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Quelqu’un tisse de l’eau (avec des motifs d’arbres
en filigrane). Mais j’ai beau regarder,
je ne vois pas la tisserande,
ni ses mains même, qu’on voudrait toucher

Quand toute la chambre, le métier, la toile
se sont évaporés,
on devrait discerner des pas dans la terre humide...

Philippe Jaccottet
On voit, in Pensées sous les nuages
nrf, Éditions Gallimard (1976 - 1983 - 1994)
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Introduction

Evolutionary ecology is interested with the astonishing diversity of life forms on Earth.
Not mentioning the immeasurable gap that might exist between, for instance, Pyrolobus
fumarii, a thermophilic archeal species that lives around the very hot hydrothermal
vents of the Atlantic mid-ocean ridge (Blöchl et al., 1997) and Cypripedium calceolus,
a “dainty and charming, trembling and delicate” orchid species (Huysmans, 1930), di-
versity can be seen at every scale of the tree of life, from the domain to the family or
genus level. Coccinellidae (lady bugs) are for example known to wear a great variety of
body patterns, from the common Europeans Coccinella septempunctata, red with seven
black dots, and Psyllobora vigintiduopunctata, yellow with twenty two black dots, to the
American Brachiacantha ursina, black with ten yellow dots1.

When observing a set of species, it is natural to wonder how a given trait pattern
arose in the population. How much of it can be explained by external causes, such
as climate or habitat? Is it possible that some of it is just the result of “chance”?
The answers to these questions highly depend on the meaning one puts behind this
word. Using a very narrow definition of chance, 18th centuries philosophers famously
concluded in the necessary existence of a “watchmaker” that shaped every life form (see
e.g. Rousseau, 1762b; Paley, 1802). If not convinced by this “Intelligent Design” theory,
one might assume that all the traits of the species arose randomly, independently from
one another. Although simple and quite intuitive, such an assumption is often wrong,
and can lead to misleading conclusions. Indeed, it completely ignores the fact that living
species are not independent. According to the theory of evolution (see e.g. Darwin, 1859,
for an introduction), these species are linked by a phylogenetic tree, that represents the
family relationships between them. When looking at species traits, it is then natural
to expect that two closely related species, i.e. species that diverged only a short time
ago, should look more alike than two distantly related species. Making explicit what a
trait distribution produced by chance alone looks like is one of the goals of Phylogenetic
Comparative Methods, the framework we use in this thesis to study trait evolution. It
can be seen as a way to specify a correct null model.
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Phylogenetic Comparative Methods

Phylogenetic Comparative Methods (PCM) stem from the idea that, if we know, first,
a dated phylogenetic tree between species, that tells us when speciation events took
place, and, second, a dynamic model of quantitative trait evolution that describes how
the traits change in time, then we should be able to find the expected current trait
distribution in the species population we are studying. In this framework, assuming that
the phylogenetic tree is known, “chance” is then entirely defined by the model of trait
evolution, usually chosen in a family of stochastic processes. Such a model allows us to
quantify the variations of the modeled traits. The simplest stochastic process one might
use is the Brownian Motion (BM). Under this model of evolution, trait values have no
trend, with independent and Gaussian increments.

The global model is then obtained by putting together the dated phylogenetic tree
and the process of evolution in the following way. The trait of a given ancestral species
evolves in time on a branch of the tree according to a BM. When a speciation event
occurs, the two children species inherit their mother’s trait, and then carry on evolving
independently as a two BM. Note that, even though the two children species are supposed
to evolve independently, the simple fact that they inherited their trait from the same
species introduces some correlations between them. To see this, assume for instance that,
by chance, their mother species deviated to extremely large values of the trait. Then,
the two children species will start their evolution time with very large values, and hence
are likely to look alike for a while, being larger than most of the other species. If the
process is a BM, then these correlations can be quantified easily: the covariance between
the traits of two extant species is proportional to their time of shared evolution (i.e. the
time elapsed between the root of the tree and their most recent common ancestor).
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(b) BM on the branches of the tree. The vertical
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Realization of a univariate BM process on a dated phylogenetic tree. The colors of the branches
(left) match with the colors of the distinct processes (right). For instance, the ancestral red species
has a trait that evolves from 0 (node R, time −200) to around 2.6 (node S, time −100). Only tip
values are observed (at time t = 0). Purple and blue species (A and B) inherited their trait values
quite recently from the green species (U). They had little time to diverge away from this value,
so they are likely to have similar trait values. Their trait values are marginally correlated (but not
anymore when conditioning on U).

The art of PCM is then to define processes that correctly describe the dynamic
evolution of the trait, and then to study the kind of trait distribution it produces at the
tips of the tree, for living, observed species.
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Shift Detection

This resulting trait distribution at the tips can be seen as a null model, that describes
the correlations between species, and the ranges of variations of the traits, that can be
expected by “chance”. If the observed trait distribution significantly differs from the
expected one, then it might be the clue that some special events shaped the history of
the trait.

In this thesis, we are particularly interested in shifts that might happen on the trait
at some points of species histories. Such a shift might happen for several biological
reasons, such as a migration to a new environment, or a rapid climate change. When
a species experiences such a shift, then it passes along its new value to its offspring, so
that all its descending species inherit from this change. Such a situation is shown in the
next figure.

Of course, several shifts can happen on the tree. The main goal of this thesis is to
find their number and location on the tree. Both questions raise serious statistical issues,
as shown in the next two paragraphs.
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(b) BM on the branches of the tree.

Same process, but with a shift on the light green branch (between S and T ). Tips D and E are
affected by the ancestral shift: their trait value is much larger than the one expected without any
shift (in grey).

Identifiability

It is important to bear in mind that, even if we defined a dynamic model of trait evolution
in time, we only have access to the state of the system today, for extant species. The
stochastic process is hence only seen through its last values on the tree, at only one time
point. Such a situation is bound to produce identifiability issues.

Adding shifts to the process only makes the problem worse. As shown in the next
figure, it is easy to see that two different scenarios, with shifts of different values hap-
pening on different branches, can produce the exact same trait distribution at the tips
of the tree. Such scenarios, although biologically distinct, cannot be distinguished from
data collected only at the tips. They are not identifiable. Quantifying such identifiability
problems is important both from a statistical point of view, as ignoring these problems
would lead to ill-defined models, and from a biological point of view, as it allows us to
know what the collected data can – and cannot – say about the past history of the trait.
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Two equivalent scenarios. The trait is assumed to evolve as a shifted BM, with ancestral value 0,
and shifts marked on the branches. Expectations at the tips are indicated in blue. Both scenarios
produce the same trait distribution, but they tell a different biological story. On the left one, the
two children species of S went through independent traumatic events that led to shifted trait values.
On the right one, ancestors of S first went through a shift, that is passed along to its first child C
directly, while its second child experiences another compensatory shift.

Model Selection

After addressing the identifiability problem, we will show how we can find the best
scenario, for a given number K of shifts. Among all the models with K shifts, we are
able to find the one with the highest likelihood. However, the best fitting model with
K + 1 shifts, as it has more parameters, is known to have a better likelihood score.
Following the same logic, the scenario with the best likelihood will always be the one
with one shift per species, defining a special regime for each of them. This is a problem,
as we would like to keep only significant shifts, that are typically rather scarce.

One common way to solve this problem is to use a criterion based on penalized
likelihood, with a penalty that increases with the number of shifts. The penalty needs
to be carefully crafted, so that it only compensates the increase of the likelihood due
to overfitting. The next figure shows the principle of this method. It also stresses out
the importance of the choice of the penalty to use: on the simple example presented,
both AIC and BIC, two very commonly used penalized criteria, clearly fail to correct
for over-fitting. A theoretically sound penalty, that takes into account the true size of
usable models for a given number of shifts, will be derived.
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Typical profile for a maximum likelihood inference of parameters for a dataset simulated using a BM
on a tree with 64 taxa, and Ktrue = 5 shifts. In red, each dot is the maximum likelihood obtained for
a model with a given number K of shifts allowed. This likelihood is always increasing, as expected.
A penalized criterion that is correctly working should have a maximum in K = 5 (vertical line),
allowing us to infer the true number of shifts. Standard penalized criterion AIC and BIC (green
and blue) fail to recover this true number of shifts (they are increasing). In contrast, the proposed
model selection method (LINselect, purple) behaves correctly: it has a clear maximum for K = 5.
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These models and broad statistical methods are at the core of this thesis. In the
main text, we explain them in more details (Chapter 1), develop and extend them to
other stochastic processes (Chapter 2 and Chapter 3), and to other kinds of species
relationships (Chapter 4).

Outline

Chapter 1: Background

The first chapter aims at presenting in a structured way all the tools and concepts used
in the rest of the manuscript, both from a biological and a statistical point of view.
We start by reviewing some structural results that have to do with the combinatorial
nature of the space of objects we consider: traits mapped on phylogenetic trees. We
then introduce several explicit models of trait evolution, both discrete and continuous.
Finally, we give a brief overview of some statistical methods for model selection based on
penalized likelihood. So as to present the reader with a coherent overview of the problems
at stake, some of the results presented in this chapter are also developed further in the
next two chapters, which correspond to published or submitted journal articles.

Chapter 2: Shift Detection for Univariate Processes

In this chapter, we set up the entire method for shift detection in the univariate case. We
start by defining a rigorous statistical framework to model shifts on the tree, for both the
Brownian Motion and the Ornstein-Uhlenbeck processes. Building on the combinatorial
results exposed in the previous chapter, and thanks to a careful analysis of the models,
we give an extensive solution to the identifiability problem. This implies two different
questions. First, given a shift scenario, we are able to enumerate and count all the
different scenarios that produce the same trait distribution at the tips, i.e. that are
equivalent. Second, given a fixed number of shifts K , we can compute the number of
equivalent classes of models with K shifts, that is the number of truly different models,
that give different trait distribution structures at the tips of the tree. Except for binary
trees (i.e. a tree where all internal nodes have exactly two children), this number depends
on the topology of the tree at hand.

We then describe a statistical inference method, that relies on a two steps strategy.
First, for any given number K of shifts, we implement an Expectation Maximization
(EM) algorithm that allows us to find the maximum likelihood solution. Second, given
all the solutions found over a range of values of K , we derive a model selection penalty
to choose the right number of shifts. This penalty is based on the LINselect procedure,
and inherits some of its properties and theoretical guaranties. In particular, the penalty
can be used directly, without the need to calibrate a multiplying constant, and an oracle
inequality can be derived in some particular cases.

The method is efficiently implemented in an R package PhylogeneticEM. Its accuracy
is assessed through a set of extensive simulation scenarios. It is then used to study the
evolutionary history of the Chelonians, a family containing all living turtles and tortoises.

Chapter 3: Shift Detection for Multivariate Processes

In this chapter, we build upon the univariate case to address multivariate traits. We
introduce a new set of assumptions on the Ornstein-Uhlenbeck process, that allows us
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to explicitly deal with correlated traits, while still being able to conduct shift detection
in an efficient way. Compared to previous state-of-the art methods, that all assumed
independent traits, this is a salient feature of our framework. It is all the more important
as we show that a common method to de-correlate traits measured at the tips of a tree,
called phylogenetic PCA (pPCA) actually fails to do so when there are some shifts in
the traits evolution.

The EM likelihood maximization is made efficient thanks to a new“upward-downward”
algorithm, that can compute all the quantities needed at the E step with only two traver-
sals of the tree, and can cope with missing data. This algorithm is implemented in C++,
and the method is integrated in the R package PhylogeneticEM.

The efficiency and accuracy of the method is assessed through an extensive set of
simulations, designed to test the behavior of the framework when its assumptions are
violated. The method is then used to study the evolutionary history of new world
monkeys and anolis lizards.

Chapter 4: Trait Evolution on Phylogenetic Networks

In this chapter, we explore a new paradigm for species evolution: phylogenetic networks.
Compared to phylogenetic trees, phylogenetic networks can have some hybridization
events. Instead of being always vertical (i.e. from a species to its offspring), the genetic
transmission can sometimes be horizontal (i.e. between two contemporary species). Such
events are known to happen from time to time in every families of species, and are even
quite common in some, such as bacterial organisms or plants.

We start by giving a swift overview of state of the art methods to reconstruct such
networks from DNA sequences. They are all quite recent, and promised to a bright
future. We then show how these newly inferred structures can be used to describe trait
evolution. A simple BM model is fully described, and an efficient algorithm to compute
the trait distribution structure it induces at the tips is derived.

From this first null model of trait evolution on a network, we again study the impact
that shifts might have on the trait distribution. Here, we limit ourselves to very particular
shifts, that follow hybridization events. Such shifts can model heterosis (hybrid vigor
or depression). This phenomenon is well known by agronomists, who for instance use it
to improve cultivated lineages of crops. It describes the fact that, sometimes, a hybrid
individual exhibits a trait with an outstanding value, that is outside of the range of its two
parents trait values. The shifts used to model heterosis have a fixed and known position
(on branches just below hybrid nodes), so that, contrary to the previous problem, we do
not need to search the entire tree to find potential shifts. We show how a classical linear
regression framework, along with a standard Fisher test for the coefficients, can inform
us on the presence or absence of heterosis.

The methods developed in this chapter are integrated in the Julia package PhyloNet-
works. Julia is a new programming language, that aims at combining the ease of use of R,
and the speed of C. The PhyloNetworks package has for ambition to become the standard
tool for inferring, analyzing, and manipulating phylogenetic networks on Julia.

Chapter 5: Extensions and Perspectives

In this last chapter, we browse some of the extensions that could be interesting to study
in future work. Models are only sketched in this chapter, that aims at providing the
main ideas behind each extension possibility.



15

We first study the impact of uncertainties on our framework. Indeed, in all our
developments, we always assumed that the data at the tips was measured without error,
and that the underlying tree was perfectly known. Both these assumptions are erroneous,
and we show that ignoring these sources of uncertainties can bias our analysis. A simple
method to deal with measurement error is described. Interestingly, we show how this
same framework could be used to conduct a factor analysis of the traits.

We then see how the framework could be adapted to include two desirable features:
convergence, and shift trait sparsity. Structural penalties can allow us to deal with these
new constraints. Two distinct sets of species are said to be convergent if they developed
the same trait features independently. This is not allowed in our previous framework,
and we propose to include it using a fused-ANOVA penalty. In the multivariate case,
for simplicity reasons, we assumed that when a shift occurred, it affected all traits at
once. This is a strong assumption, that makes the analysis highly dependent on the
set of traits included in – or excluded from – the analysis. A sparse group sparse lasso
penalty is proposed to tackle this issue, and impose a sparse number of traits to change
at each shift.

Another strong assumption we made was that the trees we considered were ultramet-
ric: we assumed that all the trait measurements we had were coming from contemporary,
presently living species. This excludes for instance any kind of fossil measurement. Al-
though rare, these fossils provide us with unique insights into the evolution process, and
should not be ignored. Alleviating the ultrametry assumption is however not straight-
forward. First, it breaks our careful identifiability study. Biologically, this is a good
thing, as previously un-distinguishable scenarios can become identifiable again. Math-
ematically, however, it makes the space of models more difficult to study, and highly
dependent on the tree topology. Second, it prevents us from using a re-scaling trick,
that allowed us to carry efficient computations on the Ornstein-Uhlenbeck. Some new
heuristics are proposed to deal with this issue.

Finally, the last section presents a method to deal with missing data in a more
satisfying way. Indeed, we assumed in our framework that data were missing completely
at random, i.e. that the sampling was uniform over all traits and species, with missingness
happening randomly from time to time. However, the actual sampling might sometimes
have a specific structure, that depends on the very data being measured. A simple
example of this would be for an experimenter to be more likely to “miss” a small trait
value than a larger one. Such sampling scheme can be explicitly incorporated in the
statistical analysis, and we sketch the changes that would be needed in our framework
to include them.

Chapitre 6: Résumé substantiel

Ce dernier court chapitre, en français, décrit le contexte et les résultats principaux présen-
tés dans ce document. Il peut être lu de manière autonome, et est fortement redondant
avec la présente introduction, qui s’achève sur ces mots.

1Photo Credits:
- Photographer: Dominik Stodulski, Graphic Processing: MathKnight - File:BIEDRONA.JPG in Wi-
kiCommons, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=35283266
- CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=338902
- Smidon33 — Personal Work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?

curid=17343450
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In this chapter, we introduce some of the theoretical results that are at the root of the
developments exposed in the following of this document. We try to provide the interested
reader with a coherent overview of both the biological and statistical literature, and to
stress the important questions faced by the field.
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18 1. Background

Three main points are covered in this introduction. This manuscript is concerned
with trait evolution on phylogenetic tree. Before describing any model, we first give
a rigorous definition of phylogenetic trees as a mathematical object, and describe how
a character can be mapped on it (Section 1.1). This allows us to study some of the
combinatorial properties of the space of problems we will be navigating through.

In the next three sections, we introduce some dynamic models of trait evolution on
a tree. We first show how a generic model can be defined, and display some of its global
properties (Section 1.2). We then describe in more depths two important instances of
this model, for discrete (Section 1.3) and continuous (Section 1.4) traits. We gave a
special care to that last section, that is at the core of our work.

Finally, we recall some important results about model selection (Section 1.5), that
will be useful in the statistical analysis of the problem. This section can be read inde-
pendently.

1.1 Space of Convex Characters on Phylogenies

In this section, we give a definition of phylogenetic trees, and show how to track and
count the changes of a discrete character state evolving on the tree. The exposition and
theorems are inspired from these two landmark books: Felsenstein (2004) and Semple
& Steel (2003). The combinatorial results recalled in this section are at the root of our
attempts to assess the identifiability of the models we considered in this thesis.

1.1.1 Phylogenetic Tree

We formally introduce here phylogenetic trees, that are one of the central objects of this
thesis. Trees are often used in evolutionary biology to describe the relationships between
extant species. They can be defined as follow (we assume in this definition that the
reader is familiar with the basics of graph theory, and refer to Giraud 2014, Chap. 7, for
a brief introduction of the notions needed).

Definition 1.1.1 (Tree). A tree T = (V ,E) with a set of vertices (or nodes) V and edges
E is a connected acyclic graph.

The leaves (or tips) of the tree are the vertices of degree one, and all the other nodes
are said to be interior or ancestral.

A binary or fully resolved tree is a tree where every interior node has degree exactly
3, except for at most one with degree 2 (the root, if any). In non-binary trees, a node
with degree more than 3 is called a polytomy.

Binary trees are preferred, when possible, as they represent a situation where, taking
any extant species, we can sort out all the others, from the most closely related, to the
most distant one. In many applications, we want the tree to give us information not only
on the relationships between species, but also on the relative position of their ancestors.
Specifically, we often need a rooted tree, where an interior node is marked to be the
ancestor of all other nodes. An example of such a tree is given Figure 1.1.1.

Definition 1.1.2 (Rooted Tree). A tree can be rooted if one interior node is distinguished
as the root. On a binary tree, the root is the only node with degree 2.

A rooted tree can be oriented from the root to the leaves. For any node a ∈ V , we
then denote by anc(a) the set of all ancestors of a: b ∈ anc(a) if and only if b = a or
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there is an oriented path b→ a. The direct parent of a is the unique node pa(a) such
that pa(a) ∈ anc(a), and (pa(a), a) ∈ E.

Similarly, we define the set des(a) of descendants of a: b ∈ des(a) if and only if
a ∈ anc(b). The set of direct descendants of a are the children of a: b ∈ child(a) if and
only if a = pa(b).

On rooted trees, several natural orders of the nodes can be defined. These orders are
useful to compute some quantities iteratively and efficiently on the tree.

Definition 1.1.3 (Pre and Post Orders). The nodes of the tree are said to be sorted in a
preorder if any node comes after all its parents: for any two nodes numbered i and j, if
there is an oriented path going from i to j, then i ≤ j. This corresponds to a numbering
of the tree from the root to the leaves. A preorder is a particular case of topological
sorting when the graph is a tree, and can be obtained in linear time (Kahn, 1962).

A preorder can be turned into a postorder by reversing it. A postorder can also be
called a pruning order, as it is used in the well known Felsenstein pruning algorithm (see
Section 1.2.3).

4 5 6 8 9

1

2

3 7

Figure 1.1.1 – A rooted binary tree with 5 tips (nodes {4,5,6,8,9}) and 4 internal nodes
(nodes {1,2,3,7}). The root is node 1. In addition, we have: pa(3) = {2}, anc(3) =
{1,2,3}, child(3) = {4,5} and des(3) = {3,4,5}. The nodes are numbered in a preorder.
When visiting the nodes in this order, we know when we see a new node that we already
visited all its ancestors. A postorder is obtained by reversing this order.

As stated above, trees are used in evolutionary biology to represent the relationships
between a set of extant species, that are typically found at the tips. We hence need
a map linking the observed species (each identified by a label), and the tips of a tree.
Following Semple & Steel (2003, def. 2.1.2), we define a phylogenetic tree as a pair of a
tree, and a set of associated labels.

Definition 1.1.4 (Phylogenetic Tree). A phylogenetic tree (on X) T is a pair (T ,φ), where
T = (V ,E) is a tree, and φ : X→ L is a bijection between a set of labels X and the set L
of the leaves of T .
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The set X can be viewed as a set of labels that uniquely define the leaves of the tree.
In the context of evolutionary biology, these can be thought as the names of the extant
species studied. For each species, we can then measure a set of discrete traits, such as the
presence of absence of a given feature, or, more commonly, a molecular sequence. The
distribution of these characters, that are the result of evolution for all extant species,
are likely to be constrained by the tree. In the following section, we recall some classical
results on the class of convex characters, that are characters that can be seen as the
result of a homoplasy-free evolution along the tree (see definitions below).

1.1.2 Convex Characters

These notions and properties are analysed in Chapter 4 of Semple & Steel (2003). We
recall here some of the main definitions and results, that will be useful in Section 2.3 of
Chapter 2, to characterize the set of equivalent solutions.

Definition 1.1.5 (Character). A discrete full character χ : X → C is an application
mapping the leaves (identified by their labels) of a phylogenetic tree T = (T ,φ) on X to
a character or state set C. If |χ(X)| = r, then χ is an r-state character.

Definition 1.1.6 (Extension). An extension of a character χ to T is an application χ̄ :
V → C such that χ̄◦φ = χ. We denote by Ex(χ,T ) the set of all extensions of a character
χ on T .

On a rooted phylogenetic tree, an extension can be seen as an ancestral state recon-
struction of the character: it describes a possible state for un-observed characters at the
ancestral nodes of the tree. See Figure 1.1.2 for an example of a convex character, along
with an associated extension.

Definition 1.1.7 (Convex Character). A character χ : X → C is said to be convex on a
phylogenetic tree T = (T ,φ) on X with T = (V ,E) if there is an extension χ̄ : V → C of
χ such that, for any c ∈ C, the sub-graph of T induced by {v ∈ V | χ̄(v) = c} is connected.

(To be consistent with the literature, we use here the terminology defined in Steel
1992. “Convex” is here to be understood as “connex”: a set of nodes is convex if any two
of its elements can be linked by a path on the tree staying inside the said set.) If we
consider a rooted phylogenetic tree, then we can study the evolution of a character from
the root to the tips. Each node can then pass along its character value to its children,
and, sometimes, the character might shift, going from one state to another. If those
shifts can only lead to novel states, then we have a homoplasy free evolution process, as
defined below.

Definition 1.1.8 (Homoplasy-free evolution). Let B : V → C be an application associating
each node of a rooted phylogenetic tree T = (T ,φ), with T = (V ,E), to a state in C. We
define the following properties of B:

(i) B is said to exhibit a reverse transition if, on a lineage, a character goes back to a
previous state, i.e. if there exists a path (v1, . . . , vk) in T going away from the root,
such that B(v1) = B(vk), and that, for some i ∈ J2 , k − 1K, B(v1) , B(vi).

(ii) B is said to exhibit a convergent transition if two separate lineages converge in-
dependently to the same state, i.e. if there exists two paths (a,v1, . . . , vk) and
(a,w1,w2, . . . ,wl) starting from node a and going away from the root, such that
vk , wl , B(vk) = B(wl), and B(a) , B(vk).
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(a) Convex character, homoplasy free evolution. (b) Non-convex character, convergent transition.

Figure 1.1.2 – A phylogenetic tree with a convex (left) and non-convex (right) character.
For the convex character, “white” and “grey” are unique innovations of the two tips
on the left. For the non-convex one, the “grey” innovation appears twice: this is an
example of convergent evolution. There are several possible extension of the character
on the internal node (see Section 1.1.3), but none is homoplasy free for the non-convex
character.

(iii) If B does not exhibit any reverse or convergent transition, then B is said to be
homoplasy free.

The two notions of homoplasy-free evolution and convex characters are in fact two
representations of the same concept, as we can see with the following proposition, ex-
tracted from Semple & Steel (2003) (Chap. 4).

Proposition 1.1.1 (Link between convex and homoplasy-free characters). An homoplasy
free map on a rooted tree and a convex character on an un-rooted tree are linked by the
following transformations:

(i) Let B : V → C be a homoplasy free application on a rooted phylogenetic tree T =
(T ,φ), with T = (V ,E), and let T ′ the un-rooted phylogenetic tree associated with
T . Then the character χ = B◦φ : X→ C is convex on T ′, with associated extension
χ̄ = B.

(ii) Reciprocally, let χ : X→ C be a convex character on an un-rooted tree T ′ = (T ,φ),
with T = (V ,E), and let χ̄ : V → C be its associated extension. Choose ρ and
consider the tree T associated to T ′ and rooted at ρ. Then the map B : V ∪ {ρ} →
C such that B(v) = χ̄(v) for any v ∈ V and B(ρ) = χ̄(w) for an arbitrary fixed
w ∈ child(ρ), is homoplasy-free.

Associating a color to each state of a character, it is possible to count the number of
convex colorings on a binary tree. This is given by Steel (1992) (Proposition 1, item 4)
and proposition 4.1.4 in Semple & Steel (2003).
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Proposition 1.1.2 (Semple & Steel (2003), proposition 4.1.4). Let T be a binary phylo-
genetic tree on X, and let C be a set of c ≥ r states. Then the number of full r-states
characters χ : X→ C that are convex on T is

c!
(c − r)!

(
2n− r − 1
r − 1

)
,

where n = |X | and c = |C|.
Corollary 1.1.1 (Steel (1992), proposition 1, item 4). If the arranging order of the state
does not matter, then the above formula simplifies to(

2n− r − 1
r − 1

)
.

Example 1.1.1. On the tree with n = 5 tips with r = 3 characters presented Figure 1.1.2,
there are

(10−3−1
3−1

)
= 15 coloring of the tips that induce convex characters, i.e. that can

be obtained with an homoplasy free evolution.

In Section 2.3 of Chapter 2, we derive this formula using the homoplasy-free evolution
formalism, and extend it to any tree (not necessarily binary).

1.1.3 Parsimony

Among all extensions of a character to ancestral nodes, some require less shifts between
states than the others. In the following, we study the extensions that are parsimonious,
in that they induce the less possible shifts.

Definition 1.1.9 (Parsimony Score, Semple & Steel, 2003, Definition 5.1.1). Let χ be a
character on a phylogenetic tree T , and χ̄ ∈ Ex(χ,T ) an extension of χ. The changing
number `(χ̄,T ) of χ̄ is the number of characters shifts induced by the reconstruction χ̄:

`(χ̄,T ) = |{(u,v) ∈ E | χ̄(u) , χ̄(v) }| .
The parsimony score `(χ,T ) of χ on T is then the minimum number of shifts required
to produce χ:

`(χ,T ) = min
χ̄∈Ex(χ,T )

`(χ̄,T ).
An extension reaching the minimum above is a minimum extension of χ.

For a character following a homoplasy free evolution, as each shift induces a new
state, the number of changes needed to get r states at the tips is exactly r −1. The link
between convex characters and parsimony scores can be summarized by the following
proposition:

Proposition 1.1.3 (Semple & Steel, 2003, Proposition 5.1.3). Let χ be an r-state character
on a phylogenetic tree T . Then:

`(χ,T ) ≥ r − 1,
and the equality is reached if and only if χ is convex on T .

In the following, we describe two classical dynamic programming algorithms to find a
minimum extension of a given, not necessarily convex, character on a rooted phylogenetic
tree. The goal of Section 2.3 in Chapter 2 is to enumerate or count the set of all minimum
extensions of a given character.
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The Fitch Algorithm. We only give a brief description of the algorithm here, but see
Felsenstein (2004), chapter 2, or Semple & Steel (2003), section 5.2, for a more formal
approach. For this algorithm, we assume that we have a character χ on a rooted phy-
logenetic tree T , and that the nodes of the tree are in a postorder (from the tips to the
root). We propagate two quantities: at node numbered i, ψi ⊂ C is a set of acceptable
states, and `i is the parsimony score associated with those states. See Algorithm 1.1.1 for
a formal description of the upward phase propagation, and Figure 1.1.3 for an example.
At the root ρ of the tree, we get `ρ the parsimony score of the character, and ψρ the set
of characters that might enter in the composition of an associated minimal extension of
the character.

From this set ψρ, it is possible to start a downward phase, traversing the tree in a
preorder, in order to define a minimal extension at all the nodes of the tree.

Algorithm 1.1.1 Fitch Algorithm

for i ∈ J1 , |V |K do
if i is a tip then
ψi ← {χ ◦φ(i)}
`i ← 0

else {i is an internal node}
E←⋂

j∈des(i)ψj
if E = ∅ then
ψi ←

⋃
j∈des(i)ψj

`i ←
(∑

j∈des(i) `j
)
+1

else
ψi ← E
`i ←

∑
j∈des(i) `j

end if
end if

end for

The upward phase of this algorithm has a complexity linear both in the number of
tips and the number of characters (i.e. in O(|X |× |C|)). The Sankoff Algorithm described
below is slightly less efficient, but can be generalized more easily.

The Sankoff Algorithm. This algorithm is more formally based on a Dynamic Program-
ming approach. As previously, we assume that we have an r-state character χ : X→ C
on a rooted phylogenetic tree T = (T ,φ), with T = (V ,E). Here, we also assume that the
cost of going from one state to the other is not always 1: for any two states a,b ∈ C, the
cost of the transition a→ b is denoted by cab. Those costs are assumed to be known. We
still assume that all the nodes V are numbered in a postorder (from the tips to the root).
For convenience, we identify V with its numbering, so that, for any node v numbered i,
φ(i) = φ(v). The goal of the algorithm is then to compute, for any node numbered i and
any state a ∈ C, the minimum cost Si(a) for node i to be in state a. This is obtained by
taking the sum, over all its descending nodes j, of the minimum over all the states b of
the minimum cost Sj(b) for node j to be in state b, plus the cost of going from state a to
state b. See Algorithm 1.1.2 for a formal description, and Figure 1.1.4 for an example.

At the root node (numbered |V |), we get the minimal cost of the character on the
tree c(χ,T ) = mina∈C S|V |(a). If all the transition costs are set equal to 1, then we get
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{ , , } +1

{ , } +1 { , } +1
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Figure 1.1.3 – Example of the Fitch algorithm on a tree with 5 tips and 3 states (showed
in black, gray and white). The states of the tips are showed by a big colored circle. The
set ψi is shown at each node i. When the union is taken, the increment of the score is
shown by a +1 sign. Here, the parsimony score is equal to 3. Note that the character
represented is not convex.

Algorithm 1.1.2 Sankoff Algorithm

for i ∈ J1 , |V |K do
if i is a tip then

for a ∈ C do
if χ ◦φ(i) = a then
Si(a)← 0

else
Si(a)← 1

end if
end for

else {i is an internal node}
for a ∈ C do
Si(a)←

∑
j∈des(i)minb∈C[cab + Sj(b)]

end for
end if

end for

the parsimony cost: `(χ,T ) = c(χ,T ).
As such, the algorithm only provides us with the parsimony cost, and not with a

minimal extension of χ. As previously, such a minimal extension can be obtained by
a downward phase, selecting at each node a state that realizes the minimum cost, and
choosing the state that is identical to its parent’s state when possible.

The upward phase of this algorithm is in O(|X | × |C|2): it is linear in the number of
tips in the tree, and quadratic in the number of states.
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0  1  1 1  0  1 1  1  0 1  1  0 1  0  1
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Figure 1.1.4 – Example of the Sankoff algorithm on a tree with 5 tips and 3 states
(showed in black, gray and white). The states of the tips are showed by a big colored
circle. The vector Si for the three states is shown at each node i as a box with associated
states below. The transition costs are all set to 1. Again, the parsimony score is equal
to 3 (minimum of Sρ at the root).

1.2 Latent Variable Models of Character Evolution

When studying a discrete trait, parsimony provides us with a first and simple criterion.
It is based on the “Occam’s Razor” principle, that states that between two equivalent
solutions, one should always choose the simplest one. However, evolution is a dynamic
process, and it is not clear at all that it actually follows a parsimony principle. Instead
of looking at the trait a posteriori and try to explain it using parsimony, we can try to
model directly the dynamic evolution of the character through time. Defining such a
model has two main advantages. First, it makes all the assumptions used in the model
explicit, which makes its limitations more obvious, and can help us choose between
various models, depending on the organism or biological process studied. Second, with
a model, comes a natural way to evaluate it, in light of the data: likelihood. This
continuous score can replace advantageously the discrete parsimony score, that has some
identifiability issues, and the statistical properties of which are hard to study.

In this section, we describe a popular model for trait evolution on a tree. Under
some broad assumptions, we show that this model can be casted into the framework of
latent graphical models. We recall some well known properties of these models, that will
be useful when studying particular instances of trait evolution models (in Sections 1.3
and 1.4).

1.2.1 A Generic Model for Trait Evolution on a Tree

We describe here a very generic model of trait evolution on a tree. We start by making
the assumption that the tree is calibrated in time, i.e. that the branch lengths represent
units of times elapsed between a node and its child. The idea is then to assume that one
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or several traits, that can be discrete or continuous, evolve in time according to a given
process, left unspecified here, but assumed to model the dynamics of trait evolution
through time, on a given branch and for a given species. When there is a speciation
event, at a node of the tree, this process splits up into two independent instances of this
same process, starting at the same value. We describe in the following definition such a
branching process, where branching times are fixed by an underlying known phylogenetic
tree.

Definition 1.2.1 (Generic Trait Evolution). Let T = (E,V ) be a rooted tree, with root
ρ, oriented from the root to the tips. Assume that each edge e ∈ E of the tree has
an associated branch length `e. Given a preorder numbering of the vertices, denote by
(Xi)1≤i≤|V | the sequence of random variables, taking its values in an arbitrary character
space C (that can be discrete or continuous, and possibly multidimensional), describing
the trait of each node. The law of (Xi)1≤i≤|V | is defined by:

� X1 ∼ D(θ1): the root follows a given law D, with parameters θ1.

� Let e ∈ E be a branch, with child node i, and parent node pa(i). On this branch,
the trait evolve according to a stochastic process (We

t ,0 ≤ t ≤ `e) with law P (θe),
independently from other species, conditionally on We

0 = Xpa(i).

� At node i, define Xi =We
`e

.

� Iterate down the tree.

One strong assumption that is made here is that, conditionally on their ancestors,
species evolve independently. This is a key assumption, that we cannot alleviate easily.
It will be essential in our approach of the problem, as shown below. It is however not
very realistic, as it excludes any kind of interactions, such as competition, predation
or mutualism, between species living at the same period of time. Some attempts have
recently been made to introduce interactions for some classes of Gaussian processes (see
e.g. Drury et al., 2016; Manceau et al., 2016; Bartoszek et al., 2016). In the rest of this
thesis, we don’t question this assumption anymore.

Some more assumptions need to be made on the evolution process P itself. These
assumptions depend on the trait studied, and on the species considered. In Sections 1.3
and 1.4, we describe in details some of them for discrete or continuous traits. One generic
assumption that is almost always made however, for mathematical convenience, is that
the process has the Markov property : if (Wt,0 ≤ t) follows P , then, for any 0 ≤ s < t, the
law of Wt given (Wu ,0 ≤ u ≤ s) is the same as the law of Wt given Ws. In other words,
the state of the traits depends on its previous states only through the last one known.
This is another essential assumption, that we will not try to alleviate in the rest of this
manuscript.

Under those two assumptions (conditional independence, and Markov property), we
show in the next section how this generic model can be casted in a useful statistical
framework.

Observe that in the definition, the process can have different parameters θe on each
branch e. Going further, each branch could even have its own process Pe. However, in
most applications, the process, as well as the parameters, are taken constant for all the
branches (i.e. θe = θ, ∀e ∈ E). If it is the case, then from the definition above it follows
that, for any node i, Xi =Wti , where ti is the time elapsed between the root and node
i, and (Wt,0 ≤ t ≤ ti) follows the law P (θ), conditionally on W0 = X1.
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One of the major goal of this thesis is, for some particular processes P , to relax this
assumptions of uniformity, and to assume that the parameters are only constant by part,
shifting only a few times on the tree.

1.2.2 Directed Graphical Models and Latent Variables

We introduce here directed graphical models and latent variable models, and show how
the generic model presented in the previous section can be casted in this statistical
framework. We then recall some of their useful properties, as well as inference procedures,
such as the Expectation Maximization algorithm, a popular algorithm for the inference
of the parameters of these models through likelihood maximization.

Definition 1.2.2 (Directed Graphical Model). A set X = (X1, . . . ,X|V |) of random variables
on an arbitrary state space C follows a Directed Graphical Model if it lies at the vertices
of a directed acyclic graph G = (V ,E), and is such that its joint distribution can be
factorized as:

pθ (X) =
∏
i∈V

pθ
(
Xi

∣∣∣ Xpa(i)

)
where pa(i) is the set of all direct parents of i in the graph G, and θ is the vector of
parameters of the distribution. Note that one may have pa(i) = ∅ (e.g. at the root of

a tree), in which case pθ
(
Xi

∣∣∣ Xpa(i)

)
= pθ (Xi) by convention. Equivalently, X follows a

Directed Graphical Model if, for any two nodes i and j such that j is not a descendant
of i in the graph, then Xi is independent of Xj conditionally on Xpa(i).

When the underlying graph is a tree, each node has only one parent, and the formula
above means that we can express the joint distribution as the product over all branches
of the laws of each node knowing its parent. Hence, in such a model, we just need a
transmission rule for the trait from a parent node to its children to know the entire
distribution of the tree.

This formalism is quite fruitful, and can encompass the generic model of trait evolu-
tion described in the previous section:

Proposition 1.2.1. Let (Xi)1≤i≤|V | be some random variables on a rooted and directed
tree T = (E,V ), generated according to a process of trait evolution described in Defini-
tion 1.2.1, with a process P that has the Markovian property. Then (Xi)1≤i≤|V | follows a
graphical model on the tree T .

Proof. The proof relies essentially on the two assumptions that we stressed above: con-
ditional independence and Markov property. Using the second definition, take i and j
two nodes of T , such that j is not a descendant of i, and show that:

p
(
Xi ,Xj

∣∣∣ Xpa(i)

)
= p

(
Xi

∣∣∣ Xpa(i)

)
p
(
Xj

∣∣∣ Xpa(i)

)
.

Writing p
(
Xi ,Xj

∣∣∣ Xpa(i)

)
= p

(
Xi

∣∣∣ Xj ,Xpa(i)

)
p
(
Xj

∣∣∣ Xpa(i)

)
, this amounts to prove that

p
(
Xi

∣∣∣ Xj ,Xpa(i)

)
= p

(
Xi

∣∣∣ Xpa(i)

)
. If j is an ancestor of i, then this is true thanks to the

Markov property. Otherwise, let k be the most recent common ancestor of i and j. As j
is not a descendant of i, k is distinct from i and j. Then as k is an ancestor of i, by the

Markov property, we get p
(
Xi

∣∣∣ Xj ,Xpa(i)

)
= p

(
Xi

∣∣∣ Xj ,Xpa(i),Xk
)
. From the conditional

independence of Xi and Xj given Xk, this is equal to p
(
Xi

∣∣∣ Xpa(i),Xk
)
. We then conclude

using the Markov property one more time.
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Once the model is defined, to do some statistical inference, we need to know which
nodes are observed, and which ones are hidden. For a phylogenetic tree, representing
the evolutionary history of species, we typically only have access to traits that can be
observed today, at the tips of the tree. Apart from fossils, that can provide us with some
insight on ancestral traits, internal nodes remain mostly unobserved.

Definition 1.2.3 (Latent Variable Model on a Tree). A set of variables Z is said to be
latent, or hidden if it is un-observed, but has a direct effect on a set of observed variables
Y. If the set X = (Y,Z) is such that:

� X follows a directed graph model on a tree T ,

� Y are observed variables at the leaves of the tree,

� Z are latent variables at the internal nodes of the tree,

then Y is said to follow a latent variable model on the tree T .

Intuitively, this class of models corresponds to a case where the law of a node given
its parents is known, and defined by a model of trait evolution, that can be discrete or
continuous, and where only extant species (at the tips of the tree) are observed. See
Figure 1.2.1 for a simple example of such a setting.

Y5 Y6 Y7 Y8 Y9

Z1

Z2

Z3 Z4

Figure 1.2.1 – Latent Variable Tree Model. The observed variables are shown in white,
and the latent variables in gray. The variables are numbered in a preorder. The likeli-
hood of the completed dataset can be factorized on the edges, with terms of the form

p
(
Xi

∣∣∣ Xpa(i)

)
, such as e.g. p (Y5 | Z3 ).

These models appear naturally in phylogeny, and, thanks to the underlying tree,
have some nice hierarchical properties that can help us speed up many computations,
including the likelihood one.
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1.2.3 Pruning Algorithm

When we have a latent variable model on a tree, the likelihood of the data can be
computed thanks to a pruning algorithm, that goes up the tree from the tips to the root,
similarly to the Sankoff algorithm. The idea relies on the conditional independence of
daughter nodes given a parent node in the tree graphical model. It has been exposed
and studied in some particular examples of evolution model by Felsenstein (Felsenstein,
1973b,a, 1981, 2004).

Proposition 1.2.2 (Pruning-like Propagation). Denote by Yi the set of all the traits for
tips that are below a given node i (i.e. all tips j ∈ des(i)). Then the conditional likelihood
of Yi given Xi can be written as:

pθ
(
Yi

∣∣∣ Xi = x
)
=

∏
j∈child(i)

∫
u∈X

pθ
(
Yj

∣∣∣ Xj = u
)
.pθ

(
Xj = u

∣∣∣ Xi = x
)
du (1.1)

If the nodes of the tree are in a postorder, then this equation makes it possible to
propagate the information from the tips of the tree to the root. When some assumptions
are made on the space C or on the law pθ , then some explicit formulas can be derived.
For instance, if C is discrete, then the integrals are just sums, and the formula can be
handled more easily (see Section 1.3). Similarly, if the law studied are Gaussian, then
all the integrals can be solved analytically, and we get actualization formulas similar to
the ones in a Kalman filter (see Section 1.4, and Chapters 2 and 3).

1.2.4 Expectation Maximization

Instead of trying to integrate out the marginal distribution of the observed trait values Y
directly, it can be better to work with the likelihood of the completed dataset X = (Z,Y),
that is in many cases easier to compute. The well known Expectation Maximization
(EM) algorithm is designed to exploit this feature. It was introduced by Dempster et al.
(1977), and relies on the following decomposition of the likelihood of the observed data:

Proposition 1.2.3 (Marginal Likelihood Decomposition).

logpθ(Y) = Eθ [ logpθ(Y,Z) | Y ]−Eθ [ logpθ(Z | Y ) | Y ]

See e.g. Robin (2014) for a proof of this proposition and the following one. The
EM algorithm is then an iterative algorithm that maximizes the marginal log-likelihood
logpθ(Y ), that is deemed intractable, through the conditional expectation of the com-
pleted log likelihood Eθ [ logpθ(Y,Z) | Y ], that is supposed to be easier to handle. Infor-
mally, the algorithm can be stated as follow:

Algorithm 1.2.1 (Expectation Maximization). Repeat until convergence:

E step Given a current estimate θh of the vector of parameters θ, compute the moments
of logpθh(Z | Y ) needed to compute Eθh [ logpθ(Y,Z) | Y ] (as a function of θ).

M step Update the estimate of θ as:

θh+1 = argmax
θ

Eθh [ logpθ(Y,Z) | Y ] .
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In general, there are no guarantees for this algorithm to converge to the global max-
imum of the marginal likelihood. However, we are guaranteed to converge to a local
maximum, thanks to the following property, that states that the likelihood is increasing
at each step of the algorithm:

Proposition 1.2.4 (Increase of the Likelihood). If θh and θh+1 are estimates obtained by
the EM algorithm described above, then:

logpθh+1(Y ) ≥ logpθh(Y ).

This algorithm is quite general, and can be used both for discrete and continuous
models of evolution. It is at the core of our inference strategy in Chapters 2 and 3 of this
thesis. For the situations we are looking at, one of the key points is to efficiently compute
the E step. As our latent observations are linked by a directed tree, this can be done
thanks to pruning-like algorithms, using the formula shown above (Proposition 1.2.2).
These algorithms, that can also be called “forward-backward”, are designed to compute
all the needed quantities in just two traversals of the tree, from the tips to the root, and
back.

1.3 Discrete Models of Evolution and Tree Reconstruction

The first application of the above formalism are discrete models of trait evolution. As
they encompass models of DNA or protein evolution, for which a great amount of data
has become available over the last few decades, these models have received a lot of
attention. They are often at the core of phylogenetic inference strategies to reconstruct
the tree between a set of species. It is hence important to understand how they work,
and on which modeling assumptions they are based. We refer the interested reader to
O’Meara (2012) and Felsenstein (2004) for a more comprehensive review of these models
and associated methods.

1.3.1 Continuous Time Markov Chains

If the studied trait is discrete, it is natural to model its evolution as a Continuous Time
Markov Chain (CTMC). The Markov property of this process P ensures that the resulting
random variables follow a latent graphical model on the phylogenetic tree, as defined in
1.2.3 (see Proposition 1.2.1). We start by defining a general CTMC and explore a few
of its properties. We then show how it can be used to model trait evolution on a tree.
Finally, we give some classical models of trait evolution based on this formalism, along
with their assumptions.

A General Model. We start by defining the general model, with its core assumptions.

Definition 1.3.1 (Continuous Time Markov Chain (CTMC)). A continuous time Markov
chain (Xt; t ≥ 0) is a random process taking its values in a discrete finite set C, and
that is such that, for any 0 < s < t, the conditional law of Xt given (Xu ;u ≤ s) only
depends on the last known value Xs, i.e. for all n ∈ N, 0 ≤ t0 < t1 < · · · < tn < s and
x0,x1, . . . ,xn,x,y ∈ C, we have:

P
[
Xt = y

∣∣∣ Xt0 = x0,Xt1 = x1, . . . ,Xtn = xn,Xs = x ] = P
[
Xt = y

∣∣∣ Xs = x ] .
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The process is said to be homogeneous if P
[
Xt = y

∣∣∣ Xs = x ] depends on t and s only
through the difference t − s. In that case, for any time t, we define the transition matrix
P(t) on C2 that is such that:

P
[
Xt = y

∣∣∣ Xs = x ] = Pxy(t − s).
This matrix expresses the probability, starting from a state x at time s, to be in state y
at time s+(t− s). For such a process, we can easily compute the probability µx(t) of the
chain to be in state x ∈ C at time t from the initial state:

µ(t) = µ(0)P(t),

where µ(t) is seen as a row-vector on C.

For any time t, the transition matrix P(t) defines the macro state of the process.
However, thanks to the Markovian nature of the process, it is possible to reconstruct the
states from the infinitesimal rate of transition from one state to another on a very short
time scale. That is the goal of the instantaneous rate matrix, as defined below.

Proposition 1.3.1 (Instantaneous Rate Matrix). Given a CTMC with a transition prob-
ability matrix function (P(t); t ≥ 0), there is a rate r > 0 and a matrix Q on C2 such
that: 

Qxy ≥ 0 ∀(x,y) ∈ C2,x , y

Qxx = −
∑

y∈C,y,x
Qxy ≤ 0 (1.2)

and, for h→ 0: {
Pxy(h) = hrQxy + o(h)

Pxx(h) = 1+ hrQxx + o(h).
(1.3)

And we have the following relationship:

P(t) = eQrt.

Equations (1.3) justify that we see Q as an instantaneous rate matrix: on a short
time scale h, the probability of going from a state x to a state y is h× rQxy , i.e. the time
elapsed times the rate of change.

Remark that the rate r that multiplies the time is not identifiable from Q. It can be
seen as a scaling parameter, that accelerates or decelerates time for the process evolution.
In order to make it identifiable, we need some kind of normalization on Q. This will be
achieved by normalizing the expectation of the time needed between two events (i.e. the
expected time before a transition, see Proposition 1.3.2).

Stationarity. In the following, we make the assumption that the process has a stationary
state, as defined below.

Definition 1.3.2 (Stationary State). A vector π of states probability on C is said to
describe a stationary state of a CTMC if it is not affected by the transition matrix of
the process at any time t:

π = πP(t).
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Equivalently, π is a stationary state iff

πQ = 0.

If it exists and is unique, the stationary state is also the asymptotic state of the chain:

lim
t→+∞Pxy(t) = πy ∀(x,y) ∈ C.

In other words, π represents the equilibrium frequencies of each state, that are not
affected by the dynamical model of evolution. In the following, we only consider chains
that have a stationary state, and often assume that the equilibrium has been reached,
i.e. that the chain starts with initial distribution π. As the equilibrium is also the
asymptotic state of the chain, this amounts to assuming that, before we started looking
at it, the chain has been running for “a large amount of time”, and has already reached
equilibrium.

Normalization of Q. For a stationary CTMC, we can normalize the instantaneous rate
matrix Q, so that the parameter r becomes identifiable. To do that, we normalize the
expectation of T1 the random variable giving the time of the first event of the chain.
From the standard properties of a CTMC recalled below, we know the conditional law
of T1 given the initial state of the chain.

Proposition 1.3.2 (Law of T1). Conditionally to the initial state of the CTMC X0 = x, the
time of the first event T1 and the state Z1 = XT1 are two independent random variables,
with T1 following an exponential law with parameter rqx = −rQxx, and Z1 a multinomial

on C with probabilities given by
(
Qxy
qx
, y , x

)
.

For a stationary CTMC, with stationary distribution π, the expectation of T1 is then
given by:

E [T1] =
∑
x∈C

P [X0 = x]E [T1 | X0 = x ] = r
∑
x∈C

πxqx

Imposing E [T1] = r imposes some constraints on Q. As all subsequent times between
events have the same law as T1, this amounts to imposing a basal rate, given by Q, of
one event for every unit of time. The true rate is then controlled by the parameter r.

Time Reversibility. It is often convenient to assume that the CTMC is time reversible,
meaning that, when played backward, the chain has the same distribution. For a sta-
tionary process, this amounts to the following definition.

Definition 1.3.3 (Time Reversibility). A stationary CTMC is said to be time reversible
if, for any two states (x,y) ∈ C2 and any time t:

πxPxy(t) = πyPyx(t)

Equivalently, the stationary CTMC is time reversible iff, for any two states (x,y) ∈ C2

and any time t:
πxQxy = πyQyx

Since it implies that Diag(π)Q is symmetric, it makes Q easier to diagonalise, which
is useful when trying to compute P(t) = eQrt. (Where Diag(π) is the diagonal matrix
with the diagonal vector of values equal to π.)
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On a Tree. We described above the properties of one CTMC running in time. When
applied to trait modeling, we need to show how this process can be applied on a tree.
The idea is to use the process defined in Section 1.2.1, taking for the process P a CTMC.

Definition 1.3.4 (CTMC on a tree). Let T = (E,V ) be a rooted tree, with root ρ, oriented
from the root to the tips. Assume that each edge e ∈ E of the tree has an associated
branch length `e. Given a preorder numbering of the vertices, denote by (Xi)1≤i≤|V |
the sequence of random variables, taking its values in an arbitrary character space C,
describing the character of each vertex. Denote by CTMC(Q, r,π) the stationary CTMC
with instantaneous rate matrix Q, rate r, and stationary frequencies π. Then a stationary
CTMC model of evolution on the tree can be defined as:

� X1 ∼ π: the root is in the stationary state of the CTMC(Q, r,π).

� On a given branch e, the character evolves as a CTMC(Q, r,π) for a time `e.

� At a given node i, the process splits up into two independent CTMCs with the
same initial state.

From this definition, each node Xi is the result of the CTMC(Q, r,π), running for a time
ti , the distance on the tree between node i and the root.

Thanks to Proposition 1.2.1, the model obtained follows the properties of a graphical
tree model, as defined in 1.2.3. In particular, the probabilities needed for the factorization
described in Definition 1.2.2 are exactly given by matrix P(t): for a node i with parent
edge e and parent node pa(i), and any two states (x,y) ∈ C,

P
[
Xi = y

∣∣∣ Xpa(i) = x
]
= Pxy(`e).

An example of such a model on a small tree is presented Figure 1.3.1.

This is the first example of a process evolving on a tree as defined in Section 1.2.1,
for a discrete trait. It will be used again in the Section 1.4 for continuous traits. We
stress here again that this construction makes the strong assumptions that all species
evolve independently from one another, and that the process has the same parameters
on all the branches, meaning that evolution is supposed to follow the same rules over the
whole tree. This last assumption will be partly relaxed in Section 1.3.3.

1.3.2 Models of DNA Evolution

The general CTMC framework described above can be applied to any discrete trait, such
as the color of a flower, or the absence or presence of a given morphological character.
It is however important to check that the assumptions we made are compatible with
the evolutionary mechanisms of the studied trait. One of the most fruitful example of
traits these models can be applied on are DNA sequences. In the following, we study
this particular example in more depth.

Discussion of the Assumptions. We recall here all the assumptions made in the con-
struction above, and see how they can relate to DNA sequence evolution.
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Figure 1.3.1 – Example of a CTMC process evolving on a phylogenetic tree with five tips
to model DNA evolution of one site. The states are mapped on the tree using a color
code for nucleotide bases: purines (A,G) are in red tones, and pyrimidines (C,T ) are in
green tones. We can see the states changing on the branches of the tree, following the
branching process. The CTMC is a Kimura model (see Section 1.3.2), with rate r = 0.1
and ratio of transition to transversions R = α

2β = 10 (transitions happen more easily than

transversion). The figure was generated using function sim.history of R package phytools
(Revell, 2012).

Independence of Sites: First, we need to define the state space C. Here, we are studying
a sequence, that contains m sites, each exhibiting one of the four nucleotide base
(A, G, C, T). The state space is hence {A,G,C,T }m. As the length of the sequence
m can be large, one way of reducing the state space is to assume that all the
sites are independent from one another. In that case, instead of studying the
sequence as a whole, we can study each site independently, and we only need to
deal with a state space with four elements. This assumption is very convenient,
and makes the model tractable, but might not be very realistic. Indeed, at least for
a coding sequence, one might think that the sites are somehow related. Following
this assumption, from now on we will only consider the evolution of one site, with
state space {A,C,T ,G}.

Independence of Species: Similarly, at least for coding sequences, it is not clear that
this assumption is justified. It is however essential in our modeling approach. As
pointed out above, alleviating this assumption would require a completely new
model, and is outside of the scope of this manuscript.

Markovian Property: As before, this assumption states that the evolutionary process
has “no memory”, and is made for mathematical convenience.

Stationarity and Time Reversibility: As pointed out before, these are technical assump-
tions, that simplify the computations. They have no real biological ground, and
some work has already been done to alleviate them (Galtier & Gouy, 1998; Boussau
et al., 2006).

The General Time-Reversible (GTR) Model. Applying the assumptions above, we
can derive a general formulation for a CTMC on a tree. Thanks to the independence of
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sites, we can restrict to a model with 4 states, which has in general 42+4 parameters, for
matrix Q and stationary distribution π (the evolution rate r will be treated separately).
The following constraints apply to these parameters:

Constraint Equation Number
Instantaneous Rate Matrix (Def. (1.2)) ∀x ∈ C, ∑y∈CQxy = 0 4
Probability Distribution

∑
x∈Cπx = 1 1

Normalization (Prop. 1.3.2) −∑x∈CπxQxx = 1 1
Time Reversible (Def. 1.3.3) Diag(π)Q symmetric 4× 3/2 = 6
Total 12

Hence, there are only 20−12 = 8 free parameters in the model, and the instantaneous
rate matrix can be written as (Lanave et al., 1984; Felsenstein, 2004):

Q =


A G C T

A − απG βπC γπT
G απA − δπC επT
C βπA δπG − ηπT
T γπA επG ηπC −


where the diagonal elements are such that each row sums to zero. This model is a good
compromise between complexity and tractability, and is routinely used (O’Meara, 2012).
If the researcher has a better idea of the biological process, it is possible to make extra
assumptions. We list here the most common ones, from the least to the most complex.

Jukes & Cantor (1969): This model assumes that the instantaneous rate for going from
any base to any other is just 1/3. It has only one parameter, the evolution rate r.

Kimura (1980) This models distinguishes “transitions” from “transversions”, based on
the distinction between purines (A, G) and pyrimidines (C, T). Because of some
structural constraints, a change within the same group, or transition, happens
easily, with rate α. A cross-group change, or transversion, is less frequent, and
happens with a rate β. It has two free parameters: the rate r, and the ratio of
transitions to transversions α/2β. See Figure 1.3.1 for an example of this process.

Tamura & Nei (1993): This model does not assume that the equilibrium frequencies π
are all equal to 1/4. In addition, it distinguishes transitions within purines or
pyrimidines, with respective rates α1 and α2, and transversions, with rate β. It
has 6 free parameters (the rate r, three for the vector π, and two for the tran-
sition/transvertion rates). There are two common independent simplifications of
this model. If α1 = α2, this model is also known as the HKY model (Hasegawa
et al., 1985). If the extra constraint α1 −α2 = α( 1

πA+πG
− 1
πC+πT

) is imposed, this

model is called the F84 model (Kishino & Hasegawa, 1989; Felsenstein, 2004).

1.3.3 Molecular Clocks

It follows from the normalization defined in Proposition 1.3.2 that the time rt of the
evolution process is expressed in expected number of mutation, rather than real time.
However, for some downstream analysis, including the modelling of continuous characters
on phylogenies, the main focus of this thesis, it is important that the tree should be
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calibrated in real time t. In particular, this implies that the tree is ultrametric, i.e. that
all the tips are synchronized in the present. To be able to do that, we need to make
extra assumptions about the mutation rate r. The simplest one is to assume that it
is constant across the whole tree, and homogeneous across all the sites studied. For
models of DNA evolution, this is known as the molecular clock assumption (Zuckerkandl
& Pauling, 1965), and amounts to assuming that all sites always evolve at the same
pace (i.e. mutations are running like clockwork). These two assumptions (steadiness and
homogeneity) are quite strong and rather un-realistic. They can be relaxed in several
ways.

Gamma Distribution of Rates. One way to relax the homogeneity assumption is to
assume that the rates are different at each site, but all drawn from a common probability
distribution. This was first proposed by Yang (1993), who used a Γ (α,1/α) distribution
for the rates across the sites. This parametrization using the“shape parameter”α ensures
that the expectation of the distribution is 1, and the variance 1/α. A discretization of
this distribution is needed to make the computations tractable (Yang, 1994).

Spatial Autocorrelation. Under the previous Gamma distribution, the sites are still
supposed to be independent. To model the correlation of sites across the DNA molecule,
we can use a Hidden Markov Model (HMM). This model assumes that the rate of evo-
lution of one site only depends on its neighbors (Yang, 1995; Felsenstein & Churchill,
1996).

“No Common Mechanism”. One radical way to solve the problem of heterogeneity of
rates is to assume that each site has its own rate on each branch of the tree. This
amounts to adding a matrix (re,i)e∈E,1≤i≤m of |E| ×m extra parameters. This is called
the “no common mechanism” model, and has been developed by Tuffley & Steel (1997).
Even though this model might have too many parameters to be biologically relevant
(Huelsenbeck et al., 2011), it is quite important from a theoretical point of view, as it
makes the link between maximum parsimony and maximum likelihood methods of tree
reconstruction (Tuffley & Steel, 1997, see next section).

Relaxed Molecular Clocks. The rates can also vary in time for one single site. HMMs
can also be used to model a changing pace of evolution, with periods of times where the
site evolves rapidly, and others where the evolution is slower. Such models are called
covarions models (Fitch & Markowitz, 1970; Galtier, 2001), and are discrete (i.e. the rate
can change between two branches, but is steady on one branch). Other models assume a
Poissonian distribution of changes of rates on the tree, such as Huelsenbeck et al. (2000).
It is however difficult to take both space and time autocorrelations into account in the
same model.

We only browsed some of the most used models of DNA sequence evolution, but the
field is still active, and many refinements can be made (O’Meara, 2012). One of the most
commonly used model is the “GTR+Γ with clocks” model, that assumes a GTR CTMC,
a (discrete) Γ distribution for spatial distribution of rates, and a relaxed molecular clock
for the evolution of the rates in time.
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1.3.4 Tree Reconstruction

All the models described above assumed that the tree was already known, and were
simply describing how the character evolves on it. In this section, we briefly recall how
these models can be used for tree reconstruction from trait data for a set of extant species
that are to be related by the phylogeny. Here, the trait studied will mostly be a set of
aligned DNA sequences. Getting these sequences, and preparing them to be analysed, is
a difficult question in itself, that we won’t cover here (see e.g. Li & Homer, 2010, for a
review). The basic strategy to infer a tree from a set of traits is two fold:

1. Explore the space of phylogenetic trees, to propose some candidates.

2. Rate these candidates with a common score, that can be likelihood, or parsimony.

Thanks to all the models and notions we introduced above, we have all the background
needed to handle point 2. Point 1 is out of the scope of this introduction, and we will
only sketch some strategies to tackle it.

Computing a Score. Depending on the model chosen, the score is either parsimony
or likelihood. We reviewed in Section 1.1.3 two efficient algorithms to compute the
parsimony score of a given tree topology. From the “no common mechanism” model
mentioned in section 1.3.3, finding a minimum parsimony score can actually be re-framed
into a maximum likelihood problem, although in practice this is not efficient. Depending
on the model for character evolution chosen, the computation of the likelihood is more
or less computationally intensive. In any case, it benefits from the tree-structured model
defined in Section 1.2.3, and some pruning algorithms can be used. We refer to the
papers describing the models for more information about each model inference strategy.

Exploring the Tree Space. The problem of efficiently searching the tree space is dif-
ficult, mostly because this space is large, growing as nn, if n is the number of tips.
Restricting ourselves to binary trees, the exact number Tn of different topologies linking
a set of n species can be easily computed (Cavalli-Sforza & Edwards, 1967; Felsenstein,
2004) as:

Tn =
n−2∏
i=1

(2i +1).

Hence, an extensive search of the space is not possible, and we have to resort to heuristics
to explore the space the best we can. Many strategies can be imagined, and we refer to
Felsenstein (2004, Chap. 4) for a review of the main approaches used. Most of them rely
on a“hill climbing” strategy, trying to improve the score by exploring the“neighborhood”
of a candidate tree. Such strategies are only guaranteed to converge to local extrema,
and choice of the starting point is often crucial. They each rely on their own metric on
the tree space, that defines which trees are close from one another (see St. John, 2016,
for a review).

1.4 Continuous Models of Evolution

In the previous section, we applied the generic model of trait evolution described in
Section 1.2.1 to discrete traits. In this section, we show how to model the evolution of



38 1. Background

a set of continuous traits, using a continuous state space Markov process P . We first
describe the two processes we use in the rest of the manuscript, before showing some
already existing methods for their inference. This will lead us to review the state of the
art on the question of automatic shift detection, the main subject of this manuscript.

