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Notation
Throughout the manuscript, we shall use the following standard notation

and terminology without further explanation.

Notation Name / synopsis De�nition

[[k ]] Integers from 1 to k (inclusive) {1, 2, . . . , k }

‖v‖r `r norm for vectors in a �nite-dimensional
Euclidean space




r
√∑

i |vi |r , if 1 ≤ r < ∞,
maxi |vi |, if r = ∞

H Arbitrary Hilbert space with norm inner
product 〈., .〉H and norm v 7→ ‖v‖H :=√
〈v, v〉H

Normed space containing its Cauchy limits

H (X ) Entropy of a random variable X ∼ pX
∑

x pX (x ) log(pX (x ))

MI (X1,X2) Mutual Information between two random
variables X1 ∼ pX1 and X2 ∼ pX2

H (X1) −H (X2 |X1)

NMI (X1,X2) Normalized Mutual Information between
two random variables X1 ∼ pX1 and X2 ∼

pX2

I (X1,X2)/
√
H (X1)H (X2)

Br ,n Unit ball for the `r norm on Rn {x ∈ Rn |‖x‖r ≤ 1}

tr(A) Trace of a matrix ∑
i aii

〈A,B〉Fro Frobenius / Hilbert-Schmidt inner-
product of two matrices A and B

tr(ABT )

‖X‖Fro Frobenius norm of a matrix
√
〈X,X〉Fro

‖X‖2 Spectral norm of matrix sup{‖Xu‖2 s.t ‖u‖2 ≤ 1}

‖X‖r ,s Mixed-norm of matrix X ∈ Rn×m [‖X1‖r , ‖X2‖r , . . . , ‖Xn ‖r ]s
In Identity matrix of size n Ii j = δi j , ∀1 ≤ i , j ≤ n

1n Vector of ones of size n 1i = 1, ∀1 ≥ i ≥ n

X† Moore-Penrose pseudoinverse Generalized inverse matrix

A ⊗ B Kronecker product of matrices A and B

A ◦ B Outer product of matrices A and B

vec(A) Vectorization of a matrix Concatenation of the columns of a matrix into a single giant
column vector

iC Indicator function of C iC (x) :=



0, if x ∈ C
∞, otherwise

σC Support function of C σC (x) := supz∈C xT z

dom( f ) E�ective domain of f : H → (−∞,+∞] {x ∈ Rn | f (x) < +∞}
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∂ f (x ) Subdi�erential of f at x ∂ f (x) := {v ∈ H | f (z) ≥ f (x) + vT (z − x) ∀z ∈ H }

proxf (x ) Proximal operator of f at x argminp 1
2 ‖p − x‖

2
2 + f (p)

projC (x ) Orthogonal projection of x onto C argminp∈C 1
2 ‖p − x‖

2
2 = proxiC (x)

f ∗ Convex conjugate of f f ∗ (x) := supy xT z − f (z)

LF Lipschitz constant of F : H1 → H2 inf {C ≥ 0|‖F (x) − F (y)‖H2 ≤ C‖x − y‖H1 ∀x, y ∈ H1}

∇ Discrete spatial gradient operator. This
de�nes a linear operator from Rp to R3p ,
where p is the number of voxels in the im-
age

At a voxel j, the spatial gradient of an image w is a vector
∇w(j ) := [∇xw(j ),∇yw(j ),∇zw(j )], ∀w ∈ Rp

∆ Discrete spatial image Laplacian operator −∇T∇ ∈ Rp×p

∇ρ The identity-augmented version of the
discrete spatial gradient operator

∇ρw := [(1 − ρ)∇w, ρw] ∈ R4p , ∀w ∈ Rp

∆ρ Laplacian operator corresponding to the
identity-augmented spatial gradient oper-
ator ∇ρ . This de�nes a linear operator
from Rp to R4p

ρ2I + (1 − ρ)2∆ ∈ Rp×p

Lap(w) Laplacian regularization of a 3D image w 1
2 ‖∇w‖

2
Fro =

1
2
∑p

j=1 (∇xw)2j + (∇yw)2j + (∇zw)2j

‖w‖TV Isotropic Total-Variation (TV) regulariza-
tion

‖∇w‖2,1 =
∑

j

√
(∇xw)2j + (∇yw)2j + (∇zw)2j

‖w‖SV Sparse Variation regularization ‖∇ρw‖2,1 =
∑

j

√
ρ2w j + (1 − ρ)2‖∇w)j ‖

2
2

‖w‖AnisoTV Anisotropic TV regularization ‖∇w‖1,1 =
∑

j |(∇xw)j | + |(∇yw)j | + |(∇zw)j |

Table 1: Notations
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1.3 Organization of the manuscript . . . . . . . . 14

1.1 Context

A major goal of the neurosciences is to understand the structure, func-
tion, and variability of the human brain, and how these give rise to the
complex high-level behavior of human beings. One is typically interested
in questions such as:

• Which parts of the brain are in-charge of processing mathematical formu-
lae as opposed to ordinary natural language ?

• Which parts of the brain increase/decrease their activity when the brain is
at rest ?

• What are the neuro-biological markers of neurological or psychiatric men-
tal illness ?

• How does the brain structure (sulci, gyri, etc.) and function change during
aging ? etc.

• How do the language-responsive regions of one subject compare with that
of another ? Can they be registered anatomically ?

• How are the di�erent motor or cognitive functions (language, emotion, etc.)
distributed over the brain, in terms of regions and networks of regions ?

• How are numbers represented and manipulated in the brain ?

• How does the brain and behavior change under the attack of a disease (e.g
schizophrenia or a neuro-degenerative disease)

Note that this list is by no way exhaustive.
In the last three decades, mapping brain functional connectivity from

functional Magnetic Resonance Imaging (MRI) data has become a very ac-
tive �eld of research. However, analysis tools are limited and many im-
portant tasks, such as the empirical de�nition of brain networks, remain
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Dendrites

Cell body

Axon

Figure 1.1: Views of the brain at di�erent levels of detail. The brain is composed of (spatially connected) regions
and such regions are in turn composed of populations of neurons. Left: Simpli�ed view of a neuron. A neuron
(there are many types) has a cell body called the soma, many regions for receiving information from other neural
cells called dendrites, and often an axon (nerve �ber) for transmitting information to other cells (an axon can be
longer than 1 meter in humans). The information in the axon is transmitted through an electrical signal called
action potential, which is based on the electrical properties of the neuronal membrane. Adapted from http://

commons.wikimedia.org/. Right: Each region is associated with a particular function such as sensory areas
(e.g. visual cortex, auditory cortex) that receive and process information from sensory organs, motors areas (e.g.
primary motor cortex, premotor cortex) that control the movements of the subject, and associative areas (e.g. Broca’s
area, Wernicke’s area) that process the high-level information related to language production and understanding
or the Intra Parietal Sulcus –IPS– that processes spatial information. Adapted from http://agaudi.files.

wordpress.com/.

http://commons.wikimedia.org/
http://commons.wikimedia.org/
http://agaudi.files.wordpress.com/
http://agaudi.files.wordpress.com/
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di�cult due to the lack of a good framework for the statistical modeling of
the data used to de�ne these networks.

Objectives. The goal of this PhD thesis is to develop new statistical meth-
ods for studying inter-subject variability (eg. amplitude of activation, size of
activation clusters, topography of activation maps, etc.), the prime goal be-
ing to improve the analysis of functional connectivity in the human brain
at the population level. It turns out that these concerns naturally lead to
problems related to data-driven extraction of functional atlases, multivari-
ate models for brain decoding and segmentation, and inter-subject registra-
tion of functional MRI images.

1.2 Sketch of contributions

During the preparation of this PhD project, I have authored and co-authored
a number of papers in conferences and journals (including NIPS, ICASSP,
MICCAI, Frontiers in Neuroscience, etc.). A complete least of my publi-
cations can be found on my Google scholar page https://scholar.

google.fr/citations?user=FDWgJY8AAAAJ&hl=fr. In �gures,

• Total citations ≥ 194.

• Total papers (including co-authored papers) ≥ 15.

• h index ≥ 4.

• 110 index ≥ 3.

Below, I have roughly classi�ed my main contributions under their re-
spective sub-�elds of relevance. Viz,

• Sparsity and spatial regularization: [Dohmatob et al., 2014], [Dohmatob
et al., 2015b], [Abraham et al., 2014], [Eickenberg et al., 2015], [Pellé
et al., 2016]

• Registration of brain images: [Dohmatob et al., 2016a]

• Optimization: [Dohmatob et al., 2015a], [Varoquaux et al., 2015],
[Dohmatob, 2016]

• Modeling inter-subject functional variability: [Dohmatob et al., 2016b]

• Neuroscience: [Rahim et al., 2015], [Thirion et al., 2014]

There are also a number of preprints currently being prepared for journal
publication:

https://scholar.google.fr/citations?user=FDWgJY8AAAAJ&hl=fr
https://scholar.google.fr/citations?user=FDWgJY8AAAAJ&hl=fr
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• Sparsity and spatial regularization: “Structured penalties for brain decom-
position and decoding: a uni�ed view”

• “Inter-subject registration of functional images: do we need anatomical im-
ages ?”

• “Enhanced prediction of task-based activation maps from resting-state
data”

1.3 Organization of the manuscript

In this report, I shall present a selection 1 of the work I have done during 1 For example, I shall not talk on
excursional work I did on algo-
rithmic non-cooperative game the-
ory [Dohmatob, 2016].

the preparation of my PhD project. This selection will be centered around

• Part I:General preliminaries on neurosciences and neuro-imaging method-
ology =⇒ chapter 2.

• Part II: Structured penalties for brain decoding =⇒ chapters 3, 4, 5, 6,
7.

• Part III: Functional inter-subject variability =⇒ chapters 9, 10, 8, 11

• Conclusion: Summary and concluding remarks =⇒ chapter 12.

My precise contributions in these domains will be comprehensively out-
lined as we proceed.

Bibliography

Alexandre Abraham, Elvis Dohmatob, Bertrand Thirion, Dimitris Samaras,
and Gael Varoquaux. Region segmentation for sparse decompositions:
better brain parcellations from rest fMRI. In Sparsity Techniques in Med-
ical Imaging, 2014.

Elvis Dohmatob. A simple algorithm for computing Nash-equilibria in in-
complete information games. In OPT2016 – NIPS workshop on optimiza-
tion for machine learning, 2016.

Elvis Dohmatob, Alexandre Gramfort, Bertrand Thirion, and Gaėl Varo-
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Neuroimaging has emerged as a distinguished data-acquisition and set
of analysis techniques for probing and observing brain activity. Acquisi-
tion of the data goes hand-in-hand with statistical analysis methods for
analyzing the data, in view of making speci�c quanti�able claims. These
techniques operate at a scale much coarser than that of the neuron: one is
interested physiological e�ects which are ultimately aggregates of activity
over large population of neurons (see Fig. 1.1).

In this introductory chapter, I review the relevant theory su�cient to
situate my own work in a larger scienti�c context. Section 2.1 will focus on
imaging the human brain and preprocessing of the collected data and also
classical methodologies for analyzing the data. Section 2.2 will present an-
other celebrated way of probing brain function, namely resting-state fMRI
–or the study of background spontaneous brain activity at rest.

2.1 Functional magnetic resonance imaging

Human neuroimaging consists in acquiring ex-vivo (non-invasively) image
data from normal and diseased human populations. Several types of func-
tional imaging techniques have been developed. Electro-encephalography
(EEG) and magneto-encephalography (MEG) measure the super�cial corti-
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cal neural activity of the brain with a high temporal resolution. Functional
magnetic resonance imaging (fMRI) [Ogawa et al., 1990a,b] uses strong mag-
netic �elds to measure changes in oxygen �ow in the brain that correlates
with synaptic activity in the brain. This technique yields information on
brain structure, variability, and function at high spatial resolution. Finally,
invasive techniques have been developed such as positron emission tomog-
raphy (PET) that relies on a radioactive tracer to track glucose consumption.

Figure 2.1: Imaging modalities for the brain. Left: The di�erent imaging modalities for brain mapping. MRI
and functional MRI have the unique property to yield high-resolution information while being minimally invasive.
Unlike other modalities, MRI allows whole brain imaging. Right: Typical example of T1 / anatomical MRI (top),
preprocessed Di�usion-Weighted (DW) MRI middle and fMRI bottom images, presented in axial views. These
images are from the Neurospin 3T scanner. For the DW-MRI image, the main direction of water di�usion is color-
coded: green for antero-posterior di�usion, red for lateral di�usion, blue for vertical di�usion. The functional image
has been analyzed to yield the regions activated in an auditory task. Adapted with permission from [Thirion, 2009].

2.1.1 The BOLD signal

When a brain area is solicited, the brain �res chemical signals to report the
consumption of oxygen and sugar. Nearby blood capillaries dilate to in-
crease the quantity of �owing blood and provide these resources. This phe-
nomenon is called the haemodynamic response. As a result, we expect a
higher concentration of oxygenated hemoglobin in a given brain area soon
after its activation. fMRI imaging can be used to measured this e�ect, called
the BOLD (Blood Oxygen-Level-Dependent) signal [Ogawa et al., 1990a,b], at
a spatial resolution of 1.5 to 3mm, and a temporal resolution of 1–3s, typ-
ically. This yields a spatially resolved image of brain functional networks
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that can be modulated either by speci�c cognitive tasks or appear as net-
works of correlated activity. This method is subject to several physical and
physiological noises. First, some artifacts may be induced by radio trans-
mitters or other equipment. Then, spurious activations are naturally in-
troduced by arteries present in the brain, heart beats and breathing move-
ments. Finally, the brain can be shifted if the subject makes large move-
ments in the scanner.

2.1.2 Preprocessing and analysis of fMRI data

Raw fMRI images are not intepretable with bare eyes. In particular be-
cause we are interested in small signal co-variation between voxels1 and 1 Voxel stands for volume element.

It refers to a point in a 3D image,
just as pixel refers to a point in a
2D image.

not by the values themselves. The human eye, however, is good at perceiv-
ing global artifacts in the data such as movements, ghost or scanner coils.
Quality assessment of preprocessed fMRI data is done by eye and by rely-
ing on dedicated medical imaging software. In order to prepare the data for
further statistical analysis, some preprocessing steps are required. Below,
we outline the main ones. Viz,

Data acquisition. The resolution of fMRI is usually between 1mm3 and
(3mm)3 . In a single 3D scan, the brain represents 104 to 106 voxels. A run
contains usually from 100 to 1000 scans. Functional MRI scans are acquired
by slices, usually in the axial direction. The time required to acquire one
slice is called echo time (TE) and is in the order of tens of milliseconds. The
time required to acquire a whole 3D volume is called repetition time (TR)
and is in the order of seconds. Typical values for a 3D volume of 60 slices
are TE=33ms and TR=2s for a 3T (Tesla) scanner.

Motion-correction and coregistration to the anatomy. Head move-
ment has a big impact on fMRI. A movement with an amplitude higher than
the voxel resolution (i.e. 2 to 3mm) can shift the signal of the entire brain.
Moreover, the worst impact of motion is in�ow e�ects, i.e. artefactual sig-
nals. In the scanner, the head of the subject is �xed using cushion pads to
avoid movements and the subject is asked to stay as still as possible. Yet, it is
impossible to completely avoid head movement. In order to mitigate the ef-
fect of movement, the 3D scans are realigned on a reference scan –usually
the one in the middle of the sequence– using rigid body transformation
(translation and rotation, without change of scale). This is usually followed
by an a�ne registration of the motion-corrected images to the anatomical
(T1) image of the subject, in view of subsequent inter-subject preprocessing
and analysis, like registration onto a group template (more on this later).

Slice-timing correction. As stated before, brain slices are not acquired
at the same time. This introduces a shift in the haemodynamic response
associated to each of them. The problem can be solved by interpolating
the signal of each slice so that all of them can be considered as acquired at
the same time. [Sladky et al., 2011] showed that depending on repetition
time and paradigm design, slice-timing e�ects can signi�cantly impair fMRI
results and slice-timing correction methods can successfully compensate
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Figure 2.2: Motion-correction
and coregistration. The top plot
shows an overlay of a subjects
anatomy onto their mean func-
tional image (the background).
Here the red contours are well
aligned with the background
image, indicative of a successful
co-registration. Typical things
that can go wrong include: le-
sions (missing brain tissue), bad
orientation headers in the images,
non-brain tissue in the images
(e.g skull), etc. The bottom
plot show estimated motion pa-
rameters for the subjects-head
motion. Here all movements
are well below 0.5mm, which is
generally considered as �ne. The
preprocessing and plots displayed
here were done using Pyprepro-
cess https://github.com/

neurospin/pypreprocess,
an open-source Python wrapper
built on standard toolkits like
SPM [Friston et al., 1994].

https://github.com/neurospin/pypreprocess
https://github.com/neurospin/pypreprocess
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for these e�ects and therefore increase the robustness of subsequent data
analysis.

Registration of brain data into a common reference space. Each
brain is of di�erent size and shape. In order to compare brain activations
across several individuals, we need to normalize them by registration to a
common template [Friston et al., 1995, Ashburner and Friston, 2005, Ash-
burner, 2007, Klein et al., 2009]. This template can be a reference template
used in the community (MNI for example). It is also possible to compute a
template directly from the data. Once a template is chosen, for each sub-
ject, we perform two successive registrations. First, the anatomical scan
acquired in the subject is registered to the MNI template. Then, the fMRI
data are registered to the anatomical scan. After that, the two transfor-
mation matrices are combined in order to normalize the fMRI data to the
template2. Estimation of the deformations necessary to warp a subject’s 2 In chapter 8, we study the pos-

sibility of by-passing the anatomi-
cal image, when normalizing func-
tional data.

brain anatomy onto a template is usually done alongside the classi�cation
of individual voxels into di�erent classes: white matter (wm), grey matter
(gm), and cerebro-spinal �uid (csf) producing so-called tissue probability
maps (TPMs) [Ashburner and Friston, 2005].

Figure 2.3: Tissue segmentation
and normalization. Showing
(top) outlines of a subject’s
anatomical / T1 image (fore-
ground) projected onto an MNI
template image (background)
and also the tissue probability
maps (TPMs), after registration to
the latter. The contours should
match the background image well.
Typically impediments to cor-
rect registration include: lesions
(missing brain tissue), corrupted
image headers, non-brain tissue in
anatomical image (i.e needs brain
extraction), etc.

2.1.3 Statistical analysis of brain data

Forward inference made on fMRI data (e.g. prediction of brain activation
from the stimuli) can be conceptualized as the encoding of perceptual, motor
or cognitive parameters into brain signals. The inverse model, that predicts
behavioral data from brain activation is called decoding, and will be the sub-
ject matter of chapter 3. Two main paradigms allow to experimentally study
brain signals: either we study them in controlled condition on a particular
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task –this is the task paradigm– or we study the spontaneous activity of the
brain in order to uncover its organization: this is the resting-state paradigm.

The task paradigm and the general linear model

Using an experimental design, it is possible to relate the BOLD signal with
speci�c tasks performed by the subject. For example, a sound can be played
in the left or the right ear of the subject. By comparing brain activation
between resting state and when the sound is playing, we can isolate the
auditory cortex of the brain. Statistically, we do that by crafting a design
matrix corresponding to the experiment: one column of the matrix repre-
sents an ideal response to one of the presented conditions [Friston et al.,
1994]. Columns corresponding to known artifacts of the BOLD signal, such
as heart beats or movements, can be added in the design matrix in order to
regress out the part of the signal related to them. We then use a general
linear model (GLM) to recover the brain maps corresponding to each of the
columns in the design matrix X ∈ RT×k , where k is the number of con-
ditions and T is the number of time points (times of repetition – TR). It is
then supposed that for each voxel v , the measured BOLD signal yv ∈ RT is
a linear combination of the columns of X, i.e of the experimental conditions,
that is

yv = Xβv + ϵv , (2.1)

where βv ∈ Rk are regression coe�cients and ϵv = (ϵv ,1, . . . , ϵv ,T ) ∈ RT is
a non-iid vector of normally distributed noise. Such a problem is well-posed
and weighted least-squares (WLS) are used to obtain a solution 3, to obtain 3 There are usually more time

points than experimental condi-
tions, and so the design matrix is
full-rank.

β̂v = X†yv . Stacking these coe�cients across all voxels per-brain corre-
spond to k so-called β-maps [Friston et al., 1994]. For a given combination
of experimental conditions 4 c = (c1, c2, . . . , ck ) ∈ Rk , one can compute a

4 For example, for k = 3 con-
ditions, one may be interested
in take c = (1,−1, 0), meaning
we wish the �nd the e�ect of
the �rst condition relative to the
second, or c = (1,−1/2,−1/2)
corresponding to the e�ect of the
�rst condition w.r.t the average
e�ect.

statistic

t̂v ,c :=
cT β̂v√

var (ϵv )cT (XTX)−1c
. (2.2)

Under the null hypothesis that the e�ect were are interested in is zero, i.e

H0 : cT βv = 0, (2.3)

the above statistic is student-t distributed with T − k degrees of freedom,
and one can analytically obtain p-values and con�dence intervals for infer-
ence. Projecting these values unto the brain (one value per voxel) yields a
so-called activation map. Such maps are the main output of any forward
analysis in task-based fMRI studies.

Subsequent statistical inference su�ers from heavy multiple comparison
issues in these so-called mass-univariate methods. The problem is further
confounded by the fact that there are correlations between neighboring vox-
els, leading to situation where the Bonferoni and similar correction proce-
dures, usually used to deal with these issues, may be too conservative and
destroy the the sought-for e�ects. An alternative is to use multi-variate
methods which directly model the spatial interactions between the voxels.
Such methods will be the subject of chapter 3.
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Figure 2.4: Subject-level Activa-
tion maps for auditory versus
visual and visual versus auditory
conditions. Here, we show an
axial via (z-coordinate) of the Z-
values corresponding the size of
the e�ect, in each voxel. Values
range from -13 (light blue) to +13
(light red). Analysis was done us-
ing theNistats open-source Python
library https://github.com/

nistats/nistats.

2.2 Resting-state fMRI, brain networks, and functional
connectivity

Resting-state fMRI –or rsfMRI for short– uses the same acquisition method
as task fMRI. However, instead of giving a particular task to the subject,
they are asked to let their mind wander without sleeping. By studying this
background activity of the brain, it is possible to uncover its underlying
organization [Raichle, 2010]. Unlike the techniques described previously
where the aim was to localize regions of activation for a given set of con-
ditions, in functional connectivitly analysis were are interested in infering
connections between such regions.

Figure 2.5: Functional connec-
tivity patterns extracted from
resting state data. The nodes are
regions of the brain, and the thick-
ness of the edges represent the
relative strength average signal
between the two corresponding
regions.

Depending on the protocol, the subject can be asked to keep eyes closed
or to contemplate a �xation cross. The �xation cross prevents random eye
movements and helps the subject not to sleep. In rsfMRI, we do not study
the signal of each voxel itself but the interactions between the brain vox-
els. In particular, we study the functional connectivity of the brain, i.e. the
similarity of activation patterns between brain regions that share a com-
mon functional role. Since there is no design matrix in rest fMRI, one must
be careful to properly regress out physiological noises or spurious correla-
tions may appear between brain regions, in particular longitudinally [Power
et al., 2012, Van Dijk et al., 2012]. A �rst approach of functional connectivity
is the voxel-to-voxel approach in which the similarity is measured between
each pair of voxels. This method is not only computationally expensive,
given the number of voxels in the brain, but it is also unfounded from the
statistical standpoint: it requires the estimation of millions of parameters
(one for each voxel pair), much more than the number of observations sup-
ports. As a consequence, some form of dimensionality reduction –a feature
selection or extraction– is necessary to study connectivity.

2.3 Inter-subject functional variability

As noted in [Thirion et al., 2007, Thyreau et al., 2012, Xu et al., 2009], the
inter-subject variability in GLM results (see Fig. 2.6) is not due to misregis-

https://github.com/nistats/nistats
https://github.com/nistats/nistats
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Figure 2.6: Inter-subject functional variability. Showing Z maps across di�erent subjects for activation in Story
vs Math language condition of the HCP –Human Connectome Project– dataset [van Essen et al., 2012]. The across-
subject mean activation (top row, middle column) is also shown. Notice how the activations di�er across subjects
both in magnitude and spatial location.

tration, but intrinsic subject di�erences with a more physiological nature:
the size of e�ects and the anatomical localization are subject-speci�c. Also,
[Tavor et al., 2016] used dual regression [Filippini et al., 2009] to provide
quantitative evidence that inter-subject di�erences in task-based brain ac-
tivations are largely physiological –in contrast to being driven by subjects’
brain morphological di�erences.

