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General introduction 

Currently, the digital “nomads” wireless technologies have attracted significant researchers in the 

international scientific community, to the point that we now speak of "Internet of Everything" (IoE). 

The IoE is based on the idea that identifiable objects are located and controlled via the Internet. To 

achieve this goal, it is necessary to design embedded systems in millimeter/micrometer scales 

composed of wireless sensor nodes while overcoming a major drawback that is the excessive use of 

batteries, produced by the large number of power supply sensors. The problem is that the batteries 

must be changed or requires the use of chargers because their lifetimes are limited and that they are 

made with polluting component elements. To reduce this excessive use of pollutants and to obtain 

autonomy, each wireless sensor should be supplied by green energy harvesting techniques. Among the 

most proposed and studied solutions for micro-systems, we find essentially transducers based on 

mechanical vibrations using piezoelectric materials or electromagnetic energy from small coils or 

rectenna antennas. Use of mechanical vibrations as an exclusive excitation source is limited of ambient 

vibration areas and the recoverable electromagnetic energy for micro systems is often low to allow of 

a useful supply. One solution would be to get simultaneously both energies using materials sensitive to 

the electromagnetic field and the mechanical vibration such as magnetoelectric materials (ME) that 

combine the magnetostrictive (change of mechanical stress under an applied magnetic field and 

reciprocally) and piezoelectric (change of mechanical stress under an applied electric field and 

reciprocally) effects. Although early studies have started in the 1970s with notably the discovery of 

Terfenol-D (Tb1−xDyxFe2 ), it was not until the early 2000s to see their interest arise in the 

international scientific community with the emergence of new magnetostrictive materials such as 

Metglas and piezoelectric materials including PMN-PT (Pb(Mg,Nb) O3 -PbTi O3 ),  PZT-4/5/8 

(Pb(Zr,Ti) O3), and BTO (BaTiO3). Homogenous analytical methods were developed to estimate ME 

bulk materials according to different polarizations (transverse-transverse and transverse-longitudinal) 

depending on the combination parameters (type, number, and thickness of layers). To validate the 

simulation results, bi- and tri- ME layer bulk composites were fabricated by sticking the 

magnetostrictive and piezoelectric materials with adhesive layers of Epoxy-type. Experimental results 

of ME coefficients have confirmed the possibility to obtain a few of V/(cm∙Oe) in no-resonant regime 

and few tens of V/(cm∙Oe) in resonant regime. In case of classical laminate bulk material (Terfenol-

D/PZT/Terfenol-D), the delivered powers into optimal impedance are in the order of mW/ cm
3
. 

Nevertheless, it has been noticed that due to fatigue and inhomogeneous thicknesses of adhesive layers, 

the mechanical coupling can be degraded over time. This affects the magnetostrictive response and 

consequently the effective delivered power.  

Since 2010, many studies have been devoted to the design and the miniaturization of new ME 

composite materials coupling the giant magnetostrictive and piezoelectric effects. Thanks to thin film 

deposit processes, new robust combinations such as the new alloys CFO (CoFe2O4), FeONi, FeGa and 

FeCo can be created laying aside rare earth materials. At this scale level, the previous homogenous 

analytical methods do not allow of accurate modelling of the coupling phenomena and do not take into 

account the adhesive layers and the mechanical effects of electrodes.  

It is in this context that our research work at the Electronic and Electromagnetism Laboratory (L2E) 

propose a contribution to modelling of magnetoelectric composites for energy harvesting. This thesis 

is composed of four chapters. The first chapter reproduces in a general context properties on 

magnetoelectric composites. After a brief history, the magnetoelectric effect applications and the 
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modelling and characterizations of magnetoelectric materials and devices are presented.  

The second chapter presents the different numerical simulation tools to be used and developed in this 

thesis. Firstly, an analytical numerical method based on 0D-assumption modelling in static regime is 

presented. Secondly an analytical numerical method based on 1D-modelling using an equivalent 

electrical circuit is studied. Thirdly, a 2D multiphysics code based on the finite element method is 

presented.  

The third chapter investigates the deliverable output of a magnetoelectric laminate composites 

composed of Terfenol-D/PZT-5A/Terfenol-D materials in considering electrical load. The model has 

been developed for both harmonic and transient cases in considering a SSD technique.   

The fourth chapter presents a potential application in the biomedical domain and show measurement 

realization on a bilayer magnetoelectric laminate composites composed of Terfenol-D/PZT-5H.  
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Chapter 1.  General context - State of Art 

1.1 Magnetoelectric effect and materials 

Magnetoelectric (ME) effects exist in multifunctional active materials, they refer to the electric 

polarization induced by applied magnetic field, and the magnetization induced by applied electric field. 

The effects can be linear or non-linear with respect to the external fields. In ambient temperature, they 

can be measured and defined as 𝛼𝑉 = 𝜕𝑉 𝜕𝐻⁄ (called the ME voltage coefficient), or 𝛼𝐸 =

𝜕𝐸 𝜕𝐻⁄ (called the ME electric field coefficient), with V, E and H denoting the induced voltage, 

induced electric field and  applied magnetic field, respectively. Researches on ME materials date back 

to the 1890s. Such materials now widely exist in various applications, in the form of either single- or 

multi-phase, with a tendency of gradually increasing performances.    

 

1.1.1 Single-phase ME materials 

In single-phase ME materials, the crystal symmetry plays a key role that determines ME effects in the 

material, which only shows up below a certain temperature, called the Curie temperature (also called 

the Neel temperature in some cases). A non-exhaustive history is briefly listed as follows. 

In 1894, Curie stated “Les conditions de symétrie nous montrent qu’il pourrait se faire qu’un corps à 

molecules dissymétriques polarise dialectiquement lorsqu’on le place dans un champ magnétique ... 

Et peut-être polarisé magnétiquement lorsqu’on le place dans un champ électrique” [1], which firstly 

revealed the existence of intrinsic magnetoelectric effects in single-phase materials, due to asymmetric 

molecule structures. 

In 1958, Landau and Lifshitz proved the possibility to obtain ME effects for certain crystals, according 

to their crystal symmetry [2]. 

In 1960, Dzyaloshinskii [3] discovered ME effects in antiferromagnetic Cr2O3 . Later, Astrov [4] 

experimentally demonstrated the electrically induced ME effect in the same material, and reported a 

ME coefficient of 20mV/(cm ∙Oe)  (under the temperature range of 80 - 330K, and an applied 

alternating electric field at 10kHz frequency in the orientation of the symmetrical axis) .  

In 1963, Foner and Hanabusa [5] investigated the effect of temperature on the critical magnetic field 

(for ME effects) of both Cr2O3  and (Cr2O3)0.8(Al2O3)0.2 . They also found that a greater ME 

coefficient could be obtained when the material had been annealed under magnetic fields. 

In 1963, Shtrikman and Treves [6] also discovered ME effects in polycrystalline powder compacts that 

were annealed in electric and magnetic environments.  

In 1969, Hornreich [7] predicted a family of potential ME materials, including DyFeO3, Fe2TeO6, 

Cr2TeO6,FeCrWO6, Cr2WO6, V2WO6, FeSb2O4, Ca2FeAlO5, Eu3O4 and β − FeNaO2 − FeNaO2. 

In 2003, Ramesh’s group successfully manufactured an epitaxial multiferroic material - BiFeO3 

(bismuth ferrite), which possesses both “ferroic” characteristics (ferromagnetism and ferroelectricity), 

and thus shows significant ME coefficients at room temperature, being orders of magnitudes larger 

than other single-phase ME materials [8].  
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Between 2003 and 2006, ME effects were also found in antiferromagnetic, weak ferromagnetic and 

ferromagnetic materials like TbFeO3 and FexGa2−xO3. See [9], [10], [11] and [12]. 

It should be noted that almost all aforementioned single-phase ME materials are limited in realistic 

applications, as a result of their very low Curie temperatures, and weak ME coefficients. Consequently, 

exploiting ME applications has been largely based on the development of new composite materials 

that elaborate and enhance the properties of single-phase ones.  

1.1.2 Two-phase ME composite materials  

Recently, two-phase ME materials, also called composite materials, have sparked increasingly interest 

in various applications, thanks to their promising properties. On one hand, composite materials exhibit 

colligative properties (in terms of e.g. density, compliance, etc.) of constituent phases. In such cases, 

properties can be determined quantitatively by averaging properties of the constituent components 

using volume fractions. On the other hand, composite materials exhibit enhanced product properties of 

their constituent single phases. Take the two-phase ME composite consisting of ferromagnetic (M) and 

ferroelectric (E) materials, for example. The M phase converts energy between magnetic and elastic 

forms (i.e. magnetostrictive effects), whereas the E phase converts energy between electric and elastic 

forms (i.e. piezoelectric effects). When combined together, energy can be converted between magnetic 

and electric forms, via the media of elastic bonding (as depicted in Fig.1.1), thus, exhibiting new 

properties that do not belong to any of its individual constituent phases.  

 
Figure 1.1 Composite material conversion mechanisms 

 

A brief history with respect to the development of magnetoelectric materials is depicted in the diagram 

of Fig.1.2. Some most significant achievements have been accomplished in the 1970s, as summarized 

below.  

In 1972, van Suchtelen initialized the concept of product property of ferromagnetic and ferroelectric 

material composites [13].  

In 1978, van den Boomgaard and Born summarized the key aspects to prepare performing ME 

composites [14]: (i) constituent phases should be in equilibrium, (ii) there should be no mismatching 

between grains, (iii) for those consisting of magnetostrictive and piezoelectric materials, the involved 

magnetostrictive and piezoelectric coefficients should be large, (iv) there should be no leak of 

accumulated charge through magnetostrictive or piezoelectric phases, and (v) appropriate poling 

procedures.  

.  
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Figure 1.2 Evolution of magnetoelectric materials [20] 

At the same time, magnetoelectric composite materials consisting of magnetostrictive and 

piezoelectric phases can be categorized with respect to the geometry structure formed by their 

constituent phases. According to Newnham et al, most fabrication processes of the ceramic composites 

are based on an initial mixing of starting powders, followed by e.g. pressing, sintering, densification 

and solidification, to a net-shape. As shown in Fig.1.3, different categories refer to the volume fraction 

of one constituent phase in the entire composite. If the concentration of one phase is so small that the 

phase turns out to consist of isolated particles in a matrix, and this composite will be referred to as a 0-

3 type (one phase interconnected in zero dimensions and the other in three). If the volume fraction of 

one phase increases to reach an initial percolation limit, the composite will be classified as a 1-3 type 

(for example, the cylinder matrix form). If the volume fraction of one phase crosses another 

percolation limit and starts to be interconnected in two dimensions throughout the entire composite, it 

results in a 2-2 type. 

 

 

Figure 1.3 Schematic configurations for different connectivity types of two-phase composite materials: (a) 3-0 

type particulate structure, (b) 2-2 type laminate structure, (c) 1-3 type rod matrix structure 

 

1.1.2.1 Bulk 0-3 composites 

For the category of 0-3 bulk composites, several limitations exist, which leads to issues of 

reproducibility and reliability, as listed as follows.  
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1) chemical reactions which is difficult to prevent from taking place due to the sintering process, in 

which high temperatures are involved. 

2) dielectric breakdown of the magnetostrictive phase, during the poling process for the piezoelectric 

phase. 

3) process caused mechanical defects like cracks, pores, etc. resulting in poor elastic bonding between 

constituent phases. 

Besides the deficiencies mentioned above, another significant limitation for development and 

utilisation of the bulk 0-3 composite is the lack of reliable theoretical models, with which precise 

prediction of the effective properties of this type of inhomogeneous structure can be achieved. Until 

now, only some approximate approaches have been developed to model this two-phase composite, 

such as the matrix systems and two-component mixtures [105]. However, they also possess their 

specific applicability limits. Therefore, more details about further studies of bulk 0-3 composite will 

not be presented in the rest of the dissertation.   

1.1.2.2 Laminated 2-2 composites 

Composites belonging to the 2-2 category are also referred to as laminated composites. They have 

better properties than their bulk counterparts due to their configuration, such as easier manufacturing 

control and accurate volume fraction tuning. Nevertheless, the co-sintering or adhesive bonding 

between each laminate composite inevitably leads to defaults in the interfaces, which involves 

mechanical losses. 

For oxide magnetic material based laminate ME composites, there are two main deficiencies: (i) inter-

phase diffusions resulting from the co-firing process, which deteriorates the coupling effect, and (ii) 

micro cracks or pores generated due to thermal expansion in the cooling process. 

1.1.2.3 Rod matrix 1-3 type composites  

The 1-3 category is also widely employed in various applications. This configuration contains a rod (in 

form of square rod, cylinder, etc.) array of piezoelectric materials embedded in continuous magnetic 

phases or magnetic/epoxy mixture matrix structure [42]. This kind of composite can be fabricated 

using a dice-and-fill technique consisting of the following steps: (i) poled piezoelectric ceramic sample 

(generally in disk form)  cut by two mutually perpendicular sets of precise saw to form the array of 

piezoelectric rods; (ii) solution with magnetic phase particles and epoxy slurry is filled into the diced 

piezoelectric sample; (iii) a hardening process is imposed on the slurry-filled sample, and after 

polishing and silver painting electrodes on the top and bottom surfaces, the 1-3 type composite is 

fabricated. The volume ratio of the piezoelectric phase can be controlled by modifying the periodicity 

of the rod array. The 1-3 type composite may also exhibit giant ME effects while eliminating the 

brittleness defect of 2-2 composite structures. See e.g. [42], [43].    

1.2. Magneto-mechanical effect and material 

1.2.1 Magneto-mechanical coupling 

Magneto-mechanical couplings in ME composites involve stress, strain, magnetic field and 

magnetization. Such couplings exist in a large majority of ferromagnetic materials and rare earth 

element materials (e.g. Terfenol-D). They can be termed as either the Joule effect or the Villari effect. 

The former implies mechanical elongation or contraction of the material, in response to external 
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magnetic fields. This effect was discovered by James Prescott Joule in iron bars [16]. The Villari 

effect, on the other hand, implies changes in magnetization due to mechanical stress, which was found 

by Villari [17].   

Magneto-mechanical couplings stem from interactions of electric spins (i.e. orbital angular momenta) 

with the crystal lattice. In fact, lattice dimensions and spacing are strongly influenced by the 

magnetization, which is caused by alignment of large amount of magnetic moments (due to a coupling 

between the orbital angular momenta and electric spins exhibited in most of the lanthanide series rare-

earth elements), forming magnetic domains along the easy axis of magnetization (called the Weiss 

mean field). Two steps are involved during the process. Firstly, displacements of walls (that separate 

magnetic domains), which are dominant under weak field, and rotations of domains, which are 

dominant under strong fields. Such phenomena for single crystals are illustrated in Fig.1.4. The 

material attains saturation when all magnetic moments are aligned (and thus, forming a single domain). 

In this case, the generated strain also attains its maximum, called the saturation magnetostriction that 

is denoted as λs . It should be noted that several factors play important role in such phenomena, 

including temperature, magnetic fields, and stresses. 

 

Figure 1.4 Magnetization process of a single crystal cubic [24] 

As illustrated in Fig.1.5, spontaneous magnetostrictions (denoted by λ0 ) occur, even under null 

external magnetic field, when the material is under Curie temperature Tc. Below Tc, with the 

increasing of magnetic fields, magnetic moments experience the isotropic, disordered paramagnetic, 

and ordered ferromagnetic states in order. At the final stage, saturation magnetostrictions are achieved. 

Above Tc, no magnetostrictive effect exhibits. This is because in this case the thermal energy 

overcomes the Weiss mean field, thereby alignment of moments is destroyed, and thus formation of 

domains is impossible. 

 

Figure 1.5 Magnetostriction creation with applied magnetic field under different temperature regions [20] 

As shown in Fig.1.6, when applying (either compressive or extensive) stresses to magnetostrictive 

materials along a certain direction, the distribution of magnetic moments can be changed from random 

or isotropic states into anisotropic ones. 
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Figure 1.6 Magnetization with positive magnetostriction under an uniaxial mechanical stress [24] 

It is worth mentioning that the relations between excitation magnetic fields and magnetostrictions are 

intrinsically nonlinear. Indeed, the material behaviour has nonlinear dependencies with respect to both 

mechanical and magnetic quantities, as shown in Fig.1.7 where measurements for Terfenol-D are 

depicted [24]. Nonetheless, when the material operates under static bias (mechanical and magnetic) 

conditions super-positioned with dynamic magnetic fields of small magnitudes, the behaviour can be 

considered as linear. In this case, it is referred to as piezomagnetic. 

 

Figure 1.7 Example of curves of magnetic induction and magnetostriction of Terfenol-D [24] 

 

1.2.2 Magnetostrictive material 

Magnetostrictive materials refer to a branch of ferromagnetic materials that exhibit magnetostrictive 

effects. In practice, they are utilized for energy conversion between magnetic and elastic forms, which 

is depicted in the diagram of Fig.1.8.  
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Figure 1.8 Magnetostrictive material conversion mechanisms 

 

Since the discovery of magnetostrictive effects in “iron bar” by Joule, magnetostrictive materials that 

had been researched were limited within transition metals e.g. Nickel (Ni), Cobalt (Co), and Permalloy 

(Ni-Fe-Mo). Such materials had also been widely used in telephones and sonar systems during the 20
th
 

century [18]. Further applications were limited due to the low saturation magnetostriction of these 

materials (normally 10 to 100 ppm [19]). During the 1960s, it was discovered, with the help of the 

technology of neutron diffraction measurements, that certain heavy rare-earth metal elements possess 

promising magnetic properties, including: (i) more sophisticated spin structures (compared with 

classical ferromagnetic and antiferromagnetic materials), (ii) significant magnetic anisotropies, and (iii) 

huge magnetic moments (resulting from parallel couplings of large orbital and spin angular momenta) 

that were an order of magnitude larger than those of Ni and Fe [20]. Then, in 1971 witnessed a historic 

breakthrough in the development of magnetostrictive materials: the US Naval Ordnance Laboratory 

fabricated an alloy consisting of metal elements Tb, Dy and Fe, which was later named Terfenol-D. 

The latter exhibits a giant magnetostriction as large as (up to) 2000 ppm in ambient temperature; that 

is nearly 100 times larger than those of previously developed transition metals and alloy materials [21]. 

The stoichiometry of Terfenol-D can be represented as TbxDy1−xFey , in which the sample for x = 0.3 

and y = 1.92 has been commercialized by some US companies (among which is the ETREMA 

Products). The giant magnetostriction of Terfenol-D stems from the anisotropic property of its cubic 

crystallographic structures. To be more specific, the structure features in certain special crystal 

orientations, which favours the alignment of magnetic domains when magnetic fields are applied along 

(or in the adjacency of) these crystal orientations. As a result, the saturation magnetization becomes 

much more significant. More recently, a Terfenol-D based composite has been created. This composite 

consists of Terfenol-D particles and insulating polymer matrix. It has high resistivity and operates over 

a broader frequency regime, without suffering from mechanical brittleness and large eddy current 

losses (at high frequencies) of Terfenol-D [22,23]. In the following table, we depict characteristic 

constants of typical magnetostrictive materials, including Terfenol-D. 

 

 
Table1.1 Saturation magnetostriction and magnetic induction of some magnetostrictive materials [24] 

1.3 Electro-mechanical effect and materials 

1.3.1 Electro-mechanical coupling 

Electro-mechanical couplings refer to piezoelectric effects, in which mechanical quantities like stress 

and strain, as well as electrical quantities like polarization and electric field, are involved. Piezoelectric 
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effects exist in many dielectric materials; they can be divided into the direct piezoelectric effect, and 

the converse piezoelectric effect.  

 

 
Figure 1.9 Microscopic origin of the piezoelectricity [24] 

 

The direct effect was discovered by Pierre Curie in the 1880s. It implies that when piezoelectric 

materials are applied with mechanical stresses, electric polarization will be developed inside the 

material. The relationship between resulting electrical outputs and mechanical inputs are usually 

referred to as the laws of piezoelectricity. The underlying mechanism of the direct piezoelectric effect 

is that when piezoelectric materials are under the Curie temperature, there is no symmetry centre (see 

Fig.1.9) within its crystal structures. Hence, applying stresses leads to unbalance between positive and 

negative charges, which, in turn, generates electric polarization, or electric charges on surface of the 

material. On the other hand, when the material is beyond the Curie temperature, the inner structures 

are centrosymmetric. In other words, materials are isotropic, for which applying stresses has no effect 

on polarization. Meanwhile, it is noted that the orientation of applied stresses (with respect to the 

poling direction) has significant impact on the generated charges. This phenomenon is referred to as 

working modes, which are illustrated in Fig.1.10 (where we note the effects of a tensile or 

compressive stress, as well as orientations of stresses). 

 

 
Figure 1.10 Direct piezoelectric effect [20] 

 

The converse piezoelectric effect is also termed as the Villard effect. It implies that applying external 

electric fields on piezoelectric materials causes changes in volume of the latter. As illustrated in Fig. 

1.11, for piezoelectric materials with a given poling direction, electric fields along the same direction 

lead to extension of the material along the poling direction, whereas electric fields along the opposite 

direction lead to contraction along the poling direction.  
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Figure 1.11 Converse piezoelectric effect [20] 

 

Meanwhile, it is also worth mentioning that the pre-polarization (as depicted in Fig.1.12) plays an 

important role in the functioning of piezoelectric materials. In fact, for piezoelectric materials at their 

original states (i.e. no electric fields applied), electric domains that are separated by walls along their 

individual spontaneous polarization directions, are randomly distributed, therefore, exhibiting no 

macroscopic polarization. When weak electric fields are applied, piezoelectricity takes place, which is 

mainly due to crystalline asymmetry of inner structures (i.e. the so-called intrinsic piezoelectricity). 

When the applied field gets stronger (than the coercive field Ec of the material), dipole domains align 

themselves proximately parallel to the field, thereby domains of orientations close to the field 

experience growing in volume  while volumes of others are reduced. It is at the same time that 

macroscopic mechanical deformation occurs. The deformation (and thus, the polarization, too) reaches 

its maximum when the applied field overpasses certain level of magnitudes, which is referred to as 

saturation. On the other hand, removing the applied field does not lead to vanishing of polarization, 

and the remaining part is called the retentive polarization (denoted by Pr). In fact, the latter is of 

critical importance for enhancing performance of piezoelectric materials, as it yields significant 

coupling effects in the material (see blue curves in the following figure that are generated due to Pr).      

 
Figure 1.12 Polarization process [24] 
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1.3.2 Piezoelectric material  

In analogue to magnetostrictive materials, piezoelectric materials refer to a branch of ferroelectric 

materials that exhibit piezoelectric effects. As shown in Fig.1.13, conversion between electric and 

mechanical energies is involved inside piezoelectric materials. 

 

Figure 1.13 Piezoelectric material conversion mechanisms 

 

Nowadays, piezoelectric materials are largely seen in a wide range of applications. For instance, the 

early found single piezoelectric crystals, including quartz, Rochelle salt, and tourmaline are 

extensively employed in resonators [26]. Polycrystalline piezoelectric materials such as the lead 

zirconate titanate (PZT), barium titanate (BiFeO3), and lead metaniobate (PMN), on the other hand, 

possessing relatively higher coupling coefficients, are broadly utilized in acoustic transducers [27], 

motors and piezoelectric transformers [28]. In Table 1.2 we depict piezoelectric coefficients of typical 

piezoelectric materials. 

 
Table 1.2 Microscopic origin of the piezoelectricity [24] 

 

1.4 Magnetoelectric effect applications 

1.4.1 Magnetic field sensors 

ME composite materials that inherit virtues from both piezoelectric and magnetostrictive materials are 

widely used in various applications. A typical one is for measurements of magnetic fields. Thanks to 

the significant piezoelectric and magnetostrictive coefficients of its constituent phases, magnetic field 

sensors made of ME composites normally have outstanding sensitivity. Additionally, outputs can be 

conveniently read out in terms of electric quantities. In the following, we introduce magnetic field 

sensors in two categories: those used for static fields measuring and others for dynamic fields 

measuring.  
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1.4.1.1 Static magnetic field sensor 

The first category of sensors can be used to measure static magnetic fields, such as the earth magnetic 

field. They are based on the nonlinearity of the magnetostrictive phase of ME composites. Under static 

magnetic fields, strains are developed in the magnetostrictive phase, which are then transferred to the 

piezoelectric phase and lead to generation of electric charges on surface of the latter. The magnetic to 

electric signal relationship can be quantified based on material properties of constituent phases. Hence, 

values of magnetic fields can be determined by the output electric signals. In practice, several types of 

configurations and mechanisms can be employed, in order to ensure satisfying sensibility and range of 

measurements. An example of static magnetic field sensor is depicted in Fig.1.14. It consists of three 

bilayer ME structures of different optimal bias static magnetic fields (with respect to the maximum 

output voltage). We see the combining effects of the three layers on the most right of the figure.  

 

Figure 1.14 Static magnetic field sensor [24] 

 

1.4.1.2 Dynamic magnetic field sensor 

The second category of sensors is for measurements of dynamic magnetic fields [32]. An example of a 

trilayer ME structure is displayed in the figure below. This sensor is able to detect weak signals 

(between the range of 10−3 to 10−11 Tesla). Furthermore, it is able to measure magnetic fields over a 

wide range of frequencies (to be more precise, from one kHz to several hundreds of kHz). 

 

 

Figure 1.15 Dynamic magnetic field sensor [24] 

 

1.4.2 Energy harvesting applications 

With the rapid development of the electronic and telecommunication industries, the problem of regular 

energy dependence is increasing: (i) the energy source is still relative in shortage and the waste 
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amount is great. (ii) most of the embedded batteries in use have a short lifetime; (iii) to fulfil the 

functions and the charging of the energy source depend highly on electricity and are quite wire-rely in 

most fields. 

 

 

Figure 1.16 Energy source problems among current world [from Internet] 

 

In order to face the energy challenge, it is now necessary to consider new technologies such as the 

green energy harvesting to provide efficient solutions. The main principle is to get maximum diversity 

of usage in ambient energy sources including light, body or machine heat, electromagnetic field, 

motion and vibration of mechanics and so on. Various energy harvesting devices and systems have 

been proposed and realized [29]. Among the most proposed and studied solutions for micro-systems, 

we find essentially transducers based on mechanical vibrations using piezoelectric materials or 

electromagnetic energy from small coils or antennas. Use of mechanical vibrations as an exclusive 

excitation source is limited in ambient vibration areas, and the recoverable electromagnetic energy for 

micro systems is often low to allow of a useful supply. One solution would be to get simultaneously 

both energies using materials sensitive to the electromagnetic field and the mechanical vibration such 

as magnetoelectric materials (ME) that combine the magnetostrictive and piezoelectric effects. 

 

 

Figure 1.17 Energy harvesting devices and systems [from Internet]   
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1.5 Modelling and Characterizations of magnetoelectric materials and 

devices 

1.5.1 Theoretical modelling methods 

During these last 40 years, the researches and publications about the magnetoelectric effect and 

materials have been made with large and rapid growing amount. However, the investigations 

concerning the numerical modelling have played a relatively minor role throughout all the researches. 

It is evident that a precise and efficient modelling is able to provide rapid and reliable guides for the 

design and optimization of magneto-electric applications and could thus largely reduce the trial costs 

for the development of the devices. Attribute also to the fact that the rapid development of the 

computer technologies (large memory, high speed CPU, etc.) has made the implementation of the 

numerical calculates much more faster and easier than before, it is therefore significant and even 

urgent to establish and improve more rigorous numerical modelling approaches, which will be quite 

useful  for the practical fabrications. 

The modelling of the ME effect calls for macroscopic approaches based on the constitutive laws and 

equilibrium equations of the materials studied. However, the complex multi-physics phenomena that 

occur inside this type of materials (including, for instance, the nonlinear magneto-mechanical or 

electro-mechanical coupling characteristics, the electromechanical or magnetic-acoustic frequency 

effects and the dynamic electromagnetic excitation based on the Maxwell equations) result in a big 

difficulty in creation of the macroscopic modelling methods currently. The major object of this 

dissertation is the establishment and improvement of such efficient approaches, as well as the practice 

of them to guide the design and development of the devices with the ME materials as their core 

components. 

As most of the physical problems can be described mathematically by the partial differential equations 

(PDE) and resolved by numerical methods through discretization of the equations system, the method 

of discretization is significantly necessary. The finite element method (FEM) is one of the 

macroscopic approaches of discretization which operates as replacing the PDE defined on a 

continuous problem area with a system of discrete equations to be solved by numerical methods. It is 

especially adapted for the physical problems with complex geometries and multi-physical phenomena 

couplings. There exist different sorts of FEM such as the variation method and the weighted residual 

method. The former operates generally as resolving the PDE by minimizing the energy functions of 

the problem system, but it is limited in usage for complex physical couplings. The latter operates 

based directly on the equilibrium equations and boundary conditions of the problems, thus it is more 

convenient and will be therefore the first choice for the modelling methods utilised in this dissertation. 

There also exist already plenty of commercial software, such as ANSYS and COMSOL, which are 

capable of complex finite element calculation, but their programme code sources do not usually 

corporate adapted model, especially for resolution of nonlinear cases. Thus, another  important work 

in the dissertation is to develop new programs for the studied complicated problems by using certain 

coding platforms such as MATLAB or C++. 

There have been many researches upon FEM modelling for magneto-mechanical and electro-

mechanical coupling problems. For the first type of problems, a model for static nonlinear magneto-

mechanical problems has been developed by Azoum by means of decomposing the total deformation 

of the material into an original mechanical deformation and a magnetostriction with a quadratic 

relation representing the dependence of the magnetostriction upon the magnetic induction [33]. And a 
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plate-form of the magnetostrictive materials has been developed by Galopin in order to integrate the 

relevant magneto-mechanical constitutive law into his static ME model [34]. The simulation results 

are compared with those of experiments from Ueno and Higuchi [35]. And for the second type of 

problems, a model for both static and dynamic problems of multilayer piezoelectric material has been 

developed by Piefort by setting the mechanical deformation and electric field as the state variables and 

integrating the linear electro-mechanical constitutive laws [36]. The constitutive laws based on the 

Helmholtz free energy function was proposed by Belahcen and the relevant model was applied on  

calculation for the electric machine vibration problems [37].  

In addition, the magnetoelectric effect in harmonic behavior has been studied by Liu and Wan [38] by 

simulating a piezoelectricity module in ANSYS under the assumption that the magneto-mechanical 

and electro-mechanical couplings are linear in the original model. Then, the deformation, the magnetic 

field and the electric field are all set as the state variables and the Foucault current is ignored. Next, 

both a static and a dynamic magnetic field of much smaller magnitude are applied on the material 

studied to obtain a larger output voltage, and a curve of the mechanical strain in function of the applied 

static magnetic field is obtained by experiment for the purpose of integrating the nonlinear 

magnetoelectric characteristics into the model. Thus at each of the static magnetic field values, a 

coupling coefficient can be obtained around this magnetization point and utilized for the dynamic 

analysis. The results demonstrated that the resonance frequency obtained by the model is very close to 

that of the mechanical resonance of the material, and the output voltage is dependent of the applied 

static magnetic field for the reason of the considered nonlinear magnetic-mechanical coupling 

explained by the model [39]. 

The equivalent circuit method (ECM) is another important analytical modeling approach for the 

resolution of harmonic problems with ME effect. The working principle of the method is to replace the 

studied ME system with a pseudo-circuit module that can describe the magneto-electro-mechanical 

couplings on the basis of the equilibrium equations and behavior laws. Thus the ME coefficient of the 

system can be obtained simply through calculation of the formulations from ECM, which is of much 

less complex and of less time expense than the implementation of FEM. Many research studies have 

been made to develop the ECM formulations and the results are compared with from the experiments 

[40,41]. However, it should be importantly noted that most of the ECM presented in the literatures are 

based on certain simplified 1-dimension assumptions such as the neglect of the mechanical variable 

components in transverse direction of the composite, and the electric and magnetic variable 

components are uniformly distributed along the transverse direction. All the assumptions inevitably 

lead to strong restrictions for the ECM and obvious discrepancies in values from the results of ECM, 

FEM and experiments for problems with some complex composite configurations. 

1.5.2 Experimental Characterization 

For the purpose of acquiring actual property characterizations of the materials to be studied, and 

subsequently of verifying the availability of the current and modified theoretical models, measurement 

experiments need to be designed and fulfilled. The results will then be compared to those from the 

theoretical models for further improvement to better fit the measurement.  