1.4.1 Models of Evolution

The two processes we are going to study in more depths are Gaussian processes, namely,
the Brownian Motion and the Ornstein-Uhlenbeck. We review them both in this section,
along with their assumptions. Thanks to the definition we gave of a stochastic process
on a tree (Def. 1.2.1), we only need to describe the process used P , and the law of the
root trait.

1.4.1.1 Brownian Motion

Definition of the Process. The Brownian Motion (BM) is the simplest Gaussian process
that can be used, and it was the first one introduced to model trait evolution on a tree,
with the seminal articles of Cavalli-Sforza & Edwards (1967); Felsenstein (1985). A
multivariate BM (Wt,0 ≤ t) of dimension p, with variance R = ΣΣT and expectation µ
is defined by the following Stochastic Differential Equation (SDE):{

W0 = µ
dWt = ΣdBt, ∀t ≥ 0,

where Bt is the multivariate BM with variance Ip, uniquely defined as the process
with independent and stationary increments, almost surely continuous, and such that
Bt ∼N (0, tIp) for any t ≥ 0. We show Figure 1.4.1 one realization of this process for a
simple tree.
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Figure 1.4.1 – Realization of a univariate BM process (with µ = 0 and σ2 = 0.04) on a
calibrated tree. The colors of the branches (left) match with the colors of the distinct
processes (right). Only tip values are observed (at time t = 0).

Induced Data Structure. Once the model is defined, we need to explore its conse-
quences on the structure of the traits observed at the tips of the tree. Let Y be the n×p
matrix of the observed p traits at the n tips of the tree. Then, if Y is the result of a BM
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evolution on the tree, with root node randomly distributed as a multivariate Gaussian
N (µ,Γ), it follows the distribution (Felsenstein, 2004; Clavel et al., 2015):

vec(Y) ∼N (vec(1nµ
T ),R⊗Cn +Γ⊗ (1n1Tn )) (1.4)

where Cn = [tij]1≤i,j≤n, with tij the time of shared evolution of tips i and j, i.e. the time
elapsed between the root and the most recent common ancestor (mrca) of i and j, and
1n is the vector of ones. The operator vec is the vectorization operator, that constructs
a vector by “stacking” all the columns of a matrix, and ⊗ denotes the Kronecker product
(see Appendix 1.B for a definition and some properties of these operators).

The formula above entirely defines the law of the matrix of observed traits at the
tips, given the law of the root and the variance matrix R of the BM, sometimes called the
rate matrix. Another way to describe the covariance structure is to write the covariance

Cov
[
Yik;Yjl

]
between trait k at tip i, and trait l at tip j (with 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ p):

Cov
[
Yik;Yjl

]
= tijRkl + Γkl . (1.5)

In other words, the covariance between Yik and Yjl only depends on the product of the
time of shared evolution tij between the tips, and the variance Rkl between the traits
(plus the residual variance of the root traits). This factorization of the total variance in
a product of the variance induced by the tree structure and the variance induced by the
process is a direct consequence of the independence of increments of the BM, and will
be very useful in the following. Note that often, the model is described conditionally to
the root, so that the root variance Γ is reduced to the null matrix.

1.4.1.2 Ornstein-Uhlenbeck

Definition of the Process. The Ornstein-Uhlenbeck (OU) is a simple refinement over
the BM. In addition to a Brownian, stochastic part, it has a deterministic call-back
component, that pulls the modeled traits back to a central parameter, β. Its SDE can
be written as: {

W0 = µ
dWt = −A(Wt −β) +ΣdBt, ∀t ≥ 0,

where A is the selection strength matrix, that describes how the modeled traits W go back
to their optima β. This process was introduced in the field of phylogenetic comparative
methods by Hansen & Martins (1996); Hansen (1997). See Section 1.4.1.3 (below) for a
biological interpretation of this process to model stabilizing selection.

Properties. Contrary to the BM, and because of the call-back term of the equation,
the increments of the OU are no longer independent and stationary. This makes its dis-
tribution more complex to write (see next paragraph below), and will make its inference
more difficult (see Section 2.4.1 and Appendix 2.C.3).

However, contrary to the BM, the OU has a bounded variance, and admits a sta-
tionary state, provided that all the eigenvalues of the selection strength matrix A are
positive. When the process is univariate, the selection strength reduces to a positive
scalar α, and the distribution of the stationary state can be easily expressed as a Gaus-
sian with mean β the optimal value, and variance σ2/(2α). Often, it is easier to express
the selection strength as a “phylogenetic half-life” t1/2 = ln(2)/α (Hansen, 1997). It is
defined as the time needed by the process to cover half the distance from its current
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Figure 1.4.2 – One realization of a univariate OU process, with fixed root µ = 0, variance
σ2 = 0.04, optimal value β = 3, and selection strength α such that t1/2 = ln(2)/(2α) =
25% of the total time allocated (h = 200).

value to the optimum. Being homogeneous to a time, it can be handily compared with
the total height h of the tree. If t1/2 is small compared to h, it means that the process
has enough time to reach its equilibrium during its time course on the tree. On the
contrary, if t1/2 is large compared to h, then the process will never reach its optimal
state before present. See Figure 1.4.2 for a simple illustration of a univariate OU process
(non branching).

Induced Data Structure. The distribution induced by such a multivariate OU at the
tips of the tree is slightly more complex than in the Brownian case. It can be showed
(Bartoszek et al., 2012; Clavel et al., 2015, and see Section 1.A) that the distribution of
the matrix Y of observed traits at the tips is Gaussian, and we can express its moments
as follows. For 1 ≤ i, j ≤ n two tips, let Yi = (Yi1, . . . ,Yip)T the (transpose) row-vector of
the traits at tip i. Then:

E
[
Yi

]
= e−Atiµ+ (I− e−Ati )β

Cov
[
Yi ;Yj

]
=

e−AtiΓe−A
T tj − e−AtiSe−AT tj + e−A(ti−tij )Se−AT (tj−tij ) general case

e−A(ti−tij )Γe−A
T (tj−tij ) stationary root

(1.6)
where root node is randomly distributed as a multivariate Gaussian N (µ,Γ), and S is
the stationary variance matrix of the OU (see Equations (1.30) and (1.32) in Section 1.A
for a general expression of S). The second formula for the variance is obtained when the
root is drawn with the stationary variance, i.e. if Γ = S.

Remark that this expression implies that the initial value µ and the optimum value
β are not identifiable if the tree is ultrametric, i.e. if ti = h for any 1 ≤ i ≤ n, where
h is the height of the tree. Indeed, in this case, we only observe the combination λ =
e−Ahµ+(I−e−Ah)β at all the tips, and only this parameter is identifiable. This was pointed
out in the univariate case by Ho & Ané (2014). To circumvent this problem, we often
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make the assumption that the root mean value is the ancestral stationary state. In that
case, we get µ = β = λ. See Figure 1.4.3 for a simple illustration of this phenomenon.

1
1 10Trait Value

(a) λ = µ = β = 1
1

1 10Trait Value

(b) λ = 1, µ = 10, β = −2

Figure 1.4.3 – Representation of the trait evolution of a univariate OU, with fixed root
(γ2 = 0), and recall parameter α chosen such that t1/2 = 50% of the tree height. All
the tips have the same expectation value, equal to λ = e−αhµ + (1 − e−αh)β = 1. The
ancestral expectations at the internal nodes of the tree are indicated by a color. On the
first scenario (left), the trait starts with a value µ = 1 equal to its optimum value β, and
hence never moves away from it. In the second scenario (right), the trait starts with
a value µ = 10, far away from the optimum value β = −2. Hence, in the times allowed
for its evolution, its expectation tries to move from 10 to −2, but when time stops, all
the tips have reached the (out of equilibrium) value of λ = 1. The two scenarios give
the exact same observed distribution at the tips, and hence are not identifiable from one
another.

Note that these expressions simplify greatly when A is scalar (i.e. when A = αI), and
a fortiori when the trait is univariate. See Section 1.A and the Chapters 2 and 3 of this
thesis for exact expressions.

1.4.1.3 Biological Interpretation

It is important to understand that the BM and OU used to model trait evolution at an
evolutionary time-scale are distinct from models of phenotype evolution used in Quan-
titative Genetics, that describe evolution on a much shorter time-scale. Depending on
the type of genetic variation and influence of the environment, many models of micro-
evolution can be developed. Lande (1976) famously showed how constant additive genetic
drift under a static adaptive landscape could give rise to trait evolution following either a
BM (for a flat adaptive landscape) or an OU (for a landscape with a single peak). These
processes are however valid only on a very short time-scale, ranging from 103 to 105

years (Hunt & Rabosky, 2014). A good example of an OU evolution from an optimum
to another was observed on the particularly rich fossil record of the armor development
in a lineage of stickleback fish (Hunt et al., 2008; Hunt & Rabosky, 2014). Even if the se-
lection strength for this group is quite weak, only a few thousands years were needed for
the adaptation to happen. If the selection is high, this phenomenon can even be observed
empirically, in real-times studies. Evidences of adaptation could hence be found for an
arboreal niche in native Anolis species carolinensis after the introduction of an invasive
species sagrei from Cuba to small islands off Florida in only 15 years (1995−2010 Stuart
et al., 2014).
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Those time scales are to be compared with the height of a typical phylogenetic tree,
ranging between 107 to 108 years (e.g. around 2.5 · 107 years for New World Monkeys
Aristide et al., 2016, 1.1 · 108 years for birds Jetz et al., 2012, and 2.1 · 108 years for
Chelonians, Jaffe et al., 2011). On such long stints, the assumptions used by Lande (1976)
do not hold anymore. It indeed has been observed that the rate of phenotypic change
inferred from fossil records was much lower than expected from these models, which has
been referred to as “the paradox of stasis” (Hansen & Houle, 2004). The interpretation
of the use of BM and OU processes in this context hence need to be adapted.

The BM used does not represent the plain consequences of a genetic drift, but rather
the random evolution of adaptive niches. The assumption is that the traits are going
to their optimal values very quickly (compared to the total height of the tree), and
hence that what we are tracking down are the successive optima, rather than the bare
trait. The BM would hence represent the stochastic evolution of the ecological niche in
time, or secondary optimum, to follow the nomenclature of Hansen (1997). That would
explain why the rate of evolution measured on macro-evolutionary time scales is not the
same as the rate measured for microevolution. It is also worth noting that, using this
interpretation, the BM can be used to model adaptive traits on phylogenies, provided
they adapt to a random environment (Felsenstein, 2004, Chap. 24).

The interpretation of the OU in this context is then similar, except that the secondary
optimum itself is converging toward another primary optimum (Hansen, 1997). It ex-
presses the idea that the adaptive landscape usually goes through many local, stochastic
changes, but sometimes shifts drastically, due to a major environmental event, such as
migration, or climate change (see e.g. Jaffe et al., 2011). The OU has in addition the
advantage over the BM that its variance is bounded, and that it has a stationary state,
which can make it more suitable to study stabilizing selection (Hansen & Orzack, 2005).

Following the interpretation given above, we will always assume in the following
that we are studying the secondary optimum, rather than the traits, of the species at
hand. This secondary optimum is approached by the empirical mean of the traits within
all the individuals measured for a given species. Doing that, we completely ignore the
intraspecific variations, as well as measurement errors, that are often not very well known.
There are however several methods to take them into account, and ignoring them can
lead to severe biases in the analysis. See Section 1.4.5.1 of this introduction for a brief
review of these methods, and Perspective Section 5.1 for a study of the impact of these
errors on shift detection, and ways to explicitly model them in our framework.

1.4.2 Phylogenetic Comparative Methods

Phylogenetic Comparative Methods are the tools used to study continuous traits of
related species. It relies on models of evolution such as the ones presented above, and
aims at finding patterns in the traits studied, while taking into account the relatedness
of the species at hand. We will see how this problem can be recasted as a general
linear model, i.e. a linear model where the residual errors are not independent. This
formulation leads us to see the tree as a “nuisance” structure parameter, that can be
taken into account in several ways. Using the regression term of the model, we also see
how some fixed shifts can be introduced in the processes described above.
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1.4.2.1 Felsenstein’s Phylogenetic Contrasts

Until now, we have been looking at the problem in a dynamic fashion, trying to model
the evolution of one or several traits in time, on a phylogenetic tree. However, the
data accessible to researchers are only traits measured on extant species, in the present.
Hence, apart from some rare cases where good fossil records are available, inference on
the dynamic component of the problem is bound to be quite limited, and interest in
this topic quite recent. Historically, the questions yielded by this kind of data were
more ecological, and the focus was on trying to infer some correlations between several
observed traits.

Let’s follow Felsenstein (1985) original example, and assume that we measured two
traits (say, traits A and B) for 32 species of a same phylogenetic group (see also Felsen-
stein, 2004, Chap. 25). This kind of data is abundant in the literature (see e.g. Pennell
& Harmon, 2013). Suppose that we make a scatter plot of the two traits, for all species,
as shown Figure 1.4.4. On this figure, there seems to be a clear trend, and it is tempting
to conclude that the two traits A and B are indeed biologically correlated.

A

B

Figure 1.4.4 – Scatter plot of traits A and B. The dotted line is the simple regression line
(R function lm, R Core Team, 2017). A Pearson correlation test between the two traits
(R function cor.test) gives a p-value of 3.9e−05. This would lead us to conclude that the
two traits are biologically correlated. (The arbitrary scales on the axes are omitted).

However, this analysis does not take the phylogenetic tree into account. In other
words, it assumes that all the species are independent, where in fact they are all related.
Indeed, two species that are close parents in the tree are bound to have a more similar
trait than two distantly related ones, since they had less time to diverge away. We can
see the influence of the tree by plotting the tree along with the scatter plot, as shown
Figure 1.4.5.

Figure 1.4.5 shows us that ignoring the tree can be misleading on the actual biological
process going on. Indeed, the traits plotted were actually simulated according to two
independent BM on the tree, so, in contradiction with the conclusion of our first naive
regression, there are no biological correlation between traits A and B.

One first way to deal with this structure induced by the phylogenetic tree is to use
the so-called phylogenetic contrasts (Felsenstein, 1985). In this model, we assume that
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(a) The phylogenetic tree linking the 32 species.
There are two well formed clades, showed in white
and black.

A

B
(b) The same scatter plot as before, but with
species colored according to their clade. (Arbi-
trary scales omitted.)

Figure 1.4.5 – When the species are colored according to their clades, we can see that
they are two clearly formed groups. The correlation seems to be entirely driven by this
distinction. Within each group, the correlation is not obvious.

the traits observed at the tips were generated according to a multivariate BM on the
(known) phylogenetic tree, and we take advantage of the independent increments of the
BM to construct new variables, or contrasts that are independent from each other. We
describe the procedure in the pseudo-algorithm below for a univariate trait, the extension
to multivariate being straightforward.

Algorithm 1.4.1 (Phylogenetic Contrasts (Felsenstein, 1985)). Assume that we have a
latent tree model as defined in Definition 1.2.3 on a rooted phylogenetic tree T = (E,V ),
with the characters (X1, · · · ,X|V |) following a BM model of evolution on the tree, with

variance σ2. We assume that the tree is bifurcating, and that each branch e has length
`e. Iterate the following steps:

1. Find two adjacent tips on the tree, numbered i and j, with common ancestor node k.

2. Compute the contrast Ca = Xi −Xj , and update the ancestral trait value of node k
to:

X ′k =
`jXi + `iXi
`i + `j

.

The two new quantities have the following properties:

E [Ca] = 0 Var [Ca] = σ
2(`i + `j)

Cov
[
Ca;X

′
k

]
= 0 Cov

[
X ′k;Xl

]
= Cov [Xi ;Xl] = Cov

[
Xj ;Xl

]
, ∀l < {i, j,k}

Var
[
X ′k

]
= σ2 `i`j

`j + `j
+Var [Xk]

3. Drop the two tips i and j from the tree, and replace their ancestor Xk by X ′k. Add

an extra length δk =
`i`j
`j+`j

to the branch going to node k (so that `′k = `k + δk).
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4. Go back to step 1 if the output tree has more that 3 nodes.

After this iteration, starting with n measures at the tips, we end up with n−1 contrasts
(the tree is bifurcating), each independent, and with a known variance.

If we apply this method to our toy-dataset, we get the scatter plot presented Fig-
ure 1.4.6. The spurious correlation effect does not appear anymore, and the traits, that
were indeed simulated to be independent, are not seen as correlated anymore.

A

B

Figure 1.4.6 – Scatter plot of contrasts on traits A and B (computed with ape (Paradis
et al., 2004) function pic). A Pearson correlation test between the two traits gives a
p-value of 0.88: there is no significant correlation between the two traits. (Arbitrary
scales omitted.)

Algorithm 1.4.1 is quite efficient, as it only needs one tree traversal. However, it is
not very flexible, and models other that the BM cannot be used. The general framework
of the phylogenetic regression will allow us to extend this approach to a more general
class of models.

1.4.2.2 The Phylogenetic Regression Framework

The idea of Phylogenetic regression is to recast the problem in the framework of a
generalized linear model. If Y is an n× p matrix of p traits measured at the n tips of a
phylogenetic tree, we write:

Y = Xθ +E (1.7)

where X is an n× q matrix of regressors, θ a q× p matrix of coefficients, and E an n× p
error vector, that is such that

vec(E) ∼N (0,S )

with S an np × np variance matrix given by the model of trait evolution used. Note
that this can also be seen as a mixed model, as the errors are not independent identi-
cally distributed (i.i.d.). This formalism was introduced by Grafen (1989, 1992) for the
Brownian Motion, and has been extended to fit a myriad of other phylogenetic models of
trait evolution. The main idea is that the model of evolution will induce different kinds
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of correlations between the species, and hence induce a different form for the variance
matrix S . We give here a couple of examples for S .

Brownian Motion. Taking the notations of Section 1.4.1.1, if the root is assumed to
be fixed (or if inference is done conditionally to the root’s value), then a set of traits
resulting from a BM can be written as:

Y = 1nµ
T +E with vec(E) ∼N (0,R⊗Cn) (1.8)

and this fits model (1.7), with X = 1n, θ = µT , and S = R ⊗ Cn. In that case, this
model is the same as the one used for the phylogenetic contrasts method, that can be
seen as an efficient way deal with this regression problem. The strength of this new
formulation is to recast the problem in a well known statistical framework, and hence to
benefit from all the classical inference and analysis tools available in the literature (see,
e.g. Mardia et al., 1979, for multivariate regression models). Note that in the Brownian
case, some explicit maximum likelihood estimators can be exhibited, although their naive
computation require the inversion of matrix Cn, which can be computationally intensive
for large trees. We refer to Section 1.4.4 for some computational tools to make these
computations more light-weight.

This model can be easily enriched by adding some covariates in the regression matrix
X. This can for instance allow us to explore the direct links between a trait and an
environmental predictor (Grafen, 1989).

Ornstein-Uhlenbeck. Similarly, using the developments of Section 1.4.1.2, we can cast
the multivariate OU on an ultrametric tree in this framework. The expressions of ma-
trices X and S directly follows from Equation (1.6). Note that the expression of S is a
bit tedious in the general case, and cannot be nicely factorized as in the BM case.

The univariate OU, with selection strength α, variance σ2, and initial variance at
the root γ2 is easier to write:

Y = 1λ+E with E ∼N (0,S(α))

with λ = e−αhµ+ (1− e−αh)β, and for 1 ≤ i, j ≤ n two tips,

S(α)ij = e
−2αhγ2 + e−2αh(e2αtij − 1)σ

2

2α
(1.9)

The two cases where the root variance is either null or equal to the stationary variance
are often considered, in which case the expression simplifies to:

S(α)ij =

e−2αh(e2αtij − 1) σ
2

2α fixed root

e2αdij σ
2

2α stationary root

where dij = 2(h − tij) is the phylogenetic distance between i and j. Note that, when α
goes to zero, we recover the variance structure of a simple BM, as expected (e.g. for a
fixed root):

S(α) −−−−→
α→0

σ2Cn
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1.4.2.3 Some Tree Transformations

Once recasted in this linear regression framework, we can see that the model of trait
evolution on the tree only impacts the problem through the variance matrix S . Forget-
ting for a moment the mechanistic model, the biological interpretation of which might be
dubious, as seen in Section 1.4.1.3, it can be tempting to see the tree only as a measure of
correlation between traits, whose strength needs to be adjusted. Restricting ourselves to
the univariate case for the sake of clarity, recall that the Brownian model can be written
as:

Y = Xθ +E with E ∼N (0,σ2Cn) (1.10)

and the tree structure of the data is entirely represented by matrix Cn = [tij]1≤i,j≤n. The
idea originally presented in Pagel (1999) is to take this model as a base scenario, and to
alter it in several ways in order to weaken the Brownian-induced structure, that might
be ill suited to some traits. It is a very pragmatic view of the problem, as it introduces
an ad hoc parameter that is chosen in order to fit the data at best. We review here some
of these classical tree transformations.

Pagel’s λ (Pagel, 1999). This first and most popular transformation introduces a new
parameter λ, that alters the variance matrix in the following way:{

C(λ)ij = λCij ∀i , j
C(λ)ii = Cii ∀1 ≤ i ≤ n (1.11)

The parameter λ only affects the covariances between tips, and leave their variances
unchanged. This modified variance matrix can be seen as resulting from a BM evolving
on a tree with modified branch lengths, in the following way:

`i(λ) =

λ`i if i is an internal node

`i + (1−λ)tpa(i) = λ`i + (1−λ)ti if i is an external node (tip)
(1.12)

This amounts to multiplying all the internal branch lengths by λ, and then lengthening
the external branch lengths so that the resulting tree keeps its original height. When
λ = 1, the model reduces to a BM on the original tree. When λ = 0, all the tips are
independent, and the model is equivalent to a BM on a star tree (see Fig. 1.4.7). This
parameter λ is hence sometimes seen as a measure of the phylogenetic signal exhibited
by the data
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(a) Original tree (λ = 1)
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(b) Modified tree (λ = 0.5)
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Y3

Y2

Y1

(c) Star tree (λ = 0)

Figure 1.4.7 – Transformations of the tree induced by Pagel’s λ parameter.

Note that this extra parameter λ needs to be fitted along with θ and σ2. There are
no explicit estimator for this parameter, and it needs to be optimized numerically. It is
then common to design a likelihood ratio test to test λ = 0 against λ > 0, in order to test
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the heritability of the trait at hand, i.e. whether the trait is impacted by the phylogeny
or not. (Note that as the null hypothesis lies at the boundary of the domain, one must
be cautious in defining the asymptotic distribution of the statistic, see e.g. Self & Liang
1987).

Pagel’s κ (Pagel, 1999). In this model, all the branch lengths are set up to the power κ:

`i(κ) = (`i)
κ ∀1 ≤ i ≤ n

When κ > 1.0, more change is expected on long branches, while short branches are even
shortened. On the contrary, if κ < 1.0, then short branches are made longer, while
long branch are shortened. Note that the resulting tree is not ultrametric anymore (see
Fig. 1.4.8). The variance matrix C is obtained by running a BM on the re-scaled tree.
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(a) More homogeneous branch
lengths (κ = 0.5)
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(b) Original tree (κ = 1)
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Y2

Y1

(c) Increased branch length di-
versity (κ = 1.5)

Figure 1.4.8 – Transformations of the tree induced by Pagel’s κ parameter.

Pagel’s δ (Pagel, 1999). In this model, the node depths are all set up to the power δ:

ti(δ) = (ti)
δ · h1−δ ∀1 ≤ i ≤ n

where the factor h1−δ ensures that the resulting tree keeps the same total height h. When
δ > 1.0, more change is expected toward the end of the tree, i.e. the evolution of the
character happened late in time. On the contrary, if δ < 1.0, then most of the trait
evolution is expected to happen near the root, and the trait stays stable later in time
(see Fig. 1.4.9).

Y5

Y4

Y3

Y2

Y1

(a) More evolution toward past
(δ = 0.5)

Y5

Y4

Y3

Y2

Y1

(b) Original tree (δ = 1)

Y5

Y4

Y3

Y2

Y1

(c) More evolution toward
present (δ = 1.5)

Figure 1.4.9 – Transformations of the tree induced by Pagel’s δ parameter.

1.4.2.4 The OU as a Tree Transformation

In the previous section, we have given a mechanistic interpretation of the OU to model
trait evolution. However, looking at Equation (1.9), we can see that the variance struc-
ture induced by the OU can be obtained by running a BM on a tree with branch lengths
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modified as follow:

`i(α) =
1
2α
e−2αh(e−2αti − e−2αtj ) (1.13)

To yield exactly the same distribution, the BM used must be taken with a root variance
of e−2αhγ2, where γ2 is the root variance of the original OU.

Note that this only holds for ultrametric trees, and that this branch lengths trans-
formation is similar but distinct from the classical time transformation used to get a
Brownian solution to the OU SDE (see Section 1.A, Lemma 1.A.1 for a recall of this un-
used transformation). This branch lengths transformation has been described and used
several times in the literature, under different forms (Blomberg et al., 2003; Ho & Ané,
2013a; Pennell et al., 2015). It is at the core of our inference strategy in Chapter 3.

The induced tree transformation is presented Figure 1.4.10. The effects on the tree
are similar to Pagel’s δ transformation when δ > 1.0: the higher α is, the more evolution
happens toward the present. In the limit α→ +∞, the tree tends to a star tree.

Y5

Y4

Y3

Y2

Y1

(a) Original tree (α = 0)

Y5

Y4

Y3

Y2

Y1

(b) Weak selection strength
(t1/2 = 100% of tree height)

Y5

Y4

Y3

Y2

Y1

(c) Strong selection strength
(t1/2 = 25% of tree height)

Figure 1.4.10 – Transformations of the tree induced the OU process.

1.4.2.5 Other Models of Evolution

We have been focusing until now on only two models of evolution, namely, the BM and
the OU, but the flexibility of the phylogenetic regression framework allows for many
more models. When crafting a model, the only limits are tractability and identifiability.
Indeed, the model needs to be summarized in the variance matrix S , so that, first, one
needs to be able to carry the computations out to get the form of the matrix, and then
ensure that no other common process could result in the same variance structure. To
give the reader an idea of this mechanism, we give some details of two other popular
models.

ACDC. The Accelerating / Decelerating (ACDC) model, sometimes also called the
Early Burst (EB) model, was first introduced in Blomberg et al. (2003), and further de-
veloped in Harmon et al. (2010). Using the same notations as before, the SDE describing
the trait evolution in time can be written as:{

W0 = µ

dWt = σ
2(t)dBt, ∀t ≥ 0,

with σ2(t) = σ2
0 e
rt

The variance matrix of the traits at the tips of the tree can then easily be derived as
(Blomberg et al., 2003; Uyeda et al., 2015):

S(r)ij = σ
2
0
ertij − 1
r
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The trait is hence assumed to follow a BM on the tree, but with a variance that is
changing in time, either increasing (r > 0, AC) or decreasing (r < 0, DC). The effect is
hence similar to Pagel’s δ transform described above. It indeed can also be seen as a tree
transformation, just like the OU. In fact, it is easy to see from Equation (1.9) showing
the variance matrix of the OU that the AC model (r > 0) is equivalent to the OU in
some cases, as expressed by the following proposition, first proved in the Appendix of
Uyeda et al. (2015):

Proposition 1.4.1 (Equivalence of OU and ACDC (Uyeda et al., 2015)). The OU with a
fixed root (γ2 = 0), such that the initial value is equal to the optimal value (µ = β), with
selection strength α and variance σ2, on an ultrametric tree, yields the same covariance
matrix than an AC with parameters:{

σ2
0 = σ2e−2αh

r = 2α

OUBM and OUOU. To explore situations where the optimum value β of an OU varies
in time, Hansen et al. (2008); Bartoszek et al. (2012) introduced the “OUBM” and
“OUOU” models of phenotypic evolution. In these models, the primary optimum β(x) is
explicitly modeled as a BM or an OU process, while the secondary optimum y is selec-
tively called back to it following an OU. In its simplest form, the OUBM model can be
expressed by the set of equations (Hansen et al., 2008):{

dy = −α(y − β(x))dt + σydBy with β(x) = b0 + b1x

dx = σxdBx

where Bx and By are independent BMs with variances σ2
x and σ2

y , α is the selection
strength, y is the response variable following an OU, and x a predictor variable deter-
mining the evolution of the primary optimum β(x). It is possible to derive the variance
matrix at the tips induced by such a model (Hansen et al., 2008):

Sij =
b21σ

2
x + σ

2
y

2α
(1− e−2αtij )e−αdij + b21σ2

x tij

(1− e−αhαh

)2
− 21− e

−αh

αh
1− e−αtij
αtij

e−αtij /2
 .

The OUOU model is similar, except that the second equation is replaced by an OU
(see Bartoszek et al., 2012 for a study of this model in a multivariate setting). Similar
expressions for the distribution of the traits at the tips of the tree can be obtained.

1.4.3 Detecting Shifts

In all the models described above, we assumed that there were only one set of parameters
controlling the process on the entire tree. When the species linked by the tree are
heterogeneous (for instance, if the tree is big and spans over a long period of time), then
this assumption is likely to be false, and one might want to define regions in the tree,
each with its own “regime”, i.e. allowing some parameters to differ from one region to
another. Looking at the process dynamically, this amounts in considering parameters
that are piecewise constants, and experience some shifts in their history. When having
an effect on the expectation, we will show how these shifts can easily be included in the
linear regression framework, provided their position is known a priori. The main focus
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of this thesis is to automatically detect the position of those shifts. We first review some
methods in the literature trying to tackle this issue, before presenting models putting
shifts in other parameters of the process (such as variance or selection strength).

1.4.3.1 Including Shifts in the Regressors

The problem of adding shifts in the optimal value of an OU was first tackled by the
seminal article of Butler & King (2004) for the OU. We do not expose the specifics
of their method here, but instead show how this problem can be recast in the linear
model framework. We only sketch here the main results, but this problem is carefully
exposed in Section 2.2.3 for the univariate process, and Section 3.2 for the multivariate
one. Although quite simple, this new parametrization of the problem is very powerful,
as it allows us to benefit from the proficient literature on linear models.

In this section, we assume that we have an ultrametric tree T = (E,V ), with all nodes
numbered from 1 to |V | = m + n, with n tips and m internal nodes. We give to each
branch the number of its daughter node (including a fictive branch associated with the
root). We study a multivariate BM or OU on the tree, with dimension p. We assume
that, for the BM, the mean parameter µ, and, for the OU, the primary optimum β can
shift on the phylogeny. Denote by ∆ the (m+ n)× p matrix of those shifts: line j takes
the p values of the shifts on each traits if there is indeed a shift on the branch leading
to node j, and is null otherwise. We further define the incidence matrix as follow.

Definition 1.4.1 (Incidence Matrix). The incidence matrix U associated with the tree is
the matrix of size (m+n)× (m+n) defined by the formula:

Uij =

1 if j is an ancestor of i

0 else.

Denote further by T the n × (m + n) sub-matrix of U with only lines corresponding to
tips.

We refer to Example 1.4.1 for an example of such a matrix on the small tree presented
Figure 1.4.1. (See also Example 2.2.1 in Section 2.2.3 of Chapter 2).

Example 1.4.1. The incidence matrix of the tree presented below is:

X5

X6

X7

X8

X9

X2

X3

X4

X1 δ

U =



X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 1 0 0 0 0 0 0 0 0
X2 1 1 0 0 0 0 0 0 0
X3 1 1 1 0 0 0 0 0 0
X4 1 0 0 1 0 0 0 0 0
X5 1 0 0 1 1 0 0 0 0
X6 1 0 0 1 0 1 0 0 0
X7 1 1 0 0 0 0 1 0 0
X8 1 1 1 0 0 0 0 1 0
X9 1 1 1 0 0 0 0 0 1




T

If we model a shifted BM, with a shift on the branch before (tip) node 7, and ancestral
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value µ, then the shift matrix and the matrix of trait expectations E [Y] are:

∆ =



1 µT

2 0
3 0
4 0
5 0
6 0
7 δT

8 0
9 0


and E [Y] = T∆ =


5 µT

6 µT

7 µT + δT

8 µT

9 µT



Using this, we get the two following propositions (See Section 2.2.3 for the derivation
in the univariate case):

Proposition 1.4.2 (Shifts in the Expectation - BM). Assume that there are some shifts
in the mean parameter µ of the BM on the K branches leading to nodes j1, . . . , jK . Then
the model reduces to:

Y = T∆+E

where E is the error vector with a structure induced by the BM (see Equation (1.4)), and
∆ is the matrix of shifts with all lines except (j1, . . . , jK ) equal to zero.

Proposition 1.4.3 (Shifts in the Optimal Value - OU). Assume that there are some shifts
in the optimal value parameter β of the OU on the K branches leading to nodes j1, . . . , jK .
Then the model reduces to:

vec(YT ) = (T⊗ Ip)W(A)vec(∆T ) + vec(ET )

where E is the error vector with a structure induced by the OU (see Equation (1.6)), and
W(A) is the bloc-diagonal matrix of size (m+n)p × (m+n)p:

W(A) =


Ip

Ip − e−A(h−tpa(2))
. . .

Ip − e−A(h−tpa(m+n))


Thanks to these propositions, including shifts in parameters µ (BM) or β (OU)

reduces to including the columns corresponding to the branches where the shifts occur
in the regression matrix X of the linear regression framework. The only thing to be
careful about are identifiability problems, as the full matrix T is not of full rank. These
questions are carefully studied in Section 2.3 of this document.

1.4.3.2 Automatic Shift Detection

When the position of the shifts is unknown, using the linear model written above, the
problem of finding the branches where to add shifts reduces to a problem of variable
selection: we need to find the lines of the coefficient matrix ∆ that are non-zero. We will
exploit this vision of the problem in our methods, developed in Chapters 2 and 3.
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Very recent work by Khabbazian et al. (2016) also used this formalism, using a lasso-
based penalty (Tibshirani, 1996) to select for the non-zero lines of ∆, for a multivariate
OU with independent traits. We will discuss this method further in Chapter 3.

Before that, a first method was designed by Mahler et al. (2013) (called SURFACE)
to find shifts in the optimal parameter of an OU with independent traits. It is similar
to a step-wise model selection procedure. This method has two phases. In the first,
forward phase, some shifts are added one by one on the tree, until the AIC score does
not improve anymore. The model is however parametrized in term of regimes, rather
than in shifts, so that each regime has its own optimum value. In the second, backward
phase, we try to merge some of the regimes together, in order to improve the AIC score
by reducing the number of parameters. This backward phase is very interesting, as it
tries to find some convergent regimes (see Section 1.1.2), i.e. species in different parts
of the tree that reached a similar ecological niche, although through different historical
paths. This is a question of interest to biologists, that can not be treated easily with
our formalism in terms of a linear model. That is why, despite its flaws (it is quite slow,
and this stepwise procedure does not guaranty any kind of optimal solution to the initial
problem) SURFACE is widely used. In a Bayesian framework, other methods have been
developed to find shifts on a univariate BM (Eastman et al., 2013) or OU (Uyeda &
Harmon, 2014). We refer to Chapter 2 for a brief description of these methods.

1.4.3.3 Other Kind of Shifts

Other than the mean or primary optimum values, some authors have considered shifts
in the variance or selection strength. For the OU, Beaulieu et al. (2012) and Clavel
et al. (2015) considered fixed, user defined shifts in all the parameters, respectively for
an univariate or multivariate process. For the BM, Eastman et al. (2011) considered
a Bayesian method to automatically detects some shifts in the variance σ2. BaMM
Rabosky et al. (2013); Rabosky (2014); Rabosky et al. (2014); Shi & Rabosky (2015)
is an other rather popular software to detect shifts in the variance parameter. It is
also designed to detect shifts in the speciation parameter, using a birth-death model of
evolution, to explain the shape of the tree. The model used is rather complex, and has
been criticized as possibly flawed by Moore et al. (2016). Those critics have been recently
addressed by Rabosky et al. (2017). We only point these models to the interested reader,
but we did not study them in depth as they use a different formalism.

1.4.4 Algorithms for Likelihood Computation

As pointed out in the previous section, the generality of the linear model framework
is nice from a theoretical point of view, but does not solve the inference problem. We
describe here a few methods that can be used to speed up the computations.

1.4.4.1 The Pruning Algorithm

We already described the principles of the pruning algorithm in Section 1.2.3. In the
particular case where the process is Gaussian, all the integrals written in Proposition 1.2.2
can be solved analytically, and hence the likelihood of a model can be computed in a
single traversal of the tree, with a complexity of the order of n inversions of matrices of
size p (the number of traits). We refer to Section 3.C.2 (upward step) for a comprehensive
description of such an algorithm in a multivariate framework, with missing data.
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The pruning algorithm can be seen as an adaptation on a tree of the “forward-
backward”algorithm (used for instance in segmentation, see e.g. Rabiner, 1989). From its
original description in phylogeny by Felsenstein (1973b), variants of this algorithm have
been flowering in the literature, under different names: Hadfield & Nakagawa (2010),
Fitzjohn (2012) (Gaussian Elimination Method), Freckleton (2012), Lartillot (2014)
(phylogenetic Kalman filter), Pybus et al. (2012); Cybis et al. (2015) (in a Bayesian set-
ting). In a non-Gaussian setting, Landis et al. (2013) and Duchen et al. (2017) adapted
the algorithm to Lévy processes, while Hiscott et al. (2016) proposed an extension of
this algorithm for a broad class of processes, based on some efficient numeric integral
approximations.

1.4.4.2 The “3-Point Structure” Algorithm

Another approach to likelihood computation was taken by Ho & Ané (2013a). For a
linear (univariate) regression model as described in Section 1.4.2.2 (see Eq. (1.7)), the
likelihood of the observed vector Y at the tips can be written as:

−2logp(Y) = n log(2π) + log |S|+ (Y−Xθ)T S−1(Y−Xθ),
and the maximum likelihood estimator of the coefficients is given by:

θ̂ = (XT S−1X)−1XT S−1Y.

Computing these quantities requires two potentially time-consuming tasks: inverting
matrix S, and computing its determinant. When the tree is large (i.e. the dimension
n of S is large), these tasks might become overwhelming. However, Ho & Ané (2013a)
noticed that S−1 only appears in the likelihood as products of the form AT S−1B, with A
and B vector or matrices of adequate size. They hence designed an algorithm to compute
these quantities efficiently, recalling that S is a tree variance matrix, and hence has a
special structure, as defined below.

Definition 1.4.2 (3-point structure). A matrix S has a 3-point structure if it is symmetric,
with non-negative entries, and satisfies the following 3-point condition: for any i, j,k (not
necessarily distinct), the two smallest of Vij , Vik and Vjk are distinct.

It stems from the following theorem that all the models presented above that can
be seen as a BM on a re-scaled tree, including the OU on an ultrametric tree, have the
3-point structure.

Theorem 1.4.1 (BM on a re-scaled tree). S is 3-point structured if and only if it is the
covariance matrix of a random variable at the tips of some rooted tree under a BM model.

The OU on a non-ultrametric tree can be shown to have a generalized 3-point struc-
ture, and the algorithm can be extended to this case. For the sake of simplicity, we only
present it here for the canonical 3-point structure. The algorithm uses a preorder of the
tree, computing the needed quantities at each node, going from the tips to the root.

Algorithm 1.4.2. We assume that we are in the setting presented above, with a variance
matrix S having the 3-point structure. Assuming that the root has k child branches, this
ensures that S can be decomposed in the following way:

S = t1T 1+A with A =


S1 0

. . .
0 Sk
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where t ≥ 0, and A is a block-diagonal matrix with each diagonal block matrix Ss being
the variance matrix induced by the sub-tree starting from child s, 1 ≤ s ≤ k.

The goal of the algorithm is then to compute the following quantities :

{
d = log |S|
Q = XT S−1Y

and


p = 1T S−11
µ̂Y = 1T S−1Y/p
µ̂TX = XT S−11/p

Initialization For a tree with a single tip of length t, we get:

{
d = t

Q = xT y/t
and


p = 1/t
µ̂Y = y

µ̂TX = xT

where x and y are the rows of X and Y corresponding to the current tips.

Propagation Recall the Woodbury formula and Sylvester’s determinant for matrices of
the form M =A+UCV:

M−1 =A−1 −A−1U(C−1 +VA−1U)−1VA−1

|M| = |A| |C|
∣∣∣C−1 +VA−1U

∣∣∣
These formulas applied to our case give:

S−1 =A−1 − t
1+ tpA

A−111TA−1 where pA = 1TA−11 =
k∑
s=1

ps

and: 
d =

k∑
s=1

log |Ss|+ log(1+ tpA)

Q =
k∑
s=1

Qs −
tp2A

1+ tpA
µ̂TXµ̂Y

and



p =
pA

1+ tpA

µ̂Y =
k∑
s=1

ps
pA
µ̂Y,s

µ̂TX =
k∑
s=1

ps
pA
µ̂Y,s

Finalization At the root of the full tree, return log |V| and Q.

1.4.5 Extensions

We browse here a few models and methods that extend the setting studied here, in one
or several ways.

1.4.5.1 Measurement Errors and Intraspecific Variations

In all the methods presented in this manuscript, we assume that the variance structure
is entirely dictated by the tree structure, and that there is only one observation per trait
and per species. Indeed, in the regression model (1.7), the variance structure of the error
vector E is completely defined by the evolution model on the tree. This amounts to make
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the strong assumption that the evolution process is the only source of variation in the
trait dataset. Using the interpretation given in Section 1.4.1.3, this also means that we
identify the mean value of a trait observed on several individuals of a given species with
the secondary optimum of this species in the present.

We make this assumption for the sake of simplicity. It ignores at least two important
sources of variations: measurement error and intraspecific variations. Measurement er-
ror can be a real issue, especially for large datasets, where the trait measurements are
obtained from diverse sources, that sometimes lack precision (for instance, in Rose et al.,
2016, most of the 1090 moss shapes used are obtained through botanical drawings found
in a vast and heterogeneous literature). Intraspecific variation is a more biological source
of variation, and cannot be avoided, even assuming a perfect sampling. Several recent
empirical and simulation studies found that these two phenomena could have a strong
deleterious impact on phylogenetic comparative methods (Silvestro et al., 2015; Cooper
et al., 2016).

Using a mixed model framework such as the one presented in Section 1.4.2.2, these
errors can be easily taken into account (Lynch, 1991; Ives et al., 2007; Felsenstein, 2008).
We present here the main features of the model, and refer to Section 5.1 in Chapter 5
for a brief presentation of how this feature could be added to our framework. The
formalism we use here is derived from Felsenstein (2008). We first assume that several
individuals can be sampled independently for a given species. To cast this situation in
the phylogenetic comparative methods framework, we can artificially mark each of the
individuals of a given species A as separate “species”, numbered A1, . . . ,AnA, but with a
zero length phylogenetic distance from one another: dAi,Aj = 0 for any two individuals of
the same species (1 ≤ i, j ≤ nA), and dAi,Bj = dA,B for any two individuals of two different
species. Using this convention, we can restrict ourselves without loss of generality to the
situation described in Section 1.4.2.2, where p traits are measured on n species (where
each species is in fact a couple “individual-species”). The intraspecific or measurement
error is then obtained by adding a p-dimensional error vector term ε ∼ N (0,Q) to the
observed vector of traits for each species: for any two species 1 ≤ i, j ≤ n and two traits
1 ≤ k, l ≤ p, the covariance between trait k of species i and trait l of species j is given
by:

Cov
[
Yik;Yjl

]
= Eijkl + δijεkl

where δij = 0 if i , j, and δij = 1 if i = j; and E is defined as in Section 1.4.2.2 by the
evolution model used on the tree: vec(E) ∼N (0,S ). Writing In the n×n identity matrix,
we get a generalization of Equation (1.7):

vec(Y) ∼N (vec(Xθ),S +Q⊗ I).

Note that, in the univariate BM case, this is equivalent to adding a terminal tip
branch length τ = q2/σ2 to all the species. This makes this model close to Pagel’s λ
transform (Pagel, 1999) exposed in Section 1.4.2.3: if the intraspecific variations are
much larger than the phylogenetic ones, then the phylogenetic signal is weak, and vice
versa. See Section 5.1 of Chapter 5 for another interpretation in terms of phylogenetic
signal, but with the α parameter of an OU.

For a BM model of evolution, this model was treated by Ives et al. (2007) with a known
measurement error, and Felsenstein (2008) proposed an extended phylogenetic contrasts
method to directly infer this error from the data. Goolsby et al. (2017) further extended
the method to deal with missing data, and to allow for an OU model of evolution on an
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ultrametric tree. This implementation, available as the R package Rphylopars, is quite
fast, and relies on an adapted version of the 3-point structure algorithm (Ho & Ané,
2013a) presented in Section 1.4.4.2. In both articles, the estimation of the covariances
matrices is done thanks to an EM algorithm. This EM algorithm, that is written in a
matrix form, and uses E and ε as hidden variables, is different from the one we develop
in Chapters 2 and 3 (even with no shift).

In practice, we saw in Section 1.4.2.2 that the predictor variables could themselves
be traits, that can also be measured with errors. Hansen & Bartoszek (2012) proposed
an extended (univariate) OU framework to deal with the uncertainty associated with all
the measured traits, whether they are considered as observations or predictors.

1.4.5.2 xxSSE Methods

One of our core assumption is that the trait evolves on a fixed tree, that is supposed
to be known a priori. Implicitly, this amounts to assuming that the trait and the tree
are independent, so that the trait has no influence on speciation. Note that, using the
interpretation described in Section 1.4.1.3, the stochastic process models the secondary
optima, and not the trait directly, so that this assumption can be justified.

Some methods were developed to model the very interactions between the trait and
speciation rate. Maddison et al. (2007) first described a popular method to deal with
binary traits, called BiSSE (for Binary State Speciation Extinction). In this model, a
single binary trait evolves on a rooted ultrametric phylogenetic tree with branch lengths,
that is assumed to be known and complete, i.e. all extant species have been sampled.
The trait can take two values, 0 or 1. It follows a CTMC on the tree, with transition
rates given by q01 and q10. In addition, a given lineage with trait i (i ∈ {0,1}) has a
speciation rate λi , and an extinction rate µi . Conditionally on these parameters, the
speciations and trait transitions are assumed to be independent.

Within this model, Maddison et al. (2007) are able to compute the likelihood of a
set of parameters, using a postorder traversal of the tree (from tips to root) to update
Dn0(t) and Dn1(t) the probabilities that a lineage beginning at time t with state 0 or
1 evolves into the clade observed from node n. Their approach relies on the numerical
integration of a system of differential equations on each branch of the tree.

Several extensions of this model have been proposed. Fitzjohn et al. (2009) completed
the BiSSE framework, allowing the tree to be incompletely sampled. To deal with
discrete traits with more than two states, Fitzjohn (2012) developed the MuSSE model.
A quantitative trait, evolving according to any diffusion process with a known transition
density, can also be used in the QuaSSE model developed again by Fitzjohn (2010).
This last extension requires the numerical computation of non-explicit integrals along
the tree, and is reported to be quite slow. Finally, an adaptation of this framework to
biogeographic models, coined GeoSSE, has been proposed by Goldberg et al. (2011).

1.4.5.3 Bayesian Methods

In all the methods presented above, the tree is supposed to be known and fixed, and the
trait is modeled conditionally to it. However, the phylogenetic tree is itself the result
of a complex statistical inference procedure, as we saw in Section 1.3.4. This two steps
framework is not really satisfying, as it implies that we completely ignore the information
we have about the uncertainty of the reconstructed tree, which can lead to several bias
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in downstream analysis (see Section 5.1 for a study of the impact of for example, branch
lengths misspecifications on the shifts detection analysis).

One way to alleviate this problem is to integrate both the tree reconstruction and the
trait analysis in a single unified statistical framework. Because they are quite flexible,
Bayesian methods can be well suited to conduct such a task. The idea was first exposed
in Huelsenbeck & Rannala (2003), and refined in Lemey et al. (2010); Pybus et al. (2012);
Cybis et al. (2015); Gill et al. (2016); Tolkoff et al. (2017), to allow for more complex
models of trait evolution and introduce some efficient likelihood computation algorithms.
We briefly recall the main idea behind these methods, and refer the interested reader to
these articles for more details on each model.

Assume that we have access to two different sources of data for a set of n species: a
set of n aligned sequences S and a n × p matrix Y of p continuous traits. We take two
different models of evolution to model both data sets. S is the result of a given process
(typically, a CTMC, see Section 1.3.4) on a tree τ, with parameters ν . Y is modeled by
another process (such as a BM) on the same tree τ, with parameters θ. So that all the
computations can be carried out, we make the crucial assumption that, conditionally on
the phylogenetic tree τ, the sequences S and the traits Y are independent :

p (S,Y | τ,ν ,θ ) = p(S | τ,ν )p (Y | τ,θ ) .
The joint posterior distribution of the parameters given the data can hence be decom-
posed as:

p (τ,ν ,θ | S,Y ) ∝ p (Y | τ,θ )p(θ)p(S, τ,ν)
where p(θ) is a prior distributions on the parameters.

The two problems of sequence and trait modelling can hence be handled separately.
The sequence study can be done with classical Bayesian inference tools (see e.g. Drum-
mond et al., 2012), while the trait study benefits from many of the likelihood compu-
tation algorithms developed above. The methods mentioned above are implemented in
the BEAST software (Drummond et al., 2012).

1.5 Model Selection

We have seen in Section 1.4.3 that the problem of shift detection could be recast into
a problem of variable selection in a linear model framework. We review here some
important results for model selection in this setting, that will be useful in the next
chapters of this thesis. The exposition of this section is highly inspired from Giraud
(2014) and Massart (2007), and we refer the interested reader to these two books for a
more complete presentation of the topic.

1.5.1 Penalized Likelihood

1.5.1.1 Statistical Setting

In this section, unless otherwise stated, we consider the following standard statistical
setting:

Y = µ+ σ2E with E ∼N (0,In) (1.14)

where Y is a vector of n iid Gaussian observations, with unknown mean µ and variance
σ2. We focus here on the univariate Gaussian case for the clarity of exposition. Not all
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the methods presented here have a natural extension to the multivariate setting, we will
study some of them in Chapter 3.

We further assume that we have a collection of models S = {Sη ,η ∈ M} that are
linear subspaces Sη of Rn indexed by a finite or countable set M. We assume that for
each model η ∈ M, we have a maximum likelihood estimator µ̂η of µ. The following
straightforward proposition allows us to see this estimator as a projection of Y on Sη .

Proposition 1.5.1 (Likelihood, Least-squares, and Projection). The log-likelihood of a
Gaussian vector Y ∼N (µ,σ2In) is given by:

logp(Y;µ,σ2) = −n
2
log(2πσ2)− 1

2σ2

∥∥∥Y−µ∥∥∥2 .
When σ2 is known, the maximum likelihood estimator of µ̂η in model η ∈M is given by:

µ̂η = argmax
s∈Sη

logp(Y;s,σ2) = argmin
s∈Sη

‖Y− s‖2 = ProjηY.

When σ2 is unknown, its maximum likelihood estimate in model η ∈M is given by:

MLσ̂2
η =

1
n

∥∥∥Y− µ̂η∥∥∥2
hence, injecting this expression in the likelihood, we get:

µ̂η = argmax
s∈Sη

−n
2
log

(1
n
‖Y− s‖2

)
= argmin

s∈Sη
‖Y− s‖2 = ProjηY.

Hence, for each η ∈M, whether σ2 is known or not, the maximum likelihood estima-
tor of µ in model η is given by the least square estimator, and is the projection of Y on
Sη . We denote further by µη = Projη µ the projection of the unknown mean µ on model
Sη .

Note that the setting presented above includes the linear regression setting:

Y = Xβ + σ2E with E ∼N (0,In)

where, instead of estimating µ̂η ∈ Rn living in some linear space Sη , we try to estimated

β̂η ∈ Rp as being sparse, i.e. having a small number of non-zero coefficients (here, p is the
number of regressors, and X is an n×p matrix). A model η is then defined by the position
of the non-zero coefficients, and the associated linear subspace for the expectation of Y is

then given by the associated columns of the regression matrix X: Sη = Span
{
Xj : j ∈ η

}
.

In the rest of this section, we will stick to setting (1.14) for simplicity reasons, but it
is worth keeping in mind that all the results presented here can also be applied to this
linear regression framework.

The goal of model selection is to select a model η̂ among the collectionM, according
to some criterion, and to study the properties of such a choice.

1.5.1.2 Risk and Oracle

Denote by Dη the dimension of model Sη , for η ∈ M. It is straightforward to see that
the higher the dimension of a model is, the better its likelihood or least-square score.
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Indeed, when projecting on a space with a higher dimension, one gets more degree of
freedom to adjust to the data, hence obtaining a better fit. Just taking the likelihood as
a model selection criterion would therefore be inefficient, as it would amount in always
choosing the model with the highest dimension.

The criterion that we would like to use is the risk of an estimator, as defined below:

Definition 1.5.1 (Risk of an estimator). The risk of an estimator µ̂η for η ∈M is given
by:

R(µ̂η) = E
[∥∥∥µ− µ̂η∥∥∥2] = ∥∥∥µ−µη∥∥∥2 +Dησ2

where we recognize in the second inequality the famous bias-variance decomposition of
the risk.

When given a collection S of models, the “best” model in term of risk is called the
oracle estimator, defined as:

Definition 1.5.2 (Oracle). The oracle estimator µ̂0 is defined as the estimator minimizing
the risk:

µ̂0 = argmin
η∈M

R(µ̂η).

The oracle risk is a benchmark, as it is the best we can ever achieve using our
collection of model S . Note that, if the collection is poorly chosen, this oracle risk is not
necessarily small.

1.5.1.3 Akaike’s Final Prediction Error (FPE)

Unfortunately, as µ is unknown, this oracle cannot be computed directly from the data.
One natural approach is then to use an estimator of the risk. This is the path taken
to derive Akaike’s Final Prediction Error (FPE Akaike, 1969), that uses the following
unbiased estimator of the risk:

Proposition 1.5.2 (FPE). Given a model η ∈M, the expected least squares is:

E
[∥∥∥Y− µ̂η∥∥∥2] = E

[∥∥∥∥(I−Projη)(µ+E)
∥∥∥∥2] = R(µ̂η)−Dησ2 + (n−Dη)σ2.

As the term nσ2 is identical for all models, it won’t play a role in the model selection.
We hence use the following unbiased estimator of R(µ̂η)−nσ2:∥∥∥Y− µ̂η∥∥∥2 +2Dη σ̂

2
η

where σ̂2
η =

∥∥∥Y− µ̂η∥∥∥2 /(n − Dη) is an unbiased estimator of the variance. The FPE
estimator is then given by:

η̂FPE = argmin
η∈M

{∥∥∥Y− µ̂η∥∥∥2 (1+ 2Dη
n−Dη

)}
When the variance σ2 is known, this criterion is equivalent to the famous Akaike

Information Criterion, that we introduce in the next section. It is only guaranteed
to work in expectation, or in the limit case where n goes to +∞. When the number
of models grows exponentially with the dimension d (i.e. the set of models Sη with
dimension Dη = d grows very fast), then this criterion cannot handle the variance of the
estimated risks: just by chance, a bad model with a high dimension is likely to have a
small risk, and hence be favored against the oracle. This criterion has hence a tendency
to select models with a high dimension (Giraud, 2014, Chap. 2).
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1.5.1.4 Penalized Likelihood and Least Squares

The criterion we derived above has the form of a penalized least-squares, with penalty
2Dη/(n−Dη): when the dimension of the model Dη raises, then the least squares will go
down, but the penalty will raise. This criterion on the least squares can be re-written
in term of a penalty on the log-likelihood, using Proposition 1.5.1. In the following, we
will use the following equivalent criteria, on the least-squares or the likelihood:

Critlsq(η) =
∥∥∥Y− µ̂η∥∥∥2 (1+ pen(η)

n−Dη

)
(1.15)

Critll(η) =
n
2
log


∥∥∥Y− µ̂η∥∥∥2

n

+ 1
2
pen′(η) (1.16)

pen′(η) = n log
(
1+

pen(η)
n−Dη

)
(1.17)

This equivalency between criteria on the least-squares and the log-likelihood allows us
to see the problem of model selection using two complementary approaches. However,
this does not hold anymore in the multivariate setting, and we will see in Chapter 3 that
only the formulation in term of least squares has a natural extension.

1.5.1.5 Akaike’s Information Criterion (AIC)

The Akaike’s Information Criterion (AIC) can be seen as a criterion on the likelihood,
approximately equivalent to the FPE for n large, using Equation (1.17):

pen′AIC(η) = n log
(
1+

penFPE(η)
n−Dη

)
= n log

(
1+

2Dη
n−Dη

)
≈ n 2Dη

n−Dη
≈ 2Dη .

This famous and widely used criterion inherits the flaws described for the FPE, and
is only valid asymptotically. It can also be seen as an approximation for a Kullback-
Leibler based Information criterion (hence its name). In the next sections, we describe
some other criteria that try to alleviate these flaws. But first, let’s recall another famous
information criterion, based on a Bayesian paradigm.

1.5.1.6 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) can be expressed in our framework, taking
in (1.16):

pen′BIC(η) =Dη log(n).

Its derivation relies on a Laplace approximation of the Bayes factors. We briefly recall
here the construction, for a finite collection of models M (see Lebarbier & Mary-Huard
2006 for a thorough introduction to the BIC construction and properties). In a Bayesian
paradigm, each model η has a prior probability πη to be chosen, and then the parameters

θ = (µ,σ2) of the distribution are drawn from an a priori distribution p
(
θ

∣∣∣ η ). The
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model selection is then based on the posterior distribution of a model p
(
η
∣∣∣ Y)

given the
observations:

η̂BIC = argmax
η∈M

p
(
η
∣∣∣ Y)

= argmax
η∈M

p
(
Y

∣∣∣ η )πη = argmax
η∈M

p
(
Y

∣∣∣ η ) ,
where we used Bayes formula, and assumed a uniform prior πη = 1/ |M| on all models
η ∈M. To estimate the marginal likelihood of the data given the model, we write:

p
(
Y

∣∣∣ η ) = ∫
θ∈Sη

p
(
Y

∣∣∣ θ,η )p (θ ∣∣∣ η )dθ,
and assume that p

(
Y

∣∣∣ θ,η ) is concentrated around its maximum p
(
Y

∣∣∣ θ∗η ,η ). The
Laplace approximation, recalled below, then allows us to find the penalty stated above,
dropping all the terms that are constant with n, and approximating θ∗η by the maximum

likelihood estimator θ̂η .

Proposition 1.5.3 (Laplace Approximation). Let L : Rq→ R be a twice differential func-
tion on Rq, with a unique maximum u∗. Then:∫

Rq
enL(u)du ≈

(2π
n

)q/2 ∣∣∣−L′′(u∗)∣∣∣−1/2 enL(u∗) for n→∞.

1.5.2 Model selection à la Birgé & Massart (2001)

In this section, we offer a first alternative to the well known but limited model selection
criteria we recalled above. Assuming that the variance σ2 is known, we are able to
exhibit a model selection criterion with non-asymptotic guaranties, in the form of an
oracle inequality. We then present a famous heuristic to extend the penalty to a case
where the variance is not known.

1.5.2.1 A non-asymptotic Oracle inequality

In this section, we restrict ourselves to the setting presented in Equation (1.14), with
a known variance σ2. In that case, we do not need to control for the extra variation
induced by the estimation of the variance, and the criterion on the least squares can be
written as:

Crit(η) =
∥∥∥Y− µ̂η∥∥∥2 + σ2pen(η). (1.18)

The following theorem can be proven using some concentration inequalities, i.e. inequali-
ties that control the dispersion of a random variable around its expectation (see Massart
2007 for an introduction to classical concentration inequalities).

Theorem 1.5.1 (Birgé & Massart 2001; Massart 2007). Assume that the model is defined
as in (1.14), and that η̂ is a minimizer of criterion (1.18). Let {Lη}η∈M be some family
of positive numbers such that ∑

η∈M
e−LηDη =Ω <∞ (1.19)

Let A > 1 and further assume that:

σ2pen(η) ≥ Aσ2
(√
Dη +

√
2LηDη

)2
. (1.20)
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Then the selected least-square estimator µ̂η̂ satisfies the following risk bound:

E
[∥∥∥µ̂η̂ −µ∥∥∥2] ≤ C(A)[ inf

η∈M

(∥∥∥µ−µη∥∥∥2 + σ2pen(η)
)
+ (1+Ω)σ2

]
(1.21)

where C(A) depends only on A.

Inequality (1.21) is an oracle risk bound on the risk of the selected estimator. It
means that the selected estimator almost performs as well as the best model in term of

compromise between the bias (
∥∥∥µ−µη∥∥∥2) and the model complexity dependent variance

(σ2pen(η)). Note that constant C(A) is not made explicit here, and can be quite large.
Finding the constant that is closest to 1 (finding a so called “sharp” risk bound) is an
active field of research in its own. Note that this inequality in non-asymptotic: it is true
even for a small number of observations n, even though the infimium on the right hand
side might not be small enough in this case.

What makes this approach working better than the FPE or AIC criterion, is that the
penalty takes into account the possible growing complexity of the collection of models
with a given dimension D, through the weights (Lη)η∈M. When facing a problem with
its associated collection of models M, one needs, in order to apply this inequality, to
craft the right set of weights satisfying inequality (1.19). We show in Section 1.5.2.2 an
example of such a derivation in the setting of coordinate sparsity, that looks like the one
we will face in the next chapters.

Finally, remark that the condition (1.20) on the penalty depends on the variance σ2,
that is, in practice unknown. It is then tempting to apply this criterion with a constant
κ = Aσ2, getting rid of the unknown variance. Doing that, we loose the natural scale
that was imposed on A (A > 1), and we need to calibrate the constant κ correctly. We
will briefly present some heuristics to do that in the last subsection on this method
(Section 1.5.2.3).

1.5.2.2 Derivation in the Coordinate Sparse Setting

In the coordinate sparse setting, we assume that the true model has only a few non-zero
coordinates. The associated collection of models can be defined as follow:

Definition 1.5.3 (Coordinate-Sparse Setting). Let (ei)1≤i≤n be the canonical basis of Rn.
The collection of models {Sη ,η ∈ M} is indexed by P (J1 ,nK) the set of all the subsets
of J1 ,nK, and for any η ∈ M, the linear subspace Sη is defined by the vectors s in Rn
such that si = 0 for any i < η, i.e. Sη = Span{ej , j ∈ η}. Note that the complexity of the

models with dimension D is:
∣∣∣{η ∈M :

∣∣∣η∣∣∣ =D}∣∣∣ = (n
D

)
.

In this setting the sum featured in inequality (1.19) can be written as:

Ω =
∑
η∈M

e−LηDη =
∑
D≥0

(
n
D

)
e−LDD .

Assuming that Lη depends only on the dimension of Sη (i.e. Lη = LD ,∀
∣∣∣η∣∣∣ =D), a natural

choice of weights could then be:

LD =
n
D

log
(
1+

1
n

)
+ log(n),
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leading to a sum controlled by:

Ω =
∑
D≥0

(
n
D

)(
1+

1
n

)−n (1
n

)D
=

(
1+

1
n

)−n (1
n
+1

)n
= 1.

Using the inequality n log
(
1+ 1

n

)
≤ 1, this would lead to the penalty:

AD
(
1+

√
2LD

)2 ≤ AD 1+√2
√

1
D

+ log(n)

2 =: pen(D), (1.22)

that complies with inequality (1.20).
Another natural choice of weights might be, for B > 0:

LD = B+
1
D

log
(
n
D

)
allowing us to control the sum:

Ω =
∑
D≥0

exp
[
−LDD + log

(
n
D

)]
≤ 1
1− e−B .

To comply with inequality (1.20), we can then use:

AD
(
1+

√
2LD

)2 ≤ AD 1+√2√B+1+ log
( n
D

)2 =: pen(D), (1.23)

where we used the classical inequality: log
(n
D

) ≤ D (
1+ log

(
n
D

))
. This choice gives us

another “degree of freedom” B that might be calibrated to improve the efficiency of the
penalty.

