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0.1 Contexte

Avec la récente résurgence des réseaux de neurones, le rapide essor des méthodes
d’apprentissage profond et la prolifération de données massives non annotées, les al-
gorithmes non supervisées ont gagné en popularité de part leur faculté à extraire de
l’information depuis ces données [14]. Les méthodes modernes d’apprentissage profond
ainsi que les récentes évolutions matérielles (GPU) permettent l’apprentissage de réseaux
de neurones depuis des données quasiment brutes, c’est à dire sans la fastidieuse et coû-
teuse opération manuelle d’extraction de caractéristiques, jusqu’à la prédiction de la tâche
finale. Au final ces réseaux apprennent de bout en bout à la fois une représentation des don-
nées ainsi que sa projection vers la prédiction sous jacente à la tâche finale facilitant ainsi
leur déploiement. Un bon indicateur de la popularité et du succès de cess méthodes est le
défi ImageNet où depuis 2013, quasiment tous les participants ont utilisés des méthodes
neuronales profondes [92] et les seuls participants à avoir recours à une extraction de car-
actéristiques manuelle ont été relégués en queue du classement. L’apprentissage profond et
donc l’apprentissage automatique de représentations n’est pas en vogue uniquement dans le
domaine de la vision par ordinateur, d’autres domaines tels que le traitement des langues na-
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turelles, la reconnaissance de la prole, les systèmes de recherche d’information multimodaux
et bien d’autres suivent cette vague.

Les objectifs scientifiques ont évolué de l’extraction de caractéristiques et combinaison de
classifieurs au développement d’architecture neuronales qui apprennent automatiquement
des représentations et les exploitent efficacement pour une multitude de différentes tâches.
Différents type d’architecture de réseaux profonds existent et chacune d’entre elles est dédiée
à une classe de problème spécifique. En traitement des langues naturelles ou autre problème
de modélisation de séquences les réseaux récurrents ont permis le traitement plus efficace de
ces séquences de longueur variable. Le dernier modèle de ce type de réseau embarque des
"portes" permettant d’apprendre quelle information mémoriser et quelle information oublier
et défini actuellement l’état de l’art en compréhension de la parole [129], en traduction [4], en
système de question/réponse [125] et différentes autres tâches dont les observations dépen-
dent de séquences et où la modélisation et la sélection d’information dans cette séquence
est primordiale. En vision par ordinateur, les réseaux convolutifs sont utilisés pour obtenir
automatiquement de bonnes représentations d’images [101] et sont utilisés dans de nom-
breuses tâches du domaine de la vision par ordinateur telles que la classification [61], la
segmentation sémantique [64], l’estimation de saillance [41] et bien d’autres. Lorsqu’ils sont
transposés, ces réseaux sont souvent appelés réseaux "déconvolutifs" et sont utilisés pour
la génération d’images synthétiques depuis une représentation d’image existante où une
source de bruit aléatoire.

L’avantage majeur apparaît lorsqu’on combine différent types de réseau pour former des
architectures complexes capables de traiter différentes données, en apprendre des représen-
tations efficaces, les combiner ou les transformer pour être efficace sur différentes tâches.
C’est l’aspect le plus intéressant en apprentissage non-supervisé où de tels réseaux peuvent
être entraînés en exploitant les ressources considérables de données non-annotées accessible
sur internet, sans nécessité de recourir à des processus coûteux et fastidieux d’annotation
manuelle. Les exemples typiques inclus le traitement multimodal non-supervisé de vidéos
non-annotées où les réseaux de neurones profonds sont capables de fusionner les infor-
mations obtenues depuis la transcription automatique de la parole et les représentations
visuelles obtenues par un réseau convolutif dans le but d’apparier correctement des seg-
ments de vidéo. Cette tâche spécifique d’appariement est très en vogue dans les dernières
campagnes d’évaluation internationales telles que MediaEval ou TRECVID. D’autres tâches
d’apprentissage typique où sont impliqués différentes type d’architecture de réseau sont,
mais ne sont pas limitées à, la prédiction de mouvement [121, 123], génération d’image à
partir de texte [89, 133], la reconstruction d’images [131, 134] et bien d’autres.

Dans cette dissertation, nous évaluons la thèse que les plongements neuronaux (neural
embedding) sont adaptés pour la fusion multimodale. Nous allons dans une première par-
tie nous intéresser au développement d’architectures exploitant les informations textuelles
ou visuelles de manière indépendante puis dans une second temps sur des architectures
qui exploitent la combinaison des 2 sources d’informations. Nous évaluons différentes ar-
chitectures récurrentes pour la compréhension de la parole et nous les comparons à l’état
de l’art; nous proposons ensuite des architectures convolutives simples qui prédisent le
mouvement depuis des images statiques, nous tentons de combler l’écart entre les méth-
odes d’apprentissages classiques et les réseaux neuronaux très profonds. En ce qui concerne
les méthodes non-supervisées pour fusionner informations visuelles et textuelles, nous pro-
posons différentes architectures qui sont capables de mieux exploiter de grosses collections
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de vidéos et nous améliorons la recherche de contenu aussi bien en terme de performance
qu’en terme de diversité de contenu retrouvé. Toutes les méthodes proposées sont éval-
uées sur des "benchmarks" tels que TRECVID et définissent maintenant un nouvel état de
l’art. Nous évaluons également des méthodes permettant de mieux visualiser des modèles
de réseaux de neurones.

0.2 Espace de représentation et apprentissage profond

Les avancées récentes en apprentissage profond ont changé la manière d’aborder les prob-
lèmes en traitement des langues; vision par ordinateur ou multimédia. L’extraction manuelle
de caractéristiques a perdu de son importance avec la possibilité d’apprentissage automa-
tique des représentations. Dans le traitement de textes, les représentations sacs de mots
ont été remplacées par des méthodes qui apprennent des représentations de manière non-
supervisée à partir de corpus [70, 59]. En vision par ordinateur ce phénomène est encore bien
plus saillant et les caractéristiques extraites manuellement [65, 6, 69] sont remplacées par des
représentations apprises automatiquement durant l’apprentissage supervisé du réseau sur
une tâche spécifique [98]. Dans le domaine du multimédia la même tendance est suivie où
les méthodes pour fusionner différentes modalités ont été développées [55, 73, 30, 15].

Dans le but d’utiliser des données provenant de différentes modalités (texte, images, etc.)
avec des réseaux de neurones, il est nécessaire de projeter chaque entrée dans un espace
de représentation continu. Cette projection, en plus d’être nécessaire pour les réseaux de
neurones possède d’intéressante propriétés intrinsèques [70, 98, 85, 67]. Nous introduisons
l’architecture neural de base que nous allons utiliser intensivemment dans ce travail qui
permet l’apprentissage de représentations de textes et d’images, le passage de l’une à l’autre
ainsi que la synthèse d’exemples artificiels dans le domaine original (e.g., espace des images
ou textes) étant donnée une représentation.

Nous définissons une "modalité" comme une collection de données agrégées par un outil
d’acquisition [55]. Deux outils d’acquisition typique sont: i) l’acquisition d’image (effec-
tué typiquement avec des capteurs CMOS ou CCD) qui capture le monde et produit une
représentation discrète dans l’espace des images (images) ou dans une espace temporel
d’images (vidéos), et ii) l’acquisition du son (effectué généralement avec différents type de
microphones and des convertisseurs analogique digitaux. Chaque modalité peut être trans-
formée et représentée de plusieurs façons. Un signal audio contenant de la parole peut être
automatiquement transcrit et exploité comme texte ou il peut être représenté au moyen d’
i-vecteurs [24] et exploité pour la tâche de reconnaissance du locuteur. Les images clef d’une
vidéo peuvent être décrites avec des concepts compréhensibles (mots) tels que ImageNet [92]
ou avec des caractéristiques obtenues par des réseaux de neurones convolutifs [98, 51].

La figure 1 illustre deux modalités: audio et visuelle, et les trois différents niveaux
auxquelles elles peuvent être représentées:

• l’espace original - c’est l’espace où les données sont représentées après l’acquisition et
la numérisation. Cela peut être un signal 1D discret pour l’audio ou une séquence de
mesures RVB pour une image.

• l’espace conceptuel - c’est une espace qui décrit l’espace original avec des concepts
clefs ou mots clefs. Ce genre d’espace est en général peu adapté pour faire de
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Figure 1: Deux modalités différentes (audio et visuelle), chacune présentée à différents
niveaux. La combinaison de deux modalités à des niveaux arbitraires (fusion multimodales)
est notée en rouge. Passer d’une modalité à une autre (traduction de modalité), à des niveaux
arbitraires est noté en bleu.

l’apprentissage automatique mais il est en général interprétable humainement et fourni
un résumé simple de ce qui a été acquis dans l’espace original. Les exemples typiques
sont les transcriptions automatique de la parole depuis une source audio ou simple-
ment l’extraction des principaux mots clefs et les concepts ImageNet décrivant le con-
tenu de la trame clef d’une vidéo.

• l’espace de représentation - c’est l’espace le plus utile pour faire de l’apprentissage
automatique. Il peut être un espace de représentation discret obtenu depuis l’espace
conceptuel (e.g., sac de mots obtenues à partir de transcriptions automatique) ou un
espace de représentation continu (e.g. word2vec). Dans les applications ayant recours
à l’apprentissage profond au moyen de réseaux de neurones, les représentations con-
tinues sont en général utilisées et produisent des performances état de l’art. Les es-
paces de représentation, particulièrement les espaces de représentations continus sont
moins interprétables humainement que les espaces conceptuels mais sont très perti-
nent pour les application d’apprentissage automatique et proposent des propriétés in-
téressantes [70]. Ces intéressantes propriétés des représentations continues peuvent
également être observées dans le domaine orignal par synthèse grâce aux réseaux
génératifs adverses [35, 85, 43].

Quand on travaille avec des données qui contiennent plusieurs modalités (e.g. images
sous-titrées, vidéos, transcriptions, etc.), il y a un besoin inhérent de les combiner. Il y a
deux approches distinctes pour intégrer chaque modalités:

• La fusion multimodale - cette approche combine les représentations de chaque modal-
ité dans une nouvelle représentation qui contient l’information unifié des différentes
modalités (mais pas nécessairement disjointes) [66, 15, 73]. Les exemples typiques de
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telles approches incluent la recherche multimodale de photos personnelles en utilisant
à la fois la représentation visuelle (de la photo elle-même) et la représentation textuelle
de ses annotations [66], l’utilisation ds représentations visuelles et de la parole en
recherche de vidéos [73] et bien d’autres où plusieurs modalités sont disponibles.

• La transmodalité - d’autre part la traduction transmodale permet de passer d’une
modalité à une autre sans combiner les informations des deux modalités con-
cernées [30, 117]. De telles approches permettent de synthétiser une modalité à par-
tir d’une autre, au niveau de la représentation [30, 116] ou même dans le domaine
d’origine [71, 90, 133, 117]. La plupart des approches transmodales offrent également
le moyen de faire de la fusion multimodale.

Les deux approches ne sont pas nécessairement décorrélées. La transmodalité ou la fu-
sion multimodale sont très reliées et la fusion multimodale peut grandement bénéficier des
méthodes qui se focalisent sur la transmodalité. Transmodalité et fusion multimodale ne
sont pas limitées aux modalités présentes au même niveau (e.g., images dans un espace de
représentation ou texte dans un espace de représentation; voir figure 5.1) et peuvent être
effectuées avec différentes modalités à différent niveaux. Bien qu’il y a de nombreuses com-
binaisons possibles, la plus intéressante utilise les deux modalités plongées dans un espace
de représentation. Nous n’allons pas seulement utiliser des espaces de représentation con-
tinus mais nous allons aussi explorer la possibilité d’utiliser directement l’espace original
d’une modalité car il est interprétable humainement et cela peut permettre de fournir un
aperçu du modèle appris.

0.3 Objectif et vue d’ensemble de la thèse

Nous suivons une progression naturelle, en démarrant avec des réseaux simples capables
d’utiliser une seule modalité (texte ou image) and nous progressons vers des architectures
plus complexes qui combinent différents type de réseaux de neurones ou différentes entrées
pour traiter différentes modalités.

Nous focalisons en premier lieu sur la compréhension du langage oral et plus spéci-
fiquement sur la tâche de détection d’attribut (slot filling) dans les systèmes de dialogue
homme-machine. L’algorithme d’apprentissage état de l’art récent pour ce problème était
les champs conditionnels aléatoires (CRF). Les récentes avancées en réseaux de neurones
ont amené à leur utilisation pour résoudre la tâche de détection d’attribut sur des jeux de
données relativement simples [68, 129]. Ce travail est découpé en deux parties. Dans la pre-
mière, nous évaluons les champs conditionnels aléatoires ainsi que les réseaux de neurones.
Nous tentons de vérifier si le gain des réseaux de neurones publié dans la littérature ré-
cente provient de la nature même des réseaux à modéliser les séquences ou de la qualité des
représentations continues qui encode les observations à l’entrée du réseau. Nous montrons
que le gain obtenu dans ce contexte est essentiellement obtenu par la représentation en en-
trée et non le réseau lui même et que la modélisation des dépendances entre attributs, mieux
assurée par les CRF, est crucial pour cette tâche [interseech2015]. Nous proposons alors une
architecture modifiée de réseau récurrent pre-existant qui modélise mieux ces dépendances
[interseech2017] et qui définit un nouvel état de l’art sur ces données. Nous montrons no-
tamment que les résultats publiés dans la littérature obtenus sur le corpus ATIS [22] ne sont
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pas suffisamment significatifs pour en tirer de fortes conclusion, ceci du à la nature facile
de ce benchmark. Nos résultats évalués à la fois sur les corpus ATIS et MEDIA [12], un
benchmark proposant un challenge plus relevé, permettent de le confirmer. Dans la sec-
onde partie, nous évaluons différent réseaux récurrents à modéliser les séquences. Nous
montrons que les meilleures performances sont atteintes avec des réseaux bidirectionnels et
une architecture de type GRU (gate recurrent unit). Nous avons également étudié l’apport
d’informations simples non locales aux réseaux avec de l’information provenant du dia-
logue passé. L’incorporation de d’informations binaires indiquant si un attribut a déjà été
mentionné dans le dialogue permet d’améliorer les performances.

Après l’évaluation de méthodes d’apprentissage profond dans un contexte de traitement
des langues (et donc de textes), nous nous intéressons à un autre problème monomodal,
cette fois-ci en vision par ordinateur: la prédiction du mouvement à partir d’images sta-
tiques. Nous évaluons l’utilisation de simples architectures de réseaux convolutifs et dé-
convolutifs pour générer des prédictions de mouvement sur le corpus d’action humaine
ETH [96]. Nous proposons une architecture neuronale simple de type encodeur-décodeur
avec une branche supplémentaire qui modélise la différence temporelle entre l’image ob-
servée et l’image à prédire. Cette architecture est comparée à un simple encodeur-décodeur
convolutif qui génère les anticipations futures à un intervalle temporel fixe et utilisé itérative-
ment pour générer des prédictions à des intervalles de temps supérieur. Nous montrons que
notre proposition avec cette branche additionnelle permettant de modéliser le temps peut
créer avec succès des représentations qui encode la position et l’orientation d’un personnage
humain et que ces représentations peuvent être utilisées pour synthétiser des anticipations
réalistes pour un intervalle de temps arbitraire. Nous montrons également que générer des
prédictions directement fonctionne mieux que d’utiliser une méthode itérative, à la fois en
terme de visualisation humaine et en erreur quadratique moyenne entre l’image prédite et
la vérité terrain.

Après les approches monomodales, nous continuons avec les méthodes d’apprentissage
profond qui exploitent plusieurs modalités. Nous commençons par décrire les méthodes de
fusion multimodales état de l’art. Nous introduisons ensuite notre proposition de réseau
neuronal profond bidirectionnel transmodal (BiDNN) qui permet de faire de la fusion mul-
timodale. En renforçant la symétrie de deux systèmes opposés de traduction transmodale,
nous obtenons la création d’un nouvel espace de représentation où les représentations
monomodales disjointes de départ peuvent être directement comparées. Nous utilisons cet
espace de représentation pour effectuer de la fusion multimodale. Dans la dernière partie,
après l’introduction des réseaux conditionnels génératifs adverses (GAN) (texte vers im-
ages), nous proposons une méthode pour les utiliser pour faire de la fusion multimodale
tout en ayant la capacité de visualiser les traductions multimodales dans l’espace visuel
d’origine (l’espace des images).

Après l’introduction des notions théoriques, nous évaluons différentes représentations
monomodales pour la modalité parole et visuelle et nous évaluons différentes façons de faire
de la fusion multimodales. Nous comparons des autoencodeurs multimodaux à notre réseau
BiDNN et nous montrons que notre BiDNN est le nouveau modèle état de l’art sur la tâche de
d’hyperliens vidéo (video-hyperlinking). Nous proposons également une méthode utilisant
les CGAN pour faire de la fusion multimodale et nous montrons que cette méthode peut
produire des représentations de la même qualité, voire meilleure que les BiDNN avec en plus
la faculté de produire des visualisations transmodales qui donnent un aperçu interprétable
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humainement du modèle appris. Ce modèle est toutefois actuellement limité à la taille des
images observées et ne peut rivaliser avec le BiDNN pour la fusion multimodale d’images
de taille arbitraire.

Nous discutons également de la tâche de video-hyperlinking en terme de diversité des
résultats proposés, à la fois à travers un questionnaire et de mesures objectives. Nous mon-
trons que notre BiDNN, en plus de définir le nouvel état de l’art en terme de précision,
permet d’améliorer la diversité des résultats proposés parmi les cibles pertinentes selon les
mesures objectives et les évaluations manuelles qui sont corrélées et peut donc être utilisé
pour estimer la diversité quand une évaluation humaine n’est pas possible.

Dans ce travail, nous donnons une vue d’ensemble de différentes représentations
monomodales qui sont évalues dans les tâches de détection d’attributs, prédiction du mou-
vement et hyperliens de vidéos. Nous introduisons alors nos principales contributions,
un réseau neuronal profond bidirectionnel (BiDNN) utilisé au départ pour la fusion mul-
timodale et défini le nouvel état de l’art en video-hyperlinking. Nous évaluons ce modèle en
terme de diversité où nous montrons qu’il offre une diversité amélioré de résultats parmi les
ensembles de vidéos pertinentes en plus des performances état de l’art en terme de précision.
Dernièrement nous étudions des moyens de visualiser des traductions transmodales tout en
faisant de la fusion multimodale et nous proposons d’utiliser les CGAN. Nous utilisons la
partie générative du réseau pour synthétiser les visualisations d’un modèle transmodal et la
partie discriminante du réseau pour faire de la fusion multimodale.

0.4 Principales contributions

Dans cette dissertation, nous évaluons la pertinence des représentations neuronales pour
faire de la fusion multimodale. L’objectif de ce travail intitulé "Architectures neuronales
profondes pour l’apprentissage automatique de représentations de données multimédias
multimodales" a été d’évaluer l’existant et de proposer de nouvelles méthodes pour
l’apprentissage automatique non-supervisée de représentations de données multimodales
dans le contexte multimédia. Toutefois, nous avons commencé par étudier des problèmes
impliquant une seule modalité.

Le premier objectif a été d’évaluer des architectures pour des entrées monomodales, texte
ou visuelle. Pour les entrées textes, le but a été de comparer les méthodes de plongement
de mot ou de texte et les architectures pour modéliser les séquences. Pour les entrées vi-
suelles, nous avons fixé le but de prédire le mouvement étant donné une image statique
d’une personne faisant une action simple. Le but a été d’évaluer les méthodes et architec-
tures existantes, les combiner, pour fournir une amélioration pour chaque tâche et évaluer
leur faisabilité pour les utiliser aux différentes sous-tâches dans le cadre d’architectures mul-
timodales plus complexes présentées dans la suite.

Le premier et second objectif a été de développer et évaluer des architectures neu-
ronales plus complexes qui peuvent traiter différentes modalités, principalement visuelle
et textuelle, faire de la fusion multimodale aussi bien que de la transmodalité. Le but a
été d’améliorer la recherche multimodale en développant des architectures qui permettent
d’obtenir de meilleures représentations multimodales quand on fusionne deux modalité ini-
tialement disjointes. La tâche principale sur laquelle nous nous sommes évalué a été la tâche
de video hyperlinking, une variation de la recherche multimodale où l’objectif est de retrou-
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ver une ensemble de segments vidéos qui peut être intéressant pour la personne visualisant
un segment spécifique de vidéo. Comme cette tâche est une tâche présente dans la cam-
pagne d’évaluation TRECVID, nous avons aussi participé et évalué nos méthodes lors de
cette campagne. Lors de nos recherches pour améliorer la fusion multimodale, nous avons
aussi explorer la possibilité de visualiser les modèles appris dans une forme naturelle pour
un humain.

En ce qui concerne le premier objectif d’évaluer des architectures monomodales pour
modéliser des entrées textuelles ou visuelles, nous avons principalement utilisé deux tâches.
Pour le modalité textuelle, nous avons évalué différentes architectures neuronales pour la
tâche de détection d’attribut en compréhension de la parole dans le cadre de dialogue télé-
phonique homme-machine. Nous avons évalué les performances de différentes architectures
neuronales, depuis de simples réseaux récurrent, les versions Jordan et Elman au architec-
tures récurrentes plus récentes telles que les LSTM/GRU qui apprends les informations à
mémoriser au sein d’une séquence. Nous avons montré que dans ce cadre, les architectures
GRU bidirectionnelles étaient les plus performantes bien que les gains des architectures neu-
ronales sur cette tâche étaient principalement dus à la représentation initiale des données en
entrée du réseau, plutôt qu’au réseau lui même. Même si ces réseaux récurrent sont adaptés
pour modéliser des séquences et mémoriser des informations non locales, elles ne sont pas
efficaces à modéliser les dépendances entre les étiquettes de sorties comme par exemple les
champs conditionnels aléatoires (CRF) sur cette tâche.

En ce qui concerne la modalité visuelle, nous nous sommes concentrés sur la prédiction
du mouvement et nous avons developpé une architecture qui prédit un futur mouvement
pour une différence de temps arbitraire depuis une image unique. Nous avons étendue la
possibilité des réseaux convolutifs afin de leur donner la capacité d’apprendre une représen-
tation d’une personne qui encode implicitement sa direction et sa posture. basé sur cette
représentation, un réseau déconvolutif est capable de synthétiser une prédiction correcte
d’un mouvement d’un personne, en anticipant correctement la direction du mouvement et
le changement de posture pour un arbitraire, non-discret déplacement temporel.

Pour le second objectif qui est d’améliorer la fusion multimodale, nous avons tout
d’abord développé une nouvelle architecture (un réseau profond bidirectionnel) qui, con-
trairement aux autoencodeurs multimodaux existants, se concentrent sur la traduction trans-
modale et crée un espace de représentation commun pour les deux (texte vers image et image
vers texte) traductions transmodales. Ce nouvel espace de représentation est alors utilisé
pou faire de la fusion multimodale. Nous avons montré sur plusieurs évaluations et dif-
férentes monomodales représentations en entrée que notre méthode fournit une représenta-
tion multimodale qui améliore significativement la représentation obtenue avec des autoen-
codeurs multimodaux. En plus de ces évaluations, nous avons participé à l’évaluation de la
campagne internationale TRECVID où notre méthode est arrivé en tête définissant un nou-
vel état de l’art. Nous avons aussi analysé notre méthode en terme de diversité de résultat à
travers une évaluation manuelle (questionnaire web) et montré que notre méthode offre de
bonnes performances à la fois en terme de précision et de diversité.

Dans la dernière partie, nous avons évalué la possibilité d’utiliser des réseaux condi-
tionnels génératifs adverses (CGAN) pour faire de la fusion multimodale tout en préservant
la capacité de synthétiser dans le domaine original (le domaine des images) dans le but
d’offrir des visualisations des traductions transmodales apprises. Nous avons montré que
les CGAN peuvent être utilisés pour la fusion multimodale et sont à l’état de l’art pour des
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images de petite taille. Cependant ils sont très compliqués à entraîner et limités en terme
de taille d’image qu’ils peuvent traiter. Pour cette raison, ils ne peuvent actuellement con-
courir contre des autoencodeurs multimodaux ou notre BiDNN mais peuvent offrir de belles
visualisations du modèle transmodal.