Under the limited condition of the laboratory and research circumstance, some fundamental  

characterization measurements of the studied magnetostrictive materials, piezoelectric materials and 

their composite in some simple forms will be carried out, such as the DC bias and frequency 

dependent ME coefficients of the bilayer MP composite structure. In the measurement setup, the 

composite samples will be mechanically supported and fixed by a plastic framework; the external 
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applied magnetic field will be provided by a pair of permanent magnets and copper search coil around 

the sample via a dynamic signal generator; the output electrical parameter results such as the voltage 

will be displayed by a dynamic signal analyzer and recorded for further calculation and analysis. 

Finally with the experimental results the property characterization curves will thus be calculated and 

presented to make comparison with the theoretical results. The agreements and discrepancies will be 

discussed and interpreted. 

1.6 Conclusion 

In this chapter, the working mechanisms of magnetostrictive and piezoelectric materials are discussed 

in detail and the definition as well as the development history of the magnetoelectric effect and 

materials have been introduced. The effect and composite materials also possess a great potential and 

wide application in the study of micro-scale magnetoelectric devices. However, it is also important to 

note the shortcomings of the current theoretical models and the necessity to achieve more suitable and 

more rigorous modeling. The principle objective of this dissertation is to develop a new model with 

FEM to solve the static nonlinear magnetostrictive problems. And subsequently, the problems in 

harmonic area with the frequency effect can be simply treated as linear around one point of 

magnetization and then resolved by utilizing the ECM. The improvement of ECM will be furtherly 

studied by taking into account the 2D/3D effects to solve some expansion of ME problems based on 

various configurations such as the multilayer composites. Most of them can be predicted to be quite 

applicable for the development and optimization of magnetoelectric materials and devices. 
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Chapter 2. Analytical and Numerical Modelling of 

Magnetoelectric Composites 

2.1 Introduction 

Investigation of magnetoelectric problems requires the development of numerical and analytical 

methods that combine the mechanical and electromagnetism governing physics equations with the 

electro-magneto-mechanical laws. This chapter proposes to expose the methods investigated in this 

thesis that address the magnetoelectric composites in various configurations. For that, the mechanical 

and electromagnetism governing physics equations and the electro-magneto-mechanical laws are 

presented firstly. Secondly, we present methods that must be distinguished, according to distinct 

groups. The first group uses analytical methods (simplified analytical resolution using the ‘matrix’ and 

equivalent circuit method) with the homogenous quasi-static approximation and the second group uses 

a numerical method based on the finite element method (FEM).  

The mechanical-electric-magnetic properties and constants parameters of magnetostrictive and 

piezoelectric materials used here are given in the Appendix A. 

The development of the modelling methods aims to obtain accurate values of the output coefficients 

(ME coefficient, output power, etc.) of laminated magnetostrictive (simply noted as ‘M’, the same as 

following)-piezoelectric (simply noted as ‘P’, the same as following) composites under both static and 

dynamic magnetic excitations in various magnetization-polarization modes. With these theoretical 

results the effect of the important parameters of the ME composite on the output coefficients would be 

demonstrated, and thus the optimization for design of the devices utilising the composite would be 

studied in a more sensible way. 

2.2 Electromagnetic and mechanical governing equations and constitutive 

laws 

The electromagnetism equilibrium equations are given by the Maxwell equations: 

     div𝑩 = 0                                               (2-2-1) 

     rot𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
                                         (2-2-2) 

     div𝑫 = 𝜌                     (2-2-3) 

     rot𝑬 = −
𝜕𝑩

𝜕𝑡
                                      (2-2-4) 

where B is the magnetic induction, H the magnetic field, J the current density, D the electric 

displacement, E the electric field and ρ the charge density. 

These equations are completed with the following constitutive laws: 

     𝑩 = 𝜇𝑯                  (2-2-5) 

     𝑫 = 𝜀𝑬                   (2-2-6) 

     𝑱 = 𝜎𝑬                   (2-2-7) 
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where 𝜇 is the magnetic permeability, 𝜀 the dielectric permittivity, 𝜎 the electric conductivity. If the 

material is linear, all these coefficients are constant. The non-linear case of the permeability will be 

introduced in section 2.3. In addition, the displacement current in the composite is negligible and 

ignored in our study. 

From the equations (2-2-1) and (2-2-4), a magnetic vector potential 𝒂 and an electric scalar potential 𝑉 

can be introduced by 

 

     𝑩 = rot(𝒂)                                                       (2-2-8) 

 𝑬 = −grad(𝑉) −
𝜕𝐚

𝜕𝑡
       (2-2-9) 

In our case, the eddy current and the displacement current will not be take into account, thus 𝑬 =

−grad(𝑉) and rot𝑯 = 𝑱.  

For the study of mechanical properties, the elastodynamic equilibrium equation for a continuous 

medium is given by: 

 

𝑑𝑖𝑣𝑻 + 𝒇 = 𝜌𝑚
𝜕2𝒖

𝜕𝑡2
                                     (2-2-10) 

where 𝑻 is the mechanical stress, a 2-order tensor, 𝒇 the external volume force, 𝜌𝑚  the density of 

material and 𝒖 the displacement vector defined in a 3D orthogonal coordinates a 

 

𝒖 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑡                                          (2-2-11) 

This equation is completed with the following compatibility relation between the strain 𝑺 and the 

displacement 𝒖: 

 

𝑺 = 𝒟𝒖                                                  (2-2-12) 

where 𝒟 is a gradient transformation operator described in 3D orthogonal coordinates as 

 

    𝒟 =

[
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑥
0 ]
 
 
 
 
 
 
 
 
 

                                            (2-2-13) 
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The mechanical stress 𝑻 and strain 𝑺 can be written with the Voigt notation as: 

 

    𝑻 = [𝑇𝑥𝑥 𝑇𝑦𝑦 𝑇𝑧𝑧 𝑇𝑦𝑧 𝑇𝑥𝑧 𝑇𝑥𝑦]𝑡                          (2-2-14) 

 𝑺 = [𝑆𝑥𝑥 𝑆𝑦𝑦 𝑆𝑧𝑧 2𝑆𝑦𝑧 2𝑆𝑥𝑧 2𝑆𝑥𝑦]𝑡                                     (2-2-15) 

 

They are linked by 

   𝑻 = 𝑐 𝑺                                                (2-2-16) 

where  𝑐  is the stiffness tensor in N ∙m-2
. For example, in the orthotropic material studied in this 

dissertation, the tensor can be expressed in matrix form as 

 

𝑐 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐22 𝑐23 0 0 0
𝑐13 𝑐23 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

                               (2-2-17) 

 

The magnitudes of the magnetic, electrical and mechanical variables in connected mediums are 

generally discontinuous due to their different properties. By taking an infinitesimal on the boundary 

and utilising the equilibrium equations and the Gauss’s law, the interface continuous conditions of the 

physical variables can be obtained as: 

 

       (𝑩𝟐 −𝑩𝟏) ∙ 𝐧 = 𝟎     (𝑯𝟐 −𝑯𝟏) × 𝐧 = 𝐉𝐬 

    (𝑫𝟐 −𝑫𝟏) ∙ 𝐧 = 𝜌𝐬   (𝑬𝟐 − 𝑬𝟏) × 𝐧 = 𝟎                       (2-2-18) 

     (𝑻𝟐 − 𝑻𝟏) ∙ 𝐧 = 𝐟𝐬     (𝑺𝟐 − 𝑺𝟏) × 𝐧 = 𝟎  

 

where 𝐉𝐬, 𝜌𝐬 and 𝐟𝐬 indicate the surface current density, the surface free charge density and the surface 

force on the boundary surface between the two mediums, 𝐧 indicates the normal vector directing from 

the medium ‘1’ to ‘2’. Under the circumstance of the problems to be studied in this dissertation, all the 

three surface source terms are zero. In this way the interface continuous conditions demonstrate 

physically that the magnetic induction (B), the electric displacement (D) and the stress (T) are 

continuous in the normal direction, and the magnetic field (H), the electric field (E) and the strain (S) 

are continuous in the tangential direction between the two mediums. 

The constitutive laws for the magnetoelectric composite material are the combinations of the electro-

mechanical law in piezoelectric material and the magneto-mechanical law in magnetostrictive material. 
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The combinations between the mechanical-electro-magnetic parameters of the composite material are 

illustrated in the Fig.2.1. The read/purple and blue/yellow arrows are respectively the different 

possible electro-mechanical and the magneto-mechanical combinations in which the constitutive can 

be established. 

 

 

Figure 2.1 Multiphysic coupling of a ME composite 

 

The constitutive laws can be written, respectively, in the piezoelectric material [44]  

 

   𝑫 = 𝜀𝑆𝑬 + 𝑒𝑺,  𝑻 = 𝑐𝐸𝑺 − 𝑒𝑡𝑬 ,        (2-2-19-a) 

 

and in the magnetostrictive material [45]:  

 

   𝑯 = 𝑣𝑆𝑩− ℎ𝑺, 𝑻 = 𝑐𝐵𝑺 − ℎ𝑡𝑩,        (2-2-19-b) 

 

where 𝜀𝑆 and 𝑣𝑆 = (𝜇𝑆)−1 are respectively the permittivity and the reluctivity under constant strain 

(noted by the superscription s), 𝑒 the piezoelectric coupling coefficient in C∙m-2
, ℎ = 𝑞𝑣𝑆 where 𝑞 is 

the piezomagnetic coupling coefficient in N ∙ A
-1

m
-1

, 𝑐𝐸  and 𝑐𝐵  are the piezoelectric and 

magnetostrictive stiffness tensors under constant electric field (noted by the superscription E) and 

magnetic induction(noted by the superscription B), respectively.  

The constitutive laws can also be rewritten in another form [44,45] 

   𝑫 = 𝜀𝑇𝑬 + 𝑑𝑝𝑻, 𝑺 = 𝑠𝐸𝑻 + 𝑑𝑝𝑡𝑬          (2-2-20-a) 

   𝑩 = 𝜇𝑇𝑯+ 𝑑𝑚𝑻, 𝑺 = 𝑠𝐻𝑻 + 𝑑𝑚𝑡𝑯        (2-2-20-b) 

where 𝜀𝑇  and 𝑣𝑇 = 𝜇𝑇
−1

 are respectively the permittivity and the reluctivity under constant 

stress,  𝑑𝑝 = 𝑒(𝑐𝐸)−1  and 𝑑𝑚 = 𝑞(𝑐𝐻)−1  are the piezoelectric andpiezomagnetic coupling in C/N, 

𝑠 = 𝑐−1  is the compliance tensor, and 𝑠𝐸 = (𝑐𝐸)−1  and 𝑠𝐵 = (𝑐𝐵)−1  represent the tensors under 

constant electric field and magnetic induction, respectively.  
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The relations between the expressions under constant strain and constant stress are given with the 

coupling factor 𝑘𝑝 and 𝑘𝑚 [44,45]: 

 

  𝜀𝑆 = 𝜀𝑇 − 𝑑𝑝𝑐𝐸𝑑𝑝
𝑡
= 𝜀𝑇 (1 −

𝑑𝑝𝑐𝐸𝑑𝑝
𝑡

𝜀𝑇
) = 𝜀𝑇(1 − 𝑘𝑝

2)    (2-2-21-a) 

with 𝑘𝑝 = √
𝑑𝑝𝑐𝐸𝑑𝑝𝑡

𝜀𝑇
 and 

  𝜇𝑆 = 𝜇𝑇 − 𝑑𝑚𝑐𝐻𝑑𝑚𝑡 = 𝜇𝑇 (1 −
𝑑𝑚𝑐𝐻𝑑𝑚

𝑡

𝜇𝑇
) = 𝜇𝑇(1 − 𝑘𝑚

2)                 (2-2-21-b) 

with 𝑘𝑚 = √
𝑑𝑚𝑐𝐻𝑑𝑚𝑡

𝜇𝑇
 and c𝐻 = c𝐵 − 𝑞 𝑣𝑆𝑞𝑡 

 

In orthotropic material case and in accordance with the local coordinates of the magnetostrictive and 

piezoelectric materials, the following matrix forms are obtained [44,45] from the equations (2-2-20-a) 

and (2-2-20-b), 

 

 
 

Magnetostrictive material Piezoelectric material 
 

Figure 2.2 Local coordinates. The index 3 indicates the magnetization and polarization direction of the 

magnetostrictive and piezoelectric materials 

 

For the piezoelectric materials: 

   

[
 
 
 
 
 
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6]
 
 
 
 
 
𝑝

=

[
 
 
 
 
 
 
 
𝑠11
𝑝

𝑠12
𝑝

𝑠12
𝑝

𝑠22
𝑝

𝑠13
𝑝

0

𝑠23
𝑝

0

0    0
0    0

𝑠13
𝑝

𝑠23
𝑝

0 0

𝑠33
𝑝

0

0 𝑠44
𝑝

0    0
0    0

0    0
0    0

0    0
0    0

𝑠55
𝑝

0

0 𝑠66
𝑝
]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6]
 
 
 
 
 
𝑃

+

[
 
 
 
 
 
 
0 0 𝑑31

𝑝

0 0 𝑑31
𝑝

0
0
𝑑15
𝑝

0

0
𝑑24
𝑝

0
0

𝑑33
𝑝

0
0
0 ]
 
 
 
 
 
 

[
𝐸1
𝐸2
𝐸3

]        (2-2-22) 



 23 

[
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and for the magnetostrictive materials: 
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where the superscript p and m stand for the piezoelectric material and the magnetostrictive material, re

spectively. 

The constitutive relations will be employed in the following modelling as fundamental formulations. T

he coupling piezomagnetic and piezoelectric coefficients will be treated as constant in the linear cases 

and some as parameters to be determined in the nonlinear cases. The purpose of the modelling is to fin

ally determine the ME coefficient. 

2.3 Analytical methods 

In small signal analysis, the magneteoelectric composites can be analytically modelled by a 

homogenous approximation either by a resolution with a simplified analytical method or by a 

magneto-elastic-electric equivalent circuit model. 

2.3.1 Simplified analytical method in static regime  

The simplified analytical method presented here is a 0D-modelling that has been used in [46] (denoted 

as the matrix resolution method) to investigate the output voltage of the magnetoelectric composite in 

LT and TT modes shown in Fig.2.3. In L-T mode, the magnetostrictive material is magnetized along 

the longitudinal direction whereas the piezoelectric material is polarized along the transversal direction. 

In TT-mode, the magnetostrictive material and piezoelectric material are magnetized and polarized 

along the transversal direction. 
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LT-mode TT-mode 

 

Figure 2.3 Illustration of the LT and TT modes for a trilayer ME composite 

 

The relations (2-2-22) to (2-2-25) for the TT mode are rewritten in the two following forms: 

 

   

{
 
 
 
 
 

 
 
 
 
 
𝐵1 = 𝑑15

𝑚𝑇5
𝑚 + 𝜇11

𝑇 𝐻1                                        

𝐵2 = 𝑑24
𝑚𝑇4

𝑝 + 𝜇11
𝑇 𝐻2                                         

𝐵3 = 𝑑31
𝑚𝑇1

𝑚 + 𝑑31
𝑚𝑇2

𝑚 + 𝑑33
𝑚 𝑇3

𝑚 + 𝜇33
𝑇 𝐻3

 𝑆1
𝑚 = 𝑠11

𝑚𝑇1
𝑚 + 𝑠12

𝑚𝑇2
𝑚 + 𝑠13

𝑚𝑇3
𝑚 + 𝑑31

𝑚𝐻3
 𝑆2

𝑚 = 𝑠12
𝑚𝑇1

𝑚 + 𝑠22
𝑚𝑇2

𝑚 + 𝑠23
𝑚𝑇3

𝑚 + 𝑑31
𝑚𝐻3

 𝑆3
𝑚 = 𝑠13

𝑚𝑇1
𝑚 + 𝑠23

𝑚𝑇2
𝑚 + 𝑠33

𝑚𝑇3
𝑚 + 𝑑33

𝑚𝐻3
𝑆4
𝑚 = 𝑠44

𝑚𝑇4
𝑚 + 𝑑24

𝑚𝐻2                                     

𝑆5
𝑚 = 𝑠55

𝑚𝑇5
𝑚 + 𝑑15

𝑚𝐻1                                     

𝑆6
𝑚 = 𝑠66

𝑚𝑇6
𝑚                                                      

    (2-3-1) 

   

{
 
 
 
 
 

 
 
 
 
 

 

𝐷1 = 𝑑15
𝑝
𝑇5
𝑝 + 𝜀11

𝑇 𝐸1                                      

𝐷2 = 𝑑24
𝑝
𝑇4
𝑝 + 𝜀11

𝑇 𝐸2                                      

𝐷3 = 𝑑31
𝑝
𝑇1
𝑝 + 𝑑31

𝑝
𝑇2
𝑝 + 𝑑33

𝑝
𝑇3
𝑝 + 𝜀33

𝑇 𝐸3

𝑆1
𝑝 = 𝑠11

𝑝
𝑇1
𝑝 + 𝑠12

𝑝
𝑇2
𝑝 + 𝑠13

𝑝
𝑇3
𝑝 + 𝑑31

𝑝
𝐸3

𝑆2
𝑝 = 𝑠12

𝑝
𝑇1
𝑝 + 𝑠22

𝑝
𝑇2
𝑝 + 𝑠23

𝑝
𝑇3
𝑝 + 𝑑31

𝑝 𝐸3

𝑆3
𝑝 = 𝑠13

𝑝
𝑇1
𝑝 + 𝑠23

𝑝
𝑇2
𝑝 + 𝑠33

𝑝
𝑇3
𝑝 + 𝑑33

𝑝
𝐸3

𝑆4
𝑝 = 𝑠44

𝑝
𝑇4
𝑝 + 𝑑24

𝑝
𝐸2                                    

𝑆5
𝑝 = 𝑠55

𝑝
𝑇5
𝑝 + 𝑑15

𝑝
𝐸1                                    

𝑆6
𝑝 = 𝑠66

𝑝
𝑇6
𝑝                                                    

    (2-3-2) 

By convention, the direction 3 is aligned with the excitation magnetic field by adjusting the local 

coordinates of the materials from Fig.2.2. Thus, for the mode TT, the following conditions produced 

by the 0D-modelling magneto-electric assumption (all the magnetic and electric variables in the non-

magnetization or non-polarization directions are neglected) and the open circuit condition (the 

coupling current through the piezoelectric material along the polarization direction is zero) is imposed: 

   𝐻1 = 𝐻2 = 0, and 𝐷3 = 0                                         (2-3-3) 

Moreover, the Newton’s third law involves: 

 𝑣𝑇1
𝑝 = (𝑣 − 1)𝑇1

𝑚, 𝑣𝑇2
𝑝 = (𝑣 − 1)𝑇2

𝑚and 𝑇3
𝑚 = 𝑇3

𝑝 = 0              (2-3-4) 

where 𝑣 =
𝑡𝑝

𝑡𝑙𝑎𝑚
=

𝑡𝑝

(𝑚−1)𝑡𝑝+𝑚𝑡𝑚
 in which 𝑡𝑚, 𝑡𝑝  represent the thicknesses of the single 

magnetostrictive and piezoelectric material layers in the laminated ME multilayer composite, and 𝑚 

denotes the number of magnetostrictive layers, namely 𝑚 = 2 for the trilayer case study in this chapter. 
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In assuming both materials expand and contract together, the following conditions are respected:  

  𝑆1
𝑚 = 𝑆1

𝑝, 𝑆2
𝑚 = 𝑆2

𝑝                                           (2-3-5) 

In this way, in combining all conditions the following matrix system is obtained:  

 𝐾𝑋 = 𝑏                                                                    (2-3-6) 

where 𝐾 =

[
 
 
 
 
(𝑠11
𝑚 + 𝛽𝑠11

𝑝
) (𝑠12

𝑚 + 𝛽) 𝑑31
𝑚 −𝑑31

𝑝

(𝑠12
𝑝 + 𝛽𝑠12

𝑝
) (𝑠11

𝑚 + 𝛽𝑠11
𝑝
) 𝑑31

𝑚 −𝑑31
𝑝

𝑑31
𝑚

−𝑑31
𝑝
𝛽

𝑑31
𝑚

−𝑑31
𝑝
𝛽

𝜇33
𝑇

0

0
𝜀33
𝑇
]
 
 
 
 

,  𝑋 =

[
 
 
 
𝑇1
𝑚

𝑇2
𝑚

𝐻3
𝐸3 ]
 
 
 
 and 𝑏 = [

0
0
𝐵3
0

] 

where the coefficient 𝛽 is defined as 𝛽 =
𝑣

1−𝑣
.. 

 

The obtained solution 𝑋 = 𝐴−1𝑌 can be exploited to find the magnetoelectric coefficients as: 

  𝛼33
𝐸 =

𝐸3

𝐻3
=

𝑋(3)

𝑋(4)
=

2𝑑31
𝑚𝑑31

𝑝
(1−𝑣)

2𝑑31
𝑝 2

(1−𝑣)−𝜀33
𝑇 (𝑠11

𝑚+𝑠12
𝑚 )𝑣−𝜀33

𝑇 (𝑠11
𝑝
+𝑠12

𝑝
)(1−𝑣)

                   (2-3-7) 

which can also be written in terms of the voltage magnetoelectric coefficient: 

  𝛼33
𝑉 = 𝑡𝑝𝛼33

𝐸 =
2𝑑31

𝑚𝑑31
𝑝
(1−𝑣)𝑣𝑡𝑙𝑎𝑚

2(𝑑31
𝑝
)
2
(1−𝑣)−𝜀33

𝑇 (𝑠11
𝑚+𝑠12

𝑚 )𝑣−𝜀33
𝑇 (𝑠11

𝑝
+𝑠12

𝑝
)(1−𝑣)

             (2-3-8) 

 

These expressions can also be found in [47]. 

 

The voltage magnetoelectric coefficient 𝛼33
𝑉  can also be written as (2-3-9) in considering the ratio 

𝑛 =
2𝑡𝑚

𝑡𝑙𝑎𝑚
, in the trilayer case 𝑣 = 1 − 𝑛.  

   𝛼33
𝑉 =

2𝑑31
𝑚𝑑31

𝑝
(1−𝑛)𝑛𝑡𝑙𝑎𝑚

2(𝑑31
𝑝
)
2
𝑛−𝜀33

𝑇 (𝑠11
𝑚+𝑠12

𝑚 )(1−𝑛)−𝜀33
𝑇 (𝑠11

𝑝
+𝑠12

𝑝
)𝑛

                                (2-3-9) 

 

In employing the same procedure, the voltage magnetoelectric coefficients concerning the others 

modes (LT, TL and LL) can be obtained in employing the Bond’s transformation on the formulations 

from (2-2-22) to (2-2-25)[48]. For instance, the matrix forms for the magnetostrictive material part of 

the LT- mode becomes: 
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[
 
 
 
 
 
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6]
 
 
 
 
 
𝑚

=

[
 
 
 
 
 
 
𝑠33
𝑚 𝑠23

𝑚

𝑠23
𝑚 𝑠22

𝑚

𝑠13
𝑚 0

𝑠12
𝑚 0

0    0
0    0

𝑠13
𝑚 𝑠12

𝑚

0 0

𝑠11
𝑚 0

0 𝑠66
𝑚

0    0
0    0

0    0
0    0

0    0
0    0

𝑠55
𝑚 0

0 𝑠44
𝑚 ]
 
 
 
 
 
 

[
 
 
 
 
 
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6]
 
 
 
 
 
𝑚

+

[
 
 
 
 
 
𝑑33
𝑚 0 0

𝑑31
𝑚 0 0

𝑑31
𝑚

0
0
0

0
0
0
𝑑24
𝑚

0
0
𝑑15
𝑚

0 ]
 
 
 
 
 

[
𝐻1
𝐻2
𝐻3

]      (2-3-10-a) 

[
𝐵1
𝐵2
𝐵3

] = [

𝑑33
𝑚 𝑑31

𝑚 𝑑31
𝑚 0 0 0

0 0 0 0 0 𝑑24
𝑚

0 0 0 0 𝑑15
𝑚 0

]

[
 
 
 
 
 
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6]
 
 
 
 
 
𝑚

+ [

𝜇33
𝑇 0 0

0 𝜇11
𝑇 0

0 0 𝜇11
𝑇

] [
𝐻1
𝐻2
𝐻3

]              (2-3-10-b) 

In this way,  

 

 

{
 
 
 
 
 

 
 
 
 
 
𝐵3 = 𝑑15

𝑚𝑇5
𝑚 + 𝜇11

𝑇 𝐻3                                        

𝐵2 = 𝑑24
𝑚𝑇6

𝑝 + 𝜇11
𝑇 𝐻2                                         

𝐵1 = 𝑑33
𝑚𝑇1

𝑚 + 𝑑31
𝑚𝑇2

𝑚 + 𝑑31
𝑚𝑇3

𝑚 + 𝜇33
𝑇 𝐻1

 𝑆1
𝑚 = 𝑠33

𝑚𝑇1
𝑚 + 𝑠23

𝑚𝑇2
𝑚 + 𝑠13

𝑚𝑇3
𝑚 + 𝑑33

𝑚𝐻3
 𝑆2

𝑚 = 𝑠23
𝑚𝑇1

𝑚 + 𝑠22
𝑚𝑇2

𝑚 + 𝑠12
𝑚𝑇3

𝑚 + 𝑑31
𝑚𝐻3

 𝑆3
𝑚 = 𝑠13

𝑚𝑇1
𝑚 + 𝑠23

𝑚𝑇2
𝑚 + 𝑠33

𝑚𝑇3
𝑚 + 𝑑33

𝑚𝐻3
𝑆6
𝑚 = 𝑠44

𝑚𝑇6
𝑚 + 𝑑15

𝑚𝐻3                                     

𝑆5
𝑚 = 𝑠55

𝑚𝑇5
𝑚 + 𝑑24

𝑚𝐻2                                     

𝑆6
𝑚 = 𝑠66

𝑚𝑇6
𝑚                                                      

                                (2-3-11) 

 

The voltage coefficient is thus given by: 

 

𝛼31
𝑉 =

2𝑑33
𝑚𝑑31

𝑝
(1−𝑛)𝑛𝑡𝑙𝑎𝑚

2(𝑑31
𝑝
)
2
𝑛−𝜀33

𝑇 (𝑠23
𝑚+𝑠33

𝑚)(1−𝑛)−𝜀33
𝑇 (𝑝11

𝑝
+𝑠12

𝑝
)𝑛

                                                          (2-3-12) 

 

Figure 2.4 shows the simulation results for a MPM (magnetostrictive-piezoelectric-magnetostrictive) 

composite composed of Terfenol-D/PZT-5A/Terfenol-D. We can notice that ME voltage coefficients 

in LT mode is significantly higher relative to the TT mode with a maximum ratio n around 2/3. This 

difference is explained by the fact that the coefficient is 𝑑33
𝑚  that is more greater that 𝑑31

𝑚 .  
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Figure 2.4 Simulation results LT and TT modes for a MPM composite of Terfenol-D/PZT-5A/Terfenol-D  

 

In order to investigate the impact of the materials to the voltage coefficient, we simulated with another 

composite (CoFe2O4/BaTiO3/CoFe2O4) in LT mode. Obviously, as shown in the Figure 2.5, the 

maximum ratio n changes in according to the nature of the composite.  

 

/ 

 

Figure 2.5 Simulation results in LT mode for two different MPM composites   

 

This part has shown that the Simplified Analytical Method in static regime is a quite useful method 

that gives the analytical expressions of the magnetoelectric coefficients. The ME coupling in ME 

laminates is strongly related to their working modes in which the value of ME voltage coefficient in 

LT mode is significantly higher than the TT mode. The maximum coupling coefficient depends on the 

volume ratio and the composite materials used. 

2.3.2 Equivalent circuit method 

The equivalent circuit method for the magnetoelectric composite uses an extension of the well-known 

1D electrical Mason’s model of piezoelectric material in combining the magnetic-mechanical coupling 

with the mechanical-electrical coupling of the piezoelectric. It was recently employed in literatures [40, 

41, 49] to investigate the voltage magnetoelectric coefficient for different modes in static and dynamic 

regimes. The procedures based for the LT and TT modes are presented in Figures 2.6 and 2.7.  
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Mode LT 

 

Figure 2.6 Illustrations of 3D composite structure in LT mode [40] 

 

 

 
 

Mode TT 

 

Figure 2.7 Illustrations of 3D composite structure in TT mode [40] 

 

Considering the 3D composite structure, if the length of the composite bulk is much longer than the 

width and thickness, we can approximately only take into account the components in z-direction of the 

mechanical variables(stress and strain) and that of the electric displacement in polarization 

direction(direction ‘3’ in local coordinates).  

 

If an infinitesimal longitudinal length ’Δz’ is taken into consideration that is as much smaller than the 

total length of the bulk, then the continuous mechanical equilibrium equation in dynamic regime (2-2-

10) for the LT mode can be rewritten as: 

 

𝜕2𝑢

𝜕𝑡2
(2∆𝑚1 + ∆𝑚2) = ∆𝑇33

𝑚 ∙ 2𝐴1 + ∆𝑇11
𝑝
∙ 𝐴2 =

𝜕2𝑢

𝜕𝑡2
(2𝜌𝑚𝐴1∆𝑧 + 𝜌𝑝𝐴2∆𝑧)        (2-3-13) 

where  𝐴1 and 𝐴2 are the cross-sectional areas of the magnetostrictive layer noted as M-layer, same 

after) and the piezoelectric layer noted as P-layer, same after) respectively, ∆𝑚1 = 𝜌𝑚𝐴1∆𝑧  and 

∆𝑚2 = 𝜌𝑝𝐴2∆𝑧 are the volume masses of the M-layer and P-layer respectively, ∆𝑇33
𝑚 and ∆𝑇11

𝑝
 are the 

normal stresses by unit along the z-direction of the M-layer and P-layer respectively. 

 

After simplification we obtain: 

 

 
𝜕2𝑢

𝜕𝑡2
∙
2𝜌𝑚𝐴1+𝜌𝑝𝐴2

𝐴
=

2𝐴1

𝐴

∆𝑇33
𝑚

∆𝑧
+
𝐴2

𝐴

∆𝑇11
𝑝

∆𝑧
                                                        (2-3-14) 
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where 𝐴 = 2𝐴1 + 𝐴2 is the total cross-sectional area of the composite. 

 

By defining the thickness ratio 𝑛 = 2𝐴1/𝐴 and the average density 𝜌̅ =
2𝜌𝑚𝐴1+𝜌𝑝𝐴2

𝐴
= 𝑛𝜌𝑚 + (1 −

𝑛)𝜌𝑝 and by substituting the constitutive laws we can obtain: 

 

𝜌̅
𝜕2𝑢

𝜕𝑡2
= 𝑛

𝜕𝑇33
𝑚

𝜕𝑧
+ (1 − 𝑛)

𝜕𝑇11
𝑝

𝜕𝑧
=

𝑛

𝑠33
𝐻

𝜕𝑆33
𝑚

𝜕𝑧
+
1−𝑛

𝑠11
𝐸

𝜕𝑆11
𝑝

𝜕𝑧
=

𝑛

𝑠33
𝐻

𝜕2𝑢

𝜕𝑧2
+
1−𝑛

𝑠11
𝐸

𝜕2𝑢

𝜕𝑧2
                (2-3-15) 

 

And according to the propagation principle the average sound velocity of the material can be 

expressed respectively for the LT-mode and the TT-mode as 𝑣𝐿𝑇̅̅ ̅̅̅ =
√

𝑛

𝑠33
𝐻 +

1−𝑛

𝑠11
𝐸

𝜌̅
 and 𝑣𝐿𝑇̅̅ ̅̅̅ =

√
𝑛

𝑠11
𝐻 +

1−𝑛

𝑠11
𝐸

𝜌̅
 , 

therefore we obtain the equation by defining k the wave number and 𝜔 the angular frequency of 

vibration: 

 

𝜕2𝑢

𝜕𝑡2
= 𝑣̅2

𝜕2𝑢

𝜕𝑧2
= (

𝜔

𝑘
)
2 𝜕2𝑢

𝜕𝑧2
                                                                               (2-3-16)   

 

The general solution of the equation above is 𝑢(𝑧) = 𝐴𝑐𝑜𝑠(𝑘𝑧) + 𝐵𝑠𝑖𝑛(𝑘𝑧) , and with the limit 

conditions 𝑢1̇ = 𝑢̇(0) = 𝑗𝜔𝑢(0), 𝑢2̇ = 𝑢̇(𝐿) = 𝑗𝜔𝑢(𝐿), we obtain [46]: 

 

𝑢(𝑧) =
𝑢1̇

𝑗𝜔
𝑐𝑜𝑠(𝑘𝑧) +

𝑢2̇−𝑢1̇𝑐𝑜𝑠 (𝑘𝐿)

𝑗𝜔𝑠𝑖𝑛 (𝑘𝐿)
𝑠𝑖𝑛 (𝑘𝑧)                                                                  (2-3-17)   

 

where L is the length of the composite. 

