
HAL Id: tel-01630268
https://theses.hal.science/tel-01630268

Submitted on 7 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvement of cross section model in COCAGNE code
of the calculation chain of EDF

Thi Hieu Luu

To cite this version:
Thi Hieu Luu. Improvement of cross section model in COCAGNE code of the calculation chain of
EDF. Mathematical Physics [math-ph]. Université Pierre et Marie Curie - Paris VI, 2017. English.
�NNT : 2017PA066120�. �tel-01630268�

https://theses.hal.science/tel-01630268
https://hal.archives-ouvertes.fr


Thèse de doctorat de
l’Université Pierre et Marie Curie

Spécialité

Mathématiques Appliquées

présentée par

Thi Hieu LUU

pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Amélioration du modèle de sections efficaces dans le code
de cœur COCAGNE de la chaîne de calculs d’EDF

Soutenue le 17/02/2017

Directeur de thèse : M. Yvon MADAY Professeur, Université Pierre et Marie Curie

Encadrants de thèse : M. Matthieu GUILLO Ingénieur - Chercheur, EDF - R&D

M. Pierre GUÉRIN Ingénieur - Chercheur, EDF - R&D

Rapporteurs : M. Anthony NOUY Professeur, École Centrale de Nantes

M. Lars GRASEDYCK Professeur, RWTH Aachen University

Examinateurs : M. Albert COHEN Professeur, Université Pierre et Marie Curie

M. Daniele TOMATIS Chercheur, CEA

M. Andrea ZOIA Chercheur, CEA





Thèse effectuée aux :

Laboratoire Jacques-Louis Lions, UMR 7598

Adresse géographique :

Laboratoire Jacques Louis Lions

3ème étage, tour 15-16, 15-25, 16-26

4 place Jussieu

75005 Paris, France

+33 (0)1 44 27 42 98 (Tél.)

Adresse postale :

Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie

Boîte courrier 187

75252 Paris Cedex 05 France

Département SINETICS, EDF - R&D

Adresse :

Département SINETICS

EDF Lab Paris - Saclay

7, Boulevard Gaspard Monge

92120 Palaiseau, France





Résumé

Afin d’exploiter au mieux son parc nucléaire, la R&D d’EDF est en train de développer une
nouvelle chaîne de calcul pour simuler le cœur des réacteurs nucléaires avec des outils à l’état de
l’art. Ces calculs nécessitent une grande quantité de données physiques, en particulier les sections
efficaces.

Dans la simulation d’un cœur complet, le nombre de valeurs des sections efficaces est de l’ordre de
plusieurs milliards. Ces sections efficaces peuvent être représentées comme des fonctions multivariées
dépendant de plusieurs paramètres physiques. La détermination des sections efficaces étant un calcul
complexe et long, nous pouvons donc les précalculer en certaines valeurs des paramètres (caluls hors
ligne) puis les évaluer en tous points par une interpolation (calculs en ligne). Ce processus demande
un modèle de reconstruction des sections efficaces entre les deux étapes.

Pour réaliser une simulation plus fidèle du cœur dans la nouvelle chaîne d’EDF, les sections
efficaces nécessitent d’être mieux représentées en prenant en compte de nouveaux paramètres. Par
ailleurs, la nouvelle chaîne se doit d’être en mesure de calculer le réacteur dans des situations
plus larges qu’actuellement. Le modèle d’interpolation multilinéaire pour reconstruire les sections
efficaces est celui actuellement utilisé pour répondre à ces objectifs. Néanmoins, avec ce modèle, le
nombre de points de discrétisation augmente exponentiellement en fonction du nombre de paramètres
ou de manière considérable quand on ajoute des points sur un des axes. Par conséquence, le nombre
et le temps des calculs hors ligne ainsi que la taille du stockage des données deviennent problématique.

L’objectif de cette thèse est donc de trouver un nouveau modèle pour répondre aux demandes
suivantes : (i)-(hors ligne) réduire le nombre de précalculs, (ii)-(hors ligne) réduire le stockage de
données pour la reconstruction et (iii)-(en ligne) tout en conservant (ou améliorant) la précision
obtenue par l’interpolation multilinéaire.

D’un point de vue mathématique, ce problème consiste à approcher des fonctions multivariées à
partir de leurs valeurs précalculées. Nous nous sommes basés sur le format de Tucker - une approx-
imation de tenseurs de faible rang afin de proposer un nouveau modèle appelé la décomposition de
Tucker. Avec ce modèle, une fonction multivariée est approchée par une combinaison linéaire de pro-
duits tensoriels de fonctions d’une variable. Ces fonctions d’une variable sont construites grâce à une
technique dite de décomposition en valeurs singulières d’ordre supérieur (une “matricization” com-
binée à une extension de la décomposition de Karhunen-Loève). L’algorithme dit glouton est utilisé
pour constituer les points liés à la résolution des coefficients dans la combinaison de la décomposition
de Tucker.

Les résultats obtenus montrent que notre modèle satisfait les critères exigés sur la réduction de
données ainsi que sur la précision. Avec ce modèle, nous pouvons aussi éliminer a posteriori et
a priori les coefficients dans la décomposition de Tucker. Cela nous permet de réduire encore le
stockage de données dans les étapes hors ligne sans réduire significativement la précision.

Mots-clés : sections efficaces, décomposition de Tucker, approximation de tenseurs de faible

rang, décomposition en valeurs singulières d’ordre supérieur, algorithme glouton, neutronique, ré-

duction de modèle, sparse grids
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Abstract

In order to optimize the operation of its nuclear power plants, the EDF’s R&D department is

currently developing a new calculation chain to simulate the nuclear reactors core with state of the

art tools. These calculations require a large amount of physical data, especially the cross-sections.

In the full core simulation, the number of cross-section values is of the order of several billions.

These cross-sections can be represented as multivariate functions depending on several physical

parameters. The determination of cross-sections is a long and complex calculation, we can therefore

pre-compute them in some values of parameters (offline calculations), then evaluate them at all

desired points by an interpolation (online calculations). This process requires a model of cross-

section reconstruction between the two steps.

In order to perform a more faithful core simulation in the new EDF’s chain, the cross-sections

need to be better represented by taking into account new parameters. Moreover, the new chain must

be able to calculate the reactor in more extensive situations than the current one. The multilinear

interpolation is currently used to reconstruct cross-sections and to meet these goals. However, with

this model, the number of points in its discretization increases exponentially as a function of the

number of parameters, or significantly when adding points to one of the axes. Consequently, the

number and time of offline calculations as well as the storage size for this data become problematic.

The goal of this thesis is therefore to find a new model in order to respond to the following

requirements: (i)-(offline) reduce the number of pre-calculations, (ii)-(offline) reduce stored data size

for the reconstruction and (iii)-(online) maintain (or improve) the accuracy obtained by multilinear

interpolation.

From a mathematical point of view, this problem involves approaching multivariate functions

from their pre-calculated values. We based our research on the Tucker format - a low-rank tensor

approximation in order to propose a new model called the Tucker decomposition. With this model,

a multivariate function is approximated by a linear combination of tensor products of one-variate

functions. These one-variate functions are constructed by a technique called higher-order singular

values decomposition (a “matricization” combined with an extension of the Karhunen-Loeve decom-

position). The so-called greedy algorithm is used to constitute the points related to the resolution

of the coefficients in the combination of the Tucker decomposition.

The results obtained show that our model satisfies the criteria required for the reduction of

the data as well as the accuracy. With this model, we can eliminate a posteriori and a priori the

coefficients in the Tucker decomposition in order to further reduce the data storage in offline steps

but without reducing significantly the accuracy.

Keywords: cross-sections, Tucker decomposition, low-rank tensor approximation , higher-order

singular value decomposition, greedy algorithm, neutronics, reduced model, sparse grids
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Introduction (Version française)

Motivation

EDF est le premier électricien du monde, grâce notamment à son parc français composé de

58 réacteurs nucléaires à eau pressurisée (REP). Afin de piloter et contrôler le fonctionnement de

ces réacteurs, EDF a développé des chaînes de calcul qui simulent le comportement du cœur d’un

réacteur. Face aux demandes de plus en plus exigeantes de l’ingénierie en termes de temps de calcul

et de précision, une nouvelle chaîne de calcul de cœur, appelée ANDROMEDE, est en cours de

développement à EDF-R&D.

L’un des éléments de la chain est le code neutronique, appelé COCAGNE, dont l’un des objectifs

est de résoudre numériquement l’équation du transport neutronique (ou l’une de ses approxima-

tions), qui nous permet d’obtenir des grandeurs physiques d’intérêt pour décrire le comportement

du réacteur, telles que : le flux neutronique, le facteur de multiplication effectif, la réactivité... La

résolution de cette équation a besoin d’une grande quantité de données physiques, en particulier les

sections efficaces.

En neutronique, les sections efficaces représentent la probabilité d’interaction d’un neutron inci-

dent avec les noyaux cibles, pour différents types d’interaction. Dans une simulation neutronique, les

sections efficaces peuvent être représentées comme des fonctions dépendant de plusieurs paramètres

physiques. Ces paramètres sont utilisés pour décrire les conditions thermo-hydrauliques et la con-

figuration du cœur du réacteur, tels que : température du combustible, densité du modérateur,

concentration en bore, niveau de xénon, burnup, ... Ainsi, les sections efficaces sont des fonctions

multivariées définies sur un espace appelé l’espace de phase des paramètres. Le nombre de valeurs

des sections efficaces dans la simulation d’un cœur complet est de l’ordre de plusieurs milliards à

cause de la discrétisation du cœur en des centaines de milliers de cellules et les valeurs des sections

efficaces sont différentes dans chaque cellule.

Afin de simuler le cœur d’un réacteur dans un temps de calcul raisonnable, un schéma de calcul

industriel comprenant les deux étapes suivantes est utilisé:

— Calculs hors ligne : les sections efficaces sont précalculées par un code dit code réseau sur

1
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des points fixes et présélectionnés dans l’espace de phase des paramètres. L’équation du

transport neutronique est résolue de manière précise grâce à des discrétisations spatiales

très fines sur des motifs plus petits que le cœur (typiquement un assemblage combustible)

et une discrétisation en énergétique elle-même très fine (plusieurs centaines de groupes).

Le flux neutronique sorti de cette résolution est utilisé pour l’homonégisation spatiale et

la condensation énergétique des sections efficaces. L’information obtenue sur les sections

efficaces est stockée dans des fichiers, appelés les bibliothèques neutroniques.

— Calculs en ligne : les sections efficaces sont évaluées en n’importe quel point du cœur par

un code de cœur et grâce à une méthode d’évaluation basée sur l’information stockée dans

les bibliothèques neutroniques. Ces valeurs sont utilisées comme données pour la résolution

de l’équation du transport neutronique au niveau du cœur du réacteur. La résolution est

simplifiée sur la géométrie complète, par exemple en utilisant une approximation de diffusion.

Les discrétisations du cœur sont beaucoup plus grossière que celle employée par le code réseau.

Ce schéma montre qu’entre les deux étapes, un modèle de reconstruction des sections efficaces

est nécessaire pour évaluer les sections efficaces à partir de données précalculées et stockées dans les

bibliothèques neutroniques.

Dans la nouvelle chaîne de calcul ANDROMEDE, le code APOLLO2 développé au CEA est

utilisé comme code réseau et le code COCAGNE développé à EDF-R&D est utilisé comme code

de cœur. Actuellement, l’interpolation multilinéaire est utilisée pour la reconstruction des sections

efficaces dans le code COCAGNE.

Pour le modèle d’interpolation multilinéaire, les sections efficaces sont pré-calculées sur une grille

tensorielle à partir de valeurs discrétisées sur les axes des paramètres. Toutes les valeurs pré-calculées

par APOLLO2 sur cette grille sont ensuite stockées directement dans les bibliothèques neutroniques.

Avec ce modèle, le nombre de calculs APOLLO2 ainsi que la taille des bibliothèques neutroniques

sont de l’ordre de O(nd) si on suppose que les sections efficaces dépendent de d paramètres et

que chaque paramètre est discrétisé par n points sur l’axe correspondant. Avec les contraintes

industrielles imposées à EDF, ce modèle devient trop coûteux en mémoire et en temps de calcul

pour des situations complexes à cause de l’augmentation rapide et exponentielle du nombre de

points de calcul. Ces situations peuvent arriver, par exemple, dans le cas accidentel où de nouveaux

paramètres s’ajoutent (température de l’eau, taille des lames d’eau) et/ou quand le domaine de

calcul s’étend (avec des domaines de définition plus larges).

Afin de dépasser les limitations du modèle actuel, l’objectif de cette thèse est de développer un

nouveau modèle de reconstruction des sections efficaces pour répondre aux exigences suivantes :

(i) Calculs hors ligne : utiliser moins de pré-calculs effectués par le code réseau APOLLO2,

(ii) Calculs hors ligne : stocker moins de données pour la reconstruction des sections efficaces et,
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(iii) Calculs en ligne : avoir une bonne précision (de l’ordre du pcm (10−5)) pour l’évaluation des

sections efficaces.

Une autre contrainte est qu’un calcul APOLLO2 en un point donné (de l’espace de phase des

paramètres) fournit toutes les valeurs des sections efficaces en même temps. La raison est que toutes

ces sections efficaces dépendent du même flux neutronique calculé par APOLLO2 et ce flux est

coûteux en temps de calcul. Par conséquence, la reconstruction de chaque section efficace doit être

optimisée avec les autres afin de limiter le nombre de calculs APOLLO2.

Face à ce problème, nous avons étudié et proposé un modèle appelé la décomposition de Tucker.

Ce modèle est basé sur le format de Tucker - une approximation de tenseur de faible rang. Pour une

section efficace représentée comme une fonction multivariée, la décomposition de Tucker se réalise

comme suit:

(i) Calculs hors ligne :

— Nous construisons dans chaque direction, des fonctions d’une variable dites fonctions de

base tensorielle directionnelle grâce à des techniques comme la “matricization” et la décom-

position de Karhunen-Loève. Ces techniques sont utilisées pour acquérir et reconstruire,

direction par direction, l’information à partir de valeurs des sections efficaces précalculées

par le code APOLLO2. Les fonctions de base tensorielle directionnelle sont parfois ap-

pelées simplement fonctions de base. En pratique, ces fonctions sont construites à partir

de vecteurs propres de la décomposition de Karhunen-Loève.

— La section efficace considérée est approchée par une combinaison linéaire des produits

tensoriels des fonctions de base.

— Les coefficients de la combinaison dans la décomposition de Tucker sont déterminés par

un système d’équations linéaires. Ce système dépend de points dans l’espace de phase

des paramètres (sur ces points nous devons utiliser les calculs APOLLO2). Dans notre

travail, nous proposons de choisir ces points par une technique basée sur un algorithme

dit “glouton” qui sera détaillée dans ce manuscrit.

(ii) Calculs hors ligne : Nous stockons dans la bibliothèque neutronique les vecteurs qui représen-

tent les valeurs des fonctions de base tensorielle directionnelle aux points de calcul présélec-

tionnés et les coefficients dans la décomposition de Karhunen-Loève.

(iii) Calculs en ligne : Nous utilisons l’interpolation de Lagrange pour évaluer les fonctions de

base en un point donné et finalement, évaluer les sections efficaces en n’importe quel point

de l’espace de phase des paramètres par la décomposition de Tucker.

Nous avons testé et validé notre modèle sur deux domaines de calcul : le domaine dit standard

(les valeurs des paramètres sont proches d’un point particulier dit point nominal, qui détermine

le fonctionnement nominal du réacteur) et le domaine dit étendu où les domaines de définition des
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paramètres sont éloignés par rapport au cas standard. Les résultats obtenus montrent la performance

de notre méthode : alors que le nombre de calculs APOLLO2 et le stockage dans la bibliothèque

neutronique sont significativement réduits dans les étapes hors lignes, la précision de notre modèle

reste meilleure ou égale à l’interpolation multilinéaire dans l’étape en ligne. Le creusage (a posteriori

et a priori) pour les coefficients dans la décomposition de Tucker permet de réduire encore le stockage,

ainsi que le temps de calculs en ligne, tout en gardant une précision similaire à notre approche initiale.

Présentation des chapitres

Chapitre 1

Ce chapitre présente succinctement les concepts neutroniques (réactions en chaîne, sections effi-

caces, flux neutronique, équation du transport des neutrons,...) ainsi que le contexte de la simulation

(structure multi-échelles du cœur d’un réacteur, schéma de calcul en deux étapes,...). L’objectif prin-

cipal est d’aider le lecteur à mieux comprendre le contexte de notre travail.

Chapitre 2

Ce chapitre est dédié à décrire différents formats de tenseur de faible rang, tel que : format en r-

termes, format en sous-espace tensoriel (le format de Tucker), format hiérarchique. Nous expliquons

ensuite pourquoi nous avons choisi la décomposition de Tucker (basée sur le format de Tucker) pour

le problème de reconstruction des sections efficaces.

Chapitre 3

Ce chapitre, basé sur notre premier article, détaille la méthode que nous proposons : la décom-

position de Tucker. Les sections efficaces sont approchées par une combinaison linéaire des produits

tensoriels des fonctions de base tensorielle directionnelle. Nous décrivons étape par étape les prob-

lèmes suivants: la construction des fonctions de base tensorielle directionnelle (par une extension de

la décomposition de Karhunen-Loève), la détermination des coefficients dans la combinaison (par

un système d’équations linéaires en utilisant l’algorithme glouton). Un premier benchmark est aussi

proposé pour comparer notre modèle avec l’interpolation multilinéaire.

Chapitre 4

Dans ce chapitre, basé sur notre deuxième article, nous proposons des benchmarks physiques sur

les deux domaines de calcul : standard et étendu. Des analyses statistiques sont proposées qui nous

permettent de déterminer les facteurs principaux pour améliorer la précision de la reconstruction
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: augmenter le nombre de fonctions de base tensorielle directionnelle ou discrétiser plus finement

certaines zones de valeurs des paramètres trouvées par l’analyse.

Chapitre 5

Ce chapitre, basé sur notre troisième article, présente la possibilité de creuser les coefficients

dans la décomposition de Tucker. Deux techniques sont proposées : le creusage a posteriori et

le creusage a priori. Le creusage a posteriori est effectué quand les coefficients sont déjà calculés

et nous pouvons donc éliminer les plus petits coefficients. Le creusage a priori est basé sur une

prédiction de valeurs des coefficients grâce à un ordre proposé pour les fonctions de base tensorielle

directionnelle. Ces méthodes nous permettent de réduire significativement le nombre de coefficients

pour une précision équivalente et ouvrent une possibilité de réduire le nombre de calculs APOLLO2.

Chapitre Conclusion

Ce chapitre est réservé à la conclusion et aux perspectives de notre modèle.
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Motivation

EDF is the first electricity utility in the world, thanks in particular to its nuclear power plants

in France with 58 pressurized water reactors (PWR). In order to pilot and control the operation of

these reactors, EDF has developed calculation chains that simulate the behavior of a reactor core.

To face more and more exigent engineering demands in terms of calculation time and accuracy, a

new core calculation chain, named ANDROMEDE, is being developed at EDF-R&D.

One of the elements of the chain is the neutron code, called COCAGNE, one goal of which is to

solve numerically the neutron transport equation (or one of its approximations), which allows us to

obtain physical quantities of interest to describe the behavior of the reactor, such as: the neutron

flux, the effective multiplication factor, reactivity... The resolution of this equation requires a large

amount of physical data, especially cross-sections.

In neutronics, cross-sections represent the interaction probability of an incident neutron with

target nuclei, for different types of interaction. In a neutron simulation, the cross-sections can

be represented as functions depending on several physical parameters. These parameters are used

to describe the thermo-hydraulic conditions and the configuration of the reactor core, such as:

fuel temperature, moderator density, boron concentration, xenon level, burnup,... Thus, the cross-

sections are multivariate functions defined on a space called the parameters-phase space. The number

of cross-section values in the simulation of a full core is in the order of several billion due to the core

discretization in hundreds of thousands of cells, with different cross-section values in each cell.

In order to simulate the reactor core in a reasonable calculation time, an industrial calculation

scheme consisting in the two following steps is used:

— Offline calculations: the cross-sections are pre-calculated by a code named lattice code on

fixed and preselected points in the parameters-phase space. The neutron transport equa-

tion is solved precisely through very fine spatial discretizations on smaller patterns than the

reactor core (typically a fuel assembly) and an energy discretization itself very fine (hun-

dreds of groups). The neutron flux which is the output of this resolution is used for spatial

7
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homogenization and energy condensation of cross-sections. The obtained information on

cross-sections is stored in files, called neutron libraries.

— Online calculations: the cross-sections are evaluated at any point of the core by a core code

and through an evaluation method based on the information stored in neutron libraries.

These values are used as inputs for the resolution of the neutron transport equation at the

reactor core level. The resolution is simplified on the full geometry, for example by using an

approximation of diffusion. The core discretizations are much coarser than those used by the

lattice code.

This scheme shows that between the two steps, a model of cross-section reconstruction is required

to evaluate the cross-sections from pre-calculated and stored data in the neutron libraries. In the

new calculation chain ANDROMEDE, the code APOLLO2 developed at CEA is used as lattice code

and the core code COCAGNE developed at EDF-R&D is used as core code. Currently, multilinear

interpolation is used for the reconstruction of cross-sections in the code COCAGNE .

For the multilinear interpolation model, cross-sections are pre-calculated on a tensorized grid

from discretized values on the parameters axes. All pre-calculated values by APOLLO2 on this grid

are then stored directly in neutron libraries. With this model, the number of APOLLO2 calculations

and the size of neutron libraries are in the order of O(nd) if we assume that the cross-sections depend

on d parameters and that each parameter is discretized by n points on the corresponding axis.

With the industrial constraints imposed at EDF, this model becomes too expensive in memory and

computation time for complex situations due to the rapid and exponential increase of calculation

points. Such situations can happen, for example, in the incidental case where new parameters are

added (water temperature, water blades) and/or when the calculation domain extends (with larger

definition domains for the parameters).

In order to overcome the limitations of the current model, the aim of this thesis is to develop a

new model of cross-sections reconstruction to respond to the following requirements:

(i) Offline calculations: use fewer pre-calculations performed by the lattice code APOLLO2.

(ii) Offline calculations: store less data for the reconstruction of cross-sections and,

(iii) Online calculations: get a high accuracy (in the order of pcm (10−5)) for cross-section eval-

uation.

Another constraint is that an APOLLO2 calculation at a given point (in the parameters-phase

space) provides all the values of the cross-sections at the same time. The reason is that all these

cross-sections depend on the same neutron flux computed by APOLLO2 and this flux is a time-

consuming calculation. Therefore, the reconstruction of each cross-section must be optimized with

the others in order to limit the number of APOLLO2 calculations.

To deal with this problem, we studied and proposed a model called the Tucker decomposition.
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This is based on the Tucker format - a low-rank tensor approximation. For a cross-section represented

as a multivariate function, Tucker decomposition is performed as follows:

(i) Offline calculations:

— We construct in each direction, the one-variate functions called tensor directional basis

functions through techniques like the “matricization” and the Karhunen-Loève decompo-

sition. These techniques are used to acquire and reconstruct, direction by direction, the

information from cross-section values pre-calculated by APOLLO2. The tensor directional

basis functions are sometimes simply called basis functions. In practice, these functions

are constructed from eigenvectors of the Karhunen-Loève decomposition.

— The considered cross-section is approximated by a linear combination of tensor products

of basis functions.

— The coefficients of the combination in the Tucker decomposition are determined by a

system of linear equations. This system depends on points in the parameters-phase space

(on these points we need to use APOLLO2 calculations). In our work, we propose to

select these points with a technique based on an algorithm called “greedy” which will be

detailed in this manuscript.

(ii) Offline calculations: We store in neutron libraries the vectors that represent the values of

tensor directional basis functions at pre-selected calculation points, and the coefficients in

the Karhunen-Loève decomposition.

(iii) Online calculations: We use the Lagrange interpolation to evaluate basis functions at a given

point and finally, evaluate cross-sections at any point in the parameters-phase space by the

Tucker decomposition.

We have tested and validated our model on two calculation domains: the domain named standard

(parameters values are close to a particular point called nominal point, which determines the nominal

operation of the reactor) and the domain called extended where definition domains of parameters

are far from the standard case. The results obtained show the performance of our method: while

the number of APOLLO2 calculations and storage in the neutron libraries are significantly reduced

in the offline steps, the accuracy of our model is better or equal to multilinear interpolation in the

online step. The sparse representation (a posteriori and a priori) for the coefficients in the Tucker

decomposition allows us to further reduce storage, as well as the online calculation time, while

maintaining a similar accuracy to our initial approach.
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Presentation of chapters

Chapter 1

This chapter briefly presents neutron notions (reaction chain, cross-sections, neutron flux, neu-

tron transport equation,...) as well as the simulation context (the multi-scale structure of the reactor

core, the calculation scheme in two steps, ...). The main goal is to help readers reach a better un-

derstanding of our problem.

Chapter 2

This chapter is dedicated to the description of different formats of low-rank tensors, such as:

r-term format, subspace tensor format (Tucker format), hierarchical format. We then explain why

we chose the Tucker decomposition (based on the Tucker format) for the cross-section reconstruction

problem.

Chapter 3

This chapter, based on our first article, details our proposed model: the Tucker decomposition.

The cross-sections are approached by a linear combination of the tensor products of the tensor

directional basis functions. We describe step by step the following problems: the construction of

tensor directional basis functions (by an extension of the Karhunen-Loève decomposition) and the

determination of the coefficients in the combination (by a system of linear equations using the

greedy algorithm). The first benchmark is also proposed to compare our model with the multilinear

interpolation.

Chapter 4

In this chapter, based on our second article, we propose benchmarks on two calculation domains:

standard and extended. Statistical analyzes are proposed that allow us to find the major factors to

improve the reconstruction accuracy: increasing the number of tensor directional basis functions or

discretizing finer some parameter values zones found by the analysis.

Chapter 5

This chapter, based on our third article, presents the possibility of a sparse representation of

data (the coefficients in the Tucker decomposition) in our model. Two techniques are proposed: a

posteriori sparse representation and a priori sparse representation. A posteriori sparse representa-

tion is performed when the coefficients are already calculated and we can therefore remove small
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coefficients. A priori sparse representation uses a prediction of coefficients values based on an or-

der proposed for tensor directional basis functions. These methods allow us to significantly reduce

the number of coefficient for equivalent accuracy and open the possibility to reduce the number of

APOLLO2 calculations.

Chapter Conclusion

This chapter is reserved for the conclusion and perspectives of our model.





Part I

Physical context and mathematical

background

13





Chapter 1

Physical context of the neutron

cross-section reconstruction

The purpose of this chapter is to present the physical context of neutron cross-section recon-

struction. Some notions of neutronic physics related to our problem will be introduced. We refer the

reader to the books [Lewis and Miller, 1984], [Reuss, 2003] and [Marguet, 2013] for more details

of neutronic physics and nuclear reactors.

1.1 Nuclear reactions

1.1.1 Atomic structure and isotopes

We recall here some basic notions of the structure of an atom in order to get a better compre-

hension for the next introduction. The atom is the unit component of matter, it consists of smaller

particles (sub-atomic), such as: neutron (n), proton (p) and electron (e−) , as described in figure

1.1. The neutrons and the protons of an atom are called nucleons and they constitute the so-called

a nucleus. The term nuclei is used to designate many nucleus. We often denote by the letter Z the

number of protons and by the letter A the number of nucleons (protons and neutrons).

A chemical element is identified by the number Z. The isotopes (also called nuclide) of a chemical

element are determined by an atom that has a fixed number of protons but different number of

neutrons. For example, uranium has the following isotopes: uranium 234 (234
92 U), uranium 235

(235
92 U) and uranium 238 (238

92 U), they have the same number of protons (92 protons) while the

number of neutrons are respectively: 142, 143 and 146. Due to this difference, the isotopes of an

element can have different properties, e.g: one can be fissible while others are not. An important

property of fissile isotopes is to have uneven number of nucleons (A), e.g. 233
92 U , 235

92 U , 239
94 Pu.

15
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electron

neutron
proton

atom (radius ∼ 10−8 cm)

nucleus
(radius ∼ 10−12 cm)

Figure 1.1 – Structure of an atom.

1.1.2 Principal reaction kinds

In table 1.1, we present the principal reaction kinds of nuclear reactions: scattering, fission and

capture.

Reaction kind Formula Note

Scattering
Elastic scattering n+A

Z X → A
ZX + n Kinetic energy conservation

Inelastic scattering n+A
Z X → A

ZX
∗ + n; AZX

∗ →A
Z X + γ Kinetic energy is not conserved

∗ Excited state

Fission n+A
Z X →

A+1
Z X∗ → A1

Z1
X1 +A2

Z2
X2 + νn ν: number of neutrons

X1, X2: heavy elements (A1, A2 ∼ 100)

Capture
Radiative capture n+A

Z X →
A+1
Z X + γ

Particle ejection n+A
Z X →

A1
Z1
X1 + light particle A1 ∼ A. Light particle: p, 4

2He,...

Table 1.1 – Principal reaction kinds of nuclear reactions.

1.1.3 Nuclear fission chain reaction

A fission is a process in which a fissile nucleus (typically, Uranium U235
92 , Plutonium Pu239

94 )

absorbs neutrons and splits into lighter nuclei, for example:

235
92 U + n −→236

92 U∗ −→92
36 Kr +141

56 Ba+ 3n (1.1)

This process produces new free neutrons (3 in example (1.1)) and releases a large amount of energy

in the form of heat (about 200 MeV per fission of U235). Again, part of this newly produced

free neutrons collide with other fissile nucleus (while the others can be absorbed by the non-fissile

material or leak out of the material), which generates more heat, more neutrons and cause a reaction

chain, see figure 1.2.

The global behavior of the nuclear fission chain is related to a factor, called effective multiplication

factor and denoted by keff . The keff is used to describe the average number of neutrons from one
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Figure 1.2 – Nuclear fission chain reaction. 1

fission that cause other fissions. Therefore, this factor determines the evolution of the reaction chain,

i.e. N fissions lead to the next ones: Nkeff , Nk2
eff , Nk

3
eff , ..., fissions.

The value of keff is classified as follows:

— keff > 1 (super-criticality): number of fissions increases exponentially and the reaction is

explosive.

— keff = 1 (criticality): number of fissions is stable (constant) in time.

— keff < 1 (sub-criticality): number of fissions decreases exponentially and finally the reaction

stops.

Fission rate (number of fissions per a unit time) depends on the population of neutrons. Thus, in

order to reduce the number of neutrons which were born in the reactor core, absorbent substances

(also called neutron poisons or neutron absorbers) are used, such as: boron, gadolinium, etc. The

reaction chains themselves produce neutron poisons in their fission products, of which the most

important substance is xenon-135 (135
54 Xe). The concentration of xenon increases quickly when the

reactor starts (which may cause the reactor to shutdown at this stage) and gradually becomes more

stable, see figure 1.3.

The fission rate also depends on the energy E or the velocity v = ||−→v || of the incident neutron

(since E = mv2/2). In general, the slow neutrons (corresponding to the low energy) are captured

1. Source of figure: http://physics.tutorvista.com/modern-physics/fission.html

http://physics.tutorvista.com/modern-physics/fission.html
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Figure 1.3 – Xenon behavior in reactor core. 2

more easily in the collision than the fast ones (corresponding to the high energy), meaning that

the slow neutrons are more favorable for fission reactions. Therefore, a moderator medium which

absorbs very few neutrons and slows down the fast neutrons is employed to increase the fission rate.

