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Chapter 1 Introduction

An animal evolves in the world by being intelligent, i.e. by its ability to build a mental representation of the world in order to act on it. The brain is the conductor organ of other organs, taking in some perceptual information as input, and processing it to produce an appropriate behavior for survival. In return, the consequence of its actions is to produce new incoming perceptual information:

the brain is at the apex of the perception-action cycle. Intelligence is polymorphous and varies among species. It ranges from simple perception and attention to learning and reasoning for predicting and adapting to the future consequences of events or actions, or else the ability of language processing and social behavior. The human brain is the climax of what this organ can be in terms of processing abilities, and in particular by distinctive faculties such as conceptual knowledge. Understanding how a well-organized aggregate of atoms hosts a conscious soul or a thought has been one of our main concern for thousand years. It brings us back to our position in the universe. Philosophy, psychology and religions try to bring answers to this metaphysical question with their own approach. Likewise, neurosciences try to shed light on the universe by solving the brain with scientic tools.

In this thesis, we focus on human ability of rule-guided behavior and cognitive control, i.e. the ability to coordinate thoughts or actions in relation with internal goals. [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF]. In day to day life, human beings are able to explore and to exploit multiple behavioral strategies for a given task, depending on dierent goals, beliefs or contexts. They are able to select an appropriate action according to an appropriate rule: they learn and exibly use a structure for the task. Cognitive control and learning are linked and depend on the formation of hierarchical representations in the brain. We investigate this formation by means of synaptic plasticity mechanisms.

1.1 Task-set, from the what to the how 1.1.1 What is a task-set ?

Humans are performing thousands of tasks per day, even when stimuli are ambiguous or when several responses are valid for each task. In [START_REF] Sakai | Task set and prefrontal cortex[END_REF], Katsuyuki Sakai denes a task-set as a conguration of cognitive processes that is actively maintained for subsequent task performance. In other words, a task-set is the representation of a mental state corresponding to any currently used rule-mapping, in order to perform a given task. It can include perceptual, attentional, mnemonic and motor processes.

Understanding task-set implementation mechanisms is a key question for cognitive control. It has been tackled from psychological and neurophysiological perspectives [Bunge and [START_REF] Wallis | Orbitofrontal cortex and its contribution to decision-making[END_REF][START_REF] Meiran | Component processes in task switching[END_REF][START_REF] Monsell | Task switching[END_REF], with carefully controlled experimental designs. The task can be fairly simple, for example to associate a specic stimuli (a red circle on a screen) with a specic action (pull a lever), or it can engage more complex cognitive operations on the stimuli (for example, pull the lever if the stimulus match a given shape or location, or compare two stimuli). The goal of neuroscientists is to extract the neural correlates that are specic to the representation of the rule itself (the rule specicity of neural activity [START_REF] Sakai | Task set and prefrontal cortex[END_REF]), and not to the representation of the stimuli or of the actions (the attentionnal set).

The prefrontal cortex is the locus of cognitive control

Being able to exert cognitive control permits exible behavior, and human prefrontal cortex (PFC) has been the main region of interest in order to understand the implementation and the orchestration of this ability.

Prefrontal cortex is the latest brain region formed across evolution, with a greater relative size in humans [START_REF] Joaqun | The prefrontal cortexan update: time is of the essence[END_REF]. During development, the synaptic maturation of prefrontal areas lasts till adolescence, and this delay is a proxy for reasoning functions and executive memory as opposed to perceptual attention and memory in posterior cortical areas.

The prefrontal cortex has a key role in task-set learning [START_REF] Randall | The what and how of prefrontal cortical organization[END_REF][START_REF] Sakai | Task set and prefrontal cortex[END_REF][START_REF] Robert C Wilson | Orbitofrontal cortex as a cognitive map of task space[END_REF]. Indeed, prefrontal cortex is at the top of the sensorymotor hierarchy. It is responsible for the selective integration of sensory evidence to produce a cognitive representation of task space [START_REF] Randall | The what and how of prefrontal cortical organization[END_REF][START_REF] Robert C Wilson | Orbitofrontal cortex as a cognitive map of task space[END_REF], which, together with internal goals, lead to appropriate sequential motor responses.

Prefrontal cortex connectivity

The PFC has strong reciprocal connectivity with subcortical areas, and especially from basal ganglia (via the thalamus) [START_REF] Garrett | Functional architecture of basal ganglia circuits: neural substrates of parallel processing[END_REF][START_REF] Jerey | Anatomic and behavioral aspects of frontal-subcortical circuitsa[END_REF] which is composed of striatum, pallidum, substantia nigra and sub-thalamic nucleus. The aerent connections mainly provide the internal state of the animal.

The PFC is also largely connected to other associative areas. It receives multimodal perceptual information from posterior cortical areas. In return PFC reverberating and top-down biasing activity modulates the processing and the memory of perceptual information with respect to a contextual goal (vision in the inferotemporal cortex, touch in the somatosensory cortex, and location in the posterior parietal cortex, for example). The prefrontal cortex also sends and receives projections from motor systems.

Finally, PFC has a strong internal connectivity, which makes it a site of multimodal convergence with local circuitry.

Functional roles

The link between function and prefrontal regions is not always clear, and depends on stimulus features. Specic functional areas have to be considered as part of larger functional networks [START_REF] Joaqun | The prefrontal cortexan update: time is of the essence[END_REF].

Broadly, three large clusters have been distinguished from lesions studies [START_REF] Paul W Burgess | The cognitive and neuroanatomical correlates of multitasking[END_REF][START_REF] Milner | Eects of dierent brain lesions on card sorting: The role of the frontal lobes[END_REF]: the orbital, the medial/cingulate, and the lateral prefrontal cortex.

The orbitofrontal cortex (BA 10,11 and 47) is crucial for attention to the current task. It is an inhibitory controller of other regions within the PFC and subcortical areas, ltering distracting information. It is also implicated with value representation [START_REF] John | Abstract reward and punishment representations in the human orbitofrontal cortex[END_REF][START_REF] Wallis | Orbitofrontal cortex and its contribution to decision-making[END_REF]. Frontopolar cortex (BA 10) is implicated in holding in mind goals while exploring and processing secondary goals [START_REF] Koechlin | The role of the anterior prefrontal cortex in human cognition[END_REF].

Medial prefrontal cortex, and especially the anterior cingulate cortex, is engaged in attentional and eort systems, as well as in motivation, uncertainty and conict, or more generally the allocation of control [START_REF] Botvinick | Conict monitoring versus selection-for-action in anterior cingulate cortex[END_REF][START_REF] Cameron S Carter | Anterior cingulate cortex, error detection, and the online monitoring of performance[END_REF][START_REF] Richard Ridderinkhof | The role of the medial frontal cortex in cognitive control[END_REF]Rushworth et al., 2007[START_REF] Mfs Rushworth | Action sets and decisions in the medial frontal cortex[END_REF] Orbital and medial regions are thus responsible of selective information processing.

Lateral prefrontal cortex (LPFC) is specically engaged for temporally integrating and organizing multimodal information to achieve goal-directed behavior, speech and reasoning. Conversely, automatic or habitual behaviors are engaging subcortical structures such as basal ganglia and cerebellum. With frontal cortex impairments, patients cannot succeed in selecting a dierent behavior from the habitual one (Stroop task [START_REF] Cohen | Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia[END_REF][START_REF] Perret | The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour[END_REF][START_REF] Vendrell | The role of prefrontal regions in the stroop task[END_REF]), or cannot adapt to a new required behavior when the task rule changes (Wisconsin Card Sorting Test [START_REF] Milner | Eects of dierent brain lesions on card sorting: The role of the frontal lobes[END_REF]). Lateral PFC is also critical for learning arbitrary cue-response associations [START_REF] Petrides | Decits on conditional associative-learning tasks after frontaland temporal-lobe lesions in man[END_REF]. Etienne Koechlin has developed a cascade model of top-down cognitive control from rostral to caudal PFC regions [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF]: lateral premotor regions are responsible for sensory control, i.e. the ability to select a motor response from the presentation of a stimulus. Caudal LPFC regions are responsible for contextual control, i.e. the ability to select the correct task-set depending on contextual cues. Rostral LPFC regions are responsible for episodic control, i.e. the ability to select a task-set depending on the temporal context.

Multitasking neurons in the prefrontal cortex

External and internal information are processed jointly for representing goaldirected behavior. For this purpose PFC neurons are selective to dierent modalities of the task. Asaad and collaborators [START_REF] Wael F Asaad | Neural activity in the primate prefrontal cortex during associative learning[END_REF]] performed a conditioning experiment where monkeys had to learn associations between visual cues and actions (saccades). A large part of individual PFC neurons activity was selective to the combination of a cue and a motor response, thus reecting the corresponding association. Other studies conrmed the multimodal or multitasking activity of PFC neurons [START_REF] Cromer | Representation of multiple, independent categories in the primate prefrontal cortex[END_REF][START_REF] Sj Thorpe | The orbitofrontal cortex: neuronal activity in the behaving monkey[END_REF], and also its modulation by reward [START_REF] Barraclough | Prefrontal cortex and decision making in a mixed-strategy game[END_REF][START_REF] Watanabe | Prefrontal unit activity during associative learning in the monkey[END_REF][START_REF] Watanabe | Frontal units of the monkey coding the associative signicance of visual and auditory stimuli[END_REF]. Watanabe calls it the crossmodal coding of the associative signicance [START_REF] Watanabe | Frontal units of the monkey coding the associative signicance of visual and auditory stimuli[END_REF].

Importantly, individual PFC neurons show rule-dependent activity [START_REF] Wael F Asaad | Task-specic neural activity in the primate prefrontal cortex[END_REF][START_REF] Barone | Prefrontal cortex and spatial sequencing in macaque monkey[END_REF][START_REF] Genovesio | Prefrontal cortex activity related to abstract response strategies[END_REF][START_REF] Hoshi | Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex[END_REF][START_REF] Wallis | Single neurons in prefrontal cortex encode abstract rules[END_REF][START_REF] Ilsun | Rule-dependent neuronal activity in the prefrontal cortex[END_REF].

Executive memory

Memory cells in the lateral PFC are involved for working memory [START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF][START_REF] Joaqun | The prefrontal cortexan update: time is of the essence[END_REF]. They maintain patterns of activity representing rules and goals (active representation, or task-sets) during 1 to 10 seconds from the time of cue presentation to the time of elicited action [START_REF] Compte | Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task[END_REF][START_REF] Fuster | Neuron activity related to shortterm memory[END_REF][START_REF] Patricia S Goldman-Rakic | Circuitry of primate prefrontal cortex and regulation of behavior by representational memory[END_REF][START_REF] Kubota | Prefrontal cortical unit activity and delayed alternation performance in monkeys[END_REF], even in the presence of distractors [START_REF] Chao | Prefrontal decits in attention and inhibitory control with aging[END_REF][START_REF] Compte | Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model[END_REF][START_REF] Earl K Miller | Neural mechanisms of visual working memory in prefrontal cortex of the macaque[END_REF]. Feedback signals from these patterns of activity bias or boost the activity of other cortical and subcortical areas of the brain [START_REF] Edin | Mechanism for top-down control of working memory capacity[END_REF], and are particularly important for the recall of intended perceptual memory in the posterior cortex in order to achieve a specic task [START_REF] Constantinidis | The primate working memory networks[END_REF][START_REF] Earl K Miller | Neural mechanisms of visual working memory in prefrontal cortex of the macaque[END_REF][START_REF] Tomita | Top-down signal from prefrontal cortex in executive control of memory retrieval[END_REF]. This active memory in the service of control has been theorized by Miller and Cohen [START_REF] Cohen | On the control of automatic processes: a parallel distributed processing account of the stroop eect[END_REF][START_REF] Earl | An integrative theory of prefrontal cortex function[END_REF], and is supposed to be gated by midbrain dopaminergic neurons [Braver and [START_REF] Todd | On the control of control: The role of dopamine in regulating prefrontal function and working memory[END_REF][START_REF] Durstewitz | Dopaminemediated stabilization of delay-period activity in a network model of prefrontal cortex[END_REF].

Learning and cognitive control are interdependent

The PFC is the conductor of cognitive control. The neural bases of cognitive control and learning are linked. Feature and rule-dependent, or task-set dependent goal-related sustained activity of PFC neurons enables to follow an intentional behavior. The intention has been learned.

Reciprocally, learning in the PFC needs cognitive control. Active maintenance of selected and temporally integrated information in the PFC could also be the origin of task-set learning [START_REF] Earl | An integrative theory of prefrontal cortex function[END_REF]. Indeed, the ability to maintain over several seconds representational patterns of activity selective to distinct events (stimuli, actions, anticipations of reward) separated in time permit to process them jointly and to create a synaptic association between each representational units. The corresponding ongoing plasticity is hypothesized to be modulated by the prediction error between the expectancy of reward within the PFC, and the actual obtained reward, through the activity of midbrain dopaminergic neurons [START_REF] Read | A framework for mesencephalic dopamine systems based on predictive hebbian learning[END_REF][START_REF] Schultz | Predictive reward signal of dopamine neurons[END_REF][START_REF] Schultz | A neural substrate of prediction and reward[END_REF].

A computational model for human executive control and adaptive behavior

In that Empire, the Art of Cartography attained such Perfection that the map of a single Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province. In time, those Unconscionable Maps no longer satised, and the Cartographers Guilds struck a Map of the Empire whose size was that of the Empire, and which coincided point for point with it. The following Generations, who were not so fond of the Study of Cartography as their Forebears had been, saw that that vast Map was Useless, and not without some Pitilessness was it, that they delivered it up to the inclemencies of Sun and Winters. In the Deserts of the West, still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is no other Relic of the Disciplines of Geography.

Suarez Miranda, Viajes de varones prudentes, 1658, cited by Jorge Luis Borges in [START_REF] Borges | Of exactitude in science[END_REF].

Quantitative modeling permits to formulate the key characteristics of a process in order to understand mechanistically its basic principles. It produces predictions as consequences of the underlying mechanism and can thus be later veried experimentally [START_REF] Larry | Theoretical neuroscience rising[END_REF]. Is also produces postdictions, i.e. the theoretical attempt to explain a phenomenon already well characterized experimentally.

In the eld of neurosciences, this theoretical approach has been outstandingly rising since the past twenty years [START_REF] Larry | Theoretical neuroscience rising[END_REF], along with the parallel growth of computer science. Neural responses can be observed experimentally at dierent levels of description: while a monkey is performing a decision-making task, experimentalists can observe solely its behavior, or neural network responses through non-invasive recording of brain activity, for example with functional MRI, or else single-cell action potentials through electrophysiology. Neural models are developed to understand the what or the how of these neural responses. Depending on the specic question addressed, the neural model is constructed at dierent level of detail, and is constrained by physiology and anatomy.

In [START_REF] Marr | Vision: A computational investigation into the human representation and processing of visual information[END_REF], David Marr describes the dierent levels of understanding any information-processing device, such as the brain, and the importance of describing a task with the appropriate level of description.

The rst level is the computational level, describing the transfer of information inherent to the task through abstract and appropriate properties, for example by normative models.

The second level is the representational or algorithmic level, describing the algorithm transforming an input to an output for the task, for example the circuit-level models in neuroscience.

The third level is the hardware implementation level, describing the physical realization of the representational units.

There are logical and causal relationships between the three levels, and their coupling is a crucial question in the eld of neurosciences. However, solving a specic question about the brain does not necessarily need the study of the three levels. If I'm asking a question about the human ability to track reward uncertainty in a behavioral psychology task, I don't need to model recurrent connectivity in circuits of neurons, and even less the dynamics of action potentials in every neuron. As Borges pointed out, the proposed model needs to be minimal in order to explain the subset of essential features of the phenomenon.

In the following we review two main modeling streams for human goal-directed behavior at the computational level: reinforcement learning and Bayesian inference. We emphasize on several key functional MRI historical studies, and we review the modeling study of our collaborators [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. The general idea of model-based fMRI consists in using model's variables to design the analysis of the neuroimaging data, in this case the blood oxygenation level-dependent (BOLD) signal. The method for model-based fMRI is detailed in chapter 8.

Reinforcement learning

Reinforcement learning refers to a category of machine learning problems historically inspired by animal psychology. An animal is able to learn by trial and error and to adapt to a changing environment in order to obtain a reward. Reinforcement learning models provide with a normative view of how an agent predict future rewards in an associative learning paradigm [START_REF] Niv | Reinforcement learning in the brain[END_REF] by monitoring a single actor.

From a simplied neural network point of view, we can distinguish 2 types of learning [START_REF] Bishop | Pattern recognition and machine learning (information science and statistics[END_REF]: Supervised learning: a function is inferred from labeled training data, containing input and output values. The generalization can be done after learning through this supervisory signal.

Unsupervised learning: a function is inferred to describe some hidden structure from unlabeled data, for categorization problems for example. There is no supervisory signal.

Reinforcement learning stands between the two: the supervisory signal is not presented, however the environment is still interacting and providing some information to the learner, by producing a reinforcement (reward or punishment).

A reinforcement learning model [START_REF] Richard | Introduction to reinforcement learning[END_REF]] is characterized by: a state space {s i } describing the environment, for example the localization of the learner in a labyrinth from where he needs to exit. an action space {a i }, describing the interaction between the learner and the environment.

a markovian transition rule between states, describing the eect of the learner's actions on the environment: P (s t+1 |s t , a t ) a reinforcement rule, describing the reward or punishment obtained by the learner for a transition from one state to another: P (r t+1 |s t , a t , s t+1 ). This rule is often stochastic.

At each time t, the learner observes a state s t , he chooses an action a t and receives a reward r t . The goal of the reinforcement learner is to maximize its cumulative reward, and reinforcement problems can include long-term versus short term reinforcement trade-o.

Usually this problem is written as maximizing the total expected discounted reward R t = ∞ k=0 γ k r t+k , with γ ∈ [0, 1] being the discount-factor describing the long-term versus short-term trade-o for evaluating rewards.

A reinforcement learning problem also requires a policy including an exploration mechanism, to account for uncertainty on rewards. This policy is usually called π(s, a), and is the probability of selecting action a given that the learner is in state s: P (a|s). It corresponds to the learner's strategy.

The value of interest is then the expectation of cumulative reward R if we follow π when being in state s: V π (s) = E [R|s, π]. Optimality is then dened as nding the optimal policy: V * (s) = V π * (s) = sup π V π (s) which maximize the value in each state. If we deal with state-action space, we want to optimize the actionvalue function

Q π (s, a) = E[R|s, a, π]. By denition, V π (s) = a π(s, a)Q π (s, a).
The reinforcement learning problem can be solve either by value iteration, or by policy iteration. In the following studies, the policy is xed and learning occur through value iteration, from which emerges the computation of the prediction error.

Previous studies on reward-based decision making

In this section we refer to previous studies in the eld of reward learning and decision making investigating how humans learn to make adaptive decisions in order to maximize rewards in uncertain environments. Historically, reinforcement learning theory permitted to make a strong step towards understanding the neural basis of learning and the role of the dopaminergic system, basal ganglia and prefrontal cortex.

Reward prediction error in classical conditioning and the Rescorla-Wagner model

Classical conditioning consists in learning passively to predict rewards. One of the most well known quantitative model in psychology is the Rescorla-Wagner model (RW) [START_REF] Robert A Rescorla | A theory of pavlovian conditioning: Variations in the eectiveness of reinforcement and nonreinforcement[END_REF]. It accounts for the acquisition of conditioned responses during Pavlovian conditioning: the presentation of a conditioned stimulus (a bell ring for example) produces a conditioned response (dog salivation) in order to obtain the unconditioned stimulus (food).

In RW, reward-related learning depends on the predictability of the reward, itself determined by the past reward history of the animal. The core computation in the model is the trial-by-trial update of the prediction error δ t = u t -v t , which is the dierence between the current observed value of the unconditioned stimulus u t (a reward or a punishment) and the conditioned response, or the expected value of the conditioned stimuli v t . The value of the conditioned stimulus is updated at each trial in proportion to δ t in order to converge to the value of the unconditioned stimulus. The speed of convergence is the learning rate α: v t+1 = v t + α • δ t . At the end of learning, the prediction error is null and learning is complete: the conditioned response predicts the reward or punishment: u = v. The three variables of interest in this model are v, δ and u. The prediction error δ cannot be observed directly. As an internal variable, it can be measured with neurophysiology and neuroimaging techniques.

A major study in this eld has been done by Wolfram Schultz and colleagues [START_REF] Schultz | A neural substrate of prediction and reward[END_REF]. Their experiment consisted in conditioning primates to press a lever in response to a ash of light in order to obtain a juice reward. They showed that phasic changes in the outputs of midbrain dopamine neurons code for the reward prediction error of the appetitive events computed from the temporal dierence learning model, which is a real-time extension of the RW rule. These neurons project to the striatum and may teach reward-processing structures to inuence behavioral choices.

The prediction error computed from conditioning paradigms has been used as a regressor for a model-based fMRI study by O'Doherty and colleagues [START_REF] John | Temporal dierence models and reward-related learning in the human brain[END_REF]. Human subjects had to learn associations either between a visual stimulus and a taste reward, or between another visual stimulus and the absence of reward. Using the temporal dierence learning model to generate time series of the trial-by-trial evolution of the prediction error, they found signicant correlations with neural activity in the ventral striatum and the orbitofrontal cortex. These regions are targets of dopamine neurons. Other studies conrmed these ndings [START_REF] Samuel M Mcclure | Temporal prediction errors in a passive learning task activate human striatum[END_REF].

Reward prediction error in instrumental conditioning and reinforcement learning models

Instrumental conditioning investigates how humans actively learn stimulus-responseoutcome associations. Using the insight of reinforcement learning theory [START_REF] Richard | Introduction to reinforcement learning[END_REF], O'Doherty and colleagues [START_REF] John | Dissociable roles of ventral and dorsal striatum in instrumental conditioning[END_REF] used the prediction error signal as a regressor of BOLD activity. In this case, the prediction error is the dierence in predicted rewards as the agent move from one state to another.

They compared neural activity in the instrumental conditioning task, with the corresponding passive Pavlovian task where subjects could not choose actively the actions leading to rewards. They conrmed a previous proposed dorsal versus ventral striatum actor/critic architecture [START_REF] Read | A framework for mesencephalic dopamine systems based on predictive hebbian learning[END_REF] for the computation of prediction error in the brain. Ventromedial prefrontal cortex activity correlates with the encoding of the value of chosen action on a trial by trial basis in dierent experimental paradigms [Daw et al., 2006;[START_REF] Kim | Is avoiding an aversive outcome rewarding? neural substrates of avoidance learning in the human brain[END_REF][START_REF] Lebreton | An automatic valuation system in the human brain: evidence from functional neuroimaging[END_REF][START_REF] Saori | Prediction of immediate and future rewards dierentially recruits cortico-basal ganglia loops[END_REF].