 

According to 𝑆(𝑧) =
𝜕𝑢(𝑧)

𝜕𝑧
 we can obtain the strains on the boundary of the bulk: 

 

𝑆(0) =
𝑢2̇−𝑢1̇𝑐𝑜𝑠 (𝑘𝐿)

𝑗𝑣̅𝑠𝑖𝑛 (𝑘𝐿)
,       𝑆(𝐿) =

𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿)−𝑢1̇

𝑗𝑣̅𝑠𝑖𝑛 (𝑘𝐿)
                                                             (2-3-18) 

 

Considering the external applied forces shown in Figure 2.8 along the longitudinal direction, the 

equilibrium law gives: 

 

𝐹1 = −2𝐴1𝑇33
𝑚(0) − 𝐴2𝑇11

𝑝 (0), 𝐹2 = −2𝐴1𝑇33
𝑚(𝐿) − 𝐴2𝑇11

𝑝 (𝐿)                                (2-3-19) 

 

 

Figure 2.8 Composite laminates with external applied surface forces on z=0 and z=L [50] 
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By introducing the constitutive laws in the strain expressions we conclude that: 

 

𝐹1 = 𝑗𝐴𝜌̅𝑣̅ 𝑡𝑎𝑛 (
𝑘𝐿

2
) 𝑢1̇ +

𝐴𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
(𝑢1̇ − 𝑢2̇) +

2𝐴1

𝑠33
𝐻 𝑑33

𝑚𝐻3 +
𝑤

𝑠11
𝐸 𝑑31

𝑝
𝑉                    (2-3-20) 

𝐹2 = −𝑗𝐴𝜌̅𝑣̅ 𝑡𝑎𝑛 (
𝑘𝐿

2
)𝑢2̇ +

𝐴𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
(𝑢1̇ − 𝑢2̇) +

2𝐴1

𝑠33
𝐻 𝑑33

𝑚𝐻3 +
𝑤

𝑠11
𝐸 𝑑31

𝑝
𝑉                 (2-3-21) 

 

where w is the width of the bulk and V the voltage between the electrodes with 𝑉 = 𝑡𝑝 𝐸3 =
𝐴2

𝑤
𝐸3. 

 

By defining the corresponding coefficients in the expressions of the forces as  𝑍1, 𝑍2, 𝜑𝑚, 𝜑𝑝 the 

mechanical impedances, the magnetostrictive coupling coefficient and the piezoelectric coupling 

coefficient, and we rewrite the expressions as: 

 

𝐹1 = 𝑍1𝑢1̇ + 𝑍2(𝑢1̇ − 𝑢2̇) + 𝜑𝑚𝐻3 + 𝜑𝑝𝑉                                          (2-3-22) 

 𝐹2 = −𝑍1𝑢2̇ + 𝑍2(𝑢1̇ − 𝑢2̇) + 𝜑𝑚𝐻3 + 𝜑𝑝𝑉                                          (2-3-23) 

 

The coupling current 𝐼𝑝 produced by the piezoelectric layer can be calculated as [66]: 

 

 𝐼𝑝 = 𝑗𝜔𝐶0𝑉 − 𝜑𝑝(𝑢1̇ − 𝑢2̇)                                                                (2-3-24) 

 

where 𝐶0 =
𝜀33
𝑇 𝑤𝐿

𝑡𝑝
  is the static capacitance of the piezoelectric layer, 𝜑𝑝 = 𝑤

𝑑31𝑝

𝑠11
𝐸  and for respectively 

the LT-mode and the TT-mode 𝜑𝑚_𝐿𝑇 = 𝑤𝑡𝑚
𝑑33𝑚

𝑠33
𝐻  and 𝜑𝑚_𝑇𝑇 = 𝑤𝑡𝑚

𝑑31𝑚

𝑠11
𝐻 .  

 

The MPM composite can been represented with the equivalent electric circuit shown in Figure 2.9 

(Mason’s model), in which 𝐹1, 𝐹2  are ‘mechanical voltages’, 𝑍1, 𝑍2  are ‘electrical impedances’ and 

𝑢1̇, 𝑢2̇ are electrical currents. 

 

Figure 2.9 Equivalent electric circuit model [40] 

 

Under free-free boundary condition where 𝐹1 = 𝐹2 = 0 the two ends can be shorted to the ‘ground’ 

and the equivalent circuit can be simplified as in Figure 2.10: 

 



 31 

 

Figure 2.10 Simplified equivalent circuit model under free-free boundary condition [40] 

 

where 𝑍 = 𝑍1//𝑍1 + 𝑍2 = −
1

2
𝑗𝐴𝜌̅𝑣̅ 𝑡𝑎𝑛 (

𝑘𝐿

2
) +

𝐴𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
= −

1

2
𝑗𝐴𝜌̅𝑣̅ 𝑐𝑜𝑡 (

𝑘𝐿

2
) 

In open circuit condition, the induced current 𝐼𝑝 = 0, thus 𝑗𝜔𝐶0𝑉 = 𝜑𝑝(𝑢1̇ − 𝑢2̇), and by corporating 

the expressions of the mechanical voltage we can finally conclude that  

 

   𝛼31
𝑉 = |

𝑑𝑉

𝑑𝐻3
| = |

𝜑𝑚𝜑𝑝

𝜑𝑝
2+𝑗𝜔𝐶0𝑍

|                    (2-3-25) 

 

As mentioned previously, in practice, due to the mechanical damping and the electric and magnetic 

dissipation losses, the impedance Z is a RLC circuit such as 𝑍 = 𝑅𝑚 + 𝑗𝜔𝐿𝑚 +
1

𝑗𝜔𝐶𝑚
, where 𝑅𝑚 =

𝜋𝑍0

8𝑄𝑚𝑒𝑐ℎ
,  𝐿𝑚 =

𝜋𝑍0

8𝜔𝑟
,  𝐶𝑚 =

8

𝜋𝑍0𝜔𝑟
,   𝑍0 =  𝐴𝜌̅𝑣̅ all presented in [49] and 𝑄𝑚𝑒𝑐ℎis the mechanical quality 

factor of the composite, which is an important parameter characterizing the damping effect and 

bandwidth of the material.  

 

The total quality factor 𝑄𝑚𝑒𝑐ℎ of the composite can be expressed with quality factors 𝑄𝑚−𝑚𝑒𝑐ℎ and 

𝑄𝑝−𝑚𝑒𝑐ℎ from the magnetostrictive and piezoelectric materials: 

 

    
𝟏

𝑸𝒎𝒆𝒄𝒉
=

𝒏

𝑸𝒎−𝒎𝒆𝒄𝒉
+

𝟏−𝒏

𝑸𝒑−𝒎𝒆𝒄𝒉
                    (2-3-26) 

   𝛼31
𝑉 =

8𝑄𝑚𝑒𝑐ℎ

𝜋2
(𝛼31

𝑉 )𝑙𝑜𝑤                     (2-3-27) 

 

where (𝛼31
𝑉 )𝑙𝑜𝑤 signifies the voltage coefficient in low frequency.  

 

Figure 2.11 shows for the LT-mode the dynamic response of the voltage ME coefficient for the same 

previous MPM composite (Terfenol-D/PZT-5A/Terfenol-D, 𝑄𝑚𝑒𝑐ℎ = 200, 𝐿 = 14 𝑚𝑚, 𝑡𝑝 = 1 𝑚𝑚, 

𝑡𝑚 = 1 𝑚𝑚).  
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Figure 2.11 Dynamic response of a trilayer composite Terfenol-D/PZT-5A/Terfenol-D in LT mode 

 

It can be seen that the two methods display great frequency-dependent result accordance, with a small 

resonant frequency shift and little higher resonant ME coefficient value for the equivalent circuit 

method. 

 

In the mechanical resonant frequency regime (𝜔 = 𝜔𝑟 =
𝜋𝑣̅

𝐿
), the impedance vanishes since 𝑍 =

−
1

2
𝑗𝐴𝜌̅𝑣̅ 𝑐𝑜𝑡 (

𝜔𝑟𝐿

2𝑣̅
) = −

1

2
𝑗𝐴𝜌̅𝑣̅ 𝑐𝑜𝑡 (

𝜋

2
) = 0  

 

Thus, in LT-mode the ME coefficient achieves the peak value as 

 

  (𝛼𝑣)𝑚𝑎𝑥 = |
𝑑𝑉

𝑑𝐻3
| = |

𝜑𝑚

𝜑𝑝
| = |

2𝑡𝑚𝑑33
𝑚 𝑠11

𝐸

𝑑31
𝑝
𝑠33
𝐻 |                   (2-3-28) 

 

In the low frequency case we have cot (
𝑘𝐿

2
) ≈

𝑘𝐿

2
, in other words the impedance 𝑍 is approximated as 

𝑍 ≈
−𝑗

1

2
𝜌̅𝑣̅𝐴

𝑘𝐿

2

=
−𝑗𝜌̅𝑣̅𝐴

𝑘𝐿
. 

Thus in replacing 𝑗𝑍𝐶𝑜𝜔 by 
𝜌̅𝑣̅2𝐴

𝐿
𝐶𝑜. in the expression (2-3-25) we find the expression of the voltage 

magnetoelectric coefficients in low frequency as: 

 

 (𝛼31
𝑉 )𝑙𝑜𝑤 = |

𝜑𝑝𝜑𝑚𝐿

𝜑𝑝
2𝐿+𝜌̅𝑣̅2𝐴𝐶𝑜

| = |
𝜑𝑝𝜑𝑚

𝜑𝑝
2+

𝜌̅𝑣̅2𝐴

𝐿
𝐶𝑜

| = |
𝜑𝑝𝜑𝑚𝐿

𝜑𝑝
2𝐿+𝜌̅𝑣̅2𝐴𝐶𝑜

|    (2-3-29) 
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For the LT  (𝛼31
𝑉 )𝑙𝑜𝑤 and TT (𝛼33

𝑉 )𝑙𝑜𝑤 modes we obtain with 𝑡𝑝 = 𝑡𝑙𝑎𝑚(1 − 𝑛) where 𝑡𝑙𝑎𝑚 = 𝑡𝑝 +

2𝑡𝑚 is the total thickness of the ME composite.  

    

  (𝛼31
𝑉 )𝑙𝑜𝑤 = |

2𝑑33
𝑚𝑑31

𝑝
(𝑛−1)𝑛𝑡𝑙𝑎𝑚

𝛾1(𝑑31
𝑝
)
2
−(𝑛(𝑠11

𝑝
−𝑠33

𝑚)+𝑠33
𝑚)𝜀33

𝑇
|                  (2-3-30) 

with γ1 = (𝑛 − 1)
𝑠33
𝑚

𝑠11
𝑝  

   (𝛼33
𝑉 )𝑙𝑜𝑤 = |

2𝑑31
𝑚𝑑31

𝑝
(𝑛−1)𝑛𝑡𝑙𝑎𝑚

(𝑑31
𝑝
)
2
γ2−(𝑛(𝑠11

𝑝
−𝑠11

𝑚)+𝑠11
𝑚)𝜀33

𝑇
|                  (2-3-31) 

 

with γ2 = (𝑛 − 1)
𝑠11
𝑚

𝑠11
𝑝  

This part has shown that the equivalent circuit method is quite useful for both static and dynamic 

analysis of magnetoelectric (ME) laminates, especially for electromechanical resonance analysis. 

However, the simplified analytical method and equivalent circuit method are not adapted to include 

the nonlinearity of piezomagnetic coefficients, or to take into account the physical mechanical impact 

of the resin (like Epoxy) that sticks the magnetrostrictive and piezoelectric layers. In these conditions, 

the achievement of a rigorous numerical modelling is essential for the design and optimization of ME 

devices composed of laminated layers. 

The constitutive relations of magnetostrictive materials are fundamentally nonlinear and due to these 

nonlinear material properties, modelling of the system will also become nonlinear. Consequently it is 

essential to consider a nonlinear model that takes into account the properties of magnetostrictive 

materials. The first part of the remainder of this chapter start in providing the essential conditions to 

perform a 2D modelling under the stress plan conditions while taking into account the electrical and 

magnetic assumptions of a ME composite. The second part introduces the 2D finite element 

formulation of the field problem that combines the nonlinear material properties of the 

magnetostrictive layers as well as the electrical circuit load effect.  

 

2.4 FEM modelling of the field problem in 2D 

Due to the complexity of the partial differential constitutive equations of the studied material and of 

the geometry, it is necessity to introduce appropriate numerical resolution methods. The finite element 

method (FEM) is employed to perform the discretization of the solution domain for the studied ME 

composite problem. In this section we expose the 2D finite element approach to investigate the ME 

energy transducer presented in Figure 2.12. It is a trilayer magnetostrictive/piezoelectric laminated 

composite including an electrical load representing the conditioning circuit connected to the electrodes 

of the piezoelectric layer. The magnetostrictive material is magnetized along the longitudinal direction 

whereas the piezoelectric material is polarized along the transversal direction (i.e. L-T mode). 
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Figure 2.12 Illustration of the 2D trilayer MPM composites in L-T mode 

 

It is to be noticed that the configuration of figure 2.12 is only given in title of example and the FEM 

formulation presented in this section is general and valid for any configuration modes and more 

complicated structures.  

2.4.1. Establishment of the 2D tensors  

The symmetry of the laminate structures problem satisfies the plane theory of elasticity that reduces 

the problem in a 2D problem. For that, two conditions are suitable: Either 2D plane stress conditions 

or 2D plane strain conditions.  In the 2D plane stress, the geometry of the structure is essentially that 

of a plate with one dimension much smaller than the other, whereas for the 2D plane strain conditions 

the direction (z-coordinate) of the structure in one direction is very large in comparison with in other 

directions (x and y-coordinate axes). In both cases, the stiffness tensors can be written as : 

 

    𝑐2𝐷 = 𝜙

[
 
 
 
 1

𝜗

1−𝑚𝜗
0

𝜗

1−𝑚𝜗
1 0

0 0
1−𝜗−𝑚𝜗

2(1−𝑚𝜗)]
 
 
 
 

              (2-4-1) 

 

where 𝜙 =
𝔈(1−𝑚𝜗)

(1+𝜗)(1−𝜗−𝑚𝜗)
  𝔈 and 𝜗 are respectively the Young’s module and the Poisson coefficient 

that are related to the compliance constants by 𝔈 =
1

𝑠11
 and 𝜗 = −

𝑠12

𝑠11
. 

 

If 𝑚 = 1 the stress plane is respected whereas when 𝑚 = 0 the strain plane is respected.  

 

Here, the modelling has been employed under the 2D plane stress conditions for the composite to be 

studied is a thin structure as illustrated in Figure 2.13.  
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Figure 2.13 Illustration of the stress plan conditions 

 

It can be noticed that the reduced stiffness tensor (2-4-1) is only valid for an isotropic case and cannot 

to be employed with an orthotropic case. To establish the reduced stiffness tensor of an orthotropic 

case, consider the following constitutive laws of the piezoelectric with linear constants.  

 

   𝑻 = 𝑐𝐸𝑺 − 𝑒𝑡𝑬                        (2-4-2) 

    𝑫 = 𝜀𝑆𝑬 + 𝑒𝑺                        (2-4-3) 

 

In matrix form, we have: 

 

  

[
 
 
 
 
 
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑐11
𝐸 𝑐12

𝐸

𝑐12
𝐸 𝑐22

𝐸

𝑐13
𝐸 0

𝑐23
𝐸 0

0    0
0    0

𝑐13
𝐸 𝑐23

𝐸

0 0

𝑐33
𝐸 0

0 𝑐44
𝐸

0    0
0    0

0    0
0    0

0    0
0    0

𝑐55
𝐸 0

0 𝑐66
𝐸 ]
 
 
 
 
 
 

[
 
 
 
 
 
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6]
 
 
 
 
 

−

[
 
 
 
 
 
0 0 𝑒31
0 0 𝑒32
0
0
𝑒15
0

0
𝑒24
0
0

𝑒33
0
0
0 ]
 
 
 
 
 

[

𝐸1
𝐸2
𝐸3

]              (2-4-4) 

 [
𝐷1
𝐷2
𝐷3

] = [
0 0 0 0 𝑒15 0
0 0 0 𝑒24 0 0
𝑒31 𝑒32 𝑒33 0 0 0

]

[
 
 
 
 
 
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6]
 
 
 
 
 

+ [

𝜀11
𝑆 0 0

0 𝜀11
𝑆 0

0 0 𝜀33
𝑆

] [
𝐸1
𝐸2
𝐸3

]             (2-4-5) 

 

For the elasticity part, the 2D plane stress conditions involve according to the global coordinates the 

following conditions:  

 

  𝑇3 = 𝑇4 = 𝑇5 = 0                              (2-4-6) 

𝑆4 = 𝑆5 = 0                   (2-4-7) 

 𝑆1 = −𝜗(𝑇1 + 𝑇2)/𝔈                                    (2-4-8) 

 

The problem can be solved in exploiting only the tangential components of the magnetic induction 

(𝐵2,𝐵3) and the electrical field (𝐸2,𝐸3) in the working plan yOz.  Their normal components 𝐵1 and 𝐸1 
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(perpendicular to the working plan) are assumed invariant where here we considered 𝐵1 = 0  and 

𝐸1 = 0.  

 

Figure 2.14 shows the mentioned mechanical, electric and magnetic conditions in according to the 

global coordinates. 

 

 
Figure 2.14 Illustration of the mechanical, electric and magnetic conditions 

 

In employing the mechanical, electric and magnetic conditions in the system (2-4-9) from (2-4-4) and 

(2-4-5), we obtain the expressions (2-4-10), (2-4-11) and (2-4-12).  

 

{
 
 

 
 𝑇1 = 𝑐11

𝐸 𝑆1 + 𝑐12
𝐸 𝑆2 + 𝑐13

𝐸 𝑆3 − 𝑒31𝐸3
𝑇2 = 𝑐12

𝐸 𝑆1 + 𝑐22
𝐸 𝑆2 + 𝑐23

𝐸 𝑆3 − 𝑒31𝐸3
𝑇3 = 𝑐13

𝐸 𝑆1 + 𝑐23
𝐸 𝑆2 + 𝑐33

𝐸 𝑆3 − 𝑒33𝐸3
𝐷3 = 𝑒31𝑆1 + 𝑒31𝑆2 + 𝑒33𝑆3 + 𝜀33

𝑆 𝐸3

                           (2-4-9) 

 

  𝑇1 = (𝑐11
𝐸 −

𝑐13
𝐸 2

𝑐33
𝐸 ) 𝑆1 + (𝑐12

𝐸 −
𝑐13
𝐸 ∙𝑐23

𝐸

𝑐33
𝐸 ) 𝑆2 − (𝑒31 − 𝑒33

𝑐13
𝐸

𝑐33
𝐸 )𝐸3        (2-4-10) 

  𝑇2 = (𝑐12
𝐸 −

𝑐13
𝐸 ∙𝑐23

𝐸

𝑐33
𝐸 ) 𝑆1 + (𝑐22

𝐸 −
𝑐23
𝐸 2

𝑐33
𝐸 ) 𝑆2 − (𝑒31 − 𝑒33

𝑐23
𝐸

𝑐33
𝐸 )𝐸3        (2-4-11) 

  𝐷3 = (𝑒31 − 𝑒32
𝑐12
𝐸

𝑐22
𝐸 ) 𝑆1 + (𝑒31 − 𝑒33

𝑐23
𝐸

𝑐33
𝐸 ) 𝑆2 + (𝜀33

𝑆 +
𝑒33

2

𝑐33
𝐸 )𝐸3        (2-4-12) 

 

Similar derivation can be done for the constitutive law of the magnetostrictive material. 

The reduced stiffness tensor and the coupling coefficient for an orthotropic case for the T-mode 

(magnetization or polarization direction is transversal) are given, respectively, by: 



 37 

 

 𝑐2𝐷
𝑋 =

[
 
 
 
 𝑐11

𝑋 −
𝑐13
𝐸 2

𝑐33
𝐸 𝑐12

𝑋 −
𝑐13
𝑋 ∙𝑐23

𝑋

𝑐33
𝑋 0

𝑐12
𝑋 −

𝑐13
𝐸 ∙𝑐23

𝐸

𝑐33
𝐸 𝑐22

𝑋 −
𝑐23
𝑋 2

𝑐33
𝑋 0

0 0 𝑐66]
 
 
 
 

= [

𝑐11
𝑋̅̅ ̅̅ 𝑐12

𝑋̅̅ ̅̅ 0

𝑐12
𝑋̅̅ ̅̅ 𝑐22

𝑋̅̅ ̅̅ 0
0 0 𝑐66

]                (2-4-13) 

 

where the superscript 𝑋 = 𝐸  or 𝐵  stands for respectively the piezoelectric material and the 

magnetostrictive material, and 

 𝑓 =

[
 
 
 
 0 𝑓31 − 𝑓33

𝑐13
𝐸

𝑐33
𝐸

0 𝑓31 − 𝑓33
𝑐23
𝐸

𝑐33
𝐸

𝑓15 0 ]
 
 
 
 

= [

0 𝑓31̅̅ ̅̅

0 𝑓33̅̅ ̅̅

𝑓15̅̅ ̅̅ 0

]           (2-4-14) 

where 𝑓 = 𝑒 or 𝑞 for respectively the piezoelectric and magnetostrictive materials. 

The permittivity or the permeability is given by: 

𝑔 = [
𝑔11
𝑈 +

𝑓13
2

𝑐33
𝐸 0

0 𝑔33
𝑈 +

𝑓33
2

𝑐33
𝐸

] = [
𝑔11
𝑈̅̅ ̅̅̅ 0

0 𝑔33
𝑈̅̅ ̅̅̅
]                       (2-4-15) 

with 𝑔 = 𝜀 or 𝜇. 

In general manner, the coefficient elements can be rewritten as:  

   𝑐𝑎𝑏̅̅ ̅̅ = 𝑐𝑎𝑏 − 𝑐𝑎3𝑐3𝑏/𝑐33                                   (2-4-16) 
 

with (𝑎𝑏) ∈ {(1,1), (2,2), (1,2), (6,6)} 
 

   𝑓2𝐷 = 𝑓𝑗𝑎̅̅ ̅̅ = 𝑓𝑗𝑎 − 𝑓𝑗3
𝑐𝑎3

𝑐33
                                   (2-4-17) 

 

with 𝑗 = 3 , 𝑎 = 1,2,   

 

  𝑔2𝐷
𝑆 = 𝑔𝑖𝑗

𝑆̅̅ ̅̅ = 𝑔𝑖𝑗
𝑆 +

𝑓𝑖3𝑓𝑗3

𝑐33
                                               (2-4-18) 

 

with 𝑖, 𝑗 =∈ ({1,3}) 
 

The same procedure is used to find the longitudinal mode (L):  

 

   𝑐2𝐷
𝑋 = [

𝑐22
𝑋̅̅ ̅̅ 𝑐12

𝑋̅̅ ̅̅ 0

𝑐12
𝑋̅̅ ̅̅ 𝑐11

𝑋̅̅ ̅̅ 0

0 0 𝑐55
𝑋

] ,    𝑓 = [

𝑓33̅̅ ̅̅ 0

𝑓31̅̅ ̅̅ 0

0 𝑓15̅̅ ̅̅
],   𝑔 = [

𝑔33
𝑈̅̅ ̅̅̅ 0

0 𝑔11
𝑈̅̅ ̅̅̅
]       (2-4-19) 
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2.4.2 FEM formulation 

2.4.2.1 Fundamental formulations 

The finite element formulation (FEM) of a ME composite is derived in combining the elastodynamic  

and electromagnetic governing physics equations [24,51-55] presented in the first part of this chapter 

and together with the systems (2-4-20) and (2-4-21).  

 

    {
div𝑻 + 𝒇 = 𝜌𝑣𝜕𝑡

2𝒖                  
curl𝑯 = 𝒋𝒔 + 𝜕𝑡𝑫,div𝑩 = 0
curl𝑬 = −𝜕𝑡𝑩, div𝑫 = 𝜌       

                   (2-4-20) 

 

   {
𝑻 = c𝑋𝑺 − et𝑬 − ht𝑩
𝑫 = −e𝑺 + ε𝑆𝑬           
𝑯 = −h𝑺 + 𝑣𝑆𝑩          

                    (2-4-21) 

             

with c𝑋 = c𝐸 or c𝐵 in according to the considered material.  

 

The links between the mechanical strain 𝑺, the electric field 𝑬 and the magnetic induction 𝑩 with the 

working variables, i.e. the mechanical displacement 𝒖, the electric potential scalar 𝑉 and the magnetic 

vector potential 𝒂, are respectively gathered by (2-4-22).  

 

    {

𝑬 = −grad𝒗                    
𝑩 = curl𝒂                        

𝑺 =
1

2
(grad + grad𝑇)𝒖

                   (2-4-22) 

 

As 𝐵1 = 0, 𝐵2 ≠ 0 and 𝐵3 ≠ 0 just the normal component 𝒂𝟏 of the magnetic potential vector 𝒂 in the 

x direction is considered, and the electrostatic and magnetostatic formulations (no free charges 𝜌 = 0, 

curl𝒆 = 0and curl𝒉 = 𝒋𝒔 )are applied. For that, the operator curl is degenerated to the operator 

gradient by the relation curl=r∗. grad, where r∗ = [
0 −1
1 0

] is a rotation matrix.  

 

In considering just the tangential components of the magnetic induction (𝐵2,𝐵3) and the electrical field 

(𝐸2,𝐸3) in the working plan yOz, we obtain :  

 

   {

𝑬 = 𝐺𝑣{𝑉}  

𝑩 = 𝐺𝑎{𝑎𝑧}

𝑺 = 𝐺𝑢{𝒖}  

                                             (2-4-23) 

 

           {

{𝑉} = 𝑁𝑣𝑉   
{𝑎𝑧} = 𝑁𝑎𝑎𝑧
{𝒖} = 𝑁𝑢𝒖   

                                       (2-4-24) 

 

with 𝐺𝑣 = grad𝑁𝑣 , 𝐺𝑎 = 𝑟 ∗. grad𝑁𝑎  and 𝐺𝑢 =
1

2
(grad𝑁𝑢 + grad

𝑇𝑁𝑢), where 𝑁𝑣 , 𝑁𝑎  and 𝑁𝑢 are the 

shape functions associated with each node which satisfy the properties: 

 

∑ 𝑁𝑖
𝑚
𝑖=1 = 1, 𝑁𝑗(𝜁𝑖) = 𝛿𝑖𝑗, 𝑚 is the number of nodes by mesh element, 𝜁𝑖 the natural coordinates and 

the 𝛿𝑖𝑗. Kronecker delta.  
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In our modelling, linear triangular element (𝑚 =3 nodes) is used for the discretization of all fields. In 

this case : 

 

   𝒖 = [𝑢𝑥
𝑢𝑦
] = [

𝑁1 0 𝑁2 0 𝑁3 0

0 𝑁1 0 𝑁2 0 𝑁3
]

[
 
 
 
 
 
𝑢𝑥𝑚1
𝑢𝑦𝑚1
𝑢𝑥𝑚2
𝑢𝑦𝑚2
𝑢𝑥𝑚3
𝑢𝑦𝑚3]

 
 
 
 
 

= [𝑁𝑢]{𝒖}                (2-4-25) 

    𝑉 = [𝑁1 𝑁2 𝑁3] [

𝑉𝑚1
𝑉𝑚2
𝑉𝑚3

] = [𝑁𝑣]{𝑣}                              (2-4-26) 

              𝑎𝑧 = [𝑁1 𝑁2 𝑁3] [

𝑎𝑚1
𝑎𝑚2
𝑎𝑚3

] = [𝑁𝑎]{𝑎𝑧}               (2-4-27) 

with 𝑁𝑣 = 𝑁𝑎 = 𝑁. 

The finite element formulation after the FEM discretization of the coupling system equation is:  

 

 𝜕𝑡
2[ℳ]{𝒳} + 𝜕𝑡[𝒞]{𝒳} + [𝒦]{𝒳} = {ℱ}                           (2-4-28) 

 

where [ℳ], [𝒞] , [𝒦] are respectively, the electro-magneto-mechanical mass, damping and stiffness 

matrix 

[ℳ] = [
𝑀 0 0
0 0 0
0 0 0

], [𝒞] = [
𝐶𝑢𝑢 0 0
0 0 0
0 0 0

], [𝒦] = [

𝐾𝑢𝑢 𝐾𝑢𝑝 𝐾𝑢𝑎
𝐾𝑝𝑢 𝐾𝑝𝑝 0

𝐾𝑎𝑢 0 𝐾𝑎𝑎

]     

 

Where {𝒳} = [𝒖 𝑉 𝑎]𝑇, {ℱ} = [𝐹 𝑄𝑛 𝐽𝑠]
𝑇，𝐾𝑝𝑢 = 𝐾𝑢𝑝

𝑡, 𝐾𝑎𝑢 = 𝐾𝑢𝑎
𝑡, 𝐶𝑢𝑢 = 𝛽𝐾𝑢𝑢 + 𝛼𝑀. 

The parameters β (in s) and α (in s
-1

) are Rayleigh’s damping coefficients. Generally, in a mechanical 

oscillation system, the resonant angular frequency with damping effect 𝜔𝑟 and the frequency without 

damping effect 𝜔𝑛 have relation as： 

 

   𝜔𝑟 = 𝜔𝑛√1− 𝜍
2                                                (2-4-29) 

where 𝜍 is called the damping coefficient and 𝑄𝑚𝑒𝑐ℎ = 1/(2 𝜍), 

 

The parameters β and α depend on the energy dissipation characteristic of the structure. Currently, 

these values cannot be obtained through direct calculation and they must be measured. Then, with the 

relations of 𝜔𝑛 = √𝑘/𝑀   and  𝜔𝑟 = √
𝑘

𝑀
− (

𝑐

2𝑀
)
2

 , they are determined through modal damping 

coefficient :  

 

    𝜍 =
𝑐

2𝑀𝜔𝑛
=

𝛽𝑘+𝛼𝑀

2𝑀𝜔𝑛
=

𝛼

2𝜔𝑛
+
𝛽𝜔𝑛

2
                          (2-4-30) 
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In considering   a low modal damping coefficient 𝜍, we approximate  𝜔𝑟 ≈ 𝜔𝑛, where 𝜔𝑟 = 2𝜋𝑓𝑟 can 

be analytically estimated in LT mode by :  

 

     𝑓𝑟 =
1

2𝐿
√

𝑛

𝑠33
𝐻 +

1−𝑛

𝑠11
𝐸

𝜌̅
              (2-4-31) 

Recall that, 𝑛 =
2𝑡𝑚

𝑡𝑙𝑎𝑚
=

2𝑡𝑚

2𝑡𝑚+𝑡𝑝
 

 

In the case of a ME composite Terfenol-D/PZT-5A/Terfenol-D with the dimensions: 𝐿 = 14 𝑚𝑚, 

𝑡𝑝 = 1 𝑚𝑚, 𝑡𝑚 = 1 𝑚𝑚, the theoretical frequency resonance is close to 75 kHz. Thus, to impose a 

mechanical quality factor 𝑄𝑚𝑒𝑐ℎ close to 200, the   𝛽 =
1

𝜔𝑟𝑄𝑚𝑒𝑐ℎ
≈ 1. 10−8(𝑠).  

 

The unknown vector {𝒳}  includes the nodal displacement {𝒖} , electrical potential {𝑉}  and the 

magnetic vector potential {𝑎}. Here, no external body force (𝐹 = 0) and, under the open-circuit 

condition, no electric charge 𝑄𝑛  brought to the electrodes are considered. Instead of imposing a 

current density source 𝐽𝑠  in the excitation vector, the magnetic excitation is implemented in 

considering non-homogenous Dirichlet conditions on the magnetic vector potential 𝑎1  in the 

boundaries of the problem domain Ω.  

 

The elements of each submatrice in (2-4-28) are : 

 

 [

𝐾𝑢𝑢
𝐾𝑝𝑝
𝐾𝑎𝑎

] = ∑ ∫ [

[𝐺𝑢]
𝑡𝑐𝑎[𝐺𝑢]

[𝐺𝑝]
𝑡
𝜀𝑆[𝐺𝑝]

[𝐺𝑎]
𝑡𝑣𝑆[𝐺𝑎]

]
Ω𝑒𝑒 𝑑Ω                  (2-4-32) 

 

    [
𝐾𝑢𝑝
𝐾𝑢𝑎

] = ∑ ∫ [
[𝐺𝑢]

𝑡𝑒𝑡[𝐺𝑝]

[𝐺𝑢]
𝑡ℎ𝑡[𝐺𝑎]

]
Ω𝑒𝑒 𝑑Ω                  (2-4-33) 

 

2.4.2.2 Boundary conditions 

The magnetic, electric and elastic boundary conditions of the solution domain associated in the 

resolution of the system in 2D are, respectively, illustrated in Figure 2.16. 