A good moderator is regular water (H2O), a better one is heavy water (D2O).

1.2 Nuclear reactor

1.2.1 General description

A nuclear reactor is a system designed to initiate and control nuclear chain reactions. Depending

on its purpose, it can be classified as the research reactor, the military reactor or the power reactor.

Here, we are more interested in power reactors because they are used in the nuclear power plants to

generate electricity.

The principal mechanism of nuclear reactors is that they produce thermal energy from the heat

of nuclear chain reactions which is convert into mechanical or electrical form. Some important

components in a nuclear reactor are:

— The core that contains nuclear fuels, control systems, and structural materials. The nuclear

reactions take place inside the nuclear fuels and produce heat;

— The coolant that is a fluid circulating through the core and transferring the heat from the

fuel to a turbine. It could be liquid (e.g. water), gas (e.g. hydrogen, helium), liquid gas (e.g.

carbon dioxide);

— The turbine that converts the heat into electricity.

2. Source of figure: http://www.nucleartourist.com/basics/xe135-1.htm

http://www.nucleartourist.com/basics/xe135-1.htm
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1.2.2 Pressurised Water Reactors (PWR)

Pressurised Water Reactor (PWR) is the most widely used type of reactors for nuclear power

plants in the world as well as in France. In a PWR, the heat is created by the fissions inside the

fuels of the core. The core is put in a reactor vessel. Water (pressurized at about 155 atm to avoid

boiling) circulates in a primary coolant loop and carries the heat (about 330̊ C) to a steam generator.

Inside the steam generator which has lower pressure, the water is vaporized and conducted through

a secondary loop, spinning the turbine. The turbine is connected to a generator which produces

electricity. The steam is then condensed back into water inside the condenser (figure 1.4). We

note that between the primary and the secondary loop, there is only heat exchange but not water

exchange. In the PWR core, water (used in the primary coolant loop) is also employed as moderator

to slow down neutrons.

Figure 1.4 – Diagram of a pressurized water reactor. 3

The PWR core has a multi-scale structure (figure 1.5). It contains between 150-200 fuel assem-

blies arranged as a square lattice and surrounded by boron water . A typical assembly is often made

of 17 × 17 = 289 rods, consisting of 264 fuel rods and 25 vacant rods (figure 1.6a). The fuel rods

(∼ 4m in height) are filled with the individual pellets (∼ 1 cm in height) (see figure 1.6b). The

vacant rods are dedicated for the vertical insertion of the absorbent rod in the guide tubes or the

instrument.

3. Source of figure: https://en.wikipedia.org/wiki/Pressurized_water_reactor

https://en.wikipedia.org/wiki/Pressurized_water_reactor
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Figure 1.5 – PWR - multi-scale structure: core containing many assemblies, assembly containing

many rods. 4

(a) Fuel assembly of PWR with about 289 rods. 5

Fuel Rod
(∼ 4m)

pellet (∼ 1 cm )

(b) Fuel rod.

Figure 1.6 – Fuel assembly of PWR and fuel rod.

1.2.3 Some assembly types: UOX, MOX, UOX-Gd

As described in previous section, an assembly contains different fuels and vacant rods put in 289

positions. Depending on the fuel rod composition and position, we have different types of assemblies.

We present here some assemblies related to our work.

4. Source of figure: Ph.D Thesis of Pierre GUÉRIN (Méthodes de décomposition de domaine pour la formulation

mixte duale du problème critique de la diffusion des neutrons)
5. Source of figure: http://www.nuclear-power.net/nuclear-power-plant/nuclear-fuel

http://www.nuclear-power.net/nuclear-power-plant/nuclear-fuel
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1.2.3.1 UOX (Uranium Oxide: UO2) assembly

Most reactors use uranium enriched in the isotope 235 with the enrichment is between 3%-5%

because the natural uranium contains only 0.7% of uranium-235. The assembly constituted by the

UOX fuel will be called the UOX assembly.

1.2.3.2 MOX (Mixed Oxide: UO2-PuO2 ) assembly

Plutonium (Pu) is also a fissile source for nuclear reactors beside the natural uranium. It is

produced inside the nuclear reactors by capturing the neutrons as the following reaction:

238
92 U + n −→239

92 U −→239
93 Np+ e− −→239

94 Pu+ e− (1.2)

Moreover, plutonium can be extracted from spent fuels. This allows us to recycle the used fuels.

Therefore, MOX, an uranium fuel mixed with plutonium, is also used for the nuclear reactors. The

assembly constituted by some MOX fuels will be called the MOX assembly.

1.2.3.3 UOX-Gd (UOX-Gadolinium: UO2-Gd2O3) assembly

An UOX-Gd assembly is an UOX assembly where some positions of the UOX fuel rods are

replaced by UO2-Gd2O3 rods (gadolinia rods), see figure 1.7. Since the gadolinium Gd2O3 is a

neutron poison (absorbing neutrons), the UO2-Gd2O3 rods are used as burnable poison rods to limit

excess of fissions, hence to mitigate localized power peaking.

Guide Tube
UO2 rod

(a) UOX assembly.

Guide Tube
UO2 rod
gadolina rod

(b) UOX-Gd assembly.

Figure 1.7 – UOX and UOX-Gd assemblies.

1.3 Neutronic

1.3.1 Neutron cross-section

In order to quantify the neutron reaction rates, a notion which represents interaction probability

between an incident neutron and a target nucleus or nuclei is required. This notion is referred to



22 Chapter 1. Physical context of the neutron cross-section reconstruction

as cross-section in particle physics. A simple explanation of cross-section notion is illustrated by

figure 1.8. In this figure, an incident neutron moves with a velocity −→v toward a target nucleus. The

incident neutron and the target nucleus are supposed to have spherical forms with the radius r and

R respectively. In this figure, a collision only happens if the mass center of the incident neutron is

inside the cylinder of the radius R + r and of axis paralleling to the velocity −→v . Thus, the surface

(or the cross-section) perpendicular to the axis of the cylinder represents the interaction likelihood

of the incident neutron and the target nucleus. Neutron cross-section notion are therefore illustrated

by the area of this surface. This explains why magnitude’s neutron cross-sections is in the order of

10−24 cm2 (since the area ∼ πR2 and R ∼ 10−12 cm). Cross-sections are measured in the unit barn:

1 barn = 10−24 cm2 = 10−28m2

Incident Neutron

r∼ 10−13 cm

Target Nucleus

R∼ 10−12 cm

−→v

R+r

Cross Section σ

Figure 1.8 – Illustration for cross-section notion.

A cross-section may be microscopic, denoted by σ, that characterizes an individual target nucleus,

or macroscopic, denoted by Σ, that describes the material interaction characteristic with a large

number of target nuclei. Microscopic cross-sections depend on energy E of the incident neutron:

σ = σ(E) whereas macroscopic cross-sections depend on spatial position −→r = −→r (x, y, z), energy E

of the incident neutron at a given instant t: Σ = Σ(−→r , E, t). The relation between the macroscopic

and microscopic cross-sections is defined by:

Σ(−→r , E, t) = N(−→r , t)σ(E)

where N(−→r , t) is the density of the target nucleus per a volume unit at the moment t. This relation

implies that macroscopic cross-sections are expressed in inverse of length unit: [Σ] = cm−1.

The different cross-sections kinds are distinguished by their corresponding reaction which are

denoted by the index r in (σr,Σr). Here, r could be: f (fission), s (scattering), c (capture), a
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(absorption), t (total), ... The relations between these cross-sections are defined as follows:

σa = σf + σc; Σa = Σf + Σc

σt = σs + σa; Σt = Σs + Σa

Using the definition of the cross-sections, we deduce that the larger the cross-section is, the more

likely interaction between the nucleus and the incident neutron is. Moreover, cross-sections depend

on the isotope type. For example, at low neutron energy, the fissile isotope U235
92 has a large fission

cross-section (σf ,Σf ) while for the isotope U239
92 this cross-section is small.

Until now, we considered only cross-sections for an isotope kind i. In reality, most material is

composite. Therefore, we need to determine a notion corresponding to the global macroscopic cross-

section for the composite material. With a given reaction kind r, this macroscopic cross-section is

the sum of the macroscopic cross-sections of all elements:

Σr =Σr,1 + . . .+ Σr,I

=c1σr,1 + . . .+ cIσr,I

=

I∑
i=1

ciσr,i (1.3)

where I is the number of isotopes i included in the composite material and ci is the concentration

of the isotope i.

1.3.2 Neutron flux

Cross-sections provide us information about interaction probability but this is not sufficient for

studying the chain reactions. We also need information about the population of free neutrons in

the medium inside a nuclear reactor. This population is sufficiently large (∼ 108 neutrons/cm3) to

use the “neutron density” concept for simulating the variation of this population. Neutron density,

denoted by n, is the number of neutrons per time unit t and per volume unit of a phase space Ω .

Here, the phase space Ω for a neutron of mass m is spanned by its spatial position −→r = (rx, ry, rz)

and its velocity −→v . In neutronic, we prefer to replace −→v by (E,
−→
Ω =

−→v
v

) since E =
1

2
mv2 with

v := ||−→v ||. The direction of motion
−→
Ω is called solid angle which is defined in a polar coordinate

system by a polar angle θ and an azimuthal angle α, i.e.
−→
Ω =

−→
Ω (θ, α). Thus, we can denote the

phase space Ω = Ω(−→r , E,
−→
Ω ) and the neutron density n = n(−→r , E,

−→
Ω , t). The neutron population

is then represented by the so-called angular flux ψ with the following definition:

ψ(−→r , E,
−→
Ω , t) = n(−→r , E,

−→
Ω , t)v (1.4)

Here, v =
√

2E/m.
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The integral of the angular flux over whole solid angle gives us the so-called scalar flux φ with

the following definition:

φ(−→r , E, t) =

∫
4π
ψ(−→r , E,

−→
Ω , t)d2Ω (1.5)

The formula (1.4) means that the angular flux ψ(−→r , E,
−→
Ω , t) takes into account only the neutrons

having the energy E and moving in the fixed direction
−→
Ω . The scalar flux φ(−→r , E, t) in (1.5) takes

into account all neutrons having the energy E and moving in any direction with the condition that

they are in a same volume d3−→r .

It can be noticed that the notion of “flux” in neutronics is completely different from which of

classical fluid mechanics. The equivalent would be current
−→
j = n−→v .

1.3.3 Neutron transport equation

The neutron transport equation is based on the Boltzmann equation. The Boltzmann equation

is proposed by Ludwig Boltzmann [Boltzmann, 1970] to describe the statistical behavior of mono-

atomic gas. The properties of the neutron population in a reactor core are similar to this gas since

the neutron density is very low compared with that of atoms. Therefore, this equation can be applied

to the neutron population (by neglecting the neutron-neutron and neutron-electron interactions), to

predict the global variation of this population.

The neutron transport equation can be written under different forms: either integral or integral-

differential. These two forms are mathematically equivalent but the integral-differential one is often

used for deterministic methods (to which this work is related). The integral-differential transport

equation is expressed as:

1

v

∂ψ(−→r , E,
−→
Ω , t)

∂t
=−
−→
∇ .[
−→
Ωψ(−→r , E,

−→
Ω , t)]− Σt(

−→r , E, t)ψ(−→r , E,
−→
Ω , t)

+

∫ ∞
0

dE′
∫

4π
d2Ω′Σs(

−→r , E′ → E,
−→
Ω′ →

−→
Ω , t)ψ(−→r , E′,

−→
Ω′, t)

+
1

4π

∫ ∞
0

dE′χ(E′ → E)νΣf (−→r , E′, t)φ(−→r , E′, t) + Sext(
−→r , E,

−→
Ω , t) (1.6)

Where:

—
−→
∇ . is the divergence operator.

— χ(E′ → E) is the energy distribution spectra.

— Sext is the external source term.

In order to reach the critical stationary state (where time-dependence terms disappear in (1.6)),

we introduce a parameter to balance the appearance and disappearance terms. This parameter is

considered as the effective multiplication factor keff (see the section 1.1.3) and determined as the
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eigenvalue of the following equation:

−→
∇ .[
−→
Ωψ(−→r , E,

−→
Ω )] + Σt(

−→r , E)ψ(−→r , E,
−→
Ω )

=

∫ ∞
0

dE′
∫

4π
d2Ω′Σs(

−→r , E′ → E,
−→
Ω′ →

−→
Ω )ψ(−→r , E′,

−→
Ω′)

+
1

4πkeff

∫ ∞
0

dE′χ(E′ → E)νΣf (−→r , E′)φ(−→r , E′) + Sext(
−→r , E,

−→
Ω ) (1.7)

This equation requires inputs as different macroscopic cross-sections: Σt, νΣf , Σs and provides us

outputs as neutron flux ψ(−→r , E,
−→
Ω ) and keff .

A simplified equation of the equation (1.7) is the diffusion equation:

−
−→
∇ .[D(−→r , E)

−→
∇φ(−→r , E)] + [Σa(

−→r , E) +

∫ Emax

Emin

Σs(
−→r , E → E′)dE′]φ(−→r , E)

=

∫ Emax

Emin

Σs(
−→r , E′ → E)φ(−→r , E′)dE′ + χ(E)

keff

∫ Emax

Emin

ν(E′)Σf (r, E′)φ(−→r , E′)dE′ (1.8)

Where D is the diffusion coefficient.

With the two-group energy theory (the energy E is discretized into two groups g = 1 and g = 2),

the diffusion equation (1.8) becomes the two-group diffusion equations: −D14φ1 + (Σ1
a + Σ1→2

s )φ1 =
νΣ1

fφ1 + νΣ2
fφ2

keff
+ Σ2→1

s φ2

−D24φ2 + (Σ2
a + Σ2→1

s )φ2 = Σ1→2
s φ1

(1.9)

1.3.4 Reactivity in the infinite medium with two-group diffusion theory

The keff value is used to describe the behavior of nuclear reactors. In normal operating conditions

of reactor, keff is equal to 1 (criticality value). When keff varies, a small deviation from the

criticality value can result a significant change in reactor power. Therefore, for the practical purpose,

the “reactivity” is more useful with the following definition:

reactivity = 1− 1

keff
(1.10)

We consider here a simplified configuration: reactor core is assumed as a homogeneous infinite

medium and the 2 two-group diffusion equations (1.9) are solved over this medium. Using this

hypothesis, the reactivity can be determined by an analytic formula which takes into account some

macroscopic cross-sections.

The infinite medium means that all assemblies have the same configuration and they are infinitely

arranged together. In this medium, neutrons can not leak out of the system and the effective
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multiplication factor keff becomes the infinite multiplication factor k∞: keff = k∞. With the two-

group diffusion theory, we obtain the following analytic formula (see page 1172, 1173, 1221 of the

book [Marguet, 2013]):

reactivity = 1− 1

k∞
,with k∞ =

νΣ1
f ∗ (Σ2

t − Σ2→2
so ) + νΣ2

f ∗ Σ1→2
so

(Σ1
t − Σ1→1

so ) ∗ (Σ2
t − Σ2→2

so )− Σ1→2
so ∗ Σ2→1

so

(1.11)

This formula takes into account some macroscopic cross-sections (not all), such as: the macro totale-

Σg
t , the macro fission-Σg

f , the macro nu*fission-νΣg
f and the macro scattering-Σg→g′

so , where

the energy group g ∈ {1, 2}, g′ ∈ {1, 2} and the index o in Σso is the anisotropy order (order for

Legendre polynomial expansion for variable “angle”).

1.4 Reactor core simulation and process of cross-section reconstruc-

tion

In the following descriptions, the neutron transport equation is always considered in the station-

ary state (time-independence). This equation is also called transport equation in this work.

1.4.1 Numerical methods

Solving the neutron transport equation plays a fundamental role in reactor core simulation.

Deterministic methods [Lewis and Miller, 1984] are used to solve numerically this equation (often

under the integral-differential form). There are six parameters involved in such resolutions: three for
−→r = (rx, ry, rz), two for

−→
Ω = (θ, α) and one for E. The resolution is based on some discretization

techniques, for instance:

— For space −→r : spatial discretization with finite difference methods [LeVeque, 2007] or finite

element methods [Madenci and Guven, 2015].

— For angle
−→
Ω : angular discretization with discrete ordinates methods SN , spherical harmonics

methods PN [Abramowitz and Stegun, 1964], or simplified spherical harmonics methods SPN
[Pomraning, 1993], [McClarren, 2010].

— For energy E: energy discretization with multi-group formalism [Hébert, 2010], often ex-

pressed as follows:

E = [Emax, Emin] = [E0, E1]︸ ︷︷ ︸
group g = 1

∪ [E1, E2]︸ ︷︷ ︸
group g = 2

∪ . . . ∪ [EG−1, EG]︸ ︷︷ ︸
group g = G

(1.12)

(the energy groups are indexed by the index g in the decreasing order of energy because

neutron energy decreases in time when colliding with moderator (water).)

In figure 1.9, we summarize the principal numerical methods for solving the neutron transport

equation.
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Neutron Transport Equation

Integral-Differential Form

Deterministic methods: discretization

Angle: SN , PN , SPN

Space: Finite Difference/Element

Energy:Multi group

Figure 1.9 – Numerical methods to solve the neutron transport equation.

1.4.2 Calculation scheme with two steps

The neutron transport equation is well understood nowadays but its numerical resolution for the

full core simulation is still a challenge, due to the requirement of memory storage and computational

time. Indeed, for a real geometry modeling of core (core in 3D), we need to solve the neutron

transport equation with a huge number of unknowns (∼ O(109)).

To deal with this problem, a two-step calculation scheme is proposed in order to reduce com-

plexity calculations and accomplish the core simulation. This scheme is based on the multi-scale

structure of the reactor core: core containing assemblies, assembly containing rods/cells. Therefore,

the two steps are separately performed by two codes: first, lattice code for all assembly types and

then core code for the whole core, as described in figure 1.10.

First step Second step

Figure 1.10 – Two-step calculation scheme based on the multi-scale structure of reactor core.
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These two steps are respectively named assembly calculation and core calculation with the fol-

lowing goals:

— Assembly calculation: the lattice code solves the neutron transport equation on each assembly

type. These assemblies are assumed in a 2D infinite medium. The resolution is performed

on a very fine discretization for space −→r and for energy E. Finally, we obtain the angular

neutron flux ψ(−→r , E,
−→
Ω ) which is used in the energy condensation and the spatial average

for cross-sections:

Σg
r(cella) := Σ

g
r(cella) =

∫
−→r ∈cella

∫
E∈g

Σr(
−→r , E)ψ(−→r , E,

−→
Ω )d−→r dE∫

−→r ∈cella

∫
E∈g

ψ(−→r , E,
−→
Ω )d−→r dE

(1.13)

where r is the reaction kind, g is the energy group and cella is a cell in a spatial discretization

of the assembly a. All these results are gathered inside hierarchical library files which are

named neutron libraries.

— Core calculation: the core code solves a simplified neutron transport equation for the full

core in 3D. This resolution needs cross-section values at any point in the core. However, we

can not calculate on the fly these values due to its huge cardinal (∼ O(109)). We therefore

replace required values by their interpolation values based on a reconstruction process. This

reconstruction process relies on the pre-computed values of Σg
r determined by (1.13).

We illustrate in figure 1.11 the two-step calculation scheme for the core simulation.

First step Second step

Lattice code (for 2D- assemblies )

Solving transport equation

- very fine discretization for:

space and energy

ψ
Neutronic libraries

Containing Σg
r :

- spatial average

- energy condensation

Core code

(for 3D-core)

Solving

transport

equation

Cross-section

reconstruction

Figure 1.11 – Two-step calculation scheme for the core simulation.

It should be noted that averaged and condensed cross-sections in (1.13) use the angular flux

as weight functions in order to preserve the global reaction rate τ between the two steps: τ =

Σg
r

∫
−→r

∫
E∈g

ψ =
∫
−→r

∫
E∈g

Σrψ.
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1.4.3 Reconstruction of cross-sections in each calculation step

Cross-section values are required in the whole core simulation but we only have a limited num-

ber of these values pre-calculated on assemblies because the two-step calculation scheme is used.

Therefore, the reconstruction of cross-sections needs to be performed in order to connect the two

calculation steps. This process can be briefly described as follows:

(i) Offline: pre-computing cross-sections on assemblies by a lattice code.

(ii) Offline: storing information about these pre-computed values in neutron libraries.

(iii) Online: using the stored information to evaluate cross-sections in the core.

In order to avoid the confusion between the reconstruction notion used in the offline and online

step, we distinguish here the two sub-processes:

— Reconstructing cross-sections: this is done before storing reconstruction information in the

neutron libraries. Such sub-process is only explicit in the case where we need to convert pre-

computed cross-section values into equivalent reconstruction information. If all pre-computed

cross-section values are kept and stored, no convertation process is required and performed.

— Evaluating cross-sections: this is done for any point in the core. This sub-process uses

reconstruction information in the previous sub-process to evaluate cross-sections by an inter-

polation method.

We call in general these two sub-processes by the reconstruction of cross-sections.

1.4.4 Reconstruction of cross-sections from 3D-space in the reactor core to

parameter-phase space in the assemblies

In the nuclear reactor core simulations, cross-sections can be represented as multivariate func-

tions: σ = σ(x1, . . . , xd) and Σ = Σ(x1, . . . , xd), where d is the number of physical parameters on

which cross-sections depend.

Indeed, cross-sections depend on various parameters involved with different physical conditions

and configurations, for instance: i) burnup-bu (MWd/t), ii) fuel temperature-tf (̊ C), iii) moderator

density-ρm (g/cm3), iv) boron concentration-bc (ppm), v) xenon level-xe (%), .... Here, the burnup

parameter is used to measure how much the nuclear fuel is consumed, that is expressed by the fraction

of the actual energy released per initial mass of fuel (gigawatt-days/ton). The other parameters (tf ,

ρm, bc, xe) have already been introduced in previous sections. All these parameters vary in a physical

space named here parameter-phase space. (This is not the phase space presented in the section 1.3.2

about neutron flux).

In the reactor core simulation, the core is modeled in 3D. Therefore, the core’s geometry is

meshed by cells in a full three-dimensional coordinates Oxyz. In ordre to solve the transport
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equation, cross-section values are required at any cell in the full core. Moreover, each cell in the core

corresponds to a specific physical condition, meaning that there exists a mapping P from R3-space

to the parameter-phase space such that:

P : cellk ∈ R3 7→ x(cellk) = (x1 . . . , xd) ∈ parameter-phase space (1.14)

Therefore, cross-sections used in the 3D-core simulation are now defined as functions of parameters

in the parameter-phase space as described in figure 1.12.

3D-Core Simulation Code

Require σ(cellk); Σ(cellk)

cellk ∈ R3

3D-Core Simulation Code

Require σ(x); Σ(x)

x = (x1, . . . , xd) ∈ parameter-phase space

cellk
P7→ x(cellk)

(eq.(1.14))

Figure 1.12 – Dependence of cross-sections on parameters in the parameter-phase space in a 3D-core

simulation.

This explains why we can reconstruct cross-sections in the core from pre-calculated values in the

parameter-phase space of the assemblies.

1.5 Core simulation at EDF and cross-section reconstruction prob-

lem

1.5.1 Calculation scheme with APOLLO2 (lattice code) and COCAGNE (core

code)

EDF 6 owns and manages 58 PWRs in France. In order to control safely the operation of PWRs,

a new core code named COCAGNE [Plagne and Ponçot, 2005] is being developed for a future core

calculation chain of EDF. In this chain, APOLLO2 code [Sanchez et al., 2010] developed at CEA 7

is integrated and used as a lattice code via a package, called GAB (Library Automatic Generator).

The GAB package developed by EDF is for the objective of generating automatically neutron

libraries from a given dataset. GAB uses the APOLLO2 code as a lattice solver. Each APOLLO2

calculation is employed for a point in the parameter-phase space. However, any calculation requires

an input deck describing the geometry, material, solver options, the scheme for calculation... GAB

generates automatically this input deck for each point (which is represented under feedback form,

e.g: (bu, tf , ρm, bc, xe)), then distributes jobs on a cluster that requires APOLLO2 calculations and

6. Electricité de France
7. Commissariat à l´Énergie Atomique et aux Énergies Alternatives
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First step Second step

GAB

Dataset

Cluster

APOLLO2

(bu, tf , ρm, bc, xe)1

APOLLO2

(bu, tf , ρm, bc, xe)2

APOLLO2

(bu, tf , ρm, bc, xe)k

. . .

Neutronic

libraries

Reconstructing

Cross-sections

COCAGNE

Evaluating

Cross-sections

Solving

Transport E.q

Figure 1.13 – Calculation scheme in core simulation at EDF

finally, gathers all results inside neutron libraries. One important thing is that the dataset generated

by GAB is presented under a tensorized form (grid).

The calculation scheme described in section 1.4.2 and 1.4.3 is now applied to the core calculation

chain of EDF as shown in the diagram of figure 1.13.

1.5.2 Current model for the reconstruction of cross-sections: multilinear inter-

polation

The multilinear interpolation model is currently implemented in the core code COCAGNE in

order to reconstruct cross-sections. We describe with more details here the two main steps employed

in this reconstruction:

(i) In the first step (pre-computing cross-sections on assemblies), each parameter x1, . . . , xd in

the parameter-phase space is represented by a corresponding axis on which it is discretized

into 1D-points (figure 1.14a). A tensorized grid is created (via GAB), containing the points

x = (x1, . . . , xd) which are constituted as a tensor product of all 1D-axial disretizations (figure

1.14). This grid is referred to as multilinear grid.

APOLLO2 calculations are performed at every node of this grid in order to provide all cross-

section values of all cross-section kinds for the multilinear grid. The values obtained are then

stored directly into neutron libraries.

(ii) In the second step (reconstructing cross-sections in core), the cross-sections are reconstructed
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(b) Tensorized grid - multilinear grid

Figure 1.14 – Multilinear grid used for the multilinear interpolation model.

by a multilinear interpolation which requires 2d values of the surrounding nodes for a recon-

structed value.

With the multilinear interpolation model, the reconstruction information stored in neutron libraries

is exactly pre-computed cross-section values. There is no reconstruction process performed over these

values before the storage of useful information into the neutron libraries (this can be different with

other models, for example, in our proposed model (Tucker decomposition), we store basis functions

and coefficients of our model instead of pre-computed cross-section values). The evaluating process

in the core code is performed by the multilinear interpolation but it could have been performed by

an other polynomial interpolation (e.g. Lagrange interpolation).

1.5.3 Requirement of a new model

In the multilinear interpolation model, if we presume that each axis has Nj = N discretized

points, we obtain:

— The number of nodes in the multilinear grid is equal to
∏d
j=1Nj = Nd (exponential function

of dimension). Moreover, if we want to extend or refine some axes, we have to add a lot of

nodes in the multilinear grid. For example, adding k points on an axis leads to the number

of nodes is k ∗Nd−1 +Nd, compared to Nd.

— The number of APOLLO2 calculations is always equal to the number of nodes in the mul-

tilinear grid, which becomes huge when adding new parameters or extending/refining the

calculation domain.

— The storage size does not depend on the cross-section kind, it is the same for all cross-sections

and equal to the number of nodes in the multilinear grid, always of the order of O(Nd).

Because of the huge number of APOLLO2 calculations and the storage size in the neutron

libraries, the multilinear interpolation model lacks of performance in some complex situations, e.g.:
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incidental situations where new parameters need to be taken into account, and/or the calculation

domain could be larger than the standard one.

Therefore, with industrial constraints, another model which allows us to overcome the limitations

of the multilinear model (on the number of APOLLO2 calculations as well as the storage size) is

required. The new model must also assure the accuracy of reconstructed cross-sections where for

some cross-sections, this accuracy should be of the order of pcm with 1 pcm = 10−5.

1.5.4 Computational constraints for the new reconstruction model

In our work, the GAB/APOLLO2 package is currently used to calculate cross-section values.

With this package, APOLLO2 calculations are performed on a tensorized grid automatically gener-

ated from discretized values of each parameter. In order to avoid using a huge number of APOLLO2

calculations (that is very time-consuming), our model needs to be restricted in some situations. For

an illustration in 2D, if we want to compute cross-sections on three points x = (x1, x2) where their

three coordinates (per axis) are totally different, we have to use 3 × 3 = 9 APOLLO2 calculations

via GAB, instead of only 3 which we need (see illustration in figure 1.15).

x1

x2

(a) 3 initial points requires 3 APOLLO2 calculations.

x1

x2

GAB

(b) Using GAB package, 9 APOLLO2

calculations (instead of 3) are used.

Figure 1.15 – GAB (always performed on a tensorized grid) is not flexible and waste of expensive

APOLLO2 calculations for a reconstruction model which does not require input as a tensorized grid.

Therefore, in our current work, we have not yet realized some propositions, such as: performing

our method on randomized points, constructing some set of points without tensorized structure.

Another point needs to be noted is that an APOLLO2 calculation provides at the same time

values of all cross-section kinds at a given point in the parameter-phase space. The reason is that

these cross-sections depend on the neutron flux calculated by APOLLO2 code and this flux is very

expensive in calculation time. Therefore, each cross-section reconstruction must be “optimized” with

the others in order to limit the number of APOLLO2 calculations.





Chapter 2

Mathematical background

This chapter aims at providing an overview of low-rank tensor approximations, classified as

reduced order models. These models are well-suited to reduce the complexity of the parameter-

dependent problems and can be applied to the approximation of multivariate functions (neutron

cross-sections in our context). We recommend the reader to the references: [Hackbusch, 2012],

[Nouy, 2016] and [Oseledets, 2011] for more details about different low-rank tensor approximations.

2.1 Problem statement

As presented in previous chapter (chapter 1), we need to reconstruct all cross-sections (σgr,i,Σ
g
r,i)

for each isotope i, energy g and cross-section kind r (here, i ∼ 50 and g ∼ 2, r ∼ 10, leading about

1000 different cross-sections). Each cross sections is a multi-variate function depending on many

physical parameters. Therefore, this reconstruction stands as an approximation of a set of multi-

variate functions {fk(x)}k=K
k=1 defined over a domain Ω. Here, Ω = Ω1×. . .×Ωd with Ωi,1≤i≤d ⊂ R, d

is the number of parameters and x = (x1, . . . , xd) ∈ Ω. In our applications, the number of functions

need to be reconstructed is K ∼ 10 (if fk = Σg
r) or K ∼ 1000 (if fk = (σgr,i,Σ

g
r,i)r,i,g) and d = 5.

This reconstruction is based on 3 steps:

• Step 1 (offline): we need to evaluate, as precisely as possible, each function fk at some points:

{xj(k)}
J(k)
j(k)=1

For practical reason, the {xj(k)}
J(k)
j(k)=1 does not depend on k, i.e. {xj(k)}

J(k)
j(k)=1 ≡ {xj}

J
j=1, ∀k.

Each of these J computations is done with a software (in our case APOLLO2) that is quite

expensive, hence J should be small.

• Step 2 (offline): From this acquisition of {fk(xj)}Jj=1, we must extract information that would

allow to reconstruct approximatively each fk at any point in Ω - this information needs to

35
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be stored and this storage should be as small as possible since each fk is independent and

requires a separate storage of data.

In addition, the information stored should be easily deduced from {fk(xj)}Jj=1.

• Step 3 (online): From each stored information, we evaluate fk at any point x in Ω that we

want this evaluation should be as cheap as possible together and as accurate as possible,

meaning that we want our approach to have a large [high accuracy]/[complexity] ratio.