Thus striatum and ventromedial prefrontal cortex activity correlates with valuebased exploitative decision making, and the corresponding expected value signal is consistent with reinforcement learning models.

Bayesian inference

Besides learning the strength of associations between states and actions, animals estimate the uncertainty over these associations [START_REF] Dominik | Knowing how much you don't know: a neural organization of uncertainty estimates[END_REF][START_REF] Aaron C Courville | Bayesian theories of conditioning in a changing world[END_REF][START_REF] Samuel J Gershman | A unifying probabilistic view of associative learning[END_REF][START_REF] Samuel | Exploring a latent cause theory of classical conditioning[END_REF][START_REF] Goldwater | A bayesian framework for word segmentation: Exploring the eects of context[END_REF][START_REF] Kepecs | A computational framework for the study of condence in humans and animals[END_REF][START_REF] Konrad | Bayesian integration in sensorimotor learning[END_REF][START_REF] Pouget | Probabilistic brains: knowns and unknowns[END_REF]. They are able to actively probe the environment for optimal learning [START_REF] John K Kruschke | Bayesian approaches to associative learning: From passive to active learning[END_REF][START_REF] Jill | How can a bayesian approach inform neuroscience[END_REF]. For this purpose, the brain relies on inductive learning and reasoning and the ability to generalize probabilistically from a few observations [START_REF] Anne | Cognitive control over learning: creating, clustering, and generalizing task-set structure[END_REF][START_REF] Thomas L Griths | Probabilistic models of cognition: Exploring representations and inductive biases[END_REF][START_REF] Tenenbaum | How to grow a mind: Statistics, structure, and abstraction[END_REF][START_REF] Xu | Word learning as bayesian inference[END_REF].

The core of probabilistic reasoning is the learner's estimation of the uncertainty over several hypotheses, or actors, by updating beliefs after each new observation of the environment. The learner estimates the posterior distribution over hypotheses h after observing the data d, given by Bayes' rule:

P (h|d) ∝ P (d|h) • P (h) (1.1)
P (h|d) is the likelihood of each hypothesis given the data. P (h) is the distribution over hypotheses a priori, i.e. before observing the data, and corresponds to inductive biases. Finally, P (d|h) is the likelihood of the observation of the data d

given that hypothesis h is true.

An example of model for uncertainty monitoring

Functional MRI studies on reinforcement learning reviewed in the previous section have focused on the prediction error δ. Any surprising event induces a large prediction error, and has a large impact on expectation updates. In these studies, the learning rate α is constant for each subject throughout the experimental task: it is a free parameter of the model.

However, the expectation updates can also be uncertain, leading to a changing learning rate. Behrens and colleagues have focused on the learning rate as a bayesian model component for a neuroimaging study [START_REF] Behrens | Learning the value of information in an uncertain world[END_REF] in a task-switching paradigm [START_REF] Monsell | Task switching[END_REF] in order to question the importance of past history on next decisions. They suggest that an estimate of a higher-order statistical feature of the environment has an inuence on voluntary choice. When the environment is stable, subjects should consider historically distant information and should not change their estimate as soon as a surprising event occurs: the learning rate should be low. In a fast changing or volatile environment, on the contrary, recent events are more informative and the learning rate should be higher.

The optimal model learns online the reward likelihood associated with each option, controlled by the environment volatility. At each trial, the optimal action is chosen according to the product of the reward probability and the reward magnitude. The learning rate depends on the uncertainty in the estimate of the reward likelihood.

Human behavior matched the optimal Bayesian learner predictions. The authors found that the estimated volatility, or the trust about the environment stability, correlated with the BOLD signal in the anterior cingulate cortex, when the outcome is observed.

The model of Collins and Koechlin

In [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF], Anne Collins and Etienne Koechlin proposed the PROBE model for goal-directed behavior, and especially for task-set learning and λ through learning. This new task-set is either conrmed and added in the buer, or rejected if a previously learned task-set is retrieved.

Predictions of this model have been tested on two behavioral experiments by Anne Collins, as well as on a fMRI experiment by Mael Donoso [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. Subjects need to learn associations between three stimuli and four actions. In order to learn dierent rule-mappings, they receive a reward at each trial depending on the success of the stimulus-action association. Experimental sessions last about a thousand trials, and task-sets, or rule-mappings, are changing unpredictably every 36 to 54 trials. In the recurrent session, only three task-sets are repeated. Whereas in the open-ended session, 24 task-sets are used, without being repeated: an environmental switch requires learning a new behavior. These experimental setups are detailed in chapter 2.

Subjects can learn task-sets and reach a high performance for the task in both sessions. Interestingly, in the recurrent session, subjects are able to reuse previously learned mappings: after a late episode switch, a positive feedback produces correct responses in the next trials, even when the two successive presented stimuli are dierent. This is shown by a strong increase of the statistical mutual dependence between successive correct associations following environmental switches. In the open-ended session, by contrast, there is no inference of a rule-mapping after a rst correct association.

Acquiring BOLD activity for the same task enabled the authors to investigate the architecture of these processes in PFC. They identied a medial-lateral segregation for monitoring the actor strategy or the two other strategies from the inferential buer. The medial track is composed of vmPFC, pgACC (perigenual anterior cingulate cortex), dACC and ventral striatum. The activations in medial regions correlates with the model inferences on the actor strategy. Especially, dACC activity correlates with the model detection of the current actor unreliability, before the creation of the probe. The lateral track is composed of frontopolar cortex and middle lateral prefrontal cortex. The activations in lateral regions correlates with the model inferences on two or three alternatives strategies. Especially, the mid-LPC activity correlates with the model detection of the reliability of a previously learned task-set, before its retrieval. The coupling between these two tracks permits hypothesis testing, and describes human adaptive behavior.

With the PROBE model, Etienne Koechlin and collaborators modeled the transfer of information during cognitive control, and especially for task-set creation, learning and updating, at the functional level.

A remaining question is to understand the neural mechanisms for encoding and learning informational sets. This question can be addressed with neural network modeling in order to explain the observed behavior in terms of underlying synaptic events. We address this question in this thesis work, from the what to the how, and back. We thus jump from the computational level to the representational level [START_REF] Marr | Vision: A computational investigation into the human representation and processing of visual information[END_REF] in order to understand the possible key mechanisms of task-sets implementation in the prefrontal cortex.

Building blocks of a representational model of task-set implementation in the PFC

The synapse is believed to be the locus of learning and memory. If we want to model task-set implementation in the brain, we need to model this implementation at the level of synaptic plasticity mechanisms, i.e. as changes in synaptic connections between neurons depending on their activity [START_REF] Dayan | Theoretical neuroscience[END_REF][START_REF] Sj Martin | Synaptic plasticity and memory: an evaluation of the hypothesis[END_REF]. Experience creates new patterns of synaptic activity, which in turn modify neuronal ring and future behavior.

In this section we review several studies modeling exible sensorimotor mapping by means of synaptic plasticity. These studies inspired the neural network proposed in this thesis to perform the task of Koechlin and colleagues [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF]. Such a neural network contains distinct neural populations representing the events of the task, and characterized by the synaptic strengths between them. First, the network needs to be able to make a binary decision depending on any set of learned synaptic weights, in order to make a choice at each trial. Secondly, we need to model the learning of these synaptic weights in order to account for adaptive choice behavior.

Fusi and Wang's biological realistic network model for decision-making

Xiao-Jing Wang and colleagues proposed biological realistic network of spiking neurons exploring possible cellular and circuit mechanisms for action-selection [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF][START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]. It is a two-variable network model (gure 1.2 (A)) accounting for electrophysiological recordings in lateral intraparietal cortex (LIP) from alert monkeys during a perceptual decisionmaking task [START_REF] Roitman | Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task[END_REF][START_REF] Michael | Neural basis of a perceptual decision in the parietal cortex (area lip) of the rhesus monkey[END_REF]. LIP neurons receive inputs from MT neurons encoding linearly the coherence of the Donald Hebb, The organization of behavior, 1949behavior, [Hebb, 2005] ] The Hebb rule species the induction of plasticity as an update of synaptic weights according to correlations between pre-and post-synaptic neuronal ring [START_REF] Dayan | Theoretical neuroscience[END_REF]. This activity-dependent process causes persistent changes (potentiation, or its direct generalization to depression) in synaptic weights from excitatory neurons. This simple idea has been supported by numerous experiments on long-term potentiation (LTP) and long-term depression (LTD) which depend on presynaptic stimulation jointly with strong or weak postsynaptic depolarization and lasts tens of minutes or more [START_REF] Frégnac | A cellular analogue of visual cortical plasticity[END_REF][START_REF] Levy | Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus[END_REF][START_REF] Lisman | Long-term potentiation: outstanding questions and attempted synthesis[END_REF][START_REF] Gary S Lynch | Heterosynaptic depression: a postsynaptic correlate of long-term potentiation[END_REF][START_REF] Robert | Long-term potentiationa decade of progress?[END_REF] or else spike-dependent synaptic plasticity (STDP) [START_REF] Bi | Synaptic modications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF]].

In general, we express Hebbian plasticity rule by a dierential equation:

dJ i→j dt = F (J i→j ; S i , A j ) (1.2)
where J i→j is the synaptic weight (usually constrained to account for synaptic saturation), and the function F depends on the state of the presynaptic neuron or neuronal population S i and the state of the postsynaptic neuron or neuronal population A j . The state of a neuron can be the membrane potential, the calcium concentration, spike timing (its biological substrate being STDP) or else the ring rate. To model LTP for example, the function F is simply the product of pre-and post-synaptic ring rates.

The activity state of neuronal populations can be considered as being binary (high activity state or spontaneous state) and can depend on their relative timing.

Hebb [START_REF] Olding | The organization of behavior: A neuropsychological theory[END_REF] postulated the existence of reverberating activity in recurrent neuronal circuits for short-term memory, producing sustained activity of a full network of neurons. The same mechanism is plausible for working memory and temporal integration, and could occur in long-term memory networks of the PFC for task-related modalities [START_REF] Joaqun | The prefrontal cortexan update: time is of the essence[END_REF][START_REF] Tegnér | The dynamical stability of reverberatory neural circuits[END_REF] or simply in posterior cortex for perceptual information, or between both.

We have mentioned in section 1.1.2 the possible origin of task-set learning in the temporal integration of multimodal information acquired at distinct times through sustained neuronal activity [START_REF] Earl | An integrative theory of prefrontal cortex function[END_REF].

Theoretically, associative long-term memory is encoded in neural correlations. Several studies have indeed shown the possibility of encoding temporally con-tiguous events in the spatial structure of patterns of sustained activity in the inferotemporal cortex (IT) for learning similarity-based categories [START_REF] Brunel | Hebbian learning of context in recurrent neural networks[END_REF][START_REF] Griniasty | Conversion of temporal correlations between stimuli to spatial correlations between attractors[END_REF][START_REF] Yakovlev | Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations[END_REF]. Recent studies have focused on prefrontal cortex and the possibility to encode temporal rule-based categories [Rigotti et al., 2010b;[START_REF] Nicolas P Rougier | Prefrontal cortex and exible cognitive control: Rules without symbols[END_REF].

Experimental evidence for the behavioral Hebbian learning rule

The idea of applying Hebb's rule to behavioral timescales was motivated originally by experimental studies in IT responsible for invariant visual object recognition. Monkey experiments of long-term memory revealed the existence of correlations after learning in the activity of IT neurons selective to temporally contiguous stimuli [START_REF] Miyashita | Neuronal correlate of visual associative long-term memory in the primate temporal cortex[END_REF]. Moreover, the selectivity of individual neurons has been shown to change from a single stimulus before training (untrained controls) to several stimuli after training [START_REF] Kobatake | Eects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys[END_REF].

More recently, a study from Li and collaborators [START_REF] Li | Unsupervised natural experience rapidly alters invariant object representation in visual cortex[END_REF] investigated tolerant object representations, i.e. the ability for monkeys to recognize objects even after a change in position. Importantly, this tolerance was also found in the selectivity of the corresponding IT neurons, and is necessary for the animal to associate dierent retinal images from moving eyes to the same object. The authors propose the unsupervised temporal tolerance learning (UTL) as a mechanisms for explaining the observed neuronal tolerance. Specically, this tolerance is supposed to be learned from the temporal contiguity of stimuli features in life experience. Monkeys were exposed to a altered visual world during two hours, supposed to cause the misleading representation of a single object from two distinct objects. The tolerance was eectively altered in a very fast manner, and is supposed to originate from an activity-mediated unsupervised process.

Theoretical work of Mattia Rigotti and Stefano Fusi

In [Rigotti et al., 2010a,b], Mattia Rigotti and colleagues propose a neural model for the creation of context representations inspired by the Miller and Cohen theory of active maintenance of patterns representing goals in the PFC [START_REF] Earl | An integrative theory of prefrontal cortex function[END_REF], as well as previous studies in the eld of attractor neural networks [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural elds[END_REF][START_REF] Compte | Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory[END_REF][START_REF] John | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] William | Analytic study of the memory storage capacity of a neural network[END_REF]. Specically, each rule or mental state corresponds to an attractor of the dynamics of a recurrent neural circuit. The consequent sustained activity permits the cognitive maintenance of the rule for goal-directed behavior. In order to account for exible cognition, the network also contains non-linear mixed-selective neurons, i.e. neurons that are selective to inner mental states and external inputs. Non-linear mixed-selectivity can be obtained theoretically from a network of randomly connected neurons, as an hardware property before the learning process. Importantly, the authors show that mixed-selectivity neurons are both necessary and sucient for learning and exible cognitive control [START_REF] Fusi | Why neurons mix: high dimensionality for higher cognition[END_REF][START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF].

Inspired from the work of Mattia Rigotti, Stefano Fusi and Srdjan Ostojic [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF]Rigotti et al., 2010a,b], we examine the hypothesis that humans are learning task-sets or mental states through the encoding of a simple mathematical objective: the temporal contiguity of events. This can be modeled by unsupervised and activity-mediated Hebbian learning rule between classical mixed-selective neural populations. The importance of the presence of non-linear mixed-selectivity neurons randomly connected to our network model can explain task-set retrieval for ecient decision-making, and is discussed at the end of the thesis (section 9.3).

In the experimental paradigm of Koechlin and colleagues [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF], having to manipulate at least 3 dierent task-sets is crucial. Indeed when there are only 2 rules, a simple switch from one to another can be learned. When there are 3 rules, and after an environmental switch, some exploration is required to nd the correct task-set. The same reason explains why we also need more possible actions than the number of stimuli. However, if subjects are able to learn and retrieve a task-set, a response to a distinct stimulus after an environmental switch should be aected by the prior presentation and correct association of another stimulus. Task-set retrieval would strongly reduce exploration. Thus our study stands out from previous modeling studies focusing on non-human primates experiments [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]. In these studies, monkeys are not able to learn task-sets per se, as an interdependent learning and retrieval between distinct stimulus-action associations. However, we take the same starting point of modeling exible sensorimotor mappings in terms of synaptic plasticity from sensory neurons aerents to a decision network constituted by responseselective cells, responsible for action selection.

Notation

In the whole thesis, the p-value of any statistical test will be noted as: 

Experimental results

This thesis work is based on two experiments designed and realized by Dr Koechlin, Collins and Donoso [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. Data from [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF] is called Experiment 1. Data from [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] is called Experiment 2. The experimental designs are identical. Experiment 1 is a behavioral experiment including 22 subjects. Experiment 2 involves 40 subjects, with fMRI acquisition. The authors explored the ability of learning and monitoring concurrent behavioral strategies, or task-sets, for the same task.

Experimental design

The aim of the experiment is to learn correct associations between 3 stimuli and 4 actions. These correct associations are changing over time. Here we describe the structure of the task from a trial to the whole experiment, as well as the post-experiment debrieng which permitted the authors to classify subjects in two groups.

The experimental task A trial

The experimental task consisted of a succession of trials. Figure 2.1 displays the description of a trial. At each trial, a visual stimulus (a digit on the screen) was presented to the subject. The subject had to make an action, by pressing a letter on a keyboard. Visual and auditory cues were used to announce the outcome of a trial: a feedback either rewarded (of value 1), or not (of value 0) depending on the success of the stimulus-action association. A visual measure of the cumulative collected prot was displayed on the screen. A correct association between the stimulus and the action led to positive reward with a probability 90%. An incorrect association between the stimulus and the action led to a null reward with a {2, 4, 6} {d, f, j, k} subjects had to use the index and the middle nger of each hand to press letters. In Experiment 2, they had to use the 4 ngers of the right hand.

Debrieng

After each session, subjects performed a post-test debrieng. They needed to rate 6 task-sets depending on their condence in having seen them or not during the experiment. For the recurrent session, 3 out of the 6 task sets were actually presented during the experiment. For the open-ended session, the 6 task sets were all part of the experiment.

From the debrieng of the recurrent session, subjects were classied in two dierent groups. Exploiting subjects ranked higher condence for the 3 seen task sets, compared to the 3 unseen task sets. Exploring subjects, on the contrary, ranked at least 1 unseen task-set with more condence than one the the 3 seen task-sets. From this post-test debrieng:

In Experiment 1, 13 subjects were classied as exploiting and 9 as exploring.

In Experiment 2, 19 subjects were classied as exploiting and 21 as exploring.

Subjects were aged from 18 to 35 years old, and had no psychiatric or neurological history precluding them to achieve the task. A performance-dependent monetary compensation was provided in order to motivate them. The authors did check that there was no correlation with some simple factors such as age, sex, educational level or session order.

Behavioral results

The authors report that the task was perceived to be dicult by the subjects. Subjects were overestimating the noise in the rewarding feedback provided by the environment. Some subjects claimed not to have seen the dierence between the two sessions and did not try to reuse some previously learned task-sets.

In this section we explore quantitative measures of behavior, in particular of task-set retrieval.

General behavior

In both sessions, an episode switch produced a perseverance phase, during which the subjects were ignoring negative feedbacks, and choosing correct actions according to the task-set of the previous episode, however incorrect according to the Environment Behavior 1d 3f 3f 5j 3f 1d 1f 3j 3j 5k 1f 5k 3j 1f 3j 1f 3k 5d 3k 1j 3k 1j 1d 3f 3f 5j 3f 1d 1d 3f 5k 3j 1f 3j 1f 3j 1j 3k 1j 3k 5d 1k 5j 3d correct persevere explore explore persevere correct correct Switch Switch episode switches, after an initial learning phase. We consider the 10 last episodes of each session. In the recurrent session a rule-mapping has been repeated on average in 5 non-successive episodes beforehand.

To test for the eects of misleading noisy trials after learning, we compute and display the performance after single noisy trials at the end of each late episode.

Behavioral results of Experiment 1

The main behavioral results of Experiment 1 [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF] are displayed in gure 2.4. The subject by subject behavioral study is not shown here for conciseness.

Mean performance and performance after a noisy trial Subjects reached a high performance for the task in both sessions: they could learn individual associations (gures 2.4 A,B). The short perseveration observed at the beginning of an episode, followed by a strong increase in performance, is a distinguishing feature of an episode switch. On average, reaching asymptotic performance is faster for the recurrent session.

The number of correct responses increased faster in the recurrent session, and as a consequence, exploratory responses vanished faster. These dierences are signicant [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF].

In both sessions, subjects are not sensitive to single noisy trials after learning (gure 2.4 E).

Performance after consecutive correct trials

An important behavioral variability is observed among subjects. Thus we have displayed in gure 2.4 (C, D) both mean performance over all subjects, and performance averaged over 2 exploiting subjects selected from their behavioral dierence between the two sessions.

In the recurrent session, after the rst correct trial of a late episode and for a dierent stimuli, performance of the two exploiting subjects is already at 90%. A positive feedback produces correct responses in the next trials, even when the two successive stimuli are dierent. These subjects are able to infer the rule-mapping after observing a single stimulus-action association. This is not observed in the open-ended session. The same performance in this latter session is very low (35%). session.

Behavioral results of Experiment 2

Figure 2.6 display the same general conclusions concerning the behavior of the 40 subjects of Experiment 2 [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

The task is the same as in Experiment 1, however BOLD activity is now acquired during the two last third of the experiment. The subject by subject behavioral study is not shown here for conciseness.

Performance after consecutive correct trials

The behavioral dierence between the recurrent and the open-ended session based on the performance after consecutive correct trials is not valid anymore. A distinction between behaviors in the two sessions is only visible when we select some exploiting subjects, pointing to the even more important inter-individual variability in this experiment. This is also displayed in gure 2.7.

Possible reasons for the lower observed performance when comparing to Experiment 1 Some details of the experimental setup of Experiment 2 dier from Experiment 1. Episodes are divided in 6 runs of 4 episodes each. The two rst runs (8 rst episodes) are behavioral runs, outside of the scanner, and the 4 last runs (16 episodes) are in the MRI scanner. Figure 2.8 displays no clear dierence between mean performance in the recurrent session over the 8 rst episodes and over the 16 last episodes. The MRI scanner is as a stressful environment, and could explain these lower performance in the last episodes when comparing to Experiment 1. Moreover, between each run, the subject takes a break from a few seconds to one minute. After each break, the contingencies stay the same during 6 to 9 trials (36 in total over the session). These post-pause trials are supposed to prevent the subject from inferring an episode switch from a break. However, they have a dramatic eect on behavior (gure 2.9): it seems indeed that the subjects forget the correct associations during the break. On average over subjects, the post-pause phase is not long enough for them to recover the performance before the pause. These pauses could be a reason for this surprisingly low distinction between the two sessions.

Chapter 3

Model description

Acts of recollection, as they occur in experience, are due to the fact that one movement has by nature another that succeeds it in regular order.

On memory and reminiscence, Aristotle.

During the 4th century B.C, Aristotle already pointed out the main properties of long-term memory for successions of behaviors : it is associative and temporally ordered. One of the aims of neuroscience is to provide some insight into the memory mechanisms by which neural systems produce and are aected by behavior. In 1949, Hebb reformulated this idea of temporal ordering from a physiological perspective [START_REF] Olding | The organization of behavior: A neuropsychological theory[END_REF] : Any two cells, or systems of cells that are repeatedly active at the same time will tend to become associated, so that activity in one facilitates activity in the other.