Chapters 9 and 11 will present generative models for understanding inter-
subject variability at the functional level.
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3.1 Introduction to brain decoding

As already discussed in chapter 2, functional brain imaging provides a dis-
tinctive opportunity to study brain functional architecture, while being min-
imally invasive, and is thus well-suited for the challenging study of the spa-
tial layout of neural coding. Di�erent modalities exist, each one having
speci�c spatial and temporal resolutions; among them Functional Magnetic
Resonance Imaging (fMRI) [Ogawa et al., 1990a,b] has emerged as a funda-
mental modality for brain imaging, striking a good balance between spa-
tial and temporal resolution. fMRI images are pre-processed, and modeled
through a general linear model (GLM), that takes into account the di�erent
experimental conditions and the dynamics of the haemodynamic response
in the design matrix. The resulting model parameters, a.k.a. activation
maps, represent the in�uence of the di�erent experimental conditions on
local fMRI signals.
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The standard approach. The standard approach used for analyzing these
activation maps is called classical inference, and relies on a mass-univariate
statistical tests (one for each voxel), yielding the so-called statistical para-
metric maps (SPMs) [Friston et al., 1994]. Such maps are of particular inter-
est in cognitive neuroscience, as they open the door to localizing the voxels
that are signi�cantly active for any combination of experimental conditions,
and thus are probably implied in the underlying neural code of the cognitive
processes. However, this classical inference su�ers from multiple compar-
isons issues. Also, it does not take into account the multivariate structure
of the fMRI data.

Figure 3.1: Decoding models mine patterns of activity to discriminate between cognitive states [Dehaene et al.,
1998]. Di�erent activation patterns re�ect di�erent mental states. For example, those associated with di�erent
images viewed by the subject. In a training phase, the classi�er will learn to discriminate between brain activity
measured under di�erent cognitive states. In the testing phase the generalization performance of the trained model
is quanti�ed by evaluating the classi�er on the testing set and comparing the output of the classi�er with the true
labels associated with the stimuli. The prediction accuracy of the model is used as a measure of the quantity of
information about the cognitive task shared by the voxels. Adapted from [Pedregosa-Izquierdo, 2015]
.

Inverse inference (or “brain reading”). An alternative approach called
inverse inference (or “brain-reading”) [Dehaene et al., 1998, Cox and Savoy,
2003], has been proposed in order to cope with the limitations of the afore-
mentioned classical inference. Inverse inference relies on a pattern recog-
nition, and aims at decoding the neural code by using machine-learning
methods. Based on a set of brain activation maps, inverse inference builds
a predictive model that can be used for predicting a behavioral target (age,
sex, IQ, etc.) for a new set of images. The prediction accuracy of the model
is used as a measure of the quantity of information about the cognitive task
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shared by the voxels. By construction, this approach is multivariate, and can
provide more sensitive analysis than standard statistical parametric map-
ping procedure [Kamitani 05, Haynes 06] Several methods have been tested
for classi�cation or regression of activation images (Linear Discriminant
Analysis – LDA, Support Vector Machines – SVM, Lasso, Elastic net regres-
sion, and many others), but, in this problem, the major bottleneck remains
the localization of predictive regions within the brain volume. Additionally,
we have to deal with the curse of dimensionality, as the number of features
(voxels, regions) is much larger (∼ 105 − 106 ) than the numbers of sample
(images) (∼ 102 − 103 ), the latter being limited by the cost of acquisition.
Thus the prediction method may over�t the training set and thus not gen-
eralize well to new samples.

3.2 Sparsity and structure-inducing priors: towards in-
tepretable multi-variate models

To cope with the high dimensionality of the data, the learning method has to
be regularized. However, the spatial structure of the image is not taken into
account in standard regularization methods, so that the extracted features
are often hard to interpret. Sparsity and spatial smoothness inducing priors
can be used to perform jointly the prediction of a target variable and region
segmentation in multivariate analysis settings. Sparsity can be enforced
by penalizing the (sum of) absolute values of the regression coe�cients,
leading to the so-called Lasso model. Smoothness can achieved in penal-
izing the spatial gradient of the regression coe�cients, to enforce smooth
regions (“blobs”). The Total-variation (TV) [Rudin et al., 1992] penalty has
proven to be particularly powerful for realizing such e�ects. Laplacian reg-
ularization is an easier means to this end (because in leads to a di�erentiable
problem), but have sub-optimal rates for noisy signal recovery [Sadhanala
et al., 2016], and the visual e�ect is less appealing.

In the context of neuro-imaging, sparsity and smoothness have been
compiled to yield regression coe�cients which are faithful to known neuro-
biological organization of the brain, while alleviating the risk of over-�tting
due to inherently small-sample settings. Speci�cally, it has been shown that
one can employ priors like TV-`1 [Baldassarre et al., 2012, Gramfort et al.,
2013], TV-ElasticNet [Dubois et al., 2014], and GraphNet [Grosenick et al.,
2013] (aka Smooth-Lasso [Hebiri and van de Geer, 2011]) to regularize re-
gression and classi�cation problems in brain imaging. TV has also been
employed to enhance the estimation of the voxel-wise Hurst exponent 1, as 1 H := limN→∞

E(rN /σN )
logN , where

rN is the empirical range (i.e max
value minus min value) of the �rst
N values in a time-series, and σN
is their standard deviation. For ex-
ample in 1D, white noise has H =
−1/2.

a measure of temporal self-similarity in brain dynamics [Pellé et al., 2016].

Notation. We denote by y ∈ Rn the targets to be predicted (age, sex, IQ,
etc.); the design matrix X ∈ Rn×p are the masked (see Fig. 3.2) brain images
related to the presentation of di�erent stimuli, or other brain acquisition
(e.g gray-matter concentration maps from anatomy, etc.). The integer p

is the number of voxels, and n the number of samples (images). In brain
imaging, n � p; typically, p ∼ 103 − 106 (in full-brain analysis), while n ∼

10− 103 (n being limited by the cost of acquisition, etc.). ∇x will denote the
discrete spatial gradient operator along the x-axis, ∇y along the y-axis, etc.
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Thus, at a voxel j, the spatial gradient of an image w is a vector ∇w(j ) :=
[∇xw(j ),∇yw(j ),∇zw(j )], ∀w ∈ Rp . This de�nes a linear operator ∇ ∈
R3p×p (the discrete 3D spatial gradient operator) from Rp to R3p . For a
mixing constant ρ ∈ [0, 1], ∇ρ ∈ R4p×p will denote the identity-augmented
version of ∇, de�ned by ∇ρw := [(1 − ρ)∇w, ρw] ∈ R4p .

Figure 3.2: Masking of volumic
brain data (4D = 3D space + 1
time or samples) to produce a de-
sign matrix required in standard
machine learning (clustering, clas-
si�cation, regression, etc.). Each
3D volume considered is a sam-
ple point. The values of the vox-
els in this volume that lie in the
mask are collected into a feature
vector. All these vectors are ver-
tically stacked to produce an n-
by-p design matrix X, where p is
the number of voxels in the mask.
The mask can be just the region of
the 3D cube occupied by the brain,
or a subset of such. In the latter
case, this typically corresponds to
Region-of-Interests (ROIs) deemed
to be interesting for an experiment.
The former case is referred to as
“full brain”, and the mask typically
contains up to p =millions of vox-
els. See [Abraham et al., 2014] for
more details.

Prerequisites. Given that this chapter and many others will be quite
heavy on proximal calculus and sparse modelling, we would like to sug-
gest the following references as a good starting point for the non-expert
reader on these subjects:

• Proximal calculus [Combettes and Wajs, 2005, Beck and Teboulle, 2009,
Combettes and Pesquet, 2011].

• Sparse modelling [Mairal et al., 2014, Bach et al., 2012].

That notwithstanding, we shall endeavour to develop the material
bottom-up assuming as much as possible only a bare minimum prerequi-
site knowledge on very specialized topics.

3.3 SpaceNet: sparse structured models for brain data

We now describe the family of structured models which have been pro-
posed for enhanced multivariate analysis in neuro-imaging, namely: Total-
Variation (TV) [Michel et al., 2011], TV-`1 [Baldassarre et al., 2012, Gramfort
et al., 2013], GraphNet [Grosenick et al., 2013, Hebiri and van de Geer,
2011], TV-ElasticNet [Dubois et al., 2014], Sparse Variation [Eickenberg
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et al., 2015], and social-sparsity [Kowalski et al., 2013, Varoquaux et al.,
2016]. These can all be synthesized into a general framework, referred to as
SpaceNet [Dohmatob et al., 2015b], as follows

Figure 3.3: `p unit ball for vari-
ous values of p. The kinks in the
cases 0 ≤ p ≤ 1 impose sparsity.
One notes however that, the cases
0 ≤ p < 1 lead to non-convex in-
tractable optimization problems.

minimize
w∈Rp

E (w) := `(y,Xw) + αP (w). (3.1)

The coe�cients w de�ne a spatial map in over the brain (one value per
voxel). The term `(y,Xw) is the loss / data-�t term. Popular choices include:

`(y,Xw) =
1
n

n∑
i=1




1
2 (X

T
i w −yi )

2, for least-squares regression
log(1 + exp(−yiXT

i w)), for logistic regression,
(1 −yiXT

i w)+, for hinge loss (used in SVMs)
...

In the above general model,P (w) is the penalty term, which simultaneously
imposes both sparsity and structure (blobs). The di�erent spatial regular-
ization methods that have appeared in neuro-imaging literature can be cast
into this correspond to di�erent choices of the convex penalty P acting on
the extended gradient of the coe�cients w. Viz,

P (w) =




ρ‖w‖1 + 1
2 (1 − ρ)‖∇w‖

2
Fro =

∑
j ∈[[p ]] ρ |w j | +

1
2 (1 − ρ)‖ (∇w)j ‖

2
2 , for GraphNet ,

‖∇ρw‖1+2,1 = ρ‖w‖1 + ‖∇w‖2,1 =
∑

j ∈[[p ]] ρ |w j | + (1 − ρ)‖ (∇w)j ‖2, for isotropic TV-`1 ,
‖∇ρw‖1,1 = ρ‖w‖1 + (1 − ρ)‖∇w‖1,1 =

∑
j ∈[[p ]] ρ |w j | + (1 − ρ)‖ (∇w)j ‖1, for anisotropic TV-`1 ,

‖∇ρw‖2,1 =
∑

j ∈[[p ]] ‖ (∇ρw)j ‖2, for Sparse Variation ,
...

(3.2)

where

• α > 0 is a regularization parameter controls the total amount of regular-
ization;

• ρ (0 < ρ ≤ 1) is a mixing constant between the sparsity-inducing `1 part
and the cluster-promoting part of the penalty term. The particular case
ρ = 1 corresponds to the usual Lasso. Vanilla TV [Michel et al., 2011]
corresponds to TV-`1 with ρ = 0.

• The matrix∇ρ is the extended discrete gradient operator de�ned in Table
1.
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Bayesian interpretation of SpaceNet models. The penalties P (w) in
(3.1) admit a Bayesian interpretation as a prior on the distribution of the
coe�cients w

pα ,ρ (w) ∝ exp(−P (w)). (3.3)

For example, the GraphNet [Grosenick et al., 2013, Hebiri and van de Geer,
2011], the penalties P (w) penalty corresponds to

pα ,ρ (w) ∝

p∏
j=1

exp(−αρ |w j |)

p∏
j=1

exp *.
,
−α (1 − ρ)

∑
l∼neigh(j )

w j∆j ,lwl
+/
-
. (3.4)

Figure 3.4: A cartoon showing a
sparse and blobby (step-wise con-
stant / cartoon-like) brain map,
as would be sought for by Total-
Variation regularization (9.2).

SpaceNet models (3.1) result in brain maps which are both sparse (i.e
regression coe�cients w are zero everywhere, except at predictive voxels)
and structured (blobby). See Fig. 3.4. The superiority of such methods over
methods without structured priors like the Lasso, ANOVA, Ridge, SVM, etc.
for yielding more intepretable maps and improved prediction scores is now
well established. See for example [Baldassarre et al., 2012, Gramfort et al.,
2013]. These priors are fast becoming popular for brain decoding and seg-
mentation. Indeed, they leverage a feature-selection function (since they
limit the number of active voxels), and also a structuring function (since
they penalize local di�erences in the values of the brain map). For example,
see Fig. 3.6. Also, such priors produce state-of-the-art methods for auto-
matic extraction of functional brain atlases [Abraham et al., 2013].

Submodular interpretation of TV. We note that anisotropic TV penalty
(3.2) on an arbitrary (undirected) graphG = (V ,E) is the Lovasz extension of
the cut-function F : 2V →N, S 7→ ”number of edges between S and V \ S”,
de�ned by F L (x ) := Eλ∼U ([0,1]) [F ({v ∈ V |xv ≥ λ})], for all x ∈ [0, 1]#V .
Thus anisotropic TV minimization can be seen as a graph-cut problem for
which e�cient algorithms exist [Bach, 2013, Landrieu and Obozinski, 2016].

3.4 Methods

The SpaceNet model leads to di�cult non-smooth mathematical optimiza-
tion problems making their implementation and practical usability chal-
lenging. [Dohmatob et al., 2014] benchmarked a rich variety of cutting-edge
solvers for such problems, and gave crucial recommendations on how to
e�ectively implement these algorithms in practice. In these benchmarks,
the FISTA algorithm emerged as the go-to algorithm for the TV-L1 prob-
lem [Dohmatob et al., 2015a]. These hints have been carefully used in imple-
menting SpaceNet. Also as a preprocessing step, we use univariate feature-
screening (ANOVA) to eliminate voxels which are irrelevant to the learning
problem, thus reducing the size of the problem. As a result the implementa-
tion of SpaceNet is fast, robust, and automatically sets its hyper-parameters
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(internal cross-validation). All these technical details will be properly pre-
sented in the next few chapters.

3.4.1 Cross-validation

Cross-validation (e.g see [Stone, 1974]) is a technique used to protect against
over�tting in a predictive model, particularly in a case where the amount
of data may be limited. In cross-validation, you make a �xed number of
folds (or partitions) of the data, run the analysis on each fold, and then av-
erage the overall error estimate. This gives an (asymptotically) unbiased
estimate of the true generalization error of the model. Two major types of
cross-validation are K-Fold and Leave-One-Out (LOO).

K-Fold cross-validation. One iteration of the K-fold cross-validation is
performed in the following way: First, a random permutation of the sample
set is generated and partitioned into K subsets ("folds") of about equal size.
Of the K subsets, a single subset is retained as the validation data for testing
the model (this subset is called the "testset"), and the remaining K - 1 subsets
together are used as training data ("trainset"). Then a model is trained on
the trainset and its accuracy is evaluated on the testset. Model training
and evaluation is repeated K times, with each of the K subsets used exactly
once as the testset. The case of a 5-fold cross-validation with 30 samples is
illustrated in Fig. 8.4.

Leave-One-Out cross-validation. As the name suggests, leave-one-out
cross-validation involves using a single sample from the original sample set
as the validation data, and the remaining samples as the training data. This
is repeated such that each sample in the sample set is used exactly once
as the validation data. This is the same as K-fold cross-validation where K
is equal to the number of samples in the sample set. In LOO, there is no
need in generating random permutations and in repeating it, because the
training and validation datasets for each of the folds are always the same,
and therefore the result of the accuracy estimation is determined.

Model-selection via cross-validation. One can instrument cross-validation
to tune the hyper-parameters of a model like SpaceNet (7.1), by selected the
con�guration of model parameters with least cross-validation error. The
number of models �tted is proportional to the size of the parameter grid –i.e
exponential in the number of parameters to tune– and therefor can become
prohibitive in case there are many free hyper-parameters in the model. Also,
since some of the data has to be set aside for validation, cross-validation in
very small sample settings (e.g e few tenths, as is the in some neuroimag-
ing experiments) may be troublesome as the error estimates then have very
high variance. A reasonable alternative in such situations are SURE (short
for Stein’s Unbiased Risk Estimator [Stein, 1981])-based methods, which are
applicable whenever a procedure for obtaining (an unbiased estimate of)
the number of degrees of freedom of the model is available. This is the case
with the models like the ElasticNet and GraphNet [Hebiri and van de Geer,
2011]. Recently, [Deledalle et al., 2014] has proposed a SURE-like technique
for structured models with many hyper-parameters.
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(a) 1 iteration of 5-Fold cross-validation

(α1, ρ1) (α1, ρ2) . . . (α1, ρM )
(α2, ρ1) (α2, ρ2) . . . (α2, ρM )
(α3, ρ1) (α3, ρ2) . . . (α3, ρM )

...
...

...
...

...
(αL, ρ1) (αL, ρ2) . . . (αL, ρM )

(b) Parameter grid

Figure 3.5: Model-selection via
cross-validation. (a) K-Fold cross-
validation, illustrated here for the
case K = 5, involves taking the
available data and partitioning it
into K groups. Then K − 1 groups
are used to train a set of models
that are then evaluated on the
remaining group. Adapted from
http://genome.tugraz.at/

proclassify/help/pages/

XV.html. (b) L × M grid over
which to search for optimal con-
�guration in a model with two
hyper-parameters α and ρ. For
a model like SpaceNet (7.1), the
grid is is constrained to verify
0 ≤ αL < . . . < α1 = αmax and
0 ≤ ρM < . . . < ρ1 ≤ 1, with
L = 10 and M = 3 typically, given
a total of LM = 30 models to
compare. In chapter 5, we show
how early-stopping and other
heuristics can be used to make
the total cost much more e�ective
than just �tting LM models in a
CV loop.

3.4.2 How SpaceNet compares against classical unstructured
models

Classification. We compared SpaceNet (TV-L1 and GraphNet / Smooth-
Lasso priors) with an SVM (Support Vector Machine) on the visual-recognition
dataset [Haxby et al., 2001]. This dataset consists of 6 subjects with 12 runs
per subject. In each run, the subjects passively viewed images of eight ob-
ject categories, grouped in 24-second blocks separated by intermittent rest
periods. This experiment is a classi�cation task: predicting the object cat-
egory. The design matrix is made of time-series from the full-brain mask
of p = 23, 707 voxels over 216 TRs (Repetition Times), of a single subject
(subj1). 126 TRs were used for training all the models, whilst testing was
done on 90 left-out TRs. The results are depicted in Figures 3.6 and 3.7.

Regression. In [Gramfort et al., 2013], the authors compared several
models on a dataset in which subjects were presented with mixed (gain/loss)
gambles, and decided whether they would accept each gamble [Jimura and
Poldrack, 2012]. No outcomes of these gambles were presented during scan-
ning, but after the scan three gambles were selected at random and played
for real money. The prediction task here is to predict the magnitude of
the gain and thus a regression on a continuous variable. The full dataset
of 16 subjects with 48 3D scans each, making up for a total of n = 768
samples with approximately p = 3.3 × 104 voxels. The prediction here is
inter-subject: the estimator learns on some subjects and predicts on left out

http://genome.tugraz.at/proclassify/help/pages/XV.html
http://genome.tugraz.at/proclassify/help/pages/XV.html
http://genome.tugraz.at/proclassify/help/pages/XV.html


3. Structured priors for analyzing brain data 35

subjects. The results are shown in Fig. 3.8.

Figure 3.6: The �gure shows results of comparing the SpaceNet models TV-`1 and Graph-Net against an SVM (Sup-
port Vector Machine) classi�er on the visual-recognition dataset [Haxby et al., 2001] As can be seen from the
�gure, SpaceNet priors (TV-`1, GraphNet/Smooth-Lasso, etc.) yield stable and more intepretable maps by enforcing
smoothness on the coe�cients while segmenting predictive regions (blobs) from noisy background.

Figure 3.7: Bar chart showing
percentage classi�cation on left-
out, for one-vrs-one classi�ca-
tion on the visual recognition
dataset [Haxby et al., 2001]. We
see that the highly structured maps
produced by SpaceNet models (3.1)
(e.g see Fig. 3.6) are not at the ex-
pense of model accuracy.

3.5 Conclusion

We have presented SpaceNet, a family of priors for brain decoding that en-
force both sparsity and structure, leading to better prediction scores and
intepretable brain maps. We believe that such priors will become common-
place in future. In the next few chapters, we open the “black-box” and de-
velop from ground-up, the details of such models, including their practical
implementation on a computer.
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Though the SpaceNet models introduced in equations (3.1) of chapter
3 lead to superior estimators compared to classical estimators (Ridge regres-
sion, SVM, etc.) without spatial penalization, they are considerably harder
to optimize than these classical models. Indeed, the corresponding opti-
mization problems is non-separable in the model coe�cients, and except
for the case of GraphNet [Hebiri and van de Geer, 2011, Grosenick et al.,
2013] and social-sparsity [Kowalski et al., 2013, Varoquaux et al., 2016], the
penalty term P (w) is neither smooth nor proximable1. For the penalty to 1 A function f is said to be prox-

imable if its operator proxγ f is easy
to compute. This is the case for
`p -norms (with p ≥ 1, to ensure
convexity) and indicator functions
of simple closed convex sets like
balls, simplexes, half-spaces, etc.

fully exercise its structuring e�ect on the maps, this optimization problem
must be solved to a good tolerance resulting in a computational challenge.
Lack of good solver and explicit control of tolerance can lead to brain maps
and conclusions that re�ect properties of the solver more than of model
coe�cients, as illustrated in Fig. 4.1.

4.1 Solving TV-L1 regularized problems

The optimization problem (3.1) is very challenging: it is non-smooth (ex-
cept in the case of Laplacian regularization), non-separable and heavily ill-
conditioned. For the penalty to fully exercise its structuring e�ect on the
maps, this optimization problem must be solved to a good tolerance result-
ing in a computational challenge. In [Dohmatob et al., 2014], we did an
extensive study of all solvers applicable to the problem in TV-`1 special
case (which happens to be the most di�cult scenario). Our results outlined
the best strategy: a double FISTA loop, where the inner loop computes the
proximal operator of the penalty term, with approximate precision on the
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duality-gap. This was further re�ned and implemented in [Varoquaux et al.,
2015].

Figure 4.1: TV-`1 maps for the face-
house discrimination task on the
visual recognition dataset. Note
that the stopping criterion is de-
�ned as a threshold on the en-
ergy decrease per one iteration
of the algorithm, and thus dif-
fers from the tolerance displayed
in �gure 4.1. This �gure shows
the importance of convergence for
problem (3.1), and motivates the
need for fast solvers for SpaceNet
priors, especially the non-smooth
ones like TV-`1 and Sparse Varia-
tion. See [Dohmatob et al., 2014]
for details.

4.1.1 The algorithms

ISTA/FISTA. ISTA [Daubechies et al., 2004], and its accelerated variant
FISTA [Beck and Teboulle, 2009a], are proximal gradient approaches: the
go-to methods for non-smooth optimization. In their seminal introduction
of TV for fMRI, [Michel et al., 2011] relied on ISTA. The challenge of these
methods for TV is that the proximal operator of TV cannot be computed ex-
actly; we approximate it in an inner FISTA loop [Beck and Teboulle, 2009b,
Michel et al., 2011]. Here, for all FISTA implementations we use the faster
monotonous FISTA variant [Beck and Teboulle, 2009b]. We control the op-
timality of the TV proximal via its dual gap [Michel et al., 2011] and use
a line-search strategy in the monotonous FISTA to decrease the tolerance
as the algorithm progresses, ensuring convergence of the TV-`1 regression
with good accuracy. See [Dohmatob et al., 2014, Varoquaux et al., 2015].

ISTA/FISTA with backtracking. A key ingredient in FISTA’s conver-
gence is the Lipschitz constant L∇` , of the derivative of smooth part of the
objective function . The tighter the upper bound used for this constant, the
faster the resulting FISTA algorithm. In FISTA, the main use of L∇` is the
fact that: for any stepsize 0 < t ≤ 1/L∇` and for any point z,

`(pt (z)) ≤ `(z) + rTt ∇`(z) +
1
2t ‖rt ‖

2
2 , where

pt (z) := proxα tP (z − t∇`(z)) and rt := pt (z) − z
(4.1)

In least-squares regression, L∇` is precisely the largest singular value of the
design matrix X. For logistic regression however, the tightest known upper
bound for L∇` is ‖X‖‖XT ‖, which performs very poorly locally (i.e, step-
sizes ∼ 1/L∇` are sub-optimal locally). A way to circumvent this di�culty
is backtracking line search [Beck and Teboulle, 2009a], where one tunes the
stepsize t to satisfy inequality (4.1) locally at point z.

ADMM: Alternating Direction Method of Multipliers. ADMM is a
Bregman Operator Splitting primal-dual method for solving convex-optimization
problems by splitting the objective function in two convex terms which are
functions of linearly-related auxiliary variables [Boyd et al., 2010]. ADMM
is particularly appealing for problems such as TV regression: using the vari-
able split z← ∇w, the regularization is a simple `1/`2 norm on z for which
the proximal is exact and computationally cheap. However, in our settings,
limitations of ADMM are:
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• The w-update involves the inversion of a large p-by-p ill-conditioned
linear operator (precisely a weighted sum of XTX, the laplacian ∆, and
the identity operator).

• The dual stepsize parameter ν in the penalization of the split residual
1
2ν ‖z − ∇w‖

2
2 is hard to set (this is still an open problem), and though

under mild conditions ADMM converges for any value of ν , the conver-
gence rate depends on ν . In chapter 7, we study the rate of convergence
of ADMM on the kinds of penalized least squares regression problem
considered in this manuscript, and derive some theoretical results.

Primal-Dual algorithm of Chambolle and Pock [Chambolle and Pock,
2011]. This scheme is another method based on operator splitting. Used
for fMRI TV regression by [Gramfort et al., 2013], it does not require set-
ting a hyperparameter. However it is a �rst-order single-step method and is
thus more impacted by the conditioning of the problem. Note that here we
explore this primal-dual method only in the squared loss setting, in which
the algorithm can be accelerated by precomputing the SVD of X [Gramfort
et al., 2013] .

HANSO [Lewis and Overton, 2008]. a modi�ed LBFGS scheme based
on gradient sampling methods [Burke et al., 2005] and inexact line-search.
For non-smooth problems as in our case, the algorithm relies on random
initialization, to avoid singularities with high probability. Here, we used
the original authors’ implementation.