To deal with this problem, we aim at proposing a model that allows us to:

(i) Offline: Acquire information efficiently, meaning that the cardinal J of the common set

{xj}Jj=1 used for {fk}k=K
k=1 should be as small as possible but information obtained is still at

high quality.

(ii) Offline: Store data with less storage size possible since K, the total number of functions fk,

is big.

(iii) Online: Reconstruct each fk with a large [high accuracy]/[complexity] ratio because the

expected accuracy is of the order of 10−5 (or pcm).

In addition, we want to generalize our approach to d > 5 and to larger domains Ω.

2.2 Overview of different methods for the reconstruction of neutron

cross-sections

The reconstruction of neutron cross-sections is a well-known problem in neutron simulation

because these cross-sections belong to a high dimensional space (requiring high computational

cost, large storage size). With the development of nuclear power in the world, many calculation

chains for nuclear reactor core simulation have been developed, for instance: CASMO-SIMULATE

[Edenius et al., 1986], [Rhodes et al., 2006], ARCADIA(HERMES)-ARTEMIS [Hobson et al., 2008],

DRAGON-DONJON [Hébert, 2006], NEXUS-ANC [Müller et al., 2007], [Mayhue et al., 2006],

etc. Inside each calculation chain, a reconstruction model for neutron cross-sections is employed.

We can classify these reconstruction models into two main categories:

— The reconstruction of cross-sections is based on some perturbation or correction techniques

applied to cross-section values calculated at or around the nominal point (a special point in the

parameter-phase space on which the reactor operates normally). These techniques often rely

on physical knowledges or some expansion techniques, such as the Taylor expansion. Some

research works related to this reconstruction method can be found in: [Fujita et al., 2014],

[Turski et al., 1997], [Müller et al., 2007], [Stålek and Demazière, 2008].
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— The reconstruction of cross-sections is based on interpolation techniques applied to cross-

section values calculated on a grid, e.g., tensorized grid [Watson and Ivanov, 2002], sparse

grid [Danniëll and Pavel, 2014], quasi-random grid [Dufek, 2011], etc. These models are

also different by the choice of basis functions: piece-wise linear functions, B-spline, Lagrange

polynomials, etc.

The first category’s methods have been proven suitable for the simulation on the standard domain

where parameter-values are near the nominal condition. But far away from this condition, their

accuracy is unknown since the heuristics used around nominal values may not be valid anymore.

The second ones are more general but requires a lot of pre-calculated data to achieve high accuracy.

Therefore, either we have highly efficient reconstruction method (meaning high accuracy with few

point) but only applicable on a specified domain, or we have “expensive” reconstruction method

(meaning high accuracy at the expense of a lot of pre-calculated points) but suitable for any domain.

From the lastest methods, we see that the multilinear interpolation can be considered as a good

reference to compare with other reconstruction methods, in the following criteria:

— Offline: the number of pre-calculations used to calculate cross-section values in order to

acquire useful information.

— Offline: the stored data size after the acquisition step.

— Online: the accuracy of cross-section evaluation.

To deal with this problem, we propose a new model, non-linear and ad’hoc, based on the Tucker

format which belongs to the family of low-rank tensor approximations. The application is restricted

to real multi-variate functions (neutron cross-sections in our context).

In next sections, we present these low-rank tensor methods and explain why we choose the Tucker

format for the cross-section reconstruction problem.

2.3 Preview of low-rank tensors

Low-rank tensor methods are widely used to deal with high dimensional problems. Depending

on the application, the two following frames should be distinguished:

— Low-rank tensor representation (in linear algebra): tensors are exactly represented under

various formats. These formats based on some notions of tensor ranks, such as: r-rank (a

direct extension of matrix rank), α-rank (a rank obtained by a matricization process with

respect to α, here α denotes a subset of the index set D = {1, . . . , d} with a given d ∈ N).

The term representation can be replaced by the term format.

— Low-rank tensor approximation (in functional analysis): tensor space (or multivariate func-

tion space in our case) is equipped with a norm. Since the exact representation is often far
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away to achieve in reality (due to its computational complexity), approximations with respect

to a given norm is used to approach the exact representation. Low-rank tensor formats are

again employed with some supplementary techniques, e.g. truncation.

2.4 Low-rank tensor representation

2.4.1 Singular value decomposition (SVD) for matrix

As we see later, matrix is a particular case of tensors in two-dimensional spaces. Some properties

of matrices can not be directly extended to tensors but they are useful for many definitions related

to tensors, particularly for the notion of rank and low-rank decomposition. We therefore recall

here a well-known matrix factorization technique, called singular value decomposition (abbreviation:

SVD), which allows us to:

— Represent a matrix M as a product of smaller size matrices but having the same rank of M

(see later in (2.1)).

— Determine the rank of matrixM by the number of terms presented in its SVD decomposition.

The SVD is an extension of the eigenvalue decomposition for the case of non-symmetric matrices

and non-square matrices, attributed by Erhard Schmidt [Schmidt, 1989] and Eckart and Young

[Eckart and Young, 1936]. We consider here only the case in R.

For a given rectangular matrix M := Mmn = (mij)1≤i≤m
1≤j≤n

∈ Rm×n, the SVD leads to an expres-

sion:

Mmn = UmmSmnV
T
nn

Where:

(i) U := Umm ∈ Rm×m and V := Vnn ∈ Rn×n

(ii) U , V are orthogonal matrices, i.e. UUT = Im and V V T = In.

(iii) Each column ui of U corresponds to an orthonormal eigenvector of MMT , i.e.: U = [ui]
i=m
i=1

and MMTui = λiui.

Each column vj of V corresponds to an orthonormal eigenvector of MTM , i.e.: V = [vj ]
j=n
j=1

and MTMvj = λjvj .

(iv) The matrix S := Smn ∈ Rm×n is a diagonal matrix containing the square roots of eigenvalues

of MMT (they are also eigenvalues of MTM):

(S)ij =


√
λi if i = j,

0 otherwise.
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The columns ui of U are called left singular vectors of M and the columns vj of V are called

right singular vectors of M . The eigenvalues λk are called the singular values of M , they are sorted

in the decreasing order: λ1 ≥ λ2 . . . ≥ λk ≥ . . . ≥ 0.

If rank(M) = r (r ≤ min{m,n}) then rank(S) = r, i.e. λk = 0 with k > r, M can be

represented as follows:

Mmn = UmrSrrV
T
nr =

r∑
i=1

√
λi ui︸︷︷︸
∈Rm

vTi︸︷︷︸
∈Rn

(2.1)

where:

— Umr is the matrix containing the first r columns of U : u1, u2, . . . , ur.

— Srr is the matrix containing all (= r) singular values different to 0 and taken from the matrix

S.

— Vnr is the matrix containing the first r columns of V : v1, v2, . . . , vr.

— uiv
T
i is the product of the vector ui ∈ Rm with the transpose vTi of the vector vi ∈ Rn.

Assuming that m = n, the initial storage cost of M is reduced from n2 to 2nr by means of the

representation (2.1).

For a given matrix M , (2.1) is a minimal representation of this matrix in the following sense:

r = min{s ∈ N0| ∃{ũi}si=1 ⊂ Rm, ∃{ṽi}si=1 ⊂ Rn : M =

s∑
i=1

ũiṽ
T
i } (2.2)

Now, if we want to “approximate” the matrix M with respect to some given norms ||.|| in Rm×n,

the singular value decomposition is again useful. Indeed, if we set Mr̃ = Umr̃Sr̃r̃V
T
r̃r from (2.1) with

r̃ ≤ r, we have ||M−Mr̃||2 =
√
λr̃+1 and ||M−Mr̃||F =

√∑min{m,n}
i=r̃+1 λi, where: ||.||2 is the spectral

norm and ||.||F is the Frobenius norm with the following definitions:

||M ||2 =
√
λmax(MTM) and ||M ||F =

√√√√ m∑
i=1

n∑
j=1

m2
ij =

√
trace(MTM) (2.3)

It thus appears that Mr̃ minimized ||M − M̃r̃|| for ||.||2 and ||.||F over all r̃-rank matrices in Rm×n.

Because M ∈ Rm×n and the vector space Rm×n has the finite dimension, all matrix norms are

therefore equivalent. This approximation leads to the storage size of the matrix M is scaled from

O(n2) to O(nr̃).

These properties of SVD will be useful for the construction of minimal subspaces in tensor

approximation, when we extend matrix notion to tensor notion.

2.4.2 Tensor and tensor space

In this section, we restrict our presentation in finite dimension spaces over the field R.
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Tensors in finite-dimensional spaces can be considered as a generalization of array notion in two

dimension entities (e.g: matrix) to multi-dimension entities. A tensor in a d-dimensional space is

also called d-way array where d designates the order of the tensor.

Let Vj , 1 ≤ j ≤ d, be finite-dimensional vector spaces over R. An elementary tensor v, defined

by the so-called tensor product of d vectors vj (vj ∈ Vj), is written as follows:

v = v1 ⊗ . . .⊗ vd =

d⊗
j=1

vj , vj ∈ Vj (2.4)

Assuming that dim(Vj) = nj and Bj = {b(j)1 , . . . , b
(j)
ij
, . . . , b

(j)
nj } is a basis of Vj , any vj ∈ Vj has

thus the following representation:

vj =

nj∑
ij=1

vjij b
(j)
ij
, vjij ∈ R

Using this representation, the tensor v can be interpreted as a multidimensional array where each

its entry is determined by a tuple index i = [i1, . . . , id] ∈ Nn1×...×nd (1 ≤ ij ≤ nj and 1 ≤ j ≤ d), as

follows:

v = v1⊗. . .⊗vd = (
∑

1≤i1≤n1

1≤j≤d

v1i1
b
(j)
i1

)⊗. . .⊗(
∑

1≤id≤nd
1≤j≤d

vdid b
(j)
id

) =
∑

1≤i1≤n1

1≤j≤d

. . .
∑

1≤id≤nd
1≤j≤d

d∏
j=1

vjij

d⊗
j=1

b
(j)
ij

(2.5)

We now consider the space spanned by the elementary tensors. This space is called tensor space

and its elements are called tensors. The tensor space is denoted as the tensor product of all vector

spaces Vj :

V = V1 ⊗ . . .⊗ Vd =

d⊗
j=1

Vj = span{
d⊗
j=1

vj , vj ∈ Vj} (2.6)

It is apparent that {
⊗d

j=1 b
(j)
ij
, b

(j)
ij
∈ Bj} is a basis of the tensor space V and we have:

V = span{
d⊗
j=1

b
(j)
ij
, b

(j)
ij
∈ Bj} (2.7)

This leads to any tensor v ∈ V possesses a representation called the full representation:

v =

n1∑
i1=1

. . .

nd∑
id=1

ai1...id
d⊗
j=1

b
(j)
ij
, with ai1...id ∈ R, b(j)ij ∈ Bj (2.8)

Here, the array of coefficients a ∈ Rn1×...×nd is called the core tensor.

If any vector space Vj , j ∈ {1, . . . , d}, has the same dimension: dim(Vj) = nj = n, the storage

size (denoted by N full
mem) of the full representation (2.8) will be:

N full
mem(v) =

d∑
j=1

nj ∗ size(b(j)ij )︸ ︷︷ ︸
for the bases

+

d∏
j=1

nj︸ ︷︷ ︸
for the core tensor

= d ∗ n2 + nd (2.9)
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We see that this representation depends exponentially on d (by the term nd), due to the core

tensor size. Such a complexity is often described by the term curse of dimensionality, introduced

by Bellman in [Bellman, 1957], [Bellman, 1961]. In order to represent or approximate the tensor v

with reduced storage size (the curse of dimensionality problem is scaled), low-rank tensor formats

based on tensor rank notions are introduced.

2.4.3 Tensor rank

2.4.3.1 Tensor of order two

If we take d = 2 in the tensor space definition (2.6), the tensor space V becomes V = V1 ⊗ V2.

A tensor v ∈ V is now a tensor of order two. This particular case is considered here because any

elementary tensor v = v1 ⊗ v2 in a finite-dimensional tensor space can be written as a matrix,

denoted by M(v), where M(v) = v1v
T
2 ∈ Rn1×n2 (the tensor product ⊗ is replaced by the vector

product). In the general case, a tensor v with the full representation
∑n1

i1=1

∑n2

i1=1 ai1i2vi1 ⊗ vi2 , can

be always represented under a matrix form as follows:

v︸︷︷︸
tensor

=

n1∑
i1=1

n2∑
i1=1

ai1i2 vi1 ⊗ vi2︸ ︷︷ ︸
tensor product

7−→
n1∑
i1=1

n2∑
i1=1

ai1i2 vi1v
T
i2︸ ︷︷ ︸

dot product

:= M(v)︸ ︷︷ ︸
matrix

∈ Kn1×n2

In the inverse way, any matrix can be written as a tensor by its representation found in (2.1)

issued from the SVD process. Thus, the notion of rank of a tensor of order two v ∈ V1 ⊗ V2 is

introduced by the rank notion of the corresponding matrix M(v), as follows:

rank(v) = rank(M(v)) = min{r ∈ N0| ∃vi ∈ V1, ∃wi ∈ V2 : v =

r∑
i=1

vi ⊗ wi} (2.10)

2.4.3.2 Tensor rank

The notion of tensor rank for tensors of order d is a natural extension of the rank notion intro-

duced for tensors of order two. In order to get this notion, we define a set Rr (r ∈ N0) in the tensor

space V =
⊗d

j=1 Vj containing linear combinations of r elementary tensors:

Rr = {
r∑
i=1

d⊗
j=1

v
(j)
i , v

(j)
i ∈ Vj} (2.11)

The tensor rank of a tensor v ∈ V is defined by:

rank(v) = min{r ∈ N0 : v ∈ Rr} (2.12)

For a given r, we can characterize the set Rr by:

Rr = {v ∈ V : rank(v) ≤ r} (2.13)
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2.4.3.3 Matricization and α-rank

We consider now another notion of rank for the tensor space V =
⊗d

j=1 Vj with d ≥ 3. It is

related to the subspace notion (tensor subspace or vector subspace) of V and Vj .

Let α be a subset of the set D = {1, . . . , d} such that: ∅ 6= α ⊂ D. We denote the complementary

of α in the set D by αc, i.e. αc = D \ α. The tensor space V =
⊗d

j=1 Vj is then represented as

V = Vα
⊗

Vαc with Vα =
⊗

j∈α Vj and Vαc =
⊗

j∈αc Vj . Using this way, any tensor v is expressed

as v ∈ Vα
⊗
Vαc , which can be interpreted as a tensor of order two (see section 2.4.3.1). This process

is called the matricization of V with respect to α, denoted byMα. Such a matricization transforms

a tensor v to a matrix, denoted by Mα(v), where Mα(v) ∈ Kp×q with p =
∏
j∈α

dim(Vj) and

q =
∏
j∈αc

dim(Vj). The rankα notion of a tensor v is therefore introduced as follows:

rankα(v) = rankMα(v) (2.14)

This notion is also equivalent to the following definition:

rankα(v) = min{r ∈ N0| ∃vi ∈ Vα,∃wi ∈ Vαc : v =

r∑
i=1

vi ⊗wi} (2.15)

By means of the matrix rank property, we obtain rankα(v) = rankαc(v). If α is a singleton {j},

we have Vα := V{j} = Vj and rankα(v) = rankj(v).

Applying the SVD process (described in section 2.4.1) to the matrixMα(v), we can determine

minimal subspaces Uminα (v) ⊂ Vα and Uminαc (v) ⊂ Vαc such that:

Mα(v) ∈ Uminα (v)⊗ Uminαc (v) (2.16)

dim(Uminα (v)) = dim(Uminαc (v)) = rankα(v) (2.17)

and v has a representation:

v =
∑rankα(v)

i=1 vi ⊗ wi
{vi}rankα(v)

i=1 : basis of Uminα (v), {wi}rankα(v)
i=1 : basis of Uminαc (v)

(2.18)

The technique based on SVD to find Uminα (v) (α ∈ D) can be referred to as higher-order singular

value decomposition (abbreviation: HOSVD).
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2.4.4 r-term representation

r-term representation is proposed by Carroll [Carroll and Chang, 1970], Harshman [Harshman, 1970]

and Comon [Comon et al., 2009]. Depending on different research fields, this representation is

known as different names, such as: CANDECOMP/PARAFAC (CP) decomposition, canonical

polyadic decomposition (CPD) or parallel factors model.

For a given r ∈ N0, if a tensor v ∈ Rr ⊂ V =
⊗d

j=1 Vj (see the definition of Rr in (2.13)), v

possesses a r-term representation expressed by r elementary tensors as follows:

v =

r∑
i=1

⊗dj=1v
(j)
i , v

(j)
i ∈ Vj (2.19)

Presuming that for all j, 1 ≤ j ≤ d, dim(Vj) = nj = n, i.e. size(v
(j)
i ) = n, ∀v(j)

i ∈ Vj , the

storage size of the r-term representation (2.19) is therefore equal to:

N r-term
mem (v) =

d∑
j=1

r ∗ size(v(j)
i ) =

d∑
j=1

r ∗ n = drn (2.20)

depending linearly on d. However, this representation suffers from a possible numerical instability

because the set of r-term tensors is not closed (see [de Silva and Lim, 2008]).

2.4.5 Tensor Subspace Representation (TSR)

Tensor Subspace Representation (TSR), also known as Tucker format is described in the chap-

ter 8 of the book [Hackbusch, 2012] (page 217-248). The original idea is proposed by Tucker in

[Tucker, 1966].

For a given tensor v ∈ V =
⊗d

j=1 Vj , the main idea of TSR is to find subspaces Uj ⊂ Vj such

that v ∈ U =
⊗d

j=1 Uj , see the illustration in figure 2.1. Here, U is called a tensor subspace of V

(meaning subspace and tensor space).

v ∈ U =
⊗d

j=1 Uj ⊂ V

U1 ⊂ V1 U2 ⊂ V2 . . . Uj ⊂ Vj . . . Ud−1 ⊂ Vd−1 Ud ⊂ Vd

Figure 2.1 – Tensor subspace U used for the tensor subspace representation (also called Tucker

format) of a tensor v.

This representation is reserved for tensors v which belong to the following set Tr:

Tr = T(r1,...,rd) = {v ∈ V =

d⊗
j=1

Vj : rankj(v) ≤ rj} (2.21)
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where r = (r1, . . . , rd) ∈ Nd0.

Assuming that dim(Vj) = nj , 1 ≤ j ≤ d, and Vj has a basis Bj . If v ∈ Tr, there exist vector

subspaces Uj of Vj such that Uj = spanBj,rj with Bj,rj = {b(j)1 , b
(j)
2 , . . . , b

(j)
rj } ⊂ Bj , and v admits a

(r1, . . . , rd)-tensor subspace representation (or Tucker format) as follows:

v =

r1∑
i1=1

. . .

rd∑
id=1

ai1,...,idb
(1)
i1
⊗ . . .⊗ b(d)

id
, ( b

(j)
ij
∈ Bj,rj ) (2.22)

In the case where rj = r and dim(Vj) = n for all j ∈ {1, . . . , d}, the storage size of the Tucker

format for the tensor v is equal to:

NTSR
mem(v) =

d∑
j=1

rj ∗ size(b(j)ij )︸ ︷︷ ︸
=n︸ ︷︷ ︸

for bases

+

d∏
j=1

rj︸ ︷︷ ︸
for core tensor

= drn+ rd

This storage size still depends exponentially on the dimension d but scaled from nd to rd, com-

pared to the full representation (2.9).

2.4.6 Hierarchical Tensor Representation (HTR)

The Hierarchical Tensor Representation (HTR) can be found in [Hackbusch and Kühn, 2009]

and the chapter 11 of Hackbusch’s book [Hackbusch, 2012]. The main idea is to keep the subspace

structure but avoiding the dimensionality problem. This format also appeared under the name “H-

Tucker format”, in order to describe that the subspace idea of the Tucker format is recursively used

[Grasedyck, 2010], [Kressner and Tobler, 2012].

Let us first introduce some notions used for the HTR. We say TD is a dimension partition tree

of the set D = {1, . . . , d} if TD is a binary tree, i.e. each node α ∈ TD has 0 or 2 sons α1, α2 (see

the illustration in figure 2.2).

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Figure 2.2 – A dimension partition tree (balanced tree) for D = {1, 2, 3, 4}.

In such a tree, we distinguish:

(i) The root α where α = D = {1, . . . , d}.



2.4. Low-rank tensor representation 45

(ii) The leaves α where α = {j}, j ∈ D. We denote by L(TD) the set containing all the leaves:

L(TD) = {{j}, j ∈ D}

(iii) The non-leaf and non-root vertices α, with α ∈ TD\{L(TD)
⋃
D}.

For a given dimension partition tree TD, we construct a corresponding tensor space partition for

V =
⊗d

j=1 Vj . From this partition, we determine subspaces Uα,α∈TD such that:

(i) If α = D (root of the tree) then v ∈ UD ⊂ V, (UD: tensor subspace of V).

(ii) If α ∈ TD\{L(TD)
⋃
D} (non-leaf and non-root of the tree) then Uα ⊂ Uα1

⊗
Uα2

⊂ Vα

with α1 and α2 are the two sons of α, (Uα: tensor subspace of Vα).

(iii) If α = {j} ∈ L(TD) then Uj ⊂ Vj , 1 ≤ j ≤ d, (Uj : vector subspace of Vj).

We illustrate in figure 2.3 the process which provides us the path to construct the subspaces Uj
and Uα in the case D = {1, 2, 3, 4}:

a) Given a balanced partition of D by the tree TD (figure 2.3a).

b) We split the tensor space V by the same partition way in TD (figure 2.3b).

c) We find for each vertex α, a subspace Uα ⊂ Vα as described in figure 2.3c.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(a) A dimension partition tree TD.

V =
⊗4

j=1 Vj

V12 = V1 ⊗ V2

V1 V2

V34 = V3 ⊗ V4

V3 V4

(b) The corresponding tensor-space partition on V.

U {1,2,3,4} ⊂ U{1,2}
⊗

U{3,4} ⊂ V =
⊗4

j=1 Vj

U{1,2} ⊂ U1 ⊗ U2 ⊂ V12

U1 ⊂ V1 U2 ⊂ V2

U{3,4} ⊂ U3 ⊗ U4 ⊂ V34

U3 ⊂ V3 U4 ⊂ V4

(c) The corresponding vector subspaces Uj ⊂ Vj on leaves j ∈ D = {1, . . . , d} and

tensor subspaces Uα ⊂ Vα, α ∈ TD\L(TD), used for the hierarchical tensor format.

Figure 2.3 – The process to construct a Hierarchical Tensor Representation.

Therfore, for a given tree TD, the HTR associated with this tree is used for the tensors v which

belong to the following set:

HTDr = {v ∈ V =

d⊗
j=1

Vj : rankα(v) ≤ rα, α ∈ TD} (2.23)
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here, r = (rα)α∈TD ∈ N#(TD)
0 with #(TD) 6 2d− 1.

The main process used in the HTR is to construct the basis for each tensor subspace Uα (α is

not a leaf) from the bases of subspaces Uj on the leaves j. This construction is recursively performed

from the root level to the leaf level by applying the Tucker format to each basis element of a tensor

subspace Uα. Once the basis of the tensor subspace UD at the root is determined by using this way,

the tensor v ∈ UD ⊂ V will be expressed by a linear combination of the basis elements in UD.

Concretely, we assume that dim(Uα) = rα here α is a non-leaf vertex and Bα = {b(α)
l[α]}1≤l[α]≤rα

is the basis of Uα. The Tucker format is recursively applied to {b(α)
l[α]}α∈TD\L(TD) until the bases

B{j} (bases of the leaves), as follows:

b(α)
l[α] =

rα1∑
l[α1]=1

rα2∑
l[α2]=1

c
(α,l[α])
l[α1],l[α2]b

(α1)
l[α1] ⊗ b(α2)

l[α2], ∀α ∈ TD \ L(TD), with α1, α2 : sons of α (2.24)

where the matrix Cα,l[α] = (c
(α,l[α])
l[α1],l[α2]) ∈ Rrα1

×rα2 , with α ∈ TD\L(TD), 1 ≤ l[α] ≤ rα. We continue

to replace b(α1)
l[α1] and b(α2)

l[α2] with the formula (2.24) and obtain:

b(α)
l[α] =

rβ∑
l[β]=1

β∈Tα\L(Tα)

∏
β∈Tα\L(Tα)

c
(β,l[β])
l[β1],l[β2]

⊗
j∈α

b
(j)
l[{j}], with β1, β2 : sons of β (2.25)

where Tα is the sub-tree of TD with root α and L(Tα) = Tα
⋂
L(TD).

Because v ∈ UD, we therefore have:

v =

rD∑
l[D]=1

C
(D)
l[D]b

(D)
l[D] (2.26)

We insert (2.25) with α = D into (2.26), we finally have:

v =

rD∑
l[D]=1

C
(D)
l[D](

rβ∑
l[β]=1

β∈TD\L(TD)

∏
β∈TD\L(TD)

c
(β,l[β])
l[β1],l[β2]

d⊗
j=1

b
(j)
l[{j}]), with β1, β2 : sons of β (2.27)

Since #(TD) ≤ 2d − 1 and size(C(D)) = rD can be neglected, the storage size of the HTR is

dominated by:

NTSR
mem(v) = size(Cα)α∈TD\L(TD) + size({b(j)l[{j}]} j∈D

1≤l[{j}]≤rj
) (2.28)

=
∑

α∈TD\L(TD)

rαrα1
rα2

+

d∑
j=1

rjsize(b
(j)
l[{j}]) (2.29)

=
∑

α∈TD\L(TD)

rαrα1
rα2

+

d∑
j=1

rjnj (2.30)
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If we assume that rα = r for all α ∈ TD and nj = dim(Vj) = n for all j ∈ {1, . . . , d}, we obtain:

NTSR
mem(v) 6 (d− 1)r3 + dnr

(because the number of non-leaf vertices in TD is less than d − 1). We see that the storage size of

HTR linearly depends on d.

2.4.7 Tensor Train Representation (TTR)

Tensor Train Representation (TTR) [Oseledets, 2011] is a special form of the hierarchical format,

corresponding to an unbalanced tree of type TTD = D ∪ {{j}, {j + 1, . . . , d}, 1 ≤ j ≤ d − 1}, see

figure 2.4 for example.

{1, 2, 3, 4}

{1} {2, 3, 4}

{2} {3, 4}

{3} {4}

Figure 2.4 – A dimension partition tree TTD used for Tensor Train Representation with D =

{1, 2, 3, 4}.

For a given tree TTD, the TTR is reserved for tensors v in the following set:

T TTDr = {v ∈ V =

d⊗
j=1

Vj : rank{j + 1, . . . , d}︸ ︷︷ ︸
∈TTD

(v) ≤ rj , 1 ≤ j ≤ d− 1} (2.31)

with r = (rj)1≤j≤d−1 ∈ Nd−1
0 .

Since rankα(v) = rankαc(v), we therefore can write the set T TTDr as:

T TTDr = {v : rank{j + 1, . . . , d}︸ ︷︷ ︸
∈TTD

(v) = rank{1, . . . , j}︸ ︷︷ ︸
/∈TTD

(v) ≤ rj , 1 ≤ j ≤ d− 1} (2.32)

In the TTR, we apply successively the representation like in (2.18) to minimal subspaces of two

sons of each α = {j + 1, . . . , d} ∈ TTD\L(D). Due to the structure of the tree TTD, for each j, we

denote by jc the set {j + 1, . . . , d}. This notation is useful to describe the TTR formula.
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We start with the root where α = D. Since D has two sons: {1}, 1c := {2, . . . , d} and

rank{2,...,d} ≤ r1 (definition (2.32)), we obtain:

v =

r1∑
i1=1

v
(1)
i1︸︷︷︸

∈Umin1 (v)

⊗ w(1c)
i1︸ ︷︷ ︸

∈Umin
{2,...,d}(v)

(2.33)

Because {2, . . . , d} has two sons: {2} and 2c := {3, . . . , d} and rank{3,...,d} = r2 (definition (2.32)),

so that w(1c)
i1

can be represented as:

w(1c)
i1

=

r2∑
i2=1

v
(2)
i1,i2︸︷︷︸
∈V2

⊗ w(2c)
i2︸ ︷︷ ︸

∈Umin
{3,...,d}(v)

(2.34)

We insert w(1c)
i1

in (2.34) to (2.33), we obtain:

v =

r1∑
i1=1

r2∑
i2=1

v
(1)
i1︸︷︷︸

∈Umin1 (v)

⊗ v(2)
i1,i2︸︷︷︸
∈V2

⊗ w(2c)
i2︸ ︷︷ ︸

∈Umin
{3,...,d}(v)

(2.35)

This process continues and we have:

v =

r1∑
i1=1

r2∑
i2=1

. . .

rd−2∑
id−2=1

rd−1∑
id−1=1

v
(1)
i1︸︷︷︸

∈Umin1 (v)⊂V1

⊗ v(2)
i1,i2︸︷︷︸
∈V2

⊗ . . .⊗ v(d−1)
id−2,id−1︸ ︷︷ ︸
∈V(d−1)

⊗ w((d−1)c)
id−1︸ ︷︷ ︸

∈Umind (v)⊂Vd

(2.36)

The last term expressed as w((d−1)c)
id−1

∈ Umind (v) ⊂ Vd, so that we must have:

w((d−1)c)
id−1

≡ v(d)
id−1
∈ Umind (v) ⊂ Vd

Therefore, v finally has the TTR as follows:

v =

r1∑
i1=1

r2∑
i2=1

. . .

rd−2∑
id−2=1

rd−1∑
id−1=1

v
(1)
i1︸︷︷︸
∈V1

⊗ v(2)
i1,i2︸︷︷︸
∈V2

⊗ . . .⊗ v(d−1)
id−2,id−1︸ ︷︷ ︸
∈Vd−1

⊗ v(d)
id−1︸︷︷︸
∈Vd

(2.37)

The storage size of TTR for a tensor v is denoted by NTTR
mem(v) and decomposed as follows:

NTTR
mem(v) =size({v(1)

i1︸︷︷︸
∈V1

}1≤i1≤r1)

+
∑

2≤j≤d−1

size({v(j)
ij−1,ij︸ ︷︷ ︸
∈Vj

} 1≤ij≤rj
1≤ij−1≤rj−1

)

+ size({v(d)
id−1︸︷︷︸
∈Vd

}1≤id−1≤rd−1
)
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Therefore, we obtain:

NTTR
mem(v) =r1size(v

(1)
i1

)︸︷︷︸
∈V1

+

d−1∑
j=2

rj−1rjsize(v
(j)
ij−1,ij︸ ︷︷ ︸
∈Vj

) + rd−1size(v
(d)
id−1︸︷︷︸
∈Vd

)

=r1n1 +

d−1∑
j=2

rj−1rjnj + rd−1nd

=2rn+ (d− 2)r2n (if nj = n, rj = r, ∀j ∈ {1, . . . , d})

(2.38)

This storage size of TTR linearly depends on d.

2.4.8 Summary

In the lemma 8.6 (page 219) and the lemma 11.55 (page 353) of [Hackbusch, 2012], the author

showed that the set Tr and Hr are closed (i.e., in the sense: U is closed if for any sequence (vn)n∈N ⊂

U ⊂ V which converges to v, then v ∈ U). Therefore, we summarize in table 2.1 some properties of

the presented formats.

r-term Tucker format Hierarchical format

Complexity O(rnd) O(rnd+ rd) HTR : O(d− 1)r3 + dnr)

TTR : O(2rn+ (d− 2)r2n)

Closedness No Yes Yes

Table 2.1 – Comparison of different low-rank tensor formats.

