N
N

N

HAL

open science

Efficient self-stabilizing algorithms for graphs
Khaled Maamra

» To cite this version:

Khaled Maamra. Efficient self-stabilizing algorithms for graphs. Data Structures and Algorithms
[cs.DS]. Université Paris Saclay (COmUE), 2017. English. NNT: 2017SACLV065 . tel-01630028

HAL Id: tel-01630028
https://theses.hal.science/tel-01630028
Submitted on 7 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01630028
https://hal.archives-ouvertes.fr

UNIVERSITE DE gWWé

°
UnlverSIté VERSAILLES &=

ST-QUENTIN-EN-YVELINES
PARIS-SACLAY

L]
universite parIsS-SACLAY

Algorithmes auto-stabilisants
efficaces pour les graphes

These de doctorat de |'Université Paris-Saclay
préparée a I'Université de Versailles-Saint-Quentin-en-Yvelines

NNT : 2017SACLV006s5

Ecole doctorale n°s80 Sciences et Technologies de I'Information et de la
communication (STIC)
Spécialité de doctorat: Informatique

These présentée et soutenue a Versailles, le 02 octobre 2017, par

Khaled Maamra
Composition du Jury :
Olivier Bournez
Professeur, Ecole Polytechnique. Directeur de these
Shlomi Dolev
Professeur, Université Ben-Gurion Rapporteur
Emmanuel Godard
Professeur, Université Aix-Marseille Examinateur
Mohamed Lamine Lamali
Maitre de Conférences, Université de Bordeaux Examinateur
Yannis Manoussakis
Professeur, Université Paris-Sud Président
Laurence Pilard
Maitre de Conférences, Université de Versailles Co-directrice
Maria Potop-Butucaru
Professeure, Université Pierre et Marie Curie Rapportrice

N
qn
—
@)
it
@
o
»)
Q
®)
>
0P
QD
=
[_|

Khaled Maamra

Efficient
Self-Stabilizing
Algorithms for Graphs

2017 | Paris, France.

Chapter 1 | Introduction 7

Chapter 2 | Preliminaries 9
Setsg & Power sets 10 ¢ Partitions 10 ¢ Graphs 1o & Algorithmic
Setting 13 ¢ Conclusion 14

Chapter 3 | Distributed Systems and Self-Stabilization 15

Distributed Systems 15 ¢ Communication graph 15 ¢« Commu-
nication 17 & Atomicity 18 ¢ Description of a distributed system
through local states 18 ¢ Execution 19 ¢ Predicates on executions 20
¢ Daemons 20 + Fault-Tolerance 22 ¢ Fault-tolerant algorithms 23
¢ Self-Stabilization 23 & Expressing self-stabilizing algorithms 24
+ Complexity 26 & Other types of self-stabilization 27 ¢ Proving
Self-Stabilization 27 ¢ Design Techniques 29 ¢ Conclusion 30

Chapter 4 | Maximal matching in anonymous networks 31
Introduction 31 ¢ Related work 32 ¢ Outline and model 34 ¢ The
Maximal matching algorithm ANONYMATCH 34 ¢ Handling the
anonymous assumption 40 ¢ Conclusion 43

Chapter 5 | A polynomial 2/3— approximation of the maximum matching
problem 45

Introduction 45 ¢ Common strategy to build a 1-maximal match-
ing 47 ¢ 3-augmenting path 47 ¢ The underlying maximal
matching 48 ¢ Augmenting paths detection and exploitation 48
¢ Graphical convention 49 ¢ Description of the algorithm Expo-
MATcH 50 + Augmenting paths detection and exploitation 50 &
Rules description 50 ¢ An execution example of the ExpoMATCH
algorithm 52 ¢ The ExpoMAaTcH algorithm is sub-exponential. 54
+ State of a matched edge 54 ¢ The graph G, and how to interpret
a configuration into a binary integer 56 ¢ Identifiers in Gy 58
Counting from 0 to 2~ — 1 59 ¢ The new algorithm POLYMATCH 62
¢ Variables description 62 ¢ Augmenting paths detection and
exploitation 63 ¢ Rules description 65 ¢ Execution examples 66
Correctness Proof 69 ¢ Convergence Proof73 ¢ A matched node
can write True in its end-variable at most twice 75 ¢ The number of
times single nodes can change their end-variable 81 « How many
U pdate in an execution? 83 ¢ A bound on the total number of moves
in any execution 84 ¢ Conclusion 88

Chapter 6 | Self-stabilizing publish/Subscribe systems 89
Introduction 89 ¢ Related Work 91 ¢ General Approach 93
+ Routing of Publish/Subscribe Messages 93 ¢ Example 94 «
Architecture of the Middleware 96 ~ « Publish/Subscribe Layer 96
¢ Virtual Ring Layer 97 ¢ Spanning Tree Layer 99 ¢ Neighbourhood
Management and MAC Layer 100 ¢ Analysis of Algorithms 101
Space requirements and scaling 101 ¢ Timings and time-outs 102 ¢
Overview of simulation results 103 ¢ Conclusion and Outlook 104

Chapter 7 | Conclusion and future directions 107
Matching problems 107 ¢ Maximal Matching in anonymous
networks 107 ¢ A 2/3—approximation of the maximum matching
problem in identified networks 108 # Self-stabilizing publish/sub-
scribe systems 108

Acknowledgement

‘No one can whistle a symphony. It takes a whole orchestra to play it/
— H E. Luccock

#%# This work would have never been possible without the contri-
bution of many different people. This page is to give back, in ink form, a tiny fraction
of what they gave me.

I am very grateful to Olivier and Laurence for giving me the opportunity to do
scientific research. They are truly one of the most generous people I have ever met,
both scientifically and on a human level. Thank you for always having an open
door for me, my questions and my doubts. Thank you for your continuous support,
guidance, patience and advice even when things seemed impossible. I learned a lot
about research with you. I owe you all, truly.

A special mention goes to Johanne. You have been an amazing co-author and a
guiding and experienced voice throughout these years. Together with Laurence, you
made working on matchings fun on top of interesting.

The members of the jury took the time to review and evaluate my work. Some of
them even had to travel from across the world to attend my defense. I am immensely
grateful and honoured.

During this thesis, Prof. Turau gave me the opportunity to visit and work with him in
his group at the Technical University of Hamburg, Germany. It has been an amazing
and productive experience. I can’t thank him enough for it.

Results are also the fruit of interesting collaborations, I thank Devan, George, Gerry
and Jonas (my academic brother) for being great co-authors and research partners.
Many thanks go to Sandrine, Carole ¢» Hugues for giving me the opportunity to
teach and see the other side of research. Many thanks go as well to everyone I taught
with, It was an enlightening and enjoyable experience.

Outside research, my PhD years have been the mix of different people and places
from Versailles, Polytechnique, Hamburg and IR1F. Managing administration across
all these institutions wouldn’t have been possible without Isabelle, Chantale, Nadia,
Fabienne, Mme Kloul, Mme Razik, Mme De Ferron and frau Winterstein. Thank
you for keeping up with me and my always not-knowing-that-paper-should-have-
been-signed dramas.

The crux of research life are the people you eat, discuss and learn with everyday. You

N~ 5

have been amazing and thanks to you all, getting to work was something I looked
forward to. I would like to thank Cyril for being the acolyte of these years, for the
encouragement and all the interesting discussions of why Boudebbouz should never
play football again. Many thanks to Yoann for all the conversations about economics,
introducing me to Sraffa and being a great left back. Tarek for his advice and caring,
Ilaria for her good spirit, Michael, Asma, Christina, Amira, Hanane, Bruno (0O) for
keeping linguistics, sokker.org games and everything else fun, Alex for sleeping in
a revolutionary way, Fabian for being the only one who understands what a good
font means to the human kind, Thibault for inviting me to lunch always in my native
tongue, Laurent, Pablo, Guillaume (Bullet Journal hey !), Finn, Svetlana, Simon,
Brieux, Alkida, Denis, Benjamin ¢ Benjamin, Holger, Tobias.

Most importantly, to you close friends, I can’t thank you enough for your uncondi-
tional support and faith. You probably don't realize it but you have been my family
here during these years. Immense love goes to (in no particular order): Amine (Danny
I) for depressing together over Arsenal FC, playing music and getting my mind
outside the research bubble. To the Larid family, Karim (e rougi !!) for being such an
amazing understanding friend and making eating an everyday challenge, to Barbara
for her caring, kindness and for taking me as part of the family to motherly extents at
times. To Louiza for making everything else seem futile, being a great kid overall and
for inspiring the introductory example of this thesis. To Redouane for his reminders
that health is important and his UFC references, to Abdou for the great hikes and
being there, to Oussam for understanding exactly how it feels to have mathematics
slap you, to Mohammed (El bot) for endless deep discussions, forwardness, sharpness
and humour. I love you all.

My last and deepest feelings go to my family. My brother Youcef, since you came
everything changed. Thanks for keeping up with me, for the fun we have and all the
FIFA beatings. I also can’t thank my parents enough, you were always there for me,
pushing me and reminding me of what’s important. This work wouldn’t have been if
it wasn't for you. To Amira and Titouhi for being such great siblings and taking care
of the family reputation back there in our absence.

I lost two grand parents during this thesis, this work is dedicated to their memory.

Introduction

3% As her fourth year birthday is approaching, Louiza, a popular
and smart little girl, is faced with a somehow repetitive phenomenon. She observed
that in her last birthday party some lousy chemistry settled in. With some investiga-
tions she concluded that this was mainly due to a collective behaviour of her invitee.
In fact, everyone during the party tends to speak only to the persons he or she knows.
As kids usually act on their own , doing this naively, it often leads to some of them
finding themselves with no one to talk to even if they have acquaintances in the
crowd. Besides the costly trouble that this engenders, pushing Louiza to a constant
swaying between groups of lonely friends, it also has some serious aftermath on the
kinder garden cohesion. Luckily, Louiza’s father is a mathematician and although
he is well-aware that this has an all over dynamical system flavour he is facing a
fundamental difference, he can compute the long-run behaviour that Louiza’s party
will have, but he has no fast means to impose a certain outcome for it. Furthermore,
Louiza’s friends being a highly hyperactive bunch of kids, any attempt to go through
dictating a local behaviour for each kid can be promptly derided since some of them
will just sometimes forget to apply the “rules” Louiza’s father, hopes to design a
minimal set of rules that every kid would apply in order for them to be partitioned
into the largest number of couples of talking kids. It also has to take into account
the fact that they will from time to time forget to apply the rules for a moment, but
hopefully with parents supervision this can never be in an irreversible fashion. So
the rules have to ensure that just by applying them the kids would recover from their
forgetfulness toward the desired outcome and so without any parental supervision.

Although this problem seems highly artificial, it is not far from arising in real
world applications. In the context of the internet for example, a maximum number
of computers, just as Louiza’s friends, would be required to communicate with other
computers known as routers. Every computer in this setting will have to act without
any knowledge about the network as a whole, making local decisions to achieve a
global goal. Also, we can imagine that instead of forgetting, computers would be
exposed to different kind of faults that alter their behaviour and that are due to
memory corruptions for example. Given the number of computers on the internet
and the asynchronous nature of their interactions it is less artificial in this context to
want to achieve the desired task without any human intervention. It is also natural to
want the recovery mechanism from these faults to take the least possible amount of
time. In the context of computer networks in general such problems are related to
the field of distributed systems and self-stabilizing algorithms.

This thesis focuses on designing such algorithms for problems arising in com-
puter network communications. More specifically, when the network is seen as a

Introduction o~ 7

mathematical object called a graph it is concerned in designing fast algorithms to
partition it (the graph) into the maximum number of connected couples. This is
known in graph theory as a matching problem.

This problem has been extensively studied, and found many applications ranging
from different abstract areas of mathematics to more practical ones as early as the
Second World War. For example, flying two-pilot military aircraft required the two
pilots speaking at least one common language. The allies had then, in order to fly the
maximum number of aircraft, to partition the set of pilots into connected couples.
Connected in this setting is speaking at least one common language. It is just a
matching problem and in this thesis it is studied in the context of self-stabilizing
algorithms and for any connectivity relation.

To do so, we start by giving some preliminaries in Chapter 2 in which we recall
the basic mathematical definitions needed throughout this thesis. These are mainly
about graph and set theory. It also serves the purpose of a notational reference.

In Chapter 3, we give the basic computational models from distributed systems,
self-stabilization and the tools to compute complexity of algorithms and prove them
in these models.

In Chapter 4 we start by tackling the problem of the self-stabilizing maximal
matching, that is a less demanding version than requiring a partition into the maxi-
mum number of connected couples. Only this is done in an anonymous network,
where computers have no mechanism to distinguish each other. The results presented
in this chapter have been published in [CLM*16].

In Chapter 5 we try to settle for an approximation of the maximum matching
problem in an identified network. We prove that the most recent result concerning
this problem has exponential complexity and we give a new polynomial algorithm.
This work appears in [CMMP16].

In Chapter 6 we focus on publish/subscribe systems. Where a set of the network
computers publishes content and the other subscribes to this content using topics.
Every computer that subscribes for a certain topic receives all the publications in the
network concerning this topic. We give a self-stabilizing algorithm to route messages
from the publishers to the subscribers through the network in an efficient way. It is
particularly suited for wireless sensor networks, where limited resource computers
don’t in many cases have any control on their physical location and therefore on
the set of computers they can interact with. The algorithm is implemented and
simulated. This chapter then contains the simulation results as well as the general
implementation. This work appears in [STMais]

Finally, we conclude this thesis by putting in perspective its different results as well
as giving for each of them a discussion on future directions and open problems.

8 @ Introduction

Preliminaries

it We present, for notational purposes, the basic definitions from
set and graph theory as well as the main computational models used throughout this
thesis. We assume some familiarity with standard mathematics and propositional
logic and when it is too lengthy to do otherwise, we permit ourselves to present some
notions informally.

2.1 SETS

The definition of a set meets the intuitive notion of a collection
of distinct objects, each of which is called an element. The easiest way to express a set
S is to give the list of symbols representing each of its elements. As an example:

S=1{2,3,57}

We say that x € S if x is an element of S and that x ¢ S otherwise. A set that does not
contain any element is said to be empty and is denoted &. On the other hand, the
number of elements of a non-empty set S is called the cardinality of S and denoted
|S|. We also allow the cardinality to be infinite, which gives infinite sets as it is the
case for NN, the set of all natural numbers.

A more concise manner to express a set is to take for its elements only objects that
verify a given proposition. This is written as:

S={x|px)}

and reads as the set of all elements x for which p(x) holds.

We keep the same notations as in [Lan] for the usual operations on sets:
¢« SUR={x|x€eSvxeR} (Union)

« SNR={x|xeSAxeR} (Intersection)

¢ SN\R={x|xeSAx¢R} (Dif ference)

When SN R = & we say that S and R are disjoint. We extend the arity of the first
two operations to a collection of operands S, S;, ..., S,, by denoting:

n
US;={x|3ief0,....,n}:xe8;}
i=0

n
ﬂSiZ{xl\V/iE{O,...,n}ersi}
i=0

Preliminaries o ¢

We capture the intuitive idea that a set R is a part of another set S using the notation
R ¢ S defined as:

RcS=(Vx,xe R>x¢€f)
We say, then, that R is a subset of S. In addition, if |[R| = k we say that R is a k—element
subset of S. Furthermore, when R € Sand S C R, we say that S and R are equal.
2.1.1 Power sets

The power set of a set S is the set that has for elements all the
subsets of S, including the empty set. It is denoted P(S) and defined as:

P(S)={R|RcS}

We also write P,(S),k € N for the power set of S t hat contains only k—element
subsets of S, that is:

P (S) ={R|RCSA|R| =k}
For example, for the set S = {1, 2, 3} we have:
P(S) = {{1,2,3},{1,2}, {2, 3}, {1, 3}, {1}, {2}, {3}, &}

7)2(8) = {{1,2}, {2a3}’{1)3}}
T3(S) = {{1’2’3}}

2.1.2 Partitions

A set {Sy, S, ..., Sk} of non-empty disjoint subsets of a set S, is
called a partition of S if :

2.2 GRAPHS

The main object of study throughout this thesis is graphs, and
regarding their notation we mainly follow [Die]. A graph is a pair G = (V, E) where
V is the set of vertices or nodes and E a set of 2—element subsets of V representing
edges. We consider only the case where V' is a non-empty finite set. The number
of vertices or the order of G is |V| and the number of edges is |E|. We set [V| = n
and |E| = m. This definition corresponds to what is known in the literature as non
oriented simple graphs.

10 @ Preliminaries

Two vertices u, v are said to be adjacent or neighbours if {u, v} € E. We then refer to
the edge {u, v} using (1, v) or (v, u) as a shorthand. We also say that (u, v) is incident
with v and u and that u, v are its endpoints. The set of all vertices that are adjacent
to a vertex v is called the neighbourhood of v and is denoted N(v). Formally, it is
defined as follows:

N@) ={w eV | (v,w) € E}

The number of elements in N (v) is the degree of v, denoted d(v) = [N (v)|. We denote
0 the smallest degree in the graph and A the largest one. They are expressed as:

0 =min{d(v) |v eV} A=max{dw)|veV}

One of the advantages of graphs is that they can be easily represented on the plane
by drawing a dot for each vertex and a line between every two adjacent vertices. Such
a representation is given in figure 2.1, for the following graph

G = ({v,u, w, x, z}, {(v, 1), (v, x), (v, 2), (v, w), (u, w), (u, x), (x, w), (x,2)})

The reader can easily verify that all the notions defined above can be deduced
from the representation of G. For a node v, the degree d(v) is the number of lines
attached to the dot v, the neighbourhood N(v) is the set of all dots connected to v
with a line. As a result, when speaking about a graph G we refer indistinguishably to
the structure G and its representation on the plane.

Subgraphs, induced subgraphs and operations

A graph G, = (V, E,) is said to be a subgraph of G, = (V,, E,)
itV, €V, and E, < E,. In addition to that, if the following property holds:

Yu,veV,:(u,v) € E, = (u,v) € E;

we say that G, is an induced subgraph of G, and that V| induces G,. On the
other hand, we say that G, contains G,.

@ Unless specified otherwise, when we talk about a graph G, containing another
graph G, it is always in the sense of induced subgraphs. Furthermore, when it is
clear from context, we abusively talk about a graph V to refer to the graph G = (V, E)
induced by V.

We define the operations of union and intersection of two graphs G,, G,, respectively,
as:

* Gl UG2 = (Vl UVZ’EI UE2)
¢+ G, NG, =(V,NnV,E NE,)
When G, N G, = & we say that G, and G, are disjoint graphs.

Graphs o~ 11

FIGURE 2.1

A representation of a graph.
Heren =5 m =9,d(v) = 4
and N(u) = v,w, x

Paths, cliques and different families of graphs

DEFINITION 1. A path of length k, denoted P¥, is a non-empty graph P = (V, E)
on k + 1 distinct vertices and in which every two consecutive vertices in V are adjacent.
Formally:

V={upup,...,u .t E={uguy, uguy, ..., up_juy}

As we did for edges, we adopt a shorthand by referring to a path by giving the
list of its vertices P = uyu;, ..., u;. Moreover we say that 1, and v, are the endpoints
of Pk,

DEFINITION 2. A cycle is a path in which both endpoints coincide, i.e. uy = u.

DEFINITION 3. A complete graph K = (V,E) is a graph in which every two
vertices are adjacent. It is a graph that satisfies E = P,(V') and is denoted K".

DEFINITION 4. A subgraph G, of a graph G, is said to be maximal regarding a
property p, if there is no other subgraph in G, that contains G, and satisfies p.
Cliques

A clique is a maximal complete subgraph.

Connectivity

A graph G is said to be connected if for every two vertices u, v in
G, there exists a path whose endpoints are u and v. When this does not hold for G
we say that G is disconnected.

Trees

A tree is a a connected graph without cycles.

Distance in graphs

The distance in G between two vertices u, v is the length dist(u, v)
of the shortest path (edge wise) in G between u and v. The largest distance in the
graph is called the diameter of G and denoted diam(G)

Matching

A matching M in a graph G is a subset of the edges of G such that
no two edges in M share a common endpoint. The largest matching in a graph in
terms of cardinality is called a maximum matching, and a matching that cannot be
extended by adding an edge and still be a matching is said to be maximal.

12 w» Preliminaries

A maximum matching is also a maximal matching.
The matching M is said to be 1 — maximal if no new matching can be produced by
removing an edge from M and replacing it by a two other edges from E ~ M.

THEOREM 1. [HK73]. In a graph G, every 1 — maximal matching is also a 2/3—ap-
proximation for the maximum matching

2.3 ALGORITHMIC SETTING

Graph theory provides a very useful model for different areas of
science [Bal85] [MBog]. It is, therefore, very important to be able to compute, in a
mechanical way, certain of their properties. This is done through algorithms, a set
of ordered instructions, or rules, that when followed (we say executed) achieve the
desired task.

Turing Machines

The aforementioned intuitive definition of an algorithm is very
satisfying until we ask the following question:

Can all the properties be computed in such a mechanical fashion ?

A positive answer to this question would consist in giving an algorithm for each of
the properties that one wants to compute. On the other hand, in a negative case, one
would like to give a proof that no algorithm exists to compute a certain property.
Proving this negative case requires a formal definition of what an algorithm is, in order
to consider only that definition instead of all the possible algorithms there is. This is
done in [Tur36], where Turing introduces the Turing machine, an abstract machine
that can compute all the properties for which we have an algorithm. Although this
latter claim hasn’t been proved yet, it is thought to be true following the introduction
by Alonzo Church of another definition based on A — calculus and showing it to be
equivalent to Turing Machines [Chu36]. This led to what is known as the Church-
Turing thesis:

The intuitive notion of an algorithm is equivalent to the notion of Turing Machines

It is based on the Church-Turing thesis that we make no distinction, in this thesis,
between a computing entity, an algorithm or a Turing Machine. We, also, won't give a
formal definition of a Turing machine, as our results concern rather the interaction of
a collection of them. A model of this collective interaction is known as a distributed
system and is discussed in Chapter 3. The interested reader in Turing Machines is
referred to [Sipo6] for an introduction to complexity theory.

Algorithmic Setting o~ 13

Algorithms and instances

In the realm of collective behaviours, making no distinction be-
tween an algorithm and a computing entity comes with a minor difficulty. One
can make a difference between two entities running the same algorithm, whereas
this difference doesn’t extend when reasoning in terms of algorithms. For this, we
introduce the notions of an instance and instantiation further on in this document.

2.4 CONCLUSION

This chapter served two purposes. The first is to be used as a
refresher to simple mathematical notions, the second and the most important is to
provide a notational basis for the algorithms that will be written during this thesis.
This has been done by giving the used definitions in set theory and also graph theory.
Moreover, an rudimentary reflection on complexity theory is introduced.

14 @ Preliminaries

Distributed Systems and
Self-Stabilization

3% This chapter gives the basic definitions and computational
models used throughout this document. It also exhibits relevant techniques to either
prove results or design algorithms.

3.1 DISTRIBUTED SYSTEMS

Loosely speaking, a distributed system is a collection of computing
entities interacting through pairwise communication in order to achieve a certain
task. Within this collection each entity is responsible only for its own actions, meaning
that the interaction between the different entities is not coordinated by any global
mechanism (e.g. global time or global view). Moreover, each one of them has a
limited view of the system, in the sense that every pair of entities interact only if
there exists a communication link between them. As a consequence, initially, no
entity is aware of the number of entities in the collection.

Although such a system provides a model for various behaviours, ranging from
economics, social sciences to biology [SCWBo8] [Kleoo], we consider it only in the
case of computer networks. It is in relation to this that we use the term process or
node instead of entity throughout this document.

3.1.1 Communication graph

Topologically, a physical network can be viewed as a graph, where
vertices are the processes and an edge between two vertices reflects the existence
of a communication link between them. Such a graph G = (V, E) is known as a
communication graph, where each v € V represents a process and the value v is said
to be its identifier or identity.

DEFINITION 5. A communication graph G = (V, E), is a graph where eachv € V
represents a process, and every two processes u, v communicate if and only if (u,v) € E.

A communication graph where it is impossible to distinguish two processes using
identities is said to be anonymous. If only one process can be distinguished, then the
communication graph is said to be distinguished, and in the case where all processes
can be distinguished we say that the graph is identified. Moreover, in a communication

Distributed Systems and Self-Stabilization o 15

graph G, every process v has a set of special variables known as the knowledge of
v. These variables can only be read by v and cannot be modified by any process in
the graph. Unless specified otherwise, the neighbourhood of a process v is always
considered as being part of the knowledge of v.

In addition to the topology, we capture the various actions operated by the different
processes using algorithms. Each process runs a local copy of an algorithm A by
duplicating the code of A and its variables to its local memory. To distinguish this
new local algorithm running on a process v from the original one 4, as well as from
the ones running on other processes, we formalize the notion of an instance.

DEFINITION 6. An instance of an algorithm A on a process v, denoted A(v), refers
only to the algorithm A that is running on v.

Each instance A (v) is denoted by rewriting 4 and subscripting all its variables
by the identifier of the process running it. An example of this rewriting is given below
for an instance of the Collatz algorithm on a process v. In a computer network, this

Algorithm 1 Collatz algorithm
Require: x, >0
1: while true do
2: if x, = 0 (mod 2) then D> The variable x is rewritten as x,,
3: X, — x,/2
4 if x, = 1 (mod 2) then
5 x, < 3x,+1

rewriting highlights the variables stored locally on v, from the ones stored on other
processes. When x,, is such a variable we permit ourselves to write x,, € A(v).

An instance of an algorithm is written as a set of rules, with each one expressed
as a conditional. This is said to be a guarded rule notation with the predicate part
of the conditional known as the guard and its statements as the command. Each
statement within the command is known as an action and is an assignment of new
values to the local variables of v.

if <guard> then <command>

When an algorithm contains more than one rule we name each one of them, to
facilitate their referencing in text.
The notions introduced so far are sufficient to define a distributed system.

DEFINITION 7. A distributed system 21 = (A, G) is an algorithm A together with
a communication graph G = (V, E) such that there exists a mapping ¢ :

p:V-U
v A)
where A(v), is the instantiation of algorithm A on the node v.

The algorithm 4 is said to be a distributed algorithm.

16 > Distributed Systems and Self-Stabilization

3.1.2 Communication

The communication between the different processes of a dis-
tributed system varies in nature. For example, two processes u, v linked by a com-
munication link (u, v) can use a set of shared variables to communicate, such that v
(resp. u) can read all the shared variables of u (resp. v) but not write to them. Such a
communication model is known as a state model. Formally:

DEFINITION 8. A distributed system ® = (A, G) is under the state memory model
ifVv € V | A(v) is such that
¢ The variables x,,,u ¢ N(v) do not appear in A(v)
+ x,, does not appear on the left side of any assignment instruction of the form
xu — y
o The guard of every rule in A(v) is a predicate exclusively on the variables {x,, €
Au) |v eV Au e N(v)}

()
@‘\
N0
eﬂ'
@)
In the communication graph in Figure 3.1, the node u can read variables of the
form x,, x,, x,, but not x,. Moreover, it can write only in ones of the form x,,.
Another way of sharing information is to equip each process with registers. These
are memory buffers such that a process v can communicate with a process u € N(v)
by writing and reading its register R,,, and only reading the register of u, that is R ,,..

In this case, the variables of v, x,, € A(v), are called intern variables and cannot be
read by u or any other neighbouring process.

DEFINITION 9. Adistributed system® = (A, G) is under the link-register memory
model if and only if for every communication link (u,v) € E, there are two registers
R, onuand R, on v and A(v) is such that:
o The variables x,,,u # v do not appear in A(v)
o The register R,,,, does not appear on the left side of any assignment instruction of
the form R, < y
o The guard of every rule in A(v) is a predicate exclusively on the intern variables of
vand R, R, forallu € N(v)

vu’

The models of definition 8 and definition 9 both use as a mean of communication
a shared access to each other’s memory.

Distributed Systems o 17

FIGURE 3.1
Example of the interaction in
a state model

FIGURE 3.2

A couple of nodes communi-
cating through a shared reg-
ister memory

It is not always possible to implement such a model, especially in cases where
processes are geographically far apart. An alternative would be to propagate informa-
tion through auxiliary processes until it reaches its desired receiver. This is done by
exchanging messages using send and receive routines and is known as the message
passing model. As we cannot always ensure that a message is delivered within a
certain interval of time, we consider each communication link as an abstraction of
two FIFo queues, one for each process. Messages sent to a process v are stored in its
queue as they arrive and are retrieved for treatment from first to last. Moreover each
rule in this model is evaluated only upon the reception of a message.

Although the message passing model is the strongest model, the state model will
be the main model in which we prove the properties of the different algorithms. This
is due to the fact that it is the most abstract model and the reference one to compare
the work around our problems.

3.1.3 Atomicity

The difference between the models defined above also comes from
the atomicity assumption. An atomic step is the longest portion of code that a process
v can execute, such that no change of the state can take place during its run. Such a
step is assumed to be instantaneous and is defined as follow:

+ In the state model, in one atomic step, a process v can read the local state of all
its neighbours and update its whole local state.

+ In the link-register model, in one atomic step, a process v can only perform one
read or one write on one register and read or write on internal variables for any
finite number of times.

+ In the message passing model, in one atomic step, a process v can only send or
receive a message to/from a neighbouring process but not both at the same time.

For example, it takes a process v under the link-register model N(v) atomic steps
to update all its registers, whereas this can be done in one single atomic step under
the state model. Therefore, the result of an action in the state model is immediately
readable by all its neighbours, which is not the case in the link-register model.

3.1.4 Description of a distributed system through local states

To describe the state of a node v within a running distributed
system we simply state the values of its memory. This is called the local state of v and
varies according to the model in which A(v) is under.

18 «» Distributed Systems and Self-Stabilization

DEFINITION 10. The local state of v € V under the state model is the tuple
Sy = (Xy)x eaw) of the values of all the variables on v.

DEFINITION 11. The local state of v € V under the link-register model is the tuple
So = (%> Ry e awpuen(w) of the values of all the variables on v and its registers.

DEFINITION 12. The local state of v € V under the message passing model is
the tuple s, = (x,,qy)x eaw) of the values of all the variables on v and the messages
contained in its queue.

From this, we can describe a running distributed system at any given point in
time as the set of all local states of all its nodes. This is called a configuration of ®.

DEFINITION 13. A configuration C of a running distributed system © is the tuple
C = (s,)yev- The set of all configurations in G is denoted by €

3.1.5 Execution

The definition of an atomic step allows us to construct for any
two configurations C, C' of the system a sequence C, A;,C;,;, A;,,, ..., C’ such that
Vi € N*C;,, is obtained by executing a non-empty set A; of atomic steps. Due to this,
we can track the state of the distributed system starting from any initial configuration
and give a formal way to characterize what an execution is.