Bridging the gap between physiology and behavior to model the neural bases of behavior is an important and dicult question in the eld of neurosciences. In this work we are specically interested about the question of learning task-sets. To this aim we test simple physiological mechanisms, in particular hebbian synaptic plasticity, for learning temporal associations between behavioral events : two events which happen together will get physiologically associated. Our motivations are multiple. First, we want to model task-set learning with a biological inspired mechanism. Secondly, we want this model to be simple enough for analyzing and tting experimental data, in particular behavioral and fMRI data. Finally, this model needs to predict specic features of behavior in order for its mechanism to be testable.

The model is inspired and adapted from previous studies on adaptive behavior based on non-human primates experiments [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF]Rigotti et al., 2010b] and modeling exible sensorimotor mapping by means of synaptic plasticity. The authors start from the experimental observations [START_REF] Wael F Asaad | Neural activity in the primate prefrontal cortex during associative learning[END_REF] that neurons recorded in the prefrontal cortex of monkeys during a oculomotor paradigm respond selectively to the planned motor response. Moreover, this selectivity appears earlier through the learning process, or later through the unlearning process after environmental reversals, suggesting a synaptic plasticity mechanism. They model plasticity on multiple timescales : fast learning components permit to learn quickly a new environment, while slow components enable to memorize and retrieve experiences on longer timescales. The authors also model the interplay between decision-making dynamics and these plasticity mechanisms. We take the same starting point of modeling exible sensorimotor mappings in terms of synaptic plasticity from sensory neurons aerents to a decision network constituted by response-selective cells and responsible for action selection.

As in [Rigotti et al., 2010b], our model is composed of two interacting neural circuits, receiving feed-forward inputs from sensory neurons and transforming these into motor outputs. The rst circuit learns one-to-one associations between visual stimuli and motor responses. The synaptic plasticity of neural populations in this associative network is modulated by reward. This circuit cannot learn more than one task-set at once. The temporal contiguity of the stimuli presentation and motor responses from the rst circuit drives synaptic plasticity on a longer timescale in a second neural circuit, the task-rule network which acts as a slower activity-mediated and unsupervised system. An inference feedback from the task-rule network to the associative network biases future behavior according to the task-rule network encoded patterns of connectivity.

In this chapter we give a detailed description of the model. We rst describe the network architecture. Secondly we detail the dynamics in each circuit composing the network. Finally, we develop the plasticity rules of the two circuits.

The network architecture

The experimental setup we are using is composed of a succession of trials. Each trial is itself a succession of three events : the presentation of a stimulus to the agent, a motor-response done by the agent, and the acquisition of a reward by the agent.

We model learning at the event timescale. Thus we assume that time is discrete and xed. One time-step represents one experimental trial, thus a few seconds.

A stimulus or an action is noted with lower-case letters : s i or a j . The network is composed of neural populations selective to these events. In the experimental design of E. Koechlin and colleagues, there are 12 possible associations between

S i A j S i A j s i a j s i a j H S J AN S2→Aj s 2 A j J T N S3A3→SmAn s 3 a 3 {s i } i=1..3 {a j } j=1..4 {S 1 ; S 2 ; S 3 } {A 1 ; A 2 ; A 3 ; A 4 } {S i } i=1..3 {A j } i=1..4 J AN S i →A j . These synapses are bounded in [0, 1].
At each trial, a stimulus is presented and the corresponding neural population is active. Any activation of an action-selective neural population determines the chosen action by the network.

The task-rule network

The task-rule network, TN, is illustrated on the right panel of gure 3.1. It is inspired by a modeling study [Rigotti et al., 2010b] performing a trace conditioning task and proposing a mechanism for the formation of temporal representations.

Each neural population is mixed-selective, i.e. selective to specic combinations of external events [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF]. For simplicity, we consider that each population is active following the conjunction of one stimulus and one action. For example, if the associative network chooses the action a 3 is response to the stimulus s 3 , the neural population selective S 3 A 3 is activated in the task-rule network. From [Rigotti et al., 2010a], this mixed-selectivity is plausible if neural populations in the TN are a pool of randomly connected neurons receiving feed-forward inputs coming from sensory and motor areas. These mixed-selective neurons have been observed experimentally in the amygdala [START_REF] Joseph J Paton | The primate amygdala represents the positive and negative value of visual stimuli during learning[END_REF] as well as in prefrontal cortex [Rigotti et al., 2010b[START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF].

We are not explicitly modeling the synapses between the AN and the TN. The only plastic synapses are the excitatory one between the TN neural populations. The connectivity is characterized by a matrix J T N . Each index k = S i A j represents the neural population selective to both stimulus s i and action a j . With l = S m A n , J T N kl = J T N S i A j →SmAn species the synaptic strength from the neural population selective to stimulus s i and action a j , to the neural population selective to stimulus s m and action a n .

Note that the connectivity in the TN is not symmetric : J T N kl = J T N lk . Moreover, the synapses are bounded :

J T N kl ∈ [0, 1].

Network dynamics

Decision-making dynamics in AN

At trial t the neural population S i selective to the presented stimulus s i is activated. This activation initiates and biases the competition between the actionselective neural populations {A j } j=1..4 , depending on the synaptic strength J AN s i →a j from S i to each A j . A soft and noisy winner-take-all mechanism (equation 3.1) maps the synaptic strengths J AN s i →a j ∈ [0, 1] for {a j } j=1..4 at trial t, to the probabilities P (a j |s i ) of activating response-selective neural populations. Only one population wins, and reaches a high activity state so as to trigger a single motor response, predicting the action for the trial and anticipating a reward.

P (a j |s i ) = n A + (1 -) exp(βJ AN s i →a j ) n A k=1 exp(βJ AN s i →a k ) (3.1)
where n A is the number of possible actions.

Two parameters are describing this decision rule :

1/β is the decision noise (or the temperature, alluding to the Boltzmann distribution). An imbalance in synaptic strengths is biasing the stochastic decision with respect to β. For high decision noise, all actions are equiprobable : the system does not take past evidence encoded in synaptic strengths into account for its next decision. For low decision noise, the probability of the action with the synaptic strength tends to 1 : the decision process becomes greedy. The behavioral parallel for β is the subject's inferred stability of responses.

accounts for the network's internal estimate of expected uncertainty [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF]. In the original study of S. Fusi [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF], this estimate is not included. However, they do point out the existence of a 7% fraction of erroneous trials which are not leading to the monkeys' usual reset of behavior after an error and which could be related to the monkeys' estimate of external unpredictability.

At each trial, the network choice is random with a probability given by this policy. The soft-and-noisy winner-take-all mechanism is a simplied description of dynamics in a detailed spiking network model [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF][START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF].

Network dynamics in TN

At each rewarded trial, the AN is biased by the TN patterns of activation. This inference bias is illustrated in gure 3.2.

Let (s i , a j ) be the association rewarded at trial t. In the TN, the neural population S i A j is activated. If this neural population is strongly connected to other TN neural populations S k A l (selective to stimulus s k and action a l ), these populations are also activated. Strongly connected means above the inhibition threshold
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J IN C is thus the bias strength. This bias is a simplied description of a complicated mechanism, supposed to occur through neuromodulation or random projections from an extra pool of neurons [Rigotti et al., 2010a] and projecting back to the AN.

Plasticity

In the model, learning is implemented through plastic modications of synaptic strengths.

General form of plasticity rules

We note J j→i the synaptic strength from neural population j to neural population i.

Potentiation is characterized by a potentiation rate α + such that :

J j→i (t + 1) = J j→i (t) + α + • (1 -J j→i (t)) (3.3)
Depression is characterized by a depression rate α -such that :

J j→i (t + 1) = J j→i (t) -α -• J j→i (t) (3.4)
Equations 3.3 and 3.4 impose a soft bound on synaptic strengths in [0, 1]. This ensures biological plausible saturation of neural activity, as well as their forgetfulness [START_REF] Fusi | Hebbian spike-driven synaptic plasticity for learning patterns of mean ring rates[END_REF].

As in [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF] the potentiation and the depression rates depend of the temporal sequence of events. We model synapses between two neural populations, selective to distinct events, which are detailed below for the two circuits.

A possible interpretation is that each neural population consists of a large number of neurons, and any two arbitrary neural populations are inter-connected by large number of synapses. From previous studies [Amit [START_REF] Daniel | Learning in neural networks with material synapses[END_REF][START_REF] Fusi | Hebbian spike-driven synaptic plasticity for learning patterns of mean ring rates[END_REF][START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF] , synapses with soft bounds can be interpreted as an average of many bistable synapses. The synaptic strength is the probability for each synapse to go from the depressed state to the potentiated state, or equivalently, the fraction of potentiated synapses.

Outcome Outcome

Reward = 0 S1 A 2 S2 Visual stimulus Motor response I N H A 1 A 3 S3 A4 Reward = 1 S1 A 2 S2
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I N H A 1 A 3 S3 A4 Activation Potentiation Depression r α + α - J AN s i →a j ← J AN s i →a j + α + (r, s i , a j ) • (1 -J AN s i →a j ) -α -(r, s i , a j ) • J AN s i →a j
This learning rule is local : at each trial, only the synaptic weights from the neural population selective to the presented stimulus are updated.

In principle, the values of learning rates in the AN can depend on all possible combinations of events. In particular :

Positive or null reward (r ∈ {0, 1}) can induce dierent plasticity rates :

α {+;-} (r = 0) = α {+;-} (r = 1).
Each synaptic potentiation or depression learning rates α + and α -can depend on the activity state of pre-and post-synaptic neurons, i.e. whether they are activated (state H) or not (state S).

For simplicity, we allow only four dierent combinations of events to induce non-zero learning rates. These four synaptic events are illustrated in gure 3.3:

If the decision is rewarded :

Synapses between the active sensory-selective neural population (pre-) and response-selective neural population (post-) are potentiated at a rate:

α + (r = 1, s i = H, a j = H) (3.6)
Synapses between the active sensory-selective neural population (pre-) and the inactive response-selective neural population (post-) are depressed at a rate:

α -(r = 1, s i = H, a j = S) (3.7)
If the decision is non-rewarded:

Synapses between the active sensory-selective neural population (pre-)

and response-selective neural population (post-) are depressed at a rate:

α -(r = 0, s i = H, a j = H) (3.8)
Synapses between the active sensory-selective neural population (pre-) and the inactive response-selective neural population (post-) are potentiated at a rate:

α + (r = 0, s i = H, a j = S) (3.9)
Thereafter, we analyze the simplest version of the model where these four rates are equal and given by a single learning rate parameter α.

When tting the model to human behavior, we will raise the possibility of distinguishing the learning rates. Also, model ts of the open-ended session can also be improved by adding other learning components corresponding to synaptic 
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the sequence of events [START_REF] Brunel | Hebbian learning of context in recurrent neural networks[END_REF][START_REF] Sompolinsky | Temporal association in asymmetric neural networks[END_REF].

Potentiation

In the TN, the strengthened synapses link neural populations that are activated sequentially one after the other, i.e. populations activated at time t, selective to stimulus s t and action a t , with neurons activated at time t + 1, selective to stimulus s t+1 and action a t+1 . These neural populations are respectively noted S t A t and S t+1 A t+1 . Note that we can have s t = s t+1 or a t = a t+1 . The index t or t + 1 only refers to the trial time of the corresponding event. The learning rate for potentiation in the TN is noted Q P in order to distinguish from the AN learning rate α + . The updating rule at trial t + 1 for TN synaptic weights is:

J T N StAt→S t+1 A t+1 ← J T N StAt→S t+1 A t+1 + Q P • (1 -J T N StAt→S t+1 A t+1 ) (3.10)

Depression

At each trial, all the synapses from the active neural population S t A t to the inactive neural populations SA = S t A t are depressed (pre-activated depression [START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF]). Q M is the rate of depression. From equation 3.4, the updating rule at trial t for TN synaptic weights is:

J T N StAt→SA =StAt ← J T N StAt→SA =StAt -Q M • J T N StAt→SA =StAt (3.11)
We x g I = 0.5 and constrain the learning rates of potentiation and depression to stay below the inhibition threshold: Q P < g I and Q M < g I .

Comparison with other models

Fusi and Wang's biological realistic network model for decision-making

The soft and noisy winner-take-all mechanism is motivated by a study on decisionmaking for conditional associative learning [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF]. The authors start from a previously proposed biological realistic network of spiking neurons exploring possible cellular and circuit mechanisms for action-selection [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF][START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF]. They adapt this network model to a distinct experimental paradigm [START_REF] Wael F Asaad | Neural activity in the primate prefrontal cortex during associative learning[END_REF]]. The two-competing populations are the eye-directional selective neurons of the monkey. The stimulus consist of an explicit visual cue, and its input activates the response-selective populations. The strength of activation depends on the synaptic conductance from the stimulus-selective neural population to each competing neural populations.

The authors show that the psychometric function is well-described by a sigmoidal function of the conductances dierence. Said dierently, the ring rate of each response-selective population is a sigmoidal function of the total synaptic input.

We have reproduced these results by implementing this model with the Brian simulator [START_REF] Dan | The brian simulator[END_REF] and studied the parallel of this decision making neural network and the softmax policy. We have retrieved the matching between the inputs' discrepancy and a dierence in the associative network synaptic strengths. We have also shown the relationship between the variance of the inverse decision noise in Wang's network model and the temperature of the softmax policy, i.e. the selection greediness.

In the case of more than two competing neural populations, a dynamical system approach reproduced from [START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF] has also revealed the network ability to be in a bistable state where only one population can win. The raster plot of a simulation of the spiking network model of [START_REF] Brunel | Eects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition[END_REF][START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF] with a bias in input strengths (or equivalently, in synaptic strengths) is displayed in gure 3.5.

Feedback inhibition between recurrent neural populations of integrate-and-re neurons selective to motor responses is a plausible mechanism for a soft and noisy winner-take-all mechanism.

3.4.2 Link from AN to reinforcement learning Q-learning [Watkins and [START_REF] Christopher | Q-learning[END_REF]] is a model-free reinforcement learning technique for a Markov decision process. The agent receives a reward at each state, and accordingly optimizes the action-value function Q π (s, a) by value iteration. The goal is to predict the next action for maximizing future rewards. The policy is xed, and is generally a softmax on the updated Q values.

This learning rule has been shown to explain conditional associative learning behavior in many experimental paradigms, and to exhibit specic neural correlates (see section 1.2.1). A direct parallel can be made between learning these behavioral Q values and learning synaptic weights between event selective neural populations in a decision network. The stochastic hebbian learning rule of [Fusi
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A 1 β distinction permits to liberate from strong hypothesizes.

First, with no attractor dynamics per se, we don't need to implement the reset mechanism needed in [Rigotti et al., 2010b] to shut down previously activated stable patterns of activity. Also, in [Rigotti et al., 2010b] the network switch from one attractor to the other, and does not include a quantication of uncertainty. As soon as there is an error, there is again a surprise reset mechanism. On the contrary, our model encodes the memory trace of any sequence of events, even incorrect. Uncertainty is included by the transition probabilities (weak but non-zero) that exists between 2 task sets in the TN for example, or between one task set and an incorrect association. This uncertainty (expected and unexpected [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF]) will be encoded in the TN synaptic weights.

As the TN patterns of connectivity do not need to be perfect attractors corresponding to the correct behavior, learning in the TN is also simplied: it occurs immediately, even when the AN is not strongly biased towards correct associations.

Finally, the TN synaptic weights are continuously modied, even when the inferential feedback to the AN is strong, which is not the case in [Rigotti et al., 2010b]. Thus, the TN can learn from its own activity. Our dynamical study will show the conditions for positive or negative snowball behaviors with respect to the network performance.

Chapter 4

Synaptic dynamics of the AN

In this chapter we explore the learning dynamics of stimulus-action associations in the AN alone, without the inuence of the TN. Specically, we study the dynamics of synaptic weights in this decision network, as well as its impact on network performance. We focus on the specic case of the recurrent experimental session from [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], in which three non-overlapping task-sets are repeated one after the other across the session. Non-overlapping means that a stimulus-action association can only be correct according to one of the three task-sets. An experimental episode refers to a block of trials where a single task-set is correct and needs to be learned by the network. An environmental switch refers to an episode change, i.e. a change in correct stimulus-action associations. As task-sets are non-overlapping, this leads to a change in associations from all stimuli of the experiment.

In line with the experimental results from chapter 2, we investigate: the mean performance over all episodes the mean performance after the rst correct trial following an episode switch, for late episodes.

the mean performance after a misleading noisy trial.

Learning and forgetting associations

First, we explore the ability for the AN network alone to learn the three correct stimulus-action associations corresponding to a task-set during an episode, through synaptic connectivity. We focus in this section on the dynamics of the AN without reward uncertainty (noisy trials). From the AN plasticity rule (equation 3.5), the synaptic connection corresponding to the correct action for the presented stimulus is always potentiated. If the trial is correct, the potentiation of a synaptic connection from one stimulus to the correct action goes with the depression of all the synaptic weights from the same stimulus, to the other actions. If the trial is incorrect, the depression of the synaptic connection corresponding to the triggered action goes with the potentiation of all the other synaptic weights from the same stimulus, including the connection to the correct action. Thus, at each trial, the imbalance between the synaptic weight of the correct association, and the others, is increasing. As seen in section 3.2, the network performance is directly related to this imbalance through the soft-and-noisy winner-take-all mechanism. The greater this imbalance, the more positive rewards are obtained by the network through time, i.e. the greater the performance, and anew the greater this imbalance between synaptic weights. In order to learn eciently the three associations corresponding to a task-set and to reach maximal performance, the synaptic weights corresponding to the previous task-set, connecting the same stimuli to other actions, need to be depressed. Thus, after each environmental switch, the AN unlearns the previous task-set, and learns the new one.

Learning and forgetting associations over several episodes

The forget and learn pattern of the AN is illustrated in 4.1. This gure shows a simulation of the recurrent session where an uncued episode switch marks the new occurrence of one of the three recurrent task-sets.

The evolution of AN synaptic weights corresponding to each task-set is displayed in gure (A). After an episode switch, the new task-set is learned, and the previous task-set is unlearned. Other transients are plotted in red. They correspond to synaptic strengths which are incorrect according to the any of the task-sets, and thus to exploratory stimulus-action associations.

The corresponding performance is displayed in (B). The stochasticity in the model only comes from the action-selection rule studied in section 3.2. As soon as the imbalance between synaptic weights becomes greater than an order of 1/β, the dynamics of the model is nearly deterministic. The remaining stochasticity exclusively emanates from the greediness parameter . In the whole chapter, this parameter equals 0 for illustration purposes.

The AN encodes a single task-set at once and there is no possible memory of multiple task sets.

α = 0.4 β = 7 = 0 < J AN C > s i,i=1..3 < J AN P > s i,i=1..3 α = 0.4 β = 7 = 0 < J AN E1 > s i,i=1..3 =< J AN E2 > s i,i=1..3 < J AN E > s i,i=1..3 J AN C J AN P J AN E tic weights J AN P .
All the other weights are null. According to the action-selection rule (equation 3.1), the network performance is maximal. However, the switch is an uncued rule change. The imbalance between AN synaptic weights J AN P , J AN C and J AN E at the time of the switch is in favor of the former rule. Thus, the network is suddenly getting null rewards for persevering into the former task-set, and performance drops to 0. Gradually, according to equation 3.5, the persevering associations are unlearned and the corresponding synaptic weights are depressed. All the other synaptic weights J AN 

Detailed analysis of the forget and learn pattern

In this subsection we recall the equation for the AN plasticity rules and for the softmax used for action-selection. We show that the forget and learn behavior of the AN is faster with a greater learning rate α.

The performance, or probability of selecting the correct association is:

P C (t) = exp(β • J AN C ) exp(β • J AN C ) + exp(β • J AN P ) + 2 • exp(β • J AN E ) (4.1)
The persevering choice probability is:

P P (t) = exp(β • J AN P ) exp(β • J AN C ) + exp(β • J AN P ) + 2 • exp(β • J AN E ) (4.2)
The exploratory choice probability is:

P E (t) = exp(β • J AN E ) exp(β • J AN C ) + exp(β • J AN P ) + 2 • exp(β • J AN E ) (4.3) 2x2-dimensional AN
We rst consider a simplied case corresponding to a task with two stimuli and two actions. Thus there is only two possible motor responses for each stimulus:

the persevering and the correct responses, and no exploration. Before the switch, J AN P = 1 corresponds to the correct association, and J AN C = 0 corresponds to the incorrect association. A contextual switch causes a reversal between the two possible task-sets: J AN C is now the weight corresponding to the correct association, and J AN P to the persevering, and incorrect one. From the switch, no matter what the choice is, J AN C is always potentiated (equations 6.11 and 6.10) and J AN P is always depressed (equations 6.8 and 6.12). At each time-step where the stimulus is presented:

J AN C ← J AN C + α • (1 -J AN C ) J AN P ← J AN P • (1 -α) (4.4)
Let ∆ be the dierence between those synaptic weights (

∆ 0 ∈ [-1, 1]): ∆(α, t) = J AN P -J AN C (4.5)
By recurrence:

∆(α, t) = (∆ 0 + 1) • (1 -α) t -1 (4.6)
If we note A(t) the action triggered by the model at trial t:

P C (t) = P (A(t) = C|A(t -1) = C) • P C (t -1) +P (A(t) = C|A(t -1) = P ) • P P (t -1) (4.7)
In this simplied framework, and from equations 4.1 and 4.2:

P P (t -1) = 1 -P C (t -1) P (A(t) = C|A(t -1) = C) = P (A(t) = C|A(t -1) = P ) (4.8)
The performance, or probability of selecting the correct response is:

P C (α, β, t) = 1 1 + exp(β • ∆(α, t)) = 1 1 + exp(β • ((∆ 0 + 1) • (1 -α) t -1)) (4.9)
At the trial of the contextual switch, J AN P (0) = 1 and J AN C (0) = 0, so ∆ 0 = 1. This is true if the episode length is long enough to guarantee full learning of correct associations, and is veried a posteriori. The performance is an exponential increasing transient, with a timescale given by α. At each trial, the probability of selecting the incorrect association is P P = 1-P C and is an exponential decreasing transient. For α = 0.4 and β = 0.7, and after 4 trials, P G = 0.99 and P P = 0.01. For 2 stimuli, the learning would be completed after 8 trials.