0.5 Explorations futures

Plusieurs directions peuvent être explorées. En ce qui concerne la détection d’attributs en
compréhension de la parole, des architectures plus complexes qui modélisent partiellement
ou complètement les dépendances des sorties ont à être étudié. De telles architectures peu-
vent varier de simples connections récurrentes aux décisions prises dans le passé aux ar-
chitectures qui prédisent plusieurs sorties à la fois, avec une fonction de coût modifiée qui
modélisent les probabilités de la séquence de sortie.

En fusion multimodale, spécialement pour la tâche de video-hyperlinking, il y a aussi de
mutiples chemins à explorer. Notre réseau BiDNN est le nouvel état de l’art mais est tou-
jours relativement simple. Explorer de possible améliorations ou le combiner avec d’autres
méthodes peut être payant. l’améliorer peut passer par une fonction de côut additionnelle
qui force les deux couches centrales à être aussi similaire que possible ou en ajoutant des
couches pour permettre l’apprentissage de bout en bout.

Nous espérons qu’un fonction de coût additionnelle améliore la symétrie des projections
sans trop rigidifier et étrangler le réseau, le fait d’introduire plus de variables partagées
devrait le permettre. l’apprentissage de bout en bout est en général plus performant et il
peut être appris de manière plus fine à tous les niveaux et donc nous pouvons ici aussi
espérer au moins de petites améliorations.

D’autres façons plus avancées d’améliorer le BiDNN peuvent être également l’utilisation
d’autoencodeurs variationnels [123], qui ont de meilleures propriétés statistiques de mod-
élisation, et les connecter à l’entrée de l’architecture faite pour améliorer la recherche
monomodale. Les réseaux génératifs adverses sont une nouvelle et prometteuse piste
de recherche. Tandis que nous avons montré leurs potentiels pour la tâche de video-
hyperlinking, ils sont actuellement grandement améliorés. Comme les architectures qui sont
capables de gérer de grandes images, il serait intéressant d’évaluer s’ils vont être capables
de passer à l’échelle comme le BiDNN.

Nous avons également seulement évalué une traduction transmodale qui va des
représentations de parole au domaine des images. Il serait intéressant d’évaluer un mod-
èle de bout en bout qui va directement du domaine de la parole au domaine de l’image et
vice versa. Ceci pourrait être possible en ajoutant une couche récurrente d’un côté à la place
de la représentation de la parole, en laissant tel quel le reste du générateur. La direction
opposée devrait être aussi facilement modélisée en utilisant un réseau convolutif, avec du
bruit aléatoire en entrée, et un RNN pour générer des phrases réalistes à partir d’un visuel
donné. La performance d’une telle architecture reste à explorer.
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1.1 Context

With the recent resurgence of neural networks, the rapid development of deep learning
methods and the proliferation of massive amounts of unlabeled data, unsupervised learning
algorithms — which can automatically discover interesting and useful patterns in such data
— have gained popularity among researchers and practitioners [14]. Modern deep learning
methods and recent advances in hardware allow to bypass careful, and often time consum-
ing, manual feature engineering and allow for end-to-end neural methods, that learn the
primary task, as well as the representations needed by it, to be easily deployed. A good
indicator of the popularity and success of deep learning methods is the ImageNet chal-
lenge where, since 2013, almost all the participants used deep learning methods [92] and
the few participants using handcrafted representations were lagging behind. Deep learn-
ing, and thus automatic representation learning, is not only an increasingly popular trend
in computer vision. Other fields, such as natural language processing, speech recognition,
multimodal retrieval systems and many others follow this trend.

The goal of research has moved from designing features and combining classifiers to
developing neural architectures that learn meaningful representations and are able to fully
exploit them for a multitude of different tasks. Many different kinds of deep learning ar-
chitectures exist and each is specifically tailored for tackling a set of problems. In natural
language processing and sequence modeling, recurrent neural networks were made after
the necessity of having neural networks that can model sequences of varying lengths. The
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latest models of such networks also include gates that allow them to learn which information
to retain and which to forget, and define the state of the art in spoken language understand-
ing [129], neural translation [4], question answering [125] and many other tasks that rely on
sequence modeling and selective information retention. In computer vision, convolutional
neural networks are used for implicitly obtaining good translation and scale invariant fea-
tures [101] and are used for many computer vision tasks such as classification [61], semantic
segmentation [64], saliency estimation [41] and many others. When transposed, they are
often called “deconvolutional” networks and are used for generating synthetic images from
an existing representation or from a source of random noise.

The biggest advantages come when combining multiple different types of neural net-
works into bigger, more complex architectures that are able to incorporate different input
sources, learn meaningful representations, merge them or transform them and excel at dif-
ferent tasks. This is most interesting in unsupervised learning where such networks can be
trained by exploiting the big magnitude of unlabeled data available on the Internet, without
having the need for human annotators to perform the tedious work of providing labels for
a deep learning network to learn form. Typical examples include unsupervised multimodal
processing of unlabeled videos where deep learning networks are able to fuse information
obtained from automatic speech transcripts and visual representations from convolutional
neural networks in order to assess the similarity of different videos. This specific task has
been of growing interest in yearly international benchmarking initiatives like MediaEval
and TRECVID. Other typical learning tasks where different types neural architectures in-
clude, but are not limited to, motion prediction [121, 123], generating images from text [89,
133], image inpainting [131, 134] and many others.

In this dissertation, we evaluate the thesis that neural embeddings are well suited for
multimodal fusion. We mainly focus firstly on developing neural architectures that exploit
either solely textual or visual information and secondly on architectures that exploit the com-
bination of textual and visual information. We evaluate different recurrent architectures for
spoken language understanding and compare the state of the art; we develop simple con-
volutional architectures that predict motion from static images, thus filling the gap between
classical machine learning methods and more heavy deep learning methods. Regarding
unsupervised methods to fuse textual and visual information, we elaborate and develop dif-
ferent architectures that are able to better exploit big video collections and improve retrieval,
both in terms of accuracy and diversity of the retrieved collection. All the proposed meth-
ods are evaluated with benchmarks such as TRECVID and define the new state of the art.
Additionally, we also evaluate methods to better visualize learned deep learning models in
a human understandable form.

1.2 Organization of the Manuscript and Contributions

This manuscript follows a natural progression starting from simple deep learning meth-
ods able to utilize only one modality (text or images) and slowly progressing towards more
complex architectures that combine different types of neural networks or different inputs
to complex and heavy networks that consist of different neural architectures combined in a
dynamic way that utilize and synthesize different modalities.

In Chapter 3, we focus on spoken language understanding and, more specifically, on the
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problem of slot filling. The state of the art method for the slot filling task were conditional
random fields. However, recent advances in neural networks lead to the use of recurrent
neural networks for slot filling on simple datasets [68, 129]. This chapter consists of two
parts. In the first part we thoroughly evaluate conditional random fields and recurrent neu-
ral networks. We start by assessing whether recurrent neural networks do gain from their
use of continuous representations as inputs or from their capability to model sequences.
We show that, while continuous representations bring initial improvement, the ability of
conditional random fields to model output-label dependencies is crucial for the task of slot
filling. We then propose a new, modified, architecture that models output label dependen-
cies with a learned representation space and defines the state of the art today. Additionally,
we show that results obtained on the classic ATIS dataset [22] are not significant enough to
draw conclusions and that results obtained on a more challenging dataset, like MEDIA [12],
are required. In the second part, we evaluate different gated recurrent neural networks, pos-
sible directions of modeling sequences, and adding contextual information to a recurrent
architecture. We show that the best performance is achieved with bidirectional sequence
modeling, with architectures using gated recurrent units (GRUs) and by incorporating ad-
ditional binary contextual information that indicates whether a specific concept was already
mentioned within the current dialog or not.

In Chapter 4, we focus on another single-modal problem, this time in computer vision:
action forecasting from static images. We evaluate the feasibility of using simple convolu-
tional and deconvolutional architectures for generating movement predictions on the ETH
human actions dataset [96]. We propose a simple encoder-decoder neural architecture with
an added branch that models the temporal difference between the image provided as in-
put and desired prediction. This architecture is then compared to a simple convolutional
encoder-decoder architecture that generates future anticipations at a fixed time interval and
is used iteratively to generate predictions at larger time intervals. We show that a simple con-
volutional neural architecture with an added fully-connected branch for time modeling can
successfully create representations that encode the stance and orientation of a human char-
acter and that those representations can be then used to synthesize realistic anticipations for
the given arbitrary temporal interval. We additionally show that generating predictions di-
rectly, in one step, performs better than using an iterative method, both in terms of manual
visual evaluations and mean square error between the predicted image and the groundtruth.

Chapter 5 gives a theoretical overview of standard deep learning architectures that uti-
lize two modalities and either translate from one modality to another or combine them by
performing multimodal fusion. We start by describing the existing state-of-the-art methods
for multimodal fusion. We then introduce our proposed bidirectional deep neural networks
where we focus on crossmodal translations as means of performing multimodal fusion. By
enforcing partial symmetry of two crossmodal translations, we create a new representation
space where both, initially disjoint, modalities can be directly compared. We then use this
representation space to perform multimodal fusion. In the last part, after introducing condi-
tional (text to image) generative adversarial networks, we propose a method to use them for
performing multimodal fusion while also having the ability to visualize crossmodal transla-
tions in the original visual domain - the image space.

In Chapter 6, we evaluate our propositions from Chapter 5 within the task of video hy-
perlinking. We evaluate different single-modal representations for the speech and visual
modalities and we evaluate different ways of performing multimodal fusion. We compare
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multimodal autoencoders to our proposed bidirectional deep neural networks and we show
that bidirectional deep neural networks (BiDNN) define the new state of the art in video
hyperlinking both in offline and live evaluations. Furthermore, we propose a method of
using conditional generative adversarial networks for performing multimodal fusion where
we show that they can produce embeddings of the same quality as bidirectional deep neural
networks or better in addition to producing crossmodal visualizations that give human-
interpretable insights into the trained video-hyperlinking model. Conditional generative
adversarial networks are currently limited in regards to image size and cannot currently
outperform bidirectional deep neural networks for multimodal fusion given images of arbi-
trary size. In Chapter 7, we also discuss video hyperlinking in terms of provided diversity,
both through an online questionnaire and through intrinsic measures. We show that our
proposed bidirectional deep neural networks, in addition to defining the new state of the art
in terms of precision, enable increased diversity within the proposed set of relevant targets
and that intrinsic evaluations of diversity correlate with manual human evaluations and can
be used for estimating diversity when a human evaluation framework is not available.

In this work we give an overview of different single modal representations that are evalu-
ated in the tasks of slot filling, action forecasting and video hyperlinking. We then introduce
our main contribution, bidirectional deep neural networks (BiDNN) that are used primarily
for multimodal fusion and define the new state of the art in video hyperlinking. In addition
to evaluating relatedness, we also evaluate bidirectional deep neural networks in terms of
diversity where we show that they also offer improved diversity of the recommended set
of videos in addition to the state-of-the-art performance in terms of precision. Lastly, we
investigate ways of visualizing learned crossmodal translations while also performing mul-
timodal fusion and we propose to use conditional generative adversarial networks. We use
the generative part of the network to synthesize visualizations of a crossmodal model and
the discriminative part to perform multimodal fusion. Possible future work could include,
but is in no way limited to incorporating additional losses and restrictions to further im-
prove bidirectional neural networks and extending both bidirectional neural networks and
conditional generative adversarial networks to perform end-to-end learning. Additionally,
in the case of conditional generative adversarial networks, it would be necessary to evalu-
ate more complex and recent architectures that can use and synthesize bigger images and
evaluate whether they can still perform comparably to bidirectional deep neural networks
or not.
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Recent advances in deep learning have changed the way we tackle problems in natural
language processing, computer vision and multimedia. Manual feature engineering has lost
its importance to automatic representation learning methods. In text, bag-of-words methods
have been replaced with methods that learn representations in an autonomous, unsuper-
vised way from available text corpuses [70, 59]. In computer vision the same has occurred
and manually designed features [65, 6, 69] are now replaced with self-learned representa-
tions that are readily available with deep learning methods at no additional cost [98]. In
multimedia, the same trend followed where methods for fusing different textual, visual and
other modalities have been developed [55, 73, 30, 15].

In order to use various input modalities (text, images, etc.) with deep learning methods,
there is a need to embed each input into a continuous representation space. The process
of embedding an input modality, not only makes it more suitable for neural networks to
handle but typically also provides useful intrinsic properties [70, 98, 85, 67]. In this chapter,
we introduce the basic neural architectures we will extensively use in this work and allow
representation learning of text and images, translations between different representations as
well as synthetization of artificial samples into the original domain (e.g., image space or text)
given a continuous representation.
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2.1 Representing Textual Information

When dealing with text, we typically focus on chunks of different lengths: single words or
textual segments of varying length that can be part of sentences, multiple sentences, para-
graphs or entire documents. Also, we can treat multiple words either as independent wholes
(by representing the entire chunk) or as sequences of words. In this section, we illustrate
methods that enable each of the different approaches to modeling textual information.

2.1.1 Representing Words

Although different methods exist for generating continuous word representations [78, 103],
we focus solely on Word2Vec, as it provides the best accuracy on a multitude of tasks and
datasets [70]. Word2Vec is a group of models, based on a shallow, two-layer feed-forward
neural architecture, that serves the purpose of generating word embeddings.

The first Word2Vec architecture, named continuous bag of words (CBOW) is illustrated in
Figure 2.1. Given a window, the idea is to predict the central word from the words preceding
it and the words that follow it. Each word is represented with a vector w stored in the matrix
W of size vocabulary_size× representation_size. All the words within a window, except for
the middle one that is ought to be predicted, are then summed to a common fully-connected
layer named the projection layer. From there, the output layer tries to reconstruct the vector
representing the middle word. The fact that all the input word representations are summed
makes their order irrelevant and names the architecture continuous bag of words, since this
is an analogue property in discrete bag of words. To illustrate on an example, with the
phrase “the cat is on the couch”, and a window of size 5 (2 words before and two words
after), the first window is “the”, “cat”, “is”, “on”, “the”. The words “the”, “cat”, “on”, “the”
are presented as inputs to a Word2Vec DBOW architecture, where they are embedded to their
w2, w3, w1, w2, respectively. The word “is” is also embedded and its vector w4 is expected
as output. Learning is performed through backpropagation, starting from the difference
of the expected output. The next window would then be “cat”, “is”, “on”, “the”, “couch”
with the word “on” being predicted, given the other words from the window. All the word
representations w are initially randomly initialized (thus the whole matrix W) and are later
updated through backpropagation. This makes words appearing in similar contexts have
similar vectors, which is a nice property of Word2Vec [70]. Additionally, the authors propose
also negative sampling - where words that do not belong together are randomly chosen and
their representations are pushed further apart.

The second Word2Vec architecture, named skip-gram, is illustrated in Figure 2.2 and is
similar to CBOW (a 2-layer, feed-forward neural architecture) but inverted: with the skip-
gram model, the idea is to predict words of the near context given a specific word. In the
previous example, with the current window “the”, “cat”, “is”, “on”, “the”, given the word
“is”, the words “cat” and “on” are to be predicted, as well as “the”. However, the more
distant the words are, the less they are related to the current word. The authors suggest a
context window of size 5 to 10 words [70].
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Figure 2.1: Word2Vec - continuous bag of words (CBOW): the central word of a window
is predicted given the words on the left and the words on the right. In the illustration, the
window “the”, “cat”, “is”, “on”, “the” is currently processed.
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Figure 2.2: Word2Vec - skip-gram: given a word within a window, its context is predicted.
In this illustration, the window currently processed is again “the”, “cat”, “is”, “on”, “the”.
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2.1.2 Representing Textual Segments

In many scenarios, it is not necessary to represent single words but a chunk consisting of
multiple words. Chunks can vary from segments of a sentence or just a few sentences (e.g.,
automatic speech transcripts of very short video segments), through paragraphs to entire
documents. The simplest way to represent textual segments is to aggregate the represen-
tations of its individual words and one of the simplest and most effective to aggregate the
representations of each word is to compute the average of their average Word2Vec represen-
tation [13].

A more complex and dedicated way of representing chunks of text are paragraph vec-
tors [59]. Their architecture is inspired by word representation methods (Word2Vec) with
which they share a lot of similarities. Paragraph vectors are specifically tailored to represent
textual chunks like paragraphs or entire documents and just like Word2Vec exist in two vari-
ants. The first variant, named paragraph vector distributed memory (PV-DM), is illustrated
in Figure 2.3. Each paragraph is mapped to a vector p, stored as a column in matrix D. Each
word is also mapped to a vector w, stored as a column of matrix W. Paragraph vectors are
not shared over different paragraphs (there are as many columns in matrix D as there are
paragraphs in the dataset) and word vectors are shared across all paragraphs. The system
is setup so to predict the next word within a window, given the window itself and the para-
graph that precedes it. Given an example where it is necessary to predict the word “on”
given the window “the”, “cat”, “is” and the previous paragraph, first all the vectors of the
given words inside the window and of the previous paragraph are extracted from their re-
spective matrices D and W (just like a lookup table) and are then concatenated. The vector is
then passed through a fully-connected softmax layer that generates a prediction of the next
word as a multiclass classification problem. More formally, PV-DM is defined as follows:

y = U(pi‖wt−k‖ · · · ‖wt+k) + b (2.1)

where U and b are learnable parameters of the softmax layer and the ‖ denotes concate-
nation. The authors also mention the possibility of averaging the representation [59] but do
not explore that possibility. The paragraph and word representations in the D and W ma-
trices respectively are updated through backpropagation. After training, each vector of D is
used to represent its respective paragraph. The matrix D is seen as a distributed memory
that remembers the necessary context (the embedded preceding paragraph) for the currently
analyzed window and gives the method its name. Although the name implies the method is
used for representing paragraphs, it is equally possible to represent entire documents in the
same manner [59].

The other variation of paragraph vectors is named distributed bag of words (PV-DBOW)
and is illustrated in Figure 2.4. This model resembles the Word2Vec skip-gram model and
is lighter compared to the previous PV-DM model as only one matrix (D) is stored. The
model is trained by sampling random words from a window and trying to predict them (as
a multiclass classification problem) given the paragraph as input. This method, although
lighter, performs less well than PV-DM according to the authors [59] and to our experiments
in Chapter 6.
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Figure 2.3: PM-DM - the distributed memory version of the paragraph vector model where
the next word is predicted given the words within a window and the paragraph preceding
them that forms a distributed memory storing the necessary context.

P1 P2 P3

paragraph id

the cat is on

Figure 2.4: PM-DBOW - the distributed bag of words version of the paragraph vector model
where words sampled randomly from a window are predicted given a paragraph.

2.1.3 Representing Textual Sequences

While sometimes it is sufficient to either represent words [70] or represent whole chunks
containing words (be it parts of sentences, multiple sentences, paragraphs or entire docu-
ments) [59], in many tasks it is necessary to model text as a sequence of words. This is the
case in spoken language understanding [129], slot filling [115], as we will see in Chapter 3
and machine translation [17] systems.

Sequences, contrary to many other types of information (e.g., images, measurements,
descriptors) often come in a form of variable length. Typical neural networks like a multi-
layered pereceptron are tailored to data where each dimension of a sample is fixed and do
not work well with samples of variable length across one or more dimensions. Recurrent
neural networks were specifically designed to deal with sequences of variable lengths. By
adding a recurrent connection to the hidden node itself, the network is able to deal with
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variable sequences by simply “unrolling” the recurrent connection the required number of
times. We discuss two main categories of recurrent neural networks: simple recurrent neu-
ral networks and gated recurrent neural networks. The two groups of architectures differ in
their capability of modeling long sequences and by their complexity.

2.1.3.1 Simple Recurrent Neural Networks

The simple recurrent network (SRN) was introduced by Elman [27] in an architecture that
bears his name: the Elman network. The Elman network is defined as follows:

ht = act1(Whht−1 + Wxxt + bh) (2.2)
ot = act2(Woht) (2.3)

We denote the current hidden state of a recurrent neural network as a vector ht, the
current input as a vector xt and the current output as vector ot. The Elman network, as
illustrated in Figure 2.5 defines the current hidden state ht as a combination of the previous
hidden state ht−1 and the current input xt, as denoted in Equation 2.2. The matrix Wh is
sometimes denoted as a context unit as it serves the purpose of modeling the influence of
the previous hidden states or, in other words, the previous context of the currently analyzed
input.

htht-1

ot

Wx
xt

Wo
Wh

Figure 2.5: An Elman network is a simple recurrent neural network where the current hidden
state ht is defined by the current input xt and the previous hidden state ht−1.

A variation of the Elman network architecture is the Jordan Network architecture [47].
Both the Elman and the Jordan recurrent neural network architectures are considered simple
recurrent networks, however, the Jordan architecture defines its current state by the current
input and the previous output (contrary to the Elman architecture that defines it in regards
of the previous state), as illustrated in Figure 2.6. The Jordan network architecture is defined
as follows:

ht = act1(Whot−1 + Wxxt + bh) (2.4)
ot = act2(Woht) (2.5)

The only difference between Equation 2.2 and Equation 2.4 is the first product, where the
context matrix Wh models the influence of the previous context through the previous output
ot−1 and not through the previous hidden state ht−1, as in the Elman network architecture.
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Both in Figure 2.5 and in Figure 2.6, we illustrated one unit only. In a typical recurrent
neural network a layer of multiple units would be formed, where each unit would behave
as described.

ht

ot

Wx
xt

WoWh

ot-1

Figure 2.6: A Jordan network is a simple recurrent neural network where the current hidden
state ht is defined by the current input xt and the previous output ot−1.

2.1.3.2 Gated Recurrent Neural Networks

In practice, simple recurrent neural networks have difficulties modeling long-term depen-
dencies [7]. To tackle this problem, gates were introduced in recurrent neural networks [40],
allowing them to learn model dynamic information retention and removal.

Long short-term memory networks [40, 34] introduce a series of gates (input gate, forget
gate and output gate) that help model the information retained by the recurrent network. A
simple LSTM cell is illustrated in Figure 2.7 and is defined as follows:

ft = act1(W f [ht−1‖xt] + b f ) (2.6)

it = act1(Wi[ht−1‖xt] + bi) (2.7)

Ĉt = act2(Wc[ht−1‖xt] + bc) (2.8)

The forget gate, denoted as a vector ft, and the input gate, denoted as a vector it, both
take the previous hidden state ht−1 and determine how much of the previous cell state Ct−1
is attenuated (“forgot”) and how much is the state influenced by the new input. In the given
equations, ‖ denotes concatenation and Ĉ represents the new candidate value for the LSTM
cell state. The cell state is updated by first being multiplied with the value of the forget gate,
thus attenuating it and then by having the new candidate cell state subtracted after it has
been modulated by the input gate:

Ct = ftCt−1 + itĈt (2.9)

Finally, the current output ot and hidden state ht are updated by the output gate:

ot = act1(Wo[ht−1‖xt] + bo)~ht = otact2(Ct) (2.10)
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Figure 2.7: A long short-term memory (LSTM) cell consists of a cell state C and a hidden
state h, as well as the forget, input and output gates.

Long short-term memory networks are very good at modeling both short and long term
dependencies but consist of a relatively complex architecture with many gates and multiple
internal states. Gated recurrent units (GRU) [18] are a more novel variation of long short-
term memory networks that were created to simplify their architecture while maintaining
or improving their long and short term modeling capabilities. They combine the forget and
input gates into one update gate and merge the hidden state and cell state into one state, as
illustrated in Figure 2.8. More formally, they are defined as follows:

zt = act1(Wz[ht−1‖xt]) (2.11)
rt = act1(Wr[ht−1‖xt]) (2.12)

ĥt = act2(W[ht−1‖xt]) (2.13)

ht = (1− zt)ht−1 + ztĥt (2.14)

where rt is a reset gate and zt is an update gate. GRUs have been shown to perform
better than regular LSTMs while also being faster due to a simpler architecture [20].

reset
gate

update
gate htht-1

xt

Figure 2.8: In a gated recurrent unit (GRU) cell, the cell state and the hidden sate have been
merged into a single hidden state and the input and output gate are replaced with a single
update gate.
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2.2 Representing Visual Information

To be able to use images with any machine learning algorithm, there is a need to represent
either the whole image or different image patches with a robust representation that is suit-
able for the task. An image can be either described with a set of visual concepts, indicating
what is present in the image, or with one or more continuous representations. Continuous
representations can be created and used explicitly or they can be learned and used implicitly
within an end-to-end neural network.

