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Abstract

ENGLISH

Macroporous ceramics are widely used in applications such as filtration, thermal insu-

lation, scaffolds for tissue engineering, Solid Oxide Fuell Cells, and Oxygen Transport

Membranes. They must combine mechanical stability with at least one other functional

property such as high permeability, low thermal conductivity, or biocompatibility. How-

ever, strength is usually increased by decreasing the total pore volume even though this

may degrade the other functional properties.

In the present work we used ice-templating as a tool to produce anisotropic macroporous

structures that maximize simultaneously permeability and strength. First, we identified

the main experimental parameters that control pore volume, size, and morphology and

linked processing with microstructure. Second, this understanding was applied to char-

acterize the mechanical behavior of unidirectional porous materials and subsequently

link microstructure with mechanical performance.

We investigated the effect of porosity (between 50% and 80%), pore size (3µm - 20µm),

and pore morphology (lamellar and honeycomb) on compressive strength and reliability.

The results were compared with isotropic porous materials with equivalent pore volume

and size prepared by organic burn-out. The maximum strength (286 MPa) was achieved

in the less porous ice templated samples, with the smallest pore size, independently of

the pore morphology. Additionally, we show that the honeycomb out-of-plane model

derived by Gibson and Ashby can be applied to describe the compressive behavior of

unidirectional porous materials. Furthermore, we found that the suitability of the model

is restricted to structures where buckling is the dominant failure mode.

We also analyzed the applicability of Weibull analysis to unidirectional macroporous

materials prepared by ice-templating. We assessed the effect of the same pore descriptors

(volume, size, densification of the walls, and morphology) on Weibull modulus and

the subsequent probability of failure. We found a remarkable correlation between wall

thickness reduction and increase in reliability in perfect agreeement with the weakest

link hypothesis. The highest Weibull modulus (m = 13,2) was obtained for the samples

with the smallest and narrowest wall thickness distribution.
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Third, we investigate the gas flow behavior in ice-templated materials. The maximum

permeability (k1 =1,39×10−11 m2) was exhibited by samples with the highest total pore

volume (72%) and pore size (20,0 µm). However, we demonstrate how it is possible to

achieve a similar permeability (k1 =1,09×10−11 m2) at 54% pore volume by modifica-

tion of the pore morphology. We evaluate the applicability of Ergun and capillary model

in the prediction of permeability of unidirectional porous materials.

Fourth, we applied all the knowledge gathered processing ice-templated monoliths to

develop a new system to ice-template tubes (length 150 mm and external diameter 10

mm) with controlled pore volume (49,1% - 69,4%), pore size (3,3 µm - 14,6 µm), and

tube thickness (1,2 mm - 2 mm). Finally, we characterized the mechanical and gas

flow behavior of ice-templated tubes to determine the structural parameters governing

strength and permeability.

By performing this detailed characterization and validating appropriate models, we hope

to provide the information necessary to deterministically target unidirectional porous

structures to specific applications.
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Introduction

Different applications require porous materials with high strength and permeability.

However, the combination of both properties is difficult to achieve, and permeability

is usually enhanced by increasing the total pore volume, even though increasing poros-

ity decreases strength.

One example of this trade-off between strength and permeability is found in asymmet-

ric oxygen transport membranes (OTMs), which are shown and described in Fig. 1.

After our experience as an active partner in several European projects (HETMOC and

CARENA) dealing with OTMs, we realized that the limiting factor of this technology is

the performance of the porous mechanical support. These supports must exhibit high

permeability to provide high oxygen flux, and high strength to withstand thermome-

chanical stresses from sealing and operating conditions. In this work, we used the prob-

lems of current generation of OTM supports as motivation and inspiration to better un-

derstand the role of microstructure on strength and permeability, so that we may enable

new, specifically tailored pore architectures to simultaneously improve both properties.

Morphological parameters such as pore size, shape, and tortuosity can become crucial

to maximize the gas flow while maintaining high strength. In principle, a significant im-

provement in strength can be achieved by engineering anisotropic structures to mechan-

ically reinforce the direction of the main stress and simultaneously reduce the resistance

to air flow [1].
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Figure 1: SEM images of two asymmetric membranes processed by different techniques. The dense layer on top provides
the required selectivity and its performance can be maximized reducing its thickness. However, when the dense layer is
too thin it is necessary to attached a porous support to provide mechanical stability. This porous substrate also has to be
permeable enough to allow the oxygen be released out of the membrane. A) The porous support was obtained by pore
formers and consequently there is no control on the pore orientation. The content of pore formers has to be quite high to
overcome the percolation limit and ensure a minimum permeability. The dense layer was made with the same material
as the support and was obtained by dip-coating [2]. B) Porous and dense support were obtained in one step using a
modified ice-templating. The porosity created in this technique is typically unidirectional, so the pore volume required
to reach the percolation threshold is lower.

In this work we used ice-templating to obtain unidirectional porous materials with ac-

curate control over pore volume, size, and shape. The technique is based on the growth

of solvent crystals in a colloidal suspension to tailor the final porous structure and it

is described in Fig. 2. Ice-templating allows a quasi-independent control of structural

parameters like total pore volume, pore size, and pore morphology. This flexibility will

be used to elucidate the specific impact of each structural parameter on the strength

and permeability. We took advantage of the knowledge and experience of the LSFC

in ice-templating to quickly and reproducibly create samples with architectured porous

structures.

Although, the mechanical characterization of ice-templated materials has been exten-

sively reported [3], a systematic analysis describing the effects of microstructural pa-

rameters on mechanical properties in a large porosity range is still missing. Similarly,

the literature on reliability of porous ceramics is scarce, and the very few articles pub-

lished rarely try to understand the phenomena and simply report the results. This lack

of information is even more severe in the case of permeability, where very few articles

have been published relating the microstructure of ice-templated materials and gas flow

[4] [5]. The main objective of this work is to identify and understand the structural

parameters that govern the mechanical and gas flow properties on unidirectional

porous materials and provide the information necessary to target microstructures

to specific applications that require strength and permeability. These applications

include OTM, SOFC, filtration, and heterogeneous catalysis.
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Figure 2: Schematic of the ice-templeating process [6].

This manuscript is organized in seven chapters. The first chapter is a brief literature re-

view on porous ceramics, ice-templating, and OTMs. Chapter 2 details the experimental

procedure used to process and to characterize the different types of samples. The third

chapter explores the main experimental parameters controlling the different aspects of

pore morphology (pore volume, pore size, pore shape, and wall thickness). This mi-

crostructural characterization will be used in the next chapters to then link microstruc-

ture with properties. Chapter 4 describes the mechanical behavior of unidirectional

porous materials and the results will be compared with the isotropic microstructures

obtained by other techniques. We realized that the strength is highly dependent on the

pore structure, and consequently it can be enhanced designing structures which failure

is buckling-dominated instead of bending-dominated. Further, this chapter also reports

a complete study on reliability of porous materials, a property rarely characterized but

with capital importance in industrial application. We control the reliability of porous

structures adjusting the wall thickness distribution. The effect of the same microstruc-

tural parameters on air permeability will be discussed in chapter 5. Controlling pore size

and shape we have been able to process samples with high permeability and mechanical

resistance. Most of the applications previously mentioned require a tubular configura-

tion to maximize the production per area. Chapter 6 describes a new method to produce

ice-templated tubes and reports their strength and air flow. Finally, the seventh chap-

ter summarizes the main conclusions and proposes a list of important topics that could

follow this work.
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Chapter 1

Literature Review

Contents
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1.2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Pore architecture . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Oxygen transport membranes . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Transport mechanism . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Performance and limitations in oxygen permeation flux . . . . 15

1.3.3 Asymmetric membranes . . . . . . . . . . . . . . . . . . . . . 18

1.1 Porous ceramics

Much of the literature on porosity in technical ceramics was considered it to be a defect

compromising mechanical stability [7]. However, in certain applications such as filters,

insulators or catalytic supports, pores enable functionality and are introduced deliber-

ately. Recent progress in fabrication procedures has considerably widened the range

of morphologies and properties achievable, resulting in an expanding range of applica-

tions. The introduction of porosity is therefore an extremely versatile and powerful tool

for greatly extending the range of properties offered by a ceramic component [8], Fig.

1.1.
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CHAPTER 1. LITERATURE REVIEW

Figure 1.1: A wide range of physical properties can be achieved by changing the amount of porosity through processing
[8]

1.1.1 Structure vs. Properties

Materials with a porous structure are common in nature. Their design efficiently op-

timizes characteristics such as the strength-to-density and stiffness-to-density ratios.

Moreover, there is the matter of the morphology. Some porous materials, such as wood

and cork, have prismatic and unidirectional honeycomb-like cells, while others, such

as trabecular bone and sponges have randomly oriented polyhedral cells [9] [10]. In

all cases, their properties are strongly linked to the microstructure (optimized during

thousands of years) and the material.

It is difficult to summarize the effect that porosity can have in all the properties due to

the complexity and the different nature of the interactions. However, it is possible to

highlight some general trends. A simple and broad consideration is that there are three

levels of porosity dependance increasing in complexity Table 1.1 [11]:

Level of dependence Properties

I) No dependence Lattice parameter, thermal expansion coefficient, emissivity

II) Amount of porosity Density, dielectric constant, heat capacity

III) Amount and character of

porosity

Mechanical properties, electrical and thermal conductivity,

surface area, etc

Table 1.1: Impact of porosity on different properties

At the simplest level, there are properties that have no dependency on porosity. These

depend only on atomic scale phenomena and are not affected by the long range inter-

ference of the pores. The second category consist of those properties dependent only on
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CHAPTER 1. LITERATURE REVIEW

the amount, and not the character of porosity. Such properties can be characterize using

a rule of mixtures for the pore volume (P) and the solid phase (1-P):

X = Xs(1− P ) +XpP (1.1)

where X is the property of the porous material, Xs the same but referred to the solid,

and Xp the property of the pore phase (usually zero, but there are some exception like

the refractive index or the dielectric constant). The last category is the largest, most

complex and important category that consists of those properties dependent on both the

amount and the character of porosity. Properties like strength, elasticity, permeability,

etc. require a more exhaustive description of the structure to fully characterize the

material [12]. In this case, it is necessary to consider porosity as a three dimensional

microstructure, and consequently a large number of structural parameters can be used

to describe it. Some of the most important structural parameters are [13]:

• Cell size and its distribution

• Strut thickness and its distribution

• Strut shape and morphology (i.e. dense or hollow struts)

• Cell window opening

• Degree of anisotropy (of porosity, pore size, etc.)

• Surface to volume ratio

1.1.2 Mechanical properties

Mechanical properties of porous ceramics play an important role in their different appli-

cations. This is clear for the cases in which the component serves exclusively a structural

function. However, mechanical properties are also quite important for other cases where

the primary function is non-mechanical. In such applications, stresses arise and must be

survived for the component to continue serving its desired non-mechanical functions.

Porosity’s mechanical properties has been characterized mainly experimentally and in

the last decades addressed by the use of models. There are several models relating the

structural parameters of porous materials and the mechanical behavior [14][15][16][17][12][18].

However, the most extensively used those based on the MSA (Minimum Solid Area) ap-

proach developed by Rice [19], and the mechanistic models proposed by Gibson and

Ashby [10].
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CHAPTER 1. LITERATURE REVIEW

Minimum Solid Area method: MSA modeling assumes first that the body can be rep-

resented as a dense uniform packing of identical cells (Fig. 1.2a). Each cell consists of

either a pore whose center is also the center of the cell surrounded by the solid phase

(Fig. 1.2c) or a spherical particle whose center is the center of the cell surrounded by

the pore phase (Fig. 1.2b) [11].

Figure 1.2: Example of idealized pore architecture used in MSA for property modeling a) spherical pores and b) spherical
particles

Once a representative cell structure has been selected based on the type of the porosity

being modeled, a complete evaluation of the range of porosity can be made by incremen-

tally changing the size of the pore or spherical particle. Afterwards, a purely geometric

parameter equal to the minimum area normal to a given direction (MSA) is defined,

similarly to the concept of load bearing area Fig. 1.2. Rice states that the strength (and

also elasticity, electrical resistivity, thermal conductivity, permeability, etc) scale directly

to the MSA. The output of MSA modeling is generally a plot of the MSA values (and

hence porosity) over the property of interest (Fig. 1.3).
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Figure 1.3: Example of the relationship between porosity and MSA for different pore configurations [12]

Most MSA models are generally not presented as an equation, since the individual cal-

culations of each MSA value are complex. However, in some cases where the pore

morphology is close to an ideal system, it is possible to reduce the behavior in a simple

equation of the form of Eq. 1.2.

X/X0 = (ρ/ρ0)
n = (1− P )n (1.2)

All the different models based on MSA cover a broad range of pore structures ranging

from low to high porosity. Unfortunately, MSA is based in a rigorous set of assumptions

and it is only effective in ideal systems [12], something difficult to achieve by conven-

tional processing techniques.

Mechanistic models: The Gibson and Ashby model (G-A) idealize the microstructure

of a porous material to a representative unit cell composed by an arrangement of struts,

Fig. 1.4. Afterwards, it is possible to scale the mechanical properties (strength, elasticity,

fracture toughness, creep rate, etc) with the key microstructural parameters calculating

the behavior of each truss when a load is applied [20]. An important factor in this

approach is that it can differentiate between substantially different pore architectures

(honeycomb, open cells, and closed cells foams) and modes of fracture (brittle crushing,
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plastic yielding, and elastic buckling) and therefore describing materials of different

nature i.e. polymers, metals, and ceramics [9] [21] [20]. A limitation of this model is

that there is less basis for predicting the properties at high and low P% and it does not

take into consideration the interaction between pores [11] and the effect of cell size.

A more complete discussion about the applicability of these models will be covered in

Chapter 4.

Figure 1.4: Idealized unit cell in an open cell foam

1.1.3 Permeability

Permeability is regarded as a macroscopic measure of the ease with which a fluid driven

by a pressure gradient flows through the voids of a porous medium [13]. This property

can be expressed as a function of the fluid, flow, and medium properties and usually is

obtained by fitting the experimental data with permeability equations. The most com-

mon expression is Forchheimer’s equation (Eq. 1.3) and states that the pressure drop

(∆P ) through a macroscopically homogeneous porous medium exhibits a non-linear

dependence on fluid velocity (νs) along the flow direction (L) as [22]:

∆P

L
=

µ

k1
νs +

ρ

k2
ν2s (1.3)

where µ and ρ are respectively the absolute viscosity and the density of the fluid, and k1

and k2 are known as Darcian and non-Darcian permeabilities. These parameters incor-

porate only the structural features of the porous medium and therefore are considered

constant even if the fluid or the flow conditions are changed. The importance of Forch-

heimer’s equation is that the fluid and the porous medium are considered to have an

influence on the pressure drop independent of each other [23]. Therefore, once the

medium influence is quantified (through k1 and k2), it is possible to obtain its pressure

drop estimated for a variety of operating conditions, such as velocity, temperature, and

pressure. The term µ/k1 of Forchheimer’s equation represents the contribution to flow

resistance due to friction between the fluid and the pore walls. The term ρ/k2 represents
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the contributions of inertia and turbulence [22].

Permeability is expected to change according to several structural features (pore vol-

ume, cell size, strut thickness, etc) that reflect different aspects of fluid-solid interaction.

However, despite the importance of porous ceramics for fluid-flow applications, only in

recent years the modeling of permeability based on microstructural parameters has been

addressed consistently in the literature [24] [25]. Most of the models used in prediction

of permeability are derived from correlations originally developed for granular beds,

like:

• Kozeny-Carman equation

k1 =
ǫ3

Kk(6/dp)2(1− ǫ)2
(1.4)

where ǫ is the total pore volume, Kk the Kozeny parameter usually ranging from

4.8 to 5.0 , and dp the particle diameter.

