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Résumé

L’objectif de cette these est de traiter de deux aspects différents de la théorie de ’exposant
de Lyapunov de cocycles de Schrodinger définis par une dynamique ergodique.

Dans la premiere partie, on s’intéresse aux estimées de grandes déviations de type
Bourgain & Goldstein pour des cocycles quasi-périodiques, puis pour ceux définis par
le doublement de I'angle. Apres avoir montré que seule une estimée par-dessus sur une
bande complexe est nécessaire pour avoir la minoration requise pour I’estimée des grandes
déviations, on donne une nouvelle preuve de cette majoration dans le cas d’'une dynamique
quasi-périodique. La preuve utilise des techniques de mouvement brownien en lien avec
des fonctions sous-harmoniques. Ensuite on adapte la méthode au cas du doublement de
I’angle pour lequel on établit des estimées de grandes déviations sur les branches inverses
de cette dynamique.

Dans la deuxiéme partie sont étudiés des cocycles de Schrodinger dont le potentiel
méle des dynamiques quasi-périodique et aléatoire. On démontre que, dans un régime
perturbatif, les développements asymptotiques de ’exposant de Lyapunov attaché a ces
cocycles sont similaires a ceux démontrés dans le cas aléatoire par Figotin & Pastur et
Sadel & Schulz-Baldes. L’analyse se fait en fonction du caractére diophantien ou résonant

de I’énergie par rapport a la fréquence de la partie quasi-périodique du potentiel.

Mots clés Exposant de Lyapunov, cocycles de Schrodinger quasi-périodiques et aléa-
toires, opérateur de transfert, équation cohomologique, théorie ergodique, difféfomorphismes

aléatoires, mesure stationnaire, théorie du potentiel, opérateurs différentiels.






Abstract

In this thesis we are interested in the Lyapunov exponent of ergodic Schrodinger cocycles.
These cocycles occur in the analysis of solutions to the Schrédinger equation where the
potential is defined with ergodic dynamics. We study two distinct aspects of the theory
of the Lyapunov exponent for different kinds of dynamics.

Firstly we focus on a large deviation theorem for quasi-periodic cocycles and then for
potentials defined by the doubling map. We prove that estimates of Bourgain & Goldstein
type are granted if an upper estimate involved in the theorem is true on a strip in the
complex plane. Then we develop a new technique to prove this upper bound in the quasi-
periodic setting, based on subharmonic arguments related to the Brownian motion and
suggested by the work of Avila, Jitomirskaya & Sadel. We adapt afterwards the method
and prove a large deviation theorem for the inverse branches of the doubling map.

In the second part, we establish an asymptotic development similar to the results of
Figotin & Pastur and Sadel & Schulz-Baldes for the Lyapunov exponent of Schrédinger
cocycles at small coupling with potentials that are a mixture of quasi-periodic and random.
The analysis distinguishes whether the energy is diophantine or resonant with respect to

the frequency of the quasi-periodic part of the potential.

Keywords Lyapunov exponent, quasi-periodic and random Schrédinger cocycles, trans-
fer operator, cohomological equation, ergodic theory, random diffeomorphisms, stationary

measure, potential theory, differential operators.
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1.1 From the Schrodinger equation to Schrodinger cocycles

1.1.1 Background from Physics

The mathematical model of an electron under the action of a potential V is:

— 100 = —AY + Vip = Hyep

7

(1.1)
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where
e ) =1)(x,t) is the wave function of the electron (up to some phase);
o dP = |¢(x,1) |2 dz is the probability density at position z, and time ¢ of the particle;
e A =Y. 07 is the standard Laplacian operator;
e V =V(z,t) is a scalar potential.
The Schrédinger operator is then H = Hy = —A + V. Thanks to functional calculus
and Stone’s theorem (see [RS80]) the solutions of the time-dependent Schrédinger equation

are

P(t) = My (0)

One major question is then to understand the dynamics of the wave function: typically
one wants to know whether the wave propagates information in time or in average in
time (scattering or mean scattering), or if it vanishes quickly around its initial position
(localization).

Let us denote J#,,, 7 and 74, the respective pure point, continuous and absolutely
continuous part of the decomposition according to the respective components of the spec-
trum of H (see appendix . Then the spectral theory of self-adjoint operators gives some
results. In particular the R.A.G.E. theorem (see [RS79]) gives information about the

dynamical behaviour of the solution.

f—[Theorem 1.1 (Ruelle, Amrein, Georgescu, Enss.)}
For H a self adjoint operator on a Hilbert space ¢

o Y € Ay & sup|lpye e Ty —— 0 (bound state)
>0 R—o0

1 gr .
oY c H & VR >0 —/ [1ppetHep||2dt —— 0 (mean scattering
T 0 T—oo
state)
e V€M = VR>0 |1p,eTiHy|? == 0 (scattering state)
—00

One great motivation to study the dynamics of Schrédinger solutions is based on the
work of Anderson ([And58| and see [HunO§| for a nice introduction) in the 50’s. He noted
the absence of diffusion of waves in a disordered medium and was the first to suggest
the possibility of electron localization inside a semiconductor, provided the randomness
caused by impurities in the crystal is sufficiently large. This strongly contrasts with
the ideal model of a perfect crystal consisting of a periodic lattice generating a periodic
potential under which a particle evolves. In the case of a periodic potential V, the operator
Hvy exhibits only purely continuous spectrum and so the crystal should always conduct
charged particles.

Rigorous proofs were given in the 80’s by several authors ([KS80, FS83, [SWS86, [AM93]).



1.1. From the Schrédinger equation to Schrédinger cocycles 9

These authors studied an operator H,, = —A + Ve + AV, for a parameter w and a
coupling constant A > 0 and (sometimes under largeness assumptions on \) proved some
localization properties of the operator Hy, that relate to the initial conjecture of Anderson.
Namely, one example among others is the exponential localization in the interval [a;b]
that requires that for almost every w, the spectrum of H,, is pure point in [a;b] with
associated eigenfunctions exponentially decaying.

Later, other types of Schrodinger operators that are also models to understand the
impurities in a crystal have been studied: the quasi-periodic operators. In this case, the
potential is given by the evaluation of a function on an orbit of the translation x — x4« on
the torus T?. Those functions naturally appear when one takes the sum of two periodic
potentials with immeasurable periods. They exhibit no true period but still seem to

preserve a somehow regular pattern.

A A s i
P

Figure 1.1: The quasi-periodic function o — cos(27x) + cos(v/27x)

—
1

[}

1.1.2 Dynamically defined Schrédinger operators and related cocycles

The basic idea is that for a function ¢ € €2(R) and h # 0 a Taylor development gives
o (x) = h% (p(z+ h) + oz —h) —2¢p(x))+O(h). Then if one would like to understand a
solution of the Schrédinger equation by discretizing it on a lattice of R? they would need
to study (neglecting the error terms) the equation —ih20u1, = (—Agz + v,) ¥y, for Y, (-) =
¢(nh,-) and v, = h2V(nh). This is how emerges the discrete operator H, = —Aya + M,
(see definition in the appendix).

In the sequel, we will only focus on discrete one dimensional operators. Our setting is
the following

e d=1

e (Q,F,u) is a probability space
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e T:Q O is an ergodic map for u called the base dynamics
e v: Q) — R is the map which we evaluate along the orbit of the dynamics T
e the potential is (v, (w))n where v, (w) = v(T"w) for all n

Then the Schrodinger operator is defined by

RR—
Hy
(

Un)n — (Upp1 + Un—1 + Vp(W)un)n

Depending on whether T is invertible or not, the operator is defined on ¢?(Z) or £2(N).

Here are some of the most studied types of operators depending on their dynamics.

The random operator

Such an operator is defined on ¢(Z) when Q = R®Z and pu = Pf)@Z is some product prob-
ability space endowed with the usual product measure once a probability on (R, Bor(R))
is given and where the potential is defined by the canonical projections v,(w) = w, for

some w = (wy)nez in RZ.

The doubling map operator
Such an operator is defined on ¢?(Z, ) with the dynamics
T:To>x+—2z mod1&T

The potential is then v, = v(2"w). After a conjugacy, it can be treated as a certain type
of random operator for a dynamics given by the shift on R®% endowed by the Bernoulli

measure.

The quasi-periodic Schrodinger operator

Here Q@ = T ~ [0;1]%/ ~ (with 2 ~ y <= x — y € Z%) is the d-th dimensional torus
endowed with p = da the Haar-Lebesgue measure, and the potential is given by the

evaluation along an orbit of the translation by «
T:T'5wr—w+aeT?

of a function v : T¢ — R regular enough (quite often analytic in the literature) that is
vp(w) = v(w+na). Note that we identify maps on T with 1-periodic maps on R, and may
abusively write fol f instead of [1. f. Of course, if for example d = 1 and « is rational, the
potential is periodic and everything is known about periodic operators ([CL12, [RS7§|) so
we assume that a has rationally independent coordinates. In fact we will almost always
work with more accurate arithmetics conditions on o and namely diophantine conditions

which are very convenient because they express quantitative irrationality of «.
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Our potential

In the first part, we are interested in quasi-periodic cocycles and then in cocycles given by
the doubling map.
Then, in the second part, we study Schrédinger cocycles with a potential mixing both

quasi-periodic and random components, namely
vp(z,w) = f(z + na) + Wy(w)

for f analytic or regular enough on T and (W), ii.d. random variables. The idea is
to obtain results for the mixed potentials since many results for each potential taken

separately have been proved.