2.2.1 Convolutional Neural Networks

Methods for obtaining low level and high level representations have become less necessary
after the development of deep learning methods since convolutional neural networks. Con-
volutional neural networks [61] are feed-forward neural networks and variation of a multi-
layered perceptron that, in addition to fully-connected layers, contain convolutional layers.
A single neuron of a fully-connected feed-forward neural network, consisting of three inputs
and one output, is illustrated in Figure 2.9 and defined as:

o = f (w1x1 + w2x2 + w3x3 + b) (2.15)

where w represent weights of each axon, which scale the inputs, and f represents an
activation function that maps the output to a restricted codomain and keeps the network
within a stable range. b is a bias factor that provides the ability to offset the weighted input
and o is the output of the current artificial neuron. For practicality and efficiency (vectorizing
the computation), it is possible to incorporate b as an additional weight w (e.g., w0) and write
Equation 2.15 as:

o = f (wx) (2.16)

A neural network typically consist of multiple layers and multiple neurons per layer, and
not just one, which makes it convenient to define a whole fully-connected layer as:

hj = f (Wjhi) (2.17)

where hi is a vector representing the output of the previous hidden layer (x, in case it is
the first layer), Wj is a matrix representing all the weights of the current hidden layer j and
hj is a vector representing the output of the current hidden layer j (or o, in case it is the last,
output layer).

A convolutional neural network is still a feed-forward network (its connections propa-
gate forward and there are no recurrent or otherwise cyclical connections) but typically con-
tains a series of convolutional and pooling layers in addition to fully-connected layers. A
convolutional layer, followed by a pooling layer is illustrated in Figure 2.10. Convolutional
layers are a simple reconfiguration of a fully-connected layer where weights are shared and
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Figure 2.9: A simple neural unit, consisting of 3 inputs x that are weighted by the three
weights w of each axon before being summed and passing through an activation function f .
An additional weight b (a bias factor) is allows for offsetting the weighted input.

define a convolutional kernel. Convolving an input matrix or, in all generality, a tensor con-
sists of scanning the input with the kernel and summing all the element-wise multiplications
each time. This is exactly the same as in a fully-connected layer where we multiply the input
vector with the weight vector and then sum all the elements. However, the kernel is used
multiple times, which is equivalent to sharing the same weights w with multiple, different
inputs. The convolving kernel forms a visual receptive field that is well tailored for image
processing and that offers translation invariance [61].

In the example illustrated in Figure 2.10, the input consists of a 5 × 5 matrix (e.g., a
monochromatic image) and is then convolved with a 2× 2 kernel. The kernel starts in the
first column of the first row where each element is multiplied with the respective element of
the input and the result is then summed. In the given example, 1 · 0 + 1 · 1 + 0 · 0 + 2 · 1 =
1 + 2 = 3. The kernel then slides to the next column where the next value is computed:
1 · 0 + 1 · 1 + 2 · 0 + 1 · 1 = 1 + 1 = 2. The process then continues until the whole input is
passed and the convolution is finished. The values of the kernel are, just like the weights
of a fully-connected layer, learned during training and updated with backpropagation. This
allows a neural network to learn meaningful filters automatically [61].

A pooling layer is, on the other side, a layer that contains no learnable parameters (it has
no weights or kernels) and it serves the purpose of reducing the dimensionality of the previ-
ous layer, thus adding some translation invariance. The most common pooling methods are
max-pooling and average pooling. Figure 2.10 illustrates a max-pooling layer that follows
a convolutional layer. A max pooling layer simply selects the maximum value of a given
region to represent the whole region in the next layer. In this example, the region in the
top-left corner is represented with the value of 4 as that is the maximum value of the region.
The location of the maximum is remembered so that backpropagation can be continued to
the layers preceding a pooling layer. An average pooling layer represents each region with
the average value of the region. In this case, during backpropagation the derivatives are
distributed to each element of the previous layers after being weighted by their respective
sizes.

A typical convolutional neural network consists of a series of interchanging convolu-
tional and pooling layers, followed by a series of fully-connected layers, as illustrated in Fig-
ure 2.11. In this work, we solely use the AlexNet [51] architecture and the VGG-16 and VGG-
19 architectures [101] that contain 8, 16 and 19 learnable layers (layers that contain weight-
s/kernels that can be updated during learning, namely convolutional and fully-connected
layers) respectively though many deeper convolutional neural networks exist [107, 108, 19]
that are out of the scope of this work.
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Figure 2.10: A typical convolutional neural network consists of a series of interchanging con-
volutional and pooling layers. In the illustration: A 2D input, followed by a convolutional
layer and then by a max-pooling layer.

2.2.2 Low Level and High Level Image Representations

Although convolutional neural networks were initially developed with the task of super-
vised classification in mind, they offer representations at different levels of abstraction that
are superior to manually designed representations [98]. Related to the supervised classi-
fication task of convolutional neural networks, they also provide visual concepts as their
output in the last final layer in the form of a binary vector, where each element indicates
the presence of one concept and multiple concepts are possible at the same time, defining a
multilabel classification task.

Visual concepts are binary indicators that denote the presence or absence of specific ob-
jects in an image. The most commonly used set of visual concepts is the one defined by the
ImageNet project dataset that contains 1,000 object classes in a categorization similar to Word-
Net [92]. A few examples of ImageNet classes are: n04557648 - water_bottle, n04404412 - televi-
sion, n07749582 - lemon etc. In addition to standard objects, ImageNet provides a fine-grained
classification of dogs and cats: n02124075 - Egyptian_cat, n02123394 - Persian_cat, n02123597
- Siamese_cat, n02085936 - Maltese_dog, n02107683 - Bernese_mountain_dog, n02094114 - Nor-
folk_terrier, etc.

With convolutional neural networks, representations are obtained by presenting an im-
age to the input of a pretrained network and taking its activations in the following manner:

• low level are extracted from the initial convolutional layers and aggregated, if neces-
sary, with an aggregation method like fisher vectors [80, 81] or VLAD [44]

• high level are extracted from the near-last fully-connected layers and are directly used
to represent the whole image

• visual concepts are extracted by the last, output layer of the network, given that it was
trained on such a classification task (e.g., ImageNet)



26 Chapter 2 – Continuous Representation Spaces
A
l
e
x
N
e
t

V
G
G
-
1
6

V
G
G
-
1
9

high level 
representations

visual
concepts

low level
representations

Figure 2.11: Three popular convolutional neural network architectures: AlexNet, VGG-16
and VGG-19. Regardless of number of layers the initial convolutional layers provide good
low level image embeddings, the fully-connected layers towards the end of the architecture
provide good high level embeddings and the last, output layer, provides visual concepts.

2.3 Encoder-Decoder and Autoencoding Networks

In addition to classification tasks and obtaining representations, neural networks are also
used to synthesize back from the representation space into the original space (text, image
space, etc.) or into a new or the same representation space. Such architectures typically con-
sist of an encoder network and a decoder network, though they are as a whole connected
into one network, where learning is performed altogether (backpropagation starts from the
decoder and continues into the encoder). A very common example of an encoder-decoder
network is a sequence to sequence network [17], used in machine translation and consisting
of a recurrent neural network that acts as a decoder and takes a sentence of variable length
and encodes it into a fixed size representation, and another recurrent neural network that
acts as a decoder and synthesizes a new sentence (potentially of different length) given the
fixed size embedded representation from the encoder. Another example is a convolutional
encoder-decoder network illustrated in Figure 2.12, consisting of a convolutional network
that generates an embedded representation given an input image and a “deconvolutional”
(transposed convolutional) network that synthesizes back an image, given the original or
altered latent representation obtained with the encoder. A convolutional encoder-decoder
network can be used to generate predictions directly into the image domain [120]. It is also
possible to combine different encoders and decoder: e.g., convolutional encoder with a re-
current neural network as a decoder in order to create an architecture that generates auto-
matic descriptions of images [127].

A special case of encoder-decoder neural networks are autoencoding networks or au-
toencoders. An autoencoder is a neural network that reconstructs its own input and is used
to learn efficient data representations in an unsupervised manner. A typical autoencoder is
implemented as a feed forward neural network consisting of an input layer, an output layer
and a number of hidden layers with a decreasing number of units towards the center of the
architecture, as illustrated in Figure 2.13. Learning is performed with backpropagation, typ-
ically with a mean squared error (MSE) loss between the original unaltered input and the
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Figure 2.12: A convolutional encoder-decoder architecture. Given an image, a convolutional
encoder provides an embedded representation. That latent representation, either modified
or not, is then used to synthesize another image with a “deconvolutional” decoder.

generated output. The activations of the central layer are used to obtain a new, compact and
efficient representation of the input data. It is important to note that, contrary to methods
like principal component analysis, autoencoders converge to a different solution (or a differ-
ent minima) each time due to their random initialization and the stochastic learning process
(e.g., the order of data during training would affect the representations) and thus, two repre-
sentations from different autoencoders that share the same architecture are not comparable
(saving and reusing the weights is however done easily). In addition to learning an efficient
and compact data representation, an autoencoder can be used to recover a slightly corrupted
or noisy input or represent it with a representation that is more robust to noise. This is done
by providing a noisy input to the autoencoder and requiring it to reconstruct the original
input. In this setup, the architecture is called a denoising autoencoder.
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Figure 2.13: A typical autoencoder, consisting of an input layer, three hidden layers and an
output layer. The hidden layers contain a smaller number of units thus forcing the network
to learn a compressed representation from which the input can be reconstructed.
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2.4 Conclusion

The recent resurgence of neural methods changed the way representations are obtained. The
focus has shifted from manual feature engineering [23, 65, 6, 69] to developing neural archi-
tectures that automatically learn state-of-the-art representations. In this chapter, we gave an
overview of the basic neural architectures for representation learning and modification that
we will use in this work.

We use word representations as well as sequence modeling methods in Chapter 3 where
we will focus on the task of slot filling and carefully analyze which elements are crucial for
achieving state-of-the-art results in the task. We will show that good representations and
good sequence modeling algorithms are not sufficient if they are not modeling the depen-
dencies of the output labels.

In Chapter 4, we start by the previously illustrated convolutional encoder-decoder archi-
tecture that we then extend, in order to generate predictions of human actions from a single
image, at arbitrary temporal distances.

Different textual and visual representations, together with autoencoding methods are
used in Chapters 5 and 6, where we select the best performing single-modal representations
and then proceed to developing new ways of fusing multimodal information that define
the new state of the art in video hyperlinking and also allow0 to visualize learned video
hyperlinking models in a human interpretable way.
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In this chapter, we focus on spoken language understanding (SLU) or more specifically,
on the slot filling task. The task aims at labeling one or more words into discrete chunks
where each chunk can have a separate label depending on its position in a sentence, its adja-
cent words and related words. For example, in the sentence “I want a Chinese restaurant near
the Tour-Eiffel”, the word “Chinese” belongs to a slot labeled as the food-type of a restaurant,
and the words “Tour Eiffel” as a slot indicating a relative place in Paris.

We first start by introducing the slot filling tagging task and comparing conditional ran-
dom fields to recurrent neural networks as two possible approaches to address the problem.
A careful analysis is performed to locate and emphasize the positive aspects and downsides
of each method after which we show that the ability of conditional random fields to model
output label dependencies, which is not a capability of recurrent neural networks, is crucial
for the task. We then propose a modification of a recurrent neural network architecture that
utilizes a learned continuous representation space to improve the modeling of output labels
and defines the state of the art today on two datasets.

In the second part, we progress to evaluating both different proposed architectures of
gated recurrent neural networks and ways to model sequences. We compare long short-term
memory networks (LSTM) and gated recurrent unit (GRU) based networks when perform-
ing either forward sequence modeling or bidirectional sequence modeling. After determin-
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ing the best performing architecture for the task of slot filling, we improve its performance
by incorporating context information.

Typically, in part of speech tagging and slot filling, the IOB (inside, outside, beginning)
notation [2] is used to indicate the labels for each word and is used as follows:

• B-<tag> is used to mark that the chunk labeled <tag> starts from the current word
labeled with the B-tag label

• I-<tag> is used to denote that the current word is part of the chunk labeled <tag> that
started with one of the previous words of the sequence

• O is used mark that the current world is outside of any chunk; if the previous word was
labeled with either a B-<tag> or an I-<tag> this label clearly denotes that the previous
chunk has ended and the current word does not belong to either the previous or the
following chunk

The choice of the tags is deliberate and it varies a lot from dataset to dataset. A typical
example of slot filling is as follows: given the sequence of words {show, flights, from, Boston,
to, New, York, today} there is a corresponding sequence of labels for each word {O, O, O,
B-departing_location, O, B-arriving_location, I-arriving_location, B-date}, meaning that the first
three words and the fifth one are irrelevant for the task (thus marked O), that “Boston” is
the departing location, the two words “New York” define the arriving location and “today”
indicates the date of the desired flight.

We perform every experiment mentioned in this work on two datasets, namely ATIS [22]
and MEDIA [12]. ATIS is a simple, publicly available corpus, used since the early nineties,
containing air traffic related phrases. It contains 1,117 unique words and 85 labels in a train-
ing set of 4,978 sentences and a testing set of 893 sentences. MEDIA is a more recent and
complex, French dataset containing tourist information dialogues. It contains 2,395 unique
words 135 labels and 12,908, 1,259 and 3,005 sentences in the training, evaluating and testing
sets respectively. Additional information about the datasets can be found in Appendix B.

3.1 The RNN - CRF Dichotomy

Many sequence labeling methods have been investigated in spoken language understand-
ing: SVM [52], HVS [39], machine translation models, finite state transducers and partic-
ularly conditional random fields, which have been shown in [38] to be best-suited for this
task. Recently, neural networks have been investigated in [68, 129] where they show, on
the popular ATIS database, that recurrent neural networks provide state-of-the-art results.
Nevertheless, a wide variety of methods are able to provide very good results on ATIS [88],
including methods that are not dedicated to sequence labeling (e.g., SVM). These last meth-
ods fail [37, 38] when evaluated on MEDIA [12], another SLU database. We thus consider
ATIS not to be a very challenging dataset and that the conclusions obtained on this database
are not particularly strong and are seldom statistically significant.

Neural networks typically use continuous representations as inputs where the initially
symbolic text representations are mapped to a continuous representation space using pop-
ular word embedding methods [70, 126]. Such representations has several advantages, the
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most salient one being the property that words that are syntactically or semantically related
are close to each other in the representation space. One question that arises is to know
whether improvements come from the representation, the classifier itself or potentially both.
However, for slot filling, a precise word clustering is already available: the attribute database
linked to the task (e.g., city names, airline names for ATIS, etc.), considering all words from
the same class as equal and taking advantage of continuous representations not clear. We
thus propose to compare symbolic and embedded inputs under the same classification algo-
rithm, in order to make a strict comparison.

3.1.1 Symbolic Inputs vs Embedded Inputs

For slot filling, in spoken language understanding, input features commonly consist of word
observations associated with their relative position from the decision point (the word cur-
rently being labeled) in the sequence. For symbolic representations, the feature set is then a
bag of pairs “word/relative position” within a specific sliding window of observation. For
continuous representations, the feature set is obtained by word embedding methods [70,
126]. The final vector is a concatenation of the embedded representations of each word
that belongs to the current sliding window. A common window of [−2,+2] [88, 38] or
[−3,+3] [68, 128] is generally sufficient to obtain satisfactory performances. In this work we
opted to use a [−3,+3] window for performing the comparisons, although different sizes
were tested.

As mentioned earlier, in human-machine applications, database attributes are available
to construct a fine clustering of many words supporting concepts: the list of airline names
or city names in ATIS or the list of food types, the list of facilities for a hotel and the list
of French cities in MEDIA. If a word belongs to such a cluster then a tag representing the
cluster is used instead of the word, both when dealing with symbolic inputs and embedded
inputs. In other words, to produce a continuous representation from the symbolic ones, we
just replace words by the clusters from where they belong (e.g., city_name, food, etc.) and
keep the word if it does not belong to any of them. Thereafter, we produce embeddings by
using a Word2Vec [70] model trained solely on the training set of a given corpus.

In order to have a strict comparison, the two different representations are then used as
input for a classifier that is able to work with both of them. We use boosting over deci-
sion trees [57]. This algorithm is not specifically tailored for sequence labeling tasjs, but our
current goal is to only compare the representations. Training is performed by learning an
increasing number of weak classifiers over the training set of each respective dataset. The
results are presented in Table 3.1 and they clearly show, on both datasets, that embedded rep-
resentations improve the accuracy of the classifier. Moreover, we can observe in Figure 3.1
that embedded representations allow the classifier to converge significantly faster (in terms
of F1-measure on the training set) than with symbolic representations, on both datasets. The
classifier built on ATIS exhibits several drops in accuracy, as it can be seen in Figure 3.1a.
Our explanation is that there are annotation errors in the ATIS dataset and that each drop
corresponds to a rule created from this error by the classifier. As we can see, the embedded
representation learned on the same corpus does not suffer from this drawback and appears
to be noise robust. Annotation errors in ATIS are known since [88] who proposed a par-
tially corrected ATIS version of the corpus, but some errors still remain [111, 88] show that
in the previous noisy version, a basic HMM worked better than CRF because of their noise
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Figure 3.1: F-measure according to the number of boosting iterations with symbolic and
embedded features

Representation Precision Recall F-measure
ATIS

symbolic 93.00% 93.43% 93.21%
embedded 93.50% 94.54% 94.02%

MEDIA
symbolic 71.09% 75.48 % 73.22%

embedded 73.61% 78.85% 76.14%

Table 3.1: Slot tagging performance obtained from symbolic and embedded representations
using bonzaiboost on ATIS and MEDIA

resistance ability. After correction, every method benefited and gained up to 5 % absolute
in accuracy, making CRF the best method. The fact that embedded representations perform
better than the original symbolic representations under the same classifier indicates that the
good results obtained on ATIS by different neural network architectures [68, 128, 129] are
partially due to the representation itself.

It appears that using embedded representations in continuous representation spaces
clearly brings advantages compared to using symbolic inputs. This advantage is due to the
fact that embedded representations appear less sensitive to noise, avoiding the possibility
for the classifier to build a very specific (and false) classification rule.

3.1.2 CRF and RNN Models

In this part, we extensively compare conditional random fields (CRFs) [54] to the recently
proposed Elman and Jordan recurrent neural network models [68, 128], previously described
in Section 2.1.3.1 of Chapter 2, on two datasets of different complexity to determine which
model performs better and is more suited for the task of slot filling. In addition to conditional
random fields and recurrent neural networks, for the sake of completeness, we also evaluate
the previously used AdaBoost.MH [95] over bonsai trees [57]. Each of these algorithms is
able to take as input an arbitrary set of features and observe features from preceding and
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following positions of the sequence in an arbitrary window size. The main differences are as
follows:

• AdaBoost.MH is a widely used classification algorithm that performs well on many
different tasks. However, it is not dedicated at all to sequence labeling problems. Se-
quence tagging is done by successive and independent local decisions at each sequence
position. Thus, this algorithm will give us a baseline to see improvements brought by
the two next sequence adapted classification algorithms. We use the implementation
described in [87].

• The standard behavior of a feedforward neural network is the same as for the previous
algorithm: a succession of independent and local decisions. In recurrent neural net-
works, recurrence is added to allow the neural network to exhibit dynamic temporal
behavior. In [68], they use the output of the neural network from the previous or future
time step as a feature for the current neural network in the sequence. They proposed
to use the hard predicted output or the output probabilities and test these solutions
in both directions. In [128] they use as features in their recurrent neural network the
output of the hidden layer of the previous time step. Despite these heuristics to trade
off context information along the successive decision, no dependencies on target labels
are explicitly modeled and no global decision is made. The recurrent neural network
architectures tested are an Elman RNN and a Jordan RNN, both proposed by [68] and
illustrated in Section 2.1.3.1 of Chapter 2. They have distributed their code based on
the Theano library [5, 8].

• A conditional random field, unlike the previous algorithms is dedicated to sequence
labelling. Target label dependencies are modeled under the Markov assumption (in or-
der to remain tractable) and then a global decision on the sequence is made. However,
popular and efficient implementations like the one we used [58] are capable of using
solely symbolic features.

As stated before, all features have been extracted in windows of size [−3, 3]. This is a
commonly used configuration that also gives the best results for both ATIS and MEDIA.
Further increasing the window size didn’t affect the result significantly. Smaller context
window sizes would however decrease the performance.

For the symbolic feature representation, the feature set is composed of a bag of word /
position pairs inside the windows. In case a word is found within the database of attributes
(e.g., city_name), it is replaced with its corresponding entry prior to computing the represen-
tation. To obtain embedded representations, we used a skip-gram Word2Vec model [70] with
hierarchical sampling, trained on the training corpus where words belonging to an attribute
database were replaced by their corresponding attribute, in order to transfer this knowl-
edge to the embedded representations. Only one embedding strategy is considered, since
when fine-tuned, different word representations show very similar performances and pro-
vide comparable results [60]. This is also significantly cost-effective since just a few minutes
are sufficient to compute the representations. Representations in a 100-dimensional space
yielded very good results for all the tested classification algorithms. Further increasing the
representation dimensionality did not result in a noticeable improvement of the results. This
is the size we keep to do the algorithm comparison.
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Algorithm Info Representation Precision Recall F-measure ttrain

ATIS
Bonzaiboost 100 iter emb. (Word2Vec) 93.50% 94.54% 94.02% 20 m
Bonzaiboost 100 iter symbolic 93.12% 92.82% 92.97% 3 m

CRF symbolic 95.53% 94.92% 95.23% 6 m
Elman RNN 100 hdn emb. (joint) 96.20% 96.12% 96.16% 1.5h

MEDIA
Bonzaiboost 500 iter. emb. (Word2Vec) 73.61% 78.85% 76.14% 2.5 h
Bonzaiboost 500 iter. symbolic 71.09% 75.48 % 73.22% 34 m

CRF symbolic 87.70% 84.35% 86.00% 15 m
Elman RNN 500 hdn emb. (joint) 83.36% 80.22% 81.76% 31 h
Elman RNN 500 hdn emb. (Word2Vec) 80.48% 83.46% 81.94% 22 h
Jordan RNN 500 hdn emb.(joint) 82.76% 83.75% 83.25% 3.5 h
Jordan RNN 500 hdn emb. (Word2Vec) 83.40% 82.90% 83.15% 3 h

Table 3.2: Slot filling performance of several learning algorithms on ATIS and MEDIA. In the
2nd column, “hdn” stands for the number of hidden neurons and “iter” for the number of
iterations. The last column indicates the training time of each method.

In the RNN implementation [68], word embeddings are learned jointly with the final
supervised task-specific classifier (RNN) by simply backpropagating the weights of the neu-
ral network during training and updating the representations within a lookup table. This
has a small impact also on the speed of the overall training procedure. Database attributes
have been integrated in order to provide a fair comparison. Recurrent neural networks have
many crucial hyperparameters. We kept most of them fixed to the values proposed in [128].
We ran a 50 epochs learning and the best RNN configuration was selected according to its
performance on the development set. On the other side, we kept the default parameters of
wapiti. Bonzaiboost was ran with decision trees of depth 2 (max 4 leaves) according to [57].
For ATIS, we used the best data split reported in [128] while for MEDIA, the official split of
the dataset has been used.

The three algorithms were ran on the slot extraction task for both databases: ATIS and
MEDIA. Boosting and CRF implementations are multithreaded and were ran with 16 threads
on a 2 Intel(R) Xeon(R) CPU X5560 @2.80GHz machine with 96 GB of RAM. The RNN GPU
implementation was ran on an NVIDIA GeForce GT 750M 2048 MB graphic card. Perfor-
mances were computed in terms of accuracy, precision, recall and F-measure, using the con-
lleval script1. Training times are also reported as a vague indicator of the complexities of
the tested algorithms. Computations were made with different number of iterations (and
hidden neurons for the case of RNNs) to ensure that the asimptote of the learning curve was
reached. Table 3.2 reports these information for both ATIS and MEDIA.

Performance is very similar across classifiers on the ATIS dataset: from 93 % in F-
measure for bonzaiboost (not dedicated to sequence labeling tasks and applied on symbolic
representations) to 96 % for RNN. This result illustrates the fact that ATIS is not particularly
challenging in terms of sequence classification. RNNs perform better ( 1 % absolute) than

1http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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CRF on ATIS. As pointed out in the Section 3.1.1, the representation used (symbolic for CRF
and embedded for RNN) may explain the RNN gain. This result is also pointed out by the
authors of [128].

