by

� Pareto(A) the set of points of A that are not dominated by any

other point of A,

� G(A) := B \ {y ∈ B; ∃y′ ∈ A su
h that y′ ⊳ y} the region of B

not dominated by A.

Inputs: Y0, P0, P⋆
and B su
h that

� G (P⋆) ⊂ G (P0), with P0 = Pareto (P0) and P⋆ = Pareto (P⋆),

� Y0 = (y0,k)1≤k≤m
∈ Y

m
is uniformly distributed on G (P0). Note that Y0 may 
ontain

repli
ated values.

� ylowo , yuppo , ylowc and yuppc su
h that Bo =
{
y ∈ Yo; y

low

o ≤ y ≤ yuppo

}
,

Bc =
{
y ∈ Yc; y

low

c ≤ y ≤ yuppc

}
, and B = Bo ×Bc 
ontains P0

and P⋆
.

Output: A set of parti
les Yt = (yt,k)1≤k≤m
∈ Y

m
uniformly distributed on G(P⋆).

1 t← 0
2 while Pt 6= P⋆

do

3 Initialize: P ← Pt.
4 P is the front that we will build upon. First we try to add the points of P⋆

into P:
5 for y ∈ P⋆

do

6 Ptry ← Pareto (P ∪ {y})
7 Compute the number N(G(Ptry);Yt) of parti
les of Yt in G(Ptry)
8 if N(G(Ptry);Yt) ≥ νm then

9 P ← Ptry
At the end of this �rst step, either P = P⋆

or P⋆ \ P 
ontains points that 
annot be added

without killing a large number of parti
les, in whi
h 
ase we insert intermediate fronts.

10 if (P⋆ \ P) 6= ∅ then
11 P ← P̃u with P̃u = 
hooseNextFront(Yt,P,P⋆,B)

12 Pt+1 ← P
13 Generate Yt+1 = (yt+1,k)1≤k≤m

uniformly distributed on G (Pt+1) using the

�Remove-Resample-Move� steps des
ribed in Algorithm 1.

14 t← t+ 1
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Algorithm 4: 
hooseNextFront

Inputs: Yt, P, P⋆
and B su
h that

� G (P⋆) ⊂ G (P), with P = Pareto (P) and P⋆ = Pareto (P⋆),

� Yt = (yt,k)1≤k≤m
∈ Y

m
is uniformly distributed on G (Pt) (see Algorithm 3). Note

that Yt may 
ontain repli
ated values.

� ylowo , yuppo , ylowc and yuppc su
h that Bo =
{
y ∈ Yo; y

low

o ≤ y ≤ yuppo

}
,

Bc =
{
y ∈ Yc; y

low

c ≤ y ≤ yuppc

}
, and B = Bo ×Bc 
ontains P

and P⋆
.

Output: An intermediate front P̃u su
h that N(G(P̃u);Yt) ≈ νm.

1 Randomly 
hoose a point y⋆ = (y⋆o , y
⋆
c ) ∈ (P⋆ \ P) toward whi
h we will try to augment

the front P.
2 Count the number q⋆ of 
onstraints satis�ed by y⋆.
3 if q⋆ < q then
4 yanchor ← (yuppo , yc) ∈ Bo ×Bc, where yc,j = yuppc,j if y⋆c,j > 0 and zero otherwise,

1 ≤ j ≤ q.
5 Find P̃u su
h that N(G(P̃u);Yt) ≈ νm using a di
hotomy on u ∈ [0, 1], where

P̃u = Pareto(P ∪ {yanchor + u(y⋆ − yanchor)}).
6 else

7 y0anchor ← (yuppo , 0) ∈ Bo ×Bc

8 ykanchor ← (yuppo , ykc ) ∈ Bo ×Bc, where y
k
c,j = yuppc,j if j = k and zero otherwise, for

1 ≤ j ≤ q and 1 ≤ k ≤ q.
9 if N(G({y0anchor});Yt) ≥ νm then

10 Find P̃u su
h that N(G(P̃u);Yt) ≈ νm using a di
hotomy on u ∈ [0, 1], where

P̃u = Pareto(P ∪ {y0anchor + u(y⋆ − y0anchor)}).

11 else

12 Find P̃u su
h that N(G(P̃u);Yt) ≈ νm using a di
hotomy on u ∈ [0, 1], where

P̃u = Pareto(P ∪ {y1anchor + u(y0anchor − y1anchor)} ∪ · · ·
∪ {yqanchor + u(y0anchor − yqanchor)}).
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Algorithm 5: Reweight-Resample-Move pro
edure to 
onstru
t Xn

1 if n = 0 then

2 Set X0 =
(
x0,k,

1
m

)
1≤k≤m

with x0,1, . . . , x0,m independent and uniformly distributed

on X.

3 else

4 Reweight Xn−1 a

ording to Equation (2.33) to obtain X 0
n .

5 Resample with a residual resampling s
heme (see, e.g., Dou
 and Cappé, 2005) to

obtain a set of parti
les X 1
n =

(
x1n,k,

1
m

)
1≤k≤m

.

6 Move the parti
les with an MCMC transition kernel to obtain

Xn =
(
xn,k,

1
m

)
1≤k≤m

.

su
h that the empiri
al distribution

∑
k wn,kδxn,k

(where δx denotes the Dira
 measure at x ∈ X)

is a good approximation, for m large enough, of the target distribution with density πXn . The

main di�eren
e with respe
t to Se
tion 2.4.1 is the introdu
tion of weighted parti
les, whi
h

makes it possible to deal with non-uniform target distributions. When a new sample is observed

at step n, the weights of the parti
les are updated to �t the new density πXn+1:

w0
n+1,k ∝

πXn+1(xn,k)

πXn (xn,k)
wn,k. (2.33)

The weighted sample X 0
n+1 = (xn,k, w

0
n+1,k)1≤k≤m is then distributed from πXn+1. Sin
e the

densities π0, π1, . . . be
ome more and more 
on
entrated as more information is obtained about

the fun
tions f and c, the regions of high values for πXn+1 be
ome di�erent from the regions of

high values for πXn . Consequently, the weights of some parti
les degenerate to zero, indi
ating

that those parti
les are no longer good 
andidates for the optimization. Then, the 
orresponding

parti
les are killed, and the parti
les with non-degenerated weights are repli
ated to keep the size

of the population 
onstant. All parti
les are then moved randomly using an MCMC transition

kernel targeting πXn+1, in order to restore some diversity. The 
orresponding pro
edure, whi
h is

very similar to that des
ribed in Algorithm 1, is summarized in Algorithm 5.

When the densities πXn and πXn+1 are too far apart, it may happen that the number of parti
les

with non-degenerated weights is very small and that the empiri
al distribution

∑
k wn+1,k δxn,k

is not a good approximation of πXn+1. This is similar to the problem explained in Se
tion 2.4.1,

ex
ept that in the 
ase of non uniform target densities, we use the E�e
tive Sample Size (ESS)

to dete
t degenera
y (see, e.g., Del Moral et al., 2006), instead of simply 
ounting the surviving

parti
les

8

. When the ESS falls below a pres
ribed fra
tion of the population size, we insert

intermediate densities, in a similar way to what was des
ribed in Se
tion 2.4.1. The intermediate

densities are of the form π̃u(x) ∝ Pn(ξ(x) ∈ G̃u), with Gn+1 ⊂ G̃u ⊂ Gn. The 
orresponding

modi�
ation of Algorithm 5 is straightforward. It is very similar to the pro
edure des
ribed in

Algorithms 2, 3 and 4 and is not repeated here for the sake of brevity.

8

For a weighted sample of size n, the ESS is de�ned as the number of random samples that produ
es Monte-

Carlo estimates with a varian
e equal to that of the weighted sample. As su
h, it 
an be viewed as a measure of

the degenera
y of a weighted sample.
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Remark 10 A 
losed form expression of the probability of improvement is available in the single-

obje
tive 
ase, as soon as one feasible point has been found. When no 
losed form expression

is available, we estimate the probability of improvement using a Monte Carlo approximation:

1/N
∑N

k=1 1Gn(Zk), where (Zk)1≤k≤N is an N -sample of Gaussian ve
tors, distributed as ξ(x)

under Pn. A rigorous justi�
ation for the use of su
h an unbiased estimator inside a Metropolis-

Hastings transition kernel (see the Move step of Algorithm 5) is provided by Andrieu and Roberts

(2009).

Remark 11 It sometimes happens that a new evaluation result�say, the n-th evaluation result�


hanges the posterior so dramati
ally that the ESS falls below the threshold νm (see Algorithm 3)

for the 
urrent region Gn−1. When that happens, we simply restart the sequential Monte Carlo

pro
edure using a sequen
e of transitions from P0 = ∅ to the target front P⋆
(notation introdu
ed

in Algorithm 3).

Remark 12 For the sake of 
larity, the number of parti
les used in the SMC approximation has

been denoted by m both in Se
tion 2.4.1 and in Se
tion 2.4.2. Note that the two sample sizes are,

a
tually, not tied to ea
h other. We will denote them respe
tively by mX and mY in the following

se
tions.

2.5 Experiments

2.5.1 Settings

The BMOO algorithm has been written in the Matlab/O
tave programming language, using the

Small Toolbox for Kriging (STK) (Be
t et al., 2016b) for the Gaussian pro
ess modeling part.

All simulation results have been obtained using Matlab R2014b.

In all our experiments ex
ept the illustration of Se
tion 2.5.2, the algorithm is initialized

with a maximin Latin hyper
ube design 
onsisting of Ninit = 3d evaluations. This is an arbitrary

rule of thumb. A dedi
ated dis
ussion about the size of initial designs 
an be found in Loeppky

et al. (2009). The obje
tive and 
onstraint fun
tions are modeled using independent Gaussian

pro
esses, with a 
onstant but unknown mean fun
tion, and a Matérn 
ovarian
e fun
tion with

regularity parameter ν = 5/2 (these settings are des
ribed, for instan
e, in Be
t et al., 2012).

The varian
e parameter σ2 and the range parameters θi, 1 ≤ i ≤ d, of the 
ovarian
e fun
tions

are (re-)estimated at ea
h iteration using a maximum a posteriori (MAP) estimator. Besides,

we assume that the observations are slightly noisy to improve the 
onditioning of the 
ovarian
e

matri
es, as is usually done in kriging implementations.

In Se
tions 2.5.3 and 2.5.4, the 
omputation of the expe
ted improvement is 
arried out using

the SMC method des
ribed in Se
tion 2.4.1. Taking advantage of Remark 9, the integration is

performed only on the 
onstraint spa
e (prior to �nding a feasible point) or the obje
tive spa
e

(on
e a feasible point is found). In the 
ase of single-obje
tive problems (Se
tion 2.5.3), we

perform exa
t 
al
ulation using (2.16) on
e a feasible point has been observed. The parameter

ν of Algorithm 3 is set to 0.2 and we take m = mY = 1000 parti
les. The bounding hyper-
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re
tangles Bo and Bc are determined using the adaptive pro
edure des
ribed in Appendix 2.7.2

with λo = λc = 5.

For the optimization of the sampling 
riterion, we use the SMC method of Se
tion 2.4.2,

with m = mX = 1000 parti
les, residual resampling (Dou
 and Cappé, 2005), and an adaptive

anisotropi
 Gaussian random walk Metropolis-Hastings algorithm to move the parti
les (Andrieu

and Thoms, 2008; Roberts and Rosenthal, 2009). When the probability of improvement 
annot

be written under 
losed-form, a Monte Carlo approximation (see Remark 10) with N = 100

simulations is used.

2.5.2 Illustration on a 
onstrained multi-obje
tive problem

In this se
tion, the proposed method is illustrated on a two-dimensional two-obje
tive toy prob-

lem, whi
h allows for easy visualization. The optimization problem is as follows:

minimize f1 and f2 ,

subje
t to c(x) ≤ 0 and x = (x1, x2) ∈ [−5, 10] × [0, 15] ,

where





f1 : (x1, x2) 7→ −(x1 − 10)2 − (x2 − 15)2,

f2 : (x1, x2) 7→ −(x1 + 5)2 − x22,

c : (x1, x2) 7→
(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 9.

The set of solutions to that problem is represented on Figure 2.5. The feasible subset 
onsists

of three dis
onne
ted regions of relatively small size 
ompared to that of the sear
h spa
e. The

solution Pareto front 
onsists of three 
orresponding dis
onne
ted fronts in the spa
e of obje
-

tives. (The visualization is a
hieved by evaluating the obje
tives and 
onstraints on a �ne grid,

whi
h would not be a�ordable in the 
ase of truly expensive-to-evaluate fun
tions.)

The behavior of BMOO is presented in Figure 2.6. The algorithm is initialized with 5d = 10

fun
tion evaluations. Figure 2.6 shows that the algorithm 
orre
tly samples the three feasible

regions, and a
hieves good 
overing of the solution Pareto front after only a few iterations. Note

that no feasible solution is given at the beginning of the pro
edure and that the algorithm �nds

one after 10 iterations.

2.5.3 Mono-obje
tive optimization ben
hmark

The �rst ben
hmark that we use to assess the performan
e of BMOO 
onsists of a set of sixteen


onstrained single-obje
tive test problems proposed by Regis (2014). Table 2.1 summarizes the

main features of these problems. The input dimension d varies from 2 to 20, and the number q

of 
onstraints from 1 to 38. The problems may have linear or non-linear 
onstraints but this

information is not used by the algorithms that we use in our 
omparisons (all fun
tions are
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Figure 2.5: Figure (a) represents 
ontour lines of the 
onstraint fun
tion, and Figure (b) 
orresponds

to 
ontour lines of the two obje
tive fun
tions. The three gray areas 
orrespond to the feasible region

on Figures (a) and (b), and to the image of the feasible region by the obje
tive fun
tions on Figure (
).

Thi
k dark 
urves 
orrespond to the set of feasible and non-dominated solutions on Figures (a) and (b).

On Figure (
), thi
k dark 
urves 
orrespond to the Pareto front.
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Figure 2.6: Convergen
e of the algorithm after n = 10, 20, 40 and 60 evaluations. The left 
olumn

shows the input spa
e X, whereas the right one shows the obje
tive spa
e Bo. Dominated observations

are represented by triangles (�lled or empty), and non-dominated ones by 
ir
les (or disks). The sym-

bols are �lled for feasible points and empty otherwise. On the left 
olumn, the small dots represent

the parti
les used for the optimization of the expe
ted improvement (see Se
tion 2.4.2). Noti
e their

progressive 
on
entration in regions where improvements 
an be made. On the right 
olumn, the small

dots represent the parti
les used for the 
omputation of the expe
ted improvement (see Se
tion 2.4.1).

Note in parti
ular that they appear only when a feasible point has been observed: before that, the term

ρfeasn (see Se
tion 2.3.3) 
an be 
omputed analyti
ally.
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Pbm d q Γ(%) Best Target

g1 13 9 4 · 10−4
-15 -14.85

g3mod 20 1 10−4
-0.693 -0.33

g5mod 4 5 8.7 · 10−2
5126.2 5150

g6 2 2 6.6 · 10−3
-6961.8 -6800

g7 10 8 10−4
24.3 25

g8 2 2 0.86 -0.0958 -0.09

g9 7 4 0.52 680.6 1000

g10 8 6 7 · 10−4
7049.4 8000

g13mod 5 3 4.5 0.0035 0.005

g16 5 38 1.3 · 10−2
-1.916 -1.8

g18 9 13 2 · 10−10
-0.866 -0.8

g19 15 5 3.4 · 10−3
32.66 40

g24 2 2 44.3 -5.5080 -5

SR7 7 11 9.3 · 10−2
2994.4 2995

PVD4 4 3 5.6 · 10−1
5804.3 6000

WB4 4 6 5.6 · 10−2
2.3813 2.5

Table 2.1: Main features of the mono-obje
tive problems of our �rst ben
hmark.

regarded as bla
k boxes). Column Γ(%) gives the ratio in per
ents of the volume of feasible

region C to the volume of the sear
h spa
e X. This ratio has been estimated using Monte Carlo

sampling and gives an indi
ation on the di�
ulty of the problem for �nding a feasible point. Note

that problems g1, g3mod, g6, g7, g10, g19 and in parti
ular problem g18 have very small feasible

regions. The last two 
olumns 
orrespond respe
tively to the best known feasible obje
tive value

and to target values for the optimization

9

. The target values are the ones used in the work of

Regis (2014).

BMOO is 
ompared to two 
lasses of algorithms. The �rst 
lass 
onsists of four lo
al optimiza-

tion algorithms: the COBYLA algorithm of Powell (1994), using the implementation proposed

by Johnson (2012), and three algorithms implemented in the Matlab fun
tion fmin
on

10

, namely,

an interior-point algorithm, an a
tive-set algorithm and an SQP algorithm. Lo
al optimization

methods are known to perform well on a limited budget provided that good starting points

are 
hosen. We think that they are relevant 
ompetitors in our 
ontext. The se
ond 
lass of

algorithms are those proposed by Regis (2014), whi
h are state-of-the-art�to the best of our

knowledge�algorithms for 
onstrained optimization under a limited budget of evaluations.

Ea
h algorithm is run 30 times on ea
h problem of the ben
hmark. Note that we use a random

starting point uniformly distributed inside the sear
h domain for lo
al sear
h algorithms, and a

random initial design for BMOO, as des
ribed in Se
tion 2.5.1. For the lo
al sear
h algorithms

9

The introdu
tion of target values makes it possible to assess the 
onvergen
e of the algorithms. The op-

timization 
an be stopped on
e a feasible observation with an obje
tive value below the target value has been

made.

10

Optimization toolbox v7.1, MATLAB R2014b
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the maximum number of evaluations is set to two hundred times the dimension d of the problem.

Con
erning the algorithms proposed by Regis (2014), we simply reprodu
e the results presented

by the author; the reader is referred to the original arti
le for more details about the settings.

Results are presented in Tables 2.2 and 2.3. In both tables, a solution is 
onsidered as feasible

when there is no 
onstraint violation larger than 10−5
.

In Table 2.2, we measure the performan
e for �nding feasible solutions. For lo
al algorithms

and Regis' algorithms, only the results of the best s
oring algorithm are reported in the table.

Full results are presented in Appendix 2.7.4. For lo
al algorithms, the �rst 
olumn indi
ates the

best s
oring algorithm: Cob for the COBYLA algorithm, IP for the interior-point algorithm,

AS for the a
tive-set algorithm and SQP for the SQP algorithm. Similarly, for the algorithms

proposed by Regis (2014), the �rst 
olumn indi
ates the best s
oring algorithm: CG for COBRA-

Global, CL for COBRA-Lo
al and Ext for Extended-ConstrLMSRBF. The se
ond 
olumn gives

the number of su

essful runs�a run being su

essful when at least one feasible solution has been

found. The third 
olumn gives the number of fun
tion evaluations that were required to �nd the

�rst feasible point, averaged over the su

essful runs. The 
orresponding standard deviation is

given in parentheses.

Table 2.3 presents 
onvergen
e results. Again, for lo
al algorithms and for those proposed

by Regis (2014), the �rst 
olumn indi
ates the best s
oring algorithm. The next 
olumns give

su

essively the number of su

essful runs (a run being 
onsidered su

essful when a feasible

solution with obje
tive value below the target value of Table 2.1 has been found), the average

number�over su

essful runs�of evaluations that were required to rea
h the target value, and

the 
orresponding standard deviation (in parentheses). The reader is referred to Appendix 2.7.4

for the full results.

BMOO a
hieves very good results on most test problems. It very often 
omes 
lose to the best

algorithm in ea
h of the two 
lasses of 
ompetitors, and sometimes signi�
antly outperforms both

of them�see, in parti
ular, the results for g1, g6, g7, g9, g16 and WB4 in Table 2.3. However,

BMOO stalls on test problems g3mod, g10, g18 and PVD4. We were able to identify the 
auses

of theses problems and to propose remedies, whi
h are presented in the following paragraphs. It


an also be observed that BMOO is sometimes slower than the best algorithm of Regis (2014) to

�nd a �rst feasible point. In almost all 
ases (ex
ept for g10, g18 and PVD4, whi
h are dis
ussed

separately below), this is easily explained by the size of the initial design whi
h is Ninit = 3d in

our experiments (see Se
tion 2.5.1). Further work on this issue is required to make it possible to

start BMOO with a mu
h smaller set of evaluations.

Regarding g3mod, g10 and PVD4, the di�
ulty lies in the presen
e of fun
tions, among the

obje
tive or the 
onstraints, whi
h are not adequately modeled using a Gaussian pro
ess with a

stationary 
ovarian
e fun
tion. However, as we 
an see in Table 2.4, the performan
es of BMOO

are greatly improved in all three 
ases if a transformation of the form f → fλ (for λ > 0) is

applied to the fun
tions that 
ause the problem (see Appendix 2.7.3 for more details). Thus, we

think that the theoreti
al foundations of BMOO are not being questioned by these tests problems,

but further work is needed on the Gaussian pro
ess models for a proper treatment of these 
ases.

In light of the results of our experiments, one promising dire
tion would be to 
onsider models
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Pbm Lo
al (best among 4) Regis (best among 3) BMOO

g1 IP 30 128.4 (27.8) CG 30 15.0 (0) 30 44.2 (1.9)

g3mod IP 30 342.3 (66.3) Ext 30 31.2 (0.3) 30 63.1 (0.6)

g5mod AS 30 35.0 (5.5) CL 30 6.4 (0.1) 30 13.0 (1.2)

g6 AS 30 29.7 (5.0) CL 30 10.9 (0.3) 30 9.7 (0.7)

g7 SQP 30 107.6 (9.3) CG 30 47.5 (4.6) 30 38.8 (3.3)

g8 IP 30 12.1 (7.7) CL 30 6.5 (0.2) 30 7.0 (0.2)

g9 IP 30 170.9 (42.9) CG 30 21.5 (1.9) 30 21.8 (5.1)

g10 SQP 25 144.6 (132.3) CG 30 22.8 (1.5) 30 71.5 (28.1)

g13mod IP 30 21.4 (17.1) Ext 30 8.6 (0.7) 30 10.5 (5.6)

g16 Cob 27 31.5 (20.4) Ext 30 19.6 (1.8) 30 21.7 (7.3)

g18 SQP 30 101.9 (19.8) CL 30 108.6 (6.5) 0 - (-)

g19 SQP 30 19.7 (6.1) CL 30 16.5 (0.5) 30 46.4 (3.0)

g24 IP 30 4.0 (3.5) CG 30 1.3 (0.1) 30 2.6 (1.6)

SR7 SQP 30 27.1 (3.6) CG 30 9.5 (0.1) 30 22.0 (0.2)

WB4 SQP 30 76.6 (21.9) CL 30 37.4 (5.9) 30 19.1 (5.8)

PVD4 SQP 26 7.6 (4.8) CG 30 7.9 (0.4) 30 15.7 (5.7)

Table 2.2: Number of evaluations to �nd a �rst feasible point. In bold, the good results in terms of average number of evaluations. We 
onsider the results

to be good if more than 20 runs where su

essful and the average number of evaluations is at most 20% above the best result. See Tables 2.12 and 2.14 in

Appendix 2.7.4 for more detailed results. Dash symbols are used when a value 
annot be 
al
ulated.

4
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Pbm Lo
al (best among 4) Regis (best among 3) BMOO

g1 IP 20 349.7 (57.0) CG 30 125.2 (15.3) 30 57.7 (2.6)

g3mod IP 30 356.9 (65.1) Ext 30 141.7 (8.6) 0 - (-)

g5mod AS 30 35.8 (4.3) CL 30 12.9 (0.5) 30 16.3 (0.6)

g6 AS 30 29.7 (5.0) CL 30 53.6 (14.0) 30 13.3 (0.8)

g7 SQP 30 107.6 (9.3) CG 30 99.8 (5.7) 30 55.8 (2.8)

g8 IP 18 59.3 (87.0) CL 30 30.3 (2.8) 30 26.3 (10.4)

g9 IP 30 179.3 (42.0) CG 30 176.4 (26.3) 30 61.6 (14.3)

g10 SQP 18 658.3 (316.7) CG 29 193.7 (-) 0 - (-)

g13mod IP 25 122.5 (70.3) Ext 30 146.4 (29.2) 30 180.3 (84.6)

g16 Cob 27 60.0 (65.2) Ext 30 38.4 (3.6) 30 30.3 (12.3)

g18 SQP 21 97.5 (23.8) CL 24 195.9 (-) 0 - (-)

g19 SQP 30 61.3 (12.4) CL 30 698.5 (75.3) 30 133.3 (6.2)

g24 IP 16 10.4 (5.3) CG 30 9.0 (0) 30 9.9 (1.0)

SR7 SQP 30 27.1 (3.6) CG 30 33.5 (1.6) 30 29.3 (0.7)

WB4 SQP 30 78.3 (18.0) CL 30 164.6 (12.2) 30 44.5 (13.3)

PVD4 SQP 23 54.7 (27.5) CG 30 155.4 (38.2) 2 151.0 (21.2)

Table 2.3: Number of evaluations to rea
h spe
i�ed target. See Table 2.2 for 
onventions. See Tables 2.13 and 2.15 in Appendix 2.7.4 for more detailed

results.

4
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of the form ξλ, where ξ is a Gaussian pro
ess and λ is a parameter to be estimated from the

evaluation results (see, e.g., Box and Cox, 1964; Snelson et al., 2004).

Regarding the g18 test problem, the di�
ulty stems from our 
hoi
e of a sampling density

derived from the probability of improvement for optimizing the expe
ted improvement. When the

number of 
onstraints is high (q = 13 for the g18 test problem) and no feasible point has yet been

found, the expe
ted number of parti
les in the feasible region C is typi
ally very small with this


hoi
e of density. Consequently, there is a high probability that none of the parti
les produ
ed

by the SMC algorithm are good 
andidates for the optimization of the expe
ted improvement.

To illustrate this phenomenon, 
onsider the following idealized setting. Suppose that q = d,

X = [−1/2, 1/2]q and cj : x = (x1, . . . , xq) 7→ |xj | − ε
2 , j = 1, . . . , q, for some ε ∈ (0; 1]. Thus,

the feasible domain is C = [−ε/2, ε/2]q and the volume of the subset of X where exa
tly k


onstraints are satis�ed is

Vk ≈ ( qk ) ε
k (1− ε)q−k .

Assume moreover that the Gaussian pro
ess models are almost perfe
t, i.e.,

Pn (ξc,j(x) ≤ 0) ≈




1, if cj(x) ≤ 0,

0, otherwise,

(2.34)

for j = 1, . . . , q. Further assume n = 1 with X1 =
(
1
2 , . . . ,

1
2

)
and observe that ξ(X1) is

dominated by ξ(x) for any x ∈ X (ex
ept at the 
orners) so that the probability of improve-

ment Pn (ξ(x) ∈ G1) is 
lose to one everywhere on X. As a 
onsequen
e, the sampling density πX1
that we use to optimize the expe
ted improvement is (approximately) uniform on X and the ex-

pe
ted number of parti
les satisfying exa
tly k 
onstraints is mVk. In parti
ular, if q is large,

the parti
les thus tend to 
on
entrate in regions where k ≈ qε, and the expe
ted number mVq

of parti
les in C is small. To 
ompensate for the de
rease of Vk, when k is 
lose to q, we suggest

using the following modi�ed sampling density:

πXn ∝ En

(
K(x)!1ξ(x)∈Gn

)
,

where K(x) is the number of 
onstraints satis�ed by ξ at x. Table 2.5 shows the promising results

obtained with this modi�ed density on g18. Further investigations on this parti
ular issue 
an

be found in Se
tion 3.2.

2.5.4 Multi-obje
tive optimization ben
hmark

The se
ond ben
hmark 
onsists of a set of eight 
onstrained multi-obje
tive test problems from

Chafekar et al. (2003) and Deb et al. (2002). The main features of these problems are given

in Table 2.6. The input dimension d varies from two to six, and the number q of 
onstraints

from one to seven. All problems have two obje
tive fun
tions, ex
ept the WATER test problem,

whi
h has �ve. As in Table 2.1, 
olumn Γ(%) gives an estimate of the ratio (in per
ents) of the

volume of the feasible region to that of the sear
h spa
e. Column V gives the volume of the
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Pbm Feasible Target

modi�ed-g3mod 30 63.3 (0.8) 30 151.8 (12.2)

modi�ed-g10 30 48.4 (8.0) 30 63.1 (10.4)

modi�ed-PVD4 30 12.9 (1.6) 30 32.9 (13.2)

Table 2.4: Number of evaluations to �nd a �rst feasible point and to rea
h the target on transformed

versions of the g3mod, g10 and PDV4 problems, using the BMOO algorithm.

Pbm Feasible Target

g18 30 75.5 (11.5) 30 83.6 (9.1)

Table 2.5: Number of evaluations to �nd a �rst feasible point and to rea
h the target using a modi�ed

probability density fun
tion for the 
riterion optimization.

Pbm d q p Γ(%) V yrefo

BNH 2 2 2 93,6 5249 [140; 50℄

SRN 2 2 2 16,1 31820 [200; 50℄

TNK 2 2 2 5,1 0,6466 [1,2; 1,2℄

OSY 6 6 2 3,2 16169 [0; 80℄

TwoBarTruss 3 1 2 86,3 4495 [0,06; 105℄

WeldedBeam 4 4 2 45,5 0,4228 [50; 0,01℄

CONSTR 2 2 2 52,5 3,8152 [1; 9℄

WATER 3 7 5 92 0,5138 [1; 1; 1; 1,6; 3,2℄

Table 2.6: Main features of the multi-obje
tive problems in our ben
hmark.

region dominated by the Pareto front

11

, measured using a referen
e point yrefo , whose 
oordinates

are spe
i�ed in the last 
olumn. As an illustration, the result of one run of BMOO is shown on

Figures 2.7 and 2.8, for ea
h test problem.

To the best of our knowledge, published state-of-the-art methods to solve multi-obje
tive

optimization problems in the presen
e of non-linear 
onstraints are based on geneti
 or evolu-

tionary approa
hes. The most popular algorithms are probably NSGA2 (Deb et al., 2002) and

SPEA2 (Zitzler et al., 2002). Su
h algorithms, however, are not primarily designed to work

on a limited budget of fun
tion evaluations. Some methods that 
ombine geneti
/evolutionary

approa
hes and surrogate modeling te
hniques have been proposed in the literature (see, e.g.,

Emmeri
h et al., 2006; Jin, 2011, and referen
es therein), but a quantitative 
omparison with

these methods would ne
essitate to develop proper implementations, whi
h is out of the s
ope of

this work. In this se
tion, we shall limit ourselves to emphasizing advantages and limitations of

the proposed approa
h. Sin
e the ability of the BMOO algorithm to �nd feasible solutions has

already been demonstrated in Se
tion 2.5.3, we will fo
us here on the other 
ontributions of the


hapter: the SMC methods for the 
omputation and optimization of the expe
ted improvement

sampling 
riterion.

11

This volume has been obtained using massive runs of the gamultiobj algorithm of Matlab. It might be

slightly under-estimated.
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Figure 2.7: Result of one run of the BMOO algorithm on the bi-obje
tive problems of Table 2.6, with

n = 100 evaluations. Bla
k dots represent non-dominated solutions. For bi-obje
tive problems, the set of

feasible obje
tive values is shown in gray. On the sub�gure 
orresponding to the WeldedBeam problem,

a zoom has been made to improve visualization.
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Figure 2.8: Result of one run of the BMOO algorithm on the WATER problem of Table 2.6, with

n = 200 evaluations. Bla
k dots represent non-dominated solutions.

First, we demonstrate the e�e
tiveness of the proposed SMC algorithm for optimizing ex-

pe
ted improvement based 
riteria. We 
ompare our SMC approa
h (see Se
tion 2.4.2) with the

approa
h used by Cou
kuyt et al. (2014), that we shall 
all MCSQP (for Monte-Carlo Sequential

Quadrati
 Programming). This approa
h 
onsists in sele
ting the best point out of a population

of 
andidates uniformly distributed on the sear
h spa
e X, and then running an SQP algorithm

starting from this point. In our experiments, the number of 
andidates is 
hosen equal to the

population size mX = 1000 of the SMC method.

Table 2.7 presents experimental results obtained with the extended EHVI 
riterion proposed

in Se
tion 2.3 as a sampling 
riterion. As a preliminary remark, observe that the �nest target

pre
ision is systemati
ally rea
hed by our SMC method in all but three test 
ases (OSY, Two-

BarTruss and WeldedBeam). The OSY 
ase will be dis
ussed below. On the TwoBarTruss and

WeldedBeam problems, we found out that the poor performan
es are due to Gaussian pro
ess

modeling issues, similar to those en
ountered earlier on the g3mod, g10 and PVD4 test problems

(see Se
tion 2.5.3). The results on these problems are thus left out of the analyses in the follow-

ing, but will motivate future work on the models, as 
on
luded in Se
tion 2.5.3. Regarding the

optimization of the 
riteria, the results show that our SMC approa
h 
ompares very favorably

with MCSQP. More spe
i�
ally, we note a drop of performan
e of the MCSQP method 
om-

pared with the SMC approa
h as we try to 
onverge more �nely toward the Pareto front (see, in

parti
ular, 
olumn �Target 99%� of Table 2.7, but this is also visible in the other 
olumns as well

for most of the test 
ases). Be
ause of its sequential nature, the SMC approa
h is able to tra
k

mu
h more e�
iently the 
on
entration of the sampling 
riterion in the sear
h domain, and thus
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makes it possible to rea
h higher a

ura
y.

Tables 2.8 and 2.9 provide additional results obtained when performing the same study

with respe
tively the EMMI and WCPI 
riteria

12

(see Svenson and Santner, 2010; Keane, 2006,

respe
tively). These 
riteria are not primarily designed to address 
onstrained problems, but

they 
an easily be extended to handle 
onstraints by 
al
ulating them using only feasible values

of the obje
tives, and then multiplying them by the probability of satisfying the 
onstraints (as

explained in Se
tion 2.2.3). When no feasible solution is available at the start of the optimization

pro
edure, we use the probability of feasibility as a sampling 
riterion, as advised by Gelbart

et al. (2014). The 
on
lusions drawn from Table 2.7 for the extended EHVI 
riterion 
arry

through to the results presented in Tables 2.8�2.9. It shows that the SMC algorithm proposed in

Se
tion 2.4.2 
an be viewed as a 
ontribution of independent interest for optimizing improvement-

based sampling 
riteria.

Next we study the in�uen
e on the 
onvergen
e of the algorithm of the number m = mY of

parti
les used in Algorithm 1 for approximating the expe
ted improvement value. In Tables 2.10

and 2.11 we 
ompare the number of evaluations required to dominate su

essively 90%, 95% and

99% of the volume V of Table 2.6 when using di�erent numbers of parti
les. As expe
ted, the

overall performan
es of the algorithm deteriorate when the number mY of parti
les used to ap-

proximate the expe
ted improvement de
reases. However, the algorithm maintains satisfa
tory


onvergen
e properties even with a small number of parti
les. For referen
e, we have also in-


luded results obtained by 
hoosing the evaluation point randomly in the set of 
andidate points.

Noti
e that these results are always mu
h worse than those obtained using the sampling 
riterion

with mY = 200. This shows that not all 
andidate points are equally good, and thus 
on�rms

that the sampling 
riterion, even with a rather small value of mY , is e�e
tively dis
riminating

between good and bad 
andidate points.

We observe poor performan
es of the BMOO algorithm on the OSY test problem, regardless

of the number of parti
les that are used to estimate the expe
ted improvement. Figure 2.9 reveals

that this is due to the 
hoi
e of a uniform sampling density on Bo \Hn as the target density of

the SMC algorithm used for the approximate 
omputation of the 
riterion. Indeed, most of the

parti
les do not e�e
tively parti
ipate to the approximation of the integral, sin
e they lie outside

the set of feasible obje
tive values (see Figure 2.7(d)). Further work is required on this topi
 to

propose a better sampling density, that would 
on
entrate on obje
tive values that are likely to

be feasible (instead of 
overing uniformly the entire non-dominated region Bo \Hn).

In pra
ti
e, for problems with a small number of obje
tives, and espe
ially for bi-obje
tive

problems, we do not re
ommend the use of our SMC algorithm for the (approximate) 
omputa-

tion of the EHVI 
riterion sin
e exa
t and e�
ient domain-de
omposition-based algorithms are

available (see Hupkens et al., 2014; Cou
kuyt et al., 2014, and referen
es therein). An in-depth

study of the quality of the approximation provided by our SMC method, and a 
omparison with

exa
t methods, is therefore needed before more pre
ise re
ommandations 
an be made.