DEFINITION 14. An execution € of a distributed system is a sequence
6 = CO’AO’CI’AI’ ’Ci’Ai’Ci+1’

where,

C, is a fixed initial configuration and Vi € N, C,,, is obtained by executing a
non-empty set A; of atomic steps such that each process has at most one of its atomic
actions in A,.

The sequence & is maximal, that is, it is either infinite, or finite and no process is
activable in the last configuration.

All executions considered in this document are maximal.

The set A; is said to be a transition and if we have C;, A;,C,,; in &, we write
Ci = Cin

More generally,

DEFINITION 15. A configuration C' is said to be reachable from a configuration
C if there exist a sequence such that C, A,,C;, Ay, ...,C;, A;,Ciyy, ... C'. We write
C~C

DEFINITION 16. When the guard of a rule is satisfied in a configuration C we say
that the rule is enabled in C. Otherwise, it is disabled.

Similarly for nodes, we define the notion of activable or enabled in a configuration
C

Distributed Systems o 19

DEFINITION 17. A nodev € V is said to be activable or enabled in a configuration
C if there exists a rule of AA(v) that is enabled in C.

It is generally assumed that an atomic step in the state model corresponds to the
execution of one guarded rule. Therefore, Vi € N*, C,,, is obtained by executing
the action of at least one rule that is enabled in C;. More precisely, A; is the non
empty set of enabled rules in C; that has been executed to reach C;,; and is such
that each process has at most one of its rules in A;. In the link-register model, the
minimal atomicity is not the rule, but the action (remember that a command is a set
of actions). Within a command, two types of actions are possible. Internal actions
are over internal variables, and communication actions which consist in reading or
writing in a register. An atomic action here is the execution of a finite sequence of
internal actions ended by one communication action.

DEFINITION 18. Ifin a transition C; — C,,, there is a rule of v in A; then v is
said to be activated.

3.1.6 Predicates on executions

To specify the behaviour of a distributed system we use the notion
of a specification

DEFINITION 19. A specification is a predicate on an execution of a distributed
system.

Each problem is associated with a specification that sets the constraints under
which the system defines a solution.

Other specifications are used in distributed computing to express the ordering
in the interaction between the different processes. Daemons are one of them.

3.1.7 Daemons

A daemon defines how a system can behave globally regarding
the execution of several rules on several nodes during time. This is even important
when small differences in the order of execution lead to huge differences in the global
state of the system. These orderings often help model the different environments in
which a distributed system can evolve, and it can help to give a formal tool to think
about them. This is known as a daemon. It is a specification that defines for each
execution, the set of enabled nodes allowed to move.

We define two properties of daemons, distribution and fairness.

Distribution

This property ensures a spatial ordering among the different nodes
of the network. We use the notion of k — centralit y used in [DT11], to express the

20 @ Distributed Systems and Self-Stabilization

predicate that two nodes are allowed to move at the same time only if they are at
distance at least k from each other. This is known as a k — central daemon.

DEFINITION 20. Adistributed system® = (A, G) is under the k—central daemon
if and only if for every execution € of A:

Vi e N,Vu,v € V : (u # v) A (u,v are activated in C;) = dist(u,v) > k

In this thesis we will encounter the 0 — central daemon, known as the central
or sequential daemon and the diam(G) — central daemon, known as the distributed
daemon.

PROPOSITION 1. The set of executions E_ opsra 0f A under the k— central daemon
verify:
Vk € {0, ..., diam(G) - 1} : €k+1—centml G 8k—centml

This establishes a hierarchy among the different daemons, according to the
distribution property. This is illustrated by Figure 3.3

diam(G)-central ... k-central ... | 1-central

The most relaxed daemon is the distributed daemon. In this case, all enabled
nodes can be allowed to make a move. This is done at once, concurrently. And
once an enabled node makes its move, all the information it used to have about a
neighbouring enabled node is obsolete, as the latter moved as well. This makes the
coordination efforts between nodes under this daemon very difficult. On the other
hand, algorithms executed under the central daemon are easier to design, as only
one node moves at the time.

Fairness

The focus in the k — central daemon is global progress, regardless
of individual advancement for each node. This can lead to a daemon preventing a
continuously enabled process from execution. To exclude executions where such
behaviours appear, weakly fair daemons were introduced.

Distributed Systems o 21

FIGURE 3.3
Hierarchy of daemons ac-
cording to distribution

DEFINITION 21. Adistributed system® = (A, G) is under the weakly fair daemon
if and only if for every execution € of A:

(i eN,JveV:
(Vj = i,vis enabled in Cj) A (Vj 2 i,v is not activated in C]-))
Sometimes a stronger version of fairness is needed, one that does not prevent

infinitely often enabled processes from execution. This is formalized by the definition
below.

DEFINITION 22. A distributed system ® = (A,G) is under the strongly fair
daemon if and only if for every execution £ of A:

(i eN,JveV:
(Vj 2,3k 2 j,vis enabled in Ci) A (Vj > i,v is not activated in C;))
Daemons without any assumption about fairness are said to be unfair or ad-
versarial. Those that are weakly fair are simply referred to in this thesis as fair. As

with distribution, the fairness property defines a hierarchy among daemons. This is
illustrated in Figure 3.4

0 -central Weakly Fair

FIGURE 3.4
Hierarchy of daemons ac-
cording to fairness

A more detailed account of the taxonomy of daemons is given in [DT11].

3.1.8 Fault-Tolerance

So far we have always assumed that the instances of the different
algorithms of a distributed system are run without interruption, smoothly, toward a
pre-set goal. In reality, they depend heavily on their environment of execution. This
makes them much more prone to errors of different natures, corrupting memory,
communication links, causing crashes and even affecting the code of an entity. Some
of these faults are hard to recover from, they are called Byzantine faults.

A natural way to classify these faults is by measuring their impact on the system, in
other words the duration in which their effect is still observed in the system. This

leads to the following categorization:

22 @ Distributed Systems and Self-Stabilization

 transient faults, these are any faults that can occur in the system until a certain
point in time, beyond which, they never do

+ permanent faults, these are any faults that always occur in the system beyond a
certain point in time.

+ intermittent faults, are the remaining kind of faults, which can occur at any time
in time without restriction.

3.1.9 Fault-tolerant algorithms

It is impossible to prevent all types of faults from hitting a dis-
tributed system. But we can try to prevent them from making it behave in an un-
desired way. This is done by tolerating faults and designing the system to recover
from them. Such systems are said to be fault-tolerant. Two strategies can be used
for this purpose, one that handles faults without the observer experiencing any loss
of functionality during the recovery process. It is a called a masking strategy and
requires the recovery mechanism to be permanently running. This can prove costly
in different areas of applications. An alternative would be to accept a loss of func-
tionality for the user until the system reaches a good behaviour again. This is known
as a non-masking strategy.

Two important categories of fault-tolerant algorithms that illustrate these two
strategies are:

¢ Robust algorithms, they use a masking strategy by replicating critical algorithms
across different entities that take over calculations in case of failures. This type
of algorithms is particularly used when only a bounded number of faults can hit
the system, since only a finite number of entities can take over. It is also common
when there is a high dependency between the computations of the different
entities as in scientific computing, like Hadoop or Spark [ZXW*16]. They are
often expensive to put in place.

+ Self-stabilizing algorithms they use a non masking strategy and are designed to
recover from any transient faults within a bounded time and without any human
intervention. To achieve this, they are designed independently from any initial
state.

In this thesis, we design fault-tolerant algorithms to different problems using the
latter category of self-stabilizing algorithms.

3.2 SELF-STABILIZATION

In his seminal work [Dij74] Dijsktra introduced the notion of
self-stabilizing algorithms as a non masking fault-tolerant solution to the mutual

Self-Stabilization o> 23

exclusion problem. This did not gain the expected interest until Leslie Lamport’s
address [Lam8s] during the Acm Symposium on Principles of Distributed Comput-
ing’83. Today they constitute a sub-field of distributed computing and are part of
the standard toolbox of every distributed systems scholar [Telo1][Lyng6] [AWo4].
The field reached maturity by the end of the nineties, followed by the publication
of a dedicated textbook [Doloo] and the Symposium on Stabilization, Safety, and
Security of Distributed Systems.

DEFINITION 23. A distributed system is said to be self-stabilizing with respect to
a specification S, if there exists a subset of legitimate configurations T C € with the
following properties:

+ Correctness: Every execution that starts from a configuration in L satisfies the
specification S

+ Convergence: In every execution, a configuration that belongs to L appears.

In Figure 3.5 we show an illustration of the executions of a self-stabilizing algo-

rithms.
&
ERLENGOR
\ €L
52 C‘?‘ \
—— (Cy Cp, "N
° L]
&3 o : °
L]
[]
. €L C, "N
FIGURE 3.5 * < -
. ; E200 /_/—//_/
Executions of a Self- /= Gy

Stabilizing system

The reader can notice that Algorithm 1 is self-stabilizing . It can be started in
any initial state, by giving a positive value to the variable x. It has the convergence
property as it always reaches a configuration where every node has a value x,, in the
trivial cycle {1, 2, 4}. Also, there is no way in the absence of transient faults to leave
this configuration set as any instruction of the algorithm does not change this value
for another one outside the cycle. This corresponds to the closure property.

3.2.1 Expressing self-stabilizing algorithms

We use the same conventions explained earlier to write self-stabilizing
algorithms. Moreover, we always assume that the rules of the algorithm are within

1 This is given only as an example, as this result holds only experimentally. Although it is conjectured

to be true, under the name of the Collatz conjecture, it has been neither proved or disproved
mathematically

24 » Distributed Systems and Self-Stabilization

an infinite loop. This is due to the following proposition.
PROPOSITION 2. A self-stabilizing algorithm does not terminate

Proof of 2. Suppose that the proposition does not hold. This means that the algorithm
terminates at a certain point. Let C; be the configuration in which the last instance of
the algorithm terminates. Every transient fault occurring on the system from C; and
on leads the system to a non legitimate configuration that is impossible to recover
from. This violates the convergence property.

As we deal only with self-stabilizing algorithms in the remaining of this thesis,
we choose to omit the writing of the infinite loop to lighten the notation.

For example, the following algorithm is written in the guarded rule convention.
It contains three rules and is self-stabilizing for the maximal matching problem under
the central daemon. A proof of this claim as well as a detailed explanation of its rules
are given in Section 3.3.

Algorithm 2 Maximal matching algorithm

Require: N(v)

>Marriage rule
if im, = L) A(Ju € N(v) | m,, = v) then
m, —u

>>Seduction rule
if(m,=L)ANueNW)|m,#v)A(JueN@)|m,=.1)then
m, — u

>>Abandonment rule
if (m, = u) A (m, = k) A (k # v) then
m, «— L

A first natural question to ask in this context is whether we can always devise,
for any task that can be solved by a Turing Machine, a distributed self-stabilizing
algorithm that converges to a solution. It turns out that the answer to this question
is positive and that any algorithm that solves a task has a self-stabilizing equivalent
that does as well.

THEOREM 2. [Doloo] A distributed system simulates the universal Turing Machine
in a self-stabilizing fashion.

This result settles the question of decidability for self-stabilizing algorithms. We
can focus our interest on the question of efficiency. In the following we introduce
the tools used to compute time complexity.

Self-Stabilization o> 25

Measuring time

As there is no global timing mechanism in distributed systems,
we have to define a measure to evaluate the progress an algorithm makes. This would
allow for comparing the efficiency of different algorithms for the same specification /
problem.

The most common measure of time is the move.

DEFINITION 24. Ina distributed system ®, a node v makes a move if and only if
in the execution of A there exists two configurations C;, C;,, such that C;, A;,Cj,, is
in €and v has a rule in A,.

When it is relevant, we specify an executed rule by saying that v makes a <
name — rule > move.
Globally, we define

DEFINITION 25. The number of moves in the execution of A is Z;_,| A,|
A move is a node specific measure. A more global one is the step.

DEFINITION 26. A distributed system makes a step each time there is a transition
A, between two configurations C;,C;,, of the system.

To measure a balanced global progress among nodes we use rounds.

DEFINITION 27. A round is a minimal portion of the execution in which every
node executes at least a move.

From the definition we can deduce that for every execution of a distributed
algorithm:

number of rounds < number of steps < number of moves

3.2.2 Complexity

As self-stabilizing algorithms don’t terminate it makes more sense
to compare them in terms of the time it takes to recover from a transient fault. We
consider a worst case analysis, that is done over the execution in which it takes the
maximum time to recover from the fault. This time is expressed in terms of the
measures seen so far.

DEFINITION 28. & denotes a prefix of an execution & of a distributed system in
which:

« No configuration in E, but the last, is legitimate
o the last configuration of & is legitimate

DEFINITION 29. The worst-case move complexity of a self-stabilizing algorithm
A denotes the maximum number of moves over all & of all € of A that is:

m;x{ZAieee |A;}

26 @ Distributed Systems and Self-Stabilization

DEFINITION 30. The worst-case step complexity of a self-stabilizing algorithm A
denotes the maximum number of steps over the set of prefix-executions E of A that is:

mgaelx{k | Ay € &Y

DEFINITION 31. The worst-case round complexity of a self-stabilizing algorithm
A denotes the maximum number of rounds over the set of prefix executions € of A.

As for classical complexity theory, the big-O notation is adopted.

3.2.3 Other types of self-stabilization

Ideally, we would want the system, once it reaches a legitimate
configuration, to not swing between different legitimate configurations. This could
be prevented by reaching a legitimate configuration that doesn’t change any further.

DEFINITION 32. A stable configuration is a configuration where no node is ac-
tivable.

DEFINITION 33. A self-stabilizing algorithm A is silent, if every execution of A
ends with a stable configuration.

A weaker form of self-stabilization is the probabilistic one.

DEFINITION 34. An algorithm A is self-stabilizing in the probabilistic sense, if it
ensures deterministically the correctness property whereas it ensures the convergence
only with probability one.

3.3 PROVING SELF-STABILIZATION

In this section we illustrate a powerful technique for proving
the self-stabilization of algorithms. This technique, known as the potential function
technique is used in this thesis and consists in defining a decreasing (or increasing)
function on the set of configurations, such that every move in the system corresponds
to a decreasing (or increasing) in the value of the potential function. The idea is to
choose a bounded potential function, such that when it reaches its bound, all the
configurations having this bound value are legitimate. It is straightforward to deduce
the convergence of the system (in the self-stabilizing sense) once this property holds.
This is formalized below.

DEFINITION 35. A function f : € — Kis a decreasing (resp. increasing) potential
function on a system D, if for every execution € of A we have:

f(C;) > f(C) Vie N* (resp. f(C;y) < f(C,) Vi € N*)

Where < is any order relation on the set of configurations belonging to £.

Proving Self-Stabilization o 27

To illustrate this technique we prove that Algorithm 2 self-stabilizes into a
solution of the maximal matching problem under the central daemon. Every node
in this algorithm is equipped with a pointer variable m,, that contains the name of
the node that v points to among its neighbours. At any configuration an edge is part
of the matching if both its endpoints point the one towards the other. Having 1 as a
pointer value means that the node points to no one. Let us recall the specification for
this maximal matching problem:

SPECIFICATION 1. (Specification M)
Foragraph G = (V, E), the set M = {(u,v) : m, = vAm, = u} is a maximal matching

of G, if M = M, N M, N M; holds:

o My: Yw,v) e M :ueVAveVA(uv) €E (consistency)
o My: Yu,v,w eV : (u,v) € MA(u,w) e M > v=w (matching condition)
o My: Y(u,v) € E,2Fw eV : (w,w) e MV (v,w) € M (maximality)

We define the following states for v:
¢ [Matched] if m, =uandm, =v
+ [Single] if m, = 1 and every neighbour of v is Matched
¢ [Waiting] if m, =uandm, = L
o [Free] if m, = L and there is a neighbour that is not Matched
+ [Chaining] if there exists a neighbour u such that m, = wandm, = k,k # v

Our potential function will have for value at any configuration C:
f(C) = (|IMatched| + |Single|, |waiting|, |Free|, |Chainingl|)

Also, the values of f are ordered according to the lexicographic order. For example,
(4,2,3,0) is greater than (4,2,2,1).

OBSERVATION 1 if f =(n,0,0,0) then we are in a stable configuration and this
configuration defines a matching. Also for every stable configuration f = (n,0,0,0).

In such a configuration, all nodes are either matched or single. It is easy to
see that this defines a matching as defined in the specification above. Moreover,
according to the algorithm, no node can further move from this setting making it a
silent convergence.

OBSERVATION 2. An execution of the Marriage rule reduces the number of free
and waiting nodes by 1.
It increases the number of matched nodes by two.

This leads to an increasing in the value of f.

OBSERVATION 3. An execution of the Seduction rule reduces the number of free
nodes by one and increases the number of waiting nodes by one.

This leads to an increasing in the value of f.

28 w» Distributed Systems and Self-Stabilization

OBSERVATION 4. The Abandon rule is executed when v is chaining.
First, if no neighbouring node points to v then:

* v becomes free if there exists an unmatched neighbour

+ v changes to single if all neighbours are matched
Second case, at least one k points toward v

+ v is changed to free

o k is changed from chaining to waiting

Overall the number of Chaining nodes drops by two, and the number of free and waiting
nodes increases by one

This leads to an increasing in the value of f.

THEOREM 3. Algorithm 2 is self-stabilizing for the maximal matching problem under
the central daemon.

Proof of 3. Every move of the algorithm increases the value of the potential function
f. Once the bound (n,0,0,0) is reached we have a legitimate configuration that
defines a maximal matching. Moreover, the system does not transition to another
configuration as no node makes a further move. Therefore Algorithm 2 is silent.

THEOREM 4. Algorithm 2 stabilizes into a maximal matching in 0(n®) moves.

Proof of 4. Before reaching the legitimate configuration (n, 0, 0, 0), the system goes,
at most, through as many configurations as values of the potential function f. This is
roughly O(n?). The fact that we are in a central daemon allows us to count one move
per configuration giving the overall move complexity.

A more detailed proof of Algorithm 2 can be found in [HH92]

3.4 DESIGN TECHNIQUES

As with classical algorithms, modularity is an important feature
in designing self-stabilizing algorithms. One would like to use and compose already
devised solutions as subroutines to solve new tasks. The Fair Composition, is a tech-
nique that enables us to do this with little to no extra work and still preserve the
self-stabilizing property of the whole.

DEFINITION 36. A fair composition of the distributed algorithms A, A,, ..., A
is the set of executions where every node executes a step of each algorithm infinitely

often.

THEOREM 5. [Doloo] Given the distributed algorithms A, A,, ..., A, that are
self-stabilizing for the specifications S|, S,, ... , Sy respectively,

Design Techniques o 29

If no algorithm A; changes any of the variables of algorithms {A; | j < i} then the
fair composition of Ay, A, ..., Ay is self-stabilizing for the specification:

SIAS; A AS,

The idea is that throughout the execution of the composition, A; will run regard-
less of the configuration in which A,, A,, ..., 4;_, are in. Once A}, A4,, ..., A;_,
stabilize, the specifications S}, S,, ..., S;_; are met and the execution of A; will now
run from a configuration that verifies the needed specifications. This leads to the
stabilization of 7 to a solution where S; holds, as well as S, S,, ..., S,_;.

Having introduced the necessary tools and computational models in this chapter,
we follow up by the contributions of this thesis. These are mainly divided in two
parts, matching problems and self-stabilizing publish/subscribe systems.

3.5 CONCLUSION

In this chapter we gave a general overview of what it means for a
distributed algorithm to be self-stabilizing. We also provided the basic tools to think
about them. The state model is the most important of these tools and is what will be
mainly used throughout this thesis. We also introduced potential functions. They
constitute an important tool to prove self-stabilization. Lastly, we saw how a well
defined potential function can be used to prove the self-stabilization of the maximal
matching algorithm, therefore introducing the reader to the first graph problem of
this thesis and to a classical result in the field of self-stabilizing algorithms.

30 @ Distributed Systems and Self-Stabilization

Maximal matching in
anonymous networks

3% In this chapter we provide a self-stabilizing algorithm called
JANONYMATCH, that is a randomized algorithm for finding a maximal matching
in an anonymous network. We show the algorithm stabilizes in O(n?) moves with
high probability under the adversarial distributed daemon. Among all algorithms
for adversarial distributed daemons and under the anonymous assumption, our
algorithm provides the best complexity as far as we know. Moreover, the previous
best known algorithm working under the same daemon and using identities has
a O(m) complexity leading to the same order of complexity than our anonymous
algorithm. This work appears in [CLM"16]

4.1 INTRODUCTION

Matching problems have received a lot of attention in different
areas. In context of dynamic load balancing, job scheduling in parallel and distributed
systems can be solved by algorithms using a maximal matching set of communication
links [BFMo8, GM96] as a basic and black-box function. Moreover, the matching
problem has been recently studied in the algorithmic game theory. Indeed, the semi-
nal problem relative to matching introduced by Knuth is the stable marriage problem
[Knuy6]. This problem can be modelled as a game with economic interactions such
as two-sided markets [AGM " 11] or as a game with preference relations in a social
network [Hoe13]. But, all distributed algorithms proposed in the game theory do-
main use identities while we are interested in this work in anonymous networks, i.e.,
without identity. Let us recall from earlier that, a matching M in a graph is a set of
edges without common vertices. A matching is maximal if no proper superset of M
is also a matching. A maximum matching is a maximal matching with the highest
cardinality among all possible maximal matchings. In the following, we present a
self-stabilizing algorithm for finding a maximal matching in anonymous networks.

Maximal matching in anonymous networks o 31

4.2 RELATED WORK

Several self-stabilizing algorithms have been proposed to compute
maximal matching in unweighted or weighted general graphs. For an unweighted
graph, Hsu and Huang [HHo92] gave the first algorithm and proved a bound of O(n?)
on the number of moves under a sequential adversarial daemon. The complexity
analysis is completed by Hedetniemi et al. [H]So1] to O(m) moves. Manne et al.
[MMPTog] presented a self-stabilizing algorithm for finding a maximal matching.
The complexity of this algorithm is proved to be O(r) moves under a distributed
adversarial daemon. In a weighted graph, Manne and Mjelde [MMo7] presented the
first self-stabilizing algorithm for computing a weighted matching of a graph with a
1/2-approximation of the optimal solution. They established that their algorithm sta-
bilizes after at most an exponential number of moves under any adversarial daemon
(i.e., sequential or distributed). Turau and Hauck [TH11b] gave a modified version
of the previous algorithm that stabilizes after O(nm) moves under any adversarial
daemon.

All algorithms presented above, but the Hsu and Huang [HH92], assume nodes
have unique identity. The Hsu and Huang’s algorithm is the first one working in an
anonymous network. This algorithm operates under a sequential daemon (fair or
adversarial) in order to achieve symmetry breaking. Indeed, Manne et al. [MMPTo9]
proved that in an anonymous general network there exists no deterministic self-
stabilizing solution to the maximal matching problem under a synchronous dae-
mon. This is a general result that holds whatever the communication and atomicity
model (the state model with guarded rule atomicity or the link-register model with
read/write atomicity). Goddard et al. [GH]JSo08] proposed a generalized scheme that
can convert any anonymous and deterministic algorithm that stabilizes under an
adversarial sequential daemon into a randomized one that stabilizes under a dis-
tributed daemon, using only constant extra space and without identity. The expected
slowdown is bounded by O(#*) moves. The composition of these two algorithms can
compute a maximal matching in O(mn?) expected moves in an anonymous network
under a distributed daemon.

Self-stabilizing algorithms for optimization problems in anonymous network
can sometimes be solved by a deterministic algorithm provided that the latter only
needs the distance-2 unique identifier property. This can be achieved by a distance-2
colouring algorithm. A distance-2 colouring is a colouring of the graph in which each
node has a distinct colour among colours used by any other node within distance 2.

In anonymous networks, Gradinariu and Johnen [GJo1] proposed a self-stabilizing
probabilistic algorithm for the distance-2 colouring problem (called unique naming
problem in this paper. However this scheme requires that every process knows n.
They used this algorithm to run the Hsu and Huang’s algorithm under an adversarial
distributed daemon. However, only a finite stabilization time was proved. Chattopad-
hyay et al. [CHSo2] improved this result by giving a maximal matching algorithm
with O(n) expected rounds complexity under the fair distributed daemon. Recall that
a round is a minimal sequence of moves where each node makes at least one move.

32 @ Maximal matching in anonymous networks

It is straightforward to show that this algorithm stabilizes in Q(n®) expected moves,
but Chattopadhyay et al. do not give any upper bound on the move complexity.

In parallel, Emek et al. [EPSW14] recently proved every problem that can be
solved by a randomized anonymous algorithm, can also be solved by a determin-
istic anonymous algorithm composed with an underlying randomized distance-2
colouring algorithm. This result is a decidability result and has been extended by a
complexity study: Seidel et al. [SUW15] established a trade-oft between the runtime
complexity of the deterministic algorithm and the space complexity of the underlying
randomized distance-2 colouring algorithm. However, the result is obtained in a non
faulty environment, thus it may not apply in self-stabilizing algorithms.

Figure 4.1 compares features of the aforementioned algorithms and ours. Among
all adversarial distributed daemons and with the anonymous assumption, our algo-
rithm provides the best complexity. Moreover, the previous best known algorithm
working under the same daemon and using identity has a O(rm) complexity leading
to the same order of growth as our anonymous algorithm.

Identified Anonymous
Adversarial Adversarial Fair Adversarial
Distributed Sequential Distributed Distributed
Composition Here
Reference || [MMPTo9] || [HH92, HJSo1] [CHSo02] [GJo1] | of [HH92, HJSo1]
i ANONYMATCH
with [GHJSo08]
. Om) Om) Q(n?) expected . O(mn?) 0(132) m‘oves
Complexity moves finite expected with high
moves moves . .-
worst case: finite moves probability

When dealing with matching under anonymous networks, we have to overcome
the difficulty that a process has to know if one of its neighbors points to it or to
some other node. In Hsu and Huang’s paper [HHog2], this difficulty is not even
mentioned and the assumption a node can know if one of its neighbors points to
it is implicitly made. However, this difficulty is mentioned in the Goddard et al.
paper [GHS06], where authors present an anonymous self-stabilizing algorithm
for finding a 1-maximal matching in trees and rings. To overcome this difficulty,
authors assume that every two adjacent nodes share a private register containing an
incorruptible link’s number. Note that this problem does not appear for the vertex
cover problem [THi11a] or the independent set problem [SGHo4] even in anonymous
networks (see [GK10] for a survey). Indeed, in these kind of problems, we do not try
to build a set of edges, but a set of nodes. So, a node does not point to anybody and
it simply has to know whether or not one of its neighbours belongs to the set. In the
following, we propose a self-stabilizing solution for this problem without assuming
any incorruptible memory. Moreover, we show this solution can be applied in all
previous anonymous maximal matching algorithms.

Related work o 33

FIGURE 4.1
Self-Stabilizing

Maximal

Matching Algorithms

4.3 OUTLINE AND MODEL

The ANoNYMATCH algorithm is the main contribution in this
chapter. We also provide other results concerning how to handle the anonymous
assumption. In all previous papers dealing with self-stabilizing maximal matching
in anonymous systems [CHSo2, GHJSo08, GJo1, HJSo1, HH92], authors make the
assumption that nodes can determine whether its neighbour points to itself or to some
other node. But, this assumption is not that simple to achieve in anonymous systems
since the usual way to do it is using identifiers. In the following, we investigate
this question and present a classical algorithm [Doloo], called ZINKINAME, that
gives unique local names to all neighbours of a node in an anonymous system. This
algorithm is defined under the link-register model and allows to build a system in
which this assumption holds. Then we give a slight modification of ANONYMATCH,
called ANONYMATCH2, leading to a solution that does not need this assumption
anymore. AINONYMATCH is defined under the state model while its modified version
has to be specified under the link-register model. We finally show that this method
can be used in all previous anonymous matching algorithms, leading to the following
conclusion: the assumption that a node can know if a neighbour points to itself or to
some other node in an anonymous system is meaningful.

4.4 THE MAXIMAL MATCHING
ALGORITHM ANONYMATCH

The matching algorithm ANONYMATCH presented in this section
uses the state model given earlier and is based on the maximal matching algorithm
given by Manne et al. [MMPTog]. We start with the description of ANONYMATCH
and then we will compare it with the Manne et al. algorithm.

In the algorithm ANoNYMATCH, every node u has one local variable f3, rep-
resenting the node u is matched with. If u is not matched, then 8, is equal to L.
Algorithm ZANONYMATCH ensures that a maximal matching is eventually built.

Formally, we require the following specification JM:

SPECIFICATION 2. (Specification M)
For a graph G = (V, E), the set M = {(u,v) : B,=v A B,=u} is a maximal matching of
G, ie. if M =M, A M, N M, holds:

o M;: Yu,v)eM:ueVAveVAuv)eE (consistency)
o M,: Yu,v,weV:uv)e MA(w,w)e M > v=w (matching condition)
o My: Y(u,v) € E,2Fw eV : (u,w) e MV (v,w) € M (maximality)

For the sake of simplicity, we assume that if any node u having the value v in its
B, variable such that v ¢ V or v ¢ N(u) then u understands this value as null ().

Algorithm ZNONYMATCH has the three rules described in the following. If node
u points to null, while one of its neighbors points to u, then u accepts the proposition,

34 @ Maximal matching in anonymous networks

meaning u points back to this neighbor (Marriage rule). If node u points to one
of its neighbors while this neighbor is pointing to a third node, then u abandons,
meaning u resets its pointer to null (Abandonment rule). If node u points to null,
while none of its neighbors points to u, then u searches for a neighbor pointing to
null. If such a neighbor v exists, then u points to it (Seduction rule). This seduction
can lead to either a marriage between u and v, if v chooses to point back to u (v will
then execute the Marriage rule), or to an abandonment if v finally decides to get
married to another node than u (¢ will then execute the Abandonment rule).

DEFINITION 37. We define the probabilistic function choose(X) that uniformly
chooses an element in a finite set X.

Algorithm 3 ANONYMATCH - Maximal matching algorithm in anonymous networks

Require: N(v)

>Marriage rule
if (B, =1)A(3veN(u): B, =u)then

Bu—v

>Seduction rule
if (B, =L)ANNMveNu): B, #u)A(Jv e N(u): , =L then
if choose({0,1}) = 1 then
B, < choose({v € N(u) : B, = L})
else
By 1

>>Abandonment rule
if(Que Nw): B,=vAB, #uAnp, +# 1) then
By—1L

The node that u chooses to get married with in the marriage rule is not specified,
since this choice has no bearing upon the correctness nor the complexity of the
algorithm.

JANONYMATCH is a transformation of Manne et al. algorithm that allows to
obtain an algorithm defined under an anonymous system from an algorithm that
needs unique identifiers in the system. Since the daemon we consider is the ad-
versarial distributed one, the algorithm needs to be probabilistic [MMPTog]. This
transformation consists in the suppression of the identifier’s comparaisons in the
Seduction and Abandonment rules, the suppression of the Update rule and finally
the addition of a coin flip action in the Seduction rule. With this coin flip, a node
that was able to apply the Seduction rule in the Manne et al. algorithm will seduce
only with probability 1/2 in ANONYMATCH.