Uniform approximation by smooth convex surrogates. The `1 norm
(resp. TV semi-norm) is di�erentiable everywhere with gradient

(
w j/|w j |

)
j ∈[[p ]]

(resp. −div(((∇w)j/‖ (∇w)j ‖2)j ∈[[p ]]))), except when some voxels are inac-
tive with w j = 0 (resp. (∇w)j = 0), corresponding to black spots (resp.
edges). A convenient approach (see for example [Bobin et al., 2011, Nes-
terov, 2005a,b, Beck and Teboulle, 2012]) for dealing with such singularities
is to uniformly approximate the o�ending function with smooth surrogates
that preserve its convexity. Given a smoothing parameter µ > 0, we de�ne
smoothed versions of `1 and TV:

‖w‖1,µ :=
∑
j

√
w2

j + µ
2, ‖w‖TV,µ :=

∑
j

√
‖ (∇w)j ‖

2
2 + µ

2 (4.2)

These surrogate upper-bounds are convex and everywhere-di�erentiable
with gradients that are Lipschitz-continuous with constants 1/µ and ‖∇‖2 (1/µ ) =
12/µ respectively. They lead to smoothed versions of problem (3.1):

ŵµ := argmin
w

{Eµ (w) := `(w) + αPTV-L1,µ (w)}, (4.3)

where PTV-L1,µ (w) := ρ‖w‖1,µ + (1 − ρ)‖w‖TV,µ .
To solve (3.1), we consider problems of the form (4.3) with µ → 0+: we

start with a coarse µ (= 10−2, e.g) and cheaply solve the µ-smoothed problem
(4.3) to a precision∼ µ using a fast iterative oracle like the LBFGS [Zhu et al.,
1994]; we obtain a better estimate for the solution; then we decrease µ by a
�xed factor, and restart the solver on problem (4.3) with this solution; and
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so on, in a continuation process [Bobin et al., 2011] detailed in Alg. 1. This
algorithm is not faster than O (1/ϵ ): indeed a �rst-order algorithm for the
sub-problem (4.3) has optimal worst-case iteration complexity O (

√
Lµ/ϵ )

[Nesterov, 1983], and Lµ ∼ 1/µ ∼ 1/ϵ . We believe that this bound is tight
but a detailed analysis is beyond the scope of this manuscript.

Algorithm 1: LBFGS algorithm with continuation
Require: ϵ > 0 the desired precision, β (0 < β < 1) the rate of decay

of the smoothing parameter µ, and γ > 0 be a constant. Finally, let
LBFGS: (Eµ ,w(0) , ϵ ) 7→ w be an oracle which when warm-started with
an initial guess w(0) , returns an ϵ-optimal solution (i.e Eµ (w) − E∗µ < ϵ)
for problem (4.3).

1: Initialize 0 < µ (0) (= 10−2, e.g), w(0) ∈ Rp , and k = 0.
2: while γ µ (k ) ≥ ϵ do
3: w(k+1) ← LBFGS(Eµ (k ) ,w(k ) ,γ µ (k ) )
4: µ (k+1) ← βµ (k )

5: k ← k + 1
6: end while

4.1.2 Experiments on fMRI datasets

We now detail experiments done on publicly available data. All experiments
were run full-brain without spatial smoothing.

Visual recognition. Our �rst benchmark dataset is a popular block-design
fMRI dataset from a study on face and object representation in human ven-
tral temporal cortex [Haxby et al., 2001]. It consists of 6 subjects with 12
runs per subject. In each run, the subjects passively viewed images of eight
object categories, grouped in 24-second blocks separated by intermittent
rest periods. This experiment is a classi�cation task: predicting the ob-
ject category. We use a two-class prediction target: y encodes faces versus
houses. The design matrix X is made of time-series from the full-brain mask
of p = 23 707 voxels over n = 216 TRs, of a single subject (subj1).

Mixed Gambles. Our second benchmark dataset is a study in which sub-
jects were presented with mixed (gain/loss) gambles, and decided whether
they would accept each gamble [Tom et al., 2007]. No outcomes of these
gambles were presented during scanning, but after the scan three gambles
were elected at random and played for real money. The prediction task here
is to predict the magnitude of the gain and thus a regression on a continu-
ous variable [Jimura and Poldrack, 2012]. The data The are pulled from 16
subjects with 48 3D scans each, making up for a total of n = 768 samples
with approximately p = 3.3 × 104 voxels.

We study the convergence of the algorithms for parameters close to the
optimal parameters set by 10-fold cross-validation to maximize prediction
accuracy.
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Figure 4.2: Benchmarking solvers for TV-`1 penalized models. Top: TV-`1 penalized Logistic Regression on the
visual recognition face-house discrimination task. Top Left: excess energy E (wt ) − E (w∗) as a function of time.
Top Right: convergence time of the various solvers for di�erent choice of regularization parameters. Broken lines
correspond to a tolerance of 100 , whilst full-lines correspond to 10−2 . The thick vertical line indicates the best
model selected by cross-validation. Bottom: TV-`1 penalized Least-Squares Regression. Bottom Left: on the
visual recognition face-house discrimination task; Bottom Right: on the Mixed gambles dataset. The thick vertical
line indicates the best model selected by cross-validation.
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4.1.3 Results: convergence times

Here, we present benchmark results for our experiments. Figure 4.2 gives
results for the logistic regression run on the visual recognition dataset: con-
vergence plots of energy as a function of time show that all methods are
asymptotically decreasing. The left part of Fig. 4.2 shows the time required
to give a convergence threshold, de�ned as a given excess energy compared
to the lowest energy achieved by all methods, for di�erent choices of reg-
ularization parameters. Similarly, the right part of Fig. 4.2 shows conver-
gence times for squared loss on both datasets. For these �gures, each solver
was run for a maximum of 1 hour per problem. Solvers that do not appear
on a plot did not converge for the corresponding tolerance and time budget.

For logistic loss, the most serious contender is algorithm 1, LBFGS ap-
plied on a smooth surrogate, followed by ADMM, however ADMM per-
formance varies markedly depending on the choice of ν (more on this in
chapter 7). For the squared loss FISTA and algorithm 1 are the best per-
formers, with FISTA achieving a clear lead for the larger mixed-gambles
dataset. Note that in the case of strong regularization the problem is better
conditioned, and �rst-order methods such as the primal-dual approach can
perform well.
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5.1 Introduction

In our PRNI 2015 conference paper [Dohmatob et al., 2015], we developed
some heuristics for speeding up the overall optimization process: (a) Early-
stopping, whereby one halts the optimization process when the test score
(performance on left-out data) for the internal cross-validation for model-
selection stops improving, and (b) univariate feature-screening, whereby
irrelevant (non-predictive) voxels are detected and eliminated before the
optimization problem is entered, thus reducing the size of the problem. Em-
pirical results with GraphNet on real MRI (Magnetic Resonance Imaging)
datasets indicated that these heuristics are a winning strategy, as they add
speed without sacri�cing the quality of the predictions / classi�cations.

One notes that in the case of GraphNet, the penalty term of problem
(3.1), the ‖∇w‖22 sub-term is smooth (i.e di�erentiable) with Lipschitz gra-
dient, whilst the `1 term though nonsmooth, is proximable by means of the
soft-thesholding operator [Daubechies et al., 2004]. Thus problem (3.1) is
amenable to the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)
[Beck and Teboulle, 2009], with a provable O (1/

√
ϵ ) convergence rate. Our

implementation of FISTA uses technical recommendations (line-searching,
parametrization, etc.) which were provided in [Dohmatob et al., 2014], in
the context of TV-L1 [Baldassarre et al., 2012, Gramfort et al., 2013]. The
model parameters α and ρ in (3.1) are set by internal cross-validation.
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Figure 5.1: Univariate feature-
screening for the Graph-
Net [Hebiri and van de Geer,
2011, Grosenick et al., 2013] prob-
lem (3.1) on di�erent datasets.
This �gure shows spatial maps of
XT
j y, thresholded so that only vox-

els j with (from left to rightmost
column) |XT

j y| ≥ p10% ( |XT y|),
|XT

j y| ≥ p20% ( |XT y|),
|XT

j y| ≥ p50% ( |XT y|), and
|XT

j y| ≥ p100% ( |XT y|) (full-
brain) respectively, survive. The
green contours enclose the elite
voxels which are selected by
the screening procedure at the
respective threshold levels. (a):
Mixed Gambles dataset [Jimura
and Poldrack, 2012]. Weights
maps obtained for the GraphNet
model (3.1) with these di�erent
screening-percentiles are shown
in Figure 5.4. (c): OASIS dataset
[Marcus et al., 2007] with VBM.
See Figure 5.2 for weights maps
and age predictions obtained
using these di�erent screening-
percentiles.

5.2 Methods

5.2.1 Univariate feature-screening

In machine-learning, feature-screening aims at detecting and eliminating
irrelevant (non-predictive) features thus reducing the size of the underly-
ing optimization problem (here problem (3.1)). The general idea is to com-
pute for each value of the regularization parameter, a relevance measure for
each feature, which is then compared with a threshold (produced by the
screening procedure itself). Features which fall short of this threshold are
detected as irrelevant and eliminated. For the Lasso and similar models
(including Group Lasso), exact screening techniques (i.e, techniques which
don’t mistakenly discard active predictive features) include those developed
in [Ghaoui et al., 2010, Lee and Taylor, 2014, Liu et al., 2014, Wang et al.,
2015]. Inexact screening techniques (e.g [Tibshirani et al., 2010]) have also
been proposed in the literature.

Our proposed heuristic screening technique is inspired by the Marginal
screening technique developed in Algorithm 1 of [Lee and Taylor, 2014],
and operates as follows. The data (X, y) are standardized so that y has unit
variance and zero mean, likewise each row of the design matrixX. To ensure
obtention of a smooth mask, a Gaussian-smoothed version of X is used in
the screening procedure (but not in the actual model �t). For each voxel
j (voxels are the features here) the absolute dot-product |XT

j y| of y with
the jth column of X is computed. For a given screening-percentile sp ∈

[0, 100] , the spth percentile value of the vector |XT y| := ( |XT
1 y|, …, |XT

p y|),
denoted psp ( |XT y|), is computed. The case sp = 100 corresponds to full-
brain analysis with no screening. sp = 25 means we keep the quarter of the
brain made of voxels with the highest |XT

j y| values, and so on. A brain-mask
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is then formed containing only those voxels j for which |XT
j y| ≥ psp ( |XT y|).

Next, this brain-mask is morphologically eroded and then dilated, to obtain
a more structured mask. Figure 5.1 shows results of applying this screening
heuristic to various datasets, prior to model �tting.

5.2.2 Early-stopping

Optimization is a means to an end and not an end on its own. The only in-
centive for optimizing a model is to improve its generalization power: per-
formance on unseen data. If this performs stops improving during training
(statistical convergence), as measured on a left-out subset of data , then we
may as well abrupt the optimization algorithm. We implement this princi-
ple heuristically as follows. In each train sub-sample of the internal cross-
validation loop for setting the parameters of the GraphNet model (3.1), a
pass is done on the 2-dimensional parameter grid (see Fig. 8.4) and each
parameter pair (α , ρ) is scored according to its prediction / classi�cation
performance. For a �xed parameter pair (α , ρ), an instance of problem (3.1)
is solved iteratively using FISTA Beck and Teboulle [2009]. At each iter-
ation, the prediction / classi�cation performance of the current (not yet
optimal) solution ŵk in (3.1) is computed. If in a time-window of 5 iter-
ations this score has not increased above an a priori �xed threshold, called
the early-stopping tolerance (es tol), then the optimization process is halted
for the current model parameter pair (α , ρ) under inspection. This heuris-
tic is motivated by the intuition that, for a particular problem, sub-optimal
solutions ŵk can give the same score as an optimal solution ŵ (i.e “statis-
tical convergence” happens before numerical convergence). By default we
set this early-stopping tolerance to −10−4 for classi�cation and −10−2 for
regression problems. A value of +∞ (in fact, any value above 10, say) cor-
responds to no early-stopping at all (i.e, solve problem (3.1) until numerical
convergence).

5.3 Experiments

We experimented our early-stopping and (separately) feature-screening heuris-
tics on di�erent MRI datasets. All experiments were run using a single core
of a laptop.

Regression. The OASIS dataset [Marcus et al., 2007] consists of a cross-
sectional collection of 416 subjects aged 18 to 96. For each subject, 3 or
4 individual T1-weighted MRI scans obtained in single scan sessions are
included. A natural regression problem for this dataset is to predict the
age of a subject from their anatomical data. To this end, we segmented the
gray-matter from the anatomical data of each subject (obtained from the
T1 images), and used the gray-matter maps as features for predicting age.
We split the 416 subjects into two equally-sized and age-balanced groups: a
train set and a validation set. The GraphNet model [Hebiri and van de Geer,
2011, Grosenick et al., 2013] was �tted on the train set, with parameters (α
and ρ in (3.1)) set internally via 8-fold cross-validation. The results for this
experiment are shown in Figure 5.2.
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Classification. The visual recognition dataset [Haxby et al., 2001] is a
popular block-design fMRI dataset from a study on face and object repre-
sentation in human ventral temporal cortex. It consists of 6 subjects with 12
sessions / runs per subject. In each run, the subjects passively viewed im-
ages of eight object categories, grouped in 24-second blocks separated by
intermittent rest periods. This experiment is a classi�cation task: predicting
the object category y. We use a One-versus-Rest (OvR) strategy. The design
matrix X is made of time-series from the full-brain mask of p = 23 707 vox-
els over n = 216 TRs, of a single subject (subj1). We divided the 12 runs into
6 runs for training and 6 other runs for validation. Leave-one-session-out 1

1 One session is held out and the
other S − 1 sessions are used to
train a model which is validated
on the left-out session. This is re-
peated for all the sessions, yield an
estimate –with error bars– on the
generalization error of the model.

cross-validation was used for selecting the model parameters (α , ρ). The
results are depicted in Figure 5.4.

5.4 Results

We now summarize and comment the results of the experiments (refer to
section 4.1.2). Figure 5.2 shows the e�ects of early-stopping heuristic and
feature-screening heuristic on age prediction scores on the OASIS dataset
[Marcus et al., 2007] (416 subjects). We see that in the internal cross-validation,
stopping the optimization procedure for �xed (α , ρ) pair of regularization
parameters, when test score increases by −10−2 or more is a good heuristic,
and does just as good as running the optimization until numerical conver-
gence. Also (and independently), one gets similar prediction scores using

Figure 5.2: Predicting age from gray-matter concentration maps from the OASIS dataset [Marcus et al., 2007]. Top:
Weights maps (solutions to problem (3.1)). Bottom-left: Mean Square Error (MSE) in age prediction, for di�erent
subjects of the validation set, for varying levels of the early-stopping tolerance (“es tol” for short), with the screening-
percentile (sp) held constant at 100 (full-brain). Bottom-right: MSE in age prediction, for varying levels of the
screening-percentile (sp).
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as little as a �fth of the brain volume (sp = 20), compared to using the full-
brain (sp = 100). Figure 5.4 reports similar results for classi�cation on the
visual recognition dataset [Haxby et al., 2001]. Overall, we see from Figures
5.4 and 5.2 that we can achieve up to 10-fold speedup with the proposed
heuristics, with very little loss in accuracy. Also, we see that contiguous
groups of bars are roughly �at at the top, with a sligh increase from lower
to high screening-percentile values. The case “chair vs scramped” is an ex-
ception, where a slightly reverse tendency if observed. A possible explana-
tion is that 20th percentile feature-screening already selects the right voxels
(quasi-exact support recovery), and so including more voxels in the model
can only hurt its performance.

Figure 5.3: Predicting age from gray-matter concentration maps from the OASIS dataset [Marcus et al., 2007]. Top:
Weights maps (solutions to problem (3.1)). Bottom-left: Mean Square Error (MSE) in age prediction, for di�erent
subjects of the validation set, for varying levels of the early-stopping tolerance (“es tol” for short), with the screening-
percentile (sp) held constant at 100 (full-brain). Bottom-right: MSE in age prediction, for varying levels of the
screening-percentile (sp). Running times: Increasing est tol (from −10−4 to 10): 100.2m, 171.4m, 188.8m, 289.6m.
For increasing sp (10 to 100): 44.2m, 81.3m, 186.5m, 341.3m

Figure 5.4: Visual recognition dataset [Haxby et al., 2001]. (a): Weights maps for the Face vs House contrast, for
di�erent early-stopping and univariate feature-screening thresholds. One can see that the supports of these maps
for di�erent values of the thresholds are quite similar to cases involving no heuristic at all (the case where est = 10
and the where case sp = 100%). (b), top-left: Prediction scores as a function of the early-stopping tolerance (est), for
di�erent task contrasts. (b), top-right: Prediction scores as a function of the screening-percentile (sp), for di�erent
task contrasts. (b), bottom-row: Running times in minutes for the di�erent thresholds of the heuristics.

5.5 Conclusion

We have presented heuristics that provide speedups for optimizing Graph-
Net [Hebiri and van de Geer, 2011, Grosenick et al., 2013] in the di�cult
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context of brain data. These heuristics are a winning strategy as they add
speed without sacri�cing the quality of the predictions / classi�cations. In
practice, we do a 20univariate feature-screening by default, which ensures
a 5-fold speedup over full-brain analysis, and independently of an approx-
imately 2-fold speedup obtained by the early-stopping heuristic, leading to
an overall 10-fold speedup. Our results have been veri�ed empirically on
di�erent MRI datasets. Our heuristics should be applicable to other hard-to-
optimize models like TV-L1 [Baldassarre et al., 2012, Gramfort et al., 2013].

The result of these numerous contributions on optimizing the SpaceNet
model (3.1) have been implemented as part of theNilearn package [Abraham
et al., 2014].
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We present a result that shows that TV-L1 regularized regression prob-
lems (3.1) can also be solved through an iteratively reweighted GraphNet
problem. Among other things, this provides a long-awaited statistical inter-
pretation of the TV-L1 penalized models (3.1). The method dubbed iGraph-
Net, solves TV-L1 penalized model by considering modi�ed GraphNet sub-
problems corresponding to the minimization of the energy E

γ
GraphNet (w)

de�ned in (6.5). These sub-problems are very well-conditioned and are
quadratically easier to solve than TV-L1 itself. The limit of this sub-problems
is solve the exact TV-L1 penalized problem.

This work follows the spirit of [Candes et al., 2007] which proposed an
enhanced Lasso problem built iteratively from surrogate Ridge regression
problems with inhomogeneous feature penalty parameters. However, un-
like [Candes et al., 2007], we leave the Lasso part of the TV-L1 penalty (3.2)
untouched and instead derive a surrogate on the TV part, which turns out
to be a GraphNet problem with inhomogeneous penalty parameters. See
Figure 6.1. Pending �gures comparing (maps, scores, and runtime) Graph-
Net, iGraphNet, and the baseline TV-L1 implementation via double-FISTA
implementations [Dohmatob et al., 2014, Varoquaux et al., 2015].

6.1 Derivation

Invoking the following well-known elementary result1
1 To prove it, one simply uses the
fact that w2u2 + 1 − 2wu = (wu −

1)2 ≥ 0, with equality i� wu = 1.∀u,w > 0,u ≤ wu2 +w−1

2 , with equality i� w = u−1, (6.1)

we can rewrite the TV semi-norm as follows,

‖w‖TV :=
∑

j ∈[[p ]],‖ (∇w)j ‖2>0
‖ (∇w)j ‖2 ≤

1
2

∑
j ∈[[p ]],‖ (∇w)j ‖2>0

γj ‖ (∇w)j ‖
2
2 +γ

−1
j ,∀γ ∈ R

p
++, (6.2)
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with equality i�

γj = ‖ (∇w)j ‖
−1
2 , ∀j ∈ [[p]] s.t ‖ (∇w)j ‖2 > 0. (6.3)

Thus,

‖w‖TV = min
γ ∈R

p
++

1
2

∑
j ∈[[p ]],‖ (∇w)j ‖2>0

γj ‖ (∇w)j ‖
2
2 +γ

−1
j , (6.4)

with the optimal scaling vector γ ∈ R
p
++ given by (6.3). Whence, the min-

imizers of the TV-L1 energy ETV-L1 (w) := `(y,Xw) + αPTV-L1 (w) coincide
with the minimizers of the rescaled GraphNet energy

E
γ
GraphNet (w) = `(y,Xw)+αρ‖w‖1+

1
2α (1− ρ)

∑
j ∈[[p ]],‖ (∇w )j ‖2>0

γj ‖ (∇w)j ‖
2
2 +γ

−1
j ,

(6.5)
where the minimization is done both over regression coe�cients w and the
scaling parameters γ1, . . . ,γp > 0.

Algorithm 2: iGraphNet: iteratively-reweighted GraphNet solver for the
TV-L1 model
Require: Values for the model-tuning parameters λ > 0, and 0 ≤ ρ ≤ 1;

initial brain-map w(0) ∈ Rp (e.g, the zero vector); tolerance threshold
ϵ > 0 (say 10−5); maximum number of outer iterations K .

Ensure: An optimal vector ŵTV of regressor coe�cients (an approxima-
tion of) for the TV-L1 model.

1: Initialize: k ← 0; µ ← 10−4

2: while ‖w(k+1) −w(k ) ‖∞ ≥ ϵ do
3: Recompute scaling: γ (k )

j ← (‖ (∇w(k ) )j ‖
2
2 + µ

2)−
1
2 , for every voxel

j

4: Recompute coe�cients: w(k+1) ← argminw∈Rp E
γ (k )

GraphNet (w),
with energy tolerance ∼ µ. The solver for this sub-problem is warm-
started with w = w(k ) .

5: Goto next iteration: k ← k + 1
6: end while

As a function of the regressor coe�cients w, the energy in (6.5) corre-
sponds to a modi�ed GraphNet model in which per-voxel penalty parame-
ters α (1− ρ)γj given by (6.3) replace the constant α (1− ρ) factor in the pure
GraphNet model (3.1), or equivalently the ∇ is pre-whitened by the diago-
nal matrix Γ := diag(√γ1, . . . ,

√
γp ). This energy is optimized by an alter-

nating scheme cyclically switching between optimizing w.r.t the regressor
coe�cients w and then w.r.t then rescaling parameters γ1, . . . ,γp (in closed
form, via formula (6.3)). The algorithm so-obtained (detailed in section 6.2)
alternates between minimization over the scaling parameters γ and mini-
mization over the coe�cients w.

6.2 The algorithm: iGraphNet

We now present iGraphNet, an iteratively-reweighted scheme for solving
the TV-L1 model, based on modi�ed GraphNet (3.1) sub-problems corre-
sponding to the minimization of the energy E

γ
GraphNet (w) de�ned in (6.5).
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These sub-problems are very well-conditioned and are quadratically easier
to solve than TV-L1 itself, and can be solved by a fast �rst-order method
like FISTA or LARS. The algorithm is presented in Alg. 2.

Overall, for a tolerance ϵ > 0, Alg. 2 converges in O (1/ϵ ) basic itera-
tions (i.e counting all the iterations run in a �rst-order method for solving
the GraphNet sub-problem), though its observed runtime is in the order of
about K times the time taken by a run of a solver for the GraphNet sub-
problem. Practical details (like handling a brain mask, automatic model
parameter selection via cross-validation and bagging, early-stopping, etc.)
that go in the implementation of the optimization algorithms like the one
just presented can be found in [Dohmatob et al., 2014].

Generalization to other complex non-smooth models. Similarly, one
can show that Sparse-Variation [Eickenberg et al., 2015] can be solved via an
IRLS (iteratively-reweighted Least Squares) scheme, where the weights are
computed via (6.3), with the∇ operator replaced with an identity-augmented
version. Indeed, thanks to the inequality (6.1), it turns out that most com-
plex rich non-smooth `p -norm-based models are just iteratively-reweighted
versions of much simpler counterparts like Ordinary Least Squares, Lasso,
ElasticNet, GraphNet, etc.

6.3 Experimental results

Preliminary experimental results are shown in Fig. 6.1. We run our iGraph-
Net procedure (Alg. 2) on data for the Face vs House condition of the visual
recognition dataset [Haxby et al., 2001]. Model coe�cients and accuracies
on held-out data are shown. We monitor the evolution of the model as
a function of the number of iGraphNet iterations k = 0, 1, 2, . . .. We see
that as more and more iterations of iGraphNet are run, the coe�cients be-
come more and more spatially denoised and localized (and therefore more
intepretable), without deterioration of prediction accuracy.

Figure 6.1: Estimated coe�cients
ŵ on the Face vs House condition
of the visual recognition dataset
[Haxby et al., 2001]. Classi�ca-
tion accuracies on held-out data
are shown in the legends. We mon-
itor the evolution of the model as a
function of the number of iGraph-
Net iterations k = 0, 1, 2, . . .. We
see that as more and more itera-
tions of iGraphNet are run, the co-
e�cients become more and more
spatially denoised and localized
(and therefore more intepretable),
without deteriorating of the model
accuracy.
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quaux. Benchmarking solvers for TV-l1 least-squares and logistic regres-
sion in brain imaging. In PRNI. IEEE, 2014.

Michael Eickenberg, Elvis Dohmatob, Bertrand Thirion, and Gaël Varo-
quaux. Total Variation meets Sparsity: statistical learning with segment-
ing penalties. In MICCAI. 2015.