• Ergun equations

k1 =
ǫ3dp

2

150(1− ǫ)2
(1.5)

k2 =
ǫ3dp

1.75(1− ǫ)
(1.6)

where all the parameters are the same as previously referred.

However, applying these equations on other porous morphologies often leads to inaccu-

racies [26]. The major difficulty in derivation of such models is identifying a character-

istic length that represents the cellular media realistically and thus replaces the particle

size dp[27] [28].

1.1.4 Processing techniques

Pore morphologies exhibited in conventional and novel applications cover a wide range

of structures such as foams (open and closed), honeycombs, interconnected rods, inter-

connected fibers, interconnected hollow spheres, etc. Additionally, most of them require

a specific range of pore volume, size, and distribution to be functional. All of these mi-

crostructural features are in turn highly influenced by the processing route [8]. There-

fore, it becomes critical to know the benefits, drawbacks, and limits of techniques to

manufacture macroporous ceramics. Due to the large number of processing routes this

section summarize the most important features of the conventional techniques. For a

more detailed description see reference [13].
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Partial Sintering: Partial sintering of powder compact is the most conventional and fre-

quently employed approach to fabricate porous ceramic materials. Particles of powder

compact are bonded due to sintering processes, and a homogeneous porous structure

forms when sintering is terminated before the compact fully densified (Fig. 1.5). Pore

size and porosity are controlled by the size of starting powders and degree of partial

sintering [29]. Porosity decreases with increased forming pressure, sintering tempera-

ture, and time. In addition, processing factors such as the type and amount of additives,

green densities, and sintering conditions (temperature, atmosphere, pressure, etc.) also

greatly affect the microstructures of porous ceramics [30]. The mechanical properties

depend largely on the degree of neck growth between grains, as well as porosity and

pore size [31].

Figure 1.5: Scheme of the concept of partial sintering to obtain macroporous materials [29]

Replica: The replica method is based on the impregnation of a cellular structure with a

ceramic suspension or precursor solution in order to produce a macroporous ceramic ex-

hibiting the same morphology as the original porous material (Fig. 1.6). Many synthetic

and natural cellular structures can be used as templates to fabricate macroporous ce-

ramics through the replica technique. Porous ceramics obtained with the sponge replica

method can reach total open porosity levels within the range 40% - 95% and are char-

acterized by a reticulated structure of highly interconnected pores with sizes between

200 µm and 3 mm [32]. The high pore interconnectivity enhances the permeability of

fluids and gases through the porous structure, making these reticulated materials very

suitable for filtration [33]. A disadvantage of the sponge replica technique is that the

struts of the reticulated structure are hollow and often cracked during pyrolysis of the

polymeric template, degrading the final mechanical strength of the porous ceramic [34].

Figure 1.6: Representation of the replica method [32]
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Sacrificial Template: The sacrificial template technique consists of preparing a bipha-

sic composite comprising a continuous matrix of ceramic particles and a homogeneously

dispersed sacrificial phase. Afterwards, the sacrificial phase (or pore former) is extracted

to generate pores within the microstructure (Fig. 1.7). This method leads to porous ma-

terials displaying a negative replica of the original sacrificial template. One of the main

advantages of the sacrificial template method in comparison with the other fabrication

routes is the possibility to deliberately tailor the porosity, pore size distribution, and pore

morphology of the final ceramic component through the appropriate choice of the sacri-

ficial material [32]. The range of porosity and pore sizes that can be achieved with this

technique is very broad (20% - 90% and 1 - 700 µm, respectively), as they only depend

on the volume fraction and size of the sacrificial template used [35].

Figure 1.7: Scheme of the steps involved to obtain porous ceramics by the sacrificial template method [32]

Direct Foaming: In direct foaming methods, porous materials are produced by incorpo-

rating air into a suspension or liquid media, which is subsequently set in order to keep

the structure of air bubbles created (Fig. 1.8). In most cases, the consolidated foams are

afterwards sintered at high temperatures to obtain high-strength porous ceramics. The

total porosity of directly foamed ceramics is proportional to the amount of gas incorpo-

rated into the suspension or liquid medium during the foaming process. The pore size,

on the other hand, is determined by the stability of the wet foam before setting takes

place [32]. The macroporous ceramics obtained after sintering exhibit porosities from

45 to 95% and cell sizes between 10 and 300 µm.[35]

Figure 1.8: Schematic of a direct foaming technique [32]
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1.2 Ice-templating

The processing techniques for porous ceramics previously discussed usually lack con-

trol of the directionality of the pores, yielding a non optimized microstructures. Ice-

templating is a very flexible technique, allowing an almost independent control of sev-

eral important structural features, including directionality, in a wide range of length

scales. Due to its versatility, and because it is mostly based on physical interactions, the

process has been applied to a broad range of materials, from polymers to ceramics and

metals.

1.2.1 Principle

Ice-templating is a processing technique adapted for producing anisotropic macroporous

materials. It is based on the unidirectional freezing of colloidal suspensions and the

subsequent segregation of the particles by the solidification front [36]. It comprises four

main processing steps: slurry preparation, unidirectionally solidification, sublimation,

and sintering (Fig. 1.9).

Figure 1.9: Processing steps of ice-templating [36]

1) Slurry preparation: This step is essentially identical to the preparation of slurries

for conventional ceramic processing techniques. The ceramic powder must be properly

dispersed in the solvent (usually water), so additives such as dispersant are often used.

The amount of solids loading can range between 10 vol.% and 40 vol.%, depending on

the desired amount of porosity [36]. The use of binder is necessary to provide enough

strength to the green body to be handled after the sublimation. Finally, additional ad-

ditives (zirconium acetate(ZRA), glycerol, polystyrene, sucrose, etc.) can be used to

produce certain effects on the pore morphology such as modifying the shape of the
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pores, creating roughness on the walls, or increasing the brunching between the walls

[37].

2) Controlled freezing: Once the slurry is subjected to a directional temperature gradi-

ent, the solvent crystals start growing along the gradient. Simultaneously, the particles

are rejected from the moving solidification front and stacked between the ice crystals.

This is the critical step where the structure is formed and the characteristics of the future

porosity are determined. In order to obtain a unidirectional porous structure, the veloc-

ity of the ice front is one of the most critical parameters [6]. If the solidification velocity

is very low (less than 1 µms−1) the ice front will be planar pushing the particles ahead.

The resultant structure contains no macroporosity [38]. On the other hand, when the ice

growth is too fast (critical velocity, νs) the particles have insufficient time to segregate

from the suspension, resulting in complete encapsulation of them within the ice front.

Several parameters seem nevertheless to affect this critical velocity, the most important

being probably the solid content in the slurry, the particle size and the properties of the

solvent [39] [6]. This behavior is schematically summarized in Fig. 1.10

Figure 1.10: Limits for controlling the pore structure based on the ice front velocity [6]

3) Sublimation of the solvent: Once complete solidification of the sample is achieved,

the sample is kept at conditions of low temperature and pressure to convert the solidi-

fied solvent into gas. Porosity is created where the solvent crystals were, so that a green

porous structure is obtained. The porosity is a direct replica of the solidified solvent

structure.
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4) Sintering: Finally, the green body can be sintered with conventional sintering tech-

niques. During this stage, porosity in the ceramic walls can be removed by carefully

selecting the sintering temperature, but the macroporosity created by the solvent crys-

tals is retained.

1.2.2 Pore architecture

Looking at the cross-section, ice-templated specimens can be divided in three different

zones based on their pore shape and dimensions, Fig. 1.11. In zone 1, the closest to the

cold source, no macroporosity is observed and the layer is dense. In the second zone,

the material is characterized by a cellular, randomly oriented morphology. Finally, in the

zone 3, the porosity is long, lamellar (in the case water is the solvent) and aligned in the

moving direction of the ice front [40]. It is the later zone (also called Steady-State Zone,

SSZ) that attracted most of the interest, mainly because its pores exhibit a low tortuosity

and their microstructure can be related easier with the experimental conditions.

Figure 1.11: Typical porosity microstructure of an ice-templated samples showing the three distinctive zones [40]

Within this zone, the microstructure can be controlled based on the physics of solvent

solidification [41]. Particularly, the ice-tip radius (and as a consequence the thickness

of the ice crystals) can be modified by increasing or decreasing the cooling rate during

freezing. For fast cooling rates, supercooling becomes larger and the ice crystals smaller.

Under a very slow cooling regime, the ice crystals become thicker. Frequently, the mi-

crostructure in this zone is defined by its wavelength (λ), which is the average thickness

of a single ceramic wall plus its adjacent macropore [6], Fig 1.12. Several publications

have reported the effects of solidification kinetics in ice-templated materials [6] [42]

[43] [44] showing that λ follows an empirical relationship with the ice front velocity
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(ν), Eq. 1.7.

Figure 1.12: Ice crystal formation and particle segregation during ice-templating [6]

λ = Aν−n (1.7)

where A and n are fitting parameters dependent on viscosity, solids loading, particle size

[6] [45]. However, it is clear that it is extremely complex to predict the pore size (or any

microstructural parameter) through a simple analytical expression because the freez-

ing kinetics depend on a large number of factors (the interfacial free energy between

the particles, the water and the ice front; the particles size, distribution and content;

the interactions of the particles with themselves; the anisotropic effects of the surface

tension of ice; the buoyancy forces acting on the particles; the viscosity of the slurry;

the diffusion of the solute away from the interface; the latent heat diffusion; etc [6])

and additionally most of these factors are interlinked. Nevertheless, it is possible to

broadly classify (Table 1.2) the experimental tools used to modify, and hence to tailor,

the porosity in ice-templated materials in:

1. Chemistry of the slurry: solvent, material, particle size, additional binders, disper-

sants or other additives additives.

2. Operational conditions: temperature profile, mold material, freezing surface, etc
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Structural Feauture Control Length Scale Reference

Orientation and alligment

of llamella

Patterning, temperature gradient,

applied electric field
100 µm [37]

Shape of the pores
Additives solid content, solvent,

solidification velocity
5 - 200 µm [37]

Thickness of llamellae,

pore dimensions

Solidification velocity, particle size,

solid loading
2 - 200 µm [46][40]

Surface roughness of llamellae
Additives, solidification velocity,

particle size
50 nm - 10 µm [37]

Ceramic bridges Additives 2 - 50 µm [37]

Pore interconnectivity Solids Content µm [40]

Table 1.2: Structural features of ice-templated materials [37]

1.3 Oxygen transport membranes

1.3.1 Transport mechanism

Essentially, OTMs consist of a thin (10 µm - 3mm.), dense ceramic membrane where oxy-

gen ions diffuse across the membrane, usually via crystallographic defects [47]. Among

many crystal structures available for this kind of materials, most of the high of oxygen

permeation materials exhibit either a fluorite or perovskite structure. The reason is be-

cause these structures tolerate a large amount of nonstoichiometry that permits them

to obtain high number of oxygen vacancies and/or interstitial sites and consequently

enhance the oxygen ionic conduction.

The oxygen transport is shown schematically in Fig. 1.13 and involves three progressive

steps:

Figure 1.13: Different steps involved in oxygen transport during oxygen permeation [47]

1. Dissociation of oxygen molecules into oxygen anions at the high partial pressure

side. This process is known as surface-exchange and can be described by:

1

2
O2(g) + 2e− + Vo

∗∗ Oo
x (1.8)
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2. Ambipolar bulk-diffusion of oxygen anions and electron/holes across the mem-

brane.

3. Recombination of oxygen anions into oxygen molecules on the low partial pressure

side of the membrane. In this step, the surface-exchange reaction can be described

by:

Oo
x 1

2
O2(g) + 2e− + Vo

∗∗ (1.9)

Each mechanism has the potential to become the rate-controlling step and the slowest

process will limit the overall permeation flux. The rate of each process is determined

by the composition and geometry of the membrane as well as the operating conditions.

For relatively thick membranes (thickness > 100 µm), solid state diffusion commonly

controls the process and oxygen flux can be described by the Wagner equation (Eq.

1.10)[48]:

JO2
=

RT

16F 2L

∫ PO2

′

PO2

′′

σel ∗ σion
σel + σion

dLnPO2

′

(1.10)

where JO2
is the oxygen permeation flux, R is the gas constant, F is the Faraday con-

stant, L is the membrane thickness, PO2

′

and PO2

′′

are the oxygen partial pressures at the

high pressure side and low pressure side, respectively, σel is the electronic conductivity,

and σion is the ionic conductivity.

1.3.2 Performance and limitations in oxygen permeation flux

Eq. 1.10 shows that JO2
can be increased by controlling the operating parameters, pres-

sure and temperature, but changing these parameters can also affect the membrane

stability. For instance, increasing the feed gas pressure difference between both surfaces

generates an increase in the oxygen flux; but also yields a mismatch of the mechanical

stress state for both surfaces. The greater the pressure drop across the membrane, the

greater the internal stresses which may finally lead to catastrophic failure of the mem-

brane. Consequently, this approach is mechanically limited by the membrane strength.

Moreover, as can be seen in Eq. 1.10, temperature directly affects the oxygen flux and

additionally it has a strong impact on the ionic/electronic conductivity. Fig. 1.14 shows

that the temperature dependence is increasingly important at temperatures above 800

°C. Thus, operating temperatures are typically at or above 800 °C. At these tempera-

tures, membranes are exposed to different gas environments for an extended period of

time that could lead to chemical and structural degradation of the membrane, particu-

larly if reducing atmospheres are used. The maximum oxygen partial pressure gradient
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across an OTM is also limited by the membrane’s ability to withstand differential chem-

ical expansion arising from the different oxygen occupancy levels on the low PO2

′′

and

high PO2

′

sides of the membrane. This chemical expansion derived stress compounds

with stresses resulting from pressurized feed gases, as discussed above.

Figure 1.14: Oxygen permeation fluxes at different temperatures and membrane thickness. [47]

Clearly, OTMs must withstand harsh thermomechanical stresses before and during high

temperature operation for an extended period of time without any chemical or structural

changes. This combination of continuous stress at high temperatures causes irreversible

time-dependent deformation (creep) that can even lead to a catastrophic failure of the

membrane. This behavior becomes an important factor in the OTM performance and

emerges as a critical factor that severely limits industrial application of current genera-

tion OTM.

With the previous discussion it is apparent that the oxygen permeation flux, for a given

composition, has a performance limit depending on the operating parameters. So, it

becomes crucial to find other ways to maximize the oxygen flux beyond simple varying

pressure and temperature. According to the Eq. 1.10, the oxygen permeation perfor-

mance could be improved with a proper material choice based on its ionic/electronic

conductivity (i.e. maximizing σel ∗ σion/σel + σion). However, this approach could be

difficult to achieve because a significant increase in the ionic conductivity also results

in a higher creep rate (Fig. 1.15), since both phenomena are governed by the same

mechanism, diffusion. For instance, at normal operating temperatures (800-900 °C),

temperatures needed to obtain a sufficient ionic/electronic conductivity, a low creep rate

is required to ensure mechanical stability. Generally, decreasing the creep rate is accom-

plished by means of forming stronger, more covalent bonds between atoms that hamper

diffusion. However, this will also have a detrimental effect on the oxygen diffusion nec-

essary to provide a reasonable flux. The fact that both properties (creep rate and ionic

conductivity) are highly interconnected makes it difficult to improve the performance by
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modifying composition since there must be a compromise between mechanical stability

and oxygen flux.

Figure 1.15: Relation between ionic conductivity and creep rate for different ceramics. Yttria Stabilized Zirconia (YSZ),
LaSrGaMgO(LSGM), LaSrCoO(LSC), BaSrCoFeO (BSCF), and SrCoFeO(SCF).