The proof of this algorithm is based on a potential function. To define this

The Maximal matching algorithm ANONYMATCH o> 35

FIGURE 4.2
Two Married nodes and an
Undecided node. Variable
is represented by the arrows

function, we first need to define notions of a Single node, a good edge and an almost
good edge.

Let C be the set of all possible configurations of the algorithm. Let C € Cbe a
configuration. A node pointing to null and having no neighbour pointing to it is called
a Single node. Two nodes pointing one toward the other are called Married nodes. A
node pointing to null and toward which other nodes point is called Undecided. We
define the predicates:

* Single(u) = [B, = LA (Vv e N(u) : B, + u)].
¢ Undecided(u) = [B, =LA (Fve Nu) : B, =u)l.
* Married(u) = [3v € N(u) : B, =v A B, =ul.

Moreover, we define the set S(C) (resp. U(C), M(C)) as the set of Single (resp. Unde-
cided, Married) nodes in C.

1
(a) u is an undecided node.

==

(b) Two married nodes.

We now introduce the function f : C € C — M(C) U U(C). In the following,
we prove that f is a potential function for the maximal matching.

LEMMA 1. Let £ = Cy, Ay, ..., C;, A;, Ciyqs .. be an execution of ANONYMATCH.
We have:

Vie N, f(C) € f(Ciyy)

Proof of 1. Consider a configuration C; and u € f(C;) a Married or Undecided node
in this configuration.

Ifu € M), B, = v € N(u), and u cannot execute rule Marriage or rule
Seduction. Since, by definition of M(C;), we also have 8, = u, it cannot either
execute rule Abandonment. Thus, u executes no rule. Now, v is also Married, and
executes no rule: thus, after A;, we still have 8, = vand 8, = u in C;,;, so that
u € M(C,p)-

If u € U(C;), then B, = L. Thus, it cannot execute rule Abandonment. By
definition of U(C;), there exists v in N(u) such that 3, = u: u cannot execute rule
Seduction either. Now, consider any node v € N(u) such that 8, = u: the guards

36 @ Maximal matching in anonymous networks

forbid it to execute the Marriage or Seduction rules (because 8, # 1) and the
Abandonment rule (because 3, = uand 8, = 1). Thus, v takes no action, and we
still have 8, = uin C, ;. Now, if u executes the Marriage rule, then in configuration
Cii1o B, = vand B, = u, thusu € M(C,,,). Finally, if u executes no rule, then
B, =Land B, = u.So,u € UC;,,).

Thus, a Married or Undecided node in configuration C; remains Married or
Undecided in configuration C;;: f is non-decreasing in any execution.

Now, the following lemma establishes that in any step in which a Single node is
activated, f increases with probability > §.

LEMMA 2. Let E = Cy, Ay, ...,C;, A;,Ciys ... be an execution of ANONYMATCH.
Foralli > 0, if A; contains a move of a node that is Single in C;, then f(C;) ¢ f(C;,;)
with probability greater than 5. More formally:

1
Vie N,Pr[f(C;) ¢ f(Ci)|Tu € S(C)) : uis activated in C;] > 1

Proof of 2. Consider a configuration C; and let u be a Single node activated in C;. Let
F(u) = {v € N(u) : B, = 1L} and d be its cardinality. Since u is activated in C;, F(u)
isnot empty and d > 1.
With probability %, u decides to seduce anode v € N(u) such that 3, = L. Then,
there are three cases (see Figure 4.3):
¢ Case1) v ¢ S(C;) and v is activated in C;: Because v ¢ S(C;) and 3, = L, there
exists a node w € N(v) such that 8, = v: v € U(C;) € f(C;). On the opposite,
w cannot be in f(C;). The only rule that v can apply is the Marriage rule. After
applying it, v € M(C,,) € f(C,;) andw € M(Cy,4) € f(Cpyy)

+ Case 2) v € S(C;) and v is activated in C;: In this case, process v ¢ f(C;)
can only apply the Seduction rule and still points to null with probability J in
configuration C;, . Thus, v € U(C;,,) € f(C;,,) with probability (moreover,
v chooses to point to u with a probability > 0, in which case, v € M(C,,,) <
F(Cin))-

+ Case 3) v is not activated in C;: In this case v still points to null in C;, . Thus,
ue (U(CHI) - f(Ci+1)'

The Maximal matching algorithm ANONYMATCH o> 37

FIGURE 4.3

Example of a configuration
where u is a Single node and
F(u) = {v},v,,v5}.

(Case 11is illustrated by v; and Case 2 by v, and v; in Fig. 4.3.)

In all three cases, f(C;,;) ¢ f(C;) with probability > 1. Thus, if a Single node u
is activated, then it tries to seduce a node with probability 7, and whatever the status
of this node, with probability > 1, this leads to a new node in f(Cj,,). Thus with
probability > 1, when a Single node is activated, f increases.

LEMMA 3. Let€ = Cy, Ay ..., C;, A;, Ciy 15 - .. be an execution of ANONYMATCH. For
alli > 0, if A; contains a move of a node that is Undecided in C;, then f(C;) ¢ f(Ci,).

Proof of 3. Consider a configuration C; such that an Undecided node u is activated
in A;. Then, u is such that 3, = L and v € N(u) : 8, = u. u can only apply the
Marriage rule and set 8, := v. v is such that 8, = uand 8, = L. This implies that
v ¢ f(C;), and v cannot be activated in this step. Thus, in C;,;, we have 8, = vand
B, = u. Finally, v € f(C,,;), and f increases.

LEMMA 4. In any execution containing n + 1 moves, at least one Undecided or Single
node is activated.

Proof of 4. The seduction rule can only be executed by Single nodes and the marriage
rule can only be executed by Undecided nodes. If the Abandonment rule is executed
by some node u, then u becomes Single or Undecided and all Undecided, respectively
Single, neighbours of u remain so. Thus, after n applications of the Abandonment
rule, all nodes are either Single or Undecided, and the next action will activate a
Single or Undecided node.

This establishes an upper bound of the number of moves between two activations
of Undecided or Single nodes. From the combination of Lemmas 1, 2 and 4, we obtain
Theorem 6.

THEOREM 6. Under the adversarial distributed daemon and with the guarded-rule
atomicity, the matching algorithm ZAANONYMATCH is self-stabilizing and silent for the
specification M and it reaches a stable configuration in O(n*) expected moves.

Proof of 6. First, we prove that a stable configuration satisfies specification M. Let C
a stable configuration. By stability of C, for any node u, all guards are false.

Let (u,v) € M. By definition, v = 3, so that (u,v) € E: M, is true.

Let u, v and w three nodes, with (1, v) € M and (1, w) € M. By definition, we
have 3, = vand 3, = w, so that v = w: M, holds.

Finally, consider (u4,v) € E. 8, # L, or B, # L: indeed, if B, = B, = L, either
dx € N(u) : B, = u, and u can apply the Marriage rule, or Vx € N(u) : B, # u,
in which case it can apply the Seduction rule. Without loss of generality, suppose
that 8, # 1, and note w = f,,. Then, for u not to be in position to execute the
Abandonment rule, we necessary have: 8, = uVv 8, = L. Now, 3, cannot be L,
because w could then apply the Marriage rule. So, 8, = u, and (4, w) € M, which
proves M.

38 @ Maximal matching in anonymous networks

Thus, a stable configuration satisfies the specification.

Now, let us prove that a stable configuration is reached in an expected O(n?)
moves. f(C) being a set of nodes, it can increase at most # times in an execution.

Now, each time a Single or Undecided node is activated, f increases with proba-
bility > 1 (after Lemma 2 and 3). By independence of these attempts, f increases in
an expected 4 activations of a Single or Undecided node. Now, in every n + 1 steps,
at least one step activates a Single or Undecided node. Thus, in less than an expected
4n + 4 steps, f increases.

Thus, in an expected 4n? + 4n steps, f increases n times, and so, there cannot be
more than an expected O(n?) steps before reaching a stable configuration.

(6]

THEOREM 7. Let0 < p < 1, and take k > max{2n® — 2, —8(n + 1) In p}. Then, after
k moves, the algorithm ANONYMATCH has converged with probability greater than

1-p.

Proof of 7. Let F). be the random variable that is the cardinality of the value of f after
k moves. The algorithm has converged before or when F; = n.

Let X; be the random variable that is 1 if the ith activation of an Undecided or
Single node increments the cardinality of f, and o otherwise. The X; variables are
independent: the success of a node activation does not depend on the success of the
previous activation.

By Lemma 4, at least an Undecided or Single node is activated in any n+ 1 moves,
so that the first € activations of such nodes occur in the first (n + 1)€ steps and we
have: F(,,), > Zle X;. Thus,

N

Pr[F(n+1)f <n-— 1] gPT[Z Xi <n-— 1]
i=1

Moreover, the expectation of any X; is higher than , and so is the expectation
1 <t
of v Zi=1 Xi'
Thus,

S
|
—

Il
>
=

N
T
~

o~
Rl | =

T~ T~

Now, by Hoeftding’s inequality applied to the Bernoulli variables X, X,, ..., X,:

1 ¢ 1 ¢ n-1 1 n-1 12
Pri=-Y X, -E[- Y X,] < --]< -2¢ - =
rlp EX-Bly LX< - s ep (2 (-)
which gives: , 5
1 n—1 n—-1 1
Pr[-) X < < -2¢ - —
rlp X< < ep (20— -)

The Maximal matching algorithm ANONYMATCH o> 39

Taking £ > max{2n — 2,-81In p}, we have ;! < 1,50 that | - 1| < 1, and

g ’< ;3 we also have —2¢ < 161n p, so that —2¢ (%! - i)z <lnp.

Thus, for £ > max{2n — 2,-81n p},

1¢ n-1
Pr{-) X. < <

eptisTlsr

Now, for k > max{2n? - 2,-8(n + 1)In p}, we obtain, by setting £ = % >

max{2n - 2,-81n p}:
1¢ n-1
Pr[F,<n-1] <Pr[- Y X; < I<p (1)

) ¢

As the Algorithm ANoNYMATCH has converged at a step k before F) = n, it has
converged after max{2n® — 2,-8(n + 1) In p} moves with probability greater than
1-p.

Using p = % in Theorem 7 yields that after max{2n® - 2,8(n + 1) Inn} = O(n?)
moves, the algorithm has converged with a probability greater than 1 — 1. We can
conclude:

COROLLARY 1. Algorithm ANONYMATCH converges in O(n*) moves with high
probability.

4.5 HANDLING THE ANONYMOUS ASSUMPTION

Recall from earlier that when dealing with matching under anony-
mous networks, we have to overcome the difficulty that a node has to know if one of
its neighbours points to it or to some other node. In the marriage rule for example, a
node u tests if there exists one of its neighbours v such that 8, = u. Thus u has to
know that the value 3, represents itself while u has no identity. This is a fundamental
difficulty that is inherently associated to the problem specification when assuming at
the same time an anonymous system and the state model . We propose to solve this
issue by adopting the link-register model.

In this section, we present a classical self-stabilizing algorithm [Doloo], called
LZINKINAME algorithm, that allows a node to give unique names to each of its incident
communication links. Then we will see how this algorithm can be used to overcome
the difficulty of anonymity.

The ZINKINAME algorithm uses the link-register model, with read/write atomic-
ity. Each node u has one register per neighbour v: name,,, that is the name of the
link (1, v) given by u. This name can also be seen as the name of node v given by u.

40 @ Maximal matching in anonymous networks

nAMEeyy

NAMEqyy,

The algorithm ensures that eventually every node u will give a unique name to
each of its neighbours. More formally, we require the following specification ZN for
LINKINAME:

SPECIFICATION 3. (Specification TN)
For a graph G = (V, E), LN is:

e VueV,Vie{l,...,INW)|},3v € N(u) : name,, =i

Algorithm 4 ZINKNAME
>(Ro)
if (Vi e{l,...,IN(u)|},3v € N(u) : name,, = i) then
Rename all name,,, from 1to |N(u)|

Algorithm ZINKNAME [Doloo] satisfies the following theorem:

THEOREM 8. Under the adversarial distributed daemon and with the read/write
atomicity, the LINKINAME algorithm is self-stabilizing and silent for the specification
LN, and it reaches a stable configuration in O(m) moves.

Proof of 8. We start by giving the complexity of algorithm ZINKINAME in term of
moves. Node u executes rule R, at most once. During this execution, u makes at
most 2 moves per edge (¢, v): one reading-move to check whether name,,, = i and
at most one writing-move to update name,,,,. Thus the maximum number of moves
in any execution of the algorithm is 4 moves.

In a stable configuration, the guard of rule R, is false for every node. Thus, in
every stable configuration of ZINKNAME, the specification ZN holds.

Since, under the adversarial distributed daemon and with the read/write atom-
icity, any execution of the link-name algorithm ZINKNAME reaches a stable configu-
ration in at most 4m moves, we obtain Theorem 8.

The link-register model allows to locally distinguish the links incident to a node.
However, this model does not build distance-2 unique identifiers. Thus, the impossi-
bility result proved by Manne et al. [19] still holds under the link-register model and
then we still need a probabilistic algorithm to solve the maximal matching problem
under the link-register model. The solution proposed in this paper is to compose the
ZINKNAME algorithm with a rewritten version of ZINONYMATCH algorithm that
can use the ZINKINAME registers.

We now give a systematic way to rewrite an anonymous matching algorithm
using registers of ZINKNAME in order to avoid instructions that violate the anony-
mous assumption. For example, if we consider the ANONYMATCH algorithm, we

Handling the anonymous assumption o 41

would like to see the Marriage rule
if(B,=L)AFveNu):p,=u) thenf, :=v
rewritten as:
if (B, = L) A(Jv € N(u) : B, = name,,) then 3, := name,,

When character u or v appears in the algorithm, it can represent either node u
or the identifier of node u. Only the first case is meaningful in an anonymous sys-
tem. Other occurrences of u (resp. v) should be replaced by name,,, (resp. name,,,).
Syntactically, the first case corresponds to the use of u and v as indices in a broad
meaning - i.e., as indices of a local variable (as in f8,,) or to designate a node’s neigh-
bourhood (as in N(u)) -, or when quantified (as in Vv € N(u)), while the second case
is when u and v are used as identifiers, to be compared with other identifiers. Thus,
u and v should be maintained when used as indices (or arguments of N) and when
quantified; they should be replaced with name,,, and name,,, respectively when they
are compared (with comparison operators =, <, ...)

We give above the algorithm ANONYMATCH fully rewritten using this rule:

Algorithm 5 ANONYMATCH2 - Maximal matching algorithm in anonymous graphs

>Marriage rule
if (B, = L) A (Jv e N(u) : B, = name,,) then
B, « name,,

>Seduction rule
if (B,=1) A (YveN(u): B, #name,,) A (3xeN(u):5,=1) then
if choose({0,1}) = 1 then
B, « choose({x € N(u) : B, = L})
else
B 1

>>Abandonment rule
if (ueN(u) : B, =name,, A B,#name,, \ B,#L) then

Bu L

Having defined algorithms ANoNYMATcH2 and ZINKINAME, we would like
to compose them to give a unified self-stabilizing algorithm. However, this cannot
be done in a straightforward way. Indeed, the two algorithms use different com-
munication and atomicity models: algorithm ANONY/MATCH2 assumes the state
model with the guarded rule atomicity, while ZINKNAME assumes the link-register
model with the read/write atomicity. For this composition, we keep both models.
So AnoNYMarcH2 and ZINKNAME run in the same execution, under these two
different models.

42 @ Maximal matching in anonymous networks

We cannot directly apply the composition result of Dolev et al. [DIM89] since
authors assume the same model for their composition. However, we can use similar
arguments:

1) ZINKNAME neither reads nor writes in variables of ANONYMATCH2 while
ANONYMATCH?2 only reads in registers of ZINKNAME.

2) LINKNAME stabilizes independently of ANONYMATCH2.

Concerning ANONYMATCH?2, it only has been proved under the state model
(ANoNYMaTcH proof in previous section) while it uses registers from ZINKINAME.
However we can notice that ZINKINAME is silent thus the value of these registers will
eventually not change. Moreover, these registers are used to give name to nodes and
then when ZINKINAME is stabilized, they actually give correct names to nodes and
s0 ANONYMATCH2 can behave correctly as if it was ANONYMATCH. So the proof
that has been done for ANONYMATCH is still valid for ANONYMATCH2.

Thus once ZINKNAME is stabilized and reaches a stable configuration, ANONYMATCH2
eventually stabilizes under the state model and the guarded rule atomicity.

Note that these arguments can be applied to any anonymous matching that
would use our rewritten rule. Then it makes sense to assume in an anonymous
matching that a node can know if one of its neighbour points to it or to some other
node.

4.6 CONCLUSION

A distributed daemon, in an anonymous network, can exploit
symmetries and manage to reproduce them from round to round, making it impossi-
ble to solve many basic problems in these conditions. Therefore, writing distributed
algorithms for anonymous networks often requires extra techniques that can be
avoided in identified networks. Now, anonymity is often a requirement in practical
systems, either because nodes have too few capabilities, or for safety reasons.

The work presented in this chapter is a randomized distributed algorithm that
computes a maximal matching in an anonymous networks under an adversarial
distributed daemon. This problem cannot be solved without randomisation, as shown
by [MMPTog]: indeed, the distributed daemon can, at each step, pick up several
nodes that will have to abandon their wedding projects.

Thus, solving this problem necessitates that the node can take some decisions
independently from the daemon. The general randomisation scheme of Goddard
et al. [9], when applied to an algorithm working under a sequential daemon, leads
to a much worse expected complexity of O(mn?). Indeed, the general requirement
met by this scheme imposes to break "long-range” symmetries while this problem
requires only distance 2 symmetry breaking.

The key issue is thus to allow the nodes to break symmetries: the proposed algo-
rithms illustrates that, when identifiers cannot be used as a symmetry-breaking tool,

Conclusion o 43

randomisation can be an alternative. In algorithm ZANONYMATCH, randomisation
allows nodes to probabilistically refuse activation, thus breaking the symmetry that
the daemon tries to impose. Thus, we prove, with this algorithm, that randomisation
allows to solve this problem, and that the cost of anonymity is a constant factor, as
we do not change the order of growth of the complexity (from O(m) to O(n?)).

The proposed randomisation uses one bit of randomness per Single node activa-
tion (and thus less than one bit of randomness per node activation; the random choice
of the neighbour to seduce does not intervene in any proof and can be replaced by
an arbitrary choice of the neighbour). Moreover, the proof of Theorem 1 establishes
that no more than an expected 4n single nodes can be activated in an execution,
so that an execution requires 4n random bits on average, and any node requires a
constant expected 4 random bits to achieve Maximal Matching. This quantity is to be
compared to the log n bits necessary to achieve a proper naming (this discrepancy
can be easily explained by the fact that a distance-2 colouring would be sufficient,
rather than a complete naming).

Last, we show that the classical state model implies the assumption that anony-
mous nodes can know whether their neighbours point to them, and that this hypoth-
esis is not contradictory. Indeed, we propose a simple rewriting scheme that allows
to transform a state model algorithm in a link-register one, in which anonymous
nodes eventually know the name each neighbour attributes to the link joining them.
This transformation only entails a constant factor on the complexity.

44 @ Maximal matching in anonymous networks

A polynomial 2/3—
approximation of the
maximum matching
problem

In this chapter we move on to the maximum version of the
matching problem in identified networks. We devise a self-stabilizing polynomial
algorithm for a 2/3— approximation of the problem under the adversarial distributed
daemon. We also prove, by exhibiting a sub-exponential execution in term of moves
of the ExpoMATCH algorithm by Manne et al. [MMPT11], that our new algorithm
improves on the latest result in the literature. This work is published in [CMMP16].

5.1 INTRODUCTION

In sequential algorithms, the maximum matching problem and
its weighted generalization are known to be polynomial (see [Edm87] [Gal86]). Some
(almost) linear time approximation algorithms for the maximum weighted matching
problem have been well studied [DHo3, Pregg], nevertheless these algorithms are
not distributed. They are based on a simple greedy strategy using augmenting paths.
An augmenting path is a path, starting and ending in an unmatched node, and where
every other edge is either unmatched or matched; i.e. for each consecutive pair of
edges, exactly one of them must belong to the matching. It is well known [HK73]
that given a graph G = (V, E) and a matching M C E, if there is no augmenting
path of length 2k — 1 or less, then M is a ﬁ—approximation of the maximum
matching. See [DHo3] for the weighted version of this theorem. The greedy strategy
in [DHo3, Pregg] consists in finding all augmenting paths of length ¢ or less and
by switching matched and unmatched edges of these paths in order to improve the
maximum matching approximation.

In this chapter, we present a self-stabilizing algorithm for finding a 1-maximal
matching that uses the greedy strategy presented above. Our algorithm stabilizes
after O(m x n*) moves under the adversarial distributed daemon.

For the maximum matching problem, self-stabilizing algorithms have been
designed for particular topologies. In anonymous tree networks, a self-stabilizing
algorithms converging in O(n*) moves under the sequential adversarial daemon

A polynomial 2/3— approximation of the maximum matching problem o 45

is given by Karaata and Saleh [KSoo]. Recently, Datta et al. [DLM16] improve this
result, and give a silent self-stabilizing protocol that converges in O(1n?) moves. For
anonymous bipartite networks, a self-stabilizing algorithm converging in O(n?)
rounds under the sequential daemon is given by Chattopadhyay et al. [CHSoz2].
So, this algorithm converges in Q(n*) moves (since one round corresponds to at
least n moves). Let us restate that in unweighted or weighted general graphs, self-
stabilizing algorithms for computing maximal matching have been designed in
various models (anonymous network [Al15] or not [TH11b], see [GK10] for a survey).
For an unweighted graph, Hsu and Huang [HHo92] gave the first self-stabilizing
algorithm and proved a bound of O(1*) on the number of moves under a sequential
adversarial daemon. Hedetniemi et al. [H]So1] completed the complexity analysis
proving a O(m) move complexity. Manne et al. [MMPTog] gave a self-stabilizing
algorithm that converges in O(mm) moves under a distributed adversarial daemon.
The results presented in the previous chapter Cohen et al. [CLM"16] extend this
result and propose a randomized self-stabilizing algorithm for computing a maximal
matching in an anonymous network. The complexity is O(n*) moves with high
probability, under the adversarial distributed daemon.

Manne et al. [MMPT11] and Asada and Inoue [Al15] presented some self-stabilizing
algorithms for finding a 1-maximal matching. Manne et al. gave an exponential upper
bound on the stabilization time of their algorithm (O(2") moves under a distributed
adversarial daemon). However, they didn't show that this upper bound is tight. Here,
we prove that this lower bound is sub-exponential by exhibiting an execution of
Q(2V") moves before stabilization. Asada and Inoue [Al15] gave a polynomial algo-
rithm but under the adversarial sequential daemon. Recently, Inoue et al. [[OT16]
gave a modified version of [Al15] that stabilizes after O(rm) moves under the dis-
tributed adversarial daemon for networks without cycle whose length is a multiple
of three.

In a weighted graph, Manne and Mjelde [MMoy] presented the first self-stabilizing
algorithm for computing a weighted matching of a graph with a %-approximation of
the optimal solution. They established that their algorithm stabilizes after at most
an exponential number of moves under any adversarial daemon (i.e., sequential
or distributed). Turau and Hauck [TH11b] gave a modified version of the previous
algorithm that stabilizes after O(nm) moves under any adversarial daemon. Figure
5.1 compares features of the aforementioned algorithms and our result.

We are then interested in the following problem: how to efficiently build a
1-maximal matching in an identified graph with a general topology, using an ad-
versarial distributed daemon and in a self-stabilizing way? Here, we present two
algorithms solving this problem. The first one is the well-known algorithm from
Manne et al. [MMPT11] that was the only one until now that solved this problem.
The second algorithm is our contribution. We show that the Manne et al. algorithm
reaches a sub-exponential complexity while we prove that our algorithm is polyno-
mial (in O(m x n?)).

46 @ A polynomial 2/3— approximation of the maximum matching problem

Matching Topology Identifiers Daemon Complexity Work
(moves)
. Tree Global) O(n?) [KSoo, DLM16]
Maximum Bipartite Anonymous Adver. Sequential Qn?) [CHSo02]
Global Adver. Sequential O(m) [HHog2, HJSo1]
. . Adver. Distributed O(m) [MMPTog9]
Maximal Arbitrary - >
Anonvmous Adver. Sequential O(n*) [HHo92]
4 Adver. Distributed | O(n?) whp [CLM*16]
Arbitrary without cycle Anonvmous Adver. Sequential O(m) [Al1s]
1-Maximal with multiple of 3 length Y Adver. Distributed O(m) [TOT16]
. L. 0@2vm) Here
Arbitrary Global Adver. Distributed O(m.n?) Here

5.2 COMMON STRATEGY TO BUILD
A 1-MAXIMAL MATCHING

In this chapter, we present two algorithms. The first one, denoted
by ExpOMATCH, is the Manne et al. algorithm [MMPT11]. The second one, called
PoLyMATCH, is the main contribution. These two algorithms share several elements
and this section is devoted to give these main common points.

Both algorithms operate on an undirected graph, where every node has a unique
identifier. They also assume an adversarial distributed daemon and that there exists
an already built maximal matching, noted M. Based on /M, the two algorithms build
a 1-maximal matching. To perform that, nodes search and delete any 3-augmenting
paths they find in M.

5.2.1 3-augmenting path

An augmenting path is a path in the graph, starting and ending
in an unmatched node, and where every other edge is either unmatched or matched.

DEFINITION 38. Let G = (V, E) be a graph and M be a maximal matching of G.
(x,u,v, y) is a 3-augmenting path on (G, M) if:

a) (x,u,v,) is a path in G (so all nodes are distinct);

b) {(x,u), (v, y)} C ENM;

c) (u,v) e M

Let us consider the example in Figure 5.2.(a). In this figure, u and v are matched
nodes and x, y are unmatched nodes. The path (x, u, v, y) is a 3-augmenting path.

Once an augmenting path is detected, nodes rearrange the matching accordingly,
i.e., transform this path with one matched edge into a path with two matched edges
(see Figure 5.2.(b)). This transformation leads to the deletion of the augmenting path
and increases by one the cardinality of the matching. Both algorithm will stabilize
when there are no augmenting paths of length three left. Thus the hypothesis of
Karps’s theorem [HK73] eventually holds, giving a %—approximation of the maximum
matching (and so a 1-maximal matching).

Common strategy to build a 1-maximal matching o 47

FIGURE 5.1

Best results in maximum
matching approximation. In
bold, our contributions.

O—0 O
® O, O, y ® ® ® 0
(a) A 3-augmenting path (b) The path after being expoited.
FIGURE5.2 (one matched edge) (two matched edges)

How to exploit a
3-augmenting path?

5.2.2 The underlying maximal matching

In the rest of this chapter, M is the underlying maximal matching.
This underlying matching is locally expressed by variables m,, for each node v. If
(u,v) € M then u and v are matched nodes and we have: m,, = v Am,, = u. If u is not
incident to any edge in M, then u is a single node and m,, = null. For a set of nodes
A, we define single(A) and matched(A) as the sets of single and matched nodes in
A, accordingly to the underlying maximal matching . Since we assume M to be
stable, a node membership in matched(V') or single(V') will not change throughout
an execution, and each node u can use the value of m,, to determine which set it
belongs to.

Note that M can be built with any silent self-stabilizing maximal matching
algorithm that works for general graphs and with an adversarial distributed dae-
mon. We can then use, for instance, the self-stabilizing maximal matching algorithm
from [MMPTog] that stabilizes in O() moves. Observe that this algorithm is silent,

meaning that the maximal matching remains constant once the algorithm has stabi-
lized.

5.2.3 Augmenting paths detection and exploitation

Both algorithms ExpoMATCH and POLYMATCH are based on two
phases for each edge (1, v) in M: (1) detecting augmenting paths and (2) exploiting the
detected augmenting paths. Node u keeps track of four variables. The pointer p,, is
used to define the final matching. The variables «,, 3, are used to detect augmenting
paths and contain single neighbours of u. Also, s, is a boolean variable used for the
augmenting path exploitation. We will see in section 5.5 that algorithm PoLyMATcH
uses a fifth variable named end,,.

In the rest of the paper, we will call M" the final 1-maximal matching built by
any of the two algorithms. M is defined as follows:

DEFINITION 39. The built set of edges is:
M ={(u,v) e M: p,=p,=null}U{(a,b) e ENxM: p,=bA p, =a}

The first set in the union is pairs of nodes that do not perform any rematch.
These pairs come from M. The second set in the union is pairs of nodes that were not
matched together in M, but after a 3-augmenting path detection and exploitation,
they matched together.

48 @ A polynomial 2/3— approximation of the maximum matching problem

AUGMENTING PATH DETECTION First, every pair of matched nodes u, v
(v=m,, and u=my,,) tries to find single neighbours they can rematch with. These single
neighbours have to be available, in particular, they should not be married in a final
way with another matched node. We will see in the next sections, that the meaning
of being available is not the same in PoLyMaTcH and ExPoOMATCH. We say that a
single node x is a candidate for a matched node u if x is an available single neighbour
of u. Note that u and v need to have a sufficient number of candidates to detect a
3-augmenting path: each node should have at least one candidate and the sum of
the number of candidates for u and v should be at least 2. In both algorithms, the
BestRematch predicate is used to compute candidates of a matched node u, writing
in «,, and 8,,. Then, the condition below is used in both algorithms - in the AskFirst
predicate — to ensure the number of candidates is sufficiently high to detect if u
belongs to a 3-augmenting path.

(o, # null A Ky, F null) A (2 € Unique({(xu,ﬂu,ocmu,/}mu}) < 4)

where Unique(A) returns the number of unique elements in the multi-set A.

AUGMENTING PATH EXPLOITATION The exploitation is done in a sequential
way. First, two nodes matched together u and v agree on which one starts to build
a rematch and which one ends. This local consensus is done using AskFirst and
AskSecond predicates. Observe that these predicates are exactly the same in both
algorithms. These predicates use the local state of u and v to assign a role to these
two nodes. If AskFirst(u) is True then u starts to rematch and v ends. If AskSecond(u)
is True then v starts to rematch and u ends.

Observe that there are only three distinct possible values for the quadruplet
(AskFirst(u), AskSecond(u), AskFirst(v), AskSecond(v)) for any couple (u,v) € M
and whatever the « and S values are. These are: (null, null, null, null) or (x, null, null, y)
or (null, x, y, null), with x and y are two distinct single nodes. The first case means
that there is no 3-augmenting path that contains the couple (¢, v). The two other cases
mean that (x,u, v, y) is a 3-augmenting path. The second case occurs when x < y,
otherwise we are in the third case. Node u is said to be First if AskFirst(u) #+ null.
In the same way, u is Second if AskSecond(u) # null. So, if a 3-augmenting path
is detected though (u,v), the roles of u and v depend on the identifiers of single
nodes (candidates) in the augmenting path, i.e., u is First iff its single neighbour in
the augmenting path has a smaller identifier that the single neighbour of v in the
augmenting path.