Remark 1.1

We carried our analysis for quasi-periodic potentials with only one frequency «.
The analysis for o € T¢ with d > 2 would actually be similar. The diophantine
condition would be on the frequency vector (aq,...,aq) and 3. Yet, it would
lead to more complicated computations for the cohomological equations we deal
with throughout part II. This could especially be painful for the resonant energies
(chapter 6) where the calculations get pretty technical.

1.1.3 Cocycles

It is important to understand the eigenvalue equations Hy) = E1) (see appendix . These

equations lead to the sequence recurrence equations

VneZ (orZy) UVnt1 = (E—vp(w0)n — Y1 (1.2)

which can be written matricially

()= )
Yo ) U1 0 ) \Wan
This is how emerges the definition of dynamically defined Schrédinger cocycles: the
Schrodinger cocycle for the dynamics T at energy E and potential v is defined by
QOxR? — QxR?
(T,Sg): {

(w,u) — (Tw, Sgp(w)u)

E—o()
1
tion ((1.2). Note that under iteration one gets (T, Sg)"” = (T", S}(E")) where for n > 0 the

iterates are given by the fibered matrix products

where Sg,(-) = <

-1
0 ) is the elementary transfer matrix for the recurrent equa-
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SI('En) (w) = SE’U(Tn_ILU) e SE’U(W)
SEE—”) (w) = Spp(T™w) ... Sp,(T 'w)™t  (when T is invertible)

It is also of greater importance to remark that Sg) € SLy(R) for all n.

1.2 The Lyapunov exponent

The Lyapunov exponent is defined as the averaged exponential rate of the norm of the

transfer matrices:

f—[Theorem 1.2 (definition of the LE, (Furstenberg-Kesten))]ﬁ

When (T, u) is ergodic the following limit exists, is non negative and defines

L(E) = L(E,v, T) the Lyapunov exponent at energy E

. 1
lim —
n—too n

[ w188l du(e)

Moreover one has the p-a.s. result of convergence

1 (n)
mln”SE (@)l i L(E)

The non negativity is straightforward as we choose the operator norm associated with

the euclidean norm on R? namely ||A| = [[|A]2 = \/max,\esptAAM\ so that [[A| =
[A7L]| > 1 for all A € SL2(R).

The convergence of the integral quantity comes from a result about subadditive se-
quences. The almost sure convergence is based on Kingman’s subadditive ergodic theorem
(see [Kin68l [ABO8]). So the Lyapunov exponent of a cocycle measures the exponential
growth of the n-th transfer matrix S(En). In particular if there is such an exponential growth,
the Lyapunov exponent gives its rate and measures the exponential rate of the solutions
of Hyp = E+. It is clearly an asymptotic property and does not depend on any fixed first
matrices Sy, ...,S,. Checking whether L(E) is positive or vanishes is a central question
in the theory of Schrédinger operators and reveals to be sometimes quite challenging. We

now explain why it is of major interest.

1.2.1 The relevance of studying the positivity of L(E)

Knowing if L(E) is positive or not is essential to get information about the dynamics of
the solutions of Hyp = Et, as stated by Oseledet’s theorem (see [ABOS]). It states if the
Lyapunov exponent is positive then almost surely we have a solution that is exponentially

decaying in the future (n — +o00) for an initial condition in an stable manifold E and
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another one exponentially decaying in the past (n — —oo) for an initial condition in an
unstable manifold EY, both at same rate —L(E). Those manifolds constitute a splitting
of R? and verify some fibered invariance w.r.t. the dynamics.

The importance to study the LE is also illustrated by some dictionary properties
between spectral and dynamical properties of the Schrédinger operator. For example it
is not difficult to prove that the exponent is positive outside the (almost sure) spectrum
of the operator H,,. There are other crucial results, and for example the theorem of Ishii-
Pastur-Kotani that states that the absolutely continuous part of the spectrum o,.(H) is
the essential closurd| of the set of energies where L(E) vanishes. Hence, if L(E) is positive

on an interval, then there is a.s. no a.c. spectrum (see appendix [BJ) in it.

1.2.2 Some results of positivity

There are many results about the positivity of the Lyapunov exponent in different dynam-

ical settings. We recall some famous ones.

In the general random setting

One major result is obtained by Fiirstenberg in [Fur63|: for a large class of i.i.d. random

matrices the exponent is positive.

f—[Theorem 1.3 (Fiirstenberg)} \
Let p be a log-integrable probability on SLa(R) i.e.

Jsrow) log(IIM]]) dpe(M) < +o0

and also (Y, )nen € SLa(R)N a family of random i.i.d. matrices with same law fu.

We denote G, the smallest closed subspace of SLa(R) containing the support of
w1 and assume that it satisfies
e G, is not compact;
e there is no G, invariant (MX = X for M € G,,) finite subset X C P!
except <.
Then (Y) = limy—, 400 ~ log([|Yn ... Yo||) > 0 where the limit exists a.s.

& J

Later, Aizenman and Molchanov [AM93] obtained more in a more general setting but
at large coupling (A > 1) or for so called extreme energies with some lower bound of

type 2 log [Al.

*The essential closure of a set Ais A = {z € R|Ve>0 Leb(AN]z—e;z+e) >0}
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For the doubling map

Here the potential is v, (z) = Av(2"x) for an operator defined on ¢2(Z,). Chulaevsky
and Spencer ([CS95]) proved positivity with some perturbative formula Ly(E) ~ cA? like
Figotin-Pastur’s, at small coupling A < 1 and for energies in | —2;2 [ away from the edges
and the band center. Damanik and Killip ([DKO05]) generalized the positivity (but without
asymptotic formula) to A > 0. We shall elaborate more on the Figotin-Pastur type formula
in section Note that Hermann’s subharmonic trick (see [Her83]) that we mention in

the next paragraph also works in this case for large trigonometric polynomials.

In the quasi-periodic setting

This has been a particularly active field since the 80’s. A first grounding and inspiring
result was obtained by Michael Herman ([Her83]) who used an analytic extension and an
elegant subharmonic trick to establish that if v(z) = 3 axe®™* is a real trigonometric
polynomial of degree N, then L(E) > In |an|. This settled the basis for many other authors.
For the almost Mathieu operator on Z with v,, = 2X cos(2m(na +w)) and « ¢ Q, this im-
plies positivity whenever A > 1 with a lower bound = log A. For E € ¢(H), Bourgain and
Jitomyrskaya even refined the result and proved L(E) = max(0,In|A|) (see [BJ02]). In
the 90’s, Sorets and Spencer ([SS91]) extended the result to the case of non constant real
analytic potentials T — R at large coupling (A > 1) and obtained the same lower bound.
Later, Bourgain and Goldstein developed in [BG00] a method to prove this inequality for
non constant real analytic potentials on T¢ with d > 1 under some diophantine assump-
tions on «. It is based on a large deviation estimate which states that the n-th transfer

matrices are close to their average for large n.

1.3 Large deviation estimates

1.3.1 Pre-existing results

Referring to these large deviations (LD) estimates means to evaluate the difference be-
tween some quantity and its average. It has become a standard part of the probability
theory that deals with the asymptotic behaviour of remote tails of sequences of probability
distributions.

In our setting of quasi-periodic Schrodinger cocycles and Lyapunov exponent we are

interested in the estimation of

L igm 1/ (n)
=L T: |-1 —= 1
S=Leb{oe T s | LnfsP@) - [ wlsE@)]da

> n‘”}
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Under a diophantine condition o € DC(k, 7):

K
=:1 —p|l = —= .

Bourgain and Goldstein proved in [BGO0] the following estimate: for some 7' > 0 and all

large enough n
op Se— (1.4)

Then the authors used it to establish the positivity of the Lyapunov exponent for potentials
on T? using a central tool in the theory: the avalanche principle, developed by Goldstein
& Schlag in [GS01]. This principle relates the expansion of a long product of matrices to
the product of the individual expansions of the matrices.

It is also a hypothesis that is used to prove continuity of the Lyapunov exponent,

Anderson localization, etc.

1.3.2 Our results

At first we take care of the quasi-periodic case. Here we use a method inspired by argu-
ments of [AJS14] (especially the Brownian motion argument for subharmonic functions in
section 2) to provide an alternative proof of the estimates in the one dimensional case like
Bourgain and Goldstein did. In particular we use potential theory in the complex plane

to establish that only an upper estimate on some complex strip is sufficient:

/—[Proposition 1.1}
Let us define ¢, : T >z +— Lln HS(En) (x)||. For (L.4) to be true, it is enough

n

that for all n > 1, the function ¢, admits a subharmonic extension on a fixed
strip {z € C : |Smz| < p} and that for some by > 0 and all 0 < by < 1, for
allz €T

1 1
Yo<e<p gon(:ciis)—/gonf,e sup |on| + - + 5 (L.5)
T n-ot

b1 b
|Sm 2|<p ntes

Please note that, at this point, we do not need any arithmetic assumption on the
frequency «, nor even the precise dynamics: (|1.5) and the assumptions on ¢, in the

previous proposition are enough to get (|1.4]).
We also provide a proof of (1.5)) using the Brownian motion on R?:
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Proposition 1.2}

Under a diophantine condition o € DC(k, T) (see (1.3))), the estimate (|1.5)) is true

for an appropriate choice by = 727 which denotes a quantity greater than 7+ 2.

And so for this proposition the diophantine condition on « and the type of
dynamics (quasi-periodic) are important.