James V. Haxby, Ida M. Gobbini, Maura L. Furey, Alumit Ishai, Jennifer L.
Schouten, and Pietro Pietrini. Distributed and overlapping representa-
tions of faces and objects in ventral temporal cortex. Science, 293, 2001.

Gaël Varoquaux, Michael Eickenberg, Elvis Dohmatob, and Bertand
Thirion. FAASTA: A fast solver for total-variation regulariza-



6. On the equivalence of TV-L1 and iteratively-reweighted GraphNet 57

tion of ill-conditioned problems with application to brain imaging.
arXiv:1512.06999, 2015.



A result on the rate of conver-

gence of the ADMM algorithm

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 58

7.1.1 The ADMM algorithms . . . . . . . . . 59
7.1.2 Examples . . . . . . . . . . . . . . . . . . . 59

7.2 Our contributions . . . . . . . . . . . . . . . . . . 60

7.2.1 Preliminaries . . . . . . . . . . . . . . . . . 60
7.2.2 Behavior of ADMM around fixed-points 61

7.3 Relation to prior work . . . . . . . . . . . . . . 62

7.3.1 Ridge, QP, and nonnegative Lasso . . 62
7.3.2 Fréchet-di�erentiable nonlinear sys-

tems . . . . . . . . . . . . . . . . . . . . . . 63
7.3.3 Partly-smooth functions and Friedrichs

angles . . . . . . . . . . . . . . . . . . . . . 63

7.4 Numerical experiments and results . . . . . 64

7.5 Concluding remarks . . . . . . . . . . . . . . . . 65

7.1 Introduction

The ADMM algorithm [Glowinski and Marroco, 1975, Gabay and Mercier,
1976, Eckstein and Bertsekas, 1992] is an operator-splitting optimization
method which is easy to implement and well-adapted for large-scale opti-
mization problems [Boyd et al., 2011]. ADMM can provide a distinctive ad-
vantage over proximal gradient methods such as FISTA [Beck and Teboulle,
2009] when there is no closed-form expression for the proximal operator.
Indeed, ADMM can avoid this di�culty by introducing a “split” variable,
for which the proximal operator results in updates computable in closed-
form. This is typically the case in analysis sparsity regularization, that im-
pose sparsity on a transformation of the optimization variable. However,
the theory of the convergence rate of ADMM is not complete [Boyd et al.,
2011].
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In our ICASSP 2016 paper [Dohmatob et al., 2015], we studied the con-
vergence of the ADMM (Alternating Direction Method of Multipliers) al-
gorithm on a broad range of penalized regression problems including the
Lasso, Group-Lasso and Graph-Lasso,(isotropic) TV-L1, Sparse Variation,
and others, that can be written in the form

minimize
(w,z)∈Rp×Rq

1
2 ‖Xw − y‖

2 + λΩ(z) subject to Kw − z = 0, (7.1)

where X ∈ Rn×p is the design matrix; y ∈ Rn is a vector of measurements
or classi�cation targets; K ∈ Rq×p is linear operator; λ > 0 is the regulariza-
tion parameter; and Ω : Rp → (−∞,+∞] is the penalty, which is assumed
to be a closed proper convex function. This is an instance of the SpaceNet
model (3.1) presented in chapter 3. In signal processing literature, (7.1) is
an example of what is referred to as a synthesis problem: the penalty Ω

is imposed not directly on the image, but on a the output of a dictionary,
z = Kw. K is referred to the analysis operator. The case K = I corresponds
to the synthesis setting.

7.1.1 The ADMM algorithms

Consider the ADMM algorithm [Glowinski and Marroco, 1975, Gabay and
Mercier, 1976, Eckstein and Bertsekas, 1992, Boyd et al., 2011] applied to
problem (7.1). Let µ ∈ Rq be the dual variable and ν > 0 be the penalty
parameter on the splitting residual. The augmented Lagrangian is:

Lν (w, z, µ) = 1
2 ‖Xw − y‖

2 + λΩ(z) + µT (Kw − z) +
1
2ν ‖Kw − z‖

2.

Further, introducing the scaled dual variable u := ν−1µ, which we will use
instead of µ from here on, the ADMM iterates for problem (7.1) are given
by the following equations:

w(n+1) ← argmin
w

Lν (w, z(n) , u(n) ) = (νKTK +XTX)−1 (νKT (z(n) − u(n) ) +XT y)

z(n+1) ← argmin
z

Lν (w(n+1) , z, u(n) ) = prox(α/ν )Ω (Kw
(n+1) + u(n) )

u(n+1) ← u(n) +Kw(n+1) − z(n+1) .

(7.2)

Assumptions. We will assume that the matrix sum νKTK + XTX is in-
vertible. This assumption is equivalent to kerKTK ∩ kerXTX = {0} (see
e.g [Piziak et al., 1999, Theorem 1]), which is reasonable in the context of
regularization. Indeed, the idea behind this assumption is that, in high-
dimensional problems (n � p), X typically has a large kernel, and so one
would naturally choose K to act on it.

7.1.2 Examples

Problem (7.1) covers a broad spectrum of problems encountered in pattern
recognition and image processing. Here are a few:

Classical examples. We have Ω = 1
2 ‖.‖

2 for Ridge regression; Ω = ‖.‖1 :
z 7→

∑
j ∈[p ] |zj | for Lasso and Fused-Lasso [Tibshirani et al., 2005]. For all

but the last of these examples, we have K = I. For Group-Lasso, we have
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K = I, Ω = the mixed-norm `2,1 = ‖.‖2,1 : z 7→
∑

j ∈[[d ]] ‖zj :j+c−1‖, where
there are d ≥ 1 blocks zj :j+c−1 := (zj , zj+1, …, zj+c−1) each of size c ≥ 1.

Isotropic TV-L1 and Sparse Variation. The di�erent extensions of the
TV penalty presented in chapter 3 can be posed in the form of the problem
above. For example, Sparse Variation [Eickenberg et al., 2015] corresponds
to taking K = [ρI, (1 − ρ)∇]T ∈ R4p×p , where ∇ is the discrete (refer to
chapter 3) spatial gradient operator and ρ ∈ [0, 1] is a mixing parameter.
For TV-L1 [Baldassarre et al., 2012, Gramfort et al., 2013], the penalty is
given by Ω(z) =

∑
j ∈[[p ]] |zj ,1 | +

∑
j ∈[p ] ‖zj ,2:4‖ (i.e an `1 norm on the �rst

p coordinates of z and an `2,1 mixed-norm on the last 3p coordinates). In
particular, the case ρ = 1 corresponds to the usual `1 norm, while ρ = 0
corresponds to the isotropic TV semi-norm.

In Sparse Variation [Eickenberg et al., 2015], the penalty is modi�ed
to simply be an `2,1 mixed-norm on d = p blocks of size c = 4 each, i.e
Ω(z) =

∑
j ∈[p ] ‖zj ,1:4‖. TV-L1 and Sparse Variation combine sparsity (due

to the the `1-norm) and structure (due to the isotropic TV term) to extract
local concentrations of spatially correlated features from the data.

7.2 Our contributions

7.2.1 Preliminaries

In the spirit of [Ghadimi et al., 2013], let us start with a simple lemma (proof
omitted) which rewrites the ADMM iterates (7.2) as a Picard �xed-point
process in terms of the (z, u) pair of variables.

Lemma 1. De�ne the following objects:

Gν := K(KTK + ν−1XTX)−1KT , Aν := [Gν I −Gν ],
bν := ν−1K(KTK + ν−1XTX)−1XT y, Ãν := Aν (.) + bν ,

Λν :=
(
prox(α/ν )φ ◦Ãν , (I − prox(α/ν )φ ) ◦ Ãν

)
.

Then the z and u updates in the ADMM iterates (7.2) can be jointly written as
a Picard �xed-point iteration for the operator Λν , i.e

(z(n+1) , u(n+1) ) ← Λν (z(n) , u(n) ). (7.3)

In the special case where prox(α/ν )φ is a linear transformation –as in
Ridge regression or the nonnegative Lasso, for example– the operator Λν
is linear so that the �xed-point iteration (7.3) is a linear dynamical system.
Moreover, in such cases one can derive closed-form formulae for the spec-
tral radius r (Λν ) of Λν as function of ν , and thus recover the results of
[Ghadimi et al., 2013] and [Boley, 2013]. In the latter simple situations, a
strategy for speeding up the ADMM algorithm is then to choose the param-
eter ν so that the spectral radius of the linear part of the then a�ne trans-
formation Λν is minimized. The following Corollary is immediate, whose
proof is obtainable via the Spectral Mapping Theorem.

Corollary 1. Let Gν , Aν , Ãν , and Λν be de�ned as in Lemma 1. Then the
following hold:



7.A result on the convergence rate of ADMM 61

(a) max(‖Gν ‖, ‖I−Gν ‖) ≤ 1, νmin∗ (Aν ) ≥ 1/
√
2, and ‖Aν ‖ ≤ 1with equal-

ity in the last inequality i� at least one of Gν and I −Gν is singular.

(b) Λν is ‖Aν ‖-Lipschitz. That is, ∀(x1, x2) ∈ Rq+q ×Rq+q ,

‖Λν (x1) −Λν (x2)‖ ≤ ‖Aν ‖‖x1 − x2‖. (7.4)

In particular, if ‖Aν ‖ < 1, then Λν is a contraction and the ADMM iter-
ates (7.2) converge globally Q-linearly to a solution of (7.1). Moreover, this
solution is unique.

According to Corollary 1, Λν is an ‖Aν ‖-contraction in case ‖Aν ‖ < 1,
and so we have global Q-linear convergence of the ADMM iterates (7.2) at
the rate ‖Aν ‖. This particular case is analogous to the results obtained in
[Nishihara et al., 2015] when the loss function or the penalty is strongly
convex. But what if ‖Gν ‖ = ‖I − Gν ‖ = ‖Aν ‖ = 1 ? Can we still have
Q-linear convergence, –at least locally ? These questions are answered in
the sequel.
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Figure 7.1: Rate of convergence
r (Λ′ν (x∗)) as a function of ν for a
Lasso problem with column-rank
de�cient design matrix X. Taking
ν too small leads to badly condi-
tioned problem (as I + (1/ν )XTX
is then almost singular), and thus
a slow rate of convergence (near
1). On the other hand, the �gure
suggests that taking ν “too large”
is also detrimental. Most remark-
able, one notices that the basin of
“good” ν values is rather tight, and
so care must be taken in choosing
the ν parameter.

Henceforth, we consider problem (7.1) in situations where the penalty φ is
an `2,1 mixed-norm. Note that the `1-norm is a special case of the `2,1 mixed-
norm with c = 1 feature per block, and corresponds to the anisotropic case.
The results presented in Theorem (1) carry over e�ortlessly to the case
where the φ is the concatenation of `2,1 norms, for example as in the the
TV-L1 semi-norm. The following theorem –inspired by a careful synthesis
of the arguments in [Holmes, 1973] and [Bayram and Selesnick, 2010]– is
our main result.

Our main results are summarized in Theorem 1 of the aforementioned
paper, which we now state.

Theorem 1. Consider the ADMM algorithm (7.2) on problem (7.1), where
Ω is an `2,1 mixed-norm on d ≥ 1 blocks each of size c ≥ 1, for a total of
q = d × c features. Let the operators A, Ã, and Λ be de�ned as de�ned above,
with the ν subscript dropped for ease of notation. Let For x = (z, u) ∈ Rq+q ,
let Λ1 (x) ∈ Rq denote the �rst q coordinates of Λ(x), i.e its z-part. De�ne

• supp(z) := {j ∈ [[d ]] | zj :j+c−1 , 0};

• A1 (z) := {z′ ∈ Rq | supp(z′) = supp(z)}, and A (x) := A1 (z) ⊕Rq ;

• x̃ := (x̃j )j ∈[[d ]] := Ãx, κ := α/ν , ϵ (x) := min
j ∈[[d ]]
|‖x̃j ‖ −κ | ≥ 0.

Then the following hold:

(a) A�ractivity of supports. For all x ∈ Rq+q , we have

Λ(B̄2q (x, ϵ (x)/‖A‖)) ⊆ B̄2q (Λ(x), ϵ (x)) ∩A (Λ(x)).

In particular, if x∗ is a �xed-point of the operator Γ, then

Λ(B̄2q (x∗, ϵ (x∗)/‖A‖)) ⊆ B̄2q (x∗, ϵ (x∗)) ∩A (x∗).
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(b) Fréchet-di�erentiability. If x ∈ Rq+q with ϵ (x) > 0, then Λ is Fréchet-
di�erentiable at x with derivative

Λ′(x) = FxA ∈ R2q×2q , (7.5)

where Fx := [Dx I−Dx]T andDx ∈ Rq×q is a block-diagonal matrix with
block Dx,j ∈ Rc×c given by

Dx,j =



I − κ
‖x̃j ‖

P〈x̃j 〉⊥ , if j ∈ supp(Λ1 (x)),

0, otherwise.
(7.6)

In particular, when c = 1, eachDx, j reduces to a bit ∈ {0, 1} which indicates
whether the jth feature is active, and Dx reduces to a diagonal projector
matrix with only 0s and 1s.

(c) Let x∗ = (z∗, u∗) ∈ Rq+q be any �xed-point of Γ.

(1) Finite-time identi�cation of active set. If the closed ball B̄2q (x∗, ϵ (x∗)/‖A‖)
contains any point of the sequence of iterates x (n) , then the active set
A (x∗) is identi�ed after �nitely many iterations, i.e

∃Nx∗ ≥ 0 s.t x(n) ∈ A (x∗)∀n ≥ Nx∗ . (7.7)

In particular, (7.7) holds if x(n) converges to x∗.

(2) Local Q-linear convergence. If ϵ (x∗) > 0 and r (Λ′(x∗)) < 1, then
the iterates x (n) converge locally Q-linearly to x∗ at the rate r (Λ′(x∗)).

(3) Optimal rates in the anisotropic case. If c = 1 (as in anisotropic TV
deconvolution) and ν is large, then the optimal rate of convergence rate is
the cosine of the Friedrichs angle between Im K and Im Dx∗ ' A1 (z∗).
If in addition K = I (as in synthesis inverse problems like the Lasso,
sparse Spike-deconvolution, etc.), then the whole algorithm converges in
a �nite number of iterations.

Proof. See our ICASSP paper [Dohmatob et al., 2015]. �

7.3 Relation to prior work

Recently, there have been a number of results on the local linear conver-
gence of ADMM on particular classes of problems. Below, we outline the
corresponding major works.

7.3.1 Ridge, QP, and nonnegative Lasso

On problems like Ridge regression, quadratic programming (QP), and non-
negative Lasso, [Ghadimi et al., 2013] demonstrated local linear conver-
gence of ADMM under certain rank conditions which are equivalent to re-
quiring that the p.s.d matrix Gν (de�ned in (7.3)) be invertible. The same
paper prescribed explicit formulae for optimally selecting the tuning pa-
rameter ν for ADMM on these problems. We note that these results can be
recovered from our Lemma 1 and Corollary 1 as they correspond to the case
where prox(α/ν )φ is a linear operator. Using similar spectral arguments,
[Boley, 2013] demonstrated similar local convergence results for quadratic
and linear QP problems.
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7.3.2 Fréchet-di�erentiable nonlinear systems

In the SISTA algorithm [Bayram and Selesnick, 2010], the authors linked
the rate of convergence of their multi-band ISTA (refer to [Daubechies et al.,
2004] and the references therein, for the original ISTA algorithm) scheme to
the spectral radius of a certain Jacobian matrix related to the problem data
and dependent on the �xed-point [Bayram and Selesnick, 2010, Propositions
6 and 7], provided this spectral radius is less than 1. Most importantly, the
authors show [Bayram and Selesnick, 2010, Proposition 8] how their algo-
rithm can be made as fast as possible by choosing the shrinkage parameter
per sub-band to be “as large as possible”. Finally, analogous to our Theo-
rem 1(a), Lemma 2 of [Bayram and Selesnick, 2010] shows that the SISTA
iteration projects points su�ciently close to �xed-points onto the support
of these �xed-points.

7.3.3 Partly-smooth functions and Friedrichs angles

In the recent work [Liang et al., 2014] which focuses on Douglas-Rachford/ADMM,
and [Liang et al., 2015] which uses the same ideas as in [Liang et al., 2014]
but with a forward-backward scheme [Combettes and Wajs, 2005], the au-
thors consider a subclass PSS (refer to de�nition 2.2 of [Liang et al., 2015]) of
the class of so-called partly-smooth (PS) penalties and general C2 loss func-
tions with Lipschitz gradient. Under nonlinear complementarity require-
ments analogous to the non-degeneracy assumption “ϵ (x∗) > 0” of Theo-
rem 1(b), and rank constraints analogous to the requirement that the Jaco-
bian matrix Λ′(x∗) have spectral radius less than 1 (in Theorem 1(c2)), the
authors of [Liang et al., 2014, 2015] prove �nite-time activity identi�cation
and local Q-linear convergence at a rate given in terms of Friedrichs angles,
via direct application of [Bauschke et al., 2014, Theorem 3.10]. The authors
show that their arguments are valid for a broad variety of problems, for ex-
ample the anisotropic TV penalty. Still in the framework of partly-smooth
penalties, [Demanet and Zhang, 2013] showed local Q-linear convergence
of the Douglas-Rachford algorithm on the Basis Pursuit problem.

Detailed comparison with [Liang et al., 2014, 2015]. The works which
are most comparable to ours are [Liang et al., 2014] and [Liang et al., 2015],
already presented above. Let us point out some similarities and di�erences
between these papers and ours. First, though our constructions are entirely
di�erent from the techniques developed in [Liang et al., 2014, 2015], one
notes that both approaches are ultimately rooted in the same idea, namely
the work of B. Holmes [Holmes, 1973] on the smoothness of the euclidean
projection onto convex sets, and other related functionals (Minkowski gauges,
etc.). Indeed, Theorem 1 builds directly upon [Holmes, 1973], whilst, [Liang
et al., 2015] and [Liang et al., 2014] are linked to [Holmes, 1973] via [Wright,
1993], which builds on [Fitzpatrick and Phelps, 1982], and the latter builds
on [Holmes, 1973].

Second, part (c1) of Theorem 1 (�nite-time identi�cation of active set) of
the theorem can be recovered as a consequence of the results established
in [Liang et al., 2014, 2015]. However, the rest of our results, notably part
(c2) (Q-linear convergence) cannot be recovered from the aforementioned
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works, at least on models like isotropic TV-L1, Sparse Variation, etc., since
these models are not PSS. Indeed, the convergence rates in [Liang et al.,
2014, 2015] do not extend from anisotropic to isotropic TV, for example.
Success in the former case is due to the fact that the anisotropic TV semi-
norm is polyhedral and therefore is of class PSS at each point. By contrast,
our framework can handle isotropic TV and similar “entangled” penalty
types like isotropic TV-L1, Sparse Variation, etc., but su�ers complemen-
tary limitations; for example, we were unable to generalize it beyond the
squared-loss setting and we can only handle penalties which are a composi-
tion of a `2,1 mixed-norm (or a concatenation of such) and a linear operator.
The recent work [Vaiter et al., 2016] on counting the degrees of freedom of
general partly-smooth penalties is worth mentioning and may contain some
key ideas to help bridge the “isotropicity gap “ in the methods developed in
[Liang et al., 2014, 2015], concerning rates of convergence.

Lastly, the convergence rates in [Liang et al., 2014, 2015] are tight and
given in terms of Friedrichs angles [Bauschke et al., 2014], whilst our rates
are given in terms of spectral radii, and will be suboptimal in certain cases.
An exception are the anisotropic cases, where we proved in part (c3) of
Theorem 1 that we recover the optimal rates obtained in [Liang et al., 2014,
2015] in terms of Friedrichs angles. Moreover, for the Lasso, we showed
that the whole algorithm converges after only �nitely many iterations.

7.4 Numerical experiments and results

Here, we present results for a variety of experiments. Each experiment is an
instance of problem (7.1) with an appropriate choice of the linear operators
X, K, and the penalty function φ which can be the `1-norm the `2,1 mixed-
norm, or a mixture of the two (as in TV-L1).

Se�ing. We use a grid of 20 values of ν , evenly spaced in log-space from
10−3 to 106. For each problem model (see below), the iteration process (7.3)
is started with x(0) = 0 ∈ Rq×q , and iterated N = 1500 times. The �nal
point x(N ) is approximately a �xed-point x(∗) of the operator Λν . Now, the
iteration process is run again (starting with the same initial x(0)) and the
distance ‖x(k ) − x(N ) ‖ is recorded on each iteration k , producing a curve.
This procedure is run for each value of ν from the aforementioned grid.
Except otherwise stated, the n rows of design matrix X where drawn from
a p-dimensional standard Gaussian. The measurements variable y is then
computed as y = Xw0 + noise, where w0 is the true signal.

Simple models. As discussed in section 7.3, the local Q-linear conver-
gence of ADMM on a variety of particular problems has been studied in the
literature (for example [Ghadimi et al., 2013, Nishihara et al., 2015, Liang
et al., 2014, 2015]). We validated empirically our linear convergence results
(Theorem 1) by reproducing experiments from [Liang et al., 2014, 2015]. For
each of these experiments the regularization parameter α was set to 1. Viz,

(a) Lasso: Here the problem is an instance of (7.1) with K = I andφ = ‖ · ‖1;
n = 32, q = p = 128, and w0 is 8-sparse.
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(b) Group-Lasso: Here K = I and φ = ‖ · ‖2,1, n = 48, p = 128, number of
blocks d = 32, block size = c = 4, q = d × c = 128, w0 is has 2 non-zero
blocks.

(c) Sparse spikes deconvolution: Here, K = I, X is a projector onto low
Fourier frequencies (Dirichlet kernel) and the penalty φ is the `1-norm;
n = p = 200 (with rankX = 40). The true signal w0 is a 20-sparse vec-
tor (of length p), containing randomly distributed spikes with Gaussian
values at a minimum pairwise distance of 5.

Figure 7.2: Experimental results from ICASSP paper [Dohmatob et al., 2015]. showing local Q-linear convergence
for ADMM on problem (7.1). The “theoretical” line is the exponential curve t 7→ ‖x(0) − x∗‖r (Λ′(x∗))t . The red
broken vertical line marks the instant the support of the �xed-point x∗ is identi�ed.

7.5 Concluding remarks

We have derived a �xed-point iteration which is equivalent to the ADMM
iterates for a broad class of penalized regression problems (7.1). Exploiting
the formulation so obtained, we have established detailed qualitative prop-
erties of the algorithm around solution points (Theorem 1). Most impor-
tantly, under mild conditions, local Q-linear convergence is guaranteed and
we have provided an explicit formula for this rate of convergence. Finally,
Theorem 1 –implicitly– opens the possibility of speeding up the ADMM
algorithm on problem (7.1) by selecting the tuning parameter ν so as to
minimize the spectral radius (an inverted mexican-hat-shaped curve, as ν
varies from 0 to +∞) of the Jacobian matrix T ′ν (x∗).
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In this chapter, we turn our attention to another key problem in neuro-
imaging: registration of functional brain data from di�erent subjects. After
a concise review of the existing literature, we present a contribution of ours,
namely direct registration of fMRI data without using the subject’s anatomy
as a proxy.

8.1 Introduction

Registering brain images from di�erent subjects in a common space (for
example, the MNI space [Collins et al., 1994, Mazziotta et al., 1995]), is an
essential step in any multi-subject analysis pipeline [Friston et al., 1995]. In-
deed, a voxel-to-voxel correspondence across subjects is needed for group-
level statistics on brain maps to make sense. In addition, the use of a stan-
dard space opens the possibility to share results in a consistent fashion,



70

hence the comparison of experiments and meta-analysis [Wager et al., 2007,
Gorgolewski et al., 2015]. This is especially true in fMRI (functional Mag-
netic Resonance Imaging) studies in which the activations might span just
a few voxels in diameter.

Traditional indirect T1-based techniques for inter-subject registration of
EPI data assume that the mismatch between a subject’s T1 (i.e anatomical)
image and associated EPI scan is only a�ne, i.e. it includes only pose di�er-
ences related to slice orientation and �eld of view selection. such methods
exploit the fact that learning a deformation from the subject’s T1 to a tem-
plate is easier, due to the relatively high anatomical contrast in T1 images,
than learning a deformation from the subject’s EPI image to the template.
Thus the EPI and the T1 are a�nely aligned in a primary step called coreg-
istration, then one applies the transformation T1 → template to the EPI
images to warp them from subject to template space.

Figure 8.1: Nonlinear mismatch
between EPI and T1-weighted
image of the same subject of the
HCP dataset [van Essen et al.,
2012], before and after distortion-
correction. Left: Single-band
high-resolution EPI (SBRef) im-
age of the same subject. Notice
the large distortions along the
Left-Right direction (inside the
highlighted patches). Center:
Distortion-corrected single-band
EPI image. Here, the distortion-
correction managed to undo most
–but not all– of the distortions.
Even after distortion correction,
there are minor shape (nonlinear)
di�erences between the EPI and
the T1-weighted image of the
subject (Right). The same native-
space coordinates where used in
all of the 3 plots.