Depending on the collection of models at hand, such a derivation needs to be adapted.
We refer to Lebarbier (2005) for an example of application in the model selection problem
associated with segmentation.

1.5.2.3 Unknown Variance: the Slope Heuristic

As pointed out above, when σ2 is unknown, the penalty can be written as κpensh(η),
where pensh is the penalty shape, defined by inequality (1.20) (dropping the constants),
and κ = Aσ2 is the constant that needs to be calibrated. One popular approach is to
use the slope heuristic, developed by Birgé & Massart (2007); Arlot & Massart (2009);
Baudry et al. (2012). We roughly explains the idea behind this heuristic here, and refer
the interested reader to the papers cited for a description of the theoretical foundation,
and the practical computability of such a method.

Putting together Definition 1.5.2 and Equation (1.18), an oracle penalty, defined for
η ∈ M as R(µ̂η) −

∥∥∥Y− µ̂η∥∥∥, would always select for the oracle estimator. This can be
decomposed as:

penopt(η) = R(µ̂η)−
∥∥∥Y− µ̂η∥∥∥2

= E
[∥∥∥µ− µ̂η∥∥∥2]− ∥∥∥µ−µη∥∥∥2 = vη

+
∥∥∥µ−µη∥∥∥2 − ∥∥∥Y−µη∥∥∥2 + ∥∥∥Y−µ∥∥∥2 = δη

+
∥∥∥Y−µη∥∥∥2 − ∥∥∥Y−µ∥∥∥2 − ∥∥∥Y− µ̂η∥∥∥2 = v̂η
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Note that E
[
δη

]
= 0, and E

[
v̂η

]
= vη = Dη , so that the FPE penalty is obtained by

taking the expectation of this optimal penalty. The slope heuristic then stems from the
following observations:

� penmin(η) = v̂η can be seen as a “minimal” penalty, as the associated criterion is

Critmin(η) =
∥∥∥Y−µη∥∥∥2−∥∥∥Y−µ∥∥∥2, and would select for a model simply minimizing

the bias, hence always selecting the model with the highest dimension. The penalty
is then minimal, as any larger penalty would result in selecting a model with
possibly a smaller dimension.

� penopt(η) ≈ 2v̂η : because one can expect that vη ≈ v̂η , and that δη ≈ 0 (pro-
vided these quantities concentrate around their expectations). Hence, the optimal
penalty is about twice the minimal penalty.

� penopt(η) = κoptpensh(η): according to our assumption, the optimal penalty can
be expressed as a constant times our penalty shape. Putting this together with the
previous remarks, we get:

−
∥∥∥Y− µ̂η∥∥∥2 ≈ −(∥∥∥Y−µη∥∥∥2 − ∥∥∥Y−µ∥∥∥2)+ κopt

2
pensh(η)

But, for large dimensions,
(∥∥∥Y−µη∥∥∥2 − ∥∥∥Y−µ∥∥∥2) should be approximately constant, as

the bias is expected to be constant for most complex models. Hence, asymptotically,
the least squares scores should grow linearly with pensh(η), with a slope approximately

equal to
κopt
2 . Hence, an estimator κ̂ can be obtained as half the asymptotic slope when

plotting the least squares scores against the value of the penalty shape.
This heuristic can be applied to any relevant contrast (e.g. least squares or log-

likelihood), and gives some good results in practice, when a theoretical penalty shape
can be derived. It is implemented in the R-package capushe (Brault et al., 2012).

1.5.3 The Lasso Penalty

The very popular Lasso regularization procedure was introduced by Tibshirani (1996),
and is based on an `1-norm penalty of the least squares. It can be seen as a convex
relaxation of the previous penalty, making it particularly efficient. We sketch here the
main steps of its derivation in our setting, and show how it can be used to get several
sparsity settings. The exposition adopted here is highly inspired from Giraud (2014), and
we refer to this book for a deeper introduction of the method, including some geometrical
and algebraic insights.

1.5.3.1 A convex relaxation

For the coordinate-sparse setting defined in 1.5.3, we saw in Equation (1.22) that the
penalized criterion (1.18) was of the order of:

Crit(η) =
∥∥∥Y− µ̂η∥∥∥2 +λ ∣∣∣η∣∣∣ with λ = Aσ2

(
1+

√
2log(n)

)2
.

Denote by Supp(x) = {j : µj , 0} the support of a vector x ∈ Rn. Then, for η ∈ M, the
linear subspace Sη of Definition 1.5.3 can be written as Sη = {x : Supp(x) = η}. Hence,
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the least squares estimator for model η is equal to µ̂η = argminx∈Rn:Supp(x)=η ‖Y− x‖2.
The selected model minimizing the criterion can hence be written as:

η̂ = argmin
η∈M

min
x∈Rn:Supp(x)=η

{
‖Y− x‖2 +λ‖x‖0

}
,

where ‖x‖0 is the `0-norm of x, defined as the number of non-zero coordinate of x (i.e.
‖x‖0 = |Supp(x)|). This leads to the following definition of the selected estimator:

µ̂η̂ = argmin
x∈Rn

{
‖Y− x‖2 +λ‖x‖0

}
.

Because of the term in ‖x‖0, the minimization of the previous criterion is hard, and one
might need to test all the possible models, yielding a combinatorial complexity, that
can swiftly become overwhelming for large dimensions. One way to circumvent this
problem is to replace this non-convex `0-norm by a `1-norm, defined as ‖x‖1 =

∑n
j=1

∣∣∣xj ∣∣∣
for x ∈ Rn. For λ > 0, define the lasso estimator as:

µ̂λ = argmin
x∈Rn

{
‖Y− x‖2 +λ‖x‖1

}
. (1.24)

Thanks to this new penalty based on the convex `1-norm, the criterion to optimize is
itself convex, and hence can benefit from all the standard minimization techniques, that
are known to be fast and efficient in this convex setting.

In addition to this nice computational feature, it can be shown that, choosing λopt =
3σ

√
2log(n) + 2L (for any L > 0), the estimator µ̂λopt defined by Equation (1.24) satisfies

an oracle inequality (see Cor. 4.3 in Giraud, 2014). This property gives us some guar-
anties on the theoretical behavior of µ̂λ, even though, as the variance is unknown, λopt

cannot be used in practice. The problem of selecting λ is not easy, and can be solved
with cross validation, or with an estimator selection procedure (Baraud et al., 2010).

The `1-norm penalty allows us to select a sparse model, but, as it changes the crite-
rion to optimize, it introduces a bias in the estimation of the coefficients, that appears
shrinked in the standard lasso solution. One way to circumvent this problem is to use
the so-called Gauss-lasso estimator of the coefficient, defined as:

µ̂λ = ProjŜλY where Ŝλ = Sη̂λ .

In other words, the lasso penalty is used to select a model, defined by the non-zero
components of the estimator, and then we use the standard least-square estimator in
this model.

1.5.3.2 Sparsity Patterns

The lasso penalty above was derived in the context of coordinate sparsity. To deal with
other kinds of sparsity patterns, it needs to be adapted. We present here some classical
penalties to achieve group, sparse-group, and variation sparsity.

Group Sparsity. Here, we assume that the coordinates of µ are separated into mean-
ingful groups. The group-sparsity is designed to select for groups of coefficients that
are simultaneously non-zeros, rather than single coefficients one by one. As an example,
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we show below how re-framing a multivariate regression to a univariate one using the
vectorization can lead to such a sparsity pattern.

Assume that the coordinates of µ are split into p groups {Gk}1≤k≤p that form a
partition of J1 ,nK. For λ = (λk)1≤k≤p a vector of positive coefficients, the group-lasso
estimator µ̂λ is defined by (Yuan & Lin, 2006):

µ̂λ = argmin
x∈Rn

‖Y− x‖2 +
p∑
k=1

λk
∥∥∥xGk∥∥∥

 ,
where ‖·‖ represents the euclidean norm, and xGk the vector with coefficients of x that
are in Gk. Some theoretical properties can also be shown on this estimator (see Giraud,
2014).

Let’s now give an example of such a setting, considering the multivariate regression
framework. Assume that Y is now a n×p matrix, with all its coefficients i.i.d. Taking the
setting of Proposition 1.4.2 (on a star-tree, with R = σ2Ip), this model can be written
as:

Y = T∆+E

where E is an error vector, T is a regression matrix (size n× (m+n)) that represents the
tree-structure, and ∆ is the matrix of shifts (size (m+ n)× p), each line ∆j representing
the vector of shifts values of the p traits on branch j. To select for a small number of
shifts in this setting, we need to select for a small number of non-zero lines of ∆. Writing
the vectorized form of the problem, we get:

vec(Y) = (Ip ⊗T)vec(∆) + vec(E) with E ∼N (0,σ2Inp).

To select for the non-zero lines of matrix ∆, we need to group the coefficients of vector
vec(∆) according to their original line, so that they are all set to zero at the same time
when needed. For 1 ≤ i ≤ n, the group Gi = {kn + i : 0 ≤ k ≤ p − 1} represents the
coordinates of the elements of line i in the vectorized space (with dimension np). See
Figure 1.5.1 for a graphical representation of this group. The group-sparsity constraint
would hence try to select for such non-zero groups, hence selecting for non-zeros lines.

Note that here, to frame the model into the correct framework (i.i.d. vector), we had
to assume a star tree, and an independent BM model. We show in Section 3.C.3 how to
deal with the correlations induced by a real tree and a multivariate BM.

Sparse Group Sparsity. In this setting, we further assume that only a few coefficients
in each of the selected groups are non-zeros. The associated estimator is obtained with
a similar penalty, just adding an overall sparsity constraint (Simon et al., 2013):

µ̂λ,δ = argmin
x∈Rn

‖Y− x‖2 +
p∑
k=1

λk
∥∥∥xGk∥∥∥+ δ ‖x‖1

 ,
Fused Lasso: Variation Sparsity. In this setting, we assume that coefficients are in a
meaningful order and do not change a lot, i.e. that the difference µi −µi+1 is often equal
to 0. This leads to the following criterion (Tibshirani et al., 2005):

µ̂λ = argmin
x∈Rn

‖Y− x‖2 +λ
n−1∑
j=1

∣∣∣xj+1 − xj ∣∣∣
 .

Up to a re-parametrization, this problem is equivalent to the standard lasso.
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p

n
vec

1

n + 1

2n + 1
...

(p-1)n + 1

np

Figure 1.5.1 – A matrix (left) and its vectorized form (right), obtained by stacking all
the columns. The first line of the matrix (in blue) is dispersed on the vector, forming a
group G1 = {kn+1 : 0 ≤ k ≤ p − 1} of coordinates.

1.5.4 Model selection with LINselect

We go back to the setting stated in (1.14), with unknown variance, and criterion as
defined in (1.15) or (1.16). The goal here is to derive a penalty that does not depend on
the unknown variance. Note that criterion (1.15) can be re-written as:

Critlsq(η) =
∥∥∥Y− µ̂η∥∥∥2 + σ̂2

η pen(η)

so that it is similar to criterion (1.18) used in the previous section, only replacing the

unknown variance σ2 by an unbiased estimator σ̂2
η =

∥∥∥Y− µ̂η∥∥∥2 /(n−Dη).
1.5.4.1 A non-asymptotic Oracle inequality

Baraud et al. (2009) derived an oracle inequality in this Gaussian setting with unknown
variance. The penalty they used is designed to control exactly the extra variations
induced by the plug-in of the variance estimator in the criterion. It relies on the following
function:

Definition 1.5.4 (Baraud et al., 2009, Def. 2 and 3). Let D, N be two positive numbers,
and XD , XN be two independent ξ2 random variables with degrees of freedom D and N
respectively. For x ≤ 0, we define

Dkhi[D,N,x] =
1

E [XD]
E
[(
XD − xXNN

)
+

]
And, for 0 < q ≤ 1 we define EDkhi[D,N,q] as the unique solution of the equation

Dkhi[D,N,EDkhi[D,N,q]] = q

.
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Theorem 1.5.2 (Baraud et al. 2009, Th. 2 and Cor. 1). In the setting defined above,
assume that n−Dη ≥ 2 for any η ∈M, and let η̂ be a minimizer of (1.15) or (1.16). Let
{Lη}η∈M be some family of positive numbers such that:∑

η∈M
(Dη +1)e−Lη =Ω′ < +∞. (1.25)

Let A > 1 and further assume that

pen(η) = penA,L(η) = A
n−Dη

n−Dη − 1
EDkhi[Dη +1,n−Dη − 1, e−Lη ].

Then the selected estimator µ̂η̂ satisfies the following risk bound:

E


∥∥∥µ− µ̂η̂∥∥∥2

σ2

 ≤ A
A− 1 inf

η∈M


∥∥∥µ−µη∥∥∥2

σ2

(
1+

pen(η)
n−Dη

)
+pen(η)−Dη

+2A2 Ω′

A− 1 .

In addition, if κ < 1, n−Dη ≥ 7 and max(Lη ,Dη) ≤ κn for any η ∈M, then:

E


∥∥∥µ− µ̂η̂∥∥∥2

σ2

 ≤ C(A,κ)
 infη∈M


∥∥∥µ−µη∥∥∥2

σ2 +max(Lη ,Dη)

+Ω′
 . (1.26)

This theorem looks like Theorem 1.5.1 that we recalled above. Note that the con-
dition on the weights (1.25) is similar but not identical to previous condition (1.19).
Inequality (1.26) is an oracle inequality as soon as the weights Lη can be taken of the
order of Dη for all η ∈ M. As previously, those weights need to be calibrated for each
model collection one considers (see below for an example). Contrary to Theorem 1.5.1,
the choice of the penalty is explicit, and does not depend on any unknown parameter
beside the normalizing constant A > 1. This makes the choice of this constant much
more robust, and Baraud et al. (2009) advise to take A ≈ 1.1.

1.5.4.2 Derivation in the Coordinate Sparse Setting

We go back to the coordinate-sparse setting of Definition 1.5.3, and derive the penalty
in this framework, as we did in Section 1.5.2.2 for the Birgé-Massart criterion. Suppose
that we look at models of dimensions no greater that p ≤ n− 7. Then:

Ω′ =
∑
η∈M

(Dη +1)e−Lη =
p∑

D=0

(
n
D

)
(D +1)e−LD =

p∑
D=0

1
D +1

≤ 1+ log(p) ≤ 1+ log(n)

where we took weights LD = log
(n
D

)
+ 2log(D + 1). We get the following control of the

weights, using the classical bounds log
(n
D

) ≤D log(n) and log(1 +D) ≤D:

LD ≤D log(n) + 2D ≤ p(2 + log(n)).

Finally, taking

p ≤min
(

κn
2+ log(n)

,n− 7
)
,
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we get the following oracle inequality, for some constant C′(A,κ):

E


∥∥∥µ− µ̂η̂∥∥∥2

σ2

 ≤ C′(A,κ) infη∈M


∥∥∥µ−µη∥∥∥2

σ2 + (Dη +1)log(n)


Remark that we miss the oracle estimator up to a log(n) term, that is known to be
un-avoidable in this setting (Baraud et al., 2009; Donoho & Johnstone, 1994).
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Appendix

1.A The Ornstein-Uhlenbeck Process

1.A.1 Stochastic Differential Equation and General Solution

Let W(t) be the vector of the p traits values on one lineage, A a squared p×p matrix of
strength of selections, Σ a diffusion matrix, with R = ΣΣT the rate matrix, β(t) a vector
of optimal values, and Bt the standard multi-variate Brownian motion. Then the OU
process is defined by the following Stochastic Differential Equation (SDE):

dW(t) = −A(W(t)−β(t))dt +ΣdBt

The solution of which is given by:

W(t) = e−AtW(0) +
∫ t

0
e−A(t−v)Aβ(v)dv +

∫ t

0
e−A(t−v)ΣdBv (1.27)

Writing this between one node j and its parent, we get:

W(tj) = e
−A`jW(tpa(j)) +

∫ tj

tpa(j)

e−A(tj−v)Aβ(v)dv +
∫ tj

tpa(j)

e−A(tj−v)ΣdBv (1.28)

For a univariate OU with a constant central parameter β, we can get an explicit
solution, that can be expressed as a Brownian Motion re-scaled by an exponential trans-
formation of the time, as shown in the next lemma.

Lemma 1.A.1 (Brownian Solution for the OU). The stochastic process defined by:

Xt = X0e
−αt + β(1− e−αt) + σ√

2α
e−αtBe2αt−1

is an OU, solution of the EDS dXt = α(β −Xt) + σdBt.

1.A.2 Induced Variance Structure

We first need to compute the variance covariance matrix of the observations. Let i and
j be two nodes. Then, from equation (1.27), we get:

Cov
[
Xi ;Xj

]
= Cov

[
e−AtiW(0);e−AtjW(0)

]
+Cov

[∫ ti

0
e−A(ti−v)ΣdBv ;

∫ tj

0
e−A(tj−v)ΣdBv

]
= e−AtiVar [W(0)]e−A

T tj +E
(∫ ti

0
e−A(ti−v)ΣdBv

)(∫ tj

0
e−A(tj−v)ΣdBv

)T 
= e−AtiΓe−A

T tj +
∫ tij

0
e−A(ti−v)ΣΣT e−A

T (tj−v)dv

= e−AtiΓe−A
T tj

︸          ︷︷          ︸
VOUr

+ e−A(ti−tij )
(∫ tij

0
e−AvΣΣT e−A

T vdv

)
e−A

T (tj−tij )

︸                                                    ︷︷                                                    ︸
VOUp

where Γ is the variance-covariance matrix of the traits vector at the root.
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1.A.2.1 Using an Eigendecomposition of A

General Expression. We further assume that A has an eigendecomposition with only
real eigenvalues: A = PDP−1, with P invertible, and D = Diag(λq,1 ≤ q ≤ p). Then,
demoting by � the Hadamard product (coefficient-wise multiplication of matrices, see
Section 1.B.2), the second term of the equation above becomes (Bartoszek et al., 2012;
Clavel et al., 2015):

VOUp = P

[ 1
λq +λr

e−λqtie−λr tj
(
e(λq+λr )tij − 1

)]
1≤q,r≤p

�P−1RP−T
PT (1.29)

In order to get a stationary state, we also assume that A has only positive eigenvalues.
The stationary variance-covariance matrix is then given by (taking ti and tj to +∞):

S = P

[ 1
λq +λr

]
1≤q,r≤p

�P−1RP−T
PT (1.30)

and the variance matrix due to the process can be re-written as:

VOUp = e−A(ti−tij )Se−A
T (tj−tij ) − e−AtiSe−AT tj (1.31)

and we get:

Cov
[
Xi ;Xj

]
= e−AtiΓe−A

T tj − e−AtiSe−AT tj + e−A(ti−tij )Se−AT (tj−tij )

Root in Stationary State. If S = Γ, then the expression simplifies as:

Cov
[
Xi ;Xj

]
= P

[ 1
λq +λr

e−λq(ti−tij )e−λr (tj−tij )
]
1≤q,r≤p

�P−1ΣΣTP−T
PT

or, in a matricial form:

Cov
[
Xi ;Xj

]
= e−A(ti−tij )Γe−A

T (tj−tij )

Scalar Case. If A is scalar, i.e. A = αI, then the stationary variance is equal to:

S =
1
2α

R

and the expressions above simplify to:

Cov
[
Xi ;Xj

]
= e−α(ti+tj )Γ+ e−α(ti+tj )(e2αtij − 1)S general case

= e−α(ti+tj−2tij )Γ stationary root

And we recover the known expressions of the univariate case (see e.g. Hansen, 1997; Ho
& Ané, 2013b) by taking R = σ2. These expression will be used in the next two chapters.
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1.A.2.2 Using the Kronecker Sum

Using the same method as in Meucci (2009), we can derive the formulas above without
using the diagonalization of matrix A. To do that, we need the following result:

Lemma 1.A.2. For any two matrices M, N, with M invertible, we have:

vec
(∫ t

0
e−MvNe−M

T vdv

)
=

∫ t

0
vec

(
e−MvNe−M

T vdv
)

=
∫ t

0
e−Mv ⊗ e−Mv vec(N)dv

=
∫ t

0
e−(M⊕M)v vec(N)dv

= (M⊕M)−1
(
I− e−(M⊕M)t

)
vec(N)

(using the first formula of Proposition 1.B.2, and the last of Proposition 1.B.1).

This lemma can be used to derive the following expression for vec(VOUp):

vec(VOUp) = vec
(
e−A(ti−tij )

(∫ tij

0
e−AvΣΣT e−A

T vdv

)
e−A

T (tj−tij )
)

= e−(A(ti−tij )⊕A(tj−tij ))vec
(∫ tij

0
e−AvΣΣT e−A

T vdv

)
= e−(Ati⊕Atj )e(A⊕A)tij (A⊕A)−1(Ip2 − e−(A⊕A)tij )vec(R)
= e−(Ati⊕Atj )e(A⊕A)tij (Ip2 − e−(A⊕A)tij )(A⊕A)−1vec(R)

(as (A⊕A) commutes with e−(A⊕A)tij ). Sending as previously ti and tj to +∞, we get the
stationary variance:

vec(S) = (A⊕A)−1vec(R) (1.32)

and we get:

vec(VOUp) = e−(Ati⊕Atj )e(A⊕A)tij
[
vec(S)− e−(A⊕A)tij vec(S)

]
= e−(A(ti−tij )⊕A(tj−tij ))vec(S)− e−(Ati⊕Atj )vec(S)

which simplifies to the same formula as above:

vec(VOUp) = vec(e−A(ti−tij )Se−A
T (tj−tij ) − e−AtiSe−AT tj )

which lead to the same expressions for the variance.
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1.A.3 Incomplete Data Formulation

Using equation (1.28), we get, for j ∈ J2 ,m+nK:

Xj
∣∣∣ Xpa(j) ∼N

(
e−A`jXpa(j) + (Ip − e−A`j )βj ,Υi =

∫ `i

0
e−AuΣΣT e−A

T udu

)
with, using lemma 1.A.2 and the commutation:

vec(Υj) = (A⊕A)−1
(
I− e−(A⊕A)t

)
vec(R) =

(
I− e−(A⊕A)t

)
vec(S)

Hence:
Υi = S− e−A`jSe−AT `j

And, if A is diagonalizable in R:

Υi = P

[ 1
λq +λr

(
1− e−(λq+λr )`i

)]
1≤q,r≤p

�P−1ΣΣTP−T
PT

Remark 1.A.1. If A is scalar, the formula above simplifies to:

Xj
∣∣∣ Xpa(j) ∼N

(
e−α`jXpa(j) + (Ip − e−α`j )βj , (1− e−2α`j ) 1

2α
R
)

1.B Multivariate Analysis Tools

In this section, we recall some classical mathematical tools used in multivariate analysis.
Those will be useful mainly in Chapter 3. For an extensive view of these tools, we refer
to Mardia et al. (1979).

1.B.1 Kronecker Product and Vectorization

The Kronecker product and the vectorization operation appear naturally in multivariate
analysis, to describe the distribution of a matrix for instance.

1.B.1.1 Kronecker Product

Definition 1.B.1. Let A and B be two matrices of size m×n and p× q. Their Kronecker
product A⊗B is the mp ×nq matrix defined by:

A⊗B =


A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB


Proposition 1.B.1. Let A, B and C be matrices of size m×n, p×q and k× l respectively.
The following properties hold:

� ⊗ is distributive over +, associative, and is not commutative.

� (A⊗B)(C⊗D) = (AC)⊗ (BD) (when it makes sense)

� (A⊗B)T =AT ⊗BT
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� Rank(A⊗B) = Rank(A)Rank(B)

� If A and B are rectangular with singular values (λ1, . . . ,λrA) and (µ1, . . . ,µrB), then
A⊗B has singular values (λjµl)1≤j≤rA;1≤l≤rB.

In addition, for squared matrices A and B sizes m×m and p × p:

� (A⊗B)−1 =A−1 ⊗B−1 (if A and B are non-singular)

� |A⊗B| = |A|p |B|m

� tr(A⊗B) = tr(A) tr(B)

� If A and B are squared with eigenvalues (λ1, . . . ,λm) and (µ1, . . . ,µp), then A⊗B
has eigenvalues (λjµl)1≤j≤m;1≤l≤p.

� eA ⊗ eB = eA⊕B where A⊕B =A⊗ Im + Ip ⊗B

1.B.1.2 Vectorization

Definition 1.B.2. The vectorized vector of an m×n matrix A is obtained by staking its
columns together:

vec(A) = (A11, . . . ,Am1,A12, . . . ,Am2, . . . ,A1n, . . . ,Amn)
T

The vectorization operation and the Kronecker product work particularly well to-
gether, as shown by the following proposition.

Proposition 1.B.2 (Vectorization and Kronecker product). Let A, B and C be matrices
of size m×n, n× p and p × q respectively. Then the following identities hold:

vec(ABC) = (CT ⊗A)vec(B)
= (Iq ⊗AB)vec(C)
= (CTBT ⊗ Im)vec(A).

In particular:

vec(AB) = (Ip ⊗A)vec(B)
= (BT ⊗ Im)vec(A).

Vectorization can also be used in cooperation with Kronecker products to write Ma-
halanobis norms. These quantities naturally appear in the density of matrix normal
distributions.

Proposition 1.B.3 (Vectorization and Mahalanobis Norm). Let A and B be two symmetric
matrices of size n×n and m×m respectively. Let X be a matrix of size m×n. Then:

‖vec(X)‖2(A⊗B)−1 =
∥∥∥vec(XT )∥∥∥2

(B⊗A)−1 .

Proof.

‖vec(X)‖2(A⊗B)−1 = vec(X)T (A−1/2 ⊗B−1/2)T (A−1/2 ⊗B−1/2)vec(X)
=

∥∥∥vec((B−1/2)X(A−1/2)T )∥∥∥2
=

∥∥∥vec((A−1/2)XT (B−1/2)T )∥∥∥2
=

∥∥∥vec(XT )∥∥∥2
(B⊗A)−1
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1.B.2 Hadamard Product

The Hadamard product enjoys less properties than the Kronecker product, but is some-
times useful to write compact expressions.

Definition 1.B.3. Let A and B be matrices of size m×n. Their Hadamard product A�B
is the m×n matrix defined by:

(A�B)ij =AijBij

Proposition 1.B.4. The following properties hold:

� Distributive over +, associative, commutative.

� If X and Y are vectors, and DX = Diag(X), DY = Diag(Y), then: XT (A � B)Y =
tr(DXADYBT )

� Rank(A�B) ≤ Rank(A)Rank(B)

� |A�B| ≥ |A| |B| (Schur product theorem)

Proposition 1.B.5 (Vectorization and Hadamard product). Let A, B be matrices of size
m×n.

vec(A�B) = vec(A)� vec(B)
Lemma 1.B.1 (Kronecker and Hadamard products Kollo & Neudecker (1993); Mond &
Pečarić (2000)). Let J be a n2 ×n matrix, such that JT = [E11E22 · · ·Enn] is the matrix of
concatenation of base matrices Eii that are matrices of zeros, with one one at entry (i, i).
We have JJT = In2. Let A and B two n×n matrices. Then:

A�B = JT (A⊗B)J.
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Foreword

This chapter has been published under the title Detection of adaptive shifts on phyloge-
nies by using shifted stochastic processes on a tree in the Journal of the Royal Statistical
Society: Series B (Statistical Methodology). Bastide et al. (2017b).

Abstract. Comparative and evolutive ecologists are interested in the distribution of
quantitative traits among related species. The classical framework for these distributions
consists of a random process running along the branches of a phylogenetic tree relating
the species. We consider shifts in the process parameters, which reveal fast adaptation
to changes of ecological niches. We show that models with shifts are not identifiable in
general. Constraining the models to be parsimonious in the number of shifts partially
alleviates the problem but several evolutionary scenarios can still provide the same joint
distribution for the extant species. We provide a recursive algorithm to enumerate all
the equivalent scenarios and to count the number of effectively different scenarios. We
introduce an incomplete-data framework and develop a maximum likelihood estimation
procedure based on the EM algorithm. Finally, we propose a model selection procedure,
based on the cardinal of effective scenarios, to estimate the number of shifts and for
which we prove an oracle inequality.

2.1 Introduction

2.1.1 Motivations: Environmental Shifts

An important goal of comparative and evolutionary biology is to decipher the past evolu-
tionary mechanisms that shaped present day diversity, and more specifically to detect the
dramatic changes that occurred in the past (see for instance Losos, 1990; Mahler et al.,
2013; Davis et al., 2007; Jaffe et al., 2011). It is well established that related organisms
do not evolve independently (Felsenstein, 1985): their shared evolutionary history is well
represented by a phylogenetic tree. In order to explain the pattern of traits measured
on a set of related species, one needs to take these correlations into account. Indeed, a
given species will be more likely to have a similar trait value to her “sister” (a closely
related species) than to her “cousin” (a distantly related species), just because of the
structure of the tree. On top of that structure, when considering a functional trait (i.e.
a trait directly linked to the fitness of its bearer), such as shell size for turtles (Jaffe
et al., 2011), one needs to take into account the effect of the species environment on
its traits. Indeed, a change in the environment for a subset of species, like a move to
the Galàpagos Islands for turtles, will affect the observed trait distribution, here with a
shift towards giant shell sizes compared to mainland turtles. The observed present-day
trait distribution hence contains the footprint of adaptive events, and should allow us to
detect unobserved past events, like the migration of one ancestral species to a new envi-
ronment. Our goal here is to devise a statistical method based on a rigorous maximum
likelihood framework to automatically detect the past environmental shifts that shaped
the present day trait distribution.

2.1.2 Stochastic Process on a tree

We model the evolution of a quantitative adaptive trait using the framework of stochastic
processes on a tree. Specifically, given a rooted phylogenetic tree, we assume that the
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trait evolves according to a given stochastic process on each branch of the tree. At
each speciation event, or equivalently node of the tree, one independent copy with the
same initial conditions and parameters is created for each daughter species, or outgoing
branches.

Tree Structure. This model is our null model: it accounts for the tree-induced distri-
bution of trait values in the absence of shifts. Depending on the phenomenon studied,
several stochastic processes can be used to capture the dynamic of the trait evolution.
In the following, we will use the Brownian Motion (BM) and the Ornstein-Uhlenbeck
(OU) processes.
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(a) A phylogenetic tree.
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(b) Trait value evolution.

Figure 2.1.1 – Trait evolution under a Brownian Motion. The ancestral value of the trait
is 0, and the observed values (time 800) range from −4 to 11 for extant species. One
shift occurs on the parent branch of (D,E), changing the trajectory of their ancestral trait
value from the grey one to the colored one. The shift increases the observed dispersion.

Brownian Motion. Since the seminal article of Felsenstein (1985), the BM has been used
as a neutral model of trait evolution. If (Bt; t ≥ 0) is the Brownian motion, a character
(Wt; t ≥ 0) evolves on a lineage according the the stochastic differential equation: dWt =
σdBt, σ

2 being a variance parameter. If µ is the ancestral value at the root of the tree
(t = 0), then Wt ∼N (µ,σ2t). The variance σ2t of the trait is proportional to the time of
evolution and the covariance σ2tij between two species i and j is proportional to their
time of shared evolution.

Ornstein-Uhlenbeck Process. An unbounded variance is quite unrealistic for adaptive
traits (Butler & King, 2004). For that reason, the OU process, that models stabilizing
selection around an adaptive optimum (Hansen, 1997) is usually preferred to the BM.
It is defined by the stochastic differential equation dWt = −α(Wt −β)dt +σdBt, and has
stationary distribution N (β,σ2/2α). In this equation, Wt is the secondary optimum of
a species, a trade-off between all selective constraints – e.g. ecological – on the trait and
can be approached by the population mean of that species. The term −α(Wt−β)dt of the
equation represents the effects of stabilizing selection towards a primary optimum β, that
depends only on the ecological niche of the species. The selection strength is controlled
by the call-back parameter α. For interpretation purpose, we will use the phylogenetic
half-life t1/2 = ln(2)/α, defined as the time needed for the expected trait value to move
half the distance from the ancestral state to the primary optimum (Hansen, 1997). The
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term σdBt represents the random effects of uncontrolled factors, ranging from genetic
drift to environmental fluctuations. We refer to Hansen (1997); Hansen et al. (2008) for
further discussion and deeper biological interpretations of the hypothesis underlying this
model of evolution. The aim of our work is to detect environmental shifts.

Environmental Shifts. In addition to the previous mechanisms, we assume that abrupt
environmental changes affected the ecological niche of some ancestral species. We model
these changes as instantaneous shifts in the parameters of the stochastic process. Shifted
parameters are inherited along time and thus naturally create clusters of extant species
that share the same parameters trajectories. In the BM process, shifts affect the mean
value of the trait and are thus instantaneously passed on to the trait itself (see Fig-
ure 2.1.1) whereas in the OU process, shifts affect the primary optimum β. In this case,
the trait converges to its new stationary value with an exponential decay of half-life t1/2
inducing a lag that makes recent shifts harder to detect (Hansen & Bartoszek, 2012). In
the remainder, we assume that all other parameters (σ2 for the BM and σ2,α for the
OU) are fixed and constant (but see Beaulieu et al., 2012; Rabosky, 2014, for partial
relaxations of this hypothesis).

2.1.3 Scope of this article

State of the Art. Phylogenetics Comparative Methods (PCM) are an active field that
has seen many fruitful developments in the last few years (see Pennell & Harmon, 2013,
for an extensive review). Several methods have been specifically developed to study
adaptive evolution, starting with the work of Butler & King (2004). Butler & King
(2004) only consider shifts in the optimal value β whereas Beaulieu et al. (2012) also al-
low for shifts in the selection strength α and the variance σ2. Both have in common that
shift locations are assumed to be known. Several extensions of the model without or with
known shifts have also been proposed: Hansen et al. (2008) extended the original work
of Hansen (1997) on OU processes to a two-tiered model where β(t) is itself a stochastic
process (either BM or OU). Bartoszek et al. (2012) extended it further to multivariate
traits whereas Hansen & Bartoszek (2012) introduced errors in the observations. Ex-
panding upon the BM, (Landis et al., 2013) replaced fixed shifts, known or unknown, by
random jump processes using Levy processes. Non-Gaussian models of trait evolution
were also recently considered by Hiscott et al. (2016), who adapted Felsenstein’s prun-
ing algorithm for the likelihood computation of these models, using efficient integration
techniques. Finally, Ho & Ané (2013b) derived consistency results for estimation of the
parameters of an OU on a tree and Bartoszek & Sagitov (2015); Sagitov & Bartoszek
(2012) computed confidence intervals of the same parameters by assuming an unknown
random tree topology and averaging over it.

The first steps toward automatic detection of shifts, which is the problem of interest
in this paper, have been done in a Bayesian framework, for both the BM (Eastman
et al., 2013) and the OU (Uyeda & Harmon, 2014). Using RJ-MCMC, they provide the
user with the posterior distribution of the number and location of shifts on the tree.
Convergence is however severely hampered by the size of the search space. The growing
use of PCM in fields where large trees are the norm makes maximum likelihood based
point estimates of the shift locations more practical. A stepwise selection procedure for
the shifts has been proposed in Ingram & Mahler (2013). The procedure adds shifts one
at the time and is therefore rather efficient but the selection criterion is heuristic and
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has no theoretical grounding for that problem, where observations are correlated through
the tree structure. These limitations have been pointed out in Ho & Ané (2014). In this
article, the authors describe several identifiability problems that arise when trying to infer
the position of the shifts on a tree, and propose a different stepwise algorithm based on
a more stringent selection criterion, heuristically inspired by segmentation algorithms.

To rigorously tackle this issue, we introduced a framework where a univariate trait
evolves according to an OU process with stationary root state (S) on an Ultrametric tree
(U). Furthermore, as the exact position of a shift on a branch is not identifiable for an
ultrametric tree, we assume that shifts are concomitant to speciation events and only
occur at Nodes (N) of the tree. We refer to this model as OUsun hereafter.

Our Contribution. In this work, we make several major contributions to the problem
at hand. First, we derive a statistical method to find a maximum likelihood estimate
of the parameters of the model. When the number of shifts is fixed, we work out an
Expectation Maximization (EM) algorithm that takes advantage of the tree structure of
the data to efficiently maximize the likelihood. Second, we show that, given the model
used and the kind of data available, some evolutionary scenarios remain indistinguishable.
Formally, we exhibit some identifiability problems in the location of the shifts, even when
their number is fixed, and subsequently give a precise characterization of the space of
models that can be inferred from the data on extant species. Third, we provide a
rigorous model selection criterion to choose the number of shifts needed to best explain
the data. Thanks to our knowledge of the structure of the spaces of models, acquired
through our identifiability study, we are able to mathematically derive a penalization
term, together with an oracle inequality on the estimator found. Fourth and finally, we
implement the method on the statistical software R (R Core Team, 2017), and show that
it correctly recovers the structure of the model on simulated datasets. When applied
to a biological example, it gives results that are easily interpretable, and coherent with
previously developed methods. All the code used in this article is publicly available on
GitHub (https://github.com/pbastide/PhylogeneticEM).

Outline. In Section 2.2, we present the model, using two different mathematical point of
views, that are both useful in different aspects of the inference. In Section 2.3, we tackle
the identifiability problems associated with this model, and describe efficient algorithms
to enumerate, first, all equivalent models within a class, and, second, the number of truly
different models for a given number of shifts. These two sections form the foundation
of Section 2.4, in which we describe our fully integrated maximum likelihood inference
procedure. Finally, in Sections 2.5 and 2.6, we conduct some numerical experiments on
simulated and biological datasets.

2.2 Statistical Modeling

2.2.1 Probabilistic Model

Tree Parametrization. As shown in Figure 2.2.1, we consider a rooted tree T with n
tips and m internal nodes (m = n−1 for binary trees). The internal nodes are numbered
from 1 (the root) to m, and the tips from m+1 to m+n. Let i be an integer, i ∈ J2 ,m+nK.
Then pa(i) is the unique parent of node i. The branch leading to i from pa(i) is noted

https://github.com/pbastide/PhylogeneticEM
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Figure 2.2.1 – A rooted and time calibrated phylogenetic tree with the notations used
to parametrize the tree (l, t,d,b) and the observed (Y ) and non-observed (Z) variables.

bi and has length `i = ti − tpa(i) where ti is the time elapsed between the root and node i.
By convention, we set t1 = 0 and tpa(1) = −∞ for the root. The last convention ensures
that the trait follows the stationary distribution (if any) of the process at the root. We
denote anc(i) = {par(i) : r ≥ 0} the set composed of node i and of all its ancestors up

to the root. For a couple of integers (i, j), (i, j) ∈ J1 ,m + nK2, nodes i and j are at
phylogenetic distance dij and the time of their most recent common ancestor (mrca) is
tij . We consider ultrametric trees, for which tm+1 = · · · = tm+n =: h and note h the tree
height. In the following, the tree is fixed and assumed to be known.

Trait Values. We denote by X the vector of size m+n of the trait values at the nodes
of the tree. We split this vector between non-observed values Z (size m) at the internal
nodes, and observed values Y (size n) at the tips, so that XT = (ZT ,YT ). According to
our model of trait evolution, the random variable Xi , i ∈ J1 ,m + nK, is the result of a
stochastic process stopped at time ti . In the following, we assume that the inference
in the BM case is done conditionally to a fixed root value X1 = µ. In the OUsun case,
we assume that the root trait value is randomly drawn from the stationary distribution:

X1 ∼N (µ = β1,γ2 = σ2

2α ), where β1 is the ancestral optimal value.

Shifts. We assume that K shifts occur on the tree, K ∈ N. The kth shift, k ∈ J1 ,KK,
occurs at the beginning of branch τk, τk ∈ {bi , i ∈ J2 ,m+nK}, and has intensity δk, δk ∈ R.
The interpretation of this intensity depends on the process. In the following, we use the
vector ∆ of shifts on the branches, of size m+n, with K +1 non-zero entries, and defined
as follows (see example 2.2.1):

∆1 = µ (= β1 for an OUsun) and ∀i ∈ J2 ,n+mK, ∆i =

δk if τk = bi
0 otherwise.

Note that no proper shift occurs on the root branch, but that the root trait value or
mean, µ, is formalized as an initial fictive shift on this fictive branch.

Parameters. The parameters needed to describe an OUsun (respectively, a BM) are
θ = (γ,α,∆) (resp. θ = (σ,∆)). Note that, as σ2 = 2αγ2, only the two parameters α and
γ are needed to describe the OUsun. We denote by OUsun(θ) (resp. BM(θ)) the OUsun
(resp. BM) process running on the tree with parameters θ.
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2.2.2 Incomplete Data Model Point of View

If the trait values were observed at all nodes of the tree, including ancestral ones, shifts
would be characterized by unexpectedly large differences between a node and its parent.
A way to mimic this favorable case is to use an incomplete data model, as described
below. This representation of the model will be useful for the parametric inference using
an EM algorithm (Section 2.4.1).

Brownian Motion. As the shifts occur directly in the mean of the process, we get:

X1 = µ and ∀i ∈ J2 ,m+nK, Xi |Xpa(i) ∼N
(
Xpa(i) +∆i , `iσ

2
)

(2.1)

The trait value at node i, i ∈ J2 ,m+nK, is centered on the value of its parent node Xpa(i),
with a variance proportional to the evolution time `i between i and pa(i). The effect of
a non-zero shift ∆i on branch bi is simply to translate the trait value by ∆i .

Ornstein-Uhlenbeck. The shifts occur on the primary optimum β, which is piecewise
constant. As the shifts are assumed to occur at nodes, the primary optimum is entirely
defined by its initial value β1 and its values β2, . . . ,βn+m on branches of the tree, where
βi is the value on branch bi leading to node i.

β1 ∈ R (= µ for an OUsun) and ∀i ∈ J2 ,m+nK, βi = βpa(i) +∆i (2.2)

Assuming that the root node is in the stationary state, we get:X1 ∼N (µ = β1,γ2 = σ2

2α )

Xi |Xpa(i) ∼N
(
Xpa(i)e

−α`i + βi(1− e−α`i ), σ2

2α (1− e−2α`i )
)
∀i ∈ J2 ,m+nK

(2.3)

The trait value at node i depends on both the trait value at the father node Xpa(i) and
the value βi of the primary optimum on branch bi . Contrary to the BM case, the shifts
only appear indirectly in the distributions of Xis, through the values of β, and with a
shrinkage of 1− e−αd for shifts of age d, which makes recent shifts (d small compared to
1/α) harder to detect.

2.2.3 Linear Regression Model Point of View

A more compact and direct representation of the model is to use the tree incidence matrix
to link linearly the observed values (at the tips) with the shift values, as explained below.
We will use this linear regression framework for the Lasso (Tibshirani, 1996) initialization
of the EM (Section 2.4.1) and the model selection procedure (Section 2.4.2). It will also
help us to explore identifiability issues raised in the next section.

Matrix of a Tree. It follows from the recursive definition of X that it is a Gaussian
vector. In order to express its mean vector given the shifts, we introduce the tree
squared matrix U, of size (m+n), defined by its general term: Uij = I{j ∈ anc(i)},∀(i, j) ∈
J1 ,m+nK2. In other words, the jth column of this matrix, j ∈ J1 ,m+nK, is the indicator
vector of the descendants of node j. To express the mean vector of the observed values
Y, we also need the sub-matrix T, of size n× (m+n), composed of the bottom n rows of
matrix U, corresponding to the tips (see example 2.2.1 below). Likewise, the ith row of
T, i ∈ J1 ,nK, is the indicator vector of the ancestors of leaf m+ i.
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Brownian Motion. From the tree structure, we get:

X =U∆+EX and Y = T∆+EY (2.4)

Here, EX ∼ N (0,ΣXX) is a Gaussian error vector with co-variances [ΣXX]ij = σ
2tij for

any 1 ≤ i, j ≤m+n, and EY is the vector made of the last n coordinates of EX.

Ornstein-Uhlenbeck. For the OUsun, shifts occur on the primary optimum, and there
is a lag term, so that:

β =U∆ and X = (U−AUB)∆+EX (2.5)

where A = Diag(e−αti ,1 ≤ i ≤ m+ n) and B = Diag(0, eαtpa(i) ,2 ≤ i ≤ m+ n) are diagonal

matrices of size m+n. As previously, EX ∼N (0,ΣXX), but ΣXX = γ2[e−αdij ]1≤i,j≤m+n. As
the tree is ultrametric, this expression simplifies to the following one when considering
only observed values:

Y = TW(α)∆+EY (2.6)

where EY is the Gaussian vector made of the last n coordinates of EX, and W(α) =
Diag(1,1− e−α(h−tpa(i)),2 ≤ i ≤m+n) is a diagonal matrix of size m+n. Note that if α is
positive, then α(h− tpa(i)) > 0 for any i ∈ J1 ,m+nK, and W(α) is invertible.

Example 2.2.1. The tree presented in Figure 2.2.1 has five tips and one shift on branch
4+3 = 7, so:

U =



Z1 Z2 Z3 Z4 Y1 Y2 Y3 Y4 Y5
Z1 1 0 0 0 0 0 0 0 0
Z2 1 1 0 0 0 0 0 0 0
Z3 1 1 1 0 0 0 0 0 0
Z4 1 0 0 1 0 0 0 0 0
Y1 1 0 0 1 1 0 0 0 0
Y2 1 0 0 1 0 1 0 0 0
Y3 1 1 0 0 0 0 1 0 0
Y4 1 1 1 0 0 0 0 1 0
Y5 1 1 1 0 0 0 0 0 1




T

and ∆ =



µ
0
0
0
0
0
δ1
0
0


And, respectively, for a BM or an OUsun (µ = β1):

E [Y] = T∆ = (µ,µ,µ+ δ1,µ,µ)
T (BM)

E [Y] = TW(α)∆ = (β1,β1,β1 + δ1(1− e−α(h−t2)),β1,β1)T (OU)

Space of Expectations. Expressions (2.4) and (2.6) allow us to link the parameter θ to
the probability distribution of observations Y and to explore identifiability issues. In this
linear formulation, detecting shifts boils down to identifying the non-zero components of
∆. The following lemma highlights the parallels between solutions of the BM and OUsun
processes:

Lemma 2.2.1 (Similar Solutions). Let mY ∈ Rn be a vector, T an ultrametric tree, α a
positive real number, and σ , γ non-negative real numbers. Then there exists at least one
vector ∆BM , ∆BM ∈ Rm+n (respectively, ∆OU ∈ Rm+n), such that the vector of expectations
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at the tips of a BM(σ,∆BM) (respectively, an OUsun(γ,α,∆OU )) running on the tree T
is exactly mY.

Furthermore, ∆BM is a solution to this problem for the BM if and only if ∆OU =
W(α)−1∆BM is a solution for the OUsun, and ∆BM and W(α)−1∆BM have the same
support. These two vectors are said to be similar.

Proof. The first part of this lemma follows directly from formulas (2.4) (BM) and (2.6)
(OU). Indeed, the maps ∆ 7→ T∆ and ∆ 7→ TW(α)∆ both span Rn. The second part of
the lemma is a consequence of W(α) being diagonal and invertible (for α > 0).

Remark 2.2.1. Lemma 2.2.1 shows that the OUsun and BM processes that induce a
given mY use shifts located on the same branches, although they may differ on other
parameters.

2.3 Identifiability and Complexity of a Model

2.3.1 Identifiability Issues

As we only have access to Y, and not X, we only have partial information about the shifts
occurrence on the tree. In fact, several different allocations of the shifts can produce the
same trait distribution at the tips, and hence are not identifiable. In other words, there
exists parameters θ , θ′ with the same likelihood function: pθ(·) = pθ′ (·). Note that
the notion of identifiability is intrinsic to the model and affects all estimation methods.
Restricting ourselves to the parsimonious allocations of shifts only partially alleviates
this issue, and, using a “random cluster model” representation of the problem, we are
able to enumerate, first, all the equivalent solutions to a given problem, and, second, all
the equivalence classes for a given number of shifts.

µ

δ1 δ2

µ+δ2µ+δ1

µ

δ2 − δ1
δ1

µ+ δ1

δ1 − δ2

µ+ δ2

µ+δ2µ+δ1

δ2 − δ1

Figure 2.3.1 – Equivalent allocations in the BM case. Mean tip values are represented by
colors and equal for all allocations. The two allocations on the right are parsimonious.

No Homoplasy Assumption. We assume in the following that there is no convergent
evolution. This means that each shift creates a new (and unique) mean trait value for
extant species that are below it. This assumption is reasonable considering that shifts
are real valued and makes the model similar to “infinite alleles” models in population
genetics. This assumption confines but does not eliminate the identifiability issue, as
seen in Figure 2.3.1.

2.3.1.1 Definition of the problem

Figure 2.3.1 shows a simple example where the model is not identifiable in the BM case.
Here, four distinct allocations give the same mean values (µ+δ1,µ+δ2) at the tips. The
lack of identifiability is due to the non-invertibility of the tree matrix T.
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Proposition 2.3.1 (Kernel of the Tree Matrix T). Let i be an internal node, i ∈ J1 ,mK,

with Li children nodes (d1, · · · ,dLi ) ∈ J2 ,m+nKLi . Then the vector Ki defined as follow:

∀j ∈ J1 ,m+nK,K ij =


1 if j = i
−1 if j ∈ (d1, · · · ,dLi )
0 otherwise

is in the kernel of T. In addition, the m vectors constructed this way form a basis of the
kernel space of T.

These kernel vectors effectively “cancel out” a shift on a branch by balancing it with
the opposite shift on all immediate child branches. Note that the root mean value is
treated as a shift.

Proof of Proposition 2.3.1. Let i ∈ J1 ,mK be an internal node with Li children nodes
(d1, · · · ,dLi ) and Ki the corresponding vector, defined as in the proposition. Then, for
any j ∈ J1 ,m+nK:

(UKi)j =UjiK
i
i +

Li∑
l=1

UjdlK
i
dl
= I{i ∈ anc(j)} −

Li∑
l=1

I{dl ∈ anc(j)}

We can then distinguish three possibilities:

� If i < anc(j), then dl < anc(j) for all l ∈ J1 ,LiK and (TKi)j = 0.

� If j = i, then i ∈ anc(j), and, by definition, dl < anc(j) for any l ∈ J1 ,LK, so
(UKi)i = 1.

� Else, if i is an ancestor of j, with i , j, then, as i is internal, one (and only one)
of its child dl is also an ancestor of j (potentially j itself), so that the sum cancels
out.

This proves that

∀i ∈ J1 ,mK,UKi = (δij)1≤j≤m+n (2.7)

In particular, as TKi is the vector of the last n coordinates of UKi , this shows that the
vectors (K1, · · · ,Km) are in the kernel of T.

Then, as we found m independent vectors in the kernel of T, which is a space of
dimension lower thanm (as the n columns of T representing tips are linearly independent,
and by the rank theorem), this family of vectors is a basis of the kernel space.

The following lemma describes the relationships that exist between these kernel vec-
tors and the tree matrix U defined in Section 2.2.3.

Lemma 2.3.1. Let b be the canonical basis of Rm+n, and S a supplementary space of
ker(T). Then b′ = (K1, · · · ,Km,bm+1, · · · ,bm+n) is a basis adapted to the decomposition
ker(T)⊕ S, and the matrix U (as defined in Section 2.2.3) is the change of basis matrix
between b and b′.
As a consequence, U is invertible.
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Proof of lemma 2.3.1. First, (bm+1, · · · ,bm+n) is a family of n independent vectors of S
of dimension n, so is a basis of S, and b′ is a basis adapted to ker(T)⊕ S.

Let i ∈ J1 ,m + nK. Let’s show that Ub′i = bi . If m + 1 ≤ i ≤ m + n, then b′i = bi ,
and Ubi = bi is the ith column of U. Otherwise, if 1 ≤ i ≤ m, then b′i = Ki , and, from
equation (2.7), Ub′i = bi . This shows that U is the change of basis matrix between b and
b′.

“Random Cluster Model” Representation. When inferring the shifts, we have to keep
in mind this problem of non-identifiability, and be able to choose, if necessary, one or
several possible allocations among all the equivalent ones. In order to study the properties
of the allocations, we use a random cluster model, as defined in Mossel & Steel (2004).
The following definition states the problem as a node coloring problem.

Definition 2.3.1 (Node Coloring). Let CK be a set of K arbitrary “colors”, K ∈ N∗. For a
given shift allocation, the color of each node is given by the application B : J1 ,m+nK→CK
recursively defined in the following way:

� Choose a color c ∈ CK for the root: B(1) = c.

� For a node i, i ∈ J2 ,m + nK, set B(i) to B(pa(i)) if there is no shift on branch i,
otherwise choose another color c, c ∈ CK \ {B(pa(i))}, and set B(i) to c.

Hereafter, we identify (CK )J1,m+nK with (CK )m+n and refer to a node coloring indifferently
as an application or a vector.

As the shifts only affect E [X] and we only have access to E [Y], we identify colors
with the distinct values of E [Y]:

Definition 2.3.2 (Adapted Node Coloring). A node coloring is said to be adapted to a
shifted random process on a tree if two tips have the same color if and only if they have
the same mean value under that process.

Proposition 2.3.2 (Adapted Coloring for BM and OUsun). Let σ and γ be two non-
negative real numbers, and α a positive real number. Then:

(i) In the BM case, if C is the set of possible mean values taken by the nodes of the
tree, then the knowledge of the node colors is equivalent to the knowledge of ∆.
Furthermore, the associated node coloring is adapted to the original BM.

(ii) In the OUsun case, from lemma 2.2.1, we can find a similar BM process, i.e. with
shifts on the same branches. Then the knowledge of the node coloring associated
to this similar BM process is equivalent to the knowledge of the vector of shifts of
the OUsun, and the node coloring obtained is adapted to the original OUsun.

Proof of Proposition 2.3.2. The proof of (i) relies on expression (2.4), that states that
E [X] = U∆. Defining C as the set off all distinct values of E [X], we can identify E [X]
with the node coloring application that maps any node i with E [X]i . Since U is invertible
(see lemma 2.3.1 above), we can go from one formalism to the other.
For (ii), we use lemma 2.2.1 to find a similar BM, and then use (i).

From now on, we will study the problem of shifts allocation as a discrete-state coloring
problem.
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2.3.1.2 Parsimony

As we saw on Figure 2.3.1 there are multiple colorings of the internal nodes that lead to a
given tips coloring. Among all these solutions, we choose to study only the parsimonious
ones. This property can be seen as an optimality condition, as defined below:

Definition 2.3.3 (Parsimonious Allocation). Given a vector of mean values at the tips
produced by a given shifted stochastic process running on the tree, an adapted node
coloring is said to be parsimonious if it has a minimum number of color changes. We
denote by SPK the set of parsimonious allocations of K shifts on the (m+n−1) branches
of the tree (not counting the root branch).

As K shifts cannot produce more than K + 1 colors, we can define an application
φ : SPK → (CK+1)n that maps a parsimonious allocation of shifts to its associated tip
partition.

Definition 2.3.4 (Equivalence). Two allocations are said to be equivalent (noted ∼) if
they produce the same partition of the tips and are both parsimonious. Mathematically:

∀s1, s2 ∈ SPK , s1 ∼ s2 ⇐⇒ φ(s1) = φ(s2)

In other words, two allocations are equivalent if they produce the same tip coloring up
to a permutation of the colors. Given d ∈ (CK+1)n a coloring of the tips of T with K +1
colors, φ−1(d) is the set of equivalent parsimonious node coloring that coincide with d
(up to a permutation of the colors) on the tree leaves.

Several dynamic programming algorithms already exist to compute the minimal num-
ber of shifts required to produce a given tips coloring, and to find one associated par-
simonious solution (see Fitch, 1971; Sankoff, 1975; Felsenstein, 2004). Here, we need to
be a little more precise, as we want to both count and enumerate all possible equivalent
node colorings associated with a tip coloring. For the sake of brevity, we only present the
algorithm that counts

∣∣∣φ−1(d)∣∣∣, for d ∈ (CK )n. This algorithm can be seen as a corollary
of the enumeration algorithm (presented and proved in Appendix 2.A) and an extension
of Fitch algorithm where we keep track of both the cost of an optimal coloring and
the number of such colorings. It has O(K2Ln) time complexity where L is the maximal
number of children of the nodes of the tree.

Proposition 2.3.3 (Size of an equivalence class). Let d be a coloring of the tips, d ∈ (CK )n,
and let i be a node of tree T with Li daughter nodes (i1, · · · , iLi ), Li ≥ 2. Denote by Ti
the sub-tree rooted at node i.
For k ∈ CK , Si(k) is the cost of starting from node i with color k, i.e. the minimal number
of shifts needed to get the coloring of the tips of Ti defined by d, when starting with node
i in color k. Denote by Ti(k) the number of allocations on Ti that achieve cost Si(k).

If i is a tip (m+1 ≤ i ≤m+n), then,

Si(k) =

0 if d(i) = k
+∞ otherwise

Ti(k) =

1 if d(i) = k
0 otherwise

Otherwise, if i is a node, for 1 ≤ l ≤ Li, define the set of admissible colors for daughter
il:

Klk = argmin
p∈CK

{
Sil (p) + I{p , k}

}
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As these sets are not empty, let (p1, . . .pL) ∈ K1
k × . . .×KLk . Then:

Si(k) =
L∑
l=1

Sil (pl) + I{pl , k} and Ti(k) =
L∏
l=1

∑
pl∈Klk

Til (pl)

At the root, if L = argmink∈CK S1(k), then
∣∣∣φ−1(d)∣∣∣ =∑

k∈LT1(k).

OU Practical Case. We can illustrate this notion on a simple example. We consider
an OUsun on a random tree of unit height (total height h = 1). We put three shifts
on the tree, producing a given trait distribution. Then, using proposition 2.3.2 and our
enumeration algorithm, we can reconstruct the 5 possible allocations of shifts that pro-
duce the exact same distribution at the tips. These solutions are shown in Figure 2.3.2.
Note that the colors are not defined by the values of the optimal regime β, but by the
mean values E [Y] of the process at the tips. As a result, the groups shown in blue and
red in the first solution have the same optimal value in this configuration, but not in
any other. The second solution shown illustrates the fact that all the shifts values are
inter-dependent, as changing the position of only one of them can have repercussions on
all the others. Finally, the third solution shows that the timing of shifts matters: to have
the same impact as an old shift, a recent one must have a much higher intensity (under
constant selection strength such as in the OUsun).
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1
1
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1
2

-19.6

-13.6

1
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5

Figure 2.3.2 – Five equivalent shift allocations that produce colorings that are adapted
to an OUsun, with α = 3 and γ2 = 0.1. The box at the root represents the ancestral
optimum β1, and the boxes on the branches represent the positions and values of the
shifts on the optimal value. While accounting for very different evolutionary scenarios,
all allocations produce the same trait distribution at the tips.

Possible Relaxation of the No-homoplasy Assumption. Note that the algorithms used
for counting and enumerating the configurations of an equivalence class are valid even
without the no-homoplasy hypothesis. The no-homoplasy hypothesis is however crucial
in the next Section to establish a link between the number of shifts and the number of
distinct tips colors.

2.3.2 Complexity of a Collection of Models

Number of Different Tips Colors. As we make the inference on the parameters with
a fixed number of shifts K (see Section 2.4.1), we need a model selection procedure to
choose K . This procedure depends on the complexity of the collection of models that use
K shifts, defined as the number of distinct models. To do that, we count the number of
tree-compatible partitions of the tips into K+1 groups, as defined in the next proposition:
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Proposition 2.3.4. Under the no homoplasy assumption, an allocation of K shifts on a
tree is parsimonious if and only if it creates exactly K + 1 tip colors. The tip partition
into K + 1 groups associated with this coloring is said to be tree-compatible. The set
DK+1 ⊂ (CK+1)n of such partitions is the image of SPK by the map φ defined in the previous
section.

Proof of Proposition 2.3.4. First, note that K shifts create at most K +1 colors. If each
shift produces a new tip mean value (no homoplasy), the only way to create K or less
colors is to “forget” one of the shifts, i.e. to put shifts on every descendant of the branch
where it happens. Such an allocation is not parsimonious, as we could just add the value
of the forgotten shift to all its descendant to get the same coloring of the tips with one
less shift. So a parsimonious allocation cannot create less than K + 1 colors, and hence
creates exactly K +1 colors.

Reciprocally, if an allocation with K shifts that produces p groups is not parsimonious,
then we can find another parsimonious one that produces the same p groups with p − 1
shifts, with p − 1 < K , i.e. p < K + 1. So, by contraposition, if the allocation produces
K +1 groups, then it is parsimonious.

Using the equivalence relation defined in Definition 2.3.4, we can formally take the
quotient set of SPK by the relation ∼ to get the set of parsimonious allocations of K shifts

on the m+n−1 branches of the tree that are identifiable: SP IK = SPK / ∼. In other words,

the set SP IK is constituted of one representative of each equivalence class. Under the
no homoplasy assumption, there is thus a bijection between identifiable parsimonious
allocations of K shifts and tree-compatible partitions of the tips in K +1 groups: SP IK →∼DK+1.

The number N
(T )
K+1 = |DK+1| is the complexity of the class of models with K shifts

defined as the number of distinct identifiable parsimonious possible configurations one

can get with K shifts on the tree. To compute N
(T )
K , we will need M

(T )
K the number

of marked tree-compatible partitions in K groups. These are composed of all the tree-
compatible partitions where one group, among those that could be in the same state as
the root, is distinguished with a mark (see example 2.3.1 below).

Example 2.3.1 (Difference between N
(T )
2 and M

(T )
2 ).

1
2
3
4

5
6

Partitions in 2
groups.

� If we consider only unmarked partitions, then colorings 1, 2
and 3 induce the same partitions as, respectively, colorings

4, 5 and 6, and N
(T )
2 = 3.

� For marked partitions, fix the root state to an arbitrary color,
for instance white, and consider the white group as marked.
Then colorings 5 and 6 are not tree-compatible (they require
two shifts). And although they induce the same partition,
colorings 1 and 4 correspond to different marked partitions:

each marks a different group of leaves. Therefore M
(T )
2 = 4.

Proposition 2.3.5 (Computation of the Number of Equivalent Classes). Let i be a node
of tree T , and K ∈ N∗.

If i is a tip, then N
(Ti )
K =M(Ti )

K = I{K = 1}.
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Else, if i is a node with Li daughter nodes (i1, · · · , iLi ), Li ≥ 2, then:

N
(Ti )
K =

∑
I⊂J1,LiK
|I |≥2

∑
k1+···+kLi=K+|I |−1

k1,...,kLi≥1

∏
l∈I
M

(Til )
kl

∏
l<I

N
(Til )
kl

+
∑

k1+···+kLi=K
k1,...,kLi≥1

Li∏
l=1

N
(Til )
kl

M
(Ti )
K =

∑
I⊂J1,LiK
|I |≥1

∑
k1+···+kLi=K+|I |−1

k1,...,kLi≥1

∏
l∈I
M

(Til )
kl

∏
l<I

N
(Til )
kl

(2.8)

In the binary case, this relation becomes, if i has two daughters i` and ir :

N
(Ti )
K =

∑
k1+k2=K
k1,k2≥1

N
(Ti` )
k1

N
(Tir )
k2

+
∑

k1+k2=K+1
k1,k2≥1

M
(Ti` )
k1

M
(Tir )
k2

M
(Ti )
K =

∑
k1+k2=K
k1,k2≥1

M
(Ti` )
k1

N
(Tir )
k2

+N
(Ti` )
k1

M
(Tir )
k2

+
∑

k1+k2=K+1
k1,k2≥1

M
(Ti` )
k1

M
(Tir )
k2

(2.9)

Proof. We will prove this proposition in the binary case, the general case being a natural
extension of it. If T is a binary tree with T` and Tr as left and right sub-trees, one faces
two situations when partitioning the tips in K groups:

� The left and right sub-trees have no group in common. Then, the number of
groups in T is equal to the number of groups in its two sub-trees, and there are∑
k1+k2=KN

(T`)
k1

N
(Tr )
k2

such partitions. This is the first term of the equation on N
(T )
K

in (2.9).