12

An implementation of the EMMI 
riterion is available in the STK. An implementation of the WCPI sampling


rtiterion for bi-obje
tive problems is distributed alongside with Forrester et al.'s book (Forrester et al., 2008).
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Problem optimizer Target 90% Target 95% Target 99%

BNH

SMC 30 8.5 (0.6) 30 12.7 (0.7) 30 34.6 (1.3)

MCSQP 30 8.4 (0.6) 30 12.8 (0.7) 30 38.9 (2.2)

SRN

SMC 30 16.7 (0.9) 30 22.4 (1.0) 30 52.6 (4.1)

MCSQP 30 20.5 (2.4) 30 35.6 (5.9) 0 > 250 (-)

TNK

SMC 30 35.5 (2.6) 30 44.1 (2.5) 30 71.1 (4.0)

MCSQP 30 43.5 (4.6) 30 71.6 (11.3) 0 > 250 (-)

OSY

SMC 30 29.0 (1.7) 30 38.2 (3.4) 13 119.8 (53.0)

MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

TwoBarTruss

SMC 22 90.9 (62.0) 1 234 (-) 0 > 250 (-)

MCSQP 26 88.7 (68.4) 2 162.0 (29.7) 0 > 250 (-)

WeldedBeam

SMC 28 146.5 (41.1) 2 212 (33.9) 0 > 250 (-)

MCSQP 26 171.3 (46.9) 1 229.0 (-) 0 > 250 (-)

CONSTR

SMC 30 12.4 (1.0) 30 19.2 (1.4) 30 83.5 (5.9)

MCSQP 30 13.8 (1.4) 30 26.3 (3.3) 0 > 250 (-)

WATER

SMC 30 48.3 (3.6) 30 80.7 (5.6) 30 139.1 (8.0)

MCSQP 30 53.5 (4.8) 30 88.7 (7.5) 30 164.3 (9.6)

Table 2.7: Results a
hieved when using either SMC or MCSQP for the optimization of the extended EHVI, on the problems of Table 2.6. We measure

the number of fun
tion evaluations for dominating su

essively 90%, 95% and 99% of the volume V . For ea
h target, the �rst 
olumn 
ontains the number

of su

essful runs over 30 runs. The se
ond 
olumn 
ontains the number of fun
tion evaluations, averaged over the su

essful runs, with the 
orresponding

standard deviation (in parentheses). Dash symbols are used when a value 
annot be 
al
ulated.

4
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Problem optimizer Target 90% Target 95% Target 99%

BNH

SMC 30 9.8 (1.1) 30 15.9 (1.5) 30 41.2 (2.8)

MCSQP 30 9.5 (0.7) 30 15.4 (1.4) 30 42.6 (2.4)

SRN

SMC 30 15.5 (1.2) 30 21.0 (1.4) 30 48.3 (2.8)

MCSQP 30 18.6 (1.8) 30 29.1 (2.7) 30 90.9 (9.0)

TNK

SMC 30 47.7 (3.5) 30 61.8 (4.4) 30 100.2 (5.4)

MCSQP 30 60.6 (8.2) 30 94.3 (13.2) 5 224.2 (15.0)

OSY

SMC 30 32.3 (2.9) 30 41.9 (3.9) 25 73.6 (20.8)

MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

TwoBarTruss

SMC 28 116.5 (48.5) 3 199.0 (24.1) 0 > 250 (-)

MCSQP 26 130.9 (63.9) 1 174.0 (-) 0 > 250 (-)

WeldedBeam

SMC 16 156.6 (50.5) 4 177.0 (40.5) 0 > 250 (-)

MCSQP 9 161.9 (60.1) 3 156.0 (35.8) 0 > 250 (-)

CONSTR

SMC 30 22.1 (2.5) 30 33.8 (3.0) 30 100.9 (8.6)

MCSQP 30 18.4 (2.1) 30 30.9 (3.1) 30 154.8 (9.0)

WATER

SMC 30 60.4 (6.5) 30 93.4 (8.8) 30 153.9 (9.0)

MCSQP 30 68.2 (8.1) 30 103.9 (11.3) 30 172.7 (13.7)

Table 2.8: Results a
hieved when using the EMMI 
riterion. See Table 2.7 for more information.

4
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Problem optimizer Target 90% Target 95% Target 99%

BNH

SMC 30 20.9 (8.9) 30 43.4 (7.6) 30 132.4 (15.4)

MCSQP 30 18.7 (8.2) 30 49.0 (14.2) 30 176.1 (29.1)

SRN

SMC 30 39.1 (6.0) 30 57.53 (7.5) 30 154.9 (12.8)

MCSQP 20 154.5 (62.1) 1 248.0 (-) 0 > 250 (-)

TNK

SMC 30 53.3 (6.8) 30 68.3 (6.9) 30 120.8 (13.7)

MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

OSY

SMC 30 39.7 (5.7) 29 61.5 (22.0) 14 123.0 (41.9)

MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

TwoBarTruss

SMC 29 70.1 (40.3) 8 180.4 (40.0) 0 > 250 (-)

MCSQP 29 69.6 (47.3) 11 185.2 (53.0) 0 > 250 (-)

WeldedBeam

SMC 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

MCSQP 0 > 250 (-) 0 > 250 (-) 0 > 250 (-)

CONSTR

SMC 30 40.0 (5.6) 30 60.4 (7.8) 30 212.1 (15.6)

MCSQP 30 42.2 (16.0) 26 150.7 (42.8) 0 > 250 (-)

Table 2.9: Results a
hieved when using the WCPI 
riterion. See Table 2.7 for more information.

5
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Problem EHVI Target 90% Target 95% Target 99%

BNH

SMC (mY = 5000) 30 8.3 (0.7) 30 12.5 (0.5) 30 32.8 (1.0)

SMC (mY = 1000) 30 8.5 (0.6) 30 12.7 (0.7) 30 34.6 (1.3)

SMC (mY = 200) 30 8.8 (0.6) 30 13.1 (0.7) 30 39.2 (2.0)

random 30 12.8 (2.7) 30 29.6 (6.0) 30 106.8 (13.2)

SRN

SMC (mY = 5000) 30 16.3 (1.0) 30 21.6 (1.1) 30 47.3 (2.1)

SMC (mY = 1000) 30 16.7 (0.9) 30 22.4 (1.0) 30 52.6 (4.1)

SMC (mY = 200) 30 16.6 (1.3) 30 23.0 (1.9) 30 60.9 (6.9)

random 30 30.6 (5.2) 30 51.1 (8.2) 30 146.2 (13.2)

TNK

SMC (mY = 5000) 30 36.2 (4.4) 30 43.4 (3.6) 30 65.1 (3.1)

SMC (mY = 1000) 30 35.5 (2.6) 30 44.1 (2.5) 30 71.1 (4.0)

SMC (mY = 200) 30 37.7 (4.1) 30 48.4 (5.0) 30 87.3 (5.9)

random 30 64.0 (10.3) 30 94.2 (12.4) 29 193.3 (27.4)

Table 2.10: Results a
hieved on the BNH, SRN and TNK problems of Table 2.6 when using su

essively mY = 200, 1000 and 5000 parti
les for the

approximate 
omputation of the extended EHVI 
riterion. For referen
e, results obtained by sele
ting the evaluation point randomly in the pool of


andidates points are provided (�random� rows). See Table 2.7 for more information.
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Problem EHVI Target 90% Target 95% Target 99%

OSY

SMC (mY = 5000) 30 28.6 (2.0) 30 36.0 (2.8) 22 82.5 (33.5)

SMC (mY = 1000) 30 29.0 (1.7) 30 38.2 (3.4) 13 119.8 (53.0)

SMC (mY = 200) 30 32.4 (3.1) 29 49 (16.0) 5 164.8 (54.6)

random 30 140.2 (21.0) 25 203.4 (21.4) 0 > 250 (-)

CONSTR

SMC (mY = 5000) 30 12.2 (0.7) 30 18.0 (1.0) 30 68.8 (4.7)

SMC (mY = 1000) 30 12.4 (1.0) 30 19.2 (1.4) 30 83.5 (5.9)

SMC (mY = 200) 30 12.9 (1.2) 30 21.0 (1.6) 30 109.2 (10.7)

random 30 31.1 (6.6) 30 58.1 (8.5) 18 235.1 (11.0)

WATER

SMC (mY = 5000) 30 45.8 (4.0) 30 75.3 (6.2) 30 127 (8.2)

SMC (mY = 1000) 30 48.3 (3.6) 30 80.7 (5.6) 30 139.1 (8.0)

SMC (mY = 200) 30 52.5 (4.5) 30 88.6 (6.0) 30 154.8 (8.8)

random 14 223.2 (15.4) 0 > 250 (-) 0 > 250 (-)

Table 2.11: Results a
hieved on the OSY, CONSTR and WATER problems of Table 2.6 when using su

essively mY = 200, 1000 and 5000 parti
les for

the approximate 
omputation of the extended EHVI 
riterion. For referen
e, results obtained by sele
ting the evaluation point randomly in the pool of


andidates points are provided (�random� rows). See Table 2.7 for more information.
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Figure 2.9: An illustration, in the obje
tive domain Yo, of BMOO running on the OSY test problem.

The small dots are the parti
les used for the 
omputation of the expe
ted improvement. They are uni-

formly distributed on the non-dominated subset of Bo. Dark disks indi
ate the non-dominated solutions

found so far, light gray disks indi
ate the dominated ones and empty bla
k 
ir
les are used to indi
ate

the non-feasible solutions.

2.6 Con
lusions and future work

In this 
hapter, a new Bayesian optimization approa
h is proposed to solve multi-obje
tive op-

timization problems with non-linear 
onstraints. The 
onstraints are handled using an extended

domination rule and a new expe
ted improvement formulation is proposed. In parti
ular, the

new formulation makes it possible to deal with problems where no feasible solution is available

from the start. Several 
riteria from the literature are re
overed as spe
ial 
ases.

The 
omputation and optimization of the new expe
ted improvement 
riterion are 
arried

out using sequential Monte Carlo sampling te
hniques. Indeed, the 
riterion takes the form of

an integral over the spa
e of obje
tives and 
onstraints, for whi
h no 
losed-form expression

is known. Besides, the sampling 
riterion may be highly multi-modal, as is well known in the

spe
ial 
ase of un
onstrained single-obje
tive optimization, whi
h makes it di�
ult to optimize.

The proposed sampling te
hniques borrow ideas from the literature of stru
tural reliability for

estimating the probability of rare events, and 
an be viewed as a 
ontribution in itself.

We show that the resulting algorithm, whi
h we 
all BMOO, a
hieves good results on a

set of single-obje
tive 
onstrained test problems, with respe
t to state-of-the-art algorithms. In

parti
ular, BMOO is able to e�e
tively �nd feasible solutions, even when the feasible region is

very small 
ompared to the size of the sear
h spa
e and when the number of 
onstraints is high.

In the 
ase of multi-obje
tive optimization with non-linear 
onstraints, we show that BMOO is

able to yield good approximations of the Pareto front on small budgets of evaluations

13

.

13

BMOO ranked 2

nd

at the EMO'2017 Real-world Problems Tra
k BBComp 
ompetition (see
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Several questions are left open for future work. First, our numeri
al studies reveal that

the 
hoi
e of sampling densities in the input domain (as demonstrated by unsatisfa
tory results

on the g18 test problem) and in the output domain (as shown on the OSY 
ase) 
ould be

improved. Suggestions for improvement are proposed in the 
hapter and will be the obje
t of

future investigations. Se
ond, an in-depth study of the quality of the approximation provided

by our SMC method, and a 
omparison with exa
t methods, is needed before re
ommandations


an be made on when to swit
h between exa
t and approximate 
al
ulation of the expe
ted

improvement, and how to sele
t the sample size�possibly in an adaptive manner�used for

the SMC approximation. Last, the 
hoi
e of the random pro
esses used for modeling obje
tive

and 
onstraint fun
tions deserves more attention. Stationary Gaussian pro
ess models have

been found to la
k �exibility on some single- and multi-obje
tive 
ases (g3mod, g10, PVD4,

TwoBarTruss and WeldedBeam). Several types of models proposed in the literature�warped

Gaussian pro
esses (Snelson et al., 2004), non-stationary Gaussian pro
esses (Toal and Keane,

2012, see), deep Gaussian pro
esses (Damianou and Lawren
e, 2013), et
.�provide interesting

dire
tions regarding this issue.

2.7 Additional Material

2.7.1 On the bounded hyper-re
tangles Bo and Bc

We have assumed in Se
tion 2.3 that Bo and Bc are bounded hyper-re
tangles; that is, sets of

the form

Bo =
{
y ∈ Yo; y

low

o ≤ y ≤ yuppo

}
,

Bc =
{
y ∈ Yc; y

low

c ≤ y ≤ yuppc

}
,

for some ylowo , yuppo ∈ Yo and ylowc , yuppc ∈ Yc, with the additional assumption that ylowc,j < 0 <

yuppc,j for all j ≤ q. Remember that upper bounds only where required in the un
onstrained 
ase

dis
ussed in Se
tion 2.2.2. To shed some light on the role of these lower and upper bounds, let

us now 
ompute the improvement I1(X1) = |H1| brought by a single evaluation.

If X1 is not feasible, then

|H1| = |Bo| ·
q∏

j=1

(
yuppc,j − ylowc,j

)γj (
yuppc,j − ξc,j(X1)

)1−γj
(2.35)

where γj = 1ξc,j(X1)≤0. It is 
lear from the right-hand side of (2.35) that both Bo and Bc have

to be bounded if we want |H1| < +∞ for any γ = (γ1, , . . . , γq) ∈ {0, 1}q . Note, however, that
only the volume of Bo a
tually matters in this expression, not the a
tual values of ylowo and yuppo .

Equation (2.35) also reveals that the improvement is a dis
ontinuous fun
tion of the observations:

indeed, the jth term in the produ
t jumps from yuppc,j to yuppc,j − ylowc,j > yuppc,j when ξc,j(X1) goes

from 0+ to 0. The in
rement −ylowc,j 
an be thought of as a reward asso
iated to �nding a point

https://bbomp.ini.rub.de/results/BBComp2017EMO/summary.html).
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whi
h is feasible with respe
t to the jth 
onstraint.

The value of |H1| when X1 is feasible is

|H1| = |Bo| ·
(
|Bc| −

∣∣B−
c

∣∣)

+
∏

j≤p

(
min

(
ξo,j(X1), y

upp

o,j

)
−max

(
ξo,j(X1), y

low

o,j

))
·
∣∣B−

c

∣∣ , (2.36)

where |B−
c | =

∏q
j=1

∣∣∣ylowc,j

∣∣∣ is the volume of the feasible subset of Bc, B
−
c = Bc ∩ ]−∞; 0]q. The

�rst term in the right-hand side of (2.36) is the improvement asso
iated to the domination of

the entire unfeasible subset of B = Bo × Bc; the se
ond term measures the improvement in the

spa
e of obje
tive values.

2.7.2 An adaptive pro
edure to set Bo and Bc

This se
tion des
ribes the adaptive numeri
al pro
edure that is used, in the numeri
al experi-

ments of Se
tion 2.5, to de�ne the hyper-re
tangles Bo and Bc. As said in Se
tion 2.3.3, these

hyper-re
tangles are de�ned using estimates of the range of the obje
tive and 
onstraint fun
-

tions, respe
tively. To this end, we will use the available evaluations results, together with

posterior quantiles provided by our Gaussian pro
ess models on the set of 
andidate points Xn

(de�ned in Se
tion 2.4.2).

More pre
isely, assume that n evaluation results ξ(Xi), 1 ≤ i ≤ n, are available. Then, we

de�ne the 
orners of Bo by





ylowo,i,n = min
(
mini≤n ξo,i(Xi), minx∈Xn ξ̂o, i, n(x)− λoσo, i, n(x)

)
,

yuppo,i,n = max
(
maxi≤n ξo,i(Xi), maxx∈Xn ξ̂o, i, n(x) + λoσo, i, n(x)

)
,

(2.37)

for 1 ≤ i ≤ p, and the 
orners of Bc by





ylowc,j,n = min
(
0, mini≤n ξc,j(Xi), minx∈Xn ξ̂c, j, n(x)− λcσc, j, n(x)

)
,

yuppc,j,n = max
(
0, maxi≤n ξc,j(Xi), maxx∈Xn ξ̂c, j, n(x) + λcσc, j, n(x)

)
,

(2.38)

for 1 ≤ j ≤ q, where λo and λc are positive numbers.

2.7.3 Modi�ed g3mod, g10 and PVD4 test problems

We detail here the modi�ed formulations of the g3mod, g10 and PVD4 problems that were used

in Se
tion 2.5.3 to over
ome the modeling problems with BMOO. Our modi�
ations are shown

in boldfa
e. The rationale of the modi�
ations is to smooth lo
al jumps.

� modi�ed-g3mod problem

{
f(x) = −plog((

√
d)d
∏d

i=1 xi)
0.1

c(x) = (
∑d

i=1 x
2
i )− 1
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� modi�ed-g10 problem





f(x) = x1 + x2 + x3

c1(x) = 0.0025(x4 + x6)− 1

c2(x) = 0.0025(x5 + x7 − x4)− 1

c3(x) = 0.01(x8 − x5)− 1

c4(x) = plog(100x1 − x1x6 + 833.33252x4 − 83333.333)7

c5(x) = plog(x2x4 − x2x7 − 1250x4 + 1250x5)
7

c6(x) = plog(x3x5 − x3x8 − 2500x5 + 1250000)7

� modi�ed-PVD4 problem





f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x21x4 + 19.84x21x3

c1(x) = −x1 + 0.0193x3

c2(x) = −x2 + 0.00954x3

c3(x) = plog(−πx23x4 − 4/3πx33 + 1296000)7

Note that the above de�ned problems make use of the plog fun
tion de�ned below (see Regis

(2014)).

plog(x) =

{
log(1 + x) if x ≥ 0

− log(1− x) otherwise

2.7.4 Mono-obje
tive ben
hmark result tables

In Se
tion 2.5.3, only the best results for both the �Lo
al� and the �Regis� groups of algorithms

were shown. In this Appendix, we present the full results. Tables 2.12 and 2.13, and Tables

2.14 and 2.15 present respe
tively the results obtained with the lo
al optimization algorithms

and the results obtained by Regis (2014) on the single-obje
tive ben
hmark test problems (see

Table 2.1). Table 2.12 and Table 2.13 show the performan
es for �nding feasible solutions and

for rea
hing the targets spe
i�ed in Table 2.1 for the COBYLA, A
tive-Set, Interior-Point and

SQP algorithms. Similarly, Table 2.14 and Table 2.15 show the performan
es for �nding feasible

solutions and for rea
hing the targets for the COBRA-Lo
al, COBRA-Global and Extended-

ConstrLMSRBF algorithms of Regis (2014).
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Pbm COBYLA a
tive-set interior-point SQP

g1 30 52.3 (102.3) 30 15.0 (0.0) 30 128.4 (27.8) 30 15.0 (0.0)

g3mod 28 386.1 (645.8) 30 643.2 (248.9) 30 342.3 (66.3) 30 794.3 (53.7)

g5mod 22 30.7 (23.0) 30 35.0 (5.5) 30 41.3 (16.9) 30 38.5 (10.5)

g6 26 39.7 (12.7) 30 29.7 (5.0) 30 99.7 (14.3) 30 32.6 (5.4)

g7 28 162.4 (175.7) 30 109.4 (11.2) 30 146.0 (18.1) 30 107.6 (9.3)

g8 28 53.3 (77.1) 28 17.6 (5.0) 30 12.1 (7.7) 30 19.6 (8.5)

g9 25 95.2 (104.7) 30 313.7 (84.4) 30 170.9 (42.9) 30 194.5 (60.2)

g10 2 14.5 (3.5) 9 53.6 (41.9) 12 469.8 (393.8) 25 144.6 (132.3)

g13mod 30 53.9 (68.8) 30 74.0 (59.5) 30 21.4 (17.1) 30 69.4 (62.4)

g16 27 31.5 (20.4) 30 38.0 (15.0) 22 100.9 (160.3) 30 40.7 (17.1)

g18 26 345.0 (275.7) 30 114.5 (41.5) 30 70.3 (22.2) 30 101.9 (19.8)

g19 19 31.4 (19.5) 30 21.8 (7.5) 30 291.3 (57.9) 30 19.7 (6.1)

g24 30 7.7 (10.2) 30 5.2 (5.3) 30 4.0 (3.5) 30 5.1 (5.2)

SR7 29 30.0 (50.1) 30 27.5 (3.9) 30 78.6 (23.1) 30 27.1 (3.6)

WB4 27 71.8 (82.5) 30 125.7 (71.0) 30 93.5 (48.9) 30 76.6 (21.9)

PVD4 12 50.8 (70.2) 3 51.3 (27.7) 30 59.1 (43.5) 26 7.6 (4.8)

Table 2.12: Number of evaluations to �nd a �rst feasible point for the COBYLA, A
tive-Set, Interior-Point and SQP lo
al optimization algorithms. See

Table 2.2 for 
onventions.
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Pbm COBYLA a
tive-set interior-point SQP

g1 7 212.9 (225.8) 6 22.0 (7.7) 20 349.7 (57.0) 6 22.0 (7.7)

g3mod 16 1312.3 (1123.6) 24 760.5 (79.8) 30 356.9 (65.1) 30 794.3 (53.7)

g5mod 22 53.4 (20.3) 30 35.8 (4.3) 30 54.8 (11.7) 30 41.8 (7.5)

g6 26 41.0 (11.1) 30 29.7 (5.0) 30 99.7 (14.3) 30 32.6 (5.4)

g7 20 495.5 (461.3) 30 109.4 (11.2) 30 147.2 (18.2) 30 107.6 (9.3)

g8 4 79.5 (84.6) 2 30.5 (2.1) 18 59.3 (87.0) 4 55.8 (27.0)

g9 22 144.9 (143.7) 30 334.5 (84.0) 30 179.3 (42.0) 30 194.5 (60.2)

g10 0 - (-) 0 - (-) 0 - (-) 18 658.3 (316.7)

g13mod 23 191.9 (209.7) 24 153.9 (46.6) 25 122.5 (70.3) 22 147.6 (75.1)

g16 27 60.0 (65.2) 14 85.1 (41.1) 13 400.0 (242.1) 30 152.2 (53.2)

g18 14 383.0 (389.3) 21 101.0 (30.2) 21 149.1 (39.4) 21 97.5 (23.8)

g19 16 912.1 (685.8) 30 61.3 (12.4) 30 335.5 (65.4) 30 61.3 (12.4)

g24 18 17.5 (8.9) 17 14.7 (3.9) 16 10.4 (5.3) 17 16.4 (5.3)

SR7 28 62.5 (52.1) 30 27.5 (3.9) 30 80.2 (22.1) 30 27.1 (3.6)

WB4 24 247.1 (176.2) 29 162.0 (73.1) 30 168.2 (94.4) 30 78.3 (18.0)

PVD4 2 58.0 (35.4) 3 54.0 (25.1) 26 146.7 (115.2) 23 54.7 (27.5)

Table 2.13: Number of evaluations to rea
h the target for the COBYLA, A
tive-Set, Interior-Point and SQP lo
al optimization algorithms. See Table 2.2

for 
onventions.
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Pbm COBRA-Lo
al COBRA-Global Extended-ConstrLMSRBF

g1 30 15.0 (0.0) 30 15.0 (0.0) 30 19.1 (0.4)

g3mod 30 23.5 (0.2) 30 23.5 (0.2) 30 31.2 (0.3)

g5mod 30 6.4 (0.1) 30 6.4 (0.1) 30 9.6 (0.3)

g6 30 10.9 (0.3) 30 10.9 (0.3) 30 11.9 (0.2)

g7 30 47.5 (4.6) 30 47.5 (4.7) 30 39.8 (2.9)

g8 30 6.5 (0.2) 30 6.5 (0.2) 30 5.2 (0.2)

g9 30 21.5 (1.9) 30 21.5 (1.9) 30 23.1 (2.3)

g10 30 22.8 (1.5) 30 22.8 (1.5) 30 51.1 (6.5)

g13mod 30 9.4 (0.8) 30 9.4 (0.8) 30 8.6 (0.7)

g16 30 14.7 (2.4) 30 14.7 (2.4) 30 19.6 (1.8)

g18 30 108.6 (6.5) 30 108.6 (6.5) 30 122.0 (5.6)

g19 30 16.5 (0.5) 30 16.5 (0.5) 30 20.8 (0.8)

g24 30 1.3 (0.1) 30 1.3 (0.1) 30 1.3 (0.1)

SR7 30 9.5 (0.1) 30 9.5 (0.1) 30 12.4 (0.4)

WB4 30 37.4 (5.9) 30 37.4 (5.9) 30 25.0 (4.1)

PVD4 30 7.9 (0.4) 30 7.9 (0.4) 30 10.4 (0.7)

Table 2.14: Number of evaluations to �nd a �rst feasible point for the COBRA-Lo
al, COBRA-Global and Extended-ConstrLMSRBF optimization

algorithms. These results are taken from (Regis, 2014).See Table 2.2 for 
onventions.
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Pbm COBRA-Lo
al COBRA-Global Extended-ConstrLMSRBF

g1 7 387.8 (-) 30 125.2 (15.3) 0 > 500 (-)

g3mod 6 451.1 (-) 6 440.0 (-) 30 141.7 (8.6)

g5mod 30 12.9 (0.5) 30 16.6 (1.8) 30 40.3 (1.4)

g6 30 53.6 (14.0) 30 62.5 (10.5) 26 101.2 (-)

g7 30 199.5 (20.7) 30 99.8 (5.7) 30 264.5 (34.2)

g8 30 30.3 (2.8) 30 31.2 (2.5) 30 46.2 (6.2)

g9 28 275.5 (-) 30 176.4 (26.3) 29 294.0 (-)

g10 30 276.4 (43.6) 29 193.7 (-) 24 394.3 (-)

g13mod 30 221.7 (35.6) 30 169.0 (19.1) 30 146.4 (29.2)

g16 30 38.8 (9.3) 30 46.3 (13.5) 30 38.4 (3.6)

g18 24 195.9 (-) 23 212.8 (-) 21 276.0 (-)

g19 30 698.5 (75.3) 30 850.9 (70.6) 0 > 1000 (-)

g24 30 9.0 (0.0) 30 9.0 (0.0) 30 91.9 (6.0)

SR7 30 35.0 (2.7) 30 33.5 (1.6) 0 > 500 (-)

WB4 30 164.6 (12.2) 30 202.0 (13.0) 30 238.6 (20.0)

PVD4 28 212.2 (-) 30 155.4 (38.2) 29 263.5 (-)

Table 2.15: Number of evaluations to rea
h the target for the COBRA-Lo
al, COBRA-Global and Extended-ConstrLMSRBF optimization algorithms.

These results are taken from (Regis, 2014). See Table 2.2 for 
onventions.
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Chapter 3

Improvements and extensions of the

BMOO algorithm
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3.1 Introdu
tion

This 
hapter addresses some of the perspe
tives raised in Chapter 2. It is organized as follows.

In Se
tion 3.2, we address the limitations regarding the optimization of the new EI 
riterion.

In Chapter 2 it was empiri
ally demonstrated that the use of the probability of improvement for

optimizing the new 
riterion yields unsatisfa
tory results on problems having many 
onstraints.

Here, we design a test problem to validate our hypotheses regarding the 
auses of this issue. We

show that the performan
es of BMOO are improved when a more suitable density is used for

optimizing the EI 
riterion.

In Se
tion 3.3 we dis
uss in more details the 
omputation of the 
riterion. It was demon-

strated on the OSY problem in Se
tion 2.5.4 that the uniform density may not be e�
ient

for approximating the 
riterion. In this se
tion, we introdu
e a novel sampling density whi
h

has better approximation performan
es than the uniform density and dis
uss the 
hoi
e of the

sample size to be used in the SMC pro
edure. A 
omparison between approximate and exa
t


omputation of the 
riterion is made and re
ommendations are given at the end of the se
tion.

In Se
tion 3.4, we assess the performan
es of the BMOO algorithm on many-obje
tive op-

timization problems. First, a test problem for whi
h the 
urvature of the Pareto front and the

numbers of obje
tives 
an be 
ontrolled is introdu
ed. Then, BMOO is 
ompared with a strategy

where the hypervolume indi
ator is maximized sequentially on this problem. The in�uen
e of the


hoi
e of the referen
e point in the de�nition of the hypervolume is dis
ussed and the adaptive

pro
edure to set this referen
e point is revisited.

Finally, in Se
tion 3.5, we dis
uss mis
ellaneous extensions of the algorithm. BMOO is ex-

tended to handle non-hyper
ubi
 design spa
es and hidden 
onstraints. A multi-point strategy

for bat
h sequential optimization is proposed and the in
orporation of user preferen
es is dis-


ussed.

3.2 E�
ient optimization of the EI 
riterion

3.2.1 Introdu
tion

In this thesis, we study the possibility of optimizing EI-based 
riteria using sequential Monte-

Carlo te
hniques. The idea is to exploit the stability in time of the interesting regions during

the optimization pro
ess (Benassi et al., 2012). At time n, our obje
tive is to obtain a weighted

sample Xn from a density of interest πXn , that 
on
entrates in regions of high EI value and stays

�stable� in time. These are antagonist obje
tives and the 
hoi
e of a density πXn that makes a

suitable trade-o� between them is 
ru
ial to the performan
es of the optimization algorithm.

In the work of Benassi et al. (2012), the probability of improvement is used as an un-

normalized probability density fun
tion, and good results are obtained in the single-obje
tive


ase: this is the path that we followed in Chapter 2. However, the numeri
al experiments of

Se
tion 2.5.3 revealed issues with this 
hoi
e of density when dealing with problems having nu-

merous 
onstraints, as observed on the g18 problem. An alternative density was proposed to

better 
on
entrate the parti
les in regions of high EI values, with promising results.
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In this se
tion, we further study alternative densities to optimize the EI 
riterion. In par-

ti
ular, we fo
us on the optimization of the 
riterion before feasible solutions are known, i.e.

in the phase where the points are 
ompared using the Pareto domination rule applied to the

ve
tor of 
onstraint violations (see Se
tion 2.3.1). The se
tion is organized as follows. After

having presented a test problem 
rafted to exhibit small feasibility regions and a large number of


onstraints, we propose three novel sampling densities. A 
omparison of performan
es is made

and one parti
ular density is shown to outperform the others. This density, that we 
all PICPI,

a
hieves very good results both on the test problem and on the problems of Se
tion 2.5.3. Besides,

it 
an be 
omputed in 
losed form when independen
e between the fun
tions of the problem is

assumed, whi
h makes it 
omputationally e�
ient.

3.2.2 The YUCCA test problem

We de�ne the following single-obje
tive test problem:

YUCCA (d, κ) :

[−1, 1]d → R

x = (x1, . . . , xd) 7→





f(x) =
∑

1≤i≤d

(
xi − xopti

)2
,

c2i−1(x) = sin
(
xi − xopti − ǫ

)
, 1 ≤ i ≤ d ,

c2i(x) = sin
(
xopti − xi + ǫ

)
, 1 ≤ i ≤ d ,

where ǫ = 10−κ
and xopti = −1 + 2i−1

2d , 1 ≤ i ≤ d. The parameter d (the dimension of the sear
h

spa
e) also 
ontrols the number of 
onstraints of the problem sin
e q = 2d. The parameter κ


ontrols the size of the ex
ursion set of the 
onstraints below zero. For this problem, the feasible

region is an hyper
ube of side length 2ǫ, 
entred on xopt, whi
h is the global optimum of the

optimization problem

1

. The ratio between the volume of the feasible set and the volume of the

design spa
e is r = (2ǫ)d

2d
= ǫd. It be
omes small when κ and d in
rease. An illustration of the

YUCCA test problem with κ ∈ {1, 2} and d = 2 is presented in Figure 3.1.

The 
onstraints of the problem only depend on one variable at a time and they are easily

modeled using Gaussian pro
esses. Besides, the minimization of the obje
tive is straightforward.

The di�
ulty of the problem lies in the simultaneous satisfa
tion of all 
onstraints when d and

κ in
rease. Indeed, the 
onstraints are pairwise antagonist and satisfying simultaneously c2i−1

and c2i, for a given i ∈ J1, dK, is di�
ult. As an example, 
onsider the problem with κ = 2

and d = 20. Then, the ratio between the volume of the feasible region and the volume of the

design spa
e is r = 10−40
and one 
annot expe
t to �nd a feasible solution without an e�
ient

optimization pro
edure.

1

Here it is impli
itly assumed that ǫ ≤ 1
2d
. Otherwise, the feasible region is lo
ated near the border of the

domain.
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Figure 3.1: Illustration of the YUCCA test problem with d = 2 and κ = 1 (top) or κ = 2 (bottom). The

regions where 
onstraints are satis�ed are represented in shades of gray. Darker shades of gray indi
ate

overlapping regions. The optimum is represented as a red disk.
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3.2.3 Failure of the probability of improvement sampling density on the

YUCCA test problem

Here we explain the 
auses of the failure of the probability of improvement on the YUCCA test

problem.

Consider a set of N points Xk = (Xk,1 , . . . , Xk,d), k ∈ J1, NK, uniformly distributed on X.

For every point Xk, k ∈ J1, NK, only 
onstraints c2i−1 and c2i, i ∈ J1, dK, depend on the value

of xk,i. Thus, the simultaneous satisfa
tion of the pairs of 
onstraints (c2i−1, c2i) and (c2j−1, c2j)

when i 6= j are two independent events. Assume for simpli
ity that ǫ ≤ 1
2d so that the feasible

region is not near the boundary of the domain. Sin
e xk,i is uniformly distributed on the interval

[−1, 1], the probability that both c2i−1 and c2i are satis�ed is equal to 2ǫ and the probability that

only one of the two is satis�ed is equal to 1− 2ǫ (any x ∈ [−1, 1]d satis�es at least d 
onstraints,

see Figure 3.1). The probability pl that xk satis�es exa
tly l 
onstraints is thus

{
pl = 0 if l < d,

pl =
(

d
2d−l

)
(2ǫ)l−d(1− 2ǫ)2d−l

if d ≤ l ≤ 2d .
(3.1)

Observe in parti
ular that pd = (1 − 2ǫ)d, whi
h is large if ǫ is small. Consequently, if ǫ

is small, it is most likely that xk satis�es exa
tly d 
onstraints. As an example, 
onsider the

problem with κ = 3. Then ǫ = 10−3
and pd > 0.9 for all values of d inferior to 50.

For the YUCCA test problem, the number of possible 
ombinations of d 
onstraints is equal

to 2d (for all i ∈ J1, dK, 
hoose either c2i−1 or c2i), whi
h is large when d is large. As a 
onsequen
e,

as long as N ≪ 2d, then with high probability, all the points Xk, k ∈ J1, NK, satisfy a di�erent


ombination of d 
onstraints when ǫ is small and d is large

2

. Furthermore, in that 
ase, with

high probability, any new point XN+1 uniformly drawn on X will satisfy a 
ombination of d


onstraints that is di�erent from what was previously observed, i.e. it will be non-dominated. In

other words, when ǫ is small, d is large and N ≪ 2d, then with high probability, any new point

XN+1 uniformly drawn on X makes an improvement. Assuming the models are almost perfe
t

(so that ci(x) ≤ 0 ⇒ ξc,i(x) ≤ 0), the probability of improvement is therefore 
lose to uniform

on X.

Consider now the hypervolume improvement I(x) yielded by the observation of a point x ∈ X

that satis�es exa
tly d 
onstraints. Assuming that Bc = [−1, 1]2d, whi
h is a reasonable 
hoi
e

for the YUCCA problem, then the ratio between I(x) and the volume of Bc, i.e. the volume

dominated by a feasible solution is given by

I(x)

|Bc|
≤

1c(x)∈Bc

22d

2d∏

i=1

(
2× 1ci(x)≤0 + (1− ci(x))1ci(x)>0

)
≤ 1

2d
, (3.2)

whi
h is small when d is large. In other words, the improvement yielded by points drawn from

the probability of improvement is likely to be small when d is large and ǫ is small, and the

probability of improvement is not suitable for optimizing the EI in that 
ase.

2

Due to the way xopt
is de�ned, not all 
ombinations have the same probability of o

uren
e. To simplify the

analysis, we negle
t this e�e
t.
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Remark 13 Note that estimating the improvement (3.2) using a sample uniformly distributed on

Bc \Hn,c as proposed in Se
tion 2.4.1 would require a large number of parti
les. In Se
tion 3.3,

a density will be proposed that 
an be used to 
ompute small improvements with a reasonable

number of parti
les.

3.2.4 Novel sampling densities

On the YUCCA test problem, the EI 
riterion is likely to be high only in regions where a large

number of 
onstraints are simultaneously satis�ed. Therefore we need a density that 
on
entrates

in regions where the probability of jointly satisfying the 
onstraints is high. In this se
tion, we


onsider the following three densities de�ned on X:





PIEK1(x) ∝ PIon(x) ·En

(
K(x)!1ξc(x)∈Bc\Hn,c

)
,

PIEK2(x) ∝ PIon(x) ·En

(
K(x)! e−τ

∑q
i=1 ξc,i(x)+ 1ξc(x)∈Bc\Hn,c

)
,

PICPI(x) ∝ PIon(x) ·
q∏

i=1

Pn (ξc,i(x) ≤ ri) ,

(3.3)

where PIon(x) = Pn (ξo(x) ∈ Bo \Hn,o) denotes the probability of improvement with respe
t

to the obje
tives, K(x) = # {i ∈ J1, dK, ξc,i(x) ≤ 0} denotes the number of 
onstraints satis�ed

by ξc(x) as in Se
tion 2.4.2, and ri = min{X1,...,Xn} ci(X)+, 1 ≤ i ≤ q.
The PIEK1 density 
orresponds to the density introdu
ed in Se
tion 2.4.2. It is a form

of expe
ted improvement where the term K(x)! is used to 
on
entrate the density in regions

where more 
onstraints are simultaneously satis�ed. It a
hieved good results on the g18 problem

(see Se
tion 2.5.3). On the YUCCA test problem, the probability that x satis�es more than d


onstraints is small when ǫ is small (1 − pd ≈ 2dǫ in that 
ase, see (3.1)), be
ause the regions

where 
onstraints are simultaneously satis�ed are small bands of width 2ǫ. The PIEK1 density is

based on a dis
ontinuous improvement fun
tion and on this problem, it is 
lose to uniform on X,

ex
ept in the small regions of width 2ǫ where it will have high plateaus. This is a �lands
ape�

that is very di�
ult to sample using SMC, be
ause there is no slope toward the regions of high

density.