A crucial assumption in these classical methods is that the T1 and EPI im-
ages of the same subject can be properly aligned to one another via an a�ne
transformation. Thus one assumes, for example, that distortion correction
is good enough that the EPI image can be realigned to the T1 with a rigid
or a�ne transformation. However, high-resolution EPI sequences deviate
from the aforementioned underlying assumptions of classical T1-based in-
direct inter-subject registration methods, namely the EPI sequences su�er
from distortions that push them nonlinearly out-of-match relative to the
T1-weighted image of the same subject.

As an example, Fig. 8.1 illustrates this issue (distortions) on the HCP
(Human Connectome Project) [van Essen et al., 2012] dataset, a reference
dataset that contains high-quality EPI data acquired using state-of-the-art
sequences, yet with severe distortions [Wan et al., 1997a, Mangin et al.,
2002, Zeng and Constable, 2002, Andersson et al., 2003]. Indeed, as dis-
cussed in the literature (e.g [Freire et al., 2002]), EPI distortions and sig-
nal loss related to B0 inhomogeneities cannot be separated with registra-
tion based techniques, which are compensatory operations. Consequently,
the set up of e�cient distortion correction method in EPI-based imaging
is an open question. Moreover, sophisticated anatomy-based methods like
Freesurfer’s recon-all cannot scale to huge data sets like the 5,000 partici-
pants of the initial release of the UKBioBank dataset [Miller, 2016], due the
long computation time that renders such approaches impractical.

The goal of this paper is to provide experimental evidence that the in-
direct T1-based inter-subject EPI registration explained above is no longer
needed, if not sub-optimal in such settings. We also provide a computation-
ally cheap pipeline based on publicly available tools, which bypasses the
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need for a T1-weighted image, and do direct inter-subject registration of
the EPI images.

8.2 Methods

8.2.1 An important note on normalization

Let us begin by stressing that the normalization problem (i.e registration
to a standard template) is not addressed in our work. We concentrate on
inter-subject (nonlinear) registration, since our goal is to show the bene�ts
of using EPI images in place of anatomical images in pipelines. We also
note that there is an increasing concern in the literature that in the future,
normalization will be based on multi-modal atlases (tissue probability maps,
functional parcellation maps, etc.) [Amunts et al., 2014].

8.2.2 General preprocessing procedures

Motion correction During acquisitions, subjects move their heads in the
scanner. This head movement induces an approximately a�ne mismatch
between di�erent volumes acquired in the same acquisition run. Motion
correction is done to remove this source of intra-subject variability. We
used FSL’s �irt tool [Smith et al., 2004] for motion correction.

Distortion correction Due to inhomogeneities in the ambient B0 �eld,
the EPI images are distorted (i.e artifactually warped) along the phase-encoding
directions (Left-Right / Right-Left in the case of HCP dataset [van Essen
et al., 2012]). See Figure 8.1. In our experiments, distortion correction [Wan
et al., 1997a, Mangin et al., 2002, Zeng and Constable, 2002, Andersson et al.,
2003, Jezzard and Balaban, 1995, Wan et al., 1997b] was achieved using the
methods described in [van Essen et al., 2012]. Both methods use FSL’s
topup tool [Smith et al., 2004] to estimate the deformation �eld due to B0
inhomogeneities (the distortions) [Glasser et al., 2013].

Deformation model We used ANTs’ Symmetric Normalization (aka SyN )
deformation model [Avants et al., 2008, 2011], which has been shown to be
a state-of-the art method for nonlinear registration [Klein et al., 2009]. As
done usually, we initialize a nonlinear registration algorithm with an a�ne
(rigid-body) registration algorithm. The former is simply meant to estimate
an alignment for the bounding boxes of the images (thus ensuring a su�-
ciently large region of overlap). Concretely, we stack a 2-level pyramidal1 1 Pyramidal means multiple passes

are made by a registration algo-
rithm on the input images, with
�ner and �ner resolution (aka
pyramid). In this speedup tech-
nique, each pass of the pyramid
is initialized with the solution of
the previous pass (this is known as
warmstarting).

a�ne transformation model (as initialization) with a 3-level pyramidal SyN
deformation model. Mattes mutual information [Mattes et al., 2003] is used
as the loss function.

8.2.3 The pipelines

We now present constructions for the pipelines whose benchmark is the
core of this work. All registration pipelines presented here were scripted
in using command-line tools from FSL version 5.0 [Smith et al., 2004] for
a�ne registration, distortion correction, motion correction, ANTs [Avants
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distortion-correction of EPI

affine registration of 
 4D EPI to SBRef

direct (proposed) method ?

nonlinear registration of SBRef 
 to group SBRef template

yes

BBR co-registration of SBRef to T1

no

generate group template 
 (with data pooled from all subjects)

nonlinear registration of 
 SBRef to group T1 template

Figure 8.2: The pipelines. The
template-generation step is done
using ANTs [Avants et al., 2008,
2011]. It pools registered data from
all subjects. N.B.: SBRef = single-
band high-resolution 3D volume.
As in [Glasser et al., 2013], all
the transformations are postponed
and the original 4D EPI is resam-
pled at the end by applying the
composition of these transforma-
tions in a single step.



8.Direct EPI-to-EPI inter-subject nonlinear registration 73

et al., 2009] antsRegistration, antsApplyTranforms, and some custom scripts
(for distortion correction) from the HCP scripts described in [Glasser et al.,
2013], hosted on Github. Except stated otherwise, all a�ne registrations
(motion correction, coregistration) were performed using FSL’s �irt tool
[Smith et al., 2004] with Normalized Mutual Information as the cost function
(option: -cost normmi).

Classical indirect T1-based method

The classical indirect T1-based pipeline for registration of EPI images can
be schematized as follows2: 2 The “◦” symbol denotes composi-

tion of transformations.EPI→ templ. = (T1→ templ.)︸            ︷︷            ︸
nonlinear

◦ (EPI0
BBR
→ T1)︸          ︷︷          ︸

linear

◦DistCorr (8.1)

in which a deformation of the subject’s T1 is estimated and this deforma-
tion is then used to warp the same subject’s EPI data. We implemented the
pipeline as follows. Here, EPI0 is any single-volume EPI image previously-
coregistered with the 4D EPI sequence. Typical choices include: the middle
volume of the �lm or the mean volume after motion correction. In our im-
plementations, we used the former.

For the template, a subject is �xed and its T1-weighted image is used as
the template. For each other subject, (a) distortion correction is used to learn
a nonlinear undistorting warp�eld, in a procedure already described in sub-
section 8.2.2 above. Then, (b) motion correction is done to realign the the
subject’s EPI data to the mean thereof. The subject’s T1-weighted image is
then aligned to this mean EPI image via coregistration (an a�ne transforma-
tion). We use BBR (boundary-based registration) [Greve and Fischl, 2009]
for this coregistration step, for optimal results and fair comparison. BBR
is a state-of-the-art functional-to-structural registration method driven by
intensity di�erence across boundary (samples). It uses white-matter bound-
aries (via T1w segmentation). BBR need good structural images (with little
contrast bias), and some anatomical contrast in the EPI image (which is the
case of the single-band high-resolution reference images in the HCP dataset
[van Essen et al., 2012]). The implementation we use is epi_reg script of FSL
[Smith et al., 2004]. However, since BBR is an a�ne correction method, it
still su�ers from the limitations explained in the introductory section. In
particular, it is not resiliant to distortions in the input EPI image.

(c) ANTs is used to learn a deformation of the T1 image to the tem-
plate (which is a �xed subject). This produces a warped version of the
T1-weighted image, together with the corresponding deformation (and its
inverse too), for passing from the subject’s space to the template space. Fi-
nally, (d) the deformation above (T1-based), and all the other postponed
warp�elds, a�ne transformations, etc., are then applied (in respective or-
der) to all EPI data previously aligned (rigidly, via coregistration) with the
T1-weighted image of the subject; these may include EPI images acquired
on the same subject during another task, for instance. This one-step resam-
pling procedure (see subsection 8.2.2) then produces a registered, motion-
corrected, undistorted version of the input EPI data.

Then mean of all the registered T1-weighted images is computed, and
becomes the template henceforth. This procedure is iterated a couple of
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times.

Our proposed direct EPI-based non-linear inter-subject registration
method

Our proposed pipeline operates just as the classical indirect T1-based pipeline
described above in 8.2.3, except that the anatomical image is replaced with
the single-band high-resolution EPI (the SBRef) image, which has more
tissue contrast than the any volume of the 4D EPI �lm being registered
[Glasser et al., 2013], and also does not su�er from multi-band artifacts.
The anatomical image is not used anywhere in this pipeline. The pipeline
can be schematized as follows:

EPI→ templ. = (EPI0 → templ.)︸              ︷︷              ︸
nonlinear

◦DistCorr, (8.2)

where we take EPI0 = Single-band high-resolution (SBRef) EPI image.

A note on image interpolation (resampling) To avoid degrading the
images as they travel through a pipeline, we stack all intermediate transfor-
mations and postpone the resampling operations to the end of the pipeline.
The transformations are then concatenated (i.e composed), and applied to
the input image in a one-step resampling procedure based on the Apply-
Transforms tool of the ANTs software [Avants et al., 2008, 2009]. For ex-
ample, a�ne transformations estimated during the motion correction step
are converted to warp�elds using FSL’s convertwarp tool [Smith et al.,
2004]. FSL’s applywarp tool [Smith et al., 2004] is then used to jointly
apply this a�ne transformation warp�elds and the warp�elds correspond-
ing to the deformations estimated by topup [Smith et al., 2004], which are
then stacked with subsequent transformations. We use this strategy in both
pipelines.

8.3 Relation to previous works

8.3.1 Direct EPI-to-EPI non-linear inter-subject registration

The idea of EPI-to-EPI registration has already been suggested in the litera-
ture. For example, the method in [Grabner et al., 2014] used high-resolution
EPI (1.1mm isotropic) data for di�erent subjects acquired at 7T to iteratively
build a sequence of EPI-based study-speci�c templates of increasing quality
/ resolution [Grabner et al., 2006]. The �nest of these templates shows a
great deal of anatomical detail. Group-level activation patterns for a �nger-
tapping task were also shown to be very accurately localized on the poste-
rior bank of the central sulcus. The authors concluded that high-resolution
(7T) EPI images contain enough anatomical information for inter-subject
registration, and so one can e�ectively by-pass the anatomical image of
subjects in pipeline. This would for example allow one to avoid the classical
coregistration step used to align the subject’s EPI images to their anatomy.
Our experiments con�rm and extend the �ndings of [Grabner et al., 2014],
but at an even lower resolution: 2mm resolution, obtained from 3T MRI, and
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on a much larger dataset. Indeed, using a much larger bail of 110 subjects,
from Human Connectome Project (HCP) dataset [van Essen et al., 2012],
and a variety of di�erent task contrasts, we show that registration with our
pipeline increases the pairwise NMI of subjects, over the classical pipeline;
crucially, this leads to a decrease in residual post-registration inter-subject
misalignement.

In comparison, the pipeline we propose (refer to 8.2.3) is much lighter
computationally as we bypass the potentially expensive and challenging
step of generating a good template from EPI data [Grabner et al., 2006].
Of course, this economy is more of a compromise between complexity and
accuracy, and might be potential limitation of our contribution. Finally, we
note that the work in [Grabner et al., 2014] did not consider the distortion
problem which are severe even at 3T [Andersson et al., 2003], as it is the
case with the HCP data.

8.3.2 Non-linear EPI-to-structural coregistration

A recent work [Wang et al., 2017] has considered the possibility of replacing
the classical linear EPI-to-structural coregistration step with a non-linear
counterpart, and then running a non-linear structural-to-template registra-
tion as usual. They show that their method outperforms the method based
on distortion correction and linear EPI-to-structural coregistration followed
by structural-to-template registration as usual (see 8.2.3). In contrast, our
proposed method (refer to 8.2.3) does not use the structural image at all.

8.4 Experiments

We now describe benchmarks done to compare the pipelines presented in
this paper (subsection 8.2.3) on the task fMRI data of 110 subjects from the
HCP dataset [van Essen et al., 2012]. The task fMRI data were acquired
in an attempt to assess major domains that sample the diversity of neu-
ral systems, including: 1) visual, motion, somatosensory, and motor sys-
tems; 2) language processing (semantic and phonological processing); 3)
social cognition (Theory of Mind); and 4) emotion processing. Due to time
constraints, our benchmarks were run only on these 4 (out of a total of 7)
tasks (i.e protocols). Also, only data for LR (left-right) phase-encoding direc-
tion [Chang and Fitzpatrick, 1992] runs were used. In all the non T1-based
pipelines, the single-band high-resolution (SBRef) image of the motor task
was used to learn deformations of the subject’s brain into template space (a
�xed subject of the same dataset).

The estimated deformations were then applied to warp EPI data (pre-
viously coregistered to same subject’s motor SBRef) acquired on the same
subject during di�erent task conditions, into template space. GLMs (Gen-
eral Linear Models) [Friston et al., 1994] were run using nipy [Gorgolewski
et al., 2011], open-source Python library for analysis of neuro-imaging data.
For the purpose of reporting the results, the resulting maps were co-registered
to MNI space a posteriori.
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8.4.1 Evaluation metrics

The pipelines were evaluated using the following qualitative and quantita-
tive metrics.

Normalized mutual information evaluation (NMI)

NMI (see Table 1 for de�nition) is a popular similarity metric used to assess
the quality of registration between two images, i.e how well aligned the
images are to one another (for example [Maes et al., 1997]). It is also the
loss function minimized by many optimization algorithms in image regis-
tration. A detailed overview of the use of the NMI metric in medical image
registration can be found in [Pluim et al., 2003]. In our experiments, FSL’s
�irt 3 tool [Smith et al., 2004] was used to compute NMI. 3 With the “-schedule” option.

Inter-subject residual variance

In a good registration method, the residual subject-to-subject variance of
the EPI image should be reduced. The aim of inter-subject registration is
indeed to put subjects into spatial correspondence to facilitate later group
analysis. To measure the quality of the di�erent registration methods in this
regards, we computed the coe�cient of variation (CoV) across the di�erent
subjects after registration. This is de�ned by

CoV = variance image across subjects
mean image across subjects . (8.3)

High values in this 3D image would outline regions of the brain which
are not well registered across subjects.

Group-level statistics and functional brain network pa�erns

Finally, in a successful inter-subject registration procedure, we expect the
functional activation patterns to be more localized in space and to have
higher peaks. Or could this e�ect be masked by inter-subject variability in
activation magnitude ? This will be discussed in detail in the discussion
section 8.6.

8.4.2 How many (plausible) pipelines are there ?

It is worth noting that there are potentially hundreds of pipelines which
could have considered for testing: should we do distortion correction ? And
if yes, how ? Should we use linear or nonlinear model for the deformation
�eld ? What degree should we use for the interpolating splines ? In fact
as noted in [Poldrack et al., 2016], there are exponentially many pipelines
that can be considered, based on the answers to the above choices. Of course
some of these parameters have rule-of-thumb default values (for example,
there is no doubt distortion correction is a good thing to do), but others are
open to preferential choice. Thus our goal is not to consider all possible
pipelines, but to look at a more focal question: does direct EPI-based inter-
registration outperform the traditional indirect T1-based pipeline ?
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8.5 Results

We now present results of experiments performed on the task fMRI proto-
cols of the HCP dataset [van Essen et al., 2012]. Refer to section 8.4 for
detailed information about the experiments we did. The di�erent pipelines
discussed in section 8.2.3 were used to register the data (inter-subject reg-
istration), and the quality of the registration was benchmarked using the
di�erent evaluation metrics discussed in Section 8.4.

Normalized Mutual Information (NMI)

The results comparing across-subject NMI for the pipelines are presented in
Figure 8.3. We see that MNI is in most cases higher through our approach,
which implies that our proposed direct EPI-based pipeline mildly outper-
forms the classical indirect T1-based pipeline.

Figure 8.3: Normalized Mutual In-
formation – NMI (higher values
are better). Each point (x ,y) on
the plots such that x is the NMI
of a given pair of subjects reg-
istered using the pipeline on the
abscissa and y is the NMI of the
same pair of subjects registered us-
ing the pipeline on the ordinate.
From the one-sided We see that our
proposed direct EPI-based pipeline
signi�cantly outperforms the clas-
sical indirect T1-based pipeline.

Residual inter-subject spatial variability

In Figure 8.4, we show across-subject histograms of across-subject per-voxel
Coe�cient of Variation (small is better). We see that our proposed direct
method outperforms the classical indirect T1-based method, as the former
leads to relatively more mis-aligned voxels across subjects, most concen-
trated on the outer edge of the cortex (see Figure 8.4 (a)).

�ality of estimated EPI group template

To compare the quality of the group template produced by either pipeline,
a snapshot of the resulting mean image or template is displayed in Figure
8.5. Compared to the our proposed direct method, the mean image (across
all subjects) from the indirect T1-based pipeline is blurry and has “ripples”
on the cortical surface, indicative of residual mismatch between subjects
after registration. The across-subject mean image post-registration with
our direct EPI-based pipeline is the sharpest, showing that the subjects have
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Figure 8.4: Coe�cient-of-
Variation (CoV) after regis-
tration. Top: Log10 of ratio of
across-subject Coe�cient of Vari-
ation (CoV) for indirect T1-based
pipeline / direct EPI-based. We
see that the gain of our proposed
method is most pronounced along
the cortical surface. Bottom:
Histograms of CoV for both
pipelines. Again, we see clearly
that our proposed method reduces
the inter-subject variability by a
much larger margin, indicative
of improved subject-to-subject
alignment.

been matched extremely well. Also, one notices that the mean image from
the indirect T1-based pipeline still has some residual distortion (here in the
left-to-right direction), even though distortion correction was done as part
of both pipelines.

Figure 8.5: Mean EPI image across
all subjects after registration
(aka estimated population tem-
plates). Patches on the images
have been zoomed to highlight
details. The mean image from
the indirect T1-based pipeline
(Left) is more blurry (as seen
here in the cerebellum), compared
to our direct EPI-based pipeline
post-registration across-subject
mean image (Right) which is
much sharper, indicative of a
better inter-subject registration.
Also the mean image from the
T1-based pipeline has ripples on
the cortical surface indicative of
residual registration problems,
which can be attributed residual
EPI-distortions that could not be
captured via coregistration.

Group-level statistics and Functional brain network pa�erns

As regards group-level GLM scores, we see from Figure 8.6 that our pro-
posed method does just as good as the classical indirect T1-based pipeline.
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Figure 8.6: Qualitative compar-
ison of pipelines via GLM re-
sults. Across-subject mean activa-
tion maps of Z -scores for di�er-
ent contrasts. Here we see that
our proposed direct EPI-based reg-
istration scheme leads to slightly
higher across-subject mean activa-
tion peaks. For each contrast, a
cut has been made around the loca-
tion of the activation peak, to dis-
play curves of the activation pro-
�le and across-subject variability
thereof, in a neighborhood of this
peak location.
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This is remarkable, as the former pipeline does not use any anatomical data.
However, as noted in [Thirion et al., 2007, Thyreau et al., 2012], the inter-
subject variability in GLM results is not due to misregistration, but intrin-
sic subject di�erences with a more physiological nature: the response of
subjects to the same stimulus / task is modulated di�erently, and is more
dependent on e�ect size �uctuations than position.

This is con�rmed in the curves in Figure 8.6, where we can see that the
spatial across-subject activation pro�les are very similar between the com-
pared registration methods, except for the already noted slight improve-
ment of the peak mean activation pattern obtained by our proposed method.

Finally, Figure 8.7 comparing the functional brain networks obtained by
running ICA on the images registered with each of the pipelines, shows es-
sentially the same network patterns. The absence of a di�erence between
these maps can be explained by the fact that resting state networks are less
focal than task-based activation-patterns, and so the former are less sensi-
tive to the quality of the underlying registration procedure.

8.6 Discussion and concluding remarks

Classical inter-subject registration pipelines use the T1-weighted (anatomi-
cal) image of a subject to estimate the subject-to-template warp. An obvious
issue is that high-quality T1-weighted images are not always available, but
more generally, it is not always possible to completely align the EPI images
of a subject to their T1-weighted image via coregistration. Added to this
is the possibility that such an intermediate registration step is a potential
source of interpolation artifacts, not to mention the added computational
cost (which may exceed the rest of the computation time by many orders of
magnitude, for example, in the case of surface-based methods). As shown
by our experiments on the HCP dataset [van Essen et al., 2012] (Figure 8.1),
this is for example the case in the presence of distortions [Wan et al., 1997a,
Mangin et al., 2002, Zeng and Constable, 2002, Andersson et al., 2003] that
persist even after correction. Further, as noted in [Yamada et al., 2014],
distortions cannot be separated with registration based techniques, which
are compensatory operations. Consequently, the e�cient distortion cor-
rection method in EPI data remains an open question. Our work proposes
a direct EPI-based inter-subject registration pipeline that to some extent
evades these bottlenecks.

We have proposed a computationally cheap EPI-based pipeline for di-
rect inter-subject nonlinear registration of functional data. Our method has
been empirically validated on the HCP dataset [van Essen et al., 2012],
where we have shown that we obtain registered subject images with less
inter-subject variability. Such direct EPI-based methods should replace the
well-accepted classical T1-based strategy. Results on the HCP dataset [van
Essen et al., 2012] show that the proposed pipeline outperforms the classi-
cal T1-based indirect registration strategy, according to a variety of di�erent
quality metrics: Normalized Mutual Information –NMI (Figure 8.3), residual
inter-subject variance (Figure 8.4), and quality of estimated group template
(Figure 8.5), without compromising the quality of post-registration statisti-
cal analyses results (GLM, ICA, etc.). These results replicate the �ndings of
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[Grabner et al., 2014] on a larger dataset (110 subjects, compared to 10 in
the reference paper) and in a 3T setting.

Figure 8.7: Comparing functional brain networks from subject fMRI images registered with both pipelines, namely
the classical indirect T1-based method, and our proposed direct EPI-based method). Shown here are group-level un-
thresholded sub-component maps of the Default Mode Network (DMN) [Raichle et al., 2001], using MNI coordinates
reported in Table 1 of [Watanabe et al., 2013].

Remarkably, we observed that according to low-level QA metrics like
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NMI (Figure 8.3), residual inter-subject spatial variability (Figure 8.4) and
the quality of across-subject mean registered EPI image (Figure 8.5), our
proposes method outperforms the classical indirect T1-based registration.
In terms of more high-level metrics like group-level GLM statistics, these
gains though still present, are as not as pronounced (refer to Figure 8.6).
Indeed, as noted in [Thirion et al., 2007, Thyreau et al., 2012, Xu et al.,
2009], the inter-subject variability in GLM results is not due to misregis-
tration, but intrinsic subject di�erences with a more physiological nature:
the size of e�ects and the anatomical localization are subject-speci�c. In
chapter 11, we show that resting-state fMRI data can be used to predict
the activation maps of a subject to a task, with an R2-score which can be
up to 0.5 for some subjects and task. This is an enhancement on previous
work by [Tavor et al., 2016], and shows di�erences in task-based brain ac-
tivations are largely physiological –in contrast to being driven by subjects’
brain morphological di�erences– and can be predicted from resting state
fMRI data.

In a separate work [Dohmatob et al., 2016], also presented in chapter 9 in
detail, we have considered the possibility of explicitly modeling this physi-
ology di�erences by estimating latent factors of variability across-subjects
in a data-driven way using dictionary-learning. The motivating idea behind
such a model, is that activation across-subjects would be governed by the
same generative model (the latent model), and modulated on the subject-
level by subject-speci�c physiology.
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In neuro-imaging, inter-subject variability is often handled as a statis-
tical residual and discarded. Yet there is evidence that it displays structure
and contains important information. Univariate models are ine�ective both
computationally and statistically due to the large number of voxels com-
pared to the number of subjects. Likewise, statistical analysis of weak ef-
fects on medical images often relies on de�ning regions of interests (ROIs).
For instance, pharmacology with Positron Emission Tomography (PET) of-
ten studies metabolic processes in speci�c organ sub-parts that are de�ned
from anatomy. Population-level tests of tissue properties, such as di�usion,
or simply their density, are performed on ROIs adapted to the spatial im-
pact of the pathology of interest. In functional brain imaging, e.g functional
magnetic resonance imaging (fMRI), ROIs must be adapted to the cognitive
process under study, and are often de�ned by the very activation elicited by
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a closely related process [Saxe et al., 2006]. ROIs can boost statistical power
by reducing multiple comparisons that plague image-based statistical test-
ing. If they are de�ned to match spatially the di�erences to detect, they can
also improve the signal-to-noise ratio by averaging related signals. How-
ever, the crux of the problem is how to de�ne these ROIs in a principled
way. Indeed, standard approaches to region de�nition imply a segmenta-
tion step. Segmenting structures on �rst-level statistical maps, as in fMRI,
typically yields meaningful units, but is limited by the noise inherent to
these maps. Relying on a di�erent imaging modality hits cross-modality
correspondence problems.