3x4-dimensional AN

In the simulation of the experimental task with 3 stimuli and 4 actions, illustrated in gure 4.2 (A) and (D), we observe complete learning after 30 trials, so after 10 trials for each stimulus on average. This discrepancy with the 2x2 dimensional AN is due to the presence of uctuations of synaptic weights at the beginning of the episode. With 4 possible actions, the evolution of weights is more complicated and the complete learning of the correct association (i.e. the number of trials necessary to reach J AN C = 1) is delayed. Indeed, at the initiation of a new episode, we suppose J AN P = 1, J AN C = 0, J AN E1 = 0, J AN E2 = 0 (complete learning of the previous task-set). As J AN P = 1 and the other weights are null, the network begins by a persevering phase, choosing the incorrect association, although correct for the previous task-set. No reward is obtained and the three other weights are potentiated, including the two remaining incorrect associations:

J AN P ← J AN P • (1 -α) J AN C ← J AN C + α • (1 -J AN C ) J AN E1 ← J AN E1 + α • (1 -J AN E1 ) J AN E2 ← J AN E2 + α • (1 -J AN E2 ) (4.10)
J AN E1 and J AN E2 are then non-zero and the probability of choosing these incorrect associations transiently increases (equation 4.3). The network is exploring. If one of these associations E1 is chosen, no reward is obtained, and its synaptic weight is depressed. However, the synaptic weights of the persevering and the other exploratory associations are potentiated, leading to a delay in learning (equation 4.2):

J AN E1 ← J AN E1 • (1 -α) J AN C ← J AN C + α • (1 -J AN C ) J AN P ← J AN P + α • (1 -J AN P ) J AN E2 ← J AN E2 + α • (1 -J AN E2 ) (4.11)
If we note A(t) the action triggered by the model at trial t:

P C (t) = P (A(t) = C|A(t -1) = C) • P C (t -1) +P (A(t) = C|A(t -1) = P ) • P P (t -1) +P (A(t) = C|A(t -1) = E1) • P E1 (t -1) +P (A(t) = C|A(t -1) = E2) • P E2 (t -1) (4.12)
Only the synaptic weight J AN C corresponding to the correct association is always potentiated, at each trial where the stimulus is presented. This guarantees the extinction of this exploratory transient after a few trials.

Conclusion of the detailed analysis

We have detailed the dynamics of the forget and learn pattern of the AN, and showed that this behavior is faster as the learning rate α is greater. The AN encodes a single task-set at once and there is no possible memory of multiple task sets. The dynamics of the AN is the same, whatever the progress throughout the session.

Sensorimotor associations are learned one by one

In this subsection we discuss and insist on the fact that stimulus-action associations are learned one by one in the AN. A task-set can be encoded by this network, but this encoding simply reects one by one encoding of stimulus-action associations.

From the learning rule 3.5, we remark that potentiation and depression aect only the synaptic weights emanating from the activated stimulus-selective neural population. There is no interdependent learning of associations from two distinct stimuli. As a consequence, the AN cannot retrieve interdependently the action associated with a stimulus from knowing another stimulus-action association, which is a measure of task-set retrieval ability.

We explore the eect of this independent associative learning through the synaptic dynamics and the corresponding performance after a rst correct trial, displayed in gure 4.2 (B) and (E).

For each simulated episode, s T is the stimulus presented at the rst correct trial T , associated to action a T . From this trial, we consider the next trial T + k * for which the presented stimulus is dierent:

k * = min k∈N (s T +k = s T ).
As stimulus presentation is randomized, this happens after k trials with probability 2 3 ( 1 3 ) k-1 . We are interested in the value of the synaptic weight from this stimulus s T +k * selective neural population to the correct action a T +k * selective neural population. This synaptic weight is J AN s T +k * →a T +k * . In each task-set, an action is associated to a single stimulus, so a T +k * = a T . Figure 4.2 (B) displays the value of J AN s T +k * →a T +k * . At the rst correct trial, this value does not change (small horizontal step): the update of J AN s T →a T has no impact on the value of synaptic weights from a dierent stimulus J AN s T +k * →a T +k * . After the rst correct trial, the presentation of stimuli is randomized and we retrieve the gradual learning of the other stimulus-action associations. As the performance can be drawn directly from synaptic weight values, we also retrieve the gradual increase of performance. Its value after the rst correct trial depends on the specic sequence of stimuli presentation and actions.

The AN does not store any information about the fact that all associations are simultaneously modied after an episode switch. The synaptic connectivity does not reveal any information about the task-set as a whole, as three stimulus-action associations merging into a single mental state.

Eect of a noisy trial on AN connectivity

The previous analysis do not take into account the noisy trials introduced in the experimental paradigm of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. In this setup, 10% of trials are misleading: a correct association yields to a null reward while an incorrect association yields to a positive reward. We now turn to exploring the eect of this noise on the AN connectivity.

Experimental noise is causing either a delay in learning, or an unlearning, of correct associations in the AN. This unlearning goes with the learning of incorrect associations. The network performance is reecting the value of synaptic weights, and in particular the disparity between synaptic weights from a stimulus to correct and incorrect actions. Thus the experimental noise yields a decrease of performance. This eect is increasing with the AN learning rate α.

Figure 4.3 displays the same simulation as gure 4.1, but with the addition of 10% of noise. The overall eect is to lower the saturation value of correct synaptic weights and maximal performance. In this simulation, and depending on the chosen parameters' values, the episodes are just long enough for the network to reach this maximum.

To show the unlearning caused by noisy trials in more details, we will discuss the consequence of the appearance of either an early or a late noisy trial: An early noisy trial appears at the beginning of the episode, when the synaptic weights are uctuating: the synaptic weights corresponding to correct associations have not been learned yet.

A late noisy trial appears at the end of an episode, when the synaptic weights corresponding to correct associations have reached saturation. All the other synaptic weights are null.

α = 0.4 β = 7 J AN C 1 -α α J AN C = 1
While obtaining a null reward from a correct association, the corresponding synaptic weight J AN C is depressed to 1 -α (equation 3.5). The synaptic weights from the same stimulus, but corresponding to incorrect actions J AN W were initially null. They are misleadingly potentiated to α. The probability of choosing again the correct action for this specic stimulus drops. From equation 4.1, we can compute its value:

P C (t) = exp(β • J AN C ) exp(β • J AN C ) + 3 • exp(β • J AN W ) 1 1 + 3 • exp(β • (2α -1)) (4.13)
This negative eect on performance increases with α. ) shows the unlearning eect of a misleading trial on the synaptic weight from the presented stimulus to the correct action. This gure also displays the incorrect learning of J AN W , the mean of the three synaptic weights from the same stimulus, but corresponding to incorrect actions, J AN P , J AN E1 , J AN E2 . The related performance drop is illustrated in (F) and depends on the value of β through the action-selection rule 3.1.

We discussed the eect of a single early or late noisy trial, but the eect of 10% randomized noisy trial throughout the session is directly derived from it.

Conclusion on the eect of noisy trials on AN connectivity

A early noisy trial causes a delay in learning correct associations. A late noisy trial causes an unlearning of these correct associations.

In general, noise added in the experiment as misleading outcomes yields to the unlearning of correct associations and to lower maximal network performance. The network sensitivity to noise is increasing with the AN learning rate α.

However, we have shown in the previous section that the learning rate α needs to be large to ensure fast learning of the new task-set after an episode switch. The existence of noisy trials thus impose a trade-o on the maximum value of the AN learning rate. Learning needs to be fast, but not too fast in order to ensure a limited unlearning when a trial is noisy. If α = 1 for example, the synaptic weights corresponding to correct associations would be reset at each misleading trial, thus having a dramatic eect on performance.

Conclusion on the learning dynamics of the AN

The AN has to forget a task-set by unlearning the three associations one by one, before learning a new task-set. The AN encodes a single task-set at once and there is no possible memory of multiple task sets.

Crucially, the AN cannot infer the relations between dierent stimulus-action associations, about their merging as a mental state, as a task-set. As a consequence, the AN does not store any information about the fact that all associations are simultaneously modied after an episode switch. Task-set retrieval is thus not possible: there is no inference on the value of other stimuli through the learning of a single stimulus-action association.

The forget and learn speed is an increasing function of the learning rate α. However, a high learning rate also yields to an increased sensitivity to noise. There is a trade-o on the value of the AN learning rate, so that the behavior of the network is ecient regarding the experimental setup.

Chapter 5 Synaptic dynamics of the TN: the formation of task-sets Humans are able to learn the structure of the experimental task [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. In the recurrent session, they learn the three task-sets, and are able to infer the three stimulus-action associations of each task-set from knowing a single stimulus-action association. A simple associative network cannot simultaneously encode several task-sets. In order to model this inferential learning mechanistically, and inspired from [START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF]Rigotti et al., 2010b], we formulate the simplest hypothesis of a second circuit in the network encoding the temporal statistics of experimental events. Specically, the activity in the associative network drives synaptic plasticity in the task rule network (TN) which acts as a slower unsupervised system storing representations of contiguous events. As a result we show that task-sets from the experimental paradigm of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] are encoded as patterns of TN synaptic connectivity. After learning, an inference bias to the associative network permits to retrieve a whole task-set after the rst correct stimulus-action association.

Hereafter, we consider the same AN model as in section 3.3.2: a single learning rate describes four synaptic events (equations 6.11, 6.8, 6.12, 6.10). We neglect the parameter , thus the stochasticity in the decision process only comes from the decision noise 1/β of the winner-take-all mechanism (equation 3.1).

In the recurrent session of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], only 3 non-overlapping task-sets are presented repeatedly and unpredictably across episodes. In this chapter, we check that the TN is able to encode this 3 task-sets in its synaptic connectivity matrix. An illustration of the encoding of the 3 task-sets is displayed in gure 5.1. Then we explore the eect of the inferential bias from the TN to the AN when task-sets have been correctly encoded as TN patterns

(s i , a j ) Q P Q M JA→B P A→B JA→B = Q P Q M P A→B 1 + Q P Q M P A→B A → B JA→B Q P /Q M = 10 Q M = Q P /10 events.
In the previous chapter, we have studied the dynamics of the AN. After each episode switch, the AN forgets the previous task-set and learns the new one. It reaches maximal performance at the end of the episode, and makes correct associations, before a new episode switch. The TN model encode the transition probabilities of the sequence of events in the experimental task. This sequence of events is driven by the activity of the AN. We thus expect the TN to encode some information about each task-sets.

Choosing correct actions within an episode (i.e. block of trials where this taskset is correct) implies choosing actions according to a single rule-mapping between 3 stimuli and 4 actions. Within the episode, and after an initial learning phase, only 3 of the 12 events cited above are thus repeated. The probability that one of the three correct association is followed by a dierent correct association is 1/3. The theoretical value of the mean synaptic strength between correct associations is 0.77 (equation 5.1). This theoretical value will be compared with simulations.

The speed-accuracy trade-o

In [START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF], the authors also point out the speed-accuracy trade-o on the value of the potentiation rate Q P . The smaller is the learning rate, the more accurate is the estimate of transition probabilities, especially if noise is included in the setup. However, this also yields a slower convergence to the estimate.

We cannot directly check from simulations the computed value in [START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF] of the transient timescale towards the theoretical mean value of the steady state, because the learning procedure of recurrent task-sets is more complex. However, we should still observe the speed-accuracy trade-o on the value of the TN learning rate Q P , depending on noise.

Introduction: an example of TN activity

We start with a brief reminder of the main features of TN dynamics (see section 3.3.3).

At each trial, a stimulus is presented and an action is chosen by the AN. In the TN, the neural population selective to the conjunction of these two events is activated.

If this neural population is strongly connected (the synaptic strength being α = 0.4 β = 7 = 0 Q P = 0.17

J INC = 0.7 g I {S 1 A 1 , S 2 A 2 , S 3 A 3 } {S 1 A 2 , S 2 A 3 , S 3 A 4 } {S 1 A 3 , S 2 A 4 , S 3 A 1 } {S 1 A 4 , S 2 A 1 , S 3 A 2 } S 1 A 2 S 2 A 3 S 3 A 4
episode 11, the full task-set is activated as soon as one of the three correct associations is made.

Learning in the TN is noisy. It is not a long quiet river. From time to time, an incorrect association is selected and the corresponding neural population is activated. From equation 3.10, and as learning in the TN is unsupervised, the synapse between this neural population and another one, presumably corresponding to a correct association, is potentiated. This induces noise in the TN pattern of synaptic connectivity. Some examples are outlined in magenta in gure 5.3.

The co-activation of three neural populations corresponding to a task-set can be misleading. In episode 24 for example, the correct task-set is TS 3. However, towards the beginning of the episode, all the neural populations corresponding to TS 2 get co-activated, as outlined in cyan. The network must have been doing an error. If this trial was a rewarded noisy trial, task-set 2 would be misleadingly retrieved into the decision circuit.

Still, learning the three task-sets is quite fast and ecient even in the presence of noise.

5.3

The TN is able to encode the task-sets of the recurrent session

In this section, we discuss and insist on the gradual learning of each task-sets by the TN in the recurrent session.

Figure 5.4 shows the probability that two (P 2X2 , in blue) or three (P 3X3 , in red) neural populations of one recurrent task-set T i are co-activated as a function of the number of episodes where T i is correct. At rst, the activation of one of these neural populations does not cause any co-activation. At the end of the rst episode, the probability that the activation of a neural population causes the co-activation of another population from T i is P 2X2 0.4. This means that the synaptic weight between any two neural populations from T i has a probability P 2X2 0.4 to be above inhibition threshold. The probability that the three neural populations of the task-set T i are co-activated is the square of it: P 3X3 0.16. Between episode 1 and episode 2, other episodes occur where correct task-sets are dierent and non-overlapping T j = T i . At the beginning of episode 2, for which T i has been repeated, the network is doing some persevering and exploratory choices, corresponding to incorrect associations for the task-set T i . The neural populations of T i are not activated and the connectivity between them is constant. Through α = 0.4 β = 7 = 0 Q P = 0.17

J INC = 0.7 T i P 2X2 0.9 P 3X3 0.8 T i 0.8 T i α = 0.4 β = 7 = 0 Q P = 0.17 J INC = 0.7
synaptic connectivity. We now consider the model dynamics after learning, when the three task-sets have been learned in the TN, and without noisy trials. We explore the eect of the inference bias on the decision circuit.

Inference bias from the Perfect TN

We begin by studying the inference bias from the Perfect TN :

The three task-sets of the recurrent session are encoded. The 9 corresponding synaptic weights, illustrated in gure 5.1, are above the inhibition threshold.

All the other synaptic weights are xed below the inhibition threshold.

We switch o plasticity in the TN. Only the AN circuit is plastic.

The TN increment to the AN connectivity is set to its maximal possible value:

J IN C = 1.
When studying the perfect TN, we explore the eect of the optimal steady state of the AN-TN network, and compare the network dynamics to the AN alone. When this steady-state has been reached, the dynamics makes no dierence between one episode and the following one. Thereafter, we focus on the AN-Perfect TN dynamics over a single episode.

Again, we study the evolution of:

The AN (decision network) synaptic weights corresponding to correct associations according to the current task-set of the considered episode:

< J AN C > s i,i=1..3
The AN synaptic weights corresponding the correct associations according to the previous episode and which are currently incorrect (persevering choice):

< J AN P > s i,i=1..3
The AN synaptic weights corresponding to the exploratory, remaining incorrect associations (the associations corresponding to the third task-set and to none of the task-sets). They have on average the same evolution and inuence on learning:

< J AN E1 > s i,i=1..3 =< J AN E2 > s i,i=1..3 . We note this average < J AN E > s i,i=1..3 .
For conciseness we note them respectively J AN C , J AN P , J AN E .

α = 0.4 β = 7 = 0 J INC = 1
Learning and forgetting associations from the episode switch is faster than when considering the AN alone Figure 5.5 (A) represents the time-course of the decision circuit (AN) mean synaptic weights from stimulus-selective to response-selective neural populations. The network is forgetting previous associations while learning the new ones. However, thanks to the inference bias from the TN to the AN, this learning is much faster than when considering the AN evolving alone (described in section 4.1.2).

As in section 4.1.2, we assume that the previous task-set has been learned in the AN before the environmental switch marking the beginning of our episode of interest. The episode switch serves as a rule change for the conditional associations of the three experimental stimuli.

As soon as the network makes a correct association, the corresponding TN neural population is activated, and the two TN neural populations selective to the other correct associations of the current task-set are co-activated. Without noise, the trial is rewarded, and the AN synaptic connectivity is then biased towards saturation for the three stimulus-action associations of the task-set. Thus, the exploration transient vanishes faster than in the AN alone. To conclude, the AN-Perfect TN network dynamics shows the same forget and learn behavior as the AN alone. However, after an episode switch, learning correct associations is much faster thanks to the task-set retrieval from TN inference. Maximal performance is reached earlier than if we consider the AN alone.

Learning and forgetting associations from the rst correct response: sensorimotor associations are not learned one by one

In this subsection we discuss and insist on the fact that stimulus-action associations are not learned one by one in the AN-Perfect TN, in contrast to the AN alone. This interdependent encoding of stimulus-action associations is due to the inference bias from the TN to the AN.

We explore the eect of this interdependent learning through the AN synaptic dynamics, the inference bias strength, and the corresponding performance of the network after the rst correct trial, respectively displayed in gure 5.5 (B), (E) and (H).

For each simulated episode, s T is the stimulus presented at the rst correct trial T , associated to action a T . From this trial, we consider the next trial T + k * for which the presented stimulus is dierent: k * = min k∈N (s T +k = s T ). As stimulus presentation is randomized, this happens after k trials with probability 2 3 ( 1 3 ) k-1 . We are interested in the value of the synaptic weight in the decision circuit (AN) from this stimulus s T +k * selective neural population to the correct action a T +k * selective neural population. This synaptic weight is J AN s T +k * →a T +k * . In each task-set, an action is associated to a single stimulus, so a T +k * = a T .

Figure 5.5 (B) displays the value of J AN s T +k * →a T +k * both in the case of the associative network alone, without any inuence of the task-rule network, and in the case of the full network with perfect encoding of the three task-sets.

As seen in section 4.2, at the rst correct trial, this value does not change (small horizontal step) in the case of the AN alone: the update of J AN s T →a T has no impact on the value of synaptic weights from a dierent stimulus J AN s T +k * →a T +k * . This is not the case for the AN-Perfect TN. From the rst correct trial, the synaptic connectivity in the AN is strongly biased towards saturation for all the co-activated neural populations in the TN, that is to say, the neural populations selective to the current task-set: J AN s T +k * →a T +k * = 1. This strong bias corresponds to task-set retrieval. It is displayed in gure 5.5 (E) and is a increasing function of the increment parameter J IN C . The performance can be drawn directly from the imbalance between synaptic weight values from a stimulus-selective neural population to action-selective neural populations. The saturation of each synaptic weight corresponding to correct associations thus causes a strong increase in performance after the rst correct trial, even for dierent stimuli. This is displayed in gure 5.5 (H). The performance after the rst correct trial only depends on the value of the decision noise parameter 1/β, as well as on the specic sequence of stimuli presentation and actions governing the rate of unlearning incorrect associations.

A task-set is encoded as a whole in the TN, as three stimulus-action associations merging into a single mental state, as a co-activated pattern of neural activity. The retrieval of a task-set in the decision circuit permits to use the information about the fact that all associations are simultaneously modied after an episode switch. The network performance is increased. Task-set retrieval is all the more fastest as the increment J IN C is large.

α = 0.4 β = 7 = 0 Q P = 0.17 J INC = 0.7 α = 0.4 β = 7 = 0 Q P = 0.17 J INC = 0.7 J INC = 0.7
three episodes are similar in the two gures. However, as soon as task-sets have been learned in the TN, the inference signal from the TN to the AN biases the decision circuit dynamics towards correct associations. AN synaptic weights corresponding to correct associations saturate faster. Incorrect transients (in red) vanish faster. Reaching maximal performance is thus much faster.

To conclude, the perfect TN is a steady state of the plastic TN. The inference bias from the plastic TN to the AN permits task-set retrieval as soon as the network is choosing one or a few correct actions following an episode switch. Reaching maximal network performance is accelerated. The cumulative performance over the session is thus increased compared to the AN alone.

Eect of the inferential bias from the TN to the AN in a noisy environment

The previous analysis does not take into account the noisy trials introduced in the experimental paradigm of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

In this setup, 10% of trials are misleading: a correct association yields to a null reward while an incorrect association yields to a positive reward.

In section 4.3, we studied the eect of noisy trials on AN connectivity when the AN is evolving alone. Noisy trials are causing either a delay in learning, or an unlearning, of correct associations in the AN. Conversely, incorrect associations are learned. The network performance reects the value of synaptic weights, and in particular the disparity between synaptic weights from a stimulus-selective neural population to correct and incorrect action-selective neural populations. Thus noisy trials produce a decrease of performance. This eect is increasing with the AN learning rate α.

We now investigate the inuence of the bias from task-rule network on the AN-TN network sensitivity to noisy trials. We show that the TN inference bias causes the retrieval of an incorrect task-set in the case of a rewarded noisy trial. Conversely, it permits to correct for the unlearning eect of a non-rewarded noisy trial.

As in section 4.3, we discuss the consequence of the appearance of either an early or a late noisy trial: An early noisy trial appears at the beginning of the episode, when the AN synaptic weights are uctuating: the AN synaptic weights corresponding to correct associations have not been learned yet.

A late noisy trial appears at the end of an episode, when the AN synaptic

α = 0.4 β = 7 = 0 Q P = 0.17 J INC = 0.7 α = 0.4 β = 7 = 0 Q P = 0.17 J INC = 0.7 α J INC

A noisy trial at the end of an episode

At the end of each episode, synaptic weights for the correct task-set associations have been learned and saturate (J AN C = 1). The performance has reached maximum value and the network choice is correct at any trial. Under these circumstances, a noisy trial at the end of the episode is necessarily a misleading non-rewarded trial. At this specic trial, there is no inference bias from the TN to the AN.

The dynamics of the AN-TN network right after this trial is the same as the dynamics of the AN alone. While obtaining a null reward from a correct association, the corresponding synaptic weight J AN C is depressed to 1 -α (equation 3.5). The synaptic weights from the same stimulus, but corresponding to incorrect actions J AN W were initially null. They are misleadingly potentiated to α. The probability of choosing again the correct action for this specic stimulus drops (equation 4.13). This negative eect on performance increases with α. C . This gure also displays the incorrect learning of J AN W , the mean of the three synaptic weights from the same stimulus, but corresponding to incorrect actions, J AN P , J AN E1 , J AN E2 . The related performance drop is illustrated in (I) and depends on the value of the decision noise 1/β (equation 3.1).