The PIEK2 density is similar to PIEK1 but it is smoother. The parameter τ in its expression

allows to 
ontrol the slope of the density. A sharp slope, i.e. a large τ , will 
on
entrate the

density mass in regions of low 
onstraint violation whereas a smooth slope, i.e. a small τ , will

make the 
on
entration of the density more progressive. Sampling the PIEK2 density with SMC

is therefore easier than it is with the PIEK1 density.

The PICPI density is based on the produ
t of the probabilities of improvement on ea
h


onstraint. It 
an be seen as a form of expe
ted improvement where the improvement is one

when we improve upon all the 
onstraints simultaneously and zero otherwise. As su
h, this is a

very �optimisti
� density. As will be seen in Se
tion 3.2.5, sampling the PICPI density is simpler

than sampling the PIEK1 and PIEK2 densities be
ause it is possible to de�ne a sequen
e of

easy-to-sample densities that 
onverges to the PICPI density.
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Prior to �nding feasible solutions, Hn,o is empty and the term PIon(x) in the expressions of

the PIEK1, PIEK2 and PICPI densities 
an be 
omputed in 
losed form when independen
e

between the obje
tives is assumed:

PIon(x) = Pn (ξo(x) ∈ Bo) ,

=

p∏

i=1

Φ

(
yuppo,i − ξ̂o,i,n(x)

σo,i,n(x)

)
,

where ξ̂o,i,n(x) and σ2o,i,n(x) denote respe
tively the kriging predi
tor and the kriging varian
e

at x for the ith 
omponent of ξo.

On
e feasible solutions are known, Hn,o is no longer empty and PIon(x) has to be estimated.

The Monte-Carlo approximation te
hnique refered to in Remark 10 of Se
tion 2.4.2 
an be used

in this 
ase. Some authors refer to this Monte-Carlo approximation te
hnique as the Sample

Average Approximation (SAA) te
hnique (see, e.g., Svenson (2011)). In the following, we will

use this terminology as well.

There exist no 
losed forms of the expe
tations in the expressions of the PIEK1 and PIEK2

densities. Again, they 
an be 
omputed approximately using the SAA te
hnique. The produ
t

term in the expression of the PICPI density on the other hand, 
an be 
omputed in 
losed form:

q∏

i=1

Pn (ξc,i(x) ≤ ri) =
q∏

i=1

Φ

(
ri − ξ̂c,i,n(x)
σc,i,n(x)

)
,

where ξ̂c,i,n(x) and σ2c,i,n(x) denote respe
tively the kriging predi
tor and the kriging varian
e

at x for the ith 
omponent of ξc.

Remark 14 Observe that all the densities 
onsidered in this se
tion default to the probability of

improvement as soon as a feasible solution has been observed. Our fo
us here is on optimizing

the EI 
riterion prior to �nding feasible solutions. There is no indi
ation in our experiments

that the probability of improvement is not suitable for optimizing the EI on
e a feasible solution

has been identi�ed (see experiments of Se
tion 3.2.6).

3.2.5 Sampling pro
edure

In Se
tion 2.4.2, the sampling pro
edure to 
onstru
t the su

essive (Xn)n≥1 from the PI density

has not been detailed be
ause it is very similar to what is des
ribed in Algorithms 2, 3 and 4. It


onsists of two ingredients. First, an initialization pro
edure is required to produ
e X0 from π0.

Then, a spe
i�
 strategy for making transitions between two su

essive densities πn and πn+1

is ne
essary be
ause it may happen that the two densities are too di�erent to produ
e Xn+1

from Xn in one step using Algorithm 5.

For initialization, we used a sample X0 independently and uniformly distributed on X in

Algorithm 5. This was possible for the PI density be
ause π0(x) ∝ Pn (ξ(x) ∈ B) is 
lose to

one for every x ∈ X when yupp is set high enough (it is equal to one in the limit yupp → +∞),

i.e. π0 is almost uniform. Then, to make transitions, a pro
edure based on intermediate fronts
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of non-dominated points was proposed in Algorithms 3 and 4.

When the PIEK1, PIEK2 and PICPI densities are used, this sampling pro
edure has to be

adapted. Indeed, π0 is not in general uniform on X when the PIEK1 and PIEK2 densities are

used, and transitions based on intermediate fronts of non-dominated points are not suitable for

the PICPI density.

A more general initialization pro
edure that makes it possible to handle non-uniform initial

densities π0 is proposed in Algorithm 6. It implements a tempering pro
edure to 
onstru
t X0

from π0 starting from a sample uniformly distributed on X.

For making transitions with the PIEK1 and PIEK2 densities, Algorithms 3 and 4 
an be used

as is. The stru
ture of the PICPI density is di�erent. It is not de�ned with respe
t to fronts of

non-dominated points as the other densities. Only one referen
e point r = (r1, . . . , rq) ∈ R
q
+ is

ne
essary to de�ne the PICPI density (see (3.3)). A pro
edure to make transitions in that 
ase

is provided in Algorithm 7.

Algorithm 6: Tempering pro
edure to 
onstru
t a sample X = X0 approximately dis-

tributed from a target density π = π0.

Notations: Let X = (xk, wk)1≤k≤m be a weighted sample

distributed from a density π and let w⋆ = (w⋆
k)1≤k≤m

be the normalized update weights

for the 
loud X and a density π⋆ (see Equation (2.33)). We shall denote ESS(X , π⋆)
the e�e
tive sample size of X with respe
t to density π⋆:

ESS(X , π⋆) =


 ∑

1≤k≤m

(w⋆
k)

2




−1

Input: A target initial density π, a sample size m and a threshold value ν.

Output: A weighted sample X of size m drawn from π.

1 α0 ← 0
2 Draw Xα0 of size m uniformly distributed on X.

3 while α0 < 1 do
4 if ESS(Xα0 , π) ≥ νm then

5 α0 ← 1
6 else

7 Find α su
h that ESS(Xα0 , π
α) ≈ νm using a di
hotomy on α ∈ [α0, 1].

8 α0 ← α

9 Draw a sample Xα0 distributed from πα0
using steps 4→ 6 of

Algorithm 5 (Reweight-Resample-Move steps).

10 X ← Xα0

3.2.6 Numeri
al experiments

We make two su

essive ben
hmarks. First, the performan
es of BMOO using the PI, PIEK1,

PIEK2 and PICPI densities are 
ompared on the YUCCA test problem for di�erent values of d
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Algorithm 7: Pro
edure to 
onstru
t Xn, n ≥ 1 when the PICPI density is used.

Notations: Given x ∈ X and r = (r1, . . . , rq) ∈ R
q
+, denote by

πr(x) the PICPI density at lo
ation x for a referen
e r:

πr(x) ∝ PIon(x) ·
q∏

i=1

Pn (ξc,i(x) ≤ ri) .

Inputs: A sample size m, a threshold value ν, and X0, r0 and r⋆ su
h that

� r0 = (r0,1, . . . , r0,q) and r
⋆ = (r⋆1 , . . . , r

⋆
q ) with r

⋆
i ≤ r0,i, for all i ∈ J1, qK.

� X0 = (x0,k)1≤k≤m
∈ X

m
is distributed from πr0 . Note that X0 may 
ontain repli
ated

values.

Output: A sample X ⋆
distributed from πr⋆.

1 t← 0
2 while t < 1 do
3 if ESS(Xt, πr⋆) ≥ νm then

4 t← 1
5 else

6 Find u ∈ [t, 1] su
h that ESS(Xt, πru) ≈ νm using di
hotomy, where

ru = rt + u(r⋆ − rt).
7 t← u

8 Draw a sample Xt distributed from πrt using steps 4→ 6 of

Algorithm 5 (Reweight-Resample-Move steps).

9 X ⋆ ← Xt
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and κ. The results of this �rst ben
hmark are presented in Tables 3.1, 3.2 and 3.3. The PICPI

density is shown to outperform the other three densities on this problem. To see if its good

results generalize to other problems, we redo the experiments of Se
tion 2.5.3 with BMOO using

the PICPI density. The results are 
ompared with the results obtained with the PI density

in Se
tion 2.5.3, to the results of Regis (2014) and to results obtained with BMOO using the

expe
ted improvement as a sampling density for optimizing the 
riterion on
e a feasible solution

has been found.

In Table 3.1, we set κ = 1 and d varies from d = 2 to d = 100. In tables 3.2 and 3.3, κ is set

su

essively to κ = 3 and κ = 5 and d varies from d = 2 to d = 50. We do not run the algorithm

with d = 100 for κ > 1 be
ause then the ratio r between the volume of the feasible region and

that of the design spa
e is too small (Note that when κ = 5 and d = 50, r = 10−250
already).

The algorithm is run with the settings des
ribed in Se
tion 2.5.1, ex
ept for the parameter ν

whi
h is set to ν = 0.05. When the dimension of the problem augments, the ratio between the

volume of the feasible region and the volume of X de
reases very fast and the SMC algorithm

has to make many transitions between two iterations of the algorithm. Taking ν = 0.05 instead

of ν = 0.2 permits to speed up the algorithm by de
reasing the number of SMC transitions.

In our experiments, we stop the algorithm as soon as a feasible point is found and measure

the number of samples that were required. The runs are repeated 30 times ea
h with di�erent

initial design of experiments and with a limiting number of a�ordable fun
tions evaluation of

Nmax = 200. For referen
e, results obtained using the four lo
al optimization algorithms of

Se
tion 2.5.3 are shown in the tables. These are run 30 times ea
h with di�erent starting points

and with a limiting number of a�ordable fun
tions evaluation of Nmax = 1000. Only the results

of the best s
oring algorithm are shown in the tables; see Se
tion 3.6.1 for more detailed results.

For ea
h density, the �rst 
olumn 
orresponds to the number of su

essful runs (a run is


onsidered su

essful if a feasible solution has been found). A value of 30 thus indi
ates that

all runs were su

essful in �nding a feasible solution. The se
ond 
olumn 
ontains the average

number of fun
tion evaluations that were required to �nd a feasible solution, where the average

is taken over su

essful runs only. The 
orresponding standard deviation is given in parenthesis.

For the lo
al optimization algorithms, the name of the best s
oring algorithm is given in the �rst


olumn (Cob stands for the COBYLA algorithm, IP stands for the interior-point algorithm, AS

stands for the a
tive-set algorithm and SQP stands for the SQP algorithm). The informations

in the other two 
olumns are the same as for the densities

3

.

The PICPI density 
learly outperforms the other densities on the YUCCA problem. The

algorithm is able to solve the problem very e�
iently up to κ = 5 and d = 50 when it is used.

When the other densities are used, the algorithm stalls for κ > 1 (see Tables 3.2 and 3.3).

Looking at the results of Table 3.1 where κ = 1, we observe a 
lear hierar
hy between the four

densities. The PI density works up to d = 5, the PIEK1 density works up to d = 10 and the

PIEK2 density works up to d = 20. The PICPI density on the other hand works up to d = 100.

The introdu
tion of a slope in the PIEK2 density seems to help but it is not su�
ient to a
hieve

3

Some of the lo
al optimization algorithms used in this study allow some toleran
e on the 
onstraints violation.

In the tables, a solution is 
onsidered as feasible when there is no 
onstraint violation larger than 10−5
. The

parameters of the lo
al optimization algorithms are set a

ordingly.
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d Ninit Lo
al (best among 4) PI PIEK1 PIEK2 PICPI

2 10 SQP 30 7.2 (1.6) 30 10.7 (1.3) 30 10.6 (1.4) 30 10.3 (1.9) 30 10.9 (0.4)

5 20 SQP 28 16.2 (3.0) 30 26.8 (2.7) 30 21.2 (0.7) 30 21.0 (0.0) 30 21.0 (0.0)

10 30 SQP 25 31.4 (5.8) 0 - (-) 30 58.0 (17.9) 30 31.5 (0.9) 30 31.0 (0.0)

20 40 SQP 16 70.6 (12.6) 0 - (-) 2 134.5 (79.9) 30 81.2 (18.1) 30 41.0 (0.0)

50 50 SQP 11 191.1 (23.8) 0 - (-) 0 - (-) 0 - (-) 30 51.0 (0.0)

100 60 SQP 1 405.0 (0.0) 0 - (-) 0 - (-) 0 - (-) 30 65.4 (2.4)

Table 3.1: Results obtained by the lo
al optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test

problem with κ = 1. In bold, the good results in terms of average number of evaluations. We 
onsider the results to be good if more than 20 runs where

su

essful and the average number of evaluations is at most 20% above the best result. Dash symbols are used when a value 
an not be 
al
ulated.
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d Ninit Lo
al (best among 4) PI PIEK1 PIEK2 PICPI

2 10 SQP 27 9.4 (2.4) 30 16.8 (1.3) 30 15.4 (1.5) 30 13.8 (1.0) 30 11.0 (0.0)

5 20 SQP 24 21.8 (3.1) 0 - (-) 0 - (-) 0 - (-) 30 21.0 (0.0)

10 30 SQP 19 40.9 (5.5) 0 - (-) 0 - (-) 0 - (-) 30 31.4 (0.5)

20 40 SQP 17 85.0 (0.0) 0 - (-) 0 - (-) 0 - (-) 30 42.0 (0.0)

50 50 SQP 3 205.0 (0.0) 0 - (-) 0 - (-) 0 - (-) 30 56.2 (7.6)

Table 3.2: Results obtained by the lo
al optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test

problem with κ = 3. See Table 3.1 for 
onventions.

7

2



d Ninit Lo
al (best among 4) PI PIEK1 PIEK2 PICPI

2 10 SQP 27 10.1 (1.6) 30 39.8 (4.5) 30 35.1 (4.3) 30 30.6 (3.2) 30 12.0 (0.0)

5 20 SQP 21 21.6 (3.6) 0 - (-) 0 - (-) 0 - (-) 30 22.4 (0.5)

10 30 SQP 20 42.2 (4.9) 0 - (-) 0 - (-) 0 - (-) 30 32.9 (0.3)

20 40 SQP 10 80.8 (8.9) 0 - (-) 0 - (-) 0 - (-) 30 43.0 (0.0)

50 50 SQP 3 205.0 (0.0) 0 - (-) 0 - (-) 0 - (-) 10 65.4 (37.8)

Table 3.3: Results obtained by the lo
al optimization algorithms and by BMOO using the PI, PIEK1, PIEK2 and PICPI densities on the YUCCA test

problem with κ = 5. See Table 3.1 for 
onventions.

7

3



good optimization performan
es

4

.

Among the four lo
al optimization algorithms, the SQP algorithm a
hieves the best results

on the YUCCA test problem for all values of κ and d 
onsidered in this study. It a
hieves good

results up to d = 5 but is outperformed by BMOO using the PICPI density for higher values of d.

In parti
ular, its performan
es strongly depend on the starting point, with many unsu

essful

runs.

To see if the goods results obtained with BMOO using the PICPI density generalize to other

problems, we redo the experiments of Se
tion 2.5.3. The results are given in Tables 3.4 and 3.5. In

the tables, BMOO using the PICPI density is 
ompared to the results presented in Se
tion 2.5.3

using the PI density, to the results of Regis (2014) and to results obtained by BMOO using the

following density:

EICPI(x) ∝ En

(
(yn − ξo(x))+

) q∏

i=1

Pn (ξc,i(x) ≤ ri) , (3.4)

where yn = min ({ξo(Xi) s.t. ξc(Xi) ≤ 0, 1 ≤ i ≤ n} ∪ {yuppo }) is either the upper 
orner of Bo

when no feasible solution is knwon or the 
urrent best feasible obje
tive value and, as for the

PICPI denisty, ri = min{X1,...,Xn} ci(X)+, 1 ≤ i ≤ q.
The EICPI density is similar to the PICPI density ex
ept that it is proportional to the ex-

pe
ted improvement on
e a feasible solution is known. Indeed, on single-obje
tive problems,

on
e a feasible solution is known, the EI 
riterion 
an be 
omputed in 
losed form with a low


omputational 
ost. Therefore, one may wonder if using the expe
ted improvement as a sam-

pling density for optimizing the EI 
riterion would yield better results than the probability of

improvement.

Remark 15 In the un
onstrained single-obje
tive setting, Benassi (2013) observed in Se
tion

4.3.1 of his thesis that the probability of improvement favours regions 
lose to the 
urrent mini-

mum, whereas the expe
ted improvement tends to be more explorative and, hen
e, more �unsta-

ble�

5

. In a 
onstrained setting, this argument may not hold anymore. Indeed, when the feasible

region is small, the EI is likely to favour lo
al (feasible) solutions as well. In a multi-obje
tive

setting, the question arises anew be
ause the 
on
epts of exploitation and exploration take a dif-

ferent form (see, e.g., Bosman and Thierens (2003)). We do not, in this thesis, advan
e any

argument other than implementation 
omplexity (see Se
tion 3.3) to motivate our 
hoi
e of us-

ing the probability of improvement instead of the expe
ted improvement for optimizing the EI on

multi-obje
tive problems.

Several observations 
an be made based on the results of this experiment. First, it 
an be seen

that the good performan
es of the PICPI density generalize to the problems of this ben
hmark.

On the problems where we had good results with the PI density, the PICPI density does just as

4

In our experiments, the parameter τ that 
ontrols the slope of the PIEK2 density is set to τ = 5.
5

The �unstability� of the sampling density is not ne
essarily an issue for BMOO be
ause it has a restart


apability (see Remark 11 in Se
tion 2.4.2). However, the a

umulation of restarts in
reases the 
omputing time

of the algorithm.
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Pbm Ninit PICPI EICPI PI Regis (best among 3)

g1 39 30 40.4 (0.5) 30 40.5 (0.5) 30 44.2 (1.9) CG 30 15.0 (0)

g5mod 12 30 13.0 (0.0) 30 13.0 (0.3) 30 13.0 (1.2) CL 30 6.4 (0.1)

g6 6 30 9.4 (0.7) 30 9.2 (0.7) 30 9.7 (0.7) CL 30 10.9 (0.3)

g7 30 30 31.0 (0.0) 30 31.0 (0.0) 30 38.8 (3.3) CG 30 47.5 (4.6)

g8 6 30 7.1 (0.4) 30 6.7 (1.6) 30 7.0 (0.2) CL 30 6.5 (0.2)

g9 21 30 23.1 (1.7) 30 22.9 (4.3) 30 21.8 (5.1) CG 30 21.5 (1.9)

g13mod 15 30 11.5 (5.4) 30 12.0 (5.6) 30 10.5 (5.6) Ext 30 8.6 (0.7)

g16 15 30 20.8 (4.3) 30 21.8 (5.3) 30 21.7 (7.3) Ext 30 19.6 (1.8)

g18 27 30 32.0 (1.7) 30 32.7 (1.7) 0 - (-) CL 30 108.6 (6.5) (-)

g19 45 30 46.0 (0.0) 30 46.0 (0.0) 30 46.4 (3.0) CL 30 16.5 (0.5)

g24 6 30 2.2 (1.5) 30 2.1 (1.3) 30 2.6 (1.6) CG 30 1.3 (0.1)

SR7 21 30 21.9 (0.4) 30 21.2 (3.4) 30 22.0 (0.2) CG 30 9.5 (0.1)

WB4 12 30 17.5 (4.9) 30 18.2 (7.0) 30 19.1 (5.8) CL 30 37.4 (5.9)

Table 3.4: Number of evaluations to �nd a �rst feasible point. See Table 3.1 for 
onventions.
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Pbm Ninit PICPI EICPI PI Regis (best among 3)

g1 39 30 55.1 (2.0) 30 54.8 (2.0) 30 57.7 (2.6) CG 30 125.2 (15.3)

g5mod 12 30 15.5 (0.5) 30 15.2 (0.4) 30 16.3 (0.6) CL 30 12.9 (0.5)

g6 6 30 13.5 (0.7) 30 13.2 (0.8) 30 13.3 (0.8) CL 30 53.6 (14.0)

g7 30 30 50.4 (2.0) 30 50.7 (1.6) 30 55.8 (2.8) CG 30 99.8 (5.7)

g8 6 30 27.3 (7.8) 30 26.1 (7.3) 30 26.3 (10.4) CL 30 30.3 (2.8)

g9 21 30 59.5 (11.9) 30 63.4 (16.3) 30 61.6 (14.3) CG 30 176.4 (26.3)

g13mod 15 26 133.9 (38.8) 24 128.7 (41.4) 30 180.3 (84.6) Ext 30 146.4 (29.2)

g16 15 30 32.1 (9.9) 30 33.3 (9.0) 30 30.3 (12.3) Ext 30 38.4 (3.6)

g18 27 30 58.3 (4.9) 30 59.3 (3.9) 0 - (-) CL 24 195.9 (-)

g19 45 30 131.5 (5.4) 30 132.4 (5.4) 30 133.3 (6.2) CL 30 698.5 (75.3)

g24 6 30 9.4 (1.5) 30 9.8 (1.1) 30 9.9 (1.0) CG 30 9.0 (0)

SR7 21 30 28.4 (0.8) 30 27.8 (0.6) 30 29.3 (0.7) CG 30 33.5 (1.6)

WB4 12 30 51.4 (24.9) 30 54.5 (17.5) 30 44.5 (13.3) CL 30 164.6 (12.2)

Table 3.5: Number of evaluations to rea
h spe
i�ed target (see Table 2.1). See Table 3.1 for 
onventions.
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well and on the g18 problem, it does mu
h better. In parti
ular, BMOO using the PICPI density

obtains results 
onsistently better or as good as the best results of Regis (2014) (see Remark 16).

Note that sin
e the PICPI density 
an be 
omputed in 
losed form prior to �nding feasible

solutions, we also have a gain in terms of 
omputing time. Regarding the 
omparison between

the PICPI and the EICPI densities, we do not observe any noti
eable di�eren
e in performan
es

on the problems of this ben
hmark.

Remark 16 We do not 
onsider the g3mod, g10 and PVD4 test problems in this ben
hmark.

Re
all from Se
tion 2.5.3 that BMOO failed on these problems be
ause of modeling issues. Sin
e

nothing was done to improve the algorithm on this parti
ular aspe
t, it 
annot be expe
ted to

perform any better.

Remark 17 Note the mitigated results obtained on the g13mod problem. The algorithm either

solves the problem in about 130 evaluations or stalls. This happens be
ause the target is set very


lose to the true optimum for this problem (see Table 2.1). A more in depth study of the behaviour

of the algorithm 
lose to 
onvergen
e would be required to better understand this phenomenon.

3.2.7 Con
lusions

The main result of this se
tion is the proposal of a novel sampling density for optimizing the

EI 
riterion on problems with many 
onstraints. This new density, whi
h we 
all the PICPI

density, makes it possible to improve the performan
es of the BMOO algorithm on the problems

of Se
tion 2.5.3. As an additional bene�t, it 
an be 
omputed in 
losed form prior to �nding

feasible solutions and a simpli�ed sampling pro
edure 
an be used.

We believe that there is room for further improvement of the proposed strategy for optimizing

the EI 
riterion. In this thesis work, we use a simple algorithm to perform the move step of

Algorithm 5 (see Se
tion 2.5.1). While it is su�
ient in most situations, it is not 
omputationally

e�
ient and better performan
es 
ould probably be a
hieved using a more suitable algorithm.

Additionally, in this se
tion, we dis
uss the pertinen
e of using a sampling density propor-

tional to the probability of improvement instead of the expe
ted improvement for optimizing

the EI 
riterion in the single-obje
tive 
ase. No eviden
e emerges and a more in-depth 
ompari-

son between the two strategies would be required to better understand the 
onsequen
es of this


hoi
e.

3.3 E�
ient 
omputation of the EHVI 
riterion

3.3.1 Introdu
tion

In this se
tion, we study in more details the 
omputation method of the EI 
riterion presented

in Se
tion 2.4.1.

As brie�y dis
ussed in Se
tion 2.3.3, the 
omputational e�ort 
an be redu
ed if independen
e

between the obje
tives and 
onstraints is assumed. In that 
ase, the EI 
riterion (2.23) 
an be
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de
omposed as a sum of two terms by splitting the integration domain in two parts:

ρn(x) = ρfeasn (x) + ρunfn (x), for any x ∈ X,

where the term ρfeasn 
orresponds to the integral on Gn∩{yc ≤ 0}, and the term ρunfn 
orresponds

to the integral on Gn ∩ {yc 6≤ 0}, where Gn = B \ Hn denotes the set of all non-dominated

points in B as in Se
tion 2.3.3. In other words, the term ρfeasn 
orresponds to the 
ontribution

on the feasible region of B = Bo ×Bc and the term ρunfn 
orresponds to the 
ontribution on the

unfeasible region of B:

ρfeasn (x) =

∫

Gn∩{yc≤0}
Pn((ξo(x), ξc(x))⊳ (yo, yc)) dyodyc ,

=

∫

Gn∩{yc≤0}
Pn((ξo(x), ξc(x))⊳ (yo, 0)) dyodyc ,

=

∫

Gn∩{yc≤0}
Pn (ξo(x) ≺ yo) Pn(ξc(x) ≤ 0) dyodyc ,

=
∣∣B−

c

∣∣ · Pn(ξc(x) ≤ 0) ·
∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo ,

and

ρunfn (x) =

∫

Gn∩{yc 6≤0}
Pn((ξo(x), ξc(x))⊳ (yo, yc)) dyodyc ,

=

∫

Gn∩{yc 6≤0}
Pn(ψ(ξo(x), ξc(x)) ≺ (+∞, y+c )) dyodyc ,

=

∫

Gn∩{yc 6≤0}
Pn(ξ

+
c (x) ≺ y+c ) dyodyc ,

= |Bo| ·
∫

Bc\Hn,c

Pn

(
ξ+c (x) ≺ y+c

)
1yc 6≤0 dyc.

Using this de
omposition, two su

essive phases of the optimization pro
ess 
an be distin-

guished. Prior to �nding a feasible solution, the set Hn,o is empty and the terms ρfeasn (x) and

ρunfn (x) 
an be rewritten in the following form:





ρfeasn (x) =
∣∣B−

c

∣∣ · Pn(ξc(x) ≤ 0) ·
∫

Bo

Pn (ξo(x) ≺ yo) dyo ,

ρunfn (x) = |Bo| ·
∫

Bc\Hn,c

Pn

(
ξ+c (x) ≺ y+c

)
1yc 6≤0 dyc.

(3.5)

The term ρfeasn (x) 
an be 
omputed in 
losed form for all x ∈ X when independen
e between

the fun
tions of the problem is assumed. It is the produ
t of the volume of B
−
c , whi
h is

known, with the probability of feasibility and with an integral over Bo. The probability of

feasibility 
an be 
omputed in 
losed form when independen
e between the 
onstraints is assumed

(see Remark 5) and the integral over Bo 
an be 
omputed using the following formula when
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independen
e between the obje
tives is assumed:

∫

Bo

Pn (ξo(x) ≺ yo) dyo =

p∏

i=1

∫ y
upp

o,i,n

ylowo,i,n

Pn (ξo,i(x) ≤ y) dy

=

p∏

i=1

En

(∫ y
upp

o,i,n

ylowo,i,n

1(ξo,i(x)≤y) dy

)

=

p∏

i=1

En

((
yuppo,i,n −max

(
ξo,i(x), y

low

o,i,n

))
+

)

=

p∏

i=1

[
En

((
yuppo,i,n − ξo,i(x)

)
+

)

−En

((
ylowo,i,n − ξo,i(x)

)
+

)]

(3.6)

Remark 18 Noti
e the terms 
orresponding to the expe
ted improvement with respe
t to the

lower bounding values ylowo,i,n in (3.6). These are a 
onsequen
e of introdu
ing lower bounding

values in the de�nition of the EI. They are ne
essary in the �rst phase of the optimization

pro
ess be
ause the volume of Bo appears in the expression of ρunfn .

The term ρunfn (x) on the other hand has to approximated be
ause there exists no exa
t


omputation method for this term. Developing a domain de
omposition method in the spirit

of what is done for the exa
t 
omputation of the EHVI 
riterion would be possible. However,

in most appli
ations, the number of 
onstraints is likely to be high and su
h a method would

probably be too 
ostly to be pra
ti
al.

Remark 19 Note that in the beginning of the optimization pro
ess, the term Pn(ξc(x) ≤ 0)

in the expression of ρfeasn (x) is likely to be small when the problem is highly 
onstrained. The

optimization pro
ess is then mostly driven by ρunfn (x), whi
h depends only on the 
onstraints.

On
e progress has been made on the resolution of the 
onstraints and we are 
lose to �nding

a feasible solution, the term ρfeasn (x) then permits to dis
riminate between potentially feasible

solutions (i.e. solutions for whi
h Pn(ξc(x) ≤ 0) is 
lose to 1), by 
onsidering the improvement

with respe
t to the upper 
orner of Bo, thus rewarding more generously 
andidates with good

obje
tives values. This observation holds for reasonable Bo and Bc, the 
hoi
e of whi
h 
an

in�uen
e the optimization pro
ess though.

On
e a feasible solution has been observed, the se
ond phase of the optimization pro
ess


orresponds to minimizing the obje
tives. In that situation, the set Bc \Hn,c is empty and the

terms ρfeasn (x) and ρunfn (x) take the following form:





ρfeasn (x) =
∣∣B−

c

∣∣ · Pn(ξc(x) ≤ 0) ·
∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo ,

ρunfn (x) = 0 .

(3.7)

The term ρunfn (x) vanishes and the expe
ted improvement is equal to the produ
t of a 
onstant

with the probability of satisfying the 
onstraints and with a modi�ed EHVI 
riterion de�ned using
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Phase I

ρfeasn =
∣∣B−

c

∣∣ Pn(ξc(x) ≤ 0)

∫

Bo

Pn (ξo(x) ≺ yo) dyo Exa
t

ρunfn = |Bo|
∫

Bc\Hn,c

Pn

(
ξ+c (x) ≺ y+c

)
1yc 6≤0 dyc Approx.

Phase II

ρfeasn (x) =
∣∣B−

c

∣∣ Pn(ξc(x) ≤ 0)

∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo Exa
t or approx.

ρunfn (x) = 0 Exa
t

Table 3.6: Formulas used in the 
omputation of ρfeasn (x), x ∈ X. Phase I 
orresponds to a situation

where no feasible solution is known. Phase II 
orresponds to a situation where a feasible solution is

known. During Phase II, the term ρfeasn (x) 
an be 
omputed exa
tly using the pro
edure des
ribed in

Se
tion 3.3.3 or approximated using the proposed SMC pro
edure.

feasible values of the obje
tives only. Note that the 
onstant term |B−
c | does not in�uen
e the

lo
ation of the maximum of the EI. Therefore it doesn't a�e
t the optimization pro
ess.

The 
omputation of the integral in the expression of ρfeasn (x) 
an be done exa
tly using

an EHVI 
omputation method (see Se
tion 2.4.1), or approximately by using either the SMC

te
hnique proposed in Se
tion 2.4.1 or the SAA te
hnique (see Se
tion 3.2.4). See Table 3.6 for

a summary of the above mentioned results.

Remark 20 Note that di�erent te
hniques 
an be used for the 
omputation of the integral in ρfeasn

on
e a feasible observation has been made and for the 
omputation of the integral in ρunfn prior to

observing a feasible solution. The �rst 
an be done exa
tly and the se
ond 
an be approximated.

Besides, one 
an swit
h from exa
t 
omputation to approximate 
omputation or the opposite

depending, for example, on the number of non-dominated solutions and the dimension of the

problem.

In this se
tion, we address questions related to the 
omputation of the new EI 
riterion. First,

we introdu
e in Se
tion 3.3.2 a novel sampling density spe
i�
ally designed for the approximate


omputation of the EI 
riterion for a set of 
andidate solutions. The new density, whi
h we


all the Lopt
2 density, does not su�er from the limitations of the uniform density observed in

Se
tion 2.5.4 on the OSY test problem. Then, we dis
uss in Se
tion 3.3.3 the 
omputational


omplexity of the exa
t method and 
ompare it with the 
omplexity of the approximate method.

It is shown that for problems with more than �ve obje
tives, it rapidly be
omes impra
ti
al to

use the exa
t 
omputation method when the number of non-dominated observations augments.

Finally, we dis
uss the 
hoi
e of the number of parti
les used in the approximation method in

Se
tion 3.3.4. A simple 
ontrol strategy based on the varian
e of estimation is proposed and

illustrated on a toy example.

3.3.2 The L
opt
2 density

Let Xn = (xn,k)1≤k≤mX
∈ X

mX
be a set of mX parti
les for whi
h we want to 
ompute the value

of the EI 
riterion. As re
alled in the introdu
tion, the problem redu
es to the 
omputation of
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integrals of the form

In,k =

∫

Gn

Pn (ξ(xn,k) ≺ y) dy , 1 ≤ k ≤ mX, (3.8)

where ξ = ξo or ξ
+
c and Gn = Bo\Hn,o or Bc\Hn,c, depending on whi
h phase of the optimization

pro
ess is 
onsidered. In this work, we 
onsider approximations of the integral in (3.8) of the

form

Îπn

n,k =
1

mY

mY∑

i=1

Pn (ξ(xn,k) ≺ yn,i)
πn(yn,i)

, 1 ≤ k ≤ mX, (3.9)

where Yn = (yn,i)1≤i≤mY
∈ GmY

n is a set of mY parti
les distributed from a density πn on Gn.

Under the assumption that the (yn,i)1≤i≤mY
are identi
ally and independently distributed from

πn, the importan
e sampling estimator (3.9) of (3.8) is unbiased

6

. However, the quality of the

approximation depends on the 
hoi
e of the sampling density πn.

In Se
tion 2.4.1, a uniform density was used for simpli
ity but limitations were identi�ed.

Indeed, it may happen that a large proportion of the parti
les (yn,i)1≤i≤mY
have a very small

probability of being dominated by the (ξ(xn,k))1≤k≤mX
when the uniform density is used (see the

results on the OSY problem in Figure (2.9)). This happens, for example, 
lose to 
onvergen
e

when the improvements that 
an be expe
ted from observations at the (xn,k)1≤k≤mX
are small,

or when the lower bounding values ylow are set too low. These two situations are illustrated in

Figure 3.2.

In this se
tion, we introdu
e a new sampling density that is more 
on
entrated in the regions

of importan
e for 
omputing the integral (3.8). First, 
onsider a single 
andidate solution x ∈ X

for whi
h we want to 
ompute an estimator Îπn
n (x) of the form (3.9) of the integral In(x) =∫

Gn
Pn (ξ(x) ≺ y) dy using the density πn. The varian
e of the estimator Îπn

n (x), when the

(yn,i)1≤i≤mY
are identi
ally and independently distributed from πn, is

E

((
Îπn
n (x)− In(x)

)2)
=

1

mY

(∫

Gn

Pn (ξ(x) ≺ y)2
πn(y)2

πn(y) dy − In(x)2
)
. (3.10)

Then, an optimal 
hoi
e π⋆n,x for πn, i.e. a 
hoi
e that minimizes the varian
e of estima-

tion (3.10), is

π⋆n,x ∝ Pn (ξ(x) ≺ y) , (3.11)

whi
h is a well-known result stemming from the Cau
hy-S
hwarz inequality.

Consider now the simultaneous estimation of all In,k, 1 ≤ k ≤ mX, using a 
ommon set of

parti
les (yn,i)1≤i≤mY
. Naturally, the above mentioned result 
an not be used in this 
ase be
ause

the regions of high density di�er from one xn,k to the other. As an alternative, we propose to

6

In pra
ti
e, Yn is obtained using SMC and the (yn,i)1≤i≤mY
are not identi
ally and independently distributed

from πn.
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Figure 3.2: Examples of situations where the uniform density is likely to fail to produ
e good estimates

of the EI 
riterion. In the �gures, the non-dominated observations are represented as red disks and the

dominated set Hn is represented as gray re
tangles. The green area 
orresponds to the region dominated

by the (ξ̂(xn,k))1≤k≤mX
, whi
h are shown as bla
k dots. In the top �gure, only small improvements 
an

be expe
ted from the (ξ̂(xn,k))1≤k≤mX
and in the bottom �gure, ylow = (−0.5,−0.5) is set too low. For

the approximation (3.9) to be of good quality, it is ne
essary that a signi�
ant population of the parti
les

(yn,i)1≤i≤mY
be in the green area.
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minimize the sum of squared approximation errors:

E

(∥∥∥Îπn,k − In,k
∥∥∥
2

2

)

= E

(
mX∑

k=1

(
Îπn,k − In,k

)2
)
,

=
1

mY

mX∑

k=1

(∫

Gn

Pn (ξ(xn,k) ≺ y)2
π(y)2

π(y) dy − I2n,k

)
,

=
1

mY

(∫

Gn

∑mX

k=1Pn (ξ(xn,k) ≺ y)2
π(y)2

π(y) dy −
mX∑

k=1

I2n,k

)
,

(3.12)

whi
h leads, using the same argument as above, to the de�nition of the following optimal density

on Y:

Lopt
2 (y) ∝

√√√√
mX∑

k=1

Pn (ξ(xn,k) ≺ y)2 · 1G . (3.13)

The Lopt
2 density 
on
entrates in regions likely to be dominated by the (ξ(xn,k))1≤k≤mX

, thus

alleviating the issue raised in Se
tion 2.5.4 and re
alled earlier in this se
tion. The use of this

new density on the problem introdu
ed in Se
tion 2.5.2 is illustrated in Figure 3.3. Observe in

parti
ular the 
on
entration of the density when the number of evaluations in
reases, and its

independen
e to the lower bounding values ylow.

Remark 21 The Lopt
2 density is not in general uniform when G = Bo or Bc be
ause of its

dependen
e on the (xk,n)1≤k≤mX
. In the sampling pro
edure, an initialization step similar to that

des
ribed in Algorithm 6 for the optimization of the 
riterion is thus required. Then, to make

transitions, Algorithms 2, 3 and 4 
an be adapted to non-uniform densities using the e�e
tive

sample size as it is done for the 
riterion optimization.