5.2.4 Graphical convention

We will follow the above conventions in all the figures: matched
nodes are represented with thick circles and single nodes with thin circles. Node
identifiers are indicated inside the circles. Moreover, all edges that belong to the
maximal matching M are represented with a thick line, whereas the other edges are

Common strategy to build a 1-maximal matching o> 49

represented with a simple line. In the same way, all matched nodes are represented
with a thick line, whereas single nodes are represented with a simple line. We illustrate
the use of the p-values by an arrow, and the absence of the arrow or symbol ‘T’ mean
that the p-value of the node equals to null. A prohibited value is first drawn in grey,
then scratched out in black. For instance, in Figure 5.3, node 10 is single, nodes 9
and 8 are matched and the edge (8,9) € M.

5.3 DESCRIPTION OF THE ALGORITHM EXPOMATCH

In this section, we precisely describe the algorithm ExpoMATCH
[MMPT11]. The algorithm itself is shown in Algorithm 7.

5.3.1 Augmenting paths detection and exploitation

AUGMENTING PATH DETECTION In this algorithm, a single node x is a candi-
date for a matched node u if it is not involved in another augmenting path exploitation,
ie,if p, =nullV p, =u.

AUGMENTING PATH EXPLOITATION A 3-augmenting path is exploited in
two phases. These two phases are performed in a sequential way. Recall that node u
is said to be First if AskFirst(u) # null and node u is Second if AskSecond(u) # null.
Let us consider two nodes u and v such that (1, v) € M. Let us assume that # and v
detects an augmenting path.

1) The First node starts : Exactly one node among u and v attempts to rematch
with one of its candidates. This phase is complete when the first node, let say
u, is such that s, = True and this indicates to the Second node (v) that the first
phase is over.

2) The Second node continues: only when the first node succeeds will the second
node attempt to rematch with one of its candidates.
a) If this also succeeds, the exploitation is done and the augmenting path is
said to be fully exploited

b) Otherwise the rematch built by the First node is deleted and candidates
o and 8 are computed again, allowing then the detection of some new
augmenting paths.

5.3.2 Rules description

There are four rules for matched nodes. The Update rule is the
rule with the highest priority. This rule allows a matched node to update its « and f3
variables, using the BestRematch predicate. Then, predicates AskFirst and AskSecond
are used to define the role the node will have in the 3-augmenting path exploitation.

50 @ A polynomial 2/3— approximation of the maximum matching problem

If the node is First (resp. Second), then it will execute MatchFirst (resp. MatchSecond)
several times for this 3-augmenting path exploitation. The ResetMatch rule is per-
formed to reset bad initialization and also to reset an augmenting path exploitation
that did not terminate. For instance, this case happens when the single candidate of
the Second node rematch with some other node in the middle of the exploitation
path process.

Let us consider (u,v) € M and assume that u and v detect an augmenting path
with u is First. The MatchFirst rule is used by u to build its rematch. The rule is
performed a first time by u to propose a rematch to its candidate x (u sets p,, to x).
Then, if x accepts (p, = u), u performs this rule a second time to communicate to
v that its rematch attempt is a success (u sets s,, to True). The MatchSecond rule is
used by the node v to build its rematch. This rule can only be performed if s, = True.
Then, the rule is performed once by v to propose a rematch to its candidate y (v sets
Py to). Then, if y accepts (p,, = v), the path is fully exploited and will not change
during the rest of the execution.

There is only one rule for single nodes, called SingleNode. Recall that all neigh-
bours of a single node are matched, since M is a maximal matching. A single node
should always point to its smallest neighbour that points to it. This rule allows to
point to such a neighbour but also to reset a bad p-value to null. Observe that a
single node x cannot perform this rule if p, = x, which means that if x point to
some neighbour that points back to x, then x is locked.

Algorithm 6 Functions used in the ExpoOMATCH algorithm
function BESTREMATCH(V)
a := Lowest {v € single(N(u)) A (p, = null vV p, = u)}
b := Lowest {v € single(N(u)) ~ {a} A (p, = null vV p, = u)}
return (a, b)

function ASKFIRST (1)
ifa, # null Nev,,, # null N2 < Unique({a,, B, &y, > By }) < 4 then
ifa, <e,, V(a, =ay, AP, =null)V(a, =a, AB, #nullAu<m,)

then
return «,,
return null
function ASKSECOND(1)

if AskFirst(m,) # null then
return Lowest({x,,, B, } ~ {“mu})

return null
Unique(A) returns the number of unique elements in the multi-set A.
Lowest(A) returns the node in A with the lowest identifier. If A = &, then
Lowest(A) returns null.

Description of the algorithm EXPOMATCH o 51

Algorithm 7 ExpoMATCH algorithm
>>SingleNode > Rule for each node u in single(V)
if (p, = null A Lowest{v € N(u) | p, = u} # null) v p, ¢ matched(N(u)) U
{null} v (p,, # null A Pp, # u) then
p, := Lowest{v e N(u) | p, = u}

>Update > Rules for each node u in matched(V)
if (0, > B,) V (a, B, ¢ single(N(u)) U {null}) vV («, = B, N, # null) Vv
Py ¢ single(N(u)) U {null} v ((«,, B,,) # BestRematch(u) A(p,, = null v Pp, ¢
{u,null})) then

(ay> B,) := BestRematch(u)

(P> sy,) = (null, false)

>>MatchFirst
Let x = AskFirst(u)
ifx #null\N(p, # xVs, # (ppu =u)) then

P, =X
sy 1= (pp, = 1)
>MatchSecond

Let y = AskSecond(u)
if y # null \s,, =true/p, # ythen
Pu=Yy

>>ResetMatch
if AskFirst(u) = AskSecond(u) = null A (p,,,s,) # (null, false) then
(P> s,) = (null, false)

5.3.3 An execution example of the ExPOMATCH algorithm

Now, we give a possible execution of Algorithm ExpoMATCH
under a distributed adversarial daemon. Figure 5.3.(a) shows the initial configuration
of the execution. The topology is a path of seven vertices. The underlying maximal
matching represented by bold edges contains two edges (24,2) and (9, 8). Then
nodes 24, 2, 9 and 8 are matched nodes (in matched(V)) and nodes 15, 10 and 7 are
single nodes (in single(V)). There are two 3-augmenting paths: (15, 24,2, 10) and
(10,9,8,7).

THEINITIALCONFIGURATION (FIGURE 5.3.(A)) Intheinitial configura-
tion, we assume that a-values and f-values are defined as follows: («g, Bg) = (7, null),
(g, Bg) = (10, null) and («yy, Bry) = (15,null) and («,, B,) = (10, null). We also
assume all s-values are well defined: sg = sq = s, = 5,4, = false. At this step, node 15

52 @ A polynomial 2/3— approximation of the maximum matching problem

(a) Initial configuration. (f) Node 8 executes a ResetMatch move.

(b) The exploitation of (10,9, 8, 7) starts. (g) Node 7 executes a SingleNode move.

(c) Node 2 executes a MatchFirst move. (h) Node 2 executes a ResetMatch move.

(d) Node 10 executes a SingleNode move. (i) Node 10 execute a SingleNode move. FIGURE 5.3

e @ © @ e e ° @ @ O @ 0 9 0 An execution of Algorithm

(e) Node 9 executes an Update move. (j) Node 15 executes a SingleNode move. ExpoMatch

has its p-values such that: p,s ¢ {null, 24}.

Observe that in the initial configuration, we only have two wrong values: p;s and
a,,. We are going to show that these two faulty nodes can generate the destruction
of an augmenting path exploitation, even if this exploited path do not contain any
faulty node. This scenario is the fundamental reason why ExpoMATcH algorithm is
sub-exponential.

THE 3-AUGMENTING PATH EXPLOITATION OF (10,9,8,7) STARTS (FIG-
URE 5.3.(A-B)) Nodes 8 and 9 can start to exploit their augmenting path: node 8

is First because ag < ag, so node 8 executes a MatchFirst move and sets pg = 7. At

this point, node 8 waits for an answer of node 7. Node 7 accepts to take part of this

path exploitation setting p, = 8 (by performing a SingleNode rule). Afterwards, node

8 can tell node 9 that it can start its exploitation too. Thus node 8 executes again a

MatchFirst move and sets sg = True. Now, node 9 can start his exploitation. Assume

that it does by executing a MatchSecond move. Then node 9 waits for an answer of
node 10 and we are in configuration drawn in Figure 5.3.(b).

THE 3-AUGMENTING PATH EXPLOITATION OF (15,24,2,10) STARTS
(FIGURE 5.3.(B-D)) Now, wefocuson the other 3-augmenting path (15, 24, 2, 10).
At this moment, since 2 < Unique({&t,4, B14> &5, B5}) < 4,n0de 2 detects a 3-augmenting
path and starts to exploit it. Since node 2 is First (AskFirst(2) = 10), node 2 can
execute a MatchFirst move. Let us assume it does (see Figure 5.3.(c)).

Since both nodes 9 and 2 are pointing to node 10, node 10 can choose the node
to match with from these two nodes. Node 10 makes this choice by executing an
SingleNode move: since Lowest{u € N(10) | p, = 10} = 2, node 10 chooses node 2
(see Figure 5.3.(d)).

THE 3-AUGMENTING PATH (10,9,8,7) EXPLOITATION IS DESTROYED
(FIGURES 5.3.(D-G)) Node9 considers that node 10 belongs to another 3-augmenting

Description of the algorithm EXPOMATCH o~ 53

path because p;, ¢ {null, 9}. Moreover, since (&g, 39) # BestRematch(9), node 9 can
execute an Update move. Let us assume it does. Figure 5.3.(e) shows the configuration
obtained after this move: («ty, B9) = (null, null) and (py, s9) = (null, false). This will
cause AskFirst(8) = AskSecond(8) = null. Then node 8 executes a ResetMatch move
(see configuration after this move in Figure 5.3.(f)). This will cause node 7 to execute
a SingleNode move and sets p, = null as seen in Figure 5.3.(g).

FOCUSONTHE 3-AUGMENTING PATH (15,24,2,10) (FIGURES 5.3.(G-7J))
Let us assume now that the faulty node 24 is activated. It executes an Update move

(because (ctyy, ,4) # BestRematch(24)) and sets (yy, Br4) = (null,null). After

this move, node 2 detects that it does not belong to any 3-augmenting path since

AskFirst(2) = AskSecond(2) = null. So, node 2 executes a ResetMatch move and

sets (P, $,) = (null, false) (see Figure 5.3.(h)). Afterwards, node 10 executes a Sin-
gleNode move to set p,, to null (see Figure 5.3.(i)). Now, only node 15 is activable

and it executes a SingleNode move in order to set p,5 to null (see Figure 5.3.(j)). At

this moment, the two exploitation processes for the two 3-augmenting paths can

start again.

5.4 THE EXPOMATCH ALGORITHM
IS SUB-EXPONENTIAL.

In this section, we exhibit an execution of length 2~ in a chosen
graph having (N 2) nodes. To do that, we define, under some conditions, how to
translate a configuration into a binary integer. Then, we give an execution where all
configurations corresponding to integers from o to 2 — 1 appear. This gives us an
execution of length Q(2M).

5.4.1 State of a matched edge

A bit in the binary representation of a given configuration cor-
responds to a particular state of the nodes in a 3-augmenting path. More precisely,
according to the p-values of these nodes, the associated bit of the path will be o, 1 or
undef. Figure 5.6 represents an instance of the chosen graph for N = 4. Observe that
any matched node only has one single neighbor. This property will hold for any N.
Thus, a 3-augmenting path can be determined by its matched edge.

DEFINITION 4o0. (State of a matched edge)
Let e = (u,v) be an edge in the maximal matching M such that u (resp. v) has one
single neighbor x (resp. y). Assume y < x. Edge e is said to be:

* in state OF¥ if p, = null, p, = null, p, = null and p,, = null.
+ in state ALMOSTOFF if p, ¢ {null,u}, p, = null, p, = null, and p,, = null.
¢ instate ON if p, = null, p, = x, p, = y and p,, = v.

54 @ A polynomial 2/3— approximation of the maximum matching problem

+ in state ALMOSTON if p, ¢ {null,u}, p, = x, p, = yand p, = v.

State OFF State ALMOSTOFF State ON State ALMOSTON

Note that a matched edge can be in none of the states presented below.

Anillustration of Definition 40 can be seen in Figure 5.4. Moreover, if we consider
the edge (8, 9) in Figure 5.3, we have: the edge is in state OFF in Figure 5.3.(a), in state
ON in Figure 5.3.(b), in state ALMOSTON in Figure 5.3.(d) and in state ALMOSTOEFF
in Figure 5.3.(g). Finally, there is no state associated to the edge in Figure 5.3.(f)

The states of an edge represent the different steps of an augmenting path exploita-
tion. Now, we exhibit an execution to switch an edge (¢, v) from state OFF to state
ON in Lemma 5 and then, from state ALMOSTON to state ALMOSTOFF in Lemma 6.

LEMMA 5. Lete = (u,v) be an edge in the maximal matching M such that u (resp. v)
has one single neighbor x (resp. y). Assume y < x. Let C be a configuration where:

e is in state OFF and v = min({w € N(y) : p,, = y} U {v}).
There exists a finite execution starting in C and ending in D such that:

+ (i) only nodes u, v and y make moves between C and D and

« (ii) edge e is in state ON in D.

Proof of 5. We describe a finite execution starting in C and ending in D that allows
to switch edge (u,v) from state OFF to state ON and where only nodes u, v and
y make moves. Nodes u and v belong to a 3-augmenting path in C since p, =
p, = null by assumption. If &, # x, then node u executes an Update move and
sets (e, B,) = (x,null). If «, # y, then node v executes an Update move and sets
(ay, B,) = (y,null).

Now, the variables &, and «,, are well defined. Since y < x, we have AskFirst(v) =
y and AskSecond(u) = x. So node v executes a MatchFirst move and sets p, = y
Let C, — C, be the transition where v makes this MatchFirst move. Observe that
only u and v made some moves from C to C,. Moreover, u ¢ N(y) since u has only
one single neighbor that is x. Thus v = min({w € N(y) : p,, = y} U {v}) still holds
in C, and so, node y chooses node v to match with by executing a SingleNode move.
Finally, node u is eligible to execute a MatchSecond move and it then points to node
x. The edge (1, v) is now in state ON.

Now, we exhibit an execution to switch edge (¢, v) from state ALMOSTON to
state ALMOSTOFF.

LEMMA 6. Lete = (u,v) be an edge in the maximal matching M such that u (resp.
v) has one single neighbor x (resp. y). Assume y < x. Let C be a configuration where:
e is in state ALMOSTON and {w € N(y) : p, = y} = {v}

There exists a finite execution starting in C and ending in D such that:

The ExPOMATCH algorithm is sub-exponential. o> 55

FIGURE 5.4
Four states of an edge

¢ (i) only nodes u, v and y make moves between C and D and

o (ii) edge e is in state ALMOSTOFF in D.

Proof of 6. We describe a finite execution starting in C and ending in D that allows to
switch edge (1, v) from state ALMOSTON to state ALMOSTOFF and where only nodes u,
v and y make moves. Since edge (1, v) is in state ALMOSTON, then p, ¢ {null,u} and
so BestRematch(u) = (null, null). It («,,, B,,) # (null, null) then node u executes an
Update move. Otherwise, AskFirst(u) = AskSecond(u) = null and, since p,, # null,
u executes a ResetMatch move. In both cases, after the move, (p,,,s,,) = (null, false)
and («,,, 8,,) = (null, null).

«,, = nullimplies AskFirst(v) = null,and AskFirst(u) = null implies AskSecond(v) =
null. Moreover, since p, # null, v executes a ResetMatch move and sets p, = null.
Let C; — C, be the transition where v makes this Reset Match move. Since {w €
N(y) : p, = ¥} = {v} holds in the configuration C and since only 4 and v made
some moves from C to C, then we have: {w € N(y) : p, = y} = & holds in C,.
Thus node y performs a SingleNode move and sets p,, = null. The edge (1, v) is now
in state ALMOSTOFF. [6]

Note that in Figure 5.3.(d), edge (9, 8) is in state ALMOSTON. Figures 5.3.(e-g)
represent the execution described in Lemma 6 leading to a configuration where the
edge (9, 8) is in state ALMOSTOFE.

5.4.2 The graph Gy and how to interpret a
configuration into a binary integer

In the following, we describe an execution corresponding to count
from o to 2N — 1, where N is an arbitrary integer. This execution occurs in a graph
denoted by Gy with ©®(N?) nodes. Gy is composed by N sub-graphs, each of them
representing a bit. The whole graph then represents an integer, coded from these
N bits. Gy has 2 kind of nodes: the nodes represented by circles (e -nodes) and
those represented by squares (O -nodes). The e -nodes are used to store bit values
and hence an integer. The 0 -nodes are used to implement the “+1” operation as we
count from 0 to 2N — 1.

We now formally describe the graph Gy = (V i, Ey):

1) Vy =V} U VY where

vy = U {bl.k)lk=1,2,3,4}
0<i<N

vy = U {6)G}
0<j<i<N

2) Ey = E} U EY, where

Ey = U {(bG,k),b(,k+ 1)k = 1,2,3}
0<i<N

EE] = 0 U N{(b(l’ 1)) rl(i)])) > (rl(i)])’ rz(i’])) > (rz(i,])’b(]’ 4))}
<j<i<

56 @ A polynomial 2/3— approximation of the maximum matching problem

Figure 5.5 gives a partial view of the graph Gy, corresponding to the ith bit-block.

FIGURES5.5
A partial view of graph G,

Our exponential execution used the following underlying maximal matching M:
M ={(b(i,2),b(i,3))|0 <i < N}U{(r (G, j), 7,0,))I0 < j <i < N}
This maximal matching is encoded with the m-variables then we have:

Vi,] with 0 <] <i<N :mh(i,z) = b(l, 3), mb(,-j) = b(l, 2), m y = 1’2(i, _]) and

r1(isj

My i) = 7105 f)

The matching M is a §-approximation of the maximum matching and the algorithm
ExpoMartcH updates this approximation building M", a %-approximation of the
maximum matching. M" is encoded with the p-variable and we also use this variable
to encode the binary integer associated to a configuration.

EXAMPLE Asan illustration, graph G, is shown in Figure 5.6. In this example, the
bold edges are those belonging to the maximal matching M and arrows represent
the local variable p of the algorithm ExpoMATCH. A node having no outgoing arrow
has its p-variable equal to null.

FIGURE 5.6
Graph G, encoding 0010

As we said, the e-nodes are used to encode the N bits. Each bit 7 is encoded with
the local state of the 4 following nodes: b(i, 1), b(i, 2), b(i, 3), b(i, 4). These nodes are

The ExPOMATCH algorithm is sub-exponential. o 57

then named b(i, k), for “the k' node of the bit i”. For instance, node 10 is the fourth
node of the bit 0, thus node 10 is called b(0, 4). In the following, we will refer to these
four nodes as the i*" bit-block. The binary value associated to a bit-block is computed
accordingly to the p-values of each nodes in the bit-block. The following definition
give this association:

DEFINITION 41. (Bit-block encoding)

In graph Gy, nodes {b(i, 1), b(i, 2), b(i, 3), b(i, 4)} are the ith bit-block, for some 0 < i<
N. This bit-block encodes the value 1 (resp. o) if the edge (b(i, 2), b(i, 3)) is in state ON
(resp. OFF) and if Vj with 0 < j <1i, p, i j) = Pr,,j) = null.

Note that the value encoded by a bit-block is not always defined. But when all
bit-blocks encode a bit in a given configuration, then we can associate a positive
integer w to this configuration.

DEFINITION 42. (w-configuration)

Let w be an integer such that 0 < w < 2N, a configuration C is said to be an
w-configuration if for any integer 0 < i < N, the i*" bit of w is the value encoded
by the i" bit-block in C.

Observe that all the p-values of the O-nodes have to be null in any w-configuration.

In Figure 5.6, all p-values of (0-nodes are null. Moreover, the edges (9, 8), (17, 16)
and (21, 20) are in state OFF while the edge (13, 12) is in state ON. Thus, G, encodes
the binary integer 0010 and so Figure 5.6 shows a 3-configuration.

5.4.3 Identifiers in Gy

In order to exhibit our execution counting from 0 to 2V — 1, we
need to be able to switch edges between ON and OFk. This can be done executing
the guarded rules of ExpoOMATCH. Since this algorithm uses identifiers, we need
some properties on identifiers of nodes in Gy. The Ident function gives the identifier
associated to a node in V. Recall that we assume each node has a unique identifier.
These identifiers must satisfy the three following properties:

PROPERTY 1. (Identifiers order in Gy;)
Let b(i, k), b(i’ , k"), b(i, 2) and b(i, 3) be nodes in V3;, and r{ (i, j) and r,(i, j) be nodes
in V5. We have:

a) Ident(b(i, k)) > Ident(b(i’, k")) if G >i")v(i=i" ANk > k)
b) Ident(b(i,2)) < Ident(r,(i, j))
c) Ident(b(i, 3)) > Ident(r,(j,i))

We now show that in graph Gy, it exists an Ident function that satisfies Property 1.
Indeed, the property holds for the following naming:

Letc = [V¥|ands = @ There are ¢ nodes of kind b, s nodes of kind r; and s nodes
of kind r, as well.

58 @ A polynomial 2/3— approximation of the maximum matching problem

+ Nodes of kind r, are named from 1 to s

+ Nodes of kind b are named from s + 1 to s + ¢ such that:

Vi,0 <i< N,Vk €{1,2,3,4} : Ident(b(i,k)) =s+4i + k

+ Nodes of kind r; are named froms+c+1tos+c+s

Figure 5.6 shows graph G, with such a naming (c = 16 and s = 6).

5.4.4 Counting from 0 to PR |

We build an execution containing all w-configurations with 0 <
w < 2N — 1. To to this, we build an execution from an w-configuration to the
(w + 1)-configuration using a ’+1” operation. Thus we need to be able to switch bit
from o to 1and from 1 to 0. The main scheme is the following: let us consider a binary
integer x. The ’+1’ operation consists in finding the rightmost o in x. Then all 1 at the
right of this o have to switch to o and this o has to switch to 1 (if x = x’011 ... 1 then
x+1=x'100...0). Then if o is the i bit of x, the i?" bit-block has to switch from o
to 1 during the +1operation. And each j* bit-block, with 0 < j < i, has to switch
from 1 to o.
The switch of a bit-block from o to 1 only needs the e-nodes to perform moves
(see Lemma 5). However, this is not the case when we want to switch a bit-block from
1to o. Indeed, we use some other nodes to help to perform the switch: the O-nodes.
Figures 5.6 to 5.11 show a part of an execution where we apply a +1” opera-
tion twice. In Figure 5.6, the drawn graph encodes the integer (0010). Observe the
edge (b(0,2),b(0, 3)) from the 0" bit-block is in state OFr. We use Lemma 5 to go
from the 0010-configuration represented in Figure 5.6 to the 0011-configuration
represented in Figure 5.7. Figure 5.7 to 5.11 illustrate the transformation from the
0011-configuration to the 0100-configuration. Observe that Figures 5.8 to 5.10 do
not encode any integer.

THEOREM 9. Let w be an integer such that 0 < w < 2N — 1. There exists a finite
execution to transform an w-configuration into an (w + 1)-configuration.

Proof of 9. Let C be an w-configuration. Let p be the integer such that the p — 1 first
bits of w equal to 1 and the value of its p” bit to 0. This implies that the p" bit of
w + 1 is the first bit equal to 1.

We distinguish two cases: p = 0 and p > 0.

In the case where p = 0, edge (b(0, 2), b(0, 3)) is in state OFF by definition. Since
the Oth bit of integer w + 1 is equal to 1, (b(0,2),b(0,3)) must be in state ON in
the (w + 1)-configuration. By Property 1, we have Ident(b(0,1)) < Ident(b(0,4)).
Moreover nodes b(0, 3) and b(0, 2) only have one single neighbor, so the hypotheses
of Lemma 5 are satisfied. Thus, from Lemma 5, there exists an execution to switch
edge (b(0,2),b(0, 3)) from state OFF to state ON and in this execution, only nodes
b(0, 1), b(0, 2) and b(0, 3) make moves. At the end, the 0t/ bit has changed from 0 to
1 and the other did not change. We then have an (w + 1)-configuration.

The ExPOMATCH algorithm is sub-exponential. o 59

FIGURE 5.7
After turning on the 0Oth bit-
block, G, encodes 0011.

In the case where p > 0, for every integer i from 0 to p — 1, edge (b(3, 2), b(i, 3))
is in state ON and edge (b(p, 2), b(p, 3)) is in state OFF.
We can execute the following sequence of moves to obtain the (w+1)-configuration:

a) We first consider the 3-augmenting path (b(p, 1),7,(p, j), 7, (p, j), b(j,4)) for
any integer j, 0 < j < p. We prove that the matched edge of this path is in state
OFF and that it satisfies the assumptions of Lemma 5. Then, we switch this edge
from state OFF to state ON applying Lemma 5 (where the path (x, u, v, y) in this
lemma corresponds to the path (b(p, 1),7,(p, /), 2 (p, 7), b(j, 4))).

Note thatVj,0 < j < p,noder,(p, j) (resp. r,(p, j)) is adjacent to one single
node b(p, 1) (resp. b(j,4)). As for any i, 0 < j < p, the jth bit-block encodes
the value 1in C, then py; 4 = null in C. In the same way, as the p" bit-block
encodes the value o in C, then py, ;) = null in C. As C is an w-configuration,
then p, (, ;) = null and p, (, ; = null. Thus the edge (r,(p; /), 7, (p; j)) is in
state OFF in C.

Moreover, Ident(b(j,4)) < Ident(b(p, 1)) by Property 1. Finally, in C, we
have {w € N(b(j,4)) : p,, = b(j,4)} = {b(j, 3)} since all neighbours of b(j, 4)
but b(}j, 3) are O-nodes, and so they have their p-value equal to null in C. We
have Ident(r,(p, j)) < Ident(b(j,3)) by Property 1, then r,(p, j) = min({w €
N(@®(j,4)) : p, = b(j,4)} U {ry(p, j)}) and the hypotheses of Lemma 5 are
satisfied. Thus from Lemma 5, we can exhibit an execution to switch edges
(ri(p, j), 5 (p, j)) from state OFF to state ON and where only nodes r; (p, 7), 7, (p; j)
and b(j, 4) make moves. The configuration shown in Figure 5.8 corresponds to
this step.

p.J)

b) Now, for each integer i, 0 < i < p, edge (b(i, 2), b(i, 3)) is in state ALMOSTON.
Ident(b(i, 1)) < Ident(b(i,4)) and {w € N((b(i,1)) : p,, = (b(i, 1)} = {b(i,2)}
so hypothesis of Lemma 6 hold. Thus from Lemma 6, an execution to switch
edge (b(j,2),b(j,3)) from state ALMOSTON to state ALMOSTOFF is performed.
The configuration shown in Figure 5.9 corresponds to this step.

c) Edge (b(p,2),b(p, 3)) is still in state OFF. Using the same argument of step (1),
from Lemma 5, we can exhibit an execution to switch edges (b(p,2), b(p, 3))
from state OFF to state ON. Figure 5.10 illustrates this step.

d) Now, for each integer j, 0 < j < p, edge (r;(p, j), 7, (p, j)) is now in state AL-

60 @ A polynomial 2/3— approximation of the maximum matching problem

FIGURE 5.8

After activating the O -nodes
of the 3rd bit-block, G, does
not encode any integer.

FIGURE 5.9
Starting to turn off the 0Oth
and 1st bit-blocks.

FIGURE5.10
Starting to turn on the 3rd bit-
block.

MOSTON. From Lemma 6, there exists an execution to switch edge (r,(p, 7), 5 (p> 7))
from state ALMOSTON to state ALMOSTOFF. Figure 5.11 illustrates this step.

FIGURES5.11

Ending to turn off the Oth and
1st bit-blocks and to turn on
the 3rd bit-block. G, encodes
0100.

The ExPOMATCH algorithm is sub-exponential. o> 61

At the end of this execution, we obtain a configuration where the p — 1 first bits
of w are equal to o and he pth bit is 1. Moreover, observe that all O-nodes are in state
ALMOSTOFF or OFF, thus they all have their p-value sets to null. We are then in an
(w + 1)-configuration. [9]

From now, we can construct an instance from which an execution having Q2Vm)
moves can be built.

COROLLARY 2. Let n be the number of nodes. Algorithm EXPOMATCH can stabilize
after at most Q2V") moves under the central daemon.

Proof of 2. To prove the corollary, we can exhibit an execution of (2V") moves. Let
N be an integer. The initial configuration is a 0-configuration in graph Gy;.

We can build an execution that contains all the w-configurations for every value
w, 0 < w < 2N, By applying Theorem o, this execution can be split into 2V parts
corresponding to the execution from w-configuration to (w + 1)-configuration, for
0 < w < 2N, Thus, this execution contains 2V configurations. Since graph Gy
has O(N?) vertices, this execution has Q(2V") configurations and the corollary

holds.

5.5 THE NEW ALGORITHM POLYMATCH

We now follow up with the PoLyMATcH algorithm, based on
the algorithm presented by Manne et al. [MMPT11], called ExPOMATCH. As in
ExpoMATCH, POLYMATCH assumes there exists an underlying maximal matching,

called M.

5.5.1 Variables description

Our algorithm has the same set of local variables as in ExpoMATCH
plus one additional boolean variable, called end. As in ExpoMATCH, for a matched
node u, the pointer p,, refers to a neighbor of u that u is trying to (re)match with,
and pointers «,, and f3,, refer to two candidates for a possible rematching with u.
And again, s, is a boolean variable that indicates if u has performed a successful
rematching with its candidate. Finally, the new variable end,, is a boolean variable
that indicates if both u and m,, have performed a successful rematching or not. For a
single node x, only one pointer p, and one boolean variable end, are needed. p, has
the same purpose as the p-variable of a matched node. The end-variable of a single
node allows the matched nodes to know whether it is available or not. A single node
x is available for a matched node u if it is possible for x to eventually rematch with u,
ie., p, = uV end, =False (see BestRematch predicate).

62 A polynomial 2/3— approximation of the maximum matching problem

Algorithm 8 Functions used in the PoLyMATcH algorithm
function BESTREMATCH(v)
a = Lowest{x € single(N(u)) A (p, = uV end, = False)}
b = Lowest{x € single(N(u)) ~ {a} A (p, = uVend, = False)}
return (a, b)

function ASKFIRST (1)
ifo, # null A, # null A2 < Unique({ev,,, By, &y > By }) < 4 then
if (a, <, JV(x, =ay, NS, =nul)V(a, =a, N, #null\u<m,)
then ’
return o,

else
return null

function ASKSECOND(1)
if AskFirst(m,,) # null then
return Lowest({ex,,, B, } ~ {ocmu})

return null
Unique(A) returns the number of unique elements in the multi-set A.
Lowest(A) returns the node in A with the lowest identifier. If A = &, then
Lowest(A) returns null.