We originally had in mind to use the technique of proof developed in the quasi-periodic
setting later in the context of Schrédinger operators with potentials given by the doubling-
map to prove positivity with bounds at large coupling and maybe even localization. Results
already exist (like [DKO05]) but we thought we could remove the condition on almost
all initial conditions. The major technical difficulty is that, whereas the quasi-periodic
dynamics can easily be extended to the upper half plane and preserves any analyticity
strip {|Sm z| < 6}, the doubling map exponential growth prevents us to use a very crucial
argument of boundedness and pseudo invariance for the dynamics of the complexified
functions ¢, (z). We then chose to look at the inverse branches of the dynamics with the
idea that some information obtained in the past could pass on the future. We prove some
deviation estimates on the inverse branches. These could lead to the initial goal with a

finer analysis.

f—[Theorem 1.4 (LDT for the inverse branches of the doubling-map)}
Let us denote mgy the doubling map on T ~ [0;1]. We set

T S(o(/2) + p(-/2+1/2)

and ¢, = T"p, be the (combinatorial) average of y, over all the 2" inverse
images for mo™. Then 1, verifies an LDT like (|1.4]).

& J

We recently found new arguments that, joint with the large deviation estimates on the
inverse branches, could help to prove quantitative positivity of the Lyapunov exponent

without energy exclusion (like in [Kriill]).

1.4 Asymptotic development for small perturbations: the

Figotin-Pastur formula

1.4.1 Pre-existing results

Now we investigate some other major results concerning the exponent of Schrédinger

cocycles obtained by several authors at small coupling eV with ¢ <« 1. It originally begins



1.4. Asymptotic development for small perturbations: the Figotin-Pastur formula 17

with the Figotin-Pastur proof of a formula due to Thouless ([Tho79]) in the random
setting at small coupling and for energies in the spectrum of the free operator (Hy = —A)
away from the band edges and the center: if V(v,) denotes the variance of the random

potential v, then

/—ETheorem 1.5 (Figotin, Pastur [PF92], theorem (14.6))]—

Assume the potential is ev,, for i.i.d. random variables v, bounded by 1 with

zero expectation and fix an energy E € | =2;2[ ~\ {0}. Then for ¢ > 0 small

enough

Vg :
Leo, (E) = 2&[(_];)8 +0 (45132)

The formula was generalized by Chulaevsky and Spencer in [CS95] to other potentials
like Markov automorphisms, hyperbolic toral automorphisms; it particularly applies to
the doubling map = +— 2z mod 1 using some tools and tricks of [PF92], namely a change
of coordinates called the Priifer phase variables and the spectral density of the random

process generated by the v,,’s.

1.4.2 Figotin-Pastur formulse for quasi-periodic and random potential

In this part we analyze the model where the potential is given by
Vn € Z vp, = e(V(z + na) + Wy (w)) (1.6)

for V regular enough on T (we will precise the condition when needed) and i.i.d. random
variables W,,. More precisely we want to get a Figotin-Pastur type formula for the expo-
nent when ¢ is small.

In chapter [4 we prove a similar expansion formula for diophantine o when the energy

is diophantine w.r.t. o. That means 3 = L Arccos (E/2) is diophantine w.r.t. o which is

Jk>0 FIr>1 VnecZ-~ {0} [na + Bllz = # (1.7)

We write DC, (k, 7) the subset of 8 € T defined by (1.7). Let us also denote V(W)

the variance of the i.i.d. random variables W,,.

Theorem 1.6}
For a potential given by (1.6) and all energies E € DC,(k,T) (see (L.7)), we have

the following perturbative development for ¢ < £9(V, a)) small enough and for a
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quasi-periodic part of the potential V € €471 (T)

V(W &
L(E) = M(_]%)Q)e? +0; <M>

That means we obtain a Figotin-Pastur type formula for a positive set of energies
in the interval | —2;2[, the measure of which depends on the diophantine constant of /3
w.r.t. @. The exact same main order term given by the variance of the random part of
the potential. Hence, if the potential is purely quasi-periodic, the lowest order of the
development vanishes. This is coherent with the fact that, in the purely quasi-periodic
setting, for ¢ small enough the set of energies for which the cocycle S is ¥“-reducible to
a constant has full Lebesgue measure by Eliasson’s theorem [Eli92] and so the Lyapunov
exponent is expected to vanish for almost every energy in the spectrum.

We used some ideas of the work of Malicet who recovers the Figotin-Pastur’s formula in
[Mal12] using the theory of random diffeomorphisms of the torus T and their associated
Lyapunov exponent. We extended some of his results to stationary measures of random
diffeomorphisms of T? that appear in our context of mixed quasi-periodic and random
Schrédinger operators. Once one translates the Lyapunov exponent of the cocycle in terms
of Lyapunov exponent of the associated random diffeomorphism, the key is to obtain a
perturbative development of any of its stationary measures. As one can easily observe,
in our perturbative setting, the same conjugacy made by Figotin and Pastur brings us to
study a diffeomorphism that is close to the rotation Ra s : (z,y) € T? — (z + o,y + f8)
mod Z? where E = 2cos7wf. In the diophantine case , the main order reveals to
be, as expected, the Lebesgue measure which arises as the only obstruction to solve a
cohomological equation for the transfer operator induced by the random diffeomorphism.

What has to be underlined here is that, contrary to theorem we do not assume
any zero expectation on the global potential , nor separately for the quasi-periodic
part V, or the random part W,,. However surprising this could be as one would think of
insuring the condition for all energies by changing a little bit the potential or the
energy, we will explain (remark in chapter 4) why this is not possible because of the
contradiction the arithmetic condition leads to for the boundedness of the potential that
we need for our estimates.

The next chapters are dedicated to the treatment of the resonant energies E = 2 cos(kma),
for which the cohomological equation for the rotation R, g exhibits too many obstructions
that are not straightforward computable. In those chapters, we impose a vanishing con-
dition on the random potential W,, in .

In chapter [5] we treat the first obstruction k& = 0, that appears when we are at the
band edge of the free spectrum. We extend the result of [SSBO7| in the purely random case

to prove a similar scaling diagram for the exponent which has a scale depending on the
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speed at which we approach the edge E = 2. We even give (like in [SSB07]) a perturbative

development outside the free spectrum.

/—ETheorem 1.7}

For % <n< % we have the following asymptotic expansion

V(W) > 3, 4.5
—de") = ®2 —6(5n A4—357
L(2 — de™) 5 7 —|—O(d (e2M e 2))
For E = 2 — de*/3, the Lyapunov exponent admits the asymptotic development
below
Geae 0
L(z2 - de¥) = | [ (cos(2my) + cost(2my)oly) dy| + O(d o)
T

where p is some density defined by the L' normalization solution of an (explicit)
first order differential equation.

Finally for % <n< %, the Lyapunov exponent can be expanded as follows

L(2+de") = Vde"? +0 (d_3 (51—%75271—17 g%'ﬂ))

Our technique is still based on the development of any stationary measure of the ran-

dom diffeomorphism induced on T? by the cocycle. So it differs from the one of [SSB07]

that relies on estimates for the Birkhoff sums of the projective random dynamical sys-

tem. The different scales give different types of dynamics for the diffeomorphism (elliptic,

parabolic, hyperbolic). We however retrieve some of the issues and technical difficulties of

[SSBO7].

Finally, in chapter [6] we treat the more complicated case when the diffeomorphism

cannot be expanded, up to some order of approximation, to a map with separate vari-

ables (z,y) — (x4 «, g(y)) that forces us to develop a method of conjugacy for differential

operators that naturally appear in this model. The goal is to get rid of the dependency

on x on the second factor in order to solve a simpler cohomological equation. We need in

this case V to be real analytic. We obtain the following theorem:

’_[ Theorem 1.8 }

For oo € DC(k,7) and an a-resonant energy E = 2cos(kra) with k # 0 for a
potential £(V(z) + W) with & = E(W) + Vg — ‘\A/k’ > 0, the following holds for

sufficiently small e:

L(E) = & | €(4) p(y) dy+ O ()

for an explicit density p and ® an explicit positive function.

&
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We can also deal with the parabolic case §; = 0 that differs from the previous one
because the first order method used for §; > 0 cannot be applied and we have to develop

a method of order 2 to solve the cohomological equation.

/—[Theorem 1.9} )

For o € DC(k,7) and an a-resonant energy E = 2cos(kma) with k # 0 for a
potential e(V(z) + W) with 6, = E(W) + Vg — {\A/k| = 0, the following holds for
sufficiently small €:

L(E) = Ac + Op s, (%)

where A, either vanishes or is < €*/3, or is O(e*/3).

. J

Here the numerical factor seems out of reach because of the complexity of the compu-
tations. As in the parabolic case at the band edge of the free spectrum, we face a situation
where it is unclear whether the lowest order of our development vanishes or not. However
not entirely satisfactory this is, it still provides a perturbative formula. We shall elaborate
more on this issue in remark[6.7] Note that these two last theorems highlight the difference
of nature of the two resonant problems k£ = 0 and k # 0 and, within these two conditions
depending on the condition on Jy, there are substantial differences of behaviour. This can
also be compared to the results of [SSBO7| where the resonant case k = 0 is treated as we

did for theorem All resonances are then not similarly treatable.
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2.1 Setting and main results

Let us begin by making our setting explicit. Let v € €“(T,R) be a real analytic function
on the torus, commonly named the potential, E € R be the energy and o € T \ Q/Z the
frequency. Then we define the elementary transfer matrix

Sp0(1) = <E —1v(:c) —01>

and the associated Schrédinger cocycle

TxR2 — TxR?2
(@, 8):

(z,u) — (x+ o, Sgu(z)u)

We denote («, Sg)" = (na, S](an)) where

0
neN  SW(x) =Sgu(z+ (n—1)a)---Spu(z+a)Sp(z) = [[ Se(x+ k)
k=n—1

We keep the dependence on all the parameters E, v, @ implicit when no confusion is
possible. Since we consider the potential fixed and study the results when the energy
varies, the dependence on E is more likely to be pointed out. Let us denote || - || the
operator norm associated with the euclidean norm on C2 Let us remind that ||A]| is
given by the singular values of the matrix A, namely the roots of the eigenvalues of A‘A.