On MEDIA, results are substantially different for each classifier. As expected, bonzai-
boost, which is not dedicated at all to sequence labeling, produced the worst performance,
around 76 %. RNNs follow with 83.25 % at the cost of high computational time. CRF, despite
the fact that it is using less efficient symbolic representations, obtains 86 % with less compu-
tational cost (15min vs 3.5h). The Jordan variation of RNNs shows a less stable convergence.
Elman RNNs had quite more stable convergence. Word embeddings learned in an unsuper-
vised manner (word2vec) combined with an RNN perform similarly to word embeddings
computed in a supervised manner, while learning the RNN classifier. However, precomput-
ing the embeddings significantly decreases the time required for training an RNN classifier
and helps the classifier converge faster. On the formulation side, CRF has the advantage
to model explicitly the dependencies between target labels. To keep the CRF tractable, the
linear chain CRF is widely used. This means that only dependencies between two adjacent
labels are modeled. If we remove features related to these dependencies, CRF loses 6 %
absolute in terms of F-measure. This result clearly indicates that the good performances of
CRF derive from this dependency model.

Our results demonstrate that embedded representations allow for better accuracy and
make the classification algorithm converge faster. Moreover, embedded representations
decrease the possibility for a classifier to produce noise fitted decision rules and thus are
more robust to noise than symbolic ones. Despite this conclusion, algorithms able to ex-
ploit them, like recurrent neural networks are not able to compete with conditional random
fields. Although conditional random fields are trained solely on symbolic inputs, their abil-
ity to model output label dependencies appears crucial for the task. Conditional random
fields with symbolic inputs thus remain the best classification algorithm for spoken language
understanding in term of prediction (2.75 % absolute gain of F-measure in the challenging
MEDIA corpus and a 16 % relative decrease of the error), simplicity (less hyperparameters)
and rapidity (approximately 14 times faster in our experiments).

3.1.3 Embedding Output Label Dependencies

Up to this point we have shown that, while embedded representations allow for better accu-
racy, the ability of conditional random fields to model output label dependencies is crucial
for obtaining state-of-the-art results in the task of slot filling. Recurrent neural networks
do have a notion of the previous (and/or following, depending on the modeling direction)
output or hidden state but this does not seem to be sufficient for obtaining state-of-the-art
results comparable or better than conditional random fields.

In this section, we evaluate the idea, proposed by Marco Dinarelli [25], to use an embed-
ding space for the output labels to model their dependencies and improve upon the prob-
lems recurrent neural networks face. We define a variation of the Jordan recurrent neural
network architecture, previously described in Chapter 2, where the output labels are mod-
eled in an embedding space that has been trained on sequences consisting of output labels.
A single node of our proposed variant, named eJordan due to its additional embedding of
the output labels, is illustrated in Figure 3.2. In this variant predicted labels are mapped
into embeddings. However the embedding space of the input words is not the same as the



36 Chapter 3 – Spoken Language Understanding - Slot Filling

Method F1 (%) σ

ATIS
Bidirectional Jordan 95.69 0.07
Bidirectional eJordan 95.74 0.02
CRF 95.23 0.00

MEDIA
Bidirectional Jordan 86.15 0.09
Bidirectional eJordan 86.97 0.12
CRF 86.00 0.00

Table 3.3: Slot filling performance on ATIS and MEDIA of the classical Jordan architecture,
our proposed eJordan modification and conditional random fields. The F1 measure and its
respective standard deviation (computed over 10 runs) are reported.

embedding space of the output labels. Both were trained in an unsupervised manner on
the training set of the evaluated datasets with Word2Vec. They were however trained sepa-
rately. Word embeddings were trained on sequences of words (sentences) and output label
embeddings were trained on sequences of output labels.

ht

ot

Wx
xt

WoWh

E[ot-1]

Figure 3.2: The proposed modification of the Jordan recurrent neural network architecture,
named eJordan. The only difference between a normal Jordan architecture and the proposed
is in the way the previous output ot−1 is passed to the current hidden layer. In our proposed
architecture, the previous layer is first embedded in a representation space and E[ot−1] then
passed to the hidden layer.

More formally, the architecture is given as follows:

ht = act1(WhE[ot−1] + Wxxt + bh) (3.1)
ot = act2(Woht) (3.2)

Where the only difference between the proposed variant and a standard Jordan RNN is that
in our variant the label used as contextual information is first embedded and then passed
back when computing the next recurrent iteration, as described by Equation 3.1. For this
reason we name our variant eJordan, for embedded Jordan RNN.

We tested our proposed method, the classical Jordan architecture in a bidirectional se-
quence modeling setup (both forward and backwards) and report the results in Table 3.3,
together with the previous results from conditional random fields. We see that just embed-
ding the output labels offers enough additional information about their dependencies (just
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like words, within their representation space, labels are grouped in clusters that are deter-
mined by their position in the sentence, context and cooccurrence ) to improve over problem
of output label dependencies and achieve state of the art today both on ATIS and MEDIA.
After performing a single sided T-test, our performed eJordan architecture performed better
than CRF with a significance of α = 0.001 (obtained with a one-tailed t-test) both on ATIS
and MEDIA.

3.2 Gated Recurrent Neural Networks

In this section, we evaluate more complex recurrent neural network architectures that con-
tain gates that allow them to learn a model for dynamically retaining and clearing data,
which consequentially allows for better modeling of longer sequences and should bring im-
provement over simple recurrent neural networks in the task of slot filling. We will start
with a simple baseline consisting of a simple recurrent neural network architecture (a neu-
ral network consisting of cells / neurons containing just one recurrent connection), without
discussing the already evaluated Elman and Jordan modifications that were presented in
Section 3.1. We will then progress to evaluate different gated recurrent neural network ar-
chitectures, as previously theoretically described in Section 2.1.3.2 of Chapter 2,: long short-
term memory networks (LSTM) [40, 34] and novel gated recurrent units (GRU) [18]. In the
end, we will conclude by analyzing each architecture in both their single-direction sequence
modeling and bidirectional sequence modeling variations.

3.2.1 Simple Recurrent Neural Networks

Simple recurrent neural networks, as defined in Section 3.1, are neural networks where neu-
rons have a recurrent weight pointing back at the same neuron and no additional weights
other than the standard ones (the one weighting the input vector to the current neuron). In
practice, such simple recurrent neural architectures have difficulties modeling long-term de-
pendencies [7]. Gated recurrent networks such as LSTM and GRU networks, that we will
discuss next, were introduced to improve upon this problem.

The parameters that worked best consist of an embedding size of 200 (the embeddings
are learned jointly, while training the whole network), a context window of 11 (5 words be-
fore and 5 words after the current word) and an output size of the recurrent network of 200.
Simple recurrent neural networks stopped improving with a smaller context window. How-
ever, a window of 11 did not make the results worse, so we kept the same window size over
all experiments to have a more sensible comparison. The last fully-connected dense layer
is always of a size equal to the number of output classes, after which a sigmoid activation
layer follows. It was determined experimentally that a sigmoid activation layer performs
better than layers with other common activation functions. We found that dropout of 50 %
worked best. As illustrated in Table 3.4, this setup obtains an F-measure of 94.63 % on ATIS
and 78.46 % on MEDIA.
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3.2.2 Long Short-Term Memory Networks

Long short-term memory networks [40, 34] introduce a series of gates (input gate, forget
gate and output gate) that help model the information retained by the recurrent network.
LSTM networks have also been successfully used in spoken language understanding, either
by themselves [129] or as encoder-decoder (sequence to sequence) architectures [53] that are
more commonly used in machine translation tasks [4, 112].

We again used, an embedding size of 200 (the embeddings are learned jointly, while
training the whole network), a context window of 11 and an output size of the recurrent
network of 200, with dropout of 50 % and a sigmoid activation layer at the end. LSTM
networks that model sequences in a forward direction obtained 95.12 % on ATIS and 81.54 %
MEDIA. We already see that the improvement is clear on both datasets but less significant
on ATIS, a problem we have already elaborated in Section 3.1.

3.2.3 Gated Recurrent Units

Gated recurrent units [18] are a recent variation of LSTM networks. They combine the forget
and input gates into one update gate and merge the hidden state and cell state into one state.
GRUs have been shown to perform better than regular LSTMs while also being faster due to
a simpler architecture [20].

An embedding size of 200 with a context window of 11, an output size of the recurrent
network of 200, with dropout of 50 % and a sigmoid activation layer were again used. The in-
put was modeled sequentially in the forward direction, as in the previous subsections. Gated
recurrent units performed better, even though they are simpler than LSTMs, and obtained
95.43 % on ATIS and 83.18 % on MEDIA.

3.2.4 Modeling Sequences in Both Directions

Recurrent neural networks typically model information solely in one direction, namely the
forward one. In some cases, it’s been shown that reversing the sequence can improve the per-
formance of a recurrent network in machine translation applications [106]. It’s thus best to
model sequences in both directions (both . . . xi−1, xi, xi+1 . . . and . . . xi+1, xi, xi−1 . . . ). Mod-
eling information in both directions can be done by implementing a bidirectional structure
directly within the architecture of a recurrent neural network [97], or two recurrent neural
networks working with opposing directions can be combined to achieve the same goal [135].
This last method is more common with complex recurrent neural networks and is also used
in our work.

We implemented bidirectional LSTM and bidirectional GRU networks by duplicating the
architecture and making one LSTM or GRU model the sequence in the opposing direction.
Afterwards the outputs are combined by concatenation and fed to a fully-connected layer
that generates an output-label prediction. All the other hyperparameters remain the same.

All the obtained results of the previously discussed methods are shown in Table 3.4 for
easier comparison. On ATIS, we can state that bidirectional networks (bidirectional LSTMs
and bidirectional GRUs) show improved performance over their monodirectional versions,
although this statement is not very strong. On MEDIA, it’s clear and more statistically signif-
icant that bidirectional gated recurrent networks work better than gated recurrent networks
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Network Architecture Accuracy Precision Recall F1
ATIS

RNN 97.71 (0.06) 94.02 (0.10) 95.26 (0.20) 94.63 (0.14)
LSTM 97.89 (0.04) 94.47 (0.18) 95.80 (0.19) 95.12 (0.17)

Bidirectional LSTM 97.91 (0.05) 94.61 (0.13) 95.86 (0.13) 95.23 (0.11)
GRU 97.95 (0.05) 94.72 (0.11) 96.14 (0.04) 95.43 (0.06)

Bidirectional GRU 98.00 (0.06) 94.86 (0.15) 96.21 (0.19) 95.53 (0.17)
MEDIA

RNN 86.08 (0.25) 76.13 (0.67) 80.95 (0.23) 78.46 (0.45)
LSTM 87.80 (0.73) 80.49 (1.55) 82.61 (1.20) 81.54 (1.33)

Bidirectional LSTM 88.45 (0.05) 82.54 (0.85) 83.61 (0.22) 83.07 (0.37)
GRU 88.39 (0.16) 82.73 (0.56) 83.63 (0.38) 83.18 (0.47)

Bidirectional GRU 88.81 (0.09) 82.93 (0.42) 84.34 (0.33) 83.63 (0.16)

Table 3.4: Performances of the various recurrent architectures on ATIS and MEDIA. Aver-
aged (over multiple runs) accuracy, precision, recall, F1 measure (%) and their respective
standard deviations (in parenthesis).

that work solely in one direction: bidirectional LSTMs outperform LSTMs (α = 0.1) and
bidirectional GRUs outperform GRUs (α = 0.1). We thus show that bidirectional sequence
modeling is highly recommended, regardless of the architecture and that architecture-wise,
gated recurrent networks perform better tha their non-gated counterparts with GRU net-
works achieving the best results.

3.3 Context Modeling

In the previous section, we described recurrent neural networks that learn how to dynami-
cally retain or clear information stored in their internal states. However, for the task of slot
filling, specific concepts that define the crucial part of the context needed to predict the cur-
rent label are sometimes present further away in the sentence or even in another sentence
that is part of the current dialog. For example, let’s illustrate the case of the words {l’, hôtel}
in two phrases from the MEDIA dataset. The phrase {je, souhaite, réserver, à, l’, hôtel, ibis} (I’d
like to reserve at the Ibis hotel) is labeled as {B-command-tache, I-command-tache, I-command-tache,
B-hotel-marque, I-hotel-marque, I-hotel-marque} while the phrase {savoir, s’, il, y, a, un, restau-
rant, dans, l’, hôtel} (<missing begining> know if there is a restaurant inside the hotel) is labeled
as {O, O, O, O, O, B-hotel-services, I-hotel-services, O, B-lienRef-coRef, B-objetBD}. In this
example, we focus on three labels: hotel-marque (hotel name/mark), lienRef-CoRef (referen-
tial/coreferential link) and objetBD (object). The difference between the first and the second
sentence can be inferred by how far the dialog has progressed and what has already been
mentioned so far. In this particular example, if the user is asking for specifics about a hotel,
it means that there has probably been a previous mention of a hotel and that “l’hôtel” should
be interpreted differently - as a reference to a previously mentioned object and not as a new
hotel. Sometimes solely the current sentence suffices while in most cases, the knowledge of
what has been previously mentioned improves the understanding of the current sentence.
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We utilize a set of 37 word classes for ATIS and 19 word classes for MEDIA as rele-
vant concepts within a context and we model a vector describing their presence from the
beginning of the dialog to the current word of the current sentence. To illustrate, a few of
word classes utilized for ATIS are: {aircraft_code, airline_code, airline_name, airport_code, air-
port_name, city_name, class_type, cost_relative, country_name, day_name, . . . }. The presence of a
word that belongs to one of those classes within the current dialog history (the sentences of
the current dialog history, from the first sentence, until the current sentence) is encoded in a
binary vector of length 37 or 19 for MEDIA and ATIS, respectively. In the MEDIA dataset,
dialogues contain from 1 to 56 user sentences. ATIS does not provide a dialog so only the
word classes from the current sentence are modeled.

Binary vectors containing information about the presence of word concepts are fed to a
neural network in parallel with the context windows of the currently analyzed sentence. In
the same way as in the previous setup without dialog awareness, words from the context
window are first passed though an embedding layer after which two GRUs working in op-
posing directions follow. Their outputs are concatenated and dropout is applied. Dialog
awareness vectors are instead passed through a dense, fully-connected layer of the same
length as the input vectors. The two parts are then merged by a fully-connected dense layer
of the size equal to the number of output labels and they are passed through a final activation
function. Our proposed architecture is illustrated in Figure 3.3.
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Forward GRU Backward GRU

Dropout

Dense

Dense

Activation

yi

Figure 3.3: Our proposed architecture: a bidirectional GRU combined with a dialog aware
fully-connected dense layer

Dialog aware bidirectional GRU networks were formed by adding a fully-connected
dense layer that reacts to the vector describing which word classes were mentioned in the
current dialog history (which is just the current sentence in the case of ATIS). The best results
were obtained with only one fully-connected dense layer of size 37 (same size as the input -
number of possible word classes) connecting the input to the merging layer.

On MEDIA combining word concepts from the dialog with bidirectional GRU networks
further improves the results over bidirectional GRU networks that utilize solely the current
sentence and gives 83.89 % (α = 0.27), which is a significant improvement (α = 0.1) over
bidirectional GRUs without dialog awareness 83.63 % (α = 0.16). On ATIS, the improvement
is not significant and goes from 95.53 % (α = 0.17) for bidirectional GRUs to 95.54 % (α =
0.16) when the additional vector of key mentioned classes is added. Other that ATIS being
a simple dataset where not many statistically significant conclusions can be brought, we
believe this result is also influenced by the fact that ATIS does not posses dialogs and word
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classes are modeled solely within the current phrase. We thus show that extending a gated
recurrent neural architecture with a context modeling branch that incorporates the presence
of relevant keywords can further improve the accuracy of a slot filling system and is crucial
for datasets containing dialogs with multiple sentences.

3.4 Conclusion

In the first part of this chapter, we show that, although embedded representations bring
improvement over symbolic ones, the ability of conditional random fields to model output
label dependencies is crucial. In order to evaluate possible gain sources in recurrent neu-
ral networks, we compared symbolic and embedded, continuous word representations for
spoken language understanding with a classification algorithm able to use both. Our results
demonstrate that the latter allows for better accuracy and makes the classification algorithm
to converge faster. Moreover, continuous representations decrease the possibility for a clas-
sifier to produce noise fitted decision rules and thus are more robust to noise than symbolic
ones. Although conditional random fields are trained solely on symbolic features, their abil-
ity to model output label dependencies appears crucial for the task. We thus proposed a
modification of the Jordan architecture that models the output labels into a representation
space, learned in an unsupervised manner on sentences consisting of the output labels from
a training set. Our proposed architecture improved not only over the classical Jordan archi-
tecture but also over conditional random fields and achieved the state of the art today on
both ATIS and MEDIA.

In the second part of this chapter, we evaluated gated recurrent neural networks and
extending the architecture in such a way that key conceptual concepts from the dialog can
be incorporated. We evaluated different gated recurrent neural networks and we analyzed
the possibility of modeling key concepts within the dialog. We show that gated recurrent
neural networks, known for better long dependency modeling, clearly outperform simple
recurrent neural networks. Within gated recurrent neural networks, we show that gated
recurrent unit based networks outperform long short-term memory based networks. Gated
recurrent networks model information in one direction. Modeling information in both direc-
tion by combining two networks with opposing direction improves performance, as demon-
strated with both bidirectional LSTM networks and bidirectional GRU networks. Finally, we
show that adding information about the presence of specific word classes within the current
dialog history further improves the performance of the previously best-performing bidirec-
tional GRU networks. Unfortunately, simple CRF methods still slightly outperform RNN
methods [118]. We believe this is due to better target dependency modeling that CRF offers.
However, RNNs represent a competitive framework that might offer easier extensions such
as attention models implemented over the dialog history.

We believe that there is not much improvement left to be done with architectures that
model output labels independently (one by one) and utilize solely the current sentence. As
shown, improvement can be achieved by integrating distant dependencies that are part of
the dialog but are not necessarily part of the current sentence. In our opinion, future work
should address means of incorporating knowledge from the entire dialog, either by engi-
neering relevant features or by deploying appropriate attention models. As a consequence,
experiments performed on datasets more complex than ATIS are also required.
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There is an inherent need for machines to have a notion of how entities within their en-
vironment behave and to anticipate changes in the near future. Machines typically have a
response time ∆tresponse. Being able to anticipate the near future allows them to correct for
their inherent delay and to plan accordingly. Anticipating the near future is especially useful
in robotics, where artificial systems have to interact with their environment in real time. This
is however a difficult task since even with recent advances in deep and reinforcement learn-
ing, machines still do not possess complex knowledge of the world and are rather adapted to
specific narrow tasks. If we limit the task to anticipating future appearance of video frames,
machines have a slight advantage due to the vast collection of unlabeled videos available
today which is perfectly suited for unsupervised learning methods. To anticipate future ap-
pearance based on current visual information, a machine needs to successfully be able to
recognize entities and their parts, as well as to develop an internal representation of how
does the movement happen in regards to time.

We start from a given input video frame and aim to predict a future video frame at a
given temporal distance, ∆t away from the input frame. We achieve this by conditioning
our video frame prediction on an input time-indicating variable and we are able to perform
a one-step prediction of the future video frame that is temporally further away from the
input given frame. Therefore, in this thesis we propose one-step, long-term video frame
prediction. This is beneficial both in terms of computational efficiency, and for not having to
be concerned with the propagation and accumulation of prediction errors, as in the case of
sequential/iterative prediction.
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Our work falls into the encoder decoder category of neural architectures, where a current
image is presented as input and an image resembling the anticipated future is provided
as output. Our proposed method consists of an encoding CNN, a decoding CNN and a
separate branch, parallel to the encoder, that models time.

4.1 Overview of Possible Approaches

In the context of action prediction, it has been shown that it is possible to use high level
embeddings to anticipate future actions up to one second before they begin [113]. Predicting
the future event by retrieving similar videos and transferring this information, is proposed
in [132]. In [56] a hierarchical representation is used for predicting future actions. Predicting
a future activity based on analyzing object trajectories is proposed in [49]. In [42], the authors
forecast human interaction by relying on body-pose trajectories. In the context of robotics,
in [50] human activities are anticipated by considering the object affordances. Unlike these
works, rather than predicting actions, we focus on predicting a single video frame at a given
future temporal displacement from a given input video frame.

Anticipating future movement in the spatial domain as closely as possible to the real
movement has also been previously considered. For this case, the methods start from an
input image at the current time stamp and predict optical flow (OF) at the next timestep.
In [63] images are aligned to their nearest neighbour in a database and the motion prediction
is obtained by transferring the motion from the nearest neighbor to the input image. In [83],
structured random forests are used to predict OF vectors at the next timestep. In [82], the use
of LSTM is evaluated for predicting Eulerian future motion. A custom deep convolutional
neural network is proposed in [121] towards future OF prediction. Rather than predicting
the motion at a future moment in time, in [123] the authors propose to predict motion trajec-
tories using variational autoencoders. This is similar to predicting OF, but given the tempo-
ral consistency of the trajectories it offers greater accuracy. Dissimilar to these methods, we
aim to predict the video appearance information at a given future temporal displacement,
from an input video frame. Predicting appearance rather than motion is beneficial as the
predicted outcome is spatially coherent.

Focusing on the object motion as given by their dynamics in real world, is proposed
in [72], by relying on Newtonian physical laws. In [31], the future location of objects is
predicted by learning from synthetic abstract data. This can be seen somewhat related to
learning to predict OF, which is also an indicator of displacement. Unlike these methods,
we aim to predict the appearance of a future video frame given an input video frame and a
desired temporal difference.

One intuitive trend towards predicting future information is predicting future appear-
ance. In [122], the authors propose to predict both appearance and motion for street scenes
using top cameras. Predicting patch-based future video appearance, is proposed in [86], by
relying on large visual dictionaries. Similar to these methods, we also aim at predicting the
appearance of future video frames, however we condition our prediction on a time parame-
ter that allows us to perform the prediction efficiently, in one step.

More recent methods rely on convolutional neural networks towards predicting possible
video frames. Rather than predicting future appearance from input appearance information,
hallucinating possible images has been a recent focus. The novel work in [114] relies on the
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generative adversarial network model [84] to create not only the appearance of an image
but also the possible future motion. This is done using spatio-temporal convolutions that
discriminate between foreground and background. Similarly, in [93] a temporal generative
neural network is proposed towards generating more robust videos. These generative mod-
els can be conditioned to generate feasible outputs given a specific conditioning input [89,
123]. Dissimilar to them, we rely on an autoencoding model. Autoencoding methods try
to encode the current image in a representation space that is suitable for learning appear-
ance and motion, and decode such representations to retrieve the anticipated future, either
as an image or optical flow/trajectories. We propose to use video frame appearance towards
predicting future video frames, conditioned on a given time indicator.

Related to predicting future appearance, the recent work in [75, 76] propose predicting
future image pixels conditioned on all previous seen pixels — possible image completions
from a set of initial pixels. Unlike these methods, we aim to predict complete future images
from a provided input image and a provided temporal displacement.

Similar to transferring the optical flow vectors between images, as considered in [63],
appearance transfer has also been considered. Work such as [32, 46, 91] focuses on the task
of artistic style transfer from a given input image to another image or video. Unlike these
methods, we do not transfer a given appearance but rather predict a future frame appear-
ance. We do so by conditioning on a parameter indicating the desired time displacement
between the input frame and the predicted frame.

4.2 Architectures

The simplest and most straightforward method for generating predictions at a temporal
distance ∆t is by using an architecture that is trained to predict at a temporal distance ∆tp and
then iteratively use the predicted image as input to the same architecture to predict at 2∆tp,
3∆tp and so on, until we reach k∆tp = ∆t. This is illustrated in Figure 4.1. The downside of
this approach is the discretization of the possible temporal displacements, which is usually
bound to the discretization determined by the framerate of the videos used for training.

To tackle the problem of discretized possible temporal distances between the input im-
age and the obtained prediction, we extended the architecture with an additional branch of
fully-connected layers that models time, as illustrated in Figure 4.2. The encoder has two
separate branches, one to receive the input image, and one to receive the desired temporal
displacement ∆t of the prediction. The decoder then takes the input from the encoder and
generates a feasible prediction for the given input image and the desired temporal displace-
ment.

