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It is common for people first

starting to grapple with computers

to make large-scale computations

of things they might have done on

a smaller scale by hand. They

might print out a table of the first

10,000 primes, only to find that

their printout isn’t something they

really wanted after all. They

discover by this kind of experience

that what they really want is

usually not some collection of

answers, what they want is

understanding.

William P. Thurston
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SUMMARY

The origin of sound attenuation at low and high frequency in glasses stays elusive mainly

because of the complex temperature and frequency dependence of the phenomena at its

root. Indeed, the presence of complex structures and multi-scale organizations in glasses

induce the existence of relaxation times ranging from the second to the femto-second as well as

spatial correlations ranging from the Angström to a hundred nanometers. Therefore, the study of

attenuation and dissipation requires to look not only at the interactions between the disordered

medium and mechanical waves of different frequencies but also to inspect the interaction between

local structures and waves of different wave-vectors.

At low-frequency (below the MHz), a better understanding of the phenomena at the origin of

dissipation would be beneficial for several applications. For example, the multi-layers coating

the mirrors of gravitational wave detectors consist of a superposition of two oxide glasses: silica

(SiO2) and tantalum pentoxide (Ta2O5), chosen for their optical properties. These glasses are an

important source of dissipation limiting the accuracy of the detector as a whole. It was recently

shown that doping Ta2O5 with TiO2 leads to a decrease in the mechanical loss, opening the

way towards the synthesis of high performance materials. However, the atomistic origin of this

decrease is as of today not understood, mainly because of our ignorance about the structure of

these glasses.

At high frequency (in the THz regime), when the wave-vector is small with respect to inter-atomic

distances (0.1 < q < 1−3nm−1 in silica), mechanical waves are attenuated because of elastic

heterogeneities present in the glass. But when the wave-vector reaches a few nm−1, glasses

exhibit a strong increase in dissipation. Above this limit, refereed to as the Ioffe-Regel limit,

vibrations cannot be described as phonons and the energy they carry propagates more diffusively

than ballisticaly. At these wave-vectors, mechanical waves interact directly with the atomic

disorder. The study of dissipation in this regime raises theoretical questions about the link

between attenuation and dissipation as well as between local atomic symmetry and dissipation.

In the present study, we conducted a thorough analysis of the interaction between mechanical

waves and the structure of two oxide glasses using simulation techniques such as non-equilibrium

molecular dynamics. In a first part, we characterized the still unknown structure of Ta2O5 and
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TiO2 doped Ta2O5 glasses. We showed that amorphous Ta2O5 consists of polyhedra organized in

a chain-like structure that is not disrupted by the addition of TiO2. Furthermore, performing a

normal mode analysis, we proposed a reinterpretation of their Raman spectra.

In a second step, we examined energy dissipation in SiO2 and Ta2O5. At high-frequencies, we

used mechanical spectroscopy to measure dissipation numerically and performed in parallel

an analytical development based on the projection of the atomic motion on the vibrational

eigenmodes. We showed that dissipation is harmonic in the THz regime and that it can be

expressed analytically provided that the atomic positions and interactions are known. These

analytical expressions reveal the role played by non-affine motions in dissipation, which, in the

case of a hydrostatic wave, is directly related to local symmetry. We showed that a local atomic

symmetry field projected on the vibrational eigenmodes of the glass is the key quantity regulating

dissipation. In SiO2 and Ta2O5 glasses, the asymmetry is larger for the oxygen atoms whose

non-affine displacements produce vibration mainly of the Si-O-Si and Ta-O-Ta bonds.

At low-frequencies, we used molecular dynamics and the nudged elastic band method to gather

sets of thermally activated bistable states accepted as source of dissipation. We were able to class

these events know as two-level systems (TLS) in three categories based on topologically distinct

atomic motions. From these sets of events and using a TLS model that takes into account the

tensorial nature of the sensitivity of the TLS to the strain and the difference in attempt frequency

between the initial and final states, we predicted dissipation numerically. We also showed that the

approximations used in the literature to fit experimental data are valid in the low temperature

limit. Finally, we showed that the dissipation predicted from our numerical calculations is of

the same order as the experimental measurements, showing a direct link between the TLSs

identified here at the atomic scale and macroscopic measurement of energy dissipation.

Through this study, we highlighted the importance of the structure of glasses, especially at the

short- and medium- range order, in the context of energy dissipation in the two extreme frequency

ranges (below the MHz and above the GHz).
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RÉSUMÉ

L’atténuation d’ondes à basses et hautes fréquences dans les verres n’est pas encore

bien comprise en grande partie car les phénomènes à l’origine de cette dissipation

varient grandement en fonction de la fréquence. L’existence de structures complexes et

d’organisations multi-échelles dans les verres favorisent l’apparition de temps de relaxation allant

de la seconde à la femtoseconde et de corrélations prenant place de l’Angström à la centaine de

nanomètres. Il est donc nécessaire d’étudier l’interaction du matériau avec des ondes mécaniques

variant en fréquence et parallèlement d’étudier l’interaction entre les structures locales et des

ondes possédant différentes longueurs d’onde.

A basse fréquence, une meilleure compréhension de ces phénomènes de dissipation serait béné-

fique à de nombreux domaines. Par exemple, les multi-couches recouvrant les miroirs des in-

terféromètres servant à détecter les ondes gravitationnelles sont réalisées à partir de verres

d’oxydes, le silica (SiO2) et l’oxyde de tantale (Ta2O5), choisis pour leurs propriétés optiques.

Cependant, ces verres sont une source majeure de dissipation et limitent la précision du détecteur

dans son ensemble. Il a récemment été montré que le dopage du Ta2O5 avec du TiO2 entraînait

une réduction des pertes mécaniques dans le verre, ouvrant ainsi la voie vers la synthèse de

matériaux plus performants. Cependant, l’origine atomique de cette diminution n’est pas encore

comprise, en grande partie à cause de notre méconnaissance de la structure de ces verres.

A haute fréquence, lorsque la taille du vecteur d’onde est encore petite par rapport aux distances

inter-atomiques (0.1< q < 1−3 nm−1 dans la silice), les ondes mécaniques sont atténuées dû à

leurs interactions avec les hétérogénéités élastiques présentes dans le verre. Lorsque le vecteur

d’onde atteint quelques nm−1, le verre présente une rapide augmentation de sa dissipation. Au-

delà de cette limite, appelée limite de Ioffe-Regel, les modes propres ne peuvent être considérés

comme des phonons et propagent l’énergie de manière plus diffusive que balistique. Les ondes

mécaniques sentent alors directement le désordre atomique et interagissent de manière forte

avec les modes propres de vibrations du système. A ces fréquences, l’étude de la dissipation pose

des questions théoriques sur le lien entre asymétrie locale et atténuation acoustique.

Durant cette étude, nous avons réalisé une analyse approfondie de l’interaction entre ondes

mécaniques et structure des verres en utilisant des techniques de simulation telles que la
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dynamique moléculaire et la dynamique moléculaire hors équilibre. En partant de la synthèse

de verres de SiO2 et Ta2O5, nous nous sommes appliqués à trouver l’origine structurelle de la

dissipation aux différentes échelles de fréquence.

Dans un premier temps, nous avons caractérisé la structure encore peu connue du Ta2O5 et

du Ta2O5 dopé au TiO2 en montrant la structure en chaîne que ceux-ci adoptent dans leurs

organisations à moyenne distance. De plus, grâce à une analyse des modes propres dans ces

verres, nous avons pu proposer une ré-interprétation de leurs spectres Ramans.

Nous nous sommes ensuite penchés sur l’étude de la dissipation. A haute fréquence, nous avons

utilisé une technique de spectroscopie mécanique appuyée par un développement analytique

basé sur la projection du mouvement atomique sur les vecteurs propres de vibration. Nous

avons montré que la dissipation à ces fréquences est harmonique et qu’elle peut être exprimée

analytiquement pour peu que les positions et interactions atomiques soient connues. Les ex-

pressions analytiques ainsi obtenues révèlent le rôle joué par les mouvements non-affines dans

le phénomène de dissipation. Dans le cas d’une onde de déformation hydrostatique, cela se

traduit par une importance de la symétrie atomique locale, qui, projetée sur les modes propres

de vibrations, est la quantité clé décidant du pouvoir dissipatif d’un mode propre de vibration.

Pour les verres de SiO2 et Ta2O5 l’asymétrie est plus grande pour les atomes d’oxygène dont

les déplacements non-affines produisent des vibrations, principalement des liaisons Si-O-Si et

Ta-O-Ta.

A basse fréquence, nous avons utilisé la dynamique moléculaire ainsi que la méthode NEB pour

obtenir des listes d’évènements thermiquement activés appelés Two-Level Systems (TLS) et

reconnus comme source de dissipation. Nous avons été capable de classer ces évènements en trois

catégories correspondant à des mouvements atomiques topologiquement distincts. A partir de ces

événements et en utilisant une théorie des états à deux niveaux prenant en compte la nature

tensorielle de la sensibilité aux déformations des TLSs et la différence de fréquence d’attaque

entre l’état initial et l’état activé des TLSs, nous avons prédit numériquement la dissipation. Par la

suite, nous avons discuté du bien-fondé des approximations employées dans la littérature lorsque

le modèle TLS est utilisé pour fitter des données expérimentales. Comparant notre dissipation

calculée numériquement à des mesures de dissipation expérimentales, nous avons montré que le

modèle TLS permet de reproduire l’amplitude de la dissipation expérimentale révélant ainsi un

lien fort entre les relaxations atomiques thermiquement activées et la dissipation.

A travers cette étude, nous avons mis en évidence l’importance du rôle de la structure des verres

dans le contexte de la dissipation à haute et basse fréquence (au-dessus du THz et en dessous du

MHz).
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1
INTRODUCTION

Since the conceptualization of the notion of gravific waves by Henri Poincaré in 1905 [143]

and the prediction of the existence of gravitational waves (GW) by Albert Einstein in

1937 [56], a collective endeavor led by the USA, Europe, Japan and Russia has focused

on their detection. This work was at last validated in 2015 with the first detection of a GW by the

Laser Interferometer Gravitational-Wave Observatory (LIGO) in collaboration with the Virgo

interferometer [3]. To better appreciate the extent of this success, we should remind ourselves

that despite the massive size of the events at their origin such as merging in binary star systems

composed of white dwarfs, neutron stars or black holes, GWs are ripples of the space-time with

an amplitude of merely 10−21 m when reaching Earth, as pictured in Fig. 1.1. To detect such

small signals, large-scale Michelson interferometers have been designed. These interferometers

comprise two arms several kilometers long, kept under vacuum, through which a laser beam

propagate back and forth. The arms are placed perpendicularly to one another such that the

slightest distortion of space in one of the two arms will be seen when the amplitudes of the two

lasers are summed. To obtain a statistically significant signal-to-noise ratio, a search has been

organized to characterize and bring all possible sources of noise below 10−20 m/
�

Hz. Part of this

effort is directed toward understanding the phenomena at the origin of mechanical loss such as

the energy dissipation taking place in the mirrors on which the laser is reflected. These mirrors

are Bragg reflectors composed of thin film multilayers of a glass with a high index of reflection,

tantalum pentoxide (Ta2O5) and one with a small index of reflection, silica (SiO2).

However, the source of mechanical losses and thus energy dissipation in disordered solids such as

oxide glasses remains elusive as it is both temperature- and frequency-dependent [188, 193]. In

addition, the disparity existing in the short- and medium-range orders between different glasses
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CHAPTER 1. INTRODUCTION

Figure 1.1: The gravitational-wave event GW150914 observed by the LIGO Hanford (left column
panels) and Livingston (right column panels) detectors. The top row shows the strain fluctuation
as a function of time while the lower row is a spectrogram of the strain. Figure reproduced from
Ref. [3].

makes the atomistic phenomena at the origin of dissipation difficult to encapsulate. Added to

these difficulties inherent to dissipation in glasses, there is a lack of experimental techniques able

to probe the structure of disordered solids at the nanometer scale. In fact, classical experimental

techniques are of no use on materials that present homogeneous structural or thermo-mechanical

properties at the macro-scale while being heterogeneous below the nanometer. It is with the

rise of numerical methods such as Molecular Dynamics (MD) or ab-initio calculations that the

dynamics taking place at the atomic scale can be directly observed [147, 88].

The questions discussed in the present manuscript are as follow:

• How can numerical techniques and analytical calculations be used to model oxide glasses

and their dissipative properties ?

• Which primitive units or rules are at the origin of the structure of oxide glasses such as

SiO2 and Ta2O5 ?

• Which phenomena are at the origin of dissipation in glasses at different frequencies and

temperatures ?

• Which features of a glass control its dissipation ?

2



To answer these questions, we will use equilibrium and non-equilibrium molecular dynamics

simulations to synthesize numerical oxide glasses and study their structure, before moving to an

investigation of their dissipation properties in frequencies ranging first from the GHz to the THz

and then from the Hz to the MHz.

The present manuscript is organized as follows:

First, chapter 2 will present the background needed to understand the importance of the present

work, first in the context of the complexity of the structure of glasses and then in the context

of energy dissipation. This chapter will also present traditional experimental investigation

techniques as well as currently existing numerical tools.

In chapter 3, we will present the numerical methods such as the algorithms and techniques

employed in our molecular dynamics code along with the protocols used to generate numerical

glasses and the techniques deployed to explore their potential energy landscape.

Chapter 4 will consist of an in-depth study of the structure and vibrational properties of amor-

phous Ta2O5 and TiO2-doped Ta2O5 glasses produced by molecular dynamics (MD). This chapter

will first focus on the characterization of these glass structure at the short- and medium-range

orders. Secondly, we will present a complete analysis of the vibrational modes of these glasses

and discuss them with respect to the current interpretations of the Raman spectra of Ta2O5

glasses.

Chapter 5 is the first of two chapters considering dissipation, this first one will examine dis-

sipation above GHz frequencies using a combination of non-equilibrium MD simulations and

analytical calculations derived in the harmonic approximation. The dissipation will be shown

to arise from non-affine relaxations triggered by the applied strain through the excitation of

vibrational eigenmodes that act as damped harmonic oscillators.

In chapter 6, the last part of the present manuscript, we will study dissipation below the MHz.

This study will be conducted using potential energy landscape exploration techniques and the

Two-Level System model. It will show that dissipation in this frequency range comes from

thermally activated atomic events that will be sorted in groups of similar topologies despite the

apparent disorder of the glass.
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2
BACKGROUND

2.1 The Multi-scale Structure of Glasses

2.1.1 Short-, Medium- and Long- Range Orders

In solids, the state of matter reached when enough kinetic energy has been taken from the atoms

with respect to their will to bound, the atoms lay in a state of lowest potential energy. This energy

minimization process that is solidification is at the origin of two antagonistic but sometimes

energetically equivalent structures. In the first one, referred to as the crystalline structure, atoms

are organized periodically in space as the repetition of a basic pattern, a unit cell, where the

collective organization of atoms is optimized to minimize the energy.

The second possible type of structure is the amorphous structure where no apparent order

exists at long range in the atomic organization. Since crystals appear as a process of energy

minimization, one can wonder, why are amorphous materials disordered? The answer resides

in the formation of the solid: when a melt is cooled, the atoms diffuse, looking for the optimal

location in order to minimize collectively energy. But if the cooling rate is high with respect to

the diffusion rate of the particles, the atoms end up frozen in sub-optimal positions. For example

in water, where the H2O molecules self-diffuse at 10−9 m2/s, crystals are formed easily [84], on

the other hand in polymer melts, the molecular chains diffuse slowly, 10−11 m2/s, leading to a

low degree of crystallization [16]. Amorphous materials take different forms such as polymers,

glasses or gels, but we will restrict our attention in the rest of this manuscript to the case of oxide

glasses. Oxide glasses are the result of a mix of a transition-metal ion or a metalloid ion with

oxygen and include numerous compounds such as silica (SiO2) or lime (CaO). Silicon dioxide, or
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Figure 2.1: Part of a numeric SiO2 glass synthesized using molecular dynamics, the blue/red
spheres represents the silicium/oxygen atoms respectively.

silica, accounts for more than 60% of the earth crust and is heavily used in industry to produce

window panels, cement or ceramics but also as additive in food or as insulator in micro-electronic.

In addition, silica is sometimes referred to as an ideal glass because its local order based on

tetrahedra is perfectly compatible with its stoichiometry. It is thus not surprising that silica is

one of the most studied oxide glass [27, 207, 197, 181, 182, 145, 96] and will be used as a glass

model in the present study.

Due to atomic disorder, the complete description of a glass such as SiO2 is impossible. Conse-

quently, the concepts of short-, medium- and long-range orders (SRO, MRO, LRO) have been

proposed to depict the structure of materials as a sum of recurrent motifs. The mechanical and

vibrational properties generated at the SRO, MRO and LRO are summarized in Fig. 2.2 (see

Ref. [152] for a pertinent review of the link between elastic properties and SRO).

Short-Range Order: in the present manuscript, SRO will refer to distances and structures

formed by the first shell of neighbors. At the SRO, structural motifs are often described as simple

polyhedra as in SiO2, composed of Si centered tetrahedra as represented in Fig. 2.1, where each

Si atom is four-folded and each O atom is two-folded. At the SRO level, the local environment

of an atom is often similar to the corresponding crystal since the same individual atomic forces

apply between atom as in silica, although some other glasses such as metallic glasses can present

structures such as icosahedra, not seen in their crystalline form [170]. In both cases, since the

atoms did not have enough time to diffuse to their optimal position compared to crystals, the pair

distribution function and angle distribution show broader peaks. These small heterogeneities at

the SRO coupled to structures that cannot stack without faults such as the above-mentionned

icosahedra, will provoke the disorder seen at larger scales. At the SRO, the first neighbor bonds
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are responsible for high frequency vibrations that resemble the optic-modes seen in crystals.

Another type of vibrations, referred to as Soft Modes, are also seen at the SRO. Soft modes are

low-frequency vibrations centered on an unstable atom or group of atoms that play a role in

plastic deformation [179].

Medium-Range Order: the MRO describes the order existing from two to several tens of bond

lengths. At the MRO, the pilling of small bond distortions seen in the simple structures of the

SRO intertwine and give rise to complex figures that are hard to characterize or catalog [173,

145, 168, 40]. While at the SRO, the glass can be described using pair distribution functions and

simple polyhedra, the MRO is more challenging as the structures seen at this scale are glass

dependent. Rings and chains allow for a good understanding for some glasses, but generalizable

quantitative measurement are needed. To this end, several leads are explored; based on topology

and graph theory such as the use of persistent homology [137], the building of catalogs of similar

atomic configuration [20] or the concept of "cloth" proposed by B. Schweinhart et al. [164]. In SiO2,

the structure is simple as chains of successive Si-O bonds form closed rings. These rings involve

from three to eight Si-O bonds and have been extensively studied as they have distinctive Raman

signatures [167, 140, 126, 145, 101]. They are believed to be at the origin of some of the unique

vibrational and thermal properties of the glass, and their distribution has been used as a measure

of relaxation in both experimental and numerical SiO2 glasses. The multiplicity of possible

structural topologies seen at the MRO, associated with chains of stresses frozen are at the origin

of complex collective displacements involving from a few to hundreds of atoms such as Shear

Transformation Zone [148] and Thermally Activated Relaxations [9, 91] that are respectively

shear and temperature driven. In addition, at the MRO, mechanical heterogeneities are observed.

These heterogeneities originate in the coupling between the disorder created at the SRO and the

short-, medium- and long-range elastic coupling [180]. From a vibrational point of view, disorder

creates typical vibrational modes observed at the MRO and not seen in crystals such as rotons or

diffusons i.e. delocalized vibrations responsible for diffusive (rather than ballistic) propagation of

wave packets [8, 22]. Furthermore, the MRO and the heterogeneities present at the MRO were

proposed to be at the origin of the excess of vibrational modes seen at low frequencies called the

Boson peak [85, 171, 120, 43, 26, 131] although this link is contested [180, 21].

Long-Range Order: the LRO denotes the order beyond 30 atomic bonds. At this distance, the

disordered solid can be seen as a continuum and the properties that were still heterogeneous at

the MRO converge to average effective values [180]. At this scale, the vibrations are low-frequency

waves, whose spatial periods are large enough not to feel the disorder existing at the smaller

scale and therefore approach plane waves typical of crystals and continuous homogeneous media.

It is the superposition of phenomena originating at the SRO, MRO and LRO that makes glasses

so complex and interesting.

7



CHAPTER 2. BACKGROUND

Figure 2.2: Mechanical and vibrational properties of glasses as function of long-, medium- and
short-range orders.

2.1.2 The Potential Energy Landscape of Oxide Glasses

The dynamics of a solid is governed by the underlying atomic forces and thus the potential energy.

When thinking about the dynamics in a glass such as aging or energy dissipation, it is easier to

consider the change of energy rather than atomic displacements. This is done by studying the

topography of the Potential Energy Landscape (PEL), that is the static potential energy map of

the configurational space of the system [73]. For a 3D system made of N particles, the PEL has

3N+1 dimensions corresponding to the 3N degrees of freedom plus the dimension required to

represent the potential energy. At any given time, the system is represented by a point on the

PEL, and the system dynamics corresponds to a continuous path on the PEL. In a crystal, the

PEL can be easily apprehended as the numerous symmetries can be used to reduce the number

of dimensions from 3N to a few. In a disordered solid, none of the dimensions are equivalent and

the PEL resembles an assembly of fractal basins as represented in Fig. 2.3 [54, 82]. Since it is

impossible to form a mental image or graphic representation of the 3N+1 dimensions of the PEL,

it is always represented along an arbitrary vector of the configurational space. However, this

reduction hides the extreme complexity that the PEL has in 3N+1 dimensions.

The points of interest on the PEL are the local energy minima called Inherent Structures (IS)

and the saddle points. Every IS is surrounded by a basin of attraction whose volume contains

all the points in the PEL that would lead to the IS during an energy minimization. At an IS, all

the eigenvalues of the Hessian matrix are real and correspond to the eigenfrequencies of the

system. On the other hand, the saddle points are unstable maxima separating two basins of

attraction. Accordingly, at a saddle point, there is a negative eigenvalue corresponding to the

negative curvature of the PEL. This imaginary eigenfrequency is associated to the eigenvectors

along which the system falls if pushed. The energy differences between an IS and its surrounding

saddle points are referred to as activation energies or energy barriers. The theory used to describe

the evolution of the system on its PEL is the Transition State Theory (TST) first developed to

describe reaction rates in chemical physics [60, 202]. The TST assumes that each change of basin
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Figure 2.3: Potential energy along an arbitrary vector in the PEL. The bottom of each basin is an
IS and each local maximum represents a saddle point.

is independent, i.e. the collective motion of the particles has time to fully decorrelate in-between

transitions, which is true when the temperature is low compared to the height of the barriers. In

this limit, the TST has proved that the rate at which a transition occurs follows an Arrhenius

form: ν∝ exp(− Ea
kbT ) where Ea is the activation energy and T, the temperature of the system. At

low T the system changes slowly, only exploring surrounding ISs, while at high T (in the liquid

state), the system is free to go from meta-basin to meta-basin. Knowing the statistics of the

energy barriers is key as sampling the jumps of the system from basin to basin is necessary to

understand the dynamic properties of the glass, as will be done in Chap. 6.

A lot of work has been devoted to understand the link between the topology of the PEL and the

structure of disordered solids [176, 199, 200]. At the SRO, the PEL can be approximated by the

forces of the first shell of neighbors and thus looks like the atomic interaction in the direction

of the bonds. However, at the MRO, the short-, medium- and long-range interactions quickly

add up leading to a complex energy surface that cannot be captured by an analytic expression.

Developing a better understanding of this link between PEL and structure at the MRO is the key

to understanding the atomistic origin of the properties of a glass and being able to tailor them at

the nanoscale [102, 189].
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2.2 Energy Dissipation in Glasses

Energy dissipation (Q−1), also called internal friction, is the irreversible conversion of mechanical

energy into heat. It is at the origin of mechanical losses, acoustic attenuation and dielectric

relaxation and is therefore an obstacle to the development of high-fidelity devices, such as micro-

and nanoelectromechanical systems (MEMS/NEMS) [111, 86, 107] or sensitive gravitational

wave detectors as mentioned in Introduction [161, 65, 74]. Energy dissipation can be defined in

two different ways: from an attenuation or a cyclic dissipation point of view. From an attenuation

point of view, dissipation arises from the decay in time of the amplitude of an initial deformation

(e.g. plane wave), as e−Γt/2 cos(Ωt). In the Fourier space, this decay corresponds to a Lorentzian

peaked on Ω with a width Γ, leading to the 1st definition of dissipation:

(2.1) Q−1 = Γ

Ω
.