The quantity
Ly = L / In S8 (2)]| de

defines a subadditive sequence bounded from below. It is then a general result that it
converges as n goes to oo, which defines the Lyapunov exponent of the cocycle («,S),

one has

L(E) = L(E, a, v) inf /l HS x)| dz

n~>j:+ n
We set for all z € T .
pa(@) = —In IS5 (2)] (2.1)

so that

L, = /rgon = /Olgon (2.2)

where we abusively write [; ¢, for the integral on a interval I C R of any lift of ¢, on R,
that is we identify a map on the torus with the associated 1-periodic function on R.

Our goal is to obtain some estimates for the following measure
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Leb{z € T : |pn(z) —Ly| > n "}

for a suitable v > 0, and more explicitly, to get an exponentially small measure like in the
estimates of Bourgain and Goldstein in [BGO00]. This means that the function ¢, is close
to its integral for large n.

We need some arithmetic assumptions on a. Let us recall some classical definitions

used in the theory of quasi-periodic Schrodinger cocycles.

/—EDeﬁnition 2.1 (Diophantine class)}
We write for k,7 > 0 that o € DC(k, 1) if

VneZ~ {0} |nallr = d(na,Z) > ﬁ (2.3)

In this case, we say that « is in some diophantine class (or is diophantine) with

constant x and exponent 7. For all 7 > 1, the set DC(7) = Ux>oDC(k,7) C T

has full Haar-Lebesgue measure.

We prove indeed under these arithmetic conditions:

’_[Theorem 2.1} )

Let us assume that « satisfies a diophantine condition DC(k, 7). Then, for some

constants a,a’ € ]0;1[ depending on k,T we have the deviation estimate:

!

de>0 Vn>1 Leb{z €[0;1] : |on(®) —Lp| = n"%} < ce™

Remark 2.1

We shall see in the proofs that a,a’ depend on k,T but cannot be easily written

as functions of these parameters.

2.2 Ideas and strategy of the proof

The function defined by (2.1]) admits a subhmarmonic extension to a complex strip, so our
result (theorem actually deals with estimates of the difference between a subharmonic
function in the complex plane and its average. It is then no surprise indeed to get estimates

for subharmonic functions that one controls at the boundary of their domain. Actually, the
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map ¢, also satisfies some pseudo-invariance in « for large n which we should elaborate
later on in lemma [2.1]

The relevance to complexify and exploit subharmonic properties could be said “classic”
and particularly dates back to Herman’s subharmonic trick ([Her83]), or a generalization of
a Jensen formula by Sorets and Spencer ([SS91]), or also Bourgain and Goldstein ([BG00]).
One main idea used by Bourgain and Goldstein (see eq. (1.11) in [BGO00]) is the following:
the Fourier coefficients of a subharmonic function behave like O(|n|™!) as n — +oo (see
also corollary 4.7 in [Bou04]).

Yet, what is remarkable here is that upper estimates for ¢, on a complex strip in the
complex plane like proposition actually give lower bounds without using the Fourier
coefficients argument, nor even the type of dynamics used to define the potential of the
Schrédinger operator. Our proof in the quasi-periodic setting relies on what we call sub-
harmonic properties of the Brownian motion. This means the link between the value of a
subharmonic function at z in a domain and the expectation of ¢(B;) for (B;) a Brownian
motion starting at z and exiting the domain at time 7.

It is interesting to the Brownian motion (BM) in this context because of its geometrical
properties that give access to more flexibility in order to get and idea of and then prove
the estimates. Note that these properties were also used on another form in section 2
of [AJS14]. So, although the result is not new, the new proof we give illustrates the
workability of these BM techniques in this setting.

The scheme of the proof is the following.

(i) Firstly we notice in lemmalz.1]the pseudo invariance in o for ¢pn: pn(z+ka) ~ @n(z)
for all x and k ~ /n. This is a heuristic argument for ¢,, to be close to the constant
J1 ¢n since  — x + o is ergodic for irrational a, and so for theorem to be true.
(ii) Then we prove upper estimates for the subharmonic extension of ¢, in proposi-
tion from which we deduce in proposition that the upper estimate needed
in theorem is true for all z and not only outside a subset of exponentially small
measure. We begin by recalling in subsection the harmonic and subharmonic
properties of the Brownian motion we will use later on. This leads us to compare
the exit point of the Brownian motion from our strip of analytic continuation with
the exit point from the upper half-plane. We prove in lemma that they are as
close as the imaginary part of the starting point of the BM. As we know the distribu-
tion (Poisson kernel) for the upper half-plane we then study convergence properties
of this kernel in proposition that also require some quantitative control of the
speed of convergence for Birkhoft’s sums over the irrational rotation = +— x + « for
diophantine o (lemma . Putting all the previous estimates together and with
some optimization in the parameters gives the result.
(iii) The next step is to take care of the lower bound (proposition . We first present a
guiding principle (subsection that highlights how the subharmonic properties
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of ¢, require to estimate the probability the Brownian motion exits some domain
(look at figure limited by two boundaries consisting in a circle and in the set K,,
(see ) of the bad points, the measure of which we want to control in theorem
Indeed we prove that this probability is of order —1/(InLebK,,).

After some reminder about potential theory that we will use, we construct an explicit
map G (see (2.28])) with the potential and the equilibrium measure of the compact
set of the bad points. This maps is actually a kind of Green function for the domain.
We prove (lemma that it agrees almost everywhere with the exit probability
from some domain for which one boundary is K,,. Then easy estimates for the
map G give the estimates for the exit probability in corollary

Finally we apply the estimates to obtain a contradiction of type [p¢n < [ ¢n if

theorem [2.1] is not true.

Elementary bounds for the growth of the cocycle

Since v is analytic and T is compact, one has, by submultiplicativity of the norm

vreT [s{(@) <Cm

where C = sup,ct [|SE(2)|| < 4+00. Let us recall that for every A € SLy(C) one has

[[A]]

> 1. Choosing the operator norm associated with the euclidean norm on R? we can

add that ||A|| = [[A~Y||. Tt follows that ¢, is bounded by In C. One can get finer results

about the behaviour of the translates of ¢,:

( Lemma 2.1

We have the following pseudo invariance property

k
VeeT VYneN~{0} VkeZ |g0n(ar+ka)—gon(a:)]<cu

where ¢ = 2Insup,c ||Se(z)].

This

expresses a kind of pseudo-periodicity in « for ¢,, if one thinks, for example, of k

being of order y/n.

Proof.

This result (of [BG0O0]) comes from the fact that

n k—1
S%an) (z + ka) = H SE(z+ jo) - Sg) (x) - H SE(x +ia)
j=k+n—1 i=0

114 11y
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So that, IS0 (2 + ka)|| < C2H S ()|

Using Sl(an) (x) = Hlflsl(an) (z+ka)TTy ! one gets the other required estimate ||SgL) (z)]] <
C2lk| HS](En) (x + ka)||. This implies

(n) k
—2|k|InC < 1n”SEEf)—+O‘)” <2/k|InC

IS ()l
which proves lon(z + ka) — pn(z)] < clk| /n
as expected with ¢ = 2InC.

|
We have established the uniform (w.r.t x) estimate:
oul + k@) = pu(2) + 2 with enl < clk] /n

2.4 Upper estimates

Let us fix the energy E. If b is some real number, we denote b* any quantity b + § where
6 > 0 can eventually be small enough to fit in some criteria required on b. We will prove

the following:

/—[Proposition 2.1}
Let us assume o € DC(k,T) (see definition [2.3). For all integer n > 1, z € R

and all 0 < ¢ < 1, the following inequality holds for 0 < € < p

. 1 5 1 1
Son(x + 15) - fo Pn SJ ;Sup|%mz|§p |9071‘ + ncet+2t +

nl—c

As fol ¢n = Ly, (remind (2.2)), choosing adequate b, c and € < n~", we then get what

we want by subharmonicity of ¢,:

Proposition 2.2}

For a € DC(k,T), a = T+14+ > 0 and some ¢ >0 and alln > 1

VreT on(z) <Lp+dn™®
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Remark 2.2

Proposition states that the upper inequality required on the set in theo-
rem is fulfilled for all x and not only outside a set of x's of exponentially

small measure.