5.5.2 Augmenting paths detection and exploitation

AUGMENTING PATH DETECTION In this algorithm, a single node x is a can-
didate for a matched node u if it is not involved in another augmenting path that is
fully exploited, i.e., if end, = False V p, = u.

AUGMENTING PATH EXPLOITATION A 3-augmenting path is exploited in
three phases. These phases are performed in a sequential way. Let us consider two
nodes u and v such that (1, v) € M. Let us assume that # and v detects a 3-augmenting
path.

1) The First node starts (same as in ExpoMATCH): The First node, let say u, tries
to rematch with its candidate. This phase is complete when s, = True and this
indicate to the Second node (v) that the first phase is over.

2) The Second node continues: only when the first node succeeds will the second
node attempt to rematch with one of its candidates. This phase is complete when
end, = True and this indicate to the v’s neighbours that the second phase is
over.

3) All nodes in the path set their end variable to True: the end value of v is propa-
gated in the path. The goal of this phase is to write True in the end variables of
the two single nodes in the path in order to make them unavailable for other

The new algorithm POLYMATCH o 63

Algorithm 9 PoLyMATcH algorithm
>ResetEnd > Rules for each node u in single(V)
if p, = null N end,, = True then
end,, := False
>UpdateP
if (p,, = null ANM{w € matched(N(u)) | p,, = u} # @) V (p, ¢ (matched(N(u)) U
{null})) v (p,, # null ANpy # 1) then
p, = Lowest{w € N(u) | p,, = u}
end,, := False
>UpdateEnd
if (p,, € matched(N(u)) A (ppu =u)A(end, + endpu) then
end, :=end,

>Update > Rules for each node u in matched(V)
if (o, > B,) V (a,, B, ¢ (single(N(u)) U {null})) V («, = B, N, # null) V p,, ¢
(single(N(u)) U {null}) v ((«,, B,) # BestRematch(u) A(p, = null Vv (ppu +
u N endpu = True))) then

(> B,) := BestRematch(u)

(P> S,>end,) := (null, False, False)

>>MatchFirst
if (AskFirst(u) + null) A [p,, # AskFirst(u) Vs, # (p,, = AskFirst(u) A Py, =
uN p,, €{AskSecond(m,),null}) v end, # (p, = AskFirstu) A p, =uns, A\
Pm, = AskSecond(m,) Nend,,)] then
end, := (p, = AskFirstu) Np, =unNs,Ap,, = AskSecond(m,)Aend,,)
s, := (p, = AskFirst(u) A Py, =uN (pmu € {AskSecond(my,,), null})
p,, := AskFirst(u)

>>MatchSecond
if AskSecond(u) # null) A (s,, = True) N[p, # AskSecond(u)V end, # (p, =
AskSecond(u) A p, =uAN p,, = AskFirst(m,))Vs, #end,] then

end, := (p, = AskSecond(u) A p, =uN p,, = AskFirst(m,))

s, =end,

p,, := AskSecond(u)

>ResetMatch
if AskFirst(u) = AskSecond(u) = null A (p,,,s,) # (null, false) then
(P> $,) = (null, false)

64 @ A polynomial 2/3— approximation of the maximum matching problem

married nodes. Indeed, the end variable is used to compute the candidates of a
matched node.

The scenario for an augmenting path exploitation when everything goes well is
given in the following. Node u starts trying to rematch with x performing a Match-
First move and p,, := x. If x accepts the proposition, performing an UpdateP move
and p, := u, then u will inform v of this first phase success, once again by performing
a MatchFirst move and s, :=True. Observe that at this point, x cannot change its
p-value since p, = x. Finally, node v tries to rematch with y, performing a Match-
Second move and p,, := y.If y accepts the proposition, performing an UpdateP move
and p, := v, then v will inform u of this final success, by performing a MatchSecond
move again and end,, :=True. This complete the second phase. From then, all nodes
in this 3-augmenting path will set there end-variable to True: u by performing a last
MatchFirst move, and x and y by performing an UpdateEnd move. From this point,
non of these nodes x, u, v, or y will ever be eligible for any move again. Moreover,
once single nodes have their end-variables set to True, they are not available anymore
for any other matched nodes.

5.5.3 Rules description

There are four rules for matched nodes. As in ExpoMATCH, the
Update rule allows a matched node to update its « and f3 variables, using the Be-
stRematch predicate. Then, predicates AskFirst and AskSecond are used to define the
role the node will have in the 3-augmenting path exploitation. If the node is First (resp.
Second), then it will execute MatchFirst (resp. MatchSecond) for this 3-augmenting
path exploitation. The ResetMatch rule is performed to reset bad initialization and
also to reset an augmenting path exploitation that did not terminate.
The MatchFirst rule is used by the node when it is First. Let u be this node. The
rule is performed three times in a usual path exploitation:

1) The first time this rule is performed, u seduces its candidate setting (end,,, s,,, p,,)
to (False, False, AskFirst(u)).

2) Then this rule is performed a second time after the u’s candidate has accepted
the u’s proposition, i.e., when AskFirst(u) has set its p-variable to u. So the
second MatchFirst execution sets (end,,, s,, p,) to (False, True, AskFirst(u)).
Now, variable s, is equal to True, allowing node m,, that is Second to seduce its
own candidate.

3) Finally, the MatchFirst rule is performed a third time when m,, completed is
own rematch, i.e., when endmu = True. Observe that when there is no bad
information due to some bad initializations, then end,,, = T'rue means p,, =
AskSecond(m,,) N Py, =my (see the third line of the MatchSecond rule). So
this third MatchFirst execution sets (end,, s, p,) to (T'rue, True, AskFirst(u)),
meaning that the 3-augmenting path has been fully exploited.

In the MatchFirst rule, observe that we make the s, affectation before the p,,
affectation, because the s, value must be computed accordingly to the value of

The new algorithm POLYMATCH o 65

p,, before activating u. Indeed, when u executes MatchFirst for the first time, it
allows to set p, from L to AskFirst(u) while s, remains False. Then when u ex-
ecutes MatchFirst for the second time, s, is set from False to True while p,, re-
mains equal to AskFirst(u). For the same argument, we make the end,, affectation
before the s, affectation. Thus, the "normal” values sequence for (p,, s, end,,) is:
((L, False, False), (AskFirst(u), False, False), (AskFirst(u), True, False),
(AskFirst(u), True, True)).

The MatchSecond rule is used by the node when it is Second. This rule is per-
formed only twice in a usual path exploitation. For the first execution, u has to
wait for m,, to setits s,, to True. Then u can perform MatchSecond and update its
p-variable to AskSecond(u). When the u’s candidate has accepted his proposition, u
can perform MatchSecond for the second time, setting s,, and end,, to True. As in the
MatchFirst rule, we set the end and s affectations before the p affectation.

There are three rules for single nodes. The ResetEnd rule is used to reset bad
initializations. In the UpdateP rule, the node updates its p-value according to the
propositions done by neighbouring matched nodes. If there is no proposition, the
node sets its p-value to null. Otherwise, p is set to the minimum identifier among all
proposals. Afterwards, the p-value can only change when the proposition is cancelled.
When a single node u has accepted a proposition, its end value should be equal to
the end value of p,,. The UpdateEnd rule is used for this purpose.

5.5.4 Execution examples

We give two different executions of algorithm PoLyMATcH un-
der the adversarial distributed daemon. The first execution points out the main
differences between our algorithm PoLyMATcH and algorithm ExpoMATcH. In the
second execution, we focus on the end variable role for the exploited path process.

MAIN DIFFERENCE BETWEEN POLYMATCH AND EXPOMATCH ALGO -
RITHMS We will consider the same example in Section 5.3.3: we assume that
we are in configuration drawn in Figure 5.3.(d). We assume that all end-values
equals to False. We also assume that all a-values and -values are defined as fol-
lows: (ag, Bg) = (7,null), (ag, By) = (10,null) and (xyy, Br4) = (15,null) and
(a5, B;) = (10, null). At this moment, we assume that the two 3-augmenting paths
are partially exploited : p, = py = 10, p;o = 2, p15 # 24, p5 # null, pg = 7, and
p; =8

Let focus on node 24. Node 24 considers that it does not belong to a 3-augmenting
path because end s = True means that node 15 is not rematched. Thus, it is eligible
to execute a Update move.

In our algorithm, even after node 10 has chosen node 2, node 9 still waits for an
acceptation of node 10, and will do so while end,, remains False except for node 15.
However, at this point, in Manne et al. algorithm, node 9 can destroy the augmenting-
path construction. This is the main difference that allows our algorithm to prevent
from exponential executions.

66 <« A polynomial 2/3— approximation of the maximum matching problem

So, at this point there is a binary choice for node 9: destroy or not its augmenting-
path construction. In Manne et al. algorithm, the choice is to destroy, thus the destruc-
tion of a partially exploited augmenting-path can be done while no fully exploited
augmenting path has been built. Moreover, for one fully exploited augmented path,
we can exhibit some executions where we destroy a sub-exponential number of
exploited augmented-path (see Section 5.4). In our algorithm, we do the other choice
which is: do not destroy while there is still hope to exploit the augmenting path. So,
if node 9 breaks a partially exploited augmenting path, then node 10 belongs to a
tully exploited augmenting-path. Thus, this destruction implies one 3-augmenting
path has been fully exploited, and thus the matching size has been increased by 1.

This difference is implemented in the algorithm through the BestRematch pred-
icate. The condition p, = null in Manne et al. algorithm has been replaced by the
condition end, =False in our algorithm. Then, in our algorithm, BestRematch(9)
remains constant when node 10 chooses node 2, while it does not in Manne et al.
algorithm, making node 9 eligible for Update.

How to handle the end-variable.

Second, we consider the first execution in order to illustrate the
rule of local end-variable. Figure 5.12.(a) shows the initial state of the execution.
The underlying maximal matching contains one edge (2, 3). Then nodes 2, 3 are
matched nodes, and nodes 1, 7, and 8 are single nodes. At the beginning, there are
two 3-augmenting paths: (1,2, 3,7) and (8,2,3,7).

end, = True

(a) Initial configuration.

(c) 1 executes ResetEnd, then 2 executes Up-
date and becomes First. Finally, 3 executes Re-
setMatch.

(e) In parallel 7 and 3 execute UpdateP and
MatchSecond respectively.

end, = True

(b) 3 executes MatchFirst, then 7 executes Up-
dateP and chooses 3.

(d) 2 executes MatchFirst, then 1 executes Up-
dateP and accepts the proposition of 2. Finally,
2 executes MatchFirst (s,:=True).

(f) 7 executes UpdateP, then 3 executes Match-
Second, then the True value of end; is propa-

gated in the path (1,2,3, 7).

The new algorithm POLYMATCH o 67

FIGURE 5.12

An execution of Algorithm
PolyMatch (Only the True
value of the end-variables
are given)

The initial configuration (Figure 5.12.(a)):

In the initial configuration, we assume that all «-values and B-values
are defined as follows: («x,, 3,) = (8, null), and (a3, B3) = (7, null). We also assume all
s-values are well defined (all other s-values are False) whereas all end-values are False
but end, that is True. At this moment, node 2 considers that since end, =True, node
1 already belongs to a fully exploited 3-augmenting path: BestRematch(2) = (8, null).

The 3-augmenting path is (7, 3, 2, 8). Node 2 considers that node 1 is not available
because end; =True. Since 2 < Unique({c,, 3,, @3, B3}) < 4, nodes 2 and 3 detect a
3-augmenting path and start to exploit it. Since node 3 is First (AskFirst(3) = 7 and
AskFirst(2) = null), node 3 may execute a MatchFirst move. Let us assume it does.

The 3-augmenting path exploitation starts (Figure 5.12.(b)):

Node 3 executes here a MatchFirst move and points to node 7.
Since node 3 is pointing to node 7, node 7 is the only activable node among all nodes
except node 1. Node 7 points to node 3 by executing a UpdateP move.

Let us focus on node 1. Its end-value is not well defined since end, =True
while node 1 does not belong to a fully exploited augmenting path. Thus, node 1
is eligible for ResetEnd rule. Let us assume it makes this move. After this move,
we have end, =False. This implies that BestRematch(2) = (1, 8) and thus («,, 3,) =
(8, null) # BestRematch(2). So, only node 2 is activable, and is eligible for Update
rule. Thus, after this mode, node 2 is First. This implies that node 3 is Second, and
it is eligible for ResetMatch because AskSecond(3) # null A p; # null A s, =False.
Let us assume it does it.

A second 3-augmenting path exploitation starts (Figure 5.12.(d)):

Let us consider node 2. It is First and it can execute a MatchFirst
rule. After this activation, it sets p, = 1 and s, = end, =False. Now, node 1 accepts
the node 2 proposition by executing a UpdateP move. After this activation, node 1
points to node 2 (p; = 2). Now, node 2 is eligible for executing a MatchFirst rule. It
sets p, = 1 and s, = True. This implies that node 3 becomes eligible for MatchSecond.

In the configuration shown in Figure 5.12.(e), node 3 can propose to node 7
with a MatchSecond. Note that node 7 is also eligible for UpdateP since p; # 7.
Let us assume these two nodes do the move in parallel. Figure 5.12.(e) shows the
configuration obtained after theses moves: p; = 7, p, = null. Note that after these
activations, we have s; = False since, before these activations, the p-values of nodes 3
and 7 are not as follow: p; = 7 and p, = 3. This kind of transitions, where a matched
node proposition is performed in parallel with a single node abandonment, is the
reason why we make the s-affectation, then the p-affectation in the MatchFirst rule.
This trick allows to obtain after a MatchFirst rule: s, = True implies p,, = u. Finally,
observe at this step that node 3 still waits for an answer of node 7.

68 @ A polynomial 2/3— approximation of the maximum matching problem

The path (1, 2,3,7) becomes fully exploited (Figure 5.12.(f)):

Now, node 7 can choose 3 by executing UpdateP. Assume that
it does. Since end; # (p; = 7 A\ p; = AskSecond(3) A\ p, = AskFirst(2)), node 3
is eligible for a MatchSecond rule to set end; to True and then to make the other
nodes aware that the path is fully exploited. Assume node 3 executes a MatchSecond
move. This will cause node 7 (resp. 2) to execute an UpdateEnd move (resp. a Match-
First move) and sets end, =True (resp. end, =True). Now, it is the turn to node 1
to execute an UpdateEnd move. As the end-value of nodes 1, 2, 3, and 7 are equal
to True, the 3-augmenting path is fully exploited. The system has reached a stable
configuration (see Figure 5.12.(f)). Thus, the size of the matching is increasing by one
and there is no 3-augmenting path left.

Now, we present the proof of our algorithm.

5.6 CORRECTNESS PROOF

A natural way to prove the correction of PoLYMATCH algorithm
could have been to follow the approach below. We consider a stable configuration C
in PoLyMAtcH and we prove C is also stable in the Manne et al. algorithm. As we
use the exact same variables but the end-variable and because the matching is only
defined on the common variables, the correctness follows from Manne et al. paper.
Moreover, we can easily show that if C is stable in PoLyMATCH, then no rule from
the Manne et al. algorithm but the Update rule can be performed in C. Unfortunately,
it is not straightforward to prove that the Update rule from Manne et al. algorithm
cannot be executed in C. Indeed, our Update rule is more difficult to execute than
the one of Manne et al. in the sens that some possible Update in Manne et al. are not
possible in our algorithm. By the way, this is why our algorithm has a better time
complexity since the number of partially exploited augmented path destruction in
our algorithm is smaller than in the Manne et al. algorithm. In particular, we have
to prove that in a stable configuration, for any matched node, if p, # null, then
end,, = True. To prove that, we need Lemmas 7, 8, 9, 10, 11 and a part of the proof
from Theorem 10. Observe that from these results, the correctness is straightforward
without using the Manne et al. proof.

We first introduce some notations. A matched node u is said to be First if
AskFirt(u) # null. In the same way, u is Second if AskSecond(u) # null. Let Ask :
V — V U {null} be a function where Ask(u) = AskFirst(u) if AskFirst(u) + null,
otherwise Ask(u) = AskSecond(u). We will say a node makes a match rule if it
performs a MatchFirst or MatchSecond rule.

Recall that the set of edges built by our algorithm PoLyMATcH is

M = {(u,v) e M: p, = p, =null} U{(a,b) e E~M: p, =bA p, = a}

Correctness Proof o 69

For the correctness part of the proof, we prove that in a stable configuration,
M" is a 2/3-approximation of a maximum matching on graph G. To do that we
demonstrate there is no 3-augmenting path on (G, M"). In particular we prove that
for any edge (u,v) € M, we have either p, = p, = null, or u and v have two
distinct single neighbours they are rematched with, i.e., 3x € single(N(u)),3y €
single(N(v)) with x # y such that (p,, = u) A (p, = x) A (py =v)A(p, = y).In
order to prove that, we show every other case for (1, v) is impossible. Main studied
cases are shown in Figure 5.13. Finally, we prove that if p, = p, = null then (u,v)
does not belong to a 3-augmenting-path on (G, M").

(a) By Lemma 8 (b) By Lemma 10

O
00

(c) By Lemma 13

G

OO

G

O
®
S

N 6 S N o~ S ¥
FIGURES5.13 @ w w Y @ w w @

Impossible situations in a sta-

d) ByL Bv L
ble configuration. (d) By Lemma 12 (e) By Lemma 11

LEMMA 7. In any stable configuration, we have the following properties:

* Yu € matched(V) : p, = Ask(u);
s Vx € single(V) : if p, = u with u # null, then u € matched(N(x)) A p, =
xANend, =end,.

Proof of 7. First, we will prove the first property. We consider the case where AskFirst(u) #
null. We have p,, = AskFirst(u), otherwise node u can execute rule AskFirst. We
can apply the same result for the case where AskSecond(u) # null. Finally, we con-
sider the case where AskFirst(u) = AskSecond(u) = null. If p,, # null, then node u
can execute rule Reset Match which yields the contradiction. Thus, p,, = null.

Second, we consider a stable configuration C where p, = u, with u # null.
u € matched(N(x)), otherwise x is eligible for an UpdateP rule. Now there are two
cases: p, = x and p, # x.If p, # x, this means that p, # x. Thus, x is eligible for
rule U pdateP, and this yields to a contradiction with the fact that C is stable. Finally,
we have end,, = end,, otherwise x is eligible for rule U pdateEnd.

70 @ A polynomial 2/3— approximation of the maximum matching problem

LEMMA 8. Let (u,v) be an edge in M. Let C be a configuration. If p,, # null A p, =
null holds in C (see Figure 5.13.(a)), then C is not stable.

Proof of 8. By contraction. We assume C is stable. From Lemma 7, we have p,, =
Ask(u) # null and p, = Ask(v). So, by definition of predicates AskFirst and
AskSecond, Ask(u) = x # null implies that Ask(v) # null. This contradicts that fact
that p, = Ask(v) = null.

LEMMA 9. Let (x,u,v, y) be a 3-augmenting path on (G, M). Let C be a stable
configuration. In C, if p, = u, p, = x, p, = y and p, = u, then end, = end,, =
end, = end,, = True.

Proof of 9. From Lemma 7, p,, = Ask(u) (resp. p, = Ask(v)) thus Ask(u) # null
and Ask(v) # null. Wl.o.g, we can assume that AskFirst(u) # null. We have s, =
True, otherwise u can execute MatchFirst rule. Now, as s,, = True, we must have
end, = True, otherwise v can execute MatchSecond rule. As s, = end,, = True, we
must have end,, = True, otherwise u can execute MatchFirst rule. From Lemma 7,
we can deduce that end, = end, = end, = end, = True and this concludes the

proof. 9]

LEMMA 10. Let (x,u,,0;,x,) be a 3-augmenting path on (G, M). Let C be a config-
uration. If p, = uy Ap, =x, AP, =X, A p, #v; holdsinC (see Figure 5.13.(0)),
then C is not stable.

Proof of 10. By contraction. We assume C is stable. From Lemma 7, Ask(u;) = x;
and Ask(v,) = x,.

First we assume that AskSecond(u;) = x, and AskFirst(v,) = x,. The local
variable s, is False, otherwise v; would be eligible for executing the MatchFirst
rule. Since AskSecond(u,) # null A p, # null A's, = False, this implies that u, is
eligible for the Reset Match rule which is a contradiction.

Second, we assume that AskFirst(u;) = x; and AskSecond(v,) = x,. We have
s,, = True, otherwise u; can execute the MatchFirst rule. This implies that end,, =
False, otherwise v; can execute the MatchSecond rule. As end, = False, then
endu1 = False, otherwise u, can execute the MatchFirst rule. From Lemma 7,
end, =end, =end, = False.Since Ask(v,) = x,, we have x, € {«, , 3, }. Let us
assume end, = True. Then x, ¢ BestRematch(v;) and then v, is elligible for an
Update. Thus end,, = False.

Therefore, C is a configuration such that v, is First and v, is Second withend,, =
end, = end, = end, = False. Now we are going to show there exists another
augmenting path (x,,u,,v,, x3) with end,, =end, =end, =end, = Falseand
Pu, = X35 Px, = Up, Py, = X3 and p,. # v, such that u, is First and v, is Second (see
Figure 5.14).

px, # null otherwise x, is eligible for an UpdateP rule. Thus there exists a
vertex u, # v, such that p, = u,. From Lemma 7, u, € matched(N(x,)) and
Pu, = x,. Therefore, there exists a node v, = m,, . From Lemma 8, we can deduce
that p, # null and there exists a node x5 such that p, = x3. x5 € single(N(v,))

Correctness Proof o 71

FIGURE5.14 @/' (1) (Y (2 () (Y= }(@
A chain of 3-augmenting o/ O/ N O/ o/
paths.

otherwise x, is eligible for an Update rule. Finally, if p, = v,, then Lemma 9 implies
thatend, =end, =end, = end, = True. Thisyields to the contradiction with
the fact end, = False. So, we have p, # v,.

We can then conclude that (x,, u,,v,, x3) is a 3-augmenting path such that
Px, = Uy A Py, = X3 APy, = X3 A\ p,. # v,. This augmenting path has the exact
same properties than the first considered augmenting path (x;,u;,v;, x,) and in
particular v, is First.

Now we can continue the construction in the same way. Therefore, for C to be sta-
ble, it has to exist a chain of 3-augmenting paths (x|, u;, Uy, X5, Uy, Uy, X35 .o, Xj5 Uj, Ujy Xjy 15 ---)
where Vi > 1 : (x;, u;, v;, x;,1) is a 3-augmenting path with p, = u;Ap, = x;Ap, =
Xis1 A Px,,, = Viyy and u; is First. Thus, x; < x, < ... < x; < ... since the u; will
always be First. Since the graph is finite some x; must be equal to some x, with € # k
which contradicts the fact that the identifier’ sequence is strictly increasing.

LEMMA 11. Let (x,u,v, y) be a 3-augmenting path on (G, M). Let C be a configura-
tion. If p, = X A p, # U\ p, = y A\ p,, # v holds in C (see Figure 5.13.(¢)), then C is
not stable.

Proof of 11. By contradiction, assume C is stable. From Lemma 7, Ask(u) = x. As-
sume to begin that AskFirst(u) # null. Because p, # u we haves, = False,
otherwise u is eligible for MatchFirst. Since AskSecond(v) # null and s,,, =s, =
False then v can apply the Reset Match rule which yields a contradiction. There-
fore assume that AskSecond(u) # null. The situation is symmetric (because now
AskFirst(v) # null) and therefore we get the same contradiction as before.

LEMMA 12. Let (x,u,v, y) be a 3-augmenting path on (G, M). Let C be a configu-
ration. If p,, = p, = p, = p,, = null holds in C (see Figure 5.13.(d)), then C is not
stable.

Proof of 12. By contradiction, assume C is stable. end, = False (resp. end,, = False),
otherwise x (resp. y) is eligible for a ResetMatch. («,,, 3,,) = BestRematch(u) (resp.
(ay, B,) = BestRematch(v)), otherwise u (resp. v) is eligible for an Update. Thus,
there is at least an available single node for u and v and so Ask(u) # null and
Ask(v) # null. Then, this contradicts the fact that Ask(u) = null (see Lemma 7).

THEOREM 10. In a stable configuration we have, ¥ (u,v) € M:

¢ p, = p, =null or
¢ Jx € single(N(u)),3y € single(N(v)) with x + y such that p, = u A p, =
XNPy=VADp, =Y

72« A polynomial 2/3— approximation of the maximum matching problem

Proof of 10. We will prove that all cases but these two are not possible in a stable
configuration. First, Lemma 8 says the configuration cannot be stable if exactly one
of p, or p, is not null.

Second, assume that p,, # null A p, # null. Let p, = x and p, = y. Observe
that x € single(N(u)) (resp. y € single(N(v))), otherwise u (resp. v) is eligible for
Update.

Casex # y:If p, # uand p,, # v then Lemma 11 says the configuration cannot
be stable. If p, = wand p,, # v then Lemma 10 says the configuration cannot be
stable. Thus, the only remaining possibility when p,, # null and p,, # nullis: p, = p,,
and p,, =v.

Case x = y: Ask(u) (resp. Ask(v) # null), otherwise u (resp. v) is eligible for a
ResetMatch. W.l.o.g. let us assume that u is First. x = AskFirst(u) (resp. x=AskSec-
ond(v)), otherwise u (resp. v) is eligible for MatchFirst (resp. MatchSecond). Thus
AskFirst(u) = AskSecond(v) which is impossible according to these two predi-
cates.

LEMMA 13. Let x be a single node. In a stable configuration, if p,, = u,u # null then
it exists a 3-augmenting path (x,u,v, y) on (G, M) such that p, =u A p, = x A\ p, =
YA P, =v.

Proof of 13. By lemma 7, if p, = u with u # null then u € matched(N(x)) and
p, = x. Since p,, # null, by Theorem 10 the result holds.

Observe that according to this Lemma, cases from Figure 5.13.(c) are impossible.

Thus, in a stable configuration, for all edges (u,v) € M, if p,, = p, = null then
(u, v) does not belong to a 3-augmenting-path on (G, M. In other words, we obtain:

COROLLARY 3. In a stable configuration, there is no 3-augmenting path on (G, M")

left.

5.7 CONVERGENCE PROOF

This section is devoted to a sketch of the convergence proof. In
the following, u will denote the number of matched nodes and o the number of
single nodes.

The first step consists in proving that the values of s and end represent the
different phases of the path exploitation. Recall that s, = True means p, = u.
Moreover end,, = True means that the path is fully exploited. We can easily prove
that after one activation of a matched node u, s,, = True implies p,, = u:

15 LEMMA 1. Let u be a matched node. Consider an execution & starting after u
executed some rule. Let C be any configuration in . In C, if s, =True then Ix €
single(N(u)) : p, =xAp, =u.

Convergence Proof o 73

However, a bad initialization of end,,, to True can induce u to wrongly write
True in end,,. But this can appear only once and thus, the second times u writes True
in end,, means that a 3-augmenting path involving u has been fully exploited.

11 THEOREM 1. In any execution, a matched node u can write end,, :=True at most
twice.

We now count the number of destruction of partially exploited augmenting
paths. Recall that in Manne et al. algorithm, for one fully exploited augmenting path,
it is possible to destroy a sub-exponential number of partially exploited ones.

In our algorithm, observe that for a path destruction, the set of single neighbors
that are candidates for a matched edge has to change and this change can only occur
when a single node changes its end-value. Such a change induces a path destruction
if a matched node takes into account this modification by applying an Update rule.
So, we first count the number of time a single node can change its end-value (Lemma
25) and then we deduce the number of time a matched node can execute Update
(Corollary 5). Finally, we conclude we destroy at most O(n?)(= O(A(o +))) partially
exploited augmenting path.

The rest of the proof consists in counting the number of moves that can be
performed between two Update, allowing us to conclude the proof (Theorem 12).

In the following, we detailed point by point the idea behind each result cited
above.

Since single nodes just follow orders from their neighboring matched nodes, we
can count the number of times single nodes can change the value of their end variable.
There are o possible modifications due to bad initializations. A matched node u can
write True twice in end,,, so end,, can be True during 3 distinct sub-executions. As a
single node x copies the end-value of the matched node it points to (p, = u), then
a single node can change its end-value at most 3 times as well. And we obtain 6y
modifications.

25 LEMM A 2. Inany execution, the number of transitions where a single node changes
the value of its end variables (from True to False or from False to True) is at most
o + 6y times.

We count the maximal number of Update rule that can be performed in any
execution. To do that, we observe that the first line of the Update guard can be True
at most once in an execution (Lemma 16). Then we prove for the second line of the
guard to be True, a single node has to change its end value. Thus, for each single
node modification of the end—value, at most all matched neighbors of this single
node can perform an Update rule.

5 COROLLARY 1. Matched nodes can execute at most A(o +6u) + u times the Update
rule.

Third, we consider two particular matched nodes ¢ and v and an execution with
no U pdate rule performed by these two nodes. Then we count the maximal number

74 @ A polynomial 2/3— approximation of the maximum matching problem

of moves performed by these two nodes in this execution. The idea is that in such
an execution, the « and f3 values of u and v remain constant. Thus, in these small
executions, u and v detect at most one augmenting path and perform at most one
rematch attempt. We obtain that the maximal number of moves of u and v in these
small executions is 12. By the previous remark and Corollary 5, we obtain:

12 THEOREM 2. In any execution, matched nodes can execute at most 12A(o + 6u) +
18y rules.

Finally, we count the maximal number of moves that single nodes can perform,
counting rule by rule. The ResetEnd is done at most once. The number of UpdateEnd
is bounded by the number of times single nodes can change their end-value, so it
is at most o + 6. Finally, UpdateP is counted as follows: between two consecutive
UpdateP executed by a single node x, a matched node has to make a move. The total
number of executed UpdateP is then at most 12A(0 + 6u) + 18y + 1.

7 COROLLARY 2. The algorithm PoLyMATCH converges in O(n?) moves under the
adversarial distributed daemon and in a general graph, provided that an underlying
maximal matching has been initially built.

The Manne et al. algorithm [MMPTog] builds a self-stabilizing maximal match-
ing under the adversarial distributed daemon in a general graph, in O(m) moves.
This leads to a O(m.n*) moves complexity to build a 1-maximal matching with our
algorithm without any assumption of an underlying maximal matching.

Now, the next section is devoted to the description of the technical proof.

5.71 A matched node can write True in its end-variable at most twice
The first three lemmas are technical lemmas.

LEMMA 14. Let u be a matched node. Consider an execution £ starting after u
executed some rule. Let C be any configuration in €. Ifend,, = True in C thens,, = True
as well.

Proof of 14. Let C, — C, be the transition in € in which u executed a rule for the last
time before C. Observe that C may be equal to C,. The executed rule is necessarily
a match rule, otherwise end,, could not be True in C,. If it is a MatchSecond the
lemma holds since in that case s, is a copy of end,,. Assume now it is a MatchFirst.
For end,, to be True in C,, p, = AskFirst(u) A p, =uA p,, = AskSecond(m,)
must hold in C, according to the guard of MatchFirst. This implies that u writes
True in s, in transition C, — C;.