Because oxygen flux is inversely proportional to the membrane thickness (Eq. 1.10),

one of the most used approaches is reducing the membrane thickness as low as possible,

Fig. 1.16. However, it has to be noted there is a limit to this behavior caused by chang-

ing the rate limiting mechanism from diffusion to the surface exchange reaction when

the thickness is reduced, which means that Wagner equation (Eq. 1.10) is no longer

applicable. Thus, there is a limit in the thickness reduction, beyond which the oxygen

flux does not improve and the membrane is too thin to support the mechanical stresses.

From a reliability point of view, it is very important to determine this point to maximize

the oxygen flux without overly impacting mechanical stability.

Figure 1.16: Relationship between oxygen flux and membrane thickness in La0.2Ba0.8Co0.8Fe0.2O3−x [49]
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1.3.3 Asymmetric membranes

When the membrane thickness becomes very low (<100 µm), a porous support is

needed to provide the mechanical strength required and facilitate the gas transport.

This configuration is called an asymmetric membrane (Fig. 1.17), and it has led to recent

performance improvements [50]. However, this approach brings mechanical stability

issues at high-temperature, mainly caused by the high coefficient of thermal expansion

(CTE) observed in most of OTM ceramic materials. A CTE mismatch between the dense

layer and the substrate may generate cracks that could compromise performance. To

prevent this problem, the porous substrate may be fabricated with the same material as

the dense layer, or the CTEs of the two materials should be matched.

Figure 1.17: Cross section of an asymmetric membrane assembly consisting of porous support, dense membrane layer,
and porous surface activation layer made from Ba0.5Sr0.5Co0.8Fe0.2O3−δ [2]

In addition, the introduction of a porous substrate also generates a source of resistance to

the oxygen flow. Since gas diffusion through the pores is the main transport mechanism

through the support, the architecture of the pore structure should provide a compromise

between maximizing gas flow and mechanical properties. All of these resistances (sur-

face exchange, solid state diffusion across the membrane, and gas diffusion through the

porous structure) are intrinsic to the process and thus cannot be removed. As a result, it

is critical to understand the controlling mechanisms and ameliorate them as a function

of membrane composition, membrane architecture, and operation conditions.
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2.1 Sample processing

2.1.1 Ice-templated specimens (unidirectional porosity)

Ceramic suspensions were prepared by mixing distilled water with 3 mol% yttria-stabilized

zirconia (TZ-3YS, particle size dp 50 = 0.6 µm, Tosoh, Tokyo, Japan) at different weight

ratios (from 40% to 70%), 0,75 wt% of dispersant (Prox B03, Synthron, Levallois-Paris,

France), and 3 wt% of organic binder PVA (PVA2810, Wacker, Burghausen, Germany).

The slurry was magnetically stirred during 5-10 mins before adding a new component

and then, ball milled for a minimum of 18 h to break up the agglomerates to ensure a

good dispersion. Table 2.1 shows the specific composition for the slurries investigated

in this work.
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Component 40 wt.% SL 50 wt.% SL 55 wt.% SL 60 wt.% SL 65 wt.% SL 70 wt.% SL

Water 29,90g 34,32g 31,57g 28,70g 25,26g 21,60g

TZ-3YS 21,67g 39,00g 45,22g 52,50g 60,36g 70,00g

Prox B03 0,75 wt.% 0,16g 0,29g 0,34g 0,39g 0,45g 0,52g

PVA2810 3 wt.% 3,25g 5,85g 6,78g 7,88g 9,05g 10,50g

Table 2.1: Details of the standard slurry studied in this work. All the weights are calculated to obtain 50 ml of slurry.

Also, a small set of experiments was prepared based on composition in Table 2.1 and

using Ca(Ti,Fe)O3 (CTF) with a density of ρctf = 4, 0gcm−3) as a raw material instead

of YSZ. The results will be compared with YSZ as a model material. The choice of these

two materials is twofold:

• 1) to assess that the source of the concerned properties (strength and permeability)

is the pore architecture rather than the nature of the material

• 2) the applicability of both materials on energy production purposes, so this infor-

mation can be useful for future work.

Additionally, the composition of a second set of samples was modified to obtain a dif-

ferent pore morphology. First, distilled water was mixed with 5 wt.% of PEG 6M as a

binder (Merck), and zirconium acetate (ZRA) as a pore modifier in a concentration of 20

g/L. The specimens prepared with this composition will be referred later on as a "Hon-

eycomb" due to the ability exhibited by ZRA to generate hexagonal pores [51]. Finally,

3 mol% yttria-stabilized zirconia (TZ-3YS, Tosoh, Tokyo, Japan) was added to the slurry,

stirred, and ball milled. The details of the "Honeycomb" slurry are shown in Table 2.2.

Component 50 wt.% SL 55 wt.% SL 60 wt.% SL 65 wt.% SL

Water 34,78g 33,88g 32,55g 31,21g

TZ-3YS 39,00g 46,44g 54,75g 65,00g

ZRA 20 g/L 5,42g 5,28g 5,07g 4,86g

PEG 6M 5 wt.% 1,95g 2,32g 2,74g 3,25g

Table 2.2: Details of the "Honeycomb" slurry. All the weights are calculated to obtain 50 ml of slurry.

The ice templating process consisted of pouring 10 ml of slurry into a PTFE mold (20mm

diameter 25mm height) placed on a copper cold surface. The cooling rate was controlled

adjusting the temperature of the freezing source. The top of the samples was exposed

always to air and kept at room temperature. So the freezing of the slurry occurred

unidirectionally following the temperature gradient (from bottom to top). Two different

systems have been used to achieved a clearly differentiated freezing conditions. Fig.

2.1-A shows the set-up used for the slowest cooling rate. The freezing temperature was

controlled by circulating silicone oil regulated by a cryothermostat (Hubert CC 905).

This system is capable to control accurately the freezing rate between 1 - 3 °C/min. In
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this work, the cooling rate was set at 2 °C/min and monitored by a thermocouple placed

inside the copper plate, Fig. 2.1-B. The cooling rate was determined to be 2 °C/min.

Figure 2.1: A) Freezing set-up used to achieve the cooling rate of 2 °C/min. B) Evolution of temperature with time for
the set-up shown in a).

A faster cooling rate was achieved by dipping a copper finger in a container with liquid

nitrogen (Fig. 2.2-A). The same molds were placed on top of the copper rods and the

temperature was tracked by a thermocouple set near the freezing surface. This system

allows a less accurate control of the cooling rate determined by holding the liquid ni-

trogen level in a specific height. In this work, the volume of liquid nitrogen was kept

constant and the cooling rate was determined to be ≈ 30 °C/min, Fig. 2.2-B.

Figure 2.2: A) Freezing set-up used to achieve the cooling rate of 30 °C/min. B) Evolution of temperature with time for
the set-up shown in A).
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After solidification, samples were removed from their molds and sublimated for at least

48 h at 0.2 mbar in a commercial freeze-dryer (Free Zone 2.5 Plus, Labconco, Kansas

City, Missouri, USA).

2.1.2 Pore formers specimens (isotropic porosity)

Samples with a non-oriented porosity were also prepared to be compared with those

made by ice templating. The same zirconia powder was mixed with commercially avail-

able polypropylene (Propyltex 140S, particle size dp 50 = 50 µm, Micro Powders Inc,

Tarrytown, USA) as a pore former at different weight ratios (50%, 60%, and 70%). The

blend of powders was added in a distilled water and then, magnetically stirred and ball

milled for a minimum of 24 h to break up the agglomerates and ensure an homogeneous

mix. Afterwards, the slurry was frozen by dipping the container in liquid nitrogen and

freeze-dried to remove the water. Then, 8g of the obtained mix of powders was pressed

at 0,8 MP in a mould of 20 mm diameter. The size and amount of pore formers was

adjusted to be comparable with the samples prepared by ice templating and isolate the

effect of pore directionality.

2.1.3 Ice templated tubes

The set up used to ice templated tubes consisted on a cryothermostat (Hubert CC 905), a

freezing liquid, a metallic container, a tube-shape mould and a rotation system attached

to it, Fig. 2.3.
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Figure 2.3: Set-up developed to freeze under rotation and produce ice-templated tubes.

The procedure started preparing a ceramic slurry in the same way as it was done to ice

template monoliths (Fig. 2.4-a). The tube-shape mould was first cleaned with ethanol

(Fig. 2.4-b) and the two half tubes and the bottom cap were assembled. A clean and

scratch-free surface are critical points to minimize the presence of defects on the tubes.

Silicon grease was applied in the junction of the pieces to avoid leaks of slurry. Then,

a controlled quantity of slurry was poured into the mould and the second cap was as-

sembled (Fig. 2.4-c). Like in any system used to produce samples by ice templating, it

is necessary to precisely control the temperature of the freezing agent. In this case, the

metallic container was first cooled down circulating the freezing liquid during 10-15 min

at a preset temperature. Once the temperature of the system was constant the silicon

oil was pumped out of the container and the tube was attached to a rotation system. All

the tests were performed at a rotation speed of 70 rpm. Then, the silicon oil is pumped

in again in the container until it achieves a steady flow. Afterwards, the slurry is left

5 mins under rotational freezing (Fig. 2.4-d). The next steps are similar as in any ice

templating process: demoulding (Fig. 2.4-e), freeze drying (Fig. 2.4-f), and sintering

(Fig. 2.4-g).
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Figure 2.4: Schematic of the process to obtain ice-templated tubes

This process was repeated several times with few variations on the experimental condi-

tions to assess the effect of each one on the pore morphology of the tubes. The exper-

imental conditions studied were: solids loading of the initial slurry (50 wt.%, 55 wt.%

and 65 wt.%), temperature of the freezing medium (-30 °C and -80°C), and amount of

slurry poured into the mould (16, 18, and 20 ml).

2.1.4 Sintering

Specimens were sintered in air by heating to 500°C at 3 °C/min with a 5h hold to ensure

a proper organic burn out. Afterwards, they were sintered between 1300°C and 1400°C

at 5 °C/min and held 3h to evaluate the effect of densification in the walls. Then,

samples were cooled down to room temperature at 5 °C/min. An schematic of the

complete sintering cycle is shown in Fig. 2.5. Specimens with isotropic porosity were

sintered following a similar cycle with an extra step at 900°C and a heating rate of 0,25

°C/min to ensure a proper pore formers burn out and crack free samples.
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Figure 2.5: Description of the sintering cycle used in ice templated samples.

2.2 Characterization

2.2.1 Morphological

The overall porosity, P(%), was calculated based on the mass (m) and volume (V) of the

samples with respect to that of fully dense TZ-3YS (ρysz = 5, 8gcm−3), as:

ρrel =
ρ

ρysz
=

mV −1

ρysz
(2.1)

P (%) = (1− ρrel)× 100% (2.2)

The results were confirmed in some specimens by the Archimedes method (ASTM B962-

13) and a good agreement was found. The determination of pore size and wall thickness

distributions were performed by image analysis using the "Local thickness" plug-in of the

Fiji software [52]. First, the plug-in requires a binarized form of the image to separate

between solids and voids. Afterwards, it fits the diameter of the largest sphere inside the

void. This process is repeated until the totality of the pore is filled.

The sample preparation was; first, the specimen was sonified in water during 15 mins

to remove the debris entrapped in the macroporosity and dried afterwards at 40°C for

24h. Then, it was infiltrated in vacuum with an epoxy resin (EpoFix, Struers, Denmark)

and cured for at least 24 h. Next step was manual polishing using pads of 58 µm, 40

µm, 26 µm, 15 µm, and 10 µm . In order to homogenize the data and give a result more
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representative of the sample, all the images were taken from different locations in a cross

section perpendicular to the freezing direction (7 mm from the bottom of the sample)

with a scanning electron microscope (FEI Nova NAnoSEM) at 10-15 kV. The resolution

of the images used to evaluate pore size and wall thickness was 0.5 - 1.5 µm/pixel, a

value relatively smaller compared with the final polishing pad size. The results were

confirmed by mercury intrusion porosimetry (AutoPore IV 9500, Micromeritics) with an

applied pressure up to 0,31 bar.

2.2.2 Mechanical testing

Monoliths

The mechanical properties of specimens with isotropic (pore formers) and anisotropic

(ice-templated) porosity were measured by a compression test (Lloyd Instruments) at a

crosshead speed of 0.5 mm/min to evaluate the effect of each pore descriptor on strength

and reliability. The ice-templated specimens were tested with the pores aligned parallel

and perpendicular to the load. The crush tests were carried out at a crosshead speed of

0.5 mm/min. The bottom and the top of the samples were removed with a slow speed

saw leaving a final dimensions around 15 mm diameter and 17 mm height. In order to

minimize the effect of superficial defects and misalignment, a cardboard pad was placed

on both sides of the samples. In all the tests, the maximum load right after finishing

the elastic stage was recorded and used to calculate the compressive strength. Fig. 2.6

shows the equipment used.
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Figure 2.6: Description of the equipment used in the compressive tests.

Afterwards, a two-parameter Weibull analysis was applied to the compressive strength

data to predict the probability of failure (Pf ) for a given stress (σ) through the expres-

sion:

Pf = 1− exp

[

−

(

σ

σ0

)m]

(2.3)

where m is the Weibull modulus and σ0 the characteristic strength where Pf = 0,632. To

obtain an unbiased measurement of m, a minimum number of 15 samples were tested.

The Weibull modulus (m) was calculated as follows. For each of the 5 groups, the

strength values were ranked in ascending order, i = 1, 2, 3, ..., N, where N is the total

number of specimens in the group and i is the ith position in the same group. This allows

a ranked probability of failure to be assigned to each result according to:

Pf =
i− 0, 5

N
(2.4)
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The next step was to plot the data in a LnLn(1/1-Pf) vs. Ln σ form and fit a linear

regression. The slope of the line is the Weibull modulus (m).

If we want to compare the Weibull modulus of the various samples and interpret dif-

ferences between them, it is important to understand the statistical confidence interval

that result from our data and fitting procedures. Therefore, we fit the data using two

different techniques. First, m and σ0 were determined from an ordinary least squares

(OLS) fit of (LnLn(1/(1 − Pf ))) versus (Lnσf ) where the slope of the resulting line is

m and (σ0) is the solution to LnLn(1/(1− Pf )) = 0. Second, a Bayesian Markov Chain

Monte Carlo (MCMC) was applied to directly fit the data to the nonlinear Eq 2.3

Tubes

Mechanical properties of ice-templated tubes were characterized through three different

tests: 1) Four-point bending on half tubes, 2) O-Ring test, and 3) compression test. All

the experiments were conducted in a testing machine Shimadzu, AGSX with a 10kN load

cell and a crosshead speed of 0,2 mm/min.

• 1) Samples were cut with a low-speed saw first in the radial direction and then

in the longitudinal one with a final length (L) = ≥ 55 mm, and external diameter

(Dext) = 10 mm. The spacing between the outer supports was adjusted to S1 = 40

mm whereas the span between the inner supports was S2 = 20 mm. Fig. 2.7a and

2.7b show the equipment used and a representation of the distribution of forces

during the test, respectively

(a) (b)

Figure 2.7: Detail of the equipment used in the characterization of flexural strength of half tubes b) Test configuration
of four-point bending of half tubes [53].

• 2) Eight tubes were sliced in the radial direction with a low-speed saw leaving
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specimens with an external diameter (Dext) = 10 mm, height (h) ≈ 4 mm, and

thickness (t) ≈ 2 mm. Tests were performed with a piece of alumina supporting the

samples to avoid the rotation and distribute evenly the load through the surface.

An schematic of the system used and a sample description are shown in Fig. 2.8a)

and b).

Figure 2.8: a) Characterization of the radial strength by an O-ring test. b) Detail of the test configuration.