2.4.1 Complex extension of ¢, and use of the Brownian motion

Since we consider real analytic potentials v, the map Sl(an) extends to an holomorphic

function on a strip S, = {|Smz| < p} in the complex plane that we denote S](En)(z) €
SLy(C). Hence, ¢, has a subharmonic and continuous extension to the strip S, still
written ¢, (z). Let us fix C the open square in R? of vertices (0,0), (0, p), (1, p) and (1,0).
Moreover we denote its four edges C, = [ip;ip+ 1], Cc = [1+1ip;1], Cqa = [0;1] and
C1 =10;ip]. The subscripts u, r, d, and 1 respectively mean up, right, down and left.

iR
. C
ip
. z
iet----9
0 1 1 R
2

Figure 2.1: The domain C

In order to prove proposition we now want to get upper estimates for some one-
periodic function that is continuous and subharmonic on the domain C. The introduction
of the Brownian motion (BM) is then useful if one recalls (see theorems 3.5 and 3.12

in [MP10]) that for any harmonic function ¢ on a bounded domain D, continuous on 0D

¢(z) = E=(¢(Br)) (2.5)

where (B¢);>0 is a Brownian motion starting in the domain D with
T=mp=inf{t >0 : B, € 9D} (2.6)

and E , (resp. P,) denotes the conditional expectation (resp. probability) knowing that
the Brownian motion starts at z € D, that is, the conditional expectation (resp. probabil-
ity) knowing By = z. The domain D has to satisfy some conditions and for example the
Poincaré cone condition (see definition 3.10 in [MP10]). Note that our domain D = C is

bounded and satisfies the Poincaré cone condition.
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Moreover (theorem 8.5 in [MP10]) without any assumption on the domain D other than
its boundedness, the map D 3 z — E ,¢(B,) is harmonic for continuous ¢ : 9D — R. So

the maximum principle ensures that if ¢ is only subharmonic on D and continuous on 9D

¢(2) < E(6(Br)) (2.7)

Indeed, the difference z — ¢(z) — E ,(¢(B;)) has non negative Laplacian and so is sub-
harmonic, and also vanishes on 9D.

To be completely rigorous, since in our model ¢, can only be extended to some
strip {|Sm z| < p} we need to stop the Brownian motion when it escapes from the strip,

otherwise ¢, (B;) makes no sense.

2.4.2 The main idea: the closest exit is on the real axis

Let 7 the exit time (see ) from the open square C. The main idea is that, if we
are close enough to the real axis, the Brownian motion will exit from C by it with great
probability, and so everything goes like we were just considering when a Brownian motion
escapes from the upper half-plane.

Hence, our goal is to obtain information about the distribution of the exit point B, of
a Brownian motion starting at  + ie for any « € [0;1]. We prove that it is close to the
law of the exit point Bt of a Brownian motion on H* with exit time T from the upper

half-plane, for which we know the distribution:

Vo e GIR) V:eHT  E.(p(Br)) = /Rgo(t) P, (1)

where dP,(t) = P,(t) dt with P, the Poisson kernel for the upper half-plane:

Potiy(t) = 717(:ct)y?+y2 (2.8)

Indeed, the harmonic measure (see §4 of chapter 3 and theorem 3.43 in [MPI0]) of
the unit disk with base point 0 is the Lebesgue-Haar measure and there is a conformal
mapping from the upper half-plane onto the disk that maps z to 0. This gives the result
as the Brownian motion is invariant under conformal mapping (theorem 7.19 in [MP10]

and see also theorem 2.33 in the same reference).

This allows to use the equality

1 €
E. 4 Br)) =— / t) —————dt 2.9
T+ E(So( T)) T RSO( ) (JZ‘ _t)g +€2 ( )
with our function ¢, to get the estimates we want, provided we can manage the error

terms.
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2.4.3 Estimates for the probability to leave the domain by the real axis

We now prove that the BM most likely exits from the domain C (see figure on the

real axis:

/—[Proposition 2.3}

The probability to leave C by another side than the real axis is e-small: for some
c1 >0
Ve >0 P%_HE(BTgé[O;l])écla/p
Proof.

Let us denote W = C, U C; the vertical edges of C and
¢;, = {Br €(C;} i€ {ud,r1}

By harmonicity of ¢ : z — Sm z, one has with (2.5 that for z € C

Smz = ¢(Z) = EZ(¢(BT))
— 0 X P.(%)) + p X P.(%a) + E.(SmB, | €)P.(€,) + E.(SmB, | €)P.(%)

Since all terms are non negative, one gets

Sm 2
p
So that the probability for B; to exit C by the upper edge is small if z is close to the

P.(B, €Cy) < (2.10)

real axis.
Now we want to bound P,(B; € W) = E{P.(B, € W |7)}. We can write (see
definition 2.1 in [MP10])

B, = (B{",B?)

where the (Bgi))’s are unidimensional and independent Brownian motions. Let T be the

exit time of (the one-dimensional Brownian motion) Bgl) starting at 1/2:
T=inf{t>0: B{" € {0;1} | B{" = 1/2}
So, {B, € W|By=1/2+ic} = {vt < T : 0< B < p|BY =¢}

Thus, P.(B, € W) =P, (Vt <T 0<BY? < p) < P. (Vt <T 0< B§2))

with z = 1/2 +ie. The translation invariance (which directly comes from the definition —

see 1.1 in [MP10]-) of the Brownian motion implies
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TLT =inf{t>0: b =+1/2| by =0}
for a 1-dimensional Brownian motion (b¢):>0. So
P.B, e W) <K E{P.(Vt<T b >0|T)}

By symmetry of the BM (which also comes from definition 1.1 in [MP10]) we get

P.(Vi<T b >0|T) :PE<[inT§/]bt>0|T’>

mf bt —e | T’)

0;T7]

P0< sup bt<€|T/>
P.(Vt<T b >0]|T)=Po(Jbrr|<e|T)

where the last equality follows from the equality supyg.;| bs 4 |b:| knowing that by = 0 (see

theorem 2.18 in [MP10]). Finally, the scaling invariance (lemma 1.7 in[MP10]) ensures
that

P (¥t <T' b >0|T)=Po(|b| <e/VT|T)

a/ﬁ 2 /9
Hence P.(B, € W) <E / e " g <25E<1)
’ T = V2T S Vor VT
—e/VT!

It remains to prove the following lemma:

Lemma 2.2

The random variable 1/+/T' has finite expectation.

Proof.
For this purpose, let us decompose
1
\/} \/} T >1 + — ﬁ T/<1
When TV > 1 < 1 and when T/ < 1, we have v I/ > T/ so that

3

5(w) <1 (o)

It is known (see proposition 3.7 in [RY13]) that T’ has Laplace transform

Ve R+ ET’()\) = m
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Since Lp/(x) ~ 2e~V2%/2 we can deduce that L1 € L'(R4,Leb) so that

T—r+00

1 +oo
E () = L (z)dr < +oo
0

T/
|
Finally we get
T oo dX
Ve >0 Pl-(B EW)<025 with CQZ\/> 1—|—/ _
e 2 0 ch (V21/2)
Adding the estimate (2.10)) we obtain the proposition.
|

In fact we could prove a similar (uniform in x) estimate P,y (Br ¢ [0;1]) Se/p
as long as x € [0;1—0¢"] with 0 < 4,0 < 1/2 is far enough from the vertical
edges of C.

2.4.4 Estimating the law of the exit point

Let us denote the exit time from the square C, translated by the vector (x — 1/2,0)
T=inf {t >0 : B, € C,}
We define the exit time from the upper half-plane
T=inf{t>0: B, R}

We will prove that, knowing By = x + ie, the distributions of Bt and B are e-close:

-~ Lemma 2.3

For all real bounded continuous function ¢ on S, = {0 < Smz < p} one has

for € < p and uniformly in x:

€
[B24ic(¢(Br)) — Bosic(p(Br))] < dex sups, |0l

Proof.
Let us set [[¢]lo = supg, |¢]. It is clear from their definitions that

{T<r}={T=71}={B,€[z—-1/2;2+1/2]}
For z =z +icand I, = [z —1/2;2 4+ 1/2] we have
E.[p(B:)|Br €] =E;[pB;) [ T=7]=E;[¢Br) | T=r1]
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Then we obtain
E.(¢(B7) =E.[pB:) | T<7|P(T<7)+E.[pB;) | T>71]P.(T>r1)

So that
EZ(QP(BT)) -E. [‘P(BT) | Br € Ix] =E, [‘P(BT) | T= T] (PZ(T = T) - 1)

+E.[pB:) | T>7]P(T>71)

= (E:[pBr) | T>71]-E.[pB;) | T>7)P(T>7)
Hence,
[E-(¢(Br)) — E: [p(Br) | By € L]| < 2[lpllo P=(T > 7) = 2[plo P2(Br ¢ L)

The invariance of the Brownian motion by translation gives:

P.Br ¢ 1) = 1=Pyjopicia1/2(Br —x+1/2 € [0;1])

=1-Pyo45(B- €[0;1])

P.(B, ¢ 1) = Pijoyic(B, ¢ [0:1]) <cre/p (prop2.3)

So that
[E-(¢(Br)) = E-{¢Br) [ Br € L.} <2[¢llocre/p
Finally let us write

E.(¢(Br)) =E.[p(B;) | B € ]P(Br € L) + E. [p(B;) | Br ¢ I,] P(B; ¢ L)

Consequently, |E.[p(B:)] —E.[pB;)|Br e L] <2|¢locie

from which the lemma easily follows by the triangular inequality. |

We can deduce that, for any continuous bounded real function ¢

Eosic(p(Br)) = 1 [ o) o5y dt + O(lploe)

Now we want to see that for n large enough:

dt n = Ln
/90 (r — )2 +52 /90

2.4.5 Convergence properties of the Poisson kernel

Let us first recall some notations we will use throughout the manuscript. If f, g are real
functions or sequences we write f < g or g 2 f for an inequality f(z) < cg(z) for all z
where c is a positive constant that does not need to be taken account into. If both f < g

and f 2 g are true, we write f < g. We will prove:
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/—EProposition 2.4}
For all integer n > 1 and all K < n:
1
[ enPrrictiat = [ a5
R 0

where Pyi. is the Poisson kernel defined by (2.8), 7 > 1 is the exponent in the
diophantine condition of « € DC(k, T) (see definition 2.3).