 

 
 

Figure 2.15 Illustration in 3D of the domain problem with the boundary conditions 
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Figure 2.16 Illustration in 2D of the domain problem with the boundary conditions 

 

Mechanical conditions:  

To immobilize the composite ME two fixed mechanical displacements are imposed by the Dirichlet 

condition uy=uz=0 on the middle (bottom and top) in each magnetostrictive layers. 

 

Magnetic conditions: 

The external magnetic excitation source 𝐻𝑒𝑥𝑡 is composed of a small signal harmonic ac field 𝐻𝑎𝑐 

around a magnetization bias 𝐻𝑑𝑐 . They are separately modeled in the FEM in static and dynamic 

regimes. The static regime with the magnetic bias 𝐻𝑑𝑐  allows determining the incremental 

characteristics of the nonlinear materials, which will be employed in the dynamic regime. The 

magnetic excitation is implemented in the excitation vector {ℱ} in considering the non-homogenous 

Dirichlet conditions, 𝒂(Γ𝑦𝑧𝑚𝑎𝑥) = a0/2  and  𝒂(Γ𝑦𝑧𝑚𝑖𝑛) = −a0/2 as shown in Figure 2.16. In fact, the 

magnetic flux Φ defined by (2-4-34) can be degenerated in 2D as 𝑎0 = 𝐵0∆𝑧  with ∆𝑧= (𝑧𝑚𝑎𝑥 −

𝑧𝑚𝑖𝑛) and 𝐵0 = 𝐻𝑎𝑐𝜇0 where 𝜇0 represents the vacuum permeability.  

 

   Φ = ∬ 𝑩.𝑛𝑑𝑆 =
Ω ∬ rot𝒂. 𝑛𝑑𝑆 =

Ω ∮ 𝒂. 𝑑𝑙
Γ

             (2-4-34) 

 

where Ω represents the domain bounded externally by Γ.  

 

In this way, the small signal ac field 𝐻𝑎𝑐is: 

 

   𝐻𝑎𝑐 = 𝐵0/𝜇0 = 𝑎0/(∆𝑧𝜇0)                           (2-4-35) 

 

For example, in considering 𝐻𝑎𝑐 = 79.57 A/m, i.e. 1 Oe and ∆𝑧= 16 𝑚𝑚, we obtain 𝑎0 = 1.6µT.m. 

 

Electrical conditions: 

To guarantee a solution of the electric potential {V} the Dirichlet condition 𝑉(Γ𝑦𝑧) = 0 is applied on 

the out boundary of the solution domain.  

 

2.4.2.3 FEM Simulation results 

The 2D FEM modelling, presented previously, has been performed in employing the automatic and 

adaptive meshing of the PDE tool product by MATLAB
@

. Figure 2.17 shows the structure for which 
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the results will be presented. As previously, we consider the case Terfenol-D/PZT-5A/Terfenol-D 

where their magneto-electro-elastic proprieties are given in the Appendix A and the dimensions: 𝐿=14 

mm, 𝑡𝑝 =1 mm, 𝑡𝑚=1 mm, the theoretical frequency resonance is close to 75 kHz, and to impose a 

mechanical quality factor 𝑄𝑚𝑒𝑐ℎ  close to 200, the 𝛽=
1

𝜔𝑟𝑄𝑚𝑒𝑐ℎ
≈1.10× 10−8 (𝑠). The magnetic, 

mechanical and electric distribution fields for the LT-mode and TT-mode in the linear and static case 

are presented in Figures 2.18 to 2.20.  

 

 
Figure 2.17 The studied ME composite 

 

 

Magnetic potential vector  Magnetic field  

  
(a) In LT-mode 

 

Magnetic potential vector Magnetic field  

  

(b) In TT-mode 

 
Figure 2.18 Magnetic potential vector and magnetic field distributions 
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Mechanical displacements Strain 

 
 

  

(a) In LT-mode 

 

 

 

Mechanical displacements Strain 

 
 

 

(b) In TT-mode 

 
Figure 2.19 Mechanical displacements and strain field distributions 

 

 

Electric potential scalar Electric field 
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From the distribution figures above, it can be seen that for the magnetic phenomena, the magnitude of 

the potential field becomes smaller when approaching near the composite in both modes, and the 

magnetic field lines are concentrated by the magnetostrictive layers. And for the mechanical 

phenomena, the general deformation of the composite in the LT mode is about 10 times larger than 

that in the TT mode in the longitudinal direction and about 3 times larger in the thickness direction. As 

for the electric potential, the general magnitude is approximately more than 5 times larger in the LT 

mode than the TT mode, also a reversion of the polarization and electric field directions is observed in 

the TT mode. In general, we can find that with magnetic excitation of the same value for the 

composites of the same materials and sizes, the LT mode shows a greater effect on the deformation 

and output of the composite than the TT mode, as well as a larger ME coefficient. 

2.4.3 Nonlinear static case 

As previously stated, the magnetoelectric composites operate under a composite external magnetic 

field excitation: a static biasing field Hdc and a small amplitude alternative field Hac. Due to the 

nonlinear property of magnetostrictive materials, the change of static biasing field allows determining 

the optimal operation point for which the magnetoelectric coupling coefficient for the small signal 

field maximizes. In order to determine the physical properties of the materials around the operation 

point, the so called incremental characteristics, the system equation (2-4-28) needs to be solved in 

nonlinear regime for static biasing magnetic excitation.    

2.4.3.1 Modelling of nonlinear piezomagnetic coupling    

When considering the case of linear elastic property (constant elastic coefficients) and nonlinear 

magnetic property, the expression of the stress tensor is: 

     𝑇 = 𝑐𝐵(𝑆 − 𝑆𝜇(𝑩)) = 𝑐𝐵𝑆 − 𝑇𝜇(𝑩)                         (2-4-36) 

 

where 𝑆𝜇(𝑩) and 𝑇𝜇(𝑩) are respectively the “coercitive” strain and stress tensor induced by 𝑩  

(a) In LT mode 
 

Electric potential scalar                                            Electric field                   

 

 
(b) In TT mode 

 
Figure 2.20 Electrical potential scalar and electrical field distributions 
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The expression of the “coercitive” strain tensor 𝑆𝜇(𝑩)of a single cubic crystal is the Maxwell 

magnetic stress tensor with six independent components and can be described by a quadratic model of 

the magnetic induction 𝑩 as [57]: 

 

     𝑆𝜇(𝑩) = 𝑆𝑠𝑎𝑡
𝜇
(
𝑩

𝑩𝒔𝒂𝒕
)
2
               (2-4-37) 

Assuming homogeneous material properties and quasi-stationary conditions, the total magnetic force 

acting on a body with volume V enclosed by a surface S can be written as:  

𝐹𝐵 =∭𝑓𝐵𝑑𝑉 =∭𝐽 × 𝐵𝑑𝑉 =∭rot𝐻 × 𝐵𝑑𝑉 = ∬[𝑯(𝑯. n) − 𝜇
1

2
𝐻2n] 𝑑𝑉  (2-4-38) 

It can also be rewritten as the divergence of the coercitive stress tensor:  

 

    𝐹𝐵 =∭𝑑𝑖𝑣𝑇𝜇𝑑𝑉 = ∬𝑇𝜇 . 𝑛𝑑𝑆                   (2-4-39) 

Comparing both expressions, we obtain:  

𝑇𝜇(𝑯) =

[
 
 
 
 
1

2
(𝐻1

2 −𝐻2
2−𝐻3

2) 𝐻1𝐻2 𝐻1𝐻3

𝐻1𝐻2
1

2
(𝐻2

2 − 𝐻3
2−𝐻1

2) 𝐻2𝐻3

𝐻1𝐻3 𝐻2𝐻3
1

2
(𝐻3

2 −𝐻1
2−𝐻2

2)]
 
 
 
 

          (2-4-40) 

 

As shown by Hirsinger [56,57], this tensor can be reduced with 3 independent components when the 

direction of the magnetic induction 𝑩 is collinear to the easy magnetisation axe. In addition, the 

isochoric principle ((tr(𝑇𝜇(𝑩)) = 0) is respected.  

2.4.3.1.1 Hirsinger model 

The reduced quadratic model proposed by Hirsinger [56,57] is given by: 

 

  𝑆𝜇(𝑩) = [

𝑠//
𝜇
(𝑩) 0 0

0 𝑠⊥1
𝜇
(𝑩) 0

0 0 𝑠⊥2
𝜇
(𝑩)

] = 𝛽0𝑩
2 [

1 0 0

0
1

2
0

0 0
1

2

]                     (2-4-41) 

 

where  𝑠//
𝜇
(𝑩) and 𝑠⊥

𝜇
(𝑩) are the magnetostrictive strain saturation in the parallel and orthogonal 

directions of the magnetic induction 𝑩. 𝛽0 is a coefficient determined by experimentations. 

In employing a coordinate transformation from the special coordinate into a global orthogonal one, the 

constitutive relation in Einstein notation can be rewritten as in dependence of 𝑩: 
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  𝑠𝑘𝑙
𝜇
=

𝛽0

2
(3𝐵𝑘𝐵𝑙 − 𝛿𝑘𝑙‖𝑩‖

2)                                        (2-4-42) 

Recent works in the GeePs Lab proposed to modify this constitutive relation either in using higher 

polynomial functions 
1

2
∑ 𝛽𝑛
𝑁
𝑛=0  instead of 𝛽0  [33,34,58] or in considering that 𝑩  and the 

magnetisation 𝑴 are not collinear  [24,51].  

  𝑠𝑘𝑙
𝜇
=

1

2
∑ 𝛽𝑛
𝑁
𝑛=0 (3𝐵𝑘𝐵𝑙 − 𝛿𝑘𝑙‖𝑩‖

2)                                       (2-4-43) 

             𝑠𝑘𝑙
𝜇
=

𝛽0

2𝜇𝑜
2 (3𝐵𝑘𝐵𝑙 − 𝛿𝑘𝑙𝑏𝑖𝑏𝑖)

‖𝑴‖2

‖𝑩‖2
                                     (2-4-44) 

In our study, only the constitutive relation (2-4-43) is used.   

2.4.3.1.2 Effective piezomagnetic coefficients in isotropic case 

For convenience and as proposed in [24, 33, 34], first we study to obtain the expression of the 

“coercitive” stress in isotropic case. Consider the Hook’s law expressed as: 

 

  𝑇𝑖𝑗 = 𝜆(𝑆𝑘𝑘 − 𝑆𝑘𝑘
𝜇
(𝐵))𝛿𝑖𝑗 + 2𝜇

∗(𝑆𝑗𝑖 − 𝑆𝑖𝑗
𝜇
(𝐵))              (2-4-45) 

 

Where 𝜇∗ =
𝔈

2(1+𝜗)
 or 𝜇∗ = 𝑐66

𝐵 =
𝑐11
𝐵 −𝑐12

𝐵

2
 is the Lamé coefficient .  

 

As mentioned previously, the magnetostriction phenomenon is assumed to be isochoric, i.e. 𝑆𝑘𝑘
𝜇
=

0 We obtain:  

 

 𝑇𝑖𝑗 = 𝜆𝑆𝑘𝑘𝛿𝑖𝑗 + 2𝜇
∗𝑆𝑗𝑖 − 2𝜇

∗𝑆𝑖𝑗
𝜇(𝐵) = 𝑐𝑗𝑗𝑘𝑙𝑆𝑗𝑖 − 2𝜇

∗𝑆𝑖𝑗
𝜇(𝐵) = 𝑐𝐵𝑆 − 2𝜇∗𝑆𝜇(𝐵)         (2-4-46) 

By comparison with (2-4-37) the “coercitive” stress 𝑇𝜇(𝐵) is given by : 

 

    𝑇𝜇(𝐵) = 2𝜇∗𝑆𝜇(𝐵)                                       (2-4-47) 

The expression 𝑆𝜇(𝐵) can be given with the Hirsinger model in which the component 𝐵1 = 0 

  𝑇𝜇 =

[
 
 
 
 
 
 
𝑇1
𝜇

𝑇2
𝜇

𝑇3
𝜇

𝑇4
𝜇

𝑇5
𝜇

𝑇6
𝜇]
 
 
 
 
 
 

= 2𝜇∗𝛽𝑜

[
 
 
 
 
 
 
 
 𝐵2

2 −
𝐵3
2

2

𝐵3
2 −

𝐵2
2

2

−
𝐵2
2+𝐵3

2

2
3

2
𝐵2𝐵3

0
0 ]

 
 
 
 
 
 
 
 

                           (2-4-48) 
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where 𝛽0 is deduced from experimental results .  

In the linear case we have 𝑻 = 𝑐𝐵𝑺 − ℎ𝑡𝑩. Substituting ℎ𝑡𝑩 by 𝑇𝜇(𝐵) of the expression we have 

 

ℎ𝑡𝑩 =

[
 
 
 
 
 
0 ℎ33 0
0 ℎ31 0

0
0
ℎ15
0

ℎ31
0
0
0

0
0
0
ℎ24]

 
 
 
 
 

[
0
𝐵2
𝐵3

] =

[
 
 
 
 
 
0 𝑞33 0
0 𝑞31 0

0
0
𝑞15
0

𝑞31
0
0
0

0
0
0
𝑞24]

 
 
 
 
 

[

𝜈11
𝑆 0 0

0 𝜈33
𝑆 0

0 0 𝜈11
𝑆

] [
0
𝐵2
𝐵3

] =

[
 
 
 
 
 
 
𝑞33𝜈33

𝑆 𝐵2
𝑞31𝜈33

𝑆 𝐵2
𝑞31𝜈33

𝑆 𝐵2
0
0

𝑞24𝜈11
𝑆 𝐵3]

 
 
 
 
 
 

        (2-4-49) 

 

where the nonlinear effective piezomagnetic coefficients are function of 𝑩.  

     𝑞33 = 2𝜇
∗𝛽0

(𝐵2
2−

𝐵3
2

2
)

𝜈33
𝑆 𝐵2

              (2-4-50) 

     𝑞31 = 2𝜇
∗𝛽0

(𝐵3
2−

𝐵2
2

2
)

𝜈33
𝑆 𝐵2

              (2-4-51) 

     𝑞24 = 𝜇
∗𝛽0

3𝐵3

𝜈11
𝑆                             (2-4-52) 

 

2.4.3.1.3 Effective piezomagnetic coefficients in orthotropic case 

To obtain the expression of the “coercive” stress in orthotropic case, we consider the Hook’s law 

expressed in matrix form with the Hirsinger model in which the component 𝐵1 = 0 in the 2D case. In 

this case, we have:  

  𝑇𝜇 =

[
 
 
 
 
 
 
𝑇1
𝜇

𝑇2
𝜇

𝑇3
𝜇

𝑇4
𝜇

𝑇5
𝜇

𝑇6
𝜇]
 
 
 
 
 
 

= 𝛽0

[
 
 
 
 
 
 
𝑐33
𝐵 𝑐32

𝐵

𝑐23
𝐵 𝑐22

𝐵

𝑐31
𝐵 0

𝑐21
𝐵 0

0    0
0    0

𝑐13
𝐵 𝑐12

𝐵

0 0

𝑐11
𝐵 0

0 𝑐66
𝐵

0    0
0    0

0    0
0    0

0    0
0    0

𝑐55
𝐵 0

0 𝑐44
𝐵 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝐵2

2 −
𝐵3
2

2

𝐵3
2 −

𝐵2
2

2

−
𝐵3
2+𝐵2

2

2

3𝐵3𝐵2
0
0 ]

 
 
 
 
 
 
 

         (2-4-53) 

And we can obtain:  

 𝑇1
𝜇 = 𝛽0 [𝑐33

𝐵 (𝐵3
2 −

𝐵2
2

2
) + 𝑐32

𝐵 (𝐵2
2 −

𝐵3
2

2
) − 𝑐31

𝐵 (
𝐵3
2+𝐵2

2

2
)]                      (2-4-54) 

 𝑇2
𝜇 = 𝛽0 [𝑐23

𝐵 (𝐵3
2 −

𝐵2
2

2
) + 𝑐22

𝐵 (𝐵2
2 −

𝐵3
2

2
) − 𝑐21

𝐵 (
𝐵3
2+𝐵2

2

2
)]                      (2-4-55) 

         𝑇4
𝜇 = 3𝑐66

𝐵 𝛽0𝐵3𝐵2                                                     (2-4-56) 
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Thus, in comparison with (2-4-50) to (2-4-52) we obtain the following effective piezomagnetic 

coefficients : 

 𝑞33 =
𝛽0[𝑐33

𝐵 (𝐵3
2−

𝐵2
2

2
)+𝑐32

𝐵 (𝐵2
2−

𝐵3
2

2
)−𝑐31

𝐵 (
𝐵3
2+𝐵2

2

2
)]

𝜈33
𝑆 𝐵2

                                     (2-4-57) 

  𝑞31 =
𝛽0[𝑐23

𝐵 (𝐵3
2−

𝐵2
2

2
)+𝑐22

𝐵 (𝐵2
2−

𝐵3
2

2
)−𝑐21

𝐵 (
𝐵3
2+𝐵2

2

2
)]

𝜈33
𝑆 𝐵2

                                     (2-4-58) 

 𝑞24 = 𝑐66
𝐵 𝛽0

3𝐵3

𝜈33
𝑆                                                     (2-4-59) 

 

These results confirm the expressions found in isotropic case namely when 𝑐32
𝐵 = 𝑐31

𝐵 = 𝑐23
𝐵 = 𝑐21

𝐵 =

𝑐12
𝐵 , 𝑐33

𝐵 = 𝑐22
𝐵 = 𝑐11

𝐵 , and 𝜇∗ = 𝑐66
𝐵 =

𝑐11
𝐵 −𝑐12

𝐵

2
  

In this part it was shown that the nonlinear magnetostritive behaviour established by the 

piezomagnetic coupling could be established in considering the nonlinear magnetic property. To take 

into account the nonlinear behaviours in the FEM code, it essential to use a magnetic B-H, or M-H 

curve that is usually obtained by an experimental result or by analytical model such as the Jile-

Atherton model . This relation between the piezomagnetic coupling and the magnetic curve could be 

achieved with the expression of the reluctivity. The latter can be expressed by different analytical 

models such as the Brauer Model [54] or the exponential series model [59]. The magneto-elastic 

hysteresis loops behaviour can be modelled with the Jile-Atherton model [60]. 

 

2.4.3.2 Modelling of magnetic nonlinearity 

2.4.3.2.1 The Jile-Atherton model for a magnetostrictive material 

Introduced in 1984, the Jile-Atherton model describes the hysteretic loops of magnetization of 

paramagnetic materials as an anhysteretic magnetization in the ferromagnetic materials according to 

the physical parameters of the magnetic materials[60].  

The effective magnetic field influencing on magnetic moments within the material can be described by 

the following equation:  

   𝑯𝒆 = 𝑯+ 𝛼𝑴                                                         (2-4-60) 

where 𝑯 represents the applied magnetic field to the material, 𝑴 the total magnetization and 𝛼 is the m

ean field parameter representing inter domain coupling according to the Bloch model. 

 

As shown in [61-64], for magnetostrictive materials such as the Terfenol-D, the effective magnetic 

field must be completed by a magnetostrictive parameter 𝛼𝑀 . from the magnetomechanical stress 

anisotropies. 

 

   𝑯𝒆 = 𝑯+ (𝛼 + 𝛼𝑀)𝑴 = 𝑯+ 𝛼̃𝑴                        (2-4-61) 

with 𝛼̃ = 𝛼 + 𝛼𝑀.  
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In considering that the magnetostrictive material is subjected to an axially applied magnetic field, the 

parameter 𝛼𝑀 in 1-D assumption can be expressed [61, 62] in ambient temperature as: 

 

    𝛼𝑀 = {

2𝑻𝒐−2𝑻𝒔ln(cosh(𝐓𝐨 𝐓𝐬⁄ ))

𝜇𝑜𝑀𝑠
2 𝜆𝑠 𝑻𝒐 𝑻𝒔⁄ ≥ 0 

4𝑻𝒐−𝑻𝒔ln(cosh(2𝐓𝐨 𝐓𝐬⁄ ))

2𝜇𝑜𝑀𝑠
2 𝜆𝑠 𝑻𝒐 𝑻𝒔⁄ < 0   

           (2-4-62) 

 

where 𝜆𝑠 and 𝑀𝑠 are, respectively, the maximum magnetostriction and the saturation magnetisation.  

𝑻𝒔 is a reference stress and 𝑻𝒐 is the applied pre-stress.  

 

The different derivation processes to get the analytical formulations of the nonlinear constitutive 

models are given in Appendix B. 

The nonlinear magnetization 𝑴 is decomposed of its reversible component  𝑴𝒓𝒆𝒗 and its irreversible c

omponent 𝑴𝒊𝒓𝒓: 

 

  𝑴 = 𝑴𝒓𝒆𝒗 +𝑴𝒊𝒓𝒓                                                                (2-4-63) 

 

The relationship between these two components and the anhysteretic magnetization 𝑴𝒂𝒏 is given by : 

 

   𝑴𝒓𝒆𝒗 = 𝑐(𝑴𝒂𝒏 −𝑴𝒊𝒓𝒓)                         (2-4-64-a) 

In other words,  

   𝑴 = 𝑐𝑴𝒂𝒏 + (1 − 𝑐)𝑴𝒊𝒓𝒓                         (2-4-64-b) 

 

where 𝑐  is a reversibility coefficient to be determined by measurements.  

 

The anhysteretic magnetization 𝑴𝒂𝒏 can be described with the Langevin function: 

 

   𝑴𝒂𝒏 = 𝑴𝒔 ∙ (coth (
𝑯𝒆

𝑎
) −

𝑎

𝑯𝒆
)                            (2-4-65) 

 

where 𝑎 =
𝑁𝑘𝐵𝑇

𝜇𝑜𝑀𝑠
, 𝑘𝐵 is the Boltzmann’s constant, 𝑇 the ambient temperature, 𝑀𝑠 the saturation  

magnetisation and 𝑁 a constant.  

 

The expression 
𝜕𝑴

𝜕𝑯
 is given by [63-65]:  

 

   
𝜕𝑴

𝜕𝑯
=

𝑴𝒂𝒏−𝑴

𝛿𝑘−𝛼̃(𝑴𝒂𝒏−𝑴)
+

𝑐𝛿𝑘

𝛿𝑘−𝛼̃(𝑴𝒂𝒏−𝑴)

∂𝑴𝒂𝒏

∂𝐇
                           (2-4-66) 

 

and it is usually simplified with the isotropic case in assuming that 𝑐 = 0 and  𝑴𝒓𝒆𝒗 = 0 [63-65] 

 

    
𝜕𝑴

𝜕𝑯
=

1

1+𝑐

𝑴𝒂𝒏−𝑴

𝛿𝑘−𝛼̃(𝑴𝒂𝒏−𝑴)
+

𝑐

1+𝑐

∂𝑴𝒂𝒏

∂𝐇
                            (2-4-67) 

 

   
𝜕𝑴𝒂𝒏

𝜕𝑯𝒆
= 𝑴𝒔 ∙ (1 − coth

2 (
𝑯𝒆

𝑎
) − (

𝑎

𝑯𝒆
)
2
)                       (2-4-68)   
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The coefficients 𝛼, 𝑘, 𝛿 are constant parameters of the material to be determined by experiments. 

 

2.4.3.2.2 Simulation results for the model 

To solve the above ordinary differential equations to obtain the 𝑴(𝑯) dependence, the Runge-Kutta 

method has been developed and employed. Figure 2.21 displays an example of the simulation results 

of the magnetisation and the magnetic induction (𝑩 = 𝜇𝑜(𝑯 +𝑴)) obtained for Terfenol-D [64] in 

which its material parameters are given in Table 2.1.  

 

 

Figure 2.21 Magnetization and magnetic induction under an applied magnetic field 

 

 

 

Parameter Value 

𝝀𝒔 995 ppm 

𝑻𝒐 1 ksi≈6.9 MPa 

𝑴𝒔 7,5x 10
5
  A/m 

𝒂 7012  A/m 

𝒄 0.18 

𝒌 3942 A/m 

𝜶̃ -1,17 10
-2

 

Table 2.1 Material parameters for a rod Terfenol-D [64] 

Figures 2.22 shows the characteristic curves of the magnetisation and the magnetic induction of the 

mean curve with the applied magnetic field under different pre-stress 𝑻𝒐 . These curves can be 

implemented in the FEM model using the incremental procedure presented in the next section. 
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Figures 2.22  Magnetisation and the magnetic induction in function of the applied magnetic field and under 

different pre-stress 𝑻𝒐 

 

Figures 2.23 and 2.24 show the 𝜆-𝐻 curves with different applied magnetic field ranges and under 

different pre-stress 𝑻𝒐. These curves are obtained using the following formulation of magnetostriction 

coefficient 𝜆 proposed in ambient temperature by [61, 62] in considering a 1-D rod structure:  

 

   𝜆 = {

[1−tanh(𝐓𝐨 𝐓𝐬⁄ )]𝜆𝑠 

𝑀𝑠
2 𝑀2 𝑻𝒐 𝑻𝒔⁄ ≥ 0 

[2−tanh(𝟐𝐓𝐨 𝐓𝐬⁄ )]𝜆𝑠 

2𝑀𝑠
2 𝑀2 𝑻𝒐 𝑻𝒔⁄ < 0   

            (2-4-69) 

 

/  

 

Figure 2.23 Magnetostriction coefficient in function of the applied magnetic field and under different pre-stress 

𝑻𝒐 
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Figure 2.24 Magnetostriction coefficient with the positive and negative applied magnetic field loops and under 

different pre-stress 𝑻𝒐 

 

The characteristic behaviour of the piezomagnetic coefficient 𝑑33 in a 1-D rod structure can be 

obtained in using the following formulation [61, 62] in 1-D assumption as (where the formulation of   
∂𝑴

∂𝑯
 (2-4-67) is used.): 

 

   𝑑33 = {

[1−tanh(𝐓𝐨 𝐓𝐬⁄ )]2𝑀𝜆𝑠 

𝑀𝑠
2

𝜕𝑴

𝜕𝑯
𝑻𝒐 𝑻𝒔⁄ ≥ 0 

[1−
1

2
tanh(𝟐𝐓𝐨 𝐓𝐬⁄ )]2𝑀𝜆𝑠 

𝑀𝑠
2

𝜕𝑴

𝜕𝑯
𝑻𝒐 𝑻𝒔⁄ ≥ 0 

        (2-4-70) 

 
 

Figure 2.25  Piezomagnetic coefficient d33 with the applied magnetic field in Oe unity and under different pre-

stress 𝑻𝒐 

 

The next section explains the incremental method to solve the nonlinear FEM problem.  
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2.4.3.2.3 Incremental piezomagnetic coefficients 

 

To solve the finite element equation system (2-4-28) with the nonlinear couplings, it is necessary to 

introduce and employ some effective numerical method. With the incremental method we need to 

obtain, the global incremental piezomagnetic coefficients for the nonlinear problem in static case with 

a piecewise-linear implementation of the constitutive law that can be solved with an iterative method 

such as the Newton-Raphson process method exposed with details in Appendix C.  It is a robust 

implicit method with a high convergence speed.  

With a piecewise-linear implementation, the stress and field increments are related to the nodal 

degrees of freedoms by:  

 

    ∆𝑯 = −h𝑒∆𝑺 + 𝑣𝑒
𝑆∆𝑩 = −h𝑒𝐺𝑢∆𝑼+ 𝑣𝑒

𝑆𝑟. 𝐺𝑎∆𝑨            (2-4-71) 

    ∆𝑻 = c𝑒
𝐵∆𝑺 − h𝑒

𝑡∆𝑩 = c𝑒
𝐵𝐺𝑢∆𝑼− h𝑒

𝑡𝑟. 𝐺𝑎∆𝑨             (2-4-72) 

where 𝑐𝑒
𝐵 = 𝑐𝑒

𝐻 + 𝑞𝑒
𝑡𝑣𝑒

𝑆𝑞𝑒. 

The static problem is solved in considering the incremental system:  

     𝐾∆𝒳 = ∆ℱ                                                                  (2-4-73)  

   [
𝐾𝑢𝑢 𝐾𝑢𝑎
𝐾𝑎𝑢 𝐾𝑎𝑎

] {
∆𝑼
∆𝑨
} = {

0
∆𝑱𝒔

}                                                 (2-4-74) 

Figure 2.26 shows a the flowchart of the piecewise-linear solution procedure: 
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Figure 2.26 Flowchart of the piecewise-linear solution procedure 

 

It should be noted that the material model must be based on the incremental reluctivity and 

piezomagnetic coefficients.   

For the calculation convenience, the following polynomial model of 𝑯 = 𝜈(𝑩)𝑩 is used to fit the 

curve B-H obtained from the Jile-Atherton model [59]: 

 

  𝑯 = 𝜈(𝑩)𝑩 = 𝑘𝑜 + ∑ 𝑘𝑖 exp(𝑡𝑖𝑩)
𝑛
𝑖=2                           (2-4-75) 

 

With 𝑛 the polynomial degree and the coefficient, 𝑡𝑖 is calculated according to the points selected in 

the B-H curve:  

   𝑡𝑖 =
ln(𝐻𝑖−1)−ln(𝐻𝑖)

𝐻𝑖−1−𝐻𝑖
                                     (2-4-76) 

The coefficient 𝑘𝑖 can be determined in considering the matrix systems: 

   [
1 exp(𝑡2𝐵)⋯ exp(𝑡2𝐵)

⋮
1

⋮
exp(𝑡𝑛𝐵)

⋮
exp(𝑡𝑛𝐵)

] [
𝑘𝑜
⋮
𝑘𝑛

] = [
𝜈(𝐵1)
⋮

𝜈(𝐵𝑛)
]           (2-4-77) 

   [
𝑘𝑜
⋮
𝑘𝑛

] = [
1 exp(𝑡2𝐵)⋯ exp(𝑡2𝐵)

⋮
1

⋮
exp(𝑡𝑛𝐵)

⋮
exp(𝑡𝑛𝐵)

]

−1

[
𝜈(𝐵1)
⋮

𝜈(𝐵𝑛)
]          (2-4-78) 
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The finite element analysis with the Newton-Raphson process method requires an equation of 𝜈(𝑩) 

and an equation for the derivative 
𝑑𝑯

𝑑𝑩
 as function of B to calculate the tangent stiffness matrix. 

For that, we have: 

  𝜈(𝑩) =
𝑘𝑜+∑ 𝑘𝑖 exp(𝑡𝑖𝑩)

𝑛
𝑖=2

𝑩
                          (2-4-79) 

   
𝑑𝑯

𝑑𝑩
=

∆𝑯

∆𝑩
=

𝑑(𝜈(𝑩)𝑩)

𝑑𝑩
= 𝜈(𝑩) +

𝑑𝜈(𝑩)

𝑑𝑩
= 𝜈(𝑩) +

∆𝜈(𝑩)

∆𝑩
                       (2-4-80) 

where 

   
𝑑𝜈(𝑩)

𝑑𝑩
=

∆𝜈(𝑩)

∆𝑩
=

∑ 𝑡𝑖𝑘𝑖 exp(𝑡𝑖𝑩)𝑩−(𝑘𝑜+∑ 𝑘𝑖 exp(𝑡𝑖𝑩)
𝑛
𝑖=2 )𝑛

𝑖=2

𝑩𝟐
          (2-4-81) 

Figure 2.27 shows the efficient of the proposed modelling considering 𝑛 = 6 points in the curve.  