• 3) Sample preparation for the compression test was carried out similarly as the

O-Ring test. The final dimensions were: external diameter (Dext) = 10 mm, and

height (h) ≈ 12 mm. Specimens were loaded in the axial direction until a signifi-

cant drop in the load (≥ 10%) was observed. Afterwards, the compressive strength

was calculated based on the peak stress divided by the contact area.

2.2.3 Pressure drop (Permeability)

Gas permeability was measured using an equipment build in house (Fig. 2.9) and based

on the ASTM standard C577-99. Synthetic air was passed through the samples which

were held by a silicon ring. A preliminary test was performed to evaluate the existence of

leaks. The air flow studied ranged between 0-25000 ml/min (0-2 m/s) and it was con-

trolled by an electrovalve. Two sensors were placed right before and after the specimens

to record the inlet and outlet pressure at room temperature and afterwards calculate the

pressure drop. Due to experimental limitations, the pressure drop could not exceed 350

MPa.
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Figure 2.9: Set-up used to measure the pressure drop

The pressure drop was measured in ice templated samples with different pore structure

(pore volume, size, and morphology) and in samples processed by pore formers. At

least 3 samples per condition were tested. In the case of ice templated specimens, it was

cut off 2 mm from the bottom to remove the transition zone (part with non-directional

porosity) and test exclusively the part with lower tortuosity. The pressure drop test was

performed with the pores aligned parallel to the flow. The final dimensions of all the

specimens were 12-15 mm thickness (L) and 15 mm diameter. The same type of test was

performed in ice templated tubes with one closed side. Their dimensions were; 120 mm

length (L), 10 mm external diameter (Dext), and 6-7,5 mm internal diameter (Dint).

Permeability was evaluated using the Forchheimer’s equation adapted for compressible

fluids, Eq. 2.5:

∆P

L
=

Pi
2 − Po

2

2PoL
=

µ

k1
νs +

ρ

k2
νs

2 (2.5)

where L is the thickness of the sample (parallel to the flow), µ and ρ are the viscosity

and the density of the fluid (air at 25 °C), ∆P is the pressure drop, k1 and k2 are the

Darcian and non-Darcian permeabilities, and νs is the fluid velocity (air flow divided by

the cross-sectional area of the sample).
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This chapter briefly presents the effect of experimental parameters on pore volume, pore

size, wall thickness, and pore shape of ice-templated materials. Further discussion on

microstructural control will be addressed in the subsequent chapters, highlighting the

important features related with the property studied in each section. Table 3.1 sum-

marizes the most relevant pore descriptors and their respective processing conditions.

Most of the discussion presented here is referred to these samples and they will be the

baseline to understand the microstructural control. Fig. 3.1 shows the representative

cross sections obtained for each condition reported in Table 3.1.

3.1 Pore volume fraction

Total pore volume is mainly determined by the volumetric ratio between ceramic parti-

cles/water, and referred hereinafter as solids loading. Table 3.1 shows that increasing

the solids loading from 50 wt.% to 65 wt.% reduces porosity from 69,5% to 52,5%.

The main mechanism to create pores is the rejection of particles from the advancing

solidification front, so increasing the solids loading will increase the amount of particles

rejected and consequently lead to a higher relative density. This behavior is independent

of the cooling rate, so two samples with the same solids loading and frozen at different
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rates will have the same total pore volume. This effect can be observed comparing the

porosity (P%) exhibited by specimens a, b, c, and d in Fig. 3.1 and Table 3.1 frozen at

2 °C/min with their counterparts e, f, g, and h frozen at 25 °C/min. These results are

consistent with previous work for the same materials and similar processing conditions

[54] [55] [56] [57] [58].

Sample Solid loading(wt.%) Freezing rate (°C/min) Porosity(%) Mean dpHg(µm) Mean dpIA(µm) Mean wall thickness(µm)

a 50% 2 69,5% 19,1 20,0 ± 8,5 11,2 ± 4,5

b 55% 2 64,2% 17,5 17,7 ± 6,7 14,7 ± 6,2

c 60% 2 60,4% 14,2 13,9 ± 5,5 15,8 ± 6,8

d 65% 2 52,5% 8,3 13,7 ± 4,8 19,1 ± 8,2

e 50% 25 70,4% 5,4 4,7 ± 1,9 3,6 ± 1,5

f 55% 25 65,2% 4,3 4,3 ± 1,7 3,9 ± 1,6

g 60% 25 60,7% 3,9 4,1 ± 1,7 5,2 ± 2,2

h 65% 25 51,5% 2,9 3,1 ± 1,2 3,0 ± 1,3

Table 3.1: Summary of the most relevant pore descriptors and their respective ice-templating conditions. dpHg and

dpIA correspond to the mean pore size obtained by mercury porosimetry and image analysis respectively. At least
two specimens have been evaluated per condition in both characterization techniques, mercury porosimetry and image
analysis.

Figure 3.1: Ice templated microstructures obtained at different conditions a) 50 wt.% and 2 °C/min, b) 60 wt.% and 2
°C/min, c) 65 wt.% and 2 °C/min, d) 50 wt.% and 25 °C/min, e) 60 wt.% and 25 °C/min, f) 65 wt.% and 25 °C/min.
Scale bars: 300 µm

Besides solids loading, pore volume can also be tailored by the sintering temperature.

Obviously, increasing the sintering temperature decreases the total pore volume. How-

ever, the description of the phenomena is much more complex than that, since we must

consider both types of porosity (between the walls and inside the walls) present in ice-

templated materials and understand how they evolve with sintering temperature. This
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topic will be addressed in more detail in Section 4.3.2.

3.2 Pore size

For ice-templated materials, freezing rate mainly controls the pore size. As Table 3.1

shows, samples frozen at 2 °C/min (samples a, b, c, and d) exhibit a mean pore size

between 10 and 20 µm, while the samples frozen at 25 °C/min (samples e, f, g, and

h) have an average size in the range of 3-5 µm. When a colloidal suspension is frozen

faster, the magnitude of supercooling ahead of the ice front increases and the tip ra-

dius of the ice crystals decreases, thus creating a finer microstructure [46]. Pore size

evaluation was performed using two different techniques: image analysis and mercury

porosimetry. Both give comparable results in all the experimental conditions with the

exception of the specimen "d". The most likely reason is because increasing the particle

concentration in the solution increases the probability to create volumetric defects as

bottle-necks or closed pores that will affect the measurement by mercury porosimetry

but not necessarily in the image analysis.

However, freezing rate is not the only parameter affecting the pore size. Since crystal

dimensions are determined by the solidification kinetics of the solvent and the tempera-

ture gradient, any parameter that could modify it such as variations in pH, particle size,

or additives may have a direct impact on pore size [59]. In addition to these parameters,

the initial solid loading of the slurry also affects the pore size. However, this is based

on a physical effect rather than a kinetic one. When the solids loading increases there

are more particle being rejected by the solidification front and thus limiting ice crystal

growth. As shows Fig. 3.2 Samples with 50 wt.% and 55 wt.% solids loading (samples

a and b) exhibit a similar bimodal distribution, with two predominant peaks at 25 µm

and 15 µm. Both peaks can be correlated with the pores left by the primary ice crystals

(25 µm) and the smaller sencondary dendrites (15 µm) [39]. When the solids loading

increases, the ice crystal growth is hindered by the high concentration of particles to be

rejected and thus the remaining pores become smaller and more homogeneous in size.
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Figure 3.2: Pore size distributions obtained by image analysis for 50 wt.% (red), 55 wt.% (green), 60 wt.% (yellow),
and 65 wt.% (blue)

3.3 Wall thickness

Wall thickness can also be controlled by sample processing conditions. Increasing the

freezing rate decreases the thickness of the ceramic walls caused by the shrinking space

available between the growing crystals. The other parameter that plays an important

role in controlling the wall thickness is solids loading, Table 3.1. This effect is not

surprising if we consider that when the solids loading increases there are more particles

being rejected and packed by the ice crystals. Fig 3.3-A shows how the mean wall

thickness becomes larger and the distribution broader when the solids loading increases.

In contrast, this behavior seems to be less important when the freezing rate increases.

Specimens frozen at 25 °C/min (Fig 3.3-B) have a similar distribution independent of

the solids loading and the mean wall thickness remains roughly constant.
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Figure 3.3: Pore size distribution obtained by image analysis of ice templated samples frozen at A) 2 °C/min B) 25
°C/min.

Wall thickness and pore size seem to be directly related. Most publications use the pa-

rameter wavelength (λ = pore+wall) to characterize ice templated materials. However,

as reported by Lichtner et al. [44], the rate of variation for both microstructural pa-

rameters is not equal. In order to identify the dependence of solids loading on the final

microstructure, wall thickness and pore size have been plotted separately (Fig. 3.4). In

this case, for an increasing solids loading, the pore size decreases roughly 50% slower

than the increase in wall thickness. The reason for this variation is because both phe-

nomena are principally controlled by two independent mechanisms:

• 1) size of the ice crystals (and thus the remaining porosity) is highly sensitive to

the solidification speed.

• 2) wall thickness is mainly determined by the amount and level of densification of

particles stacked in between the aforementioned crystals

Therefore, we can tailor the wall thickness through the solids loading and sintering tem-

perature while holding pore size approximately constant adjusting the cooling rate. Also,

we conclude that λ, as reported in most literature on ice-templating, is not a sufficient

parameter to unambiguously characterize the microstructure.

–35–



CHAPTER 3. MICROSTRUCTURAL CHARACTERIZATION OF ICE-TEMPLATED

SAMPLES

Figure 3.4: Wall thickness and pore size dependency on solids loading. Samples were frozen at 2 °C/min and both
microstructural dimensions obtained by image analysis. m corresponds to the slope of the trendline.

3.4 Pore shape

Pore morphology is primarily defined by the nature of the solvent [60]. Many solvents

have been used before: water [46] [61], camphene [62] [54] [55] [63], TBA, [64]

[65] [66], cyclohexane [67]. In the case of water, pores usually exhibit a lamellar

morphology, (Fig 3.1). However, the addition of components such as glycerol [37] [68],

polystyrene [62], or sucrose [37] can modify the pore size and shape.

The addition of zirconium acetate (ZRA) turns the pore morphology into a honeycomb-

like structure with smooth surfaces [51]. Even though the pore morphology changes,

the fundamental mechanism for pore formation remains unaltered, and therefore, it is

possible to control the pore morphology independently of the total pore volume. How-

ever, the addition of ZRA modifies the pore size distribution, even if the solids loading

and the freezing rate used are identical to samples processed without ZRA, as Fig. 3.5

shows.
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Figure 3.5: Pore size distribution of ice templated structures with ZRA (honeycomb) and without (lamellar). Solids
loading used was 65 wt.% and freezing rate 2 °C/min in both cases. Scale bar = 300 µm

In this chapter we covered the most important aspects controlling pore microstructure

of ice-templated materials. We identified solids loading, sintering temperature, freezing

rate, and additives as the main experimental parameters tailoring total pore volume,

pore size, wall thickness, and morphology. In the subsequent chapters the microstruc-

tural characterization will be further addressed with special emphasis on the structural

features relevant for each chapter’s topic.

–37–



Chapter 4

Mechanical properties and failure

behavior of unidirectional porous

materials

Contents

4.1 Microstructures evaluated . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Prediction by mechanical models . . . . . . . . . . . . . . . . . . . 40

4.3 Compression tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Effect of solids loading, pore size, and pore morphology . . . 44

4.3.2 Effect of sintering temperature . . . . . . . . . . . . . . . . . . 48

4.3.3 Anisotropic strength . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Mechanical reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Why is reliability important? . . . . . . . . . . . . . . . . . . . 51

4.4.2 Weibull analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Strength of porous ceramics is usually increased by decreasing the total pore volume,

even though it may degrade other functional properties. Morphological parameters such

as pore size, shape, or tortuosity can become crucial to maximize the performance while

maintaining high strength. For example, a significant improvement in strength can be

achieved by engineering anisotropic structures to mechanically reinforce the direction

of the main stress. This strategy is used extensively in natural materials such as trabec-

ular bone, cork, or wood [9]. However, most of the techniques conventionally used to

produce macroporous ceramics with aligned porosity do not offer this level of flexibility.

Ice-templating provides independent control of the pore architecture (pore volume, size,

and morphology) through initial solids loading, cooling rate, or additives. Therefore,

ice-templating, as described in Chapters 2 and 3, is used to ptoduce the unidirectional

porous ceramics tested here.
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As predicted by Gibson and Ashby [10] [20] [69], the architecture greatly determines

the mechanical response. Identifying the failure mechanisms that govern fracture can

lead to more optimized architectures and better performances. However, ice-templated

materials have more complex structures than the models proposed in [10] [20] [69].

Recently, different groups studied the mechanical properties of ice-templated materials

based on their pore structure. For example, Ojuva et al. [70] investigated the effect of

solids loading and freezing temperature on zeolite materials and related the compressive

strength to the pore aspect ratio. Porter et al. [59] found a similar result in T iO2

by controlling the pore size through the polyethylene glycol (PEG) viscosity, pH, and

isopropanol alcohol (IPA) concentration. Hunger et al. [71] described the mechanical

behavior of a chitosan-hydroxiapatite composite using an hybrid model accounting for

the unidirectional pores and the porosity in the walls. However, these studies are limited

to a narrow porosity range (>80%) and a compiling work describing the microstructural

effects on compressive strength of unidirectional porous materials is still lacking.

Our objective in this chapter is to characterize the compressive strength of ice-templated

ceramics in a broad porosity range and link their mechanical behavior to the architec-

ture. Also, we will discuss the effects of pore volume, size, and shape on the failure

mechanisms, to assess the validity of the Ashby models for the prediction of the com-

pressive strength of unidirectional porous materials.

4.1 Microstructures evaluated

We used the knowledge gathered in Chapter 3 to process ice-templated materials with

a controlled pore volume, size, and shape. For the sake of comparison, Fig. 4.1 shows

representative microstructures at a given pore volume (around 51%) and Fig. 4.2 shows

their pore size distributions. Although all of them were ice-templated with the same

solids loading, and hence same total pore volume, variations in the experimental condi-

tions such as cooling rate (Fig. 4.1-b) and additives (Fig. 4.1-c) caused the differences

in the pore size distributions.

Figure 4.1: Micrographs of ice-templated samples a) frozen at 2°C/min, b) frozen at 25°C/min, c) frozen at 2°C/min
with zirconium acetate (ZRA), and d) made by pore formers. In all cases the sintering temperature was 1400°C and the
total pore volume was around 51%.

Additionally, a set of samples with isotropic porosity (Fig. 4.1-d) was also prepared by
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organic burn-out to assess the effect of pore directionality. These specimens were pre-

pared following the processing protocol typically used in these type of materials. Since

the macroporosity obtained by this technique is a replica of the organic part originally

mixed with the ceramic powder, the total pore volume is controlled by the organic-

ceramic ratio. Pores are homogeneously dispersed with no preferential orientation, leav-

ing an isotropic material. The processing parameters (volume and size of organic, and

sintering temperature) were adjusted to obtained a total pore volume and mean pore

size comparable to sample Fig. 4.1-a. However, Fig. 4.2 shows that the pore size distri-

bution is remarkably broader in the isotropic samples compared with the ice-templated.

Figure 4.2: Pore size distribution obtained by image analysis of samples shown in Fig. 4.1.