The right-hand side of (3.13) 
an be 
omputed in 
losed form for a given set Xn when

independen
e between the 
omponents of ξ is assumed. However, in pra
ti
e, the 
omputation

of the Lopt
2 density is not 
heap enough to be used in an SMC pro
edure, be
ause it requires

a large number of evaluations of the normal 
umulative distribution fun
tion. To alleviate this

issue, we propose to use the following approximation of the normal 
umulative distribution

fun
tion in the de�nition of the Lopt
2 density:

Φ(y) ≈





0 if y ≤ −2.6
0.01 if − 2.6 < y < −2.2
0.5− 0.1y(4.4 − y) if − 2.2 ≤ y ≤ 0

0.5 + 0.1y(4.4 − y) if 0 ≤ y ≤ 2.2

0.99 if 2.2 < y < 2.6

1 otherwise

(3.14)

This approximation makes it possible to lower the 
omputational 
ost of the pro
edure with-

out a�e
ting too mu
h its performan
es (see Figure 3.4).
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Figure 3.3: Illustration of the use of the Lopt
2 density on the problem introdu
ed in Se
tion 2.5.2.

Non-feasible observations are shown as 
ir
les and feasible ones as disks. The red 
olor is used for non-

dominated observations and the blue 
olor is used for dominated ones. On the left 
olumn (input spa
e),

the parti
les used for optimizing the EI are shown as small dots, the 
olor of whi
h indi
ates the EI

value. On the right 
olumn, the parti
les used for 
omputing the EI are shown as bla
k dots. They are

distributed from the Lopt
2 density.
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In Figures 3.5 and 3.6, we show the results of experiments using the Lopt
2 density and the

uniform density in the situations illustrated in Figure 3.2. In Figure 3.5, we 
ompute the estimates

provided by the approximation method when the number mY of parti
les in
reases, and 
ompare

them to their exa
t values. For this experiment, we 
onsider a bi-obje
tive problem with f1(x) =

x1 and f2(x) = x2 and we take X = Bo = [0, 1]2. The front of non-dominated points is made

of 50 points randomly distributed on the �rst quadrant of a 
ir
le of radius r = 0.8 and we


onsider one thousand 
andidates distributed between the �rst quadrants of two 
ir
les of radii

0.75 and 0.8, as illustrated in Figure 3.2. The GP models are built using 20 points randomly

distributed on X. As expe
ted, the uniform density fails to provide good estimates in this 
ase,

and better results are obtained with the Lopt
2 density. For both densities, the quality of the

predi
tion in
reases when the number of parti
les used in the approximation in
reases.

Then in Figure 3.6, we show the results of experiments when ylow is set too low and the number

of obje
tives augments. For this experiment, ylow = (−0.5, . . . ,−0.5) and the approximation is

made using mY = 1000 parti
les. We 
onsider problems with p obje
tives fi(x) = xi, 1 ≤ i ≤ p
and we take X = [0, 1]p. The front of non-dominated points is made of 20 points randomly

distributed on the �rst quadrant of an hypershpere of radius r = 0.8 and we 
onsider one

thousand 
andidates distributed between the �rst quadrants of two hyperspheres of radii 0.5 and

0.8, as illustrated in Figure 3.2. The GP models are built using 10p points randomly distributed

on X. Again, as expe
ted, the uniform density fails to provide good estimates in this 
ase, in

parti
ular when the number of obje
tives in
reases. Better results are obtained with the Lopt
2

density, whi
h is not sensitive to the 
hoi
e of ylow. Note in parti
ular that the quality of the

approximation is maintained even when the number of obje
tives in
reases.

Remark 22 In this se
tion, it is impli
itly assumed that πn 
an be 
omputed exa
tly. However, it
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is de�ned using an unnormalised probability density fun
tion, the normalizing 
onstant of whi
h

is unknown. In our experiments, we use an approximation of the normalizing 
onstant. The

details about the approximation pro
edure 
an be found in Appendix 3.6.3.

3.3.3 Complexity of the exa
t and approximate 
omputation methods

The exa
t 
omputation of the EHVI 
riterion for an arbitrary number of obje
tives is a 
halleng-

ing problem be
ause the 
omplexity of the integration domain rapidly grows when the number of

obje
tives is greater than three. This problem has been addressed by Emmeri
h and Klinkenberg

(2008); Emmeri
h et al. (2011); Cou
kuyt et al. (2014); Hupkens et al. (2015) and Emeri
h et al.

(2016).

The method usually 
onsists in a two-stage pro
edure (see, e.g., Cou
kuyt et al. (2014)). The

dominated region is �rst de
omposed into a set of (possibly overlapping) 
ells of re
tangular shape

over whi
h the integration 
an be performed analyti
ally. Then, the 
omputation is done for the

di�erent 
andidate solutions by summing the 
ontributions of ea
h 
ell. Domain de
omposition

methods usually apply to the dominated set, whereas the EHVI 
riterion is de�ned on the non-

dominated region. Therefore, in this se
tion, we 
onsider the following transformation of the

integral in the expression of the EHVI:

∫

Bo\Hn,o

Pn (ξo(x) ≺ yo) dyo

=

∫

Bo

Pn (ξo(x) ≺ yo) dyo −
∫

Hn,o

Pn (ξo(x) ≺ yo) dyo

=

p∏

i=1

[
En

((
yuppo,i − ξo,i(x)

)
+

)
− En

((
ylowo,i − ξo,i(x)

)
+

)]
−
∫

Hn,o

Pn (ξo(x) ≺ yo) dyo .

(3.15)

Let D = (sk, Ck)1≤k≤K be a signed de
omposition of Hn,o 
omposed of K 
ells with Ck =

[lk,1, uk,1] × . . . × [lk,p, uk,p] and sk ∈ {−1, 1}, 1 ≤ k ≤ K su
h that

∑
k sk1Ck

= 1Hn,o .

Su
h a de
omposition 
an be obtained using a modi�ed hypervolume 
omputation algorithm as

explained in Cou
kuyt et al. (2014). We do not detail this parti
ular point in this work. The

interested reader is referred to the work of La
our et al. (2017) and referen
es therein for an

up-to-date review of existing hypervolume 
omputation algorithms. The EHVI 
riterion 
an

then be 
omputed exa
tly for any x ∈ X by summing the (possibly negative) 
ontributions of
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Figure 3.5: Comparison of a
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y between the estimates provided by the SMC pro
edure when the

uniform density is used (left) and when the Lopt
2 density is used (right).
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Figure 3.6: Comparison of a

ura
y between the estimates provided by the SMC pro
edure when the

uniform density is used (left) and when the Lopt
2 density is used (right).
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ea
h 
ell:

∫

Hn,o

Pn (ξo(x) ≺ yo) dyo =

K∑

k=1

sk

∫

Ck

Pn (ξo(x) ≺ yo) dyo

=

K∑

k=1

sk

p∏

i=1

∫ uk,i

lk,i

Pn (ξo,i(x) ≤ y) dy

=

K∑

k=1

sk

p∏

i=1

En

(∫ uk,i

lk,i

1(ξo,i(x)≤y) dy

)

=

K∑

k=1

sk

p∏

i=1

[
En

(
(uk,i − ξo,i(x))+

)
− En

(
(lk,i − ξo,i(x))+

)]
.

(3.16)

The exa
t 
omputation of the EHVI for a given 
andidate solution x ∈ X thus requires

Nexact = 2p(K+1) 
alls to the γ fun
tion de�ned in Se
tion 2.2.1, whi
h means that Nexact eval-

uations of the normal 
umulative distribution fun
tion have to be performed for every 
andidate

solution. This is a
tually responsible for most of the time required for 
omputing the EHVI. In-

deed, obtaining the de
omposition D is fast when an e�
ient algorithm is used (see Figure 3.8).

Besides, it has to be done only on
e at ea
h iteration of the algorithm, and solely if the last

evaluation brought an improvement. The number K of 
ells in the de
omposition however, 
an

be quite large, espe
ially when the number of obje
tives and the number of non-dominated points

are high, whi
h 
auses both memory storage and 
omputing time issues.

In Figure 3.8 we show the typi
al values of K for di�erent number of obje
tives and non-

dominated points, when the points are randomly distributed on the �rst quadrant of an hy-

persphere of radius 0.8 and Bo = [0, 1]p, as illustrated in Figure 3.7 (pro
edure detailed in

Se
tion 3.4.2). The algorithm used to 
ompute the de
omposition is an adaptation of the WFG

algorithm of While et al. (2012), available in the Matlab/O
tave STK toolbox of Be
t et al.

(2016b). Ea
h experiment is repeated 30 times with di�erent random seeds. As expe
ted, the

number of 
ells in the de
omposition in
reases rapidly when the number of non-dominated points

and the number of obje
tives augment. The time required to 
ompute the de
omposition remains

reasonable in the ranges 
onsidered in the experiment.

The proposed approximation method also 
onsists in a two-stage pro
edure. First, an SMC

algorithm has to be run to obtain a 
loud Yn of mY parti
les distributed from a density πYn .

Then, the approximation is 
arried out using (3.9), whi
h requires Napprox = mYp evaluations

of the normal 
umulative distribution fun
tion for ea
h 
andidate solution. Sampling Yn takes a

few se
onds at most when the uniform density is used. It is more time 
onsuming when the Lopt
2

density is used, be
ause ea
h evaluation of the density requires N = mXp evaluations of the

normal 
umulative distribution fun
tion (see (3.13)). In pra
ti
e, we use the approximation (3.14)

to lower the 
omputational 
ost of the pro
edure.

When the optimization of the 
riterion is performed using the SMC pro
edure of Se
tion 2.4.2,

the EHVI has to be 
omputed exa
tly mX times at ea
h iteration to sele
t the best 
andidate

solution. The total 
ost of using the exa
t 
omputation method is thus approximately N exact
tot =

2pmX(K +1) if we negle
t the time required to 
ompute the de
omposition. In 
omparison, the
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Figure 3.7: Illustration of the settings of the experiments of Figure 3.8 and 3.9 when p = 2. The

non-dominated points are drawn randomly on the �rst quadrant of an hypershere of radius 0.8 and are

represented as red disks. The de
omposition of the dominated region is shown as gray fa
ed re
tangles.

The bla
k dots are the 
andidates used in the experiments of Figure 3.9. They are randomly distributed

between the �rst quadrants of two hypershperes of radii 0.5 and 0.8 (dashed lines).

total 
ost of using the approximation method is approximately Napprox
tot = mXmYp if we negle
t

the sampling time, whi
h is mu
h lower when K is large.

In Figure 3.9 we show the typi
al time required to 
ompute the EHVI for a population of

one thousand 
andidates when the exa
t and approximate methods are used. The times that

are reported in
lude both stages of the 
omputation for both methods. For this experiment, we


onsider a simple problem where X = [0, 1]p and fi(x) = xi for i ∈ J1, pK. The GP models are

built using Latin-hyper
ube designs of N = 10p experiments and the 
andidates are drawn ran-

domly between the �rst quadrants of two hyperspheres of radii 0.5 and 0.8. The non-dominated

points are randomly distributed on the �rst quadrant of the hypershpere of radius 0.8 and we

take Bo = [0, 1]p as previously (see Figure 3.7). The number p of obje
tives varies from 4 to 6

and the number mY of parti
les used in the approximate 
omputation methods is su

essively

200, 500, 1000 and 2000. For ea
h pair (p,mY), we repeat the experiment 30 times with di�erent

random seeds.

Note the rapid in
rease of the exa
t method 
omputation time when the number of obje
tives

and non-dominated points augment. In pra
ti
e it is impra
ti
al for problems with more than

�ve obje
tives. As regards the 
omputation time of the approximate method, we note a strong

dependen
e to the density that is used. When the uniform density is used, the 
omputation

is almost instantaneous whi
h is a quality that is expe
ted from Monte-Carlo approximation

methods. When the Lopt
2 density is used on the other hand, the 
omputing time is a�ordable but

not negligible. More work would be required on the Lopt
2 density to make it as 
omputationally
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e�
ient as the uniform density and this shall motivate future work on this aspe
t of the BMOO

algorithm.

Remark 23 For the approximate 
omputation method, we start the pro
edure from s
rat
h, i.e.

with Y0 uniformly distributed on Bo. Note that in this setting, the time required to 
ompute the

approximate EHVI is overestimated be
ause the algorithm has to make more transitions to rea
h

the target density during the sampling phase than it would in a sequential optimization s
enario.

3.3.4 Toward a better 
ontrol of the sample size

Looking at the results of Figure 3.5, and in parti
ular the results with mY = 200, it 
an be

seen that the 
hoi
e of the number of parti
les in the approximate EI 
omputation method has

a strong in�uen
e on the quality of the approximation. In our experiments, we often use one

thousand parti
les and we obtain good results with this 
hoi
e.

In fa
t, the problem is not so mu
h to obtain a good approximation of the EI for all 
andidate

points, but rather to identify with a good 
on�den
e its maximizer. In pra
ti
e, very 
lose points

may have very similar EIs and a large sample size would be required to distinguish them. It

seams more reasonable then, to only look for a good 
andidate point, i.e. a point for whi
h the

EI value is likely to be high. In this se
tion, we propose a simple quantile based approa
h to this

purpose.

As before, let (xn,k)1≤k≤mX
∈ X

mX
be a set of points at whi
h we want to estimate the

value of the EI 
riterion, and denote (ρ̂n,k)1≤k≤mX
the ve
tor of the estimates produ
ed by

the proposed sequential Monte Carlo pro
edure, i.e. ρ̂n,k ≈ ρn(xn,k), k ∈ J1,mXK. Under an

idealized setting where the su

essive 
louds of parti
les (Yk)0≤k≤n are independent and where,

for every k ∈ J0, nK, the parti
les (yk,i)1≤i≤mY
are independently and identi
ally distributed from

a density πk, it is possible to produ
e a 
losed form formulation of the 
ovarian
e stru
ture of

(ρ̂n,k)1≤k≤mX
. In Appendix 3.6.3, we show that in this setting

Cov (ρ̂n,i , ρ̂n,j)

ρn(xn,i)ρn(xn,j)
≈ A2

n ·
(
Λ̂i,j
n (xi, xj) +

(
1 + Λ̂i,j

n (xi, xj)
)
· ∆̂2

n

)
, (3.17)

where ∆̂n is 
omputed re
ursively using (3.57), and Λ̂i,j
n (xi, xj) is 
omputed using (3.63). The

term An is equal to |Bo| in the �rst phase of the optimization pro
ess, i.e. prior to �nding a

feasible solution, and to |B−
c | · Pn(ξc(x) ≤ 0) in the se
ond phase of the optimization pro
ess,

i.e. on
e a feasible solution is known.

In the idealized setting mentionned above, the proposed SMC approximation method 
an be

viewed as a multi-level version of the ideal adaptive algorithm studied by Cérou et al. (2012).

In their work, they show that in this setting, the distribution of the estimators is asymptoti
ally

normally distributed with a bias that is negligible 
ompared to its standard deviation. Motivated

by these results, we shall assume in the following that (ρ̂n,k)1≤k≤mX
is distributed from a mul-

tivariate Gaussian distribution Ψn with mean µn = (ρn(xn,k))1≤k≤mX
and a 
ovarian
e matrix

Σn ∈ MmX×mX

omputed from (3.17).
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Figure 3.9: Time required for the 
omputation of the EHVI for one thousand 
andidates (settings

illustrated in Figure 3.7). On ea
h sub�gure, the results of the exa
t method are 
ompared with the

results of the approximate method using su

essively (from bottom to top) mY = 200, 500, 1000 and

2000 parti
les. The density used in the approximate method is either the uniform density (left 
olumn)

or the Lopt
2 density (right 
olumn). The boxplots represent the distributions obtained over 30 repetitions

with di�erent random seeds (the mean is shown as a bla
k line).
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Let x⋆n denote the maximizer of ρ̂n among the (xn,k)1≤k≤mX
and α ∈ [0, 1], and 
onsider the

quantile qα of level α of the empiri
al distribution of the (ρ̂n,k)1≤k≤mX
. We shall say that mY

is su�
iently large to a

ept x⋆n with a 
on�den
e of level α if ρ̂n(x
⋆
n)− 3 Std(ρ̂n(x

⋆
n)) ≥ qα. In

other words, we de
ide to a

ept x⋆n only if the probability that its EI value is larger than qα

is greater than α. Otherwise, we de
ide that the sample size is not su�
iently large, i.e. the

varian
e is not small enough, to 
on
lude that x⋆n is indeed a good point. When this happens,

we propose to simply restart the SMC pro
edure with a larger number of parti
les.

As a proof of 
on
ept, the operation of the proposed approa
h is illustrated in Figure 3.10.

The experiment is made using the same settings as in Figure 3.7 with p = 6 and we 
onsider

the 
ases where α = 0.95 and α = 0.99. It 
an be seen that for both values of α, the method

refuses x⋆n when mY = 200 be
ause the estimate 
annot be trusted. When mY = 500, x⋆n is

a

epted when the threshold it set to q0.95 but refused when it is set to q0.99. It is a

epted in

both 
ases when mY = 1000.

3.3.5 Con
lusions

In this se
tion, we dis
uss the 
omputation of the new EI 
riterion in the 
ase where indepen-

den
e between the fun
tions of the problem is assumed. First, a novel sampling density, 
alled

the Lopt
2 density, to be used in the sequential Monte-Carlo approximation pro
edure proposed in

Se
tion 2.4.1, is introdu
ed. It is shown that the new density does not su�er from the limitations

of the uniform density observed in Se
tion 2.5.4. Then, an empiri
al study of the 
omputational


omplexity of the exa
t 
omputation method is made and it is shown that it is not pra
ti
al for

problems with more than �ve obje
tives. Finally, a simple online strategy to 
ontrol the quality

of the approximation is proposed.

Unlike the uniform density, the Lopt
2 density takes the information about the points at whi
h

the 
riterion is to be 
omputed into a

ount in its de�nition. This permits to a
hieve very good

approximation performan
es in most situations. However, it is not 
heap-to-evaluate enough to

be used as is within a sequential Monte Carlo algorithm and some approximations are ne
essary

in its de�nition to make it 
omputationally e�
ient. That being said, the time required to


ompute the 
riterion for a set of 
andidate solutions when this density is used remains in the

order of the minute, whi
h is negligible in the 
ase where the fun
tions of the problem are truly

expensive to evaluate. Still, we believe that there is room for improvement of its 
omputational

e�
ien
y. In parti
ular, more work is required on the sampling pro
ess to lower the 
ost of the

approximation pro
edure.

To 
ontrol the quality of the approximation, a simple approa
h using the varian
e of the

estimation at the maximizer of the 
riterion is proposed. However, more information 
ould

probably be extra
ted from the 
ovarian
e between the approximations for all 
andidates. This


ould motivate future work on a strategy to determine adaptively the number of parti
les that

should be used in the approximation pro
edure.
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Figure 3.10: Illustration of the operation of the approa
h proposed for 
ontroling the quality of the

estimation of the EI.
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3.4 BMOO for Bayesian Many-Obje
tive Optimization

3.4.1 Introdu
tion

In this se
tion, we assess BMOO on many-obje
tive problems. Su
h problems often emerge

in engineering design optimization (see, e.g., Fleming et al. (2005)). However, they are often

reformulated in a less 
omplex form (fun
tions that should be obje
tives are aggregated or

formulated as 
onstraints for example) be
ause high dimensional obje
tive spa
es are di�
ult

to handle (see, e.g., Ishibu
hi et al. (2008)) and be
ause the exploitation of many-obje
tive

optimization results is not straightforward.

Most of the do
umentation on many-obje
tive optimization 
an be found in the evolutionary

multi-obje
tive (EMO) literature. An up-to-date review of approa
hes that have been proposed

in this setting 
an be found in the PhD thesis of Li (2015). The reader is also referred to the

works of Wagner et al. (2007); Ishibu
hi et al. (2008); Bader and Zitzler (2011) and Yang et al.

(2013) for more details about this 
lass of approa
hes. In the Bayesian literature, the many-

obje
tive optimization problem has been studied, e.g., by Shimoyama et al. (2013a); Cou
kuyt

et al. (2014) and Luo et al. (2015).

The se
tion is organized as follows. In Se
tion 3.4.2, we introdu
e the FICUS problem. This

problem is a 
on�gurable test problem for whi
h it is possible to 
ontrol the number of obje
tives

and the 
urvature of the Pareto front. Also, the Pareto front for this problem is known expli
itly.

A 
losed form expression of the hypervolume it dominates is known and independent samples


an be drawn on its surfa
e with a simple pro
edure. The FICUS test problem is thus 
onvenient

for evaluating the performan
es of many-obje
tive optimization algorithms. In Se
tion 3.4.3, the

FICUS problem is used to empiri
ally study the distribution of solutions obtained by sequentially

maximizing the hypervolume indi
ator (see, e.g., Auger et al. (2009
)). The in�uen
e of the 
hoi
e

of the referen
e point and the in�uen
e of the 
urvature of the Pareto front are dis
ussed. Then,

experimental results obtained by the BMOO algorithm on the FICUS test problem are presented

in Se
tion 3.4.4. Con
lusions are drawn in Se
tion 3.4.5.

3.4.2 The FICUS test problem

We de�ne the following test problem:

FICUS (p, r, c) : [0, 1]p → R

x = (x1, . . . , xp) 7→





f1(x) = x1 ,

. . . ,

fp(x) = xp ,

c(x) = rc −∑p
i=1 x

c
i .

The features of the FICUS problem are represented on Figure 3.11 for p = 2 and for di�erent

values of r and c. The Pareto front for this problem is the �rst quadrant of an hypersphere of

dimension p and radius r, in the norm Lc. It is 
on
ave for c > 1, linear for c = 1 and 
onvex

for c < 1.
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This problem is interesting in parti
ular for two reasons. First, the volume V c
p (r) of the

region dominated by the Pareto front of the FICUS (p, r, c) 
an be 
omputed in 
losed form:

V c
p (r) =

p∏

i=1

Ri −
Γ
(
1 + 1

c

)p

Γ
(
1 + p

c

) rp , (3.18)

where R = (R1 , . . . , Rp) is the referen
e point and Γ denotes the Gamma fun
tion

7

. In pra
ti
e,

the volume V c
p (r) 
an be used as a referen
e to assess the performan
e of an optimization strategy

with respe
t to the hypervolume indi
ator.

Se
ond, it is possible to draw samples distributed on the Pareto front of the FICUS problem.

Let (Zi)1≤i≤p be random variables independently and identi
ally distributed from a 
entred

redu
ed normal distribution. Then,

S =

(
r|Z1|

(
∑p

i=1 Z
c
i )

1
c

, . . . ,
r|Zp|

(
∑p

i=1 Z
c
i )

1
c

)
, (3.19)

is distributed on the Pareto front of the FICUS (p, r, c) problem

8

. Let then (Si)1≤i≤m be m

independent 
opies of S. The (Si)1≤i≤m 
an be used to optimize the hypervolume indi
ator or

to evaluate the quality of Pareto approximation sets.

3.4.3 Empiri
al study of the hypervolume

The hypervolume indi
ator has several desirable properties. First, it is the only known Pareto-


ompliant unary indi
ator (see Zitzler et al. (2003)). Se
ond, it was shown by Fleis
her (2003)

that the hypervolume dominated by a set of µ points, µ > 0, is maximal only if all µ points

are Pareto-optimal. Third, the distribution on the Pareto front of points resulting from the

maximization of the hypervolume is un
hanged by a linear s
aling of the obje
tives. As su
h, it

has be
ome very popular both as a measure to determine the quality of a Pareto approximation

set (see, e.g., Zitzler and Thiele (1998); Laumanns et al. (1999); Knowles and Corne (2002))

and to design e�
ient multi-obje
tive optimization algorithms (see, e.g., Beume et al. (2007);

Emmeri
h et al. (2005); Knowles et al. (2003); Zitzler and Künzli (2004); Igel et al. (2007)).

In parti
ular, hypervolume-based optimization algorithms have been shown to outperform other

algorithms on many-obje
tive problems (see, e.g., Wagner et al. (2007); Bro
kho� et al. (2008)).

In the EMO literature, optimal µ-distributions, i.e. sets of µ points that maximize the

hypervolume indi
ator (the term 
an be generalized to other indi
ators as well), have been

studied for the bi-obje
tive 
ase by Auger et al. (2009
); Friedri
h et al. (2009); Bringmann and

Friedri
h (2010) and for three obje
tives by Auger et al. (2010). It was shown by Auger et al.

(2009
) in the bi-obje
tive 
ase and for 
ontinuous fronts, that the distribution of solutions along

the front is asymptoti
ally proportional to the square root of the negative of the �rst derivative

of the front. In the same paper, it is shown that for some fronts, it is not possible to in
lude

the extreme points in the µ-optimal distribution, regardless of the 
hoi
e of the referen
e point

7

For simpli
ity, it is assumed that Ri > r for all i ∈ J1, pK.
8

The distribution is uniform for c = 2 but this result does not extend to c 6= 2.
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Figure 3.11: Illustration of the features of the FICUS test problem for p = 2 and for di�erent values

of r and c. The grey area represents feasible obje
tives values and the Pareto front is represented in red.
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used to de�ne the hypervolume. This last statement is shown to extend to problems with three

obje
tives by Auger et al. (2009
).

To the best of our knowledge, su
h theoreti
al results on the distribution of solutions obtained

by sequentially maximizing the hypervolume (one point at a time) are not available, and there

is no guarantee that the aforementioned results extend to this 
ase. In general, algorithms max-

imizing the hypervolume a
hieve well-spread Pareto front approximation sets (see, e.g., Knowles

et al. (2003); Emmeri
h et al. (2005)). However, Zitzler and Thiele (1998) report on the tenden
y

of the hypervolume to favor 
onvex regions over 
on
ave ones and Deb et al. (2005) point out

the bias of the hypervolume toward boundary solutions on some problems.

For the FICUS problem, a sequential (approximate) maximization of the hypervolume indi
a-

tor 
an be a
hieved using a large number of samples independently distributed on the Pareto front

as said in Se
tion 3.4.2. For better performan
es, in our experiments, we use Sobol sequen
es to

build the samples and manually add the extreme points of the front. Pareto approximation sets

obtained using this pro
edure over 50 iterations for the FICUS problem with p = 3, r = 0.5 and

di�erent values for c and for the referen
e point R are shown in Figure 3.12.

Several observations 
an be made based on the results of this experiment. First, we note

that, as reported by Zitzler and Thiele (1998), the spread of the distribution is not satifa
tory on


on
ave problems (
orresponding to the sub�gures (e) and (f) with c = 2). Large regions between

the boundaries and the 
enter of the Pareto front are not represented in the approximation set.

This observation holds independently of the 
hoi
e of the referen
e R. As regards the results

when c = 0.6 (
onvex front) and c = 1 (linear front), we obtain a better spread of solutions. We

observe that when the referen
e point is 
hosen as the nadir point, i.e. R = (r, r, r) for the FICUS

problem, the extreme points of the Pareto front are not 
ontained in the Pareto approximation

set and that when it is set far from the front, the distribution tends to 
on
entrate near the

boundaries of the front. This is in line with the observations of Deb et al. (2005) about the bias

of the hypervolume toward boundary solutions.

In higher dimension, assessing the quality of a Pareto approximation set is di�
ult and a

variety of metri
s have been proposed to measure di�erent quality aspe
ts. The reader is referred

to Jiang et al. (2014) for a review of su
h metri
s. In this work, we 
onsider the following three

metri
s. 



M1(Yn) =
|Hn,o|
V c
p (r)

,

M2(Yn) =
∑

1≤i≤p

min
1≤k≤n

d(yk, f
max
i ),

M3(Yn) = 2 max
1≤i≤m

min
1≤k≤n

d(Si, yk),

(3.20)

where Yn = (y1, . . . , yn) ∈ Y
n
o denotes a set of n observations, d denotes the Eu
lidean distan
e,

fmax
i ∈ Y

n
o denotes the extreme point of the front in the dire
tion of the obje
tive i ∈ J1, pK and

(Si)1≤i≤m is a large sample distributed on the Pareto front and augmented with the extreme

solutions

9

. The metri
 M1 measures the 
onvergen
e with respe
t to the hypervolume indi
ator,

using R = (1 , . . . , 1) as a referen
e. It should tend to one when n augments. The metri
 M2

9

In our experiments, we take m = 10000 + p and S is obtained using the pro
edure des
ribed in Se
tion 3.4.2.
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Figure 3.12: Pareto approximation sets obtained by sequentially maximizing the hypervolume over 50
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is used to assess whether the extreme points of the front are well represented by the Pareto

approximation set Yn. The optimal value for this metri
 is zero, whi
h indi
ates that all extreme

solutions are 
ontained in the approximation set. Last, the metri
 M3 measures the approximate

diameter of the largest ball 
entred on the Pareto front that 
an be inserted between elements

of Yn. It should be as small as possible.

Experimental results obtained by sequential maximization of the hypervolume over 100 itera-

tions for p = 10 are presented in Figures 3.13, 3.14 and 3.15. Di�erent values for c and R are used

and the approximation sets are evaluated using the metri
s M1, M2 and M3. Additional results

for p = 6 and p = 8 
an be found in the additional material of this 
hapter, in Se
tion 3.6.4.

As a referen
e for the M3 metri
, we 
onsider a strategy where Yn is initialized with the ex-

treme solutions and enri
hed sequentially by taking Yn+1 = argmax(Si)1≤i≤m
min1≤k≤n d(Si, yk).

In other words, Yn+1 is 
hosen as the point in (Si)1≤i≤m that is farther from the points in Yn.

This strategy 
orresponds to a one-step lookahead minimization of the M3 metri
. The results

obtained with this strategy are shown as a dashed line in Figures 3.13, 3.14 and 3.15.

First, we look at the left 
olumns in Figures 3.13, 3.14 and 3.15. For all 
onsidered values of c

and R, we observe a rapid 
onvergen
e of the M1 metri
 (hypervolume). Regarding the results

for the M2 metri
, we note a dependen
e to the 
hoi
e of the referen
e R and, to a lesser extent,

to the 
urvature of the front. When R is set at the nadir point (sub�gure (a) in Figures 3.13, 3.14

and 3.15), the M2 metri
 does not 
onverges to zero. This indi
ates that the extreme solutions

of the front are not well represented in the Pareto approximation set. When R is set away from

the nadir point (sub�gures (
) and (e) in Figures 3.13, 3.14 and 3.15), the metri
 
onverges

to zero. In parti
ular when R = (1 , . . . , 1) (sub�gure (
)), the extreme solutions are the �rst

points sele
ted by the hypervolume. When R is set far from the Pareto front (sub�gure (e)), the

extreme solutions are among the �rst sele
ted points when the front is 
on
ave but take more

time to be sele
ted when the front is more 
onvex.

The results for the M3 metri
 (right 
olumn in the �gures) are 
lose to those obtained by

the referen
e strategy, whi
h indi
ates that maximizing the hypervolume indi
ator sequentially

yields a good 
overage of the Pareto front on the FICUS problem. Contrary to our expe
tations,

we do not observe the phenomenon observed in Figure 3.12 when c = 2 (empty regions between

the boundaries and the 
enter of the Pareto front).

Remark 24 Observe that the results for theM3 metri
 are slightly better when R = (0.5 , . . . , 0.5)

or R = (1 , . . . , 1) than when R = (50 , . . . , 50), and that the results for the M2 metri
 are better

when R = (1 , . . . , 1). In pra
ti
e, this means that it is better to 
hose a referen
e a little away

from the Pareto front but not too far, to favour both the extreme solutions and a good 
overage

of the front. On some problems though, it 
annot be said in advan
e what will be the range of

variation of the obje
tives along the Pareto front. In parti
ular, when dealing with 
onstrained

problems, the obje
tives values 
orresponding to feasible solutions 
an be severely restri
ted (see

the results of Se
tion 4.3). The adaptive pro
edure proposed in Se
tion 2.7.2 to set Bo is not

suitable on su
h problems, be
ause it does not aim at setting the referen
e 
lose to the Pareto

front. In Se
tion 3.6.2, we propose a pro
edure that makes use of the information provided by

the models to sequentially adapt the referen
e to keep it 
lose to the Pareto approximation set.
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Figure 3.13: Results obtained on the FICUS (10, 0.5, 0.6) problem (
onvex front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.14: Results obtained on the FICUS (10, 0.5, 1) problem (linear front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.15: Results obtained on the FICUS (10, 0.5, 2) problem (
on
ave front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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3.4.4 Numeri
al experiments

In Se
tion 3.4.3, we study a strategy whi
h 
onsists in using a large number of samples distributed

on the Pareto front for maximizing the hypervolume indi
ator. This strategy 
an be seen as an

idealized version of the BMOO algorithm where the GP models are perfe
t, the 
riterion is


omputed exa
tly and its maximization is made almost perfe
tly. As su
h, the results presented

in Figures 3.13, 3.14 and 3.15 and in Se
tion 3.6.4 
onstitute a referen
e that 
an be used to

assess the performan
es of BMOO on the FICUS problem.

In Figures 3.16, 3.17 and 3.18 we show the results of experiments made with BMOO on the

FICUS problem when the number of obje
tives is p = 6, the radius is r = 0.5 and c ∈ {0.6, 1, 2}.
Additional results for p = 8 
an be found in Se
tion 3.6.4

10

. For this experiment, the algorithm

is initialized with Ninit = 30 experiments and run over 100 iterations. For the 
omputation of

the EI 
riterion, we use the Lopt
2 density (see Se
tion 3.3) with mY = 1000 parti
les. To set Bo,

we use the pro
edure detailed in Se
tion 3.6.2 with γ = 0 and γ = 1. For the optimization of

the 
riterion, we use the PICPI density (see Se
tion 3.2) with mX = 1000 parti
les. For every

value of c, the experiment is repeated 30 times with di�erent random seeds to a

ount for the

randomness of the algorithm.

BMOO a
hieves satisfying results on the FICUS problem. In parti
ular, the results for theM3

metri
 are 
lose to those of the strategy where the hypervolume is maximized sequentially, whi
h

indi
ates that BMOO is able to �nd solutions 
lose to the Pareto front and well distributed.

However, BMOO is not able to 
apture the extreme points of the front on this problem, as 
an

be observed through the M2 metri
. This observation holds for both values of the parameter

γ 
onsidered in this study. Therefore it does not seem related to the 
hoi
e of Bo. Regarding

the 
onvergen
e with respe
t to the M1 metri
, observe that about 100 iterations are ne
essary

for p = 6 and about 200 for p = 8. The 
onvergen
e is mu
h slower than the referen
e strategy

and this is partly a 
onsequen
e of the extreme solutions not being 
aptured by the algorithm.

Our belief is that the SMC pro
edure that we use for optimizing the 
riterion is not proposing


andidates near the boundaries of the domain, where the extreme solutions 
an be found. It


ould also be due to impre
isions of the models in those regions.

3.4.5 Con
lusions

The gist of this se
tion is to evaluate the performan
es of BMOO on many-obje
tive problems.

In parti
ular, we are interested in the quality of the Pareto approximation sets obtained by the

algorithm. To this purpose, we introdu
e the FICUS problem. This problem is a 
on�gurable test

problem for whi
h it is possible to 
ontrol the number of obje
tives fun
tions and the 
urvature

of the Pareto front. Moreover, a 
losed form expression of the hypervolume dominated by its

Pareto front is known, and it is possible to draw samples on it with a simple sampling pro
edure.

First, the FICUS problem is used to empiri
ally study the 
hara
teristi
s of distributions

of Pareto-optimal solutions obtained by sequential maximization of the hypervolume indi
ator.

10

We do not provide results for p = 10 be
ause BMOO requires about 300 fun
tions evaluations and the


omputing time be
omes prohibitive for the M1 metri
 and for the strategy where the hypervolume is maximized

sequentially (see Figure 3.8).
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Figure 3.16: Results obtained by the BMOO algorithm on the FICUS (6, 0.5, 0.6) problem (
onvex

front) when the pro
edure of Se
tion 3.6.2 to set Bo is used with γ = 0 (left 
olumn) or γ = 1 (right


olumn). The referen
e for the M3 metri
 is shown as a dashed line and the shaded region 
orresponds

to a 95% 
on�den
e interval empiri
ally 
omputed from 30 runs of BMOO.
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Figure 3.17: Results obtained by the BMOO algorithm on the FICUS (6, 0.5, 1) problem (linear front)

when the pro
edure of Se
tion 3.6.2 to set Bo is used with γ = 0 (left 
olumn) or γ = 1 (right 
olumn).

The referen
e for the M3 metri
 is shown as a dashed line and the shaded region 
orresponds to a 95%


on�den
e interval empiri
ally 
omputed from 30 runs of BMOO.
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Figure 3.18: Results obtained by the BMOO algorithm on the FICUS (6, 0.5, 2) problem (
on
ave front)

when the pro
edure of Se
tion 3.6.2 to set Bo is used with γ = 0 (left 
olumn) or γ = 1 (right 
olumn).

The referen
e for the M3 metri
 is shown as a dashed line and the shaded region 
orresponds to a 95%


on�den
e interval empiri
ally 
omputed from 30 runs of BMOO.
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Three evaluation metri
s are 
onsidered. They measure respe
tively the 
onvergen
e with respe
t

to the hypervolume indi
ator, the membership of the extreme solutions of the Pareto front to a

Pareto approximation set and the presen
e of �holes� in a Pareto approximation set distribution.

It is shown that for problems with 
onvex and linear fronts, satisfa
tory distributions are obtained

when the hypervolume indi
ator is maximized sequentially. For problems with three obje
tives

and a 
on
ave front, it is observed that maximizing the hypervolume does not yield good Pareto

approximation sets. Our experiments do not permit to 
on
lude that this behaviour also exists

in higher dimensions.