On the other hand, the cyclic dissipation point of view defines dissipation as the energy lost in a

system under cyclic loading. A cyclic strain ε(ω) imposed at frequency ω, will result in a stress

σ(ω) related to ε(ω) by a complex modulus E(ω) which can be written assuming linear response

as

(2.2) E(ω)= E′(ω)+ iE′′(ω).

The real part of the modulus, E′, represents the energy stored under cyclic loading, while the

imaginary part, E′′, represents the energy lost during a cycle [53], leading to the 2nd definition:

(2.3) Q−1 = E′′

E′ .

Since E(ω) can also be written

(2.4) E(ω)= ||E(ω)||[cosφ+ isin(φ)
]
,

a 3rd equivalent definition is

(2.5) Q−1 = tanφ,

where φ represents physically the lag between the applied strain and the resulting stress. We

note that while definitions 2.3 and 2.5 are strictly equal, they are not always equivalent to

definition 2.1. This last equivalence holds in simple viscoelastic models, like Zener standard

linear solid in the limit of small dissipation [139], but not necessarily in the general case.
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2.2.1 Investigation Tools for Dissipation in Glasses

In glasses, the phenomena at the origin of energy dissipation are strongly frequency dependent,

therefore, the tools used to study dissipation vary with the frequency range of interest.

From the Hz to the kHz, dissipation is studied through the response of the glass to mechanical

signals. This method, called mechanical spectroscopy, is widely used in rheology, and mainly to

study the viscoelastic behavior of polymers through the measurement of their complex modu-

lus [63, 153, 39, 127]. In mechanical spectroscopy, a sinusoidal stress (or strain) is applied to

the sample, and the resulting strain (or stress) is measured. Assuming a linear regime, if the

material of interest shows dissipation at the frequency at which the load is applied, a lag will

appear between the stress and strain, linked to dissipation as Q−1 = tanφ.

At intermediate frequencies, from the kHz to MHz, the study of dissipation is done through

measurements of attenuation of vibrations in micro or nano-mechanical resonators made of the

glass of interest. The sample, which is either in the form of a rod, a cantilever, a sphere or a thin

film, is coupled with a resonant piezoelectric transducer possessing a high Q-factor [64, 67, 32,

95, 74, 144]. The lag between the driving signal and the resonance of the sample is measured

using an electric setup, and dissipation is calculated once again as Q−1 = tanφ. Closely related,

are Picosecond Ultrasonic (PU) techniques. In PU techniques, the driving signal is transmitted

through a short acoustic pulse that enters the samples (usually thin) and decays while traveling

in the medium [186, 150, 159]. Each time the pulse bounces on the surface of the medium,

its amplitude is measured using a laser, from which the attenuation is obtained by fitting the

exponential decay of the signal.

At higher frequencies, in the GHz and THz regimes, dissipation is studied experimentally through

the dynamical structure factor, S(q,ω), as for instance in Refs. [187, 66, 156, 125, 155, 106, 12,

23, 13]. The dynamical structure factor expresses the spatial and temporal correlation existing

in the movement of particles and is written as the space- and time-Fourier transform of the

density-density correlation function [80]:

(2.6) S(q,ω)= q2

2πNω2

∫
〈 j(q, t) · j(−q,0)〉 eiωt dt.

It is probed experimentally using either Brillouin, neutron or inelastic x-ray scattering (IXS)

that perform spectrographs i.e. slices of the dynamical structure factor at different wave-vectors

q. At small wave vectors, the spectrum of S(q,ω) shows a peak at a well-defined frequency as

illustrated in Fig. 2.4. This peak is fitted as a damped harmonic oscillators (DHO):

(2.7) F(q,ω)= Ω(q)2Γ(q)(
Ω(q)2 −ω2

)2 +ω2Γ(q)2
,
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Figure 2.4: Brillouin spectra of vitreous silica at different wave-vectors. The continuous lines
mark the DHO fits from which Ω(q) and Γ(q) are obtained. Figure reproduced from Ref. [125].

from which the excitation frequency Ω(q), attenuation Γ(q) and dissipation Q−1(q)=Γ(q)/Ω(q)

are obtained. The behavior of a DHO is directly related to its Q−1, as for a given system, there

exists a threshold above which the system is over-damped (the system doesn’t oscillate when

displaced and follows an exponential decay to equilibrium), and below which it is under-damped

(the system oscillates when displaced but the amplitude of the vibrations decreases with time).

The above-mentioned techniques are adapted to probe the dissipative properties of glasses but

are still indirect measurements of the phenomena at their origin. Indeed, in glasses, techniques

such as neutron or X-ray scattering used traditionally to investigate the atomic order are limited

due to the lack of periodicity. For example, X-ray scattering resolves appropriately only the first

shell of neighbors before the signal decays into an homogeneous background. Progress has been

made with the use of extended X-ray absorption fine structure (EXAFS) techniques, which gives

precise first neighbor distances for each chemical element present in a glass [115, 17]. However,

this technique only probes the SRO, while the MRO, the rigidity of the network and forces taking

place between the different structural units are needed to understand the properties of the

system. Therefore, the guesses on the atomic origin of dissipation stay theoretical until apparatus

allowing atomic scale observation of the phenomena are developed. In addition, while mechanical

spectroscopy, measurements in resonating samples and PU techniques probe dissipation directly,

Brillouin scattering and IXS used at high frequencies, only provide an insight of the dynamical
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structure factor from which the attenuation is obtained. As of today, it is not clear if these two

sets of methods used at low and high frequencies measure exactly the same physical quantity.

Settling this issue could be possible, for example by measuring dissipation at the same frequency

using both Brillouin scattering and PU techniques, however these two methods do not cover the

same frequency range.

To overcome these limitations, it is however possible to resort to atomic scale simulations made

possible by the unstoppable developments in computer technology. The main method used to

model solids and their dynamic properties at the atomic scale is Molecular Dynamics (MD),

based on the numerical integration of the equations of motion [6, 7, 68]. However, MD requires a

knowledge about the forces taking place between atoms. It is possible to obtain these interactions

by solving the Schrödinger equation for each electron of each atom at each time step of the

simulation. The development of Ab initio-MD based on the Born-Oppenheimer potential energy

surface allows the successful usage of such a brute-force method. However, Ab initio methods are

slow and and use complex approximations. In situations where the qualitative microscopic origin

of a dynamic phenomenon or in situations where large systems or long simulations are needed,

Ab initio methods are not appropriate. For such studies, classical MD is used. In classical MD,

empirical or semi-empirical potentials describe the interaction between atoms, as will be detailed

in Chap. 3. The idea behind classical MD is that if enough of the structural characteristics

and properties of a solid are reproduced by a simple potential function, other properties of the

material are likely to resemble the ones of the original solid.

Three methods have been implemented in MD to measure dissipation. The first one is mechanical

spectroscopy [196, 192, 98, 203]. As done experimentally, the lag φ is measured between an

imposed sinusoidal strain and the resulting internal stress, yielding dissipation. More details

will be given in Chap. 5 where numerical mechanical spectroscopy will be implemented at the

atomic scale. The second technique is based on the study of attenuation of waves propagating

through the medium [184, 41, 71]. This is done by imposing a displacement in the form of

a plane wave at t = 0, and following its attenuation as it is scattered by the disorder of the

medium. With time, its amplitude deceases with an envelope proportional to exp(−Γt/2)cos(Ωt)

from which the attenuation coefficient, Γ, and resonance frequency, Ω, are obtained by a simple

fit. The last method is the study of S(q,ω) as done experimentally using IXS, see for instance

Refs. [75, 181, 45, 158, 171, 133, 120, 22, 21, 110]. Since the trajectories of the particles are

known, the density-density correlation function and thus S(q,ω) can be computed numerically at

fixed q. From these spectra, the attenuation is obtained fitting a DHO model as presented above.

As mentioned in the previous section, dissipation computed using attenuation of plane wave and

the S(q,ω) equals dissipation obtained using mechanical spectroscopy only when Eq. 2.1 and

Eq. 2.5 are strictly equivalent, that is, at small dissipation in simple models.
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Figure 2.5: Source of dissipation and scalings of the dissipation as a function of frequency in
silica [157, 12, 62, 71].

Numerical methods give the opportunity to simultaneously measure dissipation and observe the

atomic motions or collective behaviors at its origin. In addition, being able to tune the parameters

of the model helps revealing which features of the solid are important for the property considered.

However, MD capabilities are strongly limited by the computational power of the machines on

which it runs, in a large part due to the strong limitations both on their time scale with an

integration step of the order of the fs, and on the number of particles involved. Therefore, direct

measurement of dissipation at frequencies below the GHz or precise computation of the S(q,ω)

for a 3D system containing more than a few thousand particles is for now out of reach. To compute

dissipation at lower frequencies, and thus longer time scales, analytical models are used such as

the TLS model which will be implemented in Chap 6.

2.2.2 Energy Dissipation in Oxide Glasses

While the source of energy dissipation in crystals can be traced back to crystalline defects [165],

dissipation in oxide glasses can take many forms and may involve diverse phenomena depending

on the temperature and frequency of interest, as pictured in Fig. 2.5.

From the Hz to MHz range, the frequency range of interest for many applications, dissipation

in glasses arises from the attenuation of mechanical waves through their interactions with

double-well potentials, understood through the framework of the Two-Level System model (TLS

model) [91, 92, 142]. In the TLS model, the complexity of the PEL is represented as a distribution
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of local double-well potentials of different asymmetry, Δ, and energy barrier, V. The dynamics of

these double-well potentials is either: (1) Thermally controlled, at higher temperature (above

a few Kelvin). In this temperature regime, the TLSs are referred to as thermally activated

relaxation (TAR) since the transition from one well to the others is thermally activated. (2)

Controlled by tunneling, below 10 K. If the kinetic energy is not sufficient for the system to hop

above the energy barrier, atoms or group of atoms can tunnel through it.

When a mechanical wave passes through a glass, the solid is locally stretched or compressed which

changes the relative positions of the atoms and therefore deforms the PEL. This deformation

puts the TLSs out of equilibrium by changing the difference of energy, Δ, between the initial and

final states. Since a relaxation time is needed for the system to respond to this energy change

and come back to equilibrium, a lag appears between the mechanical wave and the response of

the system. This lag is at the origin of dissipation.

In SiO2 glasses, numerous studies aimed to quantify low frequency energy dissipation and expose

the TLSs at its origin. As represented in Fig. 2.6, these works showed that dissipation in SiO2

(solid and open circles) presents a plateau in the quantum regime, between 0.5 and 10 K while

above 10 K, the majority of dissipation is due to TAR. A maximum of dissipation of Q−1 ≈ 10−3 has

been observed at around 50 K before a drop of several orders of magnitude reaching Q−1 ≈ 10−7

at 300 K [95, 32, 106]. Atomic motion that could be at the origin of dissipation where identified

in simulations by Reinisch et al. as oxygen centered displacements [146]. However this study

focused on the quantum regime, thus the TLSs playing a role at room temperature have yet to be

treated. In the present manuscript, TLS acting at room temperature will be studied in details in

Chap. 6. It is important to note that the measurements presented in Fig. 2.6 have been carried

out on bulk vitreous silica glasses. When deposited, for example with Ion Beam Sputtering (IBS)

at low temperature, SiO2 shows a lesser degree of relaxation. In IBS SiO2 glasses, the study of

dissipation showed from 10 to 300 K an almost constant plateau at 3 ·10−3 with three maxima

at 25, 160 and 250 K [123]. As IBS SiO2 is less relaxed than its vitreous counterpart, it is more

likely to present the same defaults than observed in numerical glasses quenched at high rates.

At higher frequencies (>GHz), dissipation in glasses arises from the attenuation of collective

vibrational excitations [193, 125, 12], studied through the S(q,ω) as explained in the previous

section. We saw in Fig. 2.4, that at low wave vectors (below 1-3 nm−1 in amorphous silica [85, 11,

110]), the spectrum of S(q,ω) shows a peak at a well-defined frequency. A sharp peak indicates a

regime where the glass supports propagating vibrational modes, similar to crystalline phonons,

but with a damping related to the finite width of the peak. For wave vectors larger than a few

nm−1, glasses exhibit a strong damping with an attenuation increasing rapidly with frequency:

Γ∝Ωα, with α∼ 4 in 3D seen in both experiments [66, 154, 11, 62] and MD simulations [162,

76, 133, 120, 43, 110]. Recently, a study revised these experimental data and used atomic
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Figure 2.6: Internal friction for different amorphous solids. Dissipation for silica is measured at
100 kHz below 100 K (solid circles) and at 1.5 MHz above 100 K (open circles). Figure reproduced
from Ref. [188].

scale simulations to identify a logarithmic correction: Γ(q) = −qd+1 ln q [71]. In this regime,

damping is mainly of harmonic origin and is controlled by the structural disorder in the glass

[45, 157, 158, 43]. More specifically, the acoustic vibrations undergo a Rayleigh type of scattering

by the elastic heterogeneities in the glass that are correlated on the same nanometer scale as

the wavelength of the acoustic vibrations [180, 191, 69, 198, 178, 120]. As a result of this strong

scattering, the phonon mean free path, calculated as l ∝ 1/Γ, decreases rapidly with frequency and

becomes comparable to the wavelength of the vibrations. This equality between the wavelength of

the vibrations and the mean free paths marks the limit between a regime where the propagation

of energy is ballistic and a regime where it is diffusive. This limit is called the Ioffe-Regel (IR)

limit and is reached when Γ=Ω/π [89]. Above this limit, the notion of phonon with a well-defined

wave vector is inapplicable [8, 22]. In amorphous silica, the IR limit is reached at around 1∼1.5

THz in both experiments and simulations [183, 163, 132, 11, 171, 22, 100, 110]. Interestingly,

this region of strong damping is also the region leading to the boson peak [57, 31, 24, 55] that

is also believed to originate from disorder. More details on dissipation at high frequency will be

given in Chap. 5.

As illustrated in Fig. 2.5, there is an intermediate anharmonic regime, in the GHz frequencies,
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where dissipation originates from a phenomenon called Akhiezer damping [4]. The theory is that

when a solid is under loading, the eigenfrequencies it carries are slightly shifted in frequencies

as the load deforms the solid. These shifts vary between the different eigenfrequencies as all

eigenfrequencies are not affected in a linear manner. As a result, there are phonon-phonon

relaxations through which the thermal energy is re-distributed between these new eigenvalues.

This phenomenon will not be discussed in the rest of this manuscript, although it is an area of

clear interest not thoroughly studied so far [25, 61, 98, 33].

2.2.3 Thermal Noise in Gravitational Waves Detectors

As mentioned in Introduction, applications in which dissipation plays a major role are gravi-

tational wave (GW) detectors. As seen in Fig. 2.7, the source of dissipation in a GW detector

are numerous as expected from the complexity of the device. The major sources are in order of

increasing frequency : (1) Thermal noise, that is energy dissipation taking place in the coatings

of the mirrors, (2) Angular control noise, arising from noise in the optical levers and wavefront

sensors, (3) Suspension actuation noise, coming from dissipation within the suspension element

of the mirrors [79], (4) Gas noise, that is the damping due to the friction with air or interaction of

the beam with gas, (5) Quantum noise as the sum of the quantum radiation pressure noise, due

to vacuum fluctuations, and shot noise [38], (6) Dark noise, due to thermally generated electrons

flowing through the photodetectors.

We will focus here on the thermal noise, (1), coming from the mirrors coated with oxide-based

glasses on which the laser is reflected. These coatings are as of today multi-layers of tantalum

pentoxide glasses (Ta2O5) and silica (SiO2) as shown in Fig. 2.8. These two materials were chosen

for the contrast between their refractive indices leading to a very large reflectivity for the Bragg

mirrors. While at room temperature at which LIGO and Virgo operate, SiO2 presents a low

of dissipation at Q−1 ≈ 10−7 shown in Fig. 2.6, the losses registered in Ta2O5 are Q−1 ≈ 10−4.

Thus, it would be interesting to reduce the losses coming from this second glass. Recently, it

has been discovered that doping Ta2O5 with TiO2 leads to a reduction of internal friction in

the range of frequencies of interest for GW detectors [121, 37, 74, 18]. However, the origin of

this reduction remains obscure. Moreover, while the structure of silica is well-known, that of

Ta2O5 and TiO2-doped Ta2O5 glasses remains unclear. Experimental works have studied the

MRO of Ta2O5 and its changes with the addition of Ti, and showed that doping impacts the MRO

in a limited manner [17]. It should be emphasized that tantalum oxide glasses are of interest

outside the field of GW detectors. For instance, they have recently been mixed with alumina to

produce extremely strong glasses with excellent optical properties [149]. Tantalum oxides are

also traditionally used in electronics due to their electric and dielectric properties [112].
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Figure 2.7: Summary of the sources of noise for the LIGO Livingston Observatory at low frequency
on top and LIGO Hanford Observatory at higher frequency on the bottom. Figure reproduced
from Ref. [124].
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Figure 2.8: TEM micrographs of a thin film Ta2O5/SiO2 multilayer. Figure reproduced from
Ref. [201].

2.3 Conclusion & Scope

We saw that numerous works have been dedicated to oxide glasses such as SiO2 and Ta2O5 but

also, more generally, to the study of dissipation in glasses. These studies showed that dissipation

has multiple sources, in part due to the complex multi-scale organization of glasses. Despite these

efforts, the origins of dissipation in the different frequency ranges and at different temperatures

are not fully understood and several issues and questions emerge from the above review:

(1) There is a lack of dissipation measurement in SiO2 in the frequency and temperature range

of interest for applications such as GW detectors. Many studies focused on low-T to understand

the quantum regime and thermal anomalies present in glasses such as the above-mentioned

plateau in dissipation [87, 91]. While others investigated dissipation at frequency >MHz where

phenomena such as Akhiezer damping or Rayleigh scattering are, in addition to TARs, a source

of dissipation [193, 106, 47]. The reason for this limited amount of measurements is probably

the sensitivity required to follow closely the drop from Q−1 ≈ 10−3 to Q−1 ≈ 10−7 seen between

50K and 300K. Experimentally, the sensitivity is limited by losses coming from the experimental

apparatus (and O-H impurities in the case of SiO2) that contribute more to dissipation than SiO2

itself [67]. In addition, the origin of this drop is not inderstood and it would be interesting to

measure dissipation numerically and see if the maximum seen at 50 K and the drop that follows

can be reproduced and explained.

(2) As experimental measurements are spatially averaging the properties of glasses, it is not yet

possible to probe individual TAR and observe the atomic motion corresponding to a single event.

However, these elementary mechanisms can be reproduced and observed using numerical tools,
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therefore it would be interesting to observe to which elementary motions the TARs present in

SiO2 correspond and identify which of these TARs contribute significantly to dissipation.

(3) Still due to the averaging properties of experimental techniques, many hypotheses were used

to take into account the wide variety of TARs present in glasses when fitting the TLS model

to attenuation data. These approximations are mostly used to simplify the complicated link

existing between the asymmetry of TLSs and the height of their energy barriers. For example, by

considering that all TLSs are symmetric at low energy barriers [28, 193], that the asymmetry

can be linked to the energy barrier through a polynomial function as in the Soft Potential

model [94, 193], that the distribution of Δ and V are uncorrelated [188, 78] or simple function

of temperature [187]. Even in numerical simulations, the use of hypothesis such as averaging

the sensibility to the deformation of the TLSs was needed to overcome the limited statistical

distribution obtained on small numerical systems and obtain dissipation curves in agreement

with experimental measurements [78]. This raises the question of knowing if a reasonable value

of dissipation can be obtained numerically without making assumptions in the application of the

TLS model.

(4) At high frequency, above the IR limit, S(q,ω) shows a very broad peak, which results from

the convolution of several excitations that cannot technically, nor should theoretically, be fitted

as a damped harmonic oscillator (DHO), as recently mentioned in the conclusions of Refs. [29,

41, 13, 110]. To overlook this limitation gives improper values for dissipation. Then, how can

we describe dissipation in glasses above the Ioffe-Regel limit where phonons are ill-defined and

which happens to often be a region of high dissipation where the equivalence between Eq. 2.1

and 2.3&2.5 does not hold ?

(5) Doping Ta2O5 with TiO2 leads to a reduction of dissipation at room temperature. However, the

origin of this reduction remains unclear, even if recent works have shown the changes undergone

by the MRO of Ta2O5 when doped with TiO2 [189]. Atomic-scale models have been produced

using first-principles [18] and empirical potentials [189], but the systems were small (<2,000

atoms) and the quenching rates used to produce the glasses from the liquid phase were very high

(1013 K.s−1). Therefore, a complete analysis of the poperties of large well-relaxed numerical glass

of Ta2O5 and TiO2 doped Ta2O5 are needed.

The present manuscript delves into these issues using equilibrium and non-equilibrium molecular

dynamics applied to models of amorphous SiO2, Ta2O5 and TiO2-doped Ta2O5. The question

of dissipation is addressed numerically and theoretically at the two extremes, low and high

frequencies, as they are the two frequency ranges that can be reached using molecular dynamics.

During this whole study, we made sure to use multiple large simulation cells to reach statistical

significance. In addition, we privileged quenching rates as low as computationally possible to

obtain glasses whose structures are as relaxed as possible.
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NUMERICAL METHODS

3.1 Molecular Dynamics

Molecular dynamics (MD) is the main numerical method used in the present study and the

following sections will detail the technical elements implemented in the present MD code. The

goal of MD is to predict the time trajectory of ensembles of atoms in interaction [7, 68]. In MD,

time is discretized and at each time step, usually of the order of a femtosecond, the forces between

atoms are computed from interatomic potentials. The displacement of each atom is then computed

by solving Newton’s equations of motion using a finite difference algorithm. In the present MD

code, we will use the Velocity variant of the Verlet algorithm which calculates the position, r, and

velocity, v, in a staggered way through the use of an intermediary velocity v′:

v′ = v(t)+ dt
2m

F(r(t))(3.1)

r(t+dt) = r(t)+dtv′(3.2)

v(t+dt) = v′ + dt
2m

F(r(t+dt))(3.3)

One could expect higher order algorithms such as Runge-Kutta methods to be more precise

than the O (dt4) of the Verlet algorithm. However, unlike the Runge-Kutta methods, the error of

the Verlet algorithm does not grow systematically on a large number of steps. In addition, the

Verlet algorithm is time reversible and preserves the volume in the phase space of the system

(symplectic integrator) [77].
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3.1.1 Temperature constraints

When performing MD, it is common to impose constraints on the system to obtain a given

temperature (T) or pressure (P). Computations are mostly carried out in the Microcanonical

(NVE) and Canonical (NVT) ensemble in which entropy and free energy are the thermodynamic

potentials. In an equilibrium MD simulation, integrating the equations of motion insures the

NVE ensemble. But, in situations where mechanical energy is transformed into heat (e.g. when a

deformation is applied), it may become necessary to control the resulting increase in temperature.

To do so, a thermostat is used.

In the present work, three thermostats were implemented: the Andersen thermostat based on

re-setting the velocity of a fraction of the atoms from a Maxwell distribution each n time step, the

Nose-Hoover thermostat where a virtual mass determines the strength of interaction between

a bath at the wanted temperature and the system and finally, the Langevin thermostat. This

last thermostat is based on the stochastic Langevin dynamics and aims to mimic the interaction

of the atoms with a bath composed of smaller particles having the desired temperature. This is

done through the addition of two terms to the equations of motion:

mr̈ = F −mγṙ+Fth.(3.4)

The second term on the RHS, mγṙ, where γ is referred to as Langevin friction and has the unit of

a frequency, describes the friction that the atoms sustain when moving through the bath. The

third term, Fth, is a random force whose correlation time is infinitely short (white noise). It

represents the collisions between the atoms and the numerous particles constituting the bath,

each collision changing slightly the momentum of the atoms. The Langevin friction, γ, is related

to the white noise, Fth, through the fluctuation-dissipation theorem [97] such that:

(3.5) 〈Fth(t).Fth(t′)〉 = Aδ(t− t′),

where

(3.6) A = 2mγkbT.