4.2 Prediction by mechanical models

The most widely used models to predict the mechanical response of cellular materials

were developed by Gibson and Ashby [10] [69]. The models differentiate between

three morphologies: open-cell, closed-cell, and honeycomb (Fig. 4.4). Although they

have been applied to different mechanical properties such as fracture toughness, creep,

or Young modulus, this work only covers the compressive strength described by:

• Closed-cell (brittle crushing)

σ = σp

(

C6

(

φ
ρ∗

ρ0

)

+ C
′′

6 (1− φ)
ρ∗

ρs

)

(4.1)
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where C6 = 0.65 and C
′′

6 = 1 are geometric constants determined empirically, φ

represents the solid fraction in the edges, ρs and ρ∗ are the apparent density of

the dense and cellular material respectively, and σp the modulus of rupture of the

solid material within the walls.

• Open-cell (brittle crushing)

σ = σ0C4

(

ρ∗

ρ0

)3/2

(4.2)

with C4 = 0.2, and where σp, ρs, and ρ∗ have the same meaning as in the closed-

cell model.

• Honeycomb (out of plane)

σ = 6Es

(

ρ∗

ρ0

)3

(4.3)

where Es is the Young’s modulus of the corresponding dense material, and ρs and

ρ∗ are again the apparent density of the dense and cellular material respectively.

Fig. 4.4 shows the normalized compressive strength of the ice templated and pore form-

ers samples processed in this work along with those obtained by other processing meth-

ods (replica, foaming, and pore formers) [32]. In all cases, the strength was normalized

by the flexural strength of the bulk material because bending has been identified as the

main failure mechanism in cellular materials within the porosity range studied [72].

This normalization allows us to isolate the effect of pore microstructure as we assess the

mechanical models.

Fig. 4.4 also shows that the strength of specimens processed by either foaming or pore

formers fell in the broad range predicted by the closed (Eq. 4.1) and open cell models

(Eq. 4.2). However, the samples obtained by the replica method always have a lower

strength value than that predicted by Eq. 4.2 due to the presence of microstructural

defects in the struts. The burn-out of the organic template creates this type of flaw that

weakens the structure [73].

On the other hand, ice-templated architectures are better described by the honeycomb

out-of-plane model (Eq. 4.3). Unlike the compressive strength of cellular materials, Eq.

4.3 is normalized by the Young modulus of the bulk material. Fig. 4.3 shows a broken

ice-templated sample that failed perpendicular to the external load at the middle of the

specimen, where the stresses reach the maximum value, and indicative of a buckling

fracture. The combination of anisotropic porosity with interlocking struts between the

main walls, characteristic of the ice-templated materials, prevent the lateral motion and

the shear stresses. This structure becomes more prone to collapse by buckling of the

walls instead of localized bending as it was identified in foams [10] [74] [75]. Buckling
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also has been reported to be the main failure mechanism in different ice-templated mate-

rials [70] [71] and in other unidirectional porous materials processed by wood pyrolisis

[76], extrusion [77], or 3D printing [78].

Figure 4.3: Detail of a buckling fracture in an ice-templated sample with 50 wt.% solids loading, frozen at 2°C/min, and
honeycomb pore morphology.
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Figure 4.4: Normalized compressive strength versus relative density for different macroporous ceramics. Open-cell and
closed-cell models were normalized by the flexural strength of the bulk material, unlike Honeycomb out-of-plane model
that was normalized by the Young modulus of the fully dense material. The solid lines represent the models proposed
by Ashby: Closed-cell (red) Eq. 4.1, Open-cell (green) Eq. 4.2, and Honeycomb out-of-plane (blue) Eq. 4.3. Blue points
correspond to ice-templated samples processed in this work and the rest of the experimental points have been extracted
from [32].

Fig. 4.5 shows the compressive strength obtained experimentally versus the strength

predicted by Eq. 4.3 for three sets of ice templated samples: lamellar frozen at 2°C/min

(Fig. 4.1-a), lamellar frozen at 25°C/min (Fig. 4.1-b), and honeycomb frozen at 2°C/min

(Fig. 4.1-c). The model describes the compressive behavior remarkably well for both

pore shapes. Although the addition of zirconium acetate modifies the pore morphology

towards a honeycomb structure, the ceramic walls are still continuous and oriented par-

allel along the direction of the load, and therefore the predominant failure mechanism is

still buckling. As we showed previously [3], when the continuity of the walls decreases,

like in the dendritic porosity created when camphene is used as a solvent, Eq. 4.3 is not

a good descriptor of the strength. The validity of the model is thus mainly determined

by the directionality and continuity of the walls rather than their cross sections. Nev-

ertheless, the Gibson and Ashby models were initially derived from the response of an

idealized unit cell to a stress and do not consider microstructural effects such as particle
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size, microstructure of the struts, interaction between pores, or pore size. The effects of

microstructure can be observed in Fig. 4.5 where Eq. 4.3 underestimates the strength of

ice-templated samples with smaller pores (3-5 µm). This effect is particularly remark-

able at high relative density where the amount of energy stored during compression is

higher and materials tend to be more brittle. In contrast, at low values of relative den-

sity, the total pore volume and the presence of microstructural defects increase and favor

the progressive damage by buckling of the struts and the fit by Eq. 4.3 becomes more

accurate.

Figure 4.5: Parity plot comparing the experimental and the theoretical strength predicted by Eq. 4.3. The three sets of
samples have been ice-templated at: 2°C/min with lamellar morphology (blue), 2°C/min with honeycomb morphology
(green), and 25°C/min with lamellar morphology (red).

4.3 Compression tests

Compressive strength is the most reported mechanical property for ice-templated mate-

rials due to its simplicity in testing and sample preparation. Nonetheless, it is difficult

to compare with the results in the literature because structures are notably different in

terms of size, morphology, directionality, and even microstructure of the walls. However,

it is possible to point out several trends common in the majority of samples.

4.3.1 Effect of solids loading, pore size, and pore morphology

Representative stress-strain curves recorded during the compression test are shown in

the inset of Fig. 4.6 for three ice templated samples with different pore volumes, an

average pore size of 10-20 µm, and a lamellar shape. All specimens were tested with
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the pores aligned in the direction of the applied load. The P(%)=45% and 62% samples

exhibited an initial linear stage up to a sudden rupture, typical of brittle behavior. In

contrast, samples with higher porosity (P(%)=71%) presented a cellular-like rupture

commonly observed in ceramic foams: after an initial elastic phase, the stress reaches a

steady value caused by the progressive collapse of the struts [9].

Figure 4.6: Compressive strength dependence on porosity in ice templated for samples frozen at 2 °C/min (blue), 25
°C/min (red), and with a honeycomb morphology (green). Isotropic samples made in this work by sacrificial method are
also represented (black). The dashed line corresponds to the Honeycomb out-of-plane model shown in Eq. 4.3.

Fig. 4.6 also shows the effect of total pore volume (from 45% to 80%), size (3-5 µm

and 10-20 µm), shape (lamellar and honeycomb), and directionality (ice-templated and

pore formers) on compressive strength. As expected, when the total pore volume de-

creases the compressive strength increases independent of the pore microstructure and

architecture.

Although samples with isotropic porosity have lower strength than the ice-templated

ones, we must be careful to evaluate the particular role of pore directionality. As Fig.

4.4 shows, the structures that fail by buckling (honeycomb out-of-plane) tend to col-

lapse at higher strength than those that fail by localized bending or shear (open-cell)

at relatively low porosity content. The parallel alignment of the walls with the load al-
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lows a more optimal distribution of the stresses and prevents the bending of the struts

at lower loads. Therefore, we can hypothesize than the optimized microstructure of

ice-templated materials explains this strength increment. However, there are other mi-

crostructural factors that also can play an important role on the mechanical performance

of the isotropic samples such as the broader pore distribution (Fig. 4.2). The presence

of thicker isolated walls and larger pores are features that certainly might impact the

strength through the existence of weaker points and stress concentrators.

Samples with lamellar and honeycomb structure followed a similar trend, and therefore

compressive strength seems to be unaffected by the pore morphology. In contrast, sam-

ples with smaller pore size have a higher strength than their counterparts with larger

pores and similar pore volume. This effect becomes less important when the pore vol-

ume increases, even reaching a point (around 75%) where the strength seems unaffected

by the pore size. Although the influence of pore size has been extensively reported in

different types of porous ceramics [59] [57] [79] [80] [81], the main cause of this be-

havior is unclear and it might result from a combination of factors. One of the main

contributions could be related with the reduction of the volume of the struts. For a con-

stant pore volume, a decrease in pore size leads to a wall thickness reduction, affecting

the probability of finding a catastrophic defect and the strength [82]. The strength of

ceramics is strongly related with the volume of the material solicited, it is therefore more

convenient to describe their mechanical properties based on the distribution of the solid

parts (struts) rather than the organization of the voids (pores). For this reason it is more

accurate to refer this strengthening effect as a wall thickness effect instead of pore size.

A second contribution could be related with the pore organization perpendicular to the

solidification front. Samples frozen at higher cooling rates exhibited a higher degree of

connectivity that aids preventing walls from buckling and/or shearing. [?].

Interestingly, when the pore volume increases the experimental strength values tend to

those predicted by the honeycomb out-of-plane model, regardless of the pore structure.

This behavior might be related with the transition between failure mechanisms (brittle

and cellular-like fracture) [72]. When the pore volume increases above a certain value

(typically above 60%), samples tend to fail progressively after the local buckling of the

struts (Fig. 4.7-b) and pore shape and size become secondary parameters to optimize

to increase the strength. When the pore volume decreases, the material fails in a brittle

manner with cracks propagating parallel to the load (Fig. 4.7-a), and microstructural

parameters like wall thickness distribution are of primary importance to increase the

strength with no further reduction on the pore volume.
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Figure 4.7: Representation of the different failure mode of the walls. a) Brittle fracture observed at low pore volume and
b) Buckling fracture observed at high pore volume. Image extracted from [83].

Finally, we assessed whether the compressive behavior of unidirectional porous mate-

rials is caused by the pore structure and it is not simply a consequence of the material

choice. To answer this question we followed the same ice-templating process and me-

chanical characterization in a second material, in this case Ca(Ti,Fe)O3 CTF. Fig. 4.8

shows the variation of normalized compressive strength with porosity for both mate-

rials. Specimens ice-templated with CTF as raw material followed the same trend as

YSZ. This observation rules out the possibility that the failure mechanism previously de-

scribed is caused by an intrinsic effect of the material choice. Instead, the fact that CTF

follows the same trend confirms that the overall trends in strength are governed by the

pore architecture. Further, it also validates the use of YSZ as a model material where the

results can be extrapolated to other material systems.

Figure 4.8: Compressive strength dependence on porosity for ice-templated samples frozen at 2°C/min in YSZ (blue)
and CTF (red). The strength data was normalized by the flexural strength of the respective bulk material
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4.3.2 Effect of sintering temperature

Total pore volume can also be tailored by the sintering temperature. Fig. 4.9-A shows the

effect of solids loading and sintering temperature on total pore volume P(%). Although,

both parameters can modify P(%), the nature of the variation is different in each case.

The spaces between the walls (interlamellar porosity) are determined for the most part

by the ice templating process and it is a direct consequence of the solids loading and the

sublimation of the ice crystals. Alternatively, porosity in the ceramic walls (intralamel-

lar porosity) is mainly determined by the densification within the walls and therefore

controlled by the sintering temperature. The SEM micrographs in Fig. 4.9-A show the

microstructural evolution in the walls when the sintering temperature increases from

1300°C to 1400°C for a given solids loading (65 wt.%). At 1300°C (Fig. 4.9-a) the resid-

ual porosity was estimated by image analysis to be around 24%, significantly higher

compared to the 12% of the samples sintered at 1400°C (Fig. 4.9-c).

Figure 4.9: (A) Effect of solid loading and sintering temperature on % porosity and evolution of wall densification.
(B) Relation between compressive strength and total pore volume for ice-templated samples frozen at 2 °C/min, with a
pore size in the range of 10-20 µm, and sintered at different temperatures (1300-1400°C). Dashed line represents the
honeycomb out-of-plane model, Eq. 4.3.

The higher densification of the walls at 1400°C increases the observed shrinkage. Sam-

ples sintered at 1300°C exhibited a radial shrinkage of 17%, significantly lower than the

21% obtained at 1400°C. At higher sintering temperatures, the densification of the walls

drives the shrinkage of macropores and therefore the pore size distribution becomes

narrower. This behavior can be observed in the image analysis performed at samples

sintered at 1400°C and 1300°C and shown in Fig. 4.10.

Interestingly, the relative reduction of pore volume caused by the sintering temperature

is remarkably different depending on the initial wall thickness, and hence the particle

concentration used. For example, samples in Fig. 4.9-A with 65 wt.% exhibit a porosity
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reduction around 20% when the sintering temperature increases from 1300°C to 1400°C.

In contrast, at 50 wt.% solids loading the reduction of the total porosity is around 8%

for the same variation in temperature.

Figure 4.10: Image analysis showing the pore size population of ice templated samples frozen at 2 °C/min, 65 wt.%
solids loading and sintering temperature A) 1400°C B) 1300°C.

However, no additional increment in the strength has been observed caused by the re-

duction on the residual porosity in the walls at a given total pore volume, (Fig. 4.9-B).

All the samples, independently of the sintering temperature, followed the same rela-

tionship between strength and porosity as predicted by Eq. 4.3. This suggests that the

compressive strength of ice-templated materials is determined mainly by the total pore

volume, rather than the strength of the individual struts. This result is contrary with Li

et al. [84], that reports an exclusive effect of interlamellar porosity on the strength of

ice-templated materials.
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4.3.3 Anisotropic strength

Ice templated materials are characterized by an anisotropic strength behavior originated

by their highly directional porosity. Fig. 4.11 shows the stress-strain curves obtained

for two representative samples with the same total porosity and pore size but loaded

parallel and perpendicularly to the pores. While the first has the typical brittle behavior

described previously, the former exhibits an initial linear state followed by a progressive

crushing of the struts, similarly as it has been observed in cellular materials. Unlike

parallel samples where the majority of the walls withstand the load, in the perpendicular

direction the ceramic bridges between the struts play the most important role.

Figure 4.11: Representative stress-strain curves for two ice-templated specimens loaded parallel (blue) and perpendicular
(red) to the pores. In both cases freezing temperature was 2°C/min. The solids loading, and hence porosity, is the same
in both cases highlighting the high anisotropic behavior.

Fig. 4.12 shows the crushing strength in ice templated samples measured in both di-

rections. As expected, samples tested perpendicularly exhibit lower values of strength

(almost one order of magnitude) compared with their counterparts loaded in the strong

direction. Also, the increase in resistance obtained by decreasing the porosity is less

important than the parallel direction. The reason is because reducing the solids load-

ing does not increment substantially the perpendicular living cross section in the same

way as it does in the parallel one. One possible solution to reinforce the weak direction

might be increasing further the connectivity between walls using additives. This strategy

would increase the strength without a significant impact in the total porosity [37].
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Figure 4.12: Effect of pore anisotropy in compressive strength. Ice-templated samples with pores parallel to the load
(blue), perpendicular (red), and samples with isotropic porosity obtained by pore former (green). Dashed lines repre-
sents the exponential fit.

4.4 Mechanical reliability

4.4.1 Why is reliability important?

For brittle solids like ceramics, the mean strength is not an adequate predictor of perfor-

mances because there is an inherent variability of strengths measured across seemingly

identical samples. This variability is caused by the random nature of defects created

during processing, handling, or service. Since the strength of a material is described by

a distribution rather than a single value, it is necessary to characterize it using a proba-

bilistic approach. This is particularly important in applications like SOFC or OTM where

hundreds or thousands of individual macroporous elements must be combined and the

failure of a single element could cause the entire module to fail.