 

 
Figure 2.27 Mean curve H(B)=v(B).B  reconstructed with polynomial model 

 

The incremental piezomagnetic coefficients are obtained in considering the isotropic model [24, 34], 

thus: 

  ℎ𝑒
𝑡 =

𝜕𝑇𝑘𝑙
𝜇(𝐵)

𝜕𝐵𝑖
= 3𝛽𝑜(𝛿𝑘𝑖𝐵𝑙 + 𝛿𝑖𝑙𝐵𝑘) − 2𝛿𝑘𝑖𝐵𝑖                                    (2-4-82) 

where 𝑇𝑘𝑙
𝜇(𝐵) = 2𝜇∗𝑆𝑘𝑙

𝜇 (𝐵) = 𝜇∗𝛽0(3𝐵𝑘𝐵𝑙 − 𝛿𝑘𝑙‖𝑩‖
2) 

In the matrix form, we obtain with the considered coordinate the incremental piezomagnetic 

coefficients:  

  ℎ𝑒
𝑡 =

∆𝑇𝑘𝑙
𝜇(𝐵)

∆𝐵
=

𝜕𝑇𝑘𝑙
𝜇(𝐵)

𝜕𝐵𝑖
= 𝜇∗𝛽0 [

2𝐵3 −𝐵2
−𝐵3 2𝐵2

−
3

2
𝐵2 −

3

2
𝐵3

]                        (2-4-83) 
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And in the 2D orthotropic case, we can utilise the equations (2-4-54) to (2-4-56) and thus obtain the 

incremental piezomagnetic coefficients in matrix form as 

 

ℎ𝑒
𝑡 =

∆𝑇𝑘𝑙
𝜇(𝐵)

∆𝐵
=

𝜕𝑇𝑘𝑙
𝜇(𝐵)

𝜕𝐵𝑖
= 𝛽0 [

2𝑐32
𝐵 − 𝑐31

𝐵 − 𝑐33
𝐵 2𝑐33

𝐵 − 𝑐31
𝐵 − 𝑐32

𝐵

2𝑐22
𝐵 − 𝑐23

𝐵 − 𝑐21
𝐵 2𝑐23

𝐵 − 𝑐21
𝐵 − 𝑐22

𝐵

3𝑐66
𝐵 𝐵3 3𝑐66

𝐵 𝐵2

]      (2-4-84) 

           

The elementary stiffness matrix c𝑒
𝐵 is then calculated with:  

  c𝑒
𝐵 =

∂𝑻

∂𝑺
=

𝜕𝑻

𝜕𝑩

𝜕𝑩

𝜕𝑺
                                                               (2-4-85) 

Figure 2.28 shows the piezomagnetic coefficients obtained with the FEM method through the 

nonlinear model for a trilayer Terfenol-D/PZT-5A/ Terfenol-D in LT-mode. With the employed model, 

the optimal dc bias is around 100 Oe.  

 

 
q coefficients (Cm

-2
) 

 
d=c

-1
q  coefficients (nm/A) 

 

Figure 2.28 Piezomagnetic coefficients under the applied magnetic field in Oe unity 
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2.4.4 Dynamic small signal regime 

As illustrated in Figure 2.29, for dynamic signal ac field 𝐻𝑎𝑐 around a magnetization bias 𝐻𝑑𝑐, the 

system can be solved linearly around an external dc bias point. The magnetostrictive coefficients as 

well as the reluctivity are incremental values and determined according to the operation point obtained 

in the nonlinear static FEM analysis. 

 

 
Figure 2.29 Illustration of the dynamic small signal regime  

 

 

In this way, the system in harmonic regime (𝜕𝑡 → 𝑗𝜔) can be solved in terms of complex variables as:  

 

    [𝐾̃]{𝒳̅} = {ℱ̅}                       (2-4-86) 

where [𝐾̃] denotes the small signal linear matrix around a magnetization point. 

 

   

[

𝐾𝑢𝑢 −𝜔
2𝑀+ 𝑗𝜔𝐶𝑢𝑢 𝐾𝑢𝑝 𝐾𝑢𝑎
𝐾𝑝𝑢 𝐾𝑝𝑝 0

𝐾𝑎𝑢 0 𝐾𝑎𝑎

] [

{𝑢}
{𝑉}
{𝑎}

] = [
0
0
𝑎𝑜

]              (2-4-87) 

 

It is well known that the performances of a piezoelectric material depend of the impedance electrical 

load connected to the electrodes. The next section explains how to take into account the effect of the 

impedance electrical load in the FEM model.  

 

2.4.4.1. Coupling with the electric circuit load equation 

Since the piezoelectric layer is dielectric, there is no free charge inside it. All the free charges are 

confined to the electrodes. The current I produced and flowing toward the electrical impedance load is 

the time derivative of the total charge {Q}, 𝐼 = 𝜕𝑡{𝑄}. Thus, this last can be directly obtained with the 

discretization of the circuit equation expressed by: 

 

   {𝑉}𝐾𝑝𝑞 − 𝑍𝜕𝑡{𝑄} = 0                    (2-4-88) 

 

where 𝐾𝑝𝑞 is an incident vector in which the elements are respectively equal to 1 or -1 depending on 

whether the related node is associated to the top electrode or the bottom one, otherwise with the value 

0. In this process, the two electrodes (top and bottom) have been considered, respectively, as 

equipotential and the incident vector 𝐾𝑝𝑞  means that the nodes associated to each electrode are 
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assigned with the same degrees of freedom. The electric charge 𝑄  on the electrodes becomes an 

unknown of the problem. 

 

In 2D case considered here, the width 𝐿𝑥 in the x-direction is not taking into account. Actually, this 

width is considered as normalized in according to [1m]. The current flowing toward the electrical 

impedance 𝐼 is thus proportional of the surface 𝒮 = 𝐿𝑦 × [1𝑚] of the electrodes since 𝑄 = 𝐶𝑉, where 

𝐶 is the capacitance between the electrodes of the piezoelectric is given by : 

 

    𝐶 =
𝜀𝑆𝒮

𝑡𝑝
                                  (2-4-89) 

 

For a considered distance 𝐿𝑥, the capacitance 𝐶 is then normalized as :  

 

   𝐶̅ =
𝐶

𝐿𝑥
=

𝜀𝑆𝒮

𝑡𝑝𝐿𝑥
                                 (2-4-90) 

 

In this case, the current 𝐼 will be also normalized by 𝐼 ̅ = 𝜕𝑡{𝐶̅𝑉} = 𝜕𝑡 {
𝐶

𝐿𝑥
𝑉} =

𝐼

𝐿𝑥
 .To conserve the 

physical result 𝑉 = 𝑍𝐼 = 𝑍𝜕𝑡{𝐶𝑉}, it is necessary to normalize also the impedance 𝑍 by 𝑍̅ = 𝑍𝐿𝑥.   

 

   𝑉 = 𝑍̅𝐼 ̅ = 𝑍𝐿𝑥
𝐼

𝐿𝑥
= 𝑍𝐼                    (2-4-91) 

 

The coupling system is thus solved with the following matrices and vectors: 

 

[ℳ] = [

𝑀 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

], [𝒞] = [

𝐶𝑢𝑢 0 0 0
0 0 0 0
0
0

0
0

𝑍̅
0

0
0

], [𝐾] =

[
 
 
 
𝐾𝑢𝑢 𝐾𝑢𝑝 0 𝐾𝑢𝑎

𝐾𝑢𝑝
𝑡 𝐾𝑝𝑝 𝐾𝑝𝑞 0

0
𝐾𝑢𝑎
𝑡

𝐾𝑞𝑝
0

0
0

0
𝐾𝑎𝑎]

 
 
 

           (2-4-92) 

 𝒳 = [

𝒖
𝑉
𝑄
𝑎𝑧

], ℱ = [

0
0
0
𝑎0

]                                                                 (2-4-93) 

 

The elements of 𝐾𝑞𝑝 and 𝐾𝑝𝑞 are respectively equal to 1 or -1 if a node is associated with the top 

electrode or the bottom electrode, otherwise its elements equal to 0. 

 

2.4.4.2 Effect of the complex impedance on the damping losses  

Consider the first constitutive law of (2-4-21) in which the electric field 𝑫  is substituted by 

displacement field 𝑫: 

 

    𝑻 = 𝑐𝑋𝑺 − 𝑒𝑡(𝜀𝑆)𝑫 − ℎ𝑡𝑩                       (2-4-94) 

 

The displacement field 𝑫 is given by the Gauss law:  

 

    ∬ 𝑫𝑑𝑆 = 𝑄
Ω

                          (2-4-95) 

 

In harmonic regime the current 𝐼 produced and flowing toward the electrical impedance load is given 
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by: 

 

    𝐼 = 𝑗𝜔𝑄               (2-4-96) 

In this way, we have: 

    𝑫 =
𝐼

𝑗𝜔𝒮
=

𝑉

𝑗𝜔𝑍𝒮
                              (2-4-97) 

where 𝒮 represents the electrode surface defined.  

 

Thus, the constitutive law becomes  

 

    𝑻̃ = 𝑐𝑎𝑺̃ − 𝑒𝑡
𝑉

𝜀𝑆𝑗𝜔𝑍𝒮
− ℎ𝑡𝑩̃ = 𝑐𝑎𝑺̃ − ℎ𝑡𝑩̃           (2-4-98) 

where the strain can decomposed in real and imaginary parts: 

 

   𝑺̃ = 𝑺̃ − 𝑒𝑡
𝑉

𝜀𝑆𝑗𝜔𝑍𝒮
= 𝑺̃𝒓 + 𝑗𝑺̃𝒊                          (2-4-99) 

 

2.4.4.3 Simulation results 

2.4.4.3.1 Dynamic response under open circuit condition 

Figure 2.30 compares under open circuit condition in considering (Z= 1 MΩ) the dynamic response 

between the FEM and the equivalent circuit method presented in the first part in this chapter 2 for the 

trilayer case Terfenol-D/PZT-5A/Terfenol-D in the L-T mode with the configuration showed as the 

first one of the four in Fig.2.31. The simulations have been performed with an externally applied small 

signal ac magnetic field δHac = 1Oe around an optimal magnetization bias close to Hdc =200 Oe with 

the sizes 𝐿=14 mm, 𝑡𝑝=1 mm, 𝑡𝑚=1 mm and the parameter values in Appendix A. We can notice that 

the frequency resonance of 75 kHz of the FEM result corresponds to theoretical value 74.3 kHz given 

by (2-4-31).  

 
 

Figure 2.30 Dynamic responses for the trilayer in L-T mode 

 

2.4.4.3.2 Dynamic response under different modes 

Figure 2.32 shows the simulation results of the ME voltage coefficient under open circuit condition in 

considering (Z= 1 MΩ) and according to the four possible mode configurations shown in Figure 2.31. 

It is to be noticed that the mechanical stiffness (i.e. the Young modulus) of both magnetostrictive 

material and piezoelectric material is anisotropic and its components are related to the direction of the 



 60 

magnetization and the polarization. The change of the mode configurations results in different 

mechanical stiffness values in different directions so that the resonance frequency changes according 

to the mode configuration. We notice that except for the TT-mode, at resonance frequencies of ME 

structure, the transducer provides ME voltage coefficient greater than 10 V/Oe. 

 

 

    

Mode LT Mode TT Mode LL Mode TL 

 

 

Figure 2.31 Possible longitudinal /transversal polarization and magnetization modes 

 

 

 
 

Figure 2.32 Dynamic responses for the trilayer for LT, TT, TL and LL modes  

 

2.4.4.3.3 Dynamic response under the electrical load 

Figure 2.33 shows the frequency dependence of the ME voltage coefficient curve under various load 𝑍 

impedance values under optimal dc bias magnetic field which is obtained at the point when the 

piezomagnetic coefficient achieves the peak value (as displayed in Fig.2.28). We can see that the 

resonant frequency of the composite shifts and the ME voltage coefficient deteriorates when the load 

impedance increases. There is a good concordance in the behaviour with the experimental results from 

[66].  
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Figure 2.33 ME coefficient in function of frequency under different load resistances 

 

2.5 Conclusion  

This chapter has presented the modelling using analytical methods (simplified analytical resolution 

using the ‘matrix’ in 0D assumptions and equivalent circuit method in 1D) with the homogenous 

quasi-static approximation and the second group and using a numerical method based on the finite 

element method (FEM) in 2D. Unlike analytical methods, the FEM code takes into account the 

magnetic nonlinearity of the magnetostrictive material as well as the electrical impact when the 

structure is loaded by an electrical impedance. 
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Chapter 3. Assessment of ME composite performances 

3.1 Introduction 

In Chapter 2, it has been shown that a ME composite bulk composed of Terfenol-D/PZT-5A/Terfenol-

D materials can deliver around 10 volts in LT-mode to 50 volts in LL-mode for a volume of 0.252 

cm3 (with the length of 14mm, the thickness of 3mm and the width of 6mm) under an open circuit 

condition. This puts in evidence the potential of ME composites to work as energy transducer for 

energy harvesting or wireless powering for autonomous micro embedded systems. Thus, in this 

chapter, we examines the ME composites as energy transducer in the small signal harmonic regime.  

3.2 Performances of a ME composite as energy transducer 

The energy harvesting process for a ME energy transducer is illustrated in Figure 3.1. The generated 

AC voltage is rectified into DC voltage by the full-wave rectifying diode bridge, and the DC voltage is 

stored temporarily (by a capacitor) in a storage stage. The Figure 3.2 shows an electrical simulation 

performed with the Simulink tool “Simscape Power Systems” of MATLAB
®
 in considering an AC 

input voltage working at 75 kHz (in the LT mode) with 10 volt peak-to-peak, a rectified diode bridge 

composed of diodes (Forward voltage at 0.6 V) and a storage stage composed by a capacitor of 22 µF. 

We notice that the DC output voltage reaches promptly (in 0.6 ms) 4 V that corresponds to the typical 

value required to power supply (active mode) the micro Integrated Circuit (IC) chip or Wireless 

Sensor Nodes (WSN) [68-69].  

 
Figure 3.1 Illustration of the energy harvesting process 

 

 
Time (s) 

 
Time (s) 

AC input voltage at 75 kHz DC output voltage 
Figure 3.2  Electrical simulation performed with Simulink tool Simscape Power Systems of MATLAB 

 

 

Obviously, the DC output voltage is not sufficient to estimate the performances of a ME energy 

transducer for maximum power harvesting; the necessary current needed for IC chips or WSN 

composed usually by a sensor, a microcontroller and AC/DC converter must be taken into account. 

For instance, consider the case where a WSN for RF communication (such as TelosB) mote consumes 

6 µA when sleeping, and 25 mA (18 mA for the sensor, 5 mA for the microcontroller and 2 mA for 
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AC/DC converter) when being activated and communicating [68-69]. With a supply voltage of 2 V 

and a fixed 𝛼 % duty cycle (defined as Tactive/(Tsleep +Tactive), where Tactive and Tsleep are respectively the 

active time (namely, the node is active) and the sleep time as illustrated in Figure 3.3, the IC chips or 

the WSN consumes an average power of approximately:  

 

      〈𝑃〉 =
1

𝑇
∫ 𝑉𝐼𝑑𝑡
𝑇

0
=

𝑉

𝑇
[∫ 𝐼𝑑𝑡 + ∫ 𝐼𝑑𝑡

𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑇𝑠𝑙𝑒𝑒𝑝

𝑇𝑠𝑙𝑒𝑒𝑝
0

] =
2

𝑇
[(100%− 𝛼%)𝑇 × 6µ𝐴 + 𝛼%𝑇 × 25m𝐴]       

(3-2-1) 

 

 
Figure 3.3 Illustration of the duty cycle of a WSN 

 

Table 3.1 gives the average power for three different duty cycles.  

 

 

Duty cycle 10% 1% 0.1% 

〈𝑃〉 5 mW 500 µW 62 µW 

Table 3.1. Average power consumed by a Wireless Sensor Node 

 

For most practical WSN applications, the use of a small duty cycle of the sensor node’s operation is a 

common method to reduce its power consumption and therefore extend the lifetime of the WSN. 

During each sleeping time 𝑇𝑠𝑙𝑒𝑒𝑝, the energy load process in the storage stage is applied to obtain the 

necessary required voltage to active the WSN.  

 

In fact, the optimal impedance depends on the magneto-electro-mechanical coupling factor of the ME 

composite transducer. Usually, an Impedance Matching Circuit (IMC) such as Boost Converter 

(composed of MOSFET, diode and inductor) must be placed between the transducer and the rectified 

diode bridge for impedance matching in order to maximize energy harvested under different operating 

conditions. Obviously, the addition of an IMC increases the current consumption, i.e. increase the 

average power consumption. In considering a consumption of 15 mA when an IMC is activated, the 

Table 3.2 gives the corrected average power for the three different duty cycles in considering in the 

equation (3-2-1) a total current of 40 mA (25 mA for the WSN and 15 mA for the IMC) during the 

activation mode.  

 

 

Duty cycle 10% 1% 0.1% 

〈𝑃〉 8 mW 800 µW 92 µW 

Table 3.2. Average power in considering an Impedance Matching Circuit 
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3.2.1 Output deliverable power under different modes 

To demonstrate that a ME composite can work as an energy transducer by wireless powering; the 

power requirements in according to the different modes of the ME composite (LL, TL, LT, and TT) 

must be determined. Thus, this part shows the mode configuration that supply the maximal active 

output deliverable power in considering the composite Terfenol-D/PZT-5A/Terfenol-D investigated in 

Chapter 2.  

 

Figure 3.4 shows the FEM simulation results of the active output deliverable power (defined as 

𝑃 = 𝑉𝑜𝑢𝑡
2 2𝑅⁄ )  from the Terfenol-D/PZT-5A/Terfenol-D investigated in chapter 2 with an input δ𝐻𝑎𝑐 

of 1Oe for different modes (respectively at their resonance frequencies) as function of the resistive 

load 𝑅 connected between both electrodes. This resistive load 𝑅 represents symbolically the real part 

of the load impedance of the rectified and stored circuit. Although the TL-mode and LL-mode have 

significant ME voltage coefficients in respect to the LT-mode, their deliverable powers are, as shown 

in Figure 3.4 (c) and (d), very low (few µW) due to the high internal impedance close to 40 MOhm. 

Thus, it appears that the adequate solution for a duty cycle of 1% is the LT-mode since as shown in 

Figure 3.4 (a) and (b) the deliverable power reaches 800 µW (>500 µW) for optimal impedance close 

to 18 kOhm.  

 

Here, we consider the ideal case where the impedance matching would be realized under a duty cycle 

fixed at 1 %.  In this case and in according to the Table 3.2, with a potential deliverable power of 800 

µW, the ME composite in LT-mode remains a possible solution to active the WSM + IMC.  

 

 
 

(a)- LT-mode, Vout = 5.4 V for Rload =18 kOhm, at frequency resonance of 75.25 kHz 
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(b)- TT-mode, Vout= 0.46 V for Rload =19 kOhm, at frequency resonance of 72.11 kHz 

 

 
 

(c)- LL-mode, Vout = 27.23 V for Rload =38 MOhm, at frequency resonance of 85.68 kHz 

 
 

(d)- T-L mode, Vout = 11.33 V for Rload =40 MOhm, at frequency resonance of 82.66 kHz 

 

Figure 3.4 Output voltage and deliverable power as function of the resistive load in according to different modes 

 

 

3.2.2 Electrical equivalent circuit model 

In this part we propose an extracted electric elements method to establish an electrical equivalent 

circuit model thank to the FEM results. This model can be used to estimate the effect of the electric on 

the output deliverable power or for comparisons with experimental results from an impedance analyzer 

or an oscilloscope.  

 

As specified in Chapter 2, a magneto-elastic-electric equivalent circuit such as that in Figure 3.5-a or a 

simplified circuit as in Figure 3.5-b can be used to model the ME composite energy transducer with its 

load. The equivalent generator 𝜎𝑖𝑛  or 𝑉𝑖𝑛 = 𝛾𝐻𝑎𝑐  represents the stress force due to the 

magnetostrictive layers as a result of the externally applied magnetic field 𝐻𝑎𝑐 . The coefficient 𝛾 is a 

magnetoelectric parameter in [V∙m/A] that converts the externally applied magnetic field 𝐻𝑎𝑐  into 

voltage source. The impedance 𝑍𝑚
′ = 𝑅𝑚 + 𝑗𝐿𝑚𝜔 +

1

𝑗𝐶𝑚𝜔
 represents the mechanical part in which 

𝐶𝑚, 𝐿𝑚 and 𝑅𝑚 are respectively the mechanical stiffness, the mass and the mechanical damping. The 

electrical part is represented by the clamped capacitor Co of the piezoelectric element. The coefficients 
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𝜑𝑚 and 𝜑𝑝 are transformer ratios symbolizing the magnetomechanical and electromechanical coupling 

coefficients. 

 
 

 

 

(a) (b) 

 

Figure 3.5 Equivalent circuit magnetoelectric generator and Thevenin model. 

𝑍𝑇 represents the complex internal impedance 𝑍𝑚′//𝑍𝐶𝑜   

 

In considering the load impedance 𝑍 in open circuit condition (𝑍 = ∞), the internal impedance 𝑍𝑇 is 

given by:  

𝑍𝑇 = 𝑍𝐶𝑜//𝑍𝑚
′ =

𝑍𝐶𝑜𝑍𝑚
′

𝑍𝐶𝑜+𝑍𝑚
′                               (3-2-2) 

 

with 𝑍𝑚
′ = 𝑅𝑚

′ + 𝑗𝐿𝑚′𝜔 +
1

𝑗𝐶𝑚′𝜔
, the mechanical 𝑍𝑚  transferred in the electric part with the 

transformer ratio 𝜑𝑝  such as:  𝑅𝑚
′ =

𝑅𝑚

𝜑𝑝
2 , 𝐿𝑚

′ =
𝐿𝑚

𝜑𝑝
2 , 𝐶𝑚

′ = 𝜑𝑝
2𝐶𝑚 

 

As  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑍𝐶𝑜
𝑍𝐶𝑜+𝑍𝑚

′    we can write:  

 

   (1 −
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) =

𝑍𝑚
′

𝑍𝐶𝑜+𝑍𝑚
′                              (3-2-3) 

 

Furthermore 𝑉𝑖𝑛 = 𝛾𝐻𝑎𝑐 and 𝛼̃𝑉 = 𝑉𝑜𝑢𝑡/𝐻𝑎𝑐, that involves: 

 

   
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝛼̃𝑉

𝛾
                               (3-2-4) 

 

Thus, we can rewrite the internal impedance 𝑍𝑇 as: 

 

   𝑍𝑇 = (1 −
𝛼̃𝑉

𝛾
)𝑍𝐶𝑜 = 𝑅𝑇 + 𝑗𝑋𝑇     (3-2-5) 

 

where the real part 𝑅𝑇 and the imaginary part 𝑋𝑇 are both function of the frequency. 

 



 67 

 
Figure 3.6 Internal impedance ZT versus frequency under different 𝛾 values 

 

The change of the amplitude of the internal impedance with the frequency is illustrated in Figure 3.6 

obtained in combining the FEM result with the relation (3-2-5). The frequencies 𝑓1 and 𝑓2 are the well-

known resonance and the antiresonance frequencies existing into a piezoelectric layer. They can 

respectively be expressed as:  

 

  𝑓2 =
1

2𝜋√𝐿𝑚′𝐶𝑚′
                     (3-2-6) 

𝑓1
2 = 𝑓2

2 (1 +
𝐶𝑚′

𝐶𝑜
)                   (3-2-7) 

In this way, the electrical parameter 𝐿𝑚′ and 𝐶𝑚′ can be extracted:  

 

    𝐶𝑚′ = 𝐶𝑜 (
𝑓1
2

𝑓2
2 − 1)                    (3-2-8) 

   𝐿𝑚′ =
1

4𝜋2𝑓2
2𝐶𝑚′

                    (3-2-9) 

 

The electrical parameter 𝑅𝑚′ can be extracted in considering that 𝑍𝑚
′ (𝜔2) = 𝑅𝑚

′  

 

    𝑍𝑇(𝜔2) = 𝑍𝐶𝑜(𝜔2)//𝑅𝑚
′      (3-2-10) 

    𝑌𝑇(𝜔2) =
1

𝑍𝑇(𝜔2)
=

1

𝑍𝐶𝑜(𝜔2)
+

1

𝑅𝑚
′    (3-2-11) 

    𝑅𝑚
′ =

1

𝑟𝑒𝑎𝑙(𝑌𝑇(𝜔2))
     (3-2-12) 

 

Here, we find for the trilayer Terfenol-D/PZT-5A/Terfenol-D investigated in chapter 2 in LT-mode:  

𝑅𝑚
′ = 278,28 Ω, 𝐶𝑚

′ = 35.22 pF and 𝐿𝑚
′ = 0.1345 H 

 

In order to validate the procedure, a comparison in the dynamic regime between this extracted electric 

elements method and the FEM simulation is shown in Figure 3.7. We can confirm the good 

concordance between both methods. Thus, the extracted electric elements method can be explored to 

establish electrical equivalent circuit models that can be integrated in circuit simulators (e.g. VHDL-

AMS, Verilog A, Spice, etc.). 
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Figure 3.7 Comparison between the FEM simulation and the extraction method 

 

3.2.3 Establishment of the optimal electrical load 

The deliverable output power can be calculated with the output current 𝐼𝑜𝑢𝑡 in using the equivalent 

Norton equivalent circuit represented in Figure 3.8: 

    

    𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛
𝑍𝑇

𝑍𝑇+𝑍
                               (3-2-13) 

 

 

 
Figure 3.8 Equivalent circuit magnetoelectric generator in Norton model. 

 

 

If the load is a complex impedance 𝑍 = 𝑅𝐿 + 𝑗𝑋𝐿, the deliverable output power is given by : 

 

 𝑃 = 𝑅𝐿
𝐼𝑜𝑢𝑡

2

2
= |

𝑅𝑇+𝑗𝑋𝑇

𝑅𝑇+𝑗𝑋𝑇+𝑅𝐿+𝑗𝑋𝐿
|
2 𝑅𝐿

2
𝐼𝑖𝑛

2
=

𝑅𝑇
2+𝑋𝑇

2

(𝑅𝑇+𝑅𝐿)
2+(𝑋𝑇+𝑋𝐿)

2

𝑅𝐿

2
𝐼𝑖𝑛

2
 (3-2-14) 

 

It is well known that the deliverable power is maximal when the load is the complex conjugate of the 

source impedance, namely 𝑍𝐿𝑜𝑎𝑑 = 𝑅𝑇 − 𝑗𝑋𝑇 

 

 𝑃 =
𝑅𝑇

2+𝑋𝑇
2

8𝑅𝑇
𝐼𝑖𝑛

2                                            (3-2-15) 

 

If the load is resistive 𝑍 = 𝑅𝐿,  the deliverable output power is given by : 

 

 

  𝑃 = 𝑅𝐿
𝐼𝑜𝑢𝑡

2

2
= |

𝑅𝑇+𝑗𝑋𝑇

𝑅𝑇+𝑗𝑋𝑇+𝑅𝐿
|
2 𝑅𝐿

2
𝐼𝑖𝑛

2
=

𝑅𝑇
2+𝑋𝑇

2

(𝑅𝑇+𝑅𝐿)
2+𝑋𝑇

2

𝑅𝐿

2
𝐼𝑖𝑛

2
                      (3-2-16) 
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 𝑃 =
𝑅𝑇

2+𝑋𝑇
2

2(𝑅𝐿+2𝑅𝑇+
𝑅𝑇

2+𝑋𝑇
2

𝑅𝐿
)

𝐼𝑖𝑛
2                                           (3-2-17) 

 

The optimal resistive load 𝑅𝐿𝒐𝒂𝒅 is found in solving 
𝜕𝑃

𝜕𝑅𝐿
= 0 :  

 

  𝑹𝑳𝒐𝒂𝒅 = √𝑹𝑻
𝟐 + 𝑿𝑻

𝟐
= |𝒁𝑻|                              (3-2-18) 

Thus, in comparing the values of 𝒁𝑻 at 75 kHz at 30 kOhm in Figure 3.6 with the optimal value of 18 

kOhm found in Figure 3.4-(a), we can conclude that the magnetoelectric parameter 𝜸 is close to 1.5 

[V∙m/A]. 

 

3.2.4 Transient dynamic response with a non-linear electrical load 

As mentioned previously, the harmonic regime works with the assumption of small signal and linear 

material. However, in the case of a nonlinear signal in harmonic regime due to, for instance, a non-

linear electrical load the transient analysis becomes necessary to predict the energy transfer. This is, 

for instance, the case that a synchronized switch damping technique (SSD) is employed [70-72].  

 

To correctly model the ME energy transducer with such an electronic circuit, the previously developed 

ME model equations needs to be solved in time domain. The use of a magneto-elastic-electric 

equivalent circuit model is possible but in contrast to the FEM, it does not take into account rigorously 

the mechanical and electrical impacts when the structure is loaded by electrical impedance.  

 

In this work, the Newmark method is employed to calculate the transient dynamic response. For each 

time step, the system equation to be solved becomes: 
 

                  [𝐾̅]{𝒳𝑡+∆𝑡} = {𝑅𝑡+∆𝑡}  with  [𝐾̅] = [ℳ] + ∆𝑡𝑎[𝒞] +
∆𝑡2𝑏

2
[𝒦]  (3-2-19) 

where 

{𝑅𝑡+∆𝑡} =
∆𝑡2

2
𝑏{ℱ𝑡+∆𝑡} + [ℳ]({𝒳𝑡} + ∆𝑡{𝒳𝑡̇ } +

∆𝑡2

2
(1 − 𝑏){𝒳𝑡̈ }) + [𝒞] (∆𝑡𝑎{𝒳𝑡} +

∆𝑡2

2
(2𝑎 −

𝑏){𝒳𝑡̇ } +
∆𝑡3

2
(𝑎 − 𝑏){𝒳𝑖̈ })  

with  {𝒳̈𝑡+∆𝑡} =
2

𝑏∆𝑡2
({𝒳𝑡+∆𝑡} − {𝒳∆𝑡}) −

2

𝑏∆𝑡
{𝒳∆𝑡̇ } − (

1

𝑏
− 1) {𝒳̈∆𝑡}  

{𝒳̇𝑡+∆𝑡} = {𝒳∆𝑡̇ } + ∆𝑡 ((1 − 𝑎){𝒳̈∆𝑡} + 𝑎{𝒳̈𝑡+∆𝑡}) , 𝑎 = 1, 𝑏 =
1

2
(𝑎 +

1

2
)
2
 

 

The objective of all the SSD techniques is to maximize the energy of the system by modification of 

energy equilibrium of the system. For that, consider the following transient system of the energy 

transducer solved by the Newmark method:  
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 [

𝑀 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

] [

𝑢̈
𝑉̈
𝑄̈
𝑎3̈

] + [

𝐶𝑢𝑢 0 0 0
0 0 0 0
0
0

0
0

𝑅
0

0
0

] [

𝑢̇
𝑉̇
𝑄̇
𝑎3̇

] +

[
 
 
 
𝐾𝑢𝑢 𝐾𝑢𝑝 0 𝐾𝑢𝑎

𝐾𝑝𝑢 𝐾𝑝𝑝 𝐾𝑝𝑞 0

0
𝐾𝑎𝑢

𝐾𝑞𝑝
0

0
0

0
𝐾𝑎𝑎]

 
 
 

[

𝑢
𝑉
𝑄
𝑎1

] = [

0
0
0
𝐽𝑠

]  (3-2-20) 

 

where 𝐽𝑠 is the density of the source current. But as mentioned in chapter 2 (see  2.4.2.1.) the magnetic 

excitation can be implemented in considering the Dirichlet conditions on the magnetic vector potential 

𝑎1 in the boundaries of the problem domain Ω.  

 

In considering the open circuit condition (R≈∞), the coupled system is solved with the following 

relations:  

  

   {

𝑀𝑢̈ + 𝐶𝑢𝑢𝑢̇ + 𝐾𝑢𝑢𝑢 + 𝐾𝑢𝑝𝑉 + 𝐾𝑢𝑎𝑎1 = 0

𝐾𝑝𝑢𝑢 + 𝐾𝑝𝑝𝑉 = 0

𝐾𝑎𝑢𝑢 + 𝐾𝑎𝑎𝑎1 = 𝐽𝑠

   (3-2-21) 

  

Thus, in combining the expression of 𝑎1 = 𝐾𝑎𝑎
−1(𝐽𝑠 − 𝐾𝑎𝑢𝑢) with 𝑢 = −𝐾𝑝𝑢

−1𝐾𝑝𝑝𝑉   in the first 

equation we obtain the equivalent system:   

 

 𝑀𝑢̈ + 𝐶𝑢𝑢𝑢̇ + 𝐾𝑢𝑢𝑢 + (𝐾𝑢𝑝 + 𝐾𝑢𝑝)𝑉 = 𝐹𝑒𝑓𝑓                (3-2-22) 

 

with 𝐾𝑢𝑝 = 𝐾𝑢𝑎𝐾𝑎𝑎
−1𝐾𝑎𝑢𝐾𝑝𝑢

−1𝐾𝑝𝑝  and where 𝐹𝑒𝑓𝑓 = −𝐾𝑢𝑎𝐾𝑎𝑎
−1𝐽𝑠  represents the effective 

mechanical external force applied due to the external magnetic excitation 𝐽𝑠.  
 