However, this unlearning eect has an inuence on AN synaptic weights from a single stimulus-selective neural population. At the following trial t + 1, when another stimulus is presented, the network makes a correct choice. The corresponding selective neural population in the TN is activated, as well as the neural populations strongly connected to it. If we consider the case of the Perfect TN, the three neural populations corresponding to the correct task-set are activated in the TN. The network receives a positive reward for making a correct choice: an inference bias (gure 5.5 (F)) from the TN to the AN permits to retrieve the full task-set in the decision circuit. The synaptic weight corresponding to a correct association in the AN which was depressed because of the noisy trial to

J AN C = 1 -α is now biased to J AN C = 1 -α + J IN C • (1 -(1 -α)). With J IN C = 1, J AN C = 1.
At trial t + 2, the network choice will be biased toward the correct choice for any presented stimulus, even the one of the preceding noisy trial.

Thus the inference bias from the TN to the AN permits to correct for the unlearning eect of a late noisy trial (gure 5.5 (C,F,I)). The higher the increment J IN C is, the faster is the retrieval of a correct task-set after a late noisy trial.

The overall eect of noisy trials

In the experimental task of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], 10% of trials are randomly noisy and misleading. Figures 5.8 and 5.9 display the same simulation as gure 5.6 and 5.7, but with the addition of 10% of noisy trials. The overall eect is to slow down learning in the TN, and to lower the saturation value of correct AN synaptic weights and maximal performance. Still, maximal performance is reached faster than if we consider the AN alone (gure 4.3). The mean of the inference signal is non null throughout the episode, to correct for the unlearning eect of noisy trials.

Conclusion on the eect of noisy trials

The TN inference bias has a negative eect on the decision circuit after a rewarded noisy trial at the beginning of episodes. However, it has a positive recovery eect after a non-rewarded noisy trial at the end of the episode. The total eect of 10% randomized noisy trial throughout the session thus depends on the statistics of rewarded or non-rewarded noisy trials. If the AN learning rate is large, each task-set is learned quickly in the decision circuit after an episode switch, and the network experiences a greater proportion of non-rewarded noisy trials, compared to rewarded noisy trials. The TN inference thus has an overall restorative eect after noisy trials. In the next section, we explore in detail the possible spurious encoding of the AN-TN and negative eect of the inference bias for dierent parameter range.

Learning limits and their eect on the inferential bias

In the previous sections we investigated the TN ability to encode the three tasksets of the recurrent session, and to bias the AN dynamics. This bias serves for task-set retrieval after an episode switch, as well as for correction for noisy trials.

The AN-Perfect TN is a possible stable state of the AN-TN. In this section, we address the question of the existence of other stable states driving the network dynamics, and their consequences on the network performance.

Learning in the TN is unsupervised: the TN encodes the statistics of all events, no matter the value of the obtained reward at each trial (equation 3.10). This circuit thus encodes some spurious connections between neural populations. These spurious connections can come from dierent synaptic events: Spurious connections in the TN can come from uninformed environmental switches. Even if the decision circuit in the AN only produces correct events according to the three task-sets, the TN encodes spurious associations from events between two successive task-sets at each episode switch.

Spurious connections in the TN also come from persevering and exploratory trials after an episode switch. These trials are necessary for the AN to forget the previous task-set before learning the new one. They correspond to incorrect events encoded in the TN. 10 % of trials are experimentally noisy. They are misleadingly non-rewarded for correct associations, or rewarded for incorrect associations. As studied previously, these trials cause an important unlearning in the decision circuit, leading to potential errors. The corresponding incorrect events are encoded in the TN.

More generally, spurious connections come from any possible error from the decision circuit, eliciting the activation of a TN neural population selective to an incorrect association, and the encoding of a spurious connection from it (equation 3.10).

Hereafter we classify spurious connections in two groups:

Spurious type 1 refers to a synaptic connection from a neural population selective to a correct association from one of the three recurrent task-sets, to a neural population selective to an association which is not correct according to the same task-set. trade-o on the value of Q P so that errors or noisy trials produce low spurious connections, which are depressed enough in order to stay below the inhibition threshold.

In this section, only the 10 last episodes of each session are considered for studying the steady state behavior of the network, after the initial learning phase.

On order to study the eect of the inferential bias, we compare the behavior of: the AN alone, i.e. with J IN C = 0. Task-sets are learned in the TN but there is no inferential bias on the AN.

the full AN-TN, i.e. with a non-zero inferential bias after learning. We have chosen to x J IN C = 0.7, matching the mean value of human behavior ts (see chapter 6).

We show that learning in the TN has to be slow in order to encode the three task-sets of the recurrent session with a marginal amount of spurious connections. When it is the case, the inference from TN to AN has a positive (snowball) eect on decision-making and thus on performance. This eect is increasing with the value of the increment from the TN to the AN.

We also show that when learning in the TN is too fast, spurious connections are encoded in the TN above the inhibition threshold. When it is the case, a high value of the increment from TN to AN leads to a negative snowball eect: spurious connections are created and incorrectly bias the decision circuit, leading to a strong decrease in network performance.

Propagation of a spurious connection after learning in the two-dimensional AN-TN

Before going into the investigation of AN-TN steady states, we give an example of the drastic eect of a spurious connection in the simplied case of the twodimensional AN-TN.

We assume the existence of a spurious connection (with initial value above inhibition threshold J M > g I ) between the two possible task-sets of the twodimensional AN-TN (from TS 1 to TS 2). The toy example is illustrated in gure 5.11. We discuss the network behavior after learning, on a single episode, for which the correct task set is TS 1: {S 1 A 1 , S 2 A 2 }. In the AN as well as in the TN, synaptic connections corresponding to this task-set are initially set to 1. The spurious connection is chosen to be encoded in the TN between neural populations

S 1 A 2 S 2 A 1 (s 2 , a 1 ) Q w s 2 a 1 Q g a 2 J spurious S 2 A 1 P W ∆(α, J INC , t) = Q g -Q w P W (α, J INC , t) = 1 1 + exp(β • ∆(α, J INC , t)) P W (α, J INC , t) seq = P (∆(α, J INC , t)) 1 + exp(β • ∆(α, J INC , t)) d∆(α, J INC , t)
As long as J spurious > g I and before the rst choice of (s 2 , a 1 ), we can derive the value of Q g and Q w from AN updating rules.

At each trial, if the stimuli presented is s 1 , action a 1 is chosen, the AN synaptic weights are updated from the TN inference bias:

Q g ← Q g • (1 -J IN C ) + J IN C
(5.5)

Q w ← Q w • (1 -J IN C ) + J IN C (5.6)
At each trial, if the stimuli presented is s 2 , action a 2 is chosen, and the AN synaptic weights are updated from the AN learning rule and from the TN inference bias:

Q g ← (Q g • (1 -α) + α) • (1 -J IN C ) + J IN C
(5.7)

Q w ← Q w • (1 -α) (5.8)
The distribution P (∆(α, J IN C , t)) is not normal, except in the limit of small parameters which is not the case we want to consider. We derive the value of its mean by recurrence (with ∆ 0 = 1).

If stimulus s 1 is presented at trial t + 1:

∆(α, J IN C , t + 1) seq = ∆(α, J IN C , t) seq -J IN C • ∆(α, J IN C , t) seq
(5.9)

If stimulus s 2 is presented at trial t + 1:

∆(α, J IN C , t + 1) seq = ∆(α, J IN C , t) seq + α -α • ∆(α, J IN C , t) seq (5.10)
So we have:

∆(α, J IN C , t + 1) seq = 1 2 • ∆(α, J IN C , t) seq • (1 -J IN C ) + 1 2 • ( ∆(α, J IN C , t) seq • (1 -α) + α) (5.11)
This is an arithmetico-geometric sequence:

∆(α, J IN C , t) seq = 1 - α + J IN C 2 t • ∆ 0 - α α + J IN C + α α + J IN C
(5.12)

∂ ∆(α, J IN C , t) seq ∂J IN C = 1 - α + J IN C 2 t • ∆ 0 - α α + J IN C • t • 1 α + J IN C -2 + 1 - α + J IN C 2 t -1 • α (α + J IN C ) 2
(5.13)

∆(α, J INC , t) seq J INC (s 2 , a 1 ) J INC (s 2 , a 1 ) Q P = 0.17, Q M = 0.017, g I = 0.5 J M = 1 (s 2 , a 1 ) J M = 1 J INC J INC (s 2 , a 1 )
is solely depressed each time the TN neural population S 1 A 1 is activated. As soon as the spurious synaptic weight goes below inhibition threshold, it is not fedback anymore into the decision circuit and the probability of choosing the wrong association quickly goes to 0. We note N the mean number of trials before the spurious weight from neural population S 1 A 1 to neural population S 2 A 1 goes below inhibition threshold.

At each time step where S 1 A 1 is activated (on average for N 2 trials):

J spurious ← J spurious • (1 -Q M ) (5.14)
Thus with J M being the initial value of the spurious, we want to solve:

g I = J M • (1 -Q M ) N/2
(5.15)

The solution is:

N = 2 • ln( g I J M ) ln(1 -Q M )
(5.16)

The numerical application with g I = 0.5, Q M = 0.017, and J M = 1 gives N = 81.

From gure 5.12, we observe that on average, only a increment value J IN C < 0.1 would prevent the reinforcement of the spurious connection before being depressed below the inhibition threshold. In reality, J IN C has to be larger for ecient task-set retrieval (section 5.4) but we also expect any spurious connection to be encoded in the TN with lower values than J M = 1. Indeed, in the case of the 3x4 dimensional AN-TN, the TN is composed of 12 neural populations (instead of 4 in the two-dimensional AN-TN), and the encoding of a spurious above inhibition threshold is slower. Its incorrect retrieval is more unusual.

To conclude, studying the simplied case of the two-dimensional AN-TN permits to give an intuition on the eect of a spurious connection. In order to keep this connection below the inhibition threshold, so that the decision circuit is not incorrectly biased, learning in the TN needs to be slow (Q P is governing the initial value J M of this spurious, see equation 3.10), or the increment from TN to the AN needs to be small (J IN C ).

In the next sections, we study the steady states of the AN-TN with the eventual encoding of spurious connections, and their eect on performance.

Learning in the TN without any inferential bias from the TN to the AN

The AN learns sensorimotor mappings one by one, and the model choices drive learning in the TN. No bias from the TN to the AN is provided for now: the loop

J INC = 0 α Q P P roba W,1 P roba W,2 P roba C,T S α Q P
is opened. Thus the persevering, exploratory and correct behavior of the model is the same as described in sections 4.1 and 4.3, and especially displayed in gure 4.2.

In this section, we show that learning in the TN has to be slow for the ecient encoding of the three task-sets, without any encoding of spurious connections above the inhibition threshold. Left panels are simulations without noise, right panels are simulations including 10% of noise, as in the experimental setup of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

P roba W,1 is the probability that a type 1 spurious connection (81 in total) is above the inhibition threshold in the steady state encoded in the TN. This probability is generally very low, except for low AN learning rate values, where the decision circuit does not learn anything. The type 1 spurious connections are created, but eectively depressed over time. They don't lead the TN dynamics. For higher values of the decision noise 1/β, this probability is higher for large values of the learning rate: the TN encodes the noisy behavior increase from the decision circuit. Adding 10% of noisy trials in the simulations increases even more this spurious encoding. P roba W,2 is the probability that a type 2 spurious connection (33 in total) is above the inhibition threshold in the steady state encoding of the TN. As guessed from intuition, when the learning rate of the TN is too high (Q P ≥ 0.2), the probability of encoding type 2 spurious associations increases. This increase is nearly linear, except for low values of the AN learning rate, where the AN does not learn anything. P roba C,T S is the probability that a synaptic weight between correct associations corresponding to the 3 task-sets (18 in total) is above the inhibition threshold in the steady state encoding of the TN. The corresponding connections are illustrated in gure 5.1. They include synaptic strengths between neural populations selective to associations of task set 1 {S 1 A 1 ; S 2 A 2 , S 3 A 3 }, synaptic strengths between neural populations selective to associations of task set 2 {S 1 A 2 ; S 2 A 3 , S 3 A 4 }, and synaptic strengths between neural populations selective to associations of task set 3 {S 1 A 3 ; S 2 A 4 , S 3 A 1 }. Except for low values of the AN learning rate, the AN learns eciently each taskset, one by one. This provides a sucient amount of correct events for the encoding of the 3 task-sets in the TN, except for very low values of the TN learning rate. As shown previously in the study of the AN dynamics, increasing noise either by increasing the decision noise parameter 1/β, or by adding noisy trials, reduces the number of correct chosen associations, whereby reducing their encoding in the TN (section 5.1).

The bottom panels of the gure represent some statistics computed with respect to the performance of the network. As there is no inference bias from the TN to the AN, they correspond to the performance of the AN network evolving alone (AN alone).

Performance is the performance averaged over the 45 trials of each of the 10 last episodes of sessions. Without noise, it increases as a function of the AN learning rate α. With 10% of noisy trials, it increases till a maximum learning rate value, above which the network is pulled down by large and inecient oscillations of synaptic weights from incorrect associations. This eect has been studied in sections 4.1 and 4.3.

Consecutive performance represents the value of the performance after successive correct trials. Here, we compute the average over the 10 last episodes of each session, of the performance after the 5 rst correct trials, for dierent stimuli. For each simulated episode, s T is the stimulus presented at the rst correct trial T , associated to action a T . From this trial, we consider the next trial T + k * for which the presented stimulus is dierent: k * = min k∈N (s T +k = s T ). As stimulus presentation is randomized, this happens after k trials with probability 2 3 ( 1 3 ) k-1 . The performance after the rst correct trial for a dierent stimulus is the performance at trial T + k * . This performance has been described in the experimental results section and in the study of AN dynamics. As expected from the section 4.1, this performance increases with the AN learning rate α. It decreases when the decision noise 1/β increases, and when noisy trials are added.

The TN is able to encode steadily the correct associations corresponding to each of the three task-sets of the recurrent session as soon as its learning rate is above a reasonable value (Q P ≥ 0.1), and even when noisy trials are included. However, a large learning rate causes the encoding of spurious connections above the inhibition threshold: wrong connections are not depressed enough through time and the network encoding is less ecient.

Eect of the inferential feedback from the TN to the AN

When the TN learning rate is too high, the encoded noise will be fedback to the decision circuit, perturbing AN synaptic weights. This could lead to a negative snowball eect of reinforcement or new creation of spurious connections, themselves possibly causing new TN synaptic weights perturbations. On the contrary, this noisy perturbations could also decrease thanks to a potential restorative inferential bias in parameter range where the steady state is close to eciency, leading to a positive snowball eect. We now study the eect of the addition of the inferential bias from the TN to the AN on model ecient encoding and performance.

We show that learning in the TN has to be slow enough in order to average out spurious connections. In this case, the TN inference produces a positive snowball eect on performance. In contrast, when learning in the TN is too fast, TN inference biases incorrectly the decision circuit (negative snowball eect).

Figure 5.14 displays the same panels as gure 5.13 but it focuses on the differential eect from the addition of the inferential bias from the TN to the AN network (equation 3.2). The value of the increment bias has been chosen to match the mean of this parameter value when tting the model on human behavior: The AN learns sensorimotor mappings one by one, and the model choices drive learning in the TN. Now, a bias is provided from the TN to the AN as soon as TN patterns of connectivity are above the inhibition threshold (see equation 3.2).

J IN C = 0.7.
For large values of the TN learning parameter, we observe the negative snowball eect previously mentioned. Indeed, the probability P roba W,1 is enhanced by the inference bias from the TN to the AN. Type 1 spurious connections are from neural populations selective to a correct association, to an incorrect association for the current episode. Generally, they bias AN synaptic connectivity each time a correct association is chosen, and the selective population is activated in the TN. This leads to a bias towards two dierent motor responses for the same stimulus in the AN. Depending on the decision noise 1/β, this could lead to a successive wrong choice. This positive snowball eect is even more important when noisy trials are added in the experiment.

The inferential signal from the TN to the AN permits to depress type 2 spurious connections (P roba W,2 ). Indeed, they correspond to connections
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from an incorrect association, to a correct one. The incorrect association is not often activated in the TN. On the contrary, a correct inference bias from the activation of neural populations selective to correct associations reduces the creation of type 2 spurious connections. This eect is even more striking in the presence of noisy trials.

For slow learning rates, we observe a positive snowball eect on the encoding of correct associations: the inference bias from the TN to the AN enhance the probability P roba C,T S . In contrast, fast learning in TN produces a negative snowball eect reciprocal of the evolution of P roba W,1 .

The eect of the inference bias from the TN to the AN on network performance can be deduced from the above study of correct and spurious type 1 connections enhancement or lessening.

When learning in the TN is slow, the encoding of correct synaptic weights is complete and spurious connections are depressed. The TN is thus biasing the decision circuit towards correct choices and performance increases. If noisy trials are added, or if the decision noise 1/β is too high, the TN learning rate has to be even lower in order for the inferential bias to produce an increase in performance. Interestingly, the increase in performance is even more important as the AN learning rate is low. The inference bias from the TN to the AN permits to level out the decision circuit performance for low and high AN learning rates.

However, if the TN learning rate is too high, the inference bias has a negative snowball eect: noise is ineciently encoded and fedback into the decision circuit, leading to a decrease in performance.

To conclude, the inferential bias from the TN to the AN has a positive eect on decision-making and on model performance when learning in the TN is slow. In the parameter range 0.05 < Q P < 0.2, the TN encodes eciently the correct events of the recurrent session, with a marginal amount of noise. The bias produced by this correct encoding from the TN to the AN leads to an increase of performance when compared to the AN alone.

In contrast, the eect of the inferential bias is negative when learning in the TN too fast. The TN encodes spurious events. An incorrect bias from the TN to the AN leads to a performance decrease when compared to the AN alone.

Eect of the inferential feedback on rst correct trials

In this section, we study specically the eect of the inferential bias from TN to AN on task-set retrieval. Task-set retrieval means the ability for the control, or de-
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noisy trials, such as in the experimental paradigm [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]).

The rst correct trial is the trial of the rst correct stimulus-action association from the episode switch. We call T the number of trials from the episode switch, and s T the stimulus presented at this trial,

s T ∈ [s 1 , s 2 , s 3 ].
The upper panels of gure 5.15 display the average of this number over simulations: < T >.

In the parameter range where the encoding of the correct associations is ecient (0.05 < Q P < 0.2), we observe that the TN inferential bias induces a somewhat small negative eect: the inferential bias seems to delay the occurrence of the rst correct trial after an episode switch, especially for low values of the AN learning rate α.

On the contrary, it has a positive eect when learning in the TN is faster, for which we have seen that the TN synaptic connectivity can be spurious.

Yet the TN inferential feedback should intuitively have no eect on the occurrence of the rst correct trial. Indeed, there is no feedback from the episode switch to the rst correct trial, because all trials considered are persevering or exploratory, and thus non-rewarded (equation 3.2).

The observed negative and positive eects come from the AN synaptic values at the end of the previous episode, right before the episode switch. The detail is not shown for conciseness but can be deduced from section 4.1. In the parameter range 0.05 < Q P < 0.2, we have shown that the inferential bias has a strong positive eect on performance and thus on the encoding of correct associations both in the TN and in the AN. If the AN synaptic weights corresponding to correct associations are saturating, it will take longer for the network dynamics to unlearn these associations after an episode switch. This also explains why the dierential eect between AN alone and AN-TN is even more important when 10% of noisy trials are added. Under these circumstances, the three task-sets of the recurrent session are encoded in the TN, and the inferential bias permits to correct for the unlearning of AN strengths after noisy trials. Finally, we notice that this eect is slightly less important when the decision process is noisier: the AN unlearns faster a previous task-set after an episode switch. For the mean human behavior parameter values (α = 0.4, Q P = 0.17), this delaying eect of the rst correct trial is positive, but very low.

The second correct trial of each late episode, for a dierent stimulus is the next correct trial T +k * for which the presented stimulus is dierent from s T :

k * = min k∈N (s T +k = s T ).
The middle panels of gure 5.15 display the average of this trial number over simulations: < T + k * >.

Except when AN and TN learning rates are very low (corresponding to incomplete learning), the inference bias from TN to AN has a positive eect on task-set retrieval.

The third correct trial of each late episode concerns the third possible stimulus of the experiment. It is the next correct trial T + k * + l * for which the presented stimulus is dierent from s T and s T +k * : l * = min l∈N (s T +k * +l = s T , s T +k * +l = s T +k * ). The lower panels of gure 5.15 display the average of this trial number over simulations:

< T + k * + l * >.
Again, for all values of AN and TN learning rates, except when very low (incomplete learning), the inference bias from TN to AN has a positive eect on task-set retrieval.

To conclude, the TN inferential bias has a slightly delaying eect on the occurrence of the rst correct trial after an episode switch because of higher performance reached before an episode switch. However, this bias has a strong positive eect on the occurrence of the second and third correct trial for dierent stimuli.

The inference bias permits a faster and interdependent encoding of all correct stimulus-action associations in the AN as soon as a single association is found.

Eect of the strength of the inference bias

In the previous sections, we investigated the eect of the inferential bias by comparing the behavior of AN alone (J IN C = 0) and the AN-TN (J IN C = 0). Here, we study the impact of a change of the inferential bias increment value J IN C . We show that when learning in the TN is slow, increasing J IN C has a positive snowball eect on network dynamics and performance. In contrast, when learning in the TN is too fast, there is a trade-o on the value of J IN C . Above a critical value, the inference from TN to AN causes a negative snowball eect on the creation and encoding of spurious connections. We thus conrm our intuition from the study of the propagation of a spurious connectivity in the two-dimensional AN-TN (section 5.6.1).

Figure 5.16 reproduces gures 5.13 and 5.14. However, gure panels are produced as a function of the TN learning rate Q P and the increment from TN to AN connectivity J IN C . The AN learning rate is xed to its mean value from tting human behavior (chapter 6): α = 0.4. P roba W,1 is enhanced by the bias from the TN to the AN (gure 5.14). Fixing α and exploring its evolution with the increment bias value J IN C permits
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to draw a coherent conclusion. If the TN learning rate is slow enough, there is no long-term encoding of type 1 spurious connections in the TN. However, this ideal case is perturbed when the TN learning rate is larger: spurious connections are encoded in the steady state. Type 1 spurious connections are from neural populations selective to a correct association, to an incorrect association for the current episode. Generally, they will be fedback each time a correct association is chosen. This leads to a bias towards two dierent motor responses for the same stimulus in the AN. Depending on the decision noise, this could lead to a successive wrong choice. For low values of the increment J IN C , the inferential bias is actually correcting for this negative spurious implementation (blue area). However, the higher is this increment, the more negative is the eect of the TN bias on the encoding of spurious connections in the AN (red area), yielding to the creation and implementation of new spurious. This contrasting eect is even more important when noisy trials are added in the experiment, or when the decision is noisier.