The use of the Langevin thermostat presents an interest over the Andersen or the Nose-Hoover

thermostats as it allows the development of analytical calculations from the equations of motion

(as it will done in Appendix A).
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Figure 3.1: Schematic representation of periodic boundary conditions in 2D. The particle A in the
original cell interacts with the particle B via its image B’ due to the PBC.

3.1.2 Periodic Boundary Conditions

In the present study, we will consider 3D parallelepipedic cells of length L of the order of a

few nanometers containing a few thousands particles. In such small systems, the boundaries

represent a large part of the sample, and the surface properties dominate the properties of the

bulk glass. In order to avoid surface effects, we used periodic boundary conditions (PBC) in the X,

Y and Z direction. PBC are used to simulate an infinite system formed by the repetition in space

of the original cell as represented in Fig. 3.1. At every time step, the position of all particles is

brought back in the initial cell through the transformation:

ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ri, if 0< ri < L

ri −L, if ri > L

ri +L, if ri < 0

(3.7)

To compute the vector between particles, the minimum-image convention is used:

ri j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r j − ri, if − L
2 < r j − ri < L

2

r j − ri −L, if r j − ri > L
2

r j − ri +L, if r j − ri <−L
2

(3.8)
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A particle at the border of the cell will interact with particles at the opposite of the original cell

as if they were close to it, as represented by the atoms A and B′ in Fig. 3.1.

Under PBC, the original cell acts similarly to the primitive cell of a crystal due to its virtual

repetition in space. It is therefore important, when studying glasses, to consider a system "large

enough" because if the system contains less than a hundreds of atoms, the amorphous solid

surrounded by its virtual images will present the properties of a crystal (e.g. define peaks at

long-range in the pair distribution function). This is especially true for compounds presenting

large primitive cell such as crystalline Ta2O5 [113, 83].

3.1.3 The SLLOD Equations of Motion

A MD simulation in which an external field is applied to the system is referred to as a Non-

Equilibrium Molecular Dynamics (NEMD). In the case of a displacement field, the basic Verlet

algorithm cannot be used since it does not account for the displacement added to the trajectories

by the field. A set of equations, referred to as SLLOD equations, has been developed to integrate

the equation of motion in this case [7, 58]:

ṙ = p
m

+ r∇u(3.9)

ṗ = F − p∇u,(3.10)

where r and p represent the position and momenta vector in the laboratory reference frame. ṙ is

the time derivative of the position, but is not strictly v as can be seen from Eq. 3.9. u is referred

to in the liquid community as the streaming velocity (such as in a laminar flow) and represents

the deformation field applied to the solid. Therefore, r∇u, in the first equation, describes the drag

motion atoms undergo due to the imposed displacement field while p∇u, in the second equation,

expresses the additional momenta carried by the atoms due to the external field.

In the present study, only strain fields will be used through changes of the cell size and shape as,

for example, in the case of hydrostatic deformation. In this context, the SLLOD equations will be

written

ṙ = p
m

+ ε̇r(3.11)

ṗ = F − pε̇−γp+Fth,(3.12)

where ε is a deformation tensor (in the case of a hydrostatic deformation, only the diagonal term

εxx, εyy and εzz are none zero). As mentioned in the previous section, an imposed deformation

will induce a heating of the system that is controlled, in the present study, with a Langevin

thermostat of frequency γ. From this set of equation, a second-order differential equation of
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motion can be obtained. Indeed, deriving Eq. 3.11 with respect to time, we obtain

(3.13) ṗ = mr̈−mε̇ṙ−mε̈r.

Then, replacing p and ṗ in Eq. 3.12 gives the equation of motion that will be integrated in

Chap. 5:

(3.14) mr̈ = F +mr(ε̈+ ε̇2)−mγ(ṙ− ε̇r)+Fth.

The term mrε̈ is the acceleration due to the drag motion while (ṙ− ε̇r) is the velocity in the moving

frame of reference, showing that the thermostat takes properly into account the velocities due to

the deformation. In the rest of the present study, only deformations of small amplitude will be

imposed, therefore the second order term mrε̇2 is small and will be ignored.

When performing analytical calculations in the harmonic approximation for a solid under defor-

mation, we will encounter the need to compare the position of an atom ri(t) to its equilibrium

position Ri. However, under deformation, Ri refers to a position in the undeformed cell while

ri(t) refers to a position in the cell under loading ε(t) (and thus of different size L(t)). This creates

an issue when computing distances using the minimum image convention . To overcome this

limitation, we will define the position of an atom i as the sum of two terms:

(3.15) ri(t)= (1+ε(t))Ri + xi(t).

where Ri represents the equilibrium position of atom i in the initial undeformed cell while xi(t)

is the non-affine displacement in the current cell. In the harmonic approximation, we will express

the quantities (force and energy), considering only difference between different atoms in their

reference positions (Ri j = R j −Ri) and non-affine displacements (xi j = xj − xi) (more details will

be given in Chap. 5).

3.1.4 Interatomic Potentials

In order to use the Verlet algorithm described above, the forces present in-between atoms have

to be known. In classical MD, these forces are computed using empirical or semi-empirical

potential functions that take as input the position of the atoms. The constant parameters of

the potential functions are fitted on ab initio calculations or experimental data such as pair

distribution functions, angle distributions and elastic constants [7]. The systems obtained using

these potentials are simili systems that are approximations of the original medium. The most

generic of these potentials is the Lennard-Jones pair potential used to describe Van der Waals

interactions in neutral systems. A slightly more complex potential, that will be used in the rest
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of the present study, is the van Beest, Kramer, and van Santen (BKS) potential. This potential

was developed in 1990 to describe silica and aluminophosphates and is based on both ab initio

simulations and experimental data [194]. In its original form, it reads:

(3.16) V (ri j)=
qi q j e2

ri j
+ Ai j exp(−Bi jri j)−

Ci j

r6
i j

,

The first term represents the Coulomb interaction between atoms i and j carrying the fractional

charges qi and q j respectively. The second term represents the short-ranged Pauli repulsion

and the third represents the attractive van der Walls interaction, these last two terms being

known as the Buckingham potential. A known drawback of using the classic form of the Coulomb

interaction, is its slow convergence as we consider interactions between an initial atom and

atoms further and further away. In addition, the Coulomb term decreases in 1/r and the sum of

long range interactions can diverge in charged systems [7]. A solution to the slow convergence is

known as the Ewald summation technique [59], where the sum of all Coulombic interactions is

decomposed into a real space and a Fourier part. However, we will prefer here another method

less computer intensive, called the Wolf truncation, proposed by Dieter Wolf in Ref. [204]. The

Wolf truncation approximates the Coulomb interactions as:

1
ri j

=

⎧⎪⎨
⎪⎩

(
1

ri j
− 1

rcw

)
+ 1

r2
cw

(r− rcw), if r < rcw

0, if r > rcw

(3.17)

where rcw is a cut-off for the Coulomb interaction. For SiO2, values as small as rcw = 10.17 Å are

enough for this approximation to give good results [34]. The Wolf truncation can be understood

physically as the screening of distant charges by the closest ones. We estimate that, although

the present systems are relatively small, our implementation of the Wolf truncation allows to

gain about a factor 2 compared to the Ewald summation. In addition, it leads to analytical pair

potentials, which simplifies the computation of Hessian matrices.

To further optimize the potential, we used the smoothing function and additional repulsive parts

proposed by Carré et al. [34] and already employed in Refs. [118, 96] to model SiO2 glasses. The

smoothing function allows to use a short cut-off for the close range interactions by making sure

that the potential goes smoothly to zero as r → rc. For SiO2, rc was set to 5.5 Å. The additional

repulsive parts at small range (r < rc,Rep) make sure that the atoms do not collapse together at
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Ai j (eV) Bi j (Å−1) Ci j (eV.Å6) rc,Rep (Å)
O-O 1388.773 2.7601 175.0 1.75
Si-O 18003.7572 4.8733 133.5381 1.27
Si-Si 872360308.1 15.221 23.299907 0.0

Table 3.1: Values of the parameters for the BKS potential used to model glassy SiO2.

high pressure or high temperature. With these two additions, the BKS potential reads:

V (ri j) = Vcoul(ri j)+VBuck(ri j)+VRep(ri j)(3.18)

Vcoul(ri j) = qi q j e2
[(

1
ri j

− 1
rcw

)
+ 1

r2
cw

(r− rcw)
]

Gcw(ri j)(3.19)

VBuck(ri j) =
[

Ai j exp(−Bi jri j)−
Ci j

r6
i j

−
(
Ai j exp(−Bi jrc)− Ci j

r6
c

)]
G(ri j)(3.20)

VRep(ri j) =
(Di j

ri j

)12
+Ei jri j +Fi j(3.21)

where

Gcw(ri j) = exp
(
− γ2

cw

(r− rcw)2

)
(3.22)

G(ri j) = exp
(
− γ2

(r− rc)2

)
(3.23)

The parameters used to model SiO2 can be found in Tab. 3.1 while D, E, F are adjusted on the

first and second derivatives of the potential to be continuous when r → rcw. The potential energy

as a function of ri j for this set of parameters and a cut-off at rcw = 10.17 Å can be seen in Fig. 3.2.

Other potentials exist to describe SiO2 such as Tersoff potential based on the concept of bond

order [185], the fluctuating charge potential with a Morse stretch term for the short-range

interactions proposed by Demiralp, Cagin, and Goddard (DCG) [46], and a polarized force field

proposed by Tangney and Scandolo (TS) [177]. Despite its weakness in the reproduction of the

vibrational density of states (especially in the quartz phase) and thus thermal conductivity [205],

the present BKS potential reproduces accurately the structure of amorphous SiO2 [169] and is

less computer intensive than Tersoff potential. The simplicity of its form and convenient extension

to other oxide glasses made us choose this potential as a unifying scheme for the present study.

To model Ta2O5 and TiO2 glasses, we used a modified version of the above mentioned BKS

potential that includes an additional Morse term proposed by Trinastic et al. in Ref. [190] to
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Figure 3.2: BKS potential for SiO2 as a function of ri j using the parameters of Tab. 3.1. The inset
shows a close up of the region around rcw = 10.17 Å.

represent the covalent interactions between Ti-O and Ta-O:

V (ri j) = Vcoul(ri j)+VBuck(ri j)+VRep(ri j)+VMorse(ri j)(3.24)

VMorse(ri j) = Hi j
(
1−exp

(−ai j(ri j − Ii j)
))2(3.25)

The parameters used to model Ta2O5 and TiO2 are reproduced from Ref. [190] and presented in

Tab. 3.2. They were obtained by fitting crystal lattice parameters and elastic constants. Titanium

oxide contains four-folded Ti atoms in the rutile, anastase and brookite crystalline forms but

are five- or six-folded in amorphous TiO2. Thus, two sets of parameters exist to model Ti-O

interaction. In the present study, the set of parameters promoting five- and six-folded atoms was

chosen, in agreement with experimental results showing that Ti atoms have similar coordination

as Ta atoms in amorphous Ta2O5-TiO2 [17]. After thorough testing, the cut-off radius of the

potential, rcw was set to 15 Å, larger cut-offs leading to similar glass structures. The cut-off of

the short-range of the potential was set to 5.5 Å, giving an equilibrium density consistent with

experiments, as will be mentioned in Chap. 4. The resulting potential energy curve can be seen

in Fig. 3.3.
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Ai j (eV) Bi j (Å−1) Ci j (eV.Å6) rc,Rep (Å) Hi j (eV) ai j (Å−1) Ii j (Å)
Ta-O 10067.01 7.5815 6.05 0.4308 0.3789 1.6254 2.5447
Ti-O 5505.12 4.4385 20.0 0.87 0.5478 1.9 1.96

Table 3.2: Values of the parameters for the M-BKS potential to model Ta2O5 and TiO2 glasses.

Figure 3.3: M-BKS potential for Ta2O5 and TiO2 as a function of ri j using the parameters of
Tab. 3.2. The inset shows a close up of the region around rcw = 15 Å.

3.2 Synthesizing Glasses

As mentioned in Sec. 2, glasses result from the rapid cooling of a melt, a cool down so fast that it

does not give enough time for the atoms to form an energetically optimal arrangement (ultimately,

the crystal positions). Since the structure of glasses is not based on a unit cell, we have a priori

no idea of how the atoms should be ordered to obtain a glass. To overcome this limitation, the

simplest solution is to mimic nature and start from a melt. To create a melt, it is sufficient to place

atoms at random in the simulation box with the desired density and stoichiometry. A random

placement of the atoms will result in a high potential energy quickly transformed into kinetic

energy sufficient to melt the system. It is also possible to start from the crystalline structure of

the compound if it exists; however, considering the high starting temperatures in the present

study (until 15.000 K during the first time steps), it does not present any advantage compared to

the random placement since all previously existing structural correlations would be lost in the

melting process. The second step is to cool down the melt fast enough to avoid crystallization.

Fortunately, the time scales reached in MD allow only quench rates going from 1015 to 109 K/s
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Figure 3.4: Potential energy of the underlying inherent structures during the quench of SiO2
melts from 5000 K to 0 K at four different quenching rates. The SiO2 melts contain 3,000 atoms
for a cell size L = 34.77 Å.

at best. These are several order of magnitudes faster than the fastest quench rate produced

experimentally ( 105 K/s [50]) and almost always fast enough to avoid crystallization (except for

mono-atomic LJ systems).

In the present study, all samples were generated following this method. Starting from a melt

containing several thousand particles, the system is cooled down to 0 K using a thermostat at

a constant quench rate. For some simulations, the cell size was also dynamically adjusted to

maintain zero internal pressure during cooling and obtain the equilibrium density of the potential.

When the temperature of the system is about to reach 0 K, the energy of the system is minimized

using damped dynamics to ensure that the system is in an IS. This minimization is performed by

running a standard NVE simulation where the velocities are set to zero whenever the sum on all

the atoms of�v ·�F < 0, that is, each time the system ascends the PEL. The minimization continues

until the sum of the atomic forces passes under 10−4 eV/Å.

Fig 3.4 represents the potential energy of a SiO2 system minimized at regular intervals (to

ensure that the system is in an IS) during cooling. This figure shows that when the temperature

decreases, the potential energy decreases also until the system gets trapped in a basin from which

it cannot escape due to its lack of kinetic energy [160]; this regime can be seen by the almost

constant energy at low temperature and is dominated by thermally activated relaxation that

will be the point of interest of the next section. The quench rates were varied from 1014 K/s to

1011 K/s, slower quenching allowing to go deeper in the PEL, reaching less energetic states. The
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decrease of energy at 0 K with the lowering of the quenching rate is due to the better ordering of

the atoms as they are given more time to rearrange. For example, in SiO2 glasses, it is common

to find five folded Si atoms when the system is quenched at 1014 K/s whereas they are very rare

at 1011 K/s.

3.3 Exploring the Potential Energy Landscape

In a disordered system, one has a priori no knowledge about the structure of the PEL around

the current IS. The only information available at an IS is its potential energy and the Hessian

matrix whose eigenvalues give the curvature in the 3N directions of the PEL. The first step to

explore the PEL is to leave this initial IS to find the energy barriers and new IS surrounding it.

To do so, two different methods were used.

3.3.1 Finding new inherent structures using Molecular Dynamics

The first technique consists in using MD to generate thousands of trajectories at constant

temperature starting from a known IS, hoping to see thermally activated events during the

time of the simulations. To generate a trajectory, random velocities are assigned to the atoms

at t = 0 before the system is let to evolve at constant energy. Along each trajectory, the energy

is minimized every 40 fs (40 time-steps) and the current IS is compared to the initial IS. If the

system is back in the initial IS, the run continues until a new configuration is obtained or until

the run reaches 10 ps. Once a sufficient number of final configurations are obtained, they are

compared using a distance criterion of 1.0 Å, low enough to eliminate duplicates, giving a list of

unique configurations.

To better visualize the present technique, we represented in Fig. 3.5 the variations in potential

energy of a SiO2 glass during a MD run at constant temperature (300 K). The potential energy

curve is obtained by cloning every 10 time-step the current configuration and minimizing its

energy (after which the original simulation continues at 300 K). The lower plot represents the

norm of the distance between the actual and initial IS, showing that each energy step represents

a change in the atomic positions and thus a change of IS (i.e. change of basin caused by thermal

activation). In the present sequence of jumps, the system explores three different states: the

initial one, and two others that are explored twice each. It is interesting to notice that the system

comes back to its initial state after exploring a more energetic state, possibly because the initial

IS is the lowest energy state in this region of the PEL. Another interesting observation is that

the distance between the initial and current ISs is not necessary correlated with the height of the

energy barrier overcame to be in the current IS. For example, the first transition shows a smaller

barrier than the third, but larger atomic displacements.
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Figure 3.5: Upper curve: time evolution of the potential energy of the whole simulation cell with
respect to the potential energy of the initial state V0. Lower curve: time evolution of the norm of
the distance vector between the current atomic configuration and the initial one. Both curves are
obtained through a MD run performed at constant temperature (300 K) during which energy is
minimized every 10 fs using a damped dynamic.

The drawback of this technique is that the probability of jumping above a barrier of given energy

is a function of the temperature at which the simulation is run. A temperature too low will not

allow the system to pass any barrier but if one tries to increase the temperature to probe all

surrounding barriers, the system will melt. In addition, as mentioned in Sec. 2, the probability of

passing a barrier of height V is proportional to exp(−V /kbT), as a result, most of the searches

end up passing through the same low energy barriers. However, this method has two strong

advantages compared to the ART method that will be presented next: (1) It follows a physical

dynamics and probes paths in the PEL along which the system goes naturally. (2) As a direct

consequence, it is good for probing low energy barriers and close local minima that influence the

material properties at room temperature and below.

3.3.2 Nudged Elastic Band Method

Once a consequent list of new IS is obtained using MD, we are interested in finding the minimum

energy pathway linking the original IS to the new IS, in order to identify the saddle configuration

and its energy to compute the corresponding energy barrier. To do so, we used the Nudged Elastic
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Value Parameter
51 Number of NEB images

0.01 eV Force threshold for the NEB minimization
1.0 eV/Å Virtual spring constant

5 Number of time step after which the vector normal to
the spring chains is updated

Table 3.3: Parameters of the NEB method used in the present study.

Band (NEB) method [129, 130] through one of its derivative: the Climbing Nudged Elastic Band

(C-NEB) [81]. The NEB method works as follow: n atomic configurations are created as linear

combinations of the initial and final IS. These intermediate images can be seen as regularly

spaced snapshots along the path that the atoms have to follow in order to reach the final IS as

represented in Fig. 3.6. Initially, the linearly spaced images have no reason to be the path of

minimum energy, therefore, an iterative algorithm is used: each of the n images is linked to the

two images surrounding it with virtual springs of stiffness k. Thus, the force acting on each image

comes from these springs and from the inter-atomic forces. The minimization algorithm acts by

moving the images on the PEL in order to minimize both of these forces. To do so, the atomic

forces acting on the images are projected on the normal to the spring chain, in a process referred

to as "nudging". Nudging allows the images to find the path of minimum energy while the springs,

whose forces are parallel to the spring chain, are used to maintain a constant separation between

the images. Once the forces acting on the chain of images pass below a chosen threshold of 0.01 eV,

the images are considered to be on the minimum energy pathway. A drawback of this method is

that most of the time, none of the n generated images end up at the saddle point. To overcome

this limitation, the image with the highest initial energy is selected and the force acting on it is

defined as the force due to the potential with the component along the spring chain inverted. The

force acting on this image is thus biased to climb the PEL until it reaches the saddle point. In

addition, this maximum energy image is not affected by the spring forces as it would drive it away

from the saddle point. The resulting climbing motion gave the name of this method: Climbing

NEB.

The parameters used for the C-NEB in the present study are presented in Tab. 3.3. The number

of images was chosen to have a smooth description of the minimum energy pathway in the PEL

while having an image at the saddle point. The spring constant is chosen rather stiff as to have a

constant separation between images.
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Figure 3.6: NEB method on a system with 2 degrees of freedom. The circles linked by a dashed
line represent the initial images while the ones linked by a continuous line are obtained once
convergence is reached. The saddle point is represented by a green circle. The inset of the right
figure shows the atomic forces Fk

⊥ normal to the chain and the forces of the chain itself Fr
∥ parallel

to the chain. Figure reproduced from Ref. [2].

3.3.3 The Activation Relaxation Technique

The second method we used to explore the PEL is the activation relaxation techniques (ART)

developed in 1996 by N. Mousseau and G. T. Barkema [14, 134], and implemented in the present

work in its more recent version: ART Nouveau [116], which includes the Lanczos algorithm and

curvature calculations. The ART algorithm is a two step process:

(1) The activation step: starting from a known IS, a cluster of atoms is moved along a random

displacement vector, �U , in the PEL, which results in an increase of potential energy. The whole

system is then allowed to relax for a limited number of steps in the hyperplane normal to �U , to

ensure that the system follows the slope leading to a saddle point instead of exploring regions of

high energy. This cycle of displacements along �U followed by short relaxations continues until

the system leaves the initial basin and enters a region where the PEL presents a direction of

negative curvature. In principle, a diagonalization of the Hessian is required to obtain the local

curvatures. However, a full diagonalization at each step would be very computationally intensive.

To solve this issue, ART Nouveau includes the Lanczos algorithm which returns only the smallest

eigenvalue for a fraction of the cost of the full diagonalization, if one accepts a decrease in

numerical accuracy [99]. The second part of the activation step is to move the system in the

direction of the negative curvature until a saddle is reached. To do so, the vector corresponding to

the negative eigenvalue is verified to be in the direction opposite to the atomic forces (ascending

direction in the PEL). This new displacement vector is then followed until the saddle is reached,
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Value Parameter
5 Number of perpendicular relaxation steps during the escape

from the initial basin
5 Number of perpendicular relaxation steps during convergence

to the saddle point
0.125 Size of the step along �U during the escape from

the initial basin
0.025 Size of the step along �U during convergence to the

saddle point
-2.0 Cut-off of the curvature needed to start convergence

2.5 Å Radius of the cluster in which the atoms follow �U
0.1 eV Threshold of the maximum energy relative decrease during

planar minimization

Table 3.4: List of the parameters used for the ART in the present study.

that is, until all atomic forces are below a threshold.

(2) The relaxation step: once at the saddle point, a gentle push (0.025�U) along the direction of

negative curvature followed by damped dynamics leads the system to a new IS. Besides, a push

in the opposite direction is used to verify that the saddle point is also connected to the initial

state and thus check that the system did not stray in the PEL during the activation step.

Despite its initial simplicity, the ART requires the careful tweaking of a large number of parame-

ters summarized in Tab. 3.4. Even after thorough testing, no more than 30% of the searches lead

to the discovery of new minima in the present oxide glasses (in the present study, we explored

the parameter space and settled for the set of parameter presenting the highest success rate).

Most of the failed attempts are due to the system being unable to leave its initial basin, which

happens when during the activation step, the relaxations perpendicular to �U prevent the system

to ascend in the PEL.

The displacements along a randomly chosen vector proposed by ART allow the discovery of

transitions that would be seen rarely in a MD run due to their high energy. However, in our

situation, this is also a drawback since as will be seen in Sec. 6.2, most of these transitions are

too high in energy to play a role at the temperatures we are interested in.

However, the ART method has two advantages compared to the MD technique presented above:

(1) As the initial displacement follows a random direction centered on an random cluster of atoms,

the events have a low probability of being found multiple times. Therefore, ART is efficient at

building quickly a catalog of events. (2) ART provides the atomic configuration at the saddle point

and thus requires the use of the NEB method only if one wants the full minimum energy path

between the initial and final states.
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4
STRUCTURAL AND VIBRATIONAL PROPERTIES OF TA2O5 AND TIO2

DOPED TA2O5

Before diving into the study of energy dissipation, we need to better understand the structure

and vibrational characteristics of oxide glasses since these properties are at the root of energy

dissipation at high and low-frequencies. Of the two glasses we will consider in the present study

(SiO2 and Ta2O5), only SiO2 glasses have been properly studied and described. In addition, as

mentioned in Chap. 2, the doping of Ta2O5 with TiO2 seems to lead to a reduction of dissipation,

linked to changes in the structure of the glass. Therefore, the present chapter will be dedicated

to the study of Ta2O5 numerical glasses and the impact of TiO2 doping on their structural and

vibrational properties. Comparing our results with experimental data, we will verify the realism

of the pair potential and propose a reinterpretation of the Raman spectra of amorphous Ta2O5.