� The left and right sub-trees have at least one group in common. Then, from the
no homoplasy assumption, they have exactly one group in common: the ancestral
state of the root. Suppose that this ancestral state is marked. Then it must be

present in the two sub-trees, and there are
∑
k1+k2=K+1M

(T`)
k1
M

(Tr )
k2

such partitions.

This ends the proof of the formula on N
(T )
K .

To get the formula on M
(T )
K , we use the same kind of arguments. The second part of

the formula is the same as the one for N
(T )
K , and the first part corresponds to trees for

which the marked partition is present in only one of the two sub-trees.

The complexity of the algorithm described above is O(2L(K+L)LLn). Note that N
(T )
K

depends on the topology of the tree T in general. However, if the tree is binary, a closed
form solution of the recurrence relation (2.8), which does not depend on the topology,
exists.

Corollary 2.3.1 (Closed Formula Binary Trees). For a rooted binary tree with n tips, we
have:

N
(T )
K+1 =N

(n)
K+1 =

∣∣∣SP IK ∣∣∣ = (
2n− 2−K

K

)
and M

(T )
K =M(n)

K =
(
2n−K
K − 1

)
The demonstration of this formula is not straightforward, and is based on a Vandermonde-

like equality, detailed in Appendix 2.B. The formula is then obtained using a strong
induction on the number of tips of the tree.
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Remark 2.3.1. Note that, when K is large compared to
√
n, the average number of

configurations per equivalence class goes to infinity. This can be checked by comparing
the total number of configurations

(2n−1
K−1

)
with the total number of classes

(2n−K−1
K−1

)
. As

a consequence, we only consider models for which K <
√
n in the remainder.

Remark 2.3.2. This formula was already obtained in a different context in Steel (1992)
(Proposition 1) and, with a slightly different formulation, in Semple & Steel (2003,
Proposition 4.1.4). In these works, the authors are interested in counting the “r-states
convex characters on a binary tree”. Under the no-homoplasy assumption, this number
can be shown to be equal to

∣∣∣SP Ir−1∣∣∣.
2.3.3 Another Characterization of Parsimony

The following proposition gives an alternative definition of parsimony under the no-
homoplasy hypothesis using the linear formulation of the problem. It will be used for
model selection in Section 2.4.2.

Proposition 2.3.6 (Equivalence between parsimony and independence). Let mY be a
given mean vector, mY ∈ Rn, and ∆ a vector of shifts such that T∆ = mY, with T the
tree matrix defined in Section 2.2.3. Under the no homoplasy assumption, the vector
of shifts ∆ is parsimonious if and only if the corresponding column-vectors of the tree
matrix (Ti)i∈Supp(∆) are linearly independent.

Proof of Proposition 2.3.6. By contraposition, let’s first assume that the vector-columns
(Ti)i∈Supp(∆) are linearly dependent, and prove that ∆ is not parsimonious. This means
that we can find a vector E, E ∈ Rm+n, such that Supp(E) ⊂ Supp(∆), and TE = 0. We
can hence find j ∈ Supp(∆), j > 1, such that Ej , 0. Then if λ = −∆j /Ej , the vector
∆′ = ∆ + λE is a vector of shifts on the tree with one less non-zero coordinate than ∆
such that T∆′ =mY. Hence, ∆ is not parsimonious.

Reciprocally, by contraposition, assume that ∆ is not parsimonious. Then by propo-
sition 2.3.4, it produces p groups, with p ≤ K . Hence the application associated with
(Ti)i∈Supp(∆) goes from a space of dimension K + 1 to a space of dimension p ≤ K , and
hence is not injective, and the family (Ti)i∈Supp(∆) is not independent.

2.4 Statistical Inference

2.4.1 Expectation Maximization

Principle. As shown in Section 2.2.2, both BM and OUsun models can be seen as in-
complete data models. The Expectation Maximization algorithm (EM, Dempster et al.,
1977) is a widely used algorithm for likelihood maximization of these kinds of models.
It is based on the decomposition: logpθ(Y) = Eθ[ logpθ(Z,Y) | Y ]−Eθ[ logpθ(Z | Y ) | Y ].
Given an estimate θ(h) of the parameters, we need to compute some moments of pθ(h)(Z | Y )
(E step), and then find a new estimate θ(h+1) = argmaxθEθ(h)[ logpθ(Z,Y) | Y ] (M step).
The parameters are given for the BM and OUsun in subsection 2.2.1. We assume here
that the number of shifts K is fixed.

We only provide the main steps of the EM. Additional details can be found in Ap-
pendix 2.C.



2.4. Statistical Inference 93

E step. As X is Gaussian, the law of the hidden variables Z knowing the observed
variables Y is entirely defined by its expectation and variance-covariance matrix, and can
be computed using classical formulas for Gaussian conditioning. The needed moments of
Z | Y can also be computed using a procedure that is linear in the number of tips (called
“Upward-downward”) that takes advantage of the tree structure and bypasses inversion
of the variance-covariance matrix (see Lartillot, 2014, for a similar algorithm).

Complete Likelihood Computation. Using the model described in Section 2.2.2, we
can use the following decomposition of the complete likelihood:

pθ(X) = pθ(X1)
m+n∏
j=2

pθ
(
Xj

∣∣∣ Xpa(j)

)
Each term of this product is then known, and we easily get Eθ(h)[ logpθ(Z,Y) | Y ].

M step. The difficulty comes here from the discrete variables (location of shifts on the
branches). The maximization is exact for the BM but we only raise the objective func-
tion for the OUsun, hence computing a Generalized EM (GEM, see Dempster et al.,
1977). This stems from the independent increment nature of the BM: shifts only af-

fect pθ
(
Xj

∣∣∣ Xpa(j)

)
on the branches where they occur and the maximization reduces to

finding the K highest components of a vector, which has complexity O(n + K log(n)).
By contrast, OUsun has autocorrelated increments: shifts affect pθ

(
Xj

∣∣∣ Xpa(j)

)
on the

branches where they occur and on all subsequent branches. Maximization is therefore
akin to segmentation on a tree, which has complexity O(nK ).

Initialization. Initialization is always a crucial step when using an EM algorithm. Here,
we use the linear formulation (2.4) or (2.6), and initialize the vector of shifts using a Lasso
regression. The selection strength α is initialized using pairs of tips likely to be in the
same group.

2.4.2 Model Selection

Model Selection in the iid Case with Unknown Variance. Model selection in a linear
regression setting has received a lot of attention over the last few years. In Baraud
et al. (2009), the authors developed a non-asymptotic method for model selection in the
case where the errors are independent and identically distributed (iid), with an unknown
variance. In the following, we first recall their main results, and then adapt it to our
setting of non-independent errors.

We assume that we have the following model of independent observations:

Y′ = s′ +γE′ with E′ ∼N (0,In)

and we define a collection S ′ = {S ′η ,η ∈M} of linear subspaces of Rn that we call models,
and that are indexed by a finite or countable set M. For each η ∈ M, we denote by
ŝ′η = ProjS ′η Y

′ the orthogonal projection of Y′ on S ′η , that is a least-square estimator of

s′, and s′η = ProjS ′η s
′ the projection of s′.

We extract from Baraud et al. (2009) the following theorem, that bounds the risk of
the selected estimator, and provides us with a non-asymptotic guarantee. It relies on a
penalty depending on the EDkhi function, as defined below:
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Definition 2.4.1 (Baraud et al., 2009, Section 4, definitions 2 and 3). Let D, N be two
positive integers, and XD , XN be two independent χ2 random variables with degrees of
freedom D and N respectively. For x ≤ 0, define

Dkhi[D,N,x] =
1

E [XD]
E
[(
XD − xXNN

)
+

]
And define EDkhi[D,N,q] as the unique solution of the equation Dkhi[D,N,EDkhi[D,N,q]] =
q (for 0 < q ≤ 1).

Theorem 2.4.1 (Baraud et al. (2009), Section 4, theorem 2 and corollary 1). In the
setting defined above, let Dη be the dimension of S ′η, and assume that Nη = n −Dη ≥ 2
for all η ∈ M. Let L = {Lη}η∈M be some family of positive numbers such that Ω′ =∑
η∈M(Dη +1)e−Lη < +∞, and assume that, for A > 1,

pen(η) = penA,L(η) = A
Nη

Nη − 1
EDkhi[Dη +1,Nη − 1, e−Lη ]

Take η̂ as the minimizer of the criterion: η̂ = argminη∈M
∥∥∥Y′ − ŝ′η∥∥∥2 (1+ pen(η)

Nη

)
.

Then, assuming that Nη ≥ 7 and max(Lη ,Dη) ≤ κn for any η ∈ M, with κ < 1, the
following non-asymptotic bound holds:

E


∥∥∥∥s′ − ŝ′η̂∥∥∥∥2

γ2

 ≤ C(A,κ)
 infη∈M


∥∥∥s′ − s′η∥∥∥2

γ2 +max(Lη ,Dη)

+Ω′


The penalty used here ensures an oracle inequality: in expectation, the risk of the
selected estimator is bounded by the risk of the best possible estimator of the collection
of models, up to a multiplicative constant, and a residual term that depends on the
dimension of the oracle model. Note that if the collection of models is poor, such an
inequality has low value. We refer to Baraud et al. (2009) for a more detailed discussion
of this result.

Adaptation to the Tree-Structured Framework. We use the linear formulation de-
scribed in 2.2.3, and assume that we are in the OUsun model (this procedure would
also work for a BM with a deterministic root). Then, if V is a matrix of size n, with

Vij = e
−αdij ,∀(i, j) ∈ J1 ,nK2, we have:

Y = TW(α)∆+γE = s+γE E ∼N (0,V)

We assume that α is fixed, so that the design matrix TW(α) and the structure matrix
V are known and fixed. A model is defined here by the position of the shifts on the
branches of the tree, i.e. by the non-zero components of ∆ (with the constraint that the

first component, the root, is always included in the model). We denote byM =
⋃p−1
K=0SP IK

the set of allowed (parsimonious) allocations of shifts on branches (see Section 2.3.2), p
being the maximum allowed dimension of a model. From proposition 2.3.6, for η ∈ M,
the columns vectors Tη are linearly independent, and the model Sη = Span(Ti, i ∈ η) is

a linear sub-space of Rn of dimension Dη =
∣∣∣η∣∣∣ = Kη + 1, Kη being the number of shifts



2.4. Statistical Inference 95

in model η. Note that as W(α) is diagonal invertible, it does not affect the definition of
the linear subspaces. The set of models is then S = {Sη , η ∈M}.

We define the Mahalanobis norm associated to V−1 by: ‖R‖V−1 = RTV−1R, ∀R ∈ Rn.
The projection on Sη according to the metric defined by V−1 is then:

ŝη = ProjV
−1

Sη
(Y) = argmin

a∈Sη
‖Y− a‖2V−1 and sη = ProjV

−1
Sη

(s)

For a given number of shifts K , we define the best model with K shifts as the one
maximizing the likelihood, or, equivalently, minimizing the least-square criterion for
models with K shifts:

ŝK = argmin
η∈S ,|η|=K+1

∥∥∥Y− ŝη∥∥∥2V−1
The idea is then to slice the collection of models by the number of shifts K they employ.
Thanks to the EM algorithm above, we are able to select the best model in such a set.
The problem is then to select a reasonable number of shifts. To compensate the increase
in the likelihood due to over-fitting, using the model selection procedure described above,
we select K using the following penalized criterion:

CritLS(K) = ‖Y− ŝK‖2V−1
(
1+

pen(K)
n−K − 1

)
(2.10)

As noted in Baraud et al. (2009), the previous criterion can equivalently be re-written
in term of likelihood, as:

CritLL(K) =
n
2
log

‖Y− ŝK‖2V−1n

+ 1
2
pen′(K) (2.11)

with pen′(K) = n log
(
1+ pen(K)

n−K−1
)
. As we use maximum-likelihood estimators, we chose

this formulation for the implementation. The following proposition then holds:

Proposition 2.4.1 (Form of the Penalty and guaranties (α known)). Let L = {LK }K∈J0,p−1K,

with p ≤min
(

κn
2+log(2)+log(n) ,n− 7

)
, the maximum dimension of a model, with κ < 1, and:

LK = log
∣∣∣SP IK ∣∣∣+2log(K +2),∀K ∈ J0 ,p − 1K (2.12)

Let A > 1 and assume that

penA,L(K) = A
n−K − 1
n−K − 2 EDkhi[K,n−K − 2, e−LK ]

Suppose that K̂ is a minimizer of (2.10) or (2.11) with this penalty. Then:

E


∥∥∥s− ŝK̂∥∥∥2V−1

γ2

 ≤ C(A,κ) infη∈M


∥∥∥s− sη∥∥∥2V−1

γ2 + (Kη +2)(3 + log(n))


with C(A,κ) a constant depending on A and κ only.

The proof of this proposition can be found in Appendix 2.E. It relies on theorem 2.4.1,
adapting it to our tree-structured observations.
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Remark 2.4.1. With this oracle inequality, we can see that we are missing the oracle by a
log(n) term. This term is known to be unavoidable, see Baraud et al. (2009) for further
explanations.

Remark 2.4.2. Note that the chosen penalty may depend on the topology of the tree
through the term

∣∣∣SP IK ∣∣∣ (see Section 2.3.2).

Remark 2.4.3. The penalty involves a constant A > 1, that needs to be chosen by the
user. Following Baraud et al. (2009) who tested a series of values, we fixed this constant
to A = 1.1.

2.5 Simulations Studies

2.5.1 Simulations Scheme

We tested our algorithm on data simulated according to an OUsun, with varying pa-
rameters. The simulation scheme is inspired by the work of Uyeda & Harmon (2014).
We first generated three distinct trees with, respectively, 64,128 and 256 tips, using a
pure birth process with birth rate λ = 0.1. The tree heights were scaled to one, and
their topology and branch lengths were fixed for the rest of the simulations. We then
used a star-like simulation study scheme, fixing a base scenario, and exploring the space
of parameters one direction at the time. The base scenario was taken to be relatively
“easy”, with β1 = 0 (this parameter was fixed for the rest of the simulations), αb = 3 (i.e
t1/2,b = 23%), γ2

b = 0.5 and Kb = 5. The parameters then varied in the following ranges:
the phylogenetic half life t1/2 = ln(2)/α took 11 values in [0.01 ,10]; the root variance

γ2 = σ2

2α took 9 values in [0.05 ,25]; the number of shifts K took 9 values in [0 ,16] (see
Figures 2.5.2-2.5.3 for the exact values taken). The problem was all the more difficult
that γ2, t1/2 or K were large.

For each simulation, the K shifts were generated in the following way. First, their
values were drawn according to a mixture of two Gaussian distributions, N (4,1) and
N (−4,1), in equal proportions. The mixture was chosen to avoid too many shifts of
small amplitude. Then, their positions were chosen to be balanced: we first divided the
tree in K segments of equal heights, and then randomly drew in each segment an edge
where to place a shift. We only kept parsimonious allocations.

Each of these configurations was repeated 200 times, leading to 16200 simulated
data sets. An instance of a tree with the generated data is plotted in Figure 2.5.1.

2.5.2 Inference Procedures

For each generated dataset, we ran our EM procedure with fixed values of K ∈ J0 ,b√ncK,
n being the number of tips of the tree. Remark that for n = 64, b√nc = 8, and we have
no hope of detecting true values of K above 8 (see remark 2.3.1 for an explanation of the
bound in

√
n). The number of shifts Ks was chosen thanks to our penalized criterion,

and we kept inferences corresponding to both Ks and the true number Kt.
We ran two sets of estimations for α either known or estimated. The computations

took respectively 66 and 570 (cumulated) days of CPU time. This amounts to a mean
computational time of around 6 minutes (367 seconds) for one estimation when α is fixed,
and 52 minutes (3137 seconds) when α is estimated, with large differences between easy
and difficult scenarios.



2.5. Simulations Studies 97

-5.48 0.91

0

-1.7

-5.7
-3.3 -2.7

-4.7

-4.75 0

-0.3

-1.7

-4.6
-5.6

Figure 2.5.1 – Left : Simulated configuration (with t1/2 = 0.75, γ2 = 0.5 and K = 5). The
shifts positions and values are marked on the tree. The value of the character generated
(positive or negative) is represented on the right. The colors of the branches correspond
to the true regimes, black being the ancestral state. Right : One of the three equivalent
allocations of shifts for the model inferred from the data, with corresponding vector
of mean tip values. Shifts not recovered are located on pendant edges, and have low
influence on the data. The two other equivalent allocations can be easily deducted from
this one.

2.5.3 Scores Used

The convergence of the EM algorithm was assessed through the comparison of the likeli-
hood of the true and estimated parameters, and the comparison of mean number of EM
steps needed when α is fixed or estimated. The quality of the estimates of β1, t1/2 and
γ2 was assessed using the coefficient of variation. The model selection procedure was
evaluated by comparing the true number of shifts with the estimated one, which should
be lower. We do not expect to find the exact number as some shifts, which are too small
or too close of the tips, cannot be detected. To evaluate the quality of the clustering
of the tips, the only quantity we can observe, we used the Adjusted Rand Index (ARI,
Hubert & Arabie, 1985) between the true clustering of the tips, and the one induced by
the estimated shifts. The ARI is proportional to the number of concordant pairs in two
clusterings and has maximum value of 1 (for identical clusterings) and expected value
of 0 (for random clusterings). Note that this score is conservative as shifts of small in-
tensity, which are left aside by our model selection procedure, produce “artificial” groups
that cannot be reconstructed.

2.5.4 Results

The selection strength is notoriously difficult to estimate, with large ranges of values
giving similar behaviors (see Thomas et al., 2014). We hence first analyse the impact of
estimating α on our estimations, showing that the main behavior of the algorithm stays
the same. Then, we study the shifts reconstruction procedure.

Convergence and Likelihood. For α known, all estimations converged in less than 49
iterations, with a median number of 13 iterations. For α estimated, the number of
iterations increased greatly, with a median of 69, and a fraction of estimations (around
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Figure 2.5.2 – Box plots over the 200 repetitions of each set of parameters, for the
phylogenetic half-life (top) and root variance (bottom) with K estimated, and α fixed
to its true value (blue) or estimated (red), on a tree with 128 taxa. For better legibility,
the y-axis of these two rows were re-scaled, omitting some outliers (respectively, for t1/2
and γ2, 0.82% and 0.46% of points are omitted). The whisker of the first box for t1/2
goes up to 7.5.

3.2%) that reached the maximum allowed number (fixed at 1000 iterations) without
converging. Unsurprisingly, the more difficult the problem, the more iterations were
needed. The log-likelihoods of the estimated parameters are close to the true ones, even
when α is estimated (see supplementary Figure 2.F.3 in Appendix 2.F, first row).

Estimation of Continuous Parameters. Figure 2.5.2 (first row) shows that we tend to
slightly over-estimate α in general. The estimation is particularly bad for large values
of α (with a high variance on the result, see first box of the row), and low values of α.
In this regime, the model is “over-confident”, as it finds a higher selection strength than
the real one and therefore a smaller variance (second row of Figure 2.5.2). For smaller
and bigger trees, the estimators behave in the same way, but with degraded or improved
values, as expected. We also note that taking the true number of shifts instead of the
estimated one slightly degrades our estimation of these parameters (see supplementary
Figure 2.F.3 in Appendix 2.F). The estimation of β1 is not affected by the knowledge
of α or K (see Figure 2.5.3, first row), and only has an increased variance for more
difficult configurations. In the remainder, we only show results obtained for estimated
α as estimating α does not impact ARI, K̂ and β̂0 (see supplementary Figure 2.F.4 in
Appendix 2.F).

Estimation of the Number of Shifts. The way shifts were drawn ensures that they are
not too small in average, and that they are located all along the tree. Still, some shifts
have a very small influence on the data, and are hence hard to detect (see Figure 2.5.1).
The selection model procedure almost always under-estimates the number of shifts, ex-
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Figure 2.5.3 – Same for β1 (top), the number of shifts (middle) and ARI (bottom), with
α estimated, and K fixed to its true value (blue) or estimated (red). As previously, the
y-axis of the first row (β1) was re-scaled, omitting some outliers (1.39% of points are
omitted).

cept in very favorable cases (Figure 2.5.3, second row). This behavior is nonetheless
expected, as allowing more shifts does not guarantee that the right shifts will be found
(see supplementary Figures 2.F.1 and 2.F.2 in Appendix 2.F).

Clustering of the Tips. The ARI tends to be degraded for small values of α or high
variance, but remains positive (Figure 2.5.3, third row). When only one shift occurs, the
ARI is very unstable, but for any other value of K , it stays quite high. Finally, knowing
the number of shifts does not improve the ARI.

Equivalent Solutions. When α and K are both estimated, only 5.1% of the config-
urations have 2 or more equivalent solutions. One inferred configuration with three
equivalent solutions is presented Figure 2.5.1.

Comparison with bayou. As mentioned above, our simulation scheme, although not
completely equivalent to the scheme used in Uyeda & Harmon (2014), is very similar,
so that we can compare our results with theirs. The main differences lies in the facts
that we took a grid on γ2 = σ2/2α instead of σ2, and that we took shifts with higher
intensities, making the detection of shifts easier. We can see that we get the same
qualitative behaviors for our estimators, with the selection strength α over or under
estimated, respectively, in small or large values regions. The main difference lies in
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the estimation of the number of shifts. Maybe because of the priors they used (K ∼
Conditional Poisson(λ = 9,Kmax = n/2)), they tend to estimate similar numbers of shifts
(centered on 9) for any set of parameters. In particular, while our method seems to be
quite good at detecting situations where there are no shifts at all, theirs seems unable to
catch these kind of configurations, despite the fact that their shifts have low intensity,
leading to a possible over-fitting of the data.

Overall, the behavior of the algorithm is quite satisfying. Our model selection pro-
cedure avoids over-fitting, while recovering the correct clustering structure of the data.
It furthermore allows for a reasonable estimation of the continuous parameters, except
for α which is notoriously difficult to estimate.

2.6 Case Study: Chelonian Carapace Length Evolution

0

Unit

200 150 100 50 0

Freshwater
Island
Mainland
Saltwater

Figure 2.6.1 – Phylogenetic tree of the Chelonians. Log-transformed trait values are
represented on the right. Branch colors represent the habitats. The shifts found by our
EM algorithm are shown as circles, with a color indicating the value of the shift, from
blue (negative) to red (positive). Boxes highlight the groups induced by the shifts. The
x-scale is in million years.

2.6.1 Description of the Dataset

Extant species of the order Testudines, or Chelonii, are turtles and tortoises, living all
across the globe, and exhibiting a wide variation in body size, from the small desert
speckled tortoise (Homopus signatus, 10 cm), to the large marine leatherback sea turtle
(Dermochelys coriacea, 244 cm). In order to test the hypothesis of island and marine gi-
gantism, that could explain the extreme variations observed, Jaffe et al. (2011) compiled
a dataset containing a measure of the carapace length for 226 species, along with a phy-
logenetic tree of theses species, spanning 210 million years (my) (see Figure 2.6.1). They
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assigned each species to one of four habitats: mainland-terrestrial, freshwater, marine
and island-terrestrial. Then, testing several fixed regimes allocations on the branches
of the tree using the method described in Butler & King (2004), they found the best
support in favor of a “OU2” model that assigned one regime to each habitat. Following
Uyeda & Harmon (2014), we will refer to this model as the “OUhabitat” model. Note that
this model is ambiguously defined, as it requires to assign a habitat to each ancestral
species. Using proposition 2.3.3, we found that there were 48 equivalent parsimonious
ways of doing so that respect the habitats observed at the tips of the tree. One of these
habitat reconstruction is presented Figure 2.6.1.

2.6.2 Method

We used the version of the dataset embedded in the package geiger (Pennell et al.,
2014), that contains a phylogenetic tree and a vector of log-carapaces lengths. The
corresponding habitats are reported in the Appendix of Jaffe et al. (2011).

We ran our algorithm with a number of shifts going from 0 to 20. Rather than
estimating α directly within the EM as we did for the simulations, we took α varying
on a grid, taking 6 values regularly spaced between 0.01 and 0.1, but fixed for each
estimation. We found that this approach, although computationally more intensive,
gave better results. These 6× 20 = 120 estimations took around 2 hours of CPU time.
For each number of shifts, going again from 0 to 20, we kept the solution with the
maximal likelihood, and we applied the model selection criterion to them. This method
gave a solution with 5 shifts, and a selection strength of 0.06 (i.e. 5.5 % of the total
height of the tree). Using a finer grid for α gives highly similar results, allocating shifts
to the same edges. These last estimations are given below.

2.6.3 Results

Our method selected a solution with 5 shifts, a rather strong selection strength (t1/2 =
5.4% of the tree height), and a rather low root variance (γ2 = 0.22, see table 2.1,
first column). Two of those shifts are closely related to the habitats defined in Jaffe
et al. (2011) (see Figure 2.6.1). The ancestral optimal value, that applies here to two
clades of freshwater turtles, is estimated to be around 38 cm. A small decrease in
size for a large number of mainland and freshwater turtles is found (optimal value 24
cm). Marine turtles (super-family Chelonioidea) are found to have an increased carapace
length (with an optimal value of 130 cm), as well as a clade containing soft-shell tortes
(family Trionychidae, optimal size 110 cm), and a clade containing almost all island
tortoises, including several sub-species of Galápagos tortoises (Geochelone nigra). Only
the Ryukyu black-breasted leaf turtle (Geoemyda japonica), endemic to the Ryukyu
Islands in Japan, and distant on the phylogenetic tree, is not included in this group.
Note that the group also contains some mainland tortoises of the genus Geochelone, that
are closely related to Galápagos tortoises. This is typical of our method: it constructs
groups that are both phenotypically and phylogenetically coherent. Finally, one species is
found to have its own group, the black-knobbed map turtle (Graptemys nigrinoda), with
a very low optimal value of 1.4×10−20 cm, for a measured trait of 15 cm. The fact that
the shift has a very high negative value (−49 in log scale) is just an artifact due to the
actualization factor on a very small branch (0.18 my, for an inferred phylogenetic half-life
of 11 my). This is a rather unexpected choice of shift location. When considering the
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linear model as transformed by the cholesky matrix of the variance to get independent
errors (as in the proof of proposition 2.4.1), we find a leverage of 0.94, indicating that
this species trait behaves in the transformed space as an outsider.

2.6.4 Comparison with other methods

In order to compare our results to previously published ones, we reproduced some of
the analysis already conducted on this dataset. We hence ran the methods described
in Jaffe et al. (2011) (using the R package OUwie, with fixed positions for the shifts),
Uyeda & Harmon (2014) (implemented in package bayou), Ingram & Mahler (2013)
(package SURFACE), and Ho & Ané (2014) (function OUshifts in package phylolm). See
Section 2.F.3 in Appendix 2.F for more details on these methods and the parameters we
used.

The shifts allocated on the tree by methods bayou, SURFACE and OUshifts are pre-
sented on Supplementary Figure 2.F.5 (Appendix 2.F). We can see that 3 among the
most strongly supported shifts in the posterior distribution given by bayou, as well as
some among the oldest shifts found by SURFACE and OUshifts are similar to the ones
found by our method. The bayou method finds equal support for many shifts, all over
the tree, and the median of the posterior distribution is 17 shifts, which is pretty close
to the mode of the prior put on the number of shifts (15). The SURFACE and OUshifts
methods select respectively 33 and 8 shifts, including many on pendant edges, that are
not easily interpretable. The backward step of SURFACE allowed to merge the regimes
found for marine turtles and soft-shell tortoises that our method found to have very
similar optimal values. The results of the five methods are summarized Table 2.1. Note
that these models are not nested, due to the status assigned to the root, and to the
possible convergences.

Compared to step-wise heuristics, our integrated maximum likelihood based approach
allows us to have a more “global” view of the tree, and hence to select a solution that
accounts better for the global structure of the trait distribution. Thanks to its rigorous
model selection procedure, our model seems to report significant shifts only, that are
more easily interpretable than the solutions found by other methods, and that do not
rely on any chosen prior.

Habitat EM bayou SURFACE OUshifts
Number of shifts 16 5 17 33 8

Number of regimes 4 6 18 13 9
lnL -133.86 -97.59 -91.54 30.38 -79.79

Marginal lnL NA NA -149.09 NA NA
α (×h, per my) 9.32 12.76 36.54 1.72 3.25

ln2/α (my) 15.56 11.36 3.97 84.28 44.64
σ2 (×h, per my) 6.21 5.57 11.91 0.72 2.29

γ2 0.33 0.22 0.16 0.21 0.35
CPU time (min) 65.25 134.49 136.81 634.16 8.28

Table 2.1 – Summary of the results obtained with several methods for the Chelonian
Dataset. For bayou, the median of the posterior distributions is given.
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Toward the Multivariate Analysis

In this chapter, we presented a general framework for the analysis of univariate trait
evolution with shifts on a phylogenetic tree. It sets the ground for a multivariate trait
study, that is the object of the next chapter. To scale up to several traits, the main
change we make in the inference framework is the way we deal with the OU process.
Instead of developing heuristics to maximize the OU likelihood, as we did in this chapter
(see Section 2.C.3), we make use of the re-scaling trick presented in the introductory
chapter (see Section 1.4.2.4). This allows us to reduce the OU to a more manageable
BM, for which we have exact and fast algorithms. To validate this new inference method,
we applied it to univariate datasets, so that we could compare its results with the ones
of the previous method. The three mains results (not shown) were: (1) the new method
gives very similar results to the old one, with likelihoods equal up to numerical accuracy,
(2) the new method is substantially faster than the old one (with speed even improved
thanks to the efficient implementation of the “upward-downward” algorithm) and (3) the
new method is much more sensitive to the initialization, as the EM algorithm almost
never moves away from the first shift configuration. This last feature is a bit surprising,
and quite unsatisfactory. Special care was hence taken in the design of the initialization
step, performed thanks to a lasso regression.

http://migale.jouy.inra.fr
http://migale.jouy.inra.fr
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Appendix

2.A Enumeration of Equivalence Classes

Definition 2.A.1 (Coloring concatenation). Let i be a node of tree T with Li daughter
nodes (i1, · · · , iLi ), Li ≥ 2, and assume that the tips are colored according to the applica-
tion d ∈ (CK )n. We denote by Ti the sub-tree rooted at node i, and by ATi (d) the set of
parsimonious shifts allocations on Ti that produce a coloring of the tips compatible with
d. At the root, AT1(d) =AT (d) = φ−1(d).

� For k ∈ CK , Si(k) is the cost of starting from node i with color k, i.e. the minimal
number of shifts needed to get the right coloring of the tips of Ti , when starting
with color k.

� Stoti = mink∈CK Si(k) is the minimal cost of subtree Ti , i.e. the number of shifts of
a parsimonious coloring. Li = argmink∈CK Si(k) is the set of colors root i can take
in a parsimonious coloring of sub-tree Ti .

� For k ∈ CK , BkTi is the set of colorings of Ti that respect the colors at the tips, have

Si(k) shift, and start with color k.

� For K ⊂ CK , BKTi =
⋃
k∈KBkTi . Hence, ATi (d) = B

Li
Ti , and the computation of ATi (d)

only requires the computation of Si(k) and BkTi for any k ∈ CK .

� For (p1, · · · ,pLi ) ∈ (CK )Li , and (B1, · · · ,BLi ) ∈ B
p1
Ti1 × · · · × B

pLi
TiLi

we define, for k ∈ CK ,

the concatenation B =
k⊕Li

l=1
Bl ,B ∈ BkTi , by:

B(i) = kB(j) = Bl(j) if i ∈ Til
. As the

sub-trees Til , l ∈ J1 ,LiK do not overlap, this application is correctly defined on the
nodes of Ti .

Using these definitions, we can state the following recursion formula:

Proposition 2.A.1 (Enumeration Recursion Formula). Let k ∈ CK , and i ∈ J1 ,m+ nK. If
i is a tip of the tree, then

Si(k) =

0 if d(i) = k
+∞ otherwise

BkTi =
{i 7→ k} if d(i) = k
∅ otherwise

If i is a node of tree T with Li daughter nodes (i1, · · · , iLi ), Li ≥ 2, and assuming that

Sil (k) and BkTil are known for any l ∈ J1 ,LiK and k ∈ CK , define, for l ∈ J1 ,LiK:

Klk = argmin
1≤p≤K

{
Sil (p) + I{p , k}

}
As these sets are not empty, let (p1, . . .pLi ) ∈ K1

k × . . .×K
Li
k . Then

Si(k) =
Li∑
l=1

(
Sil (pl) + I{pl , k}

)
and BkTi =


Li

k⊕
l=1

Bl : ∀l ∈ J1 ,LiK,Bl ∈ BK
l
k
Til
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Proof. The actualization of Si(k) is the same as in the Sankoff algorithm (Sankoff, 1975).
The set BkTi is then obtained by enumerating all the possible ways of concatenating

children sets BK
l
k
Til

, each of which is the ensemble of solutions for the sub-tree Til that

realize the minimal number of shifts when starting in state k.

Remarking that Ti(k) =
∣∣∣∣BkTi ∣∣∣∣, proposition 2.3.3 of the main text follows immediately.

2.B A Vandermonde Like Identity

Proposition 2.B.1. Let (n,n′) ∈N and K ∈ N. With the standard convention that
(n
k

)
= 0

if n < k,(
n+n′ −K

K

)
=

K∑
k=0

(
n− k
k

)(
n′ −K + k
K − k

)
+
K−1∑
k=0

(
(n− 1)− k

k

)(
(n′ − 1)− (K − 1) + k

(K − 1)− k
)

which can be rewritten in a more symmetric way as:(
n+n′ −K

K

)
=

∑
k,k′≥0
k+k′=K

(
n− k
k

)(
n′ − k′
k′

)
+

∑
k,k′≥0

k+k′=K−1

(
(n− 1)− k

k

)(
(n′ − 1)− k′

k′

)
(2.13)

Similarly,(
n+n′ +1−K

K

)
=

K∑
k=0

(
n− k
k

)(
n′ −K + k
K − k

)

+
K−1∑
k=0

(
(n− 1)− k

k

)(
n′ − (K − 1) + k
(K − 1)− k

)
+
(
n− k
k

)(
(n′ − 1)− (K − 1) + k

(K − 1)− k
)

which can be rewritten in a more symmetric way as:(
n+n′ +1−K

K

)
=

∑
k,k′≥0
k+k′=K

(
n− k
k

)(
n′ − k′
k′

)

+
∑
k,k′≥0

k+k′=K−1

(
(n− 1)− k

k

)(
n′ − k′
k′

)
+
(
n− k
k

)(
(n′ − 1)− k′

k′

)
(2.14)

Note that Eq (2.13) generalizes in some way the Vandermonde identity which states(
n+n′

K

)
=

K∑
k=0

(
n
k

)(
n′

K − k
)

(2.15)

Although several proofs of the Vandermonde identity are known (geometric, algebraic
and combinatorial), we only provide a geometric proof of this Vandermonde-like identity.

Consider a grid of size (n+ n′)×K . We are interested in grid-valued paths that can
move either by (1,0) or by (2,1). In other words, if the kth position of a path is (xk , yk),
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Figure 2.B.1 – Partition of paths according to whether they reach (A) or cross (B) the
line x = n

then its next position (xk+1, yk+1) is either (xk+1, yk) or (xk+2, yk+1). We are interested
in paths starting at (0,0) and ending at (n+n′,K).

Such a path consists of K moves of type (2,1) and n + n′ − 2K moves of type (1,0)
and is uniquely determined by the positions of the moves of the former type. There are(n+n′−2K+K

K

)
=

(n+n′−K
K

)
distinct positions and therefore as many such paths.

We now sort the paths according to the value i they take when either reaching the
line x = n or reaching the line x = n+1 without reaching the line x = n first. We refer to
the latter paths as crossing the line x = n. Note that this sorting induces a partition of
all paths (see Figure 2.B.1)

A path reaching x = n at position i uniquely gives rise to two paths: one from (0,0)
to (n, i) and one from (n, i) to (n + n′,K) or equivalently from 0 to (n′,K − i). There

are
(n−i
i

)
different paths of the first kind and

(n′−K−i
K−i

)
of the second. There are therefore(n−i

i

)(n′−K+i
K−i

)
paths that pass through (n, i).

A path crossing the line x = n and reaching the line x = n+1 at i must do so with a
last move of type (2,1). It therefore uniquely defines a path from (0,0) to (n − 1, i − 1)
and a path from (n+1, i) to (n+n′,K), or equivalently from (0,0) to (n′ −1,K − i). There

are therefore
(n−i
i−1

)(n′−1−K+i
K−i

)
paths that cross the line x = n and pass through (n+1, i).

Putting everything together, we get:(
n+n′ −K

K

)
=

K∑
i=0

(
n− i
i

)(
n′ −K + i
K − i

)
+

K∑
i=0

(
n− i
i − 1

)(
n′ − 1−K + i

K − i
)

=
K∑
i=0

(
n− i
i

)(
n′ −K + i
K − i

)
+
K−1∑
i=0

(
(n− 1)− i

i

)(
(n′ − 1)− (K − 1) + i

(K − 1)− i
)

which is exactly Eq. (2.13).
To prove Eq. (2.14), we start from a grid of size (n+n′+1)×K and are again interested
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Figure 2.B.2 – Partition of paths according to whether to the move used between x = n
and x = n+1. Cases A, B and C correspond to the items listed in the main text.

in the paths starting from the bottom left corner and ending in the upper right corner
using only (2, 1) and (1, 0) moves. These paths have exactly K moves of type (2, 1)

and there are
(n+n′+1−K

K

)
of them. This time, we partition paths upon the move observed

between x = n and x = (n+1).
The move can be (see also Figure 2.B.2):

� (1, 0), in which case k (resp. k′) moves of type (2,1) are used in the interval [1,n]
(resp. [n+1,n+n′1]) such that k + k′ = K ;

� (2, 1) starting from x = n and therefore ending at x = n+2, in which case k (resp.
k′) moves of type (2,1) are used in the interval [1,n] (resp. [n + 2,n + n′1]) such
that k + k′ = K − 1 (one move (2, 1) has already been consumed);

� (2, 1) ending at x = n+1 and therefore starting from x = n−1 in which case k (resp.
k′) moves of type (2,1) are used in the interval [1,n−1] (resp. [n+1,n+n′1]) such
that k + k′ = K − 1 (one move (2, 1) has already been consumed);

Wrapping everything together and using the same arguments as before, we get
Eq. (2.14).
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2.C Technical Details of the EM

2.C.1 E Step

Given a set of parameters θ(h), we have:

X = (Z,Y) ∼N
m(h) =

 m(h)
Z

m(h)
Y

 , Σ(h) =

 Σ(h)
ZZ Σ(h)

YZ

Σ(h)
ZY Σ(h)

YY


hence:

Z | Y ∼N
(
m(h)

Z|Y =m(h)
Z +Σ(h)

ZY(Σ
(h)
YY)
−1(Y−m(h)

Y ),

ΣZ|Y = Σ(h)
ZZ −Σ

(h)
ZY(Σ

(h)
YY)
−1Σ(h)

YZ

)
Remark 2.C.1. We can see that this approach forces us to invert Σ(h)

YY, a n × n matrix,
which is a costly operation, of order O(n3). It also computes the complete matrix ΣZ|Y
whereas we only need a linear number of its coefficients: conditional variances and co-

variances of the form Cov
[
Zi ; Zpa(i)

∣∣∣ Y]
. Due to the tree structure and to the Gaussian

nature of the processes studied, it is possible to compute all the quantities needed in
a linear time, using a “forward-backward”-like algorithm (here, “upward-downward”, see
Lartillot (2014) for a similar algorithm.). The upward step is similar to the pruning
algorithm described in Felsenstein (2004, chap. 23). See also Ho & Ané (2013a) for an
algorithm linear in the number of iterations.

2.C.2 Complete Likelihood Computation

Using the incomplete data model described in section 2.2.2, we can write:

pθ(X) = pθ(X1)
m+n∏
j=2

pθ
(
Xj

∣∣∣ Xpa(j)

)
Taking the expectation, we get for the BM:

−2E [ logpθ(X) | Y ] = A+ logγ2 +
1
γ2

(
Var [X1 | Y ] + (E [X1 | Y ]−µ)2

)
+ (m+n− 1)logσ2 +

1
σ2

m+n∑
j=2

`−1j Var
[
Xj −Xpa(j)

∣∣∣ Y]
+

1
σ2

m+n∑
j=2

CBMj (∆)

(2.16)

and, for the OUsun:

−2E [ logpθ(X) | Y ] = B+
m+n∑
j=2

logcj(α) +
1
γ2Var [X1 | Y ] + (m+n) logγ2

+
1
γ2

m+n∑
j=2

cj(α)
−1Var

[
Xj −Xpa(j)ej

∣∣∣ Y]
+

1
γ2 (E [X1 | Y ]− β0)2 + 1

γ2

m+n∑
j=2

COUj (α,∆)

(2.17)
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where A and B are constants, and for each node j, j ∈ J2 ,m+nK, we define an actualization

factor cj(α) = 1−ej(α)2, with ej(α) = e
−α`j , and CBMj and COUj are costs associated with

branch bj : 
CBMj (∆) =

1
`j

(
E
[
Xj

∣∣∣ Y]
−E

[
Xpa(j)

∣∣∣ Y]
−∆i

)2
COUj (α,∆) =

1
cj(α)

E [
Xj

∣∣∣ Y]
− ejE

[
Xpa(j)

∣∣∣ Y]
− βj

(
1− ej

)2

2.C.3 M step

Assuming that pθ(h)(Z | Y ) is known, we need to compute θ(h+1) by maximizing Eθ(h)[ logpθ(Z,Y) | Y ].
We have to deal with parameters of different nature, discrete or continuous. For a given
vector ∆(h+1) of K non-zero shifts, we can exhibit closed formulas for µ(h+1), σ (h+1) and
γ (h+1), for the BM:

µ(h+1) = E(h)[Z1 | Y]
γ2(h+1) = Var(h)[Z1 | Y]

σ2(h+1) =
1

m+n− 1

m+n∑
j=2

`−1j Var(h)
[
Xj −Xpa(j) | Y

]
+CBMj

(
∆(h+1)

)
and, for the OUsun:

(m+n)γ2(h+1) = Var(h)[X1 | Y] +
m+n∑
j=2

cj(α)
−1Var(h)

[
Xj −Xpa(j)e

−α`j | Y
]

+
(
E(h) [X1 | Y ]− β(h+1)0

)2
+
m+n∑
j=2

COUj
(
α(h),∆(h+1)

)
There is no such closed formula for α. In the implementation we propose, this parameter
is actualized after all the others, by doing a numerical maximization of the objective
function.

Finally, the vector ∆(h+1) of K non-zero shifts can be chosen in an optimal way for
the BM thanks to a simple algorithm explained below. In the OUsun case, we can
only increase the objective function, and not maximize it. In that case, we hence use a
Generalized EM algorithm (GEM, see Dempster et al., 1977).

Optimal Shift Location for the BM. We want to minimize the sum of costs:

CBM(∆) =
m+n∑
j=2

CBMj (∆)

Each cost is associated to a branch bj , j ∈ J2 ,m + nK, and, when the sum is minimal,

CBMj (∆) can only take two values:C̃BMj = `−1j
(
E(h)

[
Xj

∣∣∣ Y]
−E(h)

[
Xpa(j)

∣∣∣ Y])2
if no shift on branch bj

0 if one shift on branch bj

The sum can hence be minimized in the following way:
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1. Compute C̃BMj for all j ∈ J2 ,m+nK.

2. Find the K highest costs (j1, · · · , jK ) ∈ J2 ,m+nKK .

3. Set ∆
(h+1)
jk

= E(h)
[
Xjk

∣∣∣ Y]
− E(h)

[
Xpa(jk)

∣∣∣ Y]
for all k ∈ J1 ,KK, and ∆

(h+1)
j = 0 if

j < {j1, · · · , jK }.

This exact and fast algorithm works for the BM because all the costs are independent.
Note that it would work for any Levy Process without memory, such as those proposed
in Landis et al. (2013) to model evolution of quantitative traits.

GM Step for Shifts Locations for the OU. With α(h) fixed, we want to minimize the
sum of costs:

COU (α(h),∆) =
(
E(h) [X1 | Y ]− β0

)2
+
m+n∑
j=2

COUj (α(h),∆)

The previous algorithm does not work, because the costs are not independent. Solving
the problem exactly would require to visit all the possible configurations, and the com-

plexity would be too high, of order O
((m+n

K

))
=O(nK ). To reduce the execution time of

the algorithm, we use heuristics to lower, if not minimize, the sum of costs. We use the
following formulation:

COU (α(h),∆) =
∥∥∥F(h) −A(h)U∆

∥∥∥2
where U the complete tree matrix given in subsection 2.2.3, A(h) a diagonal matrix

depending on α(h) A(h) = Diag
(
1,

√
1−e−α(h)`j
1+e−α

(h)`j
;2 ≤ j ≤m+n

)
, and F(h) a vector of expec-

tations, with F
(h)
1 = E(h) [X1 | Y ], and, for 2 ≤ j ≤m+n,

F
(h)
j =

(
1− e−2α(h)`j

)−1/2 (
E(h)

[
Xj

∣∣∣ Y]
−E(h)

[
Xpa(j)

∣∣∣ Y]
e−α

(h)`j
)

We can then use a Lasso algorithm to impose sparsity constraints on ∆. If ∆−1 is the
vector of shifts without the initial value (intercept), then a Lasso estimator is given by,
for λ ≥ 0:

∆̂λ = argmin
∆

{∥∥∥F(h) −A(h)U∆
∥∥∥2 +λ |∆−1|1}

The estimated vectors ∆̂λ have a support that is sparser when λ becomes higher. One
then only need to find the right penalty factor λ that ensure that the support has exactly
K non zero coordinates, plus the initial value. We ensure that the K shifts are allocated
in a parsimonious way by checking their linear independence, using proposition 2.3.6.

An other method is to take the previous solution ∆(h), and test all the configurations
where only one shift has moved, and take the best one. In both methods, one also has
to ensure that the objective function is increased by the new choice of shifts, so that the
GEM algorithm works correctly. This step is generally the longest one in one iteration
of the EM.
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2.C.4 Initialization

Initialization is always a crucial step when using an EM algorithm. The vector of shifts
∆ is initialized thanks to a Lasso procedure. To do that, we use the linear formulation
(2.4) or (2.6) of the main text, and we calibrate the penalty so that the initialization
vector has a non zero first coordinate (initial value), and K other non-zero coordinates.
The variance-covariance matrix is initialized with defaults parameters, and is taken into
account thanks to a Cholesky decomposition.

We also initialize the selection strength α. We use the following property: if Yi and

Yj are two tips in the same group, then, under an OUsun, E
[
(Yi −Yj)2

]
= 2γ2(1−e−αdij ).

Using regression techniques, we can get an initial estimation of α and γ2 from all these
couples. In practice, we first initialize the position of the shifts, and then use only pairs
of tips from the same estimated group. Then, as the groups are only approximated, some
of the selected pairs (Yi ,Yj) might not share the same expectation, and we use a robust
regression to get more accurate initial estimates.

2.D Optimal Shift Location with Fixed Root

The algorithm for optimal shift location we described above (see Section 2.C.3) actually
only works for a BM with a random root. When the inference is done conditionally to
the root value, then an extra step is needed. Indeed, the objective function is then:

−2E [ logpθ(X) | Y,X1 ] = A+ (m+n− 1)logσ2 +
1
σ2

m+n∑
j=2

CBMj (τ,δ)

+
1
σ2

m+n∑
j=2

`−1j Var
[
Xj −Xpa(j)

∣∣∣ Y,X1

]
,

with

CBMj (∆) =
1
`j

(
E
[
Xj

∣∣∣ Y,X1

]
−E

[
Xpa(j)

∣∣∣ Y,X1

]
−∆j

)2
And, for the optimal shift location, we want to minimize the sum of costs:

CBM(∆) =
m+n∑
j=2

CBMj (∆).

Each cost is associated to a branch bj , j ∈ J2 ,m+ nK. Denote by mj = E
[
Xj

∣∣∣ Y,X1

]
for

any j ≥ 2. As previously, when the sum is minimal, for a node j that is not a direct
descendant of the root, a cost can only take two values:C̃BMj (∆) = `−1j

(
mj −mpa(j)

)2
if no shift on branch bj

0 if one shift on branch bj

The problem arise for branches that are descendants of the root, that we denote by
(r1, . . . , rl). Indeed, their costs are, for 1 ≤ a ≤ l:

CBMra (∆) =
1
`ra

(
mra −µ−∆ra

)2
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and the unknown parameter µ appears in several costs, so that the joint maximization
in µ and ∆ is not straightforward.

First, let’s assume that the root has only two descendants. Then, we can solve the
problem by formally “un-rooting” the tree, replacing the two root branches by a single
branch, with a new ad-hoc cost. Indeed, if there are no shifts on these two root branches,
we get:

µ̂ =
`−1r1 mr1 + `

−1
r2 mr2

`−1r1 + `−1r2
and C̃BMr1,2 = C̃BMr1 + C̃BMr2 = (`r1 + `r2)

−1(mr2 −mr1)2.

Then, we can use the previously described algorithm to spot the shifts, treating this
fictive branch with its new cost as all the others. If a shift has to be placed on it, then
it will cancel the cost of the fictive branch. Its position is not identifiable, and we can
choose to put it on branch r1 (then µ̂ = mr2 and δ̂ = mr1 −mr2), or on r2 (then µ̂ = mr1
and δ̂ =mr2 −mr3) indistinctly.

Now, let’s assume that the root has three or more descendants. The trick used above
cannot be adapted, and we need to resort to a heuristic to minimize the sum of costs.
Instead of optimizing it jointly in ∆ and µ, we do a two-steps minimization:

1. Fix µ to its previous value µ(h−1), and optimize the sum in the position and values
∆(h) of the shifts.

2. Fix ∆(h), and optimize the costs in µ, taking:

µ(h) =

∑
1≤a≤l `−1ra (m

(h)
ra −∆(h)

ra )∑
1≤a≤l `−1ra

.

Because this optimization happens inside the EM loop, it is sufficient to just increase
the objective function (so that we get a Generalized EM).

2.E Proof of Proposition 2.4.1 for Model Selection

We prove the proposition using the linear formulation s+γE, with E ∼N (0,V), as derived

in the main text for the OUsun (with s = TW(α)∆, γ2 = σ2/(2α), and Vij = e
−αdij , see

Formula (2.5)). Note that this framework also holds for the BM with a fixed root (with
s = T∆, γ = σ , and Vij = tij , see Formula (2.4)).

We first handle the case where there are no correlations (V diagonal), and then use a
Cholesky decomposition to handle the general case. Note that the case V diagonal can
be seen as the limit of the OUsun when α = +∞, or as a BM on a star tree.

Case V diagonal
In the iid case, we just need to check the conditions of theorem 2.4.1. This paragraph

is highly inspired by the derivation of the bound for the detection of non-zero mean
components exposed in Baraud et al. (2009) (sub-section 5.2). Assume that Dη = Kη+1 ≤
p ≤ n− 7 for all η ∈M. The estimator is defined by ŝK̂ , with:

K̂ = argmin
0≤K≤p−1

‖Y− ŝK‖2V−1
(
1+

penA,L(K)
n−K − 1

)
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From the definition of ŝK , and as the penalty depends on the model only through its
number of shifts, we get that ŝK̂ = ŝη̂ the minimizer of the criterion of theorem 2.4.1
(with Nη = n−Dη = n−Kη − 1). We then have:

Ω′ =
∑
η∈M

(Dη +1)e−Lη =
p−1∑
K=0

∣∣∣SP IK ∣∣∣ (K +2)e−LK

With the weights LK defined in Equation (2.12) of the proposition, we get:

Ω′ =
p−1∑
K=0

1
K +2

≤ log(p) ≤ log(n)

As:

LK ≤ log
(
n+m− 1

K

)
+2log(K +2) ≤ K log(n+m− 1) + 2log(K +2)

≤ K log(2n− 2) + 2(K +1)
≤ (K +1)(2 + log(2) + log(n))
≤ p(2 + log(2) + log(n))

if p ≤ min
(

κn
2+log(2)+log(n) ,n− 7

)
, then max(Lη ,Dη) ≤ κn for any η ∈ M, and we get the

announced bound from the second proposition of theorem 2.4.1.
Case V not diagonal
Using a Cholesky decomposition, we can find a lower triangular matrix L such that

V = LLT . Then, denoting Y′ = L−1Y, s′ = L−1s, and E′ = L−1E, we have Y′ = s′ + γE′,
with E′ ∼N (0,In), and we can apply theorem 2.4.1 as above. As we changed the metric,
the estimators are projections on the linear spaces S ′η = L−1Sη for η ∈M, and we have:

ŝ′η = ProjS ′η Y
′ = argmin

a′∈S ′η

∥∥∥Y′ − a′∥∥∥2 = argmin
a′∈S ′η

∥∥∥L−1Y−L−1La′∥∥∥2
= argmin

a′∈S ′η

∥∥∥Y−La′∥∥∥2
V−1 = L−1 argmin

a∈Sη
‖Y− a‖2V−1 = L−1ŝη

So
∥∥∥s− ŝη̂∥∥∥2V−1 = ∥∥∥∥s′ − ŝ′η̂∥∥∥∥2 and

∥∥∥Y− ŝη∥∥∥2V−1 = ∥∥∥Y′ − ŝ′η∥∥∥2, and, as the form of the penalty

does not depend on V , by minimizing:

CritLS(K) =
∥∥∥Y′ − ŝ′K∥∥∥2 (1+ penA,L(K)

n−K − 1
)
= ‖Y− ŝK‖2V−1

(
1+

penA,L(K)
n−K − 1

)

we get the announced bound on E
[
‖s−ŝK̂‖2V−1

γ2

]
= E


∥∥∥∥s′−ŝ′K̂∥∥∥∥2
γ2

.
2.F Supplementary Figures

2.F.1 Simulation Study: Sensitivity and False Positive Rate

Definition of the Scores. We denote by T P the number of True Positives, i.e. the
predicted edges on which a shift actually occurred, and FP the number of False Posi-
tives. The sensitivity T P

Kt
is the proportion of well predicted shifts among all shifts to be
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predicted, and the False Positive Rate (FPR) FP
n+m−Kt is the proportion of false positive

among all edges with no shifts.
Note that here, due to the possible lack of identifiability, the position of the shifts

on the tree is not well defined, as a shift can be on a particular edge for one of the
equivalent solutions, but not on the others (see Section 2.3.1). These two scores are
hence ill defined for our problem. To avoid such problems, we restrict ourselves to the
92% of unambiguous configurations that occurred during the simulations.

Interpretation of Results. Figure 2.F.1 shows that the FPR are systematically worse
when using the true number of shifts, indicating that the additional shifts found when
compared to the selected number are misplaced. The FPR remains very low, as only a
small number of shifts is to be found. Unsurprisingly, the Sensitivity is on the contrary
improved when taking the real number of shifts, as shown Figure 2.F.2. In addition, the
sensitivity is highly degraded when α is small or γ2 is high, but does not exhibit a clear
tendency in the real number of shifts, and the knowledge of the true value of α does not
seem to matter.

2.F.2 Simulation Study: Complementary Analysis

To complete the analysis conducted in the main text, Figure 2.F.3 presents the variations
of the log-likelihood, phylogenetic half-life, and root variance when α is estimated, and
the number of shifts is known or estimated. We can see here that the likelihood is slightly
higher when the number of shifts is fixed, which is coherent with the behavior of our
model selection procedure, that tends to under-estimate the true number of shifts (see
Figure 2.5.3 of the main text). We also note that knowing the true number of shifts has
not a great influence on the estimation of α and γ , making the later worse, if anything.

Figure 2.F.4 shows the variations of the estimations of β1, the number of shifts and
the ARI when the number of shifts is estimated, and α is fixed or estimated. This
confirms our earlier statement, that not knowing α with precision does not have a great
impact on the model selection procedure (see also Cressler et al., 2015).

2.F.3 Chelonia Dataset: Comparison of Inferred Shift Locations

On Figure 2.F.5, we present and compare the shift locations found by our method, and
methods bayou and SURFACE. The differences found are explored deeper in the main
text (Section 2.6.4).

Details on the Methods. In this paragraph, we give more details on the 4 already ex-
isting methods that we compared to ours in the dataset. We first fitted an OUhabitat
model with fixed regimes as in Jaffe et al. (2011), using the R package OUwie (Beaulieu
et al., 2012). We tested all of the 48 possible ways of allocating internal nodes, and
took the solution with the highest likelihood. Using the package bayou (Uyeda & Har-
mon, 2014), we reproduced the Bayesian analysis of the data, using two independent
chains of 500000 generations each, discarding the first 150000 generations as burn-
ing. We assigned the priors that were used in the original study on the parameters,
namely: P (α) ∼ LogNormal(lnµ = −5, lnσ = 2.5), P (σ2) ∼ LogNormal(lnµ = 0, lnσ = 2),
P (βi) ∼ Normal(µ = 3.5,σ = 1.5), P (K) ∼ Conditional Poisson(λ = 15,Kmax = 113). The
computations took around 2.3 hours of CPU time. We also ran the stepwise-AIC method



2.F. Supplementary Figures 115

ln(2) α γ2 K

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

ntaxa
=

64
ntaxa

=
128

ntaxa
=

256

0.
01

0.
05 0.

1

0.
2

0.
23 0.

3

0.
5

0.
75 1 2 10

0.
05 0.

1

0.
5 1 2 3 5 10 25 0 1 2 3 4 5 8 11 16

Fa
ls

e 
Po

si
tiv

e 
R

at
e K

Known

Estimated

α

Known

Estimated

Figure 2.F.1 – False Positive Rate computed for the different configurations. Note the y
scale, that only goes to 0.05.
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Figure 2.F.2 – Sensitivity computed for the different configurations, with box-plots over
the repetitions.
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Figure 2.F.3 – Box plots over the 200 repetitions of each set of parameters, for the
log-likelihood (top), phylogenetic half-life (middle) and root variance (bottom) with α
estimated, and K fixed or estimated, on a tree with 128 taxa.
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Figure 2.F.4 – Same for β1 (top), the number of shifts (middle) and ARI (bottom), with
K estimated, and α fixed or estimated.

For better legibility, strips with t1/2, γ2 and β1 on these two figures were re-scaled,
omitting some outliers (respectively, 0.21%, 0.27% and 0.27% of points are omitted).
The whisker of the first box for t1/2 goes up to 7.5.
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SURFACE, that relies on a forward-backward procedure. This took around 11 hours of
CPU time. Finally, we ran the function OUshifts from the package phylolm, that uses a
modified BIC criterion and a heuristic stepwise procedure to detect shifts (Ho & Ané,
2014). Thanks to an efficient linear algorithm, detailed in Ho & Ané (2013a), this func-
tion is pretty fast, taking only about 8 minutes of CPU time. Note that the model used
in these last three methods (bayou, SURFACE and OUshifts) are slightly different from
ours, as they assume that the root is fixed to the ancestral optimum state, and not drawn
from its stationary distribution.

Note on Computation Times. We found that the running time for our method was sim-
ilar to the running time of previous algorithms (see Table 2.1 in the main text). However,
our computations can be highly parallelized, as each run for a fixed number of shift is
independent from the others. For instance, in the previous example, the computation
time could be divided by 6, each estimation for a fixed α running on a different core. On
the contrary, the SURFACE method cannot be parallelized at all, and only independent
chains can be parallelized for Bayesian methods, so that the computation time can only
be divided by 2 in our example.

2.G Practical Implementation

The statistical method described here was implemented on the statistical software R (R
Core Team, 2017), and the code is freely available on GitHub (https://github.com/
pbastide/Phylogenetic-EM). Phylogenetic trees were handled thanks to the package
ape (Paradis et al., 2004). Packages TreeSim (Stadler, 2011), robustbase (Rousseeuw
et al., 2014) and quadrupen (Grandvalet et al., 2012) were used, respectively, for ran-
dom tree generation, robust regression and Lasso regression. The penalty described in
proposition 2.4.1 is implemented in package LINselect (Baraud et al., 2013).

Parallelization was achieved thanks to R packages foreach (Weston, 2014b) and doPar-
allel (Weston, 2014a).

Package mclust (Fraley et al., 2012) was used for ARI computations. Plots were made
thanks to packages ggplot2 (Wickham, 2009) and reshape2 (Wickham, 2007).

https://github.com/pbastide/Phylogenetic-EM
https://github.com/pbastide/Phylogenetic-EM
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Freshwater
Island
Mainland
Saltwater

EM bayou

SURFACE OUshifts

Figure 2.F.5 – Solutions found by the EM (top left), bayou (top right), SURFACE (bottom
left) and OUshifts (bottom right). The branch coloring represents the habitats. For the
EM, bayou and OUshifts, the shifts coloring represents their values, from blue (negative)
to red (positive). For bayou, the size of the circles are proportional to their posterior
probability. For SURFACE, the 13 colors of the shifts represent the regimes.
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Foreword

This chapter has been submitted under the title Inference of Adaptive Shifts for Mul-
tivariate Correlated Traits to a Biology oriented journal. It is available as a preprint
(Bastide et al., 2017a).

Abstract. To study the evolution of several quantitative traits, the classical phylo-
genetic comparative framework consists of a multivariate random process running along
the branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes
preferred to the simple Brownian Motion (BM) as it models stabilizing selection toward
an optimum. The optimum for each trait is likely to be changing over the long periods
of time spanned by large modern phylogenies. Our goal is to automatically detect the
position of these shifts on a phylogenetic tree, while accounting for correlations between
traits, which might exist because of structural or evolutionary constraints. We show
that, in the presence shifts, phylogenetic Principal Component Analysis (pPCA) fails to
decorrelate traits efficiently, so that any method aiming at finding shift needs to deal
with correlation simultaneously. We introduce here a simplification of the full multi-
variate OU model, named scalar OU (scOU), which allows for noncausal correlations
and is still computationally tractable. We extend the equivalence between the OU and
a BM on a re-scaled tree to our multivariate framework. We describe an Expectation
Maximization algorithm that allows for a maximum likelihood estimation of the shift
positions, associated with a new model selection criterion, accounting for the identifi-
ability issues for the shift localization on the tree. The method, freely available as an
R-package (PhylogeneticEM) is fast, and can deal with missing values. We demonstrate
its efficiency and accuracy compared to another state-of-the-art method (`1ou) on a wide
range of simulated scenarios, and use this new framework to re-analyze recently gathered
datasets on New World Monkeys and Anolis lizards.
(Keywords: Ornstein-Uhlenbeck, Change-point detection, Adaptive evolution, Phylogeny,
Model selection, PhylogeneticEM)

3.1 Introduction

3.1.1 Motivation

A major goal of comparative and evolutionary biology is to decipher the past evolutionary
mechanisms that shaped the present day diversity. Taking advantage of the increasing
amount of molecular data made available by powerful sequencing techniques, sophisti-
cated mathematical models have made it possible to infer reliable phylogenetic trees for
ever growing groups of taxa (see e.g. Meredith et al., 2011; Jetz et al., 2012). Models
of phenotypic evolution for such large families need to cope with the heterogeneity of
observed traits across the species tree. One source of heterogeneity is the mechanism of
“evolution by jumps” as hypothesized by Simpson (1944). It states that there exists an
adaptive landscape shaping the evolution of functional traits, and that this landscape
might shift, sometimes in a dramatic fashion, in response to environmental changes such
as migration, or colonization of a new ecological niche. Such shifts, like the one observed
in the brain shape and size of New World Monkeys in association with dietary and lo-
comotion changes (Aristide et al., 2015, 2016), need to be explicitly accounted for in
models of phenotypic evolution.
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To detect such adaptive shifts, we must cope with two constraints: species do not
evolve independently (Felsenstein, 1985) and adaptive evolution is an intrinsically mul-
tivariate phenomenon. The first constraint arises from the shared evolutionary history
of species, usually represented as a phylogenetic tree. It means that traits observed on
closely related taxa are on average more similar than traits observed on distantly related
species. The second constraint results from natural selection acting on many traits at
once. Functional traits are indeed often interdependent, either because they are regu-
lated by the same portions of the genetic architecture or because they are functionally
constrained (e.g. limb bones lengths in Greater Antillean Anolis lizards Mahler et al.
(2010)).