LEMM A 15. Letu be amatched node. Consider an execution € starting after u executed
some rule. Let C be any configuration in . In C, if s,, = True then 3x € single(N(u)) :

Pu=XNpy=1u

Convergence Proof o~ 75

Proof of 15. Consider transition C, — C; in which u executed a rule for the last time
before C. The executed rule is necessarily a match rule, otherwise s, could not be
True in C;. Observe now that whichever match rule is applied, Ask(u) # null - let us
assume Ask(u) = x —and p,, = x and p, = umust hold in C, for s, to be True in C;.
p,, = x still holds in C; and until C. Moreover, x must be in single(N(u)), otherwise
u would have executed an Update instead of a match rule in C, — C,, since Update
has the higest priority among all rules. Finally, in transition C, ~ C,;, x cannot
execute U pdateP nor ResetEnd since p, € matched(N(x)) A p, = x holdsin C,.
Thus in C,, p, = x and p, = u holds. Using the same argument, x cannot execute
U pdateP nor Reset End between configurations C; and C. Thus p, = x A p,, = uin

C.

LEMMA 16. Let u be a matched node and € be an execution containing a transition
C, — C, where u makes a move. From C,, the predicate in the first line of the guard
of the U pdate rule will ever hold from C,.

Proof of 16. Let C, be any configuration in € such that C, > C;. Let C,, — C,; be
the last transition before C, in which u executes a move. Notice that by definition of

&, this transition exists. Assume by contradiction that one of the following predicates
holds in C,.

a) (a0, > B,V (,, B, ¢ (single(N(u)) U {null})) v («, = B, N, # null)
b) p, ¢ (single(N(u)) U {null})

By definition between C,; and C,, u does not execute rules. To modify the
variables «,,, 8, and p,,, u must execute a rule. Thus one of the two predicates also
holds in Cy;.

We first show that if predicate (1) holds in C;; then we get a contradiction.
If u executes an U pdate rule in transition C;, — Cy;, then by definition of the
BestRematch function, predicate (1) cannot hold in C,; (observe that the only way
for «, = B, is when «, = B, = null). Thus assume that u executes a match or
Reset Match rule. Notice that these rules do not modify the value of the «, and j3,
variables. This implies that if u executes one of these rules in C;, — C,,, predicate
(1) not only hold in Cy; but also in C,,,. Observe that this implies, in that case that u
is eligible for U pdate in C,, — C,;, which gives the contradiction since U pdate is
the rule with the highest priority among all rules.

Now assume predicate (2) holds in C,;. In transition C;, — C,;;, u cannot
execute U pdate nor Reset Match as this would imply that p,, = null in C,;. Assume
thatin C,, — C,; u executes amatchrule. Sincein Cy,, p,, ¢ (single(N(u)) U{null})
this implies that in C,, Ask(u) ¢ (single(N(u)) U {null}). This implies that «,,, 3,, ¢
(single(N(u)) U {null}) in C,,. Thus u is eligible for U pdate in transition C,, — Cy;
and this yields the contradiction since U pdate is the rule with the highest priority
among all rules.

Since these two predicates cannot hold in C,, this concludes the proof.

Now, we focus on particular configurations for a matched edge (u,v) corre-
sponding to the fact they have completely exploited a 3-augmenting path.

76 <« A polynomial 2/3— approximation of the maximum matching problem

LEMMA 17. Let (u,v) be a matched edge, € be an execution and C be a configuration
of & If in C, we have:

a) p, € single(N(u)) A p, = AskFirstu) N p, =u;

b) p, € single(N(v)) A p, = AskSecond(v) A p, =v;

c) s, =end, =s,=end, =True;

then neither u nor v will ever be eligible for any rule from C.

Proof of 17. Observe first that neither u nor v are eligible for any rule in C. Moreover,
p,, (resp. p,) is not eligible for an U pdateP move since u (resp. v) does not make
any move. Thus p, and p,, will remain constant since u and v do not make any
move and so neither u nor v will ever be eligible for any rule from C.

The configuration C described in Lemma 17 is called a stop,,, configuration.
From such a configuration neither u nor v will ever be eligible for any rule.

In Lemmas 19 and 20, we consider executions where a matched node u writes
True in end,, twice, and we focus on the transition C, — C; where u performs
its second writing. Lemma 19 shows that, if u is First in C,, then C, is a stop,,,,
configuration. Lemma 20 shows that, if u is Second in Cy, then either C, is a stop,,,,,
configuration or it exists a configuration C5 such that C; > C,, u does not make any
move from C, to C; and C; is a stop,,,, configuration.

Lemma 18 and Corollary 4 are required to prove Lemmas 19 and 20.

LEMMA 18. Let (u,v) be a matched edge. Let € be some execution in which v does not
execute any rule. If it exists a transition C, — C, in € where u writes True in end,,,
then u is not eligible for any rule from C;.

Proof of 18. To write True in end,, in transition C, + C,, u must have executed
a match rule. According to this rule, (p, = Ask(u) A p, =u) holds C, with p,, €
single(N(u)), otherwise u would have executed an Update instead of a match rule.
Now, in C, — C,, p,, cannot execute UpdateP then it cannot change its p-value and v
does not execute any move then it cannot change Ask(u). Thus, (p,, = Ask(u) A Pp, = u)
holds in both C;; and C;.

Assume now by contradiction that u executes a rule after configuration C,. Let
C, +— Cj; be the next transition in which it executes a rule. Recall that between con-
figurations C, and C, both u and v do not execute rules. Observe also that p,, is not
eligible for UpdateP between these configurations. Thus (p, = Ask(u) A p, =u)
holds from C,, to C,. Moreover the following points hold as well between C, and C,
since in C; — C,; u executed a match rule and v does not apply rules in &:

* a,,a,, 3, and B, do not change.
+ The values of the variables of v do not change.
¢ Ask(u) and Ask(v) do not change.

¢ If u was First in C, it is First in C, and the same holds if it was Second.
Using these remarks, we start by proving that u is not eligible for Reset Match in

C,. If it is First in C,, this holds since AskFirst(u) # null and AskSecond(u) = null.
If it is Second then to be eligible for Reset Match, s, = False must hold in C, since

Convergence Proof o 77

AskSecond(u) # null. Since u executed end,, = True in C, — C, and since u was
Second in C), then necessarily s, = True in C; and thus in C, (using remark 2
above). So u is not eligible for Reset Match in C,.

We show now that u is not eligible for an U pdate in C,. The « and f3 variables of
u and v remain constant between C,, and C,. Thus if any of the three first disjunctions
in the U pdate rule holds in C, then it also holds in C; and in C;, — C,; u should
have executed an U pdate since it has higher priority than the match rules. Moreover
since in C, (p, = Ask(u) A p,, = u) holds, the last two disjunctions of U pdate are
False and we can state u is not eligible for this rule.

We conclude the proof by showing that u is not eligible for a match rule in
C,. If u was First in C, then it is First in C,. To write True in end,, then (p, =
AskFirst(u) A p, = uANs, A p, = AskSecond(m,) A end,,) must hold in C,.
Since in C, — C, v does not execute rules, it also holds in C,. The same remark
between configurations C, and C, implies that this predicate holds in C,. Thus in
C,, all the three conditions of the MatchFirst guard are False and u not eligible for
MatchFirst. A similar remark if u is Second implies that u will not be eligible for
MatchSecond in C, if it was Second in C,,.

COROLLARY 4. Let (u,v) be a matched edge. In any execution, if u writes True in
end,, twice, then v executes a rule between these two writing.

LEMMA 19. Let (u,v) be a matched edge and € be an execution where u writes True
in its variable end,, at least twice. Let C, — C, be the transition where u writes True
in end,, for the second time in E. If u is First in C,, then the following holds:
a) in configuration C,,
i) s, =end, = True;
ii) p, = AskFirstu) A p, =uns, =TrueA p, = AskSecond(v);
iii) p, € single(N(u));
iv) p, € single(N(V)) A p, =;
b) v does not execute any move in Cy — C;
c) in configuration C,,
i) s, =end, = True;
ii) p, € single(N(u)) A p, € single(N(v));
iii) s, = end, = True;
iv) p, = AskFirst(u) A p, = AskSecond(v);
V) pp SUNDP, =0

Proof of 19. We prove Point 1a. Observe that for u to write True in end,,, end,, must
be True in C,,. By Lemma 14 this implies that s, is True as well. Now Point 1b holds
by definition of the MatchFirst rule. As in C,), u already executed an action, then
according to Lemma 16, Point 1c holds and will always hold. By Corollary 4, u cannot
write T'rue consecutively if v does not execute moves. Thus at some point before
Cy» v applied some rule. This implies that in configuration C,, since s, = True, by
Lemma 15, 3x € single(N(v)) : p, = x A p,, = v. Thus Point 1d holds.

78 @ A polynomial 2/3— approximation of the maximum matching problem

We now show that v does not execute any move in C, — C, (Point 2). Recall that
v already executed an action before C,), so by Lemma 16, line 1 of the U pdate guard
does not hold in C,,. Moreover, by Point 1d, line 2 does not hold either. Thus, v is not
eligible for U pdate in C,,. We also have that s, = True and AskSecond(v) # null in
Cy» thus v is not eligible for Reset Match. Observe now that by Points 1a, 1b and 1d,
v is not eligible for MatchSecond in C,. Finally v cannot execute MatchFirst since
AskFirst(v) = null. Thus v does not execute any move in C, — C; and so Point 2
holds.

In C,, end,, is True by hypothesis and according to Point 1b, u writes True in
s, in transition C;, — C;. Thus Point 3a holds. Points 3b holds by Points 1c and 1d.
Points 3¢ holds by Points 1a and 2. AskFirst(u) and AskSecond(v) remain constant
in C, — C, since neither u nor v executes an U pdate in this transition. Moreover p,,
remains constant in C, — C; by Point 2 and p,, remains constant also since it writes
AskFirst(u) in p, in this transition while p,, = AskFirst(u) in C,. Thus Points 3d
holds. Observe that nor p,, neither p,, is eligible for an U pdateP in C,, thus Point 3e
holds.

Now, we consider the case where u is Second.

LEMMA 20. Let (u,v) be a matched edge and £ be an execution where u writes True
in its variable end,, at least twice. Let C, — C, be the transition where u writes True
in end,, for the second time in E. If u is Second in C, then the following holds:

a) in configuration C,,,

i) s, = True A p, = AskFirst(v);

ii) p, € single(N(v)) A Pp, =V
b) in transition C, — C,, v is not eligible for U pdate nor Reset Match;
¢) in configuration C,,

i) s, =end, = True;
ii) p, € single(N(v)) A p, = AskFirst(v) A Pp, = U
iii) p, € single(N(u)) A p,, = AskSecond(u) A pp, =t
iv) s, = True;
d) wu is not eligible for any move in Cy;
e) Ifend,, = False in C, then the following holds:

i) From C,, v executes a next move and this move is a MatchFirst;
ii) Let us assume this move (the first move of v from C,) is done in transition
C, — Cs. In configuration C;, we have:

A) s, =end, = True;

B) p, € single(N(v)) A p, = AskFirst() A p, = v;
) py € single(N(w)) A p,, = AskSecond(u) A p, = u;
D) s, = True;

E) u does not execute moves between C, and Cs;

F) end, = True;

Convergence Proof o 79

Proof of 20. We show Point 1a. For u to write True in transition C, — C,, u ex-
ecutes a MatchSecond in this transition. Thus s, = True must hold in C, and
P, = AskFirst(v) as well. By Corollary 4, u cannot write True consecutively if v does
not execute any move. Thus at some point before C,, v applied some rule. Thus, and
by Lemma 15, 3x € single(N(v)) : p, = x A p, = v in configuration C,,, so Point 1b
holds.

As AskFirst(v) # null in C, v is not eligible for Reset Match in C,,. We prove
now that v is not eligible for U pdate. By Corollary 4 and Lemma 16, line 1 of the
U pdate guard does not hold in C,. Finally, according to Point 2b, the second line of
the U pdate guard does not hold, which concludes Point 2.

We consider now Point 3a. In C}, s, = end,, = True holds because, executing a
MatchSecond, u writes True in end,, and writes end,, in s,, during transition C, —
C,.

We now show Point 3b. AskFirst(v) and AskSecond(u) remain constant in C,
C, since neither u nor v execute an U pdate in this transition. Moreover, the only
rule v can execute in C, — C, is a MatchFirst, according to Point 2. Thus v does
not change its p-value in C, — C, and so p, = AskFirst(v) in C,. Now, in C,,,
v € matched(N(p,)) A p, = v thus p, cannot execute U pdateP in Cy — C; and
thus it cannot change its p-value. So, p, =vinC;.

Point 3¢ holds since after u executed a MatchSecond in C, — C,, observe that
necessarily p, = AskSecond(u) in C,. Moreover, s, = True in C, so, according to
Lemma 15, 3y € single(N(w)) : p, = y Ap, =uinC,.

p, = AskFirst(v) and p, = v hold in Cy, according to Points 2a and 2b. More-
over, p,, = AskSecond(u) holds in C, since u writes True in end,, while executing
a MatchSecond in C, — C,. Finally, by Point 2, v can only execute MatchFirst in
C, — Cy, thus variable s, remains True in transition C, — C,; and Point 3d holds.

We now prove Point 4. If end,, = True in C,, then according to Lemma 17, u is
not eligible for any rule in C,. Now, let us consider the case end,, = False in C,. By
Points 3c and 3d, u is not eligible for Reset Match. By Point 3¢ and Lemma 16, u is
not eligible for U pdate. By Points 3a, 3b and 3¢, u is not eligible for MatchSecond.
Finally, since u is Second in C, u is not eligible for MatchFirst neither and Point 4
holds.

Now since between C; and C,, v does not execute any rule (by Point 5b), and
since p, (resp. p,) is not eligible for U pdateP while u (resp. v) does not move
(because pp, =U (resp. Py, = v)), then Ask(u), Ask(v), Py, and pp, remain constant
while u does not make any move. And so, properties 3a, 3b, 3¢ and 3d hold for any
configuration between C,; and C,, thus u is not eligible for any rule between C, and
C, and u will not execute any move from C; to C;. Moreover, the end,,-value is the
same from C; to C,.

If end, = False in C,, then v is eligible for a MatchFirst and that it will write
True in its end,,-variable while all properties of Point 3 will still hold in C5. Thus
Point 5 holds.

THEOREM 11. In any execution, a matched node u can write end,, := True at most

80 @ A polynomial 2/3— approximation of the maximum matching problem

twice.

Proof of 11. Let (u,v) be a matched edge and € be an execution where u writes True
in its variable end,, at least twice. Let C + C; be the transition where u writes True
in end,, for the second time in €. If u is First (resp. Second) in C, then from Lemmas
17 and 19, (resp. 20), from Ci, neither u nor v will ever be eligible for any rule.

5.7.2 The number of times single nodes can change their end-variable

In the following, 4 denote the number of matched nodes and o
the number of single nodes.

LEMMA 21. Let x be a single node. If x writes True in some transition C, — C,
then, in Cy, Ju € matched(N(x)) : p, = uAp, = x Nend, = False Nend,, = True.

Proof of 21. To write True in its end variable, a single node must apply U pdateEnd.
Observe now that to apply this rule, the conditions described in the Lemma must
hold.

LEMMA 22. Let u be a matched node. Consider an execution £ starting after u
executed some rule and in which end,, is always True, except for the last configuration
D of € in which it may be False. Let E\D be all configurations of & but configuration
D. In E\D, the following holds:

* p, € single(N(u));

+ p, remains constant.

Proof of 22. Since end,, = True in E\D, the last rule executed before € is necessarily
a Match rule. So, at the beginning of &, p,, € single(N(u)), otherwise, u would not
have executed a Match rule, but an U pdate instead.

We prove now that in £\D, p,, remains constant. Assume by contradiction that
there exists a transition in which p, is modified. Let C;, +— C; be the first such
transition. First, observe that in £\D, u cannot execute ResetMatch nor U pdate
since that would set end,, to False. Thus u must execute a Match rulein Cj — C,.
Since the value of p,, changes in this transition, this implies that Ask(u) # p,, in C,,.
Thus, whatever the Match rule, observe now that in C,, end,, must be False, which
gives a contradiction and concludes the proof.

DEFINITION 43. Let u be a matched node. We say that a transition Cy, — C,
is of type "a single copies True from u” if it exists a single node x such that (p, =
uAN p, =xNend, = False) in Cy and end,, = True in C,. Notice that by Lemma 21,
end,, = True in C, and x € single(N(u)).

If a transition C, — C, is of type "a single node copies True from u” and if x is
the single node with (p,, = u A p, = x Nend,. = False) in Cy and end, = True inC,
then we will say x copies True from u.

LEMMA 23. Let u be a matched node and € be an execution. In &, there are at most
three transitions of type “a single copies True from u”.

Convergence Proof o 81

Proof of 23. Let € be an execution. We consider some sub-executions of €.
Let &,,,;; be a sub-execution of € that starts in the initial configuration of £ and
that ends just after the first move of u. Let C;, — C, be the last transition of &,;.
Observe that u does not execute any move until configuration C, and executes its
first move in transition C, - C,. We will write &;,;, ~ C, to denote all configurations
of &;,,;; but the configuration C,. We prove that there is at most one transition of type
a single copies True from u” in &; ;.

There are two possible cases regarding end,, in all configuration of £;,;, ~ C;:
either end,, is always True or end,, is always False. If end,, = False then by Definition
43, no single node can copy True from u in &;,;, not even in transition C, — C,
since no single node is eligible for such a copy in C,. If end,, = True, once again,
there are two cases: either (i) (p, = null Vv p,, ¢ single(N(u))) in all configuration
of &, ~ Cy, or (ii) (p, € single(N(u))) in &;,,; ~ C,. In case (i) then by Definition
43 no single node can copy True from u in ,,;;, not even in C, — C. In case (ii),
observe that p,, remains constant in all configurations of &;,;; ~ C;, thus at most one
single node can copy True from u in &,,,;;.

Let&,,,,. be asub-execution of € starting after u executed some rule and such that:
for all configurations in &,,,,, but the last one, end,, = True. There is no constraint
on the value of end,, in the last configuration of &,,,,. According to Lemma 22,
P, € single(N(u)) and p,, remains constant in all configurations of &,,,,, but the last
one. This implies that at most one single can copy True from u in &,,,,.

Let €5, be an execution starting after u executed some rule and such that: for
all configurations in &, but the last one, end,, = False. There is no constraint on
the value of end,, in the last configuration of €. By Definition 43, no single node
will be able to copy True from u in €gyyq,.

To conclude, by Corollary 11, u can write T'rue in its end variable at most twice.
Thus, for all executions &, € contains exactly one sub-execution of type &,,;;, and at
most two sub-executions of type &,,,,, and the remaining sub-executions are of type
€ fa1se- This implies that in total, we have at most three transitions of type "a single
copies True from u” in E.

true

LEMMA 2 4. In any execution, the number of transitions where a single node writes
True in its end variable is at most 3.

Proof of 24. Let € be an execution and x be a single node. If x writes True in end,
in some transition of &, then x necessarily executes an U pdateEnd rule and by
Definition 43, this means x copies True from some matched node in this transition.
Now the lemma holds by Lemma 23.

LEMMA 25. In any execution, the number of transitions where a single node changes
the value of its end variables (from True to False or from False to True) is at most
o + 6y times.

Proof of 25. A single node can write True in its end variable at most 3y times, by
Corollary 24. Each of this writing allows one writing from True to False, which leads

82 w» A polynomial 2/3— approximation of the maximum matching problem

to 6u possible modifications of the end variables. Now, let us consider a single node
x.Ifend, = False initially, then no more change is possible, however if end, = True
initially, then one more modification from True to False is possible. Each single
node can do at most one modification due to this initialization and thus the Lemma
holds.

5.7.3 How many U pdate in an execution?

DEFINITION 4 4. Let u be a matched node and C be a configuration. We define
Cand(u,C) = {x € single(N(u)) : (p, = u V end, = False)} which is the set of
vertices considered by the function BestRematch(u) in configuration C.

LEMMA 26. Let u be a matched node that has already executed some rule. If there
exists a transition Cy +— C, such that u is eligible for Update in C, and not in
Cy, then there exists a single node x such that x € Cand(u,C,)\Cand(u,C,) or
x € Cand(u, C;)\Cand(u, Cy). Moreover, in transition C, — C,, x flips the value of
its end variable.

Proof of 26. Since u has already executed some rule, to become eligible for U pdate
in transition C, — Cy, necessarily the second disjonction in the U pdate rule must
hold, by Lemma 16. This implies that (e, 3,) # BestRematch(v) must become True
in C, — C;. Now either Lowest(Cand(u,C,)) ¢ Cand(u,C,) or Ax ¢ Cand(u,C,)
such that x = Lowest(Cand(u, C,)). This proves the first point.

For the second point we first consider the case x € Cand(u,C,) and x ¢
Cand(u,C,). Necessarily end,, = True A p,, # uin C, and end, = FalseV p, = u
in C,.If p, = uin C, then in transition C, +— C,, x has executed an U pdateP and
the second point holds. Assume now that p,. # u in C,. Necessarily end,, = False in
C, and the Lemma holds.

We consider the second case in which x ¢ Cand(u,C,) and x € Cand(u, C,).
Necessarily in C;, p, # vand end, = True. Thus if end, = False in C, the lemma
holds. Assume by contradiction that end, = True in C,. This implies p, = u in C,,.
But since in C; p, # u then x executed either U pdateP or U pdateEnd in C, — C,
which implies end, = False in C, a contradiction. This completes the proof.

COROLLARY 5. Matched nodes can execute at most A(o + 6u) + y times the U pdate
rule.

Proof of 5. Initially each matched node can be eligible for an U pdate. Now, let us
consider only matched nodes that have already executed a move. For such a node to
become eligible for an U pdate rule, at least one single node must change the value
of its end variable by Lemma 26. Thus, each change of the end value of a single node
can generate at most A matched nodes to be eligible for an U pdate. By Lemma 25,
the number of transitions where a single node changes the value of its end variables
is at most o + 6 times. Thus we obtain at most A(o + 6y) U pdate generated by a
change of the end value of a single node and the Lemma holds.

Convergence Proof o 83

5.7.4 A bound on the total number of moves in any execution

DEFINITION 45. Let (u,v) be a matched edge. In the following, we call F, a
finite execution where neither u nor v execute the U pdate rule. Let D, be the first
configuration of F and Dy be the last one.

Observe that in the execution F, all variables & and f3 of nodes u and v remain
constant and thus, predicates AskFirst and AskSecond for these two nodes remain
constant too.

LEMMA 27. If Ask(u) = Ask(v) = null in F, then u and v can both execute at most
one ResetMatch.

Proof of 27. Recall that in the execution F, by definition, u# and v do not execute
the U pdate rule. Moreover, these two nodes are not eligible for Match rules since
Ask(u) = Ask(v) = null. Thus they are only eligible for Reset Match. Observe now
it is not possible to execute tis rule twice in a row, which completes the proof.

LEMMA 28. Assume that in F, u is First and v is Second. If s,, is False in all configu-
rations of F but the last one, then v can execute at most one rule in F.

Proof of 28. Since s, = False in all configurations of F but the last one, node v which
is Second can only be eligible for Reset Match. Observe that if v executes Reset Match,
it is not eligible for a rule anymore and the Lemma holds.

LEMMA 29. Assume that in F, u is First and v is Second. If s, is False throughout
F, then u can execute at most one rule in T.

Proof of 29. Node u can only be eligible for MatchFirst. Assume u executes MatchFirst
for the first time in some transition C, — C;, thenin C,, necessarily, p,, = AskFirst(u),
s,, = False (by hypothesis) and end,, = False by Lemma 14. Let F, be the execution
starting in C, and finishing in D{. Since in F,, there is no U pdate of nodes u and
v, observe that p,, = AskFirst(u) remains True in this execution. Assume by con-
tradiction that u executes another MatchFirst in F,. Consider the first transition
C, — C; after C; when it executes this rule. Notice that between C, and C, it does
not execute rules. Thus in C,, p,, = AskFirst(u), s, = False and end,, = False hold.
Now if u executes MatchFirst in C, it is necessarily to modify the value of s, or
end,,. By definition, it cannot change the value of s,,. Moreover it cannot modify the
value of end,, as this would imply by Lemma 14 that s, = True in C;. This completes
the proof.

LEMMA 30. Let (u,v) be a matched edge. Assume that in F, u is First, v is Second
and that u writes True in s,, in some transition of F. Let C, — C, be the transition in
F in which u writes True in s,, for the first time. Let F, be the execution starting in C,
and finishing in D¢. In Fy, u can apply at most 3 rules and v at most 2.

84 w» A polynomial 2/3— approximation of the maximum matching problem

Proof of 30. We first prove thatin F}, s, remains True. Observe that u cannot execute
U pdate neither ResetMatch since it is First. So u can only execute MatchFirst
in F,. For u to write False in s,, it must exists a configuration in F,; such that
Py # AskFirst(u) vV p, #uV p, ¢ {AskSecond(v), null}. Let us prove that none of
these cases are possible.

Since u executed MatchFirst in transition C, — C, writting True in s,, then, by
definition of this rule, p,, = AskFirst(u)A Pp, =UNDy € {AskSecond(v), null} holds
in C,,. As there is no U pdate of u and v in F, then AskFirst(u) and AskSecond(v)
remain constant throughout F (and F,). So each time u executes a MatchFirst, it
writes the same value AskFirst(u) in its p-variable. Thus p, = AskFirst(u) holds
throughout F;. Moreover, each time v executes a rule, it writes either null or the
same value AskSecond(v) in its p-variable. Thus p, € {AskSecond(v), null} holds
throughout F,. Now by Lemma 15, in C; we have, 3x € single(N(u)) : p, =
XA p, = u,since s, = True . This stays True in F, as p, remains constant and x will
then not be ehglble for UpdateP in F,. Thus p,, = u holds throughout F;. Thus,
Py = AskFirstu) AN p, =unp, € {AskSecond(v) null} holds throughout F, and
so s, = True throughout F,.

This implies that in F;, v is only eligible for MatchSecond. The first time it
executes this rule in some transition B, — B, with B, > C,, then in By, p, =
AskSecond(v), s, = end,, and this will hold between B, and Dy. If end,, = True in B;
then this will stay True between B, and Dy. Indeed, p,, is not eligible for U pdateP
and we already showed that p,, = AskFirst(u) holds in F,. In that case, between B,
and D¢, v will not be eligible for any rule and so v will have executed at most one rule
in F,. In the other case, that is end (= s,) = False in B}, since p, = AskSecond(v)
holds between B; and D, necessarily, the next time v executes a MatchSecond rule,
it is to write True in end,,. After that observe that v is not eligible for any rule. Thus,
v can execute at most 2 rules in F;.

To conclude the proof it remains to count the number of moves of u in F;. Recall
that we proved s,, is always True in F,. Thus whenever u executes a MatchFirst, it
is to modify the value of its end variable. Observe that this value depends in fact of
the value of end,, and of p,, since we proved p,, = AskFirst(u) Np, =uNs,Ap, €
{AskSecond(v), null} holds throughout F,. Since we proved that in F}, v can execute
at most two rules, this implies that these variables can have at most three different
values in F;. Thus u can execute at most 3 rules in F,.

LEMM A 31. Assume that in F, u is First and v is Second. If s, is True throughout F
and if u does not execute any move in F, then v can execute at most two rules in F.

Proof of 31. By Definition 45, v cannot execute U pdate in F,. Since we suppose that
in F,, s, = True then v is not eligible for Reset Match. Thus in F;, v can only execute
MatchSecond. After it executed this rule for the first time, p, = AskSecond(v) and
s, = end,, will always hold, since v is only eligible for MatchSecond. Thus the second
time it executes this rule, it is necessarily to modify its end,, and s, variables. Observe
that after that, since u does not execute rules, v is not eligible for any rule.

Convergence Proof o 85

LEMMA 32. In F, u and v can globally execute at most 12 rules.

Proof of 32. If Ask(u) = Ask(v) = null, the Lemma holds by Lemma 27. Assume now
that u is First and v Second. We consider two executions in F.

Let C, — C, be the first transition in F in which u executes a rule. Let F, be
the execution starting in D, and finishing in C,. There are two cases.

If s, = False in F;, then v is only eligible for ResetMatch in this execution.
Observe that after it executes this rule for the first time in F, it is not eligible for
any rule after that in F,.

If s, = True in F, then by Lemma 31, v can execute at most two rules in this
execution. In transition C, — C,, u and v can execute one rule each.

Let F, be the execution starting in C, and finishing in D}. Whatever rule u
executes in transition C, — C, observe that u either writes True or False in s,,. If u
writes True in s, in transition C, — C, then by Lemma 30, u and v can execute at
most five rules in total in F;.

Consider the other case in which u writes False in C,. Let C, +— Cj be the first
transition in F, in which u writes True in s,,. Call F,, the execution between C,
and C; and F;; the execution between C; and D{. By definition, s, stays False in
F,0\C;. Thus in F;(\C;, u can execute at most one rule, by Lemma 29. Now in F,
u can execute at most two rules. By Lemma 28, v can execute at most one rule in F,.
In total, u and v can execute at most three rules in F,. In F,,, u and v can execute at
most five rules by Lemma 30. Thus in F;, u and v can apply at most eight rules.

THEOREM 12. Inany execution, matched nodes can execute at most 12A(0+6u)+18u
rules.

Proof of 12. Let k be the number of edges in the underlying maximal matching,
k= % Fori € [1,.., k], let {(1;,v;) = a;} be the set of matched edges. By U pdate(a;)
we denote an U pdate rule executed by node u; or v;. By Lemma 32, between two
U pdate(a;) rules, nodes u; and v; can execute at most 12 rules. By Corollary s, there
are at most A(o + 6u) + p executed U pdate rules. Thus in total, nodes can execute at
k
most Y 12 x (#U pdate(a;) + 1)
i=1

k k
=12) #Update(a;) + 12 Y 1 < 12(A(0 + 6u) + p) + 12k = 12A(0 + 6u) + 18u
i=1 i=1

rules.

LEMM A 33. In any execution, single nodes can execute at most o times the Reset End
rule.

Proof of 33. We prove that a single node x can execute the ResetEnd rule at most
once. Assume by contradiction that it executes this rule twice. Let C, = C; be the
transition when it executes it the second time. In C, end,, = True, by definition of the
rule. Since x already executed a Reset End rule, it must have some point wrote True
in end,. This is only possible through an execution of U pdateEnd. Thus consider
the last transition D, — D, in which it executed this rule. Observe that D; < C,,.

86 <« A polynomial 2/3— approximation of the maximum matching problem

Since between D, and C,,, end, remains True, observe that x does not execute any
rule between these two configurations. Now since in D, p,. # null and this holds
in C, then x is not eligible for Reset End in C,), which gives the contradiction. This
implies that single nodes can execute at most O(o) times the ResetEnd rule.