This chapter is organized as follow: the details of the simulations and the structural characteriza-

tion are given in Sec. 4.1, while Sec. 4.2 presents the vibrational properties and compares the

vibrational spectra of numerical glasses with experimental Raman measurements.

4.1 Structural Characterization

Five series of 10 samples corresponding to pure Ta2O5, Ta2O5 doped with 20% TiO2, Ta2O5

doped with 50% TiO2, Ta2O5 doped with 75% TiO2 and pure TiO2 were generated by cooling

high-temperature liquids containing in average N = 4,700 atoms at a constant quench rate from

7,000 K to 0 K. During cooling, the cell sizes were dynamically changed in order to maintain zero

internal pressure. Each quench was followed by an energy minimization, which continued until

the maximum atomic force passed below 10−4 eV/Å. For all simulations, we used an Andersen
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TA2O5

Figure 4.1: Pair distribution function in amorphous Ta2O5. The inset shows a small section of a
sample, with the O atoms in red, and the Ta-centered polyhedra in brown.

thermostat with a frequency of 1 THz while the interactions between tantalum, titanium and

oxygen atoms were modeled using the M-BKS potential described in Sec. 3.1.4. As the structure

and vibrational properties are only weakly dependent on the quench rate, we will consider here

only the lowest rate, 7.1011 K/s.

4.1.1 Tantalum Pentoxide (Ta2O5)

We first consider pure Ta2O5 glasses whose sample averaged pair distribution is plotted in Fig. 4.1

and confirms the amorphous structure of the solid. The pair distribution function has a first

maximum at 1.92 Å for Ta-O bonds, 3.76 Å for Ta-Ta bonds and 2.76 Å for O-O bonds. These values

agree with those reported in the latest experimental study [19]: from 1.92 to 1.99 Å for Ta-O and

from 3.14 to 3.88 Å for Ta-Ta. The average final density on the Ta2O5 samples is 7.96 g/cm3 at

0 K, slightly higher than the few experimental densities obtained in thin films, which range from

7.68 g/cm3 [18] to 7.32 g/cm3 [109]. However, to our knowledge, no bulk amorphous Ta2O5 has

ever been synthesized and we are not aware of any measurement in TiO2-doped Ta2O5 glasses.

As in the glass structure, all Ta atoms are surrounded by first-neighbor O atoms. We consider here

only the Ta-O first-neighbor pairs, defined using the first minimum of the Ta-O pair distribution

function, to build the nearest-neighbor analysis presented in Tab. 4.1. We see that about 70%

of the Ta atoms are surrounded by six first-neighbor O atoms, forming Ta-centered octahedra
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Tantalum % Oxygen %
Coord. 4 0.5 Coord. 2 69.9
Coord. 5 28.5 Coord. 3 30.1
Coord. 6 69.4
Coord. 7 1.6

Table 4.1: Distribution of average coordination numbers in Ta2O5. Only the first-neighbor Ta-O
bonds are considered, where a pair of atoms are considered first neighbors if their bond length is
in the first peak of the pair distribution function.

as illustrated in the inset of Fig. 4.1. There are about 30% Ta atoms with five first-neighbor O

atoms, forming bipyramids. The stability of the high Ta-coordination, also found in the Ta2O5

crystalline structure [83, 108], is due to the pseudo-covalent term added to the BKS potential

(see Eq. 3.24) [190]. We checked that if this term is removed during quench, tetrahedral networks

typical of silica are obtained [197] .

Looking at the MRO, we observed that about 80% of the octahedra are linked together by a vertex,

about 12% share an edge and 0.5% share a face (two or three oxygen atoms are then shared

between two Ta atoms). Examples are seen in the inset of Fig. 4.1. These structural variations

are required by the stoichiometry, since a composition of Ta2O5 cannot be constructed solely

by vertex-sharing octahedra, which would result in a Ta2O6 composition. This is different from

SiO2, where the local tetrahedral structure is consistent with the glass stoichiometry, leading to

defect-free glasses entirely made of vertex-sharing tetrahedra.

The angular distribution analysis presented in Figs. 4.2 & 4.3 shows that the inside of each

octahedron is ordered, with O-Ta-O angles (inter-polyhedra angles), forming either 90o or 180o

bonds. The distribution drops to 0 near 180o because of the disappearance of the solid angle

in this direction (since the area element dΩ = sinφdθdφ is a function of φ). This artifact can

be avoided by biasing the distribution with the sine of the angle ( f (φ)′ = f (φ)/sinφ), but then

the maxima at 90 and 180o are of similar heights, while we expect the maximum at 90o to be

higher than at 180o since there are 4 times more 90o angles than 180o angles in an octahedron.

The connectivity between octahedra on the other hand is less organized, as shown by the broad

distribution of Ta-O-Ta angles (inter-polyhedra angles), in Fig. 4.3. We checked that the maximum

at 105o is created by O-3Ta (i.e. O atoms with 3 Ta neighbors) and thus the presence of octahedra

sharing an edge with one of the local Ta-O bond stretched due the three-fold configuration of the

O atom. The broad peak between 120o and 180o is formed by O-2Ta and shows that amorphous

Ta2O5 is a network of interconnected octahedra forming a chain-like structure reminiscent of the

structure of crystalline Ta2O5 [83, 174].

Using quasistatic simulations, we computed the Young’s modulus of Ta2O5 through a linear fit on

the mechanical response in traction and found a value of 146.0 GPa, close to the experimental
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Figure 4.2: Angular distribution of the O-Ta-O bonds in Ta2O5 (intra-polyhedron bonds). The
dashed line represents the angular distribution of bonds corrected to take into account the solid
angle disappearance at 180o.

Figure 4.3: Angular distribution of the Ta-O-Ta bonds in Ta2O5 (inter-polyhedron bonds). The
dashed line represents the angular distribution of bonds corrected to take into account the solid
angle disappearance at 180o.
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Tantalum % Titanium % Oxygen %
Coord. 4 1.1 Coord. 4 4.1 Coord. 2 33.9
Coord. 5 27.6 Coord. 5 45.0 Coord. 3 65.0
Coord. 6 68.7 Coord. 6 50.4 Coord. 4 1.2
Coord. 7 2.6 Coord. 7 0.5

Table 4.2: Distribution of average coordination numbers in Ta2O5-TiO2. Only the first-neighbor
Ta-O and Ti-O bonds are considered.

value of 140±15 GPa found by nanoindentation of Ta2O5 thin films [5].

The good agreement between the structures generated here and their mechanical properties,

with the data provided in the limited experimental literature shows that the present modified

BKS potential produces realistic amorphous structures of Ta2O5.

4.1.2 Titanium doped Tantalum Pentoxide (Ta2O5-TiO2)

Next, we focus on the samples containing 20% of Ti. The 10 glasses obtained after quench

for this doping concentration have an average density of 8.00 g/cm3 for a cell size of about

39.0 Å. In Fig. 4.4, the pair distribution functions show similar profiles for the Ta-O and Ti-O

bonds. Considering the representation of the Ta2O5-TiO2 glass in the inset of Fig. 4.4, we see

that the Ti atoms play the same role as Ta atoms, occupying the center of six- and five-folded

polyhedra. However, the first peak of the pair distribution function is slightly sharper for Ti-O

bonds, indicating that Ti atoms produce a more homogeneous first-neighbor structure, as already

reported by Bassiri et al. [18]. The maximum of the pair distribution function is at 1.99 Å for

both Ta-O and Ti-O and 3.74 Å for Ta-Ta, in agreement with the experimental results reported in

Ref. [18]. However the maximum of the pair distribution function is at 3.65 Å for Ti-Ta, which is

slightly larger than the experimental value of 3.29 Å. Looking at the number of nearest neighbors

in Table 4.2, we see that the environment of the Ta-atoms is not much different from Ta2O5 since

the fractions of five- and six-folded polyhedra remain close to 30 and 70 % respectively. On the

other hand, Ti atoms form almost as many five- and six-fold polyhedra. In Ta2O5-TiO2, more

polyhedra share edges and faces as a consequence of the larger fraction of three-folded O atoms

(65.0 % in Ta2O5-TiO2 versus 30.1 % in Ta2O5).

The bond angle distribution for Ta2O5-TiO2 (Figs. 4.5 and 4.6) shows an internal organization of

the Ta- and Ti-centered polyhedra close to that obtained for Ta2O5, with intra-polyhedra angles

mainly oriented at 90o and 180o. However, the distributions are slightly more heterogeneous

than in pure Ta2O5, which is shown by broader peaks at 90o and 180o. A split maximum exists in

the O-Ti-O angle distribution around 90o. Fig. 4.7 represents the angle distribution for Ti-5O and

Ti-6O and reveals that the six-folded Ti atoms contribute evenly between 75o and 90o where the

five-folded ones are responsible for the second maximum at 90o. One could expect a peak at 120o
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TA2O5

Figure 4.4: Ti-O and Ta-O pair distribution functions in Ta2O5-TiO2 (20 % Ti). The inset shows a
small section of a sample, with the O atoms in red, the Ta-centered polyhedra in brown and the
Ti-centered polyhedra in blue.

as most of the Ti are five-folded, however, a visual inspection of the samples, as in the inset of

Fig. 4.7, shows that the oxygens are placed anisotropicaly around the five-folded Ti atoms in such

a way that the O-Ti-O angles are closer to 90o or 180o. The inter-polyhedra Ta-O-Ti, Ta-O-Ta and

Ti-O-Ti angle distributions show two peaks at 100o and 125o. The former was already present in

Ta2O5 and the latter reflects the shift from 30% of three-folded oxygen atoms in Ta2O5 to 60%

in Ta2O5-TiO2. Ta2O5-TiO2 glasses retain a structure of network of polyhedra but the higher

connectivity of the oxygen atoms implies a structure less close to the chain-like structure of

crystalline Ta2O5.

4.2 Vibrational Properties

The vibrational response of amorphous Ta2O5 and TiO2-doped Ta2O5 glasses has not been

reported before. It is important to remind the reader that phonons are not defined in amorphous

materials above the Ioffe-Regel limit, where the notion of wavevector becomes ill-defined [22, 21,

41]. We will prefer the term of vibration.

To obtain the vibrational eigenmodes, we compute the dynamical matrix (also referred to as the

stiffness or Hessian matrix) by taking the second derivative of the analytical expression of the

Wold-truncated modified BKS potential [52, 10]. The matrix is defined from the potential energy
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Figure 4.5: Angular distribution of O-Ta-O and O-Ti-O bonds (intra-polyhedron bonds) in Ta2O5-
TiO2 (20 % Ti).

Figure 4.6: Angular distribution of Ta-O-Ta, Ti-O-Ta and Ti-O-Ti bonds (inter-polyhedron bonds)
in Ta2O5-TiO2 (20 % Ti).
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Figure 4.7: Angular distribution of bonds for 5- and 6-folded Ti atoms in Ta2O5-TiO2 (20 % Ti).
The inset shows a Ti-5O cluster with anisotropic placement of the O atoms around Ti. This
configuration prevents 120o angles that should be expected from a five-folded atom.

Epot of the system as :

(4.1) Dαβ

i j = 1�mim j

∂2Epot

∂xαi ∂xβj
,

where i and j refer to atoms and α and β to directions of space. We performed direct diago-

nalization of the dynamical matrix using the LAPACK package [1], from which we obtain the

3N −3 eigenvectors (discarding the 3 translational modes allowed by the PBC) and their 3N −3

corresponding eigenvalues, which are the square of the vibrational frequencies. Plotting the

frequency distribution of these modes for Ta2O5 and Ta2O5-TiO2, we obtain the vibrational

density of states (VDOS) presented in Figs. 4.8 and 4.9. In addition, we plot the partial VDOS,

which represents the weighted displacements carried by Ta, Ti or O atoms, defined as:

(4.2) V DOS(ω)= 1
3N −3

M∑
i

3N−3∑
n

|en
i |2δ(ω−ωn),

where en
i is the displacement of the ith particle in the nth mode restricted to i being either

Ta, Ti or O atoms, and M the number of the corresponding type of atoms. As seen in Fig. 4.8,

for Ta2O5, the Ta atoms are the main carriers of vibrations at low frequencies (< 6 ∼ 7 THz),

while the O atoms are dominant at higher frequencies. This is coherent with the difference of
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Figure 4.8: Full and partial vibrational density of states of Ta2O5.

mass between Ta (heavier) and O atoms. In Ta2O5-TiO2, the Ti particles carry the displacements

around 8.5 THz, which is between the Ta- and O-dominated ranges of frequencies. Fig. 4.10 shows

the evolution of the VDOS for different Ti compositions. As expected from the partial VDOS in

Fig. 4.9, when the % of Ti atoms increases, the first peak, which arises from the vibrations of the

Ta atoms decreases while the presence of additional Ti atoms add frequencies between 5 and

15 THz. In addition, the O peak at 19 THz is slightly shifted towards higher frequencies.

To characterize the vibrational eigenmodes, we computed the participation ratio (PR), which

expresses the fraction of particles taking part to the motion for a given mode. The PR is defined

as:

(4.3) PR(ω)= 1
N

(
∑N

i=1 ‖�en
i ‖2)2

∑N
i=1 ‖�en

i ‖4
δ(ω−ωn).

For Ta2O5, the PR plotted in Fig. 4.11 shows four different regimes: (1) From 0 to 2 THz, there

is a mix of high PR delocalized modes and low PR modes that correspond to soft modes. The

delocalized modes are plane waves spanning the entire system leading to a wavelength-dependent

high PR. Soft modes are the superposition of delocalized modes of long wavelength with localized

displacements involving only small groups of atoms. These modes are known to be the markers

of imminent plastic deformation (their frequency tends to zero when the system approaches

a plastic event) [179, 117, 151].(2) From 2 to 6 THz, the PR increases slowly from 20 to 25 %
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Figure 4.9: Full and partial vibrational density of states of Ta2O5-TiO2 (20 % Ti).

Figure 4.10: Vibrational density of states in Ta2O5-TiO2 with different % of Ti atoms.
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Figure 4.11: Participation ratio in Ta2O5. Each dot represents an eigenmode.

before dropping down to 14 % at 6.5 THz. This region is dominated by the Ta vibrations and the

relatively low PR is due to the fact that Ta atoms represent only 2/7th of the total number of

atoms. The drop in PR corresponds to the crossover frequency between Ta- and O-dominated

vibrations (see Fig. 4.8), a frequency range where neither the Ta nor the O can carry vibrations.(3)

From 6 to 19 THz, there is a plateau between 30 and 40 % including some modes going as low as

24 %. This regime matches the frequency range where the O atoms carry the vibrations and the

light drop in PR matches the decrease seen in the partial VDOS of O. (4) From 19 to 30 THz, the

PR shows a continuous decay down to 0% at about 30 THz, corresponding to modes more and

more spatially focused. These high-frequency modes are equivalent to optic modes in crystalline

materials [119].

Looking at the PR for Ta2O5-20%TiO2 in Fig. 4.12, we see that the TiO2 doping removes the

drop previously observed at 6 THz. As seen in the partial VDOS of Fig. 4.9, the Ti atoms fill the

vibrational gap in this frequency range. No other significant differences are observed between

the Ta2O5 and Ta2O5-TiO2 spectra.

4.2.1 Interpretation of the Raman spectra of Ta2O5

In absence of experimental data for the VDOS of glassy Ta2O5, we compare our calculations with

experimental Raman data. It should be noted that most interpretations of Raman data [128,

49, 48, 138, 93, 108] are based on an analogy of other oxide compounds such as V2O5 due to
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Figure 4.12: Participation ratio in Ta2O5-TiO2 (20 % Ti). Each dot represents an eigenmode.

the limited knowledge available on the structure of amorphous Ta2O5. The present Raman

measurements were performed on a 15 μm thick glassy Ta2O5 layer deposited through ion beam

sputtering. Spectra were recorded at room temperature with a confocal LabRAM HR Evolution

micro-spectrometer. Measurements were carried out using a YAG:Nd3+ laser line at 532 nm, from

5 to 1500 cm-1 with a 2.5 mW laser power at focal point. A confocal pinhole diameter was set at

75 μm allowing to probe only the thin layer and no its substrate. Fig. 4.13 compares the computed

VDOS with the experimental reduced Raman intensity (i.e. the measured intensity divided by

the thermal population factor n(ω,T)+1 for Stokes scattering). Although the Raman response

provides an indirect picture of the VDOS (through polarizability modulation), the two curves

show good qualitative agreement in terms of their main features and respective intensities.

To identify the atomic origin of the different features of the Raman spectra, we plot in Fig. 4.15 the

partial VDOS for O atoms projected on the rocking, stretching and bending motions illustrated in

Fig. 4.14. For the two folded oxygens, the motion of the oxygen atom for each mode is projected on

three different vectors as done in Refs. [181, 168] for silica. For the three folded oxygens, bond

bending is obtained by projecting the motion of the O atom on a unit vector perpendicular to the

plane of the three Ta neighbors, while the remaining part of the motion is an in-plane vibration,

which corresponds to the stretching of the bond. We did not find an equivalent of rocking motion

for O-3Ta bonds.

The most prominent feature seen in the Raman spectrum of Fig. 4.13 is the band at 20 THz

(∼ 670 cm−1). This band is present in the partial VDOS of Fig. 4.15 at the same frequency
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Figure 4.13: Full vibrational density of states in Ta2O5 (in blue) superimposed with the Raman
spectra of Ta2O5 (in orange).

Figure 4.14: Sketch of O-2Ta and O-3Ta bonds with the vectors used to decompose the bond
deformation into bending, stretching and rocking components.
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Figure 4.15: Decomposition of the vibrational density of states in a Ta2O5 glass onto the rocking,
stretching and bending of O-2Ta bonds, and on the bending and stretching of O-3Ta bonds.

and corresponds to maxima for both O-3Ta bending and stretching, which agrees with former

interpretations of Raman spectra [128, 49, 138]. At higher frequencies, above 24 THz (∼ 800 cm−1),

the Raman spectrum shows a shoulder, also present in the calculated VDOS albeit less extended

towards the high frequency end. According to the partial VDOS of Fig. 4.15, this shoulder is due

to the stretching of O-2Ta, which is again in agreement with the literature [128, 49, 138].

Below 7 THz (∼ 230 cm−1), the Raman spectrum essentially consists of a sharp band peaking

at 2 THz (∼ 70 cm−1), while in this frequency range the calculated VDOS shows a wider dual

maximum. The accepted interpretation of the Raman band below 3 THz is that the vibrations

arise from inter-polyhedra interactions or/and charged clusters [49, 48, 138, 93]. However, Fig. 4.8

shows that from 0 to 5 THz, the vibrations are essentially carried by the Ta atoms that can

be viewed as optical-like modes lying in the low frequency range due to the large mass of the

Ta atoms. This is confirmed by the observation of low frequency narrow bands in the Raman

spectra of crystalline Ta2O5 [93]. Therefore the sharp band observed in the low frequency Raman

spectrum of Ta2O5 does not seem to be linked to inter-polyhedra interactions. Note that the

absence of a double band in the Raman spectrum, unlike the VDOS, can be due to polarization

effects (i.e. Raman selection rules) not accounted for in the VDOS calculations. It is worth

mentioning that the low frequency range near 2 THz (∼ 70 cm−1) is typical of the excess VDOS

(boson peak) for inorganic glasses. However, due to the low-lying optical-like vibrations of the
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heavy Ta atoms, it is impossible to clearly identify a boson peak for Ta2O5 though it may lie

underneath the low frequency bands. A clarification of this matter would require to investigate

lower frequency vibrations (i.e. below 0.5 THz), which is not possible with the present calculations

due to the limited box size of the samples. Note that the slight discrepancy between the VDOS

and the Raman curves observed towards the lowest frequency edge below 2 THz can also be due

to the presence of quasielastic scattering in the Raman signal, which is ascribed to anharmonic

motions that are not modelled by our calculations.

Finally, from 3 to 13 THz (∼ 100-430 cm−1), the Raman spectrum shows a shoulder also seen in the

VDOS, although at slightly larger frequencies. The Raman band at these frequencies is usually

explained by internal O-Ta-O bending, as is the case in similar oxides at these frequencies [49].

The partial VDOS plotted in Fig. 4.15 shows that most of the vibrations in this frequency range

are indeed carried by the bending and rocking motions of O-2Ta, thus in agreement with the

Raman interpretation.

4.3 Summary

In this chapter, we studied the structure of Ta2O5 and TiO2 doped Ta2O5 numerical glasses. We

showed that these materials are formed of chain-like structures of octahedra linked by a vertex,

an edge or a face. We also showed that doping amorphous Ta2O5 with TiO2 does not alter the

glass structure in a strong way as Ti atoms form equally five- and six-folded polyhedra that

perturb but do not break the network of the glass.

Performing a vibrational eigenmode analysis and projecting the eigenmodes on the rocking,

stretching and bending motions of the Ta-2O and Ta-3O bonds, we provide an atomic-scale

analysis that substantiates the interpretations of Raman spectra of amorphous Ta2O5 used to

characterize the short- and medium-range orders in glasses. This eigenmode analysis also reveals

the key role played by Ti atoms in the 5 to 12 THz range.
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5
HIGH FREQUENCY ENERGY DISSIPATION

This chapter will be dedicated to the study of dissipation at high frequency (in the range of THz).

From the point of view of potential applications, the present chapter is not pertinent, as only a

handful of devices work at such high frequencies. However, the interest of the theoretical issue

and the potential repercussion the present work can have in the field of high-frequency scattering

method (notably Brillouin and Inelastic X-ray scattering), where the attenuation of acoustic

vibrations is used to explore the structure of glasses, make it an interesting problem to tackle.

In the THz regime, dissipation comes from the coupling between passing mechanical waves

(ultrasonic sound waves) and the vibrational eigenmodes of the system. However, we saw in

Chap. 2 that studying dissipation in disordered solids through the dynamical structure factor

S(q,ω) is limited to frequencies below the Ioffe-Regel (IR) limit, since above, the spectra at fixed

wave-vector q cannot be fitted by only one damped harmonic oscillator (DHO). To avoid this

limitation, we will implement numerical mechanical spectroscopy to measure directly energy

dissipation. In addition, we will propose an analytical development in the harmonic approximation

to substantiate our numerical experiment and expose the structural origin of energy dissipation

in SiO2 and Ta2O5 glasses.

The details of the simulations are given in Sec. 5.1 while the analytical calculations are presented

in Sec. 5.14. The results of the simulations are compared to experimental data and dissipation

given by the analytical expression in Sec. 5.2. Finally, in Sec. 5.3, we discuss the properties of

dissipation deduced from the analytical expression for SiO2 and Ta2O5 glasses.
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5.1 Methodology

5.1.1 Mechanical spectroscopy

Mechanical spectroscopy was simulated by imposing cyclic deformations to the simulation cell

and following the resulting internal stress to compute the complex modulus as a function of

the loading frequency. This method only considers the first harmonic of the decomposition in

Fourier series of the constraint and therefore requires to be in the linear response regime. In the

following, we mainly consider the case of isostatic deformations. We also performed simple shear

deformations, but they resulted in qualitatively similar results and will only be briefly discussed

in the last sections of the present chapter.

For isostatic deformations, the simulation cell is subjected in the X , Y and Z directions to a

sinusoidal applied strain

ε(t)= ε0 sin(ωt),(5.1)

with a frequency ω/2π varying from 0.1 to 50 THz and an amplitude ε0 = 0.007 chosen such

that the deformation remains elastic in the quasistatic limit. The system is thermostated in

order to dissipate the heat produced during the deformation cycles and maintain a constant

temperature, which was varied from 10 K to 700 K. We compared different thermostats (Andersen,

Nose-Hoover, Langevin) with different strengths but did not find any marked influence on the

computed dissipation. In the following, we will consider a Langevin thermostat, which allows

for analytical calculations developed in Sec. 5.1.3 and limit our study to the high temperature

regime of classical mechanics [15]. Atomic trajectories are integrated using the SLLOD equations

for isostatic tractions and compressions presented in Sec 3.1.3.