2.5 Low-rank tensor approximation

2.5.1 Tensor approximation in general

Now, we go from exact representations (in linear algebra) to approximate representations (in

functional analysis). The classification of low-rank tensor formats allows us to exactly represent a

tensor v ∈ V =
⊗d

j=1 Vj with some specific tensor structures, as previously described. In order

to reduce the storage size and computational operations for v, this tensor can be approximated by

another tensor u ∈ V such that v ≈ u , with respect to a norm ||.||V defined on V. The low-rank

tensor formats should be used again in order to find u. In general, the reduction of computational

cost often leads to the increase of approximation error ||v− u||V.
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In previous sections, the complexity of each tensor format related to storage size was presented.

However, two other questions are raised in practice:

(i) How to compute components of those formats?

(ii) How to use them in a concrete situation?

Since the SVD in linear algebra can be considered as the Karhunen-Loève decomposition in

functional analysis, they become useful and efficient tools to answer the two above questions.

2.5.2 Application to our problem

2.5.2.1 Low-rank tensor approximation for multivariate functions

In our problem, neutron cross-sections are considered as d-variate functions defined on the domain

Ω = Ω1 × . . .× Ωd with Ωj ⊂ R, 1 ≤ j ≤ d. The evaluation of such a function often requires a grid

constructed on Ω1 × . . .× Ωd. The classical method is the multilinear interpolation where the grid

has a tensor structure. Since this method requires the complexity of the order of O(nd) (with n is

the number of discretized points per axis for this grid), we hope to find another tensor structure for

such evaluation with reduced cost. Therefore, low-rank tensor can be applied to the multivariate

function approximations.

In such an application, the tensor product of d univariate functions fj(xj), 1 ≤ j ≤ d, is a

d-variate function:

(

d⊗
j=1

fj)(x1, . . . , xd) =

d∏
j=1

fj(xj)

2.5.2.2 Model choice

In our problem for the reconstruction (or approximation) of neutron cross-sections, the accuracy

is very important while the dimension d is not very large (d = 5, 6). Hence, we are more interested in

the Tucker format (2.22) than others (e.g. HTR, TTR), because of its promising accuracy, even the

complexity of the this format is still high due to the term rd (see table 2.1). Furthermore, the term rd

is acceptable in our problem because d ∼ 5, 6 and by an approximation process (e.g. truncation), we

can obtain r small in general (r � n = dim(Vj), ∀j). In addition, as we see later in the chapter 5, we

can further reduce this complexity by sparse representation techniques. Noting that the complexity

of the multilinear interpolation (currently used for the reconstruction of cross-sections) is known as

in the order of O(nd).

Although HTR is an interesting format, we need to condense the parameters on which cross-

sections depend into certain groups. This requires a best knowledge about the correlation between
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these physical parameters in neutronics, that we have not yet determined until now. We therefore

did not choose the HTR format in our work.

2.5.2.3 Tucker decomposition-proposed model

In our problem, the Tucker format is used and referred to as Tucker decomposition, it is written

as follows:

f(x1, . . . , xd) ≈ f̃(x1, . . . , xd) =

r1∑
i1=1

. . .

rd∑
id=1

ai1...id
d∏
j=1

ϕ
(j)
ij

(xj) (2.39)

In this decomposition, we need to determine:

(i) The functions {ϕ(j)
ij
}rjij=1 for each direction j, referred to as tensor directional basis function.

(ii) The coefficients ai := ai1...id .

To deal with the problem (i), we relied on the HOSVD process which is described as an extension

of the Karhunen-decomposition in our work. Such a process corresponds to a matricization applied

each time to a couple (α = {j}, αc = {1, . . . , d} \ {j}) to construct tensor directional basis functions

for each direction j (see the illustration of this process in figure 2.5).

U =
⊗4

j=1 Uj ⊂
⊗4

j=1 Vj where:

{1, 2, 3, 4}

{1}

U1

{2, 3, 4}

(a) U1 subspace

{1, 2, 3, 4}

{2}

U2

{1, 3, 4}

(b) U2 subspace

{1, 2, 3, 4}

{3}

U3

{1, 2, 4}

(c) U3 subspace

{1, 2, 3, 4}

{4}

U4

{1, 3, 4}

(d) U4 subspace

Figure 2.5 – Construction of subspaces Uj for the tensor subspace U =
⊗d

j=1 Uj used in the Tucker

decomposition.

For the problem (ii) mentioned above, we determine the coefficients by solving a system of linear

equations where the greedy algorithm is employed to select the points required by this system.

In order to avoid the repetition, we propose the reader to see the descriptions and the applications

of the Tucker decomposition with more details in next chapters. We would like to specify that almost

next chapters correspond to our journal papers written in this thesis.
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Chapter 3

Tucker decomposition model for the

reconstruction of neutron cross-sections

This is a submitted paper with Y.Maday, M.Guillo and P.Guérin. Its reference in the manuscript

is [Luu et al., 2016b].

Abstract

The full representation of a d-variate function requires exponentially storage size as a function

of dimension d and high computational cost. In order to reduce these complexities, function ap-

proximation methods (called reconstruction in our context) are proposed, such as: interpolation,

approximation, etc. The traditional interpolation model like the multilinear one, has this dimen-

sionality problem. To deal with this problem, we propose a new model based on the Tucker format -

a low-rank tensor approximation method, called here the Tucker decomposition. The Tucker decom-

position is built as a tensor product of one-dimensional spaces where their one-variate basis functions

are constructed by an extension of the Karhunen-Loève decomposition into high-dimensional space.

Using this technique, we can acquire, direction by direction, the most important information of the

function and convert it into a small number of basis functions. Hence, the approximation for a given

function needs less data than that of the multilinear model. Results of a test case on the neutron

cross-section reconstruction demonstrate that the Tucker decomposition achieves a better accuracy

while using less data than the multilinear interpolation.

Keywords: function approximation (reconstruction), low-rank tensor approximation, Tucker de-

composition, Karhunen-Loève decomposition, cross-sections, neutronics
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3.1 Introduction

The concept of “function approximation” is widely used in many branches of applied mathe-

matics and computer science to apprehend quantities of interest that depend on, or a function of

input parameters, such as spatial position, time evolution or any other type of input quantity. The

a priori knowledge of the quantity of interest may either be “explicit”, as coming out from mea-

surements, or “implicit” as solution of a modeling equation. There is a third way that is relevant

to this paper. Cross-sections that feed the neutron flux solver cannot be directly measured in an

environment such as a nuclear reactor core. They neither can be computed using a single equation

since there is an interaction between many physics (neutronics, hydraulic, thermic, ...). The way

to solve this situation is through a simplified “experimental simulation” and we will call later on

this process a “calculation scheme”. Since cross-sections depend continuously on many parameters,

a parametrized calculation scheme is also very useful to emulate many different “experiments” with

different configurations. Therefore, one calculation point corresponds to one experiment for a given

configuration. That explains why, although cross-sections are computed and not measured, we will

consider them as “explicit” data acquired through “experimental simulation”.

Multipurpose/universal approaches such as global or piecewise polynomial approximations are

general approximation methods that are valid for a large variety of functions: depending on the

hypothesis/knowledge we have on the function such as regularity in terms of existence of a certain

number of derivatives, we may prefer to use global polynomial versus piecewise ones. This step of the

approximation requires some know-how that is now rather well understood. Once the approximation

basis set is chosen, the coefficients or components of the function we are interested in and we want

to approximate in this basis set are determined in order to fit with the “input” that are explicitly

available and have been acquired by some series of measurements: the stability of the mapping

from the input to the coefficients or components that is an important feature for the quality of

the approximation also depends on the chosen basis set. Once this is done, a second step in the

approximation is the reconstruction (or evaluation) of the function we are interested in, in other

points than those that have been used to construct the approximation.

All this framework involves four different concepts: i) data acquisition, ii) storage of these data,

iii) reconstruction of the function we are interested in, iv) further evaluation, that all have their

particular complexity and cost, that, of course depend on the number of the inputs that are used to

define the function of interest. These complexity and cost suffer from what is known as the curse

of dimension that leads to an exponential explosion of the complexity and cost with respect to the

number of inputs.

In order to face this particular problem, different ad’hoc strategies have been proposed and leave

away the notion of linear approximation in multipurpose/universal representation spaces for prefer-
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ring nonlinear, adapted representations. This enters in the concept of model reduction approaches.

Our interested in the research presented in this paper comes from the particular application we

have in mind which is the reconstruction of cross-sections in neutronics.

In neutronics, cross-sections are used to represent the probability of interaction between an

incident neutron and a given target nuclei ( [Marguet, 2013]). These cross-sections are inputs for

the Boltzmann equation ( [Harris, 2004]) that describe the neutron population in the core. They

depend on various parameters which characterize the local material behavior. Among the parameters

stand for instance: i) burnup, ii) fuel temperature, iii) moderator density, iv) boron concentration

v) xenon level, .... These are 5 parameters that we are interested in in this paper but there may

be many more leading to larger values of d. They are denoted by x = (x1, . . . , xd), where here

d = 5 and they vary in a space called parameter-phase space; hence cross-sections are multivariate

functions of x, x ∈ parameter-phase space.

There are different cross-section kinds that represent different aspects of the physics involved

(fission, absorption, scattering ...). These different kinds of reaction are indexed by “ r”.

The cross-sections also depend on the energy of the incident neutron, this energy is discretized

through “groups” and we designate by the exponent “g” the incident discretized energy group. Micro-

scopic cross-sections (σ) depend also on the target nuclei (or isotope), designated by “i”. Therefore,

{σgr,i} stands for these microscopic cross-sections.

Macroscopic cross-sections (Σ) that feed the neutron flux solver are related to above quoted

microscopic ones using a formula such as:

Σg
r =

I∑
i=1

ciσ
g
r,i (3.1)

where ci is the concentration of isotope i.

For EDF’s applications, I ∼ 50 isotopes, g = 2 energy groups and r ∼ 10 reactions, we obtain

already one thousand types of microscopic cross-sections, i.e one thousand multivariate functions to

approximate.

In the current core simulations, the core is described as a full three-dimensional object ⊂ R3.

At each different position P in the core, we have specific thermo-hydraulic-state conditions, leading

to a corresponding value of x = (x1, . . . , xd) in the parameter-phase space. It means that the cross-

sections {σgr,i}, {Σ
g
r} that are functions of x thus depend (implicitely) on the position P in the core

since x is a function of P : P ∈ R3 7→ x(P ).

In practice, the core is discretized into cells. Therefore, x depends now on the position k of a

cell, x = x(cellk). Hence, cross-sections need to be determined cell per cell (see figure 3.1).

In the core simulation, we need accurate values for the various cross-sections at all cells (about

200, 000 cells for industrial cases and 10 times more for “reference” cases). This leads to the number
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o

x

y

z

cellk

x(k) = x(cellk)

x

o

x1

x2

xd

parameter-phase spaceR3-space

Σgr , σ
g
r,i Σg

r(cellk) = Σg
r(x(k))

σgr,i(cellk) = σgr,i(x
(k))

Figure 3.1 – Dependence of cross-sections on parameters.

of cross-section values needed for the simulation which scales in billions.

It may be time to indicate how, for a given value of x = (x1, . . . , xd) each cross-section is

computed. These are homogenized quantities representing average behaviors computed on a small

homogenization cell, representing locally the core, with the full complexity of the physics (note that

currently the full solution of such a model in a full three dimensional complexity of a core is far out

of reach: this explains why a two stage approach has to be done).

In our applications at EDF-R&D, these cross-sections are extracted from the lattice code named

APOLLO2 [Sanchez et al., 2010] that is developed at CEA. In this step, for a given point x on

which cross-sections depend, an APOLLO2 calculation is performed to provide all microscopic cross-

sections in {σgr,i} (as the functions of x) at this point. The macroscopic cross-sections {Σg
r} are then

derived via the relation (3.1).

The main goal of APOLLO2 calculations is to compute the neutron flux φ. The calculation

schemes used in APOLLO2 code are very complex because the resolution for many neutron equations

are required. Such a calculation is expensive in time and for a given x, it is referred to as calculation

point. From this flux, all required cross-sections (see figure 3.2) can be computed very quickly .

1st step:

x = (x1, . . . , xd)
APOLLO2

φ(x)
very slow fast

 Σg
r(x)

σgr,i(x)


r,i,g

thousands of← microscopic sections

Figure 3.2 – Diagram of APOLLO2 calculations used in the first step.

The determination on the fly of all billion values of cross-sections by APOLLO2 is impossible

because too complex and time consuming.

Currently, in most of the core codes, like in the COCAGNE code that is developed at EDF-R&D

in our team, out of few calculations performed in a first stage (with APOLLO2) and stored in files,

called neutron libraries, approximations of all the required cross-sections Σg
r(x(cell)) for each cell
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are obtained through multilinear interpolation. Note that a constraint in neutronics is that cross-

sections need to be evaluated with a high accuracy (the absolute error is around “pcm” (per cent

mille) where 1 pcm = 10−5). After this is done in a first step of COCAGNE, the flux solver of the

core code which computes the neutron flux φ(cell) can be performed as a second step. This whole

stage is illustrated in figure 3.3.

2nd step:

pre-determined values: {Σg
r(x)}r,g,x

neutron libraries Σg
r(x(cell))

reconstruction
φ(cell)

COCAGNE

flux solver

Figure 3.3 – Diagram of cross-sections reconstruction with the COCAGNE code in the second step.

Let us explain in more details the multilinear interpolation that is currently implemented in

COCAGNE to reconstruct each cross-section. A high-dimensional tensorized grid for x is defined,

where each axis (or phase direction) is a set of parameter values. Such a grid is referred to as

multilinear grid. The values of each set {Σg
r(x)}r,g and {σgr,i(x)}r,i,g are required for each node x of

this grid. This is obtained in the first stage above mentioned out of the APOLLO2 code performed

on every node. The values obtained are then stored in the neutron libraries. Then, a multilinear

interpolation is used in the core code to evaluate cross-sections at any point inside this grid, that

involves a simple linear combination of the cross-section values at the 2d closest nodes.

Currently, cross-sections computed by APOLLO2 depend on d = 5 parameters. If the multilinear

grid contains n points per axis, then we need to perform n5 calculations with APOLLO2. With

thousands of microscopic and around ten macroscopic cross-sections considered in the simulation,

the pre-calculated process is heavy in computation time and in storage. This leads to difficulties for

the following situations:

— 5 parameters are currently used in the regular situation but incident situations depend on

more parameters.

— We would like to extend the calculation domain with parameter values x far away from the

current ones.

The first situation increases the number of dimensions, whereas the last one increases the number

of values per axis: we go from nd to md′ with m > n and d′ > d. The time necessary to generate

the neutron libraries as well as the size of data needs to be stored increase exponentially.

To deal with this problem, there exists already some works which try to improve the cross-section

reconstruction model. For instance, global polynomial interpolation on sparse grids [Botes and Bokov, 2011],

[Danniëll and Pavel, 2014] or spline [Hobson et al., 2013]. These have some limits due to lack of
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regularity of the cross-section in some directions.

In this paper, we introduce a new, non-linear and ad’hoc model based on the Tucker format

[Luu et al., 2015], [Hackbusch, 2012], viewed as a low-rank tensor approximation technique. Using

this model, each cross-section is approached by a limited linear combination of tensor products of

one-dimensional functions, referred to as tensor directional basis functions. The tensor directional

basis functions are constructed by an extension of the Karhunen - Loève decomposition to high-

dimensional spaces.

The tensor directional basis functions are not a priori chosen but tuned to each cross-section we

consider. In particular, the number of the retained tensor directional basis functions (for a given

accuracy) depend on the cross-section and also on the phase direction. Thanks to the Karhunen -

Loève decomposition technique, the most important information of each cross-section is extracted,

axis by axis, and represented into a few tensor directional basis functions.

The coefficients in the combination of the tensor products are determined by a system of lin-

ear equations traducing interpolation equalities at some points. Note that the points are the

same, whatever the cross-section, this allows us to limit the number of APOLLO2 calculations

performed on these points at the stage of determining the coefficients. In order to determine the

points on which this system depends, we rely on the idea presented in the empirical interpolation

[Maday et al., 2013], based on a greedy algorithm.

With these techniques, we can reconstruct the cross-sections with a high accuracy while reducing

significantly the calculation points and the storage in the neutron library.

In the light to what was presented at the beginning of the introduction about the four concepts

for approximation, our approach allows us to minimize the number of data acquisition that each

involves a use of the code APOLLO2 hence also the storage of these data since this is an important

part of the storage, the other part being the definition of the tensor directional basis functions. The

interpolation process through the tensor shape of the approximation of each cross-section allows us

to minimize the complexity of the reconstruction of the function we are interested in together with

further evaluation in various different points.

The paper is organized in the following manner:

Section 2 describes the theoretical background of the Karhunen - Loève decomposition on which

our approach based in order to construct the tensor directional basis functions.

In section 3, we present our proposed methodology for the Tucker decomposition in a general

case.

Section 4 is reserved for practical applications to our problem: the reconstruction of cross-sections

in neutronics. The implementation procedure as well as the cost of Tucker model will be detailed.

In section 5, we show the numerical results of a test case in order to compare the Tucker model
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with the multilinear model using the following criteria: the number of calculation points, the storage

in neutron libraries and the accuracy.

Section 6 is reserved for conclusion and discussion.

3.2 Theoretical background

3.2.1 Problem statement

From a mathematical point of view, our problem: the reconstruction of cross-sections, stands as

the approximation of about one thousand multivariate functions {fk(x)}k, defined on the domain

Ω. Here, x = (x1, . . . , xd) ∈ Ω ⊂ Rd, d is the number of parameters and Ω = Ω1 × . . . × Ωd

(Ωi,1≤i≤d ⊂ R).

The objective is to acquire information, store the data, and propose a reconstruction of each fk
with a high accuracy/complexity ratio. Remember that we expect an absolute accuracy to be of the

order of 10−5 (or pcm).

Our approach is based on a low-rank tensor technique in order to represent each function fk.

Low-rank tensor representations (or formats) are widely used to treat the large-scale problems and

there are many ways to express them, depending on the specific domain of application. We refer to

[Hackbusch, 2012], [Nouy, 2016] and [Oseledets, 2011] for a general description of different formats.

The Karhunen-Loève decomposition will be at the basis of our approach so we recall in the following

subsection some elements of context.

3.2.1.1 Karhunen-Loève decomposition

The Karhunen - Loève decomposition that was introduced in statistics for continuous random

processes [Karhunen, 1946], [Loève, 1955] is also known in various communities, as e.g. Proper

Orthogonal Decomposition (POD) [Berkooz et al., 1993], Principal Component Analysis (PCA)

[Pearson, 1901], [Hotelling, 1933], Empirical Orthogonal Functions (EOFs) [Lyons, 1982]. This

decomposition is available for two-dimensional function spaces but has no direct extension to high-

dimensional ones. The interest of this decomposition is that it provides an optimal rank-r approxi-

mation for two-variate functions, with respect to the L2-norm.

Let f = f(x, y) be a two-variate function in L2(Ωx × Ωy). Through the Karhunen - Loève

decomposition, f can be expressed as follows:

f(x, y) =

+∞∑
n=1

√
λnϕn(x)ψn(y), ∀(x, y) ∈ Ωx × Ωy (3.2)

where {ϕn(x)}+∞n=1 (resp. {ψn(y)}+∞n=1) is a L2-orthonormal basis of L2(Ωx) (resp. L2-orthonormal
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basis of L2(Ωy)). Furthermore, each (λn, ϕn(x)) (resp. (λn, ψn(y))) is a couple of eigenvalue-

eigenfunction of a Hilbert-Schmidt operator K(x)
f (resp. Hilbert-Schmidt operator K(y)

f ) with the

following definitions:

K
(x)
f : L2(Ωx) −→ L2(Ωx)

u 7−→ K
(x)
f u(x) =

∫
Ωx

∫
Ωy
f(x, y)f(x

′
, y)dyu(x′)dx′

(resp. K
(y)
f : L2(Ωy) −→ L2(Ωy)

u 7−→ K
(y)
f u(y) =

∫
Ωy

∫
Ωx
f(x, y)f(x, y′)dxu(y′)dy′ )

(3.3)

The {λn}+∞n=1 are all positive and sorted in decreasing order: λ1 ≥ λ2 ≥ . . . > 0.

For a given number r ∈ N∗, if we search an approximation of f by r-rank tensor product :

f(x, y) ≈ fr(x, y) =

r∑
n=1

anun(x)vn(y), ∀(x, y) ∈ Ωx × Ωy (3.4)

then the Karhunen-Loève decomposition provides the best approximation (see [Šimša, 1992]) in the

sense of minimizing the root mean squared error (RMSE):

eRMSE =
√
||f(x, y)− fr(x, y)||2L2(Ω) =

√∫
Ωx

∫
Ωy

(f(x, y)− fr(x, y))2dxdy (3.5)

Here, the best approximation f bestr is the truncation by the first r terms of the Karhunen-Loève

decomposition (3.2):

f bestr =

r∑
n=1

√
λnϕn(x)ψn(y) (3.6)

In this case, we have:

eRMSE =
√
||f(x, y)− f bestr (x, y)||2L2(Ω) =

√√√√ ∞∑
n=r+1

λn (3.7)

The Karhunen-Loève decomposition for two-dimensional function spaces shows that the most im-

portant information to represent a two-variate function can be found in the first eigenfunctions

(associated with the first largest eigenvalues). This property is exploited by the Higher-Order Sin-

gular Value Decomposition (HOSVD) technique [De Lathauwer et al., 2000], [Hackbusch, 2012],

which is for objectives:

(i) Exploiting the best r-rank approximation for truncation.

(ii) Using {ϕn}n (or {ψn}n) as tensor directional basis functions.
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3.2.1.2 Implementation of the Karhunen-Loève decomposition

The tensor directional basis functions {ϕi(x)}i (resp. {ψi(y)}i ) of L2(Ωx) (resp. L2(Ωy)) are

thus eigenfunctions of the Hilbert-Schmidt operator K(x)
f (resp. K(y)

f ). One of the corresponding

eigenproblem becomes an integral problem as given as follows:

Finding (λ, ϕ) ∈ R× L2(Ωx) such that:

K
(x)
f ϕ = λϕ

⇔
∫

Ωx

∫
Ωy

f(x, y)f(x′, y)ϕ(x′)dx′dy = λϕ(x), ∀x ∈ Ωx

(3.8)

The problem (3.8) is known as a Fredholm equation of the second type ([Atkinson, 1997]) which

does not in general have an analytical solution. Hence, this problem is numerically solved by

discretizing the domain Ωx × Ωy of f with a tensorized grid. The values of f on the discretized

points (xp, yq) ({xp}p being a suitable grid on Ωx and {yq}q a suitable grid on Ωy), are denoted

by fpq = f(xp, yq) and we set ΩNx = {xp|xp ∈ Ωx, p = 1, 2, ..., Nx}, and ΩNy = {yq|yq ∈ Ωy, q =

1, 2, ..., Ny}. The points xp, yq and (xp, yq) are quadrature points.

The discretization leads the discrete integral equation (3.8) to:

Nx∑
p=0

Ny∑
q=0

f(xk, yq)f(xp, yq)∆pqϕ(xp) = λϕ(xk), ∀xk ∈ ΩNx (3.9)

where ∆pq are quadrature weights at (xp, yq), depending on selected numerical integration method.

In our work, ∆pq = δpδq with δp (resp.δq) are one dimensional quadrature weights at xp (resp. at

yq).

With the previous notions, the integral eigenproblem becomes a discrete matricial problem that

reads ∑Nx
p=0

∑Ny
q=0 fkqfpq∆pq(

−→ϕ )p = λ(−→ϕ )k,
−→ϕ = (ϕ(xp))xp∈ΩNx ∈ RNx (3.10)

Eigenfunctions ϕ ∈ L2(Ωx) in (3.8) are discretely represented by eigenvectors−→ϕ ∈ RNx in (3.10).

If we define a matrix A = (fpq) ∈MR(Nx, Ny) and B = (∆pq) ∈MR(Nx, Ny), then the eigenvalue

problem (3.10) will be written in a matrix formula as follows:

ABTAT−→ϕ = λ−→ϕ (3.11)

Since the matrix ABTAT ∈MR(Nx, Nx), we obtain in general Nx eigenvalues for the problem (3.11)

and Nx corresponding eigenvectors: −→ϕ 1, . . . ,
−→ϕ i, . . . ,

−→ϕNx where size(−→ϕ i) = Nx.



64 Chapter 3. Tucker decomposition model for the reconstruction of neutron cross-sections

3.3 Methodology for the Tucker decomposition based on an exten-

sion of the Karhunen-Loève decomposition

3.3.1 Extension of the Karhunen-Loève decomposition into high-dimensional

space for the construction of one-dimensional tensor directional basis func-

tions

For a two-variate function, Karhunen-Loève decomposition leads, after truncation, to approx-

imations of the behavior of the function in each variable with few ad’hoc one dimensional basis

function. As we mentioned earlier, there is no direct extension of the Karhunen-Loève decomposi-

tion for high-dimensional spaces.

Following the formalism of the Tucker decomposition and of α-rank decompositions, we propose

to consider a multidimensional function as a two-variate function of x and y and apply the Karhunen-

Loève decomposition on this expression of the function: the first direction being one of the original

variable present in the multidimensional setting, i.e. x = xj for j = 1, . . . , d, the other being the

remaining variables all condensed into one y := (x1, . . . , xj−1, xj+1, xd). This approach, known as

matricization, performed independently in each direction, allows us to propose appropriate tensor

directional basis functions.

The Karhunen-Loève decomposition is iteratively used for each j and leads to d integral problems,

each one is written as follows:∫
Ωx

∫
Ωy

f(x,y)f(x′,y)ϕ(x′)dx′dy = λϕ(x), ∀x ∈ Ωx (3.12)

Solving these integral problems allows us to determine tensor directional basis functions {ϕ(j)(xj)}

for each direction j (1 ≤ j ≤ d). We only keep from this decomposition, the family of eigenvectors

in the xj variable. The extension process is illustrated in figure (3.4).

3.3.2 Numerical integration method used for integral equation

In order to solve numerically the integral equations like (3.8) (for two-dimensional spaces) or

(3.12) (for high dimensional spaces), as explained in subsection 3.2.1.2 we need a method to ap-

proximate the integrals. Even if the approach is based on a two-variate presentation of the multidi-

mensional function, the function in the variable y is in dimension d− 1. In this context we want to

propose a quadrature rule adapted to our quest, which is to capture the behavior in each variable

while get some understanding of the global function.

In practice, for a d-variate function f = f(x1, . . . , xd), we shall need d different quadrature

rules based on d grids, each one is used to construct tensor directional basis functions for only one



3.3. Methodology for the Tucker decomposition based on an extension of the Karhunen-Loève
decomposition 65

f(x1, . . . , xd)

KL for f(x,y)

x = x1

{ϕ(1)(x1)}

y = (x2, . . . , xd)

(a) Construction of tensor directional basis

functions for the direction x = x1.

. . .

f(x1, . . . , xd)

KL for f(x,y)

x = xd

{ϕ(d)(xd)}

y = (x1, . . . , xd−1)

(b) Construction of tensor directional basis

functions for the direction x = xd.

Figure 3.4 – Construction of tensor directional basis functions for all directions using an extension

of the Karhunen-Loève decomposition (KL).

direction j. Therefore, we propose adaptive discretization in order to capture well information of

the concerned direction but using as less discretized points as possible. Concretely, the concerned

direction j is finely discretized while the others is coarsely (say by 2d−1 points). Such a discretization

is referred to as a Tucker grid. Because we have a total of d grids in a d-dimensional space, so on each

axis (or direction), we realize d different discretizations but only one is fine. These discretizations

are shown in figure 3.5.

f = f(x1, x2, ..., xd)

x1

xk,k 6=1

Tucker Grid1

xj

xk,k 6=j

Tucker Gridj
. . .

xd

xk,k 6=d

Tucker Gridd
. . .

KLKL KL

x1 xj xd
{−→ϕ (1)(x1)} {−→ϕ (j)(xj)} {−→ϕ (d)(xd)}

. . . . . .

Figure 3.5 – Adaptive discretizations (Tucker grids) used for an extension of the Karhunen-Loève

decomposition (KL) to construct tensor directional basis functions, direction per direction.

In our case, we chose the Clenshaw-Curtis quadrature associated with Clenshaw-Curtis points

[Clenshaw and Curtis, 1960], [Boyd, 2001], [Trefethen, 2008] because the Clenshaw-Curtis points
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are nested from N points to 2N points. If we discretize the interval [−1, 1] into N + 1 Clenshaw-

Curtis points then each one is defined by the following formula:

xp = cos(
pπ

N
), 0 ≤ p ≤ N (3.13)

3.3.3 Determination of tensor directional basis functions in the Tucker decom-

position

After solving numerically the integral equations like (3.12), we obtain eigenvectors {−→ϕ (j)(xj)}

but not yet eigenfunctions {ϕ(j)(xj)} for each direction j, 1,≤ j ≤ d. However, our goal is to propose

an approximation of our multivariate function written as a low rank tensor, more precisely a tensor

written as a Tucker decomposition:

f(x1, . . . , xd) ≈ f̃(x1, . . . , xd) =

r1∑
i1=1

. . .

rd∑
id=1

ai1...id
d∏
j=1

ϕ
(j)
ij

(xj) (3.14)

that demands eigenfunctions on its right hand side. Then we need a method to reconstruct eigen-

functions from eigenvectors, direction by direction.

Such a reconstruction method applied to a direction j, should be coherent with the integration

method used for this direction. In our current work, the integration method is based on a polynomial

approach (with the quadrature rules). Hence, we choose the Lagrange interpolation for the recon-

struction of eigenfunctions. It means that, for a direction j, the eigenfunctions ϕ(j) are represented

as Lagrange polynomials via the quadrature points of this direction and via the eigenvector values

at these points. The quadrature points mentioned here are the points in the fine discretization of

the concerned direction, i.e., in our test, the Clenshaw-Curtis points (see figure 3.6).

xj

Eigenvectors:

{−→ϕ (j)(xj)}
Clenshaw-Curtis points

xj
{ϕ(j)(xj)}

Eigenfunctions:
Lagrange interpolation

Figure 3.6 – Current method for the reconstruction of eigenfunctions from eigenvectors.

3.3.4 Criterion for the selection of tensor directional basis functions in the

Tucker decomposition

We need to select from integral problems like (3.12) the most important eigenfunctions. This

selection takes only eigenfunctions associated with the eigenvalues λi, where λi satisfies
λi
λ1

> ε, with

λ1 ≥ λ2 ≥ . . . > 0. Here, ε is a free parameter that can be chosen by the user. In our test, we take

ε = 10−10.
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3.3.5 Determination of coefficients in the Tucker decomposition

In the application of the Tucker decomposition (3.14) for f = f(x1, . . . , xd), we have to determine

R =
∏d
j=1 rj coefficients ai, where rj is the number of tensor directional basis functions in the direc-

tion j: rj = #{ϕ(j)
ij
}. We can find the best ai through projection, i.e. ai = ai1...id =< f,

∏d
j=1 ϕ

(j)
ij
>.