9.1 Introduction and sketch of our contributions

In this chapter, we propose to use the variability of the statistical maps
across the population to de�ne regions. This idea is reminiscent of cluster-
ing approaches, that have been employed to de�ne spatial units for quanti-
tative analysis of information as diverse as brain �ber tracking, brain activ-
ity, brain structure, or even imaging-genetics. See [Varol and Davatzikos,
2014, Hibar et al., 2013] and references therein. The key idea is to group to-
gether features –voxels of an image, vertices on a mesh, �ber tracts– based
on the quantity of interest, to create regions –or �ber bundles– for statis-
tical analysis. However, unlike clustering that models each observation as
an instance of a cluster, we use a model closer to the signal, where each
observation is a linear mixture of several signals. The model is closer to
mode �nding, as in a principal component analysis (PCA), or an indepen-
dent component analysis (ICA), often used in brain imaging to extract func-
tional units [Beckmann and Smith, 2004]. Yet, an important constraint is
that the modes should be sparse and spatially-localized. For this purpose,
the problem can be reformulated as a linear decomposition problem like
ICA/PCA, with appropriate spatial and sparse penalties [Varoquaux et al.,
2011, Abraham et al., 2013].

We propose a multivariate online dictionary-learning method for obtain-
ing decompositions with structured and sparse components (aka atoms).
Sparsity is to be understood in the usual sense: the atoms contain mostly
zeros. This is imposed via an `1 penalty on the atoms. By "structured", we
mean that the atoms are piece-wise smooth and compact, thus making up
blobs, as opposed to scattered patterns of activation. We impose this type
of structure via a Laplacian penalty1 on the dictionary atoms. Combining 1 This is a slight abuse of lan-

guage as we really mean the
Sobolev semi-norm v 7→ vT∆v =
(∇v)T∇v ≥ 0 and not the Lapla-
cian linear operator ∆ := ∇T∇.

the two penalties, we therefore obtain decompositions that are closer to
known functional organization of the brain. This non-trivially extends the
online dictionary-learning / dictionary-learning work [Mairal et al., 2010],
with only a factor of 2 or 3 on the running time. By means of experiments
on a large public dataset, we show the improvements brought by the spatial
regularization with respect to traditional `1-regularized dictionary learning.
We also provide a concise study of the impact of hyper-parameter selection
on this problem and describe the optimality regime, based on relevant cri-
teria (reproducibility, captured variability, explanatory power in prediction
problems).
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Applied to functional brain imaging, it separates successfully activation
maps into localized units of brain activity. Our contribution is to frame spa-
tial penalties as a particular case of more general Laplacian regularization
and introduce an e�cient online algorithm for dictionary-learning in these
settings. Applied to functional brain imaging, it separates successfully ac-
tivation maps into localized units of brain activity. Here we do things that
are closer to probabilistic segmentations

9.2 Smooth Sparse Online Dictionary-Learning (Smooth-
SODL)

Consider a stack X ∈ Rn×p of n subject-level brain images x1, x2, . . . , xn
each of shapen1 ×n2 ×n3, seen asp-dimensional row vectors –withp = n1 ×
n2 × n3, the number of voxels. These could be images of fMRI activity pat-
terns like statistical parametric maps of brain activation, raw pre-registered
(into a common coordinate space) fMRI time-series, PET images, etc. We
would like to decompose these images as a product of k ≤ min(n,p) com-
ponent maps (aka latent factors or dictionary atoms) d1, . . . , dk ∈ Rp×1 and
modulation coe�cients c1, . . . , cn ∈ Rk×1 called codes (one k-dimensional
code per sample point), i.e

xi ≈ Dci , for i = 1, 2, . . . ,n (9.1)

where D := [d1 | . . . |dk ] ∈ Rp×k , an unknown dictionary to be estimated.

Figure 9.1: Dictionary-learning
with smoothness and sparsity con-
straints on the atoms. On the right,
each time point is a masked 3D
brain image and corresponds to
a sample, and each voxel corre-
sponds to a feature, giving anp-by-
n matrix X, where n is the number
of samples and p is the number of
features. On the right of the equa-
tion, the sought-for p-by-k dictio-
nary D is a low-dimensional repre-
sentation these images, by means
of a (non-orthonormal) basis of k
� min(n,p) smooth and sparse 3D
brain images called atoms. In this
representation, each sample point
(i.e 3D brain image) Xi ∈ Rp is
mapped ontok-dimensional vector
ci , called the code of Xi .

Typically, p ∼ 105 – 106 (in full-brain high-resolution fMRI) and n ∼ 102

– 105 (for example, in considering all the 500 subjects and all the about 15
–20 functional tasks of the Human Connectome Project dataset [van Essen
et al., 2012]). Our work handles the extreme case where both n and p are
large (massive-data setting). It is reasonable then to only consider under-
complete dictionaries: k ≤ min(n,p). Typically, we use k ∼ 50 or 100
components. It should be noted that online optimization is not only crucial
in the case where n/p is big; it is relevant whenever n is large, leading to
prohibitive memory issues irrespective of how big or small p is.

As explained in section 9.1, we want the component maps (aka dictionary
atoms) dj to be sparse and spatially smooth (illustrated in Fig. 9.1). A prin-
cipled way to achieve such a goal is to impose a boundedness constraint on
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`1-like norms of these maps to achieve sparsity and simultaneously impose
smoothness by penalizing their Laplacian. Thus, we propose the following
penalized dictionary-learning model

min
D∈Rp×k

*
,
lim
n→∞

1
n

n∑
i=1

min
ci ∈Rk

1
2 ‖xi −Dci ‖

2
2 +

1
2α ‖ci ‖

2
2

+
-
+γ

k∑
j=1

Lap(dj ).

subject to d1, . . . , dk ∈ C

(9.2)

The ingredients in the model can be broken down as follows:

• Each of the terms maxci ∈Rk
1
2 ‖xi − Dci ‖

2
2 measures how well the cur-

rent dictionary D explains data xi from subject i . The Ridge penalty
term ϕ (ci ) ≡ 1

2α ‖ci ‖
2
2 amounts to placing an isotropic Gaussian prior on

the codes, namely p (ci ) ∝ exp(− 1
2α ‖ci ‖

2
2 ). In the context of a speci�c

neuro-imaging problem, if there are good grounds to assume that each
sample / subject should be sparsely encoded across only a few atoms
of the dictionary, then we can use the `1 penalty ϕ (ci ) := α ‖ci ‖1 as
in [Mairal et al., 2010], corresponding to a Laplace prior on the codes,
namely p (ci ) ∝ exp(−α ‖ci ‖1). We note that in contrast to the `1 penalty,
the Ridge leads to stable codes. The parameterα > 0 controls the amount
of penalization on the codes.

• The constraint set C is a sparsity-inducing compact simple2 convex sub- 2 Mainly in the sense that the Eu-
clidean projection onto C should
be easy to compute.

set of Rp like an `1-ball Bp ,`1 (τ ) or a simplex Sp (τ ), de�ned respectively
as

Bp ,`1 (τ ) :=
{
d ∈ Rp s.t |d1 | + |d2 | + . . . + |dp | ≤ τ

}
,

and Sp (τ ) := Bp ,`1 (τ ) ∩R
p
+. Other choices (e.g ElasticNet ball) are of

course possible. The radius parameter τ > 0 controls the amount of
sparsity: smaller values lead to sparser atoms. The Laplacian regular-
ization Lap (see Table 1 for de�nition) is meant to impose blobs. γ ≥ 0
controls how much regularization we impose on the atoms, compared to
the reconstruction error.

The above formulation, which we dub Smooth Sparse Online Dictionary-
Learning (Smooth-SODL) is inspired by, and generalizes the standard dictionary-
learning framework of [Mairal et al., 2010] –henceforth referred to as Sparse
Online Dictionary-Learning (SODL); settingγ = 0, we recover SODL [Mairal
et al., 2010].

9.3 Algorithms

The objective function in problem (9.2) is separately convex and block-
separable w.r.t each of C and D but is not jointly convex in (C,D). Also,
it is continuously di�erentiable on the constraint set, which is compact and
convex. Thus by classical results (e.g Bertsekas [Bertsekas, 1999]), the prob-
lem can be solved via Block-Coordinate Descent (BCD) [Mairal et al., 2010].
Reasoning along the lines of [Jenatton et al., 2010], we derive that the BCD
iterates are as given in Alg. 3. A crucial advantage of using a BCD scheme
is that it is parameter free: there is not step size to tune. The resulting al-
gorithm Alg. 3, is adapted from [Mairal et al., 2010]. It relies on Alg. 4
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for performing the structured dictionary updates, the details of which are
discussed below.

Algorithm 3: Online algorithm for the dictionary-learning problem (9.2)
Require: Regularization parameters α ,γ > 0; initial dictionary D ∈ Rp×k ,

number of passes / iterations T on the data.
1: A0 ← 0 ∈ Rk×k , B0 ← 0 ∈ Rp×k (historical “su�cient statistics”)
2: for t = 1 to T do
3: Empirically draw a sample point xt at random.
4: Code update: Ridge-regression (via SVD of current dictionary D)

ct ← argmin
c∈Rk

1
2 ‖xt −Dc‖

2
2 +

1
2α ‖c‖

2
2 . (9.3)

5: Rank-1 updates: At ← At−1 + ct cTt , Bt ← Bt−1 + xt cTt
6: BCD dictionary update: Compute update for dictionary D using

Alg. 4.
7: end for

Update of the codes: Ridge-coding. The Ridge sub-problem for updat-
ing the codes

ct = (DTD + α I)−1DT xt (9.4)

is computed via an SVD of the current dictionary D. For α ≈ 0, ct reduces to
the orthogonal projection of xt onto the image of the current dictionary D.
As in [Mairal et al., 2010], we speed up the overall algorithm by sampling
mini-batches of η samples xt , . . . , xη and compute the corresponding codes
c1, c2, ..., cη at once. We typically use we use mini-batches of size η ∼ 20
images.

BCD dictionary update for the dictionary atoms. Let us de�ne time-
varying matrices At :=

∑t
i=1 cic

T
i ∈ Rk×k and Bt :=

∑t
i=1 xic

T
i ∈ Rp×k ,

where t = 1, 2, . . . denotes time. We �x the matrix of codes C, and for each
j, consider the update of the jth dictionary atom, with all the other atoms
dk,j kept �xed. The update for the atom dj can then be written as

dj = argmin
dj ∈C

1
t

t∑
i=1

( 1
2 ‖xi −Dci ‖

2
2

)
+γLap(dj )

= argmin
dj ∈C

*
,

t∑
i=1

1
2 ‖xi −Dci ‖

2
2

+
-
+γ tLap(dj )

= argmin
dj ∈C

Fγ (aj ,j/t )−1 (d
j , djold + a

−1
j ,j (b

j −Daj )︸                   ︷︷                   ︸
see chapter 10 below

),

(9.5)

where

Fγ̃ (dj , a) ≡
1
2 ‖d

j − a‖22 + γ̃Lap(dj ) = 1
2 ‖d

j − a‖22 +
1
2 ‖∇d

j ‖2. (9.6)

Problem (9.5) is thus a compactly-constrained minimization of the 1-strongly-
convex quadratic functions Fγ̃ (., a) : Rp → R de�ned above. This problem
can further be identi�ed with a denoising instance (i.e in which the design
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Algorithm 4: BCD dictionary update with Laplacian prior
Require: D = [d1 | . . . |dk ] ∈ Rp×k (input dictionary),

1: At = [a1 | . . . |ak ] ∈ Rk×k , Bt = [b1 | . . . |bk ] ∈ Rp×k (history)
2: while stopping criteria not met, do
3: for j = 1 to r do
4: Fix the code C and all atoms k , j of the dictionary D and then

update dj as follows

dj ← argmin
dj ∈C

Fγ (aj ,j/t )−1 (d
j , djold + a

−1
j ,j (b

j −Daj )) (9.7)

(See below for details on the derivation and the resolution
of this problem)

5: end for
6: end while

matrix or deconvolution operator is the identity operator) of the GraphNet
model [Grosenick et al., 2013, Hebiri and van de Geer, 2011]. Fast �rst-order
methods like FISTA [Beck and Teboulle, 2009] with optimal rates O (L/

√
ϵ )

are available3 for solving such problems to arbitrary precision ϵ > 0. One 3 For example, see [Dohmatob
et al., 2014, Varoquaux et al.,
2015], implemented as part of
the Nilearn open-source Python li-
brary [Abraham et al., 2014].

computes the Lipschitz constant to be LFγ̃ (.,a) ≡ 1+ γ̃LLap = 1+ 4Dγ̃ , where
as before, D is the number of spatial dimensions with D = 3 for volumet-
ric images. One should also mention that under certain circumstances, it is
possible to perform the dictionary updates in the Fourier domain, via FFT.
This alternative approach is developed in the Appendix of [Dohmatob et al.,
2016].

Finally, one notes that, since constraints in problem (9.2) are separable
in the dictionary atoms dj , the BCD dictionary-update algorithm Alg. 4 is
guaranteed to converge to a global optimum, at each iteration [Bertsekas,
1999, Mairal et al., 2010].

How di�icult is the dictionary update for our proposed model ? A
favorable property of the vanilla dictionary-learning [Mairal et al., 2010]
is that the BCD dictionary updates amount to Euclidean projections onto
the constraint set C, which can be easily computed for a variety of choices
(simplexes, closed convex balls, etc.). One may then ask: do we retain a
comparable algorithmic simplicity even with the additional Laplacian terms
yLap(dj ) ? The short answer is yes: empirically, we found that 1 or 2 itera-
tions of FISTA [Beck and Teboulle, 2009] are su�cient reach an accuracy of
10−6 in problem (9.5), which is su�cient to obtain a good decomposition in
the overall algorithm. However, choosing γ “too large” will provably cause
the dictionary updates to eventually take forever to run. Indeed, the Lips-
chitz constant in problem (9.5) is Lt = 1+ 4Dγ (aj ,j/t )−1, which will blow-up
(leading to arbitrarily small step-sizes) unless γ is chosen so that

γ = γt = O

(
max
1≤j≤k

aj ,j

)
= O *

,
max
1≤j≤k

t∑
i=1
‖Cj ‖22/t+

-
= O (‖At ‖∞,∞/t ). (9.8)

Finally, the Euclidean projections onto the `1 ball C can be computed ex-
actly in linear-timeO (p) (see for example [Condat, 2014, Duchi et al., 2008]).
The dictionary atoms j are repeatedly cycled and problem (9.5) solved. All
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in all, in practice we observe that a single iteration is su�cient for the dic-
tionary update sub-routine in Alg. 4 to converge to a qualitatively good
dictionary.

9.4 Implementation and practical considerations

So�ware implementation. All aspects of the code where implemented
in the Python programming language. For the implementation of the pro-
posed Alg. 3, we implemented a modi�ed version of scikit-learn Python
library’s dict_learning module, to handle more general constraint sets and
more general penalties both for the codes ci and for the dictionary atoms dj .
The projection onto the `1-ball C was coded in Cython, a toolkit for writing
Python code to run at the speed of the C language.

Convergence of the overall algorithm. The Convergence of our algo-
rithm (to a local optimum) is guaranteed since all hypotheses of [Mairal
et al., 2010] are satis�ed. For example, assumption (A) is satis�ed because
fMRI data are naturally compactly supported. Assumption (C) is satis�ed
since the ridge-regression problem (9.3) has a unique solution. More details
are provided in the Appendix of [Dohmatob et al., 2016].

9.4.1 Practical considerations

Hyper-parameter tuning. Parameter-selection in dictionary-learning is
known to be a di�cult unsolved problem [Mairal et al., 2010, Jenatton et al.,
2010], and our proposed model (9.2) is not an exception to this rule. We did
an extensive study of the quality of estimated dictionary varies with the
model hyper-parameters (α ,γ ,τ ). The data experimental setup is described
in Section 11.5. The results are presented in Fig. 9.2. We make the following
observations: Taking the sparsity parameter τ in (9.2) too large leads to
dense atoms that perfectly explain the data but are not very intepretable.
Taking it too small leads to overly sparse maps that barely explain the data.
This normalized sparsity metric (small is better, ceteris paribus) is de�ned
as the mean ratio ‖dj ‖1/‖dj ‖2 over the dictionary atoms.
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Figure 9.2: In�uence of model
parameters. In the experiments,
α was chosen according to (9.9).
Left: Percentage explained vari-
ance of the decomposition, mea-
sured on left-out data split. Right:
Average normalized sparsity of the
dictionary atoms.

Concerning theα parameter, inspired by [Ying and Zhou, 2006], we have
found the following time-varying data-adaptive choice for the α parameter
to work very well in practice:

α = αt ∼ t−1/2. (9.9)
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Likewise, care must be taken in selecting the Laplacian regularization pa-
rameter γ . Indeed taking it too small amounts to doing vanilla dictionary-
learning model [Mairal et al., 2010]. Taking it too large can lead to degen-
erate maps, as the spatial regularization then dominates the reconstruction
error (data �delity) term. We �nd that there is a safe range of the parameter
pair (γ ,τ ) in which a good compromise between the sparsity of the dictio-
nary (thus its intepretability) and its explanation power of the data can be
reached. See Fig. 9.2. K-fold cross-validation with explained variance met-
ric was retained as a good strategy for setting the Laplacian regularization
γ parameter and the sparsity parameter τ .

Initialization of the dictionary. Problem (9.2) is non-convex jointly in
(C,D), and so initialization might be a might be a crucial issue. However,
in our experiments, we have observed that even randomly initialized dic-
tionaries eventually produce sensible results that do not jitter much across
di�erent runs of the same experiment.

9.4.2 Interlude: Working in the Fourier domain (when possi-
ble)

To close this section, let us point out a few special instances cases of problem
(9.6), for peculiar choices of the constraint setQ . First note that the objective
in problem (7) can be conveniently rewritten as

FγAt [j ,j ]−1 (v, v
j +At [j, j]−1 (vAj − Bj

t )) =
1
2 (v − ṽ

j )T (I −γAt [j, j]−1∆) (v − ṽj )

=
1
2 (v̂ −

ˆ̃vj )T (I −γAt [j, j]−1∆) (v̂ − ˆ̃vj ),

(9.10)

with
ṽj := (At [j, j]I −γ∆)−1

(
vj +At [j, j]−1 (vAj − Bj

t )
)
. (9.11)

We note that the matrix-inversion (I− γ̃∆)−1 that appears in the formula
above is a Laplacian �lter, and can be e�ciently applied in closed-form (i.e
non-iteratively) in the Fourier / frequency domain. Indeed, under periodic
boundary conditions, the discrete Laplacian ∆ is Block-Circulant with Cir-
culant Blocks (BCCB) and so is diagonalizable in the Fourier domain. Pre-
cisely,

∆ = F ∗ΛF (9.12)

where the complex orthonormal operator F represents the fast Discrete
Fourier Transform (DFT), and Λ is diagonal matrix made p eigenvalues (in-
cluding multiplicities) of the Laplace operator ∆, given by

Λ(ω) := −
3∑

d=1

(
2 sin

(
ωdπ

2nd

))2
= −2

3∑
d=1

(
1 − cos

(
ωdπ

nd

))
≤ 0,

for ω = (ω1,ω2,ω3) ∈ [[0,n1 − 1]] × [[0,n2 − 1]] × [[0,n3 − 1]].

We note that the spectral norm of Laplace operator in D dimensions (here
D = 3) is ‖∆‖2 = γ̃max (−∆) = 2 ×D × (1 + 1) = 4D.

Now, one can then harvest the closed-form solution

(I − γ̃∆)−1a = (F −1 (I − γ̃Λ)−1F ) (a) = F −1 (s) , (9.13)
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where s ∈ Rp is de�ned by s(ω) :=
â(ω)

1 − γ̃ ∆̂(ω)
, with â := F (a). These DFT

computations have complexity O (p logp).
For applying the DFTs above, one can use the FFTW4 –or Fastest Fourier 4 FFTW is generally taught to be

one of the fastest implementa-
tions of the FFT, yielding up to
3× speedup against competing li-
braries like LAPACK.

Transform in theWest– library for computing the forward and inverse Fourier
transforms needed to apply the Laplacian �lter.

Pure `2 constraint. Here, the constraint set C is an L2 ball (with radius
= 1, w.l.o.g) in R2. By the Rayleigh energy theorem (aka Parseval’s identity
for the DFT), one has

‖v̂‖2 = p‖v‖22 , ∀v ∈ Rp

and so problem (7) can be written as

vj ← argmin
v∈Rp , ‖v‖22 ≤1

1
2 (v̂ −

ˆ̃vj )∗ (I −γAt [j, j]−1Λ) (v̂ − ˆ̃vj )

= F ∗
*.
,

argmin
v̂∈Cp , ‖v̂‖22 ≤p

1
2 (v̂ −

ˆ̃vj )∗ (I −γAt [j, j]−1Λ) (v̂ − ˆ̃vj )+/
-

= F ∗
(
PE ( ˆ̃vj )

)
(9.14)

where
E :=

{
(I −γAt [j, j]−1Λ)

1
2 v̂ s.t v̂ ∈ Cp , ‖v̂‖22 ≤ p

}
, (9.15)

a hyper-ellipsoid in standard position (i.e 0-centered and axes-aligned). Us-
ing elementary geometric arguments, one can show that the projection
PE ( ˆ̃vj ) can be computed e�ciently using a kind of root-�nding algorithm
[Dai, 2006], and converges exponentially fast.

Non-negative Lasso. In case the constraint setC for the dictionary atoms
is a simplex Sp (τ ), the simplex (see section 9.2), then the BCD update for
the jth atom becomes

vj ← argmin
v∈Rp , v≥0, 1T v≤1

1
2 (v̂ −

ˆ̃vj )∗ (I −γAt [j, j]−1Λ) (v̂ − ˆ̃vj )

= F ∗ *
,

argmin
v̂∈Cp , −F ∗v̂≤0, 1̂T v̂≤1

1
2 (v̂ −

ˆ̃vj )∗ (I −γAt [j, j]−1Λ) (v̂ − ˆ̃vj )+
-
,

(9.16)

which is a diagonal quadratic program with linear constraints, and can be
e�ectively solved via the well-known simplex method, for example.

9.5 Related works

While there exist algorithms for online sparse dictionary-learning that are
very e�cient in large-scale settings (for example [Mairal et al., 2010], or
more recently [Mensch et al., 2016]) imposing spatial structure introduces
couplings in the corresponding optimization problem [Dohmatob et al.,
2014]. So far, spatially-structured decompositions have been solved by very
slow alternated optimization [Varoquaux et al., 2011, Abraham et al., 2013].
Notably, structured priors such as TV-`1 [Baldassarre et al., 2012] mini-
mization, were used by [Abraham et al., 2013] to extract data-driven state-
of-the-art atlases of brain function. However, alternated minimization is
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very slow, and large-scale medical imaging has shifted to online solvers for
dictionary-learning like [Mairal et al., 2010] and [Mensch et al., 2016].
These do not readily integrate structured penalties. As a result, the use of
structured decompositions has been limited so far, mostly due to the compu-
tational cost of the ensuing algorithms. Our approach instead uses a Lapla-
cian penalty to impose spatial structure at a very minor cost and adapts the
online-learning dictionary-learning framework [Mairal et al., 2010], result-
ing in a fast and scalable structured decomposition. Second, the approach
in [Abraham et al., 2013] though very novel, is heuristic, as it does not
come with theoretical guarantees. In contrast, our method enjoys the same
convergence guarantees and comparable numerical complexity as the basic
unstructured online dictionary-learning [Mairal et al., 2010].

Finally, one should also mention [Varoquaux et al., 2013] that introduced
an online group-level functional brain mapping strategy for di�erentiating
regions re�ecting the variety of brain network con�gurations observed a
the population, by learning a sparse representation of these in the spirit of
[Mairal et al., 2010].

9.6 Experiments

Setup. Our experiments were done on task fMRI data from 500 subjects
from the HCP –Human Connectome Project– dataset [van Essen et al.,
2012]. These task fMRI data were acquired in an attempt to assess major
domains that are thought to sample the diversity of neural systems of inter-
est in functional connectomics. We studied the activation maps related to a
task that involves language (story understanding) and mathematics (men-
tal computation). This particular task is expected to outline number, at-
tentional and language networks, but the variability modes observed in the
population cover even wider systems. For the experiments, mass-univariate
General Linear Models (GLMs) [Friston et al., 1995] for n = 500 subjects
were estimated for the Math vs Story contrast (language protocol), and the
corresponding full-brainZ -score maps each containingp = 2.6× 105 voxels,
were used as the input data X ∈ Rn×p , and we sought a decomposition into
a dictionary of k = 40 atoms (components). The input data X were shu�ed
and then split into two groups of the same size.

Models compared and metrics. We compared our proposed Smooth-
SODL model (9.2) against both the Canonical ICA –CanICA [Varoquaux
et al., 2010], a single-batch multi-subject PCA/ICA-based method, and the
standard SODL (sparse online dictionary-learning) [Mairal et al., 2010].
While the CanICA model accounts for subject-to-subject di�erences, one
of its major limitations is that it does not model spatial variability across
subjects. Thus we estimated the CanICA components on smoothed data:
isotropic FWHM of 6mm, a necessary preprocessing step for such meth-
ods. In contrast, we did no pre-smoothing for the SODL of Smooth-SODL
models. The di�erent models were compared across a variety of qualita-
tive and quantitative metrics: visual quality of the dictionaries obtained,
explained variance, stability of the dictionary atoms, their reproducibility,
performance of the dictionaries in predicting behavioral scores (IQ, picture
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vocabulary, reading pro�ciency, etc.) shipped with the HCP data [van Es-
sen et al., 2012]. For both SODL [Mairal et al., 2010] and our proposed
Smooth-SODL model, the constraint set for the dictionary atoms was taken
to be a simplex C := Sp (τ ) (see section 9.2 for de�nition). The results of
these experiments are presented in Fig. 9.3 and 9.5.