Although different models have been proposed to describe the strength of brittle mate-

rials [85] [86], the Weibull analysis is the most extensively used [87]. It is based on

the assumption that the catastrophic failure of the material is triggered by the weakest

–51–



CHAPTER 4. MECHANICAL PROPERTIES AND FAILURE BEHAVIOR OF

UNIDIRECTIONAL POROUS MATERIALS

defect (i.e. weakest link hypothesis), and that these defects have probabilistic population

densities in real materials that result in probabilistic strength distributions. One of the

main implications of this assumption is that reducing the population of flaws, for exam-

ple by reducing the sample size, will inevitably lead to an increase in strength (i.e. size

effect). Characterizing the strength distribution of a ceramic material and linking it to

processing parameters and microstructural features is therefore of primary importance

for industrial application [88]. This is particularly important for macroporous ceramics

because the mean strength of the materials is reduced by introducing the porosity that

enables the desired functional properties.

The reliability of macroporous ceramics has been characterized for materials processed

by different techniques like partial sintering [89], organic template [90], or robocasting

[81] [91]. However the particular impact of porosity on Weibull modulus is still not fully

understood and frequently assumed to be the same as strength. The main problem is that

most of the techniques do not provide an independent control of the different features of

the porous microstructure and therefore can lead to a biased conclusions. For example,

increasing pore volume frequently causes an increase in the pore size hindering the

assessment of the individual effect of each parameter.

As it has been discussed in section 4.3, the strength of ice-templated materials has been

extensively studied. However there is a lack of studies measuring their reliability. The

only work that evaluates this parameter was performed by Ojuva et al. [70] in ice-

templated zeolites. They measured the effect of solids loading and cooling rate on

Weibull modulus and estimate the probability of survival. However, the reduced number

of samples tested per condition hinders a clear interpretation of the results and a further

link between microstructure and reliability.

The purpose of this section is to determine the main microstructural parameters that

control the reliability and strength of unidirectional porous materials. A Weibull analysis

was applied to the compressive strength data gathered in section 4.3 and, afterwards,

the suitability to characterize the fracture behavior by this method will be discussed.

4.4.2 Weibull analysis

Fig. 4.13 shows the cross sections of the ice-templated samples representative of each

group studied. Table 4.1 summarizes the most important structural features and the

experimental conditions used. Fig. 4.13-b (S2 in Table 4.1) was used as a reference

material to evaluate the impact on reliability caused by microstructure variations such

as total pore volume (Fig. 4.13-a and S1), pore size (Fig. 4.13-c and S3), porosity in the

walls (Fig. 4.13-d and S4), and pore morphology (Fig. 4.13-e and S5).
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Figure 4.13: SEM micrographs obtained under the conditions specified in Table 4.1. a) S1, b) S2, c) S3, d) S4, and e) S5.

Ref. Samples Solids loading(wt.%) P (%)total P (%)inter P (%)intra Morphology Freezing rate Sintering temperature Mean dp (µm) Mean WT (µm)

S1 21 50 71,7 ± 0,4 59,7 ± 0,4 12,0 ± 0,6 Lamellar 2°C/min 1400°C 20,0 ± 8,5 11,2 ± 4,5

S2 23 65 53,7 ± 1,6 40,8 ± 2,1 12,9 ± 2,6 Lamellar 2°C/min 1400°C 13,7 ± 4,8 19,1 ± 8,2

S3 15 65 54,5 ± 1,2 40,0 ± 0,8 14,5 ± 1,4 Lamellar 25°C/min 1400°C 3,1 ± 1,2 3,0 ± 1,3

S4 15 65 70,5 ± 0,4 46,4 ± 0,6 24,1 ± 0,7 Lamellar 2°C/min 1300°C 15,0 ± 5,6 17,1 ± 8,1

S5 20 65 53,1 ± 0,7 39,1 ± 1,7 14,0 ± 1,8 Honeycomb 2°C/min 1400°C 27,3 ± 9,8 37,2 ± 16,7

Table 4.1: Summary of the most relevant structural features of images in Fig. 4.13. dp represents the pore size and WT
the wall thickness, both obtained by image analysis.

Table 4.2 reports the mean wall thickness (WT) of the samples along with the results

of the two different curve fitting procedures applied, ordinary least squares (OLS) and

Bayesian fit (MCMC). Fig. 4.14 shows the experimental strength values obtained for

each group of samples and the ordinary squared fit (OLS) to the data. The values of R2
ols

obtained for all the groups are higher than 0,85 and P-values of the OLS fits were 0,00

and are not reported in the table. The combination of null P-valueols and R2
ols > 0,85

indicates that the data is well described by the linearized form of Eq. 2.3 for all samples.

This observation implies that the fracture behavior of this type of materials is adequately

described by the Weibull stastical approach. It may also imply that the underlying weak-

est link hypothesis may apply to these materials. Although the weakest link hypothesis

assumes that the density of flaws has to be low enough to neglect the interaction be-

tween pores [92] in dense materials, our observations are in agreement with several

authors [93] [94] also reporting that the Weibull distribution successfully describes the

scattering of strength in macroporous ceramics even at high porosity (around 60%) [95].

Ref. Mean WT (µm) σ̄ (MPa) mols mBayes σ0 ols (MPa) σ0Bayes (MPa) R2

ols PBayes

S1 11,2 ± 4,5 22,9 ± 2,5 10,7 ± 0,5 11,6 ± 0,4 23,8 23,7 ± 0,1 0,96 0,796

S2 19,1 ± 8,2 170,2 ± 22,0 9,0 ± 0,8 8,4 ± 0,5 178,9 176,9 ± 1,0 0,85 0,816

S3 3,0 ± 1,3 198,2 ± 16,9 13,2 ± 1,2 12,7 ± 0,8 202,2 206,3 ± 0,8 0,91 0,514

S4 17,1 ± 8,1 40,3 ± 5,0 8,7 ± 0,6 9,2 ± 0,5 43,4 43,0 ± 0,2 0,95 0,264

S5 37,2 ± 16,7 122,0 ± 21,5 6,6 ± 0,5 5,9 ± 0,3 133,3 129,3 ± 1,1 0,91 0,777

Table 4.2: Summary of the results of the different curve fitting procedures (OLS and Bayes)

–53–



CHAPTER 4. MECHANICAL PROPERTIES AND FAILURE BEHAVIOR OF

UNIDIRECTIONAL POROUS MATERIALS

Figure 4.14: Weibull strength distributions of groups described in Table 4.2. The solid line represents the OLS fit to the
data.

Fig. 4.15 shows the probability of failure (Pf ) measured by Eq. 2.3 and using the Weibull

parameters σ0 and m obtained through OLS and Bayesian fits (Table 4.2). The Bayesian

P-value was used as an indicator of the fit and it is reported in Table 4.2. By definition

Bayesian P-values range between 0 and 1 and values >0,975 or < 0,025 indicate a poor

fit to the data. In this case, the measured Bayesian P-values fall outside this range and

indicate that the model and modeled m and σ0 parameters fit the data well and can be

used in the prediction of the Pf of this materials.

As Fig. 4.15 shows, when the Weibull modulus increases, the slope of the Pf function

becomes higher and the stress range between low and high probability of failure shrinks.

This narrowing effect means that the material is more reliable, i.e. the statistical spread

of sample strengths is relatively narrow around the mean value of strength distribution.

This means these samples can be used in operational conditions close to the measured

mean strength. Nevertheless, it is important to point out that the reduction in the stress

range is refereed as the relative reduction between the maximum and minimum strength

and not to the absolute number.
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Figure 4.15: Probability of failure prediction based on the parameters σ0 and m shown in Table 4.2. The dotted lines are
based on the OLS fitted parameters and the solid lines use parameters from the nonlinear Bayesian fit.

The set of samples with the smallest pore size (S3 in Table 4.2) exhibited the highest

mean strength (198,2 MPa). The effect of increasing strength with decreasing pore size

has been reported in other ice-templated materials [37] [70] [59] and in other types of

cellular structures [72] [80] [96] [97] [98] [99]. Brezny et al. [82] proposed that one of

the main contributions is caused by the reduction of the volume of the struts and, thus,

affecting the probability to find a catastrophic defect. S2, S3 and S5 in Table 4.1 have

a comparable P (%)inter and P (%)intra because they have been sintered at the same

temperature and the solids loading of the initial slurry was also the same. However,

the mean pore size (dp) was modified by either decreasing the freezing rate (S3) or

changing the pore morphology (S5). Since the P (%)total is similar in the three groups,

the specimens with larger pores must also exhibit a broader wall thickness distribution.

Figure 4.16: Wall thickness distribution of samples shown in Fig. 4.13 and representative of groups in Table 4.2. (Inset)
Weibull modulus as a function of wall thickness. The Weibull modulus and credibility interval are taken from the Bayesian
nonlinear fitting procedure.
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As Table 4.2 and Fig. 4.16 show, a decrease in the mean wall thickness causes an in-

crease in the Weibull modulus. This behavior is consistent with the classical Weibull

approach (weakest link theory) that states that the relationship between the strength of

two brittle samples, σ1 and σ2, with different volumes, V1 and V2, is related with the

Weibull modulus m, Eq. 4.4 [100].

σ1
σ2

=

(

V2

V1

)1/m

(4.4)

The Weibull modulus can be tailored by the individual volume of the struts. Fig. 4.16

shows that shrinking the wall thickness distribution leads to an increase of the reliability

of the ice-templated samples, regardless of the processing conditions used. This control

over the Weibull modulus could be achieved by either solids loading (S1), freezing rate

(S3), sintering temperature (S4), or additives in the initial slurry (S5). Interestingly,

S2 and S4 have a similar wall thickness distribution and Weibull modulus, although the

percentage of porosity in the walls (P (%)intra) is almost the double, 12,9% and 24,1%.

However, an increase in Weibull modulus does not necessarily lead to a higher strength.

S1 and S4 have the same total pore volume P (%)total, but the percentage of P (%)inter

and P (%)intra were modified adjusting the solids loading and sintering temperature.

Although S1 has a higher reliability and P (%)intra than S4, its mean strength is still

lower (23,8 MPa and 43,4 MPa respectively). This behavior suggests that the strength

of the individual struts is less important in the overall strength than the percentage of

interlamellar porosity P (%)inter.

There is a fundamental difference between Weibull modulus and strength. While the lat-

ter positions a value in the strength distribution (i.e. σ̄ is strength with a Pf = 50% and

σ0 at Pf = 63%), the former determines the spread of the distribution and sometimes

is refereed to as a shape parameter. Thus, the strength and reliability are independent

properties that might be controlled separately [101].

The effect of higher Weibull modulus at lower wall thickness has been reported by Sabree

et al. [102] in four-point-bending and Seeber et al. [103] in compression and three-

point-bending. However, Cordell et al. [104] observed a different effect of pore size

distribution depending on the deformation mechanism; the reliability increased in sam-

ples with smaller pore size for bending while for compression the reliability decreased

with decreasing pore size.
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Gas permeability and pressure drop
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The microstructural effects on permeability of porous ceramics have been extensively

studied in different cellular structures. Innocentini et al. [33] compared the effect of

pore volume and size in materials processed by replica and gel casting. Biasetto et

al. [105] conducted a similar study on porous ceramics obtained by organic burn-out.

However, although the tortuosity reduction has a beneficial effect on the gas flow, the

literature on unidirectional porous materials, and particularly ice-templated, is scarce.

The only exceptions are the work done by Fukushima et al. [5] and Pekor et al. [4].

These studies pointed out the importance of freezing conditions and additives as the

main parameters to control in order to maximize the permeability. However, there is

no reference on the effect of other fundamental parameters such as pore volume and

morphology on permeability. This chapter intends to provide a deeper understanding

on how to enhance permeability in ice templated materials by controlling pore volume,

size, and morphology.
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5.1 Microstructural characterization

Figure 5.1: Ice templated microstructures of samples shown in Table 5.1. Sections perpendicular to the freezing direction:
a) P1 b) P4 c) P5 d) P8 and parallel e) P1 f) P4 g) P5 h) P8
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Fig. 5.1(a-d) shows cross sections perpendicular to the solidification front for the sam-

ples P1, P4, P5, and P8 in Table 5.1. All of them exhibit a lamellar pore morphology

characteristic of ice templated samples with water used as a solvent. The total pore

volume and pore size were almost independently controlled by the initial solids loading

and pore size respectively. Fig. 5.1-a and 5.1-b show the microstructures obtained in two

samples frozen at identical cooling rate (2 °C/min) but different solids loading (50 wt.%

and 65 wt.%). As described in Chapter 3, the modification of the solids loading causes

a variation on the relative density of the samples, and the total pore volume changes

accordingly. Increasing the solids loading from 50% to 65% causes a decrease in total

pore volume from 72% to 54%. The same effect has also been observed at higher freez-

ing rate, Fig. 5.1-c and Fig. 5.1-d, but the pore size obtained was smaller. For example,

when freezing temperature increased from 2 °C/min to 25 °C/min, mean pore size (dp)

decreased from 20,0 ± 8,5 µm to 4,7 ± 1,9.

Table 5.1 also highlights the effect of solids loading on pore size. Specimens ice-templated

with 50 wt.% solids loading exhibit a pore size remarkably larger (20,0 ± 8,5 µm) than

those ice-templated with 65 wt.% (13,7 ± 4,8 µm). Although the pore size reduction

caused by the solids loading holds a second order of importance compared with the

cooling rate, it is important to consider it because certainly will affect the permeability.

Sample Solids loading(wt.%) Cooling rate(°C/min) Porosity(%) Mean dpHg(µm) Mean dpIA(µm) k1 (m2) R2

P1 50% 2 72% 19,1 20,0 ± 8,5 1.39×10−11 0,999

P2 55% 2 67% 17,5 17,7 ± 6,7 9.44×10−12 0,999

P3 60% 2 60% 14,2 13,9 ± 5,5 5.95×10−12 0,999

P4 65% 2 54% 8,3 13,7 ± 4,8 2.17×10−12 0,998

P5 50% 25 72% 5,4 4,7 ± 1,9 1.08×10−13 0,999

P6 55% 25 68% 4,3 4,3 ± 1,7 7.99×10−14 0,999

P7 60% 25 60% 3,9 4,1 ± 1,7 4.27×10−14 0,999

P8 65% 25 55% 2,9 3,1 ± 1,2 2.36×10−14 0,999

Table 5.1: Summary of main physical characterization of ice templated samples. dpHg and dpIA refer to the mean pore

size measured by mercury porosimetry and image analysis respectively. R2 correspond to the correlation coefficient of
the lines shown in Fig. 5.3.

Fig. 5.1(e-h) shows the microstructures of the same ice templated samples parallel

to the solidification front. In all cases, pores are continuous with an almost constant

cross-section, independently of the solids loading (Fig. 5.1-e and 5.1-f) and cooling rate

(Fig. 5.1-g and 5.1-h). All the samples exhibited the characteristic dendritic growth of

ice-templated materials. These secondary arms are originated from the mismatch be-

tween imposed and preferred crystal growth [6]. During the steady-state regime, the

ice-crystals grow slightly tilted respect to the direction of the imposed thermal gradient,

Fig. 5.2. This tilting exposes one side of the crystal to the macroscopic temperature

gradient and induces the dendritic growth. This effect explains why only one side of the

main crystals have sencondary arms and the other one is flat. The dendritic growth en-

trap the ceramic particles between themselves creating a second type of porosity, usually
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smaller, after removing the ice. The presence of these dendrites is independent of the

freezing rate and the solids loading of the initial slurry within the investigated range.

Figure 5.2: Representation of the dendritic growth of ice crystals [6].

5.2 Pressure drop and permeability

Fig. 5.3 shows the variation of pressure drop (∆P ) with air velocity (νs) for the spec-

imens P1-P8 decribed in Table 5.1. Increasing νs leads to increase ∆P . However, the

different slopes exhibited by all groups highlight the importance of pore volume and

pore size on the gas flow resistance and hence pressure drop.