The Langevin friction, γ, was varied between 0.1 and 10 THz. Below 0.1 THz, the thermostat is

too weak to maintain a constant temperature and above 10 THz, the forcing is too strong and

affects the dynamics of the glass (the influence of the friction parameter is further discussed

in Sec. 5.2). The time step of the simulations was 1 fs when the forcing frequency was 1 THz

or below. Above 1 THz, the time step was set to 10−3/ω in order to maintain a constant strain

increment per simulation step.

We follow the time-evolution of the pressure P(t), which, in the stationary regime, is a periodic

function of same period as the applied strain, T = 2π/ω, with cycle-dependent fluctuations

illustrated in Fig. 5.1. In the following, we consider the smooth periodic part of the pressure

averaged over multiple cycles (dark blue line in Fig. 5.1):

(5.2) 〈P〉(t)= lim
N→+∞

1
N

N∑
n=0

P(t+nT).
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Figure 5.1: Evolution of the hydrostatic pressure during cycles of isostatic applied strain. The
dashed curves show the instantaneous pressure. The solid curve is the average computed over
250 cycles.

From Sec. 2.2, we know that dissipation is related to the loss angle φ between the pressure,

〈P〉(t)∝ sin(ωt+φ), and the applied strain ε(t):

Q−1(ω) = tan(φ)

= 1
ω

∫T
0 〈P〉(t)ε̇(t)dt∫T
0 〈P〉(t)ε(t)dt

.(5.3)

It is with this formula that dissipation will be computed.

The spectroscopic simulations were performed during 300 deformation cycles, the value of the

energy dissipation usually converging after about 50 cycles, after which the glass enters a

stationary regime where all measurements were carried out.

5.1.2 Harmonic approximation

In order to separate harmonic and anharmonic effects, mechanical spectroscopy was also applied

to harmonic systems, where the interaction between particles was approximated using the

dynamical matrix of the system,

D̃αβ

i j = 1�mim j

∂2E

∂rαi ∂rβj
= 1�mim j

Dαβ

i j ,(5.4)
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where indices i and j refer to atoms and α and β to Cartesian coordinates. The dynamical

matrices were computed, as in the previous chapter, on the equilibrium configurations obtained

after energy minimization. The potential energy, E, was computed using the Wolf-truncated BKS

potential, which is an analytical pair potential and thus yields an analytical expression for the

dynamical matrix.

The potential energy in the harmonic approximation is expressed as

(5.5) E = 1
2

∑
iα jβ

Dαβ

i j (rαi −Rα
i )(rβj −Rβ

j ),

where rαi (resp. Rα
i ) represents the actual (resp. initial) position of atom i. However, as the cell

is deformed, rαi is the position in the current cell of size L(t) while Rα
i is the position in the

initial cell of size L(0). Therefore, computing rαi −Rα
i raises an issue due to the minimum image

convention as discussed in Sec. 3.1.3. To bypass this issue, the potential energy of the system was

approximated as:

(5.6) E =−1
4

∑
iα jβ

Dαβ

i j (rβi j −Rβ

i j)(r
α
i j −Rα

i j)

where rαi j (resp. Rα
i j) is the separation between atoms i and j in direction α in the deformed (resp.

initial) cell, using the minimum image convention to account for the periodic boundary conditions.

The corresponding expressions for the atomic forces and pressure are given in Appendix A.

5.1.3 Analytic expression

The dissipation computed numerically from Eq. 5.3 can be expressed analytically in the har-

monic approximation and linear response regime when a Langevin thermostat is assumed. The

calculations are detailed in Appendix A in the case of isostatic deformations.

In the general case (deformation following an arbitrary strain tensor ε), dissipation is calculated

as the ratio of the imaginary and real parts of the complex modulus, which relates here, to the

Fourier transforms of the periodic applied strain εκξ(ω) to the cycled-averaged internal stress

〈σαβ〉. For that, the cycled-averaged stress in the harmonic approximation is projected on the

normal modes of the glass and expressed as the sum of an affine and non-affine contribution:

(5.7) 〈σαβ〉(ω)= C∞
αβκξεκξ(ω)− 2

V0

∑
m

Cαβ
m 〈sm〉(ω),

where ω/2π is the forcing frequency, sm the mass-scaled amplitude of the mth normal mode

defined in Eq. A.11 and V0 the volume of the reference undeformed cell. The first term in the

RHS of Eq. 5.7 is the affine Born contribution, with C∞
αβκξ

the affine elastic modulus obtained
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when all atoms are forced to follow the macroscopic applied uniform deformation εκξ:

(5.8) C∞
αβκξ =− 1

4V0

∑
i j

[
Dακ

i j Rβ

i j +Dβκ

i j Rα
i j

]
Rξ

i j +
[
Dαξ

i j Rβ

i j +Dβξ

i j Rα
i j

]
Rκ

i j.

The second term in the RHS of Eq. 5.7 is the non-affine contribution, which is expressed as a sum

over the normal modes of the system:

(5.9) Cαβ
m = 1

2

∑
i jκ

[
Dακ

i j Rβ

i j +Dβκ

i j Rα
i j

] eκj (m)
�m j

.

Here, eκj (m) is the component on atom j and direction κ of the mth eigenvector of the mass-scaled

dynamical matrix D̃, with corresponding eigenfrequency ωm.

The temporal Fourier transform of the non-affine displacement, 〈sm〉(ω), is expressed by projecting

the linearized SLLOD equation of motion (Eq. 3.14) on the normal modes of the system (see

Appendix A for details):

(5.10) 〈sm〉(ω)= Cκξ
m

ω2
m −ω2 + iγω

εκξ(ω)

From Eq. 5.7, the resulting complex modulus is thus:

(5.11) Cαβκξ(ω)= C∞
αβκξ−

2
V0

∑
m

Cαβ
m Cκξ

m

ω2
m −ω2 + iγω

,

which involves the response function of the normal modes, 1/(ω2
m −ω2 + iγω), broadened by the

Langevin thermostat through the iγω term (it is interesting to note that this response function

is exactly the linear response function of a DHO). Building on the decomposition of the elastic

constants into affine and non-affine contributions first proposed by Lutsko [114], Lemaître and

Maloney obtained an expression similar to Eq. 5.11 to analyze the visco-elastic response of

disordered solids [105]. The static limit of this expression (ω= 0) was used by these authors and

Zaccone et al. [206] to study the effect of non-affine relaxations on the elasticity of glasses.

In case of isostatic deformations of main interest here, the above equations adopt a more compact

form (see Appendix A for details), with the complex bulk modulus relating to the Fourier transform

of the average pressure 〈P〉(ω) to the applied strain ε(ω):

(5.12) K(ω)= K∞− 2
9V0

∑
m

C2
m

ω2
m −ω2 + iγω

.
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Figure 5.2: Energy dissipation as a function of frequency (ω/2π) in amorphous SiO2 modeled with
the full non-linear BKS potential at three different temperatures. The friction of the Langevin
thermostat was set to 1 THz. The circles are experimental data obtained by fitting the excitation
peak of x-ray scattering spectra with the DHO model [11].

The affine bulk modulus and mode-dependent non-affine term are respectively:

(5.13)

K∞ =− 1
9V0

∑
iα jβ

Dαβ

i j Rβ

i jR
α
i j,

Cm = ∑
iα jβ

Dαβ

i j Rα
i j

eβj (m)
�m j

.

Finally, using Eq. 5.12 and Eq. 2.3, we obtain the expression of the dissipation produced by

isotropic deformations as the ratio of the imaginary to the real part of the complex modulus:

(5.14) Q−1(ω)=
∑

m C2
m

ωγ

(ω2
m−ω2)2+(γω)2

9V0
2 K∞−∑

m C2
m

ω2
m−ω2

(ω2
m−ω2)2+(γω)2

In the next Section, we compare this analytic expression of the dissipation with dissipation ob-

tained using numerical calculations and discuss the physical insights gained from this expression

on the origin of dissipation in glasses.
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Figure 5.3: Vibrational density of states (VDOS) of the SiO2 model. The partial VDOS of the
oxygen atoms is decomposed on the rocking, stretching and bending motions of the Si-O-Si bonds
represented in Fig. 4.14.

5.2 Simulation Results

5.2.1 Full non-linear calculations

The energy dissipation obtained by mechanical spectroscopy in the present amorphous SiO2

system (obtained following the same protocol as in Chap. 4 for Ta2O5) is presented in Fig. 5.2

at three different temperatures. The frequency range broadly covers that of the vibrational

density of states of the glass presented in Fig. 5.3 along with the partial VDOS for oxygen atoms

projected on the rocking, stretching and bending motions of the Si-O-Si bonds (as done for Ta2O5

in Chap. 4). Dissipation is numerically zero below 0.1 THz, increases up to about 1.2 at 12 THz

and decreases back to zero above 27 THz. The three sets of data obtained at 10, 300 and 700 K

are superposed. This temperature independence is a strong indication that, as expected from

previous works [45, 158, 184], dissipation is harmonic in the present range of high frequencies.

The energy dissipation was also computed for a few frequencies on a larger system (24,000 atoms)

to check for potential size effects. Fig. 5.4 shows that the system size do not affect the calculations.

In Fig. 5.2, are also plotted the experimental attenuation data Γ/ω of Baldi et al.[11], obtained

using a DHO fit of the dynamical structure factor of vitreous SiO2. The very good agreement

between the experimental and numerical data below the Ioffe-Regel (IR) limit, Γ/ω= 1/π, confirms
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Figure 5.4: Energy dissipation as a function of frequency in amorphous SiO2 for a small (3,000
atoms) and large (24,000a toms) systems.

the strong connection between the quality Q−1 and attenuation Γ/ω factors. However, we note

that this link is difficult to justify theoretically, even in the harmonic approximation considered

below [139]. In addition, the Ioffe-Regel criterion is defined here from the spectroscopic line-width

Γ and not from the (inverse) propagation lifetime of a wavepacket, the later giving slightly

different values for the corresponding energy dissipation (see Refs. [184, 21]).

We see in Fig. 5.2 that above the IR limit, the experimental data overestimate the numerical

dissipation. This discrepancy might be expected for two reasons. First, as mentioned in Sec. 2.2,

simple models like Zener’s standard linear solid [139], predict that the dissipation and attenuation

factors match only in the limit of low dissipation, while at large dissipation, the attenuation

factor overestimates the quality factor. Second, above the IR limit, the dynamical structure factor

contains several excitation peaks that cannot be fitted by a simple DHO model [35, 12, 41].

5.2.2 Harmonic approximation

To confirm the harmonic origin of energy dissipation in the present range of frequencies, we

applied mechanical spectroscopy to the same sample but with the interactions between particles

described using the dynamical matrix of the equilibrium configuration, as explained in Sec. 5.1.2.

The resulting energy dissipation is compared with the full non-linear BKS calculations in Fig. 5.5.

The very good agreement between both calculations confirms the harmonic origin of dissipation

in this frequency range. We note that at low frequencies, typically below 1 THz, the harmonic
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Figure 5.5: Energy dissipation as a function of frequency computed with the non-linear BKS
potential, the harmonic approximation of Eq. 5.6 and the analytical expression of Eq. 5.14. The
same thermostat friction of 1 THz is used in all calculations.

calculations find a dissipation systematically lower than the non-linear model, an indication that

anharmonic effects may play a role in this region. However, we will see below that dissipation

measurements are strongly affected by the thermostat in this low-frequency regime.

Finally, we compare in Fig. 5.5 the harmonic simulations to the analytical expression computed

from Eq. 5.14. The perfect agreement between both approaches, even in the regions where the

dissipation fluctuates rapidly (e.g. near 10 THz), confirms the validity of the analytic calculations

of Sec. 5.1.3. The expression of energy dissipation in Eq. 5.14 also shows directly that dissipation

in the harmonic regime is independent of the temperature and the strain amplitude (ε0). Q−1

however depends on the friction parameter γ of the Langevin thermostat, a point detailed in

the following Section, where we also address other properties of dissipation deduced from the

analytical expression.

5.3 Properties of Harmonic Dissipation

5.3.1 Physical interpretation

Focusing on the numerator of Eq. 5.14, i.e. the loss modulus, which is mainly responsible for the

shape of the dissipation spectrum, we see a sum of contributions coming from the vibrational

eigenmodes. Each contribution is the product of the square of the non-affine coefficient Cm
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Figure 5.6: Energy dissipation as a function of frequency computed using the analytical expression
for three different thermostat frictions: 0.3, 1 and 3 THZ. The inset shows a log-log view of the
low frequency region.

(Eq. 5.13) with a Lorentzian centered on the mode eigenfrequency ωm, with a width fixed by the

Langevin friction γ.

Physically, dissipation arises because the deformation applied to the cell triggers non-affine

relaxations (Eq. 5.7) that are supported by the eigenmodes of the system (Eq. 5.10). Since

the latter are harmonic oscillators damped by the thermostat, they induce a lag in the non-

affine stress contribution, which is maximum when the forcing frequency equals the mode

eigenfrequency. The coupling coefficient, Cαβ
m , reflects the sensitivity of the stress on the amplitude

of mode m, since from Eq. 5.7, we see that Cαβ
m ∝ ∂σαβ/∂〈sm〉. The modes that dissipate most

are therefore those that produce large non-affine stress changes and resonate with the forcing

frequency.

5.3.2 Influence of the Langevin friction parameter

The dissipation in Eq. 5.14 depends on the friction parameter γ of the Langevin thermostat,

which might appear as an artifact since γ is a numerical parameter with no physically defined

value. However, we argue below that except in the region ω< γ, the shape and main features of

the dissipation spectrum do not depend on γ.

The effect of a finite value of γ is to broaden the response function of the eigenmode oscillators

(Eq. 5.10). As a result, the loss modulus is expressed as a weighted average of the non-affine
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Figure 5.7: Mean energy dissipation as a function of frequency, calculated with Eq. 5.14 for 20
different SiO2 glasses, with a thermostat frequency γ = 1 THz. The blue area represents the
standard deviation of the energy dissipation computed on the 20 samples.

coefficients Cm over a frequency window of order γ. As will be emphasized in Fig. 5.8, Cm varies

rapidly from mode to mode. Therefore, when γ is small, the non-affine parameter Cm is not

averaged over a large enough window and the dissipation shows rapid fluctuations, as seen

in Fig. 5.5. However, when γ increases and Cm is averaged over more modes, the dissipation

spectrum becomes smoother but retains the same shape and features, as shown in Fig. 5.6, even

near the peak of dissipation at 10 THz. This is typically true as long as ω remains in the frequency

spectrum of the density of states and ω> γ. Indeed, in the limit ω<min(γ,ωm), Eq. 5.14 predicts

Q−1 ∝ γω. This is visible in the inset of Fig. 5.6, where the dissipation below typically 1 THz

scales with the frequency and friction. In this region outside the VDOS, the slow decay when

ω → 0 is an artifact of the finite width of the Lorentzian and therefore, of the finite-friction

thermostat. Equivalently, we can say that the fluctuations seen in Fig. 5.5 are a finite size effect,

due to the fact that in the small systems considered here, there are not enough modes to obtain a

smooth average of Cm. Larger systems with denser eigenfrequency spectra would show smoother

dissipations at fixed γ. However, considering larger systems is difficult since diagonalizing the

dynamical matrix becomes rapidly very computationally intensive.

Another way to limit the fluctuations is to average the dissipation spectrum over independent

SiO2 glassy configurations of same size, as done in Fig. 5.7 for 20 different samples. Fluctuations

between different configurations are obvious, but the general shape remains the same and the
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Figure 5.8: Square of the mode-dependent non-affine coefficient, C2
m, computed from Eq. 5.13, as

a function of the modes eigenfrequency.

average curve shows the same features as seen in Figs. 5.2 and 5.6.

5.3.3 Properties of Cm

From Eqs. 5.7 and 5.10, every eigenmode m has an influence on the total stress, through a

non-affine contribution (departure of the mode from the affine macroscopic imposed displacement)

whose amplitude is fixed by the mode-dependent parameter Cαβ
m . Fig. 5.8 shows C2

m = (
∑

α Cαα
m )2,

the square of the coupling parameter for isostatic deformations, as a function of the mode

frequency. We see that (1) the coupling parameter varies rapidly from mode to mode, (2) C2
m

vanishes at low frequencies for the long-wavelength modes, which approach plane waves and (3)

C2
m falls abruptly down to zero above about 27 THz. This frequency corresponds in the VDOS

of the present SiO2 model (Fig. 5.3) to the beginning of the optic-like modes that compose the

two high-frequency bands between about 27 and 40 THz [178, 41, 168]. In-between these two

limits, in the so-called main band of the VDOS, there are very rapid variations, with many modes

having very low C2
m values, and a few modes having very large values. Similar spectra with very

rapid variations between modes are obtained with other applied strains, such as simple shear or

uniaxial loading, although in both cases, C2
m does not vanish in the high-frequency band above

27 THz (see Sec. 5.3.4 for an explanation).

Still focusing on the case of isostatic deformations, the non-affine parameter Cm in Eq. 5.13 can
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be rewritten as:

(5.15) Cm =−∑
iα

Ξα
i

eαi (m)
�

mi
,

with Ξα
i introduced in Ref. [105] as

(5.16) Ξα
i = ∂Fα

i

∂ε
=−∑

jβ
Dαβ

i j Rβ

i j,

where Fα
i is the force on atom i in direction α induced by an affine isostatic deformation ε applied

to the initial configuration. The atomic vector field Ξ can be interpreted in two complementary

ways. From the first equality in Eq. 5.16, Ξ corresponds to the atomic forces that induce non-affine

displacements after application of an elementary affine deformation; Ξ is therefore a field of

non-affine forces. From the second equality, the vector
−→
Ξ i can be interpreted as a measure of the

lack of symmetry of the atomic environment around atom i. This is particularly clear with a pair

potential φ(r) because in this case,
−→
Ξ i can be re-written as:

(5.17)
−→
Ξ i =

∑
j
φ′′(Ri j)

−→
R i j.

If the local environment of atom i is centro-symmetrical, there is for each atom j at
−→
R i j, an atom

j′ at −−→R i j with an opposite contribution to
−→
Ξ i, which is therefore zero. This is true for other

symmetrical environments, such as the regular tetrahedra surrounding Si atoms in SiO2, since

from Eq. 5.17,
−→
Ξ i vanishes whenever atom i is at the center of gravity of its neighbors weighted

by the bond strengths (measured by φ′′).

In the general case (Eq. 5.9), the vector field Ξαβ depends on the orientation of the applied strain

εαβ:

(5.18) Ξκ
αβ,i =−1

2

∑
j

(
Dκα

i j Rβ

i j +Dκβ

i j Rα
i j

)
.

This expression cannot be simplified as above, but it retains the property of vanishing in sym-

metrical local environments [105], justifying to qualify Ξ as an asymmetry vector field. Since Cm

is the projection of eigenvector e(m) on the asymmetry field Ξ (Eq. 5.15), we conclude that the

modes that dissipate the most are those that best resemble Ξ (we neglected here the potential

effect of varying masses, which can be incorporated if needed in the definition of Ξ). This field

thus encodes the information about the structural features that control harmonic dissipation

when measured with mechanical spectroscopy.
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We finally note that the non-affine parameter can also be re-written in a third alternative way:

(5.19) Cm =∑
i

∑
jα

ξαj→i(m)Rα
i j,

with

(5.20) ξαj→i =−
Fα

j→i

sm
=∑

β

Dαβ

i j

eβj (m)
�m j

where Fα
j→i is the force on atom i in direction α due to the displacement of atom j when mode m

has a mass-scaled amplitude sm. Therefore, ξαj→i measures the sensitivity on the mode amplitude

of the force on atom i due to atom j. This alternative expression shows the strong connection

between dissipation and the forces induced in the glass by the eigenmodes. Such connection

between force distributions and vibrational properties has recently been pointed out in the case

of hard-sphere glasses [44]. In silica, the most important forces are supported by the Si-O bonds

and form force chains supported by the SiO2 skeleton. When non-affine atomic displacements

are induced by an eigenmode, the force chains adopt a specific response, reflected by ξαj→i, which

varies very rapidly from mode to mode, like Cm.

5.3.4 Application to SiO2

We concluded from the above discussion that inspecting the asymmetry field Ξ allows to identify

the structural elements responsible for harmonic dissipation. To this end, we plot in Fig. 5.9 the

Ξ field for isostatic deformations in a slab of SiO2.

The Ξ vectors on the Si atoms (in black) are very small and hardly visible, as expected from

their tetrahedral environment. Four-fold coordinated Si atoms therefore do not participate in

harmonic dissipation. On the other hand, oxygen atoms are either two- or three-folded and have

asymmetrical environments, resulting in finite Ξ vectors (in red). Moreover, O atoms form Si-O-Si

bonds and we can see in Fig. 5.9 that in most cases, the Ξ vectors point towards the inside of

the Si-O-Si bond, i.e. in a direction which bends the bond. This is readily understood from Eq.

5.17, where the O atom in a Si-O-Si bond has two Si neighbors at similar distances, resulting in

a Ξ vector close to the bisector vector of the Si-O-Si angle. We checked this result numerically

by computing in the inset of Fig. 5.9 the stereographic projection of the Ξ vectors (normalized

to unity) of the O atoms in the basis formed by the rocking, bending and stretching vectors

(VRock, VBend and VStre) of each Si-O-Si bond (see Fig. 5.3). Most Ξ vectors are oriented along the

bending vector, which by construction, is the bisector vector of the Si-O-Si angle. Therefore, in the

case of isostatic deformations, bending of the Si-O-Si bonds is the main contributor to harmonic

dissipation in amorphous SiO2.

66



5.3. PROPERTIES OF HARMONIC DISSIPATION

Figure 5.9: Asymmetry vector field Ξ in the case of isostatic deformations, represented in 2D
projection for an 8 Å slab in a SiO2 sample. Black arrows are for Si atoms, red arrows for oxygen
atoms. The scaled forces ξαj→i for the mode of maximum dissipation are shown in grey, with a
width proportional to their intensity. The inset shows the stereographic projection of the Ξ vectors
(normalized to unity) of the O atoms in the basis formed by the rocking, stretching and bending
vectors (VRock, VStre,VBend) of each Si-O-Si bond.

For a general applied strain, the Ξαβ field will remain small on the Si atoms and may take other

orientations on the O atoms. As an illustration, we show in Figs. 5.11 and 5.10 the field Ξαβ in

the case of simple shear and the corresponding C2
m. Dissipation is smaller than with isostatic

deformations, as evidenced by the smaller length of the Ξxy vectors (their scale was tripled

compared to Fig. 5.9) and the smaller C2
m. Moreover, the difference between Si and O atoms is

smaller, although O atoms still support on average larger Ξxy vectors than Si atoms. Finally, the

distribution of orientations of the Ξxy vectors on O atoms is more spread, but the stereographic

projection shows that they are predominantly oriented along Vstre. In simple shear, dissipation

is therefore dominated by the stretching motion of the Si-O-Si bonds. As a consequence, the

coupling parameter in shear, Cxy
m do not vanish but thrives in the high-frequency band above 27

THz as seen in Fig. 5.10, which is dominated by the stretching of the Si-O-Si bonds, as shown in

the VDOS of Fig. 5.3.
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Figure 5.10: Square of the mode-dependent non-affine coefficient, C2
m, computed from Eq. 5.13,

as a function of the modes eigenfrequency for an applied shear strain εxy.

5.3.5 Application to Ta2O5

Despite the limited use of Ta2O5 glasses in high frequency devices, it is interesting to repeat the

present study to get insights on the origin of harmonic dissipation in a glass possessing a SRO

and MRO less organized than SiO2. Performing mechanical spectroscopy in the case of isostatic

deformation using both the M-BKS potential and a harmonic approximation on one of the samples

synthesized in Chap 4, we obtain the dissipation spectrum showed in Fig. 5.12. On this figure

is also represented here dissipation computed analytically using Eq. 5.14 which shows once

again a very good agreement with the dissipation computed in the harmonic approximation. The

spectrum presents similar trends to what was seen in SiO2 with a strong increase of dissipation

followed by two peaks at 12 THz and 20 THz before vanishing at high frequency together with the

VDOS (see Fig. 4.8). Below the THz, a small discrepancy appears between the dissipation given

by the M-BKS potential on the one hand and the harmonic calculation and analytic expression

on the other hand. This disagreement, more noticeable than in SiO2, reveals the existence of an

anharmonic phenomenon such as Akhiezer damping, that appears to play a larger role in Ta2O5.