The network receives as inputs an image and a variable ∆t, ∆t ∈ R+, indicating the time
difference from the time of the provided image to the time of the desired prediction. The
network predicts an image at the anticipated future time t0 + ∆t. We use a similar archi-
tecture to the one proposed in [109]. However, while their architecture is made to encode
RGB images and a continuous angle variable to produce RGBD as output, our architecture
is designed to take as input a monochromatic image and a continuous time variable, ∆t, and
to produce a monochromatic image as output. More specifically, the architecture consist of
the following:



46 Chapter 4 – Action Forecasting

120
120

60
60

30
30

15

15
30

60
60

120
12030

12
0

12
0

60 60

30

30

15

15

30

30

60

60

12
0

12
0

128 128

6432
64

32
1

128

128
64

64
32

32
1

40
96

72
00

72
00

conv15x5 pool1 conv25x5 pool2 conv31x1 pool3
fc1 fc2

fc4 unpool1
deconv1 unpool2 deconv2 unpool3 deconv3

ENCODING PART

DECODING PART

120
120

60
60

30
30

15

15
30

60
60

120
12030

12
0

12
0

60 60

30

30

15

15

30

30

60

60

12
0

12
0

128 128

6432
64

32
1

128

128
64

64
32

32
1

40
96

72
00

72
00

conv15x5 pool1 conv25x5 pool2 conv31x1 pool3
fc1 fc2

fc4 unpool1
deconv1 unpool2 deconv2 unpool3 deconv3

ENCODING PART

DECODING PART

120
120

60
60

30
30

15

15
30

60
60

120
12030

12
0

12
0

60 60

30

30

15

15

30

30

60

60

12
0

12
0

128 128

6432
64

32
1

128

128
64

64
32

32
1

40
96

72
00

72
00

conv15x5 pool1 conv25x5 pool2 conv31x1 pool3
fc1 fc2

fc4 unpool1
deconv1 unpool2 deconv2 unpool3 deconv3

ENCODING PART

DECODING PART

t0+Δt

t0+2Δt

t0+3Δt

t0

t0+Δt

t0+2Δt

Figure 4.1: Iterative forecasting: the original input image at time t0 is used to generate a
prediction at time t0 + ∆tp, which is then presented as input to the same architecture to
generate a prediction for t0 + 2∆tp and so on.
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time difference t to the desired prediction and ii) a decoder part that generates an image, as
anticipated, at the desired input time difference.
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• an encoding part composed of two branches:

– an image encoding branch defined by 3 convolutional layers, 3 pooling layers and 2
fully-connected layers at the end;

– a time encoding branch consisting of 3 fully-connected layers.

The final layers of the two branches are concatenated together, forming a new repre-
sentation that is then provided to the decoding part.

• a decoding part composed of 2 fully-connected layers, 3 “unpooling” (upscaling) layers,
and 3 “deconvolutional” (transpose convolutional) layers.

The input time variable is continuous and allows for appearance anticipations at arbi-
trary time differences. Possible alternatives of the proposed architecture could include en-
coded time inputs (e.g., multiple input neurons) or a continuous time variable followed by
an embedding layer (e.g., lookup table). The downside of these approaches would be the
discretization of the time input.

Training is performed by presenting batches of {Ix, ∆t, Iy} tuples, where Ix represents an
input image at current relative time t0, ∆t represents a continuous variable indicating the
time difference to the future video frame and Iy represents the actual video frame at t0 + ∆t.

Predictions are obtained in one step. For every input image Ix and continuous time
difference variable ∆t, a {I, ∆t} pair is given to the network and an image representing the
appearance anticipation Iy after a time interval ∆t is directly obtained as output.

4.3 Experiments

We evaluate our method by generating multiple images of anticipated future appearances
and comparing them both visually and through MSE (Mean Squared Error) with the true
future frames, as well as to a CNN baseline method that sequentially predicts the future
video frame. For the baseline method, we use a CNN encoder-decoder architecture that
does not have a notion of time and is used in an iterative manner to produce anticipated
futures at k∆t (k = 1, 2, ...) temporal displacements.

4.3.1 Experimental Setup

To test the proposed architecture, we implemented it by using the TensorFlow [1] framework.
We use the Adam optimizer [48], with L2 loss and dropout rate set to 80 % for training. We
argue that the type of action can be easily automatically detected and is better incorporated
by training a network per action category. Thus, we opt to perform separate preliminary ex-
periments for each action instead of training one heavy network to anticipate video frames
corresponding to all the different possible actions. Training is performed up to 500000 epochs
with randomized minibatches consisting of 16 samples where each sample contains one in-
put image at current relative time t0 = 0, a temporal displacement ∆t (∆t < 200ms) and the
real frame at the desired temporal displacement ∆t. We do not use early stopping and we
ran each experiment for the full number of epochs. On a Titan X GPU, training took approx-
imately 16 hours with, on average, about 100,000 training samples (varying in each action
category).
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Given that the input, and thus also the output, image size is 120× 120× 1 (120× 120
grayscale images), in our encoder part, we stack convolutional and pooling layers that yield
consecutive feature maps of the following decreasing sizes: 120× 120, 60× 60, 30× 30 and
15× 15 with an increasing number of feature maps per layer, namely 32, 64 and 128 respec-
tively. Fully-connected layers of sizes 7200 and 4096 follow. The separated branch of the
encoder that models time consists of 4 fully-connected layers of size 64, where the last layer
is concatenated to the fully-connected layer on top of the convolutional neural networks.
This yields an embedding of size 4160 that is presented to the decoder. Kernel sizes used
for the convolutional operations start at 5× 5 in the first layers and decrease to 2× 2 and
1× 1 in the deeper layers of the encoder. For the decoder, the kernel sizes are ordered in the
opposite direction.

The decoder consists of interchanging “unpooling” (upscaling) and “deconvolutiton”
(transpose convolution) layers, yielding feature maps of the same sizes as the image-
encoding branch of the encoder, only in the opposing direction. For simplicity, we imple-
ment pooling as a 2D convolution and unpooling as a 2D transpose convolution. It is worth
noting that sometimes pooling/unpooling layers are completely omitted [104, 109] in similar
encoder-decoder CNN architectures with no significant impact on performance. We decided
to keep them as a regularization term given that our input and output images differ less and
have a more similar appearance than in the case of rotated images [109].

We use the KTH human action recognition dataset [96] for evaluating our proposed
method. The dataset consists of 6 different human actions, namely walking, jogging, run-
ning, hand-clapping, hand-waving and boxing. Each action is performed by 25 actors. There
are 4 video recordings for each action performed by each actor. Inside every video record-
ing, the action is performed multiple times and information about the time when each action
starts and ends is provided with the dataset.

To evaluate our proposed method properly, we randomly split the dataset by actors, in
a training set, with 80 % of the actors, and a testing set, with 20 % of the actors. By doing
so, we ensure that no actor is present in both the training and the testing split and that the
network can generalize well with different looking people and does not overfit to specific
characteristics of specific actors. The dataset provides video sections of each motion in dif-
ferent directions - e.g., walking from right to left and from left to right. This provides a good
setup to check if the network is able to understand human poses and locations, and correctly
anticipate the direction of movement. The dataset was processed as follows: frames of orig-
inal size 160× 120 were cropped to 120× 120 and the starting/ending times of each action
are adjusted accordingly to match the new cropped area. Time was estimated based on the
video framerate and the respective frame numbers.

4.3.2 Experimental Results

Our method is evaluated as follows: an image at a considered time, t0 = 0 and a time
difference ∆t is given as input. The provided output represents the anticipated future frame
at time t0 + ∆t, where ∆t represents the number of milliseconds after the provided image.

The sequential encoder-decoder baseline method is evaluated by presenting solely an
image, considered at time t0 = 0 and expecting an image anticipating the future at t0 + ∆tb
as output. This image is then fed back into the network in order to produce an anticipation
of the future at time t0 + k∆tb, k = 1, 2, 3, ....
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Figure 4.3: Comparison of predictions for a) a person walking to the left, b) a person walking
to the right, c) a person waving with their hands and d) a person slowly clapping with their
hands. Given an input picture (on the left) and a time interval (different columns) anticipated
future motions are presented for our proposed method and for the baseline convolutional
encoder-decoder. The third set of images in each group present the actual future — the
groundtruth.
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Figure 4.4: Long distance predictions. For larger temporal displacements artifacting be-
comes visible. The anticipated location of the person begins to differ from the groundtruth
for even larger temporal differences, towards the end of the total motion duration.

For simplicity, we consider t0 = 0ms and refer to ∆t as simply t. It is important to note
that our method models time as a continuous variable. This enables the model to predict
future appearances at previously unseen time intervals, as seen in Figure 4.6. The model is
trained on temporal displacements defined by the framerate of the training videos. Due to
the continuity of the temporal variable, it can successfully generate predictions for: i) tempo-
ral displacements found in the videos (e.g., t={40ms, 80ms, 120ms, 160ms, 200ms}, ii) unseen
temporal displacement within the values found in the training videos (e.g., t={60ms, 100ms,
140ms, 180ms}) and iii) unseen temporal displacement after the maximal value encounter
during training (e.g., t=220ms).

Since both the baseline method and the groundtruth are quantized by the video fram-
erate, the images displayed in Figure 4.3 are all images at intervals of 40 ms (derived from
a framerate of 25fps) for a fair and exact comparison. Figure 4.3 a) illustrates the case of a
person moving from right to left, from the camera viewpoint, at walking speed. Despite the
blurring, especially around the left leg when asked to predict for t = 120ms, it can be noticed
that our proposed network correctly estimated the location of the person and positioning of
body parts. For each time difference, the body-part predictions are realistic, as well as the
displacement of the whole person, which matches the groundtruth displacement.

Figure 4.3 b) again illustrates a person walking, this time left to right. Our proposed
network correctly localized the person and the body parts. The network is able to estimate
the body pose and thus the direction of movement. Our network correctly predicts the dis-
placement of the person to the right for any given time difference, from just the single input
image.

The network is able to capture the characteristics of the human gait, as it predicts cor-
rectly the alternation in the position of the legs. The anticipated future frame is realistic but
not always perfect, as it is hard to perfectly estimate walking velocity solely from one static
image. This can be seen at t = 200ms in Figure 4.3 b). Our network predicts one leg to
further behind while the actor, as seen in the groundtruth, was moving slightly faster and
moved the leg past the knee of the other leg.

Our proposed network is able to learn an internal representation that is capable of en-
coding the stance of the person such that it correctly predicts the location of the person,
as well as to anticipate their new body pose after a deliberate temporal displacement. The
baseline network does not have a notion of time and therefore relies on iterative predictions.
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Figure 4.5: Mean squared error (MSE) over time for certain actions (walking, jogging, wav-
ing) for our proposed method and for the convolutional encoder-decoder baseline.

Time is quantized and the network is trained to generate an anticipated image at time t+∆t,
given an image at time t = 0. After that, the process is repeated iteratively, which affects
the performance. Figure 4.3 shows that the baseline network looses the ability to correctly
anticipate body movement after some time. This can be best seen in Figure 4.3 a) where
the baseline network correctly predicts the position of the legs up to t = 80ms. After that,
the network predicts correctly the global displacement of the person in the correct direction,
but body part movements are not anticipated correctly. At t > 160ms the baseline encoder-
decoder network shows a big loss of details, enough to cause its inability to correctly model
body movement. Therefore, it displays fused legs where they should be separated, as part
of the next step the actor is making. Our proposed architecture correctly models both global
person displacement and body pose, even at t = 200ms.

Figure 4.3 c) displays an actor handwaving. The proposed network successfully predicts
upward movement of the arms and generates images accordingly. In this case however,
more artifacts are noticeable. The bidirectional motion of hands during handwaving is am-
biguous, as the hand pose does not affect other body parts such as head positioning, or legs.

It is important to note that although every future anticipation is independent from each
other they are all consistent: i.e., it does not happen that the network predicts one movement
for t1 and a different movement for t2 that is inconsistent with it. This is a strong indicator
that the network learns an embedding of appearance changes over time, the necessary filters
to react to relevant image areas, and to synthesize correct future anticipations.
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Mean Squared Error (%)
Action Baseline Proposed Method
Jogging 30.64 11.66

Running 40.88 17.35
Walking 30.87 19.26

Hand-clapping 43.23 33.93
Hand-waving 43.71 35.19

Boxing 46.22 37.71
Mean 39.26 25.85

Table 4.1: Averaged MSE, over multiple time differences and multiple predictions, on the
different action categories of KTH. We compare our method with the baseline convolutional
encoder-decoder and show that our method on average performs better than the baseline
method in terms of MSE.

However, our proposed model is limited by the total temporal displacement t. For very
large time displacements, we expect our frame predictions to deteriorate. This is emphasized
in long-term anticipations, as illustrated in Figure 4.4. The smaller the temporal displace-
ment t, the better the prediction is and the lower the MSE score, when compared to the real
future frame. In this work, we do not check the limits of a maximum feasible time difference
t, after which our proposed method would provide unsatisfactory results. However, as seen
both from the illustrations in Figure 4.3 and the graphs in Figure 4.5, our network behaves
better with respect to increasing time displacements than the encoder-decoder baseline net-
work. This is supported by the network’s ability to predict future video frames at arbitrary
future times directly, without having to go through iterative steps that accumulate prediction
error.

As expected, not every action is equally challenging for the proposed architecture. Ta-
ble 4.1 illustrates MSE scores averaged over multiple time differences, t, and for differ-
ent predictions from the KTH test set. MSE scores were computed on dilated edges of
the groundtruth images to only analyze the part around the person and remove the influ-
ence of accumulated variations of the background. A Canny edge detector was used on
the groundtruth images. The edges were dilated by 11 pixels and used as a mask for both
the groundtruth image and the predicted image. MSE values were computed solely on the
masked areas.

We compare our proposed method with the baseline CNN encoder-decoder architecture.
It is worth noticing that the MSE does not strictly correlate with qualitative visual inspec-
tion. For example, on average, running seems to perform reasonably well, and moreover
it outperforms hand-waving, hand-clapping, boxing and even walking. Yet, this is not the
case as predictions for running, at the framerate available in the KTH dataset, generate a
considerable loss of details and artifacts, as visible in Figure 4.7 d). These artifacts are not as
prominent in the other, less well-performing action categories, in terms of MSE scores. The
average MSE scores, given in Table 4.1, show that our proposed method outperforms the
encoder-decoder CNN baseline by a margin of 13.41, on average, which is expected due to
the iterative process of the baseline network.
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Figure 4.6: Prediction of seen and unseen temporal displacements. The networks is trained
on temporal displacements dictated by the training set video framerate. However, predic-
tions are possible both for seen (1st row, t = 40× k ms) and for previously unseen temporal
displacements (2nd row, 60 + 40× k ms).

4.3.3 Ambiguities and Downsides

As MSE values grouped by different actions indicate, not every action is equally challenging
for our proposed method to be anticipated. However, there are a few key factors that make
prediction more difficult and cause either the creation of artifacts or loss of details in the
generated future frames.

4.3.3.1 Human Pose Ambiguities

Ambiguities in body-pose happen when the subject is in a pose that does not display inher-
ent information about the movement of the subject in question. A typical example would be
when a person is waving, moving their arms up and down, and an image with the arms at
a near horizontal position is fed to the network as input. This can result in small artifacts,
as visible in Figure 4.3 c) where for larger time intervals t, although the network is gener-
ating upward arm movement, there are visible artifacts that are part of a downward arm
movement. A more extreme case is shown in Figure 4.7 a) where not only does the network
predict the movement wrong, upward instead of downward, but it also generates a lot of
artifacts with a significant loss of details that increases with the time difference, t.

4.3.3.2 Fast Movement

Fast movement causes extreme loss of details when the videos provided for training do not
offer a high-enough framerate. In other words, this case happens when the visual difference
between two consecutive frames during training is substantial — large global displacement
and a body pose change that are too large. Examples of this can be seen in Figures 4.7 b)
and c) where the increased speed in jogging and an even more increased speed in running
generate significant loss of details. It is important to emphasize that although our proposed
architecture can generate predictions at arbitrary time intervals t, the network is still trained
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Figure 4.7: Examples of poor performing future anticipations: a) loss of details in waving,
b) loss of details in jogging, c) extreme loss of details in running, d) loss of details with low
contrast and e) artifacts in boxing.

on discretized time intervals derived from the videos — intervals that might not be small
enough for the network to learn a good motion model. We believe this causes the loss of
details and artifacts, and using higher framerate videos during training would alleviate this.

4.3.3.3 Insufficient Foreground/Background Contrast

Decreased contrast between the subject and the background describes a case where the in-
tensity values corresponding to the subject are similar to the ones of the background. This
leads to an automatic decrease of MSE values and a more difficult convergence of the net-
work for such cases, which leads to less adaptation and thus to loss of details and artifacts.
This can be seen in Figure 4.7 d). Such effect would be less prominent in case of modeling a
network using color images.
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4.3.3.4 Excessive Localization of Movements

Excessive localization of movements happens when the movements of the subject are small
and localized. A typical example is provided by the boxing action, as presented in the KTH
dataset. Since the hand movement is close to the face and just the hand gets sporadically
extended — not a considerable change given the resolution of the images — the network has
more difficulties in tackling this. Despite the network predicting feasible movement, often
artifacts appear for bigger time intervals t, as visible in Figure 4.7 e).

Although the previously enumerated cases can lead our proposed architecture to predict
that display loss of details and artifacts, most can be tackled and removed if necessary by
either increasing the framerate, the resolution of the training videos, or using RGB informa-
tion. The most difficult factor to overcome is human pose ambiguity. We believe this is a
hard problem for our proposed architecture to manage.

4.4 Conclusion

We have successfully shown that a convolutional encoder-decoder network with an added
fully-connected branch that models time can accurately generate latent representations that
include both information about the location of a person and their stance, as well as temporal
information. This allows the decoder part of the network to synthesize anticipations that
correctly predict not only the displacement in the correct direction of a person performing an
action but also correctly animate their stance for the correct amount that is time dependent.
Not only our proposed method allows predictions in one step but it also provides better
predictions than an iterative encoder - decoder architecture that tends to degrade after a few
iterations. In other words, we not only improved in terms of prediction speed but also in
terms of accuracy.

This is a novel notion that can be extended further and that yields high quality antici-
pations of future video frames for arbitrary temporal displacements, without having to ex-
plicitly model the time period in between the provided input video frame and the requested
anticipation.
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In the previous chapters we explored different scenarios where only one modality is
used (e.g., only speech or only images). The setup discussed in Chapter 4 can, however, also
been viewed in a semi multimodal way, where the image input represents one modality and
the temporal input another modality. In this chapter, we introduce methods to deal with
multimodal data that we later evaluate in the task of video hyperlinking. After providing
definitions and giving an introduction of existing multimodal autoencoders we proceed to
lying the theoretical grounds of two methods that we propose: i) bidirectional deep neural
networks as an improvement over multimodal autoencoders that take initially disjoint mul-
timodal representations and provide superior multimodal representations, and ii) a method
to use conditional generative adversarial networks to perform multimodal fusion but also
obtain visualizations of the learned model directly into the image domain. These methods
will further be evaluated in the task of video hyperlinking in the following chapters.

5.1 Dealing with Multiple Modalities

We define a “modality” as a data collection aggregated by an acquisition framework [55].
Two typical acquisition frameworks are: i) image acquisition (performed typically with
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CMOS or CCD sensors) that sense the world and output a discrete representation in the im-
age space (images) or a temporal image space (videos), and ii) sound acquisition (performed
typically with different types of microphones and analog to digital converters). Each modal-
ity can then be transformed and represented in different ways. Raw audio containing speech
can be automatically transcribed and used as text or it can be represented with i-vectors [24]
and used for speaker recognition / identification. Video keyframes can be described with
human-understandable ImageNet concepts [92] or with descriptors obtained with convolu-
tional neural networks [98, 51].

Figure 5.1 illustrates two modalities, an audio modality and a visual modality, and the
three different levels at which they can be represented. In all generality, there are three main
distinct data presentation levels at which each modality can be represented:

• The original domain - is the domain where the data is represented after acquisition
and discretization. This could be a discrete 1D signal for audio or a sequence of RBG
tensors for a visual modality.

• The concept space - is a space that describes the original space with key concepts or
keywords. Such a space is typically not very practical for machine learning applica-
tions but is usually human-interpretable and can provide a very simple summary of
what has been acquired in the original space. Typical examples are automatic tran-
scripts for speech from an audio source or even just extracting main keywords from
the transcripts and ImageNet concepts describing the content of a video keyframe.

• The representation space - is the most useful space for machine learning applica-
tions. It can be a discrete representation space obtained from the concept space (e.g.,
bag-of-words representation of the automatic transcripts) or a continuous representa-
tion space (e.g., Word2Vec). In deep learning applications, continuous representation
spaces are typically used and achieve state-of-the-art performances. Representation
spaces, especially continuous representation spaces are less human interpretable than
concept spaces but they are very useful for machine learning applications and offer
nice properties [70]. Useful properties of continuous representation spaces (or latent
spaces if used solely within an architecture) can also be seen in the original domain by
synthesis with generative adversarial networks [35, 85, 43].

When dealing with data that contain more than one modality (e.g., captioned images,
videos, transcribed audio, etc.), there is an inherent need to combine them. There are two
distinct approaches that integrate each modality:

• Multimodal fusion - is the approach of combining the representations each of modal-
ity into a new representation that contains the unified, but not necessarily disjoint,
information of both input modalities [66, 15, 73]. Typical examples of such approaches
include multimodal retrieval of personal photos using both visual representations and
text representations of given captions [66], using both visual and speech representa-
tions in video retrieval [73] and many other tasks where multiple modalities are avail-
able.

• Crossmodal translation - on the other hand, translates from one modality to the other,
without combining the information of both input modalities [30, 117]. Such approaches
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Figure 5.1: Two different input modalities (an audio modality and a visual modality), each
presented at different presentation levels levels. Combining two modalities at arbitrary lev-
els or multimodal fusion is denoted in red. Translating from one modality to another or
crossmodal translation, at arbitrary levels, is denoted in blue.

are able to synthesize one modality from another, either at a representation level [30,
116] or even in the original domain [71, 90, 133, 117]. Most approaches that perform
crossmodal translation also provide means to obtain multimodal fusion.

The two approaches are not necessarily disjoint. As we will show in Sections 5.2 and 5.4
crossmodal translation and multimodal fusion are tightly related and multimodal fusion can
greatly benefit from methods focusing on crossmodal translation. Both crossmodal transla-
tion and multimodal fusion are not bound to modalities presented at the same level (e.g.,
images in a representation space and text in a representation space; see Figure 5.1) and can
be performed with modalities at different levels. While there are many combinations, the
most interesting ones use both modalities embedded into a representation space. We will
use primarily the representation space in Sections 5.2 and 5.3. In Section 5.4, we will explore
the possibility of using directly the original space for one modality as the original space is
human-interpretable and can provide insight of the trained model.

5.1.1 Multimodal Approaches

Multimodal approaches create a joint representation of the initially disjoint modalities or
otherwise merge the initial modalities without necessarily providing a bidirectional map-
ping of the initial representation spaces to the new representation space and back. These
approaches are typically used in retrieval and classification tasks where translating back
from the multimodal representation to the single-modal ones is not required.

A simple way to perform multimodal early fusion is by simply concatenating single-
modal representations. This does not provide the best results, as each representation still
belongs to its own representation space. It is also possible to utilize two separate modali-
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ties by performing a linear combination [36] of the similarities obtained by comparing each
of the two modalities. This late fusion avoids multimodal models and might offer slightly
better results than simple concatenation. A linear combination can slightly correct the dif-
ferences by giving more importance to one modality and implicitly reranking [100] similar-
ity scores by different modalities. However, a linear combination requires cross-validation
of the parameters, which often might be dependent on the specific dataset and the single
modal representations used. In the next chapter, we use these two methods as a baseline to
compare standard autoencoders and bidirectional deep neural networks against.

5.1.2 Crossmodal Approaches

Crossmodal approaches focus on bidirectional mapping of the initial representations [30],
often by also creating a joint representation space in the process of doing so. They are able
to map from one modality to another and back, as well as representing them in a joint rep-
resentation space. These approaches can be used where crossmodal translation is required
(e.g., multimodal query expansion, crossmodal retrieval) in addition to classification tasks.