Figure 5.3: Pressure drop measurement versus air velocity for different porosities for ice templated samples frozen at A)
2 °C/min B) 25 °C/min.
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Interestingly, the eight sets of experiments followed a linear relationship between ∆P

and νs. This behavior can be explained based on the complex nature of the Forchheimer

equation. The first term (µνs/k1) in Eq. 2.5 considers the viscous energy losses caused

by the friction between fluid layers, and the second term (ρν2s/k2) accounts for the

inertial effects created by turbulances and variations in the direction and acceleration

of the fluid [106]. The excellent linear correlation coefficient (R2=0,998) found in all

conditions makes us think that all the tests were performed in viscous flow regime and

thus, the determination of permeability is only subjected to the reduced form of Eq. 2.5

i.e. Darcy’s law Eq. 5.1:

∆P

L
=

Pi
2 − Po

2

2PoL
=

µ

k1
νs (5.1)

To assess this hypothesis we evaluate the fraction of the flow that corresponds to viscous

flow (∆PDarcian) based on the Forchheimer number (F0) as follows [13], where the

symbols are the same as used in Eq. 2.5:

F0 = (
ρνs
µ

)(
k1
k2

) (5.2)

∆PDarcian

∆PTotal
=

1

1 + F0
(5.3)

The effects of pore size and pore volume on ∆PDarcian are shown in Fig. 5.4. In all the

samples the percentage of viscous flow is above 85% and therefore the contribution of

turbulent flow on the total pressure drop is negligible. This observation supports the

initial hypothesis that the permeability of ice-templated materials, within the studied

conditions, can be characterized just using Eq. 5.1. Nevertheless, careful considerations

should be made if k1 is intended to be applied in systems with higher air flow. In these

conditions the inertial effects and turbulences become important and both constants (k1

and k2) are required to describe the parabolic behavior [22].
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Figure 5.4: Variation of percentage of viscous flow versus air velocity for different porosities in ice templated samples
frozen at A) 2 °C/min B) 25 °C/min.

Fig. 5.5 and Table 5.1 show the effect of initial solids loading and cooling rate on perme-

ability. Decreasing the solids loading causes an increase in k1 that can be correlated with

an increase in total pore volume. Moreover, it has to be considered the additional effect

of larger pore sizes when the solids loading increases. On the other hand, the specimens

frozen faster are remarkably less permeable. The main explanation for this behavior

relies on the important reduction in pore size observed at these freezing conditions. The

fact that the permeability drop is around two orders of magnitude in samples with the

same total pore volume, emphasizes the great importance of pore size to maximize the

fluid flow without increasing the pressure drop in an exaggerated manner.

Figure 5.5: Effect of solids loading and freezing rate on permeability. Experimental and morphological parameters are
specified in Table 5.1. Marker size is proportional to pore size.

The values obtained in this work are in agreement with those found in the literature
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for ice templated samples with similar microstructure. Pekor et al. [4] reported a per-

meability of 1.0×10−11 m2 for ice templated alumina with 70% porosity and pore size

around 17 µm. Fukushima et al. [5] obtained a slightly higher k1 (2.27×10−11 m2) for

a SiC prepared by gelation freezing method but with a remarkably higher pore volume

and pore size (86% and 34 µm).

As Fig. 5.6 shows, the permeability exhibited by ice templated materials falls in the

wide range exhibited by gelcasted foams and much lower than those typically exhibited

by reticulated foams. However, the total pore volume, and more importantly the pore

size of this type of cellular materials, is much higher compared with those obtained by

ice templating. For example, Innocentini et al. [33] reported a k1 of 1.5×10−10 m2 for a

a porous alumina processed by replica method with 70% porosity and 200 µm pore size

and a permeability of 5×10−11 m2 for a porous alumina prepared by gelcasting with the

same pore volume and 125 µm pore size .

Figure 5.6: Comparison of the permeabilities that can be achieved by the most common processing techniques [13].

Two additional groups of specimens with different pore architectures were prepared

to evaluate the effect of pore directionality and morphology on permeability. The first

group consists of samples with isotropic porosity processed by organic pore formers, and

the second group comprises ice-templated samples with zirconium acetate (ZRA) added

to the original slurry. As it was explained in Chapter 3, the addition of ZRA turns the

pore morphology into a honeycomb-like structure with smooth surfaces. This structure
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posses a larger mean pore size than the typical lamellar ice-templated morphology at

similar total pore volume, (Fig. 5.7). This variation in pore size distribution causes an

increase in permeability of almost one order of magnitude, as shown in Fig. 5.6. In

contrast, the specimens processed by pore formers have a similar permeability as the

ice-templated specimens with lamellar morphology and therefore an apparent no effect

of pore tortuosity, Fig. 5.6. However, although the mean pore size is similar in both

samples, the distribution tend to be more spread in materials processed by pore formers.

The presence of these big pore clusters might facilitate the air flow through the sam-

ples and consequently mask the effect of directionality. Although the presence of larger

isolated pores certainly increases the permeability, they can become stress concentrators

and affect the mechanical integrity of the system.

Figure 5.7: Pore size distribution of different ice-templated structures compared with sacrificial method (pore formers).

Most of the important industrial applications involving porous materials are subjected to

a trade-off between permeability and strength [107]. Since both properties are inversely

related to total pore volume, other strategies different than increasing/decreasing this

parameter are necessary to improve both properties simultaneously. Fig. 5.8 shows

the effect of microstructural variations in permeability and strength at constant porosity

(around 54%). The ice-templated specimens with smaller pore size have the highest

strength although they also exhibited the lowest permeability, so this strategy does not

seem to be the most optimal to follow. Alternatively, ice-templated samples frozen at

slow cooling rate have a similar permeability compared with the samples prepared by

pore formers. However, as it was previously explained in section 4.3.1, the increase in

permeability achieved by isotropic samples by broadening the pore size distribution has

a detrimental impact on strength. Nevertheless, the best compromise between strength

and permeability was obtained in ice-templated samples with honeycomb morphology.

Although the larger pore size certainly reduces the strength, it is not as important as
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the improvement in permeability, and even reached permeability values comparable to

ice-templated samples with lamellar morphology and 72% pore volume.

Figure 5.8: Compressive strength and permeability of ice-templated (IT) and sacrificial (Pore formers) samples processed
in this work. Pore size distributions are shown in Fig. 5.7

5.3 Prediction by models

Most of the models used to predict the permeability constants (k1 and k2) are extracted

from correlations originally developed for granular beds and are dependent on the vol-

umetric void fraction (ǫ), and the equivalent particle size (dp). The most common ex-

pression was developed by Ergun [108] (Eq. 5.4) and it has been extensively applied to

all types of porous media [109] [28] [26].

k1 =
ǫ3dp

2

150(1− ǫ)2
(5.4)

However, this approach exhibits some complications to be used in cellular materials due

to the difficulties to extract the characteristic parameter that could replace the particle

size (dp). One solution consists on replacing dp by an equivalent pore size (dc) [27] and

then, k1 and k2 can be rewritten as:

k1 =
2, 25

150
ǫdc

2 (5.5)

The experimental values of k1 for ice-templated samples frozen at 2°C/min and 25°C/min

were compared with those predicted by Eq. 5.5. Since the evaluation of permeability by
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Ergun’s equations is highly sensitive to the equivalent pore size (dc), the assessment of

the model was conducted with the pore sizes measured by image analysis and mercury

porosimetry. As Fig. 5.9-Left shows, all the experimental points diverge constantly with

the prediction of the Ergun model (dashed line) independently of the technique used to

characterize the pore size. The only exceptions are the specimens frozen at slow cooling

rate and lower permeability which seemingly exhibited a better fitting when the pore

size was obtained by image analysis. However, this result clearly deviates from the ten-

dency displayed by the other samples and can be attributed to the increasing presence

closed pores found at high solids loading (P4 in Table 5.1).

Figure 5.9: Comparison between the experimental permeability data and the values predicted by Ergun Equation (left)
and Ergun modified (right). Two different methods were used to evaluated the pore size, image analysis (IA) and
mercury porosimetry (poro)

The main factor that explains the deviation between experimental and calculated values

of k1 relies on the semi-empirical nature of Ergun expression. The value of 150 in Eq.

5.5 was determined originally on different experiments on highly tortuous media and

thus, it might not be valid for radically different porous structures i.e. unidirectional

porous materials. Nevertheless, since it is an expression broadly used and for the sake of

comparison, we corrected the original Ergun equation (Eq. 5.5) to represent the exper-

imental data obtained in this work (Fig. 5.9-Right). Eq. 5.6 describes the permeability

of samples frozen at 2°C/min and Eq. 5.7 for samples frozen at 25°C/min.

k1 =
2, 25

42
ǫdc

2 (5.6)

k1 =
2, 25

407
ǫdc

2 (5.7)
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The microstructure of ice-templated materials resemble more to a capillary system where

pores are aligned parallel to the gas flow than a porous granular media. The maximum

permeability in an ideal capillary model is described by Eq. 5.8 [29]

Kcapillary =
φd2p
τ32

(5.8)

where φ, dp, and τ are porosity, pore size, and tortuosity respectively.

The capillary permeability (Kcapillary) of ice templated samples was calculated based on

the measurements of porosity and pore size obtained by mercury porosimetry shown in

Table 5.1 and using Eq. 5.8. Fig. 5.10 shows the experimental values of k1 compared

with those predicted by the model. The permeability of ice templated samples frozen at

slow cooling rate (2 °C/min) is close to the maximum obtained when τ = 1. This result

indicates that the porosity of these samples is almost continuous and the capillary model

is thus a good permeability descriptor. However, the permeability of ice-templated mate-

rials is not always predicted by the ideal case of Eq. 5.8 and τ=1. For example, the best

fit of specimens frozen faster (25 °C/min) is exhibited around τ = 5. Usually, in isotropic

porous materials, tortuosity tends to decrease when pore volume increases [110]. Unlike

in isotropic samples, tortuosity of ice-templated materials remains constant in a broad

porosity range (50%-70%) but is instead controlled by pore size.

Figure 5.10: Comparison between the experimental permeability data and the values predicted by the capillary model
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Fabrication of ice-templated tubes:

Microstructure, strength, and

permeability
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Typically, tubular porous substrates are prepared by: extrusion [111] [112], slip casting

[113], centrifugal casting [114], or isostatic pressing [115]. However, these techniques

rely on increasing the total pore volume and pore size to achieve the required perme-

ability, at expenses of decreasing the mechanical properties. Therefore, it is necessary

to explore other strategies such as an optimized pore shape or reduced tortuosity to

improve permeability and strength simultaneously.

As we showed in previous sections, an architectured porosity, like the one created in ice-

templating, is a feasible strategy to enhance both properties simultaneously. Nonethe-

less, to produce tubes with unidirectional radial porosity by ice-templating seems more

an engineering problem to solve. The literature on ice-templated tubes is still scarce.

Moon et al. [116] used an external metallic mold with a central PTFE rod to induce

the thermal gradient required to aligned the porosity. They studied the effect of solids

loading and freezing temperature on the microstructure and the feasibility to deposit

an external dense layer. Liu et al. [65] used a similar set-up to evaluate the impact of
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solids loading, pore size, and particle size on compressive strength, and nitrogen and

water flux. However, the difficulties to demold the tubes after the entire solidification

is still one of the main drawbacks of this set-up that limits a further industrial applica-

tion. Moreover, a more detailed mechanical characterization is still missing in this type

of porous materials.

In this chapter, we propose a novel method to produce ice-templated tubes based on a

rotational freezing. We investigate the impact of pore volume, size, and tube thickness

on mechanical properties using an o-ring test, four-point bending, and crush test. Fur-

thermore, we studied the effect of the same morphological parameters on permeability

to assess the applicability of these materials as a membrane supports.

6.1 Microstructure control

Fig. 6.1 schematically depicts the process that occurs during the rotational freezing.

The tube rotation spreads the slurry across the inner surface of the mold. Then, the

freezing oil is pumped in the container and the slurry in contact with the mold solidifies

almost instantly. The freezing rate at this initial stage is very high due to the high

heat transfer between the copper mold and the slurry. Afterwards, the velocity of the

solidification front undergoes an abrupt decrease, until it reaches a steady state with an

approximate constant value. As a consequence of this difference in the freezing kinetics,

ice-templated tubes exhibited two clearly differentiated pore morphologies, random and

lamellar porosity, similarly as in ice-templated monoliths [117]. The external layer with

random porosity is generated when the velocity of the solidification front is too high

for the ice crystals grow with a preferential orientation and thus they are not able to

rearrange the ceramic particles (Fig. 6.2-a). Alternatively, when the steady state is

finally reached, the ice crystal grow continuously following the thermal gradient (i.e. in

this case the radial direction) and the pore morphology becomes lamellar (Fig. 6.2-b).

The constant rotation of the system maintains the remaining liquid in contact with the

frozen part and provides the slurry required to continue with the ice-templating process

until the entire solidification of the tube.

–69–



CHAPTER 6. FABRICATION OF ICE-TEMPLATED TUBES: MICROSTRUCTURE,

STRENGTH, AND PERMEABILITY

Figure 6.1: Schematic of the rotational freezing process.

Figure 6.2: SEM micrographs of different locations of an ice-templated tube with a 65 wt.% solids loading, frozen at
-30°C, and 20 ml. A) Top view of the external layer B) Cross section of the tube and C) Top view of the inner surface.

To a first approximation, pore volume and size control between ice-templated tubes and

monoliths are identical. Total pore volume is still tailored by solids loading, and pore

size is adjusted by cooling rate, Fig. 6.3. Table 6.1 reports these microstructural features

and the experimental conditions used.

Solids loading(wt.%) Porosity(%) Freezing Temperature (°C) Mean dp (µm)

65 49,1 -80 3,3

55 66,3 -80 6,8

50 69,6 -80 7,3

65 45,0 -30 6,2

55 64,1 -30 10,6

50 68,4 -30 14,6

Table 6.1: Summary of the effect of solids loading and freezing temperature on porosity and mean pore size (dp).
Porosity and dp obtained by mercury intrusion porosimetry.
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Figure 6.3: Detail of the radial porosity of ice-templated tubes sections reported in Table 6.1. a) 50 wt.% solids loading
and freezing temperature -30°C, b) 50 wt.% solids loading and freezing temperature -80°C, c) 65 wt.% solids loading
and freezing temperature -30°C, and d) 65 wt.% solids loading and freezing temperature -80°C. In all cases the volume
of slurry used was 20ml.

The dashed line in Fig. 6.4 represents the relationship between solids loading and poros-

ity obtained previously in ice-templated monoliths (Fig. 4.9). The perfect match be-

tween both indicates that the total pore volume is dictated exclusively by the solids

loading of the initial slurry, independently of the mold used. Since the pore volume

measurements were taken in different locations of the tube, it also indicates that the

pore volume is homogeneously distributed through whole tube.
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Figure 6.4: Variation of porosity as a function of the solids loading of the slurry. Dashed line represents the the relation-
ship between solids loading and porosity obtained in a previous work for ice-templated YSZ monoliths (cite mech. props.
article).

Fig. 6.5 shows a top view of three ice-templated tubes with a different amount of slurry

initially poured into the mold (20, 18, and 16 ml). A decrease in the volume of slurry

causes a reduction on the overall thickness of the tube because there is less material to

be ice-templated. The thickness of the tubes after sintering were 2.0, 1.8, and 1.6 mm

for a volume of slurry of 20, 18, and 16 ml.

Figure 6.5: Detail of the thickness variation by changing the initial amount of slurry.

6.2 Mechanical properties

Tubular materials in real applications may be subjected to a complex stress field that do

not resemble the ideal case obtained in a compressive test. Therefore, extrapolations
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from simple crush testing of monoliths should be complimented by a more exhaustive

mechanical characterization of the tubes. Here, we investigate the strength of tubular

ice-templated materials in a biaxial stress state, o-ring test and four-point bending, and

by axial compression.