K 1

n T Kerre

Let us write ¢ = @,. Let us recall that ¢ is a real one-periodic continuous function.

That is almost all we will need for the upcoming computations. Then we can write

1 € q 1 +oo k+1 e d
oot —— == t) —————dt
7r/R(p<)(a:—t)2+€2 ﬂk;w/k 90()(x_t)2+32
1 +o0 1 c
= = k d
szzoo/o plut )($—U—k)2+52 ¢
1 +o0 1 e
—_— —_— d
ﬂ-kz—oo/o (u) (x —u— k)2 + &2 “
1 € 1 . .
So, f/ ©(t) m dt = / (1) pe »(u) du (Fubini-Tonnelli)
TJR - 0

where p. , is the Kernel defined as follows:

+o0o
Pea(w) :% 3 (m—u—gk)Q—i—s? (2.11)

k=—0o0

This defines a one-periodic positive continuous bounded function on the real axis satisfying

1
/pa,x =1
0

Let us make a useful ergodic observation: for all x € R, by one-periodicity of ¢, the
unique ergodicity of the map ¢ mod 1 — ¢t+a mod 1 ensures that for all f € €°([0;1])
and t € [0;1]

1 K 1
g Ok o [

which provides a way to estimate the difference

c 1 1 1
tidt_/ - o
/RSO()(x_t)QHQ a Opre, g\p

Indeed, the dominated convergence theorem permits to write

11 K 1 /1
Ak = / K > ot + ka) pep(t) dt —— (f o(t) dt) Pea(u)du= [¢
0 E—1 K—=+4+0c0 Jo 0
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1 1
But also [Ax — / OPeg| = / K Z ot + ko) pe o (t) dt — / ©(t) pe o (t) dt
0 0

1]K-1
— || % & [t + ka) pealt) = ¢(t) pool®)] dt
0 k=0
1 1 K-1
= [ pese £ [olt +ka) - p(t)] dt
B <clk|/n
1 1 1K=1lclk
’AK_/ P Pex </pa,x(t)dt>< 1-Telk]
0 0 k=0 T

Hence

1
e [ < 212

S

Consequently, fol ¢ Pe,z and fol ¢ are close if K is chosen appropriately, typically when K ~ y/n.
We want to quantify the difference between these two quantities.
Using the linearity of the integral and the change of variable u = ¢t + ka for each k one
gets
1 K pkatl

A = —Z o(u) pez(u — ka) du
KiZi/ka

But since both ¢ and p. , are continuous and one-periodic, the following clearly holds

ka+1 1
| @) peau— ko) du= [ (@) pelu — ha) du
k 0

a

So that:
1 1 1
AK—Ofsoz/OsO( )(Kkzlpm(u—ka)—1> du (2.13)
1 K

= /130( ) ( Z p&x(u_ ka) }pa,x> du
0 0

It remains to get an estimate for the speed of convergence of the Birkhoff averaged
sums of p. , under the uniquely ergodic translation z — 2z — a. Note that —a has the

same diophantine properties as «.

2.4.6 Speed of convergence in Birkhoff’s ergodic theorem

The unique ergodicity of the translation z mod 1 — x4+« mod 1 ensures that for any f €
%°([0;1]) and x € [0;1]

=S et ha) o bll’f
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We can give more precise statements concerning the speed of convergence of the

Birkhoff averaged sums of the translation z — x + «
1 X
Bk (f)(x) = == > fla + ka)
K=

for a function f € €*([0;1]) for some k > 1 to be specified in regard to the diophantine

condition we will consider on a. Let us denote ||F|; denotes the ¥*-norm of a function F.

ﬂ Lemma 2.4

Let us assume that « satisfies the diophantine condition DC(k,T) (see (2.3))).
For all integer k > 7+ 2 and f € €*(T,R) we define the constant

ey = c(k, f,7,5) =& 20)FfBe T : "

LeZ~{0

Then for all integer K > 1

£

1
x:[%l?l] ‘BK(f)(fE) - fo f‘ =S T oK

<

1o

Remark 2.4

Please notice that this is not the classical Denjoy-Koksma inequality (see [Her79)).

Here we do not assume that K is the denominator of the convergents of a. We

use regularity assumptions on f to prove the same result about the speed of

convergence of the Birkhoff averages for all K.

Proof.
Expanding f in Fourier series on the form f(z) = Y/ __ f(f)e%”ex, we can compute

the following

1 & S . _
BK(:E) = BK(f)($) = K Z (g)6217r€k0c6217réx +f(0)
k=1¢cZ~{0}
1 R . 1— e2i7rk€a R
= R (6)62171'@:): m + f(O)
LeZ~{0}
_ o 2irkla :
with l—e . _ ]Slfl (mlka)| <— 1
1 — e2imta sin (mla)|  |sin (7la)]

and using r=n,+dx,Z) with n, € Z
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we have sin (mla)| = |sin (7|[la||z)| = ||[la||lz  since |[lal|z € [0;1/2]
Thus, W < H*l ’E‘T
|sin (mla)|
Moreover, VkeZ F(o) = (2ix0)~F f@(ﬁ)
so choosing k& > 7+2 and reminding that f(O) = f01 f, one obtains the expected inequality:
c . _ _ 1
‘BK(f) - folf’ < Ef with cr=~K 1(27T) ka(k)HOo Z —
LeZ~{0} |£’

[ |
In order to use lemma for the Birkhoft averages of p. , we need to estimate the €I-
norms of p, , for j > 7+ 2.

2.4.7 Estimates of the ¥7-norms of the kernel p. ,

We will prove the following:

ﬂ Lemma 2.5

For all integer j € N one has, uniformly in x € R,

Fpeg| o 1
su : —_—
te[ol?u dt7 |~ ertl
Proof.
Let us recall the definition of p, ;:
1 i €
t) = —
pa,x( ) ﬂ-k:z_:oo€2+(t_x+k)2

It is clearly a one-periodic function. Then the Fourier coefficients of p. , are, thanks

to the periodicity,

1 [t . 1 5 : , e ~2immez
Pn = 7T/0 peo(t) e 7™M qt = 7T/R(.I' R DR e AT qy = ¢ 2imnT /11722 1 dz
which is the Fourier transform of the elementary Cauchy Kernel x%ﬂ at ne and so
By, = ¢ ~2imnrg —2minle

Since pe , is € we have
P22 lo < Zz Inl? ] < Zz | e —2lnle — O__o(e=GH1)
ne ne

+00
where the last estimate is given by the j-th derivative of the geometric series ) ™ =
n=0

1/(1 — z) evaluated at z = e 2™ =1 — 27e + O(e?).
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2.4.8 End of the proof of the upper estimate

Finally, the triangular inequality, the inequalities (2.13]) and (2.12]) lead with lemmas

and [2.5] to:
1 1 1 1
/@-/@pe,x /SO_AK“"‘AK_/SOPE@
0 0 0 0

which proves proposition and consequently proposition for pp,(z +ie) with K = n°.

K

< __ - 4

The same inequality for ¢, (z + ic) also holds with the same arguments because of the
symmetry of the Brownian motion (so we just have to symmetrize the domains used in
the previous proofs).

We can now finish the proof of proposition

Proof.

The function ¢, is subharmonic on {z € C : —¢ < Smz < €} so that the maximum

principle ensures the following:

Ve e R on(z) < @z + i)

It remains to recall that fol n = L, and choose K = n® with 0 < ¢ <1 and ¢ = n=b

with b > 0. Then for 1 > ¢ > b(r + 27)
1 1

(,0”(.77) — L g ne—b(t+27%) + nl—c + nb

O“H

Optimizing in b,c gives ¢ — b(1 +27) =1 —c =b = (7 +4%)7! and so we get the

estimation for all n > 1 with a = a(7) = ﬁ €]0;1[:

I3 >0 Vn>=1l VzeR  gp(z)<L,+n°

2.5 Lower bounds

In this section we prove a result in terms of the measure of the bad points, namely the set
of the z’s satisfying ¢, (z) — L, < n~% which is the converse inequality required for the
lower bound in theorem Let us establish the following result:

,—EProposition 2.5}
Suppose for some p > 0, some bs > 0 and all 0 < by < 1 we have for all integer n >

1 a continuous subharmonic function ¢, on S, = {|Smz| < p} satisfying: for all
0<e<yp
1 1

1
Vz e R +i —/ < - 2.14
x pn(@ £ ie) = | ¢n S €|g§1uf|)<p‘¢”| t o T (214)
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Let us define for n > 1 and A > 0 the following compact set

K,(\) = {9: €[0:1] : pu(x) < /01 ©n —n_)‘} (2.15)

Then for an appropriate choice of \,o > 0 (depending on the b;’s)

Vn o> 1 LebK,(\) <e ™™

2.5.1 The guiding principle

Let us denote K := K, (X) C [0; 1] the set of the points where the inequality in theorem [2.1]
is violated. We assume it is in some interval [—r/2;7r/2] of size r < p and we consider
Do, the disc circling K and the domain 2 = Ds, \. K with boundary 0Ds, U K.