5.2 Multimodal Autoencoders

Multimodal autoencoders are an extension of single-modal autoencoders that we previously
introduced in Section 2.3 of Chapter 2. Two typical multimodal autoencoders are shown in
Figure 5.2. The first (left) one illustrates a common approach that consists in concatenating
the representations [73, 66] of the two modalities and training the autoencoder to reconstruct
the data presented as input. The hidden layer in the middle is then used to obtain a joint
multimodal representation (multimodal embedding). Except for the input (and thus the
output) being a concatenation of the representations of two disjoint modalities, everything
else is analogous to classical single-modal autoencoders.

The second (right) architecture is quite similar to the first one but consists of two separate
inputs and outputs (one for each modality) and separate hidden layers in the initial and final
layers. This is sometimes referred to as branch and we can say that this type of multimodal
autoencoders have two separate branches, one for each modality. As in all the other autoen-
coders, one hidden layer in common is used for creating a joint multimodal representation.
Sometimes, one modality is sporadically removed from the input to make the autoencoder
learn to represent both modalities from one. The activations of the hidden layer are used
as a multimodal joint representation. This enables autoencoders to also provide crossmodal
mapping [73] in addition to a joint representation.

Autoencoders however have some downsides which slightly deteriorate performance:

• Both modalities influence the same central layer(s), either directly or indirectly,
through other modality-specific fully-connected layers. Even when translating from
one modality to the other, the input modality is either mixed with the other or with a
zeroed input.

• Autoencoders need to learn to reconstruct the same output both when one modality is
marked missing (e.g., zeroed) and when both modalities are presented as input.



5.3 – Bidirectional Deep Neural Networks 61

fir
st

 m
od

al
ity

se
co

nd
 m

od
al

ity

fir
st

 m
od

al
ity

se
co

nd
 m

od
al

ity

input layers hidden
layers

joint hidden
layer

(representation)

output layershidden
layers

fir
st

 m
od

al
ity

se
co

nd
 m

od
al

ity

input layer output layer

fir
st

 m
od

al
ity

se
co

nd
 m

od
al

ity

hidden
layer

hidden layer
(representation)

hidden
layer

Figure 5.2: Two typical autoencoder architectures: left - concatenated representations at in-
put and output, all hidden layers are joint; right - separated inputs, outputs and hidden
layers, one hidden layer in common

• Classical autoencoders are primarily made for multimodal embedding while cross-
modal translation is offered as a secondary function.

To address these issues, we propose bidirectional (symmetrical) deep neural net-
works [116], which we discuss next.

5.3 Bidirectional Deep Neural Networks

In bidirectional deep neural networks, learning is performed in both directions: one modal-
ity is presented as an input and the other as the expected output while at the same time the
second one is presented as input and the first one as expected output. This is equivalent to
using two separate deep neural networks and tying them (sharing specific weight variables)
to make them symmetrical, as illustrated in Figure 5.3. Implementation-wise the variables
representing the weights are shared across the two networks and are in fact the same vari-
ables. Learning of the two crossmodal mappings is then performed simultaneously and they
are forced to be as close as possible to each other’s inverses by the symmetric architecture
in the middle. A joint representation in the middle of the two crossmodal mappings is also
formed while learning and used to perform multimodal fusion. Symmetry is enforced solely
in the central part given that a fully symmetric architecture would lose the flexibility to adapt
to imperfect data and would converge very slowly and to a less optimal solution.

Formally, let h(j)
i denote (the activation of) the hidden layer at depth j in network i (i =

1, 2, one for each modality), xi the feature vector for modality i and yi the output of the
network for modality i. Networks are defined by their weight matrices W(j)

i and bias vectors

b(j)
i , for each layer j, and admit f as activation function. The entire architecture is then

defined by:
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Figure 5.3: Proposed architecture: training is done in both directions; a shared representation
is created by tying the weights (sharing the variables) and enforcing symmetry in the central
part

h(1)
i = f (W(1)

i × xi + b(1)
i ) i = 1, 2 (5.1)

h(2)
1 = f (W(2) × h(1)

1 + b(2)
1 ) (5.2)

h(3)
1 = f (W(3) × h(2)

1 + b(3)
1 ) (5.3)

h(2)
2 = f (W(3)T × h(1)

2 + b(2)
2 ) (5.4)

h(3)
2 = f (W(2)T × h(2)

2 + b(3)
2 ) (5.5)

oi = f (W(4)
i × h(3)

i + b(4)
i ) i = 1, 2 (5.6)

It is important to note that the weight matrices W(2) and W(3) are used twice due to
weight tying, respectively in Equations 5.2, 5.5 and Equations 5.3, 5.4. Training is performed
by applying batch gradient descent to minimize the mean squared error of (o1, x2) and
(o2, x1) thus effectively minimizing the reconstruction error in both directions and creating
a joint representation in the middle.

Given such an architecture, crossmodal translation is done straightforwardly by present-
ing the first modality as xi and obtaining the output in the representation space of the second
modality as oi. A multimodal embedding is obtained by presenting one or both modalities
(x1 and/or x2) at their respective inputs and reading the central hidden layers h(2)

1 and/or
h(2)

1 .
Multimodal embeddings are obtained in the following manner:

• When the two modalities are available, both are presented at their respective inputs
and the activations are propagated through the network. The multimodal embedding
is then obtained by concatenating the outputs of the middle layer.
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Figure 5.4: Computing the similarity of two data samples with BiDNNs: first a model is
trained by learning crossmodal translations on every available sample in an unsupervised
manner. After a trained model is obtained, for each of the two samples, each modality is pre-
sented and propagated through the networks. The activations in the central layers are than
used to represent each sample with now fused modalities. Finally, the obtained multimodal
embeddings are simply compared with a cosine distance to obtain their similarity.

• When one modality is available and the other is not, the available modality is presented
to its respective input of the network and the activations are propagated. The central
layer is then used to generate an embedding by being duplicated, thus still generat-
ing an embedding of the same size while allowing to transparently compare samples
regardless of modality availability (either with only one or both modalities).

Note that while the embedding is multimodal, it corresponds to a space dedicated to
cross-modal matching and thus significantly differs from classical joint multimodal spaces.
Figure 5.4 illustrates the process of comparing the similarity of two samples (i and j) with
bidirectional deep neural networks: for each sample, crossmodal translations between the
two modalities are learned. Then, for the specific samples that we want to compare, their
respective two modalities are presented at the inputs of a trained BiDNN model and their
multimodal embeddings in the new, common representation space are formed. In the end,
obtaining a similarity score of the two samples consists of simply computing the cosine dis-
tance of the newly obtained vectors.
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5.4 Generative Adversarial Networks

In Sections 5.2 and 5.3 we performed crossmodal translation and multimodal fusion with
continuous representations as inputs. Continuous representation spaces are well tailored
to deep learning architectures and offer good characteristics [70] but are hardly human in-
terpretable. The most human interpretable data presentation level is the original domain
(e.g., the image space or the spatial domain). In this section, we propose the use of gener-
ative adversarial networks to perform crossmodal translations and multimodal fusion from
a representation space to the original domain. More precisely, we evaluate text to image
generative adversarial networks.

In all generality, the aim of a generative adversarial network (GAN) [35] is to estimate
a generator that maps from a latent space to a particular data distribution. Such a data
distribution of interest can be anything from a simple one dimensional statistical distribu-
tion [35] to a distribution of pixels in the spatial domain in natural images, conditioned on
the surrounding pixels [131]. Architecture wise, generative adversarial networks belong to
the set of architectures used in unsupervised learning (just like autoencoders discussed in
Section 5.2 and bidirectional neural networks discussed in Section 5.3) and consist of a sys-
tem of two networks:

• A generative network - xg = G(z, Θg) that takes random noise z as input (to introduce
stochasticity) and generates synthetic data samples xg that mimic as closely as possible
the distribution of the real data samples x

• A discriminative network - Dout = D(xin, Θd) that takes both real data samples x and
synthetic data samples xg provided by the generative network and predicts whether
the input is synthetic or real.

A generative adversarial network is trained by presenting the discriminator with real
and synthetic data and updating its parameters Θd. When the discriminator is presented
with a synthetic data from the generator, the output layer of the generator is the same as the
input layer of the discriminator. In this situation, both the generative and the discrimina-
tive network can be seen as one network, and backpropagation can propagate further from
the discriminative part to the generative part and update the parameters of the generative
network Θg.

Generative adversarial networks can have the input of their generative network condi-
tioned on a specific input variable. Such architectures are known under the name of con-
ditional generative adversarial network or CGAN for short [71]. The conditioning input is
simply concatenated to the noise input of the generative network. In this work we focus
more on text to image mapping, as it is convenient for the task of video hyperlinking so we
will focus more on generative adversarial networks that are suitable for this task. Figure 5.5
illustrates a generic text to image (conditional) generative adversarial network. The dis-
criminative network (on the right) takes an image-text pair as input that can either be a real
image with a continuous representation of its respective text or a synthetic image, generated
by the generative network, with a textual continuous representation that is the same as the
one provided to the generative network as input. The discriminative network is trained to
differentiate between the two pairs. It is also possible to present a third pair to the discrim-
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Figure 5.5: Text to image generative adversarial network: the generative network (on the
left) takes a continuous representation of a text sample as input, together with a random
noise input. The discriminative network (on the right), takes either a real image or an image
from the generator and a continuous representation of its respective text sample and predicts
whether the input image-text pair was a real or a synthetic one.

inator: a real image and an continuous representation of unrelated text. This is solely done
to improve training and will be discussed in Section 6.7.

Although generative adversarial networks have been first introduced by [35] as a two-
network, generative-discriminative model for generating high-quality, single-modal, realis-
tic samples that could be mistaken for real samples from the dataset the model is trained on,
they quickly became popular and are now used in a multitude of tasks, such as generating
super-resolution images [26, 62], inpainting [131, 77], de-occlusion [134] and many others.
Conditional GANs [71] have been shown to generate realistic samples of one modality, given
a conditioning input of another modality. A typical example of a crossmodal CGAN model
is text to image synthesis [90, 133] but the conditioned input is not necessarily bound to
multiple modalities and can be conditioned also on the same modality [74]. In this work
we, however, focus on the multimodal properties of conditional generative adversarial net-
works.

For the purpose of multimodal retrieval, we focus on crossmodal / multimodal condi-
tional generative adversarial networks and ways to obtain meaningful multimodal repre-
sentations from them. While multimodal setups are currently less explored, there is a lot of
evidence that GANs learn meaningful representations in single-modal setups [67, 43, 16, 79],
most notably in the generative network. These representations are obtained in a completely
unsupervised manner and can be used to model changes in style, pose [16], color [79] or even
style and structure in RGBD data [124]. Evidence suggests that both the generative network
and the discriminative network can produce meaningful single-modal representations [85].
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Our work falls into the category of text to image CGANs [90, 133], where we explore the
possibility of obtaining good multimodal representations from the discriminator, while us-
ing the generator to visualize crossmodal mappings for the purposes of multimodal retrieval
in video hyperlinking and to improve the embeddings from the discriminator network.

The CGAN architecture we propose is based on the GAN-CLS text to image model [90].
The model consists of a generative network G and a discriminative network D. The genera-
tive network takes a noise vector z, sampled from a U (−1, 1) distribution and a text embed-
ding ϕ, and generates a synthetic image x̂ = G(z, ϕ). The generator consists of a separate
fully-connected layer with a leaky-ReLU activation function (that allows for a small non-zero
gradient on the negative side) for modeling the text embeddings. This is then concatenated
with the noise input. A standard deconvolutional network follows. The discriminator net-
work takes an image x and a text embedding ϕ and determines whether the pair is real or
artificial D(x, ϕ). Contrary to the basic conditional generative adversarial network model
that only differentiates between real and synthetic images, CGAN-CLS is trained on three
pairs. In our case {real image, real text}, {incorrect image, real text} and {synthetic image, real
text}. As we are doing unsupervised learning, pairs with a non-matching image and text are
chosen at random and the dataset is not split. Pairs of real matching and non-matching text-
image pairs are necessary to train the discriminator. The discriminator consists of a series of
convolutional layers with batch normalization, followed by a leaky-ReLU for modeling the
input image and a full-connected leaky-ReLU layer to model the text embeddings. The two
branches are then concatenated and a 1 × 1 convolution is performed, followed by batch
normalization and a leaky-ReLU activation before obtaining the discriminator score. For
multimodal embedding, we use the vector obtained after the final 1× 1 convolution of the
discriminator. To maintain the losses of both the generator and the discriminator at similar
levels (having a discriminator that is performing too well would prevent the generator from
converging), the generator is updated four times more often than the discriminator. A cosine
distance between the obtained multimodal embeddings is used to measure the similarity of
the desired video segments both in the case of multimodal autoencoders and conditional
generative adversarial networks.

5.5 Conclusion

In this chapter, we described methods to perform crossmodal translation and multimodal
fusion on a theoretical level. We first described classical multimodal autoencoders in Sec-
tion 5.2 and then we described our modified architecture, bidirectional deep neural net-
works, where multimodal fusion is improved by focusing on crossmodal translations in Sec-
tion 5.3. Both methods work with both modalities presented as continuous representations
at their inputs. In order to synthesize one modality directly into the original domain (the
spatial domain or image domain), we discussed the possibility of using conditional genera-
tive adversarial networks to perform both multimodal fusion and crossmodal translations,
also on a theoretical level. In Chapter 6, we will introduce the task of video hyperlinking,
its respective dataset, evaluate the methods empirically and analyze their performance on a
real life scenario.
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In Chapter 5 we introduced classical multimodal approaches, such as multimodal au-
toencoders, and proposed our methods, bidirectional deep neural networks and a method
based on generative adversarial networks, from a theoretical standpoint. Given the inter-
est of our team in video content related tasks and a history of participating at international
benchmarks that evaluate methods in the task of video hyperlinking, we decided to evaluate
our previously proposed methods in the task of video hyperlinking and to participate to an
international benchmarking initiative that focuses on video hyperlinking.

In this chapter, we first introduce the task of video hyperlinking in Section 6.1 and its
related datasets in Section 6.2. In Section 6.3 we introduce the metrics used to evaluate
relatedness of video segments in the task of video hyperlinking. This metric will then be
used in Sections 6.4 to 6.7 where we will evaluate different approaches to video hyperlinking.

6.1 The Video Hyperlinking Task

With the increasing abundance of professional and community-based video content, it is
important to not only offer ways to discover videos through search queries but also to allow
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Figure 6.1: The task of video hyperlinking: the anchor represents a video segment that a user
is currently viewing and wishes to find related video segments (targets). In this example, an
anchor where a fish & chips restaurant is displayed is linked to a target containing a part of
a cooking show where a recipe for preparing fish & chips is illustrated thus linking the two
video segments through different modalities.

for an explorative approach that proposes to a user a set of potentially interesting video
segments, given the video segment that is currently viewed. This arises the need for video
segments to be hyperlinked within a multimedia data collection. The seminal idea of video
hyperlinking is to create hyperlinks between different videos and/or video segments based
on their content.

In task of video hyperlinking, there are two main concepts: anchors and targets. An-
chors represent segments of interest within videos that a user would like to know more
about. Targets represent potential segments of interest that might or might not be related
with a specific anchor. The goal is to hyperlink relevant targets for each anchor by using
multimodal approaches. An example of the task of video hyperlinking is illustrated in Fig-
ure 6.1 where an anchor is linked to a target though the content linking them is present in
different modalities. The anchor is a video segment, part of a video about English culture,
where a fish & chips restaurant is displayed and is thus containing the topic of interest in
the visual modality. The target is a video segment, part of a cooking show, where the host
is explaining how to prepare a fish & chips dish without having many visual clues, until the
end and containing most of the clues for the topic of interest in the speech modality.

Each video consists of at least two data streams: a visual stream and an audio stream.
A visual stream is represented by a set of consecutive images (frames) of which the most
meaningful ones are keyframes. Keyframes (also known as intra-frames) are fully stored
frames - frames where the complete information is stored in the video stream. Other frames
(known as inter-frames) are expressed as a change from neighboring keyframes. This is due
to the fact that, in most videos, neighboring frames contain a lot of redundant information.
Keyframes provide the whole frame in the beginning, after the accumulated changes from
the original previous keyframe are too big and after every scene change. These properties
make keyframes a good source of visual information from where visual concept extraction,
visual embedding, action or event recognition and other visual content analysis methods
can be performed. Audio streams also provide information - most often, but not limited
to, as speech. After automatic transcription, the audio part of a video sequence is typically
used and further processed as a sequence of words. Data from an audio source does not
have to correlate with data from the corresponding video source but it certainly can. Given
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this nature of videos and/or video segments, it is necessary to perform content analysis and
comparison of both visual information and spoken information both in a crossmodal and
in a multimodal fashion (e.g. a link between two video segments can reflect a connection
between a concept being discussed in the first video segment and a location being displayed
in the second video segment).

6.2 Datasets

We participated in a number of international benchmarks that evaluate methods in the task
of video hyperlinking and used their datasets in both online (full video hyperlinking setup)
and offline (problem downscaled to multimodal retrieval) evaluations. Given the evolution
of the dataset and the video hyperlinking initiative over time, there are mainly two datasets
that we refer to in this work: i) MediaEval’s video hyperlinking dataset, more specifically
the dataset and the groundtruth formed post-hoc after MediaEval 2014 and ii) TRECVID’s
video hyperlinking dataset from 2016, used in the live evaluations of the proposed systems.
The video hyperlinking challenge was originally part of the Medieval initiative [29]. In 2016,
the video hyperlinking challenge moved to TRECVID [3]. Additionally, while the dataset
originally used videos segments provided by BBC, since 2016 the dataset is formed from
video segments provided by BlipTV.

In this work, we use the MediaEval 2014 dataset to evaluate different single-modal repre-
sentations, multimodal autoencoders, bidirectional neural networks and generative adver-
sarial networks with a fixed groundtruth that comes with the dataset. The TREVID 2016
dataset was used for the live evaluation of bidirectional neural networks through the chal-
lenge, thus lifting the restriction of having a predefined groundtruth.

6.2.1 MediaEval 2014

The original data consists of approximately 2,700 hours of BBC broadcasted content. For
each video, multiple data and modalities are available. As described in Section 6.1, video
segments consist of anchors and targets. In practice, targets are not given and have to be
defined automatically before assessing their relevance to each of the 30 anchors provided.
Evaluation of relevance is thus done post-hoc on Amazon Mechanical Turk (AMT). After
the completion of the benchmark, an annotation with the given anchors and all the targets
proposed by the participants, as well as their relevance for the given anchor is provided.
This annotation is officially provided after the evaluation and is very useful to evaluate dif-
ferent methods by using it as a groundtruth in a multimodal retrieval setup. In this case, the
task of video hyperlinking is downscaled by removing the task of creating video segments
and proposing relevant one, and is evaluated through multimodal retrieval with a given
groundtruth.

Multimodal retrieval evaluation task thus consists of using multimodal information to
rank the targets by relevance for each anchor and comparing their relevance with the previ-
ously established groundtruth. In total, the dataset consists of 30 anchors, 10,809 targets and
a ground truth with 12,340 anchor-target pairs (either related or unrelated). Interestingly,
among the anchor and target segments, not all have both transcripts and visual concepts
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available. Regarding keyframes, there are in total 371,664 keyframes for an average of 34.3
keyframes per video segment.

We used a combination of two modalities: either automatic transcripts of the audio track
and KU Leuven [110] visual concepts or automatic transcripts of the audio track and de-
scriptors of each keyframe obtained with different convolutional neural network architec-
tures. Both automatic transcripts and KU Leuven visual concepts are provided as part of the
dataset. KU Leuven visual concepts consists of multiple ImageNet [92] classes detected in
each keyframe with a CNN architecture and provided as a textual description together with
each keyframe.

6.2.2 TRECVID 2016

The dataset under scrutiny at TRECVID 2016 is the BlipTV dataset [3], composed of 14,838
videos with a duration of 13 minutes on average. These videos span multiple languages
including English, Chinese, Arabic, etc.

We considered all languages while training our models, while only English anchors were
selected by the organizers. It can be expected that considering multiple languages lowered
the live performance of our evaluated systems described in the following sections. We used
the automatic transcriptions provided by LIMSI [33]. The dataset also provides metadata
and shot boundaries that we do not use. We chose not to use the user-generated metadata
with the objective to be as close as possible to a fully automatic system that could be trans-
posed to any video dataset without such metadata. We exploit a speech-based rather than
a shot-based segmentation, in order not to cut a segment in the middle of a sentence. The
segmentation was performed by taking only 30 seconds of contiguous speech and then cut
at the following speech pause as detected by the speech transcription system. We run this
speech-based segmentation process twice, using an offset of one speech segment at the sec-
ond pass, in order to obtain an overlapping segmentation. This resulted in 307,403 video
segments with a mean duration of 45 seconds.

6.3 Assessing Relatedness

The main evaluation metric in video hyperlinking is the relatedness of the proposed targets
to each queried anchor. For the whole set of anchors (the queries to a retrieval system), the
proposed targets are evaluated either relevant or non relevant and the precision of the system
is calculated. Additional restrictions are imposed to prevent the systems from proposing tar-
gets that belong to the same video as the anchor and to prevent the systems from proposing
overlapping targets and thus increasing their precision without actually retrieving different
videos. Typically, in the previously mentioned benchmarking initiatives, only the top N pro-
posed targets are evaluated and this restriction is then also implicated in offline evaluations
by the dataset, in a multimodal retrieval setup. This fits a realistic scenario where the user
would only be interested in a few proposed video segments and would not search a large
collection to find videos related to the currently viewing video. In all video hyperlinking
challenges (and thus also in the post-hoc groundtruth and the official evaluation tool) prior
to 2016, the top-10 proposed targets were evaluated and the precision at 10 for each system
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was evaluated. In TRECVID’s 2016 video hyperlinking challenge, the organizers opted to
evaluate solely the top-5 proposed targets and report precision at 5 for each system.

6.4 Single-Modal Approaches to Video Hyperlinking

In this section, we analyze methods for obtaining good single modal representations. We
start with different methods to represent automatic audio transcriptions of the video seg-
ments and we progress to methods to represent keyframes of the video segments. In the
following sections we will evaluate different methods to create joint multimodal represen-
tations, as well as allowing for crossmodal translation. Where appropriate, for some single-
modal cases, methods for aggregating multiple embeddings into one single-modal represen-
tation are also tackled.

6.4.1 Initial Single-modal Representations

All methods presented in this chapter utilize two data modalities: i) automatic audio tran-
scripts and ii) video keyframes. Automatic audio transcripts are used instead of subtitles
which are not always available in practice and would include a human component in the sys-
tem. Video keyframes are considered in two different settings: using ImageNet concepts [92]
or directly describing images with features obtained with state-of-the-art convolutional neu-
ral networks.

Automatic transcripts of a video segment consist of one or more sentences, each with
multiple words. This makes sentence/paragraph/document representation methods suit-
able for the task. Two methods were evaluated (each in different settings): paragraph vec-
tors [59] and Word2Vec [70]. Contrary to paragraph vectors, Word2Vec is not specifically
designed for embedding bigger blocks of text. However it was shown that Word2Vec can
perform quite well [13] and can be suitable when combined with an aggregation of the em-
bedded words. During training, visual concepts can either be sorted, duplicated and shuf-
fled multiple times or left in the order of probabilities of their presence in the image. All
methods were trained directly on the automatic transcripts, in an unsupervised manner.

For each keyframe of each video segment, a set of top scoring visual concepts is used as
information indicating what’s visible in the image. Visual concepts describe a class of objects
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Figure 6.2: Simplified comparison of the CNN architectures used in this work: AlexNet (top),
VGG-16 (middle) and VGG-19 (bottom). For simplicity, only the main layers are shown.
Merging, reshaping, padding and other layers are not illustrated.
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or entities: e.g., “n02121808” indicates “Any domesticated member of the genus Felis (Domestic
cat, house cat, Felis domesticus, Felis catus)” and includes all related subcategories. We treat
each visual concept as a word and utilize it to obtain word embeddings (with Word2Vec or
paragraph vectors) representing the visual information of a video segment provided by its
visual concepts in a continous representation space.