This work aims to develop a likelihood-based method to detect rapid adaptive events,
referred to as shifts, using a time calibrated phylogenetic tree and potentially incomplete
observations of a multivariate functional trait at the tips of that tree. The shifts can be
used to cluster together species sharing a common adaptive history.

3.1.2 State of the Art

Phylogenetic comparative methods (PCM) are the de facto tools for studying pheno-
typic evolution. Most of them can be summarized as stochastic processes on a tree.
Specifically, given a rooted phylogeny, the traits evolve according to a stochastic pro-
cess on each branch of the tree. At each speciation event, one independent copy with
the same initial conditions is created for each daughter species. A common stochas-
tic process in this setting is the Brownian Motion (BM, Felsenstein, 1985). It is well
suited to model the random drift of a quantitative, neutral and polygenic trait (see e.g.
Felsenstein, 2004, chap. 24). Unfortunately, the BM has no stationary distribution and
cannot adequately model adaptation to a specific optimum (Hansen & Orzack, 2005).
The Ornstein-Uhlenbeck (OU) process is therefore preferred to the BM in the context
of adaptive evolution (Hansen, 1997; Hansen et al., 2008). Note that, as pointed out by
Hansen et al. (2008) and Cooper et al. (2016), this model is distinct from the process
theoretically derived by Lande (1976) for stabilizing selection toward an optimum on an
adaptive landscape at a micro-evolutionary timescale, and is better seen as a heuristic
for the macro-evolution of the “secondary optima” themselves in a Simpsonian interpre-
tation of evolution (Hansen et al., 2008). Recently, Levy processes have also been used
to capture Simpsonian evolution (Landis et al., 2013; Duchen et al., 2017).

Extensions to multivariate traits have been proposed for both BM (Felsenstein, 1985)
and OU processes (Bartoszek et al., 2012). Cybis et al. (2015) considered even more
complex models, with a mix of both quantitative and discrete characters modeled with an
underlying multivariate BM and a threshold model (Felsenstein, 2005, 2012) for drawing
discrete characters from the underlying continuous BM.

The work on adaptive shifts also enjoyed a growing interest in the last decade. In
their seminal work, Butler & King (2004) considered a univariate trait with known shift
locations on the tree and estimated shift amplitudes in the trait optimal value using a
maximum-likelihood framework. Beaulieu et al. (2012) extended the work by estimating
shift amplitudes not only in the optimal value but also in the evolutionary rate. The focus
then moved to estimating the number and locations of shifts. Eastman et al. (2011, 2013)
detected shifts, respectively, in the evolutionary rate or the trait expectations, for traits
evolving as BM, in a Bayesian setting using reversible jump Markov Chain Monte Carlo
(rjMCMC). Ingram & Mahler (2013); Uyeda & Harmon (2014); Bastide et al. (2017b)
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detected shifts in the optimal value of a trait evolving as an OU. Uyeda & Harmon (2014)
and Bastide et al. (2017b) detect all shifts for a given number of shifts and use either
rjMCMC or penalized likelihood to select the number of shifts. By contrast, Ingram &
Mahler (2013) uses a stepwise procedure, based on AIC, to detect shifts sequentially,
stopping when adding a shift does not improve the criteria anymore.

Extensions from univariate to multivariate shifts are more recent. It should be noted
that all methods assume that shifts affect all traits simultaneously. Given known shift
locations and a multivariate OU process, Bartoszek et al. (2012) was the first to develop
a likelihood-based method (package mvSLOUCH) to estimate both matrices of multivari-
ate evolutionary rates and selection strengths. Clavel et al. (2015) soon followed with
mvmorph, a comprehensive package covering a wide range of multivariate processes. De-
tection of shifts in multivariate traits is more involved and both Ingram & Mahler (2013)
and Khabbazian et al. (2016) make the simplifying assumption that all traits are inde-
pendent, conditional on their shared shifts. Ingram & Mahler (2013) then proceed with
the same stepwise procedure as in the univariate case whereas Khabbazian et al. (2016)
uses a lasso-regression to detect the shifts and a phylogenetic BIC (pBIC) criterion to
select the number of shifts.

3.1.3 Scope of the Article

In this work, we present a new likelihood-based method to detect evolutionary shifts in
multivariate OU models. We make the simplifying assumptions that all traits have the
same selection strength but, unlike in Khabbazian et al. (2016) and Ingram & Mahler
(2013), traits can be correlated. Our contribution is multifaceted. We show that the
scalar assumption that we make (see Section 3.2) and the independence assumption
share a similar feature in their structure that make the shift detection problem tractable.
Building upon a formal analysis made in the univariate case (Bastide et al., 2017b), we
show that the problem suffers from identifiability issues as two or more distinct shift
configurations may be indistinguishable. We propose a latent variable model combined
with an OU to BM reparametrization trick to estimate the unknown number of shifts and
their locations. Our method is fast and can handle missing data. It also proved accurate
in a large scale simulation study and was able to find back known shift locations in re-
analysis of public datasets. Finally, we show that the standard practice of decorrelating
traits using phylogenetic principal component analysis (pPCA) before using a method
designed for independent traits can be misleading in the presence of shifts.

The article is organized as followed. We present the model and inference procedure
in Section 3.2, the theoretical bias of pPCA in the presence of shifts in Section 3.3, the
simulation study in Section 3.4, the re-analysis of the New World Monkeys and Greater
Antillean Anolis lizards datasets in Section 3.5 and discuss the results and limitations
of our method in Section 3.6.

3.2 Model

3.2.1 Trait Evolution on a Tree

Tree. We consider a fixed and time-calibrated phylogenetic tree linking the present-
day species studied. The tree is assumed ultrametric with height h, but with possible
polytomies. We denote by n the number of tips and by m the number of internal nodes,
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such that N = n+m is the total number of nodes. For a fully bifurcating tree, m = n−1,
and N = 2n− 1.

Traits. We note Y the matrix of size n × p of measured traits at the tips of the tree.
For each tip i, the row-vector Yi represents the p measured traits at tip i. Some of the
data might be missing, as discussed later (see Section 3.2.5).

Brownian Motion (BM). The multivariate BM has p+p(p+1)/2 parameters: p for the
ancestral mean value vector µ, and p(p + 1)/2 for the drift rate (in the genetic sense)
matrix R. The variance of a given trait grows linearly in time, and the covariance between
two traits k and l at nodes i and j is given by tijRkl , where tij is the time elapsed between
the root and the most recent common ancestor (MRCA) of i and j (see e.g. Felsenstein,
2004, chap. 24). Using the vectorized version of matrix Y (where vec(Y) is the vector
obtained by “stacking” all the columns of Y), we get: Var [vec(Y)] = R⊗C, where ⊗ is
the Kronecker product, and C = [tij]1≤i,j≤n.

Ornstein-Uhlenbeck (OU). The Ornstein-Uhlenbeck process has p2 extra parameters
in the form of a selection strength matrix A. The traits evolve according to the stochas-
tic differential equation dXt = A(β −Xt)dt +RdWt, where Wt stands for the standard
p-variate Brownian motion. The first part represents the attraction to a “primary op-
timum” β, with a dynamic controlled by A. This matrix is not necessarily symmetric
in general, but it must have positive eigenvalues for the traits to indeed be attracted
to their optima. This assumption also ensures the existence of a stationary state, with
mean β and variance Γ (see Bartoszek et al., 2012; Clavel et al., 2015, for further details
and general expression of Γ).

Shifts. We assume that some environmental changes affected the traits evolution in the
past. In the BM model, we take those changes into account by allowing the process
to be discontinuous, with shifts occurring in its mean value vector (as e.g. Eastman
et al., 2013). This is reasonable if the adaptive response to a change in the environment
is fast enough compared to the evolutionary time scale. For the OU, we assume that
environmental changes result in a shift in the primary optimum β (as e.g. Butler & King,
2004). The process is hence continuous, and goes to a new optimum, with a dynamic
controlled by A. In both cases, we make the standard assumptions that all traits shift at
the same time (but with different magnitudes), that each shift occurs at the beginning
of its branch, and that all other parameters (A,R) of the process remain unchanged. We
further assume that each jump induces a specific optimum, which implies that there is
no homoplasy for the optimum, that is, no convergent evolution.

3.2.2 Simplifying Assumptions

Trait Independence Assumption. The general OU as described above is computation-
ally hard to fit (Clavel et al., 2015), even when the shifts are fixed a priori. For automatic
detection to be tractable in practice, several assumptions can be made. The two methods
that (to our knowledge) tackle this problem in the multivariate setting assume that all
the traits are independent, i.e. that matrices A and R are diagonal (Ingram & Mahler,
2013; Khabbazian et al., 2016). This is often justified by assuming that a priori prepro-
cessing with phylogenetic Principal Component Analysis (pPCA, Revell, 2009) leads to
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independent traits. However, pPCA assumes a no-shift BM evolution of the traits, and
it can introduce a bias in the downstream analysis conducted on the scores, as shown
by Uyeda et al. (2015). The choice of the number of PC axes to keep is also crucial,
and can qualitatively change the results obtained, leading to the detection of artificial
shifts near the root when not enough PC axes are kept for the analysis, as observed by
Khabbazian et al. (2016). Finally, we show theoretically (Section 3.3) and numerically
(Section 3.4, last paragraph) that pPCA fails to decorrelate the data in the presence of
shifts and may even hamper shift detection accuracy.

Scalar OU (scOU). We offer here an alternative to the independence assumption. Com-
putations are greatly simplified when matrices A and R commute. This happens when
both of these matrices are diagonal for example, or when R is unconstrained and A is
scalar, i.e. of the form A = αIp, where Ip is the identity matrix. We call a process satisfy-
ing the latter assumptions a scalar OU (scOU), as it behaves essentially as a univariate
OU. In particular, its stationary variance is simply given by Γ = R/(2α) (analogous to
the formula γ2 = σ2/(2α) in the univariate case, see e.g. Hansen, 1997).

We define the scOU model as follows: at the root ρ, the traits are either drawn from
the stationary normal distribution with mean µ and variance Γ (Xρ ∼N (µ,Γ)), or fixed
and equal to µ. The initial optimum vector is β0 and the conditional distribution of trait
Xi at node i given trait Xpa(i) at its parent node pa(i) is

Xi
∣∣∣ Xpa(i) ∼N

(
e−α`iXpa(i) + (1− e−α`i )βi , 12α (1− e

−α`i )R
)

(3.1)

where βi = βpa(i) +∆i is the optimal value of the process on the branch with length `i
going from pa(i) to i and ∆ is the N ×p matrix of shifts on the branches of the tree: for
any node i and any trait l, ∆il is 0 if there are no shift on the branch going from pa(i) to
i, and the value of the shift on trait l otherwise. At the root, we define βρ = β0 and, for

each trait l: ∆ρl = e−αhµl + (1− e−αh)β0l , where h is the age of the root (or tree height).

The scOU model can also be expressed under a linear form. Let U be the N ×N
matrix where Uij is 1 if node j is an ancestor of node i and 0 otherwise. Let T be the
n ×N matrix made of the n rows of U corresponding to tip taxa. For a given α, we
further define the diagonal N matrix W(α) with diagonal term Wii(α) = 1− e−αapa(i) for
any non-root node i, where apa(i) is the age of node pa(i), and Wρρ(α) = 1 for the root
node ρ. Then the joint distribution of the observed traits Y is normal

vec(Y) ∼N (vec(TW(α)∆),R⊗F(α)) (3.2)

where F(α) is the symmetric scaled correlation matrix between the n tips, with entries

Fij =
1
2α e
−αdij if the root is drawn from the stationary distribution, and Fij =

1
2α e
−2αdij (1−

e−2αtij ) if the root is fixed, where dij is the tree distance between nodes i and j. In the
next section, this will allow us to rewrite scOU as a BM on a tree with rescaled branch
lengths. This observation is at the core of our statistical inference strategy.

The scOU process allows us to handle the correlations that might exist between
traits, and spares us from doing a preliminary pPCA. This however comes at the cost of
assuming that all the traits evolve at the same rate toward their respective optima, with
the same selection strength α. See the 3.6 for further analysis of these assumptions.
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3.2.3 Identifiability Issues

Root State. It can be easily checked that the parameters µ and β0 at the root are
not jointly identifiable from observations at the tips of an ultrametric tree, only the
combination λ = e−αhµ + (1 − e−αh)β0 is. See Ho & Ané (2014) for a derivation in the
univariate case. Note that λ corresponds to the first row of the shift matrix ∆. As we
cannot decide from the data, we assume by default β0 = µ = λ.

Shift Position. The location of the shifts may not always be uniquely determined, as
several sets of locations (and magnitudes) may yield the same joint marginal distribution
of the traits at the tips. These identifiability issues have been carefully studied in Bastide
et al. (2017b) for the univariate case. Because we assume that all traits shift at the same
time, the sets of equivalent shift locations are the same in the multivariate case as in the
univariate case; only the number of parameters involved is different. So, the problem
of counting the total number of parsimonious, non-equivalent shift allocations remains
the same, as well as the problem of listing the allocations that are equivalent to a given
one. As a consequence, all the combinatorial results and algorithms used in Bastide
et al. (2017b) are still valid here; only the model selection criterion needs be adapted
(see Section 3.2.5).

3.2.4 Re-scaling of the Tree

Equivalency scOU / rBM. As recalled above, the inference of OU models raises specific
issues, mostly because some maximum likelihood estimates do not have a closed form
expression. Many of these issues can be circumvented using the equivalence between the
univariate BM and OU models described in Blomberg et al. (2003); Ho & Ané (2013a);
Pennell et al. (2015), for ultrametric trees, when α is known. Thanks to the scalar
assumption, this equivalence extends to the multivariate case. Indeed, the marginal
distribution of the traits at the observed tips Y given in (3.2) is the same as the one
arising from a BM model on a re-scaled tree defined by:

Xρ ∼N
(
β0, `ρ(α)R

)
or Xρ = β0 (fixed)

Xi
∣∣∣ Xpa(i) ∼N

(
Xpa(i) +∆i(α), `i(α)R

)
, for non-root node i.

where `ρ(α) =
1
2α e
−2αh, `i(α) = 1

2α e
−2αh (e2αti − e2αtpa(i)), and ∆i(α) = (W(α)∆)i = (1 −

e−α(h−tpa(i)))∆i . Note that, when the root is taken random, everything happens as if we
added a fictive branch above the root with length `ρ(α). The length of this branch
increases when α goes to zero.

We emphasize that only the distribution of the observed traits Y is preserved and not
the distribution of the complete dataset X. As a consequence, ancestral traits at internal
nodes cannot be directly inferred using this representation. Still, the equivalence recasts
inference of R and W(α)∆ in the scOU model into inference of the same parameters in a
much simpler BM model, albeit on a tree with rescaled branch lengths `i(α). Note that
the rescaling depends on α, which needs to be inferred separately. See the discussion
(Section 3.6.1) for further analysis of this re-scaling.
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3.2.5 Statistical Inference

Incomplete Data Model. We now discuss how to infer the set of parameters θ = (∆,R).
We adopt a maximum likelihood strategy, which consists in maximizing the log-likelihood
of the observed tip data logpθ(Y) with respect to θ to get the estimate θ̂. The maximum

likelihood estimate θ̂ is difficult to derive directly as the computation of logpθ(Y) requires
to integrate over the unobserved values of the traits at the internal nodes. We denote by
Z the unobserved matrix of sizem×p of these ancestral traits at internal nodes of the tree:
for each internal node j, Zj is the row-vector of the p ancestral traits at node j. Following
Bastide et al. (2017b), we use the expectation-maximization (EM) algorithm (Dempster
et al., 1977) that relies on an incomplete data representation of the model and takes
advantage of the decomposition of logpθ(Y) as E [ logpθ(Y,Z) | Y ]−E [ logpθ(Z | Y) | Y ].

EM. The M step of the EM algorithm consists in maximizing E [logpθ (Y,Z) | Y ] with
respect to θ. For a given value of α, thanks to the rescaling described in Section 3.2.4,
the formulas to update ∆ and R are explicit (see Appendix 3.C). The optimization of α
is achieved over a grid of values, at each point of which a complete EM algorithm is run.
At the M step, we need the mean and variance of the unobserved traits Zj at each internal
node j conditional on the observed traits Y at the tips. The E step is dedicated to the
computation of these values, which can be achieved via an upward-downward recursion
(Felsenstein, 2004). The upward path goes from the leaves to the root, computing the
conditional means and variances at each internal node given the values of its offspring in
a recursive way. The downward recursion then goes from the root to the leaves, updating
the values at each internal node to condition on the full taxon set. Thanks to the joint
normality of the tip and internal node data, all update formulas have closed form matrix
expressions, even when there are some missing values (see Appendix 3.C).

Initialization. The EM algorithm is known to be very sensitive to the initialization.
Following Bastide et al. (2017b), we take advantage of the linear formulation (3.2) to
initialize the shifts position using a lasso penalization (Tibshirani, 1996). This initial-
ization method is similar to the procedure used in `1ou (Khabbazian et al., 2016). See
Appendix 3.C for more details.

Missing Data. EM was originally designed to handle missing data. As a consequence,
the algorithm described above also applies when some traits are unobserved for some
taxa. Indeed, the conditional distribution of the missing traits given the observed ones
can be derived in the same way as in the E step. However, missing data break down the
factorized structure of the dataset and some computational tricks are needed to handle
the missing data efficiently (see Appendix 3.C).

Model Selection. For each value of the number of shifts K , the EM algorithm described
above provides us with the maximum likelihood estimate θ̂K . K needs to be estimated
to complete the inference procedure. We do so using a penalized likelihood approach.
The model selection criterion relies on a reformulation of the model in terms of multi-
variate linear regression, where we remove the phylogenetic correlation, like independent
contrasts and PGLS do. We can re-write (3.2), for a given α, as

Ỹ = T̃∆+E where Ỹ = F(α)−1/2Y, T̃ = F(α)−1/2TW(α),
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where E is a n × p matrix with independent and identically distributed rows, each row
being a (transposed) centered Gaussian vector with variance R. In the univariate case
(Bastide et al., 2017b), this representation allowed us to cast the problem in the setting
considered by Baraud et al. (2009), and hence to derive a penalty on the log-likelihood,
or, equivalently, on the least squares. Taking advantage of the well known fact that the
maximum likelihood estimators of the coefficients are also the least square ones, and
do not depend on the variance matrix R (see, e.g. Mardia et al., 1979, Section 6), we
propose to estimate K using the penalized least squares:

K̂ = argmin
K

(
1+

pen(K)
n−K

) p∑
j=1

‖Ỹj − ̂̃YKj ‖2
where Ỹj is the column of Ỹ for the j-th trait, and ̂̃YKj the predicted means for trait j
from the best model with K shifts. Using the EM results, this can be written as:

K̂ = argmin
K

(
1+

pen(K)
n−K

)
tr

[
R̂(K,α̂)

]
where R̂(K,α̂) is the ML estimate of the variance parameter obtained by the EM for a
fixed number K of shifts. The penalty is the same as in the univariate case:

pen(K) = A
n−K − 1
n−K − 2 EDkhi

[
K,n−K − 2, (K +1)2/ |SPI

K |
]

where EDkhi is the function from Definition 3 from Baraud et al. (2009) and |SPI
K | is the

number of parsimonious identifiable sets of locations for K shifts, as defined in Bastide
et al. (2017b). It hence might depends on the topology of the tree, for a tree with
polytomies. For a fully resolved tree, |SPI

K | =
(2n−2−K

K

)
. A is a normalizing constant, that

must be greater than 1. In Baraud et al. (2009), the authors showed that it had little
influence in the univariate case, and advised for a value around A = 1.1. We took this
value as a default.

The criterion is directly inspired from the univariate case and inherits its theoretical
properties in the special case R = σ2Ip. In general however, the criterion should be seen
as a heuristic, although with good empirical properties (see Section 3.4).

3.2.6 Implementation

We implemented the method presented above in the PhylogeneticEM R package (R Core
Team, 2017), available on the Comprehensive R Archive Network (CRAN). A thorough
documentation of its functions, along with a brief tutorial, is available from the GitHub
repository of the project (pbastide.github.io/PhylogeneticEM). Thanks to a com-
prehensive suite of unitary tests, that cover approximately 79% of the code (codecov.
io/gh/pbastide/PhylogeneticEM), and that are run automatically on an independent
Ubuntu server using the continuous integration tool Travis CI (travis-ci.org), the pack-
age was made as robust as possible. The computationally intensive parts of the analysis,
such that the upward-downward algorithm of the M step, have been coded in C++ to
improve performance (see Section 3.4 for a study of the computation times needed to
solve problems of typical size). Because the inference on each α value on the grid used
is independent, they can be easily be done in parallel, and a built in option allows the
user to choose the number of cores to be allocated to the computations.

pbastide.github.io/PhylogeneticEM
codecov.io/gh/pbastide/PhylogeneticEM
codecov.io/gh/pbastide/PhylogeneticEM
travis-ci.org
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3.3 pPCA and Shifts

Shift detection in multivariate settings is usually done by first decorrelating traits with
pPCA before feeding phylogenetic PCs to detection procedures that assume independent
traits. We show hereafter that even in the simple BM setting, phylogenetic PC may still
be correlated in the presence of shifts. The problem is only exacerbated in the OU
setting.

3.3.1 pPCA is biased in the presence of shifts

Assume that the traits evolve as a shifted BM process on the tree, so that vec(Y) ∼
N (vec(a),R⊗C), with a being the n×p matrix of trait means at the tips. Decomposing
R as R = VD2VT , pPCA relies on the fact that the columns of the matrix YV are
independent. Therefore, its efficiency relies on an accurate estimation of R.

The estimate of R used in pPCA is R̂ = (n− 1)−1(Y − 1nȲT )TC−1(Y − 1nȲT ), where
ȲT = (1TnC

−11n)−11TnC−1Y, which is known as the estimated phylogenetic mean vector
(Revell, 2009). Decomposing the estimate of R as R̂ = V̂D̂2V̂T , pPCA then computes
the scores as S = (Y− 1nȲT )V̂.

In the absence of shift, all species have the same mean vector µ so a = 1nµT and

E
[
Ȳ
]
= µ. In the presence of shifts, species do not all share the same mean vector so the

uniform centering is not valid anymore. As a consequence, the estimate of R is biased
(see appendix 3.A):

E
[
R̂
]
= R+B where B =

1
n− 1G

TC−1G, G = a− 1nāT (3.3)

The extra term B is analogous to the between-group variance in the context of linear
discriminant analysis and cancels out in the absence of shifts (note that R is analo-
gous to the within-group variance, see Mardia et al., 1979). Because R̂ is biased, the
columns of the score matrix S resulting from pPCA are still correlated. We illustrate
this phenomenon below using toy examples.

3.3.2 Illustration: a simple example

To illustrate the impact of shifts on the decorrelation performed by (p)PCA, we used the
simple tree presented in Figure 3.3.1a and considered three scenarios. In all scenarios,
we simulated two highly correlated traits under a BM starting from (0,0) at the root

and with covariance matrix R =
(

1 −0.9
−0.9 1

)
. The tree has two clearly marked clades,

designed to highlight the differences between pPCA and PCA. R is identical in all scenar-
ios; any preprocessing aiming at decorrelating the traits should retrieve the eigenvectors
of R as PCs. In the first scenario, there are no trait shifts on the tree, corresponding
to the pPCA assumptions, and pPCA is indeed quite efficient in finding the PCs (see
Fig. 3.3.1b, left panel). In the second scenario, we added a shift on a long branch. This
shift induces a species structure in the trait space that misleads standard PCA. The
same structure can however be achieved by a large increment of the BM on that branch
and large increments are likely on long branches. pPCA therefore copes with the shift
quite well and is able to recover accurate PCs. More quantitatively, the bias induced by

the shift on R̂ is quite small, B =
(
0.16 0.08
0.08 0.04

)
, around one tenth of the values of R. In
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the third scenario, we put a shift on a small branch. The structure induced by the shift
“breaks down” the upper clade and is unlikely to arise from the increment of a BM on
that branch. It is therefore antagonistic to pPCA and results in a large bias for R̂: the

extra term B is equal to

(
1.58 0.79
0.79 0.4

)
and comparable to R. In that scenario, both PCA

and pPCA find axes that are far away from the eigenvectors of R (Figure 3.3.1b, right
panel). The first eigenvector of R captures the evolutionary drift correlation between
traits, whereas the PCs of both PCA and pPCA capture a mix of evolutionary drift
correlation and correlation resulting from shifts along the tree.
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Figure 3.3.1 – Bivariate traits simulated as a BM under three scenarios: no shift (left),
shift on a long branch (middle) and shift on a short branch (right). Species affected by the
shift are in dark red. Top: Phylogenetic tree, shift position and simulated trait values.
Bottom: Scatterplot of species in the trait space and corresponding first eigenvector
computed from the true covariance R (red) or found by PCA (green) and pPCA (blue).

3.4 Simulations Studies

3.4.1 Experimental Design

General Setting. We studied the performance or our method using a “star-like” exper-
imental design, as opposed to a full-factorial design. We first considered a base scenario,
corresponding to a base parameter set, and then varied each parameter in turn to assess
its impact as in Khabbazian et al. (2016). The base scenario was chosen to be only
moderately difficult, so that our method would find shifts most but not all of the time.

For the base scenario, we generated one 160-taxon tree according to a pure birth
process, using the R package TreeSim (Stadler, 2011), with unit height and birth rate
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λ = 0.1. We then generated 4 traits on the phylogeny according to the scOU model,
with a rather low selection strength αb = 1 (t1/2 = 69% of the tree height), and with
a root taken with a stationary variance of γ2

b = σ2
b /(2αb) = 1. Diagonal entries of the

rate matrix R are σ2
b and off-diagonal entries were set to σ2

b rd with a base correlation
of rd = 0.4 (correlated traits) when testing the effect of shift number and amplitude, or
rd = 0 (independent traits) otherwise.

Finally, we added three shifts on this phylogeny, with fixed positions (see Figure 3.4.1).
Shift amplitudes were calibrated so that the means at the tips differ by about 1 stan-
dard deviation, which constitute a reasonable shift signal (Khabbazian et al., 2016).
Each configuration was replicated 100 times. We then used both our PhylogeneticEM
and `1ou package (Khabbazian et al., 2016) to study the simulated data. We excluded
SURFACE (Ingram & Mahler, 2013) from the comparison at is (i) quite slow, (ii) assumes
the same evolutionary model as `1ou and (iii) was found to achieve worse accuracy than
`1ou (Khabbazian et al., 2016). We used default setting for both methods. For Phylo-
geneticEM this implies an inference on an automatically chosen grid with 10 α values,
on a log scale, and a maximum number of shifts of

√
n+5 (See Bastide et al. 2017b and

Appendix 3.C for a justification of these default parameters).

Number and Amplitude of Shifts. We explored the effect of shifts by varying both their
number and amplitude. We considered successively 0,3,7,11,15 shifts on the topology,
with positions and values fixed as in Figure 3.4.1. Shifts values were chosen to form
well separated tip groups; adjacent (in the tree) group means differ by about 1 standard
deviation γb. To mimic adaptive events having different consequences on different traits,
all shifts on a trait were then randomly multiplied by −1 or +1. Finally and to assess
the effect of shift amplitude, we rescaled all shifts by a common factor taking values
in [0.5 ,3]. Low scaling values correspond to smaller, harder to detect, shifts and high
values to larger and easier to detect shifts.

Selection Strength. When exploring parameters not related to the shifts, we considered
a base number of 3 shifts and a base scaling factor of 1.25, empirically found to corre-
spond to a moderately difficult scenario. We also assumed independent traits with the
same variance and selection strength (i.e. scalar A and R, see model A in appendix 3.D.1).
We first varied α from 1 to 3 (i.e. t1/2 varied between 35% and 23% of the tree height).
The variance σ2 varied with α to ensure that the stationary variance γ2

b remained fixed

at γ2
b = 1.

Model Mis-specification. The two current frameworks (`1ou and scOU) for multivariate
shift detection assume independents traits (diagonal A and R) or correlated traits with
equal selection strengths (scalar A and arbitrary R). To assess robustness to model mis-
specification, we simulated data under four classes of models, referred to as A, B, C,
D. Model A is correctly specified for both scOU and `1ou whereas B, C, D correspond
respectively to mis-specifications for `1ou, scOU and both. We used the Kullback-
Leibler divergence between models A and B (resp. C, D) to choose parameters that
attain comparable “levels” of mis-specification (see appendix 3.D.1 for details).

� Model A assumes scalar A and R (independent traits, same selection strength and
variance) and meets the assumptions of both scOU and `1ou.
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Figure 3.4.1 – Shifts locations and magnitudes used in the base scenario. Mean trait
values are identical for the 4 traits, up to a multiplicative ±1 factor and shown at the
tips. Colors correspond to the different regimes. The bar plots on the right represent
the expected traits values under the base model.

� Model B assumes scalar A and arbitrary R (correlated traits, same selection strength)
and corresponds to the scOU model. The level of correlation is controlled by set-
ting all off-diagonal terms to σ2

b rd in R. Following Khabbazian et al. (2016), rd
varies from 0.2 to 0.8, leading to Kullback divergences of up to 288.36 units.

� Model C assumes diagonal, but not scalar, A, and diagonal R (independent traits,
different selection strengths), which matches the assumptions of `1ou only. We
considered A = αDiag(s−1.5, s−0.5, s0.5, s1.5) with s varying from 2 to 8. We accord-
ingly set R = 2γ2

bA to ensure that all traits have stationary variance γ2
b = 1. This

led to Kullback divergences of up to 286.78 units.

� Model D assumes non-diagonal A and diagonal R (uncorrelated drift, but correlated
traits selection) and violates both models. Following Khabbazian et al. (2016),
all off-diagonal elements of A were set to αbrs, varying from 0.2 to 0.8. In this
case, the stationary variance is not diagonal but has diagonal entries equal to
σ2

2
1+(p−2)rs

(1−rs)(1+(p−1)rs) . We thus rescaled σ2 appropriately to ensure that each trait has

marginal stationary variance γ2
b = 1 as previously. This led to Kullback divergences

of up to 112.98 units.

We expected `1ou to outperform scOU in model C and vice versa in model B. To be
fair to both methods, we selected parameter ranges leading to similar Kullback diver-
gences, to achieve similar levels of mis-specifications. However, both deviations produce
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datasets with groups that are also theoretically easier to discriminate compared to model
A (see Figure 3.4.2). Indeed, we can quantify the difficulty of a dataset in terms of group
separation by the Mahalanobis distance between the observed data and their expected
mean, (phylogenetically) estimated in the absence of shifts:

D =
∥∥∥Yvec − (1TΣd1)

−11TΣdYvec

∥∥∥2
Σd
−1 − (np −NNA) (3.4)

where Yvec is the vector of observed data at the tips (omitting missing values), Σd is the
true variance of Yvec and NNA is the number of missing values. In the absence of shifts
E [D] = 0 and E [D] increases when groups are well separated.
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Figure 3.4.2 – Impact of trait correlation rd (left) and unequal selection strengths s
(right) on group separation, as defined in Eq. (3.4). Unequal selection strengths (s > 1)
and trait correlations (rd > 0) both increase group separation and make it easier to detect
shifts.

Number of Observations. We varied the number of observations by (i) varying the
number of taxa and (ii) adding missing values. To change the number of taxa, we
generated 6 extra trees with the same parameters as before but with 32 to 256 taxa.
The three shifts were fixed as in Figure 3.4.3. To test the ability of our method to handle
missing data, we removed observations at random in our base scenario, taking care to
keep at least one observed trait per species, so as not to change the number of taxa. The
fraction of missing data varied from 5% to 50%.

3.4.2 Results

Number and Amplitude of Shifts. We assessed shifts detection accuracy with the Ad-
justed Rand Index (ARI, Hubert & Arabie, 1985) between the true clustering of the tips,
and the clustering induced by the inferred shifts (Fig. 3.4.4, top). Before adjustment,
the Rand index is proportional to the number of pairs of species correctly classified in
the same group or correctly classified in different groups. The ARI has maximum value
of 1 (for a perfectly inferred clustering) and has expected value of 0, conditional on
the inferred number and size of clusters. We use this measure rather than the classical
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Figure 3.4.3 – Shifts locations and magnitudes used for the test trees with, respectively,
32, 64, 96, 128, 192, 256 taxa.

precision/sensitivity graphs as only the clustering can be recovered unambiguously (see
Section 3.2.3). Note also that when there is no shift (K = 0), there is only one true
cluster, and the ARI is either 1 if no shift is found, or 0 otherwise (see appendix 3.D.2).

Figure 3.4.4 (top panel) shows that, unsurprisingly, both methods detect the number
and positions of shifts more accurately when the shifts have higher amplitudes. Phylo-
geneticEM is also consistently better than `1ou when there is a base correlation (here,
rb = 0.4, see section 3.4.1), which is expected as the independence assumption of `1ou is
then violated. The case K = 0 (no shift) shows that `1ou systematically finds shifts when
there are none, leading to an ARI of 0. More generally, `1ou is prone to over-estimating
the number of shifts, even when they have a high magnitude (Fig. 3.4.4, bottom) whereas
PhylogeneticEM is more conservative and underestimates the number of shifts when they
are difficult to detect.

Selection Strength and Model Mis-specifications. Our method is relatively robust to
model mis-specification (Fig. 3.4.5, top). The first panel confirms that, under model
A, high values of α reduce the stationary variance and lead to higher ARI values and
lower RMSEs for continuous parameters (Fig. 3.4.5, bottom, leftmost panel). Similarly,
scOU (resp. `1ou) achieves high ARI values under well specified models A and B (resp.
A and C). The mis-specification of model C (different selection strengths) does not
affect scOU much: it has higher ARI dispersion than `1ou but their median ARI are
comparable. By contrast, `1ou is severely affected by correlated evolution (model C)
and higher levels of correlations lead to significantly lower accuracy, even though group
separation is increased (Fig. 3.4.2, right). Finally, both methods are negatively affected
by correlated selection strengths (Model D), although `1ou seems more robust to this
type of mis-specification.

Although shift detection is relatively unaffected by model mis-specification, parame-
ter estimations suffers from it (Fig. 3.4.5, bottom, center and right panels). Both `1ou
and scOU behave better for model A than for model D and as expected, scOU is not af-
fected by trait correlation (model B) whereas `1ou is. Unequal selection strengths (model
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Figure 3.4.4 – ARI (top) and number of shifts selected (bottom) for the solutions found by
PhylogeneticEM (red) and `1ou (blue). Each box corresponds to one of the configuration
shown in Figure 3.4.1, with a scaling factor varying between 0.5 and 3, and a true number
of shift between 0 and 15 (solid lines, bottom). For the ARI, the two lines represent the
maximum (1) and expected (0, for a random solution) ARI values.

C) degrades parameter estimation for both PhylogeneticEM and, surprisingly, `1ou, that
should in principle remain unaffected. Overall, features of trait evolution not properly
accounted for by the inference methods (e.g. correlated selection strengths) are turned
into overestimated variances. Note that the quality of the estimation of Γ is depends
strongly on the estimation of α, and could be improved by taking a finer grid for this
parameter.

Number of Observations and Computation Time. For a given number of shifts, shift
detection becomes easier as the number of taxa increases (Fig. 3.4.6, left). Further-
more, our method is robust against missing data with detection accuracy only slightly
decreased when up to 50% of the observations are missing (Fig. 3.4.6, right). Finally, our
implementation of the EM algorithm, using only two tree traversals (see appendix 3.C.2)
and coded in C++, is reasonably fast. Inference takes roughly 15 minutes on a single
core on the base 160 taxa tree and less than 45 minutes on the largest simulated trees
(256 taxa). `1ou scales less efficiently: it is faster for very small trees (32 taxa) but me-
dian running times go up to 20 hours for the large 256-taxon tree. Those long running
times were unexpected and higher than the ones reported in Khabbazian et al. (2016).
This discrepancy is partly due to the maximum number of shifts allowed, which strongly
impacts the running time of `1ou. Khabbazian et al. (2016) capped it at twice the true
number of shifts (6 shifts in our base scenario), while we used the default setting, which
is half the number of tips (i.e. from 16 to 128 shifts).
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Figure 3.4.5 – ARI (top) and root mean squared error (RMSE) of the diagonal values of
the estimated stationary variance Γ (bottom) for the solutions found by PhylogeneticEM
(red) and `1ou (blue). Each panel corresponds to a different type of mis-specification
(except Model A) and the parameters rd , s and rs control the level of mis-specification,
with leftmost values corresponding to no mis-specification. For the ARI, the solid lines
represent the maximum (1) and expected (0, for a random solution with the same number
and size of clusters) ARI values.
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Figure 3.4.6 – ARI of the solutions found by PhylogeneticEM (red) and `1ou (blue) when
the number of taxa (left) or the number of missing values (right) increases. No ARI is
available for `1ou when there are missing values as it does not accept them in the version
used here, v1.21.

Impact of pPCA on Shift Detection Accuracy. To illustrate how pPCA can both im-
prove and hamper shift detection, we compared PhylogeneticEM on raw traits to `1ou on
both raw traits and phylogenetic PCs. Figure 3.4.8a shows that in our base scenario, with
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Figure 3.4.7 – Inference running times (in log-scale) of scOU and `1ou. All tests were run
on a high-performance computing facility with CPU speeds ranging from 2.2 to 2.8Ghz.

three moderate shifts, pPCA preprocessing slightly decreases performance for low levels
of correlations (rd ≤ 0.2) but drastically improves them for moderate to high correla-
tions levels (rd ≥ 0.6). Although pre-processing is neutral at moderate correlation levels
(rd = 0.4) with three “easy” shifts, it becomes harmful and degrades the performances of
`1ou when the number or magnitude of the shifts increases (Fig. 3.4.8b). As expected,
PhylogeneticEM is unaffected by the pPCA preprocessing, up to numerical issues.
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Figure 3.4.8 – ARI of the solutions found by PhylogeneticEM (red) and `1ou (blue),
without (solid lines) or with (dotted lines) pPCA preprocessing. (a) Trait correlation
(rd) increases from 0 to 0.8. (b) Each box corresponds to one of the configuration shown
in Figure 3.4.1, and shifts are increasingly large with a scaling factor varying between
0.5 and 3.

3.5 Examples

We used PhylogeneticEM to re-analyse two publicly available datasets.
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3.5.1 New World Monkeys

We first considered the evolution of brain shape in New World Monkeys studied by
Aristide et al. (2016). The dataset consists of 49 species on a time-calibrated maximum-
likelihood tree. The traits under study are the first two principal components (PC1, PC2)
resulting from a PCA on 399 landmarks describing brain shape. We ran PhylogeneticEM
on a grid of 30 values for the α parameter. To make this parameter easily interpretable,
we report the phylogenetic half-life t1/2 = ln(2)/α (Hansen, 1997), expressed in percentage
of total tree height. Here, t1/2 took values between 0.46 % and 277.26 %. We allowed
for a maximum of 20 shifts. The inference took 17.56 minutes, parallelized on 5 cores.

The model selection criterion suggests an optimal value of K̂ = 4 shifts (Fig. 3.5.1,
inset graph). The criterion does not show a very sharp minimum, however, and a value of
K̂ = 5 shifts also seems to be a good candidate. In order to compare our results with that
presented in Aristide et al. (2016), we present the solution with 5 shifts (see Fig. 3.5.1,
left). The solution with 4 shifts is very similar, except that the group with Aotus species
is absent (in red, see Fig. 3.5.1, and supplementary Fig. 3.B.2 in Appendix 3.B). Note
that, because of this added group, the solution with K̂ = 5 has 3 equivalent parsimonious
allocations of the shifts (see supplementary Fig. 3.B.3 in Appendix 3.B). The groups
found by PhylogeneticEM (Fig. 3.5.1) are in close agreement with the ecological niches
defined in Aristide et al. (2016). There are three main differences. First, there is no jump
associated with the Pithecia species who, although having their own ecological niche,
seem to have quite similar brain shapes as closely related species. Second, Callicebus
and Aotus are marked as convergent in Aristide et al. (2016) (in red, right), but form
two distinct groups in our model (in pink and red, left). This is due to our assumption
of no homoplasy. Finally, the group with Chiropotes, Ateles and Cebus species (in black)
was found as having the “ancestral” trait optimum, while it is marked as “convergent”
in Aristide et al. (2016). This is because we did not include any information from the
fossil record (not available for brain shape), but instead used a parsimonious solution.
Note that the coloring displayed in Aristide et al. (2016) is not parsimonious. The two
models have the same number of distinct groups.

The selected α value was found to be reasonably high, with t1/2 = 12.58%. The
estimated correlation between the two PCs was −0.13, confirming that PCA does not
result in independent traits.

3.5.2 Lizards

We then considered the dataset from Mahler et al. (2013), which consists in 100 lizard
species on a time-calibrated maximum likelihood tree and 11 morphological traits. We
chose this example because of the large number of traits and the high correlation between
traits, as all traits are highly correlated (0.82 < ρ < 0.97) with snout-to-vent length (SVL).

To deal with the correlation between traits, Mahler et al. (2010, 2013) first performed
a phylogenetic regression of all the traits against SVL, retrieved the residuals and then
applied a phylogenetic PCA on SVL and the previous residuals, from which they used
the first four components (pPC1 to pPC4) for their shift analysis. We first explored how
the number of pPCs used can impact the shift detection. Hence we ran PhylogeneticEM
11 times, including 1 to 11 pPCs in the input dataset. Each run was done on a grid
of 100 values of α, with t1/2 = ln(2)/α ∈ [0.99,693.15] % of tree height, and allowing
for a maximum of 20 shifts. It appears that the result is quite sensitive to the number
of pPCs included: the selected number of shifts varies from 20, the maximum allowed,
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Figure 3.5.1 – Solution given by PhylogeneticEM for K = 5 (left) against groups defined
in Aristide et al. (2016, Fig. 3) (right), based on ecological criteria including locomotion
(arboreal quadrupedal walk, clamber and suspensory locomotion or clawed locomotion),
diet (leaves, fruits, seeds or insects) and group size (smaller or larger than 15 individuals).
The inset graph shows the model selection criterion. The minimum is for K = 4, but
K = 5 is also a good candidate.

to 5 (Fig. 3.5.2). When 4 pPCs were used, as in the original study, the estimated
covariance matrix R contains many high correlations, showing that the pPCs are not
phylogenetically independent (Fig. 3.5.2).

To avoid the difficult choice of the number of pPCs, we considered the direct analysis
of the raw traits without any pre-processing, and found no shift when running Phylo-
geneticEM. Although the likelihood was found to increase with K , the model selection
criterion profile was found erratic, suggesting numerical instability. A natural suspect
for such instability is the extreme correlation between some traits (0.996 for tibia and
metatarsal lengths), which results in bad conditioning of several matrices that must be
inverted. To circumvent this problem, we used the two pseudo-orthogonalization strate-
gies described above, running PhylogeneticEM on the SVL plus residuals dataset, and on
the 11 pPCs, with the same parameters as above. Note that all these transformations
use a rotation matrix, so that the likelihood and the least squares of the original or of
any of the two transformed datasets are the same. Hence, the objective function, as well
as the model selection criterion, should remain unchanged. Still, slight differences were
found between the maximized likelihood for each pseudo-orthogonalized datasets. For
each value of K , we therefore retained the solution with the highest likelihood.

Using the model selection criterion given in Section 3.2.5, we found K̂ = 5 shifts,
which are displayed in Figure 3.5.3, along with the ecomorphs as described in Mahler
et al. (2013).

Three of those shifts seem to single out grass-bush Anolis, that appear to have a
rather small body size, with longer than expected lower limbs and tail, and shorter



3.5. Examples 139

1 2 3 4 5 6 7 8 9 10 11

0
5

10
15

20

Number of pPCs used

Se
le

ct
ed

 N
um

be
r o

f S
hi

fts
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Figure 3.5.2 – Lizard dataset: selected number of shifts K̂ given the number of pPCs
included in the analysis (left) and estimated correlation matrix between the first four
pPCs (right).

upper limbs. The two others might be associated with twig Anolis, that have smaller
than expected limbs and tails. Because of our no-homoplasy assumption, one of those
shifts encompasses some species living in other ecomorphs (namely, trunk, trunk-crown
and un-classified). The shift, designed to be coherent with the phylogeny, is located on
the stem lineage of the smallest clade encompassing the bulk of twig lizards.

3.5.3 Comments

On both examples (p)PCA does not correct a priori for the correlation between the
traits in the presence of shifts. In Section 3.3 we formally proved that it cannot correct
for it, actually. As a consequence, any shift detection methods has to account for the
correlation between traits.
Still, high correlations between traits may raise strong numerical issues, so PCA can
be used as a pseudo-orthogonalization of traits, as well as any other linear distance-
preserving transformation that would reduce the correlation between them. This does
not dispense of considering the correlation between the transformed traits in the model.

The other interest of PCA is to reduce the dimension of the data, which may be
desirable when dealing with a large number of traits, such as the original dataset from
Aristide et al. (2016). Since PCA does not correct for the right correlation, we have
no clue whether or not the dimension reduction performed by PCA is relevant for shift
detection, or if it may remove precisely the direction along which the shifts occur. The
relevant dimension reduction would consist in approximating the correlation matrix R
with a matrix of lower rank q < p. This can obviously not be done before the shifts are
known, which suggests that shift detection and dimension reduction should be performed
simultaneously.
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Figure 3.5.3 – Lizard dataset: solution found by PhylogeneticEM. Groups produced by the
shifts are colored on the edges of the tree. The species are colored according to ecomorphs
defined in Mahler et al. (2013). The traits are the snout-to-vent length (SVL), and the
phylogenetic residuals of the regression against SVL of the following traits: femur length,
tibia length, metatarsal IV length, toe IV length, humerus length, radius length, finger
IV length, lamina number (toe and finger IV), and tail length. The same transformations
were used as in Mahler et al. (2010, 2013)

3.6 Discussion

Many phenotypic traits appear to evolve relatively smoothly over time and across many
taxa. However, changes in evolutionary pressures (dispersal to new geographic zones,
diet change, etc) or key innovations (bipedal locomotion) may cause bursts of rapid trait
evolution, coined evolutionary jumps by Simpson (1944). Phenotypic traits typically
evolve in a coordinated way (Mahler et al., 2013; Aristide et al., 2015) and a multivariate
framework is thus best suited to detect evolutionary jumps. We introduced here an
Expectation Maximization algorithm embedded in a maximum-likelihood multivariate
framework to infer shifts strength, location and number. Importantly, our method uses
Gaussian elimination, just like Fitzjohn (2012), to avoid computing inverses of large
variance-covariance matrices and can cope with missing data, an especially important
problem in the multivariate setting where some traits are bound to be missing for some
taxa. We demonstrated the applicability and accuracy of our method on simulated
datasets and by identifying jumps for body size evolution in Anolis lizards and brain
shapes of New World Monkeys. In both systems, the well-supported jumps occurred on
stem lineages of clades that differ in terms of diet, locomotion, group size or foraging
strategy (see Aristide et al. 2016 for a detailed discussion) supporting the Simpsonian
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hypothesis.

3.6.1 Interpretation Issues

We emphasize that the interpretation of α is a matter of discussion. We introduced the
scOU in terms of adaptive evolution with a selection strength α on the tree. However, the
equivalency between OU and BM on a distorted tree suggests that α can also be seen as a
“phylogenetic signal” parameter, like Pagel’s λ (Pagel, 1999). When α is small, `i(α) ' `i
so that branch lengths are unchanged and the phylogenetic variance is preserved. At the
other end of the spectrum, when α is large, `i(α) ' 0 for inner branches and the rescaled
tree behaves almost like a star tree. However and unlike Pagel’s λ, α also dictates how
shifts in the optima in the original OU (∆OU ) are transformed into shifts in the traits
values in the rescaled BM (∆BM(α)). For small α, recall to the optima is weak and shifts
on the optima affect the traits values minimally (∆BM(α) ' 0). By contrast, for large α,
the recall is strong and shifts on the optima are instantaneously passed on to the traits
values (∆BM(α) ' ∆OU ). Note however that in both cases, the topology is never lost: a
shift, no matter how small its amplitude or how short the branch it occurs on, always
affects the same species.

Note that if we observed traits values at some ancestral nodes (e.g. from the fossil
record), the equivalency between BM and OU would break down: α would recover its
strict interpretation as selection strength. On non-ultrametric trees, our inference strat-
egy does not benefit from the computational trick to speed up the M step. Similarly to
the univariate case, we could write a generalized EM algorithm to handle this situation.
In Bastide et al. (2017b), we used a lasso-based heuristic to raise, if not maximize, the
objective function at the M step. It worked quite well, but was much slower. This
approach could be extended to the multivariate setting, although with impaired com-
putational burden. Note also that some shifts configuration that are not identifiable in
the absence of fossil data become distinguishable with the addition of fossil data. This
affects our model selection criterion, which relies on the number of distinct identifiable
solutions. Computing this number on a non-ultrametric tree for an OU remains an open
problem, and is probably highly dependent on the topology of the tree.

3.6.2 Noncausal Correlations

`1ou, SURFACE and PhylogeneticEM make many simplifying assumptions to achieve
tractable models. Chief among them is the assumption that A is diagonal. While `1ou
and SURFACE both assume independent traits, PhylogeneticEM can handle correlated
traits through non-diagonal variance matrix R. We warn the reader that correlations
encoded by R are not causal and only capture coordinated and non selective traits evo-
lution: i.e. when arm length increases, so does leg length. In order to capture evolution
of trait i in response to changes in trait j (i.e. when arm length strays away from its
optimal value, does leg length move away or toward its own optimum) one should rather
look at the value of Aij , as was recently pointed out (Reitan et al., 2012; Liow et al.,
2015; Manceau et al., 2016).
Our simplifying assumptions are justified by various considerations: our focus on infer-
ence of shifts rather than proper estimation of A and R, simulations showing that shift
detection is robust to moderate values of off-diagonal terms in A, difficulties to simul-
taneously estimate α and shifts even in the univariate case (Butler & King, 2004), and
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computational gain achieved by considering scalar or diagonal A. They also suggest that
if the focus is on causal correlation in the presence of shifts, a two-step strategy that
first detects shifts using a crude but robust model, then includes those shifts in a more
complex model, may achieve good performance.

The other simplifying assumption we made is that all traits shift at the same time. It
makes formal analysis of identifiability issues and selection of the number of shifts similar
to the univariate case, previously studied in Bastide et al. (2017b). The assumption is
likely to be false in practice, however. Asynchronous shifts are an interesting extension
of the model. An ambitious framework would be to build from the ground up a model
that allows for different shifts on different traits. It would have to deal with the com-
binatorial complexity induced by asynchronous shifts, and to use a different selection
criterion for the number of shifts. A less ambitious but more pragmatic approach would
be a postprocessing of the shifts to select, for each shift, the traits that actually jumped.
This would require derivation of confidence intervals for the shift values.
Finally, and unlike SURFACE and new version v1.40 of `1ou, our model excludes con-
vergent evolution. This limitation is shared with other shift detection methods such as
bayou (Uyeda & Harmon, 2014) in the univariate case. This exclusion simplifies formal
analysis and allows us to borrow from the framework of convex characters on a tree
developed in Semple & Steel (2003) but is also likely to be false in practice. A straight-
forward extension of our method to detect convergence relies again on postprocessing
of the shifts: the inferred optimal value of a trait after a shift can be tested to assess
whether or not it is different from previously inferred optimal values and warrants a
regime of its own.

3.6.3 Nature of the jumps

We model shifts as instantaneous and immediately following speciation events, like in
the punctuated equilibrium theory of Eldredge & Gould (1972). We don’t argue that
this is necessary the case. Selection and drift can reasonably be seen as instantaneous
over macroevolutionary timescales but by no means over microevolutionary timescales.
There is very strong evidence, for example in peppered moths (Cook et al., 2012), that
rapid adaptation can happen even in the absence of speciation. However our model does
not allow us to distinguish between many small jumps distributed across a branch, one
big jump anywhere on that branch and one big jump immediately following speciation,
and therefore between punctuated or Simpsonian evolution.
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Appendix

3.A PCA: Mathematical Derivations

Expectation of the Estimated Variance-Covariance Matrix. Taking C̃ = (1TnC
−11n)−11TnC−1,

we have that ȲT = C̃Y, and āT = E
[
ȲT

]
= C̃a. Denote by NC−1 : Rn×p→ Rp2 the function

that to a n× p matrix A associates the p × p matrix ATC−1A. We get:

(n− 1)E
[
R̂
]
= E

[
NC−1

(
Y− 1nȲT

)]
= E

[
NC−1

(
(Y− a) + (a− 1nāT ) + (1nā

T − 1nȲT )
)]

= E
[
NC−1

(
(I− 1nC̃)(Y− a) + (a− 1nāT )

)]
= E

[
NC−1

(
(I− 1nC̃)(Y− a)

)]
+NC−1

(
a− 1nāT

)
where the two double products cancel out, as E [Y] = a. But, for any non-singular
symmetric matrix H, we have:

E
[
(Y− a)TH−1(Y− a)

]
=

∑
1≤i,j≤n

[H−1]ijE
[
(Yi − ai)(Yj − aj)T

]
=

∑
1≤i,j≤n

[H−1]ijCijR = tr(H−1C)R

Hence, applying this formula with H−1 = (I− 1nC̃)TC−1(I− 1nC̃) = C−1 −C−11nC̃, some
straightforward matrix algebra manipulations give us:

(n− 1)E
[
R̂
]
= (n− 1)R+ (a− 1nāT )TC−1(a− 1nāT )

which is the result stated in the text, with G = a− 1nāT = (In − (1TnC−11n)−11n1TnC−1)a.

3.B PhylogeneticEM case study: New World Monkeys

In this section, we demonstrate the basic use of the R package PhylogeneticEM for the
analysis of the New World Monkeys dataset (Aristide et al., 2016).

3.B.1 Loading and Plotting the data

The data have been embedded in the R package PhylogeneticEM, to be loaded easily.
The traits can be plotted on the tree thanks to the function plot applied to a void
params process object with dimension 2 (Fig. 3.B.1).

library(PhylogeneticEM)

data(monkeys)

plot(params_BM(p=2), data = monkeys$dat,

phylo = monkeys$phy, show.tip.label = TRUE)

This plot function inherits from most of the optional arguments of the popular ape
plot function (here for instance, the optional argument show.tip.label is used). Many
other graphical parameters can be set by the user, so as to control the output of the
function. All the results showed in the main text were produced by the package’s plotting
function. The two traits are represented on the right, each with its own scale. Plotting
the data on the tree before analyzing it allows us to spot potential errors or outliers.
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Figure 3.B.1 – New World Monkey dataset as plotted in PhylogeneticEM

3.B.2 Analyzing the data

The automatic shift detection is done using function PhyloEM. We show below how the
function can be called, using an scOU process (with stationary root, the default), for a
maximum number of shifts equal to 10, on an automatically chosen grid with 4 values for
the selection strength α, and parallelized on 2 cores. These parameters were chosen only
to demonstrate the function, for this example analysis would run in about one minute.
Different parameters were used to obtain the results below and in the main text. There
are many more options available to guide the analysis, all described in the manual entry
of the function.

res <- PhyloEM(Y_data = monkeys$dat, ## data

phylo = monkeys$phy, ## phylogeny

process = "scOU", ## scalar OU

K_max = 10, ## maximal number of shifts

nbr_alpha = 4, ## number of alpha values

parallel_alpha = TRUE, ## parallelize on alpha values

Ncores = 2) ## number of computing cores

The result is stored in an object of class PhyloEM, which has several extractors
available (see manual). By default, the plot function draws the maximum likelihood
function selected by the method (Fig. 3.B.2). The same optional parameters can be used
as before to control how the figure should look like.
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plot(res, edge.width = 2, show.tip.label = TRUE)
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Figure 3.B.2 – Maximum likelihood solution with 4 shifts selected by the method.

The solution showed in the main text (Fig. 3.5.1) has 5 shifts, instead of 4. It can
be plotted using the extractor params process, which extracts some inferred parameters
from an object of class PhyloEM.

params_5 <- params_process(res, K = 5)

plot(res, params = params_5)

3.B.3 Plotting Equivalent Solutions

The previous call actually results in a warning being issued:

“Warning in params process.PhyloEM(res, K = 5): There are several equivalent solutions
for this shift position.”

Indeed, as mentioned in the main text, the solution with 5 shifts has three equivalent
shift allocations on the branches. These solutions can be found and plotted thanks to
the function equivalent shifts, that returns an object that can be visualized (Fig. 3.B.3).

eq_shifts <- equivalent_shifts(monkeys$phy, params_5)

plot(eq_shifts, show_shifts_values = FALSE, shifts_cex = 0.5)
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Figure 3.B.3 – The three equivalent maximum likelihood shift allocations for the solution
with 5 shifts.

By default, the shifts values for the first trait is showed for all equivalent solutions.
Black is always reserved to the “ancestral state”, and the value λ = β0 = µ of the ances-
tral optimal value is shown at the root. Here, the three equivalent solutions are quite
straightforward, as one configuration has two shifts on sister edges. Note that the clus-
tering of the species at the tips of the tree remains unchanged, while the historic scenario
of the adaptive shifts is slightly altered. This ambiguity is inherent to the data. More
information to resolve this ambiguity can only come from a prior distribution on shift
values, or ideally from fossil data sampled in the right region of the tree.

3.C EM Inference

This section provides the update formulas for the EM algorithm in Section 3.2.5. Through-
out this section, the superscript h refers to the current iteration index, e.g. θ(h) stands for
the vector of parameters estimate at iteration h: θ(h) = (µ(h),∆(h),R(h),Γ(h)). We denote
further by X the N × p matrix of the traits at all the nodes of the tree, that contains
both Z and Y. In these derivations, nodes are numbered in a preorder, such that the
root comes first: ρ = 1, the internal nodes are numbered from 1 to m, and the tips from
m+1 to N =m+n.

Conditional Expectation of the Complete Likelihood. The EM algorithm mainly deals
with E[logpθ(X)

∣∣∣ Yd ], where Yd is the vector of the observed tips data (that might be
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missing some values). In our case we have that

−2E
[
logpθ(X)

∣∣∣ Yd ] = p(m+n) log2π+ p
m+n∑
j=2

log`j

+log |Γ|+ tr
{
Γ−1Var

[
X1

∣∣∣ Yd ]}+ ∥∥∥∥E [
X1

∣∣∣ Yd ]−µ∥∥∥∥2
Γ−1

+(m+n− 1)log |R|+
m+n∑
j=2

`−1j tr
{
R−1Var

[
Xj −Xpa(j)

∣∣∣ Yd ]}
+
m+n∑
j=2

`−1j
∥∥∥∥E [

Xj −Xpa(j)
∣∣∣ Yd ]−∆j∥∥∥∥2

R−1
. (3.5)

3.C.1 M step

At the M step, the parameters are updated as the minimizers of (3.5) evaluated with the
conditional moments of the hidden variables given Yd . We get the following updates.

Root Parameters.

µ(h+1) = E(h)
[
X1

∣∣∣ Yd ] , Γ(h+1) = Var(h)
[
X1

∣∣∣ Yd ] . (3.6)

where the conditional moments are obtained as part of the E step, see Equation (3.8).
Notations E(h) and Var(h) denote the moments taken with the law defined by current
parameters θ(h).

Rate Matrix.

(m+n− 1)R(h+1) =
m+n∑
j=2

`−1j Var(h)
[
Xj −Xpa(j)

∣∣∣ Yd ]
+ `−1j

(
E(h)

[
Xj −Xpa(j)

∣∣∣ Yd ]−∆(h+1)j
)

·
(
E(h)

[
Xj −Xpa(j)

∣∣∣ Yd ]−∆(h+1)j
)T
.

(3.7)

Optimal Shift Location. Only the last term of (3.5) depends on the shifts so we have
to minimize the sum of costs to find ∆(h+1):

C(h)(∆) =
m+n∑
j=2

C
(h)
j (∆)

with C
(h)
j (∆) = `−1j

∥∥∥∥E(h)
[
Xj −Xpa(j)

∣∣∣ Yd ]−∆j∥∥∥∥2
(R(h))−1

.

This minimization can be achieved using the same algorithm as in the univariate case
(Bastide et al., 2017b) to get the optimal shifts allocations and values. Said algorithm

essentially sorts the branches in decreasing order of C
(h)
j (∆) and assigns shifts to the first

K branches.
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3.C.2 E step

The aim of the E step is to compute the moments of the completed dataset given the
observed traits at the tips, namely:

Ej = E
[
Xj

∣∣∣ Yd ] , Vj = Var
[
Xj

∣∣∣ Yd ] , Cj,pa(j) = Cov
[
Xj ; Xpa(j)

∣∣∣ Yd ] (3.8)

where we dropped the dependency in θ(h) for the sake of legibility, but all these moments
are indeed taken with the laws given by the current parameters. We do so thanks to an
upward-downward recursion on the tree, as described below. This algorithm can apply
to a broad classes of Gaussian processes, provided that the moments of the traits at a
child node are of the form:

∀j ∈ J2 ,m+nK,

 E
[
Xj

∣∣∣ Xpa(j)
]
=mj(X

pa(j)) =QjX
pa(j) + rj

Var
[
Xj

∣∣∣ Xpa(j)
]
= Σj

(3.9)

For a BM, we get
Qj = Ip , rj = ∆j and Σj = `jR.

A multivariate OU could also be handled, with:

Qj = e
−A`j , rj = (Ip − e−A`j )βj and Σj = Γ− e−A`jΓe−AT `j .

Although we do not use these last formulas here (thanks to the equivalence between OU
and BM in our setting), they are implemented in PhylogeneticEM, and could be readily
used in an extension of the method to non-ultrametric trees with fossil taxa. To properly
handle missing data in a unified framework, we first re-define ad hoc inversion and
determinant operations that allow us to easily write the degenerated Gaussian likelihood
that appears along the way.

Missing data. For a multivariate trait observed at node i, define the application fdi :
Rp×p → Rdi×di that, given a matrix, returns the matrix with only rows and columns
corresponding to observed traits. Define also the “pseudo-inverse” f −1di : Rdi×di → Rp×p
that put the observed traits back into their places, and fills the un-defined lines and
columns with zeros. This allows us to define a “low-dimensional inverse” as:

[S]−1ld = f −1di

([
fdi (S)

]−1)
, ∀S ∈ Rp×p

for all S such that fdi (S) is invertible. We also define a “low dimensional determinant”,
as: ∣∣∣[S]−1ld

∣∣∣ = ∣∣∣∣[fdi (S)]−1∣∣∣∣ , ∀S ∈ Rp×p.
These conventions amount to taking infinite values for the variance-covariance terms

of non-observed traits. This allows us to write the following:

(2π)(p−d)/2Φm,S(x) = Φfd(m),fd(S)(fd(x)).

where Φm,S denotes the density of a multivariate Gaussian, with expectation vector m
and variance matrix S. That is, we write the density of a d-dimensional Gaussian as
the density of a p-dimensional one, but with the exact same likelihood value, up to a
normalizing constant (2π)(p−d)/2. If d = 0 (no data at one tip), then [S]−1ld is a matrix of

0, and we take by convention
∣∣∣[S]−1ld

∣∣∣ = 1, so that Φfd(m),fd(S)(fd(x)) = 1.
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Upward Recursion. For a given node j in the tree, we denote by jYd the set of all traits
observed at all the tips below node j. The aim of the upward recursion is to compute the
Gaussian pdf f jYd |Xj (jYd ;a) of jYd

∣∣∣ Xj , which we write as proportional to a Gaussian

density in a:
f jYd |Xj (jYd ;a) = Aj(jYd)ΦMj (jYd ),Sj (jYd )(a).