Unlike the low frequencies presented in the previous chapter, where Ta2O5 dissipates more

than SiO2 (see Chap. 6), the peak of dissipation in Ta2O5 is four times lower, confirming that

different phenomena are at work in the different ranges of frequency. Consistently, the mode-

dependent non-affine coefficient, C2
m, represented in Fig. 5.13, presents values two to three times

smaller than in SiO2 for hydrostatic deformation. We saw in the VDOS of Ta2O5 that below
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Figure 5.11: Asymmetry vector field Ξxy and its stereographic projection for an applied shear
strain εxy in the same 8 Å slab as in Fig. 5.9, projected on the xy plane of the slab. The scale of
the arrows is tripled compared to Fig. 5.9.

6 THz, the vibrations involve predominantly Ta atoms while above this frequency, the O atoms

carry most of the vibrations. This duality is also observed in the C2
m which present small values

below 6 THz and large values above this frequency. Once again, the oxygen atoms seem to be

at the origin of dissipation. Above 25 THz, the C2
m do not collapse to zero like in SiO2. This can

be understood by looking at the partial VDOS for oxygen atoms in Ta2O5 (Fig 4.15): at high

frequencies, the vibrations are not only carried by O-2Ta (similar to the vibration seen in SiO2

at these frequencies) but also by O-3Ta stretching motion thus raising the average C2
m at high

frequencies.

The asymmetry field, represented in Fig. 5.14, shows a similar picture as in SiO2, with higher

Ξ vectors on oxygen atoms in directions perpendicular to the bonds than for Ta atoms. We

calculated the average amplitude of �Ξi for two-folded oxygen atoms (69.4% of the oxygen atoms)

and three-folded oxygen atoms and saw that it is in average 30% lower for the latter. Indeed,

the three-folded oxygens are more completely surrounded by Ta atoms and are less likely to

have a "soft" bending direction along which a non-affine motion is possible. Consistently with the
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Figure 5.12: Energy dissipation in a Ta2O5 glass as a function of frequency computed with the
non-linear BKS potential, the harmonic approximation of Eq. 5.6 and the analytical expression of
Eq. 5.14. The same thermostat friction of 1 THz is used in all calculations.
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Figure 5.13: Square of the mode-dependent non-affine coefficient, C2
m, computed from Eq. 5.13,

as a function of the modes eigenfrequencies.
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Figure 5.14: Asymmetry vector field Ξ in the case of isostatic deformations and its projection for
two-folded oxygens, represented in 2D for an 6 Å slab in a Ta2O5 sample. Black arrows are for Ta
atoms, red arrows for oxygen atoms. The atomic bonds are shown in grey.

disorganized SRO of Ta2O5, the projection of Ξ for two-folded oxygen on the rocking, stretching

and bending directions in the inset of Fig. 5.14, reveals a more heterogeneous distribution than

in SiO2. The vectors are mainly oriented in the bending direction but the greater variety of

local environments allows a wider direction of motion for the oxygens as showed by the spread,

especially in the stretching direction. Concerning O-3Ta atoms, we projected Ξ on the stretching

and bending motions as in Chap. 4, and saw that the vectors are equally shared between both

directions (0.53 versus 0.47 respectively).

From this analysis, the peaks of dissipation at 12 THz and 20 THz can be explained: for two-folded

oxygens, most �Ξi are oriented along the bending direction of the Ta-O-Ta bonds, leading to high

dissipation at frequencies where the motion of oxygens is along the bending direction (which

peaks a little after 10 THz in the VDOS of Fig 4.15). Added to this dissipation is the one coming

from the O-3Ta, whose Ξ are equally supported by stretching and bending motions. In the VDOSs,

these motions form a broad maximum between 10 and 15 THz and a sharper peak at 20 THz.
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5.4 Summary

Mechanical spectroscopy was used to compute dissipation at high frequencies in models of

SiO2 and Ta2O5 glasses. We have shown that the loss angle can be expressed analytically in

the harmonic regime, characteristic of the high frequencies accessible to molecular dynamics

simulations and inelastic x-ray scattering experiments. This analytical expression, written as

a sum of damped harmonic oscillator, shows the role of the eigenmodes as energy dissipators.

The sensitivity of the stress tensor to the vibrational modes is central to understanding high

frequency dissipation. Up to now however, despite its formal evidence, a more quantitative

connection between eigenfrequencies and the contribution of the corresponding eigenmodes to

the global stress tensor is lacking due to the complex shape of the vibrations in amorphous solids.

We have shown that an asymmetry vector field, which depends only on the equilibrium configura-

tion of the glass, can be used to characterize the structural features that control harmonic energy

dissipation. We recover here that force asymmetries are at the origin of non-affine displacements,

as discussed in the works of Lemaître and Maloney [105] and Zaccone et al. [206], and that

the non-affinity of the local fields in turn are responsible for energy dissipation, as computed by

mechanical spectroscopy.

In the particular case of SiO2 and Ta2O5, we have shown that the deformation of the Si-O-Si

bonds and Ta-O-Ta bonds are the main contributors to energy dissipation. However, we should

insist that since dissipation arises from the extended modes of the main band of the VDOS,

dissipation is not related to the local vibration of a bond, but rather to the collective vibration of

many Si-O-Si bonds (Ta-O-Ta bonds). With respect to the ring structure of silica, we have seen in

Fig. 5.9 that in the case of isostatic deformations, the Ξ arrows point mostly towards the center

of the rings, anticipating a potential connection between ring morphology and dissipation.

We also shown that internal friction is related to the forces induced in the glass skeleton by the

eigenmodes, in connection with their effect on the stress tensor. This sensitivity of the stress

tensor to the vibration modes of the system not only confirms that the force distribution affects

vibrational properties, as pointed out in Ref. [44], but shows also that the components of the forces

that are relevant for high-frequency internal friction are the non-trivial harmonic components

induced by displacements along the eigenmodes of the samples.
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After investigating the atomic origin of dissipation at high-frequency, we will now delve in the

study of dissipation at low-frequency (from the Hz to the MHz), of interest for the gravitational

wave detectors. In this frequency range, dissipation takes its root in Thermally-Activated Re-

laxations (TAR) involving from a few to a hundred of atoms. Studying the statistics of these

TARs, their topologies, and their structural characteristics is necessary to apprehend the origin

of low-frequency dissipation and model it, as done with the Two-Level System (TLS) model. As

mentioned in Chap. 2, the TLS model has been used numerous times to fit experimental dissipa-

tion measurements in attempts to grasp its atomic origin. However, such studies had to make

assumptions on the distribution and characteristics of the TLSs due to the lack of atomic-scale

information provided by the experimental methods.

Accordingly, the present chapter is dedicated to the study of dissipation at low frequency in

numerical SiO2 and Ta2O5 glasses through the characterization of TARs observed during MD

runs. These TARs are then used in the framework of the TLS model through their characteristic

parameters (e.g. energy barrier and asymmetry) to predict dissipation. In this study, we take a

fresh look at the TLS model by using a discrete formula not based on distributions of TLSs, but

on individual events as observed in MD. Also, we discuss the different approximations used in

the literature in the application of the TLS model to determine their robustness and we compare

our numerical dissipation to experimental data in both SiO2 and Ta2O5.

The present chapter is organized as follows: the first section is dedicated to the Two Level System

model and to numerical methods while Secs. 6.2 & 6.3 describe their application to SiO2 and

Ta2O5 respectively.
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Figure 6.1: Schematic representation of a two-level system, with two metastable states connected
by a double-well potential. The dashed curve represents the potential under a strain ε.

6.1 Methodology

6.1.1 The Two-Level System model

At low frequencies and temperatures (above typically 10 K), dissipation is due to the thermally-

activated relaxation of TLSs, local bi-stable regions brought out-of-equilibrium by the propagating

wave. Each TLS is characterized, as illustrated in Fig. 6.1, by the energy asymmetry between the

TLS states (noted 1 and 2), Δ= (E2−E1), the average energy barrier, V = Ea−E1
2 + Ea−E2

2 = Ea − Δ
2

(where Ea is the activation energy), the attempt frequencies in the initial and final state, ω1/2,

and the deformation potential, γ= ∂Δ
∂ε

, which represents the sensitivity of the asymmetry Δ on

the strain ε. In the rest of the present study, the square of this last parameter will be averaged

over all possible orientations of the TLS with respect to the propagating wave, and thus will be

noted 〈γ2〉.
Using the harmonic Transition State Theory (hTST) [195], we can show that in the linear

regime, dissipation is expressed as a sum over all the TLSs (see Appendix C for full analytical

development):

(6.1) Q−1 = 1
V C

∑
�,TLS

A�
ωτ�

1+ω2τ2
�

〈γ2
�〉

with

(6.2) A� = 1
4kBT

sech2
(

Δ

2kBT
+ 1

2
ln

ω2,�

ω1,�

)
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and the relaxation time

(6.3) τ� = π�
ω1,�ω2,�

exp
(

V
kBT

)
sech

(
Δ

2kBT
+ 1

2
ln

ω2,�

ω1,�

)
,

where V is the sample volume and C the appropriate elastic modulus (longitudinal or shear

modulus for longitudinal and transverse waves, respectively) .

Eq. 6.1 is similar to the classical expression of Jackle et al. [92], used by several authors to extract

TLS characteristics from experiments [187, 28, 193]. However, while as mentioned in Chap. 2,

such inverse calculations require simplifying assumptions, e.g. replacing the relaxation time and

deformation potential by their averages, no such simplification is needed here. For instance, we

can account for the fact that the attempt frequencies ω1/2 are a priori different in both states of

the TLS. Details of the calculations are given in the Appendix C, where care was taken to account

for the tensorial nature of the stresses and strains. This results in particular in expressions of

the longitudinal and transverse mean square deformation potential:

〈γ2〉L = 1
5 (γ2

X X +γ2
Y Y +γ2

ZZ)+ 2
15

(
γX XγY Y +γX XγZZ +γY YγZZ +2γ2

XY +
2γ2

X Z +2γ2
Y Z

)
,

〈γ2〉T = 1
15 (γ2

X X +γ2
Y Y +γ2

ZZ)− 1
15 (γX XγY Y +γY YγZZ +γZZγX X )+

4
15

(
γ2

XY +γ2
X Z +γ2

Y Z
)
,(6.4)

which depend on the full deformation potential tensor

(6.5) ¯̄γ= ∂Δ

∂ ¯̄ε
.

Consistently, the longitudinal and transverse (or shear) elastic moduli are averaged using similar

expressions. Strains were applied to the cells to compute the average longitudinal and shear

moduli giving 135.9 and 39.6 GPa for SiO2 and 205.2 and 45.0 GPa for Ta2O5, respectively.

6.1.2 Exploring the potential energy landscape

To generate representative samples of TLSs, 115 glassy structures of silica were synthesized using

the protocol and BKS potential described in Chap. 3 by quenching a melt from 5,000 K down to 0 K

at a constant quench rate of 1011 K.s−1. All samples are cubic with a size L = 34.77 Å and contain

3,000 atoms (1,000 silicon and 2,000 oxygen atoms) at a density of 2.4 g/cm3, which corresponds to

zero average pressure with the present potential [96]. Average coordination numbers are shown

in Tab. 6.1, highlighting that the samples contain very few coordination defects, although we

will see in the following that these have a strong influence on the low-frequency dissipation.
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Silicium % Oxygen %
Coord. 4 99.7 Coord. 1 0.1
Coord. 5 0.3 Coord. 2 99.7

Coord. 3 0.2

Table 6.1: Average first-neighbor coordination numbers in SiO2.

59 samples were also synthesized following the same protocol but with a faster quench rate of

1012 K.s−1 to test for potential effects due to relaxation. For Ta2O5, 59 glassy structures where

obtained following the protocol already used in Chap. 4, with a size L = 34.2 Å for 2999 atoms

(857 tantala and 2142 oxygen atoms). The Ta2O5 glasses were obtained using a quench rate of

1012 K.s−1.

To identify the TLSs present in our glasses, we use both MD and the Activation Relaxation

Technique (ART) described in Sec. 3.3.1. For the exploration based on MD, we generated, for

each of the samples, 1,000 trajectories at constant temperature (1,000 K), starting with different

initial random velocities, during which energy was quenched every 40 fs to check if the system

had changed IS. Then, the climbing NEB algorithm was employed to find the minimum energy

path between the intial and final ISs, from which the energy asymmetry (Δ) and energy barrier

were obtained (in Appendix B, we propose a way to visualize the organization of the ISs in the 3N

dimensions of the PEL). We checked that the energy asymmetries depend negligibly on the cell

size by surrounding the final configurations by copies of the initial configuration and re-relaxing

this larger system. We found relative variations of Δ below 3%. As mentioned in Chap. 3, only

low energy barriers are found because of the Boltzmann factor. In the past [146, 78], rather low

search temperatures were used (100-600 K), strongly limiting the range of activation energies.

Here, we used a higher temperature, 1,000 K (the glass-transition temperature for the present

potential is 1300 K), to obtain a larger range of activation energies and try to probe all relevant

barriers playing a role in dissipation.

Concerning the ART method, a subset of 60 samples were randomly selected amongst the SiO2

samples. ART is efficient to find transitions as it is not limited by notions of temperature or

dynamics, therefore, a larger number of initial samples is not required. For each sample, 2,000

ART searches were conducted. For half of them, the initial displacement vector �U was centered

on an oxygen atom, while for the other half, �U was centered on an Si atom. When centered on an

oxygen atom, �U is defined as being non-zero only for the three components of the chosen oxygen

atom. When centered on a Si atom, the components of �U are chosen non-zero for all the atoms

in the first shell of neighbors of the selected atom since we realized that transition involving Si

atoms are more collective than these centered on O atoms.
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6.1.3 Deformation potential and attempt frequency

Two more parameters need to be computed to predict the dissipation from the TLS model: the

deformation potential tensor, γi j = ∂Δ/∂εi j, which measures the sensitivity of a TLS to the strain

of the propagating wave and ω1/2, the attempt frequencies in the initial and final configurations.

To obtain the components of ¯̄γ, no additional computation is required as from Eq. C.5 we have

(6.6) γi j =Δσi j ∗V

where Δσi j is the total internal pressure difference between states 1 and 2 of the TLS. We checked

by using a finite-difference calculation that this expression is equivalent to the definition in

Eq. 6.5.

Finally, the attempt frequencies in the initial and final configurations of each TLS, ω1 and ω2

(see Fig. 6.1) were computed using the hTST [195] from the ratio of the real, strictly positive,

eigenfrequencies in the initial and activated states of each transition:

(6.7) ω1/2 =
∏3N−3

i=1 ω1/2,i∏3N−4
i=1 ω�

i

,

using an exact diagonalization of the dynamical matrix of the initial, final and activated configu-

rations of each TLS.

6.2 The case of SiO2

6.2.1 Thermally Activated Relaxations in SiO2

From the above-mentioned searches result 668 transitions or 1.93 transitions/1000 atoms

(1.4 10−4 TLS/Å3) with the MD method and 22,796 TARs with ART. This gap in the num-

ber of transitions illustrates the difference of efficiency between these two techniques. Compared

to the experimental density of 7.8 10−5 TLS/Å3 obtained by Vacher et al. from a fit of attenuation

data with the TLS model (see Eq. 8 of Ref. [193]), the present density is about twice higher.

However, as we will see while studying dissipation, only a limited fraction of the TLSs contribute

significantly to the dissipation and the density of TLS observed experimentally does not take

into account the TLSs that do not contribute to dissipation. To check the possible influence of

the quenching rate on the transitions density, we performed searches using the MD method on

the 59 SiO2 samples quenched at 1012 K/s and found 1649 events (9.31 transitions/1000 atoms).

The magnitude of this increase in TLS density with decreasing quenching rate indicates that

the existence of TLSs and their statistical distribution appear to vary greatly with respect to the

relaxation of the glass and thus with defects such as ill-coordinated atoms.
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On Figs. 6.2 and 6.3 are represented Δ, the TLS asymmetries, as a function of V , the energy

barrier, for the 668 transitions found using MD and the 22,796 obtained with ART. For transitions

found with MD, a higher density of events is seen at lower V , which is coherent with the fact that

barriers are overcome with a probability ∝ exp(−V /kbT). A strong correlation is observed between

V and Δ. Indeed, from its definition, Δ cannot be larger than 2V (marked by an orange dashed

line) nor smaller than −2V as V = Ea −Δ/2. Therefore, the distribution of energy barriers, g(V ),

and asymmetries, f (Δ), cannot be considered independent as done in the past [193, 78]. Only a

few transitions show a negative asymmetry, which proves that the glasses were properly relaxed

since very few lower energy states can be reached without overcoming a consequent energy

barrier. Looking now at the shape of the distribution of barrier heights, g(V ), in the upper inset,

we propose a Gaussian function g(V )= Ng exp(−V 2/V 2
0 ) as a fit with Ng = 152 and V0 = 0.47 eV

(orange curve in the inset of Fig. 6.2) similar to the fit also proposed in Refs. [187, 193]. For the

distribution of asymmetries, f (Δ), both Gaussian and stretched exponential functions were also

proposed [193, 187]. A simple decreasing exponential Nd exp(−Δ/Δ0) with Nd = 170 and Δ0 = 0.4

is here more appropriate.

Looking at the transitions obtained with ART in Fig. 6.3, we first see that the bulk of the

transitions are not at low V but between 1 and 4 eV. A second feature is the subset of transition

for which Δ = 0 eV seen between V = 2 eV and 10 eV. These transitions are symmetric and

correspond to jumps of two or three oxygens atoms that result either in the exchange of position of

the oxygens or in a rotation of the oxygen atoms around an Si atom. These motions do not create

coordination defects as they are symmetric events, however, they imply the transient breaking

of several Si-O bonds and therefore, their energy barriers are high. In the context of energy

dissipation, an issue appear with the set of transitions obtained using ART: Eq. 6.1 says that

the contribution of TLSs to dissipation is proportional to sech2
(

Δ
2kBT + 1

2 ln ω2
ω1

)
. As the function

sech2(x) goes rapidly to zero when x increases, it imposes a cut-off on Δ. Roughly speaking, all

TLSs with |Δ| > 0.2 eV will contribute little to none to the dissipation. Looking at the distribution

of transitions presented in Fig. 6.3, we see that only a fraction (8%) of them are below this limit,

most of which have a V , and thus a relaxation time, too large to play a role in the frequency range

of application. In addition, almost all the transitions which have a small Δ and an appropriate V

were also obtained using the MD method. Since ART spends most of its time finding irrelevant

transitions with high energy barriers and asymmetries, only the transitions found using MD will

be considered in the rest of the present study during which they will be referred to as TLSs.

The longitudinal and transverse sensitivity to the strain, γ2
l and γ2

t are represented in Figs. 6.4

and 6.5 as a function of V . The similarity between the graphs of γ2
l and γ2

t comes from the

similarity between Eq. C.23 and C.28, however γ2
t presents lower values at all V , consistent

with the lower value of the transverse modulus. For both γ2
l and γ2

t , the bulk of the data are
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Figure 6.2: Asymmetry Δ as a function of the TLS energy barrier V = Ea −Δ/2 for the 337
TLSs found using the MD method. The orange dashed line represents the maximum possible
asymmetry Δ = 2V for a TLS of energy barrier V . The upper and right panel represent the
histograms for the energy barriers and asymmetries g(V ) and f (Δ) respectively (see text for
details).

not consistent with experimental values (1.08 eV2 and 0.42 eV2 for longitudinal and transverse

respectively [51]) with a constant overshot of about two orders of magnitude. However, these

experimental data were obtained performing extremely low temperature acoustic measurements

in the quantum regime (0.1 to 1.5 K) and therefore are not pertinent for the present TLS

distribution. We note also that in the present sample, the barriers with the lowest V , which

are relevant at very low temperature have indeed low coupling parameters, consistent with

experimental data.

The attempt frequencies in the initial and final state, ω1/2, plotted in Figs. 6.6 and 6.7, are

not simple functions of V either. A major part of the values are gathered around a median at

7 THz while the rest are homogeneously spread and do not appear to vary with V . A few extreme

values increase the average away from the median, with an average of 25.0 THz, slightly above
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Figure 6.3: Asymmetry Δ as a function of the TLS energy barrier V for the 22,796 TLSs found
using the ART.

experimental estimates at 10.5 and 18.9 THz [193, 123].

Inspecting closely the atomic motions taking place in our set of TLSs, we notice that each TLS

can be sorted in one of the three following categories that will be referred to as TLS of Type

I, Type II and Type III respectively (it is important to note that there is no systematic way to

classify TLSs, and therefore, the following observations were obtained by studying a subset of

TLSs for which types were determined "by hand"):

(1) In Type I, the most frequently observed in our numerical glasses, the maximum displacement

is centered on an Si atom as illustrated in Fig 6.8. These Type I TLS can be understood as a

change of tetrahedron from a Si atom. For such an event to happen, the O atom in the direction

of the Si displacement or the O atom from which the Si is coming has to be ill-coordinated (one-

or three-folded) as a two-folded O on both sides would not allow a displacement of the Si atom.

Consequently, these Type I TLS are centered on coordination defects and should not be observed
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Figure 6.4: Longitudinal sensibility to the strain calculated from Eq. C.23 as a function of V ,
the green dashed line represents the experimental value for SiO2 [51] while the orange line
represents

〈
γ2

l
〉
.

Figure 6.5: Transverse sensibility to the strain calculated from Eq. C.28 as a function of V ,
the green dashed line represents the experimental value for SiO2 [51] while the orange line
represents

〈
γ2

t
〉
.
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Figure 6.6: Attempt frequency in the first well of the TLSs, ω1, as a function of V , the orange
dashed line represents the average while the green and purple dashed lines represent the
experimental values for SiO2 deposited by IBS [123] and vitreous bulk SiO2 respectively [193].

Figure 6.7: Attempt frequency in state 2 of the TLSs, ω2, as a function of V , the orange dashed
line represents the average.
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Figure 6.8: Potential energy along the minimum energy pathway for a TLS of type I. The
three snapshots show from left to right: the initial configuration, the saddle point and the final
configuration of the TLS. The oxygen and silicon atoms are depicted in red and gray respectively.
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Figure 6.9: Potential energy along the minimum energy pathway for a TLS of type II (on the
right). The three snapshots show from left to right: the initial configuration, the saddle point and
the final configuration of the TLS. The oxygen and silicon atoms are depicted in red and gray
respectively.
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Figure 6.10: Potential energy along the minimum energy pathway for a TLS of type III. Only the
initial and final configuration of the TLS are represented as the saddle point is almost identical
to the final configuration.The oxygen and silicon atoms are depicted in red and gray respectively.

experimentally as the glasses produced experimentally are more relaxed than numerical glasses

by several orders of magnitude. Similar atomic motions have already been observed in alumina

by Paz et al. [141] where an Al atom can oscillate from one O to another. These events induce

a significant displacement for less than a dozen atoms and thus are very localized. Looking at

the energy profile of the double-well potential on Fig. 6.8, we see a highly symmetric double-well

reflecting the structural symmetry between the initial and final configurations. The maximum

energy is reached when the Si atom has 5 neighbors, that is when the Si atom is in the plane

formed by the three oxygens separating the two tetrahedra.

(2) The second category, encountered slightly less often than Type I involves mainly O displace-

ments. In these events, as represented in Fig 6.9, several SiO4 tetrahedra rotate leading the

simultaneous jump of O atoms from one side of their Si-O-Si bonds to another. These events have

already been observed in SiO2 and rather than being described as the rotation of tetrahedra,

they have been referred to as jumps around "floppy Si-O-Si bridge" [146, 144]. These TLS of Type

II are delocalized and involve quasi 1D chains of atoms or rings. As the jump of all the oxygen

is simultaneous, the energy profile shows an energy barrier not higher than a few hundreds of

meV, the maximum of energy happening when the oxygens are compressed in the middle of their

Si-O-Si bonds. The energy profile also shows once again a symmetric double-well, mirroring the

symmetry present between the initial and final atomic configurations. These TLS of Type II are
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of main interest since they are symmetric and do not rely on coordination defects, therefore, they

contribute to the dissipation and are likely to be probed in experimental acoustic measurements.

The TLS showed in Fig. 6.9 in particular can be seen as the canonical TLS mentioned in the liter-

ature [30, 146, 193] as it is almost perfectly symmetric and presents a small energy barrier, 65

meV. This TLS is therefore a good representative of the TLS pointed at when studying dissipation

in silica. It is interesting to notice that similar motions have been observed in the past during

the study of atomic vibration in silica glasses where low frequency modes were understood as

rotation of SiO4 tetrahedra [30, 181].