While visual concepts are typically given with the datasets provided by video hyper-
linking benchmarking initiatives, they are not optimal for deep learning methods as they
are bag-of-words representations and not continuous representations. Convolutional Neu-
ral Networks (CNNs) provide state-of-the art visual descriptors [98] that have been shown
to perform well both in computer vision applications [51, 130] and in video summarization
tasks [45]. In this work, we test three different state-of-the art deep convolutional neural
network architectures, namely AlexNet, VGG-16 and VGG-19. Figure 6.2 illustrates, in a
simplified manner (only main layers are shown: convolutional, pooling and fully-connected
layers), the architectures of such networks. AlexNet [51] is deep convolutional neural net-
work of medium depth, with 3 convolutional layers, 3 max-pooling layers and a set of fully-
connected layers at the end. VGG networks [101] are very deep convolutional neural net-
work architectures defined by the Visual Geometry Group. We use two VGG architectures,
namely VGG-16 and VGG-19, with 16 and 19 “weight layers” respectively. The VGG-16 ar-
chitecture consists of 13 convolutional layers, 5 max-pooling layers and 3 fully-connected
layers. The VGG-19 architecture consists of 16 convolutional layers, 3 max-pooling layers
and 3 fully-connected layers.

Depending on the subtask and the method used, the resulting representations might
require aggregation, e.g., to represent all the automatic transcripts of a video segment with
Word2Vec or to represent all the keyframes of a video segment. Some methods, on the other
side, do not require additional aggregation (e.g., paragraph vectors). In this work, we tested
two means of aggregating descriptors: simple averaging [13] and Fisher vectors [80, 81].

6.4.2 Video Hyperlinking with the Original Representations

We chose to represent the transcripts and visual concepts of each anchor and target with a
Word2Vec skip-gram model with hierarchical sampling [70], a representation size of 100 and
a window size of 5. The visual concepts were sorted previous to learning and the represen-
tations of the words and concepts found within a segment were averaged [13]. This option
worked best for our task.

Convolutional neural network representations were obtained by using the output of the
last fully-connected layers of AlexNet, VGG-16 and VGG-19, respectively. All three con-
volutional neural network architectures yield a representation of size 4096. Since there are
multiple keyframes in each video segment, aggregation was either done by averaging or by
using Fisher vectors. The average proved to provide solid representations based on AlexNet,
as well as the best representations, based on VGG-16 and VGG-19. For AlexNet, Fisher vec-
tors provided slightly better results (with a previous dimensionality reduction with PCA to
a size of 64 and GMM with 64 mixtures). Averaged VGG-16 provide the best visual embed-
ding, yielding a result of 70.67 % in precision at 10. A standard cosine distance is used in
all the experiments as a measure of similarity. The performance of the different methods is
shown in Table 6.1.

Given that we have two modalities at our disposal, it seems reasonable to use both to
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Representation Aggregation P@10 (%)
Automatic transcripts

Word2Vec average 58.67
Word2Vec Fisher 54.00
PV-DM - 45.00
PV-DBOW - 41.67

Visual information
KU Leuven visual concepts, Word2Vec average 50.00
KU Leuven visual concepts, PV-DM - 45.33
KU Leuven visual concepts, PV-DBOW - 48.33
AlexNet average 63.00
AlexNet Fisher 65.00
VGG-16 average 70.67
VGG-16 Fisher 64.67
VGG-19 average 68.67
VGG-19 Fisher 66.00

Table 6.1: Single modal representations of automatic transcripts and visual information

determine the similarity of two video segments. There are simple ways to combine two
modalities without appealing to multimodal fusion. A simple way to combine two modali-
ties is by simply concatenating single-modal representations. This does not provide the best
results, as each representation still belongs to its own representation space. It is also possible
to utilize two separate modalities by performing a linear combination [36] of the similarities
obtained by comparing each of the two modalities (sometimes called score fusion). This late
fusion avoids multimodal models and might offer slightly better results than simple concate-
nation (a linear combination can slightly correct the differences by giving more importance to
one modality and implicitly reranking [100] similarity scores by different modalities). How-
ever, a linear combination requires cross-validation of the parameters, which often might be
dependent on the specific dataset and the single modal representations used. We use these
two methods as a baseline to compare standard autoencoders and bidirectional deep neural
networks against.

Table 6.2 illustrates the performance of the previously mentioned methods utilizing two
modalities without performing multimodal fusion. There is no significant improvement
when concatenating embedded transcripts and visual concepts. However, a simple con-
catenation of embedded transcripts and embeddings obtained with convolutional neural
networks improves over each single-modal representation alone. For instance, combining
VGG-16 embeddings with embedded transcripts yields 75.33 % (precision at 10) over the
initial performance of 70.67 % and 58.67 % respectively. A linear combination of similarities,
on the other hand, does not offer a multimodal embedding but might be simpler (often used
for relevance reranking) over simple concatenation, at the cost of having to optimize the
parameters on another dataset and possibly at the cost of higher variance.
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Modalities Method P@10 (%) σ (%)
Simple multimodal approaches

Transcripts, visual concepts (word2vec) concatenation 58.00 -
Transcripts, AlexNet concatenation 70.00 -
Transcripts, VGG-16 concatenation 75.33 -
Transcripts, VGG-19 concatenation 74.33 -
Transcripts, visual concepts (word2vec) linear combination 61.32 3.10
Transcripts, AlexNet linear combination 67.38 2.66
Transcripts, VGG-16 linear combination 71.86 4.11
Transcripts, VGG-19 linear combination 71.78 3.90

Table 6.2: Comparison of simple methods of utilizing two modalities in terms of precision
at 10 (P@10). When linearly combining the scores, we run the experiment for many possible
linear scores (without cross-validation on a separate dataset) and report the average and the
standard deviation.

6.5 Video Hyperlinking with Multimodal Fusion

Multimodal autoencoders are the most common current method for obtaining multimodal
embeddings. We implemented the model with separate branches for each modality, as pre-
viously described in Section 5.2 of Chapter 5. We implemented the described autoencoder
with a central layer of size 1000. Bigger sizes did not improve the results but smaller ones
did deteriorate them. The inputs, outputs and their associated fully-connected layers were
sized accordingly with the dimensionality of the input data.

Table 6.3 reports the results. It can be clearly seen that multimodal embedding performs
better than each single modality by itself; e.g. combining embedded transcripts and VGG-19
features yields 74.73 %, compared to 58.67 % and 68.07 % respectively. However, in some
cases, it seems that embeddings obtained in such a way do not yield significantly better
results than simple methods. We believe this is caused by the already good single-modal
representations and the fact that autoencoders have to train to represent the correct output
with both modalities being present at their input and with one zeroed modality. In cases
where the initial embeddings perform less (e.g., embedded visual concepts combined with
embedded transcripts), autoencoders seem to improve in a more significant way.

Modalities Method P@10 (%) σ (%)
Multimodal autoencoders

Transcripts, visual concepts 59.60 0.65
Transcripts, AlexNet 69.87 1.64
Transcripts, VGG-16 74.53 1.52
Transcripts, VGG-19 75.73 1.79

Table 6.3: Performance of multimodal autoencoders given different representations for each
modality. For each case, precision at 10 (%) and the standard deviation are reported.
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6.6 Multimodal Fusion Through Crossmodal Translations

Bidirectional deep neural networks are used in video hyperlinking as illustrated in Fig-
ure 6.3: first, for all video segments containing two modalities, both are taken (embedded
automatic transcripts with either embedded visual concepts or embedded CNN representa-
tions) and crossmodal translations between the two modalities are learned. To compare the
similarity of two video segments through multimodal fusion, their respective two modali-
ties are presented at the inputs of a trained BiDNN model and their multimodal embeddings
in the new, common representation space are formed. The two multimodal embeddings are
then simply compared with a cosine distance to obtain a similarity measure.

6.6.1 BiDNN Multimodal Embedding

We implemented a bidirectional deep neural network comparable with the previously de-
scribed autoencoder: a central fully-connected layer yielding a representation of size 1000
and inputs/outputs dependent on the modalities used. Bidirectional deep neural networks
behaved similarly to autoencoders as representation sizes bigger than 1000 did not bring
any significant improvement. Smaller ones had deteriorated performance. This confirms
the choice of the dimensionality of the new multimodal representation by two independent
methods. Each bidirectional deep neural network was trained with five independent runs of
1000 epochs each, although they converged earlier, the results were averaged and, together
with their respective standard deviations, are reported in Table 6.4. Significance levels of
improvements are computed with single-tailed t-tests and reported where appropriate.

This provides superior multimodal embeddings that bring significant improvement. For
instance, combining embedded transcripts with VGG-19 embeddings yields a precision at 10
of 80.00 %, compared to 58.67 % and 68.67 % respectively. All the other tested combinations
also yielded better results and high quality multimodal embeddings.

Speech  keywords: conference, aid, in-
ternational, ships, agreed, rangoon, bur-
ma, diplomat, burmese, western, ...

Speech  keywords: airport, promised, 
ships, aid, gateways, transporting, delta, 
burmese, hub, reopened, ...

Visual concepts: bulletproof vest, sur-
geon, inhabitant, military, uniform, doc-
tor, nurse, turban, ...
or CNN representations

Visual concepts: buffet, dinner, dining 
table, shop room, ambulance, mercan-
tile, establishment, truck, ...
or CNN representations

Figure 6.3: Video hyperlinking with bidirectional deep neural networks: two video seg-
ments, both with two modalities (automatic transcripts and either KU Leuven visual con-
cepts or CNN features of each keyframe) are compared after their multimodal embeddings
are computed
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6.6.2 BiDNN Single Modality Embedding

Although bidirectional deep neural networks are trained in a multimodal setup, it is pos-
sible to embed only one modality by presenting it to the respective input and propagating
the activations forwards until the central, representation layer. Doing so might offer an in-
sight about the new representation space, common for both modalities, and its performance
compared to the original representation spaces. Results, given in Table 6.4, clearly show that
each newly formed common representation space is significantly better than its respective
original representation space. Automatic transcripts improve from 58.67 % to 66.78 %, visual
concepts from 50.00 % to 54.92 % and VGG-19 embeddings from 68.67 % to 70.81 %. These
results are obviously not as good as multimodal embeddings obtained by combining two
modalities but they clearly show the improvement that bidirectional deep neural networks
bring even when used in a single-modal fashion and not only as a common space where
representations from originally different representation spaces are projected. This is due to
the fact that those new representations are not completely single-modal as they have been
projected into a new space by a projection that has been learned in a crossmodal fashion.

6.6.3 BiDNN Crossmodal Query Expansion

Bidirectional deep neural networks naturally enable crossmodal expansion; meaning a miss-
ing modality is filled in by translating from the existing one. If a transcript is not available for
a video segment, it is generated from the visual concepts and conversely. Using crossmodal
query expansion so that all segments have all modalities, we obtain, 62.35 %, when com-
bining transcripts and visual concepts. There are no significant improvement when using
crossmodal query expansion with pairs that consist of representations obtained with high-
performing deep convolutional neural networks. This is due to the relatively small number
of samples with one missing modality, so filling the missing modalities does not have a big
impact - especially with well performing single-modal representations. The original repre-
sentation used perform less good, as shown in Sections 6.6.1 and 6.6.2, than the new common
representation spaces obtained with bidirectional deep neural networks and the influence of
filling-in the few video segments with missing modalities is almost insignificant.

6.6.4 Video Hyperlinking Evaluation of Bidirectional Neural Networks

In the previous subsections, all evaluations were performed with a static groundtruth. This
means that all the evaluated systems were in fact limited to reranking the targets (both re-
lated and unrelated) in the groundtruth [119]. Targets were proposed by the participants of
MediaEval’s 2014 video hyperlinking challenge. To truly evaluate the performance of our
proposed method, bidirectional deep neural networks, in the task of video hyperlinking,
we participated at an international benchmarking initiative, now under TRECVID and with
videos from BlipTV. By doing so, the system is able to propose targets from all the possi-
ble video segments (307,403 of them, given our speech based segmentation) as long as they
don’t belong to the same video as the anchor and two proposed targets do not overlap (if
they do, the lower scoring one is removed and only the higher scoring one is proposed).

Regarding the initial, single-modal representations, we chose to represent the transcripts
of each anchor and target with a Word2Vec skip-gram model with hierarchical sampling [70],
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Modalities Method P@10 (%) σ (%)
BiDNN single modality embedding

Transcripts 66.78 1.05
Visual concepts 54.92 0.99
AlexNet 66.33 0.58
VGG-16 68.70 1.98
VGG-19 70.81 1.08

BiDNN multimodal embedding
Transcripts, visual concepts 73.74 0.46
Transcripts, AlexNet 73.41 1.08
Transcripts, VGG-16 76.33 1.60
Transcripts, VGG-19 80.00 0.80

BiDNN query expansion
Transcripts, visual concepts 62.35 0.25
Transcripts, AlexNet 70.11 1.25
Transcripts, VGG-16 75.33 0.10
Transcripts, VGG-19 74.33 0.10

Table 6.4: Performances of fusion (multimodal embedding), single modal embedding and
crossmodal translation (query expansion) with bidirectional deep neural networks and dif-
ferent input representations for each of the two modalities. Precision at 10 (%) and the re-
spective standard deviation is reported for each case.

a representation size of 100 and a window size of 5, as this has been shown to achieve the
best performance in the previously mentioned offline (multimodal retrieval) evaluations. Vi-
sual embeddings are obtained from a very deep convolutional neural network (CNN) VGG-
19 [101], pretrained on ImageNet. The last fully-connected layer is extracted and used to
represent the visual information. Therefore, we obtain a 4096 dimensional embedding for
each keyframe that is later averaged over all the keyframes to represent the whole video
segments.

We submitted three runs in such a way to have a clear idea of how much does multimodal
fusion with bidirectional deep neural networks improve over the initial modalities:

• a single-modal run using only embedded speech transcripts

• a single-modal run using only averaged VGG-19 features to represent each video seg-
ment

• a BiDNN-fused multimodal run combining the two representation into a new, fused
one

For all the three runs, we just used cosine distances over the representations to determine
the similarity of each video segment evaluated as a potential target for each given anchor.
As previously mentioned in Section 6.2, at TRECVID 2016, precision at 5 is reported instead
of the previously used precision at 10.
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Method Precision at 5 (%)
Our methods

Only visual (averaged VGG-19 features) 45
Only speech transcripts (averaged Word2Vec) 40
BiDNN multimodal fusion (visual and speech) 52

All participants
Maximum 52
Upper quartile 41
Median 35
Lower quartile 32
Minimum 24

Table 6.5: Results of the live, video hyperlinking evaluation at TRECVID 2016. Results of
our three systems and the statistics of all participants.

Table 6.5 illustrates the performances of our three systems, as well as the statistics of all
participants. The initial single-modal speech and visual representations obtained results of
40% and 45% respectively. Multimodal fusion performed in a crossmodal fashion through
bidirectional deep neural networks managed to improve the results and obtain 52 % in terms
of precision at 5. This was also the best performing method at TRECVID’s 2016 video hyper-
linking task and defines the new state of the art for the task.

6.7 Video Hyperlinking and the Original Domain

Bidirectional deep neural networks (BiDNNs) offer improved multimodal fusion by focus-
ing on crossmodal translations first. They intrinsically model crossmodal translations from
different modalities given as continuous representations. While it is possible to analyze a
learned model and its crossmodal translations by feeding one modality to the input and
finding samples that are close to the translated modality into the representation space of the
other modality, this is inherently more difficult and less clear for a human observer than see-
ing directly the result in the original domain. In this section, we use conditional generative
adversarial networks, previously described in Section 5.4, to learn a crossmodal translation
that goes from a continuous representation space of speech transcripts and synthesizes di-
rectly into the original spatial domain (image domain). We also study the possibility of using
such a model to perform multimodal fusion and expect an improvement due to the virtually
unlimited new synthetic samples provided by the generator part of a generative adversarial
network.

Generative adversarial networks are complex to train and are currently limited in regards
of the image size they can synthesize. We will still use the dataset of MediaEval 2014, as in
Sections 6.4 to 6.6 but now with image sizes of 64 × 64 pixels, while keeping everything
else the same. To have a fair comparison, we will reevaluate multimodal autoencoders and
bidirectional deep neural networks with the same image sizes of 64× 64 pixels. The CGAN
model works directly with the previously described Word2Vec text embeddings and images.
Multimodal AEs also need visual embeddings as inputs. We obtained them, as before, from
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Figure 6.4: Used CGAN architecture, consisting of a generator and a discriminator network.
Multimodal embeddings are obtained in the discriminator, after the last, 1D convolution
operation, as denoted with a dashed rectangle.

the same images, with a VGG-19 network (pretrained on ImageNet) and they are of size 4096.
Table 6.6 shows the initial single-modal results, which are 56.55% for speech transcripts and
52.41% for video keyframes, in terms of precision at 10 [3].

6.7.1 Multimodal Fusion with CGANs

To evaluate the feasibility of obtaining multimodal embeddings with CGANs, we used the
architecture described in Sec. 5.4 with a speech embedding of dimension 100, a noise input
of size 10, a fully-connected layer for modeling text of size 256 and 4 “deconvolutional” layers
of increasing size, each with 256, 128, 64 and 32 feature maps respectively in the generator
network. The output of the generator is an image of size 64× 64. The discriminator network
consists of an image input of size 64× 64 followed by 4 convolutional layers with batch nor-
malization, each with 32, 64, 128 and 256 feature maps respectively and decreasing sizes and
a speech embedding input of size 100, followed by a fully-connected layer of size 256. The
two branches are then concatenated and followed by another, final convolution. We trained
the network for 1000 epochs by using the Adam optimizer with a learning rate r of 0.0001, a
momentum β of 0.5 and a batch size of 64. We use the one-dimensional convolutional layer
in the discriminator that follows the merging of the two branches, and proceeds the batch
normalization and activation layers, as a multimodal embedding layer, as illustrated in Fig-
ure 6.4. Other layers did not perform well and provided a lower or equal quality than the
initial single-modal inputs. It is also possible to train the discriminator by itself, solely on
real and wrong image-speech pairs. This does not converge to a comparably good enough
solution. The generator network thus does not only provide a mean to visualize crossmodal
mappings but aids in obtaining high-quality embeddings in the discriminator by providing
additional synthetic samples. The generator network does not only provide a mean to visu-
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Representation Precision at 10 (%) σ (%)
Speech Transcripts Only 56.55 -
Visual Only (VGG-19) 52.41 -
Multimodal AE 57.94 0.82
BiDNN 59.66 0.84
CGAN 62.84 1.36

Table 6.6: Comparison of initial modal single-modal representations and multimodal em-
beddings obtained with different methods. For each method, precision at 10 and its respec-
tive standard deviation are reported.

alize crossmodal mappings but is also crucial for obtaining high-quality embeddings in the
discriminator by competing with it and providing additional synthetic samples.

Compared to multimodal AEs, CGANs are computationally expensive to train (20h on
a GPU, compared to a few hours on a CPU for BiDNN), even for small images, and require
both modalities to be present. However, the discriminator of a CGAN provides multimodal
embeddings that are greatly improved over the initial representation spaces or each modal-
ity. The results are shown in Table 6.6. Representations learned with a CGAN not only
outperformed multimodal AEs but they also significantly (p = 99.9 % with a single-sided
t-test) outperformed the state-of-the-art BiDNN model and obtained 62.84%.

6.7.2 Crossmodal Visualizations

Interestingly, the generator network can also be used to visualize crossmodal mappings in
video hyperlinking. The generator can straightforwardly create synthetic images given an
embedding of the speech transcripts as input. Examples of images generated for real tran-
scripts on a few video segments, as well as their real visual counterparts are displayed in
Table 6.7. The generator can also be reversed by simply applying the transposed learned
kernels in an inversed architecture and slicing the obtained vector to the correct length (re-
moving the part that is typically mapped to the noise input). In this case, given an image,
embeddings in the textual domain can be obtained. A few examples of that translation are
shown in Table 6.8.
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Input - Automatic Speech Transcript Generated Images Real Img.

“. . . insects emerged to take advan-
tage of the abundance . the warm
weather sees the arrival of migrant
birds stone chests have spent the
winter in the south . . . ”
“. . . second navigation of the united
kingdom . the north sea , it was at
the north yorkshire moors between
the 2 , starting point for the next leg
of our journey along the coast . . . ”
“. . . this is a dangerous time for in-
juries for athletes . having said that
, some of these upbeat again a game
. there she is running strongly she
looks more comfortable . . . ”
“. . . the role of my squadron
afghanistan is to provide the the
reconnaissance capability to use its
or so forgave so using light armor
of maneuvering around the area of
. . . ”

Table 6.7: Visualization of generated synthetic images given automatic transcripts (in low-
ercase, with some stop words removed) as input. In the last column, a real image from the
video segment corresponding to the input automatic transcript is shown. CGANs provide
good visualizations of the video hyperlinking model: in the last row, given speech tran-
scripts related to war thematic, the model is expecting a news presenter, while the actual
video segment contains footage from the war zone.

Input Image Top Words in the Speech Modality
britain, protecting, shipyard, carriers, jobs, ves-
sels, current, royal, aircraft, securing, critics,
flagships, foreclosures, economic, national
north, central, rain, northern, eastern, across,
scotland, southwest, west, north-east, north-
east, south, affecting, england, midlands
pepper, garlic, sauce, cumin, chopped, gin-
ger, tomatoes, peppers, onion, crispy, parsley,
grated, coconuts, salt, crust
mountains, central, foreclosures, ensuing,
across, scotland, norwegian, england, country,
armor, doubting, migration, britain, southern

Table 6.8: Visualization of the top words in the representation space of automatic transcripts,
given an input image.
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6.8 Conclusion

In this chapter, we analyzed different ways of performing multimodal retrieval and more
specifically video hyperlinking. We started by evaluating ways to obtain initial single-modal
representation for speech transcripts in Section 6.4. After that, we progressed to multimodal
fusion in Sections 6.5 and 6.6 where we first analyzed classical multimodal autoencoders
and than bidirectional neural networks, a method we proposed to tackle a few downsides of
classical multimodal autoencoders and obtain improved multimodal fusion by focusing on
symmetric crossmodal translations. Given that crossmodal translations are typically implicit
and not readily human-interpretable, in Section 6.7, we explored the possibility to perform
multimodal fusion with a discriminative network of a conditional generative adversarial
network while using the generative network to visualize learned crossmodal translations
and synthesize images for a given speech transcript. Given the multitude of methods de-
scribed in this section exploring the video hyperlinking task, we provide a short and clear
summary of the analyzed methods that could serve as a generic guideline for future endeav-
ors:

• We discourage the use of single-modal approaches and strongly encourage performing
multimodal fusion.

• To improve multimodal fusion, it is better to focus on crossmodal translations first.
Bidirectional deep neural networks (BiDNNs) consistently outperform classical multi-
modal autoencoders by a substantial margin and define the new state of the art both
in terms of multimodal retrieval and video hyperlinking.

• Conditional generative adversarial networks (CGANs) seem to perform even better
than BiDNNs as multimodal fusion methods and are additionally able to synthesize
directly into the initial domain, which helps a human observer visualize the cross-
modal translations learned by the model. However, CGANs are in their current form
very hard to train and limited to very small image sizes. Training CGAN model with
small images of 64× 64 pixels takes about 20h on a NVIDIA Titan X GPU, compared
to a few hours on a CPU for a BiDNN model trained with CNN embeddings that are
taken from a significantly bigger image. While CGANs obtained better results on a
dataset where images where scaled down (62.86% for CGANs compared to 59.66% for
BiDNNs in terms of precision at 10), it is very easy to use bigger images with BiDNNs
and obtain the state-of-the-art performance that they provide (80.00% in terms of pre-
cision at 10) in a fraction of the cost. Until new CGAN models, that are faster to train
and can use bigger images, are evaluated and developed, the primary advantage of
CGANs is their ability to visualize crossmodal translations.
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In Chapter 6, we analyzed each method solely in regard of its ability to provide targets
that are related to their anchors through a measure of similarity. Unfortunately, emphasiz-
ing relevance by rewarding highly similar content in terms of speech and visual features
does not imply diversity in the set of targets that are proposed for a given anchor. This lack
of diversity is considered as detrimental in many exploration scenarios, in particular when
users’ intentions and information needs are not known at the time of linking. In this case,
providing relevant links that cover a number of possible extensions with respect to the an-
chor’s content is desirable. Clearly, having a set of diverse targets strongly improves the
chance for any user to find at least one interesting link to follow, whatever his/her initial
intentions. Additionally, target diversity directly improves serendipity, i.e., unexpected yet
relevant links, offering the possibility to drift from the initial anchor in terms of information
so as to gain a better understanding of what can be found in the collection. Although it was
proposed that diversity, together with relatedness, will be evaluated as part of TRECVID’s
video hyperlinking task [28] this is still currently not done and there is no notion on how
popular systems perform in terms of diversity. To fill in this missing information and bet-
ter understand diversity, how to evaluate it and how does it compare to relatedness in our
methods, we decided to investigate the problem of diversity through live (a questionnaire)
and intrinsic evaluations.