As regards the 
hoi
e of the referen
e point, it is shown that it mostly in�uen
es the represen-

tation of extreme solutions in the Pareto approximation set. When it is 
hosen as the nadir point,

these are not in
luded in the approximation set. When it is 
hosen at a �reasonable� distan
e

from the Pareto front, the extreme solutions are the �rst points sele
ted by the hypervolume.

When it is 
hosen far from the Pareto front, the extreme solutions are eventually sele
ted by the

hypervolume indi
ator but not ne
essarily at the begining of the optimization pro
ess.

The results obtained by sequential maximization of the hypervolume indi
ator are then used

as a referen
e to evaluate the performan
es of the BMOO algorithm on the FICUS problem.

Indeed, this pro
edure 
an be viewed as an idealized version of BMOO where the GP models

are perfe
t, the 
riterion is 
omputed exa
tly and its optimization is made almost perfe
tly. It is

shown that for the FICUS problem with up to eight obje
tives, BMOO a
hieves results relatively


lose to this ideal referen
e. Its 
onvergen
e with respe
t to the hypervolume indi
ator is slower

but e�e
tive and the distributions of the solutions found by the algorithm seem 
lose to those

obtained by the referen
e (as measured by the size of the �holes� in the distributions). However,

BMOO is not able to 
orre
tly 
apture the extreme solutions for the FICUS problems. It 
ould

be due to impre
isions of the models near the boundaries of the domain or it 
ould be that the

SMC pro
edure used for optimizing the 
riterion fails to propose 
andidates near the boundaries

of the domain. More work is required to better understand this phenomenom.

3.5 Extensions of the BMOO algorithm

3.5.1 Introdu
tion

In this se
tion, we propose extensions of the BMOO algorithm that are ne
essary to address the

problems of Chapter 4, along with other useful extensions whi
h 
ome as a by-produ
t of the

algorithm. The se
tion is organized as follows. In Se
tion 3.5.2, we extend BMOO to address

problems de�ned on non-hyper
ubi
 design spa
es and to problems having 
heap-to-evaluate


onstraints. In Se
tion 3.5.3 we study the 
ase where f and/or c 
annot be 
omputed for some

x ∈ X. This happens for example when a 
omputer program fails to return a result for some


ombinations of the design parameters. Then we propose a multi-point version of the algorithm

in Se
tion 3.5.4. Finally, in Se
tion 3.5.5 we propose an extension of the EHVI 
riterion that

makes it possible to en
ode user preferen
es into the sampling 
riterion.

Throughout the se
tion, the proposed extensions are illustrated on simple test problems; see

Chapter 4 for appli
ations to real-life problems.
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3.5.2 Non-hyper
ubi
 design spa
es

In this se
tion we extend the BMOO algorithm to address the following problem:

minimize f(x),

subje
t to x ∈ X = {x ∈ H ; 1S(x) = 1 and e(x) ≤ 0} ,
c(x) ≤ 0,

(3.21)

where f = (f1, . . . , fp) and c = (c1, . . . , cq) are ve
tors of expensive to evaluate obje
tives and 
on-

straints as in Se
tion 2.1, H ⊂ R
d
is an hyper
ube de�ned by bound 
onstraints, e = (e1, . . . , es)

is a ve
tor of real valued 
heap-to-evaluate

11


onstraint fun
tions de�ned on H (ei : H → R)

and S is a subset of H whi
h is not given expli
itly, in the sense that the membership of x to S

an only be assessed by means of a membership fun
tion 1S . In the following, we assume that

the membership fun
tion is also 
heap to evaluate. The 
ase where 1S is expensive to evaluate

will be addressed in Se
tion 3.5.3 with a di�erent approa
h. An example of su
h problem 
an be

found in Se
tion 4.2.

In this work, we propose to view the 
onstraints (ei)1≤i≤s and the membership fun
tion 1S
as restri
tions of the design spa
e. In this setting, the obje
tives (fi)1≤i≤p and the 
onstraints

(cj)1≤j≤q may indi�erently be or not be observable outside of X. In pra
ti
e, this requires two

adaptations of the BMOO algorithm. First, a dedi
ated pro
edure is required to build an initial

design of experiment (DOE) on X. Se
ondly, it is ne
essary to prevent the algorithm from going

outside of X in the subsequent iterations.

Usually, the initial DOE is 
hosen to be both spa
e �lling and well spread in all dimensions.

So far, we have been using pseudo-maximin Latin hyper
ube designs be
ause they a
hieve a good

trade-o� between these two properties and the 
omputing time required to 
hose the points of

the DOE. However, it is not possible in the general 
ase to build a Latin hyper
ube design on

a non-hyper
ubi
 design spa
e. Besides, this would not be desirable anyway. As an example

12

,


onsider the 
ase where X =
{
(x1, x2) ∈ [0, 1]2 ; x1 − x2 ≤ 0

}
. Then the only possible Latin

hyper
ube design is a set of points falling 
lose to the diagonal x1 = x2, whi
h, of 
ourse, is not

desirable be
ause it is not a spa
e �lling design.

In the literature, maximin designs on non-hyper
ubi
 sets have been studied by e.g. Stinstra

et al. (2003); Au�ray et al. (2012) and Chen et al. (2014). The methods that have been proposed

usually involve 
omplex optimization steps and developing su
h methods falls out of the s
ope

of the present work.

We propose a simpler approa
h based on a three-step pro
edure. The �rst step 
onsists in

building a large sample uniformly distributed on {x ∈ H ; e(x) ≤ 0}. This 
an be a
hieved using

SMC by 
onsidering a sequen
e of transition densities of the form 1{x∈H ; ei(x)≤α,1≤i≤s}, where

α ∈ R
+
is 
hosen sequentially in order to keep a signi�
ant population of parti
les between two

iterations (this is very similar to Algorithm 7, that is used to make transitions with the PICPI

11

Typi
ally, we 
onsider a fun
tion to be 
heap to evaluate if its evaluation takes in the order of the millise
ond,

or less. More generally, a fun
tion may be 
onsidered as 
heap to evaluate when no restri
tion is pla
ed on the

number of a�ordable evaluations of this fun
tion.

12

This example is taken from Au�ray et al. (2012).
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density). Then, the population is pruned to keep only parti
les falling in S. The resulting sample

is uniformly distributed on X = {x ∈ H ; e(x) ≤ 0,1S(x) = 1}. Note that for this pro
edure to

be e�e
tive, it is ne
essary that the volume of X be not too small 
ompared to the volume of

{x ∈ H ; e(x) ≤ 0}. Finally, the population is pruned again by sequentially removing the samples

that are 
losest to their neighbours until the required sample size is rea
hed. The resulting set

is a pseudo-maximin DOE on the domain X.

Staying within the limits of theX domain is straightforward when the density πXn is de�ned on

X be
ause then, the sequential Monte-Carlo pro
edure used for optimizing the EI 
riterion never

proposes 
andidates outside of X. In pra
ti
e though, X is not known expli
itly and membership

to X has to be 
he
ked within the SMC algorithm

13

. Besides, an initialization pro
edure starting

from a sample uniformly distributed on H is required to 
onstru
t X0 from πX0 de�ned on X.

As mentioned above, it is possible to build a sample (of size mX) uniformly distributed on

{x ∈ H ; e(x) ≤ 0}. Then, Algorithm 6 
an be used to build X0 from πX0 . Note that, again, for

this pro
edure to be e�e
tive, it is ne
essary that the volume of X be not too small 
ompared

to the volume of {x ∈ H ; e(x) ≤ 0}.
To illustrate the proposed approa
h, we 
onsider an un
onstrained single-obje
tive optimiza-

tion problem formulated as (3.21) with





H = [−5, 10] × [0, 15],

S = {(x1, x2) ∈ H ; x21 + (x2 − 15)2 ≤ 25},

f : (x1, x2) 7→
(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 9,

e : (x1, x2) 7→ x1 − x2.

(3.22)

The features of this problem and the operation of the BMOO algorithm are illustrated re-

spe
tively in Figures 3.19 and 3.20. For this experiment, the initial DOE is a pseudo-maximim

design of 10 experiments 
hosen using the three-step pro
edure detailed above (Iteration 0 in

Figure 3.20) and the algorithm is run over 10 iterations.

3.5.3 Hidden 
onstraints management

We now turn to the 
ase where the membership fun
tion 1S is expensive to evaluate. This

happens, for example, when a time-
onsuming 
omputer program is used to evaluate the ob-

je
tives and/or the 
onstraints, and fails to return a result for some 
ombinations of the design

parameters whi
h are not known beforehand.

When the obje
tives and 
onstraints are modelled using random pro
esses as it is the 
ase for

BMOO, regions that 
an not be observed are problemati
 be
ause the varian
e of the pro
esses


an not be de
reased in those regions. Therefore, if nothing is done, the EI 
riterion is likely

to be
ome signi�
ant in those regions at some point during the optimization pro
ess. In the

Bayesian literature, this problem has been addressed in the un
onstrained single-obje
tive setting

13

Note that sin
e both e and 1S are 
heap to evaluate, this is not an issue to 
he
k the membership of the

parti
les to X several times within an SMC algorithm.
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Figure 3.19: Illustration of the features of the optimization problem de�ned by (3.21) and (3.22). The


ontours of the obje
tive fun
tion are shown as 
olored lines and the set H \X is shaded. The optimum

of the obje
tive fun
tion on X is shown as a red disk.

as a missing data problem by Roy (2006) and as a problem having hidden 
onstraints by Lee

et al. (2011).

In Roy (2006), it is proposed to impute well-
hosen values at missing data lo
ations to

arti�
ially de
rease the varian
e of the pro
esses and thus prevent the algorithm to return in the

regions that 
an not be observed. In our experiments, we found this approa
h di�
ult to extend

to problems having possibly several obje
tives and several 
onstraints.

Lee et al. (2011) propose a di�erent approa
h based on a statisti
al model: A soft 
lassi�er

of the observed/non-observed data is used to produ
e for every point of the design spa
e x ∈ X

a "probability of observability" pn(x ∈ S). The authors then propose to multiply the expe
ted

improvement by this probability to prevent it from rewarding regions that 
an not be observed:

ρ̃n(x) = ρn(x) · pn(x ∈ S) . (3.23)

In their work, a Random Forest 
lassi�er is used but the approa
h 
an be extended to other

kinds of soft 
lassi�ers su
h as support ve
tor ma
hines, nearest-neighbours 
lassi�ers, neural

networks, et
.

The adaptation of this approa
h to the 
onstrained multi-obje
tive 
ase is straightforward.

In our 
ontext, it 
orresponds to multiplying both the EI fun
tion and the density πXn used to

optimize the EI by pn. In this work, we use a simple k-nearest-neighbours 
lassi�er to produ
e

this probability. Observed samples are given the label one and non-observed samples are given

the label zero. Then, the probability of observability at a lo
ation x ∈ {x′ ∈ H ; e(x′) ≤ 0} is

omputed as the mean of the labels of the k nearest neighbours of x, as given by the L2 norm.

This model has the advantage of simpli
ity and does not require any assumption on the shape

of the set S. Besides, there was no eviden
e in our experiments that a more elaborate statisti
al

model is required.

An illustration of the operation of this pro
edure is provided in Figure 3.21 for the optimiza-
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Figure 3.20: Illustration of a run of BMOO on the optimization problem de�ned by (3.22) and (3.21).

Bla
k disks represent the initial DOE and blue disks represent subsequent evaluation points. The 
urrent

best evaluation point in shown as a red disk. See Figure 3.19 for more details.
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tion problem de�ned by (3.21) with





H = [−5, 10] × [0, 15] ,

S = {(x1, x2) ∈ H ; x21 + (x2 − 15)2 ≤ 25 , x2 − x1 ≤ 0} ,

f : (x1, x2) 7→
(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 9 .

(3.24)

For this experiment, we take k = 5, the initial DOE is a pseudo maximin set of 20 experiments,

and the algorithm is run over 20 iterations. Note that unlike this test problem, it is unlikely in

pra
ti
e that the optimum lies at the boundary of the non-observable domain.

3.5.4 Bat
h sequential multi-obje
tive optimization

Throughout this manus
ript, we have been using the number of fun
tion evaluations as a measure

of the 
ost of an optimization pro
ess. However, when parallel 
omputation fa
ilities o�er the

possibility of evaluating several design solutions simultaneously, i.e. within the same time lap, it


an be very advantageous to take advantage of it to lower this 
ost.

In this se
tion, we propose a bat
h version of the algorithm that relies on a multi-points

version of the EI 
riterion inspired from the q-EI 
riterion of Ginsbourger et al. (2010b). The

problem 
onsists in sele
ting at ea
h iteration of the algorithm a bat
h of q points to be evaluated

simultaneously. We 
onsider a syn
hronous approa
h where the evaluations of the q sele
ted

points are made in parallel and take approximately the same time (see Remark 26).

Denote Xn = (X1, . . . ,Xn) the set of observations available at time n ≥ 1 and Yn = ξ(Xn).

In the un
onstrained single-obje
tive 
ontext, Ginsbourger et al. (2010b) de�ne the q-EI 
riterion

as

ρq,n(x1, . . . , xq) = En

(
(mn −min (ξ(x1), . . . , ξ(xq)))+

)
, (3.25)

where mn = ξ(X1) ∧ · · · ∧ ξ(Xn) is the 
urrent best solution as in Se
tion 2.2.1 and En stands

for the expe
tation 
onditional on the information (Xn,Yn) available at time n. The strategy to


hoose the bat
h of experiments then naturally 
onsists in sele
ting the q points that maximize

the q-EI 
riterion.

(Xn+1, . . . ,Xn+q) = argmax(x1,...,xq)∈Xq ρq,n(x1, . . . , xq). (3.26)

The 
riterion (3.25) is appealing be
ause it 
orresponds to the Bayes-optimal one-step looka-

head strategy for the loss fun
tion (2.2). However, it is di�
ult to use in pra
ti
e for two reasons.

First, its 
omputation is not simple. A 
losed form formula is provided by Chevalier and Gins-

bourger (2013) but it be
omes 
omputationally intensive for large values of q and is therefore

limited to small bat
h sizes (say q < 10). For larger bat
h sizes, approximate 
omputation

pro
edures have been proposed by Ginsbourger et al. (2010b) and Marmin et al. (2016) and


an be used with a moderate 
omputational 
ost. Se
ondly, solving the auxiliary optimization

problem (3.26) is 
hallenging be
ause the size of the sear
h spa
e is d × q, whi
h 
an be quite

large even for moderate bat
h sizes when d is already rather large. To solve this problem, Frazier
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Figure 3.21: Illustration of a run of BMOO on the optimization problem de�ned by (3.21) and (3.24).

Bla
k disks represent the initial DOE and blue disks represent subsequent evaluation points. The 
urrent

best evaluation point in shown as a red disk. The non-observable domain is shaded in gray and failed

evaluations are shown as 
rosses.
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and Clark (2012); Wang et al. (2016a) and Marmin et al. (2016) propose multi-start sto
hasti


gradient algorithms relying on approximate gradient 
omputation methods. Note that a 
losed

form expression of the gradient of the q-EI 
riterion has been developed by Marmin et al. (2015)

but again, the approa
h is limited to small bat
h sizes.

To 
ir
umvent these di�
ulties, Ginsbourger et al. (2010b) propose to use a sequential ap-

proximation of (3.26) where theXn+i, i ∈ J1, qK, are 
hosen one after the other using the following

pro
edure.





Xn+1 = argmax
x∈X

En

(
(mn − ξ(x))+

)
,

Xn+i = argmax
x∈X

En

(
(min(mn, ξ(Xn+1), . . . , ξ(Xn+i−1))− ξ(x))+ |Xn+1,

. . . , Xn+i−1) , 2 ≤ i ≤ q.

(3.27)

Observing that (3.27) still poses 
omputational di�
ulties, the authors further simplify the

pro
edure as





Xn+1 = argmax
x∈X

En

(
(mn − ξ(x))+

)
,

Xn+i = argmax
x∈X

En

(
(min(mn, ξ(Xn+1), . . . , ξ(Xn+i−1))− ξ(x))+ | ξ(Xn+1) = y1,

. . . , ξ(Xn+i−1) = yi−1) , 2 ≤ i ≤ q,
(3.28)

where the (yi)1≤i≤q ∈ R
q
are values imputed to the su

essive (ξ(Xn+i))1≤i≤q . The authors then

propose two strategies for setting the (yi)1≤i≤q . The Constant Liar (CL) strategy 
onsists in

lying with the same value yi = yn ∈ R, i ∈ J1, qK, ea
h time. For examples they study the 
ases

where yn = min(Yn), yn = mean(Yn) and yn = max(Yn). The Kriging Believer (KB) strategy


onsists in setting yi as the kriging mean at Xn+i: yi = ξ̂(Xn+i), i ∈ J1, qK. Note that with this

strategy, the 
omputation problem redu
es to the 
omputation of the EI fun
tion and that the

optimization problem redu
es to q optimizations in dimension d.

To the best of our knowledge, the problem of sele
ting bat
hes of experiments in a Bayesian

multi-obje
tive 
ontext has only been addressed by Zhang et al. (2010). This is somewhat sur-

prising be
ause, unlike the single-obje
tive 
ase where a single best point will eventually emerge

from the observation of q new points, in a multi-obje
tive 
ontext, the newly observed points 
an

potentially all simultaneously improve upon the 
urrent front of non-dominated observations if

they do not dominate ea
h other. Hen
e, it makes a lot of sense to 
onsider bat
h strategies in a

multi-obje
tive 
ontext and it seems plausible that a good bat
h strategy 
ould outperform the

sequential strategy in terms of number of iterations, whi
h is not so evident in the single-obje
tive


ase.

A natural extension of (3.25) to a 
onstrained multi-obje
tive setting where the improvement

is measured using the hypervolume measure de�ned using the domination rule (2.21) is to 
onsider

the following 
riterion.

ρq,n(x1, . . . , xq) = En

(
(|H((Yn, ξ(x1), . . . , ξ(xq)))| − |Hn|)+

)
, (3.29)
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Algorithm 8: Sequential pro
edure to sele
t a bat
h of q experiments for evaluation.

1 i← 1
2 Xn+1 ← argmaxx∈Xn

ρn(x)
3 while i < q do
4 i← i+ 1
5 Generate (Y1, . . . , Yi−1) from (ξ(Xn+1), . . . , ξ(Xn+i−1)) 
onditional on

Yn = (f(Xn), c(Xn)).
6 Yn,i ← (Yn, Y1, . . . Yi−1)
7 Xn,i ← (Xn,Xn+1, . . . Xn+i−1)
8 Xn+i ← argmaxx∈Xn

E
(
(|H((Yn,i, ξ(x)))| − |H(Yn,i)|)+ |ξ(Xn,i) = Yn,i

)

where H(Y ) = {z ∈ B;∃y ∈ Y s.t. y ≺ z} is the subset of B made of the points dominated

by the elements of a ve
tor Y of elements of B. Observe in parti
ular that for q = 1, the


riterion (3.29) 
orresponds to the expe
ted improvement (2.23).

As in the single-obje
tive 
ase, the 
omputation and optimization of the 
riterion (3.29) are

di�
ult problems and an in depth study of these two aspe
ts falls out of the s
ope of this thesis

work. We limit ourselves to proposing a sequential pro
edure in the spirit of the KB strategy

of Ginsbourger et al. (2010b). The proposed pro
edure is summarized in Algorithm 8. Note

that unlike the KB strategy, in the proposed algorithm, we use 
onditional realisations of ξ to

produ
e the (yi)1≤i≤q that are imputed to the model. As su
h, (3.28) is an unbiased estimator

of (3.27). In Algorithm 8, a single realisation of ξ is used at ea
h iteration but of 
ourse, it it is

possible to use more draws to improve the robustness of the approa
h.

In Figures 3.22 and 3.23, we show an illustration of one run of the BMOO algorithm on

the BNH problem introdu
ed in Se
tion 2.5.4. Bat
hes of q = 10 experiments sele
ted using

Algorithm 8 are evaluated simultaneously at ea
h iteration. The algorithm is initialized using

a pseudo-maximin latin hyper
ube design of 10 experiments (Iteration 0 of Figure 3.22) and is

run over 5 iterations. Note how most of the points in the bat
hes 
ontribute to the Pareto front

dis
overy. For 
omparison, the same experiment but with q = 25 is shown in Figure 3.24.

Remark 25 See Azimi et al. (2010); Viana and Haftka (2010); Zhang et al. (2010); Desautels

et al. (2014); Chevalier et al. (2014b); Shah and Ghahramani (2015); González et al. (2015);

Guerra (2016); Wu and Frazier (2016); Kathuria et al. (2016); Habib et al. (2016); Li et al.

(2016b) and Daxberger and Low (2017) for alternative approa
hes to sele
t bat
hes of experiments

not dire
tly related to the 
on
ept of expe
ted improvement.

Remark 26 In this work, we 
onsider syn
hronous bat
hes of experiments. See the works of

Ginsbourger et al. (2010a); Janusevskis et al. (2012); Girdziusas et al. (2012) and Le Ri
he

et al. (2012) for asyn
hronous bat
h sele
tion approa
hes.

3.5.5 User preferen
es in multi-obje
tive optimization

Sometimes, the end-user is able to say in advan
e what part of the Pareto front is more interesting

for his parti
ular appli
ation. For example, he might be interested more in extreme solutions
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(f) Iteration 2

Figure 3.22: Illustration of one run of the BMOO algorithm on the BNH problem. Bat
hes of q = 10
experiments are made at ea
h iteration. Non-dominated solutions are shown as red disks and dominated

ones as bla
k disks.
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(f) Iteration 5

Figure 3.23: Illustration of one run of the BMOO algorithm on the BNH problem. Bat
hes of q = 10
experiments are made at ea
h iteration. Non-dominated solutions are shown as red disks and dominated

ones as bla
k disks.
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(f) Iteration 2

Figure 3.24: Illustration of one run of the BMOO algorithm on the BNH problem. Bat
hes of q = 25
experiments are made at ea
h iteration. Non-dominated solutions are shown as red disks and dominated

ones as bla
k disks.

120



or prefer the improvement of one obje
tive over the improvement of another. To en
ode this

preferen
e, in this se
tion, we propose the expe
ted weighted hypervolume improvement (EWHI)


riterion. This 
riterion is an extension of the weighted hypervolume indi
ator (WHI) introdu
ed

by Zitzler et al. (2007) to a Bayesian setting where the fun
tions of the problem are modeled by

Gaussian pro
esses.

The hypervolume indi
ator naturally introdu
es an impli
it preferen
e toward 
ertain regions

of the Pareto front

14

, as dis
ussed in Se
tion 3.4 (see Figure 3.12). Based on this observation,

Zitzler et al. (2007) proposed to introdu
e a weight fun
tion in the de�nition of the hypervolume

indi
ator to orient this preferen
e

15

:

Iωn =

∫

Hn

ω(y)dy, (3.30)

where Hn is the dominated subset of B, as de�ned in the un
onstrained 
ase in Se
tion 2.2.2,

and ω : Rp → R
+
is a positive weight fun
tion. In this setting, the value ω(y) for some y ∈ R

p


an be seen as a reward for dominating y.

Remark 27 Observe that, up to a 
onstant, the usual hypervolume indi
ator is re
overed with

the weight fun
tion ω = 1B. The WHI is thus a generalization of the hypervolume indi
ator.

Later, Emmeri
h et al. (2014) showed that for weight fun
tions possessing the bounded

improper integral (BI) property (see De�nition 1), the introdu
tion of a referen
e point in the

de�nition of the WHI is not required.

De�nition 1 A positive weight fun
tion ω : Rm → R
+

is said to possess the bounded improper

integral property if for all α ∈ R
m

∫

y≥α

ω(y)dy < +∞. (3.31)

The generalization of (3.30) to the 
onstrained multi-obje
tive 
ase is straightforward when

the extended domination rule (2.21) is used. It 
orresponds to takingHn and B as in Se
tion 2.3.2

and to 
onsider weight fun
tions de�ned on R
p+q

. Then, to get rid of the referen
e points ylow

and yupp, it is required that ω be a measure on R
p+q16

. Based on these remarks, we de�ne the

EWHI 
riterion in the 
onstrained multi-obje
tive setting as:

ρn(x) =

∫

Hc
n

ω(y) ·Pn (ξ(x)⊳ y) dy, (3.32)

where Hn = {y ∈ R
p+q; ∃i ≤ n, (f(Xi), c(Xi)) ⊳ y} and ω : Rp+q → R

+
is a measure on R

p+q
.

14

In the bi-obje
tive 
ase and for 
ontinuous fronts, Auger et al. (2009
) made expli
it this preferen
e and

showed that it is related both to the 
hoi
e of the referen
e point and to the shape of the Pareto front.

15

In the original de�nition of the WHI, the authors introdu
e additional terms to weight the axis. In this work,

one of our obje
tive is to get rid of the referen
e point, as proposed by Emmeri
h et al. (2014). Therefore we do

not 
onsider these terms.

16

Note that in the 
onstrained setting, lower bounding values are required and the BI property is not su�
ient

to insure that the integral is well de�ned in the absen
e of referen
e points.
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Observe that this de�nition of the EI 
orresponds to the loss fun
tion

εn(X, (f, c)) = µ(H \Hn), (3.33)

where H = {y ∈ R
p+q; ∃x ∈ X, (f(x), c(x)) ⊳ y} is the region of R

p+q
that is dominated by

the Pareto front, X = (X1,X2, . . .) is an optimization strategy for (f, c) and µ is the measure

with density ω with respe
t to the Lebesgue measure.

If it is assumed that the obje
tives and 
onstraints are independent and that ω 
an be put

under the produ
t form:

ω : R
p ×R

q → R
+

(yo, yc) 7→ ωo(yo) · ωc(yc) ,
(3.34)

where ωo is a measure on R
p
and ωc is a measure on R

q
, then a de
omposition similar to that

introdu
ed in Se
tion 2.3.3 is possible:

ρn(x) = ρfeasn (x) + ρunfn (x), (3.35)

where 



ρfeasn (x) = Ω−
c · Pn(ξc(x) ≤ 0) ·

∫

Rp

ωo(yo)Pn (ξo(x) ≺ yo) dyo ,

ρunfn (x) = Ωo ·
∫

Hc
n,c

ωc(yc)Pn

(
ξc(x) ≺ y+c

)
1yc 6≤0 dyc,

(3.36)

prior to �nding a feasible solution and





ρfeasn (x) = Ω−
c · Pn(ξc(x) ≤ 0) ·

∫

Hc
n,o

ωo(yo)Pn (ξo(x) ≺ yo) dyo ,

ρunfn (x) = 0,

(3.37)

on
e a feasible solution is known, where Ωo =
∫
Rp ωo and Ω−

c =
∫
Rq\[−∞,0]q ωc.

The extension of the SMC pro
edure proposed in Se
tion 2.4.1 to the approximate 
om-

putation of the integrals in (3.36) and (3.37) is straightforward. It 
onsists in introdu
ing the

respe
tive weight fun
tions in the estimator (3.9). Note that in this 
ase, prior to �nding a

feasible solution, both ρunfn and ρfeasn are 
omputed approximately.

As regards the sampling density πYn to be used in the SMC pro
edure, a development similar

to that used in Se
tion 3.3.2 for the Lopt
2 density leads to the de�nition of the following optimal

density:

πYn (y) ∝

√√√√
mX∑

k=1

ω(y)2 Pn (ξ(xk,n) ≺ y)2 · 1Gn , (3.38)

where ξ = ξo or ξc, ω = ωo or ωc and Gn = Hc
n,o or Hc

n,c, depending on whi
h phase of the

optimization pro
ess is 
onsidered, and the (xn,k)1≤k≤m are 
andidates for the optimization of

the 
riterion (see Se
tion 3.2).

In a bi-obje
tive 
ontext, Zitzler et al. (2007) propose three weight fun
tions that en
ode
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respe
tively preferen
e for extremal solutions, preferen
e for one of the obje
tive fun
tions and

bias toward a referen
e point (see also Auger et al. (2009a)). The authors point out that it is

possible to de�ne ω as a 
ombination of these three weight fun
tions to 
ombine their e�e
ts.

Based on these results, in Figure 3.25, we illustrate the operation of the EWHI 
riterion on the

BNH problem of Se
tion 2.5.4 for the two following weight fun
tions de�ned on R
p × R

q
, with

p = 2 and q = 1:





ω1(yo, yc) =
1

15
e−

yo,1
15 ·

1[0,150](yo,1)

150
·
1[0,60](yo,2)

60
· 1R(yc),

ω2(yo, yc) =
1

2
(ϕ (yo, µ1, C) + ϕ (yo, µ2, C)) · 1R(yc),

(3.39)

where ϕ(y, µ,C) denotes the Gaussian probability density fun
tion with mean µ and 
ovarian
e

matrix C, evaluated at y. The ω1 weight fun
tion is based on an exponential distribution and

en
odes preferen
e for the minimization of the �rst obje
tive. The ω2 weight fun
tion is a sum

of two bivariate Gaussian distributions and en
odes preferen
e for improving upon two referen
e

points µ1 and µ2
17

. For this experiment, BMOO is initialized with a pseudo-maximin design of

N = 10 experiments and is iterated over 20 iterations and we take µ1 = (80, 20), µ2 = (30, 40)

and C = RS(RS)T , where

R =

[
cos
(
π
4

)
− sin

(
π
4

)

sin
(
π
4

)
cos
(
π
4

)
]

and S =

[
20 0

0 3

]
. (3.40)

As expe
ted, the resulting distributions of solutions are 
on
entrated in the regions of the

Pareto front that dominate the regions of high weight values.

Remark 28 In the EMO literature, an up-to-date review of approa
hes that have been proposed

to in
orporate user preferen
es into the optimization s
heme is provided by Li et al. (2016a) and

theoreti
al results on optimal µ-distributions (see Se
tion 3.4.3) for the weighted hypervolume

indi
ator are provided by Auger et al. (2009b).

Remark 29 An alternative approa
h based on desirability fun
tions (see Harrington (1965)) is

proposed by Wagner and Trautmann (2010). In their approa
h, ea
h obje
tive is mapped to a

(nonlinear) desirability fun
tion that is 
omprised between 0 and 1, a value of 1 indi
ating full

satisfa
tion of the end-user. The authors then propose the DF-SMS-EMOA algorithm, whi
h

extends the SMS-EMOA algorithm of Beume et al. (2007) to this setting. This approa
h was

shown by Emmeri
h et al. (2014) to be a spe
ial 
ase of the WHI approa
h. Furthermore the

authors make expli
it the relationship between desirability fun
tions and weighted hypervolume

indi
ator for desirability fun
tions of the Harrington type and of the Derringer-Sui
h type (Sui
h

and Derringer, 1977) and show how they 
an be used to de�ne weight fun
tions. By extension,

these 
an be used to de�ne weight fun
tions for the EWHI 
riterion as well.

17

Note that in this example, we take ωc uniform over the entire R domain. In that 
ase, ωc is not a measure.

However, observe that on problems where a feasible solution is known from the initial DOE, whi
h is the 
ase for

the BNH problem, the EWHI is equal to the term ρfeasn in (3.37). In that 
ase, we omit the term Ω−
c be
ause it

does not in�uen
e the maximizer of the EWHI.
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(a) EHVI (N = 10)
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(b) EHVI (N = 30)
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(
) EWHI with ω1 (N = 10)
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(d) EWHI with ω1 (N = 30)
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(e) EWHI with ω2 (N = 10)
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(f) EWHI with ω2 (N = 30)

Figure 3.25: Distributions obtained after 20 iterations of the BMOO algorithm on the BNH problem

when the weight fun
tions ω1 and ω2 are used. The results obtained using the EHVI are shown for

referen
e. The 
ontours of the weight fun
tions are represented as bla
k lines and the non-dominated

solutions as red disks. Bla
k disks indi
ate dominated solutions.
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Remark 30 In a Bayesian setting, Yang et al. (2016a,b) de�ne the trun
ated expe
ted hypervol-

ume improvement. This 
riterion 
an be used on bi-obje
tive problems to en
ode preferen
e

toward a domain of the obje
tive spa
e de�ned by bound 
onstraints of the form (y1, y2) ∈
[A1, B1] × [A2, B2]. Note that a similar preferen
e 
an be en
oded using the EWHI 
riterion

by taking ωo(y1, y2) ∝ 1[A1,B1](y1) · 1[A2,B2](y2).

3.6 Additional material

3.6.1 Lo
al optimization algorithms results

Tables 3.7, 3.8 and 3.9 present the results obtained by the Cobyla, A
tive-Set, Interior-Point

and SQP lo
al optimization algorithms on the YUCCA test problem with κ = 1, κ = 3 and

κ = 5. In Se
tion 3.2, only the results of the best s
oring algorithm are given in the tables.

Here, we present the full results. The algorithms are run with their default values, ex
ept for

the maximum number of fun
tions evaluations, whi
h is set to Nmax = 1000, and the toleran
e

to 
onstraint violation, whi
h is set to 10−5
on ea
h 
onstraint. See Se
tion 3.2 for more details.

3.6.2 Corre
tion of the adaptive pro
edure to set Bo

A preliminary adaptive pro
edure to set Bo has been introdu
ed in Se
tion 2.7.2. In this pro
e-

dure, for every obje
tive fi, 1 ≤ i ≤ p, the upper bounding value yuppo,i is set as an approximation

of maxX fi. However, in Se
tion 3.4, it is empiri
ally shown that for better performan
es, it is

advisable to set the upper bounding values yuppo higher than the nadir point but not too far from

the Pareto front (see Remark 24 in Se
tion 3.4.3). This pro
edure is therefore not suitable for

problems where the maximum of fi over the entire X domain is large 
ompared to its maximum

value on the Pareto front. This happens, for example, when the maximum of fi over the feasible

set is small 
ompared to its maximum over X. Su
h a situation o

urs, for the FICUS problem,

when the parameter r is set small 
ompared to one, as illustrated in Figure 3.26. Here, we

propose a new adaptive pro
edure to set Bo that better adapts to this potential di�
ulty.

Assume that a set of n evaluation results ξ(Xi), 1 ≤ i ≤ n, are available and re
all from

Se
tion 3.3 that, assuming independen
e between the obje
tives and 
onstraints, prior to �nding

a feasible solution, the EI at some point x ∈ X is a sum of two terms:

ρn(x) = ρunfn (x) + ρfeasn (x) ,

∝ 1∣∣B−
c

∣∣
∫

Bc\Hn,c

Pn

(
ξ+c (x) ≺ y+c

)
1yc 6≤0 dyc +

Pn(ξc(x) ≤ 0)

|Bo|

∫

Bo

Pn (ξo(x) ≺ yo) dyo .

The EI value of points that have a small probability of feasibility is not strongly in�uen
ed by

Bo be
ause then ρfeasn (x) is likely to ba small 
ompared to ρunfn (x). For points with a signi�
ant

probability of feasibility on the other hand, the term ρfeasn (x) 
an be seen as a reward that is larger

when the volume between min(max(ξo(x) , y
low

o ) , yuppo ) and yuppo is larger. To avoid trun
ating
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d COBYLA a
tive-set interior-point SQP

2 28 8.7 (5.5) 27 7.7 (2.1) 30 11.0 (6.4) 30 7.2 (1.6)

5 25 21.9 (10.7) 27 20.6 (7.7) 28 24.9 (24.7) 28 16.2 (3.0)

10 17 80.6 (88.4) 17 37.4 (7.7) 25 50.0 (18.4) 25 31.4 (5.8)

20 14 168.2 (84.3) 10 77.0 (14.8) 19 108.2 (42.6) 16 70.6 (12.6)

50 4 593.8 (191.9) 5 298.4 (154.8) 14 491.6 (234.2) 11 191.1 (23.8)

100 0 - (-) 0 - (-) 0 - (-) 1 405.0 (0.0)

Table 3.7: Results obtained using the Cobyla, A
tive-Set, Interior-Point and SQP algorithms on the YUCCA test problem with κ = 1. In bold, the good

results in terms of average number of evaluations. We 
onsider the results to be good if more than 20 runs where su

essful and the average number of

evaluations is at most 20% above the best result presented in the table. Dash symbols are used when a value 
annot be 
al
ulated.

1

2

6



d COBYLA a
tive-set interior-point SQP

2 27 17.2 (5.2) 27 10.1 (2.7) 27 20.6 (4.0) 27 9.4 (2.4)

5 19 51.7 (52.2) 17 25.2 (6.8) 25 52.1 (11.0) 24 21.8 (3.1)

10 15 72.6 (30.4) 14 56.4 (54.5) 22 109.5 (40.9) 19 40.9 (5.5)

20 8 242.2 (208.5) 6 148.3 (63.8) 17 223.3 (37.4) 17 85.0 (0.0)

50 1 227.0 (0.0) 0 - (-) 4 752.0 (174.9) 3 205.0 (0.0)

Table 3.8: Results obtained using the Cobyla, A
tive-Set, Interior-Point and SQP algorithms on the YUCCA test problem with κ = 3. See Table 3.7 for


onventions.