 

 

The establishment of energy equilibrium can be obtained in multiplying both sides of (3-2-22) by the 

displacement velocity 𝑢̇ and integrating over the time variable [70-72]: 

 

 ∫ 𝑀𝑢̈𝑢̇
𝑡

𝑜
𝑑𝑡 + ∫ 𝐶𝑢𝑢𝑢̇

2𝑡

𝑜
𝑑𝑡 + ∫ 𝐾𝑢𝑢𝑢𝑢̇

𝑡

𝑜
𝑑𝑡 + ∫ (𝐾𝑢𝑝 + 𝐾𝑢𝑝)𝑉𝑢̇

𝑡

𝑜
𝑑𝑡 = ∫ 𝐹𝑒𝑓𝑓𝑢̇

𝑡

𝑜
𝑑𝑡          (3-2-23) 

 

with ∫ 𝑀𝑢̈𝑢̇
𝑡

𝑜
𝑑𝑡 =

1

2
𝑀[𝑢̇2]𝑜

𝑡 =
1

2
𝑀𝑢̇2(𝑡) and ∫ 𝐾𝑢𝑢𝑢𝑢̇

𝑡

𝑜
𝑑𝑡 =

1

2
𝐾𝑢𝑢[𝑢

2]𝑜
𝑡 =

1

2
𝐾𝑢𝑢𝑢

2(𝑡) 

 

The provided energy is:  

    ∫ 𝐹𝑒𝑓𝑓𝑢̇
𝑡

𝑜
𝑑𝑡 = 𝐹𝑜𝑢(𝑡)                           (3-2-24) 

 

where 𝐹𝑜 is a primitive in time of 𝐹𝑒𝑓𝑓.  

 

The provided energy 𝐹𝑜𝑢(𝑡) is distributed into the kinetic energy 
1

2
𝑀𝑢̇2(𝑡), the mechanical damping 

∫ 𝐶𝑢𝑢𝑢̇
2𝑡

𝑜
dt, the potential elastic energy 

1

2
𝐾𝑢𝑢𝑢

2(𝑡) and the transmitted energy ∫ (𝐾𝑢𝑝 + 𝐾𝑢𝑝)𝑉𝑢̇
𝑡

𝑜
𝑑𝑡. 

This latter corresponds to the mechanical energy, which is converted into electrical energy composed 

by the electrostatic energy 
1

2
𝐶𝑜𝑉

2 corresponding to the energy stored on the piezoelectric capacitance 

𝐶𝑜 and the energy absorbed by the electrical load ∫ 𝑉𝐼
𝑡

𝑜
𝑑𝑡.  

 

    ∫ (𝐾𝑢𝑝 + 𝐾𝑢𝑝)𝑉𝑢̇
𝑡

𝑜
𝑑𝑡 =

1

2
𝐶𝑜𝑉

2 + ∫ 𝑉𝐼
𝑡

𝑜
𝑑𝑡  (3-2-25) 

 

During a periodic oscillation, the kinetic energy, potential elastic energy and the electrostatic energy 

are null. Thus, during a periodic oscillation, the energy equilibrium can be simplified with the 
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mechanical damping and the electrical load: 

 

    ∫ 𝐶𝑢𝑢𝑢̇
2𝑡

𝑜
𝑑𝑡 + ∫ 𝑉𝐼

𝑡

𝑜
𝑑𝑡 = 𝐹𝑜𝑢(𝑡)    (3-2-26) 

 

The maximization of this energy leads to minimization of the mechanical energy in the structure. Thus, 

the usefulness of a SSD control approaches is to maximize this energy in putting the voltage and 

displacement velocity in phase.  
 

Several techniques exist among them one imposes an inductance, which leads to the so-called 

Synchronized Switch Damping on Inductor (SSDI) technique [70-72] as presented by the both 

possible cases in Figure 3.9. The case 1 uses a SSDI technique with L and R in parallel whereas the 

case 2 uses a SSDI technique with L and R in series. For both cases, the switch is open, except when 

zero displacement velocities 𝑢̇𝑡+∆𝑡 occur. In this case, the switch is locked in a very short period that 

puts in phase the output voltage and displacement velocity. In this short period 𝑡𝑖 = 𝜋√𝐿𝐶𝑜  the 

clamped capacitor 𝐶𝑜 and the added inductance L represents an oscillator.  

 

 

 
 

Case 1: SSDI technique with L and R in parallel Case 2: SSDI technique with L and R in series 

Figure 3.9 SSDI techniques 

 
 

To implement the SSDI in the FEM multiphysics model, it is necessary to write the differential circuit 

equation in the transient system. For that, the relation 𝑖(𝑡) = 𝜕𝑡𝑄 between the current and the charge is 

considered.  

 

In case 1, the differential circuit equation is introduced in the system through considering the current 

equation 𝑖(𝑡) = 𝑖𝑅(𝑡) + 𝑖𝐿(𝑡) , with 𝑖𝑅 =
𝑈

𝑅
 and 𝜕𝑡𝑖𝐿 =

𝑈

𝐿
. Thus, in considering 𝜕𝑡𝑖 =

𝜕𝑡𝑈

𝑅
+
𝑈

𝐿
, we 

obtain :  

 

 −𝐿𝑄̈ +
𝐿

𝑅
𝑉̇𝐾𝑝𝑞 + 𝑉𝐾𝑞𝑝 = 0    (3-2-27) 

 

The system equation (3-1-20) to be solved becomes: 

 

[

𝑀 0 0 0
0 0 0 0
0
0

0
0

−𝐿
0

0
0

] [

𝑢̈
𝑉̈
𝑄̈
𝑎3̈

] + [

𝐶𝑢𝑢 0 0 0
0 0 0 0
0
0

𝐿/𝑅
0

0
0

0
0

] [

𝑢̇
𝑉̇
𝑄̇
𝑎3̇

] +

[
 
 
 
𝐾𝑢𝑢 𝐾𝑢𝑝 0 𝐾𝑢𝑎

𝐾𝑝𝑢 𝐾𝑝𝑝 𝐾𝑝𝑞 0

0
𝐾𝑎𝑢

𝐾𝑞𝑝
0

0
0

0
𝐾𝑎𝑎]

 
 
 

[

𝑢
𝑉
𝑄
𝑎3

] = [

0
0
0
𝐼𝑛

] 
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In case 2, the differential circuit equation is introduced in the system through considering the voltage 

equation 𝑢(𝑡) = 𝑢𝑅(𝑡) + 𝑢𝐿(𝑡) , with 𝑢𝑅 = 𝑅𝑖  and 𝑢𝐿 = 𝐿𝜕𝑡𝑖𝐿 . Thus, in considering 𝜕𝑡𝑢 = 𝑅𝜕𝑡𝑖 +
𝐿𝜕𝑡(𝜕𝑡𝑖), we obtain :  

 

 −𝐿𝑄̈ − 𝑅𝑄̇ + 𝑉̇𝐾𝑞𝑝 = 0    (3-2-28) 

 

The system equation (3-2-20) to be solved becomes: 

 

[

𝑀 0 0 0
0 0 0 0
0
0

0
0

−𝐿
0

0
0

] [

ü
V̈
𝑄̈
𝑎3̈

] + [

𝐶𝑢𝑢 0 0 0
0 0 0 0
0
0

𝐾𝑞𝑝
0

−𝑅
0

0
0

] [

𝑢̇
𝑉̇
𝑄̇
𝑎3̇

] +

[
 
 
 
𝐾𝑢𝑢 𝐾𝑢𝑝 0 𝐾𝑢𝑎

𝐾𝑝𝑢 𝐾𝑝𝑝 𝐾𝑝𝑞 0

0
𝐾𝑎𝑢

0
0

0
0

0
𝐾𝑎𝑎]

 
 
 

[

𝑢
𝑉
𝑄
𝑎3

] = [

0
0
0
𝐼𝑛

]  (3-2-29) 

 

In both cases, as shown in Figure 3.10 [52], when the SSDI harvesting technique is activated (i.e. time > 

0.13ms) the output voltage reaches a maximal value and decreases until a steady state and the 

deliverable energy stored in the load ∫𝑉𝐼𝑑𝑡 is strongly gradually increased.  

 
 

 
Figure 3.10 Transient response of output voltage and deliverable energy [52] 

 

3.3. Multilayer ME composite materials 

Although the above results are encouraging, the bonding layer between adjacent layers inherently 

limits the performances of laminate materials. This reduces the quality of the mechanical contact 

between the layers and thus the ME coupling, and the lifetime of the device due to fatigue, as well. 

This is particularly true for operation of bulk sensors at their resonance frequencies of tens of kHz. 

Such high resonant frequencies can also result in significant eddy current losses due to the conductive 

nature of the magnetostrictive alloys and further lower the efficiency of energy conversion. 

Furthermore, currently used magnetostrictive material, such as Terfenol-D, requires large magnetic 

bias fields 100–300 Oe to achieve highest ME coefficients. 

To address this issue, recent studies using deposition process technologies (such as magnetron 

sputtering or vaporizer) have focused on emergence of a new generation of ME composites constituted 

of flexible thin films such as NFZO/PZT or CFO/PZT [73-74]. However, the epitaxial deposition 

processes are limited and the thickness of each thin film is usually around a few µm [73-74], that 

involves a low energy density by piezoelectric layer. It is also well known that performance (greater 
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current or voltage output) of a structure composed of multilayer piezoelectric can be adjusted  with 

either a series or parallel electrical connection. In all cases, the advantage of a multilayer piezoelectric 

structure is that it produces a higher power than a single-layer generator having the same total 

thickness [75-77]. The interest of multilayer MEC is apparent since in according to the electrical 

connection type (series or parallel) it is possible to obtain a high output voltage to operate such as an 

efficient energy transduced or to provide a high output current to operate such as efficient magnetic 

sensor. For instance, in [78] the MEC multilayer sample (operating in LT-mode) is 3x6 mm
2
 with 

respectively 11 NZFO layers and 10 PZT layers (with each layer being of 18 µm), which provides a 

magnetoelectric coefficient close to 1 mV/Oe under resonance. In this context, establishment of 

models are required to compare the performances between a trilayer and a multilayer MEC with the 

same material composition and an unchanged dimension. Specific attention should be focused on the 

effects when an alternative opposing polarization is applied between the superposed piezoelectric 

layers in according to the operating magnetization–polarization mode.  

 

3.3.1 Multilayer ME composite problems description and FEM modelling 

The modeling of the multilayer ME composites can be described in terms of the relationship between 

the ME coefficient and the physical parameters of a multilayer laminate composite structure, 

consisting of alternatively bonded magnetostrictive (M) layers and piezoelectric (P) ones under an 

external magnetic field 𝐻𝑒𝑥𝑡 . The Dirichlet boundary conditions of all mechanical, electrical and 

magnetic will be the same as those for the trilayer MPM composite problem, which have been 

presented in Chapter 2.  

 

As mentioned previously, there are four possible ME modes, which are combinations of two types of 

magnetostriction modes in M-layer and two polarization modes, denoted as L-L, L-T, T-L and L-L 

mode, respectively. And for each ME modes, there are two electrical connectivity types either in 

parallel or in series. The typical modes are displayed in Figure 3.11 (the electrodes and wires are 

marked with the light yellow color): 

 

L-T mode: 

 
L-L mode: 

 
Figure 3.11 Standard configurations in series and parallel electrical connections 



 74 

 

Figure 3.12 shows an illustration of the mesh structure employed in the FEM simulation. 

 
Figure 3.12 FEM meshing for a multilayer composite 

 

3.3.2 Equivalent circuit method for multilayer ME composite problems 

The equivalent circuit models (ECM) for MEC in LL and LT mode are recapitulated in Figure 3.13  

and the expressions of their magnetoelectric coefficients are given by (3-3-1) and (3-3-2). Details of 

the derivation are given in the Appendix D.  

 

 

  

  
mode LL mode LT 

 
Figure 3.13 Equivalent circuit model in LT and LL modes 

 

   𝛼𝑣̃ = |
𝑈

𝐻𝑎𝑐
|
𝑚𝑜𝑑𝑒 𝐿𝐿

= |
𝜑𝑝𝜑𝑚

𝑗𝑍𝑚𝐶𝑜𝜔
|                (3-3-1) 

  𝛼𝑣̃ = |
𝑈

𝐻𝑎𝑐
|
mode 𝐿𝑇

= |
𝜑𝑝𝜑𝑚

𝜑𝑝
2+𝑗𝑍𝑚𝐶𝑜𝜔

|    (3-3-2) 
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Trilayer MEC Multilayer MEC 

 

Figure 3.14 Illustration of a Trilayer and a Multilayer MEC 

 

It can be noticed that equivalent circuit models are the same for both the trilayer and multiplayer 

situations but the circuit parameters depends on the number of layers. 

Consider the subdivision of a trilayer MEC in 𝑚  magnetostrictive layers and (𝑚-1) piezoelectric 

layers. The total thickness is maintained with this condition: 

    𝑡 = 2𝑡𝑚 + 𝑡𝑝 = 𝑚𝑡𝑚′ + (𝑚 − 1)𝑡𝑝′   (3-3-3) 

where 𝑡𝑝, 𝑡𝑚, 𝑡𝑝′, 𝑡𝑚′   are respectively the thicknesses of the piezoelectric and magnetostrictive layers 

for the trilayer and multilayer, both illustrated in Figure 3.14, where 𝑤 is the normalized width. 

 

In considering the ratio 𝛿 =
𝑡𝑝

𝑡𝑝′
 between the thicknesses of each single piezoelectric layer in the 

trilayer and the multilayer cases, the total equivalent clamped capacitor 𝐶𝑇 for the series and parallel 

electrical connections are given by the following expressions in Table 3.3. 𝐶𝑜 represents the clamped 

capacitor of the piezoelectric layer in the trilayer case. 

 

Electrical connection type 
LT mode, 𝐶𝑜 =

𝜀33
𝑆 𝑙𝑤

𝑡𝑝
 LL mode, 𝐶𝑜 =

𝑡𝑝𝑤

𝑙𝛽33̅̅ ̅̅ ̅ 

Series 
𝐶𝑇 = 

𝛿𝐶𝑜
(𝑚 − 1)

 𝐶𝑇 =
𝐶𝑜

𝛿(𝑚 − 1)
 

Parallel 𝐶𝑇 = (𝑚 − 1)𝛿𝐶𝑜 
𝐶𝑇 = 

(𝑚 − 1)

𝛿
𝐶𝑜 

Table 3.3. Total equivalent clamped capacitor 𝐶𝑇 in LT and LL modes 

 

where 𝜀33
𝑆 = 𝜀33

𝑇 −
𝑑31
𝑝 2

𝑠11
𝐸 , 𝛽33̅̅ ̅̅ =

𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 

In considering the ratio 𝛾 =
𝑡𝑚

𝑡𝑚′
, (that is different to 𝛿 =

𝑡𝑝

𝑡𝑝′
 ) the magnetomechanical and 

electromechanical coupling coefficients 𝜑𝑚, 𝜑𝑝 and the mechanical impedance  𝑍𝑚 are also function of 

the change of layers in accordance with the configuration applied. Table 3.4 gives the adjustment of 

expressions of 𝜑𝑚, 𝜑𝑝. The expressions of 𝑍𝑚 are given in the Appendix D.  

 
 

Mode Series electrical connection Parallel electrical connection 

LT 
𝜑𝑝
′ = 𝜑𝑝 = 𝑤

𝑑31𝑝

𝑠11
𝐸  𝜑𝑝

′ = 𝜑𝑝 = 𝑤
𝑑31𝑝

𝑠11
𝐸  
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𝜑𝑚′ = 𝜑𝑚 = 𝑤𝑡𝑚
𝑑33𝑚

𝑠33
𝐻  𝜑𝑚′ = 𝑤

𝑡𝑚
𝛾

𝑑33𝑚

𝑠33
𝐻  

 

LL 
𝜑𝑝′ = 𝑤

𝑡𝑝
𝛿

𝑑33𝑝

𝑠33
𝐸 𝑙

 

 

𝜑𝑚′ = 𝑤
𝑡𝑚
𝛾

𝑑33𝑚

𝑠33
𝐻  

𝜑𝑝′ = 𝜑𝑝 = 𝑤𝑡𝑝
𝑑31𝑝

𝑠33
𝐸 𝑙

 

𝜑𝑚′ = 𝑤
𝑡𝑚
𝛾

𝑑33𝑚

𝑠33
𝐻  

 

Table 3.4. Adjustment on the magnetomechanical and electromechanical coupling coefficients in 

multilayer case 

 

Thus, the magnetoelectric coefficients (3-3-1) and (3-3-2) are rewritten for a multilayer case as:  

 

     𝛼𝑣̃ = |
𝑈

𝐻𝑎𝑐
|
mode 𝐿𝐿

= |
𝜑𝑝′𝜑𝑚′

𝑗𝑍𝑚𝐶𝑇𝜔
|    (3-3-4) 

 

     𝛼𝑣̃ = |
𝑈

𝐻𝑎𝑐
|
mode 𝐿𝑇

= |
𝜑𝑝′𝜑𝑚′

𝜑𝑝′
2+𝑗𝑍𝑚𝐶𝑇𝜔

|    (3-3-5) 

3.2.3 Results and comparisons 

The studied example is a MEC composed of a Terfenol-D and PZT-5A laminated composites. The 

device has the following dimensions: l=14mm, t=3mm (tm=tp=1mm for the trilayer case). The material 

property parameters are given in the Appendix A. 

 

The LT mode as shown in Figure 3.11 (a) is firstly considered. The FEM and the ECM simulation 

results of the magnetoelectric coupling coefficient for parallel and series connections at the resonance 

frequency are compared in Figure 3.15, when the number of layers increases. A good concordance 

between the two methods is observed. In addition, it can be noticed that with the series connection, the 

coupling coefficient increases slightly with the increase of the number of layers. This can be explained 

by the diminution of the clamped capacitor 𝐶𝑇 according to the ECM formula in Table 3.3 which 

results in an increase of 𝛼𝑣̃ according to equation (3-3-5). On the other hand, in parallel connection, 𝐶𝑇 

increases with the number of layers, the effect is inversed and the coupling coefficient 𝛼𝑣̃ diminishes 

quickly, according to equation (3-3-5). The voltage provided by the parallel connection diminishes but 

instead, the transducer allows furnishing the greater current.  

 

  

Series electrical connection 
Parallel electrical connection 

 

Figure 3.15:  Results comparison in LT mode.  
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Figure 3.16 shows a comparison between the distributions of the electric scalar potential for the 

trilayer case and for the multilayer case with series and parallel electrical connections.  

 

 

 
(a) Trilayer 

 

  
(b) Multilayer with Series electrical connection (c) Multilayer with Parallel electrical connection 

 
Figure 3.16 Distribution of the electrical potential scalar in the trilayer case and for multilayer case with series  

and parallel electrical connections in LT mode. 

 

For the LL mode, two configurations are considered. In the first configuration (configuration 1), all the 

piezoelectric layers are polarized in the same direction, as shown in Fig.3.11. In the second 

configuration (configuration 2), the polarization of the piezoelectric layers is altered for the 

neighboring layers, while the magnetization of magnetostrictive layers remain the same, as illustrated 

lately in Figure 3.19 and Figure 3.20. Figure 3.17 shows the comparison between the FEM and the 

ECM simulation results of the series and parallel connections. Contrasting in the LT mode, we can 

notice a good concordance just with the configuration 1 in the parallel electrical connection. In the 

case of series connection for configuration 1, as previously stated, there is a dissymmetry of the field 

distribution due to the connection of the positive and negative electrodes situated on the opposite 

sides. This dissymmetry cannot be reflected by the ECM because of the one dimension assumption in 

the analytical formula. The electric potential distributions for a trilayer case and for the configuration 1 

are given in Figure 3.18. The dissymmetry of the series connection is clearly illustrated. 
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Series electrical connection 
Parallel electrical connection 

 

Figure 3.17 Results comparison in LL mode. Configuration 1 is the standard one and configuration 2 is the one 

with an alternative opposing polarization between each neighboring piezoelectric layer 

 

 
(a) Trilayer 

 

  
(b) Multilayer with Series electrical connection (c) Multilayer with Parallel electrical connection 

 
Figure 3.18 Distribution of the electrical potential scalar in the trilayer case and for multilayer case with series  

and parallel electrical connections in LL mode. 

 

In the case of the configuration 1, the series connection presents also a technical realization difficulty. 

For that reason, the configuration 2 by alternating piezoelectric polarization makes more sense. 

However, as shown by the electric potential distribution given in Figure 3.19 and Figure 3.20, the field 

results depends on the number of layers. The symmetry of the field distribution is exhibited only for 

odd number of piezoelectric layers while for even number of piezoelectric layers the field distribution 

is dissymmetrical. This explains why the computed magnetoelectric coupling coefficient by the FEM 

zigzags with the number of layers for both series and parallel connections.  It can be noticed that, as 

the ECM does not take into account the alternating polarization of piezoelectric layers, it is not valid 

for the configuration 2. 
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(a) Odd piezoelectric layers (b) Even piezoelectric layers 

 

Figure 3.19 Series electrical connection in according to the configuration 2 in LL mode 

 

  

  
(a) Odd piezoelectric layers (b) Even piezoelectric layers 

Figure 3.20 Parallel electrical connection in according to the configuration 2 in LL mode  

 

3.3 Conclusion 

In conclusion, the finite element method has been applied for both harmonic and transient cases and 

successfully applied to an energy transducer composed of Terfenol-D/PZT/Terfenol-D materials. The 

harmonic model allows to determine the resonance frequencies and the optimal loads to maximize the 

deliverable power. The transient model using the Newmark method provides a useful tool to study the 

energy transfer when a conditioning circuit such as SSDI harvesting technique is employed. An 

equivalent circuit method has been developed to analyze multilayer MEC of two typical 

magnetization-polarization modes (LL and LT) with different electrical connections (series and 

parallel). The results demonstrate two important conclusions concerning the change of the ME 

coefficient in function of the number of the deposited layers in the composites: first, the change 

tendencies between the results utilizing FEM and the ECM remain quite similar only for some simple 

configurations with symmetrical field distributions, which denotes the validation of ECM for these 

cases; second, the change tendency (increase or decrease with increasing layers number) of the ME 

coefficient depends highly on the electrodes connection type, which can be analytically explained that 

the variation of the clamped capacitance and the internal impedance of the piezoelectric layers play an 

important role in these results.  
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Chapter 4. Prospective application of ME composites as energy 

transducer 

4.1 Introduction  

This section proposes a prospective application of the ME composites as energy transducers. For that, 

a potential application in biomedical domain is proposed in first part. To emphasize this proposition 

some measurements on a bilayer ME composite are presented in the second part.  

4.2 Potential application in biomedical domain 

Remote monitoring of medical physical data, such as the pressure or temperature of a patient suffering 

from a disease, would constitute a major advance in the medical domain, since it would improve the 

quality of the life and the medical service. These considerations motivate researchers to develop novel 

autonomous wireless sensors while overcoming two major drawbacks as for the powering of the 

sensors and the IC circuits. The first is the use of batteries, which are pollutant, and with limit lifetime. 

The wireless powering or energy harvesting solutions must replace them. The second concerns the 

insertion in-body that must be done by a minimally invasive technique, for example the incorporation 

of a catheter through the femoral artery for monitoring the temperature or blood pressure. The 

common solutions for wireless energy harvesting and data communication for human implants are the 

piezoelectric transducers [79], the electromagnetic RF transducers with antennas operating at 2.45 

GHz [80] or 900 MHz [81], and the near field communication (NFC) in using inductive coupling 

circuits on small coils operating at resonance in the radio-frequency (RF) of 1-300 MHz range [82]. 

The piezoelectric transducers are not suitable in-body insertion case because the low amplitude and the 

low frequency of the vibrations cannot produce sufficient power. The electromagnetic RF transducers 

are not suitable since the absorption of the electromagnetic radiation by the human body is significant 

above 300 MHz. The NFC technologies such as the Radio Frequency Identification (RFID) passive 

devices (batteryless) are suitable if the working frequency is included in the Industrial, Scientific and 

Medical (ISM) band. Although the use of passive RFID armbands at 13.56 MHz (within the ISM band) 

to collect data from an identified patient is common, their extension as a miniaturized energy 

transducer to supply an implanted biomedical sensor (such as telemetric pressure sensors) in human 

body seems limited by the coupling factor because its communication distance is usually limited to 4 

cm [83-86]. Thus, in order to power an implanted sensor, the ME trilayer composites seem an 

alternative energy collector other than the usual RFID to reach a vicinity contactless distance 

communication greater that 4 cm. 

In considering that the IC chip works with the power requirements previously exposed, namely at least 

0.8 mW, the advantages of use the trilayer Terfenol-D/PZT-5A/Terfenol-D having the dimensions 

Lx=14mm, Ly=3mm (tm=tp=1mm), Lz=3mm  are : 

 

- Incorporation into a medical catheter for the minimally invasive purpose could be guaranteed as 

illustrated in Figure 4.1.  

- Low absorption by the human body by the low frequencies at frequency f<100 kHz delivered by an 

external source (reader excitation) distance.  
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Figure 4.1 Illustration of the ME composite energy transducer in a catheter and inside the human body 

 

4.2.1 Ferrite solenoid as external reader 

Considering that Helmholtz coils are placed in the human thorax to produce the biasing static field.  

The external reader will be used just to produce the AC field Hac. The ideal solution would be a 

compact antenna. A recent study [87] has proposed to use the solution shown in Figure 4.2. This 

solution is based on a long ferrite solenoid surrounded by a simple coil. According to authors, it is 

possible to obtain at least 2 Oe at 10 cm. This value would ensure a quasi-continuous voltage required 

to power the IC for a distance greater than 4 cm (limitation of the RFID technique).  

 

As shown in Figure 2.33 in chapter 2 for a trilayer Terfenol-D/PZT-5A/Terfenol-D at resonance the 

ME coefficient is close 10 V/Oe. Thus, in considering a field level in the order of δ𝐻𝑎𝑐=2 Oe the 

induced voltage between two electrodes of the piezoelectric reaches 20V. In this case, the output 

deliverable power at the resonance frequency is respectively close to 3.2 mW. This result put in 

evidence that the ME transducer in L-T mode could deliver the power necessary for a biomedical IC 

chip with a distance communication greater than 10 cm.  

 

Figure 4.2 Ferrite solenoid proposed in [87] to be used as external reader 

 

4.2.2 Exposition limits of the magnetic field 

The exposition limits of the magnetic field (static and dynamic regimes) must respect the guidelines 

established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [88].  

Concerning the static field, the ICNIRP recommends in the Table 4.1 that static fields on humans, 

acute exposure of the general public should not exceed 400 mT but for specific work applications such 

as a biomedical context that “the limit on exposure is set at 2 T, to prevent vertigo, nausea and other 

sensations, but for specific work applications, when the environment is controlled and appropriate 

work practices are implemented, then exposure up to 8 T is acceptable”.   



 82 

 

 

 
Table 4.1 Limits of exposure to static magnetic fields [88] 

 

Concerning the dynamic field working at frequency 75 kHz, the reference level shown in Table 4.2 is 

80 A/m i.e. 1 Oe for occupational exposure such as a biomedical context [88].  

 

 

 
Table 4.2 Reference levels for occupational exposure to time- varying electric and magnetic fields [88] 

 

Exceeding the reference value of 1 Oe is not proscribed, but in this case the limits of exposure (base 

restrictions) must be positioned in according to value of the current density for all tissue of head and 

body (must not exceed 150 mA.m
-2

 at 75 kHz for instance).  

4.3 Measurement of a bilayer ME composite 

4.3.1 Measurement bench set-up  

In order to estimate the real performance of a material composite ME as a potential energy transducer, 

this section shows the experimental data from the bilayer ME composite composed of Terfenol-

D/PZT-5H represented and described in Figure 4.3. As shown in Appendix A, the material 

characteristics of the PZT-5H are close to the PZT-5A. The layers are bounded with a strong epoxy 

resin and the PZT-5H is polarized transversally while the Terfenol-D is magnetized longitudinally. In 

this way, the composite ME is employed in L-T mode.  The PZT-5H has been chose longer than the 

Terfenol-D in order to perform the connection between both electrodes of the PZT-5H. Unfortunately, 

the commercial providers of the PZT-5H (of The Roditi International Corporation Ltd) and the 

Terfenol-D  (of ETREMA PRODUCTS INC, and Subsidiary of Edge Technologies Inc.) do not 

provide values of constants for their electrical, magnetic and elastic material characteristics.  

 
Figure 4.3 The considered bilayer ME composite  
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Figure 4.4 shows the FEM simulation results for the considered ME composite in according to the 

model of the Terfenol-D shown in Chapter 2 and with the material characteristics of the PZT-5H 

presented in Annexe A. The resonance frequency is close to 70 kHz with a maximum ME coefficient 

reaching 20 V/Oe. The first local peak around 60 kHz is a parasite resonance mode caused by the 

difference of length between the PZT-5H (20 mm) and the Terfenol-D (15 mm).  It must be noticed 

that the effect of the epoxy resin was not considered in the simulation.  

 
Figure 4.4 FEM simulation results of the bilayer ME composite 

 

To operate a magnetization bias 𝐻𝑑𝑐 field along the ME composite, we used the configuration shown 

in Figure 4.5-(a) in which strong magnets are arranged to create two effective magnetic sources. An 

illustration of the magnetic field distribution from the proposed configuration is shown in Figure 4.5-

(b). The simulation has been performed with the PDEtool of Matlab using the Magnetostatics solver.  

 

  
(a) Experimental set-up (b) FEM simulation of the configuration  

Figure 4.5 Realisation of the dc magnetic field source 
 

Figure 4.6 shows the magnetic field 𝐻𝑑𝑐 in Oe versus the distance d between both sources. We can 

note that the magnitudes of the magnetic field are sufficient to magnetize the Terfenol-D (usually ≥ 

200 Oe as shown in chapter 2) for distances between 40 mm and 80 mm.   
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Figure 4.6 Evolution of the dc magnetic field 𝐻𝑑𝑐  in function of the distance between both sources 

 

As shown in Figure 4.7, a magnetic solenoid coil composed of 100 turns is used to generate the 

externally small signal harmonic ac field 𝐻𝑎𝑐. The magnetic field in the middle of the solenoid can be 

approximated with the following expression:  

     𝐻 =
𝑁𝐼

2𝑎

𝑎

√𝑎2+𝑅2
       (4-1) 

where 2𝑎 and 𝑅 represent respectively the length and the radius of the solenoid coil. 𝐼 is the crossing 

current along the coil that can be measured in placing a multimeter in series.  

 
Figure 4.7 Support of the solenoid coil for the ME composite 

 

4.3.2 Static and dynamic measure responses 

The measurements are achieved with the experimental set-up shown in Figure 4.8 that was realized by 

Kevin Malleron, a PhD student at the L2E Lab. The ME composite is placed inside the solenoid coil 

that is supplied by a function generator (HAMEG HM8 150 from Rhode&Schwarz) with 20 V. In low 

frequency (10 Hz 1 kHz), the magnetic field inside the solenoid coil can be estimated is connecting 

in series a multimeter (FLUKE 179) to measure the crossing current 𝐼  at each work frequency. 

Nevertheless for frequencies greater than 1 kHz must be variable resistor is placed in series with the 

function generator to stabilize the value of the crossing current 𝐼 around 10 mA to impose an AC 

magnetic field of 1 Oe inside the solenoid. A numerical oscilloscope (Agilent Tech MSO7054A) is 

used to display and to measure the output voltage from the ME composite (between both electrodes of 

the PZT-5H).  
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Figure 4.8 Experimental set-up 

 

Figure 4.9 shows the ME coefficient measured at low frequency (1 kHz) under the variation of the 

distance d between both magnetic sources. To respect the definition of the ME coefficient namely 

V/Oe, for each measure, the output voltage Vout must be rectified in normalizing the magnetic field 

inside the solenoid coil (estimated by the crossing current), in respect to 1 Oe. The maximal ME 

coefficient is obtained for a distance close to 55 mm. In according to Figure 4.6, this distance 

corresponds to a magnetization bias 𝐻𝑑𝑐 close to 350 Oe.  

 
Figure 4.9 ME coefficient at low frequency in function of the distance between both sources 

 

In considering the optimal distance of 55 mm (i.e. 𝐻𝑑𝑐 close to 350 Oe), the figure 4.10 shows the ME 

coefficient in function of frequency. The result show a good agreement with the resonance peak that is 

close to 70 kHz obtained in simulation but the maximum ME coefficient reaches only 0.6 V/Oe. We 

assume that this deterioration is caused by a low mechanical quality factor of 𝑄𝑚  due to the 

mechanical losses of the resin epoxy used to bond the layers between them. To validate this fact, we 

added in the Figure a comparison with a FEM simulation realized in modifying the Raleigh damping 

to obtain a low mechanical quality factor of 𝑄𝑚 (close to 45). The results are in good agreement.  
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Figure 4.10 ME coefficient in function of frequency under an ac magnetic field of 1 Oe 

 

4.3.3 Deliverable output power  

To estimate the deliverable output power, a variable resistor R has been placed between both 

electrodes to establish the value of the internal impedance 𝑍𝑇  of the ME composite. For that, as 

illustrated in Figure 4.11 the principle of the tension divider bridge is used namely that 𝑅 = 𝑍𝑇 when 

the output voltage is divided by two.  