Initialization: For each tip i, the observed values (Yd)i given the vector of values Yi

follow a Dirac distribution:

∀i ∈ J1 ,nK, f (Yd )i |Yi ((Yd)i ;a) = δ(Yd )i (a).
We can express this in the correct format:

∀i ∈ J1 ,nK, f (Yd )i |Yi ((Yd)i ;a) = (2π)(p−d)/2ΦYi ,0(a)

but taking the “low dimensional” inverses and determinants defined above.

Propagation: The upward recursion formulas result from the standard properties of the
conditional distribution of a multivariate Gaussian distribution plus the fact that
L daughters of a given node Xj are conditionally independent so

f jYd |Xj (jYd ;a) =
L∏
`=1

f j`Yd |Xj (j`Yd ;a).

We get

Sj(
jYd) =

 L∑
`=1

QT
j`
(Sj` (

j`Yd) +Σj` )
−1Qj`


−1

Mj(
jYd) = Sj(

jYd)
L∑
`=1

QT
j`
(Sj` (

j`Yd) +Σj` )
−1(Mj` (

j`Yd)− rj` )

logAj(
jYd) = −(L− 1)p

2
log(2π) +

1
2
log

∣∣∣Sj(jYd)∣∣∣
+

L∑
`=1

logAj` (
j`Yd)− 1

2
log

∣∣∣Sj` (j`Yd) +Σj`
∣∣∣

− 1
2

L∑
`=1

(Mj` (
j`Yd)− rj` )T (Sj` (j`Yd) +Σj` )

−1(Mj` (
j`Yd)− rj` )

+
1
2
Mj(

jYd)T Sj(
jYd)−1Mj(

jYd)

where we keep track of the log of the constant Aj , for numerical accuracy. Remark
that we only need to handle the infinite terms properly as described above, using
the “low dimensional” inverses and determinants when needed. These terms will
disappear as we go up to a node that has at least one tip with some observation
for this particular trait. In the pathological case where a trait is never observed,
the corresponding term remains infinite throughout the recursion, and hence does
not bring any information as to the value of that trait, and does not change the
likelihood. The variance of a root non-observed trait is then just the one put a
priori in Γ (see below).
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Root node and likelihood: Once at the root, we have fYd |X1 (Yd ;a), which is the likeli-

hood of the observations given the root state X1 = a, and we write:

fX1|Yd (a;Yd) ∝ fYd |X1 (Yd ;a)fX1(a)

which gives Var
[
X1

∣∣∣ Yd ] = (
Γ−1 + S1(Yd)−1

)−1
E
[
X1

∣∣∣ Yd ] = Var
[
X1

∣∣∣ Yd ] (Γ−1µ+ S1(Yd)−1M1(Y)
)
.

Downward Recursion. We now derive a recursion that goes from the root back to the
tips to compute the conditional moments required to evaluate (3.5). Going down the
tree, we need to compute, for each node Xj , 2 ≤ j ≤ m, Ej , Vj and Cj,pa(j) as in (3.8).

(additionally conditioning on X1 if the root is fixed).

Initialization: The initialization of the downward is given by the last step of the upward.
If the root is random, we have

V1 = Var
[
X1

∣∣∣ Yd ] = (
Γ−1 + S1(Yd)−1

)−1
E1 = E

[
X1

∣∣∣ Yd ] = Var
[
X1

∣∣∣ Yd ] (Γ−1µ+ S1(Yd)−1M1(Y)
)

C1,pa(1) = NA

whereas, if we work conditionally to the root, we have V1 = Var
[
X1

∣∣∣ Yd ,X1
]
= 0,

E1 = E
[
X1

∣∣∣ Yd ,X1
]
= µ and C1,pa(1) = NA.

Propagation: We have

fXpa(j),Xj |Yd (a,b;Yd) = fXpa(j)|Yd (a;Y)fXj |Xpa(j),Yd (b;a,Y
d)

We know the first term from the recurrence, and we can compute the second term
thanks to the upward step:

fXj |Xpa(j),Yd (b;a,Y
d) = fXj |Xpa(j),jYd (b;a,

jYd) ∝ fXj |Xpa(j) (b;a)f jYd |Xj (jYd ;b)

As jYd
∣∣∣ Xj ∼N (

Mj(jYd),Sj(jYd)
)

and Xj
∣∣∣ Xpa(j) ∼N

(
mj(Xpa(j)),Σj

)
, we get

Xj
∣∣∣ Xpa(j),Yd ∼N

(
m̄j(X

pa(j)), Σ̄j
)

with

Σ̄j =
(
Sj(

jYd)−1 +Σ−1j
)−1

= Sj(
jYd)

(
Sj(

jYd) +Σj
)−1

Σj = Σj
(
Sj(

jYd) +Σj
)−1

Sj(
jYd)

m̄j(X
pa(j)) = Σ̄j

(
Sj(

jYd)−1Mj(
jYd) +Σ−1j mj(X

pa(j))
)

= Sj(
jYd)

(
Sj(

jYd) +Σj
)−1

Qj︸                            ︷︷                            ︸
Q̄j

Xpa(j)

+ Sj(
jYd)

(
Sj(

jYd) +Σj
)−1

rj +Σj
(
Sj(

jYd) +Σj
)−1

Mj(
jYd)︸                                                                   ︷︷                                                                   ︸

r̄j
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Hence:

fXj |Xpa(j),Yd (b;a,Y
d) ∝ exp

(
−1
2
(b− m̄j(a))T Σ̄−1j (b− m̄j(a))

)
And, as

(
Xj

Xpa(j)

) ∣∣∣∣∣∣ jYd ∼ N
((

Ej
Epa(j)

)
,

(
Vj Cj,pa(j)

CTj,pa(j) Vpa(j)

))
, by Gaussian condi-

tioning, we get, for any a:m̄j(a) = Ej +Cj,pa(j)V
−1
pa(j)(a−Epa(j))

Σ̄j =Vj −Cj,pa(j)V−1pa(j)CTj,pa(j)
From this we get:

Cj,pa(j) = Q̄jVpa(j), Ej = r̄j + Q̄jEpa(j), Vj = Σ̄j + Q̄jVpa(j)Q̄
T
j .

And, finally:
Cj,pa(j) = Sj(

jYd)
(
Sj(

jYd) +Σj
)−1

QjVpa(j)

Ej = Sj(
jYd)

(
Sj(

jYd) +Σj
)−1

(QjEpa(j) + rj) +Σj
(
Sj(

jYd) +Σj
)−1

Mj(
jYd)

Vj = Sj(
jYd)

(
Sj(

jYd) +Σj
)−1 (

Σj +QjVpa(j)Q
T
j

(
Sj(

jYd) +Σj
)−1

Sj(
jYd)

)
Missing Data: In presence of missing data, the downward formulas read

Cj,pa(j) = Σ̄jΣ
−1
j QjVpa(j)

Ej = Σ̄jΣ
−1
j (QjEpa(j) + rj) + Σ̄jSj(

jYd)−1Mj(
jYd)

Vj = Σ̄j
(
Ip +Σ−1j QjVpa(j)Q

T
j Σ
−1
j Σ̄j)

)
where Σ̄−1j = Sj(jYd)−1+Σ−1j can be is computed using the“low dimensional inverse”

defined earlier for Sj(jYd), if needed.

Remark that theses formulas involve the inversion of two matrices (Σj and Σ̄−1j ), each of

dimension p (typically small), which is not computationally intensive.

3.C.3 EM Initialization

Because it is only guaranteed to converge to a local optimum, the EM algorithm is highly
sensitive to its starting point. As consequence, it needs to be provided with good initial
guesses for the shifts positions and value, as well as the variance matrix R. Initial values
are determined as follows:

1. Do a lasso regression, assuming all traits are independent, choosing a penalty so
that K shifts are found.

2. Find the groups of tips created by those shifts, and center each group by its em-
pirical mean.

3. Use the centered data to estimate an empirical variance matrix. This is done using
the Minimum Covariance Determinant (MCD) method, with function covMcd from
package robustbase (Rousseeuw et al., 2014).
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4. Use this estimated matrix to correct for correlations (see paragraph below), before
running a lasso again.

5. For this second lasso, choose a penalty that selects for K +Klag shifts, with Klag a
fixed value (default to 5). Then, using a Gauss-lasso procedure, select the best K
shifts (in term of log-likelihood) among those.

This last step can be combinatorially intensive. To keep it fast, we bound the number
of trials. It has proven to enhance the results of the algorithm substantially.

Correcting for Correlations. Using the same notations as in Section 3.2, the linear
model (3.2) for the BM can be written as:

vec(Y) ∼N (vec(T∆),R⊗C)

To apply the standard group-lasso (point 4), the coefficients of Y must be independent,
and identically distributed. Assume that we known R the rate matrix. We can then
de-correlate Y by combining the equations of Section 3.2.5 (model selection) and Sec-
tion 3.3.1. Indeed, we take the Cholesky transform of C = CcCTc and R = RcRTc . Then,
as R⊗C = (Rc⊗Cc)(Rc⊗Cc)T and (Rc⊗Cc)−1 = Rc

−1⊗Cc
−1 (see proposition 1.B.2), we

get:

vec(Cc
−1Y(Rc

−1)T ) ∼N
(
vec(Cc

−1T∆(Rc
−1)T ),Inp

)
.

Hence, using the standard group lasso on Cc
−1Y(Rc

−1)T , we get an estimation of the
non-zero lines of ∆(Rc

−1)T , which are the same as the non-zero lines of ∆.
During point 4, we don’t actually know R, but we have an estimation of it, so that

we can approximately decorrelate the observations using the transformation above.

3.C.4 Grid on α

The inference presented above works for the rescaled BM, when the parameter α is
supposed to be known. In practice, this parameter needs to be estimated. One simple
way to do that is to use a grid on α. For each value on the grid, one can find an associated
estimator, and then find the maximum likelihood estimator of the parameters by taking
the best likelihood, for each number of shifts K . For instance, we plot below (Fig. 3.C.1)
the likelihood profile in K for 30 α values on a grid, for the New World Monkey dataset
(Aristide et al., 2016).

This grid of α values can be provided by the user, depending on some a priori knowl-
edge she might have of the problem at hand. If no grid is provided, one is automatically
computed, with nα values, evenly spaced on a log scale ranging between αmin and αmax.
Those extrema values are chosen in the following way.

αmin The minimum value is chosen so that the maximum phylogenetic half-life (t1/2 =
ln(2)/α) is equal to A ln(2)h, where h is the height of the tree, and A is a constant,
by default equal to 3. This ensures that the lowest α makes for a phylogenetic
half-life approximately two times as high as the tree. Lower values of α would
make the process looking too much like a BM.

αmax The maximum value of α is chosen so that the correlations between tips is bounded
by e−B/2, with B a constant by default equal to 2. This is obtained by noting that
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Figure 3.C.1 – Likelihood profile for all the α values, on the New World Monkey dataset.
Each colored line represents the likelihood of the solution for a given α. The maximum
value of the likelihood for each K is emphasized. The maximum is not reached by the
same value of α for each K . Colors in log scale.

the correlation between two tips i and j for a given trait k is given by (for a
stationary root):

Cov
[
Yik;Yjk

]
=

Rkk
2α e

−2αdij√
Rkk
2α

Rkk
2α

= e−2αdij ≤ e−2αdmin

where dmin is the minimum phylogenetic distance between two tips. Hence we
choose αmax = B/(2dmin).

3.D Simulations Appendices

3.D.1 Kullback-Leibler Divergences
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Figure 3.D.1 – KL divergences from the base model

Denote by Ip the identity matrix of size p, Jp = 1T 1 the matrix filled with ones,

and Sp = Diag(s−(p+1)/2+q;1 ≤ q ≤ p) (so that
∣∣∣Sp∣∣∣ = 1). We consider the four following

models:

Model A: A = αIp and R = σ2Ip
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Model B: A = αIp and R = Rrd = σ
2(Ip + rd(Jp − Ip))

Model C: A = αSp and R = σ2Sp

Model D: A = α(Ip + rs(Jp − Ip)) and R = σ2

λ Ip

The general formula for a Kullback divergence between two multivariate Gaussian
distributions with means µi and variances Vi (i ∈ {1,2}) is:

2K [N1;N2] = tr(V−12 V1) + (µ2 −µ1)TV−12 (µ2 −µ1)−np+ ln
|V2|
|V1|

We assume that the root is in the stationary state. From the general formula for a
multivariate OU, we derive the form of the variances for these four models (Bartoszek
et al., 2012; Clavel et al., 2015):

General Formula: V(i,j) = P
([

1
λq+λr

e−λq(ti−tij )e−λr (tj−tij )
]
1≤q,r≤p

�P−1RP−T
)
PT , where P

is the orthogonal matrix of diagonalization of A, associated with eigenvalues (λ1, . . . ,λp).

Model A: VA = σ2

2αMα ⊗ Ip with Mα = (e−αdij )1≤i≤j≤n

Model B: VB = σ2

2αMα ⊗Rrd
Model C: V(i,j)

C = σ2

2α Diag
(
e−α(Sp)qqdij ;1 ≤ q ≤ p

)
Model D: V(i,j)

D = σ2

2λαPDiag
(

1
1−rs e

−α(1−rs)dij , 1
1−rs e

−α(1−rs)dij , 1
1−rs e

−α(1−rs)dij , 1
1+3rs

e−α(1+3rs)dij
)
PT

For model C, taking R = σ2Sp ensures that the variances at the tips for all the

(independent) traits are equal to γ2 = σ2

2α .

For model D, the characteristic polynomial of matrix 1
αA is χ(X) = (X+rs−1)3(X−3rs−

1), so we wrote A = αPDiag(1− rs,1− rs,1− rs,1+3rs)PT . This leads to a variance at

the tips of σ2

2αλPDiag
(

1
1−rs ,

1
1−rs ,

1
1−rs ,

1
1+3rs

)
PT . By computing this matrix product (easy

linear algebra formula), we find that PDiag
(

1
1−rs ,

1
1−rs ,

1
1−rs ,

1
1+3rs

)
PT = (λ − κ)Ip + κJp,

with λ = 1+(p−2)rs
(1−rs)(1+(p−1)rs) and κ = − rs

(1−rs)(1+(p−1)rs) . Dividing the variance matrix by a

factor λ hence ensures that the diagonal variances at the tips are still equal to γ2 = σ2

2α .
We can then express the Kullback distance of models B, C and D to model A, using

the general formula:

2K [i;A] = tr(V−1A Vi)−np+ ln
|VA|
|Vi |

+
∥∥∥(T⊗ Ip)[W(AA)−W(Ai)]vec(∆

T )
∥∥∥
VA
−1

=
2α
σ2 tr((M

−1
α ⊗ Ip)Vi)−np+np ln

σ2

2α
+ p ln |Mα | − ln |Vi|

+
∥∥∥(T⊗ Ip)[W(AA)−W(Ai)]vec(∆

T )
∥∥∥
VA
−1

For K [B;A], we can get a closed formula that does not depend on the topology (the
expectations term cancels out):

2K [B;A] = n ln[(1− r)3(1 + 3r)]
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For the two other distances, there are no such nice simplified formula, and the result
depends on the topology (even when there are no shifts). To get an idea of the distance
when there are no shifts, we computed it on 100 randomly generated trees, and took the
mean. With shifts, we computed the distances for the trees and shift positions chosen
and shown above.

3.D.2 Note on the ARI (Hubert & Arabie, 1985)

Partitions. Let S be a set with n elements, and U,V two different partitions of S,
with respectively R and C groups. Denote by nij the number of elements of S that are

both in groups i ∈ J1 ,RK of U and j ∈ J1 ,CK of V , and by ni· =
∑C
j=1nij (respectively,

nj· =
∑R
i=1nij) the number of elements of S that are in group i ∈ J1 ,RK of U (resp.

j ∈ J1 ,CK of V ).

Rand Index. We further define:

� a the number of pairs of S that are in the same groups in both partitions U and
V ,

a =
R∑
i=1

C∑
j=1

(
nij
2

)
� b the number of pairs of S that are in different groups in both partitions U and V ,

b =
(
n
2

)
−
a+

 R∑
i=1

(
ni·
2

)
− a

+
 C∑
j=1

(
n·j
2

)
− a


 =

(
n
2

)
+ a−

R∑
i=1

(
ni·
2

)
−

C∑
j=1

(
n·j
2

)

Then the Rand index is defined as the number of agreeing pairs on the total number of
pairs:

Rand =
a+ b(n

2
)

Adjusted Rand Index. Assume that the null model is a generalized hypergeometric
models, where the partitions and the number of elements in each group are fixed (i.e.
the ni· and n·j are fixed), and the element randomly distributed among them. Then:

E
[(
nij
2

)]
=

(
ni·
2

)(
n·j
2

)
/

(
n
2

)
The ARI is then defined as (1 is the maximum value of the Rand index):

ARI =
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which can be re-written as:

ARI =

∑R
i=1

∑C
j=1

(nij
2

)−∑R
i=1

(ni·
2
)∑C

j=1
(n·j
2

)
/
(n
2
)

1
2

(∑R
i=1

(ni·
2
)
+
∑C
j=1

(n·j
2

))−∑R
i=1

(ni·
2
)∑C

j=1
(n·j
2

)
/
(n
2
)



156 3. Shift Detection for Multivariate Processes

One Class Partition. Assume that R = 1, i.e. that one of the partition has only one
class. Then:

R∑
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C∑
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(
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)
=
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)
=
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)
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R∑
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n·j
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)
=

(
n1·
2

) C∑
j=1

(
n·j
2

)
=

(
n
2

) C∑
j=1

(
n·j
2

)
so that ARI = 0. Hence, if one of the true solution or the estimated solution has no shift,
then the ARI is automatically equal to 0.

3.D.3 Supplementary Figures

Sensitivity / Precision. Because only the clustering of the tips induced by the shifts,
and not their exact position on the branches of the tree, are identifiable, we used the
ARI, rather than sensitivity and precision, to assess methods of shift detection. With
this caveat in mind, we plot these quantities here for the interested reader. To do that, we
removed the 6.53% of solutions that were not identifiable in the results of the methods.

These graphs confirm our conclusions drawn in the main text, with PhylogeneticEM,
more conservative, having a better precision, along with a similar sensitivity than `1ou.
It is interesting to note that, even when the model is violated for PhylogeneticEM, the
methods keeps a better or similar precision (see e.g. Model C in Fig. 3.D.3).
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Figure 3.D.2 – Sensitivity (top) and precision (bottom) for the solutions found by Phylo-
geneticEM (red) and `1ou (blue). Each box corresponds to one of the configuration shown
in Figure 3.4.1, with a scaling factor varying between 0.5 and 3, and a true number of
shift between 3 and 15 (solid lines, bottom).



3.D. Simulations Appendices 157
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Figure 3.D.3 – Sensitivity (top) and precision (bottom) for the solutions found by Phy-
logeneticEM (red) and `1ou (blue). Each panel corresponds to a different type of mis-
specification (except Model A) and the parameters rd , s and rs control the level of
mis-specification, with leftmost values corresponding to no mis-specification. For the
ARI, the solid lines represent the maximum (1) and expected (0, for a random solution)
ARI values.
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Chapter 4

Trait Evolution on Phylogenetic
Networks
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lication in Molecular Biology and Evolution (Soĺıs-Lemus et al., 2017).

4.1 Introduction: Phylogenetic Networks

4.1.1 Biological Insights

In the previous chapters of this thesis, we assumed that the relationships between species
was well represented by a phylogenetic tree. However, a tree can only represent the ver-
tical transmission of the genetic material, from an ancestral species to its offspring.
This is the most common mechanism, but horizontal transmission, between contempo-
rary species, is also possible for some organisms. The main events inducing horizontal
transmission of genes are hybridization and Horizontal Gene Transfer.

Hybridization happens when two distinct species produce a fertile new species, that
inherits its genetic material from both parents, in varying proportions. It is sometimes
associated with chromosomal doubling (allopolyploidy). Hybridization is known to be
quite common for plant species, but also for animal species (25% of plant species, and
10% of animal species, are known to hybridize with at least one other species, Mallet,
2005). It is thought to be an important driver of genetic diversity and evolutionary
innovation (Mallet, 2007).

Horizontal Gene Transfer is common in bacteria and archea, and have recently been
hypothesized to also play a role in the evolution of multicellular organisms (Soucy et al.,
2015). It relies on many mechanisms (Soucy et al., 2015), that can involve direct trans-
mission between organisms through a contact (conjugation), assimilation of exogenous
DNA from the environment (transformation) or transmission through a predatory vector,
such as a virus (transduction).

Because they happen quite frequently, and because they are important drivers of di-
versification and trait evolution, these events cannot be ignored. Adding some horizontal
edges, they transform the usual phylogenetic tree into a phylogenetic network. In the
next two sections, we give a formal definition of a phylogenetic network, and browse the
main statistical methods that aim at inferring them.

4.1.2 Formal Definition and Properties

We only consider here rooted phylogenetic networks, and use the definition given in
Soĺıs-Lemus & Ané (2016).

Definition 4.1.1 (Rooted Binary Directed Network). A reticulate network N = (V ,E)
is a connected directed acyclic graph with vertices V = {ρ} ∪ VL ∪ VH ∪ VT and edges
E = EH ∪ET such that:

� the root ρ has an in-degree 0, and out-degree 2;

� vertices in VL (leaves) have an in-degree 1, and out-degree 0;

� vertices in VT (tree nodes) have an in-degree 1 ant out-degree 2;

� vertices in VH (hybrid nodes) have an in-degree 2 and out-degree 1;

� edges in ET (tree branches) have a tree node child;
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� edges in EH (hybrid branches) have a hybrid node child.

We then define phylogenetic networks the same way we did for phylogenetic trees
(see Section 1.1.1).

Definition 4.1.2 (Phylogenetic Network). A phylogenetic network (on X) N is a pair
(N,φ), where N = (V ,E) is a network, and φ : X → VL is a bijection between a set of
labels X and the set VL of the leaves of N .

The definition above is quite general, and can encompass some fairly intricate net-
works. However, for identifiability reasons (Soĺıs-Lemus & Ané, 2016), we will limit
ourselves to “simple” networks, that have clearly separated cycles. An example of such
a network is given Figure 4.1.1.

Definition 4.1.3 (Level-1 Network). A Level-1 network (also called a cactus network, see
e.g. Alexeev & Alekseyev 2016) is a network such that any given edge belongs to at most
one cycle.

time

X.gordoni
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X.evelynae
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X.milleri
X.andersi
X.maculatus
X.hellerii
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X.malinche
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X.continens
X.pygmaeus

X.nigrensis
X.multilineatus

Cycle 1

Cycle 2

Figure 4.1.1 – Phylogenetic Network of the Xiphophorus Fish family, as inferred by
Soĺıs-Lemus & Ané (2016). It has two hybridization events. This is a level-1 network:
cycle 1 (red) and cycle 2 (cyan) are disjoint. The figure is plotted with julia package
PhyloNetworks, and slightly modified with a vector graphic editor.

For phylogenetic trees, we defined a preorder of the nodes, that allowed for efficient
traversal of the tree (see Def. 1.1.3 in Section 1.1.1). We can define a similar order for
networks, called the topological sorting (Kahn, 1962).

Definition 4.1.4 (Topological Sorting). A topological sorting of the nodes of a rooted
network N = (V ,E), also called a preorder, is such that any node comes after all its
parents: for any two nodes numbered i and j, if there is an oriented path going from i to
j, then i ≤ j. Such an ordering can be obtained in a linear time in the number of nodes
and edges (Kahn, 1962).
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Finally, as mentioned above, a hybrid species inherits its genetic material from its
two parents with given proportions, that might vary from one case to another. These
proportions are represented by an extra parameter γ , that represents inheritance prob-
abilities.

Definition 4.1.5 (Weighted Network). A weighted phylogenetic network (N ,γ) is a phy-
logenetic network where each edge e ∈ E is weighted by an inheritance probability factor
γe, that is such that:

� for any edge e ∈ E, γe ∈ [0 ,1];
� for any tree edge e ∈ ET , γe = 1;

� for any hybrid node with parents edges ea and eb, γea +γeb = 1.
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X9

X8

X2

X3

X7

X1 Hybrid Branch :  γ6a = 0.3

γ6b = 0.7

X10

X6

X5

X4

Tree Branch :  γ2 = 1

l4

Figure 4.1.2 – A dated weighted binary rooted network with six tips and one hybridization
event. Inheritance probabilities at the hybridization event are γ6a and γ6b, with γ6a +
γ6b = 1. Inheritance probabilities on tree branches are equal to 1.

4.1.3 Inference

Gene Trees and Species Tree. The methods for tree inference we presented in Sec-
tion 1.3.4 mostly rely on models that are well suited for nonrecombined loci of the
genome, i.e. parts of genes that form a block that was not subject to recombination. The
genetic history of such a locus can always be represented as a tree (Maddison, 1997).
In a given genetic sequence, we can find many of those nonrecombined loci, and we can
infer a so-called gene tree for each of them. All those trees are unlikely to be exactly
concordant. The species tree (or phylogenetic tree) can be seen as a hull that constrains
the form of all the gene trees. It represents the branching pattern induced by speciation
events (Maddison, 1997).

This can be seen using the coalescent theory (Kingman, 1982), that can describe
the probability distribution of a gene tree. In its simplest form, this model, that is
backward in time (from the tips to the root), allows for coalescence events to happen
with an exponential law (see e.g. Wakeley, 2009, for an introduction). The genes trees are
assumed to follow such a process, but constrained by the species tree, as two lineages in
two different branches of the species tree cannot merge. See Figure 4.1.3 for an example.
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Figure 4.1.3 – Incomplete Lineage Sorting (ILS). The species tree (hull) constrains the
form of the gene tree (line): for instance, lineages from A and B cannot coalesce before
time T1. However, they can still coalesce after time T2, as shown here, so that B and C
merge before A. This example of ILS makes the gene tree ((A,(B,C)),D) (in Newick for-
mat) discordant with the species tree (((A,B),C),D). Figure taken from Kubatko (2009).

Incomplete Lineage Sorting (ILS). One source of discordance between the gene trees
and the species tree is Incomplete Lineage Sorting (ILS, also referred to as deep coa-
lescence). As presented in Figure 4.1.3, this phenomenon happens when two lineages
do not coalesce in their most recent common ancestral branch, but instead in an older
branch where a third lineage has already joined them. This is perfectly explained by the
coalescent theory, and can produce some incongruent gene trees. Given a species tree,
the gene tree distribution under this coalescent process has been derived by Degnan &
Salter (2005).

Phylogenetic Networks and ILS. If the species are not related by a phylogenetic tree,
but by a phylogenetic network instead, the same model can be used. However, its
combinatorial complexity explodes with the number of hybrids, as gene trees can “turn
right or left” at each reticulation. See Figure 4.1.4 for an example.

Figure 4.1.4 – ILS on a phylogenetic network. Four independent loci (shapes) are illus-
trated. Two gene trees are depicted for the triangle and diamond loci. Both agree on a
same tree shape (A,(B,C)). However, the red tree is obtained through ILS, whereas the
blue one is due to hybridization. Figure slightly modified from Yu et al. (2014).

Both ILS and reticulation events are hence a source of discordance among gene trees.
Ignoring one source or another leads to inconsistent inferences (Kubatko, 2009; Soĺıs-
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Lemus et al., 2016). Similarly to the tree case, the gene tree distribution under this
coalescent process given a species network can be derived (Kubatko, 2009).

Phylogenetic Network Inference. From the model presented above, it is possible to
design a maximum likelihood method to infer a species phylogenetic network from a
number of gene trees. A rigorous framework has been derived by Yu et al. (2012, 2014),
and implemented in the stand-alone software PhyloNet. Because of the combinatorial
complexity of the problem, it is however difficult to infer trees with more than 10 tips, and
4 hybridization events (Soĺıs-Lemus & Ané, 2016). To tackle this computational issue,
Soĺıs-Lemus & Ané (2016) proposed a pseudo-likelihood approach, computed assuming
that all the quartets are independent from one another. Yu & Nakhleh (2015) described
a similar approach, but based on triplets. These relaxations improve the size of the
datasets that can be analysed, but the number of hybridization events, as well as the
number of species, that can be dealt with is still quite limited (in their article, Soĺıs-
Lemus & Ané 2016 deal with networks with at most 15 species, and 3 hybridization
events).

Dating. In section 1.3.3, we saw that expressing the branch length in real elapsed time
was a difficult problem for phylogenetic trees. As expected, this problem does not get
easier for phylogenetic networks, and is in fact still an open problem. This will hamper
our attempts to apply the models of continuous traits evolution that we describe in the
remaining of the section to a biological dataset.

4.2 Continuous Trait Evolution on a Network

As in previous chapters, we will assume from now on that the network is known, along
with all branch lengths and inheritance probabilities. Given that, as we saw in the
previous section, the state of the art methods are still quite limited, this is a strong
assumption, but we are confident that these kind of phylogenetic networks will improve
and get larger in the coming years.

To model the evolution of a trait on the network, we adopt a framework similar to the
one presented in the introductory chapter (Section 1.2.1). The only difference is that,
in addition to a process describing the dynamic of the trait and to the split rule after
speciation, we need here an extra merging rule for hybridization. It is more difficult to
make this merging rule generic, as it will depend on the parameters of the process at
hand. Even when the process is fixed, there might be several natural candidate merging
rules, each giving birth to a different joint law of the observations at the tips. In the
following, we focus on the Brownian Motion process, with a weighted average merging
rule.

4.2.1 Brownian Motion on a Network

We use the following formal definition of a BM on a network, inspired by Definition 1.2.1
of Section 1.2.1.

Definition 4.2.1 (Brownian Motion on a Network). Let N = (N,φ) be a phylogenetic
network as defined in 4.1.2, with N = (E,V ) a rooted directed network. Assume that
each edge e ∈ E of the network has an associated branch length `e, and inheritance
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probability γe. Given a preorder numbering of the vertices, denote by (Xi)1≤i≤|V | the
sequence of random variables, taking its values in R, describing the trait of each node.
The law of (Xi)1≤i≤|V | is recursively defined by:

� X1 ∼ N (µ,s2): the root is Gaussian with mean µ and variance s2. It can also be
taken fixed (s2 = 0).

� Let e ∈ E be a branch, with child node i, and parent node pa(i). On this branch,
the traits evolve according to a Brownian Motion (W e

t ,0 ≤ t ≤ te) with variance σ2,
independently from other species, conditionally on W e

0 = Xpa(i).

� At node i, define:

– Xi =W
e
`e

if i is a tree node with only one parent edge e.

– Xi = γeaW
ea
`ea

+γebW
eb
`eb

if i is an hybrid node, with parent edges ea and eb.

� Iterate down the network.

An example of such a process is presented Figure 4.2.2.

Remark 4.2.1 (Non-zero hybrid branch lengths). Note that here, we use a network with
hybrid edges having a non-zero length (`ea and `eb in the definition). This might seem
contradictory, as we defined hybridization events as happening between contemporary
species. These apparently impossible gene flows might appear for two reasons. First,
as we saw earlier, the dating of the network is itself a difficult and still open issue, so
the branch length might not be accurate. Second, even if all the branch lengths are
known without error, this kind of event might still appear on the network, due to extinct
or un-sampled species (see Fig. 4.2.1). It is straightforward to show that it would be
equivalent to define the BM on the “original”, complete network with only zero-length
hybrid branches, and with all extinct species.

A

B

C

sampling

A

B

C

Figure 4.2.1 – Non-zero hybrid branch length case. Species B goes extinct or is un-
sampled. In the sampled network, everything happens as if the event involved non-
contemporary species A and C.

The previous formal definition 4.2.1 is given to make the link with Section 1.2.1, but
is not straightforward to use as such. As the underlying process is a Brownian Motion,
it is straightforward to derive the following alternative characterization of the process.

Proposition 4.2.1 (BM on a Network). Using the notations of Definition 4.2.1, the joint
law of X = (Xi)1≤i≤|V | can also be described as follow:
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� X1 ∼ N (µ,s2): the root is Gaussian with mean µ and variance s2. It can also be
taken fixed (s2 = 0).

� At node i, define:

– If i is a tree node, with parent node a and parent branch ea, take:

Xi = Xa +
√
`eaεa,

with εa ∼N (0,1) a standard normal variable, independent from all other node
variables.

– If i is an hybrid node, with parent nodes a and b, and parent branches ea and
eb take:

Xi = γea

(
Xa +

√
`eaεa

)
+γeb

(
Xb +

√
`ebεb

)
with εa and εb two independent standard normal variables, independent from
all other node variables.

� Iterate down the network.

This recursive definition is correct provided that the nodes are ordered in a preorder.
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Figure 4.2.2 – Realization of a univariate BM process (with µ = 0 and σ2 = 0.04) on a
calibrated network. The colors of the branches (left) match with the colors of the distinct
processes (right). Only tip values are observed (at time t = 0). For simplicity reasons,
the two hybrid branches were chosen to have a length equal to 0, but this need not to
be the case (see Fig.4.2.1). Inheritance probabilities at the hybridization event are γ6a
and γ6b, with γ6a +γ6b = 1.

Biological Interpretation. We already discussed the biological interpretation of a BM
on a tree in the introduction (see Section 1.4.1.3). The basic idea is that the BM can
represent the drift of a polygenic trait, that is, a trait which value depends on the additive
expression of many genes. With this interpretation in mind, it is natural to think that
the trait on a hybrid, that inherits a proportion γa of its genetic material from a parent
a, and γb = 1−γa from its other parent b, is a weighted average of the traits of its two
parents. This is the assumption we make for our null model. We will see in Section 4.2.3
how this model can be refined, taking into account some of the non standard effects that
might occur during a hybridization.
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Possible Other Merging Rules. The merging rule we chose (weighted average) is nice
from a mathematical point of view, as it allows us to carry all the computations ana-
lytically. However, that is not the only merging rule one could think of for a BM. For
instance, another possible merging rule could be to choose the trait of one of the parents,
with a probability given by the inheritance probability parameters γ . This model could
be suited to model traits that would inherit all their coding genes from only one of their
two parents. However, it introduces a discrete law in the stochastic process, and hence
this model is more difficult to study. We will not look further into that direction here,
but it could be a starting point for new developments.

4.2.2 Joint Law

For the BM on a tree, we were able to describe the joint law of the trait values at all the
nodes of the tree, with a covariance between node i and j equal to σ2tij , were tij is the
time elapsed between the root and the most recent common ancestor (mrca) of i and j
(see Equation 1.4 in Section 1.4.1.1). Our goal here is to derive a similar expression for
a trait evolving on a network. An intuition of how this is going to work can be given by
re-writing tij as:

tij =
∑

e∈pi∩pj
`e (4.1)

where pi is is path going from the root to node i:

pi = {e ∈ E : pa(e) ∈ anc(i)}
where pa(e) is the parent node of edge e ∈ E, and anc(i) is the set of all ancestor nodes of
i (as defined for a tree in Section 1.1.1). This formula just expresses that the variance is
proportional to the total length of the path shared between the two nodes, that precisely
ends at the mrca. On a network, the difficulty is coming from the fact that there is not
a unique path going from the root to a given node. Indeed, if there is a hybrid among
the ancestors of node i, then a path might go “right” of “left” of the hybrid loop to go
from the root to i.

The general formula was first derived by Pickrell & Pritchard (2012) in the context
of population genomics. It is similar to Equation (4.1), just summing over all possible
paths, each weighted by their inheritance probabilities.

Proposition 4.2.2 (Variance Matrix Pickrell & Pritchard, 2012). Assume that X is the
random vector of the traits at the nodes of a network, as defined in 4.2.1 (with a fixed
root). Then its variance matrix is equal to σ2V, with:

Vij =
∑
pi∈Pi
pj∈Pj

∏
e∈pi

γe

∏
e∈pj

γe

 ∑
e∈pi∩pj

`e

where Pi denotes the set of all the paths going from the root to node i.

This closed formula is compact, and can help us understand the problem, but it is
not practical to compute. Using the characterization of the process given in 4.2.1, we
can derive an iterative way to compute this covariance matrix, in just one traversal of
the tree.
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Proposition 4.2.3. Assume that X is the random vector of the traits at the nodes of a
network, as defined in 4.2.1 (with a fixed root). Let i ∈ V be a node of the network.
Then:

� If i = 1 then i is the root, and Vii = 0.

� If i is a tree node, denote by a the parent of i, and by `ea the length of the branch
e going from a to i. Then:Vij = Vaj ∀1 ≤ j ≤ i − 1

Vii = Vaa + `ea
(4.2)

� If i is a hybrid node, denote by a and b the parents of i, by `ea and `eb the lengths
of the branches ea and eb going from a or b to i, and by γea and γeb the associated
inheritances probabilities. Then:Vij = γeaVaj +γebVbj ∀1 ≤ j ≤ i − 1

Vii = γ2
ea(Vaa + `ea) +γ

2
eb(Vbb + `eb) + 2γeaγebVab

(4.3)

Proof. Let i ≥ 2, and j ≤ i. Because of the preorder, there is no directed path from i to
j if i , j. We use the same notations than in the proposition.

� If i is a tree node, then Xi = Xa+ε, with ε ∼N (0, `ea), ε independent of the values
Xj in the current network (j < i). Then:

Cov
[
Xi ;Xj

]
=

Cov
[
Xa;Xj

]
if j < i

Cov [Xa;Xa] + `ea if j = i

� If i is a hybrid node, then Xi = (γeaXa+γebXb)+(γeaεa+γebεb), with εk ∼N (0, `ek ),
and εk independent of the all values Xj in the current network (j < i) for k ∈ {a,b}.
Then:

Cov
[
Xi ;Xj

]
=


γeaCov

[
Xa;Xj

]
+γebCov

[
Xb;Xj

]
if j < i

γ2
ea

(
Cov [Xa;Xa] + `ea

)
+γ2

eb

(
Cov [Xb;Xb] + `eb

)
+2γeaγebCov [Xa;Xb]

if j = i .

This ends the proof, becausePi = {(pa, ea) : pa ∈ Pa} if i is a tree node

Pi = {(pa, ea) : pa ∈ Pa} ∪ {(pb, eb) : pb ∈ Pb} if i is a hybrid node

and because, if i , j, pj cannot go through i, so pj cannot go through ea, or ea or eb.
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Link Between the Tree and the Network Variance Matrix. Assume for simplicity
reasons that we have a phylogenetic network with only one hybridization event, with
transitions probabilities γ and 1− γ . Then the network has only two underlying trees,
obtained by setting γ respectively to 0 or 1 (so that all the genes come from one side
or another of the hybrid). One natural question to ask is: can we compute the network
variance matrix from both the trees variances matrices? As we already know how to
compute efficiently these matrices for a tree, that might be an easy way to get the
network matrix, without using the algorithm presented above. It is indeed possible to
get a simple formula, as stated in the next proposition.

Proposition 4.2.4. Let N be a rooted binary network with only one hybridization event.
Denote by p the hybrid node, and by s the MRCA of a and b, that are the direct parents
of p (where p stand for pit, and s for source, see Alexeev & Alekseyev 2016). Assume
that the hybrid branch going from a to p has weight γ and hybrid branch going from b to
p has weight 1−γ. Then the variance matrix V(γ) of the network can be obtained from
the variances matrices V(0) and V(1) of the two underlying subtrees as:

V(γ) = γV(1) + (1−γ)V(0)− 2γ(1−γ)
[
tp − ts

]
D(p) (4.4)

where tp and ts are the times elapsed between the root and nodes p and s, and D(p) is
the matrix of nodes descending of p: for any two nodes i and j,

D(p)ij =

1 if i and j are descendants of p

0 otherwise.

This proposition is proven in Appendix 4.B, as a corollary of a more general case.
It has a natural form, and one could think of using it for the matrix computation.
However, it only deals with the case of a network with only one hybridization event. In
the same appendix, we derive the general formula for a level-1 network with any number
h of hybrids. However, this formula involves a sum over all the 2h underlying trees
on the network. It is hence not practical to use, and the algorithm derived above in
Proposition 4.2.3 is still the best option to compute the variance matrix of a network.
The form we derived here might however be useful for other purposes, such as a more
systematic study of the hybridization test described below (Section 4.3.2).

4.2.3 Shifted BM and Heterosis

In the model we described, the trait of an ancestor was passed on to its children directly,
so that the overall expectation of the trait is constant equal to µ for all the nodes of the
network. However, similarly to the model we used on a tree, some events might happen,
that induce a sudden change in the value of the trait on a given branch. We define the
shifted BM as a slightly modified version of Definition 4.2.1.

Proposition 4.2.5 (Shifted BM on a Network). Using the notations of Definition 4.2.1,
the joint law of X = (Xi)1≤i≤|V | is defined as follow:

� X1 ∼ N (µ,s2): the root is Gaussian with mean µ and variance s2. It can also be
taken fixed (s2 = 0).

� At node i, define:
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– If i is a tree node, with parent node a and parent branch ea, take:

Xi = Xa +
√
`eaεa +∆ea ,

with εa ∼ N (0,1) a standard normal variable, independent from all other
node variables, and ∆ea a fixed shift value (possibly equal to 0) associated with
branch ea.

– If i is an hybrid node, Xi is defined as in 4.2.1 (no shift are allowed on hybrid
branches).

� Iterate down the tree.

This recursive definition is correct provided that the nodes are ordered in a preorder.

Remark 4.2.2. In this definition, we forbade shifts on hybrid branches. This can be done
without loss of generality. Indeed, a hybrid connects three branches, two in and one out.
A shift on any of those three branches would impact the same set of nodes (apart from
the hybrid itself), and hence would produce the same data at the tips. The position of a
shift on these three branches is consequently not identifiable. By convention, we assume
that this shift happens on the branch going out of the hybrid, which is a tree-like branch
(it has only one parent and daughter node).
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Figure 4.2.3 – Realization of a univariate BM process (with µ = 0 and σ2 = 0.04) on a
calibrated network, with heterosis. The shift occurs right after the hybridization event,
and changes the trajectory of the BM from the grey one to the colored one.

We present an example of heterosis in Figure 4.2.3. As the shifts are fixed, they do
not impact the variance matrix, that remains unchanged. As in the tree case, we expect
that most of the shifts ∆e on the branches will be zero. However, and contrary to the tree
case, we have some pre-defined candidate branches for those shifts to occur on. Indeed
a shift might have a different biological interpretation, depending on where it occurs:

� If it occurs on a “regular” tree-branch, i.e. a branch that is not coming out of a
hybrid node, then it has the same interpretation as before. The shift can then
represent the effect of a sudden environmental change, that has an impact on the
ecological niche of the species studied.
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� If it occurs on a branch going out of a hybrid node, then it can be seen as an
effect of heterosis. Heterosis, or hybrid vigor, is a well documented effect (see,
e.g. Fiévet et al., 2010; Chen, 2013, for recent developments, and a review) that
happens when two distinct species are hybridized. The hybrid species might then
exhibit a shift in some of its traits, making it particularly fit (hybrid vigor) or
ill-fit (hybrid depression) to its environment. Such a shift can hence be seen as a
component of hybridization: the new species inherits its trait as a weighted average
of the traits of its two parents, plus a shift representing heterosis.

Remark 4.2.3 (Identifiability). We are not discussing here identifiability problems that
are likely to arise, as in the tree case (see Section 2.3 in Chapter 2). A careful analysis
of this question should be the focus of future work. However, we won’t try to infer the
position of the shifts here, and rather impose their position by hand and a priori. We
hence assume that the user “knows what he’s doing” and will not use non-identifiable
configurations. When the shift positions are fixed, it is however easy to check that the
corresponding regression matrix has full rank (see next section).

We explain in the next section how these shifts can be easily included in the model.

4.2.4 Phylogenetic Regression Model

Now that, given a network, we are able to compute the matrix V giving the covariance
structure of the observations Y at the tips of the network, we can use the linear regression
framework, as defined for models on trees in Section 1.4.2.2 of the introduction.

Y =Uθ + σ2E with E ∼N (0,V) (4.5)

where U is a n × q matrix of regressors, and θ a vector of q coefficients. In the simple
case of a BM with root value fixed equal to µ, we simply get U = 1n, and θ = µ. Matrix
U can also contain some explanatory traits variable of interest. As in Section 2.2.3 (see
also Section 1.4.3), we can also include some shifts on the branches of the network, and
take them into account using an equivalent of the incidence matrix we used for the tree.

Definition 4.2.2. The incidence matrix U of a network N = (E,V ) with ordered nodes is
defined as, for any two nodes i and j:

Uij =
∑
p∈Pj→i

∏
e∈p

γe (4.6)

where Pj→i is the set of all the paths going from j to i (respecting the orientation of the
network). Note that, if i is not a descendant of j, then Pj→i = ∅ and Uij = 0.

Associated with this incidence matrix, we define the vector of the shifts on the
branches by identifying the branches with their descending node (when possible), as
in the tree case.

Definition 4.2.3. The vector ∆ represents all the shifts on the network, numbered by
nodes. For any node i, if i is tree-like, then it represents the edge ending at i. If
i is hybrid, then it artificially represents both the hybrid edges ending at i. As, for
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identifiability reasons, shifts are forbidden on hybrid edges (see Remark 4.2.2), these
coefficients will not be used anyway. We get, for any node i:

∆i =


µ if i = 1 (root node)

δi if i is tree-like and there is a shift on edge ending at i

0 if i is tree-like and there are no shift on the edge ending at i

0 if i is a hybrid

note that we put the ancestral mean µ of the BM on the fictive branch ending at the
root of the tree.

Remark 4.2.4. It is straightforward to see that, when the network actually reduces to
a tree, then this definition is compatible with the definition of an incidence matrix for
a tree we gave in Section 2.2.3. Compared to the incidence matrix of a plain tree, the
incidence matrix of a network can have non-binary entries: some of its coefficients are
given by the transmission probabilities γ .

Using these definitions, the joint law of a shifted BM on a network can be expressed
in the linear model framework. See Example 4.2.1 for the incidence matrix and shift
vector associated with Figure 4.2.3.

Proposition 4.2.6. Let X be the vector of the traits at the nodes of a network N = (E,V )
with ordered nodes. Assume that X is the result of a shifted BM as defined in 4.2.5, with
vector of shifts ∆. Then its variance matrix is given by σ2V, with V defined in 4.2.2,
and its expectation by:

E [X] =U∆

Proof. We show this equality recursively. Assume that the nodes are numbered in pre-
order (from the root to the tips). Denote by Ui the ith row-vector of U. Then, as the
root is its only descendant:

E [X1] = µ = ∆1 =U1∆

Then, assuming that the property is true for its parents, let’s show it for node i.

� If i is tree-like, then denote by a its unique parent, and by ea the edge linking the
two nodes. We have, for any node k above i: Pk→i = {(pa, ea) : pa ∈ Pk→a}, so that,
from definition 4.2.2:

Uik =

Uak ∀k , i
1 if k = i

hence
E [Xi] = E [Xa] +∆i =Ua∆+∆i =Ui∆

� If i is a hybrid, then denote by a and b its two parents, by ea and eb the correspond-
ing edges, with coefficients γea and γeb . Then for any node k above i, we have:
Pk→i = {(pa, ea) : pa ∈ Pk→a} ∪ {(pb, eb) : pb ∈ Pk→b}, so that, from definition 4.2.2:

Uik =

γaUak +γebUbk ∀k , i
1 if k = i

hence, as no shift can occur on the hybrid branches (∆i = 0 by convention):

E [Xi] = γeaE [Xa] +γebE [Xb] = γeaU
a∆+γeaU

b∆ =Ui∆
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Remark 4.2.5. Note that the proof above also gives us a way of computing the incidence
matrix of a network in just one preorder traversal of the network.

Keeping only the tips of the network, it is straightforward to get the following corol-
lary.

Corollary 4.2.1. Using the same notations as in Proposition 4.2.6, let T be the matrix
of U with only lines corresponding to tips of the network. Then the expectation of the
vector of traits Y at the tips of the tree is given by:

E [Y] = T∆.

Example 4.2.1 (Incidence Matrix and Shift Vector). The incidence matrix T associated
with the network presented Figure 4.2.3 is given by:

U =



X1 X2 X3 X4 X5 X7 X8 X9 X10 X11 X12 X13

X1 1 · · · · · · · · · · ·
X2 1 1 · · · · · · · · · ·
X3 1 1 1 · · · · · · · · ·
X4 1 · · 1 · · · · · · · ·
X5 1 1 · · 1 · · · · · · ·
X7 1 · · 1 · 1 · · · · · ·
X8 1 · · 1 · 1 1 · · · · ·
X9 1 · · 1 · 1 · 1 · · · ·
X10 1 · · γ6b γ6a · · · 1 · · ·
X11 1 1 · · 1 · · · · 1 · ·
X12 1 1 1 · · · · · · · 1 ·
X13 1 1 1 · · · · · · · · 1




T

(where zeros are replaced with dots to improve readability). The associated shift vector
and expectation vector at the tips are:

∆ =



1 µ
2 ·
3 ·
4 ·
5 ·
7 ·
8 ·
9 ·
10 ∆10
11 ·
12 ·
13 ·



T∆ =



8 µ
9 µ
10 µ+∆10
11 µ
12 µ
13 µ



Note that node X6, that is a hybrid node, is excluded from the matrix and shift vectors
(because shifts on hybrid branches are excluded, see Remark 4.2.2).



174 4. Trait Evolution on Phylogenetic Networks

4.3 Tests of Phylogenetic Signal

The phylogenetic linear regression framework gives us all the tools needed to test some
hypothesis about the distribution of the traits observed at the tips of a network. We
describe here two tests on the variance structure, and one on the expectation structure,
to test for the impact, respectively, of the network and of heterosis.

4.3.1 Pagel’s λ on a Network

Recall that Pagel’s λ transform (Pagel, 1999) could be seen as a modification of the
branch lengths of a tree, giving more importance to external edges, i.e. edges that are
leading to a tip (see Section 1.4.2.3 in the introduction). We want to define here the same
transformation on a network. For a network with consistent branch lengths representing
real time, all the paths going from the root to a given node i have the same length, that
can be defined as:

ti =
1
|Pi |

∑
pi∈Pi

∑
e∈pi

`e =
∑
e∈pi

`e , ∀pi ∈ Pi

Using this definition, Pagel’s λ transformation on the branch lengths is the same as in
the tree case.

Definition 4.3.1 (Pagel’s λ transform of the branch lengths). Let e be a branch of the
network, with child node i, parent node pa(i), and length `e. Then its transformed
length is given by:

`e(λ) =

λ`e if i is an internal node

`e + (1−λ)tpa(i) = λ`e + (1−λ)ti if i is a tip
(4.7)

The interpretation is then similar: when λ decreases to zero, the network structure
is less and less important, until it’s completely gone for λ = 0, and all the tips are
independent. However, its impact on the matrix V is not completely similar, and cannot
be written in the simple form we used on a tree (see Equation 1.11 in the introduction).
The structure matrix of the variance V(λ) of such a transformed network is given by the
following proposition.

Proposition 4.3.1 (Pagel’s λ effect on the variance). The structure of the variance matrix
of a BM running on a network transformed by a parameter λ is given by:
V (λ)ij = λVij for any two nodes i and j, i , j

V (λ)ii = λVij for any internal node i

V (λ)ii = λVii + (1−λ)ti for any tree tip i

V (λ)ii = λVii + (γ2
ea +γ

2
eb)(1−λ)ti for any hybrid tip i with parent branches ea and eb

Proof. From the general formula given in Proposition 4.2.2, the first two equations (for
non-diagonal elements and internal nodes) are straightforward (all the branch lengths
included in the paths of the sum are multiplied by λ). Let’s now prove the last two.
Take i a tip node of the network.

� If i is a tree node, with parent node a and parent branch ea, then, from the recursive
formula (4.2), its variance is proportional to:

Vii(λ) = V (λ)aa + `ea(λ) = λVaa +λ`ea + (1−λ)ti = λVii + (1−λ)ti
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� If i is a hybrid tip, with parent nodes a and b, and parent branches ea and eb, then,
from the recursive formula 4.3, its variance is proportional to:

V (λ)ii = γ
2
ea(V (λ)aa + `ea(λ)) +γ

2
eb(V (λ)bb + `eb(λ)) + 2γeaγebV (λ)ab

= λVii + (γ2
ea +γ

2
eb)(1−λ)ti

The extra-diagonal elements are still just multiplied by λ (as in Equation 1.11). But,
the variance of a trait is impacted by any hybridization event that happened in it’s
history. So, when reducing the impact of the network structure, the variances are going
to change too, in opposition with the tree case. From these equations, we can see that
any ancestral hybridization event is forgotten (which is coherent with the “star network”
representation), but that present day (tips) hybridizations remain. It is not clear however
whether “hybrid tips” should be allowed or not.

Once the model is defined, we can use the same method as in the tree case to test for
“phylogenetic signal”, using a maximum-likelihood ratio test for H0 : λ = 0 (no structure)
vs H1 : λ > 0. There are no closed form estimate for the λ parameter, and a numerical
optimization needs to be carried out. The interpretation of this test is similar to the one
given in the tree case (Section 1.4.2.3).

A systematic study of the features of this test is still to be carried on. Because the
generalization is quite straightforward, it is natural to think that this test will have the
same strengths and flaws as its equivalent on phylogenetic trees.

4.3.2 Can we Detect Hybridization Events ?

4.3.2.1 Description of a Hybridization Effect Test

In the previous section, we tested whether the data contained any structure at all. We
might want to be more precise, and test the form of this structure. Namely, we could
want to test whether a tree is enough to explain the data, against the full network. In
other words, such a test would give us an indication of whether the trait we are studying
was impacted or not by the hybridization events. Indeed, the “inheritance probability”
coefficients γ associated with an hybridization event just gives us roughly the proportion
of the genome that the hybrid inherits from its parents. It might happen that all the
genes coding for the trait we are studying are all on the “same side” of the genome, and
hence that the trait does not “see” the hybridization, and behaves as if the transmission
were purely vertical.

On a network with several hybridization events, testing for all one by one would not
be practical. To keep things simple, in the same spirit as Pagel’s λ transformation, we
introduce a single tuning parameter, that controls all the hybridization events.

Definition 4.3.2 (Network Tuning Parameters λ). Take a rooted phylogenetic network
N with h hybrids. Denote by γ = (γ1, · · · ,γh) the vector of minor coefficients for each
hybrid (i.e. γi ≤ 1/2,∀1 ≤ i ≤ h). The phylogenetic model is then defined by the couple
(N ,γ) of a network topology and minor inheritance probabilities. Indeed, all other
inheritance probabilities are either 1 (for tree edges) or 1−γmate(e), where mate(e) is the
minor parent leading to the same hybrid node as the major hybrid edge e. The tuning
parameter λ acts on all the minor hybrids in the following way:

N (λ) = (N ,λγ)
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The parameter λ quantifies the importance of the hybridization events on the trait:

� If λ = 1 then the original inferred network is unchanged.

� If λ = 0 then the model is the major tree extracted from the network: the hy-
bridization have no influence on the trait.

� If λ < 0 of λ > 1, then the trait of the hybrid might go outside of the interval of
the traits of its two parents. This might be one way to model heterosis (but see
next section for a more natural way).

The structure matrix V(λγ) can be obtained with the same recursive algorithm as
before, for any fixed λ. When there is only one hybridization event in the network,
some closed form formulas can be derived (see Appendix 4.B). In any case, a numerical
optimization on λ allows us to use the maximum likelihood ratio test, the same way we
did for Pagel’s test. Here, we can take H0 : λ = 0 (the tree is enough) vs H1;λ , 0 (some
events occurred at the hybridizations). An alternative way could be to take the inferred
network as the null (H0 : λ = 1).

4.3.2.2 Empirical Power Study

To have an idea of how this test behaves, we did an empirical study of its power for
some given fixed networks. We chose four different networks, all sharing the same back-
bone symmetric phylogenetic tree with 32 tips and total height 1. We added 1 to 8
hybridization events. In all scenarios, the number of tips that have a hybrid in their
ancestors is fixed equal to 8. The network used, along with the empirical results on
100,000 simulations are shown Figure 4.3.1.

The main conclusion is that the test has a very small power, that is hardly above the
imposed level. This means that the test is not efficient at all in detecting hybridization
effects on the traits, and never rejects the null hypothesis, even when the network is
strongly marked (γ = 0.5). The only case where the power seems to be a little bit
less miserable is for the network with many recent hybridization events (leftmost, see
Fig. 4.3.1). This would hint that recent hybridization events have a stronger impact on
a continuous trait.

The fact that this test fails is not that surprising. Indeed, we are trying to detect
the fine effects induced by hybridization events on the variance matrix structure, with
only one trait observed at the tips of the network. One natural thing to do would be to
study the effect of the number of (independent) traits observed at the tips on the power
of this test. Because most dataset do not have such independent traits observations, and
because the test on heterosis presented below revealed more powerful and natural, we
did not push this analysis further in the present work.

4.3.3 Test of Heterosis

4.3.3.1 Description of the Test

In this section, we use the phylogenetic linear model defined in (4.5), and use the inci-
dence matrix defined in 4.2.2 to model heterosis as shifts on branches that come out of
a hybrid.

Assume that the network has h hybrids, and denote by N the submatrix of the inci-
dence matrix T that has n rows corresponding to the tips, and h columns corresponding
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Figure 4.3.1 – Empirical power of the LRT of hybridization, for four different network
topologies (shown above), and two different test levels (colors). All hybridization events
on the original networks had minor weights γ . The empirical distribution of the statistic
under H0 (no hybridization event, γ = 0) and various alternative (0 < γ ≤ 0.5) were
obtained on 100,000 simulations. The mean and variance of the BM were fixed, respec-
tively, to 0 and 1. Dotted lines show the levels of the test, that should be below the
power.

to the h branches linking a hybrid to its child. Further define N̄ the column vector
with size n containing the row sums of N: for any tip i, N̄i =

∑h
k=1Nik. Then, from

Proposition 4.2.6, the shifted BM can be written as:

Y = Xβ + N̄b+Nd+E , d s.t

h∑
k=1

dk = 0 , E ∼N (0,σ2V) (4.8)

where X is a given matrix of regressors, with associated coefficients β. For a simple BM
with initial root value µ, we can take X = 1n and β = µ.

When written this way, the problem of testing for heterosis just amounts to testing
the fixed effects b and d. Indeed, we can write the following assumptions on the hybrids
events, with their counterparts in our linear model framework.

Hypotheses Linear Model
H0 No heterosis b = 0 and d = 0
H1 Single effect heterosis b , 0 and d = 0
H2 Multi effect heterosis b , 0 and d , 0

Hypothesis H0 corresponds to the null model where the trait of the hybrids are
just inherited from their parent’s through a weighted average. H1 is the case where
all hybridization events result in the same heterosis effect, the trait being shifted by a
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coefficient b. Finally, H2 is the case where each hybridization event k is impacted by its
own heterosis event, with a shift b+ dk.

These tests on fixed effects are very classic in the statistics literature (see e.g. Lehman,
1986; Searle, 1987). The tests we write are all exact and uniformally most powerful among
all invariant tests. They are also admissible against all invariant alternatives (Lehman,
1986). In our case, we can write the following two Fisher statistics:

F10 =

∥∥∥Y−ProjXY∥∥∥2
V−1 −

∥∥∥Y−Proj[X N̄]Y
∥∥∥2
V−1∥∥∥Y−Proj[X N̄]Y

∥∥∥2
V−1

(4.9)

F21 =

∥∥∥Y−Proj[X N̄]Y
∥∥∥2
V−1 −

∥∥∥Y−Proj[X N]Y
∥∥∥2
V−1∥∥∥Y−Proj[X N]Y

∥∥∥2
V−1

(4.10)

where Proj[X N] denotes the projection on the linear space spanned by the columns of
matrices X and N. These statistics follow a noncentral Fisher distribution:

N − r[X N̄]

r[X N̄] − rX
F10 ∼ F

(
r[X N̄] − rX,N − r[X N̄],

b2

2σ2

∥∥∥(I−ProjX)N̄∥∥∥2
V−1

)
(4.11)

N − r[X N]

r[X N] − r[X N̄]
F21 ∼ F

(
r[X N] − r[X N̄],N − r[X N],

1
2σ2

∥∥∥(I−Proj[X N̄])Nd
∥∥∥2
V−1

)
(4.12)

where r[X N] is the rank of the matrix obtained by pasting the columns of X and N
together. The noncentral coefficient depends on the network topology, through the metric
defined by V, and through the regression matrix N. We will study it for several symmetric
networks in the following section.

As noted previously, we did not study the identifiability of such a model carefully.
For the tests above to be meaningful, one could expect that the regression matrix N has
full rank. This verification is left to the user. For small level-1 networks such as the ones
that can be inferred by state of the art methods, this is however likely to be the case.

4.3.3.2 Theoretical Power Study

As the distribution of the statistics above are fully known, it is possible to conduct a
theoretical study of the power of the two tests of heterosis presented above.

Test H0 vs H1. We first study the theoretical power to detect a single heterosis effect.
The non-central coefficient of the Fisher statistic F01 (4.11) depends on the size of the
effect b, the variance σ2 of the BM, the topology of the network (through N and V),
and the value of the inheritance probabilities γ (through V). In the following, we fix
the scaling variance factor σ2 = 1. We use the same symmetric backbone tree with
total height 1 as before, and add one single hybridization event at various heights (see
Fig. 4.3.2, top line). The leftmost topology has a very recent hybridization event, that
only affects one tip, while the rightmost has a very ancient one, that affects 8 tips. We
fix the inheritance probability γ = 0.4 in all topology, as this parameter revealed to have
only but a small impact on the power of the test (not shown). The variation of the power
for these four networks with the size of the effect b is presented Figure 4.3.2 (bottom
line) for three test levels.
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Figure 4.3.2 – Theoretical power of the single effect heterosis test H0 vs H1, for four dif-
ferent networks topologies with inheritance probability γ = 0.4, and a BM with variance
σ2 = 1.

As expected, the power improves with the effect size, reaching approximately 1 for
b = 5 in all scenarios. In addition, the heterosis effect seems easier to detect for recent
hybridization events, even if they affect a lower number of tips. One intuition for that is
that ancient hybridization effects are “diluted” by the variance of the BM, and are hence
harder to detect, even if they affect more tips.

Note that here, we used a scenario slightly different from the one presented in Fig-
ure 4.3.1: each network has only one hybridization event. We used this scenario to stress
out the impact of recent hybridization event: even when they are affecting only one
tip, their signal is much stronger. Taking the previous scenario, that adds such recent
hybridization events in the already favorable case, only strengthen the effect.

Test H1 vs H2. To study the power of this test, we use the same networks topologies
as before, with γ = 0.4, keeping only networks with more than one hybridization event
(as we want to test for heterogeneity). The non-central coefficient of the Fisher statistic
F12 (4.12) depends on the same parameters as before, and of the heterogeneity of the
effects through vector d. Here, denoting h the number of hybrids, and h = q.2 + r the
euclidean division of h by 2, we take vector d = bdu as proportional to unit vector du,
defined as:

dui =

1/f if 1 ≤ i ≤ q
−f if q < i ≤ h with f =

√
q

q+ r
.
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This form is convenient, as, first, it ensures us that the sum of coefficients is 0, and,
second, it allows us to re-write the non-central coefficient in (4.12) as:

1
2σ2

∥∥∥(I−Proj[X N̄])Nd
∥∥∥2
V−1 =

b

2σ2

∥∥∥(I−Proj[X N̄])Ndu
∥∥∥2
V−1 .