1
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d COBYLA a
tive-set interior-point SQP

2 24 23.8 (6.0) 22 12.0 (5.6) 28 30.9 (7.3) 27 10.1 (1.6)

5 16 54.1 (26.9) 13 24.0 (6.0) 25 67.4 (18.2) 21 21.6 (3.6)

10 15 91.1 (31.4) 8 47.9 (12.8) 23 120.0 (26.5) 20 42.2 (4.9)

20 1 102.0 (0.0) 2 116.5 (44.5) 12 261.7 (26.5) 10 80.8 (8.9)

50 0 - (-) 0 - (-) 5 752.8 (117.5) 3 205.0 (0.0)

Table 3.9: Results obtained using the Cobyla, A
tive-Set, Interior-Point and SQP algorithms on the YUCCA test problem with κ = 5. See Table 3.7 for


onventions.
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Figure 3.26: Illustration of a situation where the pro
edure of Se
tion 2.7.2 to set Bo is not suitable

be
ause the size of the Pareto front is small 
ompared to the size of the domain of variation of the

obje
tives (gray region). The illustration is based on the FICUS (2, 0.1, 2) problem.

this volume, in that 
ase, we propose to set yupp and ylow as follows:





ylowo,i,n = min
(
mini≤n ξo,i(Xi), minx∈Xn ξ̂o, i, n(x)− λoσo, i, n(x)

)
, 1 ≤ i ≤ p ,

yuppo,i,n = max
(
maxi≤n ξo,i(Xi), maxx∈Xn ξ̂o, i, n(x) + λoσo, i, n(x),

)
, 1 ≤ i ≤ p ,

(3.41)

where λo is a positive number as in Se
tion 2.7.2 and Xn = (xn,i)1≤i≤m is a 
loud of parti
les

approximately distributed from a density πn on X. In other words, Bo is taken in that 
ase as

an hyper-re
tangle likely to 
ontains both the past and future observations.

On
e a feasible solution has been found, it is possible to adapt Bo to keep it 
lose to the

set of feasible and non-dominated solutions. To this purpose, we 
onsider the two following

approximations of the Pareto set:





Pmax = Pareto
(
{ξo(Xj) ; ξc(Xj) ≤ 0, 1 ≤ j ≤ n} ∪

{
ξ̂o,n(xn,i) + λoσo, n(xn,i), 1 ≤ i ≤ m

})
,

Pmin = Pareto
(
{ξo(Xj) ; ξc(Xj) ≤ 0, 1 ≤ j ≤ n} ∪

{
ξ̂o,n(xn,i)− λoσo, n(xn,i), 1 ≤ i ≤ m

})
.

(3.42)

The set Pmax 
an be seen as a pessimisti
 approximation of the Pareto front and the set Pmin

as an optimisti
 one. Then, for every obje
tive fun
tion fi, i ∈ J1, pK, we de�ne upper and lower

bounding values {
fi,max = maxPi,max,

fi,min = minPi,min,
(3.43)
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where Pi,max and Pi,min denote the ve
tors made of the ith 
omponents of Pmax and Pmin respe
-

tively. The upper and lower bounds yuppo,i,n and ylowo,i,n, i ∈ J1, pK 
an then be set as

{
yuppo,i,n = fi,max + γupp (fi,max − fi,min) ,

ylowo,i,n = fi,min − γlow (fi,max − fi,min) ,
(3.44)

where γupp and γlow are s
aling parameters. In our experiments, we often set γupp = γlow = 0,

whi
h 
orresponds to 
hoosing yuppo,i,n = fi,max and ylowo,i,n = fi,min.

Remark 31 As regards the 
hoi
e of Bc, there is no indi
ation in our experiments that the

adaptive pro
edure proposed in Se
tion 2.7.2 is not suitable.

3.6.3 Varian
e of the EI estimator

Here, we derive formulas that 
an be used to estimate the 
ovarian
e between the estimators of

the EI obtained using the proposed sequential Monte Carlo approa
h. To simplify the analysis,

we 
onsider the following form of the estimator (3.9):

In(x) ≈
Γn

m

m∑

i=1

Pn (ξ(x) ≺ yn, i)
γn(yn, i)

, (3.45)

where x ∈ X is a 
andidate point and the (yn, i)1≤i≤m ∈ Gm
n are parti
les approximately dis-

tributed from a density πn ∝ γn on Gn, where Gn denotes the non-dominated set. With these

notations,

Γn =

∫

Gn

γn(y)dy, (3.46)

is the normalizing 
onstant for the unnormalized probability density fun
tion γn. In this work, γn


an be, for example, equal to 1Gn when the uniform density is used or to (3.13) when the Lopt
2

density is used but the results of this se
tion extend to other densities as well.

In the setting that we 
onsider, the (yn, i)1≤i≤m
are obtained using SMC by 
onsidering a

sequen
e of densities (πn, t)0≤t≤T with πn, 0 uniform and πn, T = πn. The sequen
e (πn, t)0≤t≤T


omprises both initialization steps and intermediate transitions (see, e.g., Remark 21 in Se
-

tion 3.3). In this setting, it is 
onvenient to introdu
e the notations (γn, t)0≤t≤T and (Γn, t)0≤t≤T

to refer to the asso
iated sequen
es of unnormalized probability density fun
tions and normaliz-

ing 
onstants. In this framework, Γn = Γn, T and γn = γn, T .

No 
losed form expressions of the normalizing 
onstants (Γn, t)1≤t≤T are known in the general


ase. In pra
ti
e, they have to be approximated. Observe that, for t ∈ J1, T K

Γn, t =

∫

Gn

γn, t(y)dy

=

∫

Gn

γn, t(y)

πn, t−1(y)
πn, t−1(y)dy

= Γn, t−1

∫

Gn

γn, t(y)

γn, t−1(y)
πn, t−1(y)dy .

(3.47)
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For all t ∈ J1, T K, an approximation of Γn, t, t > 0, 
an thus be produ
ed using the following

re
ursion formula:

Γ̂n, t = Γ̂n, t−1

(
1

m

m∑

i=1

γn, t(yn, t−1, i)

γn, t−1(yn, t−1, i)

)
, (3.48)

where the (yn, t−1, i)1≤i≤m are parti
les distributed from πn, t−1 (see, e.g., Be
t et al. (2016a)).

The estimator that we a
tually 
onsider in the approximate 
omputation of the integral in the

EI expression is then

În(x) =
Γ̂n

m

m∑

i=1

Pn (ξ(x) ≺ yn, i)
γn(yn, i)

=

(
1

m

m∑

i=1

Pn (ξ(x) ≺ yn, i)
γn(yn, i)

)
·

T∏

t=1

(
1

m

m∑

i=1

γn, t(yn, t−1, i)

γn, t−1(yn, t−1, i)

)
Γ0,

(3.49)

where Γ0 = |Bo| or |Bc \B−
c | sin
e πn, 0 is uniform in the settings that we 
onsider.

To the best of our knowledge, without further assumptions, there exists no 
losed form

expression for the varian
e of su
h an estimator (asymptoti
 results exist in some parti
ular


ases). To go farther, a 
ommon pra
ti
e in the literature on sequential Monte Carlo is to make

the following assumptions (see, e.g, Cérou et al. (2012)):

(i) The samples (Yn, t)0≤t≤T are independent.

(ii) For all t ∈ J0, T K, the parti
les (yn, t, i)1≤i≤m are independently and identi
ally distributed

from πn, t.

To simplify the analysis, we introdu
e the following notations:

θ̂n, t =
1

m

m∑

i=1

γn, t(yn, t−1, i)

γn, t−1(yn, t−1, i)
, t ∈ J1, T K , (3.50)

and

α̂n(x) =
1

m

m∑

i=1

Pn (ξ(x) ≺ yn, i)
γn(yn, i)

. (3.51)

Observe that, under (ii), θ̂n, t is an unbiased estimator of θn, t =
Γn, t

Γn, t−1
, 1 ≤ t ≤ T (see

Equation (3.47)), and that α̂n(x) is an unbiased estimator of αn(x) =
In(x)
Γn

(see Equation (3.45)).

Moreover, under (i), the (θ̂n, t)1≤t≤T and α̂n(x) are all independent. Then denote, for all t ∈
J1, T K,

Θ̂n, t = Γ0

t∏

u=1

θ̂n, u , (3.52)

and observe that, under both (i) and (ii), Θ̂n, t, t ∈ J1, T K, is the produ
t of unbiased and

independent estimators. As su
h, Θ̂n, t is an unbiased estimator of Θn, t = Γ0
∏t

u=1 θn, u = Γn, t.
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Moreover, θ̂n, t+1 and Θ̂n, t are independent and, for all t ∈ J1, T K,

Var
(
Θ̂n, t

)
= Var

(
θ̂n, t · Θ̂n, t−1

)

= E

(
θ̂2n, t · Θ̂2

n, t−1

)
− E

(
θ̂n, t · Θ̂n, t−1

)2

= E

(
θ̂2n, t

)
·E
(
Θ̂2

n, t−1

)
− E

(
θ̂n, t

)2
·E
(
Θ̂n, t−1

)2

=
(
Var

(
θ̂n, t

)
+ θ2n, t

)
·
(
Var

(
Θ̂n, t−1

)
+Θ2

n, t−1

)
− θ2n, t ·Θ2

n, t−1

= Var
(
θ̂n, t

)
·Var

(
Θ̂n, t−1

)
+ θ2n, t ·Var

(
Θ̂n, t−1

)
+Θ2

n, t−1 ·Var
(
θ̂n, t

)
.

For all t ∈ J1, T K, the varian
e of Θ̂n, t 
an thus be expressed in an elegant form using the


oe�
ients of variation of Θn, t, Θn, t−1 and θn, t:

∆2
n, t = δ2n, t +

(
1 + δ2n, t

)
·∆2

n, t−1, (3.53)

where ∆2
n, t =

Var(Θ̂n, t)
Θ2

n, t
and δ2n, t =

Var(θ̂n, t)
θ2n, t

.

Applying the same treatment to În(x) = α̂n(x) · Θ̂n,T , we obtain

Var
(
În(x)

)

In(x)2
= Λn(x)

2 +
(
1 + Λn(x)

2
)
·∆2

n, T , (3.54)

where Λn(x) denotes the 
oe�
ient of variation of α̂n(x).

Estimators for the terms δ2n, t and ∆2
n, t in Equation (3.53) and for the term Λn(x)

2
in Equa-

tion (3.54) 
an be derived when (ii) is assumed. Observe that, in this 
ase,

δ2n, t =
Var

(
θ̂n, t

)

θ2n, t

=
1

m

Var
(

γn, t(yn, t−1, 1)
γn, t−1(yn, t−1, 1)

)

E

(
γn, t(yn, t−1, 1)

γn, t−1(yn, t−1, 1)

)2 ,
(3.55)

and an estimator of δ2n, t, t ∈ J1, T K, is

δ̂2n, t =

(∑m
i=1

γn, t(yn, t−1, i)
2

γn, t−1(yn, t−1, i)2

)

(∑m
i=1

γn, t(yn, t−1, i)
γn, t−1(yn, t−1, i)

)2 −
1

m
. (3.56)

This estimator 
an then be plugged in Equation (3.53) to obtain an estimator of ∆2
n, t:

∆̂2
n, t = δ̂2n, t +

(
1 + δ̂2n, t

)
· ∆̂2

n, t−1. (3.57)
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Using a similar reasoning, under (ii), an estimator of Λn(x)
2
is

Λ̂n(x)
2 =

(∑m
i=1

Pn(ξ(x)≺yn, i)
2

γn(yn, i)2

)

(∑m
i=1

Pn(ξ(x)≺yn, i)
γn(yn, i)

)2 −
1

m
. (3.58)

To summarize, the varian
e of the estimator (3.49) 
an be estimated using

Var
(
În(x)

)
≈
(
Γ̂n, T

m

m∑

i=1

Pn (ξ(x) ≺ yn, i)
γn(yn, i)

)2

·
(
Λ̂n(x)

2 +
(
1 + Λ̂n(x)

2
)
· ∆̂2

n, T

)
, (3.59)

where Γ̂n, T and ∆̂2
n, T are obtained re
ursively using (3.48) and (3.57), and Λ̂n(x)

2
is 
omputed

using (3.58).

Let us now 
onsider a pair (x1, x2) ∈ X
2
. The 
ovarian
e between În(x1) and În(x2) is given

by

Cov
(
În(x1), În(x2)

)

= E

(
Γ̂2
n · α̂n(x1) · α̂n(x2)

)
− In(x1) · In(x2)

= E

(
Γ̂2
n

)
· E (α̂n(x1) · α̂n(x2))− In(x1) · In(x2)

=
(
Var

(
Γ̂n

)
+ Γ2

n

)
· (Cov (α̂n(x1) , α̂n(x2)) + αn(x1) · αn(x2))− In(x1) · In(x2),

whi
h, again, 
an be formulated in a more elegant form as

Cov
(
În(x1), În(x2)

)

In(x1) · In(x2)
= Λ1,2

n (x1, x2) +
(
Λ1,2
n (x1, x2) + 1

)
·∆2

n, T , (3.60)

where

Λ1,2
n (x1, x2) =

Cov (α̂n(x1) , α̂n(x2))

αn(x1) · αn(x2)
. (3.61)

As previously, observe that under the assumption (ii),

Λ1,2
n (x1, x2) =

1

m
·

Cov
(
Pn(ξ(x1)≺yn, 1)

γn(yn, 1)
,
Pn(ξ(x2)≺yn, 1)

γn(yn, 1)

)

E (Pn (ξ(x1) ≺ yn, 1)) ·E (Pn (ξ(x2) ≺ yn, 1))
. (3.62)

An estimator of Λ1,2
n (x1, x2) 
an thus be written as

Λ̂1,2
n (x1, x2) =

(∑m
i=1

Pn(ξ(x1)≺yn, i) ·Pn(ξ(x2)≺yn, i)
γn(yn, i)2

)

(∑m
i=1

Pn(ξ(x1)≺yn, i)
γn(yn, i)

)(∑m
j=1

Pn(ξ(x2)≺yn, j)
γn(yn, j)

) − 1

m
. (3.63)
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Therefore, the 
ovarian
e between În(x1) and În(x2) 
an be approa
hed using

Cov
(
În(x1) , În(x2)

)
≈

Γ̂2
n, T

m2

(
m∑

i=1

Pn (ξ(x1) ≺ yn, i)
γn(yn, i)

)(
m∑

i=1

Pn (ξ(x2) ≺ yn, i)
γn(yn, i)

)

(
Λ̂1,2
n (x1, x2) +

(
1 + Λ̂1,2

n (x1, x2)
)
· ∆̂2

n, T

)
,

(3.64)

where Γ̂n, T and ∆̂2
n, T are obtained re
ursively using respe
tively (3.48) and (3.57) as before, and

Λ̂1,2
n (x1, x2) is 
omputed using (3.63).

Noti
e that we plug the estimates În of In in the expressions (3.59) of the varian
e and (3.64)

of the 
ovarian
e. When the estimates are of poor quality, this 
an lead to very unreliable results.

The results of this se
tion should thus be used with 
aution.

3.6.4 Experimental results for p = 6 and p = 8

This se
tion 
ontains additional results that go along with Se
tion 3.4. Results obtained when

sequentially maximizing the hypervolume indi
ator on the FICUS problem with r = 0.5 and

c ∈ {0.6, 1, 2} are shown in Figures 3.27, 3.28 and 3.29 for p = 6 and in Figures 3.30, 3.31

and 3.32 for p = 8. Results obtained with BMOO on the FICUS problem with r = 0.5, p = 8

and c ∈ {0.6, 1, 2} are shown in Figures 3.33 and 3.34.
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Figure 3.27: Results obtained on the FICUS (6, 0.5, 0.6) problem (
onvex front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.28: Results obtained on the FICUS (6, 0.5, 1) problem (linear front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.29: Results obtained on the FICUS (6, 0.5, 2) problem (
on
ave front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.30: Results obtained on the FICUS (8, 0.5, 0.6) problem (
onvex front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.31: Results obtained on the FICUS (8, 0.5, 1) problem (linear front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.32: Results obtained on the FICUS (8, 0.5, 2) problem (
on
ave front) by the optimization

strategy where the hypervolume indi
ator is maximized sequentially using a large number of samples

uniformly distributed on the Pareto front. The referen
e for the M3 metri
 is shown as a dashed line.
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Figure 3.33: Results obtained by the BMOO algorithm on the FICUS (8, 0.5, 0.6) problem (
onvex

front, left 
olumn) and on the FICUS (6, 0.5, 1) problem (linear front, right 
olumn). The referen
e for

the M3 metri
 is shown as a dashed line and the shaded region 
orresponds to a 95% 
on�den
e interval

empiri
ally 
omputed from 30 runs of BMOO.
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Figure 3.34: Results obtained by the BMOO algorithm on the FICUS (8, 0.5, 2) problem (
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orresponds to

a 95% 
on�den
e interval empiri
ally 
omputed from 30 runs of BMOO.

142



Chapter 4

Appli
ations
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4.1 Introdu
tion

In this 
hapter, we present four real-life design optimization studies led using the BMOO algo-

rithm and its extensions presented in Se
tion 3.5.

The �rst study is on the design optimization of a 
ommer
ial air
raft environment 
ontrol

system and is presented in Se
tion 4.2. It is a reprodu
tion of Feliot et al. (2016) with little

modi�
ations. This study was led within the framework of the Te
hnologi
al Resear
h Institute

SystemX (IRT SystemX), in 
ollaboration with Airbus Group Innovation. The 
onsidered op-

timization problem has d = 18 design variables, p = 2 obje
tives and q = 15 
onstraints. It

features a non-hyper
ubi
 design spa
e de�ned by 
heap-to-evaluate 
onstraints and has hidden


onstraints.

The se
ond study presented in this 
hapter is on the design of an ele
tri
 vehi
le powertrain

and is presented in Se
tion 4.3. It was also led within the framework of the IRT SystemX and

is the fruit of a 
ollaboration with Renault. The 
onsidered optimization problem has d = 33

design variables, p = 2 obje
tives and it features a non-hyper
ubi
 design spa
e. For this

study, the simulator implements numeri
al solving of Maxwell's equations using a �nite elements

method, whi
h makes the fun
tions of the problem expensive to evaluate. Moreover, it involves

equality 
onstraints. To handle these, a relaxation method is used to transform them into pairs

of inequality 
onstraints. As a 
onsequen
e, the simultaneous satisfa
tion of all 
onstraints is

di�
ult for this problem be
ause the feasible region is small.

The third study is on the tuning of a line of sight 
ontroller. It 
an be found in Se
tion 4.4.

This study was led at CentraleSupéle
 in 
ollaboration with Sophie Frasnedo (CentraleSupéle
,

Safran Ele
troni
s & Denfense) and is based on her thesis work (Frasnedo et al., 2015a,b;

Frasnedo, 2016). The optimization problem has d = 7 design variables, q = 15 
onstraints,

and it features a non-hyper
ubi
 design spa
e and hidden 
onstraints. For this study, we 
on-

sider two optimization problems: one with three obje
tive fun
tions and one with �ve obje
tive

fun
tions. Also, we 
ompare results obtained when the points are 
hosen one at a time and

results obtained using bat
hes of 50 experiments on a seven-obje
tive formulation.

Finally, the fourth appli
ation is on the design of a turboma
hine fan blade and is presented

in Se
tion 4.5. This study was led in 
ollaboration with Cénaéro, and Safran Air
raft Engines.

The problem is multi-physi
. It involves me
hani
al, a
ousti
 and aerodynami
 
omputations.

The underlying simulation 
hain relies on several softwares and takes approximately four hours

to return a result. In this setting, it is highly desirable to propose design solutions using few

fun
tions evaluations. The formulation of the optimization that is 
onsidered in this study has

d = 26 design variables, p = 3 obje
tives, q = 9 
onstraints and it features hidden 
onstraints.

For all appli
ations presented in this 
hapter ex
ept that of Se
tion 4.2, the PICPI density

is used for optimizing the expe
ted improvement, as re
ommended in Se
tion 3.2. For the


omputation of the 
riterion, as re
ommended in Se
tion 3.3, we use the sequential Monte-Carlo

approximation pro
edure with the Lopt
2 density prior to �nding feasible solutions and exa
t


omputation afterwards when the problem has less than �ve obje
tives. To 
ompute the EI for

the seven-obje
tive formulation, the SMC pro
edure using the Lopt
2 density is used during the
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whole optimization pro
ess. When the problem has 
heap-to-evaluate 
onstraints, they are seen

as restri
tions of the design spa
e, as dis
ussed in Se
tion 3.5.2. To handle hidden 
onstraints,

the pro
edure of Se
tion 3.5.3 is used. Otherwise, the settings of the algorithm are as des
ribed

in Se
tion 2.5.1.

4.2 Design of a 
ommer
ial air
raft environment 
ontrol system

4.2.1 Introdu
tion

The purpose of the environment 
ontrol system (ECS) of a 
ommer
ial air
raft is to provide

a 
ertain level of 
omfort to the passengers by regulating the temperature and pressure of the

air inje
ted into the 
abin. The system is based on an inverse Brayton thermodynami
 
y
le.

Hot and pressurized air is taken from the engines at the 
ompressor stage through the bleed

and ram air from the outside of the air
raft is used as 
oolant. For safety reasons, the hot air

from the engines passes through a �rst heat ex
hanger where it is 
ooled down below the 
riti
al

fuel ignition temperature. Then it is pressurized through a 
ompressor and 
ooled again using

a se
ond heat ex
hanger. It then passes through a turbine where work is extra
ted to propel

the 
ompressor. The 
ooled and expanded air exiting the turbine is eventually mixed with hot

air from the �rst heat ex
hanger out�ow to rea
h the desired temperature and pressure before

inje
tion into the 
abin.

The design of an optimal ECS is a 
omplex problem in pra
ti
e. It has been addressed

in previous studies under di�erent optimality 
onditions and modelling assumptions (see, e.g.,

Vargas and Bejan (2001); Bejan and Siems (2001); Pérez-Grande and Leo (2002)). In their arti
le,

Pérez-Grande and Leo (2002) study an air
raft-on-
ruse s
enario and propose a one dimensional

model of the two heat ex
hangers. The system is designed in order to a
hieve minimal mass and

entropy generation, two obje
tives that are shown to be antagonisti
 and whi
h both a�e
t the

overall performan
e of the air
raft.

In this se
tion, we extend their work by 
onsidering also the sizing of the rotating ma
hines

and by 
onsidering an air
raft-on-ground s
enario, whi
h 
orresponds to the most 
riti
al sit-

uation for the ECS in terms of 
old produ
tion, and is therefore dimensioning. The design

optimization of the system is performed using the BMOO algorithm (Feliot et al., 2017), whi
h

implements a Bayesian approa
h to the multi-obje
tive optimization problem in the presen
e of

non-linear 
onstraints. The problem 
onsists in �nding an approximation of the set

Γ = {x ∈ X : c(x) ≤ 0 and ∄x′ ∈ X su
h that c(x′) ≤ 0 and f(x′) ≺ f(x)}

whereX ⊂ R
d
is the sear
h domain, c = (ci)1≤i≤q is a ve
tor of 
onstraint fun
tions (ci : X→ R),

c(x) ≤ 0 means that ci(x) ≤ 0 for all 1 ≤ i ≤ q, f = (fj)1≤j≤p is a ve
tor of obje
tive fun
tions

to be minimized (fj : X→ R), and ≺ denotes the Pareto domination rule (see, e.g., Fonse
a and

Fleming (1998)).

The se
tion is organized as follows. First we detail in Se
tion 4.2.2 the model that is used to

estimate the performan
es and main 
hara
teristi
s of the system. A one-dimensional analysis is
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Figure 4.1: Ar
hite
ture of the environment 
ontrol system of a 
ommer
ial air
raft

performed to establish the state equations of the system and link the physi
al values of interest

to the geometri
al parameters of the system 
omponents. Then we introdu
e in Se
tion 4.2.3

the optimization algorithm that is used to 
ondu
t the system optimization. The results of

the optimization are analyzed and possible dire
tions for future work are dis
ussed. Finally,


on
lusions are drawn in Se
tion 4.2.4.

4.2.2 Thermodynami
 analysis of the ECS

Sizing s
enario

The ar
hite
ture of the ECS is represented on Figure 4.1. Bleed air from the engines arrives into

the system at lo
ation 1. Ram air from the outside of the air
raft is levied at lo
ation 0r and is

used as 
oolant. The hot air enters a �rst heat ex
hanger where it is 
ooled down below the fuel

ignition temperature. A by-pass at lo
ation 2 then permits to regulate the system by 
ontrolling

the air �owrate entering the air 
y
le ma
hine (ACM). Cooled and expanded air exits the ACM

at lo
ation 5 and is mixed with warm air from the by-pass to rea
h the desired pressure and

temperature before inje
tion into the 
abin at lo
ation 6.

In pra
ti
e, the system must be able to satisfy stri
t spe
i�
ations under di�erent environ-

mental 
onditions and operating situations. In this work, we 
onsider a s
enario where the

air
raft is on ground, full of passengers, equipments running, and with an outside temperature of

50◦C. In that situation, the ECS must be able to maintain the 
abin temperature at Tc = 24◦C.

This s
enario 
orresponds to the most demanding spe
i�
ation in terms of 
old produ
tion, and

is therefore dimensioning for the system. Formally, this means that the ECS must be able to

dissipate enough heat to 
ompensate for the thermal power PHT produ
ed by the passengers,

the 
rew, the equipments and the environment:

PHT = Pout + Peq +NpaxPpax +NcrewPcrew,
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where Pout is the outside �ow dissipation, Peq is the thermal power produ
ed by the equipments,

Ppax and Pcrew are the thermal powers produ
ed by a passenger and by a 
rewmember and Npax

and Ncrew are the number of passengers and the number of 
rewmembers in the air
raft.

In this s
enario, the by-pass is wide open so that all the air from lo
ation 2 goes to the ACM.

Also, there is no relative velo
ity between the air
raft and the ambient air when it is grounded

and therefore there is no natural 
oolant �owrate. In this work, we 
onsider a system where the

ram �owrate is 
reated by an auxiliary fan pla
ed at the ram air entran
e and powered by the

turbine of the ACM. The sizing of this auxiliary fan is not taken into a

ount in this study but

we will assume that the ram �owrate 
an be 
ontrolled.

Heat ex
hangers

We now detail the model that is used to emulate the system. For the heat ex
hangers HX1 and

HX2, we use a model from Pérez-Grande and Leo (2002). The two heat ex
hangers are 
ompa
t


ross-�ow heat ex
hangers with unmixed �uids. For this kind of heat ex
hangers, the energy

ex
hanged per unit time between the ram and bleed air 
an be formulated as:

ṁcp(Tt1 − Tt2) = ṁrcp(Tt3r − Tt2r), (4.1)

ṁcp(Tt3 − Tt4) = ṁrcp(Tt2r − Tt1r), (4.2)

where ṁ and ṁr denote respe
tively the bleed and ram air �owrates, cp is the thermal 
apa
ity

of the air and is assumed 
onstant, and Tti represents the stagnation temperature at lo
ation

i ∈ {1, 2, 3, 4, 5, 1r, 2r, 3r}. Besides, we 
an de�ne the e�
ien
ies ǫ1 and ǫ2 of the two heat

ex
hangers HX1 and HX2 as the ratio between the energy e�e
tively ex
hanged and the total

energy ex
hangeable:

cp(Tt1 − Tt2) = ǫ1cp(Tt1 − Tt2r), (4.3)

cp(Tt3 − Tt4) = ǫ2cp(Tt3 − Tt1r). (4.4)

Note that Eq.(3-4) only hold when ṁ ≤ ṁr. Otherwise, Tt1 − Tt2r should be repla
e by

Tt3r − Tt2r in Eq.(3) and Tt3 − Tt1r should be repla
ed by Tt2r − Tt1r in Eq.(4). The e�
ien
ies

ǫ1 and ǫ2 of the two heat ex
hangers depend on their geometry and we use the ǫ-Ntu model

detailed in Pérez-Grande and Leo (2002) to estimate them.

In this study, the pressure drops as the air passes through the heat ex
hangers are 
onsidered


onstant:

Pt2 − Pt1 = ∆PHX , (4.5)

Pt4 − Pt3 = ∆PHX , (4.6)

where Pti represents the stagnation pressure at lo
ation i and ∆PHX is a 
onstant pressure

loss. While this permits to simplify the model, it is ina

urate be
ause the pressure losses do

also depend on the geometries of the heat ex
hangers and are responsible for a non-negligible
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Figure 4.2: Compressor (left) and turbine (right) velo
ity triangles.

proportion of the entropy generated by the system. In parti
ular, the fri
tions are expe
ted to

rise as the volume of the heat ex
hangers de
reases, whi
h further in
reases the ne
essary balan
e

between entropy generation and mass. Again, the reader is referred to Pérez-Grande and Leo

(2002) for a dis
ussion on a possible model of the pressure drops.

Compressor and turbine

We 
onsider a 
entrifugal 
ompressor and an axial �ow turbine. It is assumed that the air enters

the 
ompressor axially and exits parallel to the blades (the slip fa
tor is negle
ted), with an angle

β3 as illustrated on Figure 4.2. Similarly, it is assumed that the air enters the turbine with an

angle α4 
orresponding to the stator blades angle and goes out axially. The rotational speed

of the shaft linking the 
ompressor with the turbine is denoted ω. The letters C, U and W on

Figure 4.2 denote respe
tively the air absolute velo
ity ve
tor, the blade tip speed ve
tor and the

relative velo
ity ve
tor, su
h that C = U +W . In the following, the subs
ripts u, m, and x will

stand respe
tively for the tangential, meridional and axial 
omponents of the velo
ity ve
tors.

The power ex
hanged per unit time between the ma
hines and the �uid and the 
hange of

momentum of the �uid are related by Euler's theorem as:

ẆC = ṁ(U3C3u − U2C2u),

ẆT = ṁ(U5C5u − U4C4u),

where ẆC and ẆT denote respe
tively the power re
eived by the �uid from the 
ompressor and

from the turbine. Note that with this 
onvention ẆT < 0 and ẆC > 0. The turbine is 
onverting

part of the �uid energy into rotation speed, and the 
ompressor is augmenting the energy of the

�uid through its me
hani
al work, whi
h in
reases the temperature of the �uid.

Under the assumption that the �ow enters the 
ompressor and exits the turbine axially, the
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tangential 
omponents of the air velo
ity ve
tors are negle
ted and C2u = C5u = 0. The Euler

theorem simpli�es to:

ẆC = ṁU3C3u,

ẆT = −ṁU4C4u,

The 
onservation of the mass at lo
ations 3 and 4 gives the following additional equations,

relating the air �owrate to its velo
ity and a 
ontrol surfa
e.

ṁ = 2πρr3b3W3m,

ṁ = 2πρr4b4C4m,

where ρ is the air density (whi
h is assumed 
onstant), r3 and r4 are respe
tively the 
ompressor

outlet blade radius and turbine inlet blade radius, and b3 and b4 are respe
tively the 
ompressor

and turbine tip blade heights (see Figure 4.3). Using the velo
ity triangles of Figure 4.2, the Euler

theorem 
an then be rewritten using the rotating ma
hines geometries and rotational speed:

ẆC = ṁ

(
r23ω

2 − ṁ tan(β3)

2πρb3
ω

)
, (4.7)

ẆT = −ṁ
2 tan(α4)

2πρb4
ω. (4.8)

Besides, the work extra
ted from the turbine is used to propel the 
ompressor and the aux-

iliary fan. Writing down the 
onservation of energy per unit time we get:

ẆC + ẆT +
1

ηF

ṁ3
r

2ρ2A2
r

= 0, (4.9)

where Ar is a 
ontrol surfa
e at the ram air entran
e and ηF is the ratio between the kineti


energy per unit time produ
ed by the auxiliary fan and the power furnished by the turbine to

the fan.

The powers ẆC and ẆT 
an also be expressed as fun
tions of the stagnation temperatures

by 
onsidering the 
hange in total enthalpy of the �uid passing through the rotating ma
hines

(the other 
ontributions are negle
ted):

ẆC = ηCṁcp(Tt3 − Tt2), (4.10)

ẆT =
1

ηT
ṁcp(Tt5 − Tt4), (4.11)

where ηC and ηT are respe
tively the 
ompressor and turbine isentropi
 e�
ien
ies. Finally, the
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Figure 4.3: Geometri
al parametrization of the 
ompressor (left) and of the turbine (right).

stagnation pressure ratios are given by the isentropi
 relations:

Pt3

Pt2
=

(
1 + ηC

Tt3 − Tt2
Tt2

) γ
γ−1

, (4.12)

Pt5

Pt4
=

(
1 +

1

ηT

Tt5 − Tt4
Tt4

) γ
γ−1

, (4.13)

where γ is the air isentropi
 
oe�
ient.

Mass and entropy generation rate of the system

The mass of the system 
an be approximated by 
onsidering estimates of the volumes of its


omponents and representative densities. For the two heat ex
hangers, we 
onsider re
tangular

volumes and a representative density ρHX (see Table 4.3).

MHX1 = ρHX · Lx1Ly1Lz1,

MHX2 = ρHX · Lx2Ly2Lz2,

where Lx1, Ly1, Lz1, Lx2, Ly2, Lz2 are the heat ex
hangers dimensions (see Table 4.1), and

MHX1 andMHX2 are the mass of the heat ex
hangers. For the 
ompressor and turbine of the

ACM, we 
onsider separately the volumes of the blades and the volume of the ma
hine body

(see Figure 4.3):

VC,blade = ec

(
hcr3(r3 − r2p)

2
− (r3 − r2t)(hcr3 − b3)

2

)
,

VC,body =
πr23hc(r3 + r2p)

3
−
πhcr

3
2p

3
,
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for the 
ompressor, and

VT,blade = et

(
htr4(r4 − r5p)

2
− (r4 − r5t)(htr4 − b4)

2

)
,

VT,body =
πr24ht(r4 + r5p)

3
−
πhtr

3
5p

3
,

for the turbine, where ec and et are the 
ompressor and turbine blades thi
kness, and hc and ht

are aspe
t ratios. The mass of the system is then given by the following.

M =MHX1 +MHX2 + ρsteel(ZCVC,blade + VC,body)

+ ρsteel(ZTVT,blade + VT,body), (4.14)

where ZC and ZT are respe
tively the number of blades of the 
ompressor and of the turbine.

The entropy generation rate of the ECS is the sum of the 
ontributions along the bleed stream

and along the ram stream, from entran
e to exit:

Ṡ = ṁ

(
cp log

T5
Ta
−R log

P5

Pa

)
+ ṁr

(
cp log

T3r
Ta
−R log

P3r

Pa

)
, (4.15)

where R is the perfe
t gas 
onstant, Ta and Pa are the ambient temperature and pressure, and

Ti and Pi are respe
tively the stati
 temperature and the stati
 pressure at lo
ation i ∈ {5, 3r}.
The equations giving the stati
 properties for the bleed stream are gathered in Table 4.3 in

the additional material. For the ram stream, it is assumed that the Ma
h number remains low

through the heat ex
hangers. Thus, T3r = Tt3r, T2r = Tt2r, T1r = Tt1r. For the stati
 pressures

P2r and P3r, the law of perfe
t gas is used.

4.2.3 Optimization of the system

Formulation of the optimization problem

We 
onsider an optimization problem using the 18 design variables given in Table 4.1. All other

design parameters and physi
al properties are �xed (see Tables 4.4, 4.5 and 4.6 in Se
tion 4.2.5).

Under the model developed in Se
tion 4.2.2, the ECS is thus ruled by a system of 13 equations

(Eq. (4.1)�(4.13)) with 13 unknowns, whi
h are the stagnation temperatures and pressures,

the powers ex
hanged between the �uid and the 
ompressor and turbine, and the rotational

speed of the rotating ensemble: Tt2, Tt3, Tt4, Tt5, Tt2r, Tt3r, Pt2, Pt3, Pt4, Pt5, ẆC , ẆT and

ω. Eq.(4.14) and Eq.(4.15) give respe
tively the mass and the entropy generation rate, whi
h

are the obje
tives of the optimization. Additionally, we formulate the following 15 inequality
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onstraints (see Table 4.3):





c1−2 : Tmin ≤ T5 ≤ Tmax,

c3−4 : Pmin ≤ P5 ≤ Pmax,

c5−6 : 0.5 ≤ ǫ1 ≤ 0.9,

c7−8 : 0.5 ≤ ǫ2 ≤ 0.9,

c9 : ‖C2‖ ≤ 0.95
√
γRT2,

c10 : ‖C3‖ ≤ 0.95
√
γRT3,

c11 : ‖C4‖ ≤ 0.95
√
γRT4,

c12 : ‖C5‖ ≤ 0.95
√
γRT5,

c13 : r3ω ≤ √
γRT3,

c14 : r4ω ≤ √
γRT4,

c15 : PHT ≤ ṁcp (Tc − T5) .

The 
onstraints c1 to c4 are standard spe
i�
ations. The air inje
ted into the 
abin must lie

between Tmin = 15◦ C and Tmax = 25◦ C and at a pressure 
lose to the atmospheri
 pressure.

Thus we take Pmin = 101.3 kPa and Pmax = 1.05Pmin. The 
onstraints c5 to c8 are on the

heat ex
hangers e�
ien
ies. The design should be e�
ient enough but not too expensive to

manufa
ture. The 
onstraints c9 to c12 are on the air velo
ity. In the model, we have assumed

that the air density remains 
onstant throughout the bleed stream, whi
h is ina

urate if the �ow

be
omes supersoni
. We take a 5% margin to a

ount for the possible variations of un
ertain

parameters and avoid numeri
al instabilities. Similarly, it is required via 
onstraints c13 and c14

that the 
ompressor and turbine blade tip speeds be subsoni
. Constraint c15 stems from the

sizing s
enario 
onsidered in this study: The dissipated power must be greater than the power

produ
ed by the passengers, the 
rew, the equipments and the environment (see Se
tion 4.2.2).

Note that an equality 
onstraint is not ne
essary be
ause the 
onstraint is expe
ted to be a
tive

at the optima.