 
Figure 4.11 Principle to determinate the value of the internal impedance 

 

where or 𝑉𝑖𝑛 represents the stress force due to the Terfenol-D as a result of the externally applied 

magnetic field 𝐻𝑎𝑐 
 

Due to the mechanical losses, the measured value is close to 300 Ohm.  Thus, the estimation of the 

deliverable output power for this ME composite with an excitation AC dynamic magnetic field of 1 Oe 

is: 

𝑃𝑜𝑢𝑡 =
𝑉𝑜𝑢𝑡

2

2𝑍𝑇
≈
0.36

600
= 600 µ𝑊 

This power estimation is close to 800 µW founded with the ME composite Terfenol-D/PZT-5A/ 

Terfenol-D in the first section of the chapter 3. For an excitation AC dynamic magnetic field of 2 Oe 

the power will be close to 1 mW that is sufficient to supply a WSN sensor.  

4.4 Conclusion  

This section has proposed a prospective application of ME composites Terfenol-D/PZT-5A/ Terfenol-

D as energy transducer in a biomedical domain that would respect the exposition limits established by 

the International Commission on Non-Ionizing Radiation Protection.  Measurements on a bilayer ME 

composite Terfenol-D/PZT-5H results have highlighted this possible prospective application in 

exhibiting an deliverable output power close to 600 µW under an excitation AC dynamic magnetic 

field of 1 Oe. 
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General conclusion 

 

The work presented in this thesis is a contribution to modelling of ME composites for energy 

harvesting.  Two parts have been mainly studied in this work: the analytical and numerical modelling 

for which we have carefully analyzed the static and dynamic behaviors of different ME structures, and 

a practical application oriented to highlight the possible assessment of ME structures as energy 

transducers.   

Thus, the first chapter has familiarized us to ME structures by introducing the magnetoelectric effect 

origin according to the phases of a composite composed of laminated piezoelectric and 

magnetostrictive layers. The presentation of several practical applications showed how the ME 

structures have become today major assets in the improvement and design of new electronic devices 

such as the energy transducers. 

The second chapter focused on a description of the various simulation tools and used in this 

dissertation to describe the behavior of ME structures composed of laminated piezoelectric and 

magnetostrictive layers.  Firstly, two analytical methods in 0D and 1D assumptions have been 

addressed and detailed. Secondly, a description of a multiphysics code based on the finite element 

method in 2D using a discretization of quantities of electromagnetic and elastic has been performed. It 

has been shown that the involved fields, as well as coupling effects between these fields, can be 

conveniently modelled in this FEM framework. Particularizing electrical circuit taking into account 

the electrical impact when the structure is loaded by an electrical impedance has been added into the 

FEM formulations. For constitutive modelling, the linear piezoelectricity for piezoelectric materials 

and the nonlinear magnetization and magnetostriction for magnetostrictive materials have been 

considered. To deal with nonlinearity a piecewise linear strategy was adopted in the FEM code. 

In the third chapter we highlighted in the first part that the LT-mode is the ideal configuration to 

obtain the sufficient deliverable output power to supply a wireless sensor node in working with 1% 

duty-cycle. In the second part, a transient model using Newmark method has been employed to study 

the energy transfer when a conditioning circuit such as SSDI harvesting technique is used. In the last 

part, an equivalent circuit method to analyze multilayer MEC in LL and LT modes with series and 

parallel connections has been detailed and investigated. The results showed that the LT mode in series 

connection could be used to conserve the performances of ME composites constituted of thin films.  

The fourth chapter has proposed a potential application of a ME energy transducer to supply an 

implanted biomedical sensor with a specific external coil while respecting the magnetic field limits 

exposition imposed by the International Commission on Non-Ionizing Radiation Protection. A set-up 

experimentation to measure the ME coefficients in static and dynamic regimes has been presented and 

measurements on a bilayer composite have been performed. The estimated output deliverable power 

close to 600 µW has confirmed the potential possibility to supply a wireless sensor node in working 

with 1% duty-cycle.  

Finally, the work of this thesis is a first step to open the way to contribute to bridge the gap between 

the physical concepts and the design optimization of devices by providing tools for modelling and 

designing of devices such as ME energy transducers according to imposed specifications (desired 

application, choice of materials, dimensions imposed, etc.). The health domain of remote power 

supply is a perfect example, since the proposed energy transducer can meet the constraints on 

dimensions (the micrometer and millimeter scales presage no-invasive implantation) by adjusting the 

magnetic field amplitude at a fixed distance of the reader or by adjusting its distance for fixed 
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magnetic field amplitude. The environment effects (temperature, biocompatibility, pressure...etc.) 

must be addressed in future works in the FEM numerical code. 
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Appendix A. Characteristics of utilized materials 

 

PZT-5A [89]: 

Density (kg∙m-3
): 𝜌 = 7600 

 

Elastic compliances (pm
2∙ 𝑁−1):  

𝑠11
𝐸 = 𝑠22

𝐸 = 12.3, 𝑠12
𝐸 = −4.06, 𝑠13

𝐸 = 𝑠23
𝐸 = −5.29, 𝑠33

𝐸 = 15.5, 𝑠44
𝐸 = 𝑠55

𝐸 = 39.06, 𝑠66
𝐸 = 32.68 

 

Elastic stiffness (GPa) 

𝑐11
𝐸 = 𝑐22

𝐸 = 138.5, 𝑐12
𝐸 = 77.37, 𝑐13

𝐸 = 𝑐23
𝐸 = 73.64, 𝑐33

𝐸 = 114.7, 𝑐44
𝐸 = 𝑐55

𝐸 = 25.6, 𝑐66
𝐸 = 30.6 

 

Piezoelectric coefficients:   

𝑒31 = 𝑒32 = −5.2𝐶 ∙ 𝑚
−2, 𝑒33 = 15.08𝐶 ∙ 𝑚

−2, 𝑒24 = 𝑒15 = 12.72𝐶 ∙ 𝑚
−2, 

𝑑31
𝑝
= 𝑑32

𝑝
= −122.6𝑝𝐶 ∙ 𝑁−1,𝑑33

𝑝
= 288.8𝑝𝐶 ∙ 𝑁−1,𝑑24

𝑝
= 496.9𝑝𝐶 ∙ 𝑁−1,𝑑15

𝑝
= 415.7𝑝𝐶 ∙ 𝑁−1  

 

Relative permittivity: 𝜀11 = 𝜀22 = 1730, 𝜀33 = 1700 

 

 

PZT-5H [90]: 

Density (kg∙m-3
): 𝜌 = 7750 

 

Elastic compliances (pm
2∙ 𝑁−1):  

𝑠11
𝐸 = 𝑠22

𝐸 = 16.4, 𝑠12
𝐸 = −5.74, 𝑠13

𝐸 = 𝑠23
𝐸 = −6.22, 𝑠33

𝐸 = 18.8, 𝑠44
𝐸 = 𝑠55

𝐸 = 47.4, 𝑠66
𝐸 = 47.24 

 

Elastic stiffness (GPa) 

𝑐11
𝐸 = 𝑐22

𝐸 = 127.205, 𝑐12
𝐸 = 87.67, 𝑐13

𝐸 = 𝑐23
𝐸 = 87.67, 𝑐33

𝐸 = 117.43, 𝑐44
𝐸 = 𝑐55

𝐸 = 21.1, 𝑐66
𝐸 = 93.4 

 

Piezoelectric coefficients:   

𝑒31 = 𝑒32 = −6.62𝐶 ∙ 𝑚
−2, 𝑒33 = 23.24𝐶 ∙ 𝑚

−2, 𝑒24 = 𝑒15 = 15.6𝐶 ∙ 𝑚
−2, 

𝑑31
𝑝
= 𝑑32

𝑝
= −274.12𝑝𝐶 ∙ 𝑁−1,𝑑33

𝑝
= 593𝑝𝐶 ∙ 𝑁−1,𝑑24

𝑝
= 741𝑝𝐶 ∙ 𝑁−1,𝑑15

𝑝
= 741𝑝𝐶 ∙ 𝑁−1  

 

Relative permittivity: 𝜀11 = 𝜀22 = 3130, 𝜀33 = 3400 

 

 

Terfenol-D [91]: 

 

Density (kg∙m-3
): 𝜌 = 9250 

Elastic compliance (pm
2∙ 𝑁−1):  

𝑠11
𝐻 = 𝑠22

𝐻 = 44, 𝑠12
𝐻 = −11, 𝑠13

𝐻 = 𝑠23
𝐻 = −16.5, 𝑠33

𝐻 = 38, 𝑠44
𝐻 = 𝑠55

𝐻 = 240, 𝑠66
𝐻 = 110 

 

Elastic stiffness (GPa) 

𝑐11
𝐻 = 𝑐22

𝐻 = 35.87, 𝑐12
𝐻 = 17.69, 𝑐13

𝐻 = 𝑐23
𝐻 = 23.25, 𝑐33

𝐻 = 46.12, 𝑐44
𝐻 = 𝑐55

𝐻 = 4.166, 𝑐66
𝐻 = 9.09 

 

Piezomagnetic coefficient: 

𝑞31 = 𝑞32 = −32.63𝑁 ∙ 𝐴
−1 ∙ 𝑚−1 ,  𝑞33 = 195.3𝑁 ∙ 𝐴

−1 ∙ 𝑚−1 , 𝑞24 = 62.75𝑁 ∙ 𝐴
−1 ∙ 𝑚−1 , 𝑞15 =

150𝑁 ∙ 𝐴−1 ∙ 𝑚−1 

𝑑31
𝑚 = 𝑑32

𝑚 = −4.3𝑛𝑚 ∙ 𝐴−1, 𝑑33
𝑚 = 8.5𝑛𝑚 ∙ 𝐴−1, 𝑑24

𝑚 = 𝑑15
𝑚 = 16.5𝑛𝑚 ∙ 𝐴−1 
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Relative permeability: 𝜇11 = 𝜇22 = 𝜇33 = 9.3 

 

 

𝐂𝐨𝐅𝐞𝟐𝐎𝟒 [89]: 

Density (kg∙m-3
): 𝜌 = 5300 

Elastic compliance (pm
2∙ 𝑁−1):  

𝑠11
𝐻 = 𝑠22

𝐻 = 6.48, 𝑠12
𝐻 = −2.36, 𝑠13

𝐻 = 𝑠23
𝐻 = −2.6, 𝑠33

𝐻 = 7, 𝑠44
𝐻 = 𝑠55

𝐻 = 22.08, 𝑠66
𝐻 = 17.7 

 

Elastic stiffness (GPa) 

𝑐11
𝐻 = 𝑐22

𝐻 = 286, 𝑐12
𝐻 = 173, 𝑐13

𝐻 = 𝑐23
𝐻 = 170.5, 𝑐33

𝐻 = 269.5, 𝑐44
𝐻 = 𝑐55

𝐻 = 45.3, 𝑐66
𝐻 = 56.5 

 

Piezomagnetic coefficient: 

𝑞31 = 𝑞32 = 580.3𝑁 ∙ 𝐴
−1 ∙ 𝑚−1, 𝑞33 = 699.7𝑁 ∙ 𝐴

−1 ∙ 𝑚−1, 𝑞24 = 𝑞15 = 550𝑁 ∙ 𝐴
−1 ∙ 𝑚−1,  

𝑑31
𝑚 = 𝑑32

𝑚 = 0.5657𝑛𝑚 ∙ 𝐴−1, 𝑑33
𝑚 = 1.88𝑛𝑚 ∙ 𝐴−1, 𝑑24

𝑚 = 12.41𝑛𝑚 ∙ 𝐴−1, 𝑑15
𝑚 = 9.73𝑛𝑚 ∙ 𝐴−1 

 

Relative permeability: 𝜇11 = 𝜇22 = −469.5, 𝜇33 = 124.9 

 

 

 

𝐁𝐚𝐓𝐢𝐎𝟑 [89]: 

Density (kg∙ m-3
): ρ = 5800 

 

Elastic compliances (pm
2∙ 𝑁−1):  

𝑠11
𝐸 = 𝑠22

𝐸 = 5.89, 𝑠12
𝐸 = −2.63, 𝑠13

𝐸 = 𝑠23
𝐸 = −2.86, 𝑠33

𝐸 = 8.93, 𝑠44
𝐸 = 𝑠55

𝐸 = 23.25, 𝑠66
𝐸 = 2.9 

 

Elastic stiffness (GPa) 

𝑐11
𝐸 = 𝑐22

𝐸 = 166, 𝑐12
𝐸 = 77, 𝑐13

𝐸 = 𝑐23
𝐸 = 78, 𝑐33

𝐸 = 162, 𝑐44
𝐸 = 𝑐55

𝐸 = 43, 𝑐66
𝐸 = 44.5 

 

Piezoelectric coefficients:   

𝑒31 = 𝑒32 = −4.4𝐶 ∙ 𝑚
−2, 𝑒33 = 18.6𝐶 ∙ 𝑚

−2, 𝑒24 = 𝑒15 = 11.6𝐶 ∙ 𝑚
−2, 

𝑑31
𝑝
= 𝑑32

𝑝
= −79.55𝑝𝐶 ∙ 𝑁−1,𝑑33

𝑝
= 191.4𝑝𝐶 ∙ 𝑁−1,𝑑24

𝑝
= 269.7𝑝𝐶 ∙ 𝑁−1,𝑑15

𝑝
= 33.67𝑝𝐶 ∙ 𝑁−1  

 

Relative permittivity: 𝜀11 = 𝜀22 = 1266, 𝜀33 = 1424 
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Appendix B. Different magnetostrictive nonlinear models 

B.1 Anhysteresis models 

The standard square (SS) model 

This quadratic constitutive model was studied and proposed by GREG P. CARMAN* AND MILAN 

MITROVIC [92] by means of truncating the Taylor series expansion of the Gibbs free energy function 

after some high order terms. Briefly presented, the formulations are derived based on the energy 

balance equation ignoring the heat effect terms among an electric-magnetic body 

 

𝑑

𝑑𝑡
∫ (

1

2
𝜌𝑢̇𝑖𝑢̇𝑖 + 𝑈)𝑑𝑣𝑣

= ∫ (𝑓𝑖𝑢̇𝑖 +Φ)𝑣
𝑑𝑣 + ∫ 𝑡𝑖𝑢̇𝑖𝑑𝑠𝑆

                    (B-1) 

 

where 𝑓𝑖, 𝑡𝑖 , 𝑢𝑖  are the components of body force, surface force and the displacement vector, 

respectively, the dots above represents differentiation with respect to time, 𝜌 the mass density, 𝑈 the 

internal energy density per unit mass, Φ = −∇ ∙ (𝑬 × 𝑯) the electric–magnetic energy density per unit 

time where 𝑬 is the electric field intensity vector and 𝑯 the magnetic field intensity vector. 

 

By simplify the balance equation using the mass conservation and momentum conservation equations 

under quasi-magnetostatic and small distortion assumptions, one can obtain 

 

𝑈̇ = 𝐻𝑘𝐵̇𝑘 + 𝜎𝑖𝑗𝜀𝑖̇𝑗                                                                                 (B-2) 

 

where 𝜀𝑖𝑗 and 𝜎𝑖𝑗 are the components of the strain tensor and stress tensor, respectively. 

 

Then, based on the expression of the Gibbs free energy without the heat effect term 𝐺 = 𝑈 − 𝐵𝑘𝐻𝑘 

and by taking the magnetic field and stress as the independent variables, one can derive the total 

derivative of Gibbs free energy as 

 

𝑑𝐺 = −𝜀𝑖𝑗𝑑𝜎𝑖𝑗 − 𝐵𝑘𝑑𝐻𝑘                                                                       (B-3) 

 

and thus the Taylor series expansion of Gibbs free energy function as 
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𝐺 = 𝐺0 +
𝜕𝐺

𝜕𝜎𝑖𝑗
∆𝜎𝑖𝑗 +

𝜕𝐺

𝜕𝐻𝑘
Δ𝐻𝑘 +

1

2

𝜕2𝐺

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙
∆𝜎𝑖𝑗∆𝜎𝑘𝑙 +

1

2

𝜕2𝐺

𝜕𝜎𝑖𝑗𝜕𝐻𝑘
∆𝜎𝑖𝑗∆𝐻𝑘 +

1

2

𝜕2𝐺

𝜕𝐻𝑙𝜕𝐻𝑘
∆𝐻𝑙∆𝐻𝑘 +

1

3!

𝜕3𝐺

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙𝜕𝜎𝑚𝑛
∆𝜎𝑖𝑗∆𝜎𝑘𝑙∆𝜎𝑚𝑛 +

1

3!

𝜕3𝐺

𝜕𝜎𝑖𝑗𝜕𝜎𝑘𝑙𝜕𝐻𝑚
∆𝜎𝑖𝑗∆𝜎𝑘𝑙∆𝐻𝑚 +

1

3!

𝜕3𝐺

𝜕𝜎𝑖𝑗𝜕𝐻𝑘𝜕𝐻𝑙
∆𝜎𝑖𝑗∆𝐻𝑘∆𝐻𝑙 +

1

3!

𝜕3𝐺

𝜕𝐻𝑚𝜕𝐻𝑘𝜕𝐻𝑙
∆𝐻𝑚∆𝐻𝑘∆𝐻𝑙 +⋯             (B-4)                                                                                                              

 

By utilising the Legendre transform relations 𝜀𝑖𝑗 = −(𝜕𝐺/ 𝜕𝜎𝑖𝑗)|𝐻
 and 𝐵𝑘 = −(𝜕𝐺/ 𝜕𝐻𝑘)|𝜎  from 

equation (B-4) and truncating the polynomial expansion according to the conclusions from the 

experimental results of a giant magnetostrictive compound material Tb0.27Dy0.73Fe1.95 that the strain 

is the function of the magnetic field with only even powers and thus the material constant tensors of 

odd orders, such as the three order piezomagnetic coefficient tensor, must vanish from the series 

expansion, the constitutive relations can be derived as: 

 

𝜀𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙 +𝑚𝑖𝑗𝑘𝑙𝐻𝑘𝐻𝑙 + 𝑟𝑖𝑗𝑘𝑙𝑚𝑛𝜎𝑘𝑙𝐻𝑚𝐻𝑛                                   (B-5) 

𝐵𝑘 = 𝜇𝑘𝑙𝐻𝑙 +𝑚𝑘𝑙𝑚𝑛𝜎𝑚𝑛𝐻𝑙 + 𝑟𝑘𝑙𝑚𝑛𝑝𝑞𝜎𝑚𝑛𝜎𝑝𝑞𝐻𝑙                               (B-6) 

 

where 𝑠𝑖𝑗𝑘𝑙 is the elastic compliance tensor, 𝑚𝑖𝑗𝑘𝑙 the field magnetostrictive modulus tensor, 𝑟𝑖𝑗𝑘𝑙𝑚𝑛 

the field magnetoelastic modulus tensor, 𝜇𝑘𝑙 the permeability tensor.  

 

In one-dimensional problem, the constitutive relations can be simplified as 

  

𝜀 = 𝑠𝜎 +𝑚𝐻2 + 𝑟𝜎𝐻2                                                                        (B-7) 

𝐵 = 𝜇𝐻 +𝑚𝜎𝐻 + 𝑟𝜎2𝐻                                                                      (B-8) 

 

and the magnetostrictive modulus 𝑚 and magnetoelastic modulus 𝑟 can be calculated as 

 

𝑚 =
𝑑̃0

2𝐻̃0
                                                                                                 (B-9) 

𝑟 =
1

𝜎
(
𝑑̃

2𝐻̃
−

𝑑̃0

2𝐻̃0
)                                                                                 (B-10) 

 

where 𝑑 = (𝜕𝜀 𝜕𝐻⁄ )| 𝜎 indicates the piezomagnetic coefficient, and the waves above d and H indicate 

the peak values of these two parameters and the subscript “0” indicate the values under no external 

pre-stress, which can all be obtained based on relevant experiment results. 
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In three-dimensional problem, for an isotropic material as example, the modulus must be calculated 

respectively as (where 𝛿𝑖𝑗 is the Kronecker delta) 

 

𝑚𝑖𝑗𝑘𝑙 =
𝑚1111−𝑚1122

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑙) + 𝑚1122𝛿𝑖𝑗𝛿𝑘𝑙                       (B-11) 

𝑟𝑖𝑗𝑘𝑙𝑚𝑛 =
𝐶

𝜇
(𝑚𝑖𝑗𝑝𝑙𝑚𝑝𝑘𝑚𝑛 +𝑚𝑖𝑗𝑘𝑝𝑚𝑝𝑙𝑚𝑛)                                        (B-12) 

 

by measuring 𝑚1111 and 𝑚1122 denoting respectively the strains caused by magnetic field of per unit 

in the directions along and perpendicular to the external magnetic field, and also by characterizing the 

dimensionless coefficient C in terms of the magnetoelastic modulus in the one-dimensional cases. 

 

By comparing the calculation results with those from experiments, it can be found from Fig.B.1 [92] 

that the SS model presents good agreements only under the region of low and moderate magnetic 

fields and high pre-stress. The obvious deficiencies are that it cannot describe the saturation 

magnetostriction under intensive magnetic fields and it becomes unavailable when applied small pre-

stresses. 

 

Figure B.1 Magnetostriction curves by experiments and the SS model 

 

 

The hyperbolic tangent (HT) model 

This model utilises the hyperbolic tangent magnetic field dependence terms by expanding the Gibbs 

free energy function as 
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𝐺 =
1

2
𝜇𝑚𝑛𝐻𝑚𝐻𝑛 +

1

2
𝑠𝑖𝑗𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙 +

1

2𝑘2
𝑡𝑎𝑛ℎ2(𝑘|𝐻|)𝑟𝑖𝑗𝑘𝑙𝑚𝑛𝜎𝑖𝑗𝜎𝑘𝑙

𝐻𝑚𝐻𝑛
|𝐻|2

 

+
1

𝑘2
𝑡𝑎𝑛ℎ2(𝑘|𝐻|)𝑚𝑚𝑛𝑖𝑗𝜎𝑖𝑗

𝐻𝑚𝐻𝑛
|𝐻|2

 

(B-13) 

 

where 𝑘 = 1/𝐻̃  is a relaxion parameter to make independent variable of the hyperbolic function 

dimensionless, and 𝐻̃ the external magnetic field corresponding to the peak piezomagnetic coefficient 

defined in the previous section. 

 

Then, by utilising the Legendre transform relations showed in the previous section, the constitutive 

laws can be obtained for one-dimensional problems as 

 

𝜀 = 𝑠𝜎 +
1

𝑘2
𝑚𝑡𝑎𝑛ℎ2(𝑘𝐻) +

1

𝑘2
𝑟𝜎𝑡𝑎𝑛ℎ2(𝑘𝐻)                                  (B-14) 

𝐵 = 𝜇𝐻 +
2

𝑘
𝑚𝜎

𝑠𝑖𝑛ℎ (𝑘𝐻)

𝑐𝑜𝑠ℎ3(𝑘𝐻)
+
1

𝑘
𝑟𝜎2

𝑠𝑖𝑛ℎ (𝑘𝐻)

𝑐𝑜𝑠ℎ3(𝑘𝐻)
                                       (B-15) 

 

And the magnetostrictive modulus 𝑚 and magnetoelastic modulus 𝑟 can be obtained as 

 

𝑚 =
1

𝑡𝑎𝑛ℎ(1)(1−𝑡𝑎𝑛ℎ2(1))

𝑑̃0

2𝐻̃0
                                                                (B-16) 

𝑟 =
1

2𝑡𝑎𝑛ℎ(1)(1−𝑡𝑎𝑛ℎ2(1))

1

𝜎
(
𝑑̃

2𝐻̃
−

𝑑̃0

2𝐻̃0
)                                                 (B-17) 

 

From the figure of comparisons between the results from experiments and the HT model (Fig.B.2) 

[92], one can see that the magnetostriction saturations in the magnetostrictive material in the region of 

intense magnetic fields can be simulated by this model, but there are large discrepancies between the 

experimental and predicted results (reach to overestimation of about 40% when under large fields and 

compressive pre-stress of 65.4 MPa). 
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Figure B.2 Magnetostriction curves by experiments and the HT model 

 

The density of domain switching (DDS) model 

This model is build based on the physical truth that the switching magnetic domains in the material 

under external magnetic field or mechanical stress will yield the magnetostriction, and on the 

assumption that a density function with normal distribution can be used to express the relation 

between the magnetic field and the density of the domain switching, defined by the quantity of the 

magnetic domains switched by per unit magnetic field. The derivation of the model constitutive 

relations in 1D case starts from expressing the piezomagnetic coefficient by means of a magnetic 

domain switching density function as (where 𝜎𝑐𝑟 is the inherent critical stress of domain switching): 

 

𝑑 =
𝜕𝜀

𝜕𝐻
|
𝜎
= 𝑑̃𝑒𝑥𝑝 [−

(|𝐻| 𝐻̃⁄ −1)2

𝜎𝑐𝑟 𝜎⁄
]                                                                               (B-18) 

 

Then, based on the decomposition of the total strain as the sum of the elastic strain 𝜀𝑒  and the 

mechanical-magnetic coupling strain 𝜀𝐻 (which can be given by integration of the expression of d) 

and the magnetic flux density as the sum of the magnetization part and the mechanical-magnetic 

coupling part, the expression of the Gibbs free energy can be derived by the similar method of Hom et 

al [93] for electrostrictive materials as (where 𝐺0(𝐻) = ∫ 𝜇𝐻𝑑𝐻
𝐻

0
): 

 

𝐺 = 𝐺0(𝐻) +
1

2
𝑠𝜎2 +

√𝜋

2
∫ 𝐻̃𝑑̃√

𝜎𝑐𝑟

𝜎
{𝑒𝑟𝑓 [√

𝜎

𝜎𝑐𝑟
(
|𝐻|

𝐻̃
− 1)] − 𝑒𝑟𝑓 (−√

𝜎

𝜎𝑐𝑟
)} 𝑑𝜎

𝜎

0
    (B-19) 

 

And the constitutive equations can be obtained by using the Legendre transform as:  

 

𝜀 = 𝑠𝜎 +
√𝜋

2
𝐻̃𝑑̃√

𝜎𝑐𝑟

𝜎
{𝑒𝑟𝑓 [√

𝜎

𝜎𝑐𝑟
(
|𝐻|

𝐻̃
− 1)] − 𝑒𝑟𝑓 (−√

𝜎

𝜎𝑐𝑟
)}                                   (B-20) 
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𝐵 = 𝜇𝐻 +
𝐻

|𝐻|
∫ 𝑑̃𝑒𝑥𝑝 [−

(|𝐻| 𝐻̃⁄ −1)2

𝜎𝑐𝑟 𝜎⁄
] 𝑑𝜎

𝜎

0
                                                                   (B-21) 

 

From the figure of comparisons between the results from experiments and the DDS model (Fig.B.3) 

[92], one can see that this model can simulate the experimental curves more effectively than the two 

above models and capture the characteristics of the mechanism of the magnetiomechanical coupling in 

a one-dimension case problem for the magnetostrictive material, such as the saturation 

magnetostriction under high magnetic fields and the notable magnetoelastic dependence on the 

external stress. But the predicted results are about 30% underestimated in the region of high magnetic 

fields when the compressive pre-stress is 65.4 MPa. 

 

FigureB.3 Magnetostriction curves by experiments and the DDS model 

 

 

The Zheng-Liu model 

This model, proposed by Xiaojing Zheng and Xin’en Liu based on a more adequate capture of the 

nonlinear main magnetoelastic coupling characteristics in the magnetostrictive materials [94,95], can 

overcome the deficiencies presented by the models above. The model is built by taking into account 

some important modifications and employments, such as reserving more high-order terms in the 

Taylor series expansion of the Gibbs free energy function, relating the pre-stress induced nonlinear 

strain to the magnetic domain rotations and describing the magnetization curve of no external stress by 

using the Langevin function. To be detailed based on the total differentiation of the Gibbs free energy 

function with stress 𝜎𝑖𝑗 and magnetization 𝑀𝑘  as the independent variables without considering the 

heat effect term: 

 

𝑑𝐺 = −𝜀𝑖𝑗𝑑𝜎𝑖𝑗 + 𝜇0𝐻𝑘𝑑𝑀𝑘                                                               (B-22) 

 



 97 

and based on the decomposition of the total strain 𝜀𝑖𝑗 as the sum of the elastic strain produced by a 

pre-stress 𝜀𝑖𝑗
0 (𝜎𝑘𝑙), which can be obtained by mechanical constitutive equations, and the magneto-

elastic coupling strain 𝜀𝑖𝑗
1 (𝑀𝑘 , 𝜎𝑚𝑛), which can be obtained from the coupling terms of the function of 

G, and also the analogous decomposition of the total magnetic field 𝐻𝑘 = 𝐻𝑘
0(𝑀𝑙) + 𝐻𝑘

1(𝑀𝑙, 𝜎𝑚𝑛), the 

constitutive relations can be derived as: 

 

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 + (𝑚𝑖𝑗𝑘𝑙 −
𝑆𝑖𝑗𝑚𝑛
(𝑚)

𝜎𝑚𝑛

𝑀𝑠
2 𝛿𝑘𝑙)𝑀𝑘𝑀𝑙                                  (B-23) 

𝐻𝑘 = 𝑓𝑘
−1(𝑀𝑙) − 𝜇0

−1 (2𝑚𝑖𝑗𝑘𝑙𝜎𝑖𝑗 −
𝑆𝑖𝑗𝑚𝑛
(𝑚)

𝜎𝑖𝑗𝜎𝑚𝑛

𝑀𝑠
2 𝛿𝑘𝑙)𝑀𝑙                   (B-24) 

 

In which, the fourth-order isotropic tensors and the inverse function for 3-D case can be expressed as: 

 

𝑆𝑖𝑗𝑘𝑙 =
1

𝐸
[
1+𝜈

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) − 𝜈𝛿𝑖𝑗𝛿𝑘𝑙]                                        (B-25) 

𝑆𝑖𝑗𝑚𝑛
(𝑚)

=
𝜆𝑠

𝜎𝑠
[
3

4
(𝛿𝑖𝑚𝛿𝑗𝑛 + 𝛿𝑖𝑛𝛿𝑗𝑚) −

1

2
𝛿𝑖𝑗𝛿𝑚𝑛]                                    (B-26) 

𝑚𝑖𝑗𝑘𝑙 =
𝜆𝑠

𝑀𝑠
2 [
3

4
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) −

1

2
𝛿𝑖𝑗𝛿𝑘𝑙]                                         (B-27) 

𝑓𝑘
−1(𝑀𝑙) =

1

𝑘𝑀
𝑓−1 (

𝑀

𝑀𝑠
)𝛿𝑘𝑙𝑀𝑙                                                            (B-28) 

 

where E is the Young’s Modulus, 𝜈 the Poisson’s Ratio, 𝜆𝑠  the saturation magnetostrictive strain, 

𝜎𝑠 = 𝜆𝑠𝐸𝑠𝐸 (𝐸𝑠 − 𝐸)⁄  where 𝐸𝑠 denotes the intrinsic Young’s Modulus, 𝑘 = 𝜒𝑚 𝑀𝑠⁄  where 𝜒𝑚 is the 

initial susceptibility and 𝑀𝑠 is the saturation magnetization, 𝑓(𝑥) from the inverse 𝑓𝑘
−1(𝑀𝑙) has various 

choices, such as the hyperbolic tangent function 𝑓(𝑥) = 𝑡𝑎𝑛ℎ (𝑥), which is used in the D-H model, 

and the Langevin function 𝑓(𝑥) = 𝑐𝑜𝑡ℎ(𝑥) − 1/𝑥, which is adopted in the Zheng-Liu model due to its 

clear physical background based on the Boltzmann statistics [64] and possibility of better description 

of the magnetization curve.   

 

From the comparison between the results from the numerical model and experiments for a 1-D 

Terfenol-D in Fig.B.4 [94], one can see that the results have a great coincidence between each other 

under various applied compressive pre-stress in both low and high magnetic field regions, which 

demonstrates a wider applicability and higher accuracy than the models above, and also a more 

effective characterization for the effect of the axial pre-stress or in-plane residual stress on the material 

characteristic curves in the further studies of the literature. 
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Figure B.4 Comparison of the predicted magnetostrictive strain curves with the experimental data for a Terfenol-

D rod under various compressive pre-stress levels (Hysteresis loops: experimental; solid lines: predicted) 

 

B.2 Hysteresis models 

The Preisach model is one of the earliest tools used to model the hysteresis of ferromagnetic materials 

by employing a hysteresis operator to take the value ±1 depending on the current state and history 

based on the previous state, and improved by taking into account the stress effect recently to model the 

magnetoelastic behavior of magnetostrictive materials. However, they are purely mathematical and do 

not address the underlying physics of the problem [96]. 