But this method requires a high computational cost. A simpler approach that uses the explicit knowl-

edge we have is based on interpolation at R well selected points {xt}Rt=1. If these points are given

with their coordinates xt = (xt1 , . . . , xtj , . . . , xtd), then R coefficients {a1, . . . ,ai, . . . ,aR} are the

solution of the following system:



f(x1) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(x1j )

. . .

f(xt) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(xtj )

. . .

f(xR) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(xRj )

(3.15)

In our context, {xt}Rt=1 will be referred to as evaluated points of f . The coordinates {xtj}Rt=1 for a

given direction j will be referred to as evaluated points of tensor directional basis functions {ϕ(j)
ij
}rjij=1

in the direction j.

3.4 Particular application for the reconstruction of cross-sections

3.4.1 Subdivision in the discretization of integral equations

In order to get an expertise on the functions we want to approximate, we have studied the vari-

ation of the cross-sections per parameter by varying the values of one parameter while the others

are fixed at nominal values (the values on which the reactor operates normally). We found that the

curve as a function of burnup varies a lot while the others are more close to linear. We show here

an example in the case of the cross-section νΣ2
f (see figure (3.7)).

We thus have used far more points on the burnup axis than on any other axes (25 points for

burnup while we have 5 for others). In order to capture more information of the burnup axis and

avoid a high degree of polynomial approximations (used in the integration method), we subdivided

this axis into three sub-intervals: [0, 150], [150, 10000] and [10000, 80000] (see figure 3.8). Each sub-

interval has 9 Clenshaw-Curtis points (there are two common points: 150 and 10000 for 3 intervals).
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Figure 3.7 – Cross-section νΣ2
f as function of each parameter.
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Figure 3.8 – Subdivision of the burnup axis.

3.4.2 Selection of the evaluated points by using recursively the greedy algorithm

3.4.2.1 Evaluated points on the left hand side of the system (3.15)

On the left hand side of (3.15), we need the values of each cross-section f at R evaluated points

of {xt}Rt=1. Already, the APOLLO2 calculations (performed in order to determine the cross-section

values on Tucker grids) can be re-used for interpolating f at those points. As we know in section

5.1, APOLLO2 calculations are expensive in computation time so we want to reduce as much as

possible these calculations at this stage.

In our case, the number of retained tensor directional basis functions in the Tucker decomposition

(3.15) depends on the cross-section Σk with 1 ≤ k ≤ K. Thus the selected points for interpolation

depend on the cross-section.

Since an APOLLO2 calculation provides values of all cross-sections at a given point, we can

determine a set of points, denoted by {xt(
⋃
k Σk)}t≥1, such that this set is usable for every cross-

section: {xt(Σk)}
R(Σk)
t=1 can be extracted from {xt(

⋃
k Σk)}t≥1. Such a set {xt(

⋃
k Σk)}t≥1 is optimal

for the number of APOLLO2 calculations if the cross-sections can use a maximal number of common
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evaluated points, i.e. #(∩Σk{xt(Σk)}
R(Σk)
t=1 ) should be maximal.

3.4.2.2 Proposed constitution of evaluated points

For each cross-section, we need a total of R =
∏d
j=1 rj evaluated points {xt}Rt=1 on the left hand

side of (3.15), where rj is the number of tensor directional basis functions in the direction j. It is

natural to use a set of tensorized points. Therefore, we can choose from each direction j (1 ≤ j ≤ d)

a set of only rj evaluated points {x(j)
tj }

rj
tj=1 (1 ≤ j ≤ d) used on the right hand side of (3.15) to

constitute
∏d
j=1 rj points of {xt}Rt=1 :

{xt}Rt=1 = ×dj=1{x
(j)
tj }

rj
tj=1 (3.16)

Using this construction, the set {xtj}Rt=1 becomes {x(j)
tj }

rj
tj=1 with rj < R.

3.4.2.3 Problem of the evaluated points choice

For sake of conveniency, because this allows us to use on the right hand side of the system (3.15)

the values that were used to build the tensor directional basis functions {ϕ(j)
ij
}rjij=1, we propose to

choose the evaluated points {x(j)
tj }

rj
tj=1 among the fine discretization {x(j)

1 , . . . , x
(j)
Nj
} of the direction

j. This choice is nontrivial because rj < Nj , leads to a total of CrjNj choices for {x(j)
tj }

rj
tj=1 and∏d

j=1C
rj
Nj

choices to constitute {xt}Rt=1 by (3.16). To illustrate, our cross-sections depend on 5

parameters and rj = 4, Nj = 10 (1 ≤ j ≤ 5), we already have C4
10 = 210 choices for evaluated points

of one direction j and 2105 choices for evaluated points x = (x1, . . . , xd).

When many cross-sections are studied at the same time, we have to determine a choice such

that:

— The cross-sections use as many common evaluated points x = (x1, . . . , xd) as possible to

reduce the number of APOLLO2 calculations. This is equal to find as many as possible the

common evaluated points {xj} for each direction j if we use the constitution proposed by

(3.16).

— The accuracy of the Tucker decomposition for every cross-section must be ensured. (Because

each choice leads to a change of coefficient values a on which the accuracy of the Tucker

decomposition depends)

Remark: The choice of evaluated points {xt}Rt=1 to solve the system (3.15) does not change the stor-

age cost of the Tucker decomposition. This changes only the values of the coefficients a determined

by (3.15) which are used in the Tucker decomposition (3.14). Since the accuracy of this decompo-

sition is very sensitive to these coefficients, we must determine accurate coefficients by choosing the

pertinent evaluated points {xt}Rt=1 and {x(j)
tj }

rj
tj=1.
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3.4.2.4 Proposed choice based recursively on the greedy method

We propose to use the empirical interpolation method, described in [Maday et al., 2007], to deal

with our problem of constructing evaluated points {x(j)
tj }

rj
tj=1, 1 ≤ j ≤ d, and {xt}Rt=1. This method

is based on a greedy algorithm to construct interpolation points, so we refer to it as greedy algorithm.

Let us present it in a general framework: Let ω be a domain of Rn: ω ⊂ Rn ( 1 ≤ n ∈ N in our

applications, n will be 1 or d). G is a group of K functions defined on ω: G = {ϕj : ω → R|ϕj ∈

L∞(ω), 1 ≤ j ≤ K}. The main idea of the greedy algorithm is to determine simultaneously P

interpolation points X = {x1, . . . , xP } ⊂ ω and the associated interpolation operators IP , such

that for any function ϕ ∈ G, IP (ϕ) is an interpolation of ϕ with the interpolation error satisfies:

||ϕ− IP (ϕ)||L∞(ω) → 0 rapidly as P →∞ ( [Maday et al., 2007]).

The greedy algorithm can be described as follows:

— For p = 1

u1 = argmaxϕ(j)∈G ||ϕ(j)||L∞(ω)

x1 = argmaxx∈ω|u1(x)|

(i.e. |u1(x1)| = maxx∈ω,ϕ(j)∈G |ϕ(j)(x)| )

— Set X1 = {x1}

— Establish the interpolation operator I1:

∀ϕ(j) ∈ G : I1[ϕ(j)] =
ϕ(j)(x1)

u1(x1)
u1(.)

— For p > 1

up+1 = argmaxϕ(j)∈G ||ϕ(j) − Ip[ϕ(j)]||L∞(ω)

xp+1 = argmaxx∈ω|up+1(x)− Ip[up+1](x)|

(i.e. |up+1(xp+1)| = maxx∈ω,ϕ(j)∈G |ϕ(j)(x)− Ip[ϕ(j)(x)]| )

— Set Xp+1 = Xp
⋃
{xp+1}

— Build the interpolation operator Ip+1:

∀ϕ ∈ G : Ip+1[ϕ] = Lagrange interpolation via the p+ 1 points of Xp+1

— Continue until the required value, i.e. p = P .

The greedy algorithm is well suited to the problem of finding the evaluated points {x(j)
tj }

rj
tj=1 in each

direction j. Indeed, this algorithm allows us to determine a set of points for a group of functions,

where the cardinal of these points is a given number and on which, each function in the group is

well represented, well evaluated.
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In our case, assume that all studied cross-sections are {Σk}1≤k≤K (Σk depends on d parameters).

For a cross-section Σk and for a concerned direction j, we need to determine rj(Σk) evaluated

points for the tensor directional basis functions {ϕ(j)
ij

(Σk)}
rj(Σk)
ij=1 of this cross-section. Therefore,

the greedy algorithm applied to the cross-section Σk and the direction j for finding evaluated points

X (Σk) = {x(j)
ij

(Σk)}
rj(Σk)
ij=1 is performed with:

— ω = {all evaluated points xj of the direction j} = {x(j)
1 , . . . , x

(j)
Nj
} ⊂ R

— P = rj(Σk) < N
(j)
j

— G = {ϕ(j)
ij

(Σk)}
rj(Σk)
ij=1

The evaluated points {xt(Σk)}
R(Σk)
t=1 are then constituted as a tensor product of evaluated points

{x(j)
ij

(Σk)}
rj(Σk)
ij=1 using (3.16).

Such a determination is well-suited for each cross-section but is not optimal for the number of

APOLLO2 calculations. In fact, the APOLLO2 calculations are performed on every evaluated point

x (used on the left hand side of (3.15)). Since we have a total of {Σk}1≤k≤K cross-sections, so the

total evaluated points used by all cross-sections is
⋃

Σk,1≤k≤K{xt(Σk)}
R(Σk)
t=1 , with {xt(Σk)}

R(Σk)
t=1 6=

{xt(Σl)}
R(Σl)
t=1 if k 6= l, in general. This leads to a significant number of APOLLO2 calculations for⋃

Σk,1≤k≤K{xt(Σk)}
R(Σk)
t=1 . As we have mentioned in section 3.4.2.3, the solution is finding as many

as possible the common evaluated points between the sets {x(j)
ij

(Σk)}
rj(Σk)
ij=1 for each direction j.

We denote {xj(
⋃
k Σk)} by the set of common evaluated points for the direction j. The car-

dinal of this set must be as small as possible to have the maximal common evaluated points

between the cross-sections. Since {xj(
⋃
k Σk)} are used for tensor directional basis functions in⋃

Σk,1≤k≤K{ϕ
(j)
ij

(Σk)}
rj(Σk)
ij=1 , we propose to take a set {xj(

⋃
k Σk)} such that #({xj(

⋃
k Σk)}) = P

where P is equal to the highest number rj(Σk), i.e. :

P := #{xj(
⋃
k

Σk)} = rmaxj = max
Σk,1≤k≤K

rj(Σk)

This means that all points of {xj(
⋃
k Σk)} are also the evaluated points of any cross-section. If we

denote this cross-section by Σmax
k , then we have rmaxj = rj(Σ

max
k ). Therefore, we have {xj(

⋃
k Σk)} ≡

{x(j)
ij

(Σmax
k )}rj(Σ

max
k )

ij=1 . After determining {xj(
⋃
k Σk)}, all cross-sections Σk can select their evaluated

points {x(j)
ij

(Σk)}
rj(Σk)
ij=1 with #{x(j)

ij
(Σk)}

rj(Σk)
ij=1 = rj(Σk) from rmaxj points of {xj(

⋃
k Σk)}. This

selection can use again the greedy algorithm.

In our case, we propose to use a discrete version of the greedy algorithm where {ϕ(j)
ij

(Σk)}
rj(Σk)
ij=1

are replaced by {−→ϕ (j)
ij

(Σk)}
rj(Σk)
ij=1 .

Assuming that all tensor directional basis functions {ϕ(j)
ij

(Σk)}
rj(Σk)
ij=1 are determined in the direc-

tion j, our greedy version applied to a direction j for finding X (
⋃
k Σk) = {xj(

⋃
k Σk)} is described

as follows:
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— Collect all tensor directional basis functions of the direction j into a group Gj :

Gj =
⋃

Σk, 1≤k≤K

{ϕ(j)
ij

(Σk)}
rj(Σk)
ij=1

— Find the max number of evaluated points {x(j)
ij

(Σk)}
rj(Σk)
ij=1 over all cross-sections:

rmaxj = max
Σk

rj(Σk) (3.17)

— Apply the greedy algorithm (see above) to:

G ≡ Gj , P ≡ rmaxj and Ω ≡ {Nj points in the fine discretization for j}

With this strategy, the number of APOLLO2 calculations used for evaluated points x (on the right

hand side of (3.15)) of all studied cross-sections ({Σk}1≤k≤K) are determined by:

d∏
j=1

rmaxj , where rmaxj is defined in (3.17) (3.18)

After this stage, performed offline, for each direction j, we have all evaluated points Xrmaxj
=

{xj(
⋃
k Σk)} on which each cross-section Σk,k≥1 can select its proper evaluated points for finding

X (Σk) = {x(j)
ij

(Σk)}
rj(Σk)
ij=1 again from the greedy algorithm:

— G ≡ {ϕ(j)
1 (Σk), . . . , ϕ

(j)
rj (Σk)}

— P ≡ rj(Σk)

— Ω ≡ Xrmaxj
= {xj(

⋃
k Σk)}

3.4.3 Summary of the implementation procedure

We have introduced in the previous sections our proper Tucker decomposition and the procedures

to determine the components of this decomposition. Let us now summarize the principal steps when

applied to a multivariate function f = f(x1, . . . , xd), where xj ∈ Ωj ⊂ R, j = 1, . . . , d:

(i) Find the one-dimensional tensor directional basis functions for all directions j, 1 ≤ j ≤ d:
— Domain discretization leads to d Tucker grids:

— Fine discretization of Ωj into Nj points

— Coarse discretization for the other directions with Nk(j) points, k 6= j

— Using the extension of the Karhunen-Loève decomposition to construct tensor directional

basis functions, direction per direction:

— Establish the integral problems in high dimensional space like equation (3.12)

— Solve numerically the integral problems by solving the eigenvalue problems similar to

the equation (3.10)

— Use the criterion described in section 3.3.4 to select the dominant eigenvectors ϕ(j)
ij

,

leads to ij = 1, . . . , rj in the concerned direction j
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— Construct the tensor directional basis functions for the direction j by interpolating

the selected eigenvectors in a polynomial basis

(ii) Determination of the coefficients a in the Tucker decomposition:

f(x1, . . . , xd) ≈ f̃ =

r1∑
i1=1

. . .

rd∑
id=1

ai1...id
d∏
j=1

ϕ
(j)
ij

(xj) (3.19)

— For a direction j: choose rj points among rmaxj evaluated points of Xrmaxj
with the greedy

algorithm (section 3.4.2.4)

— Constitute r1 . . . rd =
∏d
j=1 rj evaluated points x = (x1, . . . , xd) by a tensor product of

{x(j)
ij
}rjij=1 (by (3.16))

— Find the coefficients a by solving the linear system (3.15)

(iii) Evaluation of f at any point x = (x1, . . . , xd):

— Evaluate all ϕ(j)
ij

at xj with i = 1, . . . , rj , j = 1, . . . , d

— Evaluate f(x) using Tucker decomposition (3.19)

3.4.4 Cost of the multilinear interpolation and the Tucker decomposition

3.4.4.1 Multilinear interpolation process and the number of APOLLO2 calculations,

the storage size of cross-sections

The multilinear interpolation process can be illustrated by figure 3.9.

{nodex} ∈
multilinear

grid APOLLO2
{Σg

r(nodex)}
Store

Neutron library

Figure 3.9 – Multilinear interpolation process.

We see that the APOLLO2 calculations are performed on all nodes x of the multilinear grid and

then the cross-section values on these nodes are directly stored in the neutron library.

If the multilinear grid has Nj points on the axis j, (1 ≤ j ≤ d), then the number of APOLLO2

calculations is equal to:
d∏
j=1

Nj (3.20)

and the storage is the same for all cross-sections:

d∑
j=1

Nj +

d∏
j=1

Nj (3.21)
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3.4.4.2 Tucker decomposition process and the number of APOLLO2 calculations, the

storage of cross-sections

Tucker decomposition process

The Tucker decomposition process can be illustrated by figure 3.10.

{nodex} ∈


grid1

. . .

gridd


APOLLO2 {Σg

r(nodex)} KL
{−→ϕ (1)(Σg

r)}

. . .

{−→ϕ (d)(Σg
r)}

System

(3.15)
{a(Σg

r)}

store
library

Figure 3.10 – Tucker decomposition process (here KL: Karhunen-Loève decomposition).

We see that the APOLLO2 calculations are performed on the nodes x of the Tucker grids, but

we do not store the cross-section values on these nodes like in the case of the multilinear model.

Instead of that, we store the values of the eigenvectors {−→ϕ (j)(Σg
r)}dj=1 and the coefficients a.

Number of APOLLO2 calculations in the Tucker decomposition

In the Tucker model, the total number of APOLLO2 calculations used for all cross-sections

{Σg
r}r,g is calculated as follows:

d∑
j=1

(Nj

d∏
k(j)=1,k(j) 6=j

Nk(j)) +

d∏
j=1

rmaxj (3.22)

Where:

— Nj : the number of points in the fine discretization of the direction j.

— Nj
∏d
k(j)=1,k(j)6=j Nk(j): number of nodes in the jth Tucker grid on which APOLLO2 calcula-

tions are performed (ref. figure 3.5).

— rmaxj : defined by (3.17)

—
∏d
j=1 r

max
j : the number of evaluated points {xt}Rt=1 used by all cross-sections. Here, the

APOLLO2 calculations are used on these points to compute cross-section values on the left

hand side of each system like (3.15), to get the coefficients a.

In our test, we chose Nk(j) = 2 so the first part of (3.22) equals to
∑d

j=1Nj2
d−1.

Storage in the Tucker decomposition

The storage size for one cross-section Σk,k≥1 is the number of the floating points which needs to
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be stored. It is varied by cross-section and described as follows:

d∑
j=1

Nj +

d∑
j=1

rj(Σ
g
r) ∗Nj +

d∏
j=1

rj(Σ
g
r) (3.23)

Where:

— Nj : the number of points in the fine discretization of the direction j.

— rj(Σ
g
r) ∗Nj : the values of rj(Σ

g
r) eigenvectors −→ϕ (j) for the direction j. Here, Nj is also the

size of −→ϕ (j).

—
∏d
j=1 rj(Σ

g
r): the number of coefficients a for the cross-section Σg

r .

3.5 Numerical results

3.5.1 Description of the test case

We present here a numerical test case using the Tucker decomposition and the multilinear

model to reconstruct the cross-sections. Some cross-sections are considered in our work like: the

macro totale - Σg
t , the macro absorption - Σg

a, the macro fission - Σg
f and the macro nu*fission

- νΣg
f . A particular case, the macro scattering depends on 3 indexes g, g′ and o, denoted by Σg→g′

so .

In our test case, o ∈ {0, 1}, g ∈ {1, 2}, g′ ∈ {1, 2} and the cross-sections depend on 5 parameters:

burnup, fuel temperature, moderator density, boron concentration and xenon level. These parameters

vary in the intervals given in table 3.1, around their nominal values.

Parameter name min value max value

Burnup, MWd/t 0.0 80000.0

Fuel temperature,̊C 286.0 1100.0

Moderator density, g/cm3 0.602 0.753

Boron concentration, ppm 0.0 1800.0

Xenon level, % 0.0 1.0

Table 3.1 – Parameters and their intervals.

3.5.2 Discretization of the parameters space

In order to compare the Tucker decomposition with the multilinear interpolation method already

implemented in the COCAGNE code, we need a reference sample of points included in a grid named

reference grid. In this grid, we tried to select the points such that they are different from the

multilinear grid and from the Tucker grids. The reason is that if a point belongs to a multilinear
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grid then cross-section values are exact at this point (no interpolation) with the multilinear model,

whereas for the Tucker model, it is not.

In our test case, the multilinear grid has a large number of points in the burnup direction (33

points) while the others have 2 or 3. The Tucker grids contain 5 grids corresponding to 5 directions.

Each one has 5 Clenshaw-Curtis points in the studied direction and 2 points in all other directions

except for the burnup-grid with 25 points in the burnup direction (see the description in section

3.4.1).

These discretizations are illustrated in a one-dimensional space in figure 3.11 and are described

in table 3.2.

reference grid −→ to calculate evaluated error of each method

multilinear grid −→ multilinear interpolation

Tucker grids −→ Tucker decomposition

Figure 3.11 – Illustration of the different grids used in the test case.

Direction reference grid multilinear grid Tucker grids

burnup 36 33 25 (25 ∗ 24 = 400 points)

Fuel temperature 4 3 5 (5 ∗ 24 = 80 points)

Moderator density 4 3 5 (5 ∗ 24 = 80 points)

Boron concentration 4 3 5 (5 ∗ 24 = 80 points)

Xenon level 3 2 5 (5 ∗ 24 = 80 points)

Total 6912 points 1782 points 720 points

= 36 ∗ 43 ∗ 3 = 33 ∗ 33 ∗ 2 = 25 ∗ 24 + 4 ∗ (5 ∗ 24)

Table 3.2 – The discretization of the reference grid, of the multilinear grid and of the Tucker grids.

3.5.3 Approximation errors for cross-sections

We compare the accuracy of the multilinear interpolation and the Tucker decomposition on each

node xi of the reference grid. The approximation error on the reference grid is defined either by the

infinity norm (inf) of relative errors or by the root mean square of absolute errors (RMSE) :

e(inf) = max
xi∈reference grid

| f̃(xi)− f(xi)
max |{f(xi)}|

∗ 105︸ ︷︷ ︸
relative error

| (3.24)

or

e(RMSE) =

√√√√ N∑
i=1

((f(xi)− f̃(xi)) ∗ 105)2

N
, with N = #(reference grid) (3.25)
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where f(xi) and f̃(xi) are respectively exact values (calculated by APOLLO2) and approximation

values (evaluated by either method) of a cross-section, performed at xi ∈ reference grid . The 105

factor is here to have units in pcm.

We denote eTucker and emultilinear respectively the error by the Tucker approximation and by

the multilinear interpolation.

3.5.4 Approximation errors for reactivity

Cross-sections are merely inputs for the flux solver. We are more interested in keff or reactivity

for instance, which are outputs of the flux solver. In some simplified cases, we do not need to go

through solving a neutron equation, the following analytic formula is applied (see page 1172, 1173,

1221 of the book [Marguet, 2013]):

reactivity = 1− 1

keff
,with keff = k∞ =

νΣ1
f ∗ (Σ2

t − Σ2→2
s0 ) + νΣ2

f ∗ Σ1→2
s0

(Σ1
t − Σ1→1

s0 ) ∗ (Σ2
t − Σ2→2

s0 )− Σ1→2
s0 ∗ Σ2→1

s0

In order to measure the reactivity error, we use e(inf)
reactivity with the following definition:

e(inf)
reactivity = max

xi∈reference grid
|( 1

k∞(xi)
− 1

k̃∞(xi)
) ∗ 105|

3.5.5 Results

In this section, results will be shown for the two cases: the Tucker decomposition using and not

using the greedy algorithm. We will compare these results with the multilinear model using the

following criteria: the number of calculation points, the storage and the accuracy.

We present in table 3.3, the results issued from the Karhunen-Loève decomposition for some

macroscopic cross-sections. This allows us to compute the number of APOLLO2 calculations and

the storage in the Tucker decomposition (see section 3.4.4.2).

3.5.5.1 Comparison of the number of calculation points

The number of calculation points for the Tucker model (see (3.22)) includes the calculations on

all nodes of Tucker grids (in this case, we have 5 grids for 5 parameters with 720 nodes in total

(table 3.2)) and the calculations performed on the evaluated points x on the left hand side of (3.15)

(in this case, we have 378 evaluated points (see table 3.3)). The number of calculation points for

the multilinear model (see (3.20)) is equal to the number of nodes in the multilinear grid. Hence, we

obtain the results presented in table 3.4. These results show that, by using the Tucker decomposition,

the number of calculation points has been reduced by 38% compared with multilinear model.
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Cross Number of tensor directional basis functions rj for direction j Number of

section rburnup rFuel temperature rModerator density rBoron rXenon coefficients a (
∏d
j=1 rj)

Σ1
t 4 2 2 2 2 64

Σ2
t 3 2 3 2 2 72

Σ1
a 5 3 2 3 2 180

Σ2
a 5 2 3 3 2 180

νΣ1
f 7 2 2 3 2 168

νΣ2
f 5 2 3 2 2 120

Σ1→1
s0 4 2 2 2 2 64

Σ1→2
s0 4 3 3 3 2 216

Σ2→1
s0 6 2 3 3 2 216

Σ2→2
s0 3 2 3 2 2 72

Σ1
f 7 2 2 2 2 112

Σ2
f 5 2 3 2 2 120

rmax
j 7 3 3 3 2

=⇒ Number of evaluated points {xt}Rt=1 (used on the left hand side of the systems (3.15), determined by (3.19)):

7*3*3*3*2 = 378

Table 3.3 – Number of: tensor directional basis functions, coefficients a and evaluated points x in

the Tucker decomposition for some cross-sections.

Number of calculation points

Tucker decomposition Multilinear Interpolation

720︸︷︷︸
for 5 Tucker grids

+ 378︸︷︷︸
for evaluated points x

=1098 1782

Table 3.4 – Comparison of the number of calculation points between the Tucker decomposition and

the multilinear interpolation.

3.5.5.2 Comparison of the storage

The storage of the Tucker decomposition for one cross-section includes the axial discretization

values, the values of selected eigenvectors and the coefficients a (see (3.23)). The storage of the

multilinear model includes the axial discretization values, the cross-section values on the nodes of

the multilinear grid (3.21). The number of axial discretization values (25+4*5 = 45 for the Tucker

model and 33+3+3+3+2 = 44 for the multilinear model) is the same for all cross-sections and

becomes small when all cross-sections are considered. Therefore, these numbers can be neglected in

the comparison of the storage. We obtained the results presented in table 3.5 for some cross-sections.

These results show that, by using the Tucker decomposition, the storage size has been reduced by a

factor from 4 to 9 (depending on the cross-section) compared to the multilinear model.
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Cross Storage (number of floats)

section Tucker Multilinear

Σ1
t 244 1782

Σ2
t 192 1782

Σ1
a 355 1782

Σ2
a 355 1782

νΣ1
f 388 1782

νΣ2
f 290 1782

Σ1→1
s0 244 1782

Σ1→2
s0 371 1782

Σ2→1
s0 416 1782

Σ2→2
s0 192 1782

Σ1
f 327 1782

Σ2
f 290 1782

Table 3.5 – Comparison of the storages between the Tucker decomposition and the multilinear

interpolation.

3.5.5.3 Comparison of accuracy

When the tensor directional basis functions are determined, the accuracy of the Tucker decompo-

sition depends only on values of the coefficients a. We recall that the storage size (e.g. in table 3.5)

does not depend on the coefficient values. We present here the results of the Tucker decomposition

with and without using the greedy algorithm. We recall that without the greedy algorithm, we select

randomly the evaluated points. The accuracies of the Tucker decomposition are compared to the

multilinear interpolation over 6912 points of the reference grid.

The comparisons are presented in table 3.6. In this table, the Tucker decomposition without

using the greedy algorithm has already a better accuracy for the eRMSE errors for all reconstructed

cross-sections (see in column 6), compared to the multilinear interpolation (see in column 5). But

this is worse than the multilinear one for some cross-sections (νΣ1
f , Σ1

f ) with e
inf errors (presented

by framed errors) and for the reactivity with eRMSE . With the greedy algorithm, all errors are now

better than those of the multilinear interpolation.

Figure 3.12 presents the relative errors for the cross-section νΣ1
f . In this case, the accuracy of

the Tucker decomposition using the greedy algorithm is the best, compared to the multilinear model

and the Tucker decomposition without using the greedy algorithm.

Figure 3.13 presents the relative errors for the cross-section Σ2→1
s0 . In this case, the accuracy of

the Tucker decomposition is also better than that of the multilinear interpolation. The distribution

of errors in the case using the greedy algorithm seems to be the same as the case without using the
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greedy algorithm.

Figure 3.14 presents the approximation errors of the reactivity. The accuracy of the Tucker

decomposition with the greedy algorithm is the same order of multilinear interpolation accuracy.

Cross e(inf)
multilinear e(inf)

Tucker e(inf)
Tucker e(RMSE)

multilinear e(RMSE)
Tucker e(RMSE)

Tucker

Section (without (with (without (with

greedy greedy greedy greedy

algorithm) algorithm) algorithm) algorithm)

Σ1
t 47.24 28.15 26.58 6.449 3.182 3.126

Σ2
t 118.11 40.63 34.67 77.191 14.50 10.341

Σ1
a 195.76 25.86 28.10 0.805 0.089 0.101

Σ2
a 417.01 49.64 49.52 8.972 1.999 2.097

νΣ1
f 116.65

�� ��130.66 42.58 0.277 0.132 0.080

νΣ2
f 289.75 72.80 70.72 11.601 3.949 4.146

Σ1→1
s0 40.86 25.42 23.88 5.322 2.795 2.724

Σ1→2
s0 194.94 24.07 19.28 0.663 0.663 0.096

Σ2→1
s0 794.39 97.17 96.73 0.642 0.124 0.119

Σ2→2
s0 126.08 10.61 18.92 74.947 3.824 5.023

Σ1
f 122.62

�� ��137.54 58.79 0.108 0.052 0.033

Σ2
f 297.06 68.16 65.81 4.560 1.454 1.525

Reactivity 467.40 342.82 334.04 95.17
�� ��97.68 80.04

Table 3.6 – Comparison of the accuracy on 6912 points of the reference grid for the Tucker decom-

position and for the multilinear interpolation.
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Figure 3.12 – Comparison of relative errors (pcm) for the cross-section νΣ1
f .
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Figure 3.13 – Comparison of relative errors (pcm) for the cross-section Σ2→1
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Figure 3.14 – Comparison of approximation errors (in pcm) for the reactivity.

These results show that the Tucker model is more accurate than the multilinear model in general

while reducing significantly the computational cost (number of APOLLO2 calculations and storage

in neutron libraries).
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3.6 Conclusion and discussion

We have presented the Tucker decomposition applied to the reconstruction of neutron cross-

sections. We showed that this method has better accuracy for cross-sections while using a smaller

number of calculation points and a smaller storage size than those of the multilinear interpolation.

Since cross-sections are merely inputs for the flux solver, the results of the reactivity are especially

interesting. In the simplified hypothesis, we showed that the reactivity with the Tucker model is the

same order of multilinear interpolation accuracy.

However, the Tucker decomposition has some limitations compared to the multilinear model.

It may be slower than the multilinear interpolation in the reconstruction step. At this stage, the

Tucker model uses the Lagrange interpolation to evaluate the tensor directional basis function (ex-

pensive in time) while the multilinear model uses the linear interpolation. Moreover, the multilinear

interpolation ensures the positivity of cross-sections contrary to the Tucker model. The multilinear

interpolation also keeps the linearity relation, e.g. Σ1
t = Σ1

a+ Σ1→2
s0 + Σ1→1

s0 is correct at every point,

but this is not true for the Tucker decomposition.

Our future work will focus on the resolution of the Tucker limitations. Furthermore, we plan to

study a criteria which allows us to eliminate the less important coefficients a in the representation

of the Tucker decomposition. This should lead to a similar accuracy while reducing storage in the

neutron libraries. We will also apply the Tucker model to more complex cases, e.g. extension of the

calculation domain. The accuracy will be verified for real values of keff which are performed by the

flux solver instead of analytic formula which is only valid for simplified cases.
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Abstract

The neutron cross-sections are inputs for nuclear reactor core simulations, they depend on various

physical parameters. Because of industrial constraint (e.g. calculation time), the cross-sections can

not be calculated on the fly due to the huge number of them. Hence, approximate reconstruction

(or interpolation) of cross-sections for a given set of parameters is used to evaluate on the fly

the cross-sections at every point it is required, from (as few as possible) pre-calculated points.