To ensure the feasibility of the system and avoid numeri
al issues, we enfor
e the following

restri
tions on the design variables (see Figure 4.3):





d1 : ṁ ≤ ṁr,

d2 : b3 ≤ hcr3,

d3 : b4 ≤ htr4,

d4−5 : r2p + 0.02 ≤ r2t ≤ r3,

d6−7 : r5p + 0.02 ≤ r5t ≤ r4,

d8 : ∆ ≥ 0,

d9 : tan(β3)
b3

≥ − tan(α4)
b4

.

where ∆ in d8 is the dis
riminant of Eq (4.7)�(4.9), seen as a se
ond order polynomial equation

in ω. The 
onditions d8 and d9 are ne
essary to ensure that there exists a real solution ω > 0

to Eq (4.9). When two su
h solutions are possible, we take the largest one. Note that this

parametrization implies that the optimization needs to be performed on a non-hyper
ubi
 design
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Des
ription Not. Domain

Bleed �owrate (kg.s

-1

) ṁ [2, 8℄

Ram �owrate (kg.s

-1

) ṁr [2, 8℄

Compressor outlet radius (m) r3 [0.1, 0.3℄

Turbine inlet radius (m) r4 [0.1, 0.3℄

Compressor inlet foot radius (m) r2p [0.03, 0.1℄

Turbine outlet foot radius (m) r5p [0.03, 0.1℄

Compressor inlet tip radius (m) r2t [0.04, 0.2℄

Turbine outlet tip radius (m) r5t [0.04, 0.2℄

Compressor outlet blade height (m) b3 [0.01, 0.1℄

Turbine inlet blade height (m) b4 [0.01, 0.1℄

Compressor outlet angle (rad) β3 [−π
3 ,

π
3 ℄

Turbine inlet angle (rad) α4 [0,

π
3 ℄

Heat ex
hanger 1: x length (m) Lx1 [0.025, 0.7℄

Heat ex
hanger 2: x length (m) Lx2 [0.025, 0.7℄

Heat ex
hanger 1: y length (m) Ly1 [0.025, 0.7℄

Heat ex
hanger 2: y length (m) Ly2 [0.025, 0.7℄

Heat ex
hanger 1: z length (m) Lz1 [0.025, 0.7℄

Heat ex
hanger 2: z length (m) Lz2 [0.025, 0.7℄

Table 4.1: Design variables des
ription

domain.

Optimization algorithm

The optimization is performed using the BMOO algorithm (Feliot et al., 2017). This algorithm

implements a Bayesian approa
h to the multi-obje
tive optimization problem in the presen
e of

non-linear 
onstraints. The obje
tives and 
onstraints of the problem are modeled using Gaus-

sian pro
ess emulators (see, e.g., Williams and Rasmussen (2006)) and the algorithm performs

a sequential optimization pro
edure where the next sample is 
hosen as the maximizer of an ex-

tended version of the expe
ted improvement sampling 
riterion (see, e.g., Jones et al. (1998)). In

pra
ti
e, this requires to solve an auxiliary optimization problem at ea
h iteration. The BMOO

algorithm uses sequential Monte Carlo te
hniques to 
ondu
t this auxiliary optimization (see,

e.g., Del Moral et al. (2006)). A population of 
andidate designs distributed a

ording to a

density of interest in the design spa
e is sampled at ea
h iteration and the maximizer of the

extended expe
ted improvement is 
hosen out of this population.

We take advantage of this to handle non-hyper
ubi
 design domains by trun
ating the density
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of interest so as to propose only 
andidates that lie in the desired region. This is straightforward

be
ause sequential Monte Carlo methods do not require that the normalizing 
onstant of the

target density be known. For initialization, a pseudo maximin design of experiments on the

non-hyper
ubi
 design domain (see e.g. Au�ray et al. (2012)) 
an be a
hieved using reje
tion

sampling. A large population of parti
les is sampled uniformly on the 
ontaining hyper
ube

de�ned using the values of Table 4.1. The parti
les whi
h do not respe
t the 
onstraints d1

to d9 are then dis
arded and the population of surviving parti
les is pruned until the desired

population size is rea
hed. During the pruning step, parti
les that are too 
lose to other parti
les

are dis
arded, thus raising the maximin distan
e. Note that in pra
ti
e, this requires that the

volume of the design domain be not too small 
ompared with the volume of the 
ontaining

hyper
ube (the ratio of volumes was estimated 
lose to 6% for this parti
ular appli
ation).

Be
ause the 
omputation of the obje
tives and 
onstraints values for a given design requires

to solve the non-linear system formed by Eq.(4.1) to Eq.(4.13), it may happen that no solution


an be found, in whi
h 
ase it is not possible to provide values of the 
onstraints and obje
tives for

the design under study. Also, some designs 
an lead to supersoni
 solutions for whi
h the values

of temperatures and pressures predi
ted by the model 
an be ina

urate. When this happens, we

prefer to 
onsider su
h designs as simulation failures and not use the values returned by the model.

In the optimization pro
edure, this is taken into a

ount in order to prevent the optimizer to

explore regions where simulation failures are likely, by multiplying both the sampling 
riterion of

BMOO and the density in the sequential Monte Carlo pro
edure by a probability of observability.

This te
hnique has been proposed by Lee and 
o-authors Lee et al. (2011). A statisti
al model

is learned on the observed/non-observed data and provides a probability of satisfying the hidden


onstraints leading to simulation failures. In this work, a nearest-neighbours 
lassi�er using 5

neighbours and the L2 distan
e is used to that purpose.

Optimization results

The algorithm is run with a limiting budget of Nmax = 500 
alls to the simulation model, and

an initial design of Ninit = 90 samples. The set of optimal trade-o� solutions found by the

algorithm is shown on Figure 4.4.

Among the initial design of experiments, 44 experiments led to simulation failures and 92

additional failures o

urred during the optimization pro
ess. Further investigation revealed that

most of the simulation failures o

urred be
ause the �ow was supersoni
 in the 
ompressor, whi
h

happens with high probability when the bleed �owrate is high and the 
ompressor radii are low.

Regarding the 
onstraints satisfa
tion, no feasible observations were made in the initial sample

and the algorithm found one after 25 iterations.

The design parameters asso
iated to 7 trade-o� solutions 
hosen along the Pareto front are

given in Table 4.2. Several observations 
an be made on these results. First we note that the bleed

�owrate remains 
onstant along the front. This is be
ause c15 is a
tive (see Se
tion 4.2.3) and

T5 = Tmin for optimal designs, whi
h for
es the value of the bleed �owrate. The ram �owrate is

less 
onstrained and varies along the front. We note its strong in�uen
e on the entropy generation

rate (see Eq.(15)). The variation of the mass on the other hand mostly 
omes from the variations
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Ṡ

(

J

.

s

-

1

)

1

2

3

4

5

6

7

0
200 400

600 800

0.4

0.45

0.5

0.55

Figure 4.4: Pareto front obtained with the BMOO optimizer using 500 samples. Empty 
ir
les are

non-feasible solutions. Grey disks are feasible but dominated solutions. Bla
k and red disks are feasible

and non-dominated solutions.

of Lz1 and Lz2. As the heat ex
hangers height is raised, the entropy generation rate is lowered

but the mass augments. The values of Lx1, Ly1, Lx2, and Ly2 are set 
lose to their maximal

values, whi
h permits to a
hieve e�
ien
ies between 0.7 and 0.8. Note that the pressure losses

are assumed 
onstant in this study. Further work is required to better understand their impa
t

on the entropy generation rate when the heat ex
hangers dimensions be
ome small. Regarding

the turbine and 
ompressor dimensions, they are set as small as possible, whi
h keeps the mass

low and augments the �uid velo
ity, thus a
hieving good performan
es.

4.2.4 Con
lusions

In this se
tion, a one dimensional model of the environment 
ontrol system of a 
ommer
ial

air
raft is proposed. The model permits to emulate the behaviour of the system when the ge-

ometries of its 
omponents vary, for a s
enario where the air
raft is on ground, full of passengers,

equipments running, and with an outside temperature of 50◦C. The system is optimized using

the BMOO algorithm, whi
h implements a Bayesian approa
h to the multi-obje
tive optimiza-

tion problem in the presen
e of non-linear 
onstraints, and trade-o� design solutions in terms of

mass and entropy generation rate of the system are identi�ed.

As a parti
ularity, the optimization is performed on a non-hyper
ubi
 design domain and

involves hidden 
onstraints. This is a situation that is often en
ountered in engineering design

optimization. The BMOO algorithm is su

essfully adapted to this new setup, whi
h makes

it possible to 
ondu
t a multi-obje
tive optimization using a reasonable number of 
alls to the

numeri
al simulation model.
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1 2 3 4 5 6 7

ṁ 2.95 2.92 2.94 2.94 2.94 2.95 2.94

ṁr 7.74 6.86 5.63 5.06 4.64 4.40 4.27

r2p 0.07 0.05 0.05 0.03 0.03 0.07 0.04

r2t 0.10 0.08 0.08 0.08 0.06 0.09 0.10

r3 0.10 0.11 0.10 0.10 0.12 0.12 0.13

b3 0.01 0.01 0.05 0.05 0.04 0.02 0.03

β3 0.36 0.74 0.97 -0.16 0.61 0.94 0.48

r5p 0.03 0.03 0.03 0.03 0.03 0.03 0.03

r5t 0.05 0.05 0.05 0.05 0.05 0.05 0.05

r4 0.10 0.10 0.11 0.12 0.11 0.10 0.11

b4 0.02 0.02 0.04 0.02 0.04 0.03 0.03

α4 1.04 0.50 0.89 1.01 0.44 0.79 0.30

Lx1 0.67 0.65 0.68 0.68 0.63 0.69 0.70

Ly1 0.65 0.68 0.61 0.67 0.67 0.66 0.65

Lz1 0.03 0.04 0.07 0.12 0.17 0.20 0.32

Lx2 0.66 0.69 0.66 0.66 0.70 0.68 0.69

Ly2 0.69 0.53 0.68 0.65 0.65 0.68 0.65

Lz2 0.03 0.06 0.09 0.10 0.17 0.25 0.36

M 49.78 77.13 117.00 156.57 240.03 312.40 466.69

Ṡ 0.47 0.45 0.43 0.43 0.42 0.41 0.41

Table 4.2: Optimal design variables values found by the optimization algorithm for the points 1 to 7

(in red) of Figure 4.4. The values of the most in�uential variables are in bold.

The BMOO algorithm is primarily designed to address problems where the 
omputational

time asso
iated to the model evaluation is high, whi
h is not the 
ase here. In this study, most

of the 
omputational time required to 
ondu
t the optimization was taken by the optimizer and

more work is needed to make the implementation of the algorithm more e�
ient. Nevertheless,

the algorithm a
hieves very satisfa
tory results and is a 
ompetitive algorithm to address multi-

obje
tive optimization problems with several 
onstraints.
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4.2.5 Additional material

Stati
 temperatures Stati
 pressures Fluid velo
ities

T5 = Tt5 − C2
5x
2

Pt5
P5

=

(
1 + γ−1

2

(
C5x
γRT5

)2) γ
γ−1

C5x = ṁ

π(r25t−r25p)ρ

T4 = Tt4 − C2
4m
2

Pt4
P4

=

(
1 + γ−1

2

(
C4m
γRT4

)2) γ
γ−1

C4m = ṁ
2πr4b4ρ cosα4

T3 = Tt3 − C2
3m
2

Pt3
P3

=

(
1 + γ−1

2

(
C3m
γRT3

)2) γ
γ−1

C3m =

√(
r3ω−ṁ tan β3

2πr3b3ρ

)2
+
(

ṁ
2πr3b3ρ

)2

T2 = Tt2 − C2
2x
2

Pt2
P2

=

(
1 + γ−1

2

(
C2x
γRT2

)2) γ
γ−1

C2x = ṁ

π(r22t−r22p)ρ

Table 4.3: Stati
 properties equations

Des
ription Not. Value

Ambient temperature (K) Ta 323

Ambient pressure (Pa) Pa 101.3e3

Number of passengers Npax 120

Number of 
rewmembers Ncrew 5

Thermal power passengers (W) Ppax 70

Thermal power 
rew (W) Pcrew 100

Thermal power equipments (W) Peq 4800

Outside �ow dissipation (W) Pout 3000

Bleed temperature (K) T1 473

Bleed pressure (Pa) P1 260e3

Pressure losses (Pa) ∆PHX 40e3

Valve opening θ 0

Ram stream 
ross surfa
e (m

2

) Ar 0.20

Fan e�
ien
y ηF 0.95

Air spe
i�
 heat (J.kg

-1

.K

-1

) cp 1004

Air isentropi
 
oe�
ient γ 1.4

Perfe
t gaz 
onstant (J.kg

-1

.K

-1

) R 287

Table 4.4: Simulation parameters values used in the experiments of Se
tion 4.2.3
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Des
ription Not. Value

Vis
osity bleed (kg.m

-1

.s

-1

) µ 2.28e-5

Vis
osity ram (kg.m

-1

.s

-1

) µr 2.28e-5

H.T. ratio bleed stream (m

-1

) β 2231

H.T. ratio ram stream (m

-1

) βr 1115

Plate spa
ing bleed stream (m) b 5.21e-3

Plate spa
ing ram stream (m) br 12.3e-3

Prandtl number bleed stream Pr 0.7

Prandtl number ram stream Prr 0.7

Hydrauli
 diameter bleed (m) Dh 1.54e-3

Hydrauli
 diameter ram (m) Dhr 3.41e-3

Conve
tion length bleed (m) λ 0.035

Conve
tion length ram (m) λr 0.035

Representative density (kg.m

-3

) ρHX 1415

Fin thi
kness (m) δ 0.102e-3

Wall thi
kness (m) tw 6e-4

Thermal 
ondu
tivity (W.m

-1

.K

-1

) kw 237

Table 4.5: Heat ex
hangers parameters values used in the experiments of Se
tion 4.2.3

Des
ription Not. Value

Compressor adiabati
 e�
ien
y ηc 0.8

Turbine adiabati
 e�
ien
y ηt 0.92

Compressor aspe
t ratio hc 0.7

Turbine aspe
t ratio ht 0.5

Compressor blades thi
kness (m) ec 0.01

Turbine blades thi
kness (m) et 0.01

Compressor number of blades Zc 21

Turbine number of blades Zt 21

Table 4.6: Compressor and turbine parameters values used in the experiments of Se
tion 4.2.3

158



4.3 Design of an ele
tri
 vehi
le powertrain

Figure 4.5: Ar
hite
ture of the Twizzy powertrain.

4.3.1 Introdu
tion

This study deals with the design of the powertrain of an ele
tri
 vehi
le. It was led within the

framework of the Te
hnologi
al Resear
h Institute SystemX in 
ollaboration with Renault.

The vehi
le that is 
onsidered is a Twizzy, and we pla
e ourselves in the situation of Renault

in the early stages of the development of the Twizzy 2. The ar
hite
ture and the te
hnologi
al


hoi
es are imposed�they are the same as for the �rst version of the vehi
le (see Figure 4.5)�

and the obje
tive is to assess the possibility of improving 
ertain 
hara
teristi
s of the original

vehi
le, su
h as its autonomy for example, early in the design pro
ess, i.e. using simple numeri
al

models.

The stru
ture of the se
tion is as follows. First, we present the spe
i�
ations of the study in

Se
tion 4.3.2. Then, in Se
tion 4.3.3, we detail the numeri
al model that was developed to meet

the requirements of the study. The formulation of an optimization problem and the optimization

results are presented in Se
tion 4.3.4. Finally, 
on
lusions are drawn in Se
tion 4.3.5.

4.3.2 Spe
i�
ations

Customer use 
y
les

In this study, we 
onsider data that is representative of a 
ustomer's typi
al use of the vehi
le

in urban and in jammed tra�
 situations. The data takes the form of re
orded speed over time

and is shown in Figure 4.6. For the 
omfort of the driver, it is required that the vehi
le be able

to mimi
 these driving 
y
les.

Let t = (t1, . . . , tn) and v = (v1, ..., vn) denote respe
tively the measurements times and

measured speeds for one of the two driving 
y
les (urban or tra�
 jam). The a

eleration of the

vehi
le over time 
an be 
omputed using a �rst order �nite di�eren
es approximation:

ai =
vi+1 − vi
ti+1 − ti

, i ∈ J1, n− 1K . (4.16)
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Using Newton's se
ond law, the for
e Fi that is ne
essary to produ
e the a

eleration ai,

i ∈ J1, n− 1K, is then

Fi =Mveh (K cos(asin(α)) + gα) +Mvehai +
1

2
ρCxv

2
i , (4.17)

where Mveh is the mass of the vehi
le, K is a 
oe�
ient of fri
tion with the ground, α is the

slope of the road, g is the gravity a

eleration, ρ is the air density and Cx is the drag 
oe�
ient

of the vehi
le (see Table 4.11).

Denote I = {i ∈ J1, n − 1K ; ai ≥ 0} the set of the indi
es that 
orrespond to a positive

a

eleration. For every i ∈ I, the for
e Fi and the vehi
le speed vi 
an be linked respe
tively to

the torque τi produ
ed by the ele
tri
 ma
hine and to its rotation speed ωi:





τi =
RwFi

rηred
,

ωi =
30

π

rvi
Rw

,

(4.18)

where Rw is the vehi
le's wheels radius, ηred is the e�
ien
y of the redu
er and r is its redu
tion

ratio. Using this transformation, the raw data (t, v) 
an be represented in a diagram (ω, τ), as

illustrated in Figure 4.6.

The spe
i�
ations 
an thus be formulated as |I| equality 
onstraints of the form

Γ(ωi, ξi) = τi , i ∈ I , (4.19)

where ξi, i ∈ I, denotes the set of parameters other than the rotation speed that in�uen
e the

torque Γ produ
ed by the ele
tri
 ma
hine. These will be detailed in Se
tion 4.3.3.

For every i ∈ I, denote Pi the power asso
iated to the data point (ωi, τi):

Pi =
2π

60
ωiτi , i ∈ I . (4.20)

Further denote 



ωmax = maxi∈I ωi ,

τmax = maxi∈I τi ,

Pmax = maxi∈I Pi ,
(4.21)

and introdu
e

ωbase =
30

π

Pmax

τmax
. (4.22)

To redu
e the number of 
onstraints (4.19), in this work, we 
onsider, for ea
h 
y
le, only the

four representative points de�ned in Table 4.7. The eight points thus de�ned are represented in

Figure 4.6. In the following, we shall denote respe
tively Λurban and Λjam the sets made of these

points for both driving 
y
les.
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ω τ

ωbase
2

τmax
4

ωbase+ωmax

2
15Pmax

π(ωbase+ωmax)

ωbase
2

3τmax
4

ωbase+ωmax

2
45Pmax

π(ωbase+ωmax)

Table 4.7: Representative points in the diagram (ω, τ).

Additional requirements

In addition to the driving 
y
les, the spe
i�
ations impose the following requirements:

� The maximum speed on �at ground must be greater than 85 km/h.

� The maximum speed on a 5% slope must be greater than 65 km/h.

� The hill start a

eleration for a 20% slope must be greater than 1.5 m/s

2

.

� The vehi
le must be able to go from 0 to 45 km/h in less than 3 s.

� The autonomy of the vehi
le should be greater than 100 km.

The �rst four requirements 
an be formulated as inequality 
onstraints on the torque of the

ele
tri
 ma
hine using (4.17) and (4.18). As regards the 
onstraint on the autonomy, it 
an be

written as:

3.6
κ

Fmax
≥ 100 , (4.23)

where Fmax = maxi∈I Fi and κ is the 
apa
ity of the battery (see Se
tion 4.3.3).

To summarize, the spe
i�
ations for this study take the form of eight equality 
onstraints of

the form (4.19) with (ω, τ) ∈ Λurban and (ω, τ) ∈ Λjam plus four inequality 
onstraints on the

torque of the ele
tri
 ma
hine and one inequality 
onstraint on the autonomy of the vehi
le given

by (4.23).

4.3.3 Numeri
al model

Battery

The battery is a lithium-ion battery. It is 
hara
terised by its number ns of 
ells in series and

its number np of 
ells in parallel. From these, we 
ompute the following quantities:

Number of 
ells : nc = nsnp,

Va
uum voltage (V ) : E = E0ns,

Capa
ity (Wh) : κ = nc
κ0E0
1000 ,

Resistan
e (Ω) : R = R0
ns

np
,
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where R0 is the internal resistan
e of a 
ell, E0 is the va
uum voltage of a 
ell and κ0 is the


apa
ity of a 
ell (see Table 4.9). For this study, we take ns = 22 and np = 2. Note however

that these 
ould be optimized as well.

Inverter and redu
er

In our model, the inverter is 
hara
terised by its maximum e�e
tive 
urrent Ieffmax, its voltage

fa
tor per phase k and its e�
ien
y ηinv. The redu
er is 
hara
terised by its redu
tion ratio r

and its e�
ien
y ηred. Both r and Ieffmax are 
onsidered as design variables. The e�
ien
ies

of the inverter and of the redu
er; and the voltage fa
tor per phase of the inverter, are �xed

parameters (see Tables 4.10 and 4.12).

Under this model, the maximum e�e
tive voltage U eff
max that 
an be applied to the ma
hine

and the maximum available power Peff
max are given by:

{
U eff
max = kE ,

Peff
max = 3IeffmaxU

eff
max

1000 .
(4.24)

Ele
tri
 ma
hine

The magneti
 torque produ
ed by the ele
tri
 ma
hine is a fun
tion of its geometry, its rotation

speed, and of the intensities of the 
urrent passing through the 
oils. To parametrize its geometry,

we use the following seven design variables:

L : Length of the ma
hine.

rrot : Rotor inner radius.

ǫrot : Rotor thi
kness.

ǫgap : Air gap.

ǫmag : Magnet thi
kness.

αmag : Magnet angular spread.

αnotch : Opening ratio between not
h and dent gap.

The geometry of the ma
hine thus parametrized is illustrated in Figure 4.7. To help the

understanding of the parametrization, the following radii are shown in the �gure:





R1 = rrot ,

R2 = R1 + ǫrot ,

R3 = R2 + ǫmag ,

R4 = R3 + ǫgap ,

R5 = R4 + ǫmouth ,

R6 =

√
Snotch+R2

5 sin
(

βnotch
2

)

(
1+π

2
sin

(
βnotch

2

))
sin

(
βnotch

2

) ,

R7 = R6

(
1 + sin

(
βnotch

2

))
+ ǫrot ,

(4.25)

where ǫmouth is the mouth depth and βnotch and Snotch are respe
tively the angular spread and

the total se
tion of a not
h.
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These are 
omputed using





βnotch = αnotch
2π

2NpNn
,

Snotch = 1
τcopper

(
Ieffmax
Jmax

)
Nw ,

(4.26)

where Np is the number of pairs of poles, Nn is the number of not
hes per pole, τcopper is the

not
h 
opper ratio, Jmax is the maximum 
urrent density and Nw is the number of ele
tri
 wires

per not
h (see Table 4.13).

To 
ompute the magneti
 torque Γ produ
ed by the ele
tri
 ma
hine and the iron losses Lφ,

we use a generalized Bertotti model (Bertotti, 1985):





Γ(ω, id, iq) = Np [φd(id, iq)iq − φq(id, iq)id]− Lφ(ω, id, iq) ,

Lφ(ω, id, iq) =
2πω
60

[
αhys(id, iq) + αexc(id, iq)

√
2πω
60 + αfou(id, iq)

2πω
60

]
,

(4.27)

where (d, q) is a referential atta
hed to the rotor (Park transform; see, e.g., Cardoso et al. (1999)),

φd and φq are the 
omponents of the magneti
 �ux in the referential (d, q), id and iq are the


omponents of the 
urrent intensity in the referential (d, q), and αhys, αexc and αfou are loss


oe�
ients asso
iated respe
tively to the loss by hysteresis, ex
ess and Fou
ault 
urrents.

Note the dependen
e of Γ and Lφ to the 
urrent intensities id and iq and to the rotation

speed ω of the ma
hine. For better performan
es, the 
urrents must be 
hosen as a fun
tion

of ω (re
all that the spe
i�
ations impose 
onstraints on the torque for twelve di�erent values

of ω) to minimize the losses and maximize the torque, whi
h is an optimal 
ontrol problem. For

this study, the 
hoi
e was made to 
onsider this auxiliary optimization problem as part of the

main optimization problem. In other words, the 
urrents id and iq for the twelve values of ω

that are 
onsidered (see Se
tion 4.3.2) will be design variables, whi
h augments the dimension of

the problem of 24. This is done to lower the 
omputational 
ost of the simulation and to avoid

having to use an auxiliary optimization pro
edure, whi
h may result in simulation failures in


ases where it does not 
onverge.

To 
ompute the magneti
 �ux φd and φq and the loss 
oe�
ients αhys, αexc and αfou, it is

ne
essary to solve Maxwell's equations (see Figure 4.8). To this end, we use a �nite element

method implemented in the FEMM open sour
e solver (Baltzis, 2008). This step is responsible

for most of the 
omputing time of the simulation 
hain. Besides, for ea
h tested geometry, it has

to be done twelve times for the di�erent values of ω, id and iq. For better performan
es, these


omputations are performed in parallel in our implementation.

In addition to the 
onstraints pla
ed on the torque for the di�erents values of ω, id and iq,


onstraints on the voltages and intensities are required to ensure the feasibility of the system:





√
u2
d
+u2

q

3 +Rext

√
u2
d
+u2

q

3 ≤ U eff
max ,√

i2
d
+i2q
3 ≤ Ieffmax ,

(4.28)
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These are obtained using a �nite element method to solve Maxwell's equations.

where Rext is the external resistan
e of the ma
hine:

Rext = 3k2
R

ηinv
, (4.29)

and ud and uq are voltages asso
iated to the intensities id and iq :

{
ud = Rid −Npωφq(id, iq) ,

uq = Riq +Npωφd(id, iq) .

Masses and 
osts

To 
ompute the massMveh of the vehi
le and the 
ost Cpt of the powertrain, it is ne
essary to


ompute the masses and 
osts of their 
omponents:

{
Mveh = Mwpt +Mbat +Minv +Mred +Mem ,

Cpt = Cbat + Cinv + Cred + Cem ,
(4.30)

whereMwpt,Mbat,Minv,Mred andMem are respe
tively the mass of the vehi
le without the

powertrain, the mass of the battery, the mass of the inverter, the mass of the redu
er and the

mass of the ele
tri
 ma
hine, and Cbat, Cinv, Cred and Cem are respe
tively the 
ost of the battery,

the 
ost of the inverter, the 
ost of the redu
er and the 
ost of the ele
tri
 ma
hine.

166



For the battery, the inverter and the redu
er, we use simple linear models:

{
Mbat = λbat,massM0nc ,

Cbat = λbat,cost,1κ+ λbat,cost,2nc ,
(4.31)

for the battery, {
Minv = λinv,mass,1Peff

max + λinv,mass,2 ,

Cinv = λinv,cost,1Peff
max + λinv,cost,2 ,

(4.32)

for the inverter and {
Mred = λred,mass,1Peff

max + λred,mass,2 ,

Cred = λred,cost,1Peff
max + λred,cost,2 ,

(4.33)

for the redu
er, where λbat,mass, λinv,mass,1, λinv,mass,2, λred,mass,1 and λred,mass,2 are mass 
oe�-


ients, λbat,cost,1, λbat,cost,2, λinv,cost,1, λinv,cost,2, λred,cost,1 and λred,cost,2 are 
ost 
oe�
ients and

M0 is the mass of a 
ell (see Tables 4.9, 4.10 and 4.12).

For the ele
tri
 ma
hine, it is ne
essary to 
ompute the mass Mcopper of 
opper, the mass

Msteel of steel and the massMmagnet of magnet the ma
hine is 
omposed of:





Msteel =
(
π
(
R2

2 −R2
1

)
+ π

(
R2

7 −R2
4

)
− 2SnotchNpNn

)
Lρsteel · 10−9 ,

Mcopper = 2τcopperSnotchNpNn

(
L+ π

2Np
(R5 +R6)

)
ρcopper · 10−9 ,

Mmagnet = π
(
R2

3 −R2
2

)
αmagLρmagnet · 10−9 ,

(4.34)

where ρmagnet, ρcopper and ρsteel are respe
tively the magnet, 
opper and steel densities (see

Table 4.14). The mass and 
ost of the ele
tri
 ma
hine are then given by

{
Mem = Mcopper +Msteel +Mmagnet ,

Cem = McopperCcopper +MsteelCsteel +MmagnetCmagnet ,
(4.35)

where Ccopper, Csteel and Cmagnet are respe
tively the magnet, 
opper and steel 
osts per kilo-

gram (see Table 4.14).

4.3.4 Optimization of the system

Formulation of an optimization problem

The design variables are the seven ele
tri
 ma
hine parameters, the inverter maximum e�e
tive


urrent Ieffmax, the redu
er redu
tion ratio r and the twelve pairs of intensities (id,(ω,τ), iq,(ω,τ))

asso
iated to the di�erent pairs (ω, τ) in Λurban and Λjam. See Table 4.8 for a des
ription of the

design variables ranges of variation.

The problem features eight equality 
onstraints 
oming from the 
ustomer use 
y
les (four


onstraints by 
y
le, see Se
tion 4.3.2), twenty four inequality 
onstraints on the voltages and in-

tensities given by (4.28), and �ve inequality 
onstraints 
oming from the additional requirements

(four on the torque plus one on the autonomy of the vehi
le given by (4.23), see Se
tion 4.3.2).

To handle the equality 
onstraints, we formulate them as eight pairs of inequality 
onstraints

167



Des
ription Nb Not. Range

Length of the ma
hine (mm) ×1 L [50, 250]

Rotor inner radius (mm) ×1 rrot [30, 125]

Rotor thi
kness (mm) ×1 ǫrot [10, 30]

Air gap (mm) ×1 ǫgap [0.3, 2]

Magnet thi
kness (mm) ×1 ǫmag [2, 10]

Magnet angular spread ×1 αmag [0.75, 0.9]

Opening ratio between not
h and dent gap ×1 αnotch [0.3, 0.9]

Maximum e�e
tive 
urrent (A) ×1 Ieffmax [40, 160]

Redu
tion ratio ×1 r [5, 20]

Current intensity on axis d (A) ×12 id [−160
√
3, 0]

Current intensity on axis q (A) ×12 iq [0, 160
√
3]

Table 4.8: Design variables des
ription.

of the form: {
Γ
(
ω, id,(ω,τ), iq,(ω,τ)

)
≤ τ + ε ,

Γ
(
ω, id,(ω,τ), iq,(ω,τ)

)
≥ τ − ε ,

(4.36)

where Γ is the torque as given by (4.27), ε is a relaxation parameter and (ω, τ) ∈ Λurban ∪Λjam.

In our experiments, we take ε = 1 Nm.

In the settings that we 
onsider, the pairs (id,(ω,τ), iq,(ω,τ)), (ω, τ) ∈ Λurban ∪ Λjam and the

inverter maximum e�e
tive 
urrent Ieffmax are design variables. Therefore, the 
onstraints (4.28)

on the intensities 
an be 
onsidered as 
heap to evaluate. The problem 
an thus be formulated

using q = 33 expensive-to-evaluate 
onstraints and twelve 
heap-to-evaluate 
onstraints.

We 
onsider an optimization problem where the obje
tives are to minimize the 
ost Cpt of
the powertrain, whi
h is given by (4.30), and the average ele
tromagneti
 losses Lavg

φ . To get

a meaningful expression of the average ele
tromagneti
 losses Lavg
φ , the losses asso
iated to the

two driving 
y
les are agregated as follows:

Lavg
φ = 0.6Lavg

φ,urban + 0.4Lavg
φ,jam , (4.37)

where Lavg
φ,urban and Lavg

φ,jam are the average losses asso
iated respe
tively to the urban 
y
le and

to the tra�
 jam 
y
le. To 
ompute these, we attribute to ea
h pair (ω, τ) ∈ Λurban ∪ Λjam the
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following 
oe�
ients:





E(ωbase
2

, τmax
4 ) =

∑

i∈I

Pi
ti+1 − ti

1ωi≤ωbase,τi≤0.5τmax ,

E(
ωbase+ωmax

2
, 15Pmax
π(ωbase+ωmax)

) =
∑

i∈I

Pi
ti+1 − ti

1ωi>ωbase,Pi≤0.5Pmax ,

E(ωbase
2

, 3τmax
4 ) =

∑

i∈I

Pi
ti+1 − ti

1ωi≤ωbase,τi>0.5τmax ,

E(
ωbase+ωmax

2
, 45Pmax
π(ωbase+ωmax)

) =
∑

i∈I

Pi
ti+1 − ti

1ωi>ωbase,Pi>0.5Pmax .

(4.38)

The average ele
tromagneti
 losses asso
iated to both driving 
y
les are then 
omputed as





Lavg
φ,urban =

∑

(ω,τ)∈Λurban

E(ω,τ)

[
R
(
i2d,(ω,τ) + i2q,(ω,τ)

)
+ Lφ(ω, id,(ω,τ), iq,(ω,τ))

]
,

Lavg
φ,jam =

∑

(ω,τ)∈Λjam

E(ω,τ)

[
R
(
i2d,(ω,τ) + i2q,(ω,τ)

)
+ Lφ(ω, id,(ω,τ), iq,(ω,τ))

]
,

(4.39)

where the overline symbol indi
ates that the 
oe�
ients E(ω,τ), (ω, τ) ∈ Λurban or Λjam, are

normalized to sum to one.

To summarize, the optimization problem that is 
onsidered in this study has d = 33 design

variables, p = 2 obje
tives and q = 33 
onstraints. The design spa
e is de�ned using bound


onstraints on the design variables (see Table 4.8) and twelve 
onstraints on the intensities of

the 
urrent passing through the 
oils. It does not feature hidden 
onstraints.

Optimization results

In Figures 4.9 and 4.10 we show the results obtained by BMOO on this problem. The algorithm is

initialized using Ninit = 100 experiments and run with a limiting number of fun
tions evaluations

Nmax = 500. See Se
tion 4.1 for more details about the settings of the algorithm.

In the �gures, we show the progress of the algorithm every �fty iterations. The two phases

of the optimization pro
ess 
learly appear in the �gures. First, the algorithm makes progress on

the resolution of the 
onstraints. This phase 
orresponds to sub�gures (a) to (d) in Figure 4.9.

It 
an be seen that the algorithm progressively fo
uses the sear
h in the regions of low 
onstraint

violation until �nding a feasible solutions, whi
h happens at N = 202. Among the 298 subsequent

iterations, only 42 resulted in non-feasible solutions, whi
h indi
ates that the algorithm 
orre
tly

identi�ed the feasible region. Then, the algorithm makes progress on the minimization of the

obje
tives. It 
an be seen in the �gures that it explores simultaneously the di�erent regions of

the Pareto front.

Observe in parti
ular the di�eren
e of s
ale between sub�gures (a) of Figure 4.9 and (
) of

Figure 4.10. This is typi
ally a situation where the maximum of the obje
tives over the entire

X domain are large 
ompared to their maximum value on the Pareto front. In this study, we

use the adaptive pro
edure des
ribed in Se
tion 3.6.2 to keep yupp at a �reasonable� distan
e

of the set of non-dominated observations during the optimization pro
ess, as re
ommended in
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Se
tion 3.4.

4.3.5 Con
lusions

In this se
tion, BMOO is applied to the design of an ele
tri
 vehi
le powertrain. The problem

takes the form of a bi-obje
tive optimization problem de�ned on a non-hyper
ubi
 design spa
e

and subje
t to both equality and inequality 
onstraints. To handle equality 
onstraints, a re-

laxation method is used. This makes it possible to transform equality 
onstraints as pairs of

inequality 
onstraints.

For better performan
es of the system, it would be interesting to 
onsider also the sizing of

the battery. However, it is de�ned using dis
rete variables whi
h BMOO 
annot handle in its

present form. Extending BMOO to this new setup 
ould be an interesting dire
tion for future

resear
h work.

A
knowledgements: The authors would like to thank Amin El-Bakkali (Renault), who

developped the simulation model and formulated the spe
i�
ations, Karim Cammoun (IRT Sys-

temX), who made it available to the institute, and Yves Tourbier (Renault).
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Figure 4.9: Obje
tives values of the observations made by BMOO at di�erent stages of the optimiza-

tion pro
ess. Cir
les indi
ate non-feasible observations and disks indi
ate feasible ones. Dominated

observations are shown in blue and non-dominated ones in red.
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Figure 4.10: Obje
tives values of the observations made by BMOO at di�erent stages of the opti-
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observations are shown in blue and non-dominated ones in red.
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4.3.6 Additional material

Des
ription Not. Value

Va
uum voltage of a 
ell (V ) E0 3.75

Capa
ity of a 
ell (Ah) κ0 43

Mass of a 
ell (kg) M0 1.05

Internal resistan
e of a 
ell (Ω) R0 0.001

Mass 
oe�
ient λbat,mass 1.65

Cost 
oe�
ient 1 λbat,cost,1 160

Cost 
oe�
ient 2 λbat,cost,2 6.95

Table 4.9: Battery parameters.

Des
ription Not. Value

Voltage fa
tor per phase k 1.3505

E�
ien
y ηinv 0.9

Mass 
oe�
ient 1 λinv,mass,1 0.06

Mass 
oe�
ient 2 λinv,mass,2 1.1

Cost 
oe�
ient 1 λinv,cost,1 1.4

Cost 
oe�
ient 2 λinv,cost,2 150

Table 4.10: Inverter parameters.

Des
ription Not. Value

Drag 
oe�
ient (m2
) Cx 0.64

Fri
tion 
oe�
ient (N.kg−1
) K 0.07

Wheel radius (m) Rw 0.2811

Table 4.11: Vehi
le parameters.
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Des
ription Not. Value

E�
ien
y ηred 0.95

Mass 
oe�
ient 1 λred,mass,1 0.15

Mass 
oe�
ient 2 λred,mass,2 10

Cost 
oe�
ient 1 λred,cost,1 1.75

Cost 
oe�
ient 2 λred,cost,2 130

Table 4.12: Redu
er parameters.