LEMMA 3 4. In any execution, single nodes can execute at most o + 6y times the
U pdateEnd rule.

Proof of 34. By Lemma 25, single nodes can change the value of their end variable at
most o + 6y times. Thus they can apply U pdateEnd at most o + 6y times, since in
every application of this rule, the value of the end variable must change.

LEMM A 35. In any execution, single nodes can execute at most 12A(o + 6p) + 18y + 1
times the U pdateP rule.

Proof of 35. Let x be a single node. Let C, — C, be a transition in which x executes
an U pdateP rule and let C, + Cj; be the next transition after C, in which x executes
an U pdateP rule. We prove that for x to execute the U pdateP rule in C, — Cj;,a
matched node had to execute a move between C;, and C,.

In C, there are two cases: either p,, = null or p,, # null. Assume to begin
that p,. = null. This implies that in C, the set {w € N(x)|p,, = x} is empty. In C,,
P, = null, since between C, and C,, x can only apply U pdateEnd or ResetEnd.
Thus if it applies U pdateP in C,, necessarily {w € N(x)|p,, = x} # &. This implies
that a matched node must have executed a Match rule between C; and C, and the
lemma holds in that case.

Consider now the case in which p, = u with u # null in C,. By definition of
the U pdateP rule, we also have u € matched(N(x)) A p,, = x holds in C. In C, we
still have that p, = u since between C; and C,, x can only execute U pdateEnd or
ResetEnd. Thus if x executes U pdateP in C,, necessarily p, # x. This implies that
p, # x and so u executed a rule between C, and C,.

Now, the lemma holds by Theorem 12.

COROLLARY 6. In any execution, nodes can execute at most O(nz) moves.

Proof of 6. According to Lemmas 33, 34 and 35, single nodes can execute at most
O(n*) moves. Moreover, according to Theorem 12, matched nodes can execute at
most O(n?) moves. [6]

COROLLARY 7. The algorithm POLYMATCH converges in O(n?) moves under the
adversarial distributed daemon and in a general graph, provided that an underlying
maximal matching has been initially built.

Recall that the algorithm PoLYMATCH assumes an underlying maximal match-
ing. As we said in section 5.2, we can use the self-stabilizing maximal matching
algorithm from Manne et al. [MMPTog] that stabilizes in O(rm) moves. Then, us-
ing a classical composition of these two algorithms [Doloo], we obtain a total time
complexity in O(m x n?) moves under the adversarial distributed daemon.

Convergence Proof o 87

5.8 CONCLUSION

In this chapter we have presented a proof that the Manne et al.
algorithm reaches a sub-exponential bound in terms of moves. This bound was, until
now, supposed to be tight. From here it was natural to ask whether it is possible to
do better by bringing the running time to polynomial. This was done successfully
by exhibiting a new self-stabilizing algorithm that reaches a 2/3—approximation of
the maximum matching in O(n?) moves, under the distributed adversarial daemon
without particular topology assumptions. The new algorithm adapts and extends
on the algorithm by Manne et al. by using a new variable end. Using this variable
we can distinguish between worth destroying 3—augmented paths and the others,
by making a node signal to its neighbours when it is done exploiting the path it
detected. This signalling prevents neighbouring nodes from doing the immediate
and systematic resetting that led to the destruction of possibly valid 3—augmenting
paths in the Manne et al. algorithm. It is this avoidance that spares the new algorithm
the necessary moves to reach its polynomial convergence time.

We can ask whether this same scheme (using the end) variable, can be used to
design new algorithms that use the general version of Karp’s theorem. That is by
detecting t—augmenting paths for t > 3 to reach a better approximation. This doesn’t
seem trivial, as the usage of the end variable implies having to synchronize all the
nodes across the augmenting path. Therefore the longer the detected augmenting
path, the longer the number of nodes to synchronize in the graph.

88 @ A polynomial 2/3— approximation of the maximum matching problem

Self-stabilizing
publish/Subscribe systems

This chapter focuses on the more practical problem of routing
messages in a publish/subscribe system on wireless sensor networks. In this case,
the entities of the distributed system have limited computing power and a highly
dynamic neighbourhood. We give a self-stabilizing algorithm for this task and the
result of its implementation in a simulated setting. This work appeared in [STMi5]

6.1 INTRODUCTION

In a wireless sensor network (WSN) with nodes sensing the envi-
ronment and actuators reacting to these measurements, the need for a well structured
data dissemination architecture arises. A naive approach is to flood the entire network
with that data. Such an approach has the advantage of not requiring an infrastructure.
Nevertheless, this approach clearly does not scale with the number of nodes and
frequency of information events.

An effective solution for this task is provided by publish/subscribe systems
[EFGKo3]. Formally, the publish/subscribe paradigm describes a loosely coupled
distributed information dissemination middleware. In this paradigm, senders (i.e.,
publishers) of data do not directly assign recipients (i.e., subscriber) to a message.
Instead, publications are routed asynchronously by the system’s infrastructure to all
nodes which registered their interest. Interests refer either to the message content
filtered by subscribers, or by a categorization done by the publisher. Such categories
are called channels or topics.

The publish/subscribe paradigm exists for quite some time and has been widely
studied for the Internet environment, e.g., [CDKRo2, CRWo1]. This paradigm in
WSNSs, however, is fundamentally different and much more challenging. The reason
is that WSNs are resource-constrained and operate based on multi-hop relay and ad
hoc routing rather than on a robust infrastructure as the Internet. Publish/subscribe
systems must address scalability in terms of the number of subscriptions, messages,
and storage footprint. Furthermore, fault tolerance is an important design considera-
tion. Faults can hit the routing infrastructure leading to lost messages/subscriptions
or to the delivery of unwanted messages. These two aspects are of particular impor-
tance for WSNs, since it is well known that links are error-prone, nodes are unreliable,
and that the available memory resources are limited.

Self-stabilizing publish/Subscribe systems o 89

FIGURE6.1
Layered architecture

Publish/
Subscribe

Virtual
Ring

Spanning
Tree

Neighborhood
Management

MAC

to physical

The main contribution is a scalable, self-stabilizing middleware for channel-
based publish/subscribe applications in WSNs. According to the self-stabilizing
paradigm starting from an arbitrary state, the middleware eventually provides safety
and liveness properties such as the guaranteed delivery of all published messages to all
subscribers of the corresponding channel and the correct handling of subscriptions
and unsubscriptions. We consider different kinds of faults, apart from message
and memory corruptions, we also respect network changes such as node and link
removals and additions.

The design of the middleware is based on a layered architecture (see Fig. 6.1),
each layer is self-stabilizing with respect to its service which is exposed by an API. The
API of the top layer provides functions to (un)subscribe to a channel and to publish
messages to it. This functionality is enabled by the virtual ring layer. This is a virtual
network structure which arranges all nodes on a ring. The publish/subscribe system
uses this structure to route messages. We augment this architecture by introducing
short-cuts, which enable the avoidance of sections of the ring without subscribers for
a particular channel to improve scalability. Formation and maintenance of the virtual
ring are based on a tree, which is realized using a well-known self-stabilizing spanning
tree algorithm. The basis of our architecture is provided by the neighbourhood
protocol Mahalle* [STW™13] which is self-stabilizing as well. It constructs a stable
topology while acting agile. Agility ensures that the protocol adjusts quickly to new
or failing nodes and links. On the other hand, transient faults, like burst errors, are

90 @ Self-stabilizing publish/Subscribe systems

ignored to make the topology stable.

An important feature of Mahalle* is that it allows the specification of an upper
bound Cy; for the number of neighbours of each node. Therefore, Cy; generates a
trade-off between the average route length of publications and the memory space
required for routing-tables. With C;, the former grows linearly, while the later grows
quadratically. Furthermore, increasing Cy; introduces a higher number of short-cuts,
hence, reduces path lengths.

Self-stabilization is achieved using, besides classical techniques, the concept of
leasing, in particular for routing entries and subscriptions [GC89]. Before a leasing
period expires a routing entry has to be renewed, or it will be discarded and therefore
removed from any corresponding table. Changes in lower layers trigger update
operation in dependent layers. This work is an extension of [SMT14].

6.2 RELATED WORK

Channel-based publish/subscribe systems are often realized as
an application-level overlay of brokers connected in a peer-to-peer manner. The
overlay infrastructure directly impacts performance and scalability, such as the
message routing cost. Chockler et al. try to minimize the complexity of the overlay
by organizing all nodes interested in the same channel into a tree with low diameter
[CMTVoy]. They introduce a new optimization problem, called Minimum Topic-
Connected Overlay capturing the trade-off between the scalability of the overlay and
the message forwarding overhead as follows: For a set of subscriptions to different
channels, connect the nodes using the minimum possible number of edges so that for
each channel ¢, a message published for ¢ should reach all subscribers of ¢ by being
forwarded by only the nodes subscribed to c. They prove that the corresponding
decision problem is NP-complete, and present an approximation within a logarithmic
ratio.

Scribe is a decentralized application-level multicast infrastructure implemented
on top of Pastry, a peer-to-peer location and routing overlay on the Internet [CDKRoz2].
Each channel has an owner known to all nodes. Publications are first send to the
channel’s owner which distributes messages via a multicast tree to the channel’s
subscribers. Subscriptions to a channel are forwarded to the channel owner using
Pastry’s routing protocol. Nodes on a route snoop on subscribe messages. If the
channel is one to which the current node already subscribes, it will stop forwarding
the subscription and add the node as one of its children. This way a treelike routing
structure is formed. Scribe relies on Pastry to optimize the routes from the owner to
each subscriber. Fault tolerance is accomplished through the use of time-outs and
heartbeat messages.

The characteristics of WSNss require light weight solutions. This excludes the
above described approaches. This also holds for other solutions using complex routing
structures such as Steiner-trees, rendezvous based, or informed gossiping.

Related Work o 91

There have been several efforts towards publish/subscribe systems for WSNs.
Directed Diffusion is an early approach [IGEoo]. Nodes issue subscriptions by broad-
casting a query into the entire network. Upon receiving a query, each node creates a
gradient entry in the routing table to point to the neighbouring node from which
the query is received. Using a gradient path, matching messages are sent toward
subscribers. An antipodal approach is followed by Huang et al. [HGMo3]. Each pub-
lisher builds a broadcast tree to deliver messages to subscribers. Another approach
is taken by the MQTT-S protocol [HTSCo8]. Here, publication matching is carried
out by a single central broker located on a node external to the WSN.

Mires is a publish/subscribe middleware implemented on top of TinyOS [SGV " 05].
The subscription/publication protocols are similar to that of Directed Fusion. PS-
QUASAR is a publish/subscribe middleware based on the Contiki operating sys-
tem that handles Quality of Service support by means of multicasting techniques
[CDRT13].

Fault tolerance of publish/subscribe systems has been addressed by various
authors. Jerzak and Fetzer use a soft state approach [JFog]. Within the paradigm of
self-stabilization this challenge has been tackled by Shen [Sheoy] and Jaeger [Jaeo8]
independently. The basic idea in the latter work is that routing entries are leased. All
entries in the routing tables of all nodes must be periodically renewed, otherwise they
are discarded from the routing table. The renewal of routing entries is triggered by the
subscribers. A client must renew the lease for each of its subscriptions once in a refresh
period. Shen proposes a system where all messages are routed along a single spanning
tree T. Each node v holds a routing table consisting of a set of tuples of the form
(¢, R) where c is a subscription (to channel ¢), and R is a set of neighbouring nodes
in T from which ¢ was received. If a message arrives at v matching a subscription ¢
in the routing table, then it is forwarded to all nodes in R, except for the node from
which the message arrived. Subscriptions and unsubscriptions are also forwarded
along T to all nodes. To maintain this routing, neighbouring nodes periodically
exchange their routing tables. Inconsistencies between the tables lead to corrective
actions. Nodes make local corrections independently and asynchronously. Through
a sequence of local corrections the consistency among the distributed routing tables
is eventually restored.

The drawback of the above described approaches is that messages mainly travel
only along the tree edges. This can lead to unnecessary long paths and thus, to a
high network load. Furthermore, Shen’s approach lacks scalability mainly due to the
periodic exchange of complete routing tables. We overcome these shortcomings by
routing over shorter routes (not necessarily the shortest routes) and by employing
the leasing technique.

92 @ Self-stabilizing publish/Subscribe systems

6.3 GENERAL APPROACH

This work uses the asynchronous message-passing model where
each node has a unique identifier. To cope with the asynchronous nature of the
delivery of messages, queues are used. We assume that channels behave in a FIFO
style. The system is fault tolerant with respect to transient faults. These can be caused
by hardware errors, temporary unavailability of network links resulting in message
duplication, loss, corruption, or insertion. Permanent faults and Byzantine behaviour
are not considered. We assume that channel and node identifiers, along side with
executable code, are stored in ROM which we expect never to be corrupted. Fur-
thermore, we provide only non-masking fault tolerance. That is, after each transient
fault the system will reach a legitimate state in finite time, hence, the service may be
temporally unavailable. The legitimate status is kept until the next transient error.

6.3.1 Routing of Publish/Subscribe Messages

The task of a publish/subscribe system is to deliver all messages
published into a channel to all clients that have subscribed to this channel until they
unsubscribe from it. As usual we model the distributed system as an undirected graph
G = (V, E). Vertices or nodes in this graph are responsible for routing messages
among each other. Jaeger [Jaco8], for example, models a broker overlay network
by G where each participating user is connected to a node of G. We dissociate this
work from that assumption. Hence, the more common model in WSNs is used, were
all nodes may be involved in the routing process, despite their occupation (e.g.,
publisher, subscriber, regular node).

In a publish/subscribe system only the subscribers are interested in published
messages. Therefore, routing would be extremely effective if only subscribers for a
certain channel would route messages. Obviously this is not achievable in general.
To simplify the routing, we propose an overlay network structured as a ring. As most
topologies do not contain a ring we suggest a virtual ring. Nodes can appear more
than once on a virtual ring. We call the location of a node on the virtual ring their
position. With our algorithm the ring has a total size of 2(n — 1) (where n = |V|)
positions, that is, on average each node has two positions on the virtual ring. Routing
is performed clockwise, in the sense of increasing positions (a designated node takes
care of the wrap around). Messages are discarded (i.e., not forwarded) to, or over the
originating position.

Scalability can not be achieved this way, therefore, short-cuts on the virtual ring
are proposed. A short-cut skips positions on the ring to connect subscribers in a
shorter way, while keeping in mind not to exclude subscribers of corresponding
channels. Thus, each node maintains, for each of its positions and for each channel, the
position of the neighbour that comes closest to the next subscriber for that particular
channel in a table F. That means, that on average each node has to maintain two
forwarding positions per node. After storing this information, routing becomes
as simple as a single look-up in F. Keeping this table up-to-date with respect to

General Approach o 93

(un)subscriptions and transient faults is the main challenge of this approach. For the
distributed algorithm, each node maintains two lists of positions: list P with its own
and R with those of all neighbours.

6.3.2 Example

Before presenting the details of the implementation of the middle-
ware we explain the main ideas using the example illustrated in Fig. 6.2. For simplicity
we only consider a single channel in this example. The first sub-figure shows the
network as seen by the MAC layer. The topology provided by the neighbourhood
management layer Mahalle™ is depicted in the second sub-figure for Cyy = 3. Each
node has at most three neighbours, dashed links are not used for communication in
the layers above. As a consequence, e.g., only three of the six possible links of Node
9 are used. A larger value for Cy; will result in more usable links at the cost of larger
neighbour lists and larger routing tables at higher layers. A smaller value for C; may
result in a disconnected topology.

Based on this topology the spanning tree layer constructs the tree shown in
Sub-figure 3, here Node o was selected as the root. Non-tree edges (depicted in gray)
will later be used as short-cuts. The virtual ring layer computes the positions of each
node using this spanning tree. The result with 30 positions on the ring, is shown
in Sub-figure 4. In general there are 2(n — 1) positions on a virtual ring. The fifth
sub-figure shows the resulting virtual ring including all short-cuts as it will be used
by the publish/subscribe system.

Next we discuss routing of publications for the example given in Sub-figure 6.
At position 1 and 7 we have a single publisher (node 5) indicated by P. Furthermore,
there are two subscribers, one at position 25 and 27 (node 11) and the other at 26
(node 7). Note, that the actual node identifier is transparent to the publish/subscribe
layer. In Sub-figure 6, for all circled positions the routing table (current position pos
and the message forwarding position fPos) is depicted as well, for other positions it
is omitted for readability. Publishing always begins at the smallest position of a node,
its home position. In this example it is position 1. Thus, the publication is forwarded
over the closest short-cut to position 16. Since there exists no short-cut from 16,
messages will be forwarded to 17. Routing proceeds in this style (i.e., without short-
cuts) until the message reaches position 20. Now the forwarding position is 24. In
the next step, position 25 - one of the subscribers - is reached, the publication is
delivered, and the message will be forwarded to the next subscriber, i.e., 26. At 27
the message is discarded, because the fPos of position 27 is 13, which is bigger than
the origin, i.e., position 1.

Additionally, the figure depicts the travelled path from P to the first S. The
distance comprises 7 hops, even though this is much shorter than routing over the
virtual ring in the regular way (24 hops), it is not the shortest path (4 hops).

94 @ Self-stabilizing publish/Subscribe systems

©

£2[50d]
5zl s0d A® 4
B _
W,/ 91[91L] sody

(sdoy) yed 3sapioys reess
(sdoy /) 1N 1IOYS memmm 0¢lo
(sdoy pz) Bup lenuiA ——

S$)ul| 9343-3U0U
OMM: 8'0 2Je sabpa Aesb b1

mf uo mco_u_mon_

3 depicting

the views of all layers and a

generic routing scheme

FIGURE 6.2
Example topology with 16
nodesand Cy =

0/.
———

GL|LL|SOd}

71[0L] sod

£="2 3|qe3 Joqubiau jo azis

)
)
@

S$)UI| UOIILDIUNWIWOD [eUOIIdIIPIg

D—Lo—(
(o)

/|

MBIIANIOMIDN J9AeT DYIN y

General Approach o 95

6.4 ARCHITECTURE OF THE MIDDLEWARE

The self-stabilizing publish/subscribe middleware has a layered
architecture. Each layer is self-stabilizing with respect to its service which is exposed
by an API. The following sections describe the layers from top to bottom.

6.4.1 Publish/Subscribe Layer

The publish/subscribe layer provides the following API to be used

by applications.
subscribe(c) client subscribes to messages for channel ¢
unsubscribe(c) client unsubscribes from channel ¢

publish(pub,c) | client publishes publication pub to channel ¢

Each node maintains a list Cg of the channels it holds subscriptions for. This list is
made fault tolerant with respect to stale or corrupted entries with the lease technique.
Each subscription is associated with a time-to-live (TTL) value that is periodically
reset. If the value is not reset in time the entry is removed. In the following we sketch
the implementation of two functions of this layer using the API of the layer below.
The function sendOnRing()provided by the virtual ring layer sends messages to the
node located at the given position of the ring. Note that, function subscribe()renews
the subscriptions with period d;. If a subscription is not renewed in a time interval
of length 24 it is discarded.

function PUBLISH(PUB, C)
next := fwdPos(homePos, c);
sendOnRing(next, puB(homePos, pos, c, pub));

function SUBSCRIBE(C)
while subscribed do
loop with period &5
Cs.add(c);
renew TTL for ¢ with 28;

/* Send message suUB to itself */

sendOnRing(homePos, suB{homePos, homePos, c, F[][0]))

Publications are forwarded on the virtual ring. Message PUB(pos, goal, c, pub)
transports publication pub of channel ¢ originating from position pos to position
goal (see Algorithm 10). If a receiving node is a subscriber of the corresponding
channel, then the publication is delivered if it has not been delivered before. A
publication is always delivered at the first position of a subscribing node reached
while travelling the ring. A node can check this since it knows its own positions and
the position of the point of origin of the publication.

96 @ Self-stabilizing publish/Subscribe systems

By default publications are forwarded from one ring position to the next. The
originating position is used to detect if a publication has travelled the complete
ring, hence, that it can be discarded. To reduce latency and the number of messages
short-cuts are used. For this purpose each node maintains for each channel c a table
F which contains for each position of the node on the ring the next forwarding
position. It is guaranteed that the omitted positions between F[i][0] and F[i][1]
have no subscription for this channel. If the next forwarding position is beyond the
originating position, the publication is discarded (see function isBetween()).

To be fault-tolerant entries in F must be renewed periodically. For this purpose
each entry has an associated TTL value which is decremented every time tick. If
TTL = 0 for an entry x then the forwarding position F[x][1] is set to L.

Subscriptions can be handled in two different ways. One possible routing scheme
is to forward them on the virtual ring using the message suB(pos, goal, c, s;;;) (see
Algorithm 10). The message is discarded when it reaches the originating position.
Parameter s;;,, contains the set of positions on the ring of the subscribing node.
Upon reception of a subscription a node must update the table F with the forwarding
positions. For this purpose a node iterates over its own positions and checks whether a
position of the new subscriber is closer to itself with respect to the current forwarding
position. In this case the entry is updated and the TTL value is reset.

Another option is that a node forwards suB messages to all its neighbouring
positions. This may generate duplicated messages, as two messages sent to two
different parts of the ring, may reach the same position after a certain time. To avoid
this, the message is tagged with an end position. Once this position is reached the
message is discarded. With this alternative subscription messages are forwarded
concurrently. This may greatly reduce latency but also leads to more contention at
the MAC layer.

6.4.2 Virtual Ring Layer

This layer provides and maintains a kind of overlay network in the
form of a ring. It is only a virtual ring in the sense that a node may appear several times
on this ring, adjoining positions correspond to neighbouring nodes. The positions
on the ring are numbered beginning with Position 0. Each node maintains a list P
with its own positions and a table R with all positions of all its neighbours sorted by
positions for efficiency. The smallest position of each node is called the home position.
The API of the virtual layer (shown below) enables the publish/subscribe layer to
implement its functions in a self-stabilizing manner. It is implemented using P and
R maintained with the help of the layer beneath.

There are several ways to construct virtual rings. We present a solution based
on a rooted spanning tree. Each node has a variable par with the identifier of its
parent in the tree and an array chd with the identifiers of its children. The virtual ring
follows the path of a depth-first traversal of the tree. Instead of implementing such
a traversal, we compute for each node the number of nodes in the subtree rooted
at each child. With the help of these numbers it is straight forward to compute for

Architecture of the Middleware o 97

Algorithm 10 Handling of puB and suB messages

F a table per channel, with each position pos of node v,
forwarding position fPos for each pos,and a TTL
homePos smallest of all positions of node v (i.e., F[0][0])

function FwpPos(pos, c)
/*returns forwarding position for a pub. for channel ¢ from position pos*/
/*if no subscriber found return nextPosOnRing(pos)*/
p := indexOf(pos)][1];
if p= 1 then
return nextPosOnRing(pos);
else
return F[indexOf(pos)][1];

Reception of: PuB(h, p, ch, mess)

if ch € Cg and mess not yet delivered to node then
deliver(mess);

fp 1= fwdPos(p, ch);

if ~isBetween(h,p, f ») then
sendOnRing(f » PUB (h, f p,ch,mess))

Reception of: sus(h, p, ch, s;;5;)
I*Siist = {505 -+ » S J: list of positions of (re)subscriptions from node in*/
for i=o, ..., sizeOf(F) do
find first s i after F[i][0] counter clockwise from s;;
P,.. :=getPosClosestTo(F[i][o], s f)
if F[i][1] = L || isBetween(P,,,,, F[i][o], F[i][1]) then
F[i](1] := P,,,5
renew TTL for p; with 28;
f p = nextPosOnRing(p);
if f, # hthen
sendOnRing(f ,, SUB(h, f ;,ch,sj;st))

98 @ Self-stabilizing publish/Subscribe systems

Algorithm 11 *

R table with positions of all neighbours sorted by positions
P list of own positions
fresh, boolean to indicate recently refreshed child count

cnt; number of children in sub-tree of child i

1

Variables and Functions of the Virtual Ring Layer
getldAtPos(pos) // returns id of neighbour at position pos
getPosClosestTo(pos, goalPos) // returns largest counter clockwise position

/1 after pos and before goalPos within R

nextPosOnRing(pos) // return next ring position with wrap around
sendOnRing(pos, msg) /] send message msg to position pos
isBetween(test, left, right) /1 checks if position test is in ccw ring segment

// bounded by position left and right

each node its positions on the ring starting with Position 0 at the root. Note that,
for this calculation the nodes do not need to know the total number of nodes. The
computation of the positions is realized in two antidromic waves (see Algorithm 12).
The first of these starts at the leaves. Recursively, each node tells its parent the number
of nodes in its subtree. This is implemented with the message up({cnt). The second
wave begins at the root and proceeds towards the leaves. A node that knows its
home position and the size of the subtree rooted at each child can compute its own
positions and the home positions of each child. This is implemented with the message
DOWN({cnt).

Fault tolerance is again achieved through a periodic repetition of this process.
All leave nodes send message up(1) with period § to their parents. Upon receiving
such an UP message a node checks whether it has fresh (boolean indicating resent
updates) values of the size of all sub-trees rooted at its children. If this is the case
the node sends an UP message with the accumulated counts to its parent. If the root
receives an UP message it starts the down wave by sending a DowN message to all
its children with their home position. Upon the reception of such a message a node
sends a corresponding DOWN message to all its children.

6.4.3 Spanning Tree Layer

This layer maintains a spanning tree of the graph defined by the
neighbourhood management protocol of the layer beneath. The implementation
in Algorithm 13 is based on a self-stabilizing algorithm to construct a breadth-first
tree of Huang and Chen adopted to the message passing model [HCo92]. We assume
the existence of a dedicated root node. In contrast to the other layers this layer uses
broadcasts instead of point-to-point communication. A message TREE(dist, parent)
contains its current distance to the root and the identifier of its current parent. The
root broadcasts with period §; the message TREE(O, root). Upon the reception of

Architecture of the Middleware o 99

Algorithm 12 Virtual Ring

loop with period 85
if chd = & then
send(par, ur(1))
Reception of: up{cnt) from s:
cntg = cnt
if Vi € chd | fresh; = true then
foralli € chd do
fresh; := false
if ~root then
send(par, up(l + X, cnt;))

else
P[0] :=1
for alli € chd do
P[i] :=P[i— 1] +2 X cnt;
send(chd;, DOWN(P[i — 1]))
Reception of: DOWN(pos) from s:
P[0] := pos + 1
for alli € chd do
P[i] :=P[i— 1] +2 x cnt;
send(chd;, DowN(P[i - 1]))

a message TREE(d, p) not originating from a current child a node checks whether
it has to update the variables par and dist. If this is the case then it broadcasts the
new values of these variables with a TREE message. If the message indicates that the
sender considers the receiving node as its parent the node adds the sender to its set
of children and resets the flag upToDate. Within an interval of length 25 the set
chd is checked for stale entries, i.e., for which upToDate = false. These entries are
removed. For the remaining entries the flag is set to false.

To reduce traffic, the periodically broadcasted messages at the spanning tree layer
are used to inform a node’s neighbours about the node’s position on the virtual ring,
as well. For this purpose every node appends its current positions to the broadcasted
TREE message and receiving nodes use this information to update their table R.
This cross layer approach is only an option. Alternatively, the positions can also
be broadcasted on the virtual ring layer, ensuring the separation of layers while
increasing the network load.

6.4.4 Neighbourhood Management and MAC Layer

This layer consists of the algorithm presented in [STW™13]. It pro-
vides a connected stable topology for WSN's by choosing well suited links among its
neighbours. The number of neighbours of a node is limited to C;. For the MAC-Layer
we consider any protocol which supports point-to-point and broadcast communica-
tion patterns (e.g., IEEE 802.15.4).

100 @ Self-stabilizing publish/Subscribe systems

Algorithm 13 Spanning Tree

chd set of children of node v
upToDate; boolean to indicate recently refreshed tree data
par parent of node v
dist distance to root
loop with period 8 if p # id then
if root then ifd + 1 < dist then
dist :==0 dist :=d +1
broadcast(TREE(dist, par)) par :=p
broadcast(TREE(dist, par))
loop with period 28, ifd + 1 =dist A\ p < par then
for alli € chd do par:=p
ifupToDate; = false then else
chd.remove(i) chd.add(s)
else upToDate,,;_, := true
upToDate; := false broadcast(TREE(dist, par))

Reception of: TREE(d, p) from s:

6.5 ANALYSIS OF ALGORITHMS

Following the detailed description of our approach, a discussion
of its main properties is presented. The aim is to put the algorithms performance
and requirements in perspective to the constrains of WSNs.

6.5.1 Space requirements and scaling

Each node has at most Cy; neighbours and each neighbour occu-
pies at most Cy positions on the ring. Thus, tables R and P together require O(C%,)
memory. Per channel, table F requires O(Cy;) memory. All other variables together
require O(Cy) memory. This leads to a total memory requirement of O(C%; + cCy)
(c denotes the number of channels). Thus, our approach scales with the size of the
network, but not that well with the number of channels.

There are 2(n — 1) positions on the virtual ring thus, a subscription periodically
generates 2(n— 1) messages. The quantity of messages per publication depends on the
number of subscribers and on the structure of the network, this makes an analysis
rather difficult. We conjecture that the number of messages scales well with the size
of the network.

Next we prove that Algorithm 10 is correct, meaning that it eventually yields a
correct routing of the messages as described by the following safety properties:

(P;) A message is delivered to a node at most once.

Analysis of Algorithms o» 101

(P,) A node only receives messages belonging to a channel it has subscribed for.

(P3) After subscribing to a channel a client eventually receives all messages published
to that channel.

THEOREM 13. As long as no transient fault occurs Algorithm 10 will eventually
satisfy safety properties P; to Ps.

Sketch of Proof of 13. Consider a point in time after which no transient error occurs,
this includes events which lead to changes in the neighbourhood relation. Then
eventually Algorithm 13 stabilize. This can be seen by adopting the original proof of
[HC92] to our model. Note that, in contrast to this algorithm in our case a node does
not need to know the size of the network. The reason is that the root periodically
broadcasts TREE messages. The leasing technique is also used to correct faults in the
set of children of a node. Thus, these sets are also eventually correct and stable. Once
Algorithm 13 has stabilized also Algorithm 12 will stabilize. This is because leaf nodes
of the spanning tree periodically send urp messages to their parents. These prompt
the parents to send UP messages towards the root. Upon receiving an up message the
root sends DOWN messages to all its children which are then forwarded towards the
leaf nodes. Hence, table P at all nodes will eventually be correct. In addition, this
also holds for table R. Because a node periodically broadcasts its table P. Note that
this table has at most Cyy entries.