With most classical methods (for example: multilinear interpolation which is used in the core code

COCAGNE of EDF (Électricité De France)), high accuracy for the reconstruction often requires

a lot of pre-calculated points. We propose to use the Tucker decomposition, a low-rank tensor

approximation method, to deal with this problem. The Tucker decomposition allows us to capture

the most important information (one parameter at a time) to reconstruct the cross-sections. This

information is stored as basis functions (called tensor directional basis functions) and the coefficients

of the decomposition instead of pre-calculated points. Full reconstruction is done at the core code

level using these decompositions. In this paper, a simplified multivariate analysis technique (based

on statistical analysis) is also proposed in order to demonstrate that we can improve the quality of
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the acquired information as well as the accuracy of our approach. Using the Tucker decomposition,

we will show in proposed benchmarks that we can reduce significantly the number of pre-calculated

points and the storage size (compared to the multilinear interpolations) while achieving high accuracy

for the reconstruction, even on a larger domain of parameters.

Keywords: cross-sections reconstruction, Tucker decomposition, interpolation, low-rank tensor

approximation, statistical analysis

4.1 Introduction

Like most companies working in nuclear electricity production, Électricité De France in its re-

search and development (EDF R&D) departments develops highly accurate nuclear reactor core

simulator system. Two main classes of approach are employed for simulations : deterministic and

probabilistic. Our work relates to the deterministic one.

The purpose of a core simulator system is to be able to simulate any kind of physical quantity

for the proper operation and the safety of the power plant. In order to do that, one has to solve

Boltzmann’s equations (or an approximation of these) for neutrons. These equations need, at every

(physical-)cell of the 3D space, some physical inputs, the cross-sections, denoted by the letter Σ,

that model the interactions between fission-induced neutrons and nuclei from either the fuel or the

moderator (water in the case of PWR).

These cross-sections vary from one (physical-)point of the core to another - hence Σ = Σ(
−→
P ) with

−→
P = (x, y, z) - and depend on d local parameters (so called feedback parameters), such as: burnup

(bu), fuel temperature (tf ), moderator density (ρm), boron concentration (bc), xenon level (xe), etc.

Each feedback parameter can be seen as one axis of a d-dimensional space called parameter-phase

space and a set of parameter values as a point in this parameter-phase space. Therefore, for each

cell in a 3D space, there is a d-tuple parameter’s value in the d-dimensional parameter-phase space.

The actual value of d is model dependent.

In order to do that, core simulator systems classically involve two solvers used in chain : a

lattice code and a core code. At the EDF in the department SINETICS (SImulation NEutron-

ique, Technologie de l’Information, Calcul Scientifique), we use, in a first step, the lattice code

APOLLO2 [Sanchez et al., 1988], [Sanchez et al., 2010] developed at CEA, that generates cross-

sections in the parameter-phase space and store them inside a file. This file acts like a database; we

call it a “ nuclear library”. Then, in a second step, the core code COCAGNE [Plagne and Ponçot, 2005]

reads this library and, for every cell in the 3D space, computes the values of the d parameters (using

for instance thermal-hydraulic code, depletion loop and so on) and evaluates the values of the cross-

sections using the database and a reconstruction model. The reconstruction allows from values in
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the nuclear library (the smaller in size the better) to get an approximate value at any point in the

parameter-phase space (the more accurate the better).

For the simulation of nuclear reactor core, one generally defines a particular point in the parameter-

phase space at which the reactor core operates normally. This point is called nominal point/condition.

Actually, the burnup direction is not involved in the definition of the nominal point since it is re-

lated to time. The domain near the nominal point (which thus lives in Rd−1) is referred to as the

standard domain. It is composed of values of the parameters in the parameter-phase space that are

encountered under standard working conditions of the power plant. On the contrary, it is called the

extended domain when the parameters get out of these running situations and are encountered in

some special operations for the reactor or incidental situations. There is no much precise definition

of these domains that may represent different objects through various publications.

In general, high accuracy for the reconstruction requires a lot of pre-calculated points, i.e., a lot

of lattice calculations. The total number of pre-calculations performed by the lattice code is usually

so large (∼ thousands) that it takes a lot of calculation time (while a calculation takes only few

seconds). This becomes more cumbersome for an extended domain with a model such as multilinear

interpolation. The reduction of the number of these calculations as much as possible has been the

motivation for introducing in [Luu et al., 2016b] a new reconstruction based on a low-rank tensor

approximation method, that is referred to as the Tucker decomposition. The purpose of the current

paper is to present and test on various assemblies (UOX, UOX-Gd, MOX, on standard and extended

domains) this new reconstruction and compare it to the currently used multi-linear interpolator in

COCAGNE.

The paper is organized in the following manner:

Section 2 gives an overview of different methods for the reconstruction of cross-sections used by

different utility companies. In section 3, we present the Tucker decomposition applied to a set of

multivariate functions. Section 4 illustrates how we can efficiently use the Tucker decomposition

for the cross-section reconstruction problem and how we can deduce cross-section properties in high

dimension. In this section, we will show the advantages of our model, which allow us to pre-analyze

and post-analyze our approach. Section 5 is reserved to our proposed benchmarks applied to different

fuel assemblies (UOX, UOX-Gd, MOX). The results obtained demonstrate that we can reduce the

pre-calculated data while achieving high accuracy in both cases: the standard domain and the

extended domain. We also present some problems that we encountered in this section. Section 6 is

dedicated to conclusion and perspective.
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4.2 Overview of different methods for the reconstruction of neutron

cross-sections

There are many core simulator systems for nuclear reactor simulations, for example: the pair

of softwares ARCADIA(HERMES)-ARTEMIS [Hobson et al., 2013] used by AREVA, DRAGON-

DONJON [Polytechnique Montréal, 2016] used by Canadian Nuclear Society, or NEXUS-ANC

[Müller et al., 2007] used by Westinghouse, etc. Each such system employs a model in order to

reconstruct the cross-sections. These models can be classified in two main categories:

— The cross-section values are approximated by adding some perturbation or correction terms to

values calculated at or around the nominal point, see e.g. [Fujita et al., 2014], [Turski et al., 1997],

[Müller et al., 2007], [Stålek and Demazière, 2008]. In general, the correction terms are

based on physical knowledge or some expansion techniques, such as the Taylor expansion.

— The cross-section values are interpolated from the pre-calculated values on a grid (for in-

stance, Cartesian grid constructed with a tensor product of the discretized points on each

axis [Watson and Ivanov, 2002] , sparse grid [Danniëll and Pavel, 2014], quasi-random grid

[Dufek, 2011], etc.). The interpolation techniques in these models are different by the choice of

basis functions: piece-wise linear functions, B-spline, Lagrange polynomials, etc. COCAGNE

belongs to this category where the Cartesian grid and the piece-wise linear functions are used

in the multilinear interpolation model.

The first category’s methods have been proven suitable for the simulation on a “standard” domain

where the parameter-values are rather close to the nominal condition. Of course, when they are far

away from this condition, their accuracy is lost since the heuristics used around nominal values may

not be valid anymore. The second ones are more general but high accuracy requires a lot of pre-

calculated data. For instance, the multilinear approach that is used at EDF, relies on the acquisition

of the values of the various cross sections on a Cartesian grid of the (standard or extended) domain

in the parameter-phase space, i.e. in R5 from the lattice code. This nuclear library has a cardinal

equal to Nd, where N stands for the number of discretized points in each phase direction. Then the

reconstruction allows us to build an approximation of each cross section at any point by: i) locating

this point to one of the cells of the Cartesian grid (to which this point belongs), here each cell is

seen as a d dimensional object and its vertices are the points on which the value of each cross section

is available, ii) averaging the previous values in a convex way to provide a linear approximation in

each dimension. This is a very simple methods, and its accuracy (second oder in L2 or L∞ norms

scaling like O(N−2)) in terms of size of the cell that implies to have a quite large library on standard

domains and very - even too much - large nuclear library on extended domains.

Therefore, either we have a high efficiency reconstruction method (meaning high accuracy with
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few points) but on a specific domain only, or we have an expensive reconstruction method (meaning

high accuracy at a lot of pre-calculated points) but suitable for any domain.

We present in the next section a new approach in this field [Luu et al., 2016b], based on the

Tucker decomposition [Tucker, 1966], [Hackbusch, 2012], [Luu et al., 2015].

4.3 Reconstruction model based on the Tucker decomposition

In this work, the term “parameter” can be replaced by another ones, such as: variable, axis or

direction.

Let f(x) = f(x1, . . . , xd) be a multivariate function defined on Ω = Ω1 × . . . × Ωd ⊂ Rd. The

Tucker decomposition relies on the tensor product of one-variate functions, that takes the following

form for the function f :

f(x) ≈ f̃(x1, . . . , xd) =

r1∑
i1=1

. . .

rd∑
id=1

ai1...id︸ ︷︷ ︸
coefficient

d∏
j=1

ϕ
(j)
ij

(xj)︸ ︷︷ ︸
tensor directional basis function

(4.1)

In this decomposition, we need to determine:

(i) The rj tensor directional basis functions {ϕ(j)
ij
}rjij=1 for each direction j, 1 ≤ j ≤ d.

(ii) The total of R =
∏d
j=1 rj coefficients ai = ai1...id

First, the tensor directional basis functions are constructed by an extension of the Karhunen-

Loève decomposition, known as Higher-Order Singular Value Decomposition (HOSVD) technique

(see [De Lathauwer et al., 2000] and section 8.3, page 230 of the book [Hackbusch, 2012]). In

general, the number rj of tensor directional basis functions used in each direction is small.

Next, the coefficients are obtained by solving a system of linear equations. This system requires

inputs as the values of the function f on a set of points selected by using a greedy algorithm (see

[Maday et al., 2007], [Maday et al., 2013]). We refer to our previous article [Luu et al., 2016b] for

more details on these techniques. We present briefly the methodology in next section.

4.3.1 Determination of tensor directional basis functions

In our work, we do not a priori choose tensor directional basis functions. The tensor directional

basis functions are constructed, direction by direction, by extracting important information (princi-

pal component) from a sample of points. This sample is selected per direction such that it contains

rich information for the studied direction. The technique used to extract information is based on

the Karhunen-Loève decomposition and the HOSVD technique.
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Concretely, the tensor directional basis functions for each direction j (1 ≤ j ≤ d) are chosen

among the eigenfunctions {ϕ(j)} of a corresponding Hilbert-Schmidt operator K(j)
f , where:

K
(j)
f ϕ(j)(xj) =

∫
Ωj

∫
Ωy
f(xj ,y)f(x′j ,y)ϕ(j)(x′j)dx

′
jdy, ∀xj ∈ Ωj

with y ∈ Ωy := Ω1 × . . .× Ωj−1 × Ωj+1 × . . .× Ωd

(4.2)

Therefore, {ϕ(j)} are solutions of the following eigenproblem:∫
Ωj

∫
Ωy

f(xj ,y)f(x′j ,y)ϕ(j)(x′j)dx
′
jdy = λϕ(j)(xj), ∀xj ∈ Ωj (4.3)

The problem (4.3) is known as a Fredholm equation of the second type [Atkinson, 1997] which

does not in general have an analytical solution. Hence, this problem is numerically solved by

discretizing the domain Ωj × Ωy of f into ΩNj × ΩNy , where #ΩNj = Nj , #ΩNy = Ny. The

values of f on the discretized points (xp,yq) are denoted by:

fpq = f(xp,yq), with (xp,yq) ∈ ΩNj × ΩNy (4.4)

If the integral weight at (xp,yq) is denoted by ∆pq and the discrete values of xj (in (4.3)) are

chosen in ΩNj , the problem (4.3) can be written as the following discrete equations:

Nj∑
p=0

Ny∑
q=0

fkqfpq∆pq(
−→ϕ (j))p = λ(−→ϕ (j))k,

−→ϕ (j) = (ϕ(j)(xp))xp∈ΩNj
∈ RNj (4.5)

On the left hand side of the equations (4.5), values fpq of f at discretized points (cross-section

values performed by lattice code in our application) are required. In order to reduce the number of

required values fpq while capturing information efficiently for each direction, we propose to realize

the following discretization:

— Fine discretization for the direction j with Nj points.

— Coarse discretization for the other directions k (k 6= j) with 2 points.

Such a discretization corresponds to a grid, referred to as Tucker grid or parameter-name grid

if we want to mention which parameter is concerned in this grid.

In order to get high accuracy approximation with the quadrature rules for the integral equations

(4.3), we chose the Clenshaw-Curtis points [Clenshaw and Curtis, 1960], [Boyd, 2001] for the fine

discretizations. If we discretize the interval [−1, 1] into (N + 1) Clenshaw-Curtis points then each

one is defined by the following formula:

xp = cos(
pπ

N
), 0 ≤ p ≤ N (4.6)

We see that the Clenshaw-Curtis points are the projection of (N + 1) equidistant points of the

semi circle C(0, 1) on [−1, 1]. Therefore, these points are closer to the endpoints than the middle of

the interval.



4.3. Reconstruction model based on the Tucker decomposition 89

By the theory of Hilbert-Schmidt operators, the eigenvalues of the equation (4.3) are all positive.

Moreover, they decrease quickly in general. Another property of this operator is that the eigenfunc-

tions corresponding to the largest eigenvalues can be used to represent the principal information of

f . Hence, the tensor directional basis functions for the direction j of the Tucker decomposition are

selected from the first dominant eigenfunctions of the equation (4.3). The discretized values of these

eigenfunctions are obtained by solving the linear system (4.5).

In practice, we keep only the eigenfunctions associated with the eigenvalues λi satisfying:
λi
λ1

> ε,

with λ1 ≥ λ2 ≥ . . . > 0. Here, ε is a parameter that can be chosen by the user.

The procedure to construct tensor directional basis functions per direction results in having as

many Tucker grids as the number of parameters. This procedure is illustrated by figure 4.1.

f = f(x1, . . . , xd)

x1

xk,k 6=1

Tucker Grid1

xj

xk,k 6=j

Tucker Gridj
. . .

xd

xk,k 6=d

Tucker Gridd
. . .

Karhunen-LoèveKarhunen-Loève Karhunen-Loève

x1 xj xd
{−→ϕ (1)(x1)} {−→ϕ (j)(xj)} {−→ϕ (d)(xd)}

. . . . . .

Figure 4.1 – Construction of the tensor directional basis functions using the Tucker grids and the

Karhunen-Loève decomposition, direction by direction.

As previously mentioned, the eigenvectors are discretized on Clenshaw-Curtis points. In order to

reconstruct tensor directional basis function from these values, we choose the Lagrange interpolation

(see illustration in figure 4.2).

xj

Eigenvector:
−→ϕ (j)(xj)

Clenshaw-Curtis points

(fine discretization)

Ωj

ϕ̃(j)(x) used as ϕ(j)(x)

Basis function:

∀x ∈ Ωj

(for the Tucker decomposition)

Lagrange interpolation

Figure 4.2 – Lagrange interpolation in order to reconstruct the tensor directional basis functions

from the eigenvectors for a direction j.
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4.3.2 Determination of coefficients

In the Tucker decomposition (4.1), we need to determine R =
∏d
j=1 rj coefficients ai, where rj is

the number of the tensor directional basis functions in the direction j. We propose to choose these

coefficients as the solution of the following system:



f(x1) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(x1j )

. . .

f(xt) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(xtj )

. . .

f(xR) =
∑R

i=1 ai
∏d
j=1 ϕ

(j)
ij

(xRj )

(4.7)

where xt = (xt1 , . . . , xtj , . . . , xtd) ∈ Ω ⊂ Rd.

It means that the approximation by the Tucker decomposition is exact at R points of the set

{xt}Rt=1 (the Tucker decomposition becomes an interpolation of f on these R points).

At this stage, new values of function f (values of cross-sections performed by the lattice code

APOLLO2 in our application) are again required on the left hand side of the system (4.7). Indeed,

the points x1, . . . ,xR do not belong to any of the previous Tucker grids because they are constructed

as a tensor product of points extracted from the fine discretizations of the Tucker grids (see later).

The choice of the set {xt}Rt=1 is not trivial because we can take any point x ∈ Ω to constitute

such a set. But the accuracy of the Tucker decomposition depends on the coefficients, i.e., also

depends on the choice of the set {xt}Rt=1. To deal with this problem, we propose to constitute the

set {xt}Rt=1 as a tensor product of 1D-sets {x(j)
tj }

rj
tj=1:

{xt}Rt=1 = ×dj=1{x
(j)
tj }

rj
tj=1 (4.8)

where {x(j)
tj }

rj
tj=1 are selected among the Nj (Nj > rj) points of the fine Clenshaw-Curtis discretiza-

tion of the direction j. For each axis, a greedy algorithm is applied to the set of tensor directional

basis functions {ϕ(j)
ij
}rjij=1 and the corresponding fine discretization in the direction j in order to

find the rj points of the set {x(j)
tj }

rj
tj=1. We let the reader refer to [Maday et al., 2007] for detailed

explanation of the greedy algorithm.

If we have to reconstruct not only one function f but a set of functions {fk}k (as in our application

to the reconstruction of cross-sections), the set of points {xt}Rt=1 need to be constituted such that it

is suitable for the use of any function fk. In this case, the greedy algorithm is recursively employed

for the determination of the set {x(j)
tj }

rj
tj=1 on each axis (see [Luu et al., 2016b] for more details).
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4.4 Application of the Tucker decomposition for the reconstruction

of cross-sections

4.4.1 Cross-section notions

In neutron physics, the cross-sections are denoted by Σg
r where r designates the reaction kind and

g designates the energy group. For our applications to the COCAGNE software, we refer to some

cross-sections like the macro totale - Σg
t , the macro absorption - Σg

a, macro fission - Σg
f and

the macro nu*fission - νΣg
f . A particular case, the macro scattering also depends on anisotropy

order o, departure energy group g and arrival energy group g′ , denoted by Σg→g′
so .

In our work, there are two energy groups considered: fast group (g = 1) and thermal group

(g = 2). The cross-sections depend on 5 parameters: burnup, boron concentration, moderator

density, fuel temperature and xenon level. Therefore, we have 5 Tucker grids corresponding to 5

parameters.

4.4.2 Reference grid

In order to measure the accuracy of our reconstruction method, we use a Cartesian grid, referred

to as reference grid. This grid is very fine (with around 10,000 points for a standard domain and with

around 14,000 points for an extended domain). The discretized values on each axis of the reference

grid are chosen such as they are different from the fine discretization of the Tucker grids and relatively

randomized. The cross-section values performed by the APOLLO2 code [Sanchez et al., 1988],

[Sanchez et al., 2010] on the reference grid are exact values (Σg
r).

The values of the cross-sections evaluated by the Tucker decomposition on the reference grid are

approximated values (Σ̃g
r).

From the exact and approximated values on the reference grid, we can evaluate the error of our

approach and test the quality of the reconstruction. We illustrate the use of the reference grid in

the diagram presented in figure 4.3.

x = (x1, . . . , xd)
∈ Reference Grid

APOLLO2

Tucker

exact value: Σg
r(x)

approximated value: Σ̃g
r(x)
=⇒ evaluated error

Figure 4.3 – Reference grid in order to measure the accuracy of our approach.

As it is often the case when dealing with cross-sections, we will use the pcm unit (1 pcm = 10−5)

to evaluate errors. As we saw in figure 4.3, each point x of the reference grid can be associated with
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an evaluated error. In our work and for cross-sections, this evaluated error is a relative error which

is defined by:

eΣgr ,Relative(x) =
Σg
r(x)− Σ̃g

r(x)

maxx |Σg
r(x)|

∗ 105︸ ︷︷ ︸
Relative Error (pcm)

, x ∈ reference grid

The “max” is employed in the denominator of the relative error in order to correctly deal with

small cross-sections.

In order to have an estimate for the accuracy of our approach, a final error is defined as follows:

eΣgr (pcm) = max
x∈reference grid

|eΣgr ,Relative(x)| (4.9)

4.4.3 Analyses used in order to achieve high accuracy for the reconstruction

problem

As we saw, the Tucker decomposition depends on the chosen tensor directional basis functions and

these bases are constructed axis by axis from the eigenvectors of the Karhunen-Loève decomposition.

Therefore, information represented in the tensor directional basis functions as well as the number

of eigenvectors taken for each axis impact directly the accuracy of the Tucker method. These two

characters are exploited in our analyses (pre-analysis and post-analysis) in order to propose adaptive

solutions to achieve the [desired accuracy]/[storage] ratio for the reconstruction problem.

4.4.3.1 Pre-analysis of cross-sections as functions of each parameter

In our work, as we explained in the previous section, the approximation of the functions is done

by polynomials, this approximation is global and of high order, this is true at least if the regularity

is coherent over the whole domain Ωj . Therefore, if the cross-sections vary much in some zones, the

approximation must be adjusted in order to capture the variation, either by increasing the degree of

polynomials or by splitting up the domain Ωj in sub-domains (like in the spectral element method).

At some points however, increasing the degree may lead to instabilities, hence we limit the order of

the Lagrange polynomials in our approach to 8, thus using a maximum of 9 Clenshaw-Curtis points.

In order to analyze cross-section variation and adjust our approach, the idea is thus to analyze

each cross-section as a function of one parameter at a time, which allows us to see a priori the

variation of cross-sections.

In practice, we study the variation of cross-sections for each parameter by varying only this

parameter while the others are fixed at nominal values. We show in figure 4.4 an example with the

cross-section νΣ2
f , where the UOX assembly is studied on the standard domain.
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(a) νΣ2
f as a function of burnup. The discretization with 9

Clenshaw-Curtis (C-C) points (represented by small circles) is not

enough at low burnup values.
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(b) νΣ2
f as a function of moderator density. Clenshaw-Curtis (C-

C) points (represented by small circles) are suitable in this case.

(The triangle symbols represent the values of νΣ2
f at the Clenshaw-

Curtis points, in which, the nominal point (∼ 0.72) is automati-

cally added by the simulator system).

Figure 4.4 – Variation of the cross-section νΣ2
f as a function of one parameter (case of the UOX

assembly on the standard domain).

In the figure 4.4, we see that the curve of νΣ2
f as a function of burnup varies a lot (see figure

4.4a) while for the other parameters, it is quite linear, e.g., figure 4.4b for the parameter moderator

density. Hence, we need more discretized points on the burnup axis than on any other axes.

If we use a polynomial approximation of degree 8, hence using 9 Clenshaw-Curtis points on

the burnup axis (these points are represented by small circles on the burnup axis in figure 4.4a),

the first two discretized values obtained are: 0.0 (MWd/t) and 3044.81 (MWd/t). We can see

that this discretization can not capture the information about cross-section variations due to strong

variations at the low burnup values, that is caused by the xenon effect before its concentration

reaches equilibrium. Since the low burnup is around the interval [0, 150] while 3044.81 � 150, we
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therefore propose to sub-divide the whole interval [0, 80000] into 3 sub-intervals: [0, 150], [150, 10000]

and [10000, 80000]. For the case studied here (UOX assembly on the standard domain), we choose

9 Clenshaw-Curtis points for each sub-interval (there are thus two common points: 150 and 10000).

The new discretization with 25 points in total is now well suited to the variation of the cross-section

νΣ2
f , as presented in figure 4.5.

This technique, interval subdivision, can be used each time when the fine discretization can not

capture cross-section variations.
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(a) 25 Clenshaw-Curtis points on [0,80000].
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(b) 9 Clenshaw-Curtis points on [0,150].
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(c) 9 Clenshaw-Curtis points on [150,10000].
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(d) 9 Clenshaw-Curtis points on [10000,80000].

Figure 4.5 – Subdivision of the burnup axis (with 9 Clenshaw-Curtis points on each sub-interval) in

order to capture the cross-section variation (case of the UOX assembly on the standard domain).

4.4.3.2 Post-analysis of evaluated errors

4.4.3.2.1 Histogram of evaluated errors In our work, each point x of the reference grid (in

the phase space) has 5 coordinates: x1, . . . , x5. In practice, we store successively these coordinates

and the evaluated errors associated with the point x into files. This allows us to present and analyze

the evaluated errors as a function of each parameter.

From such stored files, we present the evaluated errors as histograms. A histogram contains some

bins used to divide the entire evaluated errors into adjacent intervals. The height of a bin represents

the number of values (evaluated errors in our case) that fall into this bin. In our test, we want to
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present percentages in order to maintain the scale (in %) when we change the number of entries;

we thus normalize the bins by dividing the height of each bin by the total number of entries (the

number of points in the reference grid). The representation of evaluated errors by histogram allows

us to see how the evaluated errors distribute and which the error zones need to be analyzed.

In general, the centered histogram with small standard deviations is an ideal result, which means

that most of the evaluated errors are around 0. Note however that an analysis of the deviated

distributions can be exploited in order to determine where they come from and which parameters are

responsible for this behavior. These analyses allow us to improve the accuracy and error distributions

as we will show in the following section.

4.4.3.2.2 Post-analysis via histogram of evaluated errors The accuracy of the Tucker

decomposition depends on the number of eigenvectors (or tensor directional basis functions) taken

for each direction. It also depends on the fine discretization realized on each axis because tensor

directional basis functions are constructed from these discretizations. Improving one of these two

factors may improve the accuracy of our approach. Therefore, they are the solutions to the problems

revealed by our analyses, as we will show here.
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trailing part (<= -15 pcm)

Figure 4.6 – Relative errors of Σ1
t (deviation distribution) before being improved.

In order to illustrate our analysis techniques, we present an example in the case of the UOX-Gd

assembly on the extended domain with the cross-section Σ1
t (fast group). The distribution of relative

errors is shown in figure 4.6. This distribution varies in the interval [-55 pcm, 35 pcm] and looks

like a Gaussian distribution with a trailing part (∼ [−55 pcm,−15 pcm]).
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In order to improve the accuracy as well as the distribution of relative errors of the cross-section

Σ1
t , we will analyze the trailing part (−55 pcm ≤ error ≤ −15 pcm) to see if its behavior depends on

a particular parameter. Analysis per parameter is one of the method which helps us to see how the

errors depend on each parameter and which specific values are involved.

Applying this idea, we obtained the distribution of the trailing part as a function of respectively

each parameter: burnup, boron concentration, moderator density, fuel temperature and xenon level.
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(a) Trailing part (≤ −15 pcm) as a function of fuel temper-

ature.
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(b) Trailing part (≤ −15 pcm) as a function of bur-

nup.
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(c) Trailing part (≤ −15 pcm) as a function of mod-

erator density.

Figure 4.7 – Trailing part (≤ −15 pcm) of Σ1
t (fast group) as a function of one parameter.

In figure 4.7, these error distributions are presented as the 2D-histograms, in the following

manner:

— The error distributions are represented by the variations of colors in each column inside a

figure. These columns are placed above each discretized value (used for the fine discretization

of the analyzed parameter) to describe how an error value depends on this fixed discretized

value while varying the values of other parameters.

— Each color corresponds to a number of points occurred (or density of points) as described in

the column on the right of each figure.

From the error distributions shown in figure 4.7, we can see that:

— For each of the following parameters: fuel temperature, boron concentration and xenon level,
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its discretized values are all presented, see figure 4.7a for an example about the parameter fuel

temperature. In this figure, the error distributions are presented by 5 columns corresponding

to all 5 discretized values of the parameter fuel temperature. We can see that these 5 columns

are similar to each other in length and density distribution of occurred points (i.e. color

pattern). Therefore, we can say that the error distributions are quite homogeneous and

do not depend on a particular discretized value of the fuel temperature parameter. (The

same conclusion for boron concentration and xenon level parameter from their corresponding

distributions not shown here).

— For each of the following parameters: burnup and moderator density, the error distributions

are quite different and vary as a function of only some particular values, for example, around

0 for the case of burnup (figure 4.7b), and around 0.8 for the case of moderator density (figure

4.7c).

Using this analysis, we can conclude that burnup and moderator density are major factors which

are the cause of the trailing part. Hence, we propose to add more tensor directional basis functions

on these two directions. Concretely, we can improve the accuracy with 7 tensor directional basis

functions for burnup (instead of 4) and 4 tensor directional basis functions for moderator density

(instead of 3). The new result is shown in figure 4.8.
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Figure 4.8 – Relative errors of Σ1
t before (in red) and after (in blue) being improved (number of

tensor directional basis functions for burnup axis and moderator density axis are increased).

We see that the relative errors are improved, they vary in the interval [-15 pcm, 30 pcm] and
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become more centered. For this improvement, we did not increase the number of discretized points

on the Tucker grid in the direction of burnup nor moderator density axis, but we added more tensor

directional basis functions for these axes. The reason we did not try to increase discretized points

on these axes is that this technique requires more APOLLO2 calculations. If we want to improve

the accuracy by changing the fine discretization, then the zones of the burnup around 0 and the

moderator density around 0.8 need to be better discretized.

We summarize here the main steps in the post-analysis of evaluated errors:

— Finding the major parameters which are the cause of analyzed error zones:

— Analyzing the distribution of evaluated errors as a function of each parameter.

— Determining the parameters and the particular discretized values on which the accuracy

does not satisfy our requirement.

— Once the major parameters are identified, accuracy can be improved by either of the following

methods:

— Adding more tensor directional basis functions in these directions. This can require new

APOLLO2 calculations if the points used in the system for coefficients (4.7) are changed

due to the new tensor directional basis functions.

— Changing the axial discretization in order to take into account the parameter values that

are responsible for large error. The new APOLLO2 calculations will be required on the

new Tucker grid which corresponds to the new discretization and on the new points used

in the system (4.7) for the coefficients of the Tucker decomposition .

In general, these improvements need more APOLLO2 calculations but the first solution (adding

more tensor directional basis functions) often requires less calculations than the second one.

4.4.4 Cost of the Tucker decomposition compared to the multilinear interpola-

tion

4.4.4.1 Number of APOLLO2 calculations

In the Tucker decomposition, the APOLLO2 calculations are performed in two stages:

— First, the APOLLO2 calculations are used for d Tucker grids in order to solve numerically

the integral equation (4.3) which provides the tensor directional basis functions.

— Then, the APOLLO2 calculations are used for the cross-section values on the left hand side

of the system (4.7) in order to determine the coefficients of the Tucker decomposition.
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Therefore, the number of APOLLO2 calculations is:

d∑
j=1

Nj ∗ 2d−1

︸ ︷︷ ︸
for d grids

+

d∏
j=1

rmaxj︸ ︷︷ ︸
for points on the left hand side of (4.7)

(4.10)

where Nj is the number of points of the fine discretization in direction j and rmaxj is the maximal

number of tensor directional basis functions in direction j, over all cross-sections.

In the multilinear interpolation, we compute cross-section values on a Cartesian grid. Therefore,

if each axis has Nj points, the number of APOLLO2 calculations for the multilinear interpolation

is:
d∏
j=1

Nj (4.11)

4.4.4.2 Storage size in the neutron libraries

In the Tucker decomposition, the stored data for one cross-section includes eigenvector values for

all directions (rj eigenvectors for a direction j) and R =
∏d
j=1 rj coefficients. Therefore, the storage

size is cross-section dependent. The number of stored floating points for each cross-section is:

d∑
j=1

rj ∗Nj︸ ︷︷ ︸
for tensor directional basis functions

+

d∏
j=1

rj︸ ︷︷ ︸
for coefficients

(4.12)

On the contrary, the storage sizes for the multilinear interpolation are the same for all cross-

sections because we store all cross-section values performed on the Cartesian grid. Therefore, the

number of stored floating points for the multilinear interpolation is:

d∏
j=1

Nj (4.13)

4.5 Proposed benchmarks

4.5.1 Reactivity

About the reconstruction of cross-sections, the following points must be noted:

— Cross-sections are not the ones used in the core code because they need to be corrected in

order to take into account leakage, equivalence, historical correction, ...before entering the

flux solver.