Des
ription Not. Value

Number of pole pairs Np 2

Number of not
hes per pole Nn 4

Number of wires per not
h Nw 12

Maximum 
urrent density (A.mm−2
) Jmax 10

Not
h 
opper ratio rcopper 0.5

Mouth depth (mm) ǫmouth 1.2

Opening ratio between mouth and not
h rmouth 0.25

Maximum rotation speed (rpm) Ωmax 7000

Steel plate thi
kness (mm) eplate 0.35

Thi
kness ratio between plate and insulator rplate 0.97

Se
tion ratio between 
opper and not
h τcopper 0.5

Loss 
oe�
ient αhys 2

Loss 
oe�
ient khys 0.003

Loss 
oe�
ient kexc 0.004

Table 4.13: Ma
hine parameters.
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Des
ription Not. Value

Air density (kg.m−3
) ρ 1.2

Gravity a

eleration (m.s−2
) g 9.81

Ele
tri
al va
uum permeability µ0 1.257 10−6

Copper 
ost (euros.kg−1
) Ccopper 6.7

Steel ele
tri
al 
ondu
tivity (MS.m−1
) σsteel 0.5

Steel density (kg.m−3
) ρsteel 0.5

Steel 
ontrol parameter Jsteel 2

Steel relative permeability µr,steel 7000

Steel H de�nition Hmax,steel 8000

Steel 
ost (euros.kg−1
) Csteel 1.2

Magnet ele
tri
al 
ondu
tivity (MS.m−1
) σmagnet 0.667

Magnet density (kg.m−3
) ρmagnet 3500

Magnet relative permeability µr,magnet 1.05

Magnet value of B for H=0 Br,magnet 1.27

Magnet 
ost (euros.kg−1
) Cmagnet 125

Coil ele
tri
al 
ondu
tivity (MS.m−1
) σcoil 58

Coil density (kg.m−3
) ρcoil 8920

Table 4.14: Mis
ellaneous parameters.
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4.4 Tuning of a Line of Sight 
ontroller

Figure 4.11: Example of an appli
ation where an inertially stabilized platform is required. The optroni


devi
e is a tra
king 
amera mounted on an heli
opter. The line of sight of the 
amera must be isolated

from the perturbations indu
ed by the movements and vibrations of the heli
opter and aligned with the

target line of sight. On the illustration, ε is the angular error between the target line of sight and the

a
tual line of sight. The obje
tive is to 
ontrol ε to obtain a good image quality. Illustration reprodu
ed

from Frasnedo (2016).

4.4.1 Introdu
tion

This study is part of a joint work between CentraleSupéle
 and Safran Ele
troni
s & Defense on

the development and tuning of the 
ontroller of an inertially stabilized platform (ISP). It is the

fruit of a 
ollaboration with Sophie Frasnedo and is based on her thesis work (Frasnedo et al.,

2015b,a; Frasnedo, 2016).

The purpose of an ISP is to isolate an optroni
 devi
e from the movements of its support, in

order to obtain a good image a
quisition quality. An example of a situation where su
h a system

is required is illustrated in Figure 4.11. In this se
tion, we limit ourselves to presenting results

obtained using the BMOO algorithm to optimize the parameters of the 
ontroller of the system.

For more details on the system itself, the interested reader is referred to the the PhD thesis of

Frasnedo (2016).

The se
tion is organized as follows. First we present in Se
tion 4.4.2 the ar
hite
ture of a

typi
al ISP and introdu
e its main 
omponents. The model that is used to emulate the system

is also brie�y dis
ussed. Then, we dis
uss in Se
tion 4.4.3 the 
hoi
e of image quality 
riteria

to be used as obje
tives of the optimization problem. The full formulation of the optimization

problem and the optimization results are presented in Se
tion 4.4.4 and 
on
lusions are drawn

in Se
tion 4.4.5.

4.4.2 Stabilization ar
hite
ture model

The s
hemati
 ar
hite
ture of an inertially stabilized platform is represented in Figure 4.12. Two

pivot 
onne
tions in pit
h and yaw are used to isolate the platform from the movement of the

support. The optroni
 devi
e and a gyrometer are �xed on the yaw gimbal. The gyrometer
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Figure 4.12: Ar
hite
ture of the inertially stabilized platform. Illustration reprodu
ed from Frasnedo

(2016).
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Figure 4.13: Blo
k diagram of the inertially stabilized platform. Illustration reprodu
ed from Frasnedo

(2016).

measures the rotational speed of the gimbal and provides feedba
k to a 
ontroller whi
h is not

represented in the illustration. A
tuators pla
ed at the pivot 
onne
tions and monitored by the


ontroller are then used to 
ompensate the movements of the support and stabilize the platform.

For the sake of simpli
ity, in the following, the two rotations are assumed independent and only

the pit
h is 
onsidered (the yaw gimbal is �xed).

The system is emulated using a Simulink model based on the blo
k diagram of Figure 4.13.

The a
tuator is a DC motor with a torque 
onstant Kτ = 0.9N.m/A and a transfer fun
tion

Hm(s) = Kτ ·
A(s)

A(s) +B(s)
, (4.40)

where s is the Lapla
e variable and

{
A(s) = 0.012 · (1 + 0.088s) · (1 + 0.001s) · (1 + 0.126s),

B(s) = (1 + 0.095s) · (1 + 0.031s) · 0.088s · 0.001s.
(4.41)
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The load that is put in motion by the a
tuator is the pit
h gimbal, whi
h supports the yaw

gimbal, the optroni
 devi
e and the gyrometer. If the me
hani
al resonant modes are negle
ted,

it 
an be modelled as a pure inertia.

Hmec(s) =
1

0.4s
. (4.42)

The movement of the support is represented as a torque disturban
e τd (low frequen
y per-

turbation) and its vibrations are represented as a rotation speed disturban
e ωd (high frequen
y

perturbation).

A gyrometer pla
ed in the same referential as the optroni
 devi
e is used to evaluate its

rotation speed with respe
t to an inertial referential and provide feedba
k to the 
ontroller. The

transfer fun
tion Hgyro of the gyrometer is taken as the produ
t of two �rst order �lters of

respe
tive 
ut-o� frequen
ies fgyro and ffilter.

Hgyro(s) =
1

1 + s
2πfgyro

· 1

1 + s
2πffilter

(4.43)

It is assumed that the measures of the gyrometer are subje
t to a white noise whi
h is

Gaussian with a varian
e b̂gyro whi
h has been estimated empiri
ally beforehand (see Se
tion 2.4

of Frasnedo (2016)). The drift dgyro of the gyrometer is given by the 
onstru
tor and is taken

into a

ount in this study.

Finally, the 
ontroller 
ontrols the torque delivered by the a
tuator. It is 
omposed of four

terms. First, a double integrator is used to obtain a zero steady state position error for a

torque disturban
e step (�nal value theorem). To 
ompensate the negative e�e
t of the double

integrator on the system stability, a se
ond order numerator parametrized by ωi and ξi is used.

A phase advan
e fun
tion parametrized by a and T is also introdu
ed to further reinfor
e the

stability margins of the system. Finally, a gain K is used to adjust the bandwidth and a se
ond

order denominator parametrized by ωro and ξro permits to attenuate high frequen
ies. This last

term is introdu
ed to lower the e�e
t of the noise and a

ount for potential dynami
s otherwise

negle
ted.

Kp(s) = K · 1 + aTs

1 + Ts
·
1 + 2ξis

ωi
+ s2

ω2
i

s2
· 1

1 + 2ξros
ωro

+ s2

ω2
ro

(4.44)

In the following, we denote η = (K,ωi, ξi, a, T, ωro, ξro) the ve
tor of the parameters of the


ontroller and the goal of the study is to tune η.

4.4.3 Image quality 
riteria

The in�uen
e of an error in position of the line of sight over time on the image quality is twofold.

First, the optroni
 devi
e has a 
ertain a
quisition time and if the line of sight moves during

this time, it introdu
es a blur in the image be
ause the pixels re
eive overlapping information.

To quantify this e�e
t, in this work, the motion transfer fun
tion (MTF) is used. This fun
tion

provides a measure of the degradation of the 
ontrast in the image as a fun
tion of the spatial

178



Figure 4.14: Attenuation of 
onstrast 
aused by the movement of the line of sight during its a
quisition

time. The motion transfer fun
tion measures the attenuation in intensity of the 
ontrast as a fun
tion of

the spatial frequen
y. In general, high frequen
ies are more attenuated than low frequen
ies, i.e. small

details of the image are lost in the blur of the image. Illustration reprodu
ed from Frasnedo (2016).

frequen
y of the image details and of the movements of the line of sight. A detailed des
ription of

the origin of this fun
tion and of its 
omputation is out of the s
ope of this report and the reader

is referred to Se
tion 3.3 of Frasnedo (2016) for more details on the MTF. Here, we limit ourselves

to illustrating how this fun
tion 
an be used for evaluating the attenuation of the 
ontrast in

Figure 4.14.

The se
ond 
riterion that we 
onsider is related to the integration time τeye of the human

eye. When the magnitude of the movement of the line of sight is too important during this time,

this introdu
es a frame-to-frame shift that is per
eptible to the human eye and 
onstitutes a

nuisan
e. To measure this e�e
t, we 
onsider the amplitude di of the movement of the line of

sight over intervals of time [ti−τ, ti], with τ < τeye, i ∈ J1, nK and ti ∈ [τ, T ]. Then, to summarize

the information measured at all ti and to be 
onservative, we 
onsider the maximum movement

magnitude dmax = max1≤i≤n di as unique 
riterion (see Figure 4.15).

These two 
riteria may seem redundant sin
e they are both related to the movement of the

line of sight during a time interval. However, in general, the eye integration time is higher than

the optroni
 devi
e a
quisition time (0.1s ≤ τeye ≤ 0.2s for most people whereas the a
quisition

time of the optroni
 devi
e is of the order of the millise
ond) and the two 
riteria are de�ned over

di�erent di�erent time s
ales. Besides, the MTF depends on the 
hara
teristi
s of the optroni


devi
e and on the spatial frequen
y whereas the dmax 
riterion is a general image quality metri


that is solely related to the operator.
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time interval [ti − τ, ti] is measured by di. When di is large, it 
auses a frame-to-frame shift during the

eye integration time. Illustration reprodu
ed from Frasnedo (2016).

4.4.4 Tuning of the 
ontroller

Besides maximizing the motion transfer fun
tion and minimizing the dmax 
riterion to obtain

a good image quality, the tuning of the 
ontroller should also take into a

ount the power


onsumption of the system. Indeed, the ISP is an embedded system powered by a battery

and it has a limited autonomy. Therefore, in this work, the minimization of the mean power


onsumption Pmoy of the system is also 
onsidered in the tuning of the 
ontroller.

Furthermore, the system should respe
t spe
i�
ations. The 
urrent intensity I applied to the

motor 
oils should not ex
eed a threshold value to avoid damages, the eigenvalues of the 
losed

loop system must be lower than a �xed threshold, and the damping and the modulus margin of

the system must be greater than �xed thresholds. Additionally, 
onstraints are pla
ed on the

obje
tives dmax, Pmoy and on the MTF to restri
t the range of the Pareto front to a

eptable

designs (see Remark 33). To 
onstrain the MTF, we 
onsider its values at eight equally spa
ed

frequen
ies between 0 and 1 and impose that they be above the values of a template fun
tion at

the same frequen
ies (see Figure 4.17).

For this appli
ation, most of the 
omputing time 
omes from the evaluation of the MTF and

of dmax, whi
h requires simulating the whole traje
tory of the line of sight (this takes a few

minutes). In 
omparison, the 
onstraints pla
ed on the eigenvalues of the 
losed loop system, on

the damping, and on the modulus margin of the system are 
heap to evaluate (in the order of

the millise
ond). Therefore, in this work, they are 
onsidered as restri
tions of the design spa
e

(see Se
tion 3.5.2). As an additional bene�t, this prevents the 
ode to be subje
t to simulation

failures, whi
h may happen otherwise when the system is unstable.

We 
onsider two formulations of the optimization problem. First, we 
onsider a bi-obje
tive

formulation where only dmax and Pmoy are minimized. The MTF is 
onstrained to be above

the template fun
tion of Figure 4.17 but we do not try to maximize its values. In the se
ond

formulation, we 
onsider the simultaneous optimization of dmax, Pmoy and of the values of the
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MTF at three equally spa
ed frequen
ies (see Figure 4.16). The problem is thus a �ve-obje
tives

optimization problem. For both formulations, the optimization problem has d = 7 design vari-

ables (the parameters of the 
ontroller) and q = 13 expensive to evaluate 
onstraints (dmax,

Pmoy, I and ten 
onstraints on the MTF). Additional results obtained with the bat
h version

of the BMOO algorithm presented in Se
tion 3.5.4 for a formulation with p = 7 obje
tives are

presented in Se
tion 4.4.6.

The results obtained with BMOO for the two formulations are reported in Figures 4.16

and 4.17. For both formulations, the algorithm is initialized with a pseudo-maximin Latin-

hyper
ube design of Ninit = 30 experiments and run with a limiting number of fun
tions evalu-

ations Nmax = 500. See Se
tion 4.1 for more details about the settings of the algorithm.

In Figure 4.16, we show the proje
tion of the non-dominated solutions found by BMOO in

the plan of dmax and Pmoy. The value of the MTF at the Nyquist frequen
y (
orresponding to

fN = 0.5 in Figure 4.17, see Se
tion 3.4 of Frasnedo (2016)) is shown in 
olor. The solutions with

the lowest dmax value and the solution with the highest MTF value at the Nyquist frequen
y are

numbered from 1 to 3 in the �gure and their MTF are represented in Figure 4.17. The MTF

values of the other non-dominated solutions found by BMOO are shown as a shaded area in

Figure 4.17.

In the light of these experiments, it appears that the obje
tives are not strongly antagonists.

The results obtained for the �rst formulation with p = 2 show that it is possible to minimize dmax

without impa
ting too mu
h on the mean power 
onsumption (the spe
i�
ation only imposes

Pmoy ≤ 0). The results obtained for the se
ond formulation with p = 5 show that the maxi-

mization of the MTF is not strongly 
on
urrent with the minimization of dmax either. Indeed,

the loss in terms of Pmoy and dmax is negligible when the solution with the highest MTF value

at the Nyquist frequen
y is 
hosen (point 3 in Figure 4.16). Then, looking at the MTF 
urves

represented in Figure 4.17, it 
an be seen that the maximization of the MTF values at di�erent

frequen
ies are not 
on
urrent obje
tives either. Indeed, the solution that maximizes the MTF

value at the Nyquist frequen
y (
urve 3 in red in Figure 4.17) also maximizes the MTF at the

other frequen
ies (it is above the shaded region).

For this problem, a three-obje
tives formulation would thus have been su�
ient to highlight

the trade-o� between dmax, Pmoy and the MTF. However, this information was not known

beforehand; it is a result of the many-obje
tive formulation.

Remark 32 Numeri
al values su
h as the 
onstraints thresholds and the variables range of varia-

tion are either not given or normalized when they are. This is done to preserve the 
on�dentiality

of the results.

Remark 33 Note that for this appli
ation, 
onstraints are pla
ed on the obje
tives and the two

are not independent. Besides, the eight 
onstraints pla
ed on the MTF are not independent either.

In pra
ti
e though we use the algorithm as if it was the 
ase be
ause taking this information into

a

ount would require a signi�
ant work. A rigorous treatment of su
h situations is left for future

work.
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Figure 4.16: Fronts of non-dominated solutions found by the BMOO algorithm when the number of

obje
tives is p = 2 (top) and p = 5 (bottom). The 
olor bars on the right side of the �gures indi
ate the

value of the MTF at the Nyquist frequen
y (the higher the better). On ea
h �gure, the numbered dots


orrespond to the solutions with the lowest dmax values (1 & 2) and with the highest MTF value at the

Nyquist frequen
y (3). Their MTF are shown in Figure 4.17.
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Figure 4.17: MTF asso
iated with the three numbered solutions in Figure 4.16. The shaded region


orresponds to the MTF values of the other non-dominated solutions found by BMOO on the problem

with p = 5, i.e. the solutions represented in Figure 4.16. The dashed verti
al lines 
orrespond to the

frequen
ies at whi
h the MTF is optimized. The bla
k 
urve is the template fun
tion and the MTF is


onstrained to remain over it.

4.4.5 Con
lusions

In this se
tion, the BMOO algorithm is applied to the tuning of a line of sight 
ontroller based on

image quality 
riteria. The problem takes the form of a 
onstrained many-obje
tive optimization

problem de�ned on a non-hyper
ubi
 design spa
e. Two formulations of the optimization problem

are 
onsidered: a bi-oje
tive formulation and a �ve-obje
tive formulation. The results obtained

for the two formulations reveal that a good image quality 
an be a
hieved with a small 
ost in

terms of mean power 
onsumption. In parti
ular, the use of a many-obje
tive formulation makes

it possible to determine that the obje
tives are not strongly antagonists; information whi
h was

not known beforehand.

Also, additional experiments with the bat
h version of the algorithm presented in Se
tion 3.5.4

are made on a seven-obje
tive formulation of the problem. The results are 
onsistent with those

found sequentialy, whi
h validates the proposed approa
h for sele
ting bat
hes of experiments.

In the 
onsidered optimization problem formulations, 
onstraints are pla
ed on the obje
tives

to limit the range of the Pareto front. This defeats the assumption made in this work that the

fun
tions of the problem are independent. It is our belief that su
h a situation often o

urs

in real-life appli
ations and this shall motivate future work on the algorithm to address this

parti
ular issue more rigorously.

4.4.6 Additional material

In Figures 4.18 and 4.19 we present additional results obtained with BMOO in bat
h mode (see

Se
tion 3.5.4). This time, we 
onsider an optimization problem with p = 7 obje
tives: minimizing
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dmax and Pmoy, and maximizing the values of the MTF at �ve equally spa
ed frequen
ies. For this

experiment, BMOO is initialized with an initial design of Ninit = 50 experiments and run with

a limiting number of fun
tions evaluations Nmax = 500. At ea
h iterations of the algorithm,

bat
hes of N = 50 points are 
hosen using the pro
edure of Se
tion 3.5.4. Note that in this

setting, the algorithm makes only nine iterations.

The results obtained in bat
h mode are 
lose to those obtained sequentially, whi
h validates

the bat
h sele
tion pro
edure of Se
tion 3.5.4. A small loss 
an be observed on the MTF but

the overall shape of the Pareto front is well 
aptured. For this appli
ation, we do not a
tually

simulate the �fty new samples in parallel. However, if it was the 
ase, signi�
ant savings in terms

of 
omputing time 
ould be a
hieved.
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Figure 4.18: Fronts of non-dominated solutions found by the BMOO algorithm when the number of

obje
tives is p = 5 (top) and p = 7 (bottom). The 
olor bars on the right side of the �gures indi
ate the

value of the MTF at the Nyquist frequen
y (the higher the better). On ea
h �gure, the numbered dots


orrespond to the solutions with the highest MTF value at the Nyquist frequen
y. Their MTF are shown

in Figure 4.19.
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Figure 4.19: MTF asso
iated with the solutions numbered 3 and 4 in Figure 4.18. The shaded region


orresponds to the MTF values of the other non-dominated solutions found by BMOO on the problem

with p = 5, i.e. the solutions represented in Figure 4.18. The dashed verti
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tion and the MTF is 
onstrained to remain over it.
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4.5 Design of a turboma
hine fan blade

Fan

Low pressure 
compressor

High pressure 
compressor

High pressure
turbine

Low pressure
turbine

Combustion chamber

Secondary flow

Primary flow

Figure 4.20: Global ar
hite
ture of a turboma
hine.

4.5.1 Introdu
tion

This study deals with the design of a 
ommer
ial air
raft turboma
hine fan blade. It is the

fruit of a 
ollaboration between the Te
hnologi
al Resear
h Institute SystemX, CentraleSupéle
,

Cénaéro and Safran Air
raft Engines.

A typi
al air
raft turboma
hine is made of several 
omponents (see Figure 4.20): a fan, a

low pressure 
ompressor, an high pressure 
ompressor, a 
ombustion 
hamber, an high pressure

turbine, a low pressure turbine, and several equipments and integration systems not represented

in the �gure. The fan is one of the most dimensioning 
omponents of a turboma
hine. It is


omposed of several blades of high dimension (the diameter of the fan inner inlet 
an rea
h up

to 1.80 m on re
ent engines), the pro�le of whi
h varies from foot to head (see Figure 4.21).

The design of a turboma
hine fan blade is made di�
ult by the fa
t that it requires an op-

timization of its aerodynami
 performan
es under multiple me
hani
al and a
ousti
 
onstraints,

su
h as impa
t of foreign bodies, frequen
y margins, fatigue resistan
e and noise at take-o�

and landing. Its optimization is multi-dis
iplinary and possibly multi-s
ale, depending on the

materials 
hara
teristi
s (
omposite material for example) and on the regions under study.

4.5.2 Simulation 
hain

In this study, we 
onsider di�erent regimens of the turboma
hine, whi
h 
orrespond to di�erent

phases of the air
raft �ight:

- landing,

- 
ruise,

- take-o�,

- and redline (maximum operating regime).
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Figure 4.21: Typi
al shape of a turboma
hine fan blade.

The thrust is subje
t to 
onstraints at take-o�, the e�
ien
y must be maximal on 
ruise

and the noise must be bellow an a

eptan
e threshold at landing. For these four regimens, we


onsider di�erent operating 
onditions, that 
orrespond to di�erent values of pressure and mass

�ows (see Figure 4.22). Two operating points are 
onsidered at landing, four on 
ruise, two at

take-o� and only stati
 and dynami
 me
hani
al 
omputations are made at the redline.

A s
hemati
 view of the ar
hite
ture of the simulation 
hain used in this study is proposed

in Figure 4.23. First, a 
old blade geometry is built based on the 
hosen geometri
al parameters

(design variables and �xed parameters). This geometry 
orresponds to the geometry of the blade

in the absen
e of rotation. After this �rst step, nonlinear stati
 and dynami
 
omputations are

made at all 
onsidered regimens to determine the me
hani
al 
onstraints, the deformations, and

to infer the blade natural frequen
ies. Then, aerodynami
 
omputations based on the deformed

geometries are made for the 8 operating points 
onsidered in the study. These 
omputations

deliver the mass �ow, e�
ien
ies, noise, et
, at the di�erent regimens. This step is distributed

on 192 pro
essors. Even then, it is responsible for most of the 
omputing time of the simula-

tion 
hain (approximately 4h30 in total for one simulation). The values of the obje
tives and


onstraints are obtained from these 
omputations after a post-pro
essing step.

4.5.3 Blade optimization

We 
onsider an optimization problem with p = 3 obje
tives and q = 9 
onstraints. The obje
tives

are the maximization of the e�
ien
ies on 
ruise and at take-o� and the maximization of the

natural frequen
y of the blade at the redline. The 
onstraints are �ve me
hani
al 
onstraints,

two aerodynami
 
onstraints and two geometri
al 
onstraints. For the parametrization of the

blade, d = 26 variables subje
t to bound 
onstraints are used:

� in
iden
e and trailing angles at �ve levels along the blade height (10 variables in total);

� skeleton parameters at four levels along the blade height (16 variables in total).
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onditions 
onsidered in this study.
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Figure 4.23: S
hemati
 ar
hite
ture of the simulation 
hain and typi
al runtime of the su

essive 
omputations.
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Figure 4.24: Non-dominated solutions obtained with the BMOO algorithm (red disks). To help the

visualization, proje
tions in the 
oordinates planes (f1, f2) and (f1, f3) are shown as blue disks. The

values are s
aled around one to preserve the 
on�dentiality of the results.

The optimization is made using the BMOO algorithm. The algorithm is initialized using an

initial design of 120 experiments that were 
omputed beforehand. Among these, 25 resulted in

simulation failures. These 
an be due to a 
ombination of the design parameters resulting in a

non-feasible blade geometry, to an insu�
ient meshing quality or to a failure of the aerodynami



omputations to 
onverge.

Due to 
ompli
ations, the optimization was run over 77 iterations only. The non-dominated

solutions found by the algorithm are shown in Figure 4.24. The results reveal that the maximiza-

tion of the e�
ien
ies at take-o� f1 and on 
ruise f2 are antagonist obje
tives, whi
h was not

obvious beforehand. Also, we note a drop of the values of the natural frequen
y of the blade at

the redline f3 when the values of the e�
ien
y at take-o� be
ome high. The presen
e of an out-

lier with an high value of this frequen
y and an high value of e�
ien
y seems to 
ontradi
t this

observation though, whi
h may indi
ate that the algorithm was stopped too prematurely. Nev-

ertheless, the shape of the front seems established even though further re�ning would 
ertainly

be possible.

Among the 77 additional evaluations, 28 resulted in simulation failures, whi
h seems to

indi
ate that the region of optimal solutions is 
lose to the non-observable region. This 
ould

also be due to a failure of the 
lassi�
ation model

1

. However, su
h a behaviour was not observed

in the other appli
ations presented in this 
hapter. An expert analysis of the 
auses of failure of

the simulation would be required to better understand this parti
ular point but it 
ould not be

made during this thesis.

1

In this work, we use a nearest neighboor 
lassi�er with k = 5 neighboors (see Se
tion 3.5.3).
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4.5.4 Con
lusions

In this se
tion, BMOO has been applied to the design of a turboma
hine fan blade. This


omponent of the turboma
hine is one of the most dimensioning and its optimization has to

take into a

ount me
hani
al, aerodynami
 and a
ousti
 aspe
ts for di�erent regimens of the

turboma
hine. Besides, the optimization is made di�
ult by the heavy 
omputational 
ost

asso
iated with the numeri
al simulation of the system.

The 
onsidered optimization problem takes the form of a 
onstrained multi-obje
tive problem

with three obje
tives and twenty six design variables. BMOO obtains a satisfying approximation

of the Pareto front using only 77 iterations, hen
e a
hieving a signi�
ant redu
tion of the 
om-

puting time required for solving this kind of problem. In parti
ular, the analysis of the results

provides a better understanding of the intera
tions between the obje
tives.

A
knowledgements: The authors would like to thank Emmanuel Cheriere (Cénaéro), Car-

oline Sainvitu (Cénaéro), Vin
ent Baudoui (Cénaéro) and Abdelkader Otsmane (Safran Air
raft

Engines) for their 
ontributions to this work.

4.6 Con
lusions

In this 
hapter, we have presented appli
ations of the BMOO algorithm to design problems that

are representative of the kind of optimization problems en
ountered in the industry. The appli-


ations feature di�erent physi
s: thermodynami
s, me
hani
s, aerodynami
s, a
ousti
s, ele
tro-

magnetism and automati
 
ontrol and it is shown that BMOO is a transverse algorithm that 
an

be used to solve this kind of problems using a reasonable number of fun
tions evaluations.

For all four 
onsidered appli
ations, the use of a multi-obje
tive formulation enables the user

to 
hoose design solutions with a posteriori knowledge about the possible trade-o� between the

obje
tives. In parti
ular, the analysis of the variation of the design variables along the front of

non-dominated solutions makes it possible to better understand the in�uen
e of design 
hoi
es

on the performan
es of the system.

Furthermore, these appli
ations were the opportunity to emphasize the e�e
tiveness of the

algorithm's extensions presented in Se
tion 3.5. First, viewing the 
heap-to-evaluate 
onstraint

fun
tions as restri
tions of the design spa
e makes it possible to de
rease the size of the optimiza-

tion problem and to avoid regions where the physi
al model's assumptions are not met. This

results in fewer simulation failures and a better 
ontrol over the simulator. Se
ond, to address

simulation failures, in this work, a simple 
lassi�
ation model is used (see Se
tion 3.5.3). This

makes it possible to perform the optimization despite the presen
e of non-observable regions.

However, the results obtained on the turboma
hine fan blade appli
ation seem to indi
ate that a

more elaborate approa
h might be required on some problems. This shall motivate future work

on the handling of the hidden 
onstraints. Finally, as regards the use of bat
hes of experiment,

it is shown on the line of sight 
ontrol problem that signi�
ant savings 
an be a
hieved in terms

of 
omputing time without impa
ting too mu
h on the quality of the optimization. We believe

that the use of bat
h approa
hes within multi-obje
tive formulations su
h as the one we propose

should re
eive more attention in the near future be
ause they are very e�e
tive.
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Chapter 5

Con
lusions
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5.1 Summary of 
ontributions

In this thesis, we address the problem of the derivative-free multi-obje
tive optimization of real-

valued fun
tions subje
t to multiple inequality 
onstraints. More spe
i�
ally, we 
onsider a

setting where the obje
tives and 
onstraints of the problem are evaluated simultaneously using

a potentially time-
onsuming 
omputer program. In this setting, it is highly desirable to solve

the optimization problem using as few fun
tions evaluations as possible. Morevover, we fo
us on

problems that are heavily 
onstrained, in the sense that �nding feasible solutions; i.e. solutions

that respe
t all the 
onstraints of the problem, is di�
ult. This is a setting that one often

en
ounters when dealing with the design optimization of 
omplex systems and whi
h poses

di�
ulties to many optimization algorithms.

To solve this problem, we propose a Bayesian optimization algorithm 
alled BMOO

1

. This

algorithm implements a new expe
ted improvement sampling 
riterion 
rafted to apply to poten-

tially heavily 
onstrained problems and to many-obje
tive problems, i.e. problems with several

obje
tive fun
tions. This 
riterion stems from the use of the hypervolume of the dominated region

as a loss fun
tion, where the dominated hypervolume is de�ned using an extended domination

rule that applies jointly on the obje
tives and 
onstraints. Several 
riteria from the Bayesian

optimization literature are re
overed as spe
ial 
ases.

The 
riterion takes the form of an integral over the spa
e of obje
tives and 
onstraints for

whi
h no 
losed form expression exists in the general 
ase. Besides, it has to be optimized at

every iteration of the algorithm to sele
t the next evaluation point, whi
h is known to be di�
ult

be
ause expe
ted improvement 
riteria tend to be sharp multi-modal fun
tions. To solve these

di�
ulties, original sequential Monte-Carlo algorithms in line with previous work 
arried out by

Benassi (2013) in the un
onstrained global optimization setting are developped.

Moreover, four extensions of the algorithm are proposed, whi
h 
onstitute ea
h a 
ontribution

of independent interest. First, BMOO is extended to handle problems de�ned on non-hyper
ubi


design spa
es. These 
an be de�ned by 
heap-to-evaluate 
onstraints and/or membership fun
-

tions. Se
ond, it is extended to handle problems with hidden 
onstraints. These arise, for exam-

ple, when the 
omputer program used to evaluate the fun
tions of the problem systemati
ally

fails to return a result for some 
ombinations of the design variables. Third, to take advantage of

parallel 
omputation fa
ilities when available, a multi-point version of the algorithm is proposed.

Last, we propose an alternative sampling 
riterion 
alled the expe
ted weighted hypervolume

improvement 
riterion. This 
riterion makes it possible to orient the sear
h for optimal solutions

a

ording to user preferen
es, thus allowing the expert to step in the optimization loop.

5.2 Main a
hievements and limitations

The proposed algorithm a
hieves good results on 
lassi
al single- and multi-obje
tive test prob-

lems from the literature when 
ompared with state-of-the-art algorithms. It is shown to apply

to a large 
lass of problems with a good repetability. In parti
ular, it is 
apable to solve heavily

1

BMOO stands for Bayesian Many-Obje
tive Optimizaton.
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onstrained problems using few fun
tions evaluations, whi
h was one of the obje
tives of this

work; and to address many-obje
tive problems, whi
h was another one.

BMOO is also su

essfully applied to four industrial-like design optimization problems from

di�erent �elds. It is applied to the design of a 
ommer
ial air
raft environment 
ontrol system

(
ollaboration with Airbus), to the design of an ele
tri
 vehi
le powertrain (
ollaboratin with

Renault), to the tuning of a line of sight 
ontroller (
ollaboration with Safran Ele
troni
s &

Defense) and to the design of a turboma
hine fan blade (
ollaboration with Cénaéro and Safran

Air
raft Engines). It is shown that the proposed extensions are valuable tools that 
an be used

to help solve 
omplex optimization problems.

The algorithm is subje
t to limitations though, whi
h are highlighted throughout the manus
ript.

First, it is not suitable for problems having non-stationary obje
tives and/or 
onstraints, whi
h

is typi
al of Bayesian optimization algorithms relying on stationary Gaussian pro
esses if noth-

ing is done on the modelling aspe
t to address this limitation. Se
ondly, the algorithm uses

the dominated hypervolume as a loss fun
tion. As su
h, it 
an a
hieve mitigated results on

multi-obje
tive problems with 
on
ave Pareto fronts. Again, this is an expe
ted behaviour.

5.3 Perspe
tives for future work

Several resear
h tra
ks 
ould be explored in the futur. In this work, we have been fo
using on

EI-based approa
hes. However, other approa
hes in the Bayesian optimization literature, su
h

as Stepwise Un
ertainty redu
tion approa
hes (see e.g Villemonteix et al. (2009); Vazquez and

Be
t (2014); Chevalier et al. (2014a); Pi
heny (2014a,b); Hernández-Lobato et al. (2015, 2016b);

Garrido-Mer
hán and Hernández-Lobato (2016)) and the Augmented Lagrangian approa
h of

Grama
y et al. (2016), and, more generally, in the model-based optimization literature (see e.g.

Regis (2016) and referen
es therein), provide interesting alternatives that 
all for a 
omparison

of optimization performan
es.

As di
ussed above, the proposed algorithm is subje
t to limitations. First, stationary Gaus-

sian pro
ess models are not suitable for problems with non-stationary fun
tions. In Se
tion 2.5.3

of this manus
ript it is shown that this issue 
an sometimes be solved using simple transforma-

tions of the non-stationary fun
tions. However, �nding su
h a transformation is not straightfor-

ward and it remains up to the pra
titionner. Several types of models proposed in the literature�

warped Gaussian pro
esses (Snelson et al., 2004), non-stationary Gaussian pro
esses (Toal and

Keane, 2012), deep Gaussian pro
esses (Damianou and Lawren
e, 2013), et
.� provide interest-

ing dire
tions regarding this issue that 
ould be the obje
t of future work.

Se
ondly, as mentionned in Se
tion 4.4, the proposed algorithm is not suitable as is for

problems having 
onstraints on the obje
tives, situation that often o

urs in pra
ti
e when one

is interested in dis
overing the optimal trade-o� between di�erent obje
tives but does not want

to deteriorate one in favour of an other too mu
h. Re
ent work from Yang et al. (2016a,b)

provide interesting dire
tions for future work on this issue.

Computational aspe
ts 
ould also be dis
ussed. While the overall 
omputing time of the

algorithm remains reasonable on small to medium size problems su
h as the ones adressed in
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this manus
ript, it 
an be
ome prohibitive on large problems (this is to be balan
ed with the


omputing time of the fun
tions of the problem). In this work, we do not 
hallenge our 
hoi
e

of an anisotropi
 Gaussian random-walk Metropolis-Hastings algorithm to move the parti
les

within the sequential Monte-Carlo algorithms used for the 
omputation and optimization of the

expe
ted improvement 
riterion. However, mu
h improvement 
ould probably be a
hieved by

using more suitable algorithms. In parti
ular, the 
hoi
e of the number of parti
les to be used

in the algorithms, though brie�y dis
ussed in Se
tion 3.3 for the 
riterion 
omputation problem,

remains empiri
al and improvements 
ould probably be a
hieved on this aspe
t.

The extensions proposed in Se
tion 3.5 deserve more attention. Empiri
al eviden
e of their

e�e
tiveness is given in Chapter 4 but they 
ould be improved. First, the 
hoi
e was made to


onsider appli
ations where the obje
tives and 
onstraints are obtained simultaneously from one


all to some possibly 
omputationaly intensive 
omputer program. This assumption was relaxed

to allow for the introdu
tion of 
heap-to-evaluate 
onstraint fun
tions that 
an be evaluated

separately, these being 
onsidered as restri
tions of the sear
h spa
e, or expensive-to-evaluate.

In some appli
ations though, it may happen that the 
omputational 
ost asso
iated with the

problem's fun
tions vary from one fun
tion to the other and that these fun
tions 
an be evaluated

independently. In su
h a setting, signi�
ant time savings 
ould probably be a
hieved by using a

more adapted strategy.

Se
ondly, the 
hoi
e of a nearest-neighboor 
lassi�er to handle hidden 
onstraints is ques-

tioned in Se
tion 4.5. More sophisti
ated approa
hes su
h as random forest 
lassi�
ation, support

ve
tor ma
hines or arti�
ial neural network 
lassi�
ation might be required on some problems

and 
ould trigger further improvement of the proposed algorithm.

Third, mu
h work remains to make the EWHI 
riterion proposed in Se
tion 3.5 usable in

pra
ti
e. In parti
ular, the 
hoi
e a priori of the weight fun
tion, i.e. before the position of the

Pareto front is known, is an open resear
h question.

Other extensions 
ould be developped to make BMOO appli
able to a broader range of

problems, su
h as problems featuring equality 
onstraints, dis
rete variables (see Se
tion 4.3)

or noisy fun
tions. The 
apability to use gradient information when available, to deal with

multi-�delity models, to stop the algorithm when knowledge of the Pareto front is su�
ient and

to adress high dimensional problems would also be useful extensions. Re
ent works from Binois

et al. (2015b,a); Wang et al. (2016b); Azzimonti et al. (2016); Roy et al. (2017); Garrido-Mer
hán

and Hernández-Lobato (2017); Wu et al. (2017); Qian and Yu (2017) on some of these aspe
ts


ould be a start point for further investigations.

A
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hnologi
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h Programme Investissements
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