The bias from the TN to the AN permits to depress type 2 spurious connections (P roba W,2 ). This eect is even more striking in the presence of noisy trials. Indeed, the type 2 spurious connections correspond to links from an incorrect association, to a correct one. A correct inference bias reduces their creation (blue area), except for very high values of the TN learning rates and increment J IN C , for which the TN encoding is highly perturbed (red area).

We observed previously a positive snowball eect on the encoding of correct associations (P roba C,T S ) when the TN learning rate is low, and a negative snowball eect reciprocal of the evolution of P roba W,1 when the TN learning rate is high. Fixing α and exploring its evolution with the increment bias value J IN C permits to draw a coherent conclusion. When TN learning is slow enough, the increment value J IN C has a positive eect on task-sets encoding (red area). When TN learning is too fast, increasing the increment value J IN C has a negative eect on task-sets encoding (blue area). This contrasting eect is more important when noisy trials are added in the experiment, or when the decision is noisier.

The eect of the increment parameter value on performance can be deduced from the above study of correct and spurious type 1 connections enhancement or lessening. When learning in the TN is slow, the encoding of correct synaptic strengths is complete and spurious connections are depressed. The TN is thus biasing the decision circuit towards correct choices and performance increases (red area), as an increasing function of J IN C . If noisy trials are added, or if the decision noise is too high, the ecient parameter scale is shrunk: the TN learning rate has to be even lower in order for the inferential bias to produce an increase in performance. If however the TN learning rate is too high, the inference bias has a negative snowball eect: noise is ineciently encoded and fedback into the decision circuit, leading to a decrease in performance (blue area). This negative snowball eect is increasing with the value of the increment parameter J IN C .

To conclude, the TN learning rate Q P needs to be non-zero however low enough (for β = 5, Q P ∈ [0.05, 0.2]) for the TN encoding to be ecient, i.e. to encode the three task-sets, with a marginal amount of noise.

If learning in the TN is slow enough, the inferential bias from TN to AN speeds up the correct encoding of the three task-sets.

If learning in the TN is too fast, some noise is encoded steadily in the TN. A low increment parameter J IN C permits the inferential bias to correct for this spurious encoding, yielding to an increase of mean performance. On the contrary, a high increment parameter causes a negative snowball eect on the creation and encoding of spurious associations. In this range of high Q P parameter value, there is a trade-o on the optimal value of J IN C .

Conclusion

Learning in the TN is unsupervised : the TN encodes the statistics of all events, no matter the value of the obtained reward at each trial. This circuit thus encodes some spurious connections between neural populations because of uninformed environmental switches, behavioral errors, or noisy trials.

There is a speed-accuracy trade-o on the value of the TN learning rate. When learning is slow, the TN encodes eciently the correct events of the recurrent session, as task-sets, with a marginal amount of noise. The AN-Perfect TN is a possible stable state of the network dynamics. The inference bias produced by this correct encoding from the TN to the AN permits task-set retrieval, i.e. a faster and interdependent encoding of all correct stimulus-action associations in the AN as soon as a single association is found. This bias leads to a positive snowball eect characterized by a higher network performance than the AN alone.

However, a large learning rate causes the encoding of spurious connections above the inhibition threshold. The AN-Perfect TN is not the only stable state driving the network dynamics. A low increment parameter J IN C permits the inferential bias to correct for this spurious encoding. On the contrary, a high increment parameter causes a negative snowball eect on the creation and encoding of spurious associations. An incorrect bias from the TN to the AN leads to a performance decrease when compared to the AN alone.

Chapter 6

Model tting and comparison

A model acts as a function taking in a set of parameters and returning a predicted set of data. The aim of tting is to estimate the best set of parameters for the model to describe the observed behavior, given a limited set of training data.

What is more, the model should be able to reproduce behavior autonomously, i.e. to achieve good generalization by making accurate predictions for new, validation sets of data. This is a dicult question.

First, model tting is done by minimizing a chosen cost function (or error function) describing a distance, or mist, between behavior and model predictions.

It not trivial to decide a priori which cost function to consider.

Second, for the sake of goodness of t as well as generalization, the number of parameters of the model need to be reduced to avoid overtting a limited dataset. Overtting is illustrated in the rst pages of [START_REF] Bishop | Pattern recognition and machine learning (information science and statistics[END_REF] and reproduced in gure 6.1: if we draw 10 samples from a sine wave function from 0 to 2π, a polynomial of order 9 gives a better t than any lower order polynomial function. However, it gives a very poor prediction of any new sample from the original sine wave. The best polynomial representation for prediction is of order 3. To describe a biological and limited experiment, there is an important trade-o between building a detailed model and building a generalizable model.

Third, in this thesis work, it is necessary to compare the ts from the AN model alone, without the inference provided by the TN, and the ts from the full AN-TN network, with dierent complexity, in order to choose the most parsimonious model describing human behavior.

In this chapter we describe the methods used for tting our model to Experiment 1 and 2 [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] and the criteria used to compare the AN alone and the AN-TN. We discuss the results of model ts and model free simulations for purposes of generalization.

For conciseness, this part includes only data from Experiment 1. Results are similar for Experiment 2 [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

We t the model in the case of the recurrent session, where only three task-sets
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Model performance and likelihood

At each trial t, a stimulus s t ∈ [s 1 , s 2 , s 3 ] is presented. For a given set of parameters, and depending on the soft and noisy winner-take-all mechanism described in section 3.2.1, the model computes the probability vector for choosing each action a ∈ [a 1 , a 2 , a 3 , a 4 ] given the presented stimulus: P m (a|s t , a t-1 , r t-1 , θ).

If we are tting the model to behavior, we force the model to choose the same action a t as the subject. The performance of the model is dened by the probability P m (a t |s t , a t-1 , r t-1 , θ) predicted by the model, also called the model's likelihood. Our dataset is limited: the aim of model tting is to explain and approximate subject's behavior the best we can, given the structure of our model.

On the contrary, if the model is freely tested, or simulated, an action a ∈ [a 1 , a 2 , a 3 , a 4 ] is made by the model depending on these probabilities P m (a|s t , a t-1 , r t-1 , θ). The performance is now the probability predicted by the model for the correct action: P m (c t |s t , a t-1 , r t-1 , θ). We test the model on a ctive dataset with the same structure as the experimental task.

Then depending on this {s t , a t } state and on the observed reward r t , some variables are updated:

The synaptic weights in the TN between neural populations selective to combinations of stimuli and actions.

The synaptic weights in the AN, between neural populations selective to stimuli and neural populations selective to actions. This update depends on the dynamics of the AN itself, and on the potential inferential bias from the TN to the AN network.

Cost functions

To minimize any cost function returning a distance between subject's behavior and model's predictions, we combine a grid search on initial parameter values with a gradient descent algorithm from the SciPy optimization toolbox. We have estimated uncertainty over parameters from the grid search, checking that each nal tted parameter value is equal or close to the mean of the tting results distribution.

Two dierent cost functions are usually used for model tting [START_REF] Bishop | Pattern recognition and machine learning (information science and statistics[END_REF]:

The Maximum Likelihood Estimation (MLE) M LE =< ln L > is the maximum of the log-likelihood of the model, given model's parameters and averaged over the sample size. The statistical likelihood L is the probability predicted by the model for the observed data

{a t } t=1..N : L = P m (a 1 , ...a N |s 1..N , r 1..N , θ) (6.1)
For a Markovian process, the joint probability for all observations is the product of trial-by-trial likelihoods. It reects the model's ability to predict the same action as the subject, on a trial-by-trial basis. We use the log to transform this product into a trial-by-trial sum which can be computed easily, and solve it as a minimization problem.

-

ln L = N t=1 -ln(P m (a t |s t , a t-1 , r t-1 , θ)) (6.2)
Data is not averaged before tting. Also, it reasonably assumes a uniform prior distribution on the parameters. However, we cannot impose the task structure: this measure weights equally highly informative trials after an episode switch, and less informative trials at the end of an episode when the behavior is stable. Also, the log-likelihood is a logarithm of probabilities between 0 and 1. It strongly penalizes unexpected actions on a limited amount of trials (with probability 0 for which the logarithm goes to innity) compared to the rest of well-predicted trials for which the log-likelihood is nite.

Least-Square Estimation (LSE)

LSE is the least squared error of the model performance averaged over episodes, i.e. the sum over episodes' length T of the squared dierence between subject's frequencies P s (a t = c t |s t ) and probabilities computed by the model for correct responses P m (a t = c t |s t , a t-1 , r t-1 , θ).

LSE = T t=1 [< P s (a t = c t |s t ) > episodes -< P m (a t = c t |s t , a t-1 , r t-1 , θ) > episodes ] 2 (6.3)
The data is averaged as a mean performance over episodes before being tted. Therefore the task structure, divided in episodes, is imposed before tting and weights properly the most informative trials. We also tried to overweight these trials by computing the least square error on sliding windows, but the tting improvement is not signicant. However, by averaging before tting, we articially reduce the noise in the dataset. We thus observe large, or greedy values for the inverse decision noise parameter, β, of the soft and noisy winner-take-all mechanism. On average, this parameter is 10 times larger than the same tted parameter from the MLE tting method, and cannot reproduce the noisy behavior of subjects on a trial-by-trial basis.

MLE provides a model with maximal likelihood, and LSE a model with minimal squared error computed over the mean performances. Fitting these cost functions provide two dierent parameter sets. The model with parameters chosen from the MLE t has a slightly larger squared error computed over mean performance than the model from LSE t, and the model from LSE t has a smaller likelihood than the one from the MLE t. Both measures are compared below.

Model comparison: quantitative criteria

It is possible to increase the model likelihood on a limited sample size by adding parameters, but doing so may lead to over-tting. Two criteria resolve this problem by introducing a penalty term for the number of parameters, i.e. accounting for model complexity. They are called the Akaike Information Criterion and the Bayesian Information Criterion:

< AIC > subj For each subject: AIC = k -ln L (6.4)
where k is the number of adjustable parameters in the model, and L is the maximum likelihood. We compute the mean over subjects. The selected model according to this criterion is the one minimizing it. This criterion was proposed by Hirotugu Akaike in 1974 [START_REF] Akaike | A new look at the statistical model identication[END_REF] to correct for the bias of maximum likelihood and measure the quality of a statistical model. This estimation of information loss is asymptotic: it has to be corrected if the sample size is small.

< BIC > subj

For each subject, we dene:

BIC = 1 2 k • ln N -ln L (6.5)
where k is the number of adjustable parameters in the model, N is the sample size, and L is the maximum likelihood.

Then we compute the mean over subjects. The selected model is the one minimizing it. This criterion was proposed by [START_REF] Schwarz | Estimating the dimension of a model[END_REF][START_REF] Schwarz | Estimating the dimension of a model[END_REF]. Compared to AIC, BIC penalizes model complexity more heavily because it depends on the size of the observed sample. This criterion can be derived if we assume that the Gaussian prior distribution over parameters is broad, and that the Hessian has full rank [START_REF] Bishop | Pattern recognition and machine learning (information science and statistics[END_REF].

We use these criteria to check whether the AN-TN model is tting signicantly better the dataset than the AN alone. However, we can also nd a model having a high penalized likelihood but still not capturing the interesting behavior of subjects after each episode switch in this experiment. We need dierent qualitative or quantitative measures to evaluate the goodness of t. The ability for the model to reproduce behavior when simulated on a validation dataset is an important measure to consider.

Model comparison: qualitative criteria

We want the model to autonomously reproduce subject's behavior given the same sequence of stimuli and noisy trials. With a limited dataset, the best model is the one for which model simulations are reproducing model ts for the interesting behavioral measures given the structure of the experimental paradigm. As described in chapter 2, these behavioral measures are:

Following [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], we display the mean performance averaged over all subjects and all episodes. This measure includes early episodes, thus not making the possible distinction in the recurrent session between ongoing learning and after learning phases.

To test interdependent learning of associations in a task-set and their retrieval, we compute and display the performance after a given number of consecutive correct trials. From the episode switch, and for each correct trial, this performance is computed by considering the next trial for which the presented stimulus is dierent. This performance is computed for late episode switches, which happen after an initial learning phase. We consider the 10 last episodes of each session. In the recurrent session a task-set has been repeated on average in 5 non-successive episodes beforehand.

To test for the eects of misleading noisy trials after learning, we compute and display the performance after single noisy trials at the end of each late episode.

For all these measures, we compare models ts and model simulations. We select the most parsimonious model for which model ts and simulations reproduce subjects' data.

Model specications

The synaptic plasticity in the associative network is governed by a reward-modulated, activity-dependent Hebbian learning rule (equation 6.6). The reward is r, and α + and α -are respectively the rates of potentiation and depression, depending on stimuli and actions selective populations' activities.

J AN s i →a j ← J AN s i →a j + α + (r, s i , a j ) • (1 -J AN s i →a j ) -α -(r, s i , a j ) • J AN s i →a j (6.6)
In principle, the values of learning rates in the AN can depend on all possible combinations of events. In particular:

Positive or null rewards (r ∈ {0, 1}) can induce dierent plasticity rates:

α {+;-} (r = 0) = α {+;-} (r = 1).
Each synaptic potentiation or depression learning rates α + and α -can depend on the activity state of pre-and post-synaptic neurons, i.e. whether they are activated (state H) or not (state S).

We have compared 10 dierent models, with various number of parameters describing dierent synaptic events. For conciseness, we only report the simulations of 4 remarkable models in this thesis.

Model 1 is the simplest model described in detail in chapter 4. We allow only four dierent combinations of events to induce non-zero learning rates, and all these learning rates are given by the same parameter α:

If the decision is rewarded: * Synapses between the active sensory-selective neural population (pre-) and response-selective neural population (post-) are potentiated at a rate:

α = α + (r = 1, s i = H, a j = H) (6.7)
* Synapses between the active sensory-selective neural population (pre-) and the inactive response-selective neural populations (post-

) are depressed at a rate:

α = α -(r = 1, s i = H, a j = S) (6.8)
If the decision is non-rewarded:

* Synapses between the active sensory-selective neural population (pre-) and response-selective neural population (post-) are depressed at a rate:

α = α -(r = 0, s i = H, a j = H) (6.9)
* Synapses between the active sensory-selective neural population (pre-) and the inactive response-selective neural populations (post-

) are potentiated at a rate:

α = α + (r = 0, s i = H, a j = S) (6.10)
Model 2 is derived from Model 1 by adding a competition parameter over actions, taking into account that subjects can infer that an action is associated with a single stimulus:

If the decision is rewarded, synapses between the active action-selective neural population (post-) and inactive sensory-selective neural populations (pre-) are depressed at a rate:

α C = α -(r = 1, s i = S, a j = H) (6.11)
If the decision is non-rewarded, synapses between the active responseselective neural population (post-) and the inactive sensory-selective neural populations (pre-) are potentiated at a rate:

α C = α + (r = 0, s i = S, a j = H) (6.12)
These two learning rates are given by the same parameter α C . Model 2 thus has 2 independent learning parameters.

Model 3 diers from Model 2 by dissociating learning rates for the pre-postsynaptic events, depending on the reward. This model has 3 independent learning parameters:

α 1 = α + (r = 1, s i = H, a j = H) = α -(r = 1, s i = H, a j = S) α 2 = α -(r = 0, s i = H, a j = H) = α + (r = 0, s i = H, a j = S) α C = α -(r = 1, s i = S, a j = H) = α + (r = 0, s i = S, a j = H) (6.13)
Model 4 is derived from Model 3 but is also dierentiating the eect of potentiation and depression in equation 6.13. This model has 6 independent learning parameters:

α 1 = α + (r = 1, s i = H, a j = H) α 2 = α -(r = 1, s i = H, a j = S) α 3 = α -(r = 0, s i = H, a j = H) α 4 = α + (r = 0, s i = H, a j = S) α C1 = α -(r = 1, s i = S, a j = H) α C2 = α + (r = 0, s i = S, a j = H) (6.14)
Following the description of the model in chapter 3, the TN parameters are the learning rate for potentiation Q P and the inferential increment J IN C from TN to AN connectivity. The inhibition threshold is set to g I = 0.5 and the learning rate for depression is set to Q M = Q P /10 for reasons detailed in section 5.1.

The soft and noisy winner-take-all mechanism always relies on two parameters: the inverse decision noise parameter β (inverse temperature) and the uncertainty .

Thus if we consider the AN network alone, Model 1 has 3 parameters, Model 2 has 4 parameters, Model 3 has 5 parameters and Model 4 has 8 parameters. If we consider the AN-TN network, Model 1 has 5 parameters, Model 2 has 6 parameters, Model 3 has 7 parameters and Model 4 has 10 parameters. These models only dier by the number of learning parameters in the AN circuit.

Model selection and comparison: recurrent session

We rst examine model ts and simulations according to the LSE cost function, which permits to impose the task structure to the tting procedure.

LSE model ts and simulations of the recurrent session

Model ts are displayed in gure 6.2. Simulations are displayed in gure 6.3.

The simplest model (Model 1) gives a very good t of the recurrent session. Adding a competition over actions (Model 2), and dierentiating learning parameters with respect to dierent values of reward (Model 3 and 4) or with respect to potentiation or depression mechanisms (Model 4) does not improve the t of the AN-TN but only the t of the AN model alone. Even in the case of the most complex model (Model 4), the AN alone does not reproduce the performance after a consecutive number of correct trials: it does not capture task-set retrieval.

Model simulations lead to the same conclusions: the simplest AN-TN model (Model 1) can reproduce data autonomously. Simulations of the mean performance can be slightly improved by adding a competition parameter over actions (Model 2). However this modication does not improve simulations of performance after a noisy trial and after a consecutive number of correct trials, our behavioral measures of interest. On the contrary, the most complex AN model alone cannot reproduce these statistics. α = 0.35 σ = 0.033 Q P = 0.17 σ = 0.032 J INC = 0.70 σ = 0.17

J INC J INC ∈ [0.4, 1.0] β ∈ [[5, 9]]
The blue area exhibits learning parameters values for which the TN circuit is learning too fast, and is feeding back noise into the decision circuit, leading to a performance decrease. The red area exhibits learning parameters values for which the TN circuit is encoding correctly the 3 task-sets with a reduced amount of noise, improving the mean performance compared to the AN alone.

We have annotated each subjects' tted parameter values. From the postexperiment debrieng, subjects classied as exploiting are marked by a yellow asterisk, and exploring subjects by a cyan asterisk. We expect exploring subjects to be tted by lower values of the inverse decision noise β, and lower values of the inferential increment J IN C , on the contrary of exploiting subjects. This is exactly what we observe. The simplest model (Model 1) ts well the dataset of the open-ended session. Fits can be slightly improved by adding a competition parameter over actions (Model 2). However adding this parameter does not improve performance after a consecutive number of correct trials, our main behavioral measure of interest for capturing task-set retrieval. Introducing independent learning parameters with respect to various values of reward (Model 3 and 4) or synaptic events (potentiation or depression mechanisms, Model 4) does not improve the t.

The AN-TN model ts the dataset equally well as the AN alone. It is reassuring: this experimental session should not produce any task-set retrieval after an episode switch. On the contrary, an inference bias from TN to AN at the beginning of an episode is presumably noisy and misleading, as it would correspond to a previous task-set. We thus expect the TN increment value to be very low to prevent from this negative eect. A weak inferential bias could be observed at the end of episodes because of currently learned associations, to correct for environmental errors (noisy trials).

Model simulations of gure 6.11 lead to the same conclusions: Model 1 is re-

J INC ∈ [0.4, 1.0] β ∈ [[5, 9]]
producing autonomously the performance after a consecutive number of correct trials. The AN-TN network is slightly less performing in this session compared to the AN alone, due to some low inferential noise from the second circuit.

The simulations of Model 2 are slightly improved if we consider the mean performance and the performance after a noisy trial. Even if there is no possible task-set retrieval, the subjects infer that an action is associated to a single stimulus.

AIC and BIC in the open-ended session

AIC and BIC have been computed according to the MLE t and are displayed in gure 6.12.

Comparison between AN alone and AN-TN

For all models, there is no signicant dierence between the AN-TN and the AN alone ts, which is reassuring.

Comparison of AN-TN with dierent complexity

According to these criteria, Model 3 seems to t signicantly better the dataset than Model 2. However, we have observed that Model 2 is autonomously reproducing perfectly the interesting behavior of subjects, unlike Model 3. We conclude again on the limitation of these criteria when assessing the question of simulating biological structured data. For this reason we consider Model 2 in the rest of this section.

Parameters analysis

Fitted parameters values for each subjects are displayed in gure 6.13. The mean learning rate in the AN is α = 0.30 (σ = 0.032). The important distinction with the recurrent session is the TN increment value: J IN C = 0.13 (σ = 0.037), compared to J IN C = 0.7 in the recurrent session. This is illustrated in gure 6.14.

The memory eect

We have seen in chapter 2 that subjects are not sensitive to single noisy trials at the end of each episode, i.e. after learning a task-set. Yet these trials are misleadingly non-rewarded for choosing a correct association. Simple model such as Model 1 or Model 2 t well the dataset [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF]. The same learning parameter controls various synaptic events in the AN, such as potentiation and depression mechanisms, for rewarded or non-rewarded trials. Model 1 and Model 2 are tted by large learning rate values, because subjects do learn

m + 1 m ∈ [[0, 4]] J INC = 0.13

Conclusion

We have described the methods used to t and compare the AN alone and the AN-TN models with respect to experimental data [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

The AN-TN provides a signicantly better t to the behavioral data than did the AN alone in the recurrent session, where only three task-sets are repeated throughout the session. The simplest model, Model 1, where a single learning rate is describing four synaptic events in the decision circuit, provides a very good t of this experimental session. This model has a total of 5 parameters. We will use this model in the following chapter when studying model predictions for this session.

Both the AN and the AN-TN models provide a good t of the open-ended session, where an episode switch marks the occurrence of a new, unseen task-set. Model 2, derived from Model 1 by the addition of a competition parameter over action-selective neural populations, is the best tting model. This model has a total of 6 parameters. It will be used in the model-based fMRI analysis at the end of the thesis, as we compare BOLD activity in both sessions. to cause a strong bias in the decision circuit for the AFC trial. To test this, we compute the probability of making a correct choice at the AFC trial, for trials with and without inference. Results for Experiment 1 are displayed in gure 7.4.

The AN alone, i.e. the network with no inference from the TN to the AN, predicts no dierence between the probabilities of making a correct choice for the two categories of trials. This is reassuring: sorting trials depending on the existence or not of the inference bias from the second circuit in the AN-TN model should not have any eect on the behavior of the AN tted alone. Indeed, as shown in 7.2, there is no dierence in trial numbering exhibited by the model-based trial categorization. Moreover, as seen in section 4, the AN alone can learn only one task-set at a time and unlearns a previous behavior after an episode switch. Each episode produces the same behavior as the previous one.