Now we decompose the boundary of Z and apply with the subharmonic non
negative map ¢, and 7 the exit time from %. One gets for all z € [—r/2;r/2]:

¢n(z) < E20n(Br)
< Eg [on(Br)1B,cops, | + Ex [on(Br)1p, k]
< (supyp,, ¥n) Ez (1B,ex) + (supk ¢n) E: (1B,ek)
< (supyp,, ¥n)Pz (Br € OD2;) + (supk ¢n)P. (Br € K)

on(z) < (SUP6D2T ¢n)(1 =Py (Br € K)) + (supk ¢,) P2 (Br € K)

By subharmonicity of ¢p, the maximum principle gives supgp,, ¥n = SUP|gm z|=2r ¥n
so that

QOn(.’L‘) < (1 - px) sup ©Pn +px sup ©n (216)
|Sm z|=2r K
where
Pz = PZ‘(BT S K) (2.17)

Remind that we want an exponential estimate on Leb K. In the end we will prove that
leads to a contradiction for [ ¢y, if we assume that LebK > Ce ™.

Thus according to we have to relate p, to LebK. Note that we can estimate
SUP|gm z|—2r ¥n With the hypothesis (2.14)) where we have to choose the by, and ¢ < p. Of
course Supyp, ¥n can also be estimated with the definition of K.

We will use potential theory to relate the probability that a planar Brownian motion
exits from a domain by some compact border to the Lebesgue measure of this compact
set. Actually potential theory relates this probability to the capacity of the compact set,

that we relate to its Lebesgue measure.
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Let us recall this well known and telling result for the exit time of the Brownian motion

from a ring:

/—[Proposition 2.6 (theorem 3.17 in [MPlO])}

Let A = A,g = {#€C : r <|z| <R} be the ring of radii 0 < r < R (see
figure[2.). Then, if T = inf {t > 0 : B; € DA} denotes the exit time from A of

a Brownian starting inside A:

P. (Bl =) = Tore

This gives, as r goes to zero and other parameters kept fixed,
In(R/|z()
P.(IB.| = ~ —1
2 ([Br[ =) r—0 —lInr
with In7 being proportional to the logarithm of the Lebesgue measure of the disc D(0, r)
which stands for the points we want the Brownian motion to get to. We want to prove
some similar estimate for a different compact subset of points in a segment C R, namely

the set K of the points where the large deviation estimate is not verified.

Figure 2.2: The ring A, r

2.5.2 Bounds for the probability to exit a domain in R?

We want an inequality such as

(2.18)
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where p is related to the (one dimensional) Lebesgue measure of K and 7 the exit time
from the domain limited by the disc outside and the compact centered at the origin as an
inside boundary.

Note that an argument of inclusions of domains gives the following. Let K be a
subset of C included in some disc D, -1 centered at the origin. Then, clearly, considering a
Brownian motion (B;) starting at z € A, ,» with exit time 7 when it leaves the domain D,/ ~

K, and (W) a Brownian motion in the domain A, ,, with exit time 6

In(r'/ |z])
In(r'/r)

This of course is not enough for our purpose since the formula does not involve the

P. (B, € K) <P, (|[Wy| =r) = (2.19)

Lebesgue measure of K but illustrates the type of arguments used in the proof. We now

refine the arguments to get more accurate estimates.

Potential theory

Let us make some reminder about potential theory such as developed in [Ran95]. If
is a finite Borelian measure on C with compact support K, one can define its potential
function

C— [—oc0;+00]

Pu:
z b—>/ln|z—w\ dp(w)
K

Since Alog || s 27dg, where dg is the Dirac peak at 0, one has that p,, is subharmonic

on C and harmonic on C~ Supp u. The energy of such a measure is defined by the formula
)= [[ iz wl dutz) dp(w) = [ pu(=) duz)
KxK K

A subset A C C is called polar if
I(p) = —o0 (2.20)

for every non zero Borelian measure p for which Supp p is a compact subset of A. We
say that a property holds nearly everywhere on S C C if it holds everywhere on S \ E for
some Borel polar set E C S.

It is a fact that polar sets have two-dimensional Lebesgue measure zero (see
chapter 3.2 in [Ran953]). So, a property holding nearly everywhere also holds

Leb-almost everywhere.
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Let us remark that if additionally K is a compact set in R with Lebr K > 0,
then the same set considered as a compact subset of R? is not polar. Indeed,
the trace measure j1(O C R?) := Lebr (O NK) is a non zero Borel measure since
Lebr K > 0 for which

I(n) = / In|z —w| dzdw
KxK

Is finite.

If K is a compact subset of C, when looking at Prob(K), the set of all Borel probability

measures on K, there always exists a measure v verifying

I(v) = sup I(u) (2.21)
neProb(K)

that is called an equilibrium measure for K. For this measure, Frostman’s theorem (see
theorem 3.3.4 in [Ran95]) ensures that

e py, 2 1(v) on C;
e p, =I(v) on K\ P where P is an F, polar subset of 0K.

Let us fix K a compact subset of C for which 0K has positive one-dimensional Lebesgue

measure and v its equilibrium measure. We define
G(2) =pu(2) = 1(v) (2.22)

By Frostman’s theorem, G is non negative, harmonic on the open set C \ K, subharmonic
on C and Gg.p = 0. We shall see below that it is a kind of Green’s function (see
chapter 4.4 in [Ran95]) for a domain to be specified.

Notice that I(v) = Incap K is called the logarithmic capacity of the compact set K.

Proof of the inequality (2.18]

We denote D, the open disc of center 0 and radius a > 0 in the complex plane. Let us
now assume that K C [—r/2;7r/2] with » < 1 is a subset of Lebesgue measure p of the
real line and is included in the disc Dy, (see figure .
Let us denote
c=—I(v) (2.23)

Clearly for all z € D9, and w € K

%rglz—wlégr

so that ln(%T) +e<G(2) =pu(2) +c < ln(%r) tc
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Figure 2.3: Our domains

The subharmonicity of G ensures

S 3
Vz € Da, G(z) Zc+1n (27“) (2.24)
We similarly obtain
Vz €Dy o G(z)<lnr+c (2.25)
So let us define
1
b= (2clnr+In(3r/2)) =c+nr+ In(v6/2) (2.26)

This chosen value of b (see (2.26))) and the maximum principle give that

D, /3 C7v C D, (2.27)

Lemma 2.6
For b defined by (2.26), the set v = G~'({b}) is a loop included in Dy, and

encircling D,/ (with no intersection) and so encircling K.

Proof.
Since K = Supp ¢ C R we can write
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Glo+iy) = [ o +iy = wl dv(w) = 3 [ Ialle —w)?+ 52 dv(w) = g(o.y)

and we compute for z + iy ¢ Suppv

dg T —w dg Y
27 - """ 4 a -7 4
Ox (z,9) /K (r —w)? +y? v(w)  an dy (@) /K (x —w)?+y? v(w)
If y =0 then = ¢ K so that —gg (z,y) #0. If y # 0 then —gg (x,y) > 0 so that in both cases

the implicit function theorem applies and ensures that v is locally a curve.

We have v = G71({b}) = Gk *({b}) is closed since G is continuous on C \ K.
Every connected component of « is then a closed curve. Since all these are also bounded
because they are included in Ds,, they are compact submanifolds of dimension one, and

so loops included in Do,..

It remains to see why there is just on such loop, and that it encircles K. Given a
connected component ¢ of v, the inclusion ([2.27)) leads to 2 possibilities:

(i) £ circles D, /5 and so K, which is what we want;

(ii) ¢ does not encircles D, jo: in this case the bounded domain d limited by ¢ is biholo-
morphic to the unit disc D, say via h. Since £ does not encircles D, /5, the domain d
does not contain any point of K and so G o h~! is a harmonic function on D which
is constant on D, and so is constant by the maximum principle. This implies G is

constant on d, a contradiction.

We have proved that « is a union of loops circling D, but there is at most one such curve.
Indeed two distinct curves cannot intersect so one is encircling the other which contradicts

the maximum principle applied to the subharmonic function G. The lemma is proved. B

Define

= 1 pu(Z) +c
G==G= 2.28
b c+Inr+1n(6v2) (2.28)

and the bounded domain D limited by the boundaries 0D = K U «, and where 7 =
inf {t >0 : B, € D} is the exit time from D. Then G is bounded thanks to Frostman’s

theorem and it solves the problem

AG =0 on the open set D N\ K
Ggp =0 (2.29)
él'v =1
Here is what relates potential theory as we described using equilibrium measure and
(sub)harmonic functions with (sub)harmonic properties of the Brownian motion: we also

have, thanks to theorem 3.8 in [MP10] with the measurable map ¢ = 1,, that the function
oz~ P.(B; € 7) solves the problem
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Ap=0 onD
Pk =0
Py =1

So that one hopes for an argument of uniqueness to conclude that G= 0.

Note that this is not a classical Dirichlet problem for G since the function G may
be non zero on the polar Borel subset P. So uniqueness in the Dirichlet problem
cannot be directly applied here since G and p may not coincide on 0D. We will
use potential theory and (sub)harmonic techniques for the Brownian motion to

prove that, nevertheless, G and p are equal nearly everywhere.

- Lemma 2.7

The function G defined by (2.28]) satisfies for every z € DU~ and nearly every z €
K:

G(z) =P, (B, €y)=1-P, (B, €K)

where (B¢);>0 is any Brownian motion starting in the bounded domain D limited
by the boundary 0D = K U ~, and with 7 = inf {t > 0 : B, € 9D}.