6.2.1 O-Ring test

Fig. 6.6 shows two representative load-displacement curves for samples frozen at -80°C

and -30°C. In both cases, the fracture behavior is described by an initial linear stage

followed by two consecutive load drops. When the ring is subjected to a diametrical

compression i.e. like in the O-ring test, the maximum tensile stresses (σmax) are located

on the intersection between the inner diameter and the loading plane [118] and can be

determined by Eq. 6.1.

σmax = 1, 8
Pra
ht

(1 +
t

3ra
) (6.1)

where P is the maximum load, t the tube thickness, h the width of the ring, and ra the

average radius (rext − rint)/2

This load corresponds to the first peak in the load-displacement curve and it was used

to describe the strength of the rings. The second peak corresponds to the fracture of

the two remaining "half rings", originated by the tension developed on the transverse

diameter of the outer periphery. Both types of cracks are shown in Fig. 6.6.
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Figure 6.6: A) Representative load-displacement curves of two rings obtained from tubes with a 65% solids loading and
frozen at -80°C (red) and -30°C (blue). B) Detail of the characteristic fracture in a O-ring test with the two types of
cracks highlighted.

Fig. 6.7 shows the effect of pore volume on strength for samples frozen at -80°C and

-30°C. As expected, rings with higher pore volume exhibited a lower strength. Moreover,

samples frozen at a lower temperature (-80°C) have a smaller pore size and therefore

should exhibited an increase in strength as shown in Chapter 4 [74]. However, the

large scattering of the strength data makes it difficult to conclude whether this effect

is seen here. There are two contributions for the existence of this spread. First, the

probabilistic nature of the strength in ceramics [92], and second (and more likely) the

eccentricity of the inner diameter. One of the main drawbacks of the tubes obtained by

rotational freezing is the lack of accuracy to control the thickness of the tube, and the

subsequent presence of geometrical defects such as eccentricity (Fig. 6.8-A) or warping

during sintering (Fig. 6.8-B). As it was discussed by Kwok et al. [119], these types of

geometrical imperfections induce an asymmetry in the stress field that have a deleterious

effect on the flexural strength, and in this case hide the pore size effect.
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Figure 6.7: Effect of porosity and freezing temperature on radial crushing strength obtained by O-ring test.

Figure 6.8: Details of the geometrical defects found in tubes made by rotational freezing. A) eccentricity, B) warping.

6.2.2 Four-point bending

Tubular components in real industrial applications are subjected to bending moments

that affect their mechanical stability. Therefore, flexural strength characterization is a

required step before any further application. Recently, the use of four-point bending

tests have been extended to semi-cylindrical tubes [120]. Although the quantification

of the stress field in this sample shape is more complex than in regular bars, in both

cases the maximum stress (σmax) can be well approximated by the axial stress at the

middle point (M) between the two inner supports [53]. The test was considered invalid

when the crack propagated outside the supports, usually on the contact point between
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the sample and the external support. When the crack pattern resulted in a succesful test,

the maximum stress was calculated by:

σmax =
Payc
I

(6.2)

where P is the maximum load, a is the distance between the load and the support, yc is

the distance between M and the centroid of the specimen cross section along the y-axis,

and I is the second moment of inertia of the cross section. For a semi-circular annulus,

yc and I are expressed as:

I =
π

8
(R4

−Ri
4)−

8

9π

(R3 −Ri
3)2

R2 −Ri
2 (6.3)

and

yc = R−
4

3π

R3 −Ri
3

R2 −Ri
2 (6.4)

where R and Rint are the external and internal radius respectively.

Here, we modified the solids loading, freezing temperature, and volume of the slurry

initially poured into the mold to obtain ice-templated tubes with different pore volume,

pore size, and thickness respectively. Fig. 6.9 shows the effect of each parameter on the

flexural strength.

Figure 6.9: Effect of porosity, freezing temperature, and volume of slurry on flexural strength obtained by four-point
bending.
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In all conditions, when the solids loading increases the total pore volume of the sample

decreases, causing an increase in strength. Unlike in the diametrical compression, in

four-point bending we did observe an increase on strength with pore size. We attributed

this effect to the increasing amount of ceramic struts between the adjacent walls ob-

served at lower freezing temperatures [37]. When the half ice-templated tube is bent,

the external midpoint is subjected to tensile forces. Since the porosity is perpendicu-

lar to this tensile forces, the strength of the tube is determined by the resistance of the

structure to opening the pores which is resisted by interlocked walls.

In contrast, it became more difficult to discern the effect of tube thickness on flexural

strength. Although, the mean thickness of the tube can be controlled by the amount of

slurry, rotational freezing does not provide a perfect control of thickness, and large mis-

matches (<1mm) are found in the same tube (Fig. 6.10). These discrepancies invalidate

any conclusion with the intention to relate thickness with strength.

Figure 6.10: Detail of the thickness inhomogeneity in a four-point bending sample.

6.2.3 Compression test

Little compressive strength data of tube sections have been reported. The parameters

investigated here were the same as in the four-point bending test, and the results are

reported in Fig. 6.11. When the tube is loaded in the axial direction, pores are perpen-

dicular to the load and ceramic bridges between the walls prevent the buckling of the

structure. Similarly to the four-point bending, specimens frozen at lower temperature

exhibited a higher strength due to the higher number of connections between walls.

Again, the variability in the tube thickness for a given amount of slurry prevents to dis-

cern the effect on compressive strength, and consequently the results are not conclusive.
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Figure 6.11: Effect of porosity, freezing temperature, and volume of slurry on axial strength obtained by compression
test.

6.3 Permeability

Tubes obtained with different solids loading, freezing temperature, and volume of slurry

poured into the mold were tested to evaluate the independent impact of pore volume,

pore size, and tube thickness respectively on permeability, Fig. 6.12. In all cases pressure

drop (∆P ) exhibits a linear dependence with air velocity (νs) and, thus, permeability

can be calculated from their slopes according to the Darcy’s law (Eq. 5.1) instead of the

Forchheimer equation [22].

Figure 6.12: Effect of experimental conditions on pressure drop. A) 65% and 50% solids loading, B) -80°C and -30°C,
and C) 20, 18, and 16ml poured initially on the mold. Values specified in Table 6.2.

Permeability values (k1), experimental conditions, and the most relevant pore descrip-
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tors are specified in Table 6.2. When pore volume increases due to the solids loading

reduction, there is less resistance to the airflow and permeability increases accordingly,

(Fig. 6.12-A). Also, a higher pore volume leads to increase the mean pore size, enhanc-

ing even further this effect. When the tubes are frozen using a constant solids loading

and lower temperature, the total pore volume remains invariant and the pore size re-

duces, affecting the permeability. Fig. 6.12-B show how the specimen frozen at -80°C

exhibits a smaller pore size (3,3 µm) and lower permeability (2,80×10−14 m2). Inter-

estingly, the sample frozen at higher temperature (-30°C), pore size of 6,2 µm, and 52%

porosity in Fig. 6.12-B has a comparable permeability (and hence pressure drop) to the

sample frozen at -80°C, pore size 7,3 µm, and porosity 68% in Fig. 6.12-A. This result

emphasizes the importance of pore size over pore volume as the critical parameter to

tailor permeability. This observation is in agreement with the Hagen-Poiseuille equation

that predicts a gas flow dependence (i.e. in a viscous flow) proportional to the pore

volume compared with the square exhibited by pore size [29]. Finally, permeability can

also be controlled by the volume of slurry initially poured into the mold, Fig. 6.12-C.

When the volume of slurry decreases, the thickness of the tube decreases as well and the

tube becomes more permeable due to the reduction of the pathway to evacuate the air.

Solids loading(wt.%) Porosity(%) Freezing Temperature (°C) Mean dp (µm) VSlurry (ml) Thickness (mm) k1 (m2)

65 52 -80 3,3 20 2,0 2,80×10−14

50 68 -80 7,3 20 2,0* 2,96×10−13

65 50 -30 6,2 20 2,0* 2,20×10−13

65 50 -80 3,3** 18 1,6 2,40×10−14

65 49 -80 3,3** 16 1,2 1,59×10−14

Table 6.2: Summary of the main experimental conditions and the effects on porosity, mean pore size (dp), and perme-
ability (m2).** mean pore size and * thickness of the tube not measured but considered equivalent to the sample frozen
at -80°C, 65% solids loading, and 20 ml of volume of slurry (VSlurry).

In Chapter 5, we measured the air permeability of ice-templeted monoliths without the

porous isotropic layer. The permeability obtained in the present section (2,80×10−14

m2) is in agreement with those found in the monoliths for a similar pore size (3,3 µm)

and pore volume (52 %) in section 5.1, therefore suggesting that the gas flow behavior of

ice-templating tubes is ruled by the permeability of the part with unidirectional porosity

instead of the isotropic one. Nonetheless, a more exhaustive study is required to validate

this hypothesis.
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Conclusions and outlooks

7.1 Mechanical properties

This work reveals that the compressive behavior of unidirectional porous ceramics can

be predicted by the honeycomb out-of-plane Ashby model in a wide porosity range, from

50% to 80%. However, the use of the model is limited to structures with a continuous

array of unidirectional walls where buckling is the main failure mode. Further improve-

ments of the model considering microstructural effects on the strength like the pore size

reduction could lead to more accurate predictions.

Also, the mechanical reliability of ice-templated specimens was measured in compres-

sion in different pore structures through a Weibull analysis. Two fundamentally different

fitting methods (OLS and Bayesian) have been successfully applied and give similar val-

ues for both m and σ0. Further, the diagnostic parameters (R2 and P-value) for both

fitting methods indicate that the data is well described by Eq (2.3). Although the ap-

plicability of this method can be questioned due to the interactions between pores, we

conclude from these results that the Weibull model and its underlying assumption that

a single type of flaw dominates fracture behavior is valid for our samples.

We also observed that in ice-templated materials, strength and reliability (m) are prop-

erties that can be controlled independently. Weibull modulus exhibited a strong depen-

dency on wall thickness caused by the reduction on the probability to find a catastrophic

defect. Alternatively, the strength is mainly determined by the interlamellar porosity.

The possibility to aim for an specific strength (through P (%)inter) and tailor the Weibull

modulus (through the wall thickness distribution) is a useful tool for porous materials in

load bearing applications where it is required to combine a high reliability with mechan-

ical stability. The capacity of ice-templating to tailor the percentage of inter- and intra-

lamellar porosity individually provides a microstructural control that might be applied

in biomedical and energy applications where both types of porosity are required [121]
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[79] [122].

In addition, ice-templating exhibits a high versatility to quasi independently control the

main pore descriptors (volume, size, and morphology). The possibility to aim for a

specific porosity, and hence strength, (through the solids loading) and tailor the densifi-

cation of the walls (through the sintering temperature) is a powerful tool to adjust the

specific surface area of the walls while keeping a constant pore volume. This flexibility

can be useful in applications like SOFC cathodes or tissue engineering scaffolds, where a

sufficient amount of macroporosity (interlamellar porosity) is required to guide the flow

of the fluid, coupled with intralamellar porosity to improve conversion efficiency [123]

or cell proliferation [104].

7.2 Gas permeability

The gas permeability of ice-templated materials was evaluated as a function of differ-

ent morphological parameters such as pore volume, size, and morphology. The results

showed that pore size is the main parameter controlling the pressure drop and there-

fore of capital importance to increase the permeability of porous materials without a

detrimental effect on the mechanical stability. Based on this knowledge we produced

ice-templated samples with a 53% pore volume and a permeability equivalent to 72%

pore volume. This reduction on total pore volume allowed to obtained samples with

a high resistance coupled with a high permeability, two properties seemingly inversely

related. The flexibility of ice-templating to control the microstructure allows us to tailor

the mechanical and gas flow properties almost independently and consequently could be

of potential application in products such as filters or catalytic supports. Finally, we also

demonstrate that the permeability of unidirectional porous materials can be described

by the capillary model in a wide porosity range. However, this study only covers the lam-

inar regime and a deeper understanding of the microstructural effects of on a turbulent

flow is still required in this type of material.

7.3 Ice-templated tubes

We developed a set-up to produce ice-templated tubes with an accurate control on pore

volume, pore size, and overall thickness. Mechanical testing results showed a clear

impact of pore volume and size on flexural and compressive strength, but results from

radial crushing were inconclusive. Furthermore, the geometrical imperfections of the

tube (eccentricity and warping) hinder the evaluation of tube thickness on mechanical

properties. On the other hand, the permeability of tubes was successfully characterized,

and we observed a high dependence on pore size. Therefore, higher performance of the
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ice-templated tubular supports, particularly mechanical properties, is inevitably linked

to a better control of the thickness of the tubes.

In addition, the formation of a hierarchical microstructure obtained with this set-up

could be beneficial in applications such as SOFC, OTM, and water filtration, as it was

reported by Moon et al. [116]. The external layer with finer and non-oriented porosity

can facilitate the deposit of a dense layer and also increase the electrochemical reaction

sites, while the unidirectional lamellar porosity allows the gas or liquid flow without an

exaggerated increase in pressure drop.

7.4 Future work and perspectives

The work done in this thesis showed that it is possible to combine high permeability and

strength through the optimization of the pore architecture. However, it just covered the

porous substrate, and a lot of work still has to be done before the application of these

anisotropic supports in OTM. Here, we summarize the most important points to address.

• Screening for possible application. With this thesis we provide a more detailed

description of the microstructural effects on strength, reliability, and gas flow by

identifying the appropriate models to describe the phenomena. This deeper under-

standing intends to provide a kind of toolbox for any application that require high

mechanical stability and high permeability. Future work can be addressed using

these guidelines and target microstructures for specific applications with porous

materials.

• Investigate an asymmetric membrane. It is still necessary to deposit a dense

layer on top of the ice-templated support to measure the oxygen permeation. In

this way, we can assess the performance of the entire membrane in similar con-

ditions to real applications. In the next few months, preliminary tests will be

performed in CTF ice-templated supports.

• Additionally, we developed an experimental technique to produce asymmetric mem-

branes with unidirectional porosity in one step. The technique is based on a regular

ice-templating process with a modification of the cooling surface in contact with

the slurry. Although the first tests are promising, as it shows Fig. 7.1, there are

important drawbacks to be tackled such as homogeneity and tightness of the dense

layer.
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Figure 7.1: Cross section of an ice-templated support with a dense layer obtained in one-step.

• Creep measuments. Since these membranes are subjected to stresses at high

temperature for long periods of time, creep becomes a major problem to solve.

Literature on creep of porous materials is scarce, and in ice-templated nonexistent.

A deeper understanding of the microstructural parameters that govern creep would

be useful for applications any application that involves porous materials working

at high temperature.

• Improve strength in the weak direction. In this work we have taken advantage

of the high anisotropy exhibited by ice-templated materials. However, in some

cases, like in a biaxial stress field, it is necessary to provide a minimum strength

perpendicular to the pores. As it was pointed out in the section about mechanical

properties, one possible solution could be increase the ceramic bridges between the

principal walls to reinforce the structure and postpone buckling failure to higher

stresses. The strategy to achieve this level of architectural control involve to ex-

plore new slurry formulations as it shows Fig. 7.2 where acetic acid and sucrose

were used as an additives.
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Figure 7.2: Detail of the increased population of ceramic bridges between the main struts.

• Thickness control in ice-templated tubes. One of the main drawbacks in the

technique developed to ice-templated tubes (i.e. rotational freezing) is the lack of

thickness control through the tube. Improvements on the set-up or modifications

in the slurry composition (like increase the viscosity) could lead to a more accurate

control on the thickness and thus, a better characterization of the tubes.
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