— Cross-sections are merely inputs for the flux solver.
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We are therefore interested in outputs of the flux solver, such as: keff or reactivity. For a two-

group diffusion theory and infinite medium, the neutron flux and the cross-sections are constant on

the parameter-phase space. Therefore, with this simplified hypothesis, we do not need a flux solver,

keff becomes now k∞ and the following analytic formula are applied (see page 1172, 1173, 1221 of

the book [Marguet, 2013]):

reactivity = 1− 1

keff
,with keff = k∞ =

νΣ1
f ∗ (Σ2

t − Σ2→2
s0 ) + νΣ2

f ∗ Σ1→2
s0

(Σ1
t − Σ1→1

s0 ) ∗ (Σ2
t − Σ2→2

s0 )− Σ1→2
s0 ∗ Σ2→1

s0

(4.14)

A final indicator for the accuracy of the reactivity is expressed as follows:

eReactivity(pcm) = max
x∈reference grid

|eReactivity,Absolute(x)| (4.15)

where:

eReactivity,Absolute(x) = (
1

k∞(x)
− 1

k̃∞(x)
) ∗ 105

︸ ︷︷ ︸
Absolute Error (pcm)

(4.16)

4.5.2 Grids used in benchmarks

In the following benchmarks, the cross-sections depend on 5 parameters: burnup, boron concen-

tration, moderator density, fuel temperature and xenon level. Therefore, we have 5 Tucker grids,

each one corresponds to one direction in the Tucker decomposition.

For each benchmark, we use a reference grid (see section 4.4.2) in order to measure the accuracy

of the Tucker decomposition.

4.5.3 Benchmark for the standard domain with UOX assembly

In this case, we consider an UOX assembly, 3.7% enrichment for a 900MWe-PWR (Pressurized

Water Reactor). In the Tucker decomposition, we use 5 Tucker grids with a total of 720 points.

Only the grid for the burnup axis is sub-divided into 3 intervals: [0,150], [150,10000] and [10000,

80000]. Each sub-interval has 9 Clenshaw-Curtis points. The other grids have 5 Clenshaw-Curtis

points for the fine discretization without using subdivision. The reference grid described in section

4.4.2 contains 9300 points.

The accuracy (in pcm) of the Tucker decomposition is shown in table 4.1. We see that the

relative errors of cross-sections are smaller than 100 pcm in general. These accuracies are better

than ones of the multilinear interpolation employed in COCAGNE with the currently used number

of points (shown in table 4.2).

We observed that the accuracy of the cross-section Σ2→1
s0 is the worst result obtained by the

Tucker decomposition. It is also the worst case for the multilinear interpolation. As we will see,

these observations are valid for all benchmarks presented in this paper.
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Cross eTucker (pcm)

Section formula (4.9) for cross-sections

formula (4.15) for reactivity

Σ1
t 28

Σ2
t 40

Σ1
a 38

Σ2
a 49

νΣ1
f 61

νΣ2
f 79

Σ1→1
s0 27

Σ1→2
s0 19

Σ2→1
s0 100

Σ2→2
s0 15

Σ1
f 66

Σ2
f 74

Reactivity 387

Table 4.1 – Accuracy of the Tucker decomposition over 9300 points of the reference grid for the UOX

assembly on the standard domain.

In order to achieve the accuracy in the table 4.1, we employed the number of APOLLO2 calcu-

lations and the storage size respectively presented in table 4.2 and table 4.3. They are compared to

those of the multilinear interpolation.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation

720︸︷︷︸
for 5 Tucker grids

+ 378︸︷︷︸
for the system (4.7)

=1098 1782

Table 4.2 – Comparison of the number of APOLLO2 calculations between the Tucker decomposition

and the multilinear interpolation for the UOX assembly on the standard domain.

Cross Storage (number of floats)

section Tucker Multilinear

Σ1
t 204 1782

Σ2
t 192 idem

Σ1
a 416 idem

Σ2
a 355 idem

νΣ1
f 388 idem

νΣ2
f 290 idem

Σ1→1
s0 204 idem

Σ1→2
s0 529 idem

Σ2→1
s0 371 idem

Σ2→2
s0 192 idem

Σ1
f 388 idem

Σ2
f 290 idem

Table 4.3 – Comparison of the storage for each cross-section, between the Tucker decomposition and

the multilinear interpolation for the UOX assembly on the standard domain.
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We note that the number of APOLLO2 calculations (1782) in the table 4.2 for the multilinear

interpolation comes from an optimized industrial process in COCAGNE whereas with the Tucker

decomposition, this is not so much the case since this is a preliminary work. Even though, these

results show that the Tucker decomposition reduced by 38% of the number of APOLLO2 calculations

and by a factor of 3.4 to 8.7 of the storage size (depending on the studied cross-section).

4.5.4 Benchmarks for the extended domain

The extended domain is tricky for many reconstruction models, especially those involved with

corrections from values computed around the nominal values (Taylor expansions, heuristics, etc.).

The multilinear interpolation does not suffer from this problem. However, to have high quality

cross-section, it requires a lot of points.

These following benchmarks are realized on an extended domain where the values of four pa-

rameters: boron concentration (∼ [0 ppm, 2200 ppm]), moderator density (∼ [0.3 g/cm3, 1 g/cm3]),

fuel temperature (∼ [10̊C, 2000̊C]) and xenon level (∼ [0, 3]) are larger than those of the standard

domain (the interval of burnup does not change). Again, precise values issued from the industrial

scheme can not be shown here.

For all the following test cases on the extended domain, the Tucker decomposition employees

the same 5 grids (each one corresponds to one direction). By chance, the number of total points

on these 5 grids is the same in the standard domain case (720 points) but the discretizations are

completely different. We summarize here the fine discretization (using the Clenshaw-Curtis points)

for each parameter-grid:

— Burnup grid: sub-divided into 3 intervals: [0,150] with 3 points, [150,10000] with 9 points

and [10000, 80000] with 9 points.

— Moderator density grid: sub-divided into 2 intervals, each sub-interval has 5 points.

— Fuel temperature grid: 5 points.

— Boron concentration grid: 7 points.

— Xenon level : 5 points.

In the Tucker grids used on the extended domain, subdivisions are applied to both the burnup

axis and the moderator density axis. This comes from the method discussed in section 4.4.3.1 in

order to capture the variation of cross-sections. The great variations (for the UOX and the MOX

assemblies) as a function of burnup (presented in figure 4.9a) or moderator density (presented in

figure 4.9b) explain why subdivisions on these two axes are needed.



4.5. Proposed benchmarks 103
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Figure 4.9 – Variations of some cross-sections lead to subdivisions on the extended domain for the

burnup axis and the moderator density axis.

4.5.4.1 UOX assembly on the extended domain

Once again, the UOX assembly, 3.7% enrichment is considered but on the extended domain. In

this case, the reference grid contains 14700 points.

Evaluated errors for some cross-sections and for the reactivity is shown in table 4.4. We see that

the relative errors are about 100 pcm, except for Σ2→1
s0 (464 pcm). These accuracies are better than

those of the multilinear method for all cases shown in the table 4.4.

Cross eTucker (pcm)

Section formula (4.9) for cross-sections

formula (4.15) for reactivity

Σ1
t 9

Σ2
t 86

Σ1
a 64

Σ2
a 97

νΣ1
f 47

νΣ2
f 104

Σ1→1
s0 8

Σ1→2
s0 23

Σ2→1
s0 464

Σ2→2
s0 84

Σ1
f 43

Σ2
f 102

Reactivity 179

Table 4.4 – Accuracy of the Tucker decomposition over 14700 points of the reference grid for the

UOX assembly on the extended domain.



104
Chapter 4. Benchmarking of Tucker decomposition method for reconstruction of neutron

macroscopic cross-sections

The comparisons of the Tucker decomposition with the multilinear interpolation on the number

of APOLLO2 calculations and on the storage size are respectively shown in table 4.5 and table

4.6. The number of APOLLO2 calculations (3060) used for the multilinear interpolation is already

optimized in the code COCAGNE. We see that the number of APOLLO2 calculations is reduced by

14.7% and the storage size is reduced by a factor of 1.65 to 11.16 by using the Tucker decomposition.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation

720︸︷︷︸
for 5 Tucker grids

+ 1890︸︷︷︸
for the system (4.7)

=2610 3060

Table 4.5 – Comparison of the number of APOLLO2 calculations between the Tucker decomposition

and the multilinear interpolation for the UOX assembly on the extended domain.

Cross Storage (number of floats)

section Tucker Multilinear

Σ1
t 343 3060

Σ2
t 343 idem

Σ1
a 527 idem

Σ2
a 866 idem

νΣ1
f 537 idem

νΣ2
f 636 idem

Σ1→1
s0 343 idem

Σ1→2
s0 854 idem

Σ2→1
s0 1849 idem

Σ2→2
s0 274 idem

Σ1
f 537 idem

Σ2
f 636 idem

Table 4.6 – Comparison of the storage for each cross-section, between the Tucker decomposition and

the multilinear interpolation for the UOX assembly on the extended domain.

4.5.4.2 UOX-Gd assembly on the extended domain

This benchmark studies an UOX-Gd assembly for a 1300MWe-PWR. The reference grid contains

13300 points.

The accuracy of the Tucker decomposition is shown in table 4.7. In this test case, the relative

errors of the cross-sections as well as the absolute errors of the reactivity are the worst compared to

the other cases (UOX, MOX (see later)). But in these results, we did not perform any improvement
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(e.g., change the discretization, add more points on some axis, etc., as shown in the section 4.4.3.2)

in order to get better results. We see in the table 4.7 that the relative errors are smaller than 200

pcm in general, except for Σ2→1
s0 (550 pcm) and Σ2

a (327 pcm). (However, these results are all better

than accuracies obtained by the multilinear interpolation).

Cross eTucker (pcm)

Section formula (4.9) for cross-sections

formula (4.15) for reactivity

Σ1
t 54

Σ2
t 93

Σ1
a 77

Σ2
a 327

νΣ1
f 76

νΣ2
f 175

Σ1→1
s0 38

Σ1→2
s0 150

Σ2→1
s0 550

Σ2→2
s0 87

Σ1
f 79

Σ2
f 175

Reactivity 535

Table 4.7 – Accuracy of the Tucker decomposition over 13300 points of the reference grid used for

UOX-Gd assembly on the extended domain.

In order to maintain the order of accuracy, the multilinear model must take more points for its

grid (3060 → 3960 points), compared to previous benchmarks. Table 4.8 and 4.9 show that, by

using the Tucker decomposition, the number of APOLLO2 calculations is reduced by 29.4% and the

storage size is reduced by a factor of 3.6 to 20.84, compared to the multilinear interpolation.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation

720︸︷︷︸
for 5 Tucker grids

+ 1440︸︷︷︸
for the system (4.7)

=2610 3960

Table 4.8 – Comparison of the number of APOLLO2 calculations between the Tucker decomposition

and the multilinear interpolation for UOX-Gd assembly on the extended domain.
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Cross Storage (number of floats)

section Tucker Multilinear

Σ1
t 478 3960

Σ2
t 190 idem

Σ1
a 1070 idem

Σ2
a 537 idem

νΣ1
f 1098 idem

νΣ2
f 410 idem

Σ1→1
s0 478 idem

Σ1→2
s0 537 idem

Σ2→1
s0 791 idem

Σ2→2
s0 190 idem

Σ1
f 1098 idem

Σ2
f 410 idem

Table 4.9 – Comparison of the storage for each cross-section, between the Tucker decomposition and

the multilinear interpolation for UOX-Gd assembly on the extended domain.

4.5.4.3 MOX assembly on the extended domain

In this case, the MOX assembly (a mixture of uranium enriched with 2.5% and plutonium) is

considered. For this benchmark, we use a reference grid containing 14000 points.

Cross eTucker (pcm)

Section formula (4.9) for cross-sections

formula (4.15) for reactivity

Σ1
t 15.05

Σ2
t 58.19

Σ1
a 20.23

Σ2
a 28.61

νΣ1
f 11.92

νΣ2
f 24.80

Σ1→1
s0 12.45

Σ1→2
s0 11.45

Σ2→1
s0 482.94

Σ2→2
s0 62.02

Σ1
f 11.21

Σ2
f 25.11

Reactivity 93.00

Table 4.10 – Accuracy of the Tucker decomposition over 14000 points of the reference grid for MOX

assembly on the extended domain

We show in table 4.10 the evaluated errors of the Tucker decomposition for some cross-sections
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and for the reactivity. We see that the relative errors are smaller than 100 pcm, except for the worst

case Σ2→1
s0 (482 pcm). The absolute errors of the reactivity are smaller than 93 pcm. This is the

best approximation results that we have (on the extended domain), not only for the accuracy but

also for the number of APOLLO2 calculations and the storage size in the neutron library.

Number of APOLLO2 calculations

Tucker decomposition Multilinear Interpolation

720︸︷︷︸
for 5 Tucker grids

+ 720︸︷︷︸
for the system (4.7)

=1440 3060

Table 4.11 – Comparison of the number of APOLLO2 calculations between the Tucker decomposition

and the multilinear interpolation for MOX assembly on the extended domain.

The number of APOLLO2 calculations in table 4.11 and the storage size in table 4.12 are com-

pared to those of the multilinear interpolation. These results show that, by using the Tucker decom-

position, the number of APOLLO2 calculations is reduced by 52.9% and the storage size is reduced

by a factor of 3.3 to 17.2.

Cross Storage (number of floats)

section Tucker Multilinear

Σ1
t 178 3060

Σ2
t 223 idem

Σ1
a 446 idem

Σ2
a 446 idem

νΣ1
f 286 idem

νΣ2
f 343 idem

Σ1→1
s0 178 idem

Σ1→2
s0 446 idem

Σ2→1
s0 920 idem

Σ2→2
s0 223 idem

Σ1
f 286 idem

Σ2
f 343 idem

Table 4.12 – Comparison of the storage for each cross-section, between the Tucker decomposition

and the multilinear interpolation for MOX assembly on the extended domain.

4.5.5 Discussion

With the results obtained in the proposed benchmarks, we showed that the Tucker decomposition

allows us to reduce the pre-calculated data as well as the storage size (compared to the multilinear

model) while achieving high accuracy.
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The subdivision (described in section section 4.4.3.1) in order to capture the variations of cross-

sections is applied to some axes, e.g. burnup axis is subdivided into three sub-intervals. Hence,

for the burnup axis, we have three Lagrange polynomials (one for each sub-interval) which lead to

the global reconstructed cross-sections are not of class C1. This problem can be solved if for each

segment, we choose a higher degree polynomial and absorb the remaining degree of freedom with

the continuity of the function and first derivative.

We can also improve the accuracy of the Tucker decomposition by taking more tensor directional

basis functions for some axes (see the section 4.4.3.2 with the example of the cross-section Σ1
t where

we added tensor directional basis functions more for the burnup axis and the moderator density

axis). Unfortunately, since the tensor directional basis functions are only the approximations of the

eigenfunctions issued from the Karhunen-Loève decomposition, this solution could be unsuccessful

in some cases. Hence, the method to find automatically the optimal number of tensor directional

basis functions needs to be investigated.

4.6 Conclusion and perspective

The Tucker decomposition described in this paper allows us to efficiently reconstruct the macro-

scopic neutron cross-sections. It also allows us to analyze the results obtained as a function of each

parameter in order to improve the accuracy.

Using the Tucker decomposition, we reduce the number of APOLLO2 calculations (from 15%

to 50%), the storage size in the neutron libraries (from 1.5 times to 20 times), compared to the

multilinear interpolation. While pre-calculated data are significantly reduced, we still achieve high

accuracy for the reconstructed cross-sections: around 100 pcm in relative errors, in general.

With a simplified hypothesis about an infinite medium and the two-group energy theory, the

reactivity is analytically calculated. We can therefore verify the reactivity accuracy without using

the flux solver. In general, the maximal absolute error for the reactivity are about 100 pcm to 600

pcm (depending on the benchmark). It is worth noting that the accuracy obtained using the Tucker

decomposition is the same for the standard and the extended domain. No deterioration have been

observed when moving from the standard to the extended domain.

However, the Tucker decomposition has some limitations. The evaluation step performed at

the core code level could be expensive in CPU time because the Lagrange interpolation is used

to reconstruct the tensor directional basis functions from the eigenvectors. Moreover, the Tucker

decomposition does not ensure the positivity of cross-sections. The linearity relation, e.g. Σ1
t =

Σ1
a + Σ1→2

s0 + Σ1→1
s0 is also not exactly preserved (except of course if we define the approximation of

Σ1
t as being the sum of the three approximations).
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In future, we plan to study criteria which allow us to eliminate (a priori and a posteriori) the

less important coefficients a in the representation of the Tucker decomposition. It means that the

accuracy of the Tucker decomposition could be of the same order while many coefficients could be

eliminated. This idea is feasible because the Tucker decomposition is constructed from “sorted”

tensor directional basis functions (via the order of eigenvalues, e.g. decreasing order). Hence, there

a priori exist less important coefficients, e.g. coefficients associated with the product of the last

tensor directional basis functions. Therefore, such an elimination could lead to a similar accuracy

while the number of APOLLO2 calculations and the storage size in the libraries would be further

reduced.
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This is a submitted paper with Y.Maday, M.Guillo and P.Guérin. Its reference in the manuscript

is [Luu et al., 2016c].

Abstract

In a previous work, we have presented and used the Tucker decomposition for the approximate

reconstruction of neutron cross-sections from look up tables. We have shown that the Tucker de-

composition achieves high accuracy while reducing significantly pre-calculated data as well as their

storage, in comparison to the multi-linear interpolation that is classically used in this community.

However, the number of coefficients in the Tucker decomposition still suffers the so-called curse of

dimensionality. This becomes the major limiting factor for dealing with the increase of data in our

approach. Therefore, reducing the number of these coefficients is a natural quest and the goal of

this paper is to provide a solution in this direction. We propose some techniques to get a sparse

representation in the Tucker decomposition, applied to the problem of reconstructing neutron cross-

sections. These techniques are classified into two categories: a priori and a posteriori. Using these

techniques, we can reduce the amount of required data while keeping a similar accuracy of our initial

approach.

Keywords: Tucker decomposition, low-rank tensor approximation, sparse representation/sparsity,

sparse grid, cross-sections reconstruction, neutronics
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5.1 Introduction

In our previous works [Luu et al., 2016b] [Luu et al., 2016a], the Tucker decomposition [Tucker, 1966],

[Hackbusch, 2012] [De Lathauwer et al., 2000] is used in order to evaluate neutron cross-sections

which are multi-variate functions in rather high dimension d ≥ 5. The Tucker decomposition is a

low-rank tensor approximation method where a multi-variate function is approximated by a limited

linear combination of well chosen tensor products of one-dimensional functions.

Let f(x) = f(x1, . . . , xd) be a d-variate function defined on Ω = Ω1 × . . .×Ωd ⊂ Rd, the Tucker

decomposition applied to this function is expressed as follows:

f(x) ≈ f̃(x1, . . . , xj , . . . , xd) =

r1∑
i1=1

. . .

rj∑
ij=1

. . .

rd∑
id=1

ai︸︷︷︸
coefficient

d∏
j=1

ϕ
(j)
ij

(xj)︸ ︷︷ ︸
tensor directional basis function

(5.1)

where:

(i) The multi-integer i is a short hand notation for i = i1 . . . ij . . . id

(ii) ϕ(j)
ij

are one-dimensional functions and called tensor directional basis functions. Here, we

have a total of rj tensor directional basis functions for each direction j, 1 ≤ j ≤ d, that are

chosen from eigenfunctions of the following Hilbert-Schmidt operator K(j)
f :

K
(j)
f Φ(xj) =

∫
Ωj

∫
Ωyj

f(xj , yj)f(x′j , yj)Φ(x′j)dx
′
jdyj , ∀xj ∈ Ωj

with yj ∈ Ωyj := Ω1 × . . .× Ωj−1 × Ωj+1 × . . .× Ωd

(5.2)

If we denote by {ϕ(j)
k }k these eigenfunctions, they are the solutions of the following eigen-

problem:

K
(j)
f ϕ

(j)
k (xj) ≡

∫
Ωj

∫
Ωyj

f(xj , yj)f(x′j , yj)ϕ
(j)
k (x′j)dx

′
jdyj = λ

(j)
k ϕ

(j)
k (xj), ∀xj ∈ Ωj (5.3)

where λ(j)
k are eigenvalues associated with eigenfunctions ϕ(j)

k of the operator K(j)
f . A partic-

ular property of the eigenvalues is that they decrease quickly in general: λ(j)
1 ≥ λ

(j)
2 ≥ . . . ≥

λ
(j)
N ≥ . . . ≥ 0.

(iii) ai = ai1...ij ...id are called coefficient. We have a total of R =
∏d
j=1 rj coefficients. Each

coefficient associates with a tensor product
∏d
j=1 ϕ

(j)
ij

of tensor directional basis functions.

In our original papers, we have retained all the coefficients in (5.1), their set

Ifull = {i| i is index of ai employed in (5.1)} (5.4)

is of cardinal R. The associated coefficients are determined by solving the following system of R
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linear equations: 

∑R
i=1 ai

∏d
j=1 ϕ

(j)
ij

(x1j ) = f(x1)

. . .∑R
i=1 ai

∏d
j=1 ϕ

(j)
ij

(xtj ) = f(xt)

. . .∑R
i=1 ai

∏d
j=1 ϕ

(j)
ij

(xRj ) = f(xR),

(5.5)

where xt = (xt1 , . . . , xtj , . . . , xtd) ∈ Ω, 1 ≤ t ≤ R. A greedy algorithm (see [Maday et al., 2013]) is

used to construct the above set of points {xt}t=Rt=1 .

We can rewrite this system under a matrix form:

PA = B (5.6)

where B = (f(xt)) ∈ RR , P = (
∏d
j=1 ϕ

(j)
ij

(xtj )) ∈MR(R) and A = (ai) ∈ RR.

We see that on the right hand side of the system (5.5), we need R values of the function f on

the set {xt}Rt=1 . In our applications to neutron cross-sections, the right hand side, consisting of

(f(xt)) ∈ RR is built from the APOLLO2 code [Sanchez et al., 2010]. Such a calculation (a 2D

transport problem on a fine geometry) may take a rather small CPU time but for classical methods

like bilinear interpolation, R ' 1000 calculations are required in practice, leading an expensive CPU

time in total. Therefore, we want to limit the number of APOLLO2 calculations as much as possible.

In order to understand the complexity of the Tucker algorithm, let us assume, for simplicity that

the number of tensor directional basis functions is the same for all directions, i.e. rj = r, 1 ≤ j ≤ d,

we obtain:

— The cardinal of coefficients (#{ai}) is equal to R =
∏d
j=1 r, which is of the order of O(rd)

(exponential function of dimension).

— The number of APOLLO2 calculations required for cross-section values on the right hand

side of the system (5.5) is also O(rd).

— The major factor in the storage size is the number of coefficients, still O(rd).

In our previous papers [Luu et al., 2016b], [Luu et al., 2016a], we have shown that the Tucker

decomposition allows to diminish notably the number of calls to APOLLO2, however, the complexity

still suffers from the “curse of dimensions” since it still scales like O(rd). From the construction of the

tensor directional basis functions provided by a Karhunen-Loeve (KL) expansion and the ordering

of the eigenpair in (5.3), we expect that the coefficients of the tensors
∏d
j=1 ϕ

(j)
ij

(xj) should decay

rapidly for large values of the indices. Thus, eliminating the less important coefficients is one

solution which allows us to reduce APOLLO2 calculations as well as storage size for the Tucker

decomposition. This procedure is referred to as sparsity or elimination.

In the present work, we introduce two categories of approaches: a posteriori and a priori spar-

sity/elimination, applied to coefficients in the Tucker decomposition. A posteriori sparsity means
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that we eliminate the coefficients based on their actual values already determined by the system (5.5).

A priori sparsity implies that we eliminate some coefficients without computing them because we

predict that they are small.

A posteriori sparsity is very simple because once we computed values of all coefficients, we can

eliminate the smallest ones by some criteria. This method reduces both the storage size and the

reconstruction of the approximation but not the number of APOLLO2 calculations, because we need

to solve the complete system (5.5) of size R.

A priori sparsity is based on the expected decay of the eigenvalues of the eigenproblem (5.3). It

reduces at the same time the number of APOLLO2 calculations required for the system (5.5) and

the storage size.

The paper is organized in the following manner:

Section 2 describes the methodology used for a posteriori sparsity and a priori sparsity. Some

mathematical analyses of the Tucker approximation will be shown in order to estimate the error of

this approach and propose some sparsity criteria. In section 3, we show applications of our sparsity

methods to the problem of reconstructing neutron cross-sections on some proposed benchmarks. In

section 4 we draw some conclusions and perspectives.

5.2 Methodology

5.2.1 Mathematical analyses of the Tucker approximation

Let us remind that, out of the eigenproblem for the Hilbert-Schmidt operator K(j)
f , comes a set

of orthonormal eigenfunctions (ϕ
(j)
k ), that constitute a basis of L2(Ωj). We then can write f(x) =∑∞

k=1

√
λ

(j)
k ϕ

(j)
k (xj)ψ

(j)
k (yj) which is the Karhunen-Loève expansion). Hence ||f ||2L2 =

∑∞
k=1 λ

(j)
k .

Let us remind that we assume that the λ(j)
k are ranked in decreasing order: λ(j)

1 ≥ λ
(j)
2 ≥ . . . ≥

λ
(j)
k ≥ . . . 0.

The Karhunen-Loève decomposition is iteratively used for each j and leads to d integral problems,

each one is written as follows:∫
Ωx

∫
Ωyj

f(x, yj)f(x′, yj)ϕ(x′)dx′dyj = λϕ(x), ∀x ∈ Ωx (5.7)

Solving these integral problems allows us to determine tensor directional basis functions {ϕ(j)(xj)}

for each direction j (1 ≤ j ≤ d). We only keep from this decomposition, the family of eigenvectors

in the xj variable. The extension process is illustrated in figure (5.1).

If we denote by

X
(j)
K = span{ϕ(j)

k (xj), 1 ≤ k ≤ K} = {
K∑
k=1

αkϕ
(j)
k (xj) : αk ∈ R}
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f(x1, . . . , xd)

KL for f(x,y)

x = x1

{ϕ(1)(x1)}

y1 = (x2, . . . , xd)

(a) Construction of tensor

directional basis functions

for the direction x = x1.

. . .

f(x1, . . . , xd)

KL for f(x,y)

x = xd

{ϕ(d)(xd)}

yd = (x1, . . . , xd−1)

(b) Construction of tensor

directional basis functions

for the direction x = xd.

Figure 5.1 – Construction of tensor directional basis functions for all directions using an extension

of the Karhunen-Loève decomposition (KL).

and

X (j)
K = X

(j)
K ⊗ L

2(Rd−1) = {
K∑
k=1

αk(yj)ϕ
(j)
k (xj) : αk ∈ L2(Ωyj )} ⊂ L2(Rd)

and by Π
(j)
K the L2-projection over X(j)

K (that can be identified with the L2-projection over X (j)
K ),

we have:

Π
(j)
K f =

K∑
k=1

√
λ

(j)
k ϕ

(j)
k (xj)ψ

(j)
k (yj)

Hence

||f −Π
(j)
K f ||2L2 =

∞∑
k=K+1

λ
(j)
k =

∑∞
k=K+1 λ

(j)
k∑∞

k=1 λ
(j)
k

||f ||2L2

Our Tucker approximation consists in finding an approximation of f into
⊗d

j=1X
(j)
R = XR.

In order to guide our understanding of the approximation in XR, let us introduce, for any finite

dimensional space YL in L2(R), the L2 projection operator denoted as ΠYL
on YL. The first lemma

is straightforward:

Lemma 5.2.1. We have ∩jX (j)
R =

⊗
j X

(j)
R , and

ΠXR
= ΠX(1)

R
◦ΠX(2)

R
◦ . . . ◦ΠX(d)

R

Lemma 5.2.2. The best approximation of f in XR for the L2-norm is obtained by the L2 projection
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ΠXR(f) and it satisfies:

||f −ΠXR(f)||2L2 ≤
∑
j

[∑∞
k=R+1 λ

(j)
k∑∞

k=1 λ
(j)
k

]
||f ||2L2

Proof. It is an easy matter to deduce from Lemma 5.2.1 that:

Id −ΠXR
= (Id −Π

(1)

X(1)
R

) + Π
(1)

X(1)
R

◦ (Id −Π
(2)

X(2)
R

) + . . .

+ Π
(1)

X(1)
R

◦Π
(2)

X(2)
R

◦ . . . ◦Π
(d−1)

X(d−1)
R

◦ (Id −Π
(d)

X(d)
R

)

Since each projection operator Π
(j)

X(j)
R

is stable in the L2 norm, we have:

||f −ΠXR
f ||2L2(Ω) ≤

∑
j

||f −Π
(j)

X(j)
R

||2L2(Ω)

≤
∑
j

∑∞
k=R+1 λ

(j)
k∑∞

k=1 λ
(j)
k

||f ||2L2(Ω)

5.2.2 A posteriori sparsity for coefficients

5.2.2.1 Proposed criteria for a posteriori sparsity

Let us assume that all R coefficients ai of the Tucker decomposition have already been determined

by solving the system (5.5). Our a posteriori-criteria for sparsifying the coefficients is to keep only

the largest coefficients and eliminate the smallest ones like in classical “non-linear” approximation.

Concretely, these criteria are normalized and based on some norms (via value of n) as follows:

keeping only ai if
|ai|n∑R
i=1 |ai|n

> ε, n ∈ N∗ (5.8)

where ε and n are user’s parameter chosen either after a “learning” process or proposed by some

analysis.

Noting that, the smaller ε is, the more ai are kept, leading to a smaller reduction of the number

of coefficients.

We denote by Iposteriori the set of indexes of coefficients kept after a posteriori sparsity:

Iposteriori = {i| i is the index of ai satisfying the criterion (5.8)} (5.9)
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5.2.2.2 Values of coefficients after a posteriori elimination

Applying this heuristic, the Tucker decomposition (5.1) contains only the terms associated with

the coefficients satisfying the criterion (5.8). The coefficients appearing in this sparsified expansion

have the same values as the initial solution (while the eliminated coefficients are now equal to zero).

Therefore, the a posteriori Tucker decomposition becomes:

f(x) ≈ f̃(x1, . . . , xd) =
∑

i∈Iposteriori

ai
d∏
j=1

ϕ
(j)
ij

(xj) (5.10)

and we can evaluate the error due to the sparsification because we know the size of the coefficients

that have been eliminated.

5.2.3 A priori sparsity for coefficients

5.2.3.1 Proposed criteria for a priori sparsity

On the contrary to the a posteriori approach, with a priori sparsity we do not compute all the

coefficient values. The idea is that now, we only compute those coefficients that are solutions of

the system (5.5) where the components of the product of the tensor directional basis functions ϕ(j)
ij

are not all big. Indeed, in each direction, the relevance of a tensor directional basis function in a

direction j is quantified by the value of the associated eigenvalue, this results in Ω the relevance

of a product of tensor directional basis functions ϕ(j)
ij

is related to the product of the associated

eigenvalues.