On the contrary, the probability of making a correct association for the AFC trial computed by the full AN-TN model is signicantly greater when the inference bias is engaged. This was expected by the large value of the TN increment to the decision circuit (J IN C = 0.70). The inference bias after the rst correct trial therefore permits task-set retrieval into the decision circuit.

The model prediction of the AN-TN is borne out by the data: the corresponding probability of making a correct choice is signicantly greater in subject's data when the inference bias is predicted by the model. Moreover, probabilities of correct choice with and without inference are matching values predicted by the AN-TN.

Model-based classication of subjects

As seen in chapter 2, there is an important individual variability among subjects. The prediction on task-set retrieval explored above is valid subject by subject, but the detail is not shown here for conciseness. We used this prediction to classify subjects in two groups:

Exploiting subjects, for which the probability of making a correct choice in inference trials is signicantly greater from the prediction of the AN tted alone.

Exploring subjects, for which the probability of making a correct choice in inference trials is not signicantly dierent from the prediction of the AN tted alone. 

J INC p = 3 • 10 -4 J INC ∈ [0.4, 1.0] β ∈ [[

Possible rewarded noisy trials

Switch Switch p = 0.41 p = 0.12 p = 0.41 p = 0.12 7.2.5 Summary of the incorrect task-set retrieval prediction due to an incorrect bias from learned rules

In the experimental paradigm of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF], learning the structure of the task, as task-sets encoded in the connectivity pattern of a network, can cause the retrieval of an incorrect task-set when a incorrect trial is misleadingly rewarded. This yields to a reduction of successive performance and to a strong delay in relearning the correct associations of the current episode.

Discussion

These predictions are produced for Model 1 (see section 3.3.2) on the experimental dataset of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF]. The AN and AN-TN models are tted using all trials, but tested in this chapter on very specic trials. Thus the match between model predictions and subjects' data is not guaranteed in advance.

As a control, the results are robust with respect to Model 2, 3 and 4. The same results are also valid concerning data from Experiment 2 [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

Prediction for an incorrect bias from two overlapping rules

Finally, we examine a third prediction of the model which can be tested in a future experimental setup: the case of the recurrent session with two overlapping tasksets. Three task-sets are repeated throughout the session. However, there is now an overlap between two task-sets, i.e. one stimulus-action association is valid in both task-sets. Figure 7.14 represents the TN encoding of the three task-sets in this experimental paradigm. After learning, and for episodes where task-set 2 is valid, the activation of the TN neural population S 1 A 2 causes the activation of TN neural populations corresponding to task-set 2 and to task-set 3. As the association (s 1 , a 2 ) is rewarded, we expect the correct retrieval of task-set 2, together with the misleading retrieval of task-set 3 in the decision circuit leading to a decrease in subsequent performance.

For simplicity, task-sets presentation is ordered in the simulations and we focus on episodes where task-set 2 is the correct task-set. We select the next trial after the rst choice of (s 1 , a 2 ), for a dierent presented stimulus. We call this next trial the after rst correct overlapping trial (AFCO). Again, we classify this trial as a with inference AFCO depending on the presence of the inferential bias corresponding to task-set 3. We compute the probability of making the inferred

(s 1 , a 2 ) (s 2 , a 4 ) (s 3 , a 1 )
Chapter 8

Neuroimaging analysis

We examined a computational model based on simple Hebbian mechanisms and temporal contiguity which performs the experimental task of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] and whose performance matches subjects'. The model species the transformation of stimuli to behavioral responses. It contains some latent variables in order to do this transformation. In chapters 6 and 7, we have shown that variations of these variables are correlated with behavior on each trial.

To go deeper into the understanding of cognitive control processes, we address the question of whether the variables of the model are correlated with neural activity. We want to test hypotheses on regionally specic eects inspired from [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. To this aim, we use blood-oxygen-level-dependent signal (BOLD) recorded from functional magnetic resonance imaging (fMRI), during Experiment 2 [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF].

The main result of our model-based fMRI analysis is a correlation between the inference signal and BOLD activity in the fronto-parietal network. Within this network, a dorsomedial and a dorsolateral prefrontal nodes are preferentially recruited when task-sets are recurrent, suggesting that activity in these regions may provide a bias to decision circuits when a task-set is retrieved.

Description of Functional Magnetic Resonance Imaging

BOLD physiology

Functional magnetic resonance imaging is a neuroimaging procedure described by Paul Lauterbur and Peter Manseld [START_REF] Paul C Lauterbur | Image formation by induced local interactions: examples employing nuclear magnetic resonance[END_REF] and later developed by Seiji Finally, BOLD response to a brief stimulus is not instantaneous. The hemodynamic modications last several seconds after the neural activation. The hemodynamic response function (gure 8.2) characterizes the delay and dispersion of BOLD response, i.e the timescale and evolution of these modications. The HRF function acts as a temporal lter, and is usually assumed to be linear [START_REF] Georey M Boynton | Linear systems analysis of functional magnetic resonance imaging in human v1[END_REF][START_REF] Anders | Selective averaging of rapidly presented individual trials using fmri[END_REF]. The initial dip of the HRF function corresponds to the initial consumption of oxygen by neurons before the increase of the cerebral blood ow. Then the HRF function peaks around 6 seconds, before decreasing again. A small undershoot persists for a considerable period of time. The temporal resolution of this neuroimaging method is thus limited. The experimental events need to be spaced by at least 2 seconds in order to maximize the signal passed by it. Still, the spatial resolution of fMRI is better than any other non-invasive imaging method.

Model-based fMRI

Model-free fMRI approach permits to identify where a particular process is located when subjects are performing a specic task. In contrast, model-based fMRI gives insights into how a particular cognitive process may be implemented in the brain [START_REF] Rogier B Mars | Modelbased analyses: promises, pitfalls, and example applications to the study of cognitive control[END_REF][START_REF] John | Model-based fmri and its application to reward learning and decision making[END_REF].

The general idea is to use the variables of the model to design the analysis of the neuroimaging data. The model acts as a function taking in a set of inputs, or stimuli, and producing a set of outputs, or motor-responses. The key variables of the model are hypothesized to correspond to algorithms implemented in neural circuits, and cannot be directly observable from behavioral data. Model-based neuroimaging analysis can help answer the question of where these latent variables are implemented in the brain. Moreover, neuroimaging data can be used to constrain and compare dierent computational models for a same experimental setup.

First, we need to t the model on subject's behavior to nd the best-tting values of the latent variables of the model. Studying the residuals of the tting method, or comparing dierent models can be necessary for the validation of neuroimaging results. This comparative study is done for behavioral data. We compare in chapter 6 the AN alone, against the AN-TN, both of dierent complexity. We show that the AN-TN provides a signicantly better t to the behavioral data than the AN does. We also show that only the AN-TN can reproduce subject's behavior in the recurrent session, when only three task-sets are recurrent, even after adjusting for the number of free parameters in the AN alone model. The AN-TN is thus used to t neuroimaging data. The model's variables are entered in the analysis as trial by trial time series, combined as a design matrix. This matrix embodies all available knowledge about experimentally controlled factors and potential confounds. We regress the model's variables against fMRI data using a general linear model [START_REF] Karl J Friston | Statistical parametric maps in functional imaging: a general linear approach[END_REF]. Through this linear regression, we search for correlations between model's predictions on the evolution of these key variables, and BOLD activity.

Finding regions of the brain which exhibit correlations between a model's variable and BOLD activity does not prove that these regions are actually implementing this variable. It provides insight into correlations between BOLD activity and behavior but it does not establish a causality. However, model-based fMRI results provide evidence that these regions are implicated in the important underlying computation over the variables of the model. 8.2 Model-based fMRI: methods fMRI data were acquired and pre-processed by Mael Donoso using SPM8 (Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK). The experiment [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] involved 40 subjects, with fMRI acquisition, on a 3T Siemens Trio at the Centre de Neuroimagerie de Recherche (CENIR) in Paris. As detailed in chapter 2, each experimental session was composed of 24 episodes. fMRI was acquired on the 16 last episodes. Field maps and functional images (Echo Planar Imaging) were acquired at the same time. At the beginning of the experiment, an anatomical image was also acquired. Images contain 64*64*37 voxels, each edge of a voxel measuring 3mm.

In this section, we detail the methods of the model-based fMRI analysis.

Pre-processing

Pre-processing consists in the following steps, detailed in [START_REF] William D Penny | Statistical parametric mapping: the analysis of functional brain images[END_REF] : Slice-timing correction (temporal correction): each slice of the brain is acquired at slightly dierent times. Indeed, 2 seconds are necessary to acquire the slices of a whole brain. In order to perform an analysis on reconstructed three dimensional images, the temporal delay between slices needs to be corrected.

Realignment and motion correction (spatial correction): correction for head movements.

Co-registration: at this stage, anatomical and functional acquired images are reunited. Spatial normalization: this stage implies the computation of necessary deformations to link the brain of each subject to the MNI (Montreal Neurological Institute) template. This template is used as a reference for comparing BOLD activity between subjects.

Smoothing: the images need to be smoothed with a gaussian kernel to cope with remaining irregularities. The nal voxel has an 4mm-long edge.

The result of the pre-processing step done by Mael Donoso is the generation of a trial by trial time series of three-dimensional images, which are used for the model-based analysis.

General Linear Model, rst-level analysis

The analysis is performed with SPM 12. We generate trial by trial time series of the predicted evolution of model's variables throughout the experiment. These time series are convolved with the hemodynamic response function to account for the hemodynamic lag eect. Then, we regress these time series against fMRI data using a general linear model (GLM). Through this linear regression, we search for correlations between model's predictions on the evolution of these key variables, and whole brain BOLD activity. At this stage, this procedure is done subject by subject.

All parametric modulators are z-scored. For each onset, they are orthogonalized to avoid taking into account their shared variance. This shared variance is excluded from the evolution of the last parameter, our parameter of interest.

Neural correlates of prediction error: GLM 1

We rst test the results of previous studies on prediction error in decision-making cited in section 1.2.2. To this end, we design the following event-related GLM :

The time series of stimulus presentation timing (onset decision, covering the decision time window) is the rst regressor of interest in the GLM. It is modeled as as an addition of Dirac functions. This regressor includes the time-series of reaction times as a parametric modulation. This parameter corresponds to trial-by-trial time taken by the subject to make a choice after each stimulus presentation.

The time series of the outcome presentation timing (onset feedback) is the second regressor of interest. It is also modeled as an addition of Dirac functions. This regressor includes the prediction error as a parametric modulation.

Neural correlates of task-set retrieval: GLM 2

We examine the neural correlates of the inferential bias from the task rule network, encoding task-sets in its pattern of synaptic connectivity, to the decision circuit (associative network). This inferential bias is a key feature of the model, and marks a transition from persevering and exploratory responses to task-set retrieval, in the recurrent session. It is only predicted by the model for positive rewards, and if some TN pattern of synaptic connectivity has been previously learned. For late episode switches, it is strong after a few trials following the switch (task-set retrieval), and low during the rest of the episode, to correct for misleading noisy trials or behavioral errors (gure 6.8 (B)).

We design the following event-related GLM :

The time series of stimulus presentation timing (onset decision, covering the decision time window) is the rst regressor of interest in the GLM. It is modeled as an addition of Dirac functions. This regressor includes orthogonalized parametric modulations following this order :

The rst modulator is the time-series of reaction times, an index of trial diculty.

The second modulator is the AN synaptic strength from the presented stimulus selective neural population to the chosen action selective neural population. We call this parameter W chosen and it is also an index of trial diculty. It is illustrated in gure 8.3.

W chosen W task-set = 0 W task-set W task-set W chosen
in the TN, the activation of this neural population can cause the coactivation of TN neural populations selective to other stimulus-action associations. These associations are represented in the decision circuit by AN synaptic weights. W task-set is the average of these AN synaptic weights over the number of connections implicated. The corresponding neural populations are illustrated in gure 8.3.

* Before learning, there is no pattern of synaptic connectivity encoded in the TN. The parametric modulator W task-set is null.

* After learning, this parametric modulator is the average of AN synaptic weights corresponding to any co-activated pattern of TN connectivity. When the subject perseveres, this parametric modulator is equal to AN synaptic weights of the previous task-set.

* When the subject explores, it is equal to AN synaptic weights of any TN connectivity pattern strongly connected to the current chosen association selective neural population.

* When the subject makes correct associations, this parametric modulator is equal to the increasing AN synaptic weights of the correct task-set.

Thus W task-set refers to the consistency between AN encoding, or synaptic weight values, and TN belief. Hereafter, we consider also the inverse -W task-set , referring to the discrepancy between the AN encoding and the TN belief.

If the trial is rewarded, the corresponding AN synaptic weights W chosen and W task-set are biased to saturation with respect to the TN increment J IN C : this is described below as a parametric modulator at the onset feedback.

The time series of the outcome presentation timing (onset feedback) is the second regressor of interest. It is also modeled as an addition of Dirac functions. This regressor includes orthogonalized parametric modulations following this order :

The rst parametric modulator is the time series of positive rewards.

This parameter equals 1 when the received reward is 1, and 0 otherwise.

The second parametric modulator is the trial-by-trial average value of the inferential bias from the TN to the AN. It is thus the average, over the number of connections implicated, of the TN inference on the update of W chosen and W task-set . We call it TN inference. As seen in chapter 5, a strong inference bias after an episode switch of the recurrent session corresponds to task-set retrieval. The parametric modulator TN inference is represented in gure 6.8 (B).

N.B. 1: We cannot consider this parameter in the analysis as an addition of Dirac functions (with inference or without inference trials) because the subject only enters the MRI scanner at episode 9 (see chapter 2). By this time, the three task-sets of the recurrent session are already learned in the TN, and the model predicts a positive inferential bias after each positive reward. This parametrization would be rigorously equal to the parametrization describing positive rewards, and its regression against BOLD activity impossible.

N.B. 2: If we delete the low uctuations of this variable in the recurrent session, and keep only the peaks following episode switches (task-set retrievals), the result of the analysis is not changed. These peaks are thus the main eect of interest.

N.B. 3: Results are robust if we add the parameter W chosen at both decision and feedback onsets, as a rst parametric modulator. The observed activations at the onset feedback are similar to the activations at the onset decision. This control ensures that the correlations observed are not simply caused by the monitoring of the certainty on the chosen association or else the trial diculty.

Regressors of no interest, convolution with the HRF, and betas extraction GLM 1 and GLM 2 also includes non-parametric regressors of no interest in order to exclude potential confounds :

Lapses (subject's absence of response at the onset decision) and its subsequent absence of reward (onset feedback).

Post-pause trials (section 2.2.4) at both onsets because they are not considered in our modeling study.

The last trial of each of the four runs, at both onsets.

Six movement regressors from the realignment procedure of data pre-processing, correcting for head movements (three parameters for translation and three parameters for rotation).

All the mentioned time series are convolved with the hemodynamic response function to account for the hemodynamic lag eect. The generated time series are predictive of brain activity and can now be regressed against each voxel's time series. This procedure is done through a combination of linear regressions called rst level analysis in SPM. The result is a correlation coecient per voxel and per regressor, the beta. SPM then compute the three dimensional statistical map from the betas of every voxel of the brain, for every regressor, and for every subject.

Then we generate contrast images by performing statistical tests on the betas, for each voxel and for each regressor.

Second level analysis

The subject by subject statistical maps are now combined to make generalizable inferences about the population. We use a random eect analysis approach [START_REF] Holmes | Generalisability, random eects\ & population inference[END_REF], comparing the group eect to the between-subject variability. We perform a one-sample t-test from the contrast images generated at the rst level analysis. In SPM, it is called the second level analysis.

We identify activations using a signicance threshold set to p = 0.05 (familywise error FWE corrected for multiple comparison over the whole brain). Only the activation of the parametric modulator W task-set at the onset decision is identied using a signicance threshold set to p = 0.001 uncorrected, also over the whole brain.

For conciseness, we do not report posterior activations (parietal, temporal and occipital lobes).

The statistical maps generated from the second level analysis exhibit the activation of brain regions for a certain contrast in the whole population. An activated brain region is said to be correlated to the considered event from the computed contrast.

Region of Interest (ROI)

Region of Interest analysis in neuroimaging refers to selecting a cluster of voxels a priori to test hypotheses on regionally specic eects. It has the advantage of reducing overly stringent multiple comparisons correction thresholds, by reducing the search space of potentially hundreds of thousands of voxels to a smaller, more tractable area. It can be done either by creating a small search space (a small sphere of voxels), by choosing it from anatomical atlases or from previous studies. Thereafter we extract the betas from a given region of the brain, and compare them from the two conditions: the recurrent and the open-ended session. This comparison is valid as soon as the region of interest is selected independently from the statistical maps of betas [START_REF] Russell | Region of interest analysis for fmri[END_REF], i.e. the selected ROI need to be based on a dierent contrast that the one currently studied. p < 0.05 [-12, 56, 20] T = 11.2 [-12, 8, -12] T = 14.3

AN synaptic strength of the chosen association when making a decision

In this section, we study the correlations between BOLD activity and the parametric modulator W chosen at the onset decision of GLM 2. This parametric modulator corresponds to the decision certainty on the chosen association at each trial. For conciseness, results are illustrated in the comparative study in the upper and left panels of gure 8.10. Comparative activations are found in both experimental sessions.

We nd positive linear eects in striatum and vmPFC. In the recurrent session, the cluster is composed of 308 voxels with MNI peak coordinates at [4, 56, -8] and T = 6.7. In the open-ended session, the cluster is composed of 173 voxels with MNI peak coordinates at [0, 52, -8] and T = 9.2.

We nd a negative linear eect in dorsal anterior cingulate cortex (dACC), anterior supplementary motor area (pre-SMA) and lateral prefrontal cortex. In the recurrent session, the clusters are composed of 431 voxels (dACC), 299 voxels (right dlPFC) and 258 voxels (left dlPFC) with MNI peak coordinates respectively at [0, 20, 48] (T = 13.1), [36, 24, -8] (T = 11.2) and [-32, 20, 4] (T = 9.7). In the open-ended session, the clusters are composed of 833 voxels (dACC and right dlPFC) and 273 voxels (left dlPFC) with MNI peak coordinates respectively at [36, 24, -8] (T = 12.2) and [-44, 12, -4] (T = 9.9).

Consistency between AN encoding and TN belief when making a decision

In this section, we study the correlations between BOLD activity and the parametric modulator W task-set at the onset decision of GLM 2. This parametric modulator corresponds to the consistency between AN synaptic weight values and any co-activated pattern of implemented synaptic connectivity in the TN, i.e. the current inferred correct or incorrect task-set.

Recurrent session

We nd no positive linear eects in frontal lobes. We nd a negative linear eect in dorsal anterior cingulate cortex (dACC) and anterior supplementary motor area (pre-SMA). The MNI peak coordinates are [-4, 20, 52] and T = 5.5. The cluster is composed of 43 voxels, p = 0.01, and extends on Broadmann areas 8, 32 and 6. 

Conclusion

To conclude, the inference signal from the TN to the AN circuit correlates with BOLD activity in dorsomedial and dorsolateral prefrontal networks at the onset feedback. These regions are preferentially recruited in the recurrent session, when only three task-sets are repeated over episodes. This result suggests that activity in these regions may provide a bias to decision circuits when a task-set is retrieved.

Moreover, dACC is preferentially recruited at the time of decision and its activity correlates with the discrepancy between the current encoding state of the decision circuit (AN) and the current task-set belief of the TN, as if this region was signaling the subsequent retrieval of a task-set if the outcome conrms the TN belief.

Chapter 9 Discussion

General conclusion

We investigate neural mechanisms for the implementation of task-sets, or mental representations of rule-mappings, by means of synaptic plasticity mechanisms, at the representational level. We hypothesize that task-sets are encoded by an unsupervised and activity-mediated Hebbian learning rule in a network composed of mixed-selective neural populations.

We model a specic human experiment [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF] from the Koechlin team. The authors explored the ability of learning and monitoring concurrent task-sets at the computational level. The aim of the experiment was to learn correct associations between three stimuli and four actions. These correct associations were changing over time. In the recurrent session, where only three rule mappings were repeated throughout the session, a group of subjects were able to retrieve the three stimulus-action associations corresponding to each rule as soon as they had run into one of these associations, and without any contextual cue. They learned and inferred the structure of the task. This was not observed in the open-ended session where rule mappings were not recurrent.

In an attempt to bridge the gap between physiology and behavior, we test simple physiological mechanisms, in particular Hebbian synaptic plasticity, for learning temporal associations between behavioral events. First, we model taskset learning with a biological inspired mechanism. Secondly, the model should be simple enough for analyzing and tting experimental data, in particular behavioral and fMRI data. Finally, it should predict specic features of behavior in order for its mechanism to be testable.

As our study of inspiration [Rigotti et al., 2010b], our model is composed of two interacting neural circuits, receiving feed-forward inputs from sensory neurons and transforming these into motor outputs.

The rst circuit learns one-to-one associations between visual stimuli and motor responses. The synaptic plasticity of neural populations in this associative network (AN) is modulated by reward. This circuit cannot learn more than one task-set at once, and cannot infer the relations between dierent stimulus-action associations, about their merging as a mental state. The retrieval of a task-set after observing a single association is thus not possible in this simple circuit.

The temporal contiguity of the stimuli presentation and motor responses from the rst circuit drives synaptic plasticity on a longer timescale in a second neural circuit, the task-rule network (TN) which acts as a slower activity-mediated and unsupervised system. As a result we show that task-sets are encoded as patterns of synaptic connectivity. After learning, an inference bias to the associative network permits to retrieve a whole task-set after the rst correct stimulus-action association. Task-set retrieval in the decision module improves behavioral performance.

The AN-TN provides a signicantly better t to the behavioral data than does the AN alone in the recurrent session. When the inference bias from the TN to the AN is strong, the model predicts abrupt changes in behavioral responses, thus depending on the precise statistics of previous responses. These changes can have positive or negative eects on the following trials' performance. The predictions of the model are borne out by the data, and enable to identify from behavior alone subjects who have learned the task structure, conrming a post-test debrieng.

We then investigate whether the variables of the model are correlated with neural activity, using BOLD signal recorded from fMRI during a second experiment [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF] from the Koechlin team. The inference signal from the TN to the AN correlates with BOLD activity in dorsomedial and dorsolateral prefrontal networks at the time of receiving the reward. These regions are preferentially recruited in the recurrent session, when only three task-sets are repeated over episodes. They may provide a bias to decision circuits when a task-set is retrieved. These results conrm previous work on the anterior cingulate cortex (ACC), reecting its role in the allocation of control, for updating the internal model of the environment. Moreover, dorsal ACC is preferentially recruited at the time of decision and its activity correlates with the discrepancy between the current encoding state of the decision circuit (AN) and the current task-set belief of the TN. This region may signal the subsequent retrieval of a task-set if the outcome conrms the TN belief.