9.7 Results

�alitative assessment of dictionaries. As can be seen in Fig. 9.3, all
methods recover dictionary atoms that represent known functional brain
organization; notably the dictionaries all contain the well-known executive
control and attention networks, at least in part. Vanilla dictionary-learning
leverages the denoising properties of the `1 sparsity constraint, but the voxel
clusters are not very structured. For, example most blobs are surrounded
with a thick ring of very small nonzero values. In contrast, our proposed
regularization model leverages both sparse and structured dictionary atoms,
that are more spatially structured and less noisy.

In contrast to both SODL and Smooth-SODL, CanICA [Varoquaux et al.,
2010] is an ICA-based method which enforces no notion of sparsity what-
soever. The result are therefore dense and noisy dictionary atoms that ex-
plain the data very well (Fig. 9.4 but which are completely unintepretable.
In a futile attempt to remedy the situation, in practice such PCA/ICA-based
methods (including FSL’s MELODIC tool [Smith et al., 2004]) are hard-
thresholded in order to see information. For CanICA, the hard-thresholded
version has been named tCanICA in Fig. 9.3. That notwithstanding, no-
tice how the major structures (parietal lobes, sulci, etc.) in each atom are
reproducible across the di�erent models.

Stability-fidelity trade-o�s. PCA/ICA-based methods like CanICA [Varo-
quaux et al., 2010] and MELODIC [Smith et al., 2004] are the optimal linear
decomposition method to maximize explained variance on a dataset. On
the training set, CanICA [Varoquaux et al., 2010] out-performs all others
algorithms with about 66% (resp. 50% for SODL [Mairal et al., 2010] and
58% for Smooth-SODL) of explained variance on the training set, and 60%
(resp. 49% for SODL and 55% for Smooth-SODL) on left-out (test) data. See
Fig. 9.4. However, as noted in the above paragraph, such methods lead to
dictionaries that are hardly intepretable and thus the user must recourse to
some kind of post-processing hard-thresholding step, which destroys the
estimated model. More so, assessing the stability of the dictionaries, mea-
sured by mean correlation between corresponding atoms, across di�erent
splits of the data, CanICA [Varoquaux et al., 2010] scores a meager 0.1,
whilst the hard-thresholded version tCanICA obtains 0.2, compared to 0.4
for Smooth-SODL and 0.1 for SODL. As is to be expected, notice how the
RAW model over-�ts. The voxel space of worthp = 261596 voxels is reduced
to k = 40 components, and then each subjectZ -map xt of worth p = 261596
voxels is reduced to k = 40 coe�cients via a simple ridge regression (9.3).

Prediction of behavioral variables. If Smooth-SODL captures the pat-
terns of inter-subject variability, then it should be possible to predict cogni-
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Figure 9.3: Qualitative comparison of the estimated dictionaries. Each column represents an atom of the esti-
mated dictionary, where atoms from the di�erent models (the rows of the plots) have been matched via a Hungarian
algorithm. Here, we only show a limited number of the most “intepretable” atoms. Notice how the major structures
in each atom are reproducible across the di�erent models. Maps corresponding to hard-thresholded CanICA [Varo-
quaux et al., 2010] components have also been included, and have been called tCanICA. In contrast, the maps from
the SODL [Mairal et al., 2010] and our proposed Smooth-SODL (9.2) have not been thresholded.
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tive scores y like picture vocabulary, reading pro�ciency, math aptitude, etc.
(the behavioral variables are explained in the HCP wiki [hcp]) by project-
ing new subjects’ data into this learned low-dimensional space (via solving
the ridge problem (9.3) for each sample xt ), without loss of performance
compared with using the raw Z -values values X.




subj 1
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...
...




individual maps (X)

Smooth-SODL




...




loadings (C)

prediction

IQ, age, etc.

Let RAW refer to the direct prediction of targets y from X, using the
top 2000 most voxels most correlated with the target variable. Results of
the comparison are shown in Fig. 9.4. Only variables predicted with a pos-
itive mean (across the di�erent methods and across subjects) R-score are
reported. We see that the RAW model, as expected over-�ts drastically,
scoring an R2 of 0.3 on training data and only 0.14 on test data. Overall, for
this metric CanICA performs best than all the other models in predicting the
di�erent behavioral variables on test data. However, our proposed Smooth-
SODL model outperforms both SODL [Mairal et al., 2010] and tCanICA, the
thresholded version of CanICA.

Running time. On the computational side, the vanilla dictionary-learning
SODL algorithm [Mairal et al., 2010] with a batch size of η = 20 took about
110s (≈ 1.7 minutes) to run, whilst with the same batch size, our proposed
Smooth-SODL model (9.2) implemented in Alg. 3 took 340s (≈ 5.6 min-
utes), which is slightly less than 3 times slower than SODL. Finally, CanICA
[Varoquaux et al., 2010] for this experiment took 530s (≈ 8.8minutes) to run,
which is about 5 times slower than the SODL model and 1.6 times slower
than our proposed Smooth-SODL (9.2) model. All experiments were run on
a single CPU of a modern laptop.

Is spatial regularization really needed ? Ideally, one does not need
spatial regularization if data are abundant (like in the HCP). So we computed
learning curves of mean explained variance (EV) on test data, as a function
of the amount training data seen by both Smooth-SODL and SODL [Mairal
et al., 2010] (Fig. 9.5). In the beginning of the curve, our proposed spatially
regularized Smooth-SODL model starts o� with more than 31% explained
variance (computed on 241 subjects), after having pooled only 17 subjects.
In contrast, the vanilla SODL model [Mairal et al., 2010] scores a meager
2% explained variance; this corresponds to a 14-fold gain of Smooth-SODL
over SODL. As more and more that are pooled, both models explain more
variance, and the gap between Smooth-SODL and SODL reduces, and both
models perform comparably asymptotically.
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# subjects pooled vanilla SODL proposed model gain factor
17 2% 31% x13.8
92 37% 50% x1.35
167 47% 54% x1.15
241 49% 55% x1.11

Figure 9.5: Learning-curve for
boost in explained variance of our
proposed Smooth-SODL model
(9.2) over the reference sparse
online dictionary-learning (SODL)
model [Mairal et al., 2010]. Note
the reduction in the gain in EV as
more data are pooled.

9.8 Concluding remarks

To extract structured functionally discriminating patterns from massive brain
data (i.e data-driven atlases), we have extended the online dictionary-learning
framework �rst developed in [Mairal et al., 2010], to learn structured re-
gions representative of brain organization. To this end, we have success-
fully augmented [Mairal et al., 2010] with a Laplacian prior on the com-
ponent maps, while conserving the low numerical complexity of the latter.
Through experiments, we have shown that the resulting model –Smooth-
SODL model (9.2)– extracts structured and denoised dictionaries that are
more intepretable and better capture inter-subject variability in small medium,
and large-scale regimes alike, compared to state-of-the-art models. We be-
lieve such online multivariate online methods shall become the de facto way
do dimensionality reduction and ROI extraction in future.

Implementation. The authors’ implementation of the proposed SSODL
(9.2) model will soon be made available as part of theNilearn package [Abra-
ham et al., 2014].

9.8.1 Possible extensions

More general structure-imposing penalties. One can envisage to re-
place the Laplacian regularization with a general structure-inducing penalty
for which the proximal operator is easy to compute. Such a framework is
developed in chapter 10, and produces an entire family of models, with po-
tentially di�erent properties.

x

loss

xrecon

c

Gθθ

gradc

gradθ

Figure 9.6: General neural net
schema for structured online dic-
tionary learning. The model is
trained via stochastic gradient de-
scent –SGD. For an incoming im-
age x ∈ Rp (or mini-batch of im-
ages), a code z ∈ Rk is sam-
pled and fed into th generator Gθ

to produce a reconstructed image
xrecon ∈ Rp , which is compared
with the original via a loss func-
tion. The model (9.2) corresponds
to a linear generator Gθ = GD =

〈D, .〉, and can be solved via Alg. 4.

Replacing the dictionary with a general neural net. One notes that
the proposed model (9.2) can be seen as an auto-encoding model of brain
data with linear generator

GD = 〈D, .〉 : Rk → Rp , c 7→ x := Dc, (9.17)

parametrized by the shared learned dictionary D, and an implicit encoder

ED : Rp → Rk , x 7→ argmin
c∈Rk

−loglik(x|c,D) = argmin
c∈Rk

`(GD (c), x)+αϕ (c),

(9.18)
which is by construction, the optimal encoder 5 for the the generator GD.

5 Under the prior for the codes
p (c) ∝ exp(−αϕ (c)).

One could obtain much greater modeling �exibility by replacing the gener-
ator (9.17) by a neural network (see Fig. 9.6)

Gθ : Rk → Rp , c 7→ x := Gθ (c),

with parametersθ ∈ Θ. The model could be successfully trained via stochas-
tic gradient descent (SGD) or its various enhanced variants. Such models,
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which can be referred to as "encoder-less auto-encoders", have recently been
proposed in the compressed sensing [Bora et al., 2017] and computer vision
literatures [Bojanowski et al., 2017].
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In this chapter, we consider possible generalization of model (9.2) pro-
posed in chapter 9, by allowing for more general block-separable penalties
on the dictionary.

10.1 The power of the prox

Recall from equation (9.2) of chapter 9 that after n passes over the data,
the unpenalized objective (i.e loss) function whose minimization gives the
dictionary updates is E (D) := 1

2n ‖X −DC‖
2
F , where C ∈ Rn×k is the �xed

matrix of codes computed up to this point, and D ∈ Rp×k is the dictionary
variable. Adding a block-separable penalty term γ

∑k
j=1 дj (d

j ), the energy
becomes

E (D) =
1
2n ‖X −DC‖

2
F +γ

∑
j

дj (dj ). (10.1)

In particular, taking дj (dj ) := 1
2 ‖∇d

j ‖2F + iBp ,1 (d
j ) corresponds to the model

proposed in chapter 9. Now, one easily computes

∇D

( 1
2n ‖X −DC‖

2
F

)
=

1
n
(DC −X)CT = DA − B,

where A := 1
nCC

T = 1
n
∑n

i=1 cic
T
i ∈ Rk×k and B := 1

nXC
T = 1

n
∑n

i=1 xic
T
i ∈

Rp×k . Now in BCD, the jth atom is updated whilst all the others are held
constant. Selecting the jth column of (10.1), we get ∇dj

(
1
2n ‖X −DC‖

2
F

)
=
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Daj − bj . Putting things together, we get

p = argmin
dj ∈Rp , dl �xed ∀l,j

E (D) ⇐⇒ 0 ∈ ∂djE (D) = Daj − bj ���dj=p +γ ∂дj (p)

⇐⇒ aj ,jp −
*.
,
bj −

∑
l,j

aj ,ldl
+/
-
∈ γ ∂(дj ) (p)

Lemma2
⇐⇒ p = proxγa−1j ,jдj (z

−j )

where
z−j := a−1j ,j

(
bj −

∑
l,j

aj ,ldl
)
,

and the last equivalence results from the following elementary lemma which
reveals that the prox of a function at a point can be seen as an implicit gra-
dient step. Viz

Lemma 2. For a function f : H → (−∞,+∞] (convex or not), recall the
de�nition of its subdi�ferential at a point p ∈ H , namely ∂ f (p) := {v ∈
H | f (z) ≥ f (p) + vT (z− p) ∀z ∈ H }. We have the following characterization
of the prox

p ∈ proxf (d) ⇐⇒ d − p ∈ ∂ f (p). (10.2)

Proof.

p ∈ proxf (d) ⇐⇒
1
2 ‖p − d‖

2
2 + f (p) ≤

1
2 ‖z − d‖

2
2 + f (z) ∀z

⇐⇒ f (p) +
1
2 ‖p‖

2
2 − d

T p ≤ f (z) +
1
2 ‖z‖

2
2 − d

T z ∀z

⇐⇒ f (p) +
1
2 ‖p‖

2
2 + d

T (z − p) ≤ f (z) +
1
2 ‖z‖

2
2 ∀z

⇐⇒ d ∈ ∂( f +
1
2 ‖.‖

2
2 ) (p) = p + ∂ f (p)

⇐⇒ d − p ∈ ∂ f (p).

�

Putting everything together, we have the close-form BCD update for-
mula for regularized online dictionary learning1

1 We assumed W.L.O.G that aj ,j , 0
(i.e aj ,j > 0), meaning that the jth
atom is active in the representation
of at least one sample. Otherwise,
we can update the jth atom with a
random vector, or even skip it alto-
gether.

BCD updates DL with general separable penalties. The BCD updates
for a penalized DL model (10.1) is

dj ← proxγa−1j ,jдj (z
−j ), (10.3)

where z−j := a−1j ,j r
j and rj :=

(
bj −

∑
l,j aj ,ldl

)
.

For the purposes of practical implementation, one notes that rj is pre-
cisely the jth column of the p-by-k matrix

R := DA − B + dj ◦ aj . (10.4)

Thus at the beging of the BCD updates, we precompute the di�erence DA−
B, and substract (resp. add) the rank-1 term dj ◦ aj before and after updating
the j atom d according to (10.3). Such rank-1 updates are natively optimized
in all linear algebra scienti�c computation packages.
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10.2 Applications

Now that we have the hammer, where are the nails...

10.2.1 Special cases

Constraint sets

If we take дj := iCj , the indicator function of a closed convex subset of Rp ,
so that each atom dj is constrained to satisfy a set of constraints prescribed
by Cj , then the above updates reduce to projecting z−j onto Cj , namely

dj ← projCj
(z−j ). (10.5)

This is interesting as long as the Cj ’s are su�ciently “simple” to allow us
compute the above projection easily (preferably in closed form).

Classical choice. TakingCj to be B2, the unit ball for the euclidean norm
on Rp , we recover the updates proposed in [Mairal et al., 2009, 2010], namely

dj ←
z−j

max(1, ‖z−j ‖2)
. (10.6)

One notes that these constraint has no structural properties beyond pre-
venting the dictionary atoms from becoming arbitrarily large.

Gram-Schmidt / step-wise orthonormality constraints. Akin to ICA-
type methods, one can take Cj = the orthogonal complement of the linear
span of the �rst j − 1st atoms, namely

Cj = span{dl |l < j}⊥ ∩B2. (10.7)

The dictionary updates are then simply the Gram-Schmidt orthonormaliza-
tion of the ordered sequence of vectors z−1, . . . , z−j , namely2

2 The version of the Gram-Schmidt
process presented here is not
to be implemented as stated,
as is it known to su�er from
numerical instability errors in
�nite-precision arithmetic. There
exists equivalent versions (e.g
Golub & Van Loan 1996] which
alleviate these instabilities.

d̃j ← z−j −
∑
l<j

projdl (z−j ), dj ←
d̃j

‖d̃j ‖2
, (10.8)

where

projdl (z−j ) :=



0, if dl = 0,
〈z−j ,dl 〉
〈dl ,dl 〉 d

l , otherwise

is the orthogonal projection of z−j onto the line generated by the atom dl .

10.2.2 “Social” sparsity: simultaneous sparsity and smooth-
ness via windowed group-Lasso

The �rst non-trivial results of our ramblings this far is obtained by consider-
ing the social sparsity [Kowalski et al., 2013, Kowalski and Torrésani, 2009]
prior. In this model, a weakly activated voxel v in the middle of strongly
activated voxels will be saved (as if rescued by the clan), whilst a strongly
activated voxel in the middle of weakly activated voxels will be eliminated
(as if killed by isolation). “Strongness” and “weakness” are measured with
respect to a speci�ed threshold α > 0, which plays a rule similar to the
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regularization parameter in Group-Lasso. The penalty imposes both spar-
sity and structure simultaneously! Formally, social sparsity corresponds to
a penalty дsocial : Rp → R de�ned implicitly via its proximal operator

(proxαдsocial
(z))v := zv




1 − α
‖γv •z‖2

, if ‖γv • z‖2 > α ,

0, otherwise

= zv
*..
,
1 − α(∑

s ∈N (v ) (γ
s
v )2z

2
s

)1/2
+//
-+

,

(10.9)

where γv • z := (γ 1vz1,γ 2vz2, . . . ,γ
p
vzp ) ∈ Rp for weights (γ sv )v ,s ∈[[p ]] satisfy-

ing ∑
v |γ

s
v |

2 = 1 for all s , andN (v ) := {s ∈ [[p]]|γ sv , 0} is the neighborhood
of the vth voxel, assumed to be non-empty. Thus each γv can be thought
of as (normalized) mean-�lter supported on a patchN (v ) around the voxel
v . Examples include rectangular �lters, truncated Gaussians, etc.

Figure 10.1: Social sparsity illus-
trated in 2D. The neighborhood of
the coe�cient k1 is given by the
red window, and the neighborhood
of the coe�cient k2 by the blue
one. These two neighborhoods
share one coe�cient. When con-
sidering the red group, coe�cients
are weighted by some weights
γk1
k ′ , 0, k ′ ∈ N (k1). Outside the

red group, the weights are equal to
zero. When considering the blue
group, coe�cients are weighted by
some weights γk2

k ′ , 0, k ′ ∈

N (k2). Adapted from [Kowalski
et al., 2013].

One notes the following facts

• ‖Ez‖22 ≡ ‖z‖22 , where Ez := (γv • z)v ∈[[p ]] ∈ Rp2 is the expansion operator
associated with the weights ws

v . In other words, E is a linear isometry.

• social sparsity is related to Group-Lasso (GL) by the formula

proxαдsocial
= F ◦ proxαGL ◦ E, (10.10)

where F is the right pseudo-inverse of E.

10.3 Conclusion

These ideas have a great potential to extend the classical dictionary-learning
technology providing the practitioner with a modeling framework incor-
porating a much larger class of constraints –namely proximable penalty
functions– than is currently being done. As regards convergence of our
proposed proximal online dictionary-learning scheme, direct application of
[Fercoq and Richtárik, 2015] seems to su�ce, since the general DL algorithm
constructs unbiased estimates of∇j f (Dt ), where f (D) := Ex minc∈Rk `(Dc, x).
However, a more careful treatment is warranted, and is left for future work.
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11.1 Introduction

Across-subject variability in organization is a hallmark of the human brain,
that re�ects genetic variability and is in turn re�ected in behavioral di�er-
ences. It has resisted so far modeling attempts, leading to blurred population-
level anatomical templates and high-variance in functional representations
across individuals. The only solution to defeat this variability is actually to
condition individual representations on other data, for instance, mapping
functional organization subject to anatomical constraints, or relevant fea-
tures of brain organization, such as structural or functional connectivity
[Saygin et al., 2011].
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In neuroimaging and cognitive neuroscience, it is widely believed that
the functional connectivity (FC) structure at rest remains grossly unchanged
during task-stimulus presentation. This makes sense by least-action prin-
ciple considerations: the brain does not need to rewire the functional links
between regions upon presentation of a stimulus: it conserves the same net-
works as during rest, except that some edges are strengthened while others
are weakened, to support the cognitive load of the particular task. Pushing
this even further, one can claim that the resting-state FC of the brain pre-
dictively modulates the functional responses of the brain in the presence of
task. Indeed, recently, resting-state fMRI has been shown to provide rele-
vant constraints for functional mapping, opening the possibility to capture
in standardized and cheaper acquisition most of the inter-individual dif-
ferences [Tavor et al., 2016, Cole et al., 2016, Bzdok et al., 2016]. Possible
applications include the improvement of population-level analyses, e.g. by
�nding better imputation schemes when dealing with missing data, detect-
ing outlier data, and clarifying between-subjects similarities in compari-
son with genotyping or behavioral data. An important practical question
has become how to optimize information transfer across these modalities
to boost the chance of capturing the essence of inter-individual di�erences.

Our main contributions. In this work, we propose a general framework
for the problem of predicting task fMRI activation maps from resting-state-
only features. We present 2 main contributions: (a) the stacking of data
across di�erent random subsets subjects to reduce model-complexity and
improve the prediction on held-out subjects, and (b) a multi-target regres-
sion approach to the predictive problem which better captures the func-
tional inter-dependencies between di�erent cognitive tasks. This gener-
alizes and improves on the ideas in [Tavor et al., 2016]. We demonstrate
the empirical gains brought by this approach through experiments on real
datasets.

11.2 Feature extraction

The goal is to extract from resting-state data, pertinent features that en-
code the functional connectivity information in each voxel. A naïve choice
would be to use the adjacency vector of each voxel in the whole-brain func-
tional connectivity matrix. This is not practical due to the large number
of (noisy) voxels, as it leads to enormous feature matrices. However, due
to the inherent local correlations of data from di�erent voxels, all this in-
formation is captured in the a�nity of each voxel to a set of brain regions
or networks. One way to get such pro�les is to automatically learn a low-
dimensional reduction of the resting-state data Xs ∈ Rns×p of each subject
s into a common latent space, of dimension k � min(mins (ns ),p), as pro-
posed in [Tavor et al., 2016]. Here,ns is the number of TRs (Repetition Time)
and p is the number of voxels.

L R

y=-28

L R

y=-28

Figure 11.1: FC feature-extraction.
Left: A component of the group
dictionary. Right: Correspond-
ing component for an individual
subject’s dictionary estimated us-
ing the proposed formula (11.2.2).

11.2.1 Dual regression

As before, let the ns -by-p matrix Xs be the resting-state data for subject s
and D be the k-by-p group-level dictionary (aka topographic basis) obtained
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by stacking together resting-state time-series data from all the subjects and
decomposing intok components ofp voxels each by running a multi-subject
decomposition algorithm like PCA, ICA, or dictionary-learning, etc. (more
details on obtaining D later). We assume D to be under-complete – i.e k �
min(mins (ns ),p)– and therefore full-rank (i.e D̂D̂T is invertible).

The standard “dual-regression” procedure[Tavor et al., 2016] then pro-
ceeds as follows:

• Compute thens -by-k matrix of subject-to-components temporal dynam-
ics Cs by regressing the group-level dictionary D̂ onto subject data Xs :

Ĉs ∈ argminCs ∈Rns ×k ‖Xs −Cs D̂‖2Fro (11.1)

• Compute individual dictionary D̂s = (d̂vs ,j )1≤j≤k ,1≤v≤p ∈ Rk×p by re-
gressing the subject’s resting-state data Xs ∈ Rns×p onto her subject-to-
components temporal dynamics Ĉs ∈ Rns×k :

D̂s ∈ argminD∈Rk×p ‖Xs − ĈsD‖2Fro (11.2)

The end result is that for each subject s and each voxel v , we obtain a k-
dimensional encoding d̂s ,v ∈ Rk of the voxel’s time-series xx ,v ∈ Rns in a
common group-level space. These are the features (see Fig. 11.1).

11.2.2 Using only a single regression step

For the standard “dual-regression” feature-extraction method[Tavor et al.,
2016], a total of 2 regression steps are done (hence the name of the pro-
cedure). As a �rst (conceptual) improvement, we note that the individual
dictionary D̂s = Ĉ†sXs can be rewritten as

D̂s = (ĈT
s Ĉs )

−1ĈT
s Xs

= ((D̂D̂T )−1D̂XT
s Xs D̂T (D̂D̂T )−1)−1 (D̂D̂T )−1D̂XT

s Xs

= D̂D̂T (D̂XT
s Xs D̂T )−1D̂XT

s Xs

= D̂D̂T D̂XT
s (Xs D̂T D̂XT

s )
†Xs︸                     ︷︷                     ︸

OLS(Xs D̂T ,Xs )

.

That is, we regress the subject’s resting-state time-series data Xs onto ns -
by-k matrix Ĉs := Xs D̂T and then reweight the result by the component-
to-component covariance matrix D̂D̂T of the group-level dictionary. All in
all, only a 1 regression step is needed.

11.2.3 Obtaining the global dictionary D̂

Since the resting-state time-series data are large (for example 1200 3D vol-
umes of 2 × 105 voxels in each subject in the HCP –Human Connectome
Project– dataset [van Essen et al., 2012]), a decomposition method that
scales well is required. We use a variant of online dictionary-learning method
[Mairal et al., 2010], a very fast implementation of which has been proposed
in [Mensch et al., 2016], based on random matrix sketching / sub-sampling.
Incremental PCA/ICA-based methods[Smith et al., 2014, Varoquaux et al.,
2010] are also a competitive choice.
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11.2.4 Relationship between dual-regression and hyper-alignment

It turns out that the shared-response “hyper-alignment” (HA) framework
[Haxby et al., 2011] and the “dual regression” (DR) scheme [Tavor et al.,
2016] we just presented are very closely related. Indeed, [Haxby et al., 2011]
considers the following problem

minimize 1
N

N∑
s=1
‖Xs −CsD‖2Fro

over D ∈ Rk×p , Cs ∈ Rns×k ,
subject to CT

s Cs = Ik , ∀s ∈ [1 . . .N ].

(11.3)

Without the orthonormality constraints “CT
s Cs = Ik ”, this problem is pre-

cisely the DR problem. (11.3) is usually solved via an alternating minimiza-
tion scheme. Viz,

• Update rotations (orthonormal Procrustes analysis):

C(t+1)
s = U(t )

s V(t )
s

T
∀s ∈ [1 . . .N ],

where U(k )
s ΣsV

(t )
s

T
is the SVD of the ns -by-k matrix XsD(t )T .

• Update shared-dictionary:

D(t+1)
s =

1
N

N∑
s=1

D(t+1)
s ,

where D(t+1)
s := C(t+1)

s
T
Xs .