The heterogeneity is hence controlled by coefficient b, that we vary between 0 and 5
(fixing σ2 = 1).
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Figure 4.3.3 – Theoretical power of the heterogeneity heterosis effect test H1 vs H2, for
three different networks topologies with inheritance probability γ = 0.4, and a BM with
variance σ2 = 1.

The results, presented Figure 4.3.3, are similar to the ones commented for the single
effect: the test is more powerful for a high heterogeneity coefficient b, and for recent
hybridization event.

4.4 The Julia package PhyloNetworks

In this section, we briefly describe the PhyloNetworks package (Soĺıs-Lemus et al., 2017).

Julia. Because they are computationally intensive, the methods for phylogenetic net-
work inference need to be implemented in an efficient way. Soĺıs-Lemus & Ané (2016)
decided to use the new programming language Julia (Bezanson et al., 2017). Julia is
a high-level programming language similar to R, Matlab or Python, that is also high-
performance. It is still under rapid development, and a long-lasting stable version is yet
to come. With 1465 registered packages (as of July 13, 2017, see julialang.org), Ju-
lia provides an ever growing community of users with an interactive and comprehensive

julialang.org
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computing environment. The language and the packages are all developed on GitHub
(github.com), which makes them open to contributions from any interested researcher.

Inferring and Manipulating Networks. Soĺıs-Lemus & Ané (2016) made their method
for network inference available through a Julia package PhyloNetworks (github.com/
crsl4/PhyloNetworks.jl). This package was designed to be useful not only for network
inference, but also for interactive network manipulation and visualization. This package
has for ambition to become the standard tool to deal with phylogenetic networks on
Julia.

Trait Evolution on Networks. We implemented several functions and data structures
to analyse continuous traits evolving on networks using the methods presented above.
The functions we wrote are fully integrated in the Julia environment, and take advantage
of the numerous tools it offers. In particular, we build on the package GLM (Bates,
2016), which is part of the JuliaStats project (JuliaStats, 2016). The implementation has
been written to be flexible, so that models other than the BM could be easily cast in
this linear regression framework in the future. See Appendix 4.A for the manual pages
corresponding to the functions developed for the continuous traits study.

Testing and Documentation. The package uses the continuous integration tool Travis
CI (travis-ci.org), to run an extensive set of unitary tests, and to automatically de-
ploy the documentation (http://crsl4.github.io/PhyloNetworks.jl/stable/). The
manual pages are automatically built at each new update (push to the master branch),
thanks to the package Documenter (Hatherly & Piibeleht, 2017). It is written in a “Julia
markdown” (.jmd) format, so that all the examples shown are re-run at each build with
the last version of the functions, thanks to package Weave (Pastell, 2017). Associated
with the Git tracking system, all these tools are there to help us keep this collaborative
package up-to-date and working smoothly.

4.5 Perspectives

To link this section with the rest of this manuscript, that is dealing with shift detection
for OU processes, one could think of two natural extensions of the model presented above:
shift detection for the BM, and OU modeling.

4.5.1 Shift Detection

In this chapter, we only studied shifts on fixed branches, representing heterosis. However,
similar to the tree case, as the phylogenetic networks become larger, shift detection on
other branches might be needed. Because we forbade shifts on hybrid branches for
identifiability reasons, this problem is actually quite similar to the one we tackled in
Chapters 2 and 3. Using the notations of Proposition 4.2.5, denote by X the vector of
traits measured at the node of a networkN = (V ,E) issued from a shifted BM. We identify
an edge with its ending node for tree edges, and for a hybrid edge ending at node i, we
denote by (i,1) the major edge (with γi,1 > 0.5) and (i,2) the minor edge (γi,2 = 1−γi,1).
Denoting pa(i) the parent nodes of node i (|pa(i)| = 1 if i is a tree node, and |pa(i)| = 2

github.com
github.com/crsl4/PhyloNetworks.jl
github.com/crsl4/PhyloNetworks.jl
travis-ci.org
http://crsl4.github.io/PhyloNetworks.jl/stable/
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if i is a hybrid), we get the following completed model from Proposition 4.2.5:Xi
∣∣∣ Xpa(i) ∼N

(
Xpa(i) +∆i , `iσ

2
)

if |pa(i)| = 1

Xi
∣∣∣ (Xpa(i,1),Xpa(i,1)) ∼N

(
γi,1Xpa(i,1) +γi,2Xpa(i,2), (γ

2
i,1`i,1 +γ

2
i,2`i,2)σ

2
)

if |pa(i)| = 2.

The likelihood of the completed dataset can then be written as:

logpθ(X) =
∏
i∈V

pθ
(
Xi

∣∣∣ Xpa(i)

)
=

∏
i:|pa(i)|=1

pθ
(
Xi

∣∣∣ Xpa(i)

) ∏
i:|pa(i)|=1

pθ

(
Xi

∣∣∣∣ Xpa(i,1),Xpa(i,1)

)
where each term of the product is just a Gaussian distribution. Similarly to the approach
we took in the tree case (see Section 2.4.1), an EM could be written to maximize the
likelihood when the number of shifts is fixed. The conditional expectation of the complete
log-likelihood given the data at the tips is straightforward to write.

At the M step, the parameters would be estimated the same way they were for trees.
In particular, as shifts are only allowed on tree branches, we recover the sum of costs
that makes their positioning easy (see Section 2.C.3).

At the E step, as everything is Gaussian, we can still compute the conditional expec-
tations and variances explicitly (using the same equations as in Section 2.C.1). However,
it is not clear that an efficient algorithm such as the upward-downward (see Section 3.C.2)
could be used here. Indeed, the hybridization events introduce some loops in the graph-
ical model, that need to be handled separately. It could be possible to deal with those
cycles through “variable elimination”, merging all the nodes in the cycle into one new
synthetic multivariate node (Peyrard et al., 2015).

Finally, the identifiability and model selection problems remain. As in the tree case,
we would need some combinatorial tools to measure the space of solutions. These are
yet to be studied. Alexeev & Alekseyev (2016) recently proposed an extension of the
problem of counting the number of convex coloring of the tips (see Sections 1.1 and 2.3.2)
to a network, that could be used for model selection.

4.5.2 Ornstein-Uhlenbeck

As for trait evolution on trees, other processes than the BM could be used to model the
dynamical evolution of the trait. The Ornstein-Uhlenbeck naturally comes into mind.
As pointed out earlier (see Section 4.2.1), the salient difference is that we need to define a
merging rule for the traits of hybrids. For an OU with one single optimum value over the
whole tree, the weighted average merging rule could be adapted. Problems might arise
if the OU is allowed to have several optima on the tree. What should be the optimum
value of a hybrid species, whose parents have different optima βa and βb? Should we
also take the weighted average? Or choose one of the two values? Or maybe define a
brand new optimum for the hybrid species?

All of these choices could be legitimate from a biological point of view, depending
on the species and traits studied. However, further work would be needed to see which
merging rule would make the computations feasible from a mathematical and computa-
tional point of view. In particular, it could be interesting to find a merging rule that
could allow, in the ultrametric case, to see the OU as a BM on a re-scaled network, as
we did in the tree case (see Sections 1.4.2.4 and 3.2.4).
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Appendix

4.A Documentation: Continuous Trait Evolution

This appendix presents the main functions for trait analysis in the PhyloNetworks pack-
age. It is extracted from the online documentation (http://crsl4.github.io/PhyloNetworks.
jl/stable/man/trait_tree/). It was written in collaboration with Cécile Ané and
Claudia Soĺıs-Lemus.

We assume a fixed network, correctly rooted, with branch lengths proportional to
calendar time. Here, we consider the true network that was used in the previous sections,
and which is ultrametric (all the tips are contemporary).

plot(truenet, useEdgeLength=true , showGamma=true )
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4.A.1 Trait simulation

We start by generating continuous traits to study. We simulate three traits on the
network (two independent, one dependent), using a Brownian Motion (BM) model of
trait evolution on the network. We start by choosing the parameters of the BM (ancestral
mean and variance), by creating objects of class ParamsBM<:ParamsProcess.

params_trait1 = ParamsBM( 2, 0.5) # BM with mean 2 and variance 0.5

params_trait2 = ParamsBM(-2, 1) # BM with mean -2 and variance 1.0

We then simulate the independent traits according to these parameters, using function
simulate (fixing the seed, for reproducibility).

srand(18480224)

sim1 = simulate(truenet, params_trait1) # simulate a BM on truenet

sim2 = simulate(truenet, params_trait2)

This creates objects of class TraitSimulation, from which we can extract the data
at the tips, thanks to the method getindex(::TraitSimulation, ::Symbol).

trait1 = sim1[:Tips] # trait 1 at the tips (data)

trait2 = sim2[:Tips]

This extractor creates an Array with one column, and as many lines as the number of
tips there are in the phylogeny. It is sorted in the same order as the tips of the phylogeny

http://crsl4.github.io/PhyloNetworks.jl/stable/man/trait_tree/
http://crsl4.github.io/PhyloNetworks.jl/stable/man/trait_tree/
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used to simulate it. If needed, we could also extract the simulated values at the internal
nodes in the network:

sim1[:InternalNodes]

Finally, we generate the last trait correlated with trait 1 (but not trait 2), with
phylogenetic noise.

srand(18700904)

noise = simulate(truenet, ParamsBM(0, 0.1)) # phylogenetic residuals

trait3 = 10 + 2 * trait1 + noise[:Tips] # trait to study. independent of trait2

4.A.2 Phylogenetic regression

Assume that we measured the three traits above, and that we wanted to study the impact
of traits 1 and 2 on trait 3. To do that, we can perform a phylogenetic regression.

In order to avoid confusion, the function takes in a DataFrame, that has an extra
column with the names of the tips of the network, labeled tipNames. Here, we generated
the traits ourselves, so they are all in the same order.

julia> using DataFrames

julia> dat = DataFrame(trait1 = trait1, trait2 = trait2, trait3 = trait3,

tipNames = tipLabels(sim1))

6x4 DataFrames.DataFrame

| Row | trait1 | trait2 | trait3 | tipNames |
-----------------------------------------------

| 1 | 4.08298 | -7.34186 | 16.673 | "D" |
| 2 | 3.10782 | -7.45085 | 15.0831 | "C" |
| 3 | 2.17078 | -3.32538 | 14.4522 | "A" |
| 4 | 1.87333 | -4.26472 | 13.9712 | "B" |
| 5 | 2.8445 | -5.96857 | 16.417 | "E" |
| 6 | 5.88204 | -1.99388 | 22.0269 | "O" |

Phylogenetic regression / ANOVA is based on the GLM package, with the network
as an extra argument, using funtion phyloNetworklm.

julia> fitTrait3 = phyloNetworklm(@formula(trait3 ~ trait1 + trait2), dat, truenet)

DataFrames.DataFrameRegressionModel{PhyloNetworks.PhyloNetworkLinearModel,Array{

Float64,2}}

Formula: trait3 ~ 1 + trait1 + trait2

Model: BM

Parameter(s) Estimates:

Sigma2: 0.034712

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 11.9564 1.15462 10.3552 0.0019

trait1 1.69111 0.183047 9.23868 0.0027

trait2 0.170664 0.155645 1.0965 0.3530

Log Likelihood: -2.9851753461

AIC: 13.9703506922

From this, we can see that the intercept, the coefficient for trait 1 and the variance
of the noise are correctly estimated (given that there are only 6 taxa). In addition, the

https://github.com/JuliaStats/GLM.jl
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Student test for the coefficient associated with trait 2 has a high p-value, which means
that this coefficient is not significantly different from 0. This is consistent with the way
we simulated trait 3.

The function returns an object of type PhyloNetworkLinearModel<:LinPredModel.
It is a subtype of the GLM type LinPredModel, which means that all base functions
from Julia StatsBase can be applied to it. See the documentation for this type for a list
of all functions that can be used. Some functions allow the user to retrieve directly the
estimated parameters of the BM, and are specific to this object.

julia> sigma2_estim(fitTrait3) # estimated variance of the BM

0.034711959298062325

julia> mu_estim(fitTrait3) # estimated root value of the BM

11.956367929622921

4.A.3 Ancestral State Reconstruction

4.A.3.1 From known parameters

If we assume that we know the exact model of evolution that generated the traits, we
can do ancestral trait reconstruction. Here, we simulated trait 1 ourselves, so we can use
the true process, with the true parameters. In other words, we can reconstruct the state
at the internal nodes, given the values at the tips, the known value at the root and the
known BM variance.

ancTrait1 = ancestralStateReconstruction(truenet, trait1, params_trait1)

Function ancestralStateReconstruction creates an object with type ReconstructedStates.
Several extractors can be applied to it:

julia> expectations(ancTrait1) # predictions

13x2 DataFrames.DataFrame

| Row | nodeNumber | condExpectation |
------------------------------------

| 1 | -5 | 3.55615 |
| 2 | -7 | 2.08473 |
| 3 | 5 | 2.42943 |
| 4 | -4 | 2.61415 |
| 5 | -8 | 2.56143 |
| 6 | -3 | 2.26785 |
| 7 | -2 | 2.0 |
| 8 | 1 | 4.08298 |
| 9 | 2 | 3.10782 |
| 10 | 3 | 2.17078 |
| 11 | 4 | 1.87333 |
| 12 | 6 | 2.8445 |
| 13 | 7 | 5.88204 |

julia> stderr(ancTrait1) # associated standard errors

7-element Array{Float64,1}:

0.312339

0.429933

0.812157

0.985996

1.00992

0.807042

https://github.com/JuliaStats/StatsBase.jl
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0.0

julia> predint(ancTrait1) # prediction interval (default to 95%)

13x2 Array{Float64,2}:

2.94398 4.16832

1.24207 2.92738

0.837628 4.02123

0.681629 4.54666

0.582023 4.54084

0.686076 3.84962

2.0 2.0

4.08298 4.08298

3.10782 3.10782

2.17078 2.17078

1.87333 1.87333

2.8445 2.8445

5.88204 5.88204

We can plot the ancestral states or prediction intervals on the tree, using the nodeLabel
argument of the plot function.

ancExpe = expectationsPlot(ancTrait1); # format expected ancestral states for the

plot

plot(truenet, nodeLabel = ancExpe)
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ancInt = predintPlot(ancTrait1) # format the prediction intervals for the plot

plot(truenet, nodeLabel = ancInt)
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As we know the true ancestral states here, we can compare them to our estimation.

julia> predictions = DataFrame(infPred=predint(ancTrait1)[1:7, 1],

trueValue=sim1[:InternalNodes],

supPred=predint(ancTrait1)[1:7, 2])
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7x3 DataFrames.DataFrame

| Row | infPred | trueValue | supPred |
--------------------------------------

| 1 | 2.94398 | 2.74233 | 4.16832 |
| 2 | 1.24207 | 2.24355 | 2.92738 |
| 3 | 0.837628 | 1.38334 | 4.02123 |
| 4 | 0.681629 | 1.50076 | 4.54666 |
| 5 | 0.582023 | 2.84188 | 4.54084 |
| 6 | 0.686076 | 1.76745 | 3.84962 |
| 7 | 2.0 | 2.0 | 2.0 |

4.A.3.2 From estimated parameters

In real applications though, we do not have access to the true parameters of the process
that generated the data. We can estimate it using the previous function. To fit a regular
BM, we just need to do a regression of trait 1 against a simple intercept:

fitTrait1 = phyloNetworklm(@formula(trait1 ~ 1), dat, truenet)

We can then apply the ancestralStateReconstruction function directly to the
fitted object:

ancTrait1Approx = ancestralStateReconstruction(fitTrait1)

The prediction intervals ignore the fact that we estimated the process parameters, so
they are less accurate and the function throws a warning. The output is an object of the
same ReconstructedStates type as earlier, and the same extractors can be applied to
it:

plot(truenet, nodeLabel = expectationsPlot(ancTrait1Approx))
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For convenience, the two steps described above (fitting against the intercept, and
then do ancestral state reconstruction) can be done all at once with a single call of the
function ancestralStateReconstruction on a DataFrame with the trait to reconstruct,
and the tip labels:

datTrait1 = DataFrame(trait1 = trait1, tipNames = tipLabels(sim1))

ancTrait1Approx = ancestralStateReconstruction(datTrait1, truenet)

plot(truenet, nodeLabel = predintPlot(ancTrait1Approx))
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This produces the exact same results.

4.A.3.3 Data imputation

Note that there is no theoretical difference between an internal node, for which we
could not measure the value of the trait, and a missing value at a tip of the network.
Consequently, the previous ancestralStateReconstruction function can be used to do
data imputation. To see this, let’s add some missing values in trait 1.

datTrait1[[2], :trait1] = NA # second row: for taxon C

ancTrait1Approx = ancestralStateReconstruction(datTrait1, truenet)

plot(truenet, nodeLabel = predintPlot(ancTrait1Approx))
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In the plotting function, a prediction interval is shown for the missing values.

4.A.3.4 With known predictors

At this point, it might be tempting to apply this function to trait 3 we simulated earlier
as a linear combination of trait 1 and a phylogenetic noise. However, this cannot be
done directly:

ancTrait3 = ancestralStateReconstruction(fitTrait3) # Throws an error !

This is because the model we used to fit the trait (a regression with one predictor
and an intercept) is not compatible with the simple model of Brownian evolution that
we assumed for the ancestral state reconstruction. As the predictor used is not known
for ancestral states, it is not possible to reconstruct the trait for this particular model.

The only option we have is to provide the function with the predictor’s ancestral
states, if they are known. They are known indeed in this toy example that we generated
ourselves, so we can reconstruct our trait doing the following:

ancTrait3 = ancestralStateReconstruction(fitTrait3,

[ones(7, 1) sim1[:InternalNodes] sim2[:InternalNodes]])

plot(truenet, nodeLabel = predintPlot(ancTrait3))
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where we provided the ancestral predictors as a matrix, containing the intercept, and
the known predictor at the nodes. The user must be very careful with this function, as
no check is done for the order of the predictors, that must be in the same order as the
internal nodes of the phylogeny. As ancestral predictors are often unknown, the use of
this functionality is discouraged.

4.A.4 Phylogenetic ANOVA

As mentioned above, the phyloNetworklm function is based on the lm function from
GLM. This means that it inherits from most of its features, and in particular, it can
handle formulas with factors or interactions. For example, in lizards, we might want to
do a regression of toe length against body length and the region where each species is
found, where this region is coded into 4 categories (say). We might also want to include
an interaction effect between body length and region. (This model has no biological
basis. It is just meant to show the possibilities of the function).

To illustrate the use of categorical predictors of particular interest in a network with
reticulations, let’s assume that some heterosis took place after the hybridization event,
so that tips ”A” and ”B” have larger mean compared to the others.

delta = 5.0; # value of heterosis

underHyb = [(n == "A" || n == "B") for n in tipLabels(sim1)] # tips under hybrid

underHyb

6-element Array{Bool,1}:

false

false

true

true

false

false

for i in 1:length(trait3)

underHyb[i] && (trait3[i]+=delta) # add delta to tips A and B

end

trait3 # changed: +5 was added by the previous loop to A and B

6-element Array{Float64,1}:

16.673

15.0831

19.4522

18.9712

16.417

22.0269

The categorical variable underHyb separates tips ”A” and ”B” from the others. We
need to mark it as a factor, not a numerical variable, i.e. as a PooledDataArray.

dat = DataFrame(trait1 = trait1, trait2 = trait2, trait3 = trait3,

underHyb = underHyb,

tipNames = tipLabels(sim1))

dat[:underHyb] = PooledDataArray(dat[:underHyb])

Now we can include this factor in the regression.

julia> fitTrait = phyloNetworklm(@formula(trait3 ~ trait1 + underHyb), dat, truenet)

DataFrames.DataFrameRegressionModel{PhyloNetworks.PhyloNetworkLinearModel,Array{

Float64,2}}

https://github.com/JuliaStats/GLM.jl
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Formula: trait3 ~ 1 + trait1 + underHyb

Model: BM

Parameter(s) Estimates:

Sigma2: 0.0484988

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 11.0616 1.19414 9.26324 0.0027

trait1 1.72504 0.240787 7.16418 0.0056

underHyb: true 5.07354 0.837326 6.05922 0.0090

Log Likelihood: -3.9885372687

AIC: 15.9770745374

In this case, the categorical variable indicating which tips are descendants of the
reticulation event is indeed relevant, and the heterosis effect is recovered.

This is a very simple example of how to include heterosis, but some general functions
to test for it, on networks with more than on hybrid, are also available.

4.A.5 Pagel’s Lambda

One classical question about trait evolution is the amount of ”phylogenetic signal” in a
dataset, that is, the importance of the tree structure to explain variation in the observed
traits. One way of doing measuring that is to use Pagel’s lambda transformation of
the branch lengths. This model assumes a BM on a tree where the internal branches
are multiplied by a factor λ, while the external branches are modified so that the total
height of the tree is constant. Hence, λ varies between 0 (the tree has no influence on
the data) and 1 (the tree is unchanged). Using the same branch length transformations,
this model can be straightforwardly extended to phylogenetic networks.

We can illustrate this with the predictor trait we used earlier. We use the same
function as before, only indicating the model we want to use:

fitPagel = phyloNetworklm(@formula(trait1 ~ 1), dat, truenet, model="lambda")

As it is indeed generated according to a plain BM on the phylogeny, the estimated λ
should be close to 1. It can be extracted with function lambda_estim:

julia> lambda_estim(fitPagel)

0.907356122898758

4.B Decomposition of the Covariance Matrix

In this section, we derive a general formula linking the covariance matrix of a network
to the covariance matrices of its underlying trees. We start by dealing with only one
hybridization event, and then show how to extend the formula to any number of hybrids.

Assume that we have a network N , that has at least one hybridization event (but
that might have more). Take p the pit of this hybridization, with transmissions γ from
its first parent a, and 1 − γ from it’s other parent b. We want to express V(γ) the
covariance matrix of the network, using V(γ = 0) and V(γ = 1) the covariance matrices
of the network where this hybridization event is suppressed.
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Proposition 4.B.1. The following proposition holds:

V(γ) = γV(1) + (1−γ)V(0)−γ(1−γ)
[
V(1)pp −V(1)ab +V(0)pp −V(0)ab

]
D(p) (4.13)

where D(p) is the matrix of nodes descending of p:

∀i, j ∈ N ,D(p)ij =

1 if i and j descendants of p

0 otherwise

Proof. Let i and j be two nodes of N . We have three distinct cases:

� i and j are not descendants of p. Then, by definition, no path going from i or j to
the root will go through p, and, from the general formula of the covariance matrix,
we can see that:

V(γ)ij =V(0)ij =V(1)ij

and the formula holds.

� i is a descendant of p, but not j. Remark that any path going from i to the
root must go through a or b, exclusively, so that the set of path is partitioned as

Pi = P γ=0i ∪ P γ=1i where P γ=0i and P γ=1i are the set of path going from i to the
root when the topology is such that, respectively, γ = 0 or γ = 1. Then using the
general formula, we get the following formula:

V(γ)ij =
∑
pi∈Pi
pj∈Pj

∏
e∈pi

γ(e)

∏
e∈pj

γ(e)

 ∑
e∈pi∩pj

`e

= γ
∑

pi∈P γ=1i
pj∈Pj

∏
e∈pi

γ(e)

∏
e∈pj

γ(e)

 ∑
e∈pi∩pj

`e

+ (1−γ)
∑

pi∈P γ=0i
pj∈Pj

∏
e∈pi

γ(e)

∏
e∈pj

γ(e)

 ∑
e∈pi∩pj

`e

= γV(1)ij + (1−γ)V(0)ij

� i and j are descendants of p. We write the following decomposition:

Cov
[
Xi ;Xj

]
= E

[
Cov

[
Xi ;Xj

∣∣∣ Xp ]]+Cov
[
E
[
Xi

∣∣∣ Xp ] ;E [
Xj

∣∣∣ Xp ]]
= Cov

[
Xi ;Xj

∣∣∣ Xp ]+Var
[
Xp

]
Then, from the recursive formulas:

Var
[
Xp

]
= γ2(Cov [Xa;Xa] + `1) + (1−γ)2(Cov [Xb;Xb] + `2) + 2γ(1−γ)Cov [Xa;Xb]

= γ2Var
[
Xp

∣∣∣ γ = 1
]
+ (1−γ)2Var

[
Xp

∣∣∣ γ = 0
]
+2γ(1−γ)Cov [Xa;Xb]

= γVar
[
Xp

∣∣∣ γ = 1
]
+ (1−γ)Var

[
Xp

∣∣∣ γ = 0
]

+γ(1−γ)
[
2Cov [Xa;Xb]−Var

[
Xp

∣∣∣ γ = 1
]
−Var

[
Xp

∣∣∣ γ = 0
]]
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(because γ2 = γ − γ(1 − γ) and (1 − γ)2 = 1 − γ − γ(1 − γ)). As a and b are
not descendants of p, from the above, V(γ)ab = V(0)ab = V(1)ab. In addition,

Cov
[
Xi ;Xj

∣∣∣ Xp ] is not dependent on γ anymore, so that:

Cov
[
Xi ;Xj

∣∣∣ Xp ] = γCov
[
Xi ;Xj

∣∣∣ Xp,γ = 1
]
+ (1−γ)Cov

[
Xi ;Xj

∣∣∣ Xp,γ = 0
]

and:
Cov

[
Xi ;Xj

∣∣∣ Xp,γ = 1
]
+Var

[
Xp

∣∣∣ γ = 1
]
= Cov

[
Xi ;Xj

∣∣∣ γ = 1
]

Putting everything together, we finally get the advertised formula:

V(γ)ij = γV(1)ij + (1−γ)V(0)ij −γ(1−γ)
[
V(1)pp −V(1)ab +V(0)pp −V(0)ab

]

Corollary 4.B.1. If N is tree like everywhere but in p (i.e. if there is only one hybridiza-
tion event), then the formula simplifies to:

V(γ) = γV(1) + (1−γ)V(0)− 2γ(1−γ)
[
tp − ts

]
D(p) (4.14)

where s is the source of the hybridization event.

This corollary is precisely Proposition 4.4 of the main text.

Proof. If N is tree-like everywhere but in p, then:

Cov [Xa;Xb] = σ
2ts and Var

[
Xp

∣∣∣ γ = 1
]
= Var

[
Xp

∣∣∣ γ = 0
]
= σ2tp

hence the simplification.

Proposition 4.B.2. Assume that N is a level-1 network. If there are k hybrid species
p1, · · · ,pk in the network N , with parents (a1,b1), · · · , (ak ,bk) and coefficients γ1, · · · ,γk,
then the variance matrix can be written as a linear combination of variance matrices of
trees:

V(γ1, · · · ,γk) =
∑

a∈{0,1}k

k∏
i=1

γi(ai)

V(a)−
k∑
j=1

γj(aj − 1)(V(a)pjpj −V(a)ajbj )D(pj)


where, for any 1 ≤ i ≤ k, γi(1) = γi(−1) = γi, and γi(0) = (1−γi).

We show this formula by recurrence, using the following lemma:

Lemma 4.B.1. Assume that N is a level-1 network. Take p1 and p2 two hybrid nodes,
with parents (a1,b1) and (a2,b2). Denote by des(p1) the set of all descendants of p1. The
following holds:

p2 ∈ des(p1) ⇐⇒ a2 ∈ des(p1) and b2 ∈ des(p1)
Proof. The reciprocal assumption simply follows the definition of descending nodes, and
holds for any kind of network. Let’s focus on the direct implication. Assume that p2
is a descendant of p1, and that a2 is not. We show that this contradicts the level-1
assumption. Indeed, as p2 is a descendant of p1, there exits a path t going from the
root to p2 and going through p1. Similarly, as a2 is not a descendant of p1, there exits
a path t′ going from the root to a2 and not going through p1. Then, the set of edges
(t∪ t′) \ (t∩ t′) defines a cycle above p2. But p1 is in this cycle, hence some edges are in
two cycles, which contradicts the level-1 assumption. This ends the proof.
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Proof of proposition 4.B.2. We show the formula by recurrence. If there is only one
hybrid, then, from proposition 4.B.1, we have:

V(γ1) = γ1
[
V(1)− (1−γ1)

(
V(1)p1p1 −V(1)a1b1

)
D(p1)

]
+ (1−γ1)

[
V(0)−γ1

(
V(0)p1p1 −V(0)a1b1

)
D(p1)

]
and the formula holds. Assume now that it holds for k −1 hybrids, and let’s prove it for
k. From the recurrence, we get:

V(γ1, · · · ,γk) =
∑

a∈{0,1}k−1

k−1∏
i=1

γi(ai)

V(a,γk)−
k−1∑
j=1

γj(aj − 1)(V(a,γk)pjpj −V(a,γk)ajbj )D(pj)


If a ∈ {0,1}k−1 we have, from proposition 4.B.1:

V(a,γk) = γk
[
V(a,1)− (1−γk)

(
V(a,1)pkpk −V(a,1)akbk

)
D(pk)

]
+ (1−γk)

[
V(a,0)−γk

(
V(a,0)pkpk −V(a,0)akbk

)
D(pk)

]
and, for any 1 ≤ j ≤ k − 1:

V(a,γk)pjpj −V(a,γk)ajbj = γk
(
V(a,1)pjpj −V(a,1)ajbj

)
+ (1−γk)

(
V(a,0)pjpj −V(a,0)ajbj

)
−γk(1−γk)

(
V(a,1)pkpk −V(a,1)akbk

)(
D(pk)pjpj −D(pk)ajbj

)
−γk(1−γk)

(
V(a,0)pkpk −V(a,0)akbk

)(
D(pk)pjpj −D(pk)ajbj

)
but, from lemma 4.B.1, for any 1 ≤ j ≤ k −1, D(pk)pjpj −D(pk)ajbj = 0. Indeed, if pj is a

descendant of pk, then aj and bj are too, and D(pk)pjpj =D(pk)ajbj = 1, and, if pj is a not

descendant of pk, then aj and bj are not either, and D(pk)pjpj =D(pk)ajbj = 0. Hence:

V(a,γk)pjpj −V(a,γk)ajbj = γk
(
V(a,1)pjpj −V(a,1)ajbj

)
+ (1−γk)

(
V(a,0)pjpj −V(a,0)ajbj

)
and:

V(γ1, · · · ,γk) =
∑

a∈{0,1}k−1

k−1∏
i=1

γi(ai)

×
γkV(a,1)− (1−γk)

(
V(a,1)pkpk −V(a,1)akbk

)
D(pk)

−
k−1∑
j=1

γj(aj − 1)(V(a,1)pjpj −V(a,1)ajbj )D(pj)


+ (1−γk)

V(a,0)−γk
(
V(a,0)pkpk −V(a,0)akbk

)
D(pk)

−
k−1∑
j=1

γj(aj − 1)(V(a,0)pjpj −V(a,0)ajbj )D(pj)


and the announced formula follows.
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Corollary 4.B.2. Assume that N is a level-1 network, and that there are exactly k hybrid
species p1, · · · ,pk in the network N , i.e. that the rest of the network is tree-like. Then
the formula can be simplified to:

V(γ1, · · · ,γk) =
∑

a∈{0,1}k

k∏
i=1

γi(ai)V(a)− 2
k∑
j=1

γj(1−γj)(tpj − tsj )D(pj)

where, for any 1 ≤ i ≤ k, sj is the MRCA of aj and bj (source of the hybrid).

Proof. If there are exactly k hybrids in N , then, for any a ∈ {0,1}k, V(a) is the variance
matrix of a tree. Hence V(a)pjpj = tpj , and V(a)ajbj = tsj for any 1 ≤ j ≤ k, and the second
term of the formula becomes:

M =
∑

a∈{0,1}k

k∏
i=1

γi(ai)
k∑
j=1

γj(aj − 1)(V(a)pjpj −V(a)ajbj )D(pj)

=
∑

a∈{0,1}k

k∏
i=1

γi(ai)
k∑
j=1

γj(aj − 1)(tpj − tsj )D(pj)

=
k∑
j=1

 ∑
a∈{0,1}k

k∏
i=1

γi(ai)γj(aj − 1)
 (tpj − tsj )D(pj)

but: ∑
a∈{0,1}k

k∏
i=1

γi(ai)γj(aj − 1) =
∑

a∈{0,1}k

∏
i,j

γi(ai)γj(aj)γj(aj − 1)

=
∑

a∈{0,1}k−1

∏
i,j

γi(ai)
∑

aj∈{0,1}
γj(aj)γj(aj − 1)

=

 ∑
a∈{0,1}k−1

∏
i,j

γi(ai)

(2γj(1−γj))
= 2γj(1−γj)

∏
i,j

(γi(0) +γi(1))


= 2γj(1−γj)

Hence, M =
∑k
j=12γj(1−γj)(tpj − tsj )D(pj), and we get the announced formula.

Other Form for the Variance Matrix. From the proof of proposition 4.B.1, we can
state a more precise formula:

Proposition 4.B.3. For a level-1 network:

V(γ)ij =


V(0)ij if i and j are not descendants of p

γV(1)ij + (1−γ)V(0)ij if i or j is descendant of p

V(0)ij − 2γ(1−γ)(tp − ts) if i and j are both descendants of p

(4.15)
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Proof. The first two cases follow directly from the proof of proposition 4.B.1. The last
case follows from the fact that, for a level-1 network, V(0)pp = V(1)pp. Indeed, for a
level-1 network, all the nodes between the source s and the pit p are tree-like. Hence,

Var
[
Xp

∣∣∣ γ = 1
]
= Var [Xs] + `s→p = Var

[
Xp

∣∣∣ γ = 0
]
, where `s→p = tp − ts is the time

elapsed between s and p, that do not depends on γ . As Cov [Xa;Xb] = Var [Xs], the
formula follows.
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Extensions and Perspectives
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In this section, we try to alleviate some of the (numerous) assumptions we made, and
explore their consequences on our framework. These developments are still preliminary
but could serve as inspiration for future work on the subject.

5.1 Dealing with Tree and Trait Uncertainty

As stated in the introductory chapter (Sections 1.2.1 and 1.4.5.1), we assumed throughout
this work that both the tree (topology and branch lengths) and the tip data were known
without any uncertainty. In this section, we first try to assess, through simulations, the
bias introduced when these assumptions are not fulfilled. We then briefly review some
of the adaptations that could be made to account for the trait measurement errors.

5.1.1 Simulation Studies

In this section, we try to assess the impact of measurement errors or tree misspecifications
on parameters estimation, when they are not explicitly accounted for.

Experimental Design. We used here the same simulation scheme than in the multivari-
ate analysis of Chapter 3 (see Section 3.4). The base scenario had 3 shifts, with fixed
positions and values, on a 160 taxa tree (see Fig. 3.4.1, top-left). The base scaling factor
of 1.25 was applied to the shift values. Four traits were simulated on the tree, with a
scalar selection strength matrix with α = 1, a tip stationary variance γ2 = 1, and a base

197
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correlation rd = 0.4. We added the three parameters described below, that we varied one
by one. First, we added some measurement errors at the tips. To do that, we simulated
a matrix Y of traits at the tips according to the model at hand, and then generated a
matrix of observations Yobs, adding a noise independently to each tip:

Yiobs ∼N (Yi ,P) with P =


e re re re
re e re re
re re e re
re re re e

 .
� e is a diagonal measurement error variance on the tip traits, that took 9 values

between 0 and 5. (re was fixed to 0 when e varied). It was applied independently
to all the tip measurements. When e = 0 the model is correctly specified, and when
e > γ2 = 1, the error variance is larger than the tree-induced variance, so we expect
the method to behave poorly.

� re is a correlation error factor for the measurement at the tips, that took 5 values
between 0 and 0.8. When re varied, e was fixed to 0.5. This parameter is used to
asses the impact of the measurement error correlations on the method, for a fixed
level of noise.

The third parameter impacted the branch lengths of the trees:

� 1/l is the parameter of a gamma distribution, that took 6 values between 0 and 1.
We used this parameter to alter the original simulation tree. For a given l value,
we drew a parameter δ ∼Gamma(l,1/l), so that δ had expectation 1 and variance
1/l. We then applied Pagel’s δ transform (see Section 1.4.2.3 of the introductory
chapter) to the tree, in order to alter its branch lengths, while keeping the tree
ultrametric. Traits were simulated under this altered tree, whereas parameter
inference was performed using the original tree. When 1/l = 0, then the variance
is formally equal to 0, and both tree are equal. When 1/l increases, the variance
increases, and the altered tree moves away from the original (observed) one. See
Figures 1.4.9 and 5.1.4 for examples of several altered version of an original tree.

Effects of Measurement Error. In Figure 5.1.1, we first analyse the effects of mea-
surement error e on the estimations. As expected, the measurement error progressively
dilutes the phylogenetic signal, with a sharp decrease of performances when e is larger
than γ2 = 1. When the error is large, then the shifts tend to be missed, and the variance
is over-estimated. In addition, the selection strength is also over-estimated.

This is consistent with the conclusions of Cooper et al. (2016), who found that the
OU was erroneously favored over the BM for simulated datasets with added measurement
errors. Indeed, as we saw in Section 1.4.2.4 of the introductory chapter, the univariate
OU can be seen as a tree transformation, that extends the terminal branches when
α increases, reducing the phylogenetic signal (see Fig. 1.4.10). When the measurement
errors are not accounted for explicitly in the model, they act like longer terminal branches,
and have a tendency to dilute the phylogenetic signal. They hence favor artificially
large values of α. This is another evidence that this α parameter, that was initially
introduced as a selection strength parameter, should be interpreted with caution (see
also Section 3.6.1 of Chapter 3).
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Figure 5.1.1 – Estimated number of shifts, ARI and Root Mean Square Error (RMSE) of
the diagonal coefficient of stationary variance matrix Γ and selection strength α, for Phy-
logeneticEM with the default model selection criterion, when the diagonal measurement
errors e increase.

Effects of Measurement Error Correlations. On Figure 5.1.2, we see that increasing
the correlations of the measurement errors, for a fixed level of noise (e = 0.5), does not
substantially degrade the estimations. The intensity of the measurement error, rather
than its structure, hence alters the results.
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Figure 5.1.2 – Estimated number of shifts, ARI and Root Mean Square Error (RMSE)
of the diagonal coefficient of stationary variance matrix Γ and selection strength α, for
PhylogeneticEM with the default model selection criterion, when the correlations re of
the measurement error increase (with e = 0.5 fixed).

Effects of Tree Misspecification. On Figure 5.1.3, we show the impact of a tree mis-
specification on the parameters estimation. It seems that misspecified branch lengths
tend to lead to an increase in the number of false-positives, with an ARI that drops
when the simulation tree differs more and more from the tree used in the analysis. Here,
we present the results of two different model selection criteria. In blue (“LINselect ml”)
is the default criterion, that we’ve been using until now. In red (“LINselect lsq”) is an
alternative criterion, where the best solution in α, for a given number of shifts, is taken
to be the one minimizing the least squares criterion, instead of the maximum likelihood.
It seems that this criterion is more robust to the tree misspecification, as it selects for
less shifts. However, the ARI scores obtained using this criterion are not dramatically
improved, compared to the default selection criterion.

On Figure 5.1.4, we show two typical scenarios, with, on the left, the original tree
(with 1/l = 0.75), and, on the right, the solution found on the wrong observed tree. The
first line presents a “good” scenario, where the transformation factor δ is greater than 1,
so that most of the variation occurs on tip branches. In such a scenario, clades are not
clearly marked, and the structured differences are mainly due to the shifts. The right
solution is almost found in that case. On the second line, we show a “bad” scenario,
where δ < 1, so that most of the variation on the modified tree happens on ancestral
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Figure 5.1.3 – Estimated number of shifts, ARI and Root Mean Square Error (RMSE)
of the diagonal coefficient of stationary variance matrix Γ and selection strength α, for
PhylogeneticEM with the default model selection criterion (blue), or an alternative one
(red) when the tree modification factor 1/l increases.

branches. This tends to create well separated clades, with highly structured variations of
the trait. When using the original tree for inference, these variations cannot be explained
by the tree, as the clades are not that well separated anymore, and the method makes
up for this by adding numerous shifts.
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Figure 5.1.4 – Simulation scenario with the true tree and shifts (left) and inferred so-
lutions with the wrong tree (right), with 1/l = 0.75. The upper line shows a “good”
scenario (the true solution is almost perfectly recovered), and the bottom line a “bad”
one (many shifts are added to make up for the lost clade structure of the tree).

These simulations show us that the tree branch length misspecification can have
an unexpected and deleterious impact on shift detection. Going further, errors in the
topology of the tree are likely to alter the results even more. There are no simple ways to
take these tree uncertainties into account in our framework. This is one of the strength
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of Bayesian methods, that perform tree inference and trait analysis at once, rather than
using a two step procedure (see Section 1.4.5.3 of the introductory chapter).

5.1.2 Including Trait Measurement Errors

As presented in the introductory chapter (Section 1.4.5.1), several methods already exist
to cope with measurement errors. These methods could be easily adapted to our frame-
work. Indeed, errors just add an extra layer to our hierarchical modeling: as exposed
in Section 1.4.5.1, we link each observation on the tree with its species by a zero-length
branch. What we used to consider as tips are now internal nodes, and the observations,
for each species, are linked to them by zero length branches. Using the same notations
as before (see Section 3.2), we denote by X = (Z,Y) the matrix of (non-observed) traits
at the internal nodes and tips of the tree, and by Yo the matrix of observed traits. We
assume that there are m internal nodes numbered from 1 to m, (1 is the root), n tips
numbered from m+1 to m+n, and no observations, numbered from m+n+1 to m+n+no.
See Figure 5.1.5 for an illustration of these notations. The model can then be written as:

X1 ∼N (µ,Γ) for the root,

Xj
∣∣∣ Xpa(j) ∼N

(
Xpa(j) +∆j , `jR

)
for nodes 2 ≤ j ≤m+n,

Yio
∣∣∣ Ypa(i) ∼N

(
Ypa(i),P

)
for observations m+n+1 ≤ i ≤m+n+no.

To keep things simple, we only present details for the BM.

Yo
19

Yo
18

Yo
17

Yo
16

Yo
15

Yo
14

Yo
13

Yo
12

Yo
11

Yo
10

Y9

Y8

Y7

Y5

Y6

Z1

Z2

Z3

Z4

Figure 5.1.5 – A phylogenetic tree with 5 tips and 4 internal nodes, and several mea-
surements at each tips. For instance, species 5 was measured twice, while species 6 was
only measured once. Terminal branches linking tips (noted Y) with observations (noted
Yo) have length 0.

Using the graphical model as in Section 2.4, we can factorize the likelihood of the
completed dataset pθ(Z,Y,Yo) as a product of Gaussian densities over the edges of the
tree. We are hence able to write the same EM algorithm as before. As in Section 3.C,
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the expectation given the observation can be written as:

−2E [ logpθ(X) | Yo ] = p(m+n) log2π+ p
m+n∑
j=2

log`j

+ log |Γ|+ tr
{
Γ−1Var

[
X1

∣∣∣ Yo ]}+ ∥∥∥∥E [
X1

∣∣∣ Yo ]−µ∥∥∥∥2
Γ−1

+ (m+n− 1)log |R|+
m+n∑
j=2

`−1j tr
{
R−1Var

[
Xj −Xpa(j)

∣∣∣ Yo ]}
+
m+n∑
j=2

`−1j
∥∥∥∥E [

Xj −Xpa(j)
∣∣∣ Yo ]−∆j∥∥∥∥2

R−1

+no log |P|+
m+n+no∑
i=m+n+1

tr
{
P−1Var

[
Yio −Ypa(i)

∣∣∣ Yo ]}
+
m+n+no∑
i=m+n+1

∥∥∥∥E [
Yio −Ypa(i)

∣∣∣ Yo ]∥∥∥∥2
P−1
.

At the M step, the estimators for the parameters are the same than in the case without
error, and we can get an estimation of the measurement error matrix in a similar way:

noP
(h+1) =

m+n+no∑
i=m+n+1

Var(h)
[
Ypa(i)

∣∣∣ Yo ]+ (
E(h)

[
Yio −Ypa(i)

∣∣∣ Yo ])(E(h)
[
Yio −Ypa(i)

∣∣∣ Yo ])T .
At the E step, we can write a similar upward-downward algorithm, using the graphical
model presented in Figure 5.1.5. All the propagation formula we wrote can be readily
applied, using the following model, adapted from Equation (3.9) of Section 3.C.2:

∀j ∈ J2 ,m+nK

 E
[
Xj

∣∣∣ Xpa(j)
]
=mj(X

pa(j)) =QjX
pa(j) + rj

Var
[
Xj

∣∣∣ Xpa(j)
]
= Σj

∀i ∈ Jm+n+1 ,m+n+noK

 E
[
Yio

∣∣∣ Ypa(i)
]
= Ypa(i)

Var
[
Yio

∣∣∣ Ypa(i)
]
= P.

The missing data can be handled the same way as before.
Once implemented, this method to deal with measurement errors should improve the

robustness of the algorithm to trait uncertainty. Some tests would be needed to assess
the quality of the estimation of the measurement error, especially when there are only
but a few species with multiple measurements. It such situations, it might be more
robust to estimate the measurement error beforehand, based on some prior information
on the way the data was gathered, and then to fix P during the inference step (as in Ives
et al. 2007).

5.1.3 Factor Analysis

Interestingly, the framework developed above could also be used in a factor analysis. The
idea of factor analysis is to reduce the p observed traits to a smaller number q < p of
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hidden “factors” that would capture the dynamic of trait evolution. The q factors would
then evolve on the tree as, for instance, a BM with no correlation. The observed “real”
traits would then be obtained as a linear combination of these factors, plus an error.
This hierarchical model would read, using the notations and numbering defined above
(see Fig. 5.1.5):

F1 ∼N (µF ,ΓF) for the root,

Fj
∣∣∣ Fpa(j) ∼N (

Fpa(j) +∆j , `jIq
)

for nodes 2 ≤ j ≤m+n,

Yio
∣∣∣ Fpa(i) ∼N (

Fpa(i)L,P
)

for observations m+n+1 ≤ i ≤m+n+no.

Here, F is the (m+ n)× q matrix of ancestral and current factors, that evolve according
to an independent BM on the tree with shifts ∆ (size (m + n) × q), and ancestral q-
dimensional expectation and variance µF and ΓF . L is a q× p matrix of loadings, and P
is a p×p covariance error matrix, accounting for representation and measurement errors
simultaneously.

When written this way, the factor model is very similar to the BM with errors pre-
sented above, and the upward-downward algorithm for moments computation at the E
step could be readily used here. Two main difficulties might arise. First, when the
number of latent trait q is fixed, the M step would need to estimate P and L, which
might cause some identifiability problems. The classical constraints on the matrix of
loadings (upper-triangular matrix with positive diagonal) would need to be analysed in
this context. The second problem would then be the selection of q itself. Indeed, one
would need to design an adequate model selection criterion to select for the right number
of shifts K and the right number of factors q. In addition, trying to infer the model for
every couple (K,q) might become computationally burdensome.

We did not pursue this direction, but the model could be interesting to study. A
version of it was already analysed in a Bayesian framework (without shift) by Tolkoff
et al. (2017). We saw in Section 3.5.2 of Chapter 3 that our method was somehow
sensitive to the number of traits considered in the analysis. This modelling, that tries
to select for only a small number of independent factors, could make the method more
robust to this kind of trait overflow.

5.2 Convergence and Sparsity

In Section 1.5.3.2 (see also Sections 2.C.4 and 3.C.3), we saw that, using the linear
formulation (see e.g. Equation (3.2)) of the problem, a (group)-lasso penalty could be
used to select for non-zero lines of the shift matrix ∆, and hence the position of the
shifts. Here, we show how different penalties can induce some other desired structural
constraints on the shifts, such as convergence, or sparsity in the number of shifted traits.
In all this section, for the sake of clarity, we assume that all the tips are independent (i.e.
related by a star-tree). If the tree-induced correlations are known, it is straightforward
to reduce theoretical considerations to that simple case (see Section 3.C.3).

5.2.1 Convergence and Fused-ANOVA

In all the developments above, we made the strong assumption that there was no homo-
plasy (see Sections 2.3.1 and 3.2.1). However, in many cases, evolutionary biologists are
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actually interested in these convergence phenomena (see e.g. Mahler et al. 2013; Aristide
et al. 2016). The definition of the term “convergence” is fluctuating in the literature (see
Stayton 2015 for a review). Here, we simply define convergence as two distinct clades
having the same optimal trait values. In our framework, as any shift produces a new
optimum, this situation is forbidden, and the two clades will typically be found to have
very similar, but still different, optima.

If we want to account for convergence, we need to count the complexity of a model
not by its number of shifts, but by its number of “regimes”, i.e. the number of truly
different optima, no matter how many shift. This means that we need to find a new
way of navigating through the models. Indeed, in our EM approach, we split the space
of models by their number of shifts, and this partition might not be relevant anymore.
In addition, we cannot use the results exposed in Section 1.1 for model selection, as we
did in Section 2.3.1. Another penalty criterion, based on a yet to compute complexity,
would also be required.

As an alternative to the rigorous, full likelihood approach, we propose here a simple
way to detect convergence a posteriori, using a fused-ANOVA penalty (Chiquet et al.,
2017), that uses a penalty similar to the fused-lasso (see Section 1.5.3.2) to ensure that
only a few regimes are actually different. Assume that we found a homoplasy-free solution
with K shifts thanks to our previous method, so that we can classify all the tips of the tree
in one of the K+1 groups created. More specifically, we know a map κ : J1 ,nK→ J1 ,K+1K
that to a tip i associate its group κ(i). Each group k has nk members, with

∑K+1
k=1 nk = n.

Let Y be the n × p matrix of observations, and β the (K + 1) × p matrix of distinct
optimal values of the regimes. Then, the fused-ANOVA is the solution to the following
minimization problem (Chiquet et al., 2017):

argmin
β∈R(K+1)×p


n∑
i=1

∥∥∥Yi −βκ(i)∥∥∥2
2
+λ

∑
1≤k,l≤K+1

k,l

ωk,lΩ(βk −βl)

 . (5.1)

Here, Ω is a given norm on Rp, that penalizes large differences between regimes values,
and (ωkl)1≤k,l≤K+1 are weights, that need to be chosen properly. Chiquet et al. (2017)
offer several forms for these norm and weights that have some good theoretical properties.
In particular, if ωkl = nknl and Ω is an `q-norm, with q ∈ N∗ ∪ {+∞}, then the path of
solution {β(λ) : λ > 0} has no split. In other words, when λ increases, the penalty
becomes stronger, so that groups are progressively merged together, in such a way that
if two groups are merged for a given λ1, then they are still merged for any λ2 ≥ λ1.

The choice of λ itself remains a problem, as we don’t have any good model selection
criterion available yet. Cross validation could be used as a first guess.

An alternate way is to use the lasso penalty from the beginning, instead of the EM
algorithm. Using the same notations, the corresponding minimization problem is:

argmin
∆∈R(m+n)×p


n∑
i=1

∥∥∥Yi − (T∆)i∥∥∥2
2
+λ1

∑
1≤j≤m+n

ω1
j

∥∥∥∆j∥∥∥
2
+λ2

∑
1≤k,l≤n

ω2
k,lΩ((T∆)k − (T∆)l)

 .
However, the problem of calibrating the tuning parameters λ1 and λ2 remains.

It is also possible to write an EM to maximize the penalized likelihood directly.
However, it is not clear that this new criterion can be optimized efficiently at the M
step. The discrete shift location algorithm should in particular probably be revised.
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5.2.2 Sparse Number of Shifted Traits

Another strong assumption we made in Chapter 3 is that, in the multivariate case, all
the traits shift at the same time. This assumption might be impairing when the number
of traits grows, and can only be valid for carefully pre-selected traits that are assumed
to shift in a synchronized way. We saw on the lizard example (Section 3.5.2, Fig. 3.5.2)
that the number of shifts detected tends to decrease when there are more traits included
in the analysis. Intuitively, the more traits one includes, the more “unlikely” they are to
shift together, and the more “costly” including a shift becomes.

As in the previous section, designing an exact EM algorithm to deal with this problem
might be difficult. Indeed, models in this setting would be indexed not only by the
number of shifts, but also by the number of non-zero components in each of them, so
that the maximization step might become prohibitive, and the model selection inefficient.

Again, one easy way to deal with this problem would be to simply add a sparsity
inducing penalty. The following minimization problem could be solved:

argmin
∆∈R(m+n)×p


n∑
i=1

∥∥∥Yi − (T∆)i∥∥∥2
2
+λ1

∑
1≤j≤m+n

ω1
j

∥∥∥∆j∥∥∥
2
+λ2 ‖∆‖1

 .
Where we used a “sparse-group-sparse” penalty (see Section 1.5.3.2). As previously, the
problem of selecting the two tuning parameters remains.

5.3 Non-Ultrametric Trees

In Chapter 2 and 3, we made the assumption that the tree was ultrametric. This assump-
tion is reasonable in many cases, as one usually only has access to trait measurements
for extant species. However, such a framework does not allow us to deal with fossil data
points that might be available for some traits of some species. When available, these
fossils provide the researcher with unique insights on the process, and should not be
ignored. For instance, and as expected, incorporating them in an ancestral trait recon-
struction study is known to significantly improve the estimates (Finarelli et al., 2006;
Albert et al., 2009). Non-ultrametric trees are also common in some other biological
fields, such as virology, where organisms evolve very fast, and can be sampled over long
periods of time (Faria et al., 2011).

In the developments above, this assumption was used twice: for the identifiability
and the computation of the models complexity in Chapter 2; and for tree re-scaling in
Chapter 3. Note that in both problems, this assumption allowed us to somehow reduce
the OU to a more manageable BM.

As the OU has a dynamical component, we expect that having un-synchronized data
points will generally improve the identifiability of the model. This has already been
observed on simulation studies (Slater et al., 2012). In the next two sections, we review
the changes induced by non-ultrametric trees, and expose some possible solutions to deal
with such trees.

5.3.1 Identifiability and Model Selection

When assessing identifiability in Chapter 2, the fact that we only dealt with ultrametric
trees allowed us to reduce each regime to s single color (through Lemma 2.2.1 and
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Proposition 2.3.2), and hence to use the combinatorial results of Section 1.1. This is not
true anymore, and has several consequences, listed below.

Identifiability of the Root Value. In Section 1.4.1.2, we saw that, on an ultrametric tree
with height h, the root expectation µ and the root optimal value β0 of an OU (without any
shift) only appeared on the tips through the linear combination λ = e−αhµ+(1−e−αh)β0,
so that only λ was identifiable, and not β0 and µ separately (see Fig. 1.4.3). On a
non-ultrametric tree, we have at least two tips i and j such that ti , tj , so that the

expectations on these two tips are, respectively, e−αtiµ + (1 − e−αti )β0 and e−αtjµ + (1 −
e−αtj )β0. Formally, we hence get a system with two independent equations, so that the
two parameters become identifiable.

Identifiability of Shifts Position. We use a simple example to show how a configu-
ration that was not identifiable on an ultrametric tree can become identifiable on a
non-ultrametric tree.

t4 = t6

t5

t3

t2

t1 = 0

Y4

Y5

Y6 Y7

Z1

Z2

Z3

δ1

δ2

Y4

Y5

Y6 Y7

Z1

Z2

Z3

δ1
′

δ2
′

Figure 5.3.1 – A non-ultrametric tree, with two shifts configurations that are equivalent
for a BM, but not for an OU.

The two shifts configurations presented in Figure 5.3.1, are not identifiable for a BM
(or an OU on an ultrametric tree), but actually are on a non-ultrametric tree. Indeed,
using the notation of Figure 5.3.1, we have, in the first configuration (taking µ = β0 = 0,
and using Equation (2.5) of Section 2.2.3):


E [Y4] = δ1(1− e−αt4)
E [Y5] = δ1(1− e−αt5) + δ2(1− e−α(t5−t2))
E [Y6] = δ1(1− e−αt6) + δ2(1− e−α(t6−t2))

(5.2)
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and, in the second configuration:
E [Y4] = δ

′
1(1− e−αt4) + δ′2(1− e−α(t4−t2))

E [Y5] = δ
′
1(1− e−αt5)

E [Y6] = δ
′
1(1− e−αt6)

(5.3)

To prove that the two configuration produce the same trait distribution at the tips, we
need to show that the induced expectations at the tips are equal (shifts do not impact
the variances). If the tree is ultrametric, then t4 = t5 = t6, and the last two equations
are the same. We can hence take:

δ′1 = δ1 + δ2
1− e−α(t5−t2)
1− e−αt5

δ′2 = −δ2
1− e−α(t5−t2)
1− e−αt5

1− e−αt4
1− e−α(t4−t2) = −δ2

to get two configurations that produce the same distribution of the trait at the tips
(note that when α→ +∞, then δ′1 = δ1 + δ2 and δ′2 = −δ2, so that we find back the BM
solution). However, when t5 , t6, then the three equations become linearly independent,
and having only two free parameters, do not have any solution. Intuitively, when the two
branches below the shift δ2 do not have the same length, because of the non-linearity of
the actualization factor, it is impossible to mimic the effect of the shifts with a different
value of δ1.

Note that this same example can be used to show that even non parsimonious shift
configurations can become identifiable on a non-ultrametric tree. On Figure 5.3.2, we

t4 = t6

t5

t3

t2

t1 = 0

Y4

Y5

Y6 Y7

Z1

Z2

Z3

δ1

δ2δ3

Y4

Y5

Y6 Y7

Z1

Z2

Z3

δ1
′

δ2
′

Figure 5.3.2 – A non-ultrametric tree, with a “non parsimonious” solution on the left
that cannot be reduced to the “parsimonious” one on the right for an OU.

show a non-parsimonious solution with three shifts, that used to be forbidden, as it could
be replaced by a configuration with only two shifts. Writing equations similar to (5.2)
and (5.3), we can show that the system of equation only has a solution when the tree
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is ultrametric. In general, it is hence impossible to get the tips trait distribution on the
left with only two shifts.

This has an important implication on the linear model view of the problem. Recall
from Equation 2.5 that, for a univariate OU model, the vector of traits Y measured at
the tips of a tree with n tips and m internal nodes, is such that:

Y = T(α)∆+E

where T(α) = T−ATB, with T the incidence matrix of the tree, and A = Diag(e−αti ,m+1 ≤
i ≤ m + n), B = Diag(0, eαtpa(i) ,2 ≤ i ≤ m + n) diagonal matrices of sizes n and m + n
representing the actualization factors. E is an error vector with a variance structure
defined by the tree and the OU model. Note that, when the tree is ultrametric with
height h, then A = e−αhIn, and we get T(α) = TW(α), with W(α) invertible, as in
Equation (2.6). In general however, T cannot be factorized, so that T(α) does not
directly inherit its properties from T.

In particular, Proposition 2.3.6 that ensured us, in the ultrametric case, that a shift
configuration was parsimonious if and only if the corresponding columns of the regression
incidence matrix T were linearly independent cannot be used anymore. On a non-
ultrametric tree, it is easy to show that only the direct implication is still true: if a
shift configuration is parsimonious, then the corresponding columns of T(α) are linearly
independent. As shown by the example above, the converse statement is false.

This leads us to a new definition of what is an acceptable model with K shifts: it is
not just a parsimonious model, but a model that is such that the corresponding columns
of T(α) are linearly independent. A general study of these models would be needed.
As in Section 2.3, we would like to know, first, the size of an equivalent class (as in
Propositions 2.3.3), and, second, the number of truly different models one has for a fixed
number of shifts (as in Proposition 2.3.5). From the simple examples above, we see that
adding fossils, as expected, allows us to choose between different scenarios that were not
identifiable before. Hence, the number of distinguishable models should be bigger. In
addition, we can have the intuition that identifiability will highly depend on the number
of non-synchronized tips below each shift. It is hence probable that no general formula
can be easily derived in this case.

Model Selection. The fact that we are not able in general to compute the true number
of different models might impair our model selection procedure, that took this number
explicitly into account (see Proposition 2.4.1 in Section 2.4.2). One simple solution is to
use the natural bound we have of this number of models. For a tree with m internal nodes
and n tips, the (unknown) number of different models N I

K is bounded by the number of
possible allocations of K shifts on the m+n− 1 internal branches:

N I
K ≤

(
m+n− 1

K

)
.

This bound is actually sufficient to derive a penalty that fulfills the conditions of the
LINselect model selection (Theorem 1.5.2), recalled in the introductory chapter (Sec-
tion 1.5.4), and used in Chapter 2 (Section 2.4.2). To see this, let’s assume, for the
sake of clarity, that we are in the univariate case, and that we already corrected for the
phylogeny (for a known α). We are then in the classical linear model setting for model
selection:

Y = s+γE , E ∼N (0,In)
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with models (Sη)η∈M that are linear sub-spaces of Rn defined by the shift positions on

the tree, with dimension Dη =
∣∣∣η∣∣∣ = Kη +1.

The crucial point, when applying Theorem 1.5.2, is to find a set of weights (Lη)η∈M
such that:

�
∑
η∈M(Dη +1)e−Lη =Ω′ < +∞;

� Lη is of the order than Dη .

Taking the proof of Proposition 2.4.1 (see Section 2.E), we can see that this can be
achieved by just replacing N I

K by its upper bound in the expression of the weights:

LK = log
(
m+n− 1

K

)
+2log(K +2),∀K ∈ J0 ,p − 1K.

Indeed, we get:

Ω′ =
∑
η∈M

(Dη+1)e
−Lη =

p−1∑
K=0

N I
K (K+2)e

−LK ≤
p−1∑
K=0

(
m+n− 1

K

)
(K+2)e−LK ≤

p−1∑
K=0

1
K +2

≤ log(n)

and, using the same inequalities as in Section 2.E:

LK = log
(
n+m− 1

K

)
+2log(K +2) ≤ (K +1)(2 + log(2) + log(n)) ≤ p(2 + log(2) + log(n))

All the subsequent derivations of Section 2.E then hold. This proves that Proposi-
tion 2.4.1 still holds when we choose a more stringent set of weights Lη . The practical
properties of such a penalty would need to be evaluated on simulations. For example,
because we use an upper bound of the number of models, we expect that the criterion
might have a tendency to over-penalize models with a great number of shifts.

5.3.2 Inference of the OU

We saw in previous chapters that the selection strength parameter α, that represents a
dynamic aspect of the evolution model, was rather poorly estimated when using data
coming from a single time point, at the tips of an ultrametric tree (see Section 2.5,
Fig. 2.5.2 and Section 3.4). Having access to fossil data points should break synchronic-
ity, and hence help us estimate this α parameter. In Slater et al. (2012), the authors
indeed showed on some simulations that including some fossil information on the analy-
sis helped to discriminate between several dynamical models of evolution, including the
BM, AC/DC, and OU.

However, the inference method of Chapter 3 heavily relies on the equivalency be-
tween an OU and a BM on a re-scaled tree, that only holds for an ultrametric tree (see
Sections 1.4.2.4 and 3.2.4). We hence need to design a new method to explicitly deal
with the OU in the multivariate case. Using the EM framework, we can readily see
that the E step is not a problem. In Section 3.C, we indeed described a quite general
upward-downward algorithm, that can deal with a broad class of Gaussian processes,
including the general OU, on any dated tree.