When a node receives a PuB messageand detects that the next forwarding po-
sition on the ring is beyond the originators position, then the PuB messagewill be
discarded. Thus, a PUB messagenever cycles forever. A publication may reach a node
at several positions, nevertheless it is delivered only at the first position reached.
Since, eventually the set Cy is correct for each node, property P, will be satisfied.
After Cg is correct property P, is guaranteed. To prove property P, note that, after
O(n) time following a subscription to a channel by a node the corresponding data
structure F is correctly updated at every node. After this point in time the node
receives all publications to this channel.

6.5.2 Timings and time-outs

The self-stabilization property of the presented middleware heav-
ily relies on the leasing technique. A critical issue with this method are the values
for the time-outs. With large values a corrupted or lost entry (e.g., a subscription)
may remain undetected longer than can be tolerated by the application. For example
a corrupted entry in table F may lead to a situation where a subscriber will miss
some publications. The larger the time-out value the higher the probability for this
case. Smaller time-outs may generate unnecessary overhead, in particular a high
number of messages. In case of a fault arising from lost messages, short time-outs
may aggravate the situation, because they place a higher load on a potentially already
overloaded channel.

102 @ Self-stabilizing publish/Subscribe systems

The middleware uses time-outs on each layer: §5 to renew subscriptions, 85
to renew the positions on the virtual ring, and 8 to renew the spanning tree. The
actual values leading to a stable behaviour strongly depend on the characteristics
of the network and the frequency of faults. Even expressing constraints about the
relation between time-out values turns out to be difficult. The fact that the virtual
ring is completely determined by the spanning tree suggests that the value of 8y
should be larger than &;. This is because faults in the tree are only repaired after a
period of length 8. But on the other hand, repairing corruptions in the table R are
independent of the spanning tree. Thus, it also makes sense to choose 6 smaller
than 0. We believe that the values of time-outs should be determined adaptively at
runtime.

6.5.3 Overview of simulation results

We implemented and simulated our solution using the OMNeT++frame-
work, together with the MiXiMextension it offers realistic path-propagation models
to mimic WSN behaviour. In simulation the neighbourhood management layer was
able to create a stable topology. Nonetheless, there are lower bounds for the desired
Cy by the neighbourhood algorithm. A value for Cy; permitting too few neighbours
will lead to a very long stabilizing process and may not create a connected setup.
Especially in large networks with 100 or more nodes, less then, e.g., 6 neighbours
will put high difficulty on the neighbourhood protocol. Therefore, we used C; = 10
which still recognizes the restricted memory of sensor nodes. Changes in the neigh-
bourhood of a node will change the tree setup, hence, the ring positions, this will
in fact lead to errors during the routing of subscriptions and publications. MiXiM’s
log normal shadowing, path-loss models, and bit-corruption mechanisms where
used to induce link changes, i.e., possible errors. To mitigate the problem of too
many messages being used for re-submission, ring maintenance, tree building, and
neighbourhood management we use the trickle algorithm [LCH"11]. It adapts the
update speed of information depending on the changes in message content.

Only a brief report on simulation results is given due to space restrictions. Fig-
ure 6.3 shows our solution compared to a flooding approach which was implemented
and tested using the same underlying network (grid network, nodes in commu-
nication range up to 20, varying number of subscribers and publishers randomly
distributed, multiple runs, 7 differed networks sizes).

The delivery rate for both approaches declines with growing network size. De-
pending on the stability of our proposed layered structure high delivery rates can
be achieved even when the network size increases. The delivery rate declines as the
probability for instabilities accumulates. The needed messages, i.e., the power con-
sumption of our approach depends very much on the ratio of publication messages
to system maintenance messages. For the simulations depicted in Figure 6.3 we have
sent at least 3 publications for every (re-)subscription message, and with the trickle
timer we could decrease other maintenance messages as well. Furthermore, with
growing numbers of subscribers more messages need to be sent. In case of flooding

Analysis of Algorithms o> 103

FIGURE 6.3
Message delivery of flooding
(dark box) compared to the
virtual ring approach (light
box). Processed messages
normalized over number of

nodes and publishers.

2.0

100

P ~
w90 o
S == % J_ 1.5 g
= 2
8 80 % é
< 1.0
g i - H = o O u] B
o, 70 2
'-O n
& e} 0.5 0%
g 60 o 5 o o o o 3
= o Virtual ring messages
8 o Flooding messages

50 0.0

16 25 36 49 64 81 100

Number of nodes

each node generates one message per publication. This holds for any number of
subscribers, unless the message does not reach all nodes due to collisions.

6.6 CONCLUSION AND OUTLOOK

We presented a scalable, self-stabilizing middleware for channel-
based publish/subscribe that particularly meets the requirements of WSNs. We con-
sider message and memory corruptions while respecting dynamic network changes,
such as, node and link removals and additions. The middleware aims to capture the
trade-off between the scalability of the overlay network (i.e., the size of the routing
tables) and the message routing overhead incurred by nodes forwarding publications.
As optimal solutions (e.g., Steiner tree based overlays) are too costly to build and
maintain, we use a simpler structure of a virtual ring. To reduce message complexity
we use channel specific short-cuts on this ring. With the help of a neighbourhood
management protocol the system suffices with an average storage demand per node
that is only proportional to the number of channels, i.e., independent of the network
size.

The middleware is organized as four independent layers. Each layer is self-
stabilizing on its own. For their composition we use collateral composition. Fault tol-
erance is mainly achieved through the leasing technique. Evaluation using simulation
showed that the system’s performance highly depends on the used neighbourhood
management protocol. If a high stability can be preserved, then the middleware
quickly and effectively routes publications to all subscribers, while the messaging
demand per node stays constant for the maintenance structure. An open issue is
the lack of scalability with respect to channels in general. Here we hope to adopt

104 @ Self-stabilizing publish/Subscribe systems

concepts from [CMTVoy].

Conclusion and Outlook o> 105

106

Conclusion and future
directions

#% In this thesis we focused on designing efficient self-stabilizing
algorithms. This was mainly done for matching problems in the first part of the
document and then for publish/subscribe systems in its second. This work was
addressed in the setting of the state model and the link-register for the matching
problems and the message passing model for publish/subscribe systems. This choice
of models is mainly motivated by the validation strategy used in both cases. For
the matching part, algorithms are proved, and hence an abstract model was needed.
It is also the reference model for comparing the different results obtained for this
problem. The algorithm for the publish/subscribe paradigm is implemented for a
simulation, and thus required a more detailed model, that can be expressed through
modern day programming languages routines. The summary of the different results
obtained are to be detailed according to this two part scheme.

7.1 MATCHING PROBLEMS

From the self-stabilizing maximal matching algorithm in identi-
fied networks, presented in Chapter 3, we derived related problems by relaxing some
hypotheses or adding some constraints to it. The succession of the results in this part
can be thought of as trying to design a polynomial self-stabilizing algorithm for these
different cases. The obtained results are valid for the distributed adversarial daemon.

7.1.1 Maximal Matching in anonymous networks

We give a polynomial probabilistic self-stabilizing algorithm for
the maximal matching in anonymous networks. Due to the anonymity constraint,
the algorithm is randomized to break symmetry. It stabilizes in O(n*) moves with
high probability and improves on the last known result that stabilizes in O(mn>)
expected moves.

FUTURE DIRECTIONS For now, it remains an open question whether the same
order of complexity can be obtained in the same setting (daemon and anonymity)
for any approximation of the maximum matching problem better than 1/2, which
is the maximal matching. This seems difficult since the next approximation is a

Conclusion and future directions o 107

2/3—approximation that can be achieved by finding and exploiting 3-augmenting
paths. This requires being able to distinguish a path from a cycle, which is impossible
in a deterministic way in anonymous networks.

7.1.2 A 2/3—approximation of the maximum
matching problem in identified networks

In this work [CMMP16] a proof that the best known self-stabilizing
2/3—approximation of the maximum matching stabilizes in 0(2"N) moves is given
by exhibiting an execution that has needs exactly this number of moves to recover
from a fault. The tightness of this exponential bound have, until now, not been proven.
Following this, we present the first polynomial 2/3—approximation of the maximum
matching problem in identified networks and under the distributed adversarial dae-
mon. It stabilizes in O(n?) moves, provided that an underlying maximal matching has
been initially built. The overall, from scratch, complexity can be raised to O(m x 1n?)
moves through fair composition.

FUTURE DIRECTIONS Itishard to see this straightforwardly extend to the case
of weighted matchings, as information look-up over a path of length three is not
sufficient. It is also interesting to think of the matching problem as a partitioning of
the graph into cliques of size two. From here, it is natural to ask whether it is possible
to obtain a partition into cliques of larger size under the same conditions. The most
recent work [DLR14] tackling this question requires a spanning tree structure for
the graph and a leader election mechanism. Its overall complexity is roughly O(n'?).
It is an open question to know whether it is possible to achieve it with less cost or
without the aforementioned hypotheses.

7.2 SELF-STABILIZING PUBLISH/SUBSCRIBE SYSTEMS

We presented a solution for routing messages in channel-based
publish/subscribe systems. This solution adopts a spanning tree as a virtual ring
mechanism and introduces for the first time the notion of short-cuts for routing
messages outside the virtual ring when it is more efficient to do so. It is also more
space efficient by not requiring every node of the system to store a large routing table.
The algorithm remains also valid in the case of wireless sensor networks, where the
topology is highly dynamic by adopting results from neighbourhood management
protocols.

FUTURE DIRECTIONS It remains open whether we can derive theoretical values
for the different time-outs used for the leasing technique. On the other part, it is

interesting to tend toward a smaller virtual ring structure than the spanning tree

108 w» Conclusion and future directions

and a less costly one than the Steiner Tree. An approximation of the Steiner Tree
as in [BPBRog] could be considered. Special spanning trees with bounded average
degrees could also reduce the time a message has to travel on the ring.

Self-stabilizing publish/subscribe systems o 109

Figure 2.1 A representation of a graph. Here n = 5,m = 9, d(v) = 4 and
Nu) =v,w,x 11

Figure 3.1 Example of the interaction in a state model 17

Figure 3.2 A couple of nodes communicating through a shared register mem-
ory 18

Figure 3.3 Hierarchy of daemons according to distribution 21
Figure 3.4 Hierarchy of daemons according to fairness 22

Figure 3.5 Executions of a Self-Stabilizing system 24

Figure 4.1 Self-Stabilizing Maximal Matching Algorithms 33

Figure 4.2 Two Married nodes and an Undecided node. Variable f3 is repre-
sented by the arrows 36

Figure 4.3 Example of a configuration where u is a Single node and F(u) =
{Ul> Uz, U3}. 37

Figure 5.1 Best results in maximum matching approximation. In bold, our
contributions. 47

Figure 5.2 How to exploit a 3-augmenting path? 48

Figure 5.3 An execution of Algorithm ExPOMATCH 53

Figure 5.4 Four states of an edge 55

Figure 5.5 A partial view of graph G, 57

Figure 5.6 Graph G, encoding oo10 57

Figure 5.7 After turning on the Oth bit-block, G, encodes oo11. 60

Figure 5.8 After activating the O -nodes of the 3rd bit-block, G, does not
encode any integer. 61

Figure 5.9 Starting to turn off the Oth and Ist bit-blocks. 61
Figure 5.10 Starting to turn on the 3rd bit-block. 61

Figure 5.11 Ending to turn off the oth and 1st bit-blocks and to turn on the
3rd bit-block. G, encodes o100. 61

Figure 5.12 An execution of Algorithm PoLyMaTcH (Only the True value of
the end-variables are given) 67

Figure 5.13 Impossible situations in a stable configuration. 70

Figure 5.14 A chain of 3-augmenting paths. 72

Figure 6.1 Layered architecture 9o

Figure 6.2 Example topology with 16 nodes and Cy; = 3 depicting the views
of all layers and a generic routing scheme 95

110 Conclusion and future directions

Figure 6.3 Message delivery of flooding (dark box) compared to the virtual
ring approach (light box). Processed messages normalized over
number of nodes and publishers. 104

Self-stabilizing publish/subscribe systems o 111

112

O CoN oAV W N+

e
N O

[ury
w

List of Algorithms

Collatzalgorithm 16
Maximal matching algorithm, 25
JANONYMATCH - Maximal matching algorithm in anonymous networks 35
LINKNAME . o . v v i e 41
JANONYMATCH2 - Maximal matching algorithm in anonymous graphs . 42
Functions used in the ExpoMATCH algorithm 51
ExpoMATrcHalgorithm 0 L 52
Functions used in the PoLyMATCH algorithm 63
PoLyMarcHalgorithm oo oo 64
Handling of PuB and suBmessages 98
e e e e e 99
Virtual Ring 100
SpanningTree 101

List of Algorithms o 113

114 9

[AGM*11]

[Al5]

[AWo4]

[Bal8s]

[BFMo8]

[BPBRO9]

[CDKRo2]

[CDRT13]

[CHSo02]

[Chu3z6]

Bibliography

Heiner Ackermann, Paul W Goldberg, Vahab S Mirrokni, Heiko Roglin,
and Berthold Vocking. Uncoordinated two-sided matching markets.
SIAM Journal on Computing, 40(1):92-106, 2011.

Y. Asada and M. Inoue. An efficient silent self-stabilizing algorithm for
1-maximal matching in anonymous networks. In WALCOM: Algorithms
and Computation - 9th International Workshop, pages 187-198. Springer
International Publishing, 2015.

Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley ¢ Sons, 2004.

Alexandru T Balaban. Applications of graph theory in chemistry. Journal
of chemical information and computer sciences, 25(3):334-343, 1985.

P. Berenbrink, T. Friedetzky, and R. A. Martin. On the stability of dynamic
diffusion load balancing. Algorithmica, 50(3):329-350, 2008.

Lélia Blin, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis.
A superstabilizing log(n)-approximation algorithm for dynamic steiner
trees. In Proceedings of the 11th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, SSS 09, pages 133-148, Berlin,
Heidelberg, 2009. Springer-Verlag.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony
I. T. Rowstron. Scribe: a large-scale and decentralized application-level
multicast infrastructure. IEEE J. Sel. Areas in Com., 20(8):1489-1499,
2002.

Jaime Chen, Manuel Diaz, Bartolomé Rubio, and José M. Troya. PS-
QUASAR: A publish/subscribe QoS aware middleware for Wireless Sen-
sor and Actor Networks. J. of Sys. & Softw., 86(6):1650-1662, 2013.

S. Chattopadhyay, L. Higham, and K. Seyffarth. Dynamic and self-
stabilizing distributed matching. In Proceedings of PODC, pages 290-297.
ACM, 2002.

Alonzo Church. An unsolvable problem of elementary number theory.
American journal of mathematics, 58(2):345-363, 1936.

Bibliography o> 115

[CLM*16] Johanne Cohen, Jonas Lefevre, Khaled Maamra, Laurence Pilard, and

Devan Sohier. A self-stabilizing algorithm for maximal matching in
anonymous networks. Parallel Processing Letters, 26(04):1650016, 2016.

[CMMP16] J. Cohen, K. Maamra, G. Manoussakis, and L. Pilard. Polynomial self-

stabilizing maximum matching algorithm with approximation ratio
2/3. In International Conference On Principles Of Distributed Systems,
OPODIS, 2016.

[CMTVoy] Gregory Chockler, Roie Melamed, Yoav Tock, and Roman Vitenberg.

[CRWo1]

[DHo3]

[Die]

[Dij74]

[DIM89]

[DLM16]

[DLR14]

[Doloo]

[DT11]

[Edm87]

Constructing scalable overlays for pub-sub with many topics. In Proc.
26'" Annual ACM Symp. on Prin. of Distributed Computing, pages 109-118,
2007.

Antonio Carzaniga, David Rosenblum, and Alexander Wolf. Design and
evaluation of a wide-area event notification service. ACM Trans. Comp.

Syst., 19(3):332-383, 2001.

D. E. Drake and S. Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., 85(4):211-213, 2003.

Reinhard Diestel. Graph Theory. Fourth edition.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643-644, 1974.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems.
In Proceedings of the MCC Workshop on Self-stabilizing Systems, 1989.

Ajoy K Datta, Lawrence L Larmore, and Toshimitsu Masuzawa. Max-
imum matching for anonymous trees with constant space per process.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 46.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

Fran¢ois Delbot, Christian Laforest, and Stephane Rovedakis. Self-
stabilizing algorithms for connected vertex cover and clique decomposi-
tion problems. In Principles of Distributed Systems - 18th International
Conference, OPODIS 2014, Cortina dAmpezzo, Italy, December 16-19, 2014.
Proceedings, pages 307-322, 2014.

S. Dolev. Self-Stabilization. MIT Press, 2000.

Swan Dubois and Sébastien Tixeuil. A taxonomy of daemons in self-
stabilization. CoRR, abs/1110.0334, 2011.

Jack Edmonds. Paths, Trees, and Flowers, pages 361-379. Birkhéduser
Boston, Boston, MA, 1987.

116 > Bibliography

[EFGKo3]

[EPSW14]

[Gal8e6]

[GC89]

[GHJSo08]

[GHSo06]

[GJo1]

[GK10]

[GM96]

[HCo2]

[HGMo3]

[HHog2]

[HJSo1]

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114-131, 2003.

Y. Emek, C. Pfister, J. Seidel, and R. Wattenhofer. Anonymous networks:
randomization = 2-hop coloring. In Proceedings of PODC, pages 96-105.
ACM, 2014.

Zvi Galil. Efficient algorithms for finding maximum matching in graphs.
ACM Comput. Surv., 18(1):23-38, March 1986.

C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. SIGOPS Oper. Syst. Rev., 23(5):202—
210, 1989.

W. Goddard, S. T. Hedetniemi, D. Pokrass Jacobs, and P. K. Srimani.
Anonymous daemon conversion in self-stabilizing algorithms by ran-
domization in constant space. In Int. Conf. in Distr. Computing and
Networking, volume 4904, pages 182-190, 2008.

W. Goddard, S. T. Hedetniemi, and Z. Shi. An anonymous self-stabilizing
algorithm for 1-maximal matching in trees. In Proceedings of the Int.
Conf. on Parallel and Distributed Processing Techniques and Applications,
pages 797-803, 2006.

M. Gradinariu and C. Johnen. Self-stabilizing neighborhood unique
naming under unfair scheduler. In 7th Int. Euro-Par Conference, volume
2150, pages 458-465, 2001.

N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for
independence, domination, coloring, and matching in graphs. J. Parallel
Distrib. Comput., 70(4):406-415, 2010.

B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random
matchings. J. Comput. Syst. Sci., 53(3):357-370, 1996.

Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing algorithm
for constructing breadth-first trees. Inf. Process. Lett., 41(2):109-117, 1992.

Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe tree
construction in wireless ad-hoc networks. In Mobile Data Management,
volume 2574 of LNCS, pages 122-140. Springer, 2003.

S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal
matching. Inf. Process. Lett., 43(2):77-81, 1992.

S.T. Hedetniemi, D. Pokrass Jacobs, and P. K. Srimani. Maximal matching
stabilizes in time O(m). Inf. Process. Lett., 80(5):221-223, 2001.

Bibliography o 117

[HK73] J. E. Hopcroft and R. M. Karp. An #°/? algorithm for maximum match-
ings in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973.

[Hoei3] = M. Hoefer. Local matching dynamics in social networks. Inf. Comput.,
222:20-35, 2013.

[HTSCo8] U. Hunkeler, Hong Linh Truong, and A. Stanford-Clark. MQTT-S - A
publish/subscribe protocol for Wireless Sensor Networks. In 3rd Int.
Conf. on Com. Systems Soft. & Middleware, pages 791-798, Jan 2008.

[IGEoo] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin.
Directed diffusion: A scalable and robust communication paradigm for
sensor networks. In Proc. 6th Int. Conf. on Mobile Comp. & Netw., pages
56-67, 2000.

[IOT16] Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil. An efficient
silent self-stabilizing 1-maximal matching algorithm under distributed
daemon without global identifiers. In International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, pages 195-212.
Springer, 2016.

[Jaeo8] Michael A. Jaeger. Self-Managing Publish/Subscribe Systems. PhD thesis,
Techn. Univ. Berlin, 2008.

[JFo9] Zbigniew Jerzak and Christof Fetzer. Soft state in publish/subscribe.
In Proc. 3rd ACM Int. Conf. on Distributed Event-Based Systems, pages
17:1-17:12, 2009.

[Kleoo] Jon Kleinberg. The small-world phenomenon: An algorithmic perspec-
tive. pages 163-170, 2000.

[Knuy6] D. Knuth. Marriages stables et leurs relations avec dautres problémes
combinatoires. Les Presses de I'Université de Montréal, 1976.

[KSoo] Mehmet Hakan Karaata and Kassem Afif Saleh. Distributed self-
stabilizing algorithm for finding maximum matching. Comput Syst
Sci Eng, 15(3):175-180, 2000.

[Lam8s] Leslie Lamport. Solved problems, unsolved problems and non-problems
in concurrency. volume 19, pages 34—44, New York, NY, USA, October
1985. ACM.

[Lan] Serge Lang. Algebra. Third edition.

[LCH*11] Philip Levis, T Clausen,] Hui, O Gnawali, and] Ko. The trickle algorithm.
p g
Internet Engineering Task Force, RFC6206, 2011.

[Lyng6] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

18 w» Bibliography

[MBog]

[MMo7]

D Konig Michael and Stefano Battiston. From graph theory to models of
economic networks. a tutorial. Networks, Topology and Dynamics, pages
23-63, 2009.

E Manne and M. Mjelde. A self-stabilizing weighted matching algorithm.
In gth Int. Symposium Stabilization, Safety, and Security of Distributed Sys-
tems (SSS), Lecture Notes in Computer Science, pages 383-393. Springer,
2007.

[MMPTog] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing

[MMPT1]

[Prego]

[SCWBo8]

[SGHo4]

[SGV*os5]

[Sheo7]

[Sipo6]

[SMT14]

[STMis]

maximal matching algorithm. Theoretical Computer Science (TCS),
410(14):1336-1345, 2009.

E. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing
2/3-approximation algorithm for the maximum matching problem. The-
oretical Computer Science (TCS), 412(40):5515-5526, 2011.

R. Preis. Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In 16th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science, pages 259-269. Springer, 1999.

David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck.
Computation with finite stochastic chemical reaction networks. Natural
Computing, 7(4):615-633, Dec 2008.

Z.Shi, W. Goddard, and S. T. Hedetniemi. An anonymous self-stabilizing
algorithm for 1-maximal independent set in trees. Inf. Process. Lett.,

91(2):77-83, 2004.

Eduardo Souto, Germano Guimares, Glauco Vasconcelos, Mardoqueu
Vieira, Nelson Rosa, Carlos Ferraz, and Judith Kelner. Mires: A pub-
lish/subscribe middleware for sensor networks. Personal Ubi. Comput.,

10(1):37-44, 2005.

Zhenhui Shen. Techniques for building a scalable and reliable distributed
content-based publish/subscribe system. PhD thesis, Iowa State Uni., 2007.

Michael Sipser. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, 2006.

Garry Siegemund, Khaled Madmra, and Volker Turau. Brief announce-
ment: Publish/subscribe on virtual rings. In Proc. 16" SSS, 2014.

Gerry Siegemund, Volker Turau, and Khaled Maamra. A self-stabilizing
publish/subscribe middleware for wireless sensor networks. In 2015
International Conference and Workshops on Networked Systems, NetSys
2015, Cottbus, Germany, March 9-12, 2015, pages 1-8, 2015.

Bibliography o> 119

[STWt13]

[SUW1s5]

[Telo1]

[THua]

[THu1b]

[Tur36]

[ZXW*16]

Gerry Siegemund, Volker Turau, Christoph Weyer, Stefan Lobs, and Jorg
Nolte. Brief Announcement: Agile and Stable Neighborhood Protocol
for WSNs. In Proc. 15" SSS, volume 8255 of LNCS, 2013.

J. Seidel, J. Uitto, and R. Wattenhofer. Randomness vs. time in anonymous
networks. In DISC, volume 9363 of LNCS, pages 263-275. Springer, 2015.

Gerard Tel. Introduction to Distributed Algorithms. Cambridge University
Press, New York, NY, USA, 2nd edition, 2001.

V. Turau and B. Hauck. A fault-containing self-stabilizing (3 -
2/(8+1))-approximation algorithm for vertex cover in anonymous net-
works. Theoretical Computer Sciences, 412(33):4361-4371, 2011.

V. Turau and B. Hauck. A new analysis of a self-stabilizing maximum
weight matching algorithm with approximation ratio 2. Theoretical
Computer Science (TCS), 412(40):5527-5540, 2011.

Alan Mathison Turing. On computable numbers, with an application to
the entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott
Shenker, and Ion Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56-65, October 2016.

120 «» Bibliography

ECOLE DOCTORALE

. H -
* i Sciences et technologies
universite derinformation

PARIS-SACLAY : et de la communication (STIC)

Titre : Algorithmes auto-stabilisants efficaces pour les graphes
Mots clés : Auto-stabilisation, Théorie des graphes, Algorithmique distribuée.

Résumé : L'auto-stabilisation est un domaine de l'algorithmique qui vise la conception d’algorithmes
distribués qui convergent vers une solution méme apres une corruption d’'un ou plusieurs agents. Les
graphes offrent un modele de topologie pour I'execution de ces algorithmes. Dés lors, il est naturel de se
demander s’il existe des algorithmes auto-stabilisants efficaces qui calculent certaines de leurs propriétés.
Le probleme du couplage est en particulier intéressant, il s’agit de partitioner le graphe en un maximum
d'arétes disjointes. Ce probleme a été étudié dans le cadre auto-stabilisant et des algorithmes comme celui
de Manne et al ont été élaborés. Lobjectif de cette these est 'amélioration de ces algorithmes en complexité
ainsi que d’en concevoir pour d’autres variantes du probleme.

L'apport majeur de cette thése est un travail en deux parties.

Il a d’abord été conduit pour le couplage maximal, dans sa version anonyme, résultant en un algorithme
auto-stabilisant probabiliste, de complexité polynomiale avec forte probabilité.

Il offre aussi un outil pour la transformation d'algorithmes identifiés en algorithmes anonymes.

Pour la version maximum du couplage, nous donnons une preuve que la borne sub-exponentielle de I'al-
gorithme pour une 2/3-approximation de Manne et al est atteinte. Cette borne était jusque la supposée
grossiere. Nous donnons ensuite un algorithme polynomial pour ce probléeme de 2/3 approximation. Les
deux algorithmes reposent sur un 1-couplage en utilisant le théoreme de Hopcroft et Karp.

La seconde partie porte sur I'élaboration d’un algorithme auto-stabilisant pour les systemes Pub/Sub basés
sur une communication en canal. Le résultat de ces travaux est un algorithme auto-stabilisant dynamique
pour le routage des messages dans un tel systeme. Il s’appuie sur une composition de couches et sur une
structure d’anneau virtuel. Il introduit la nouvelle notion de Raccourci dans ce type d’anneaux permettant
de disposer des messages d’annonce ainsi que ceux de désinscription. Ceci permet d'atteindre une réduc-
tion du temps de routage des messages, ainsi que de 1'espace requis par chaque noeud du graphe.

Title : Efficient self-stabilizing algorithms for graphs.
Keywords : Self-stabilization, Graph theory, Distributed algorithms.

Abstract : Self-stabilization is a field of algorithms design that focuses on designing distributed algorithms
that converge toward a legitimate behavior in the presence of transient faults. As for other distributed
algorithms, graphs provide a topological model for their execution. In this context, it is naturel to ask for
efficient self-stabilizing algorithms computing different properties of these graphs. The matching problem
in particular, is about portioning the graph into the maximum number of disjoint couples. This problem
has been studied in the literature and algorithms for solving it were designed, the Manne et al algorithm is
one of them and the most recent. The main goal of this thesis is the improvement, with respect to
complexity, of these algorithms and to design new ones for other variants of the problem.

The contribution of this thesis is structured in two parts.

First, a self-stabilizing algorithm for the maximal matching problem in anonymous graphs. This algo-
rithm is randomized and reaches a solution with high probability in polynomial time improving upon t

For the maximum version of the problem, a polynomial self-stabilizing algorithm computing a 2/3 ap-
proximation is designed. This algorithm improves on the Manne et al algorithm, as we prove that it is sub-
exponential. This bound was conjectured, until now, not to be tight.

The second part focuses on topic-based Pub/Sub systems. These are distributed systems where informa-
tion from a set of publishing nodes has to reach a set of subscribers according to different topics. A dynam-
ic self-stabilizing algorithm for routing information on such systems is given. It is based on a composition
technique offering a virtual ring upon which the new notion of short-cuts has been introduced. This new
algorithm does not rely on un-subscription or announcement messages reducing the routing time as well
as the space required by each node of the graph.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de I’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Title
	Introduction
	Preliminaries
	Sets
	Power sets
	Partitions

	Graphs
	Algorithmic Setting
	Conclusion

	Distributed Systems and Self-Stabilization
	Distributed Systems
	Communication graph
	Communication
	Atomicity
	Description of a distributed system through local states
	Execution
	Predicates on executions
	Daemons
	Fault-Tolerance
	Fault-tolerant algorithms

	Self-Stabilization
	Expressing self-stabilizing algorithms
	Complexity
	Other types of self-stabilization

	Proving Self-Stabilization
	Design Techniques
	Conclusion

	Maximal matching in anonymous networks
	Introduction
	Related work
	Outline and model
	The Maximal matching algorithm Numbers=Lining,ProportionalItalicFeatures=Contextuals=Swash AnonyNumbers=Lining,ProportionalItalicFeatures=Contextuals=Swash Match
	Handling the anonymous assumption
	Conclusion

	A polynomial 2/3- approximation of the maximum matching problem
	Introduction
	Common strategy to build a 1-maximal matching
	3-augmenting path
	The underlying maximal matching
	Augmenting paths detection and exploitation
	Graphical convention

	Description of the algorithm ExpoMatch
	Augmenting paths detection and exploitation
	Rules description
	An execution example of the ExpoMatch algorithm

	The ExpoMatch algorithm is sub-exponential.
	State of a matched edge
	The graph GN and how to interpret a configuration into a binary integer
	Identifiers in GN
	Counting from 0 to 2N-1

	The new algorithm PolyMatch
	Variables description
	Augmenting paths detection and exploitation
	Rules description
	Execution examples

	Correctness Proof
	Convergence Proof
	A matched node can write True in its end-variable at most twice
	The number of times single nodes can change their end-variable
	How many Update in an execution?
	A bound on the total number of moves in any execution

	Conclusion

	Self-stabilizing publish/Subscribe systems
	Introduction
	Related Work
	General Approach
	Routing of Publish/Subscribe Messages
	Example

	Architecture of the Middleware
	Publish/Subscribe Layer
	Virtual Ring Layer
	Spanning Tree Layer
	Neighbourhood Management and MAC Layer

	Analysis of Algorithms
	Space requirements and scaling
	Timings and time-outs
	Overview of simulation results

	Conclusion and Outlook

	Conclusion and future directions
	Matching problems
	Maximal Matching in anonymous networks
	A 2/3-approximation of the maximum matching problem in identified networks

	Self-stabilizing publish/subscribe systems