(3) The third category encompassed events in which an O atom carries the highest displacement,

going from being two-folded to three-folded (3 Si neighbors) or change one of its Si neighbors

(an Si atom ends up five-folded) as shown in Fig 6.10. These Type III TLSs are highly unstable

and asymmetrical (Δ≈V ) as can be seen from the energy profile represented in Fig. 6.10. This

high asymmetry makes Type III TLS contribute very little to dissipation. These TLSs are more

localized than Type II and involve usually less than 20 atoms. From the three types of TLS, Type

III shows the highest diversity in structural topologies and can be difficult to tell apart from

Type II as they also involve oxygen displacements and are sometimes as delocalized. To verify

the stability of these TLSs, we took the atomic configuration corresponding to the system in the

excited state of the TLS and applied a deformation of amplitude ε= 0.008 to the simulation cell

along one of the three axis X, Y or Z followed by an energy minimization. Most of the Type III

TLSs fell back in the initial state of the TLS, showing that the very existence of Type III is not

guaranteed when an acoustic waves propagates in the medium.

6.2.2 Application of the TLS model and Approximations

Fig. 6.11 represents the Q−1 computed from Eq. 6.1 for a longitudinal wave at 10 kHz. Dissipation

is qualitatively similar for a transverse wave at the same frequency and thus will not be presented

here. In addition, dissipation is not represented below 10 K as quantum effects not treated in the

present study play a major role at such temperatures. It has to be noted that, to our knowledge, it

is the first time that the TLS model is applied on discrete TLSs without using approximations on

the TLSs distribution or their parameters while considering V and Δ correlated. The present Q−1

curve presents peaks corresponding to dissipation induced by individual TLSs due to the sum

over TLSs in Eq. 6.1. Even if 668 TLSs were obtained, only 41 of them present a maximum above

10−5 and therefore contribute significantly to dissipation and the finite size of the samples can be

seen, many more events would be needed to obtain a smooth curve. As mentioned in the previous

section, events based on coordination defects such as three-folded O or three- and five-folded Si

that are not expected to be seen experimentally (Type I TLSs in the previous section). When

these TLSs are not taken into account in the calculation of Q−1 (by removing TLS in which an
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Figure 6.11: Q−1 as a function of the temperature at 10 kHz. The orange dashed line is the
dissipation computed when removing the TLSs based on a coordination defects such as five-folded
Si atoms.

ill-coordinated atom moves more than 0.2 Å), dissipation is lower above 100 K especially in the

250 to 350K range. Therefore, the action of TLSs based on defects appears to affect the dissipation

of the glass at high temperatures, which is expected since Type I TLSs tend to have larger energy

barrier than Type II and therefore induce dissipation at higher temperature.

We now consider Q−1 computed using different approximations, some of them used in the litera-

ture [187, 28, 193, 78]. In the present analytical development of the TLS model, we introduced

ω1 and ω2, the attempt frequencies in the initial and final states of the TLS whereas in the

original TLS model, only the average attempt frequency was consider (the original formula is

obtained from the present model with ω1 = ω2) [92]. A second approximation was introduced

by Hamdan et al. [78] who argued that calculating the attempt frequency for all TLSs was too

computer intensive and therefore preferred to consider an averaged value, 〈ω1〉, computed on a

subset of events (with the present data set 〈ω1〉 = 25.0 THz). Fig. 6.12 compares the dissipations

obtained in these three cases and shows curves of similar profiles as expected from the rather

homogeneous distribution of ω1/2 seen in Figs. 6.6 and 6.7. Indeed, ω1/2 enters Eq. 6.1 only as a

pre-exponential factor and has therefore a limited role. These approximations are therefore quite

reasonable.

Fig. 6.13 compares the dissipations computed using selection rules on the asymmetries of the

TLSs, Δ. The first of the two approximations was introduced in Refs. [72, 193] to integrate

the TLS model analytically and obtain a fit to attenuation measurements. This approximation

consists in replacing sech(Δ/2kbT) in Eq. 6.1 by 0 for TLSs whose asymmetry is higher than 2kbT
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Figure 6.12: Q−1 at 10 kHz as a function of the temperature considering two different approxima-
tions concerning ω. The orange dashed line corresponds to dissipation computed considering that
the attempt frequency in the two states of the TLSs are equal while the dash-dotted green line
considers an average value for the attempt frequency.

Figure 6.13: Q−1 at 10 kHz as a function of the temperature considering two different approxima-
tions concerning Δ (see text for details).
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and by 1 otherwise. This approximation is based on the observation that the function sech2(x)

varies rapidly from one to zero when x increases. A second approximation was introduced in

Refs. [78, 189] and consists in ignoring all TLSs whose asymmetry are higher than 0.1 eV

(|Δ| > 0.1 ev). This approximation was introduced based on two arguments: (1) as said above, the

sech2(x) function imposes a cut-off on the contribution of TLSs with a large Δ (2) Trinastic et

al. argued in Ref [189] that TLSs with |Δ| > 0.1 ev were removed because higher asymmetries

correspond to defective states that do not exist in experimental glasses. This claim is difficult

to substantiate as defective states with high Δ are not probed experimentally as they do not

contribute to dissipation. Therefore, defective states could exist without being seen in acoustic

measurements. Below 150 K, these two selection rules give dissipations similar to the Q−1

calculated on all the TLSs. As expected from the rapid cutoff imposed by sech(Δ/2kbT), the

majority of dissipation comes from TLSs with small asymmetry and therefore this approximation

is quite good. However, above 150 K, TLSs contributing significantly to the dissipation start to be

removed.

6.2.3 Comparison with experiments

We will now compare the dissipation computed numerically with three experimental data sets.

The first of these three experimental studies was performed by Fraser et al. [67] on General

Electrics 105 fused quartz synthesized by melting a natural quartz crystal under vacuum . This

silica sample has a high purity since it contains only 5 ppm of OH impurities. The dissipation

measurements were carried out using the resonant sphere technique at 1.5 MHz. The second

data set comes from Ref. [36] where dissipation was measured using the vibrating reed technique

at 11.4 kHz on Suprasil W, which is also a very pure synthetic glass with a low concentration

of impurities such as OH-. The last data set is taken from Ref. [123] where dissipation was

measured using vibrating cantilevers excited electro-statically. The cantilever was coated with a

1 μm thin film of silica using Ion Beam Sputtering (IBS) at 100 K. It is important to notice that

unlike the previous two studies focused on bulk vitreous silica, this last study uses deposited

thin films known to be more prone to structural defects, less relaxed and sometimes porous [70].

Therefore, in contrast with vitreous silica, we will refer to this type of disordered SiO2 as IBS

silica.

These three data sets are represented in Fig. 6.14 along with the present numerical dissipation.

We have to remind the reader that these dissipation curves were obtained at different frequencies,

however, since the shape and magnitude of dissipation varies slowly with frequency we consider

that they are consistent. The experimental data tell two different stories: (1) Dissipation for

vitreous silica is represented by the red and green lines (data of Refs. [67, 36]). This first data set

in red shows a maximum of dissipation between 30 and 50 K before a drop. The second data set
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Figure 6.14: Q−1 at 10 kHz as a function of temperature for the present numerical data compared
to the experimental measurements of Refs. [67, 36, 123].

(in green) shows that this drop reaches several orders of magnitude with a minimum of 10−6 at

750 K. After this minimum, dissipation increases again. This increase has been shown to come

from impurities in the glass and losses taking place in the experimental setup [67] (2) For IBS

silica (purple line), a maximum is also observed at low temperature, followed by a drop to 3.10−4,

not as marked as for vitreous silica. Two small peaks at 150 and 250 K follow. As of today, the

difference in dissipative behavior above 50 K between vitreous and IBS silica is understood as

the presence of additional TLSs due to the defects and structural heterogeneities present in IBS

silica and absent in the almost perfect atomic arrangement of vitreous silica [123].

Due to the lack of criteria for structural relaxation, it is problematic to choose if the dissipation

computed on the present numerical glasses should be compared to vitreous silica, IBS silica

or if numerical glasses present features not seen in either of these experimental glasses. In

addition, due to the discrete nature of the curve coming from the finite size of the samples, the

precise analysis of temperature dependent features is difficult. However, three main regions

of high dissipation can be distinguished. A first series of peaks from 10 to 100 K matches the

dissipation peak at low temperature of both vitreous and IBS silica. Follows a second series of

peaks from 100 to 200 K that approximatively matches the first peak seen in IBS silica. A third

maximum from 350 to 500 K does not match any experimental data (the measurements on IBS

silica stopping at 300 K). To better understand the origin of these three peaks, we plotted in

Fig. 6.15 the distribution of asymmetries as a function of the energy barriers where the size of

the points representing TLSs is a function of the maximum of dissipation produced by each TLSs

(more precisely the size of the points is related to dissipation as A = 2log(max(Q−1))) while the
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colors of the points represent the temperature at which the dissipation for each TLS is maximum.

This figure shows that the TLS responsible for dissipation are as expected TLSs whose Δ is

small. Looking at their distribution with V we observe two groups: a first one from 0 to 0.5

eV which is responsible for the series of dissipation peaks seen from 10 to 300 K and a second

one from 0.5 to 0.9 eV responsible for the dissipation peak at 450 K. The gap in-between these

peaks originates from the absence of TLS around 0.5 eV coming from the limited number of

barriers obtained in the present study. More samples would be necessary to fill this gap. From the

global shape of the dissipation curve, the present glasses seem closer to IBS silica (less relaxed)

both in amplitude and shape than to vitreous silica (more relaxed), which is expected given

the very fast numerical quench rate. The origin of the discrepancy between the shape of the

present dissipation and experimental values is difficult to pinpoint. However, as the number of

TLSs obtained by our MD method is not sufficient to obtain a smooth dissipation curve, it is not

surprising that detailed features could not be reproduced. One could hope that a more statistically

significant set of TLSs could result a better agreement with experimental measurements. Another

possible explanation could reside in the description of the glass. We should keep in mind that

we are using a very simple interatomic potential, which may represent improperly the PEL.

Therefore, it is possible that our set of TLS is a bad representation of the TLSs present in an

experimental glass. The origin of this misrepresentation could come firstly from our sample,

which, despite reproducing properly the properties of silica glasses, could reproduce improperly

the TLSs present in experimental glasses. As showed by Fraser et al. in Ref. [67] and by the

increase in TLS density with increasing quench rate (see Sec. 6.2.1), impurities have a strong

impact on the dissipative properties of the glass. Therefore, subtle structural differences between

numerical and experimental glasses could have a great impact on the existence and distribution

of TLSs and thus on dissipation. Secondly, the present protocol used to search for TLSs could be

blind to some of the TLSs or be biased toward certain TLSs. However, since the search method is

based on MD kinetics, this claim is hard to support.

6.3 The case of Ta2O5

6.3.1 Thermally Activated Relaxations in Ta2O5

From the 59 Ta2O5 samples quenched at 1012 K/s, 1887 TLSs were obtained using the MD

method. This corresponds to a density of 10.7 TLS/1000 atoms, slightly higher than the density

obtained for the same quenching rate in SiO2. The correlated distributions of asymmetry and

energy barrier for Ta2O5 are represented in Fig. 6.16 and present V ranging from 0 to 1.2 eV

with a high density of TLSs along the Δ= 2V line. The range of V is similar to what was obtained

for SiO2 as the searches were performed at the same temperature, T = 1000 K.
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Figure 6.15: Asymmetries Δ as a function of the TLSs energy barriers V where the size of the
points is a direct function of the dissipation generated by the TLSs (see text for details) and
where the color of the points represents the temperature at which the dissipation for each TLS is
maximum.

The longitudinal sensitivity to the strain, γ2
l , represented in Fig. 6.17, shows a similar picture

than in the case of SiO2 with a tail of low γ2
l at low V leading to a cluster of points at higher γ2

l

centered on the average at 83.0 eV2. In Fig. 6.18 is plotted the attempt frequency, ω1, which, as

for SiO2, do not vary with V and is gathered around a median value of 1 THz. This median value

is almost an order of magnitude smaller than in SiO2 which indicates a softer PEL. Part of this

frequency difference can be explained by the fact that Ta atoms are heavier than Si atoms and

therefore vibrate at lower frequencies.

As for SiO2, it is possible to gather the TLSs around stereotypical relaxation motions correspond-

ing to similar topologies. Since the TLSs observed in Ta2O5 present similarities with the atomic

motions seen in SiO2, we will use the same denomination when possible.

(1) As represented in Fig. 6.19, there exist in Ta2O5 TLSs similar to the Type I seen in SiO2. In

Ta2O5, Type 1 consists of a five- or six-folded Ta atom changing one or two of its O neighbors in a

motion that can be described as a change of tetrahedron. As in SiO2, the Ta atom goes through

one of the faces of the polyhedron, with an energy maximum when the atom is located in the plane

shared by the two polyhedra. However, since the SRO of the Ta atoms is more heterogeneous than

Si atoms in SiO2 (which can be seen by the sharpness of the first peak in the pair distribution

functions shown in Chap. 4), Type I TLSs in Ta2O5 are not based nor create coordination defects

and therefore may exist in experimental glasses and be probed when measuring dissipation. As

in SiO2, Type I TLSs are localized as they only involve two polyhedra and the moving Ta atom.
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Figure 6.16: TLS asymmetry Δ as a function of V for the TLSs found in Ta2O5. The orange dashed
line represents the maximum possible asymmetry Δ= 2V for a TLS of energy barrier V .

Their asymmetries are small with a maximum observed at 0.09 eV; however their energy barriers

are more spread with values observed from 0.19 to 0.57 eV.

(2) The second type of TLS observed in Ta2O5 is noted Type II with an example represented in

Fig. 6.20. We saw in SiO2 that the collective motion of several oxygens could occur, with little

energy increase. Similarly, the present glass presents relaxations based on the motion of several

oxygens. However, while in SiO2 every O is two-folded, and thus have a soft direction along which

the Si-O-Si bond can bend, in Ta2O5, the O atom can be both two- or three-folded. Therefore when

an O atom moves, it necessarily pushes another O atom that in turn pushes another O atom, and

so on. The motion corresponds to the "sliding" of a chain of Os, each O changing one or two of

its Ta neighbors. These Type II TLSs also result in a change of coordination for Ta as at the two

ends of the chains, oxygen atoms will either leave a gap or be in excess. As Ta can be five or six

folded, this does not create a coordination defects and the energy cost is small. As in SiO2, these

events present low asymmetries ranging from 0 to 0.1 eV but because of the transient breaking
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Figure 6.17: Longitudinal sensibility to the strain, γl , calculated from Eq. C.23 as a function of V
for the TLSs found in Ta2O5. γt present a similar picture and will not be plotted here.

Figure 6.18: Attempt frequency ω1 as a function of V for the TLSs found in Ta2O5. ω2 present a
similar picture and will not be plotted here.
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Figure 6.19: Potential energy along the minimum energy pathway for a TLS of type I in Ta2O5.
The three snapshots show from left to right: the initial configuration, the saddle point and the
final configuration of the TLS.

of Ta-O bonds and the higher variety of local environment, Type II TLSs possess higher energy

barriers, from 0.1 to 0.45 eV (that is, of the same order as Type I).

(3) We will call Type III all TLSs based on the small motion of a single Ta or O atom that accounts

for around ≈ 50 % of all the TLSs observed in Ta2O5. Due to the strong disorder present at the

SRO level in Ta2O5, the PEL presents meta-basins in which several close ISs exist. The barriers

between these ISs are small (<0.1 eV), therefore, the direction of these events in the PEL can

be seen as "soft". From an atomic point of view, Type III TLSs can be either centered on Ta or

O atoms; if centered on a Ta atom, the TLS corresponds to a local change of the Ta atom in its

O polyhedra. In most polyhedra, there exists a bistable position of the Ta atom which is rarely

at the center of the cage (as seen in the crystalline form of Ta2O5 in Fig.8 of Ref. [83]). In the

second case, when the TLS is centered on an O atom, the motion consists of an O atom oscillating

between positions in which it is two- and three-folded. As structural defects are naturally present

in Ta2O5, it is possible for O atoms to go from being two-folded to being three-folded without a

noticeable change in energy. Either centered on a Ta or an O atom, Type III TLSs are highly

localized and involve less than 10 atoms. As these TLS have low energy barriers (<0.1 eV), they

are not expected to contribute strongly to the dissipation as they will resonate at high-frequencies

that are not of interest for GW detectors.
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Figure 6.20: Potential energy along the minimum energy pathway for a TLS of type II in Ta2O5.
The left and right snapshot represent the initial and final states respectively.

6.3.2 Comparison with experiments

As for SiO2, dissipation is computed as a function of temperature using Eq. 6.1. We will compare

the present dissipation with experimental data published by Martin et al. [122]. This data set

was measured at 1 kHz on a vibrating cantilever coated with amorphous Ta2O5 which was itself

deposited using Ion Beam Sputtering (IBS). It is important to note that as of today, no bulk

vitreous Ta2O5 has ever been produced, therefore no experimental data is available.

As seen from Fig. 6.21, the dissipation curve obtained numerically still presents discrete peaks

that are however less marked than in SiO2 due to the higher TLS density. The dissipation curve

presents values of the order of 10−4 to 10−3 in agreement with experimental dissipation. The

numerical dissipation reproduces the initial decay up to about 150 K. Then while the experimental

dissipation continues to decrease regularly, the numerical dissipation shows a broad peak at

about 200 K. As for SiO2, it is difficult to pin-point exactly the origin of this discrepancy and

the main culprits are: a possible bad description of the numerical glass due to an inadequate

potential or a non statistically significant probing of the TLS due to the research method or the

finite size of the samples. Additional limits of the TLS model will be discussed in the next chapter.
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Figure 6.21: Q−1 at 10 kHz as a function of temperature for the present numerical data in blue
compared to the experimental measurements of Ref. [122] in orange.

6.4 Summary

In the present chapter, we presented a numerical study of the mechanisms at the origin of

dissipation at low-frequency. Using a search technique based on MD, we obtained sets of thermally-

activated events in SiO2 and Ta2O5 glasses. Each of these events was characterized by four

parameters: the energy barrier, V , the asymmetry, Δ, the sensibility to the strain,γ, and the

attempt frequency in the initial and final state ω1/2. Inspecting the atomic motions of some of

these TLSs, we were able to group the events based on stereotypical atomic motions linked

to similar topologies. In the case of SiO2, we noticed that one of these groups existed due to

coordination defects that do not exist a priori in experimental silica. In the case of Ta2O5, the

more heterogeneous disorder is at the origin of a higher diversity of TLSs that can still be

classified in categories presenting similar relaxation motions.

In a second time, we used these sets of TLSs and their corresponding four parameters in the

framework of a revised TLS model that accounts for the difference in attempt frequency between

the initial and final states and for the tensorial nature of the sensitivity parameter to the strain.

We compared approximations reported in the literature to our calculations, and showed that the

approximations are robust in the low temperature limit. Comparing the dissipation obtained

numerically in SiO2 and Ta2O5 with experimental data, we found that the present TLS model

reproduces the amplitude of the dissipation in the temperature range of interest. However, the

precise features of the experimental curves are not reproduced, which could be due either to a

bad description of the glasses or to the limited size of the present TLS distributions.
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CONCLUSION

Energy dissipation in glasses may appear elusive due to the numerous phenomena at

its origin in the different temperature and frequency ranges. In addition, the variety

of behaviors displayed by different glasses requires a systematic look at the short- and

medium-range order of each glass to grasp the origin of dissipation. As experimental methods

show weaknesses when dealing with disordered solids, numerical tools are as of today, the most

effective way to explore the atomic-scale phenomena at their core. In the present study, we made

an attempt at using molecular dynamics in a two-fold manner: first, to simulate atomic models of

two oxide glasses, Ta2O5 and SiO2, and second to implement protocols measuring dissipation.

The atomic nature of the simulations allows us to establish a link between dissipation and the

short- and medium-range order of the glasses.

In the first part of the present study, we described the structure of Ta2O5 and TiO2 doped Ta2O5

at the short- and medium-range order, by exposing the chain-like structure formed by Ti and Ta

centered polyhedra. Performing a normal mode analysis, we proposed a new interpretation of the

Raman spectra of Ta2O5 glasses. These results are important as they substantiate and bring a

complementary analysis to the experimental studies, performed in parallel, on the structural

and dissipative properties of Ta2O5 glasses [19, 172]. However, while at the time of the beginning

of the present study, TiO2 doped Ta2O5 glasses were in the pole position to be used in the next

generation of gravitational waves (GWs) detectors, as of today, the decrease of dissipation induced

by TiO2 doping is deemed insufficient, especially since cryogenic operating temperatures are

considered for the next generation of GWs detectors at which both SiO2 and Ta2O5 present a

peak of dissipation. Other materials such as amorphous silicon [175], single-crystal gallium

phosphide [136] or single-crystalline silicon [166] would be better adapted to low temperatures.
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The second part of the present study was dedicated to using the previously obtained Ta2O5 and

SiO2 glass models to study numerically energy dissipation.

At high-frequency, dissipation was computed through the implementation of numerical me-

chanical spectroscopy. To support the numerical study, an analytical development based on the

projection of atomic motions on the vibrational eigenvectors was performed. We proved that

dissipation is harmonic in the THz regime, and that it can be expressed analytically if the atomic

positions and inter-atomic interactions are known. These equations revealed the role of non-affine

motions in dissipation, which, in the case of hydrostatic deformation, can be shown to be based

on a local symmetry factor. The analytical and numerical study we performed at high frequency

are of significant importance for the study of attenuation and energy dissipation in solids. First

because prior to this work, no analytical formula had been proposed to describe the dissipative

behavior of a disordered harmonic solid. Secondly, because experimental studies measure at-

tenuation and thus dissipation values only until the Ioffe-Regel criteria, while our numerical

study and analytical development propose an approached to understand dissipation beyond this

limit. However, as our analytical development is based on the knowledge of atomic positions and

inter-atomic interactions, it is hard to imagine a simple way of extending the present formula to

directly help the analysis of experimental attenuation data. One possibility would be to find a

analytical link between the Q−1 proposed in the present study and the dynamical structure factor

probed experimentally using Brillouin scattering and IXS. In addition to proposing a correcting

factor for experimental data, such a development would make clearer the link between energy

dissipation Q−1 and attenuation Γ, that is as of today hard to understand outside simple models

such as damped harmonic oscillators.

A second follow-up to the present high-frequency study would be to implement less memory costly

diagonalization techniques. Indeed, the diagonalization algorithm used in the present study is

memory intensive and as a consequence the dissipation curves displayed in Chap. 5 present

artifacts due to the small size of the samples. The use of less computer intensive diagonalization

techniques would allow to study larger samples possessing more vibrational eigenmodes and

thus, would allow a smaller Langevin thermostat parameter leading to less numerical artifacts.

A third follow-up imposes itself as the present analytic expression of the quality factor and

application of Ξ as structural indicator of dissipation go beyond the case of oxide glasses. More

work could be done in other disordered solids such as metallic glasses or amorphous silicon,

but also in crystals, where defects that break the local symmetry, such as dislocation cores

or grain boundaries, will be sources of harmonic dissipation. Likewise, we expect that non-

centrosymmetrical crystals, such as quartz, should exhibit high-frequency dissipation, even in

absence of defects, although these aspects of energy dissipation at high frequencies remain to be

explored quantitatively.
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The second part of the study on dissipation focused on low-frequencies. In order to grasp the

atomic origin of dissipation at low-frequency, we performed searches for thermally activated

bistable states known as Two-Level Systems (TLS) and were able to catalog these atomic motions

based on their topology. The present low-frequency study is of prime importance as it presents

thermally activated atomic motions that are often theorized but rarely observed and described. In

addition, we propose for the first time a classification of these events, made possible by the order

within disorder present at short- and medium-range order in oxide glasses. A revised TLS model

accounting for the full tensorial nature of the sensitivity to the strain and the difference in attempt

frequencies between the initial and final states of the TLSs was proposed. Based on this new

framework and using the TLSs previously obtained, different assumptions used in the literature

when fitting the TLS model to experimental data were tested and shown to be robust, especially

in the low temperature limit. In a second time, we compared the dissipation obtained numerically

with experimental measurements obtained on vitreous silica and silica and Ta2O5 deposited using

Ion Beam Sputtering. Doing so, we showed for the first time that no approximations are needed

for the TLS model to reproduce the amplitude of the dissipation of experimental glasses. However,

we couldn’t reproduce the detailed features of the experimental dissipation curve, because of

what we think are the shortcomings of the present inter-atomic potentials and because of the

limited size of our TLS distributions. An error in the TLS distribution could either come from a

biased exploration of the TLSs present in the numerical glass or from a bad description of the

glass itself. The first hypothesis could be tested by developing a new algorithm for the search

of TLSs while the latter could be verified comparing TLS density in numerical silica described

using different inter-atomic potentials.