The original Jile-Atherton model has also been generalized to a vector model [97], and extended to 

incorporate the effect of stress by Li and Jiles [98], the magnetocrystalline anisotropy [99] and the 

temperature effects [100]. 

There are also many hysteresis models such as those proposed by Smith et al [101], Falk [102] and 

Armstrong [103]. They all have their particular advantages and limitations respectively. 
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Appendix C. Modified Newton-Raphson method 

In the nonlinear case, since the coefficients 𝑣𝑆, 𝑞 and c𝐵 = c𝐻 + 𝑞𝑡𝑣𝑆𝑞 are all functions of the 𝑩 and 

as well as those of the unknown variable 𝒂 according to equations (2-4-57) to (2-4-59) and (2-4-81), 

the stiffness matrix components 𝐾𝑢𝑢, 𝐾𝑢𝑎, 𝐾𝑎𝑢  and 𝐾𝑎𝑎 in the equation (2-4-28) are thus not constant. 

Therefore, in order to solve the problem equations system an iteration method must be implemented. 

 

In this paper’s study, we choose the Newton-Raphson method with some modifications for the 

convenience of calculating the tangent stiffness matrix in the problem resolution. Some definitions of 

the magnetostrictive phase part of the equations system are made as follows before the method is 

employed: 

 

𝑋 = [
{𝒖}
{𝑎𝑧}

] = [𝑥1 𝑥2 … 𝑥𝑛]𝑇                                                                                   (C-1) 

 

                  𝐴 = [
𝐾𝑢𝑢 𝐾𝑢𝑎
𝐾𝑎𝑢 𝐾𝑎𝑎

] = [

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

]                                                                                      (C-2) 

𝑏 = [
0
𝐽𝑠
] = [𝑏1 … 𝑏𝑛]

𝑇                                                                                                         (C-3) 

𝐹(𝑋) = 𝐴𝑋 − 𝑏 = [

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 − 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 − 𝑏2

⋯
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 − 𝑏𝑛

] = [

𝐹1(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)
𝐹2(𝑥1, 𝑥2,⋯ , 𝑥𝑛)

⋯
𝐹𝑛(𝑥1, 𝑥2,⋯ , 𝑥𝑛)

]           (C-4) 

 

  

𝜕𝐹(𝑋)

𝜕𝑋
=

[
 
 
 
 
 
𝜕𝐹1

𝜕𝑥1

𝜕𝐹1

𝜕𝑥2
𝜕𝐹2

𝜕𝑥1

𝜕𝐹2

𝜕𝑥2

⋯
𝜕𝐹1

𝜕𝑥𝑛

⋯
𝜕𝐹2

𝜕𝑥𝑛
⋯ ⋯
𝜕𝐹𝑛

𝜕𝑥1

𝜕𝐹𝑛

𝜕𝑥2

⋯ ⋯

⋯
𝜕𝐹𝑛

𝜕𝑥𝑛]
 
 
 
 
 

                                                                                          (C-5) 

 

 

We assume that  𝑋𝑘 indicates the value of the unknown vector X in the step k of the iteration process. 

The detailed calculation procedure is as follows: 

 

Step 1:  Set the initial value of the unknown variable vector to be zero as 𝑋0 = 0 

Step 2: According to the Newton’s equation [104] we have 𝐹(𝑋𝑘+1) − 𝐹(𝑋𝑘) =
𝜕𝐹(𝑋)

𝜕𝑋
|
𝑋=𝑋𝑘

∙ (𝑋𝑘+1 −

𝑋𝑘), and by assuming 𝐹(𝑋𝑘+1) = 0, we can obtain the value of the vector X in the next iteration step 

by calculating as  𝑋𝑘+1 = 𝑋𝑘 − (
𝜕𝐹(𝑋)

𝜕𝑋
|
𝑋=𝑋𝑘

)−1 ∙ 𝐹(𝑋𝑘) 
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Step 3: Check if the relative error expression in this iteration step satisfies the condition 𝜀 =

𝑛𝑜𝑟𝑚(|
𝑋𝑘+1−𝑋𝑘

𝑋𝑘
| , 1) < 1𝑒 − 5. If not, return to Step 2 to calculate the next vector X value otherwise 

go to Step 4. 

Step 4: Take 𝑋 = 𝑋𝑘+1 as the solution of the problem 𝐴𝑋 − 𝑏 = 0 and terminate the iteration. 

 

The process of iteration can be understood in a visual way. Since it is displayed that in every step of 

the iteration we calculate a new value of 𝑩 by utilizing the value of the last step, which can be 

reasonably considered as a new value is obtained through a function F(𝑩), therefore the entire iteration 

procedure can be equivalently treated as solving an equation in form of F(𝑩)= 𝑩 (in which it’s not 

necessary to know the exact expression of F(𝑩)). When we start from that 𝑩 is zero, the iteration 

process can be visually presented as:  

 

 
Figure C.1 An image indicating the procedure of iteration in the problem 

 

Thus it can be seen that a determined value of B can be assuredly achieved finally. 

 

Calculation of the tangent stiffness matrix   
𝝏𝑭(𝑿)

𝝏𝑿
|
𝑿=𝑿𝒌

 

 

Due to the difficulty of knowing the exact the expression of the function F, it is impossible to calculate 

the tangent stiffness matrix 
𝜕𝐹(𝑋)

𝜕𝑋
|
𝑋=𝑋𝑘

directly. Hence, we develop an approach to obtain an 

approximate calculation result of the matrix. 

 

For each element in the tangent stiffness matrix expression (C-5) with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 , we can derive that 

 

𝜕𝐹𝑖

𝜕𝑥𝑗
= 𝑥1

𝜕𝑎𝑖1

𝜕𝑥𝑗
+ 𝑥2

𝜕𝑎𝑖2

𝜕𝑥𝑗
+⋯+ 𝑥𝑗

𝜕𝑎𝑖𝑗

𝜕𝑥𝑗
+ 𝑎𝑖𝑗 + 𝑥𝑗+1

𝜕𝑎𝑖,𝑗+1

𝜕𝑥𝑗
+⋯+ 𝑥𝑛

𝜕𝑎𝑖𝑛

𝜕𝑥𝑗
−

𝜕𝑏𝑖

𝜕𝑥𝑗
= 𝑎𝑖𝑗 + ∑ (𝑥𝑚 ∙

𝑛
𝑚=1

𝜕𝑎𝑖𝑚

𝜕𝑥𝑗
)                                                                                                                                            (C-6) 

 

Due to the difficulty to obtain the exact expressions of the terms 
𝜕𝑎𝑖𝑚

𝜕𝑥𝑖
, we replace the partial derivative 

terms with the central difference quotients by using an infinitesimal ∆ when calculating: 
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𝜕𝑎𝑖𝑚

𝜕𝑥𝑗
≈

𝑎𝑖𝑚(𝑥𝑗+∆)−𝑎𝑖𝑚(𝑥𝑗−∆)

2∆
                                                         (C-7) 

 

Thus for each 1 ≤ 𝑖, 𝑗,𝑚 ≤ 𝑛 , we can use 𝑋𝑘,𝑗1 = [𝑥1 𝑥2 … 𝑥𝑗 + ∆ … 𝑥𝑛]𝑇  and 𝑋𝑘,𝑗2 =

[𝑥1 𝑥2 … 𝑥𝑗 − ∆ … 𝑥𝑛]𝑇 to calculate the subsequent variables along the chain as: 

 

𝑋𝑘,𝑗1, 𝑋𝑘,𝑗2 → 𝐵̅(𝑋𝑘,𝑗1), 𝐵̅(𝑋𝑘,𝑗2) → 𝑞 (𝐵̅(𝑋𝑘,𝑗1)) , 𝑞 (𝐵̅(𝑋𝑘,𝑗2)) , 𝑣
𝑆 (𝐵̅(𝑋𝑘,𝑗1)) , 𝑣

𝑆 (𝐵̅(𝑋𝑘,𝑗2))

→ [
𝐾𝑢𝑢 (𝑞 (𝐵̅(𝑋𝑘,𝑗1)) , 𝑣

𝑆 (𝐵̅(𝑋𝑘,𝑗1))) 𝐾𝑢𝑎 (𝑞 (𝐵̅(𝑋𝑘,𝑗1)))

𝐾𝑎𝑢 (𝑞 (𝐵̅(𝑋𝑘,𝑗1))) 𝐾𝑎𝑎 (𝑣
𝑆 (𝐵̅(𝑋𝑘,𝑗1)))

],  

[
𝐾𝑢𝑢(𝑞 (𝐵̅(𝑋𝑘,𝑗2)) , 𝑣

𝑆 (𝐵̅(𝑋𝑘,𝑗2))) 𝐾𝑢𝑎 (𝑞 (𝐵̅(𝑋𝑘,𝑗2)))

𝐾𝑎𝑢 (𝑞 (𝐵̅(𝑋𝑘,𝑗2))) 𝐾𝑎𝑎 (𝑣
𝑆 (𝐵̅(𝑋𝑘,𝑗2)))

] → 𝑎𝑖𝑚(𝑋𝑘,𝑗1), 𝑎𝑖𝑚(𝑋𝑘,𝑗2)                           

(C-8) 

  

Thus, we obtain the values of the matrix A, by using which we can subsequently obtain the values of 

the partial derivative terms in (C-7) and finally calculate the tangent stiffness matrix.  
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Appendix D. Multilayer analytical modelling 

For an ME multilayer composite in 2D case, by applying the plane stress condition and the 1-D 

assumptions as introduced in the Chapter 2.3.2, we can obtain the wave equation of the structure based 

on the mechanical equilibrium equation (2-2-10) as derived in the Chapter 2.3.2: 

 

𝜕2𝑢𝑥

𝜕𝑡2
= (

𝜔

𝑘
)
2 𝜕2𝑢𝑥

𝜕𝑥2
= 𝑣̅2

𝜕2𝑢𝑥

𝜕𝑥2
                                                                                                 (D-1) 

 

where 𝑢𝑥 indicates the mechanical displacement of the composite along the longitudinal (L) direction 

(x), ω the angular frequency of the excitation signal, k the wave number of the composite longitudinal 

vibration, 𝑣̅ = √

𝑛

𝑠𝑖𝑖
𝐻+

1−𝑛

𝑠𝑗𝑗
𝐸

𝜌̅
 the mechanical wave velocity along L direction and 𝑛 =

𝑚𝑡𝑚′   

𝑚𝑡𝑚′   +(𝑚−1)𝑡𝑝′
, 

𝜌̅ = 𝑛𝜌𝑚 + (1 − 𝑛)𝜌𝑝, i ,j=1 or 3 indicate the magnetization and polarization direction is transverse or 

longitudinal, respectively.  

 

The wave equation above has the general solution as: 

𝑢𝑥(𝑥) =
𝑢1̇

𝑗𝜔
𝑐𝑜𝑠(𝑘𝑥) +

𝑢2̇−𝑢1̇𝑐𝑜𝑠 (𝑘𝐿)

𝑗𝜔𝑠𝑖𝑛 (𝑘𝐿)
𝑠𝑖𝑛 (𝑘𝑥)                                                                 (D-2) 

where 𝑢1̇ = 𝑗𝜔𝑢(0), 𝑢2̇ = 𝑗𝜔𝑢(𝐿), and 𝑗 = √−1 

 

And we can obtain the strains on the boundary of the composite: 

 

𝑆11(0) =
𝑢2̇−𝑢1̇𝑐𝑜𝑠 (𝑘𝐿)

𝑗𝑣̅𝑠𝑖𝑛 (𝑘𝐿)
, 𝑆11(𝐿) =

𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿)−𝑢1̇

𝑗𝑣̅𝑠𝑖𝑛 (𝑘𝐿)
                                                        (D-3) 

 

In LT mode: 

Assuming to apply two surface forces along the longitudinal direction on both ends of the composite, 

we can obtain their expressions by applying the constitutive laws (2-3-10) for LT mode in 2D case as: 

                   𝐹(0) = −𝑚𝑡𝑚′𝑤𝑇11
𝑚(0) − (𝑚 − 1)𝑡𝑝′𝑤𝑇11

𝑝 (0)

= −𝑚𝑡𝑚′𝑤 (
𝑆11
𝑚(0)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝′𝑤 (

𝑆11
𝑝 (0)

𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2) 
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= 𝑤(−𝑚𝑡𝑚′(
𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝′(

𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2)) 

= (
𝑚𝑡𝑚′𝑤

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻 +

(𝑚 − 1)𝑡𝑝′𝑤

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠11
𝐸 ) (𝑢1̇ − 𝑢2̇) + 𝑡𝑎𝑛 (

𝑘𝐿

2
)(
𝑚𝑡𝑚′𝑤

𝑗𝑣̅𝑠33
𝐻 +

(𝑚 − 1)𝑡𝑝′𝑤

𝑗𝑣̅𝑠11
𝐸 )𝑢1̇

+
𝑚𝑡𝑚′𝑤𝑑33

𝑚

𝑠33
𝐻 𝐻𝑎𝑐 +

(𝑚 − 1)𝑡𝑝′𝑤𝑑31
𝑝

𝑠11
𝐸 𝐸2 

= 𝑍1𝑢1̇ + 𝑍2(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈       (D-4) 

 

                   𝐹(𝐿) = −𝑚𝑡𝑚′𝑤𝑇11
𝑚(𝐿) − (𝑚 − 1)𝑡𝑝′𝑤𝑇11

𝑝 (𝐿)

= −𝑚𝑡𝑚′𝑤 (
𝑆11
𝑚(𝐿)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝′𝑤 (

𝑆11
𝑝 (𝐿)

𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2) 

= 𝑤(−𝑚𝑡𝑚′ (
𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝′ (

𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2)) 

= (
𝑚𝑡𝑚′𝑤

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻 +

(𝑚 − 1)𝑡𝑝′𝑤

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠11
𝐸 ) (𝑢1̇ − 𝑢2̇) − 𝑡𝑎𝑛 (

𝑘𝐿

2
)(
𝑚𝑡𝑚′𝑤

𝑗𝑣̅𝑠33
𝐻 +

(𝑚 − 1)𝑡𝑝′𝑤

𝑗𝑣̅𝑠11
𝐸 )𝑢2̇

+
𝑚𝑡𝑚′𝑤𝑑33

𝑚

𝑠33
𝐻 𝐻𝑎𝑐 +

(𝑚 − 1)𝑡𝑝′𝑤𝑑31
𝑝

𝑠11
𝐸 𝐸2 

= −𝑍1𝑢2̇ + 𝑍2(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈     (D-5) 

where 𝑣̅ = √
𝑛

𝑠33
𝐻 +

1−𝑛

𝑠11
𝐸

𝜌̅
, 𝑍1 = 𝑗𝑤(𝑚𝑡𝑚′ + (𝑚 − 1)𝑡𝑝′)𝜌̅𝑣̅ 𝑡𝑎𝑛 (

𝑘𝐿

2
), 𝑍2 =

𝑤(𝑚𝑡𝑚′+(𝑚−1)𝑡𝑝′)𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
. 

In the series connectivity type, the output voltage 𝑈 = (𝑚 − 1)𝑡𝑝′𝐸2 , thus 𝜑𝑝′ =
𝑤𝑑31

𝑝

𝑠11
𝐸 , and the 

coupling current through the piezoelectric layers can be calculated as [40]: 

     𝐼𝑝 =
𝑑

𝑑𝑡
∫ 𝑤𝐷2𝑑𝑥
𝐿

0
= 𝑤

𝑑

𝑑𝑡
∫ (𝑑31

𝑝
(
𝑆11
𝑝 (𝑥)

𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2) + 𝜀33

𝑇 𝐸2)𝑑𝑥
𝐿

0
= 𝑤

𝑑

𝑑𝑡
∫ (𝑑31

𝑝 𝑆11
𝑝 (𝑥)

𝑠11
𝐸 + 𝜀33

𝑆 𝐸2)𝑑𝑥
𝐿

0
=

𝑤𝑑31
𝑝

𝑠11
𝐸

𝑑(𝑢(𝐿)−𝑢(0))

𝑑𝑡
+ 𝑗𝜔 ∙ 𝑤𝐿𝜀33

𝑆 𝐸2 = −𝜑𝑝′(𝑢1̇ − 𝑢2̇) + 𝑗𝜔𝐶𝑇𝑈                                                                 (D-6) 

where 𝐶𝑇 =
𝑤𝐿𝜀33

𝑆

(𝑚−1)𝑡𝑝′
, 𝜀33

𝑆 = 𝜀33
𝑇 −

𝑑31
𝑝 2

𝑠11
𝐸  

In the parallel connectivity type, the output voltage 𝑈 = 𝑡𝑝′𝐸2, thus 𝜑𝑝′ =
𝑤(𝑚−1)𝑑31

𝑝

𝑠11
𝐸 , and the coupling 

current through the piezoelectric layers can be calculated as [40]: 
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𝐼𝑝 =
(𝑚−1)𝑑

𝑑𝑡
∫ 𝑤𝐷2𝑑𝑥
𝐿

0
= 𝑤(𝑚 − 1)

𝑑

𝑑𝑡
∫ (𝑑31

𝑝
(
𝑆11
𝑝 (𝑥)

𝑠11
𝐸 −

𝑑31
𝑝

𝑠11
𝐸 𝐸2) + 𝜀33

𝑇 𝐸2)𝑑𝑥
𝐿

0
= 𝑤(𝑚 −

1)
𝑑

𝑑𝑡
∫ (𝑑31

𝑝 𝑆11
𝑝 (𝑥)

𝑠11
𝐸 + 𝜀33

𝑆 𝐸2)𝑑𝑥
𝐿

0
=

𝑤(𝑚−1)𝑑31
𝑝

𝑠11
𝐸

𝑑(𝑢(𝐿)−𝑢(0))

𝑑𝑡
+ 𝑗𝜔 ∙ 𝑤(𝑚 − 1)𝐿𝜀33

𝑆 𝐸2 = −𝜑𝑝′(𝑢1̇ − 𝑢2̇) +

𝑗𝜔𝐶𝑇𝑈                           (D-7) 

where 𝐶𝑇 =
𝑤(𝑚−1)𝐿𝜀33

𝑆

𝑡𝑝′
, 𝜀33

𝑆 = 𝜀33
𝑇 −

𝑑31
𝑝 2

𝑠11
𝐸  

By applying the free-free boundary condition (F(0)=F(L)=0) and the open circuit condition (𝐼𝑝 = 0) 

we can derive the expression of ME coefficient in LT mode as: 

𝛼𝑉 = |
𝑈

𝐻𝑎𝑐
| = |

𝜑𝑚′𝜑𝑝′

𝜑𝑝′
2+𝑗𝜔𝐶𝑇𝑍𝑚

|                                                     (D-8) 

where 𝑍𝑚 =
𝑍1

2
+ 𝑍2 

 

In LL mode: 

In the series electrical connectivity type, the output voltage can be expressed as: 

 

𝑈 = ∫ 𝐸1𝑑𝑥
𝐿(𝑚−1)

0
= ∫ (

𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2𝐷1 −

𝑑33
𝑝

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 𝑆11

𝑝
)𝑑𝑥 =

𝐿(𝑚−1)

0

𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 𝐿(𝑚 − 1)𝐷1 +

𝑑33
𝑝

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 ∙

𝑚−1

𝑗𝜔
(𝑢1̇ − 𝑢2̇) = 𝛽33̅̅ ̅̅ (𝑚 − 1)(𝐿𝐷1 +

𝑑33
𝑝

𝑠33
𝐸 ∙

1

𝑗𝜔
(𝑢1̇ − 𝑢2̇))       (D-9)                                                                     

where 𝛽33̅̅ ̅̅ =
𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 

 

Thus assuming to apply two surface forces along the longitudinal direction on both ends of the 

composite, we can obtain their expressions by applying the constitutive laws for LL mode in 2D case 

as: 

                                  𝐹(0) = −𝑚𝑡𝑚
′ 𝑤𝑇11

𝑚(0) − (𝑚 − 1)𝑡𝑝
′𝑤𝑇11

𝑝 (0)     

= −𝑚𝑡𝑚
′ 𝑤(

𝑆11
𝑚(0)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′𝑤(
𝑆11
𝑝 (0)

𝑠33
𝐸 −

𝑑33
𝑝

𝑠33
𝐸 𝐸1) 

= 𝑤(−𝑚𝑡𝑚
′ (

𝑆11
𝑚(0)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′ (−𝛽33̅̅ ̅̅
𝑑33
𝑝

𝑠33
𝐸 𝐷1 + (

1

𝑠33
𝐸 + 𝛽33̅̅ ̅̅ (

𝑑33
𝑝

𝑠33
𝐸 )

2

)𝑆11
𝑝 (0))) 
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= −
𝑤𝑚𝑡𝑚

′

𝑠33
𝐻 ∙

𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿)
+
𝑚𝑡𝑚

′ 𝑤𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐

+
(𝑚 − 1)𝑡𝑝

′𝑤𝛽33̅̅ ̅̅ 𝑑33
𝑝

𝑠33
𝐸 (

1

𝛽33̅̅ ̅̅ (𝑚 − 1)𝐿
𝑈 −

𝑑33
𝑝

𝑠33
𝐸 𝐿

∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) −

(𝑚 − 1)𝑡𝑝
′𝑤

𝑠33
𝐸 −

𝑑33
𝑝 2

𝜀33
𝑇

∙
𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿)
 

= 𝑍1𝑢1̇ + (𝑍2 +
𝜑𝑝′

2

𝑗𝜔(−𝐶𝑇)
)(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈    (D-10)  

                                                                 

𝐹(𝐿) = −𝑚𝑡𝑚
′ 𝑤𝑇11

𝑚(𝐿) − (𝑚 − 1)𝑡𝑝
′𝑤𝑇11

𝑝 (𝐿) 

                               = −𝑚𝑡𝑚
′ 𝑤(

𝑆11
𝑚(𝐿)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′𝑤(
𝑆11
𝑝 (𝐿)

𝑠33
𝐸 −

𝑑33
𝑝

𝑠33
𝐸 𝐸1) 

= 𝑤(−𝑚𝑡𝑚
′ (

𝑆11
𝑚(𝐿)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝 (−𝛽33̅̅ ̅̅

𝑑33
𝑝

𝑠33
𝐸 𝐷1 + (

1

𝑠33
𝐸 + 𝛽33̅̅ ̅̅ (

𝑑33
𝑝

𝑠33
𝐸 )

2

)𝑆11
𝑝 (𝐿))) 

= −
𝑤𝑚𝑡𝑚

′

𝑠33
𝐻 ∙

𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ sin(𝑘𝐿) ∙ 𝑠33
𝐻 +

𝑚𝑡𝑚
′ 𝑤𝑑33

𝑚

𝑠33
𝐻 𝐻𝑎𝑐

+
(𝑚 − 1)𝑡𝑝

′𝑤𝛽33̅̅ ̅̅ 𝑑33
𝑝

𝑠33
𝐸 (

1

𝛽33̅̅ ̅̅ (𝑚 − 1)𝐿
𝑈 −

𝑑33
𝑝

𝑠33
𝐸 𝐿

∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) −

(𝑚 − 1)𝑡𝑝
′𝑤

𝑠33
𝐸 −

𝑑33
𝑝 2

𝜀33
𝑇

∙
𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ sin(𝑘𝐿) ∙ 𝑠33
𝐻  

= −𝑍1𝑢2̇ + (𝑍2 +
𝜑𝑝′

2

𝑗𝜔(−𝐶𝑇)
)(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈   (D-11) 

 

where 𝑣̅ = √
𝑛

𝑠33
𝐻 +

1−𝑛

𝑠33
𝐸

𝜌̅
, 𝑍1 = 𝑗𝑤(𝑚𝑡𝑚

′ + (𝑚 − 1)𝑡𝑝
′ )𝜌̅𝑣̅ 𝑡𝑎𝑛 (

𝑘𝐿

2
) , 𝑍2 =

𝑤(𝑚𝑡𝑚
′ +(𝑚−1)𝑡𝑝

′ )𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
, 

𝜑𝑚′ =
𝑚𝑡𝑚

′ 𝑤𝑑33
𝑚

𝑠33
𝐻 , 𝜑𝑝′ =

𝑡𝑝
′𝑤

𝐿

𝑑33
𝑝

𝑠33
𝐸 , 𝐶𝑇 =

𝑤𝑡𝑝
′

(𝑚−1)𝐿𝛽33̅̅ ̅̅ ̅ 

And the coupling current induced through the piezoelectric layers can be calculated as [40]: 

 

𝐼𝑝 =
𝑑(𝑤𝑡𝑝

′𝐷1)

𝑑𝑡
= 𝑤𝑡𝑝

′ 𝑗𝜔 (
𝑈

𝑚−1
∙

1

𝐿𝛽33̅̅ ̅̅ ̅−
𝑑33
𝑝

𝑠33
𝐸 𝐿
∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) = −𝜑𝑝′(𝑢1̇ − 𝑢2̇) + 𝑗𝜔𝐶𝑇𝑈         (D-12) 
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By applying the free-free boundary condition (F(0)=F(L)=0) and the open circuit condition (𝐼𝑝 = 0) 

we can derive the expression of ME coefficient in LL mode in series connectivity as: 

 

𝛼𝑉 = |
𝑈

𝐻𝑎𝑐
| = |

𝜑𝑚′𝜑𝑝′

𝑗𝜔𝐶𝑇𝑍𝑚
|                                                            (D-13) 

 

 

In the parallel electrical connectivity type, the output voltage can be expressed as: 

 

𝑈 = ∫ 𝐸1𝑑𝑥
𝐿

0
= ∫ (

𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2𝐷1 −

𝑑33
𝑝

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 𝑆11

𝑝
)𝑑𝑥 =

𝐿

0

𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 𝐿𝐷1 +

𝑑33
𝑝

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 ∙

1

𝑗𝜔
(𝑢1̇ −

𝑢2̇) = 𝛽33̅̅ ̅̅ (𝐿𝐷1 +
𝑑33
𝑝

𝑠33
𝐸 ∙

1

𝑗𝜔
(𝑢1̇ − 𝑢2̇))                                                                              (D-14) 

where 𝛽33̅̅ ̅̅ =
𝑠33
𝐸

𝜀33
𝑇 𝑠33

𝐸 −𝑑33
𝑝 2 

 

Thus assuming to apply two surface forces along the longitudinal direction on both ends of the 

composite, we can obtain their expressions by applying the constitutive laws for LL mode in 2D case 

as: 

 

𝐹(0) = −𝑚𝑡𝑚
′ 𝑤𝑇11

𝑚(0) − (𝑚 − 1)𝑡𝑝
′𝑤𝑇11

𝑝 (0) 

= −𝑚𝑡𝑚
′ 𝑤(

𝑆11
𝑚(0)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′𝑤(
𝑆11
𝑝 (0)

𝑠33
𝐸 −

𝑑33
𝑝

𝑠33
𝐸 𝐸1) 

= 𝑤(−𝑚𝑡𝑚
′ (

𝑆11
𝑚(0)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′ (−𝛽33̅̅ ̅̅
𝑑33
𝑝

𝑠33
𝐸 𝐷1 + (

1

𝑠33
𝐸 + 𝛽33̅̅ ̅̅ (

𝑑33
𝑝

𝑠33
𝐸 )

2

)𝑆11
𝑝 (0))) 

= −
𝑤𝑚𝑡𝑚

′

𝑠33
𝐻 ∙

𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿)
+
𝑚𝑡𝑚

′ 𝑤𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐

+
(𝑚 − 1)𝑡𝑝

′𝑤𝛽33̅̅ ̅̅ 𝑑33
𝑝

𝑠33
𝐸 (

1

𝛽33̅̅ ̅̅ 𝐿
𝑈 −

𝑑33
𝑝

𝑠33
𝐸 𝐿

∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) −

(𝑚 − 1)𝑡𝑝
′𝑤

𝑠33
𝐸 −

𝑑33
𝑝 2

𝜀33
𝑇

∙
𝑢2̇ − 𝑢1̇ 𝑐𝑜𝑠(𝑘𝐿)

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿)
 

= 𝑍1𝑢1̇ + (𝑍2 +
𝜑𝑝′

2

𝑗𝜔(−𝐶𝑇)
)(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈                                                           (D-15) 
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𝐹(𝐿) = −𝑚𝑡𝑚
′ 𝑤𝑇11

𝑚(𝐿) − (𝑚 − 1)𝑡𝑝
′𝑤𝑇11

𝑝 (𝐿) 

= −𝑚𝑡𝑚
′ 𝑤(

𝑆11
𝑚(𝐿)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′𝑤(
𝑆11
𝑝 (𝐿)

𝑠33
𝐸 −

𝑑33
𝑝

𝑠33
𝐸 𝐸1) 

= 𝑤(−𝑚𝑡𝑚
′ (

𝑆11
𝑚(𝐿)

𝑠33
𝐻 −

𝑑33
𝑚

𝑠33
𝐻 𝐻𝑎𝑐) − (𝑚 − 1)𝑡𝑝

′ (−𝛽33̅̅ ̅̅
𝑑33
𝑝

𝑠33
𝐸 𝐷1 + (

1

𝑠33
𝐸 + 𝛽33̅̅ ̅̅ (

𝑑33
𝑝

𝑠33
𝐸 )

2

)𝑆11
𝑝 (𝐿))) 

= −
𝑤𝑚𝑡𝑚

′

𝑠33
𝐻 ∙

𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻 +

𝑚𝑡𝑚
′ 𝑤𝑑33

𝑚

𝑠33
𝐻 𝐻𝑎𝑐

+
(𝑚 − 1)𝑡𝑝

′𝑤𝛽33̅̅ ̅̅ 𝑑33
𝑝

𝑠33
𝐸 (

1

𝛽33̅̅ ̅̅ 𝐿
𝑈 −

𝑑33
𝑝

𝑠33
𝐸 𝐿

∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) −

(𝑚 − 1)𝑡𝑝
′𝑤

𝑠33
𝐸 −

𝑑33
𝑝 2

𝜀33
𝑇

∙
𝑢2̇ 𝑐𝑜𝑠(𝑘𝐿) − 𝑢1̇

𝑗𝑣̅ 𝑠𝑖𝑛(𝑘𝐿) ∙ 𝑠33
𝐻  

= −𝑍1𝑢2̇ + (𝑍2 +
𝜑𝑝′

2

𝑗𝜔(−𝐶𝑇)
)(𝑢1̇ − 𝑢2̇) + 𝜑𝑚′𝐻𝑎𝑐 + 𝜑𝑝′𝑈                                                             (D-16) 

where 𝑣̅ = √
𝑛

𝑠33
𝐻 +

1−𝑛

𝑠33
𝐸

𝜌̅
, 𝑍1 = 𝑗𝑤(𝑚𝑡𝑚

′ + (𝑚 − 1)𝑡𝑝
′ )𝜌̅𝑣̅ 𝑡𝑎𝑛 (

𝑘𝐿

2
) , 𝑍2 =

𝑤(𝑚𝑡𝑚
′ +(𝑚−1)𝑡𝑝

′ )𝜌̅𝑣̅

𝑗𝑠𝑖𝑛(𝑘𝐿)
, 𝜑𝑚′ =

𝑚𝑡𝑚
′ 𝑤𝑑33

𝑚

𝑠33
𝐻 , 𝜑𝑝′ =

(𝑚−1)𝑡𝑝
′𝑤

𝐿

𝑑33
𝑝

𝑠33
𝐸 , 𝐶𝑇 =

𝑤𝑡𝑝
′ (𝑚−1)

𝐿𝛽33̅̅ ̅̅ ̅  

 

And the coupling current induced through the piezoelectric layers can be calculated as [40]: 

 

𝐼𝑝 =
𝑑(𝑤(𝑚−1)𝑡𝑝

′𝐷1)

𝑑𝑡
= (𝑚 − 1)𝑤𝑡𝑝

′ 𝑗𝜔 (
𝑈

𝐿𝛽33̅̅ ̅̅ ̅ −
𝑑33
𝑝

𝑠33
𝐸 𝐿
∙
1

𝑗𝜔
(𝑢1̇ − 𝑢2̇)) = −𝜑𝑝′(𝑢1̇ − 𝑢2̇) + 𝑗𝜔𝐶𝑇𝑈  (D-17)     

 

By applying the free-free boundary condition (F(0)=F(L)=0) and the open circuit condition (𝐼𝑝 = 0) 

we can derive the expression of ME coefficient in LL mode in series connectivity as: 

 

𝛼𝑉 = |
𝑈

𝐻𝑎𝑐
| = |

𝜑𝑚′𝜑𝑝′

𝑗𝜔𝐶𝑇𝑍𝑚
|                                                                (D-18)        
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