Taken together, these results show that Hebbian mechanisms and temporal contiguity may parsimoniously explain the learning of complex, rule-guided behavior. A key feature of this thesis lies in the combination of behavioral and fMRI data analysis with modeling at the representational level to investigate the neural mechanisms of the implementation of task-sets.

In section 3.4, we have discussed three important points about the AN-TN model dynamics:

The link between the soft and noisy winner-take-all mechanism of the associative network and Fusi and Wang's biological realistic network model for decision making [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF][START_REF] Wang | Probabilistic decision making by slow reverberation in cortical circuits[END_REF][START_REF] Wong | A recurrent network mechanism of time integration in perceptual decisions[END_REF].

The link between the stochastic Hebbian learning rule of the associative network [START_REF] Fusi | A neural circuit model of exible sensorimotor mapping: learning and forgetting on multiple timescales[END_REF] and Q-learning [Watkins and [START_REF] Christopher | Q-learning[END_REF].

The dierences between the task-rule network learning rule and the attractor concretion mechanism of our study of inspiration [Rigotti et al., 2010b].

In the following sections we go deeper into relating the contribution of this work to other studies. We rst discuss the computational complexity of the AN-TN model. Then we allude to a recent work from the Fusi team [START_REF] Fusi | Why neurons mix: high dimensionality for higher cognition[END_REF]Rigotti et al., 2010a[START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF] providing us with a plausible mechanism for the inference bias from the TN to the AN: the existence of an extra layer of non-linear mixedselective neurons. We then move to the question of the encoding of expected and unexpected uncertainties in the TN, and its possible relationship with cholinergic and noradrenergic systems. Finally, we review several interesting studies concerning the role of ACC at the intersection of the decision component and the control component and we draw a parallel with our results.

Computational complexity

A magical mystery number four has been found for the capacity limit of human central working memory in a variety of psychological tasks [START_REF] Cowan | The magical mystery four how is working memory capacity limited, and why?[END_REF]. Central working memory means remembered abstract chunks or mental states, which can themselves include several sensory or task modalities, such as a task-set.

In the task of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], the authors have xed the monitoring bound as a free parameter and also recover an average value of about 4 over subjects (3.3 in [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF]] and 3.6 in [START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]).

In the AN-TN model, task-sets are memorized through connectivity patterns between stimulus-action selective neural populations. We do not limit the capacity of the TN. With 3 stimuli and 4 actions, the TN is composed of 12 neural populations and can encode 4 non-overlapping task-sets with the same synaptic weights (see section 5.1). If we imagine the same experimental task with 4 stimuli and 5 actions, the TN would be composed of 20 neural populations and could theoretically encode 5 non-overlapping task-sets. If two task-sets are overlapping, the memory of only one of them or both depends on the temporal repetition of each of them, and on potentiation and depression learning rates.

If a hard capacity limit exists in the human brain, a TN capacity limit can be articially created by adding post-activated and unspecic depression mechanisms [START_REF] Ostojic | Synaptic encoding of temporal contiguity[END_REF] from non-activated neural populations. The model, though very simple mechanistically, would predict that the capacity limit of working memory comes from processing timing eect in synaptic plasticity.

The question of the inference bias from TN to AN

In chapter 3, we detail the dynamics of the AN-TN model. In chapter 5, we show that the TN is able to encode the three task-sets of the recurrent experimental session [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. Thanks to the inferential bias from TN to AN, a task-set can be retrieved after the rst correct trial following an episode switch.

This bias has been modeled in section 3.2.2. At each rewarded trial, the AN synaptic weights corresponding to the stimulus-action associations of TN patterns of activation are biased with a strength J IN C . We mentioned that this bias is a

(s 1 , s 2 ) (a 1 , a 2 ) {S 1 A 1 ; S 2 A 2 } {S 1 A 2 ; S 2 A 1 } S 1 A 1 S 2 A 2

Expected and unexpected uncertainties

As discussed in chapter 3.4, the TN circuit encodes the memory trace of any sequence of events, even incorrect. Besides encoding a trace of error trials, the TN also encodes uncertainty in the transition probabilities (weak but non-zero) between 2 task-sets, or between one task-set and an incorrect association.

Presumably, TN synaptic weights reveal both expected and unexpected uncertainty. These distinct forms of uncertainty and their possible implementation in the brain have been studied by [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF].

According to the experimental paradigm of Koechlin and colleagues [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], expected uncertainty refers to the unreliability of a stimulus-action association within a task-set, originating from the 10% of noisy trials introduced in the experiment.

Unexpected uncertainty, on the other hand, refers to the unnoticed episodes switches, coming along with a rule change.

Estimating these uncertainties is crucial for trial-by-trial decision making. In the AN-TN model, errors caused by noisy trials or episode switches violate the topdown control from TN belief.

Yu and Dayan investigated the active representation of expected and unexpected uncertainty through Bayesian modeling, and their respective estimation by the cholinergic and noradrenergic systems.

Acetylcholine (Ach) is produced by several sub-cortical nuclei, and is projected towards cortex and sub-cortical structures. It is implicated in memory maintain and update [START_REF] Doya | Metalearning and neuromodulation[END_REF].

Norepinephrine (NE) is produced in locus coeruleus and projected towards the whole cortex, sub-cortical structures and cerebellum. It is implicated in attention and control, and more precisely in behavioral switch [START_REF] Aston | Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance[END_REF][START_REF] Sara | The locus coeruleus and noradrenergic modulation of cognition[END_REF].

Higher release of acetylcholine and norepinephrine may suppress top-down control and facilitate bottom-up, experience-dependent, integration of information. Doya [START_REF] Doya | Metalearning and neuromodulation[END_REF] has proposed that acetylcholine and norepinephrine have a role in reinforcement learning, respectively for the regulation of the learning rate and the exploration parameter. From the parallel between the AN circuit and a Q-learner (section 3.4.2), we expect the AN learning rate α and the decision noise 1/β of the winner-take-all mechanism to be regulated by acetylcholine and norepinephrine respectively, for the representation of external unpredictability and environmental instability.

The AN acts as a teacher for the TN. The TN represents passively the expected and unexpected uncertainties, as statistical irregularities between strongly co-activated patterns of neural populations (mental states, or task-sets) and other neural populations (incorrect associations or other task-sets). We can speculate on the role of acetylcholine and norepinephrine on the speed of task-set encoding in the TN, and task-set retrieval from TN to AN.

We study in section 5.6 the necessary trade-o on the value of the TN learning rate Q P , in order to encode eciently the three task-sets of the recurrent session above the inhibition threshold, with reduced encoding of noise from errors or noisy trials. This parameter is xed for simplicity. However acetylcholine could play a role in tuning this learning rate for optimal encoding of the statistical regularities of the task [START_REF] Gu | Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity[END_REF]. For example, the level of acetylcholine is known to correlate negatively with the validity eect, i.e. with the reliability of the stimulus-action association. The level of acetylcholine thus reports expected uncertainty [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF] and could slow down learning in the TN.

Phasic norepinephrine has been shown to report the necessity of shifting attention when the environment changes, in order to learn new rules. The level of norepinephrine correlates with unexpected uncertainty [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF]. In the AN-TN model, this attentional shift is prevented by the inferential bias from TN to AN, characterized by the increment parameter J IN C from the TN to the AN connectivity. This parameter is xed for simplicity. However norepinephrine could down-regulate the value of this top-down increment, as a signal of condence loss of TN belief. These speculations on slowing down TN encoding or TN retrieval matches the ndings on the top-down, intracortical information suppressing eect of acetylcholine and norepinephrine, for the benet of new bottom-up input-driven processing from AN.

On the other hand, past encoding of statistical irregularities could have a topdown eect on the regulation of acetylcholine and norepinephrine, as suggested by the existence of dense reciprocal connections between prefrontal cortex and both cholinergic and noradrenergic nuclei [START_REF] Gu | Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity[END_REF][START_REF] Michael | Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region ca1: computational modeling and brain slice physiology[END_REF][START_REF] Jodoj | Potent excitatory inuence of prefrontal cortex activity on noradrenergic locus coeruleus neurons[END_REF][START_REF] Earl | An integrative theory of prefrontal cortex function[END_REF][START_REF] Sara | The locus coeruleus and noradrenergic modulation of cognition[END_REF][START_REF] Sarter | Cognitive functions of cortical acetylcholine: toward a unifying hypothesis[END_REF].

The interaction between cholinergic and noradrenergic systems is complex and our model is not designed to answer the specic question of uncertainty. However, linking the plasticity learning parameters and the top-down bias of the model to neuromodulation is a thrilling future question.

Tracking the statistics of the environment

We have reviewed in the general introduction another study of interest for uncertainty. Behrens and colleagues have focused on the learning rate as a Bayesian model component [START_REF] Behrens | Learning the value of information in an uncertain world[END_REF] in a task-switching paradigm in order to question the importance of past history on next decisions. They suggest that an estimate of a higher-order statistical feature of the environment has an inuence on voluntary choice. When the environment is stable, subjects should consider historically distant information and should not change their estimate as soon as a surprising event occurs : the learning rate should be low. In a fast changing or volatile environment, on the contrary, recent events are more informative and the learning rate should be higher. The learning rate depends on the uncertainty in the estimate of the reward likelihood. The authors found that the estimated volatility is correlated with the BOLD signal in the anterior cingulate cortex, when the outcome is observed.

Behrens and colleagues show that humans are continually tracking the statistics of the environment, and that ACC has an important role in representing environmental stability. With the AN-TN model, we do not hypothesize that the AN learning rate α is modulated by the volatility of the environment (i.e. uncertainty on rewards) and we do not use a similar task-switching paradigm. However we make the related hypothesis that the supervised lower system of the brain (for which the AN learning rate is the algorithmic hypothesis) can be shunt by a higher unsupervised system when the environment becomes stable, i.e when a task-set is retrieved. The AN learning rate has a behavioral eect only when no belief is retrieved from the higher network. The TN encodes the statistics of the environment. By biasing the AN dynamics, the TN learns from its own activity, thus combining prior statistical information to future learning. From the unsupervised encoding of transition probabilities, the full network is able to assess the salience of an inuential trial, i.e. the rst correct association from a late episode switch. Tracking this statistics also permits the network to assess the falsity and stay insensitive to noisy trials.

As in the study of Behrens and colleagues [START_REF] Behrens | Learning the value of information in an uncertain world[END_REF], we nd the ACC to be at the intersection of the decision component (AN) and the monitoring component (TN) of our network model. ACC BOLD signal is indeed higher when monitoring the reward obtained for the rst correct trial of a late episode in the recurrent session. This highly informative trial has a great inuence on future actions, through the retrieval of a full task-set.

It is interesting to notice that the volatility signal studied by Behrens and colleagues [START_REF] Behrens | Learning the value of information in an uncertain world[END_REF] is similar to the unexpected uncertainty dened by [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF]. The authors point out the possible modulatory eect of norepinephrine and its interaction with the ACC to signal unexpected uncertainty. The locus coeruleus indeed receives direct input from ACC and OFC [START_REF] Aston | Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance[END_REF][START_REF] Jodoj | Potent excitatory inuence of prefrontal cortex activity on noradrenergic locus coeruleus neurons[END_REF]].

Behavioral shift

In non-human primates studies, Quilodran and colleagues have addressed recently the question of the role of ACC in fast action valuation and behavioral shift [START_REF] Quilodran | Behavioral shifts and action valuation in the anterior cingulate cortex[END_REF]. Two monkeys were trained to perform a behavioral task (the problem solving task) while the authors recorded ACC unit activities and local eld potential (LFP) oscillations. As the authors pointed out, LFP reects aerent and intracortical synaptic activity and thus predicts BOLD activity. Studying LFP permits to link monkey to human experiments.

Four targets were presented at each trial. During a block of trials, only one target was rewarded. The animals had to nd it by trial and error (exploration phase), and responded with gaze and touch. After the rst correct trial of each block, the animals could repeat the correct choice (exploitation phase) before a block switch. ACC activity reected both negative and positive feedbacks during the exploration phase (before the rst correct trial of each block of trials), thus processing the valence of informational trials when relevant for adaptation. Importantly, ACC activity specically signaled the behavioral shift from the exploration phase to the exploitation phase. These ndings conrm the role of ACC for processing categorical information in order for the animal to adapt its behavior according to a control system [START_REF] Aston | Adaptive gain and the role of the locus coeruleusnorepinephrine system in optimal performance[END_REF].

The same team recently showed that dACC neurons are dynamically mixedselective [START_REF] Enel | Reservoir computing properties of neural dynamics in prefrontal cortex[END_REF], i.e. are selective to distinct task aspects in one or more task epochs. This region of the brain is thus believed to reect dynamic modulations of behavioral control [START_REF] Khamassi | Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters[END_REF]. resource because neurons code distinct rules in a context-dependent manner, and show sustained activity in many tasks.

In this thesis work, activity in dACC and dlPFC correlates with the inferential bias from TN to AN, i.e. with the transfer of information needed for task-set retrieval in decision circuits. The causality link between dACC and dlPFC, as well as the implication of neuromodulation, cannot be assessed with our current modeling framework. It would be interesting to delve further into this direction.
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  and J AN C are uctuating: the network is exploring. Only the synaptic weight J AN C corresponding to correct associations are continuously potentiated. As J AN C increases, the network is getting a growing number of positive rewards. The performance increases and J AN C is reinforced towards saturation.
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 4 Figure 4.2 (A) represents the time-course of the mean synaptic weights from stimulus-selective to response-selective neural populations. The network is unlearning previous associations while learning the new ones.Figure4.2 (D) illustrates the network performance, which is directly related to the imbalance between AN synaptic weights corresponding to correct and incorrect associations (J AN

  Figure 4.2 (A) represents the time-course of the mean synaptic weights from stimulus-selective to response-selective neural populations. The network is unlearning previous associations while learning the new ones.Figure 4.2 (D) illustrates the network performance, which is directly related to the imbalance between AN synaptic weights corresponding to correct and incorrect associations (J AN C versus J AN P and J AN E ).

Figure 4

 4 Figure 4.2 (C) shows the unlearning eect of a misleading trial on the synaptic weight from the presented stimulus to the correct action. This gure also displays the incorrect learning of J AN W , the mean of the three synaptic weights from the same stimulus, but corresponding to incorrect actions, J AN P , J AN E1 , J AN E2 . The related performance drop is illustrated in (F) and depends on the value of β through the action-selection rule 3.1.

Figure 4

 4 Figure 4.2 (D) illustrates the average strength of the inference bias from the TN to the AN. As J IN C = 1 the saturation of AN synaptic weights occur as soon as the network makes a rst correct choice (see equation 3.2). The average strength of the inference bias is thus an average of binary events occurring at dierent times.

Figure 4

 4 Figure 4.2 (G) illustrates the network performance, which is directly related to the imbalance between AN synaptic weights corresponding to correct and incorrect associations (J AN C versus J AN P and J AN E ).

Figure 5

 5 Figure 5.5 (C) shows the unlearning eect of a misleading trial on the AN synaptic weight from the presented stimulus to the correct action J ANC . This gure also displays the incorrect learning of J AN W , the mean of the three synaptic weights from the same stimulus, but corresponding to incorrect actions, J AN P , J AN E1 , J AN E2 . The related performance drop is illustrated in (I) and depends on the value of the decision noise 1/β (equation 3.1).

Figure 5 .

 5 Figure 5.13 displays the AN-TN behavior without any inferential bias from the TN to the AN, i.e. with J IN C = 0, as a function of the AN learning rate α and the TN learning rate Q P . All panels are produced for two values of the inverse decision noise (β = 5 and β = 9) which correspond to extreme parameter values when the model is tted on human behavior (chapter 6).

  Figure 5.14 thus represents the dierence between gure 5.13 and the same statistics when xing J IN C = 0.7 instead of J IN C = 0.

6. 3

 3 Model selection and comparison: open-ended session 6.3.1 LSE Model ts and simulations of the open-ended sessionModel ts are displayed in gure 6.10. Simulations are displayed in gure 6.11.
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 82 Figure 8.2 The canonical hemodynamic response function. From Prof Rick O. Gilmore website.
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Chapter 7

Testing model predictions: eects of learning the task-structure on performance

The aim of this chapter is to test model predictions in the recurrent session, computed for each trial according to subjects' parameters and given participants' responses in previous trials.

In chapter 5 we have shown that the AN-TN model learns the statistics of stimulus-action associations from the experimental task of [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. As soon as patterns in synaptic connectivity between mixed-selective neural populations are detected in the second circuit of the network (TN), an inference bias to the decision circuit (AN) inuences future behavior. When the inference bias is strong, such as in the recurrent session, the model predicts abrupt changes in behavioral responses. These predicted changes have positive or negative eects on the following trials' performance. We test the model predictions on experimental data from [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF]. These predictions are borne out, and enable to identify from behavior alone subjects who have learned the task structure, conrming the post-test debrieng.

In the whole chapter we use Model 1 (with a single learning parameter describing the AN, 5 parameters in the whole network) tted subject by subject on data from [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF]] by maximizing the model's likelihood.

AFC trial

ANTN model predicts no inference bias

Without inference trial

ANTN model predicts inference bias

With inference trial first correct trial Episode switch population S 1 A 2 is strongly connected to S 2 A 1 (task-set 2).

After an episode switch from task-set 2 to task-set 1, the rst correct trial causes the retrieval of the full task-set in the decision circuit. We consider the rst correct trial to be the association of stimulus s 1 with action a 1 . The inference signal from TN to AN should bias the competition in the decision circuit for choosing action a 2 when stimulus s 2 is presented. If no extra layer of neurons is added between the TN and the AN, the feedback from the pattern representing task-set 1 in the TN to the neural population selective to action a 2 in the AN should be excitatory (and inhibitory towards A 1 ). At the same time, the feedback towards A 2 should be inhibitory if stimulus s 1 is presented (and excitatory towards A 1 ).

After an episode switch from task-set 1 to task-set 2, the same problem arises from the TN connectivity pattern representing task-set 2. The feedback from the pattern representing task-set 2 in the TN to the neural population selective to action a 2 in the AN should be inhibitory (and excitatory towards A 1 ). At the same time, the feedback towards A 2 should be excitatory if stimulus s 1 is presented (and inhibitory towards A 1 ).

This problem is illustrated in gure 9.2 and shows that a linear readout is not plausible when an external event (like the presentation of stimulus S 2 ) activates a neural population in one context (action A 2 if task-set 1) and activates another neural population in a dierent context (action A 1 if task-set 2).

The solution is given in [Rigotti et al., 2010a,b] and consists in adding an intermediate layer of RCN between the TN and the AN. This extra layer is composed of neurons mixed-selective both to neural populations of a TN pattern, i.e. mental states (or task-sets), and to external events (such as the presentation of a stimulus, or a reward). The problem caused by the presentation of stimulus s 1 or s 2 in two dierent contexts can be resolved with an extra layer of non-linear neurons composed of :

A neural population selective to the presentation of stimulus s 1 , and which is activated if task-set 2 is co-activated in the TN, and inactivated if task-set 1 is co-activated in the TN. It has a inhibitory feedback action on the neural population selective to action a 2 in the AN.

A neural population selective to the presentation of stimulus s 2 , and which is activated if task-set 1 is co-activated in the TN, and inactivated if task-set 2 is co-activated in the TN. It has a excitatory feedback action on the neural population selective to action a 2 in the AN.

The authors [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF] point out that the number of required neurons grows only linearly with the number of mental states, and permit high-dimensional a 2 a 1 9.7 Where are the AN and the TN in the brain?

Associating rules at dierent levels of abstraction with anatomical dierences is a complicated question. Still, our fMRI analysis reveals that:

The AN prediction error correlates with activity in striatum and vmPFC, as expected from previous studies on reward-based decision making reviewed in the introduction.

The inference signal from the TN to the AN circuit correlates with BOLD activity in dorsomedial and dorsolateral prefrontal networks. These regions may provide a bias to decision circuits (AN) when a task-set is retrieved. Indeed, we observe a signicant dierence in BOLD activity at the feedback onset in dlPFC and pre-SMA/dACC when we compare the recurrent session (in which three non-overlapping task-sets are repeated) to the open-ended session (in which task-set are not recurrent and there is no possible taskset retrieval). This dierential eect is important (p = 9.7 • 10 -5 and p = 0016 respectively, with independent ROIs, see section 8.7). We also nd a specicity of dACC activity at the onset decision which correlates with the discrepancy between the current encoding state of the decision circuit (AN) and the current task-set belief of the TN. However, the eect is not as important (p = 0.041 on an independent ROI).

These results conrm previous studies on the role of lateral PFC in goaldriven learning reviewed in the introduction of the thesis. With the experimental paradigm of Koechlin and colleagues [START_REF] Collins | Reasoning, learning, and creativity: frontal lobe function and human decision-making[END_REF][START_REF] Donoso | Foundations of human reasoning in the prefrontal cortex[END_REF], task-sets are necessarily created from the temporal integration of events. Lateral prefrontal cortex is specically engaged for temporally integrating and organizing multimodal information to achieve goal-directed behavior. It is thus reassuring to nd that the inferential bias from TN to AN correlates positively with BOLD activity in lateral PFC.

The role of medial prefrontal cortex in goal-directed behavior is discussed in the scientic literature. In particular, the anterior cingulate cortex is engaged in attentional and eort systems, as well as in motivation (commitment to a course of action or active exploration), uncertainty and conict (task diculty), or more generally the allocation of control [START_REF] Botvinick | Conict monitoring versus selection-for-action in anterior cingulate cortex[END_REF][START_REF] Cameron S Carter | Anterior cingulate cortex, error detection, and the online monitoring of performance[END_REF][START_REF] Richard Ridderinkhof | The role of the medial frontal cortex in cognitive control[END_REF]Rushworth et al., 2007[START_REF] Mfs Rushworth | Action sets and decisions in the medial frontal cortex[END_REF]. The ACC carries multiple signals [START_REF] Kolling | Multiple signals in anterior cingulate cortex[END_REF]. Specically, some authors consider the ACC as being responsible for monitoring the choice value as well as for updating decision circuits with internal beliefs about the environment. Dosenbach [START_REF] Dosenbach | A core system for the implementation of task sets[END_REF] even consider this region as the core task-set system or the central processing