Finally, working with the TLS model made us realize its shortcomings and we think that two

additional points should be addressed in the future.

(1) In the TLS model, the events are said to be independent (as seen from the superposition

principle of Eq. C.21) which may be false for two reasons. As most of the TLSs are based on the

motion of tens or hundreds of atoms, it is not uncommon for two TLSs to share atoms, especially

if, as believed from experimental glasses, TLS are centered on defects such as OH impurities.

Therefore, the activation of a TLS could affect the possible activation of other TLSs sharing

the same atoms, either by preventing or helping the relaxation. The second reason is that, as

shown in Refs. [148, 103, 104], shear transformation zones and TLSs in glasses produce long

range strain fields. When an acoustic wave passes through a medium, the strain field produced

by the activation of some of the TLSs would be added to the deformation induced by the acoustic

wave. This additional deformation may induce other activations leading to two different type

of transitions: spontaneous transitions due to thermal fluctuation and "provoked" transitions

due to the strain field produced by spontaneous transitions. Measuring the importance of this
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phenomena would require to characterize the deformation fields around transforming TLSs and

study closely the interaction between these fields and other TLSs through their sensitivity to the

strain.

(2) When starting the present study, we tried to computed the deformation potential, γ, by

imposing stress or strain to the simulation cell and measuring the resulting change in energy of

the initial and final states of each TLSs. Doing so, we observed that many TLSs disappear when

the solid is under stress or strain due to the vanishing of their energy barriers. This vanishing

happened in two different circumstances: when the potential energy of the initial or final state of

the TLS goes above the barrier height or when the energy of the barrier itself decreases under

deformation until the PEL becomes monotomic in the direction of the TLS. In both cases the

TLS effectively disappears and thus does not contribute to dissipation. This fact indicates that

dissipation could depend on the amplitude of the acoustic wave considered as TLSs would vanish

at different deformation amplitude. Therefore, a new TLS model needs to be a function of the

wave amplitude as it needs to take into account the deformation at which each TLS vanishes.

A final point calls for additional work despite not being considered directly in the present

manuscript. Between TLSs, source of dissipation below the MHz, and harmonic dissipation,

source of dissipation above the GHz, there is a frequency range where most of the dissipation is

believed to come from Akhiezer damping as explained in Chap. 2. This specific frequency range is

not directly accessible using MD as the time scale involved is two to three orders of magnitude

larger than what MD is capable of. Since dissipation cannot be measured directly, a model need

to be used to predict dissipation as we did at low frequencies with the TLS model. As of today,

Akhiezer’s dissipation is modeled from calculations of the Grüneisen parameters, that represent

the variation of frequency of the eigenmodes with respect to the deformation induced by the

passing wave [90]. This work which would require the diagonalization of the dynamical matrices

of very large atomic samples would be very interesting as it would allow to fill the gap between

the present studies performed below the MHz and above the THz.
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ANALYTIC EXPRESSION OF THE COMPLEX MODULUS IN THE

HARMONIC APPROXIMATION

We detail here the calculations leading to an analytic expression of the dissipation in the har-

monic linear response regime, assuming a Langevin thermostat. We consider here only the case

of isostatic deformations. The general expressions given in the main text are obtained by a

straightforward generalization of these calculations.

A.1 Frequency-dependent pressure

We note rαi the current position of atom i in direction α and Rα
i , its equilibrium position in the

reference undeformed cell. At time t, the cell is compressed or stretched isostatically along the X ,

Y and Z directions by ε(t)= ε0 sin(ωt), such that:

(A.1) rαi = (1+ε)Rα
i + xαi ,

where xαi is the non-affine displacement. In the harmonic approximation, using the expression of

the energy given in Eq. 5.6 of the main text, the force on atom i and direction α is given by:

(A.2) Fα
i =−∑

jβ
Dαβ

i j (rβi j −Rβ

i j)
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where Rα
i j is the equilibrium separation between atoms i and j in direction α in the undeformed

initial cell. The dynamical matrix, Dαβ

i j , is sparse and has the following usual symmetries

(A.3) Dαβ

i j = Dβα

ji = Dαβ

ji = Dβα

i j .

And in free mechanical systems, the acoustic sum rule imposes

(A.4)
∑

i
Dαβ

i j = 0,

that expresses the translational invariance.

The pressure is expressed as:

(A.5)

P = 1
3V

∑
iα jβ

Fα
i rαi j

= 1
3V

∑
iα jβ

Dαβ

i j (rβi j −Rβ

i j)r
α
i j,

where V = L3 is the current volume of the cell, with L = L0(1+ε). At the rather low temperatures

considered here, we have checked that the kinetic pressure is negligible and will not be included

in the calculations.

The pressure can be re-written as a function of the applied strain ε and the non-affine displace-

ments xαi using Eq. A.1:

(A.6)

P = 1
3V

∑
iα jβ

Dαβ

i j

[
εRβ

i j + xβi j

][
(1+ε)Rα

i j + xαi j

]

= ε(1+ε)
3V

∑
iα jβ

Dαβ

i j Rβ

i jR
α
i j +

1
3V

∑
iα jβ

Dαβ

i j xβi j x
α
i j +

(1+2ε)
3V

∑
iα jβ

Dαβ

i j Rα
i j x

β

i j

In the linear response regime, only the first-order terms in ε and xβi j are kept. The second term of

the above expression is therefore neglected and the current volume V is replaced by the reference

volume V0. The first term corresponds to the pressure in case of affine atomic motion, with the

affine bulk modulus:

K∞ = −V
dP
dV

=−1
3

dP
dε

(A.7)

= − 1
9V0

∑
iα jβ

Dαβ

i j Rβ

i jR
α
i j.

The last term of Eq. A.6 is the non-affine contribution, which can be re-arranged using the
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symmetries of D:

∑
iα jβ

Dαβ

i j Rα
i j x

β

i j = ∑
iα jβ

Dαβ

i j Rα
i j x

β

j −
∑

iα jβ
Dαβ

i j Rα
i j x

β

i(A.8)

= 2
∑

iα jβ
Dαβ

i j Rα
i j x

β

j .

The pressure is thus expressed as:

(A.9) P =−3K∞ε+ 2
3V0

∑
iα jβ

Dαβ

i j Rα
i j x

β

j .

We then project the non-affine displacements onto the normal modes of the system. To this end,

we introduce mass-scaled displacements

(A.10) sβj =
√

m jx
β

j ,

and their projections sm on the eigenmodes e(m) of the system (i.e. the eigenvectors of the

mass-scaled dynamical matrix D̃):

sm = ∑
jβ

sβj eβj (m)(A.11)

sβj = ∑
m

smeβj (m).(A.12)

Replacing xβj in Eq. A.9, we form a mode-dependent term:

(A.13) Cm = ∑
iα jβ

Dαβ

i j Rα
i j

eβj (m)
�m j

and the final expression of the pressure is:

(A.14) P =−3K∞ε+ 2
3V0

∑
m

Cmsm.

Averaging this equation over multiple cycles and taking its Fourier transform, we obtain:

(A.15) 〈P〉(ω)=−3K∞ε(ω)+ 2
3V0

∑
m

Cm〈sm〉(ω),

where ε(ω) is the Fourier transform of ε(t) between 0 and T = 2π/ω. We see that Cm is proportional

to ∂P/∂sm and therefore expresses the sensitivity of the pressure to the amplitude of the normal

mode m. The properties of Cm will be further explored below.
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A.2 Complex bulk modulus

To express 〈sm〉(ω), we start from the SSLOD equations written as a second-order differential

equation in Sec 3.1.3:

(A.16) mir̈αi = mirαi (ε̇2 + ε̈)−∑
jβ

Dαβ

i j (rβi j −Rβ

i j)−miγ(ṙαi − rαi ε̇)+Fth,

which is written in terms of non-affine displacements, keeping only the first-order terms, as:

(A.17) miẍαi =−(
∑
jβ

Dαβ

i j Rβ

i j)ε−
∑
jβ

Dαβ

i j xβj −miγẋαi +Fth.

Introducing the mass-scaled coordinates sαi we obtain:

(A.18) s̈αi =−
(∑

jβ

Dαβ

i j�
mi

Rβ

i j

)
ε−∑

jβ
D̃αβ

i j sβj −γṡαi +
Fth�
mi

,

which yields after projection on the eigenmodes:

(A.19) s̈m = Cmε−ω2
msm −γṡm +Fm.

Here, Fm is the random force on mode m and ω2
m the eigenfrequency of mode m, i.e. the eigenvalue

of D̃ corresponding to the eigenmode e(m). We have also recognized that

(A.20)
∑

iα jβ

Dαβ

i j�
mi

Rβ

i j e
α
i (m)=−Cm,

in reference to Eq. 5.13, where the minus sign comes from the exchange between indices i and j.

Averaging this equation over multiple cycles, the random force term, of zero mean, vanishes, and

taking the Fourier transform, we obtain:

(A.21) 〈sm〉(ω)= Cm

ω2
m −ω2 + iγω

ε(ω).

Finally, replacing 〈sm〉(ω) in Eq. A.15, we have:

(A.22) 〈P〉(ω)=−3K∞ε(ω)+ 2
3V0

∑
m

C2
m

ω2
m −ω2 + iγω

ε(ω),

resulting in the complex bulk modulus reported in the main text:

(A.23) K(ω)= K∞− 2
9V0

∑
m

C2
m

ω2
m −ω2 + iγω

.
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B
POTENTIAL ENERGY LANDSCAPE AROUND AN INHERENT

STRUCTURE

When obtaining a list of TLSs, either through MD or using ART, it is hard not to wonder:

how does all of these new stable configurations are organize around the initial IS ? Are they

organized in cluster or randomly spread in the 3N dimensions of the PEL ? These questions

have been repeatedly studied by the group of D. J. Wales, most of the time using disconnectivity

graph on small clusters of atoms or organic compounds (see Ref. [200]). Since it would be very

computationally intensive to draw the disconnectivity graph for systems as large as the ones

used in the present study, we propose a simpler approach to visualize and develop an intuition of

the organization of inherent structures in the PEL.

We chose one of the SiO2 samples used in Chap. 6 and the 10 associated TLSs found using MD.

Their corresponding minimum energy pathways computed with the NEB method are represented

in Fig. B.1. The TLSs are numbered from 0 to 10 for convenience. Looking quickly at this graph,

we see that most of these TLSs are quite asymmetric especially number 4 and 7. It seems that the

TLS 1 has the lowest activation energy since it is squished on the x-axis, a zoom on this region

reveals that it is a very unstable TLS whose Δ almost equals its activation energy.

We know compute the distance matrix M between the 11 IS (10 final configurations plus the

initial state). The distance between two configurations k and l is calculated as:

(B.1) Mkl =
N∑
i

∥∥∥Rk
i −Rl

i

∥∥∥
Where N is the number of atoms in the system and Rk

i and Rl
i denote the equilibrium position of
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Figure B.1: Potential energy of the NEB images along the minimum energy pathway for 10 TLS
found from the same starting IS.

atom i in the ISs k and l respectively. The resulting distance matrix is represented as a heat map

in Fig. B.2. The black diagonal represents the distances for k = l and are effectively zero. The

largest distance is 151.9 Å between IS 4 and 10 and the smallest is 91.95 Å between IS 1 and the

initial configuration. As 1 is close to the initial IS, it is therefore also close to all the other ISs.

To visualize the organization of these ISs in the PEL, it would be interesting to represents them

in a 2D plane were they would be organized according to the distance matrix with the closest ISs

in the PEL close on the 2D plane and the farthest ISs in the PEL far from each other on the 2D

plane. Since there is no simple analytic solution to create graphs based on a distance matrix, we

use once again a Verlet algorithm where the ISs are represented as points in a 2D space. The

interactions between points are described by springs whose equilibrium distances are given by

the distance matrix. To do so, the 11 ISs are placed randomly in space and at each time step, the

forces between them are computed using the distance matrix as:

(B.2) Fl =
10∑

k=0
K(rlk −Mlk)

where K is the spring constant and rlk is the distance between the points corresponding to the IS

l and k in the 2D space. A fraction of the energy is withdrawn from the system at each time step

until the particles organization reaches a stable state represented in Fig. B.3. It is important

to notice that since the graph showed here is the result of a dynamic, it is not the only possible
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Figure B.2: Heat map of the distance matrix M for 11 IS found on the same SiO2 glass. Colors rep-
resent the distances in angstrom between configuration, lighter colors representing configurations
further from each other.

organization for the 11 ISs and their corresponding distance matrix (it would even be possible to

explore the 22+1 dimensions of the PEL of this system but it would be going too far).

At first sight, the 11 ISs seem homogeneously spread in space around the initial IS marked in

by a red point as IS 0. As expected from the heat map of the distance matrix represented in

Fig. B.2, the IS 1 is almost on top of the initial IS (and therefore quite close to all the other ISs).

We saw that the minimum energy pathway between these two states presents a small energy

barrier, which is now explained by the fact that these states are also close in the PEL. IS 0 and 1

are likely to be two states belonging to the same meta-basin, one of them (IS 0) slightly more

relaxed than the other. Looking at the atomic configurations, we identified this TLS as a Type

II involving four oxygen atoms (see main text for details). Coming back to Fig. B.3, we see that

IS 4 and 9 are far from all the other ISs, which is explained by the distance seen both of these

states and the rest of the TLS in the PEL. These two ISs got isolated to minimize the energy of

the system. The IS 10 is also far from most of the TLS but ends close to the IS 3 with which it

has an affinity. Looking at the atomic configurations for IS 3 and 10, we observed that these two

TLSs happen in the same region of the glass and involve some of the same atoms which explains

their proximity in the PEL. A similar situation exists to a lesser extent between IS 2 and 8. In

a general manner, in our 2D plot, two ISs that involve motions of the same atoms in the same
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Figure B.3: 11 IS found on the same SiO2 glass organized by proximity in a 2D space.

directions will form a line with the initial state.
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C
ENERGY DISSIPATION IN THE FRAMEWORK OF THE TLS MODEL

In this appendix, we detail the theory leading to the expression of dissipation 6.1. We follow an

approach similar to that of Jackle et al. [92], but fully account for the tensorial nature of the

strains and stresses and for the possible difference between the attempt frequency in the first

and second states of the TLSs.

C.1 Complex modulus

C.1.1 Equilibrium probabilities and detailed balance

We consider a TLS with 2 metastable states, noted 1 and 2, linked by a double-well potential,

V (x) as shown in Figs. 6.1 of the main text. We note p1 and p2, the probabilities to find the TLS

in either state 1 or 2, which denotes the basin on one side and the other of the energy barrier,

and p̄1 and p̄2, their equilibrium values.

At equilibrium, the probability to be at position x is proportional to exp(−V (x)/kbT). Therefore,

p̄1 ∝
∫

1
exp

(−βV (x)
)

dx(C.1)

and

p̄2 ∝
∫

2
exp

(−βV (x)
)

dx,(C.2)

where the integrals are performed over the basins of both states and β= 1/kbT. Using a harmonic

approximation, with ω2
1 and ω2

2 the curvatures at the bottom of both states, we have:
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p̄1 = 1
1+exp(−βΔ)ω1

ω2

p̄2 = 1
1+exp(βΔ)ω2

ω1

,(C.3)

where Δ is the energy asymmetry between states 1 and 2, as in the main text.

According to the harmonic Transition State Theory [195], the transition rates between states 1

and 2 are:

a12 = ω1

2π
exp(−βE∗)

a21 = ω2

2π
exp(−β(E∗ −Δ)),(C.4)

where E� is the energy barrier from state 1 to 2. One can easily check that Eqs. C.3 and C.4

satisfy the detailed balance, i.e. p̄1a12 = p̄2a21.

C.1.2 Deformation potential

The TLS is in a volume V subjected to a periodic applied strain tensor, ¯̄ε(t). Dissipation occurs if

the energy asymmetry, Δ, depends on the applied strain. Within an eigenstrain approach [135],

such coupling occurs if an eigenstrain ¯̄ε� is generated when the TLS transforms from state 1 to

state 2. The energy asymmetry and stress then depend on the applied strain as (with repeated

index summation):

Δ
(
¯̄ε
) = Δ+ V

2
C∞

i jkl

(
εi j − υa

V
ε�i j

)(
εkl −

υa

V
ε�kl

)
σi j = C∞

i jkl

(
εkl −

υa

V
ε�kl

)
,(C.5)

where C∞ is the tensor of elastic constants (including both affine and non-affine contributions,

which relax over timescales much shorter than considered here [42]) and υa, the TLS volume.

Introducing the deformation potential tensor:

(C.6) γi j = ∂Δ

∂εi j

∣∣∣∣
¯̄ε=0

=−υaC∞
i jklε

�
kl ,

we have:

(C.7) σi j = C∞
i jklεkl +

γi j

V
.

If we introduce δp2(t)= p2(t)− p̄2(0), the difference between the current probability of being in
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state 2, p2(t), and its equilibrium value in absence of applied strain, p̄2(0), the time-dependent

part of the stress is expressed as:

(C.8) σi j = C∞
i jklεkl(t)+

γi j

V
δp2(t),

Concerning the energy asymmetry, keeping only the first-order time-dependent term, we have:

(C.9) Δ
(
¯̄ε
)=Δ+γi jεi j.

C.1.3 Master equation

Dissipation arises because the strain changes Δ (Eq. C.9), which in turn changes the equilibrium

probabilities, p̄1 and p̄2 (Eq. C.3) and brings the system in and out-of-equilibrium state with a

finite relaxation time. The probabilities p1 and p2 follow master equations:

ṗ1 = −p1a12 + p2a21

ṗ2 = p1a12 − p2a21,(C.10)

where the transition rates depend on time because of their dependence on Δ (Eq. C.4). Since

p1 + p2 = 1, we have:

(C.11) ṗ2 =−p2(a12 +a21)+a12.

We can thus define a time-dependent equilibrium, reached if the applied strain varies slowly

compared to the relaxation time of the TLS:

(C.12) p̄2(t)= a12(t)
a12(t)+a21(t)

,

Inserting Eq. C.12 into Eq. C.11, we obtain:

(C.13) ṗ2 =−(p2 − p̄2(t))(a12(t)+a21(t))

We see from this equation and Eq. C.4 that to the first order, the time-dependence of the

transition rates can be neglected, allowing to define a relaxation time, τ−1 = a12(0)+ a21(0).

Using V = E�−Δ/2 as in the main text, we can rewrite the relaxation time as:

(C.14) τ−1 =
�
ω1ω2

π
exp(−βV )ch

(βΔ
2

+ 1
2

ln
ω2

ω1

)
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From Eq. C.13 using δp2 = p2 − p̄2(0), we have:

(C.15) τδ̇p2 =−δp2 + p̄2(t)− p̄2(0)

From the definition of the coupling parameter, we have:

p̄2(t)− p̄2(0) = p̄2(Δ+γi jεi j(t))− p̄2(Δ)

� ∂p̄2

∂Δ
γi jεi j(t)(C.16)

and from Eq. C.3:

(C.17)
∂p̄2

∂Δ
=− 1

4kTch2
(
βΔ
2 + 1

2 ln ω2
ω1

) ≡−A.

Finally, inserting Eq. C.16 with the definition of A into Eq. C.15, we obtain the following first-order

differential equation for δp2:

(C.18) τδ̇p2 =−δp2 − Aγi jεi j,

which is solved in the spectral domain, with ε∝ exp(iωt):

(C.19) δp2 =− A
1+ iωτ

γi jεi j

C.1.4 Complex modulus

From Eqs. C.8 and C.19, the tensor of complex elastic moduli is expressed as:

(C.20) C(ω)= C∞− 1
V

A
1+ iωτ

¯̄γ⊗ ¯̄γ,

with γ⊗γ, the tensor of components γi jγkl . If the volume V contains a population of TLSs, with

different ¯̄γ�, A� and τ�, we obtain from the superposition principle:

(C.21) C(ω)= C∞− 1
V

∑
�,TLS

A�

1+ iωτ�
¯̄γ�⊗ ¯̄γ�

C.2 Longitudinal dissipation

If the medium is deformed by a longitudinal wave along a unit vector �U , the corresponding strain

tensor is ε(t)�U ⊗ �U , with elements ε(t)UiUj. Dissipation is then given by the time delay between
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ε(t) and the tensile stress σ=Uiσi jUj along �U .

Glasses being isotropic, the static term in Eq. C.21 corresponding to C∞ yields σ= Mε, where

M =λ+2μ is the longitudinal modulus and λ and μ are the Lamé coefficients. The second term in

Eq. C.21 yields for each TLS a coupling term of the form
∑

i jkl γi jγklUiUjUkUl = (
∑

i j γi jUiUj)2.

Since a TLS can take any orientation with respect to the applied strain, we have to average this

term over all strain directions:

(C.22) 〈γ2〉L = ∑
i jkl

γi jγkl〈UiUjUkUl〉.

Only even-power averages are non-zero and because of isotropy, there are only 2 distinct terms,

〈U4
X 〉 = 〈U4

Y 〉 = 〈U4
Z〉 = 1/5 and 〈U2

XU2
Y 〉 = 〈U2

XU2
Z〉 = 〈U2

Y U2
Z〉 = 1/15. Thus:

〈γ2〉L = 1
5 (γ2

X X +γ2
Y Y +γ2

ZZ)+
2

15
(
γX XγY Y +γX XγZZ +γY YγZZ +

2γ2
XY +2γ2

X Z +2γ2
Y Z

)
.(C.23)

The frequency-dependent longitudinal modulus is therefore expressed as:

(C.24) M(ω)= M− 1
V

∑
�,TLS

A�

1+ iωτ�
〈γ2

�〉L

and the dissipation is given by the ratio of the imaginary and real parts of the complex modulus:

(C.25) Q−1(ω)=
∑

� A�
ωτ�

1+ω2τ2
�

〈γ2
�
〉L

V M−∑
�

A�

1+ω2τ2
�

〈γ2
�
〉L

We have checked that for the present system, systematically,
∑

� A�〈γ2
�
〉L � V M, such that:

(C.26) Q−1
L (ω)� 1

V M

∑
�,TLS

A�
ωτ�

1+ω2τ2
�

〈γ2
�〉L

C.3 Transverse dissipation

With a transverse wave, the medium is sheared along a unit vector �U parallel to a plane of normal
�V . The corresponding strain tensor is ε(t)/2(U ⊗V +V ⊗U). The time-independent term in Eq.

C.21 now yields a shear stress σ=Gε, where G is the shear modulus and the average coupling

113



APPENDIX C. ENERGY DISSIPATION IN THE FRAMEWORK OF THE TLS MODEL

term is:

(C.27) 〈γ2〉T = ∑
i jkl

γi jγkl〈UiVjUkVl〉.

Again, only even-power averages are non-zero, and accounting for the fact that �U and �V are

perpendicular, we find 〈U2
X V 2

X 〉 = 〈U2
Y V 2

Y 〉 = 〈U2
ZV 2

Z〉 = 1/15, 〈UX VXUY VY 〉 = 〈UY VY UZVZ〉 =
〈UZVZUX VX 〉 =−1/15 and 〈U2

X V 2
Y 〉 = 〈U2

X V 2
Z〉 = 〈U2

Y V 2
Z〉 = 3/15. Therefore:

〈γ2〉T = 1
15 (γ2

X X +γ2
Y Y +γ2

ZZ)− 1
15 (γX XγY Y +γY YγZZ +γZZγX X )+

4
15

(
γ2

XY +γ2
X Z +γ2

Y Z
)
,(C.28)

and

(C.29) Q−1
T (ω)� 1

V G

∑
�,TLS

A�
ωτ�

1+ω2τ2
�

〈γ2
�〉T
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