84 Chapter 7 – Assessing Diversity in Video Hyperlinking

words love, home, feel, life, baby
Topic 3 visual concepts singer, microphone,

sax, concert, flute
words food, bit, chef, cook, kitchen

Topic 7 visual concepts fig, acorn, pumpkin,
guava, zucchini

words years, technology, computer,
key, future

Topic 25 visual concepts tape-player, computer, equipment,
machine, appliance

Table 7.1: Three multimodal topics represented by their top-5 words and visual concepts

7.1 Video Hyperlinking with Bimodal LDA

In addition to bidirectional neural networks (BiDNN), one of the main contributions of this
work and the current state of the art in video hyperlinking, we also evaluate bimodal latent
Dirichlet allocation (BiLDA) - an older, not deep learning based, approach used in our team
and proposed by Anca-Roxana Tudoran, a strong advocate of diversity in video hyperlink-
ing [99, 10].

With a latent Dirichlet allocation (LDA), the similarity between two documents is mea-
sured via the similarity of the latent topics they share rather than by direct content compari-
son [9]. Recently, based on seminal work on multilingual topic modeling [102], multimodal
extensions of LDA were proposed for crossmodal video hyperlinking [21], combining the
potential for diversity offered by topic models and by multimodality. As for BiDNN, words
extracted from the automatic transcripts and the visual concepts from the keyframes are
used in the bimodal LDA (BiLDA).

The LDA model is based on the idea that latent variables, i.e., topics, which explain
how words in documents have been generated, exist. Fitting such a generative model to a
document means finding the best set of such latent variables in order to explain the observed
data. As a result, documents are seen as mixtures of latent topics, while topics are probability
distributions over words. The multimodal extension in [21] considers that each latent topic
is defined by two probability distributions, one over each modality (or language in [102]).
The BiLDA model is thus trained on parallel documents, assuming that the underlying topic
distribution is common to the two modalities. In the case of videos, parallel documents are
straightforwardly obtained by considering the transcripts and the visual concepts of a video
segment as two parallel documents sharing the same underlying topic distribution.

Training, i.e., determining the topics from a given collection of videos, is achieved by
Gibbs sampling, as for standard LDA [105], with the number of latent topics set to 700.
Given a set of documents in the text (resp. visual) modality with vocabulary V1 (resp. V2),
the probability that a word wi ∈ V1 (resp. visual concept ci ∈ V2) corresponds to topic zj is
estimated as

p(wi|zj) =
nwi

zj + β

|V1|

∑
x=1

nwx
zj

+ β|V1|
(7.1)
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Figure 7.1: Illustration of the multimodal and crossmodal matching with the BiLDA model.

where nwi
zj is the number of times that topic zj was assigned to word wi in the training

data and β is a Dirichlet prior.
This training step provides a mapping between topics of the two modalities by means of

the topics. Table 7.1 displays examples of this mapping. For each topic, we show the 5 most
probable words and visual concepts. Sometimes, words and visual concepts are directly
related (e.g., computer in topic 25). However, the relation can be more subtle, as in topic 3
where visual concepts describe a stage, and words are utterances frequently encountered in
the lyrics of songs.

The interest of topic models lies in the fact that video segments dealing with similar
topics will tend to have similar distribution over the latent topics. This enables the indirect
comparison of two video segments by comparing the distribution of latent topics, rather
than using their multimodal content, thus potentially enabling a diversity of content (within
documents from closely related topics). Formally, given a video segment d, the idea is to
represent the segment as a vector collecting the topic probabilities:

p(d|zj) =

(
nx

∏
i=1

p(wi|zj)

)1/nx

(7.2)

where nx is the size of the vocabulary in d and wi is the ith word or visual concept in
d. Note that p(d|zj) is an approximation of the posterior p(zj|d), considering a uniform
distribution of topics, which is a reasonable assumption. The similarity score between any
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two segments is given by a cosine similarity between their corresponding vectors after L2-
normalization.

In practice, the probabilities p(d|zj) can be obtained from either one of the two modalities
(using the corresponding distributions p(·|zj)), thus enabling multimodal and crossmodal
matching as illustrated in Figure 7.1. In this chapter, we considered visual to text match-
ing, representing the distribution of topics based on visual concepts for the anchor and on
automatic transcripts for the targets.

7.2 Assessing Perceived Diversity

In addition to bimodal latent Dirichlet Analysis (BiLDA) and bidirectional deep neural net-
works (BiDNN) we evaluate a simple single-modal baseline. The three system we evaluate
in terms of diversity are thus:

• A baseline consisting solely on automatic speech transcripts. The baseline system im-
plements a bag-of-words representation for each segment with TF-IDF weighting [94]
along with cosine similarity. Inverse document frequencies were estimated on the set
of anchors plus the set of proposed targets.

• A bimodal latent Dirichlet allocation (BiLDA) method of performing video hyper-
linking that was developed in the team used at TRECVID’s 2015 video hyperlinking
task [11].

• Bidirectional deep neural networks (BiDNN) that were previously explained and well
analyzed in terms of anchor-target relatedness in this work.

To evaluate diversity, we created an online questionnaire, illustrated in Figure 7.3, where
evaluators were presented with an anchor and 3 lists of 5 relevant targets, one for each
method. They were asked to rank those lists from the least diverse (rank 1) to the most
diverse (rank 3). In the evaluation interface, the anchor appeared on the top of the page, fol-
lowed by 3 columns of 5 targets each, in a randomized order. Each segment was represented
by a key image from which the video could be played, along with 10 keywords and 10 key
concepts to facilitate the task, potentially avoiding the need to watch all 16 video segments
thoroughly.

All the methods were trained on the TRECVID’s 2015 video hyperlinking dataset that is
basically the same as the dataset formed after TRECVID 2014 and described in Section 6.2,
except that the provided groundtruth is different and contains different anchors and pro-
posed targets.

A session consisted in ranking the lists for the 16 anchors selected, however not all eval-
uators completed their session. Since the order of anchors was also randomized per session,
we kept all votes to report results on as many judgments as possible. In total, 25 persons,
mostly from academia, participated in the evaluation, the vast majority of them not familiar
with the video hyperlinking task. A total of 176 votes were recorded, with an average of
11 votes per anchor. The annotation took approximately 16 minutes to complete (median
time), which corresponds to about one minute per anchor. Results are summarized in Fig-
ure 7.2 where the average rank is plotted (dot) for each method, with an error bar depicting
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Figure 7.2: Average rank of systems with respect to diversity as perceived by evaluators

the dispersion of judgments among users—the lowest/highest average rank assigned to the
method by a particular user.

Perceptive evaluations show a significant difference between the speech-transcript-only
baseline (average rank of 1.42) and the BiLDA and BiDNN methods (average ranks of 2.20
for bidirectional deep neural networks and 2.38 bimodal latent Dirichlet analysis ). It is also
interesting to note that judgments are rather consistent across evaluators, for instance with
average ranks from 1.12 to 1.75 for the baseline, confirming the ability of human evaluators
to judge diversity.

BiLDA proposed targets were globally perceived as more diverse than those found by
BiDNN (significant at α = 0.01 according to a paired one-tailed t-test), even though BiLDA
performs less than BiDNN in terms of relevance [10]. Bidirectional deep neural networks
offer a very good compromise between relevance and diversity. Bimodal LDA offers better
potential for diversity but weak performance in terms of relevance still appears as a limita-
tion for this method.
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Figure 7.3: Evaluating diversity: the questionnaire presented two evaluators consisted of an
anchor (reference video segment) presented on top and three columns (each for one system),
containing 5 proposed targets (all relevant) each. Evaluators had to rank the three systems
from "most diverse" to "least diverse".
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7.3 Intrinsic Measures of Diversity

Perceptive evaluations, typically performed through online questionnaires, represent valid
statistics based on a representative sample of the relevant population - the users of such
systems. These evaluations are however expensive and time consuming as it is necessary
not only to setup an evaluation platform but also to request the collaboration of a larger
number of human evaluation. From the difficulty of performing such evaluations, the need
for intrinsic and automatic evaluations arises. Together with Rémi Bois [10], we evaluate the
feasibility of using intrinsic measures for evaluating diversity and we compare the obtained
results to our previously described results, obtained through manual human evaluation.

Table 7.2 reports a number of intrinsic indicators of the diversity of a list of targets. nu (∈
[10, 50]) is the average number of unique key words/concepts in the top-5 relevant segments
of an anchor, where the bigger nu the better the diversity. A value of 10 indicates that all
targets have the same key words/concepts. da is the average cosine similarity between the
anchor and the top-5 relevant targets computed over the transcript or over the set of visual
concepts. di measures the similarity within the top-5 targets of an anchor, computed as the
average cosine similarity between any two pairs of targets in the top-5 list. In these last two
cases, the larger the value, the less diverse the list of 5 targets.

Results in Table 7.2 clearly demonstrate that bidirectional deep neural networks offer a
significantly greater diversity of relevant targets than the baseline. Diversity shows both
from the lexical standpoint and from the visual one, where the difference between the base-
line and crossmodal methods is stronger at the lexical level. Bidirectional deep neural net-
works appear to be slightly better than bimodal latent Dirichlet analysis in terms of average
distance from targets to anchor as well as in terms of target dispersion.

Transcripts Visual Concepts
nu da di nu da di

baseline 29.8 0.51 0.61 35.6 0.61 0.71
BiDNN 40.8 0.20 0.12 46.7 0.42 0.31
BiLDA 40.0 0.25 0.16 38.0 0.48 0.41

Table 7.2: Intrinsic indicators of the diversity of the top-5 relevant targets: number of unique
keywords/concepts (nu) average distance between targets and anchor (da), average disper-
sion between targets (di).

Perceptive evaluations by users confirm the results obtained with intrinsic evaluations,
with a significant difference between the transcript-only baseline (average rank of 1.42) and
the two crossmodal methods (average ranks of 2.20 and 2.38 for BiDNN and BiLDA respec-
tively). These results indicate the feasibility of using evaluations based on intrinsic indica-
tors either for preliminary comparisons of different methods or in an absence of a human
evaluation framework.



90 Chapter 7 – Assessing Diversity in Video Hyperlinking

7.4 Conclusion

Although relatedness of anchors and the targets proposed to them is currently the most
extensively researched topic in video hyperlinking and precision is the only metric currently
used at TRECVID’s video hyperlinking evaluation, we emphasize the importance of the
diversity within the proposed set of targets. To evaluate the diversity of the most used
previously described methods, we run an online questionnaire that aimed at quantifying the
human perception and, proved that a human evaluation can significantly estimate diversity
and gave a scoring of the evaluated methods.

An important point we proved is the fact that diversity can be assessed not only using
perceptual tests, but also using intrinsic dispersion measures. Intrinsic measures are easy
to obtain and yield conclusions similar to the ones made with manual human evaluations,
opening the door to large-scale studies on diversity in video hyperlinking.

We focus on crossmodal approaches for target selection in video hyperlinking as a mean
to offer a diversity of targets. Intrinsic and perceptive evaluations show that crossmodal
approaches are significantly better than a single-modal, speech transcripts based method in
terms of diversity. Bidirectional deep neural networks (BiDNNs) offer a very good com-
promise between state-of-the-art relevance and diversity. Bimodal latent Dirichlet analysis
(BiLDA) offers a better potential for diversity but weak performance in terms of relevance
still appears as a limitation for this method. However, recent perceptual studies on LDA-
derived targets show that combination of topic models can yield improved performances,
also in terms of accuracy [99].
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In this last chapter, we first review the original objectives of this thesis and then progress
to analyzing the contributions made within this work. In the last section, we will describe
possible research leads that have been left unanswered within this manuscript but would be
interesting to explore in followup works.

8.1 Thesis Objective

In this dissertation, we evaluate the thesis that neural embeddings are well suited for mul-
timodal fusion. The objective of this work, entitled “deep neural architecture for automatic
representation learning from multimedia multimodal data”, was to evaluate existing and
develop new methods for unsupervised representation learning of multimodal data in the
context of multimedia. However, prior to doing that, we focused on simpler problems in-
volving solely one modality.

The first objective was to evaluate architectures for single-modal textual and visual in-
puts. For text inputs, the goal was to compare word and text embedding methods and neural
architectures for modeling sequences. For visual inputs, we set up the goal of predicting fu-
ture motion given a single static image of a person performing a simple action. The goal was
to evaluate existing methods and architectures, combining them, thus providing a potential
improvement for each task and evaluating their feasibility for different subtasks in the more
complex multimodal architectures developed next.



92 Chapter 8 – Conclusion

The second and primary objective was to develop and evaluate more complex deep
learning architectures that make use of different input modalities, namely visual and tex-
tual, and perform multimodal fusion as well as crossmodal translation. The goal was to
improve on multimodal retrieval methods by developing architectures that yield improved
multimodal embeddings when fusing the two initially disjoint modalities. The main focus
was put on video hyperlinking, a specific variation of multimodal retrieval where the main
task is to retrieve a set of video segments that might be of interest to a viewer of a specific
video segment. As video hyperlinking is a task evaluated as part of the TRECVID interna-
tional benchmarking initiative, we also aimed at evaluating the methods we developed in
a live setup through the TRECVID initiative. Last but not least, while developing methods
to improve multimodal fusion, we also wanted to explore the possibility of visualizing the
learned models in natural form from a human observer.

8.2 Summary of the Contributions

Regarding the first objective of evaluating single-modal architectures for modeling textual
or visual inputs, we focused on two tasks. For textual modalities we evaluated different ar-
chitectures in spoken language understanding or, more specifically, in the task of slot filling.
We evaluated the performances of different recurrent neural architectures, from simple RNN
architectures and their Jordan and Elman modifications to gated recurrent architectures that
better model what information to retain or dismiss, such as LSTMs and GRUs. We have
shown that the best way to model sequences is to use bidirectional GRU networks, that are
simpler and also faster than LSTM networks. However, we have also shown that most of the
gain from recurrent neural network based architectures in spoken language understanding
comes from their initial text embedding (either learned jointly or separately with methods
like Word2Vec) and not from their sequence modeling ability. While (gated) recurrent neu-
ral networks are well suited for modeling sequences, it seems that their inability to model
output label dependencies prevents them from performing better than conditional random
fields in the task of slot filling. Regarding visual modalities, we focused on action prediction
and developed a simple architecture that predicts future motion after an arbitrary time dif-
ference, from a single image. We stretched the possibilities of convolutional neural networks
in order to allow them to learn a representation of a person that is able to implicitly encode
their stance and posture. Based on this representation, a “deconvolutional” network is able
to synthesize a correct prediction of the person’s motion, correctly anticipating the moving
direction and change in posture, for an arbitrary, non-discretized, temporal displacement.

For the second objective, to improve multimodal fusion, we first developed a new ar-
chitecture (bidirectional deep neural networks) that, contrary to existing multimodal au-
toencoders, focuses on crossmodal translations and creating a common representation space
for the two (text to image and image to text) crossmodal translations. This new represen-
tation space is then used to perform multimodal fusion. We have shown on various of-
fline evaluations and with different input representations for each modality that our method
provides multimodal embeddings that significantly outperform embeddings obtained with
multimodal autoencoders. In addition to offline evaluations, we also participated to the
video hyperlinking evaluation, as part of the TRECVID international benchmarking initia-
tive, where our method performed best and defines the state of the art today. We also ana-
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lyzed our proposed method in terms of diversity through a web based, manual evaluation
and determined that it offers good performances not only in terms of precision but also in
terms of diversity. In the last part, we evaluated the possibility of using conditional gen-
erative adversarial networks for performing multimodal fusion, while also preserving the
ability to synthesize into the original domain (the image domain) in order to offer visual-
izations of the learned crossmodal translations. We have shown that conditional generative
adversarial networks can be used for multimodal fusion and that they do, for smaller im-
age sizes, achieve state-of-the-art performance. However, they are currently very complex
to train and limited in terms of input image sizes. For this reason, they cannot currently
compete with either multimodal autoencoders or our proposed bidirectional deep neural
networks but they can, however, offer nice visualizations of the learned crossmodal model.

8.3 Possible Future Work

Several possible future directions can be explored. Regarding spoken language understand-
ing, more complex architectures that partially or fully model output level dependencies
would have to be investigated. Such possible architectures can vary from simple added
connections to previously decided labels to architectures that provide multiple output la-
bels at once, with a modified cost function that models the output probabilities. In regards
to multimodal fusion, especially when related to video hyperlinking, there are also multi-
ple possible paths to explore. Bidirectional neural networks defined the new state of the
art but are still rather simple. Exploring possible ways to either improve them or combine
them with other methods could be rewarding. Possible ways of improving bidirectional
neural networks could be either by adding simple modification like adding an additional
cost function parameter that forces the two middle layers to be as similar as possible or by
adding layers that would allow end-to-end learning. We expect an additional cost function
to easily improve symmetry in the projections without throttling down the network with
rigidity, the way introducing more shared variables would do. End-to-end learning is in
general more optimal and can be fine-tuned at all levels and is thus expected to bring at
least small improvements. More advanced ways of further improving bidirectional deep
neural networks include but are not limited to exploring the possibility of using variational
autoencoders [123], that have better statistical modeling properties, and plugging them as
inputs to architectures designed to improve single modal retrieval. Generative adversarial
networks are a very promising and fairly new research direction. While we have only shown
their potential feasibility for video hyperlinking, they are currently being heavily improved.
As architectures that are able to handle bigger image sizes are being developed, it would
be interesting to evaluate whether they would at some point be able to achieve the same
or better results as bidirectional neural networks in full scale. Additionally, we only eval-
uated a crossmodal translation that goes from speech representations to the image domain.
It would be interesting to evaluate an end-to-end model that goes directly from speech to
the image domain and back. This would be possible by adding a (gated) recurrent neural
network on one side, instead of the normal speech representation input, while leaving the
rest of the generator untouched. The opposite direction should also be easily modeled by
using a convolutional neural network, together with random noise as input, and an RNN to
generate realistically looking sentences for the given visual input. The performance of such
architectures are currently left to explore.
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Appendix B
Slot Filling Datasets

B.1 ATIS

The air travel information system (ATIS) task [22] is dedicated to provide flight information.
Three values are used for each word, the word itself, a class to which the word might be-
long and the target label. There are 37 word classes in ATIS and they represent clusters of
words that have the same meaning, e.g., country_name, airport_name etc. Every word utilized
within the dataset that belongs to a cluster is replaced by the name of the cluster. The target
label is then predicted by using the set of words and/or word classes, where available. The
word classes are also used to model the appearance of relevant classes when modeling the
dialog history. The training set consists of 4,978 sentences while the testing set consists of
893 sentences. There are 1,117 unique words and 85 possible target labels.

B.2 MEDIA

The research project MEDIA [12] evaluates different SLU models of spoken dialogue sys-
tems dedicated to provide tourist information. A 1,250 French dialogue corpus has been
recorded by ELDA following a Wizard of Oz protocol: 250 speakers have each followed 5
hotel reservation scenarios. This corpus has been manually transcribed, then conceptually
annotated according to a semantic representation defined within the project. We used three
values for each word: the word itself, a class to which the word might belong and the target
label. The classes of words are clusters to which multiple words belong. E.g. all city names
used within the corpus belong to a city_name class. Most words do not belong to any specific
class and are used as such. The target labels are again predicted from the words and/or
word classes and the word classes are used to model the appearance of relevant classes in
the dialog history.

Table B.1 shows an example message from the MEDIA corpus with only concept-value
information. The first column contains the segment identifier in the message, the second
column shows the chunks Wc supporting the concept c of the third column. In the fourth
column the value of the concept c in the chunk Wc is displayed.
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n Wc c value
1 yes answer yes
2 the RefLink singular
3 hotel BDObject hotel
4 which null
5 price object payment-amount
6 is below comparative-payment below
7 fifty five payment-amount-int 55
8 euros payment-currency euro

Table B.1: Example of message with concept+value information. The original French tran-
scription is: “oui l’hôtel dont le prix est inférieur à cinquante cinq euros”

The MEDIA corpus is split into 3 parts. The first part (720 dialogues, 12,908 sentences)
is used for training the models, the second (79 dialogues, 1,259 sentences) is used for cross-
validation, and the third part (200 dialogues, 3,005 sentences) is used for testing.
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Résumé

La thèse porte sur le développement d’architectures neuronales 
profondes permettant d’analyser des contenus textuels ou visuels, ou 
la combinaison des deux. De manière générale, le travail tire partie de 
la capacité des réseaux de neurones à apprendre des représentations 
abstraites (descripteurs) de contenus multimédias de manière 
supervisée ou non, e.g., par des architectures de type auto-encodeur. 
Les principales contributions de la thèse sont les suivantes :

- Réseaux récurrents pour la compréhension de la parole (tâche dite 
de slot filling) : différentes architectures de réseaux sont comparées 
pour cette tâche (GRU, LSTM, CRF, etc.) sur leurs facultés à modéliser 
les observations ainsi que les dépendances sur les étiquettes à 
prédire; ces comparaisons systématiques sur 2 benchmarks montrent 
notamment que les conclusions actuelles de la littérature tirées à partir 
d’un seul benchmark sont en partie erronées.

- Prédiction d’image et de mouvement : nous proposons une 
architecture permettant d’apprendre une représentation d’une image 
représentant une action humaine afin de prédire l’évolution du 
mouvement dans une vidéo ; l’originalité du modèle proposé réside 
dans sa capacité à prédire des images à une distance arbitraire dans 
une vidéo, par opposition aux approches classiques qui ne permettent 
que la prédiction de l’image suivante.

- Encodeurs bidirectionnels multimodaux : le résultat majeur de la 
thèse concerne la proposition d’un réseau bidirectionnel permettant 
de traduire une modalité en une autre, offrant ainsi la possibilité de 
représenter conjointement plusieurs modalités (langage et image dans 
la thèse) ou de passer de l’une à l’autre ; l’approche a été étudiée 
principalement en recherche d’information multi/cross-modale et en 
structuration de collections de vidéos, dans le cadre d’évaluations
internationales où l’approche proposée s’est imposée comme l’état de 
l’art.

- Réseaux adverses pour la fusion multimodale : poursuivant la quête 
de représentations multimodales  la thèse propose d’utiliser les 
architectures génératives adverses pour apprendre des représentations
multimodales ; des résultats préliminaires montrent que, sous certaines 
conditions notamment concernant la taille des images, ces approches 
s’avèrent plus efficaces que les encodeurs bidirectionnels tout en 
offrant la possibilité de visualiser les représentations dans l’espace 
des images.

Abstract

In this dissertation, the thesis that deep neural networks are suited 
for analysis of visual, textual and fused visual and textual content is 
discussed. This work evaluates the ability of deep neural networks to 
learn automatic multimodal representations in either unsupervised or 
supervised manners and brings the following main contributions:

- Recurrent neural networks for spoken language understanding (slot 
filling): different architectures are compared for this task (GRU, LSTM, 
CRF, etc.) with the aim of modeling both the input context and output
label dependencies. Extensive systematic comparisons on two 
benchmarks are performe  indicating that multiple results reported 
in literature and evaluated solely on dataset are often statistically 
insignificant and thus partially erroneous.

- Action prediction from single images: we propose an architecture 
that allow us to predict human actions from a single image. The 
architecture is evaluated on videos, by utilizing solely one frame as 
input. Contrary to classical approaches, our proposed architecture 
allows the generation of prediction at arbitrary temporal differences.

- Bidirectional multimodal encoders: the main contribution of this thesis 
consists of neural architecture that translates from one modality to the
other and conversely and offers and improved multimodal 
representation space where the initially disjoint representations can 
translated and fused. This enables for improved multimodal fusion of 
multiple modalities (text and images in this work). The architecture was 
extensively studied and evaluated in international benchmarks within 
the task of video hyperlinking where it defined the state of the art today.

- Generative adversarial networks for multimodal fusion: continuing 
on the topic of multimodal fusion, we evaluate the possibility of using 
conditional generative adversarial networks to learn multimodal 
representations. Preliminary results indicate that such representations 
could be superior to representations obtained with multimodal 
autoencoders but that such neural architectures are currently 
limited in regards of image size. In addition to providing multimodal 
representations, generative adversarial networks permit to visualize 
the learned model directly in the image domain.