In order to understand why this idea of sparseness is working, let us consider what we loose by re-

placing the L2 approximation of f over XR (obtained by the product ΠXR
f = ΠX(1)

R
ΠX(2)

R
. . .ΠX(d)

R
f)

where we additionally get rid of the part

[Id−ΠX(1)

R/2

] ◦ [Id−ΠX(2)

R/2

] ◦ . . . ◦ [Id−ΠX(d)

R/2

]f

Lemma 5.2.3. We have the following bound

||ΠXR
f − [Id−ΠX(1)

R/2

] ◦ [Id−ΠX(2)

R/2

] ◦ . . . ◦ [Id−ΠX(d)

R/2

]f ||L2 ≤
∏
j

[∑∞
k=R/2+1 λ

(j)
k∑∞

k=1 λ
(j)
k

]1/2
||f ||L2

Proof. Let us consider the case where d = 2, the extension to larger values being straightforward.

We thus consider [Id−ΠX(1)

R/2

]◦ [Id−ΠX(2)

R/2

]f where f =
∑∞

k=1

√
λ

(2)
k ϕ

(2)
k (x2)ψ

(2)
k (y2). We this have

[Id−ΠX(2)

R/2

]f =

∞∑
k=R/2+1

√
λ

(2)
k ϕ

(2)
k (x2)ψ

(2)
k (y2)
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The natural question is now to understand what is [Id − ΠX(1)

R/2

]ψ
(2)
k (y2)? The answer is provided

by recalling that

ψ
(2)
k (y2) =

∫
Ω2

f(x2, y2)ϕ
(2)
k (x2)dx2

hence

[Id−ΠX(1)

R/2

]ψ
(2)
k (y2) = [Id−ΠX(1)

R/2

]

∫
Ω2

f(x2, y2)ϕ
(2)
k (x2)dx2

using the fact that the operator ΠX(1)

R/2

commutes with any linear action in the x2 direction, in

particular with the integration over Ω2 yielding

[Id−ΠX(1)

R/2

]ψ
(2)
k (y2) =

∫
Ω2

[
[Id−ΠX(1)

R/2

]f(x2, y2)
]
ϕ

(2)
k (x2)dx2

Using the orthonormality of the ϕ(2)
k we get the result.

Concretely, we have proposed two criteria for the a priori elimination of coefficients: one based

on the following idea described in section 7.6.4 of the book [Hackbusch, 2012] about sparse grid

approach (page 212 - 216), related to the value of the indexes. The second one, in the spirit of the

analysis of the previous lemma based on the values of the eigenvalues.

The approximation fN of f (with f expressed by series expansion f =
∑

i∈Nd ai
⊗d

j=1 ϕ
(j)
ij

) comes

from a sparse grid with the following representation (see the page 213 of [Hackbusch, 2012]):

f =
∑
i∈Nd

ai
d⊗
j=1

ϕ
(j)
ij
' fN =

∑
{i |

∏d
j=1 ij<N}

ai
d⊗
j=1

ϕ
(j)
ij

with i ≡ [i1, . . . , ij , . . . , id]

Here N is related to the final level of a sparse grid and only indexes ij satisfying
∏d
j=1 ij < N are

used in the sparse representation fN of f .

Inspired by this relation with index i satisfying
∏d
j=1 ij < N , we propose a normalized criterion

(by dividing by rj) for a priori sparsity for coefficients:

keeping only ai = ai1...ij ...id with
d∏
j=1

ij
rj
< ε (5.11)

Since the eigenvalues have the same role as the indexes in the order definition of tensor directional

basis functions, we can therefore propose another criterion as follows:

keeping only ai = ai1...ij ...id with
d∏
j=1

λ
(j)
ij

λ
(j)
0

> ε (5.12)

Here, ε (ε ≤ 1) is the user’s parameter.

It should be noted that in (5.11), the smaller ε is, the less ai are kept, leading to a high reduction

score (contrary to the criteria (5.8) used for a posteriori sparsity and the criterion (5.12) based on

eigenvalues).
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We denote by Ipriori the set of indexes of coefficients kept after a priori sparsity:

Ipriori = {i| i is the index of ai satisfying the criterion (5.11) or (5.12} (5.13)

5.2.3.2 Values of coefficients after a priori elimination

After realizing a priori sparsity for coefficients via the criterion (5.11) or (5.12), we have a total

of R′ coefficients for the Tucker decomposition (5.1) with R′ < R =
∏d
j=1 rj .

We propose two ways to determine these R′ coefficients:

— They are solutions of a new square system (the number of equations is equal to the number

of unknowns). This system is similar to (5.5) but its size is R′:

∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(x1j ) = f(x1)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xtj ) = f(xt)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xR′j ) = f(xR′)

(5.14)

where xt = (xt1 , . . . , xtj , . . . , xtd) ∈ Ω ⊂ Rd, 1 ≤ t ≤ R′.

By this way, we reduced the number of calculations required for the right hand side of the

system (5.5). However, how to choose the new set of points {xt}R
′

t=1 (used on the right hand

side of the new system (5.14)) such that we obtain a similar accuracy to our initial approach?

Until now, we have not found a satisfactory solution. The greedy algorithm (employed to

construct the points on the left hand side of the initial system (5.5)) could be again considered.

— These coefficients are solutions of a new system which is similar to the initial one (5.5) but we

have less unknown coefficients (R′ instead of R) and the matrix P in (5.6) is now rectangular

with smaller size (P ∈MR,R′(R) instead of P ∈MR(R)). The new system aims at solving:

∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(x1j ) = f(x1)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xtj ) = f(xt)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xRj ) = f(xR)

(5.15)

at best, where xt = (xt1 , . . . , xtj , . . . , xtd) ∈ Ω ⊂ Rd, 1 ≤ t ≤ R.

The system (5.15) implies that we keep all points of the set {xt}Rt=1 used on the right hand

side of (5.5) while on the left hand side of (5.5), the eliminated coefficients are equal to

zero. Using this way, we do not reduce the number of calculations required on the right

hand side of the initial system (5.5) and the system (5.15) is an overdetermined system
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(more equations than unknowns). Therefore, we propose to compute the coefficients ai by

adding auxiliary condition based on least square methods [Miller, 2006], [Williams, 1990],

[Lawson and Hanson, 1995]. The coefficients ai kept after a priori sparsity are now deter-

mined by solving the following system with a constraint that minimizes errors in 2-norm (sum

of square errors): 

∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(x1j ) = f(x1)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xtj ) = f(xt)

. . .∑
i∈Ipriori

ai
∏d
j=1 ϕ

(j)
ij

(xRj ) = f(xR)

With the constraint:

minai
∑R

t=1[f(xt)−
∑

i∈Ipriori
ai

∏d
j=1 ϕ

(j)
ij

(xtj )]
2

(5.16)

In this case, the a priori Tucker decomposition becomes:

f(x) ≈ f̃(x1, . . . , xd) =
∑

i∈Ipriori

ai
d∏
j=1

ϕ
(j)
ij

(xj) (5.17)

with the least square constraint described in (5.16) for ai.

5.2.4 Sparsity criteria in practice

In practice, with the proposed criteria (5.8) for a posteriori sparsity and (5.11) or (5.12) for a

priori sparsity, we do:

— Either we choose directly the value of the parameter ε;

— Or we impose a desired percentage for the number of eliminated coefficients for which the

value of ε is implicitly deduced.

The second way seems to be more practical than the first one since the accuracy is probably

more sensitive to the criteria using the parameter ε (a bit variation of ε can lead to an important

change of storage and accuracy). Although both methods are mathematically equivalent, we prefer

to use the second one for a priori sparsity. The reason is that, with a priori sparsity, we have less

available information than a posteriori sparsity and the parameter ε is often small (< 1) which is

more difficult to control than the parameter percentage.

In order to get better understanding about the second way, we describe it with more details here.

Considering the criteria (5.11) for an example, we do:

— Computing the product
∏d
j=1

ij
rj

for each coefficient ai = ai1...ij ...id .

— Sorting these products, e.g. in increasing order.
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— Applying the imposed percentage on the sorted products
∏d
j=1

ij
rj

in order to eliminate the

less important products.

— Eliminating the coefficients corresponding to the eliminated products.

Concretely, we know that a coefficient ai is a priori kept if its associated product
∏d
j=1

ij
rj

is small.

Therefore, for example, if we want to reduce 40% of the number of coefficients, we just eliminate the

coefficients corresponding to the last 40% of the products
∏d
j=1

ij
rj

sorted in the increasing order.

5.3 Applications to the reconstruction of neutron cross-sections

5.3.1 Context of applications

At EDF-R&D (Électricité De France-Recherche & Développement), a multi-linear interpolation

model is currently employed to reconstruct neutron cross-sections. Two main steps are used in this

reconstruction:

— First, neutron cross-sections are pre-calculated on a sample of pre-selected points. Those

values are stored in files, called neutron libraries.

— Next, neutron cross-sections are reconstructed from pre-calculated data in neutron libraries

by an evaluation method (currently, multi-linear interpolation).

Neutron cross-sections at a given point x are computed using APOLLO2 code [Sanchez et al., 2010]

developed at CEA. APOLLO2 requires an input deck describing the geometry, material, solver op-

tions, the scheme for calculation... EDF-R&D has developed a code, GAB, that generates automat-

ically APOLLO2 input decks for different points xi. GAB computes cross sections for all those xi
using distributed CPUs on a cluster, and finally gather all results inside hierarchical library files.

One important thing is that the user does not indicate the xi; rather it defines d discretized axis,

and the xi are all nodes of the tensorized grid obtained with those axes. This is exactly what we

want for the multi-linear interpolation but this is not optimal for other models which require only a

subset of this grid. Therefore, we had to optimize the construction of the set of points {xt}Rt=1 (used

on the left hand side of the system (5.5)) such that this set is a tensor product of 1D-sets {x(j)
tj }

rj
tj=1:

{xt}Rt=1 = ⊗dj=1{x
(j)
tj }

rj
tj=1 (5.18)

Where {x(j)
tj }

rj
tj=1 is a 1D-set containing rj points chosen in the direction j (see the illustration in

figure 5.2a).

Now, with a priori sparsity methods discussed in section 5.2.3.2, if we want to reduce the number

of APOLLO2 calculations, we need to determine values of kept coefficients ({ai}i∈Ipriori) by solving
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require R =
∏d
j=1 rj points
GAB

R =
∏d
j=1 rj APOLLO2 calculations

Set {xt}Rt=1 = ⊗dj=1{x
(j)
tj
}rjtj=1 used in (5.5)

(a) Initial tensorized grid

x1
r1 points

xj

r j
po

in
ts

A
P
O
L
L
O
2

require R′ points (R′ < R)

GAB
R =

∏d
j=1 rj APOLLO2 calculations

Set {xt}R
′

t=1 used in (5.14)

(b) New grid after a priori elimination

Figure 5.2 – Using the calculation scheme of GAB, the number of APOLLO2 calculations is not

reduced after a priori procedure if the new grid does not correspond to a tensor structure.

the new system (5.14). This system depends on a new set of points {xt}R
′

t=1 on its right hand side,

therefore, we must also determine this set. Assuming that this new set {xt}R
′

t=1 is included in the

initial set {xt}Rt=1 defined by (5.18), we need to eliminate R − R′ points in the grid corresponding

to {xt}Rt=1 points. However, in general, this elimination does not assure that the new grid {xt}R
′

t=1

(see figure 5.2b) has a tensor structure. In that case, the number of APOLLO2 calculations is not

reduced because of GAB restriction.

Taking advantage of a priori sparsity method to save the APOLLO2 calculations, GAB would

be modified so that we can define only the points we are interested in.

5.3.2 Description of benchmarks

5.3.2.1 Cross-section notion and reactivity

In nuclear physics, neutron cross-sections are denoted by Σg
r where r designates the reaction kind

and g designates the energy group. We refer here to some cross-sections that are used in the core

code COCAGNE like the macro totale - Σg
t , the macro absorption - Σg

a, macro fission - Σg
f and

the macro nu*fission - νΣg
f . A particular case, the macro scattering also depends on anisotropy

order o, departure energy group g and arrival energy group g′ , denoted by Σg→g′
so . In our work, two

energy groups are considered: fast group (g = 1) and thermal group (g = 2). For more explanation

on reactor physics, we refer to the books [Marguet, 2013] and [Lewis and Miller, 1984].
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Cross-sections are merely inputs for the neutron flux solver. We are more interested in the output

of the flux solver, for instance: keff or reactivity. For a two-groups diffusion theory and infinite

medium, flux and cross-sections are spatially constant and keff is denoted by k∞. Therefore, with

this simplified hypothesis, the following analytic formula can be applied (see page 1172, 1173, 1221

of the book [Marguet, 2013]):

reactivity = 1− 1

keff
,with keff = k∞ =

νΣ1
f ∗ (Σ2

t − Σ2→2
s0 ) + νΣ2

f ∗ Σ1→2
s0

(Σ1
t − Σ1→1

s0 ) ∗ (Σ2
t − Σ2→2

s0 )− Σ1→2
s0 ∗ Σ2→1

s0
(5.19)

5.3.2.2 Evaluated errors

In order to measure the accuracy of our reconstruction method, we use a tensorized grid, referred

to as reference grid. This grid is very fine and its points are constructed relatively randomized in

order to have a lot of different points compared to points of grids used in the Tucker decomposi-

tion. Cross-section values performed by APOLLO2 code on the reference grid are exact values (Σg
r)

and cross-section values reconstructed using Tucker decomposition and Lagrange interpolation are

approximated values (Σ̃g
r).

We use the following indicators expressed in pcm unit (1 pcm = 10−5) to measure the final

evaluated error of the Tucker decomposition:

— For the reconstruction of a cross-section Σg
r :

eΣgr (pcm) = max
x∈reference grid

|eΣgr ,Relative(x)| (5.20)

where:

eΣgr ,Relative(x) =
Σg
r(x)− Σ̃g

r(x)

maxx |Σg
r(x)|

∗ 105︸ ︷︷ ︸
Relative Error (pcm)

, x ∈ reference grid

— For the reconstruction of the reactivity:

eReactivity(pcm) = max
x∈reference grid

|eReactivity,Absolute(x)| (5.21)

where:

eReactivity,Absolute(x) = (
1

k∞(x)
− 1

k̃∞(x)
) ∗ 105

︸ ︷︷ ︸
Absolute Error (pcm)

(5.22)

5.3.2.3 Proposed benchmarks

In this paper, we use the same benchmarks as described in a previous paper [?] (where we

showed the results of the Tucker decomposition without sparse representation for coefficients). In
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those benchmarks, cross-sections depend on 5 parameters: burnup, boron concentration, moderator

density, fuel temperature and xenon level.

The benchmarks were proposed for different fuel assemblies: UOX, UOX-Gd, MOX. They are

re-used here in order to test the capacity of data reduction by using our sparsity methods. The

number of points in the reference grid (to measure reconstruction errors) for each benchmark is

respectively: 14700 points for UOX, 13300 points for UOX-Gd and 14000 points for MOX.

5.3.3 Results with a posteriori sparsity

We present here results of a posteriori sparsity obtained with three benchmarks UOX, UOX-Gd,

MOX. We used the criterion (5.8) with n = 1 and ε = 10−6 for UOX and MOX while ε for UOX-Gd

is slightly smaller: ε = 5.5 ∗ 10−7 (in order to get a similar ratio reduction/accuracy as other cases).

The reduction of the number of coefficients is shown in table 5.1. We see that the reduction (in

percentage) is around 50% in most cases except for some cross-sections (Σ2
t , Σ2→1

s0 , Σ2→2
s0 ) in the

case of the assembly UOX-Gd. In fact, the UOX-Gd is a difficult test case in general because of

the complexity of the variation of cross-sections, compared to other cases (UOX, MOX). This can

lead to coefficients that do not decrease fast. In this case, we can only remove a small part of these

coefficients with a posteriori elimination (17.5% for Σ2→1
s0 ,≈ 30% for Σ2

t and Σ2→2
s0 in UOX-Gd case).

#{ai}-UOX #{ai} - UOX-Gd #{ai}-MOX

initial after elimination reduction initial after elimination reduction initial after elimination reduction

ε = 10−6 (in (5.8)) (%) ε = 5.5 ∗ 10−7 (in (5.8)) (%) ε = 10−6 (in (5.8)) (%)

Σ1
t 180 75 58 324 93 71 72 37 48

Σ2
t 192 62 67 72 49 31 96 48 50

Σ1
a 360 125 65 864 183 78 288 74 74

Σ2
a 675 138 79 360 155 56 288 88 69

νΣ1
f 360 115 68 900 288 68 144 51 64

νΣ2
f 450 129 71 240 121 49 192 73 61

Σ1→1
s0 180 73 59 324 90 72 72 37 48

Σ1→2
s0 630 161 74 360 206 42 288 85 70

Σ2→1
s0 1620 210 87 600 495 17 720 146 79

Σ2→2
s0 128 60 53 72 48 33 96 49 48

Σ1
f 360 164 54 900 283 68 144 51 64

Σ2
f 450 123 72 240 121 49 192 72 62

Table 5.1 – Reduction of the number of coefficients by a posteriori sparsity method with the criterion

(5.8) (where n = 1), for different benchmarks: UOX, UOX-Gd, MOX.
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The change of accuracy is presented in table 5.2. These results show that we obtain a similar

accuracy for the reconstruction of cross-sections after reducing by around 50% of the coefficients in

the Tucker decomposition. We observe that accuracy after the elimination is sometimes a bit better

than before, e.g. Σ1
a in the UOX case (before: 64.92 pcm, after: 62.15 pcm). One of the reasons

should be that the final error is measured by the infinite norm which returns us a punctual value

(defined by “max”). Results could be different when using another norm, e.g. L2-norm.

eTucker (pcm)

(formula (5.20) for cross-sections)

(formula (5.21) for the reactivity)

UOX UOX-Gd MOX

initial after elimination initial after elimination initial after elimination

Σ1
t 9.09 9.48 54.20 54.23 15.05 16.48

Σ2
t 86.67 87.87 93.32 93.47 58.19 58.15

Σ1
a 64.92 62.15 77.53 112.40 20.23 22.07

Σ2
a 97.09 98.07 327.35 321.08 28.61 28.94

νΣ1
f 47.41 46.78 76.43 154.93 11.92 11.64

νΣ2
f 104.35 105.98 175.61 176.32 24.80 25.30

Σ1→1
s0 8.56 9.10 38.71 61.25 12.45 13.65

Σ1→2
s0 23.98 30.91 150.04 149.69 11.45 13.49

Σ2→1
s0 464.06 464.22 550.81 550.65 482.94 483.78

Σ2→2
s0 84.72 84.60 87.11 87.33 62.02 62.11

Σ1
f 43.50 43.35 79.38 140.83 11.20 11.18

Σ2
f 102.70 104.67 175.35 176.29 25.11 25.78

Reactivity 179.02 182.45 535.93 549.21 93.00 93.13

Table 5.2 – The change of accuracy of the Tucker decomposition after a posteriori elimination with

the reduction presented in table 5.1.

We illustrate also in figure 5.3 the distribution of absolute error for different x (defined by

(5.22)) of the reactivity for the three benchmarks: UOX (figure 5.3a), UOX-Gd (figure 5.3b) and

MOX (figure 5.3c). In these figures, one can see that distributions are almost identical before and

after a posteriori elimination.
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(a) Evaluated errors of the reactivity - UOX case
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(b) Evaluated errors of the reactivity - UOX-Gd case
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(c) Evaluated errors of the reactivity - MOX case

Figure 5.3 – Distribution of absolute errors of the reactivity for three benchmarks: UOX, UOX-Gd

and MOX. Before and after a posteriori elimination, the distributions are almost identical while the

number of coefficients used in the Tucker decomposition for cross-sections are reduced by around 50

% (see table 5.1).
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5.3.4 Results with a priori sparsity

In the results presented here, the coefficients in a priori sparsity of the Tucker decomposition

are determined by the system (5.16) with the least square method. Results obtained by using the

criterion (5.11) and (5.12) where ε is implicitly defined via an imposed percentage for the number

of eliminated coefficients (see section 5.2.4).

With the number of initial coefficients presented in table 5.1, we show in table 5.3 the elimination

percentage imposed for each cross-section of the three benchmarks: UOX, UOX-Gd, MOX. Imposed

percentage is around 60% for UOX and MOX, 40% for UOX-Gd, see table 5.3.

Reduction of #{ai} (%)

(by a priori sparsity methods (5.11 and (5.12)))

UOX UOX-Gd MOX

Σ1
t 40 40 61

Σ2
t 50 20 60

Σ1
a 60 40 60

Σ2
a 40 40 60

νΣ1
f 60 40 60

νΣ2
f 60 40 60

Σ1→1
s0 40 40 61

Σ1→2
s0 60 40 60

Σ2→1
s0 60 20 60

Σ2→2
s0 60 30 60

Σ1
f 60 40 60

Σ2
f 60 40 60

Table 5.3 – Imposed elimination percentages for the criterion (5.11) and (5.12) for a priori sparsity

of coefficients, realized on different benchmarks: UOX, UOX-Gd, MOX.

eTucker (pcm)

(formula (5.20) for cross-sections)

(formula (5.21) for the reactivity)

UOX UOX-Gd MOX

initial elimination elimination initial elimination elimination initial elimination elimination

with (5.11) with (5.12) with (5.11) with (5.12) with (5.11) with (5.12)

Σ1
t 9.09 10.72 10.52 54.20 54.01 54.11 15.05 15.57 17.39

Σ2
t 86.67 87.02 86.72 93.32 93.72 93.68 58.19 63.26 59.94

Σ1
a 64.92 56.76 55.90 77.53 60.15 77.53 20.23 20.33 21.66

Σ2
a 97.09 97.09 97.09 327.35 322.58 325.10 28.61 30.43 30.17

νΣ1
f 47.41 45.62 48.54 76.43 73.67 75.03 11.92 17.74 13.00

νΣ2
f 104.35 106.21 105.56 175.61 175.17 176.18 24.80 32.46 30.02

Σ1→1
s0 8.56 9.98 9.87 38.71 38.95 39.30 12.45 15.38 16.74

Σ1→2
s0 23.98 23.92 23.99 150.04 151.75 152.67 11.45 16.93 12.47

Σ2→1
s0 464.06 464.05 464.28 550.81 535.28 535.20 482.94 482.79 483.01

Σ2→2
s0 84.72 81.73 86.88 87.11 86.26 87.45 62.02 71.90 63.57

Σ1
f 43.50 39.24 39.97 79.38 76.33 77.82 11.20 17.75 12.23

Σ2
f 102.70 103.39 103.30 175.35 173.79 175.81 25.11 32.64 28.16

Reactivity 179.02 301.74 233.71 535.93 534.42 519.24 93.00 108.77 140.23

Table 5.4 – The change of accuracy of the Tucker decomposition after a priori elimination with the

reduction presented in table 5.3.
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The change of accuracy is presented in table 5.4. These results show that we obtain a similar

accuracy for the reconstruction of cross-sections. However, for the UOX case, the reactivity accuracy

is decreased by 60pcm (criterion (5.12)) and 120 pcm (criterion (5.11)) while the max errors of each

reconstructed cross-section is very close before and after a priori elimination.

We illustrate in figure 5.5 the distribution of absolute error (defined by (5.22)) of the reactivity

for the three benchmarks: UOX (figure 5.4a), UOX-Gd (figure 5.5a), MOX (5.5b). In these figures,

the distributions look similar before and after a priori elimination for both UOX-Gd and MOX

cases. This is consistent with the table 5.4. However, the error distribution for the reactivity is

quite different for UOX case. Not only the max has increased a lot (that is what we have in table

5.4) but the dispersion has also increased. In order to understand these increases, we need more

information than the max of errors given in the table 5.4. Looking at the error distribution of cross-

sections in the UOX case, we see that the increasing dispersion for the reactivity accuracy can be

caused by the degradation of some reconstructed cross-sections, even their max accuracy are almost

identical. For example, the cross-section Σ1→2
s0 has the same max accuracy before and after a priori

elimination (they are around 23 pcm in table 5.4) but the dispersion increased after this elimination

(see figure 5.4b). In order to improve accuracy, we should have probably reduced less coefficients

for some cross-sections.
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(a) Evaluated errors of the reactivity - UOX case
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(b) Evaluated errors of macro scattering Σ1→2
s0 - UOX case: dis-

persion increased after a priori elimination even max ac-

curacy is preserved (23 pcm).
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(a) Evaluated errors of the reactivity - UOX-Gd case
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(b) Evaluated errors of the reactivity - MOX case

Figure 5.5 – Distribution of absolute errors of the reactivity for three cases: UOX, UOX-Gd and

MOX. Before and after a priori elimination, the distributions are similar while the number of

coefficients used in the Tucker decomposition for cross-sections are reduced by around 40%-60% for

UOX, 20%-40% for UOX-Gd and 60% for MOX (see table 5.3).
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Chapter 5. Sparse representation in Tucker decomposition applied to the reconstruction of neutron

cross-sections

5.4 Conclusion and perspective

Sparsity methods for coefficients in the Tucker decomposition are applied to the reconstruction

of neutron cross-sections. Two methods are employed: a posteriori and a priori. These methods

allow us to reduce (around 50%) the number of coefficients stored in neutron libraries while the

quality of the reconstruction was not changed a lot.

In general, a posteriori method is easier than a priori one and often has a better ratio re-

duction/accuracy. Nevertheless, a posteriori sparsity does not allow us to reduce the number of

expensive APOLLO2 calculations needed to determine the coefficients in the Tucker decomposition.

In our present applications, a priori method does not reduce the number of APOLLO2 calcula-

tions either, this is mainly due to the acquisition of the neutron libraries through GAB.

We have for the moment resorted to a least squares method for solving an overdetermined system

to determine the coefficients kept after a priori elimination. By this way, we show that the proposed

criteria can predict less important coefficients in the Tucker decomposition without calculating them:

accuracy is similar before and after a significantly reduction of the number of coefficients. This

point also needs to be confirmed in the case where we use less APOLLO2 calculations, by solving

a smaller square system (the number of equation is equal to the number of coefficients kept after a

priori sparsity).

The results obtained from our applications demonstrate that we can reduce data in the Tucker

decomposition by using sparsity methods. In future, an optimal way to define the points used after a

priori elimination for one(all) cross-section(s) should help us to break the “curse of dimensionality”

problem in the Tucker decomposition. These improvement will be investigated in our next works.
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Conclusion and perspectives

The goal of this work was to find a new model for the reconstruction of neutron cross-sections

in the new core code COCAGNE developed at EDF-R&D. To deal with this problem, we have

proposed the Tucker decomposition, a model based on the Tucker format and an extension of the

Karhunen-Loève decomposition. Using this model, each cross-section is approached by a limited

linear combination of tensor products of one-variate functions which are called “tensor directional

basis functions” in our work. These functions are constructed by the extension of the Karhunen-

Loève decomposition.

We have tested our model on two calculation domains: a standard domain D where parameter

values are close to the nominal values (the default values on which the reactor operates normally)

and an extended domain D′ where D′ is larger than D (D′ ) D, which could correspond to an

incident situation).

With the results obtained through benchmarks on the two calculation domains, we have demon-

strated that the Tucker decomposition model achieves the purposes required by EDF. In the offline

step, our new model significantly reduces the number of APOLLO2 calculations (from 15% to 50%)

and the storage size of the neutron libraries (from 1.5 times to 20 times, depending on the cross-

section type), compared to the multilinear interpolation model (currently used in COCAGNE). We

have not only achieved these reductions in the offline step, but we have also obtained a better

accuracy for reconstructed cross-sections in the online step.

In a reactor core simulation, high accuracy for the reconstructed cross-sections could not lead to

high accuracy for the resolution of the neutron transport equation since cross-sections are merely

inputs of this equation. We therefore need to measure the final accuracy by using outputs of the flux

solver which is used to solve the neutron transport equation. One of those outputs is the reactivity.

In our work, the reactor core is simplified and supposed to be a homogeneous infinite medium

where the two-group diffusion equation is solved. This simplification allows us to analytically com-

pute the reactivity and thus to measure the accuracy the reconstruction method in terms of reactivity.

In general, the maximal absolute error for this reactivity is about 100 pcm to 600 pcm (depending

on the benchmark), better than the reactivity error provided by the multilinear interpolation. An
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important observation is that there is no accuracy deterioration when we move from the standard

to the extended domain using the Tucker decomposition. This is not the case for many other recon-

struction methods, such as: methods using perturbations around the nominal point, the multilinear

interpolation method, ...

Since the Tucker decomposition is based on tensor directional basis functions, we can analyze the

results obtained as a function of each parameter. Such analysis is employed to improve the accuracy

of our approach. We proposed to use some statistical techniques to determine the major factors

that cause bad accuracy zones. We have shown how we can improve results by adding more basis

functions to some directions and/or discretizing with more points on some parameter value zones.

This efficient method allows us to locally improve the accuracy.

Using the Tucker decomposition, in offline steps, we can further reduce the storage size of neutron

libraries by sparse representation techniques applied to the coefficients in the Tucker decomposition.

We employed two methods: a posteriori and a priori, reducing (around 50%) the number of coeffi-

cients stored in neutron libraries with no significant loss of accuracy, which is still better than the

multilinear interpolation.

In the future, our method should be implemented in COCAGNE in order to couple it with

the flux solver and verify its final accuracy. We should also measure the time used to evaluate

cross-sections, and compare it with the multilinear one. On the other hand, some points should be

considered in order to improve the results of this method:

• Currently, in order to ensure the accuracy of our approach on some axes (e.g. burnup), we

subdivide it, leading to piece-wise polynomials basis functions that are of class C0 but not

C1. The Tucker decomposition is thus not class C1. Because this C1 property is required to

calculate some coefficients in the core simulation, this problem therefore needs to be solved.

One can notice that the same problem occurs with the multilinear interpolation.

• In our work, we use quadrature rules based on a polynomial basis to solve the integral equation

issued from the Karhunen-Loève decomposition. Using the polynomial basis has forced us to

divide some axes into sub-intervals in order to capture the variations of cross-sections. To

avoid this sub-division step, which requires physical knowledges about the parameters, other

methods should be investigated, for example: the change of integral variables, the change of

integral weights at variations zones, or the change the representation by non polynomial bases.

This would also be useful to ensure the C1-basis functions for the Tucker decomposition.

• In the determination of tensor directional basis functions for each direction, the Karhunen-

Loève decomposition is used via a matricization process (a condensation of a parameter group

into two parameter sub-groups). For the moment, in the offline steps, these processes are

performed on tensorized grids (called Tucker grids in our work), each grid having n2d−1 points
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(where n ∼ 10, d ∼ 5). Randomized points in each grid should be tested, which would allow

us to get more accuracy for the resolution of integral equations while using less points for

each grid (also meaning less APOLLO2 calculations).

• For a final desired accuracy of the Tucker decomposition, a criterion to predict the best

truncation in the Karhunen-Loève decomposition (in each direction) needs to be studied. It

could be based on a posteriori error of the truncation since this error is determined by the

sum of the remaining and smallest eigenvalues of the Karhunen-Loève decomposition. Such a

criterion would allow us to identify when a tensor directional basis function is no more a good

approximation of the corresponding eigenfunction in the Karhunen-Loève decomposition.

This would also help us to determine the optimal number of tensor directional basis functions

that needs to be used in the Tucker decomposition for given discretizations of the integral

equations.

• For the a priori sparse representation method, we need to solve a new system of linear

equations to determine the coefficients obtained after this a priori sparsity. Such a new

system depends on new points in the parameters-phase space. We therefore need to find the

best way to construct these new points. This could get us the best ratio [accuracy for each

cross-section]/[number of APOLLO2 calculations used for all cross-sections] and it would help

us to break the “curse of dimensionality” problem in the Tucker decomposition.
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