However,

• DR is much more attractive due to its low cost: HA performs an SVD per
subject per iteration.

• HA is usually done parcel-wise (i.e locally) because, the orthonormality
conditions are unreasonable globally (i.e full-brain).

11.3 Bags of low-rank multi-target linear models

L R

y=-14 x=1

L R

z=24

Figure 11.2: A parcellation is
simply a collection of contiguous /
simply-connected masks P called
parcels (the colored patches)
which cover the brain. Each
voxel of the brain belongs / is
assigned to exactly one parcel. In
the parcellation shown here, each
parcel contains approximately
1000 voxels.

We now develop our model for predicting subject-speci�c activation maps
Ys from resting-state features Ds (refer to section 11.2). Our model con-
siders bootstraps of sub-samples of subjects instead of on a subject-by-
subject basis enforces a reduction in the complexity of the model without
loss in capacity. The idea is that the regression coe�cients from predicting
task activations from resting state should be partly shared across subjects.
This re�ects the hypothesis that the global cognitive organization of the
brain should share some similarities across di�erent subjects. Also, stack-
ing across subjects as such corrects for covariate-shift 1 between di�erent 1 Grossly speaking, covariate-shift

is a situation in which the distribu-
tion of the test set is not the same
as the distribution of the training
set, and so the model learned on
the training set may not generalize
to unseen (i.e test) data.

subjects, and facilitates transfer-learning from one-subject to another at test
time.

Thus, for a bootstrap sub-sample S of b (1 ≤ b ≤ N ) subjects, let
ZS = [Z1 | . . . |Zb ] ∈ Rk×p′b be functional features masked over a parcel P
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of p ′ ≤ p voxels (see Fig. 11.2) and horizontally stacked matrix of functional
features. Similarly, let YS ∈ Rp′b×c be corresponding activation maps to the
c task contrasts, masked over the same parcel, and stacked vertically. The
goal is to link these functional features with activations maps correspond-
ing to c task-activation contrasts e.g. "Story-vs-Math", "Faces-vs-Houses",
“2Back-vs-0Back”, etc.

11.3.1 Low-rank Ridge regression

Intra-subject activation maps for so-called di�erent experimental stimuli
may be correlated to one another. Indeed one would expect all brain ac-
tivations to any conceivable experiment to be driven by a restricted set of
latent causes, which is much less than the number of possible experiments.
Thus, in an experiment with a su�ciently large bail of experimental con-
ditions, one would expect that corresponding action maps would be cor-
related across di�erent experimental conditions. Fitting a separate model
per experimental condition would therefore be statistically ine�cient due
to model over-speci�cation. We need a principled way to incorporate the
covariance structure of the intra-subject activation maps into our predic-
tive model. Low-rank linear models do just this. It produces a much smaller
model (i.e few number of free parameters) which best explains the covari-
ance structure between activation maps Y for the di�erent conditions. This
can be written as

Find βS ∈ Rk×c , with rank(βS ) ≤ r ,
s.t Yj

S
≈ ZT

S
β j
S
∀j ∈ [1 . . . c],

(11.4)

for a chosen rank bound r , with 1 ≤ r ≤ min(c ,k ). Here, Yj
S
∈ R |S |p×1

denotes the activation maps for contrast j, for the subjects in the bootstrap
sub-populationS. The model (11.4) can be captured by the following convex
program

minimize 1
2 ‖YS − Z

T
S
βS ‖

2
Fro w.r.t βS ∈ Rk×c

subject to rank(βS ) ≤ r .
(11.5)

This de�nes a low-complexity linear model

f̂S : Zs 7→ ZTs β̂S (11.6)

for predictively linking resting-state data to individual activation maps over
the parcelP. The full-rank case r = min(c ,k ) together with the choiceb = 1
(no bagging) corresponds to the subject-wise contrast-wise single-output
linear regression model proposed in [Tavor et al., 2016].

Now, let ŶOLS
S
= UΣVT be the SVD (singular-value decomposition) of the

least-squares prediction ŶOLS
S

:= ZS β̂
OLS
S where β̂

OLS
S := (ZT

S
ZS )†ZTSYS is

the ordinary least-squares (OLS) solution to the unconstrained version of
(11.5). Of course (11.5) may fail to have a unique solution. The following
elementary lemma, whose proof (Supp. Mat.) follows directly from the
Eckart-Young-Mirsky theorem [Carl and Gale, 2000] and the orthogonality
property of the OLS �t, produces a solution for model (11.5). Viz,
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Lemma 3. A solution to (11.5) is given by β̂S = β̂
OLS
S ΠS (r ) where ΠS (r ) =∑r

i=1 viv
T
i is the orthogonal projector onto the subspace spanned by the �rst r

principal singular vectors vi≤r of the OLS prediction ŶOLS
S

.

It should be noted that the form of the solutions provided by the above
lemma is particularly appealing: We only need to do a single �t to obtain a
solution to problem (11.5) from solutions to the unconstrained OLS version
of [Tavor et al., 2016].

Proof. Indeed, by the orthogonality property of least-squares estimates, we
have the decomposition

‖YS − ZSβS ‖
2
Fro = ‖YS − Ŷ

OLS
S
‖2Fro + ‖Ŷ

OLS
S
− ZSβS ‖

2
Fro,

with the �rst summand being independent of the model parameters βS .
Thus (11.5) can be rewritten as

minimize 1
2 ‖Ŷ

OLS
S
− ZSβS ‖

2
Fro w.r.t βS ∈ Rk×c

subject to rank(βS ) ≤ r .
(11.7)

It is clear that β̂S (r ) := β̂
OLS
S ΠS (r ) is of rank at most r . One computes

ZS β̂ (r ) = ZS β̂
OLS
S ΠS (r ) = ZS β̂

OLS
S

r∑
i=1

vivTi

= ŶOLS
S

r∑
i=1

vivTi ,

which, by the Eckart-Young-Mirsky theorem [Carl and Gale, 2000] for the
Frobenius norm, is the best rank r approximation of ŶOLS

S
w.r.t the Frobenius

norm. �

11.4 Algorithms

11.4.1 Learning

Low-rank multi-output regression. For the estimation of the predic-
tive model linking resting-state features to activation maps, the template
model (11.5) is solved for each parcel and each bootstrap sub-sample of sub-
jects, to obtain the coe�cients for predicting individual subject activations
for the di�erent task contrasts, jointly. The estimation is massively paral-
lel: it is done per bootstrap and per parcel.

11.4.2 Hyper-parameter tuning

The rank bound r can be selected via K-fold cross-validation: we would
retain the smallest value or r = r̂S in the range [1,min(k , c ))] which pro-
duces a cross-validation score within 1 standard deviation of the best score
(the so-called 1 standard error rule), or alternatively via leave-one-out (LOO)
cross validation. However, cross-validation is very costly as multiple mod-
els must be �tted on di�erent splits of the training data. Moreover it might
not even be possible in the case limited training data.
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Algorithm 5: Training model for predicting activation maps from resting-
state
Require: • Data from Ntrain subjects. For each subject s we have precom-

puted spatial features Zs ∈ Rk×p .

• A set of brain parcellations (de�ned by sets of brain masks).
Ensure: Distributed sets of �tted models {{ f̂S | f̂S ∈ FP }|P ∈ parcels}, i.e

one model f̂S per bootstrap sub-sample S per parcel P.
1: parallel for each parcel P do
2: parallel for each bootstrap sub-sample of subjects S do
3: Fit a model f̂S from (11.5), for predicting YS from ZS restricted

on the parcel P
4: end pararell for
5: end pararell for

Generalized cross-validation. A very attractive alternative to cross-
validation is the so-called generalized cross-validation (GCV) [Golub et al.,
1979], whereby one attempts to directly minimize (an unbiased estimate of)
the generalization error, which in our case reduces to

GCV (r ) :=
‖Y − Ŷ(r )‖2Fro

(nc − ˆd f (r ))2
(11.8)

as a function of the rank parameter r . Hee, ˆd f (r ) is an unbiased estimate
of the number of degrees of freedom, that is, the number of free parameters
needed to completely specify the linear prediction model given by the co-
e�cients β̂ (r ). One can show that GCV is the consistent asymptotic limit
of leave-one out (LOO) cross-validation. However the advantage of GCV is
that only one model needs to be �tted per value of the hyper-parameter
(cf. LOO cross-validation, where as many models as sample points need to
�tted per value of the hyper-parameter).

In our case of reduced rank linear regression, the approximation error
term ‖Y − Ŷ(r )‖2Fro in (11.8) reduces to

‖Y − Ŷ(r )‖2Fro = ‖Y − Ŷ
OLS‖2Fro + ‖Ŷ

OLS − Ŷ(r )‖2Fro

= ‖Y − ŶOLS‖2Fro +
r0∑

l=r+1
σ 2
l ,

(11.9)

where σ1 ≥ σ2 ≥ . . . ≥ σr0 are nonzero singular values of ŶOLS and r0 =

rank(ŶOLS). In [Mukherjee et al., 2015], �nite-sample unbiased estimates
for the degrees of freedom of rank-penalized models where derived. The
authors established the formula

ˆd f (r ) = ˆd f naïve (r ) + 2
r∑

k=1

r0∑
l=r+1

σ 2
l

σ 2
k − σ

2
l︸                  ︷︷                  ︸

bias correction

≥ ˆd f naïve (r ), (11.10)

for any r ∈ [1, r0] with σr > σr+1 if r < r0. The naïve estimate ˆd f naïve (r ) :=
kc − (k − r ) (c − r ) is simply the number of free parameters needed to com-
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pletely specify a matrix of rank r ∈ [1, r0]. Noting that

σ 2
l

σ 2
k − σ

2
l

≥
σ 2
l

σ 2
k

≥
1

κ (ŶOLS)2
,

we get the trivial bound

ˆd f (r ) ≥ ˆd f naïve (r ) +
2r (r0 − r )
κ (ŶOLS)2

, (11.11)

where κ (ŶOLS) := σ1/σr0 is the condition number of ŶOLS. Albeit, this
bound is not very interesting for even mildly ill-conditioned ŶOLS where
κ (ŶOLS)2 � 1. Finally, we note that though ˆd f naïve (r ) under-estimates
ˆd f (r ) in (11.10) and (11.11), the former is already a very good approxima-

tion in practice, and in fact equals the latter (almost surely) in the asymptotic
limit n → ∞.

11.4.3 Inference

At prediction time, these di�erent models are queried on held-out subjects
and their results are aggregated by averaging. Such a divide-and-conquer
approach allows us to learn complementary aspects of the data landscape,
boosting prediction scores, while reducing the variance of the individual
component models of which its is made. This is a well-known statistical
property of bagging ensembles. The inference be done by making a single
pass in Alg. 6.

Algorithm 6: Predicting activation maps from resting-state features
Require: • Data from Ntest subjects. For each subject s , we have precom-

puted spatial features X̃s ∈ Rk×p using their resting-state data.

• Sets of �tted models f̂S (see Alg. 5).
Ensure: Predictions Ŷs ∈ Rp×c , for each test subject s .

1: Ŷ← 0 ∈ RNtest×p×c

2: parallel for each parcel P do
3: parallel for each trained model f̂S on P do
4: parallel for each test subject s do
5: Predict the activation maps of subject s with model f̂S :

ŶS |P ← ŶS |P + f̂S (X̃s |P )︸     ︷︷     ︸
contribution of f̂S

6: end pararell for
7: end pararell for
8: end pararell for

11.5 Experiments

Our experiments were done on task fMRI data from 200 subjects from the
HCP –Human Connectome Project– dataset [van Essen et al., 2012]. These
task fMRI data were acquired in an attempt to assess major domains that
sample the diversity of neural systems , including language processing (se-
mantic and phonological processing) and working memory.
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The activation maps Y to predict. This data includes task activation
maps from General Linear Models (GLMs) [Friston et al., 1994] that show the
activation of di�erent brain voxels to di�erent cognitive conditions / task
contrasts, for each subject. For example of these conditions include “Math
vs Story” (part of language task), and “2Back-vs-0Back” –or “2BK-vs-0BK”
for short– (part of working memory task). For example, there are about 19
task contrasts activation maps –each containing p = 2 × 105 voxels– per
subject for the working memory protocol. For each subject s , this gives an
output matrix Ys ∈ Rp×c , were c is the total number of contrasts consid-
ered. In our experiments, we only considered the language (3 contrasts) and
working memory (19 contrasts), giving a total of c = 22 task contrasts.

Extracted resting-state only features. The data also comes shipped
with resting-state fMRI data consisting of ns = 1200 3D volumes of p =
2 × 105 voxels each, per subject, forming an ns -by-p matrix Xs . The fea-
ture extraction described in section 11.2 was then applied to transform each
Xs into low-dimensional functional connectivity features X̃s ∈ Rk×p , with
k = 100.

The setup. Ntrain = 100 subjects were used in Alg. 5 to �t an ensemble
of models (section 11.3). We used parcellations in which each parcel was
worth about 4000 voxels, for a total of about 60 parcels. Ntest = 100 subjects
were held out for evaluating the models predictions, computed via Alg. 6.

11.6 Results

�antitative metrics. Fig. 11.3 shows confusion matrices (via Pearson
correlation) of predicted against true activation maps. We see that a sub-
ject’s predicted activation maps are consistently more similar to their true
activation than to other subjects’, re�ected by the fact that the confusion
matrices are strongly diagonal-dominant. This is even more true for our
proposed method. The Fig. 11.4 shows box-plots of prediction R2-score
and Pearson correlation for the 47 distinct contrast of the HCP task fMRI
dataset [van Essen et al., 2012]. We see that both the reference method [Tavor
et al., 2016] and our proposed method successfully predict the subjects’ ac-
tivation maps well above chance, with our method doing much better.

Figure 11.3: Confusion matri-
ces for predicted versus true ac-
tivation maps for the “Story vs
Math” task contrast. The left
plot corresponds to the reference
method [Tavor et al., 2016] while
the right one is for our proposed
method. Higher diagonal values is
better. The strong diagonal dormi-
nance of these matrices reveals
that the predicted maps of the sub-
jects are more similar to their true
maps than to other subjects.
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Figure 11.4: Top: R2-score for predicting subject-speci�c activation maps for di�erent task contrasts, from their
resting data. These results are for the di�erent contrasts of the HCP dataset [van Essen et al., 2012] are shown.
Results for the reference method [Tavor et al., 2016] are also shown. Bottom: Pearson correlation for the same
prediction problem.



118

�alitative metrics. In Fig. 11.5, we display level-curves of the pop-
ulation mean (magenta) of activation maps for the “Story-vs-Math” and
“2BK-vs-0BK” task contrasts, superimposed on the true activation maps of
the subjects (the background image). The population mean activation map
(magenta) is shown as a baseline (dummy predictor). We see that the con-
tours for the predicted activation maps using our proposed method (green)
faithfully follow topography of the true activation maps, indicating that the
model successfully predicted the topography of the subjects’ activation pat-
terns for the contrasts.

x=48 x=48 x=48

x=-38 x=-38 x=-38

Figure 11.5: Level-curves of the population mean (magenta), predicted activation maps using our proposed method
(green) and the reference method [Tavor et al., 2016] (cyan) for di�erent contrasts. Each column represents a di�erent
subject (here 3), while each row represents a task contrast (here 2): �rst row is for “2BK-0BK” and second row is
“Story-vs-Math”.

11.7 Concluding remarks

We have proposed a general framework for the problem of predicting task
fMRI activation maps from resting-state-only features. Our method creates
an ensemble of parcel-wise low-rank multi-target linear models, over dif-
ferent random sub-populations of the training subjects to leverage the full
richness of the data and jointly predict activation maps to di�erent cogni-
tive hypotheses (task contrasts). This is a major improvement over the state
of the art [Tavor et al., 2016], as con�rmed by extensive experiments on real
data.

A practical implication of our results is that, for population studies, a
large amount of information can be captured solely by a T1 image + resting-
state fMRI: faster, cheaper scanning OR more control on data quality (impu-
tation, outlier control). This explores new avenues for exploring the human
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brain via resting-state data, in patients and healthy subjects alike.

Possible extensions with general approximators. Our work and also
the previous works [Tavor et al., 2016, Cole et al., 2016, Bzdok et al., 2016]
has shown beyond doubt, that there exists a predictive mapping from resting-
state fMRI data X to task activation maps Y. That is to say, the activation
patterns in a person’s brain during task are pre-determined by its back-
ground functional organization at rest. These works (including ours) have
been limited to linear regression models, largely due to the simplicity of the
latter. A priori, there is no reason why such a presumably complex relation
should be accurately captured with a straight line, since there are probably
many di�erent layers of abstraction between functional connectivity pat-
terns all the way through to activation patterns observed during task.

A simple extension would therefore be to replace the linear (Ridge) re-
gression used to predict task activations from resting-state features, with a
small multi-layer perceptron (MLP) 2, a cascade of linear transformations Ll , 2 An MLP can in principle approxi-

mate any “reasonable” function up
to within arbitrary precision.

merged via simple non-linear functions σl like recti�er linear units (ReLU)
or sigmoids

X
σ1◦L1
−→ . . .

σH ◦LH
→ Y.

The intermediate representations extracted by such a model would be im-
portant in their own right. There would be enough data to �t such a model
since voxels are the samples in this prediction problem, and there 2 × 105

voxels per subject. Indeed, a preliminary implementation of this general-
ization appears to give even much better prediction results (not presented
here) than the improvements presented here over the state-of-the-art. This
excursion will be continued in a future work.

So�ware. The code for the models presented in this chapter will be made
publicly available online soon.
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12.1 Summary of main contributions

This thesis kicked-o� with the goal of developing methods for modeling
inter-subject functional variability, the aim being to enhance the estimation
of functional connectomes –data-driven regions of interest, connectivity
matrices, etc.– across populations of subjects. Below we summarize some
of my major contributions.

12.1.1 Scientific contributions

The quest led to the study of, and proposal of methods for, structured (spar-
sity, smoothness, etc.) multi-variate models for brain encoding / decod-
ing [Dohmatob et al., 2015b, Abraham et al., 2014, Eickenberg et al., 2015,
Pellé et al., 2016]. Nonlinear registration of functional brain images also
came up as a natural concern, and we contributed a method for direct reg-
istration of functional brain images [Dohmatob et al., 2016a] (submitted to
Neuroimage journal).

We also improved the current state-of-the-art in ROI extraction and di-
mensionality reduction by combining techniques from online learning and
structured sparsity (like TV-L1) to propose a novel scalable dictionary-learning
framework for obtaining decompositions of brain images, which are closer
to known neuro-biological organization of the brain: networks made of spa-
tially localized smooth components with sharp boundaries.

The ultimate indicator for having understood a phenomenon is being
able to recreate it, at least approximately. Indeed, Feynman once said, “What
I cannot (re)create, I do not understand!” By combing techniques in gener-
ative modeling and ensembles, we improved state-of-the-art methods for
predicting task-based activation maps (at the individual level!) from resting-
state fMRI data, with accuracy well above chance. This work is being pre-
pared for journal submission.
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Due to the intimate relationship between modeling and optimization, the
bulk of this work was made possible by development of new or improve-
ment of existing methods of optimization, with scalability and robustness
at heart [Dohmatob et al., 2014, 2015a, Varoquaux et al., 2015, Dohmatob,
2016].

Finally, some of the work done in the thesis have cross-fertilized other
collaborative papers like [Rahim et al., 2015, Thirion et al., 2014].

12.1.2 So�ware contributions

While preparing this PhD project, I have made contributions to numerous
open-source projects, including:

• Nilearn http://nilearn.github.io/index.html: Python pack-
age for leveraging machine learning algorithm in neuro-imaging. For ex-
ample, the multi-variate models presented in chapter 3 are implemented
as part of this package.

• Pypreprocess https://github.com/neurospin/pypreprocess: Python scripts
scripts for preprocessing and QA of MRI data.

• Nistats https://github.com/nistats/nistats: Python package
for statistical analyis (GLM, permutation tests, etc.) on MRI data.

12.2 Ongoing work and future directions

Unified view on structured models for brain data. We are preparing
journal paper synthesizing all our contributions in the regarding structured
models for brain decoding and segmentation presented in chapter 3. This
will bring these methods to the doorsteps of the neuroscience practitioner.

Non-linear generative models for inter-subject brain data and pre-
diction of task-fMRI activity from resting-state data. As concerns
the modelling of inter-subject variability (chapters 9 and 11), most of the
work done in this thesis can be cast in a more �exible framework of gen-
erative encoder-less models (see Fig. 9.6, for example)1, with the space of 1 Since the encoding representa-

tion is gotten by simply minimiz-
ing a reconstruction loss between
the generated and the true brain
image.

parameters carefully constrained to ensure tractability and intepretability.

http://nilearn.github.io/index.html
https://github.com/nistats/nistats
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La thèse à démarrée avec l’objectif de développer des nouvelles méthodes
pour la modélisation de la variabilité inter-sujet fonctionnelle, le but ultime
étant l’amélioration de l’estimation de connectômes fonctionnelles sur des
populations de sujets (chapitre 2).

Cette quête à conduit à la proposition des méthodes de pénalisation struc-
turée (parcimonie, variation totale, etc.) multi-variées pour l’encoding / de-
coding [Dohmatob et al., 2015b, Abraham et al., 2014, Eickenberg et al., 2015,
Pellé et al., 2016]. Le récalage fonctionnel est aussi souvenu naturellement,
est nous avons contribué une méthode pour le récalage directe des images
fonctionnelles (EPI) vers un cerveau standard (template) [Dohmatob et al.,
2016a] (soumit au Frontiers). Voir chapitres 3, 4, 5, 6, 8, et 7.

Nous avons aussi amélioré l’état de l’art sur l’extraction de régions d’intérêt
et la réduction de dimension en neuro-imagérie, par des méthodes combi-
nant des techniques d’apprentissage en ligne et de parcimonie structurée
(par exemple avec les pénalités TV-L1). Notre proposition est une nouvelle
technique d’apprentissage de dictionnaire pour la décomposition d’images
de cerveau plus conformes avec des a priori neurobiologique sur l’organisation
fonctionnelle du cerveau: des réseaux spatialement localisés avec des con-
tours bien délimités. Il s’agit d’un modèle génératif de base dimension, en-
codant succinctement la variabilité inter-sujet. Nous referons le lecteur aux
chapitres 9 et 10.

Finalement, nous nous sommes intéressés à l’utilisation de techniques
d’apprentissage supervisé pour expliquer la relation entre l’activité spon-
tanée (activité au repos) et les enregistrements avec stimulations (activ-
ité évoquée dans des conditions précises). Nous avons proposé une méth-
ode couplant un apprentissage non-supervisé (de type réduction de dimen-
sion par apprentissage de dictionnaire partagé) et des modèles prédictifs de
faible rang pour exploiter les interdépendances entre les di�érentes fonc-
tions cognitives. Les expériences numériques réalisées (200 sujets du projet
HCP [van Essen et al., 2012]) montrent que nous apportons une améliora-
tion considérable à l’état de l’art. Voir chapitre 11.

Les travaux réalisés on donné lieu à des nombreuses publication à des
conférences et journaux tels que NIPS, ICASSP, MICCAI, Frontiers in Neu-
rosciences, etc. Une liste complète des publications peut être consulter
ma page Google scholarhttps://scholar.google.fr/citations?
user=FDWgJY8AAAAJ&hl=fr. En chi�res

https://scholar.google.fr/citations?user=FDWgJY8AAAAJ&hl=fr
https://scholar.google.fr/citations?user=FDWgJY8AAAAJ&hl=fr
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• Citations ≥ 194.

• Nombre total de publications ≥ 15.

• h index ≥ 4.

• 110 index ≥ 3,

dont

• Parcimonie et régularisation spatiale: [Dohmatob et al., 2014], [Dohma-
tob et al., 2015b], [Abraham et al., 2014], [Eickenberg et al., 2015], [Pellé
et al., 2016]

• Récalage: [Dohmatob et al., 2016a]

• Optimisation: [Dohmatob et al., 2015a], [Varoquaux et al., 2015],
[Dohmatob, 2016]

• Modelisation de variabilité fonctionnelle inter-sujet: [Dohmatob et al.,
2016b]

• Neurosciences: [Rahim et al., 2015], [Thirion et al., 2014]

Il y a aussi des manuscrits en cours de préparation pour être publier dans
des journaux:

• Vue globale sur la parcimonie et régularisation spatiale en neuro-
imagérie: “Structured penalties for brain decomposition and decoding: a
uni�ed view”, pour Neuroimage

• “Inter-subject registration of functional images: do we need anatomical im-
ages ?” , pour Frontiers

• “Enhanced prediction of task-based activation maps from resting-state
data”, pour Neuroimage

Logicielles contribuées. Pendant la préparation de la thèse, des nom-
breuses contributions dans de projets open-source on été réalisées. Pour en
citer quelques unes:

• Nilearnhttp://nilearn.github.io/index.html: Librairie Python
pour l’apprentissage statistique pour la neuro-imagerie. Par exemple les
méthodes multi-variées présentées au chapitre 3 font partir des modules
de cette librairie.

• Pypreprocess https://github.com/neurospin/pypreprocess: Des scripts Python
pour le pré-traitement d’images IRMf.

http://nilearn.github.io/index.html
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• Nistats https://github.com/nistats/nistats: Outils d’analyse
statistique en Python, pour les données la neuro-imagérie.
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