The M step would then be the limiting point. In the univariate case, we showed that
the efficient shift allocation algorithm that worked for the BM could not be used anymore,
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because of the non-independent increments of the OU (see Sections 2.4, 2.C.3 and 3.C).
We hence resorted to heuristics in order to raise, if not maximize, the objective function
at each step of the EM. This leads to a Generalized EM algorithm (GEM Dempster et al.,
1977), that behaved well in the univariate case, but was quite slow compared to the re-
scaling tree (see Section 2.5). We sketch here two simple heuristics that could be used
in the multivariate case for the OU. The first one, based on a lasso penalty, is a direct
adaptation from the univariate case. The second one, based on a binary segmentation
algorithm, is a promising and possibly fast alternative.

A Lasso Based Heuristic. In the multivariate setting, with a scalar OU (scOU), an
heuristic based on a lasso penalty can be readily adapted from the univariate case,
developed in Section 2.C.3. At iteration (h+1) of the M step, the optimal shift location
boils down to the minimization of the following sum of costs over all the branches of the
tree:

COU =
m+n∑
j=1

(
1− e−2α`j

)−1 ∥∥∥∥E(h)
[
Dj

∣∣∣ Y]
−Ejβj

∥∥∥∥2
(Γ(h))−1

where Dj = Xj−e−α`jXpa(j) and Ej = (1−e−α`j ) (we formally set `1 = +∞). Γ(h) is the root

stationary variance estimate obtained at the previous M step, and E(h) is taken according
to the previous estimates of the parameters, and was computed at the E step. β = U∆
is the (m + n) × p matrix of optimal values on each branches. The optimization must
be conducted by finding the K non-zero lines of ∆, and their associated values. Define
matrix F (size (m+n)×p) and diagonal matrix A (size m+n) by, for any 1 ≤ j ≤m+n:

Fj =
(
1− e−2α`j

)−1/2
E
[
Dj

∣∣∣ Y]
Ajj =

(
1− e−2α`j

)−1/2
Ej .

Then, the objective function to be minimized can be re-written as:

COU =
m+n∑
j=1

∥∥∥Fj − (AU∆)j∥∥∥2
(Γ(h))−1 . (5.4)

This sum can be seen as the least squares minimization associated with the linear re-
gression model:

F =AU∆+E , with Ej ∼N (0,Γ(h)) i.i.d.

A sparse estimation of ∆ can then be obtained using a lasso regression, using a sparse-
group penalty, as explained in Section 1.5.3.2.

A Binary Segmentation Based Heuristic. Segmentation, or shift detection for data
points displayed on a line, has received a lot of attention these last few decades (see e.g.
Eckley et al. 2011; Fryzlewicz 2014 for a review). Among all the numerous algorithms
designed to tackle this problem, the binary segmentation heuristic, although very simple,
has proven to be very efficient (Rigaill, 2015). It is rather easy to implement, runs quite
fast, and finds very reasonable solutions, when compared to the exact one.

In classical segmentation, we assume that we have an ordered sequence data Y1:n =
(Y1, . . . ,Yn), and that we are able to compute a cost C(Yr:s) of any continuous sequence
of data (with 1 ≤ r ≤ s ≤ n). The cost might be associated to the least squares, or the
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maximum likelihood, depending on the underlying model for the observations. The goal
is to find the K change points v1:K = (v1, . . . , vK ) such that

K+1∑
k=1

C(Y(vk−1+1):vk )

is minimal (where v0 = 0, and vK+1 = n). Classical binary segmentation relies on the fact
that, given a segment of data Yr:s (with 1 ≤ r < s ≤ n), we know how to find v̂r:s ∈ Jr , sK
that minimizes the total cost of the segment by introducing one change point:

v̂(Jr , sK) = argmin
v∈Jr,sK

{
C(Yr:v) +C(Y(v+1):s)

}
≤ C(Yr:s).

Denote also Ĉ(Jr , sK) = minv∈Jr,sK
{
C(Yr:v) +C(Y(v+1):s)

}
, with Ĉ(Jr , rK) = +∞ (a unique

point cannot be split). The idea is then to do a step-wise optimization, that adds shifts
one by one: we first find v̂(J1 ,nK) the best split point on the all segment, and then
split one of the two segments produced, getting the best split between v̂ (J1 , v̂(J1 ,nK)K)
and v̂ (Jv̂(J1 ,nK) + 1 ,nK), and so on, until K shifts are found. See Algorithm 5.3.1 for
a more formal description (this presentation is inspired by Eckley et al., 2011). Note

Algorithm 5.3.1 Binary Segmentation

S ← {J1 ,nK}
for k ∈ J1 ,KK do
Î ← argminI∈S Ĉ(I)
vk← v̂(Î)
S ← (S \ Î)∪ {Jmin(Î) ,vkK,Jvk +1 ,max(Î)K}

end for
return v = (v1, . . . , vK )

that this algorithm has no guaranty to converge to the global minimum. An efficient
implementation of it relies on the efficient computation of the costs Ĉ(I) for the needed
intervals I of J1 ,nK.

In our problem, the data points do not lie on a segment, but at the nodes of a tree.
Hence, instead of considering the cost of intervals, we need to consider the cost of connex
sets of nodes on the tree. Let I be such a connex set of nodes. Using Equation (5.4),
the cost of I is obtained by minimizing the least squares in the optimal value βI that is
common to all the nodes in I :

C(I) =
∑
j∈I

∥∥∥Fj −Ajj β̂I∥∥∥2(Γ(h))−1
=

∑
j∈I

∥∥∥Fj∥∥∥2
(Γ(h))−1 −

∑
j∈I
A2
jj

∥∥∥β̂I∥∥∥2(Γ(h))−1
with β̂I =

∑
j∈I
A2
jj


−1∑

j∈I
AjjF

j .

As the nodes are naturally ordered by the tree, finding the best split of a connex subset
I into two connex subsets Iv̂(I) and I−v̂(I) using the costs above is straightforward. The
previous binary splitting heuristic could then be applied to the tree. The efficiency of
the algorithm will depend on how fast we can compute the costs involved. Because, on a



212 5. Extensions and Perspectives

tree, a connex subset of nodes I is just a subtree, minus one or several sub-subtrees, all
the sums involved can be computed from the quantities

∑
j∈Ti A

2
jj and

∑
j∈Ti AjjF

j , where

Ti = des(i) is the set of descendants of node i (with 1 ≤ i ≤ m + n). These base sums
could be computed in one postorder traversal of the tree.

We only sketched the heuristic here, and some work would be needed to figure out
the details of the algorithm, and find an efficient way to implement it. Note that we
wrote here the costs for a scalar OU, but that similar expressions could be obtained for
the general OU (starting from expressions given in Section 1.A.3). This binary heuristic
might hence also be useful for the extension of the method to a full OU.

The two methods presented above are heuristics: they raise, if not maximize, the ob-
jective function at each M step. In linear segmentation problems, dynamic programming
can be used to minimize the sum of costs efficiently (see e.g. Lebarbier, 2005). It might
be possible to adapt these kind of methods to segmentation on a tree, using nonserial
dynamic programming (Bertele & Brioschi, 1972). We mention this possible direction to
be comprehensive, but we did not look much into it yet.

5.4 Sampling Scheme and Missing Data

One of the strengths of our method is that it can readily handle missing data. In
Section 3.4 (see Fig. 3.4.6), we showed that the method was robust to a great proportion
of randomly chosen missing data. However, we did not study the impact that structured
missing data could have on the analysis. A simple example that might come in mind is a
trait missing for an entire clade of the tree. In that case, any shift occurring somewhere
on the clade is likely to be missed by any shift detection method. Such a pattern might
be due to the lack of information collected on this given clade, or to the fact that this
particular trait is difficult to measure on the organisms of the clade, for instance because
of its extremely small values. Some statistical tools have been developed to explicitly
model the process giving rise to missing data. In this last section, we briefly recall the
main ideas of these methods, and show in an informal way how they can be included in
our framework.

Statistical Framework. The data sampling scheme describes the way the data was
collected. In the statistical literature, sampling schemes are usually classified into three
categories, based on the kind of structure of missing data they produce (Rubin, 1976;
Little & Rubin, 2002). The are defined as follows.

Definition 5.4.1 (MCAR, MAR, NMAR, Little & Rubin 2002, Eq. (1.1) to (1.3)). Let
Y be a n × p be the matrix of the complete data, with n individuals and p traits, and
M the n × p missing data indicator matrix: for any individual i, 1 ≤ i ≤ n, and trait l,
1 ≤ l ≤ p, Yil is actually measured if and only if Mil = 1. Assume that the conditional
distribution pψ(M | Y ) of M given Y is described by parameters ψ.

The data are called missing completely at random (MCAR) if missingness does not
depend on the data:

pψ(M | Y ) = pψ(M).

Denoting Ymiss the missing components of Y, and Yobs the observed components, the
data are called missing at random (MAR) if missingness only depends on the observed
data:

pψ(M | Y ) = pψ(M | Yobs ).
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Finally, the mechanism is called not missing at random (NMAR) if the distribution
of M also depends on the missing values of Y.

In other words, if the mechanism is MCAR, the sampling scheme does not depend on
the values of the traits whatsoever: there is an independent rule controlling which traits
of which species are measured, on the whole tree. At the other side of the spectrum,
if the mechanism is NMAR, then the sampling scheme does depend on the values of
observed and missing traits. This would be the case in the simple example presented
above, where a trait that is “small” is less likely to be measured.

The great strength of this methodology is that we can explicitly take into account
any information we have on the sampling scheme, in order to improve our estimation of
the parameters. Before going any further, let’s take a example of such a NMAR sampling
rule.

Definition 5.4.2 (Size Censored Sampling). Assume that each trait l, 1 ≤ l ≤ p, has a
smaller probability of being measured if it is below a given threshold cl . The conditional
sampling distribution pψ(M | Y ) is then defined by:{

P [Mil = 1 | Yil < cl ] = ρs
P [Mil = 1 | Yil ≥ cl ] = ρl

where 0 ≤ ρs ≤ ρl ≤ 1 are the probability of the traits being measured, when they are
smaller or larger than the threshold.

One can imagine many other sampling schemes. In designing one, the researcher
should try, first, to mimic the actual sampling process going on, and, second, to choose
one that can lead to tractable computations in its subsequent analysis. If more down to
earth, the second condition is crucial for a method to be tractable. In the following, we
sketch the main points of the inference method, and show how it can be applied to the
problem of shift detection.

General Setting. When dealing with an explicit sampling scheme, the quantity of in-
terest is not the likelihood of the sole data pθ(Yobs) anymore, but the joint likelihood
pθ,ψ(Yobs,M) of the data and the sampling design. This quantity needs to be optimized
in θ and ψ, that lie in a product space.

Recall that Z is the m × p matrix of un-observed traits at the internal nodes of the
tree. When the sampling scheme was not accounted for, we saw that the completed
likelihood pθ(Yobs,Ymiss,Z) was easy to write (it could be decomposed in a product of
Gaussian, see Section 2.4). Following Tabouy et al. (2017), we decompose the likelihood
of the completed dataset as follow:

pθ,ψ(Yobs,M,Ymiss,Z) = pψ(M | Yobs,Ymiss,Z )pθ(Yobs,Ymiss,Z).

Then, setting up an EM algorithm framework, we need to look at the conditional expec-
tation of the completed log-likelihood given the observations:

E
[
logpθ,ψ(Yobs,M,Ymiss,Z)

∣∣∣ Yobs,M
]
= E

[
logpψ(M | Yobs,Ymiss,Z )

∣∣∣ Yobs,M
]

+E [ logpθ(Yobs,Ymiss,Z) | Yobs,M ] .
(5.5)

Note that, in general, the maximization must be conducted jointly in (θ,ψ), as the
expectation is taken according to the distribution of (Yobs,M), that depends on both
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these parameters. However, if the sampling is MAR (or MCAR), then the right hand side
of this equation simplifies to : logpψ(M | Yobs ) +E [ logpθ(Yobs,Ymiss,Z) | Yobs ] and the
two terms of the sum can be optimized separately respectively in ψ and θ. Furthermore,
the second term of the sum is exactly the one we used when ignoring the sampling
scheme. So, if the sampling is MAR, then the problem is the same as before, and the
sampling scheme does not bring us any information (see also Prop. 1 in Tabouy et al.
2017).

The interesting case is then the NMAR case: the maximization problem is actually
impacted by the sampling scheme, and we hope that this extra information will help
us infer the parameters. Taking the example of the size censored sampling (Def. 5.4.2),
we review the consequences of a NMAR sampling scheme on the EM algorithm. These
developments are quite informal, and would require some more work to assess their
relevance and feasibility.

E step. In the “upward-downward” framework of Section 3.C.2, the fact that we had no
information on the trait values of the missing tips data was reflected in the degenerate
Gaussian distribution we took at each tip i of the tree for fYiobs|Yi (Y

i
obs;a). For a measured

trait, it is a Gaussian with a zero variance (i.e. a Dirac on the observed value), and
for an unobserved trait, a Gaussian with infinite variance. When the sampling is not
independent from the trait value, the very fact that we did not measure a trait gives us
an information on its value. We now need to compute the distribution of:

fYiobs,Mi |Yi (Yiobs,M
i ;a) = fYiobs|Mi ,Yi (Y

i
obs;M

i ,a)fMi |Yi (Mi ;a).

The first term of the product is the same Dirac as before, and the second term is given
by the sampling scheme, that defines the distribution of Mi

∣∣∣ Yi . However, recall that
the upward-downward algorithm we wrote heavily depends on all the distributions being
Gaussian like. It is not clear whether the size censored sampling scheme (Def. 5.4.2) can
be cast into this framework or not. If we want to keep this algorithm, we hence would
need to design a maybe more regular sampling scheme, that would give us a Gaussian
like distribution for (Yiobs,M

i)
∣∣∣ Yi (or maybe a mixture of Gaussians).

If this framework cannot be adapted, other paths might be explored. There is a vast
literature describing EM algorithm adaptations when the E step is not tractable. As in
Tabouy et al. (2017), the Variational EM algorithm might be a promising alternative
(see also Jaakkola 2001; Wainwright & Jordan 2007; Robin 2014).

M step. At the M step, the maximization in θ and ψ are independent, as we can see in
Eq. (5.5). The estimation on θ can hence be carried on as previously. The maximization
in ψ will again depend on the sampling scheme chosen. For the size censored scheme, if
the thresholds ck are fixed, then the maximization in ρs and ρl is straightforward (and
very similar to the “double standard sampling” of Tabouy et al. 2017). However, the
optimization in these thresholds is more difficult, and one would probably need to design
some heuristics to tackle it. Then again, this size censored scheme is not carved in stone,
and it might be possible to think of another, more easily tractable, strategy.



Chapitre 6

Résumé substantiel

L’écologie évolutive a pour objet l’étude de la diversité des organismes biologiques. Pour
s’y confronter, nul besoin de s’attarder sur la distance incommensurable qui sépare par
exemple, d’une part, Pyrolobus fumarii, une archée thermophile prospérant dans la four-
naise des cheminées hydrothermale sous-marines de la dorsale atlantique (Blöchl et al.,
1997), et, d’autre part, Cypripedium calceolus, une espèce d’orchidées � délicates et char-
mantes, palpitantes et frileuses � (Huysmans, 1922). Il suffit de s’étendre sur une pelouse
par une belle après midi de printemps, et de s’ab̂ımer dans la contemplation des diverses
parures arborées par les élytres des nombreux membres de la famille des Coccinellidae,
depuis les plus courantes en Europe, comme Coccinella septempunctata, rouge avec sept
points noirs, ou Psyllobora vigintiduopunctata, jaune avec vingt points noirs, jusqu’à
l’américaine Brachiacantha ursina, noire avec dix points jaunes1.

Lorsque l’on s’intéresse aux variations exhibées par un trait au sein d’un groupe d’es-
pèces, l’une des questions principale que l’on peut se poser est celle du rôle joué par le
hasard. Celui-ci suffit-il à lui seul pour expliquer toute la diversité observée ? Ou bien
faut-il lui chercher d’autres causes, comme des contraintes environnementales, géogra-
phiques ou climatiques ? Toute tentative de réponse à ces questions passe nécessairement
par une définition préalable de cette notion de hasard. Ne voir dans celui-ci qu’un coup
de dès instantané constitue un prémisse à des raisonnement potentiellement spécieux.
� L’univers m’embarrasse, et je ne puis songer / Que cette horloge existe et n’ait point
d’horloger. � s’exclamait Voltaire (1772), et, à sa suite, tous les partisans de la théorie du
� Grand Horloger � au 18ème siècle (voir également Rousseau, 1762a; Paley, 1802). Une
hypothèse qui peut sembler de prime abord naturelle est de supposer que les traits phé-
notypiques sont apparus pour chaque espèce aléatoirement et indépendamment. Cette

1Crédits photographiques : voir note page 15.
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hypothèse ne tient cependant pas à un examen approfondi, et peut conduire à des conclu-
sions erronées. C’est qu’elle ne prend pas en compte le fait que les espèces actuelles ne
sont précisément pas indépendantes les unes des autres. D’après la théorie de l’évolution
(Darwin, 1859), il existe en effet un arbre phylogénétique reliant toutes les espèces entre
elles, et permettant d’expliquer leurs relations de parenté. Il est alors naturel de faire
l’hypothèse que les traits de deux espèces proches, c’est-à-dire dont l’ancêtre commun est
relativement récent, seront plus semblables que ceux de deux espèces éloignées, dont la
relation de parenté est plus distante. L’un des objectifs principaux des Méthodes Phylo-
génétiques Comparatives est de rendre explicites les hypothèses faites sur l’évolution des
traits au cours du temps, afin de proposer un modèle nul raisonnable pour la répartition
actuelles de ces traits parmi les espèces.

Méthodes Phylogénétiques Comparatives

Les Méthodes Phylogénétiques Comparatives (PCM, de l’anglais Phylogenetic Compa-
rative Methods) utilisent un modèle défini par deux composantes principales. Premiè-
rement, on suppose que l’on a accès à un arbre phylogénétique daté liant les espèces
actuelles entre elles. Cet arbre donne les relations de parentés, ainsi que les dates des
événements de spéciations qui ont eu lieu au cours de l’histoire. Deuxièmement, on choisi
un modèle dynamique décrivant l’évolution des traits quantitatifs considérés au cours du
temps. Les traits en question sont des caractères continus, comme le poids, la taille,
ou encore la couleur d’une fleur. Si l’on fait l’hypothèse que l’arbre phylogénétique est
donné, le � hasard � est entièrement défini par ce modèle d’évolution des traits au cours
du temps, que l’on choisi souvent dans une classe de processus stochastiques. Un tel pro-
cessus permet de quantifier les variations du trait modélisé. Le processus stochastique le
plus simple que l’on peut envisager est le mouvement brownien (BM, de l’anglais Brow-
nian Motion). Un trait suivant un tel modèle d’évolution n’a aucune tendance, et a des
incréments gaussiens indépendants.

La distribution attendue du trait dans la population d’espèces actuelles est alors
obtenue en combinant ces deux ingrédients de la manière suivante. Le trait d’une espèce
ancestrale donnée évolue au cours du temps comme un BM. Lorsqu’un événement de
spéciation survient, les deux espèces filles héritent de la valeur du trait de leur mère.
Chacune voie ensuite son trait évoluer comme un BM, indépendamment l’une de l’autre.
Il est important de noter que, même si l’on suppose que les deux espèces filles sont
indépendantes, le simple fait qu’elles aient hérité leur trait d’un même ancêtre commun
introduit des corrélations entre leurs traits respectifs. Par exemple, supposons que, par
hasard, le trait de l’espèce mère a dérivé vers des valeurs extrêmes. Si le trait considéré
est la taille, l’espèce est, disons, particulièrement grande. Ses deux enfants commenceront
alors leur évolution en étant de grande taille, et elles auront une grande probabilité de se
ressembler pendant encore un long moment, étant plus grande que la plupart des autres
espèce du groupe. Si le processus d’évolution du trait est un BM, on peut quantifier ces
corrélations : la covariance entre les traits de deux espèces actuelles est proportionnelle
à leur temps d’évolution partagé, c’est-à-dire au temps qui s’est écoulé entre la racine de
l’arbre et leur plus récent ancêtre commun.

Tout l’art des PCM réside dans la définition correcte du modèle d’évolution dyna-
mique du trait, et dans l’étude du type de distribution qu’il produit aux feuilles de l’arbre,
pour les espèces observées.
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(a) Arbre phylogénétique daté. La position verti-
cale des espèces actuelles (feuilles) est arbitraire.
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(b) BM sur les branches de l’arbre. L’axe vertical
donne la valeur du trait (unité arbitraire).

Réalisation d’un BM univarié sur un arbre phylogénétique daté. Les couleurs des branches (à gauche)
sont associées aux couleurs de différents processus (à droite). Par exemple, le trait de l’espèce
ancestrale rouge évolue d’une valeur de 0 (nœud R au temps −200) jusqu’à une valeur de 2.6
(nœud S, au temps −100). Seules les espèces actuelles (à t = 0), aux feuilles de l’arbre, sont
observées. Les espèces violette et bleu (A et B) ont hérité du trait de leur ancêtre vert (U) assez
récemment, ils ont donc une grande probabilité de se ressembler encore au temps présent. Les
valeurs de leur traits sont marginalement corrélées (mais indépendantes conditionnellement à U).

Détection de sauts

La distribution du trait aux feuilles de l’arbre obtenu par ce processus peut être vue
comme un modèle nul, qui décrit les corrélations entre les espèces, ainsi que les intervalles
de variation du trait, que l’on peut s’attendre à observer sous le coup du � hasard � seul.
Si la distribution observée diffère de manière significative de la distribution attendue,
on peut alors être amené à penser qu’un événement particulier a contribué à façonner
l’histoire du trait étudié.

Dans ce manuscrit, on s’intéresse plus particulièrement aux sauts qui peuvent sur-
venir à certains moments de l’histoire évolutive du trait considéré. De tels sauts sont
caractérisés par un changement brutal de la valeur du trait, et peuvent avoir plusieurs
causes biologiques, comme une migration vers un nouvel environnement ou un change-
ment climatique rapide. Une espèce ancestrale affectée par un tel saut va transmettre
la valeur de son trait à sa progéniture, si bien que, parmi les espèces actuelles, tous ses
descendants vont hériter du changement découlant de cet événement. Un exemple d’une
telle situation est présenté dans la figure qui suit.

Bien entendu, plusieurs sauts peuvent avoir lieu dans l’histoire d’un groupe d’espèces.
L’un des buts principaux de cette thèse est de retrouver, premièrement, le nombre et,
subséquemment, la position de ces sauts sur l’arbre phylogénétique considéré. Ces deux
questions posent chacune des problèmes statistiques différents, qui sont exposés dans les
deux paragraphes suivants.

Identifiabilité

L’un des aspects importants du problème à garder à l’esprit est que, bien que l’on ait
défini un modèle dynamique d’évolution du trait au cours du temps, on ne peut mesurer
l’état du système qu’à un instant donné, pour les espèces observées aujourd’hui. Seules
les dernières valeurs prises par le processus stochastique, sur les feuilles de l’arbre, sont
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(a) Un arbre phylogénétique daté.
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(b) BM sur les branches de l’arbre.

Même processus, mais avec un saut sur la branche vert clair (entre S et T ). Les feuilles D et E
sont affectées par le saut ancestral : leur trait a une valeur bien plus grande que celle attendue en
l’absence de saut (en gris).

donc accessibles. Dans une telle situation, on s’attend à voir émerger des problèmes
d’identifiabilité.

L’ajout de sauts ne fait qu’empirer la situation. Sur la figure suivante, on montre qu’il
est possible de construire facilement deux scénarios distincts, avec des sauts se produi-
sant sur des branches différentes, qui pourtant donnent exactement la même distribution
attendue du trait aux feuilles de l’arbre. Il est impossible de discriminer ces deux scé-
narios, donnant deux histoires biologiquement différentes de l’évolution du trait, en se
basant uniquement sur les données accessibles aux feuilles de l’arbre. On dit qu’ils ne
sont pas identifiables. L’étude et la quantification de ces problèmes d’identifiabilité est
cruciale. D’un point de vue statistique, les ignorer nous conduirait à utiliser des mo-
dèles mathématiquement mal définis, ce qui poserait des problèmes pour leur inférence.
De plus, d’un point de vue biologique, il est important de comprendre ce que les don-
nées collectées peuvent – et ne peuvent pas – nous dire sur l’histoire évolutive du trait
considéré.
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Deux scénarios équivalents. On suppose que le trait évolue suivant un BM avec des sauts marqués
sur les branches de l’arbre, et partant d’une valeur ancestrale de 0. L’espérance du trait aux feuilles
est indiquée en bleu. Les deux scénarios, bien que donnant la même distribution du trait, ne sont pas
équivalents d’un point de vue biologique. Dans le scénario de gauche, les deux enfants de l’espèce
S sont chacun affectés par un événement extrême, qui conduit à deux sauts dans la valeur de leurs
traits respectifs. Dans celui de droite, c’est l’espèce ancestrale qui subit d’abord un saut, transmis
en l’état à son premier enfant C, tandis que son second enfant s’ajuste avec un deuxième saut.
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Sélection de modèle

Une fois que l’on a déterminé la collection de modèles identifiables que l’on peut utiliser,
il reste à trouver une méthode pour choisir le � meilleur � de ces modèles, au vu des
données collectées. Cette inférence se fait en deux étapes. Premièrement, si l’on se donne
un nombre arbitraire K de sauts à répartir sur l’arbre, on montre que l’on est capable
de trouver le modèle à K sauts qui maximise la vraisemblance des données. Cependant,
ce nombre de sauts est lui-même inconnu. La deuxième étape consiste donc à choisir
un nombre de sauts approprié. Le critère de vraisemblance que l’on a utilisé à l’étape
précédente ne peut pas être utilisé en l’état pour ce problème. En effet, il est facile de
montrer que la vraisemblance crôıt avec le nombre de paramètres d’un modèle, si bien que
qu’une solution K+1 sauts aura toujours une vraisemblance plus grande qu’une solution
à K sauts. Utiliser ce critère reviendrait ainsi à toujours choisir, quelles que soient les
données étudiées, la solution avec le plus de sauts possibles, c’est à dire celle présentant
un saut pour chaque espèce de l’arbre. Une telle solution correspondrait typiquement à
un cas de sur-ajustement du modèle aux données, et n’apporterait aucune information
sur le processus biologique à l’œuvre.

Pour ne garder que les sauts dit significatifs, il est courant d’utiliser un critère de
vraisemblance pénalisée. La pénalité doit être choisie de manière à compenser, entiè-
rement et uniquement, l’augmentation mécanique de la vraisemblance avec le nombre
de sauts. Le principe de cette méthode est illustré dans la figure qui suit. Cet exemple
simple montre l’importance du choix de la pénalité, qui doit être adaptée au problème
considérée. En particulier, on voit sur ce graphique que des critères utilisé de manière
courante, comme l’AIC ou le BIC, ne sont pas à même de corriger les effets du sur-
ajustement. On s’attachera ici à dériver une pénalité prenant en compte les spécificités
de la collection de modèles considérés, dont la structure particulière a été décrite dans
la section précédente. Grâce à la théorie de la sélection de modèle, cette pénalité hérite
de bonnes garanties théoriques.
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Profile de vraisemblance typique. Les données utilisées ont été générées par simulation, en utilisant
un BM courant sur un arbre de 64 espèces, et présentant Ktrue = 5 sauts bien marqués. Chaque
point rouge montre la vraisemblance obtenue en fixant le nombre K de sauts autorisés, pour K
variant de 0 à 20. Comme attendu, cette vraisemblance est strictement croissante. Le rôle d’une
pénalité est de créer un critère ayant un maximum en K = 5 (ligne verticale), afin que l’on puisse
retrouver le vrai nombre de sauts (inconnu dans les cas d’application, mais connu ici, puisque les
données sont simulés suivant un modèle fixé). Les critères standards AIC et BIC (en vert et bleu)
sont tous les deux strictement croissants, et ne peuvent donc pas être utilisés ici. En revanche, le
critère LINselect (en violet) que nous proposons d’utiliser a bien un maximum en K = 5, qui nous
permet de retrouver la bonne solution dans cet exemple jouet.
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Les modèles et méthodes statistiques présentés ici sont à la base de ces travaux de
thèse. Dans ce document, on s’attache d’abord à en présenter les fondations (Chapitre 1),
avant de les développer et d’en présenter des extensions à d’autres processus stochastiques
(Chapitres 2 et 3) ou à d’autres structures de parentés entre les espèces (Chapitre 4).

Chapitre 1 : Contexte

Le premier chapitre s’attache à dresser un panorama des outils convoqués dans le reste
du manuscrit. Trois thèmes principaux sont abordés. Tout d’abord, on s’intéresse aux
propriétés mathématiques des arbres phylogénétiques, qui servent de support aux déve-
loppements ultérieurs, et on rappelle quelques résultats sur la structure de l’espace des
caractères associés aux nœuds d’un tel arbre (section 1.1). Dans un deuxième temps,
on décrit un certain nombre de modèles classiques d’évolution dynamique de traits, dis-
crets ou quantitatifs, le long d’un arbre phylogénétique (sections 1.2, 1.3 et 1.4). Enfin,
on évoque quelques résultats statistiques découlant de la la théorie de la sélection de
modèle, qui seront utile dans la suite (section 1.5).

Arbres phylogénétiques, caractères convexes et parcimonie

En se basant essentiellement sur les livres de Semple & Steel (2003) et Felsenstein (2004),
on rappelle les définitions et propriétés suivantes. Tout d’abord, on appelle arbre phy-
logénétique un arbre dont les feuilles sont identifiées par un label distinctif (comme un
nom d’espèce).

Définition (Arbre phylogénétique). Un arbre binaire raciné T = (V ,E) est un graphe
connecté acyclique, avec V un ensemble de nœuds, et E d’arêtes, tel que tous les nœuds
internes sont de degrés 3, sauf un, la racine, de degré 2. Les nœuds externes, de degré 1,
sont les feuilles de l’arbre.

Un arbre phylogénétique (sur X) T est un couple (T ,φ), où T est un arbre, et φ :
X→ L une bijection depuis un ensemble de labels X, vers l’ensemble L des feuilles de T .

Pour chacune des ces espèces identifiées aux feuilles de l’arbre, on mesure un trait, ou
caractère donné. On se limite ici aux caractères dit convexes, qui sont le résultats d’une
évolution où chaque innovation est unique (la même innovation ne peut pas apparâıtre
deux fois indépendamment, on dit aussi qu’il n’y a pas d’homoplasie).

Définition (Caractère convexe). Un caractère discret complet χ : X → C est une appli-
cation de l’ensemble des feuilles d’un arbre phylogénétique (identifiées par leurs labels)
vers un ensemble de caractères C. Si |χ(X)| = r, χ est un caractère à r états.

Une extension de χ sur T est une application χ̄ : V → C telle que χ̄◦φ = χ. On note
Ex(χ,T ) l’ensemble de toutes les extensions de χ sur T .

χ est dit convexe s’il existe une extension χ̄ telle que, pour tout c, c ∈ C, le sous-
graphe de T induit par {v ∈ V | χ̄(v) = c} est connecté.

La proposition suivante porte sur l’énumération des caractères convexes sur une phy-
logénie. Elle nous sera utile lors de notre étude d’identifiabilité.

Proposition (Steel (1992), proposition 1, item 4). Le nombre de caractères complets à r
états sur un arbre phylogénétique binaire ayant n feuilles est donné par :(

2n− r − 1
r − 1

)
.
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(a) Caractère convexe, sans homoplasie. (b) Caractère non-convexe, convergences.

Un arbre phylogénétique associé à un caractère convexe (gauche) on non convexe (droite). On pré-
sente ici un caractère discret, pouvant prendre trois valeurs. Le trait de chaque nœud est représenté
par sa couleur (noir, gris ou blanc).

Un caractère donné peut avoir un grand nombre d’extensions. On s’intéresse souvent
à celles qui vérifient une propriété de minimalité, en ce qu’elles induisent un nombre mi-
nimal de changements. On dit qu’elles sont parcimonieuses, et le nombre de changements
associé est le score de parcimonie du caractère. Il vérifie la propriété suivante.

Proposition (Semple & Steel, 2003, Proposition 5.1.3). Soit χ un caractère à r états sur
un arbre phylogénétique T . Alors :

min
χ̄∈Ex(χ,T )

|{(u,v) ∈ E | χ̄(u) , χ̄(v) }| ≥ r − 1,

avec égalité si et seulement si χ est convexe sur T .

Plusieurs algorithmes classiques de programmation dynamique, comme ceux de Fitch
ou Sankoff permettent d’obtenir une extension parcimonieuse d’un caractère donné en
un temps O(|X | × |C|) (voir Felsenstein, 2004, pour une introduction).

Modèles d’évolution et modèles à variables latentes

Dans la section précédente, on s’est intéressé aux propriétés purement combinatoires
des caractères attribués aux feuilles d’un arbre. Ici, on introduit un modèle d’évolution
dynamique des caractères au cours du temps, nous permettant d’étudier plus précisément
les mécanismes de l’évolution. Un tel modèle, stochastique, nous permet de voir les
caractères mesurés comme des variables aléatoires, et ainsi de re-formuler le problème en
terme de modèle à variables latentes, où les variables cachées sont les nœuds internes de
l’arbre.

Définition (Modèle d’évolution de trait générique). Soit T = (E,V ) ayant une racine ρ,
tel que chacune de ses branches e ∈ E a une longueur `e. Soit X le vecteur des variables
aléatoires décrivant les valeurs prises par le traits aux nœuds de l’arbre, à valeurs dans
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un espace de caractères arbitraire C (indifféremment discret ou continu). La loi de X est
définie par :

� Xρ ∼ D(θ1) : la racine suit une loi donnée D, de paramètres θ1.

� Soit e ∈ E une branche, allant de pa(i) à i. Sur cette branche, le trait évolue comme
un processus stochastique (We

t ,0 ≤ t ≤ `e) de loi P (θe), et ceux indépendamment
des autres espèces, conditionnellement à We

0 = Xpa(i).

� Au nœud i, on défini Xi =We
`e

.

� On itère le long de l’arbre jusqu’à ce que tous les nœuds soient visités.

Un exemple d’un tel modèle a été présenté en introduction pour un trait continu,
en prenant comme processus P le BM. Lorsque l’espace d’état est discret, de nombreux
modèles peuvent être décrits, qui permettent de modéliser par exemple l’évolution des
bases aminées d’une séquence d’ADN. Ces modèles sont à la base des méthodes modernes
pour inférer un arbre phylogénétique par maximum de vraisemblance.

Le modèle général décrit repose sur l’hypothèse fondamentale que les espèces évoluent
de manière indépendantes les unes des autres après une spéciation. Cette hypothèse,
bien que peu réaliste d’un point de vue biologique, est nécessaire pour le traitement
mathématique simple du modèle. D’autres hypothèses doivent être faites sur le processus
P , en fonction de l’espace d’états C choisi. Si l’on fait l’hypothèse générique que le
processus est markovien on peut alors montrer que la loi de X peut être obtenu comme
le résultat d’un modèle graphique orienté, tel que défini comme suit.

Définition (Modèle graphique orienté). Un vecteur X de variables aléatoires sur un espace
C suit un modèle graphique orienté s’il se situe aux nœuds d’un graphe acyclique orienté,
et est tel que sa distribution jointe peut se factoriser de la manière qui suit :

pθ (X) =
∏
i∈V

pθ
(
Xi

∣∣∣ Xpa(i)

)
où pa(i) est l’ensemble de tous les parents directs de i dans le graphe, et θ un vecteurs
de paramètres de la distribution. Par convention, si pa(i) = ∅ (par exemple, à la racine

d’un arbre), on prend : pθ
(
Xi

∣∣∣ Xpa(i)

)
= pθ (Xi).

En pratique, X se divise en deux composantes, Y, les traits aux feuilles de l’arbre,
observées, et Z les traits aux nœuds internes de l’arbre, pour des espèces ancestrales, non
observées. On est alors dans le cadre d’un modèle graphique à variables latentes. C’est
dans ce cadre, bien étudié, que nous nous plaçons pour notre étude statistique.

Sélection de modèle

Le principe général de la sélection de modèle par vraisemblance pénalisée a été exposé
plus haut dans cette introduction. On renvoie à Giraud (2014) pour une introduction
construite à ces méthodes statistiques. Dans la suite, on se base sur la méthode LINselect,
présentée dans Baraud et al. (2010). Cette méthode s’applique à des problèmes écris sous
forme de régression linéaire :

Y = µ+ σ2E

avec E un vecteur de variables gaussiennes i.i.d., et σ2 un paramètre de variance inconnu.
Les différents modèles sont représentés par les espace vectoriels de divers dimensions dans
lequel on autorise µ à évoluer.
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Chapitre 2 : Détection de sauts pour des processus univariés

Ce chapitre à fait l’objet d’une publication dans le � Journal of the Royal Statistical
Society � (Bastide, Mariadassou & Robin, 2017b). Il s’attaque au problème de la dé-
tection de sauts adaptatifs dans le cas univarié : seul un trait est mesuré pour chaque
espèce. Cette étude se fait en trois étapes principales. On s’intéresse tout d’abord à la
définition et aux propriétés des modèles utilisés, avant d’en étudier l’identifiabilité en
détails, puis d’en proposer une procédure d’inférence statistiques, que l’on valide grâce
à une campagne de simulations, et dont on étudie les résultats sur un jeu de données
classique.

Modèle

Le modèle d’évolution du trait est le même que celui décrit ci-dessus, en prenant comme
espace d’états C la droite réelle, et comme processus P le BM, ou le processus d’Ornstein-
Uhlenbeck (OU). Un trait (Xt)t≥0 suivant ce processus a pour l’équation différentielle
stochastique : dXt = α(β −Xt)dt + σdBt , où (Bt)t≤0 est le mouvement brownien et σ2

un paramètre de variance. La partie déterministe de l’équation décrit un mouvement
de rappel vers une valeur centrale, β, interprétée comme la valeur optimale du trait
dans un environnement donné, avec une vitesse contrôlée par le paramètre de rappel
élastique α. Ce paramètre s’interprète plus facilement en considérant le temps de demi
vie phylogénétique t1/2 = ln(2)/α (Hansen, 1997). C’est le temps nécessaire au trait pour
parcourir la moitié de la distance qui le sépare de l’optimum. On peut comparer ce temps
avec la hauteur totale h de l’arbre phylogénétique sur lequel il évolue. Si t1/2 est grand
par rapport à h, cela signifie que le trait, durant son histoire évolutive, n’a jamais le
temps d’arriver à son optimum : la sélection est de faible intensité. À l’inverse, si t1/2
est petit par rapport à h, le trait converge rapidement vers son optimum, et la force de
sélection est grande. Un exemple de ce modèle sur un arbre simple est présenté dans la
figure suivante.
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(a) Un arbre phylogénétique daté.
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(b) OU sur les branches de l’arbre.

Processus OU avec saut courant sur les branches de l’arbre. L’évolution de la moyenne du trait
après le saut est indiqué en pointillé. Le temps de demi-vie phylogénétique nécessaire au trait pour
parcourir en moyenne la moitié de la distance le séparant de l’optimum est indiqué en bordeaux.
Ici, la force de sélection est grande par rapport à la taille de l’arbre.

À la différence du BM, les sauts adaptatifs sur l’OU n’ont pas lieu directement sur
la valeur du trait, mais sur la valeur de l’optimum β, comme on le voit sur la figure
ci-dessus. Un tel saut peut traduire un changement de conditions environnementales, qui
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induit un nouvel équilibre optimal, vers lequel le trait converge, de manière continue, et
avec une vitesse contrôlée par la force de sélection α. Ce modèle OU, qui admet un état
stationnaire et induit une variance bornée, a été proposé pour modéliser une évolution
stabilisatrice.

Comme on l’a vu dans le chapitre précédent, la définition du modèle en terme de loi
conditionnelle d’une espèce fille sachant la valeur de sa mère nous permet de reformuler
le problème en terme de modèle graphique. Une autre vision, complémentaire, peut être
obtenue en écrivant la loi des feuilles sous forme d’un régression linéaire.

Proposition (Modèle linéaire). On suppose que les nœuds internes de l’arbre sont numé-
rotés de 1 à m, et ses feuilles de m+1 à m+n. Soit T la matrice d’incidence de l’arbre,
de taille n × (m + n), telle que, pour 1 ≤ i ≤ n et 1 ≤ j ≤ m + n, Tij vaut 1 si la feuille
m+ i est descendante du nœud j, et 0 sinon. Soit Y le vecteur des traits aux feuilles de
l’arbre. Pour un modèle d’OU, on a :

Y = TW(α)∆+
σ2

2α
E

où ∆ est un vecteur (parcimonieux) de taille m+n, représentant les sauts sur les branches
de l’arbre : pour tout nœud i, ∆i vaut 0 s’il n’y a pas de saut sur la branche menant à
i, et la valeur de ce saut sinon. W(α) est une matrice diagonale d’expression connue,
et E est un vecteur gaussien, dont la matrice de variance V(α). Ces deux quantités ne
dépendent que de α, et des paramètres (fixés) de l’arbre phylogénétique.

Cette vision du problème nous permet d’appliquer les outils de sélection de modèle
évoqués précédemment, à condition de caractériser avec précision les modèles considérés,
ce que l’on s’attache à faire dans la section suivante.

Identifiabilité

On s’intéresse ici à deux problèmes complémentaires. Premièrement, étant donnée une
allocation de sauts sur les branches de l’arbre, on cherche à énumérer toutes les allocations
distinctes qui lui sont équivalentes, au sens où elles produisent un modèle de même
vraisemblance, comme exposé dans l’introduction. Cette question répond au problèmes
d’identifiabilité. Deuxièmement, étant donné un nombre K de sauts fixés, on compte le
nombre de modèles réellement distincts qui possèdent K sauts. Ce nombre nous donne
la complexité de cette classe de modèle, dont on a besoin dans l’étape de sélection de
modèle.

Ces problèmes peuvent s’étudier en utilisant le formalisme des caractères convexes
introduit dans le chapitre précédent. Les deux points fondamentaux sont, d’une part, de
se limiter aux allocations parcimonieuses de sauts sur l’arbre, et d’autre part, de repré-
senter une classe d’équivalence pour une allocation donnée à K sauts par la classification
en K +1 groupes qu’elle induit aux feuilles.

La première question (énumération d’une classe d’équivalence) peut alors être ré-
glée par un algorithme récursif, adapté de l’algorithme de Sankoff de programmation
dynamique pour trouver le coût parcimonieux d’un caractère évoqué précédemment.

La seconde question (décompte du nombres de classes d’équivalences à K sauts)
revient à un décompte des caractères convexes. Pour un arbre binaire, la proposition
rappelée dans l’introduction nous permet ainsi de répondre à la question. On constate
en particulier que la formule close exhibée ne dépend pas de la topologie de l’arbre. Pour
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un arbre non binaire (c’est-à-dire, comportant certains nœuds ayant plus de deux espèces
filles, ou polytomies), on peut écrire un algorithme récursif sur l’arbre permettant trouver
ce nombre, qui en général, dans ce cas, dépend de la topologie de l’arbre considéré.

Inférence

Pour l’inférence, on utilise les deux visions complémentaires du modèle. La vision en
terme de modèle graphique nous permet d’écrire un algorithme de � Expectation Maxi-
mization � (EM) pour maximiser la vraisemblance à nombre de sauts K fixés. Comme
le modèle est gaussien, et que les données sont situées aux nœuds d’un arbre, un algo-
rithme efficace, semblable à un algorithme de � upward-backward �, ou à un filtre de
Kalman, permet de calculer toutes les quantités nécessaires à l’étape E en seulement
deux parcours de l’arbre. À l’étape M de maximisation, c’est l’optimisation en la posi-
tion des sauts sur les branches de l’arbre, combinatoire, qui peut poser problème. Du
fait de l’indépendance des incréments du BM, cette optimisation revient cependant à la
simple minimisation d’une somme de coûts indépendants, associés à chaque branches,
et dont il suffit d’annuler les K plus grands. Lorsque l’on utilise un OU, cette méthode
n’est plus applicable, et l’on doit recourir à des heuristiques pour augmenter, si ce n’est
maximiser, la quantités cible (Generalized EM).

La seconde vision, en terme de régression linéaire, nous est utile à deux reprises.
Premièrement, elle nous permet de trouver une bonne initialisation pour l’EM, qui y est
notoirement sensible. Cette initialisation se base sur une pénalité de type LASSO, qui
permet d’obtenir un vecteur de sauts ∆ parcimonieux. Pour chaque valeur de K , on règle
le paramètre de régularisation de telle sorte à obtenir exactement K coefficients non nuls.

Deuxièmement, comme mentionné précédemment, cette formulation en terme de ré-
gression linéaire nous permet d’adapter des outils de sélection de modèle à notre pro-
blème. Cette deuxième étape, dont le principe a été expliqué schématiquement dans
l’introduction, nous permet de choisir, parmi toutes les solutions obtenues par l’EM,
celle ayant un nombre de sauts adapté. La méthode choisie garantie, pour le BM ou
lorsque α est fixé pour l’OU, une inégalité de type oracle.

La méthode complète est implémentée dans le paquet R PhylogeneticEM, disponible
sur le CRAN. Elle a été testée sur un grand nombre de scénarios simulés, et utilisée sur
un jeu de données classique, relatifs à la famille des chéloniens, comportant toutes les
espèces de tortues connues aujourd’hui.

Chapitre 3 : Détection de sauts pour des processus multivariés

Dans ce chapitre, on s’attache à étendre la méthode précédente à des traits multivariés :
pour chaque espèce, on mesure non pas une seule mais plusieurs caractéristiques. Ce
chapitre a fait l’objet d’une soumission dans � Systematic Biology � ayant, au moment
où ce manuscrit pars à l’impression, reçu un avis positif pour une publication sous réserve
de révisions mineures (Bastide, Ané, Robin & Mariadassou, 2017a).

L’extension au BM multivarié se fait de manière assez naturelle. Lors de l’algorithme
EM, l’étape de maximisation M peut se traiter de manière identique. Pour l’étape E, on
peut encore écrire un algorithme efficace, capable de gérer la présence de données man-
quantes, ce qui est particulièrement appréciable pour le traitement des jeux de donnés
écologiques considérés. Enfin, la méthode de sélection de modèle peut également être
étendue, bien que les garanties théoriques tombent dans ce cas. Le critère peut alors être
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vu comme une simple heuristique, dont la pertinence a été évaluée par un grand nombre
de simulations.

Le méthode d’inférence pour le BM multivarié, efficacement implémentée dans le
paquet PhylogeneticEM, est ainsi rapide et complète. Contrairement aux méthodes pro-
posées jusqu’à présent, elle ne fait pas l’hypothèse que les traits sont indépendants les
uns des autres. Cette hypothèse est particulièrement fausse sur beaucoup de jeux de
donnés écologiques. Pour tenter de décorréller les traits, une adaptation phylogénétique
de l’ACP (en anglais, pPCA) était utilisée jusqu’à présent. Cependant, lorsque les traits
ont subis des sauts au cours de leur histoire, on peut montrer que cette méthode est
biaisée, et peut fausser l’analyse. On s’attend ainsi à ce que notre méthode, qui en fait
l’économie, donne de meilleurs résultats.

L’extension à l’OU multivarié est plus problématique. En toute généralité, le para-
mètre de force de sélection, α, se transforme en matrice A, difficile à gérée. La loi produite
par ce processus général, bien que toujours gaussienne, n’est ainsi pas facile à étudier, et
les interactions entre les matrices A et Σ de variance mal connues, et propres à générer
des problèmes d’identifiabilité. Dans ce travail, on décide de simplifier le problème en ne
considérant que des matrices A scalaires, c’est-à-dire égales à α fois la matrice identité.
Cette hypothèse est assez restrictive, car elle suppose que tous les traits sont attirés
par leurs divers optimums indépendamment, et avec une même vitesse. On ne fait en
revanche pas d’hypothèse sur la matrice de variance Σ, si bien que les traits sont tout de
même autorisés à évoluer de manière corrélé.

Lorsque toutes les données sont mesurées pour des espèces actuelles, à un seul moment
dans l’histoire, on montre que l’OU est équivalent à un BM courant sur un arbre dont les
branches ont été renormalisées, par une transformation dépendant de α. À α connu, il
est alors possible de bénéficier de la méthode multivariée développée pour le BM. Il suffit
alors de reproduire cette analyse sur une grille en α, avant de sélectionner la meilleure
solution en terme de vraisemblance. L’étape de sélection de modèle utilise ensuite une
heuristique similaire.

De même que précédemment, la performance de la méthode, sous divers scénarios
explorant plusieurs formes de violations aux hypothèses du modèle, a été évaluée par
simulations, et utilisée pour analyser des jeux de donnés classique issus de la littérature.

Chapitre 4 : Évolution de traits sur des réseaux phylogénétiques

Ce chapitre s’éloigne de la thématique de la détection de ruptures pour explorer d’autres
formes de relations de parentés entre les espèces, représentées non plus par un arbre,
mais par un réseau phylogénétique. Il a fait l’objet d’une soumission dans un journal de
biologie à comité de relecture (Bastide, Soĺıs-Lemus, Kriebel, Sparks & Ané, 2017c). Les
outils développés ici ont été intégrés au paquet Julia PhyloNetworks, dont la présentation
a été publiée dans � Molecular Biology and Evolution � (Soĺıs-Lemus, Bastide & Ané,
2017). La présentation que l’on en fait ici est adaptée du résumé long de l’exposé présenté
aux 49èmes Journées de Statistiques de la SFdS (Avignon, 2017).

Réseau phylogénétique

Les liens de parentés entre espèces sont représentées de manière classique par un arbre
phylogénétique. Cependant, cette représentation arborescente ne tient pas compte des
événements d’hybridations, ou de transferts de gènes horizontaux, qui peuvent modifier
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substantiellement les relations de filiation entre les espèces présentes. On a alors recours
à un réseau phylogénétique pour représenter ces liens. Un réseau phylogénétique est un
graphe acyclique dirigé et raciné, dont les feuilles représentent les espèces actuelles ob-
servées, et les nœuds internes des espèces ancestrales. Les nœuds internes peuvent avoir
un seul parent (filiation arborescente) ou bien deux parents (hybridation). Le réseau est
calibré en temps, si bien que la longueur des branches arborescentes représente un temps
évolutif. L’événement d’hybridation étant instantané, les branches menant à un nœud
hybride sont supposées de longueur nulle. Un paramètre γ leur est cependant associé,
représentant une proportion de patrimoine génétique transmis par chacun des deux pa-
rents. Un exemple de réseau phylogénétique présentant un seul événement d’hybridation
est présenté ci-dessous. Sur cet exemple, le nœud hybride M a hérité d’une proportion γ
de ses gènes de l’espèce L, et le reste 1−γ de l’espèce N . Plusieurs méthodes d’inférence
ont été développées ces dernières années (voir par exemple Yu et al. (2014), Soĺıs-Lemus
& Ané (2016)), et ce type de réseaux phylogénétiques commence à être disponible pour
un certain nombre de groupes d’espèces. Dans toute la suite, on suppose que le réseau
est connu et fixé.
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Figure 6.0.1 – Réseau phylogénétique d’un ensemble d’espèces contemporaines, et mo-
délisation de l’évolution d’un caractère par un mouvement Brownien.

Évolution d’un trait

Pour modéliser l’évolution d’un trait quantitatif, on utilise de même que précédemment
un mouvement Brownien (BM) courant sur les branches du réseau phylogénétique liant
les espèces entre elles, comme présenté sur la figure ci-dessus. Le processus est défini de
la manière suivante :

� Sur une branche donnée, le trait évolue au cours du temps suivant un mouvement
Brownien.

� Lors d’une spéciation (nœud arborescent), le processus se divise en deux Browniens
indépendants, partants du même point et avec les mêmes paramètres, courant
chacun sur une des deux branches filles.

� Lors d’une hybridation, le trait hybride est obtenu en faisant la moyenne pondérée
par le coefficient γ des traits de ses deux parents, puis évolue suivant un Brownien
indépendant, et avec les mêmes paramètres.
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Comparé au modèle d’évolution sur un arbre, le point nouveau est la règle de fusion
adoptée aux points d’hybridations. Ici, la fusion par moyenne pondérée a été choisie,
car elle conduit à des calculs simples, et est en accord avec la modélisation d’un trait
multi-loci par le BM.

Grâce à ce modèle, il est possible d’étendre les Méthodes Comparatives Phylogéné-
tiques à des espèces liés par un réseau, plutôt que par un arbre phylogénétique. Le point
central dans cette adaptation est le calcul de la matrice de variance induite par ce nou-
veau modèle. La covariance entre les traits Yi et Yj de deux espèces i et j aux feuilles du
réseau phylogénétique s’écrit (Pickrell & Pritchard (2012)) :

Cov
[
Yi ;Yj

]
= σ2Vij = σ

2
∑
pi∈Pi
pj∈Pj

∏
e∈pi

γe

∏
e∈pj

γe

 ∑
e∈pi∩pj

`e

où σ2 est la variance du mouvement Brownien, Pi est l’ensemble des chemins allant de
la racine au nœud i, et, pour une arrête e, γe est le coefficient de transmission génétique
(γe = 1 pour toutes les arrêtes arborescentes), et `e est la longueur de l’arrête, en temps
phylogénétique.

Cette formule close, impliquant une somme sur un nombre potentiellement grand de
chemins, ne peut pas être utilisée directement pour calculer efficacement la matrice de
covariance. On montre qu’il est possible de trier les nœuds du réseau de telle sorte à ce
que la matrice V puisse être calculée récursivement en un parcours du réseau, depuis la
racine jusques aux feuilles.

Évolution transgressive

L’hétérosis, ou vigueur hybride, est un phénomène bien connu en génétique, qui rend
possible la naissance d’un hybride ayant un caractère exceptionnellement grand (ou petit)
par rapport à ses deux parents. Dans notre modèle, le trait hybride est alors obtenu
comme la moyenne pondérée des traits espèces parentes, comme précédemment, plus un
saut d’une valeur b. De la même manière que pour le BM sur un arbre, on montre qu’il
est alors possible de ré-écrire le problème sous la forme d’un modèle linéaire à effets
fixes, et ainsi de replacer la question dans un cadre statistique bien connu. Ce modèle
est semblable à celui exposé précédemment, à la différence que la position potentielle des
sauts est connue d’avance : ceux-ci ne peuvent avoir lieu que sur les branches suivant
un événement d’hybridation. Ceci nous permet d’écrire un test de Fisher pour tester la
nullité de ces sauts d’hétérosis, dont on sait exprimer la puissance théorique.

Chapitre 5 : Extensions et Perspectives

Dans ce dernier chapitre, on explore quelques pistes d’extensions, en essayant d’ébaucher
des solutions simples lorsque cela est possible, et en identifiant les difficultés principales
lorsqu’elles se présentent.

Dans tous nos développements méthodologiques, nous avons supposé disposer de me-
sures sans erreurs sur un arbre connu parfaitement. La non prise en compte de ces sources
d’incertitudes peut avoir des conséquences néfastes sur le résultats de nos analyses, que
l’on tente de quantifier à l’aide d’une série de simulations. Si la mauvaise connaissance de
l’arbre est difficile à prendre en compte, les erreurs ou incertitudes de mesure des traits
aux feuilles de l’arbre sont en revanche mieux étudiées dans la littérature. On montre ici
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comment elles pourraient être incorporées dans notre cadre de travail. Il est intéressant
de noter que ces adaptations, vues sous un autre angles, peuvent également être adoptées
pour réaliser une analyse à facteurs d’un jeu de données multivarié.

Lorsque l’on s’intéresse à la détection de sauts, deux phénomènes, jusqu’à présent
négligés, peuvent être intéressants à étudier : la convergence évolutive, et la parcimonie
dans le nombre de traits impactés par chaque saut. Une solution simple pour incorporer
ces contraintes au modèle serait d’ajouter des pénalités structurelles adéquates. Deux
espèces distinctes sont dites convergentes si elles atteignent un même régime évolutif de
manière indépendante. un critères de type � fused-ANOVA �, qui pénaliserait la présence
de deux régimes distincts mais proches, et favoriserait leur fusion en un seul, pourrait
être adaptée pour étudier ce phénomène. D’autre part, dans le cas multivarié, on a sup-
posé que tous les traits étaient indifféremment impactés par chaque saut. Cela revient
à faire l’hypothèse que tous les traits inclus dans l’analyse sont pertinents pour l’étude
des régimes adaptatifs, et peut rendre la méthode sensible à l’ajout de traits � neutres �
brouillant le signal. Une pénalité LASSO de type � sparse group sparse �, qui privilégie-
rait les solutions dans lesquels un petit nombre seulement de traits seraient impliqués
dans chaque saut, pourrait rendre la méthode plus robuste à ce type de bruit, et rendre
l’analyse moins dépendante du choix arbitraire des traits inclus ou non.

Jusqu’à présent, nous avons également fait l’hypothèse forte que toutes les mesures
provenaient d’espèces observées à un seul instant dans l’histoire, au temps présent. Cela
revient à supposer que tous les arbres considérés étaient ultramétriques, en ignorant
toutes les données fossiles éventuelles. Ces sources de données, bien que rares, sont pré-
cieuses, et peuvent nous donner des renseignements sur la nature de la dynamique de
l’évolution des traits au cours du temps. Par exemple, en terme d’identifiabilité, deux
solutions que l’on considérait équivalentes sur un arbre ultramétrique peuvent devenir
distinguable lorsque l’on inclue des données fossiles. Ce pouvoir discriminant est cepen-
dant très dépendant de la position du fossile sur l’arbre. Une étude systématique de
l’identifiabilité des configurations de sauts sur l’arbre, telle que celle menée au chapitre
2, serait donc plus complexe, et les résultats dépendants de la topologie des arbres consi-
dérés. D’un point de vue pratique, la rupture de l’hypothèse d’ultramétrie rend l’astuce
de changement d’échelle utilisée au chapitre 3, pour étendre les résultats du BM à l’OU de
manière efficace, caduque. On propose ici plusieurs heuristiques pour pallier ce problème.

Enfin, dans une dernière partie, on tente de jeter les bases d’une méthode permettant
d’intégrer les données manquantes de manière plus satisfaisante. En effet, on a considéré
jusqu’ici que les mesures étaient manquantes de manière complètement aléatoire, pour
toutes les espèces et pour tous les traits. Or, l’échantillonnage en lui-même peut avoir
une certaine structure. Par exemple, des phénomènes de censure peuvent être observés,
induisant des données manquantes pour toute une série de traits, par exemple très pe-
tits, donc difficiles à mesurer. La prise en compte de ces biais d’échantillonnage peuvent
ainsi nous renseigner sur la nature des traits manquants, et ainsi améliorer notre ana-
lyse. On étudie ainsi pour finir quelques unes des conséquences de l’ajout de ce modèle
d’échantillonnage sur notre méthode.

Chapitre 6 : Résumé substantiel

This last short chapter, writen in French, describes the context and main results pre-
sented in this manuscript. It can be read independently from the rest, and is highly
redundant with the introduction, that precisely ended this way.
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Paris: Garnier, chapter 10, pp. 177 – 186.

Wainwright MJ, Jordan MI. 2007. Graphical Models, Exponential Families, and Varia-
tional Inference. Foundations and Trends® in Machine Learning. 1:1–305.

Wakeley J. 2009. Coalescent Theory: An Introduction. reenwood Village Roberts and
Company Publishers.



Bibliography 243

Weston S. 2014a. doParallel: Foreach parallel adaptor for the parallel package.

Weston S. 2014b. foreach: Foreach looping construct for R.

Wickham H. 2007. Reshaping Data with the {reshape} Package. Journal of Statistical
Software. 21:1–20.

Wickham H. 2009. ggplot2. New York, NY: Springer New York, springer edition.

Yang Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when
substitution rates differ over sites. Molecular biology and evolution. 10:1396–401.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: Approximate methods. Journal of Molecular Evolution.
39:306–314.

Yang Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics.
139:993–1005.

Yu Y, Degnan JH, Nakhleh L. 2012. The Probability of a Gene Tree Topology within a
Phylogenetic Network with Applications to Hybridization Detection. PLoS Genetics.
8:e1002660.

Yu Y, Dong J, Liu KJ, Nakhleh L. 2014. Maximum likelihood inference of reticulate
evolutionary histories. PNAS. 111:16448–16453.

Yu Y, Nakhleh L. 2015. A maximum pseudo-likelihood approach for phylogenetic net-
works. BMC Genomics. 16:S10.

Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology).
68:49–67.

Zuckerkandl E, Pauling L. 1965. Molecules as documents of evolutionary history. Journal
of theoretical biology. 8:357–366.



Titre : Modèles de processus stochastiques avec sauts sur arbres : application à l’évolution
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Résumé : Le projet s’inscrit dans la dynamique de sys-
tématisation statistique qui s’opère aujourd’hui dans le
champ de l’écologie comparative. Les différents traits
quantitatifs d’un jeu d’espèces échantillonné peuvent
être vus comme le résultat d’un processus stochas-
tique courant le long d’un arbre phylogénétique, ce
qui permet de prendre en compte des corrélations is-
sues d’histoires évolutives communes. Certains chan-
gements environnementaux peuvent produire un dé-
placement de niches évolutive, qui se traduisent par
un saut dans la valeur du processus stochastique décri-
vant l’évolution au cours du temps du trait des espèces
concernées.
Parce qu’on ne mesure la valeur du processus dyna-
mique qu’à un seul instant, pour les espèces actuelles,
certains scénarii d’évolution ne peuvent être recons-
truits, ou présentent des problèmes d’identifiabilité,
que l’on étudie avec soin. On construit ici un modèle

à données incomplètes d’inférence statistique, que l’on
implémente efficacement. La position des sauts est dé-
tectée de manière automatique, et leur nombre est
choisi grâce à une procédure de sélection de modèle
adaptée à la structure du problème, et pour laquelle
on dispose de certaines garanties théoriques.
Un arbre phylogénétique ne prend pas en compte les
phénomènes d’hybridation ou de transferts de gènes
horizontaux, qui sont fréquents dans certains groupes
d’organismes, comme les plantes ou les bactéries. Pour
pallier ce problème, on utilise alors un réseau phylo-
génétique, pour lequel on propose une adaptation du
modèle d’évolution de traits quantitatifs décrit précé-
demment. Ce modèle permet d’étudier l’hétérosis, qui
se manifeste lorsqu’un hybride présente un trait d’une
valeur exceptionnelle par rapport à celles de ses deux
parents.

Title : Shifted stochastic processes evolving on trees: application to models of adaptive
evolution on phylogenies

Keywords : Model selection, Comparative ecology, Phylogeny, Orstein-Uhlenbeck

Abstract : This project is aiming at taking a step fur-
ther in the process of systematic statistical modeling
that is occurring in the field of comparative ecology. A
way to account for correlations between quantitative
traits of a set of sampled species due to common evolu-
tionary histories is to see the current state as the result
of a stochastic process running on a phylogenetic tree.
Due to environmental changes, some ecological niches
can shift in time, inducing a shift in the parameters va-
lues of the stochastic process modeling trait evolution.
Because we only measure the value of the process
at a single time point, for extant species, some evo-
lutionary scenarios cannot be reconstructed, or have
some identifiability issues, that we carefully study. We
construct an incomplete-data model for statistical in-
ference, along with an efficient implementation. We

perform an automatic shift detection, and choose the
number of shifts thanks to a model selection proce-
dure, specifically crafted to handle the special struc-
ture of the problem. Theoretical guaranties are derived
in some special cases.
A phylogenetic tree cannot take into account hybridi-
zation or horizontal gene transfer events, that are wi-
dely spread in some groups of species, such as plants
or bacterial organisms. A phylogenetic network can be
used to deal with these events. We develop a new mo-
del of trait evolution on this kind of structure, that
takes non-linear effects such as heterosis into account.
Heterosis, or hybrid vigor or depression, is a well stu-
died effect, that happens when a hybrid species has a
trait value that is outside of the range of its two pa-
rents.
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