Proof.
The map G is harmonic and bounded on D. We claim that

n.e. ¢ €K limsup G(z) = 0

z—(
This is a consequence of the fact that D = DUK U+~ is non polar (because LebD > 0),
and so (look at definition 3.8.1 and theorem 3.8.6 in [Ran95]) it is non-thin at nearly every

point of itself, which means that for some Borel polar set By C D

V¢ €D\ By limsup G(z) = G(¢)
z—(
and also Vz e KN (B;NK) limsup G(z) = G(¢)
z—(¢
and B’ = B; N K is polar as a subset of a polar set. But, by Frostmann’s theorem, for

some Borel polar set B C K
VCeK~B G()=0

Then B” = BN B’ is a Borel polar subset of K and



2.5. Lower bounds 47

V(e K\ B limsup G(z) = 0

z—(
The positivity of G thus gives
V¢eK~B”  liminfG(z) =0
z—(

The continuity of G on C ~ K (Frostmann) ensures that

V¢ ey G(z) — 1

z—(¢
which gives the lim sup and liminf (everywhere) on . But the map p : z — P,(B; € )
is positive and harmonic on D and so has the same limsup and liminf limits nearly
everywhere on K and = by non-thinness. As 9D = K U « is non polar, we can apply
the result of the extended maximum principle for subharmonic functions (theorem 3.6.9
in [Ran95]), which states that if D is domain in C with 0D non-polar, and u a bounded

above subharmonic function on D satisfying

for nearly every z € 0D limsupu <0
z—(

then v < 0 on D. Applying this to (G — ), we get G = p on D. Considering the
boundary conditions (2.29)) on G and p, we also conclude for the equality on v and nearly

everywhere on K.
|

Now we go back to our initial issue to estimate p, (see (2.17)) in (2.16)).

/—[ Corollary 2.1 }

Let K be a compact set of R with Lebr > 0 and K C [—r/2;r/2]. Let 2 be
the domain Do, \. K of boundary KU 0Ds,. If Inr —InLeb K > 1, the exit time

from 9 verifies:

(i) uniformly for a.e. z € [—r/2;7/2] we have

1
P.B,eK) >
(B €K) 2 Inr — In Lebr K

(ii) uniformly for z € D with |Smz| < r

1
Inr — InLebr K

P.(B, €K) =

Remark 2.7

Under the additional assumption In Leb K < Inr, then the estimates are
1
—InLeb K

for a.e.z € [—r/2;1/2] P.B;eK) >
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1

forz € D with |[Smz| < r P.B;€K) =< TIaR
—InLe

(2.30)

Proof.
An easy inclusion of domains argument (look at figure gives for z € D:

P(going from z to K before touching Dg,) > P(going from z to K before touching )
=1-G(z2)
where ¢ = —Incap K (see (2.23)) is the capacity of K, so we have the desired result if we

remind definitions ([2.26)) and (2.28]):

1= G(s) = Inr — pu(z) + In(v6/2) _ Inr —In|z| — f(2) +In(v/6/2)
Inr — IncapK + In(v/6/2) Inr — IncapK + In(v/6/2)

(2.31)

So we find back the initial formula for two discs with same center (proposition , now
corrected with the constant In(v/6/2), the logarithmic capacity of K (instead of the measure

of the smaller disc), and

f@ﬁ==/£logﬂ~—uvz|du@u)zgnxz)—qn|4
being a function bounded away from zero because p, is bounded everywhere.

Additionally, (see chapter 5.2 in [Ran95|), as K C [—7/2;7/2] has diameter d < r, the
following holds

capK < d/2<r/2

so that Inr —IncapK > 0

Forall z,w € [—r/2;r/2] we have |z — w| < r. That gives p,(z) < Inr and with ([2.28)

~ Inr+c
G(z) <
(=) Inr — Incap K + In(v/6/2)

N In(v/6/2)
=60 2 o

But also (chapter 5.2 in [Ran95]), as K C R

capK > %LebR K

1 1 1
SO —

= >
b Inr—IncapK +1In(v/6/2) ~ Inr —InLebK + In(8v/6)

and finally )
~ In(v/6/2)
1-G(z) 2
&) T Teb K 1 n(3v0)

The point (i) then just comes from lemma and (2.32)).

(2.32)
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For the bound from below we have for z € Dg, \ [—r/2;7/2] with 2 > 8 > 1/2,
Qmz#0and we KC[—r/2;r/2]:

(%mz)Q < ‘z — w’Q < r? ((52 + 1/4) —By/1— (g\%“TZ>Q> < r2(l3 — 1/2)2

such that
In|Smz| <p,(z) <Inr+1In ‘B - %‘
_ _ - _ Cx
% In(v/6/2) —In |3 — 1/2| <1-Gl2) < Inr —In |Sm 2| + In(v/6/2)
Inr + ¢+ In(+v/6/2) Inr + ¢+ In(v/6/2)
which is a bound of the required type for 2 > g > @ and |Smz| < fr. This ends the
proof with lemma [ |

Remark 2.8

In the case where K = [a;b] is an interval one has
b—a
4
where p is exactly the Lebesgue measure of K.

capK = and c=—Inp+c

2.5.3 The proof of the main theorem

We are now able to prove the main result (theorem. Let us first prove proposition
Proof.
By proposition we already have for a ¢ > 0 and a = # and alln > 1

Ve R on(z) <L, +cen™®
so it is enough to prove an exponential estimate for the z € K,, where (remind ({2.15))
Ky =Kn(A) = {2 €[0;1] : pn(2) <Ly —n}

where A > 0 is to be specified. Let us make an elementary remark: if K, (\) was an
interval I C [0;1] of size n=? (3 > 0) satisfying

Leba.e. x €1 on(z) <L, —n~? (2.33)

Then a simple integration split over the intervals I and I¢, which sizes are know, gives

1
/‘Pn:/SOn‘i‘/‘Pn
0 I Ic

<n AL, —n M+ 1 =nP) (L, +cn™?)

1
/ on <Lp+en @ —nPA_cp-ab
0
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If A+ B < a there exists ¢ > 0 satisfying for all n large enough

dn=% —npBA_dn-a B L —dnA P

1 1
/ ©n </ on —cnB
0 0

which is a contradiction. All boils down to having such an interval satisfying (2.33)).

The problem is that K;,, may not contain an interval e.g. if K,, is a Cantor set. In this

And so for n large enough:

case JK,, = K,, and 0K,, has positive measure and so is not polar (see remark . Here
is how we deal with this technical difficulty. Fixing ¢ > 0, for a continuous function f on

the torus T, moving along T one can find a closed interval I C T of length ¢ such that
0=
This implies the existence of an interval I such that, for any 5 a priori fixed,

INK,|
it

= |K,| with [I|=n"" (2.34)
Let us fix (A, o). Assume that for all C > 0 there are infinitely many integer n verifying
Leb(K,(N)) = Cexp (—n?) (2.35)

Our goal is to choose an adequate (A, o) such that cannot be true, and so we will
get a C > 0 such that Leb(K,(\)) < Cexp (—n?) for all n large enough.

We define the compact set K = INK, C R. Up to a translation, we can suppose
that I = [—r/2;r/2] with r = n™% and so K C [—r/2;7/2]. We consider Dy, the disc
circling K and the domain 2 = Dy, \. K with boundary 0Ds, U K. Since

r=n"<p (2.36)

the extension ¢, is well defined on Do, C S,. Now we use (2.16). Let us estimate
SUPgD,, ¥n With (2:14) where we choose e = 2r = 2n". One gets for all z € [—r/2;7/2]:

on(2) < (1= p2)(Ln + 2n_’8||90n||0 + b4 an_l) + po(Lin — n_)‘)
Then corollary and (2.34)) give, uniformly for a.e. z €1

1
=P,(B, €K)>
Pz 1'( € )N lnr—ln(LebI X LebKn)

The assumptions (2.35)), LebI = n=? and r = n~? imply that

1
pmznio.

Summing up it remains, for almost every x € 1

on(r) = Ly SnF 4 nflambe b=l p=2=0 = g(n)
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We finally impose the following conditions on /3, and on (A, o) in and 0 < b <1
in
O<A+o+p8<a A+ o0 < min (5,1 — by, by — Bba) Bby < b1 < 1
This ensures that g(n) ~p— 400 —n~(19) 50 that the constant v = X\ 4 o verifies
FI" >0 vVn>1 gn) < ="n7
Consequently we obtain for infinitely many n’s
Leba.e. z €1 on(z) <L, —d"n™7

with LebI = n=# and v + § < a. Now we conclude with the observation (2.33) made
at the beginning of the proof. Hence there is a choice of A\, o such that there isa C > 0
satisfying Leb K,,(\) < Ce ™ for all n large enough.

|

Then proposition and proposition easily imply theorem
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3.1 Setting, main theorem and strategy of the proof

3.1.1 Model and notations

In this chapter, we are interested in Schrodinger operators with a potential given by the

dynamics of the doubling map

m=msy: {

T — T

T — 2z mod 1

93
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where T is R/Z ~ [0;1]/ ~. This means that the potential in (1.2]) is v,(x) = v(2"x)
where v : T — R is real analytic. Of course such an operator is defined on 2(Z.).

In this context, the Lyapunov exponent of the associated cocycle is L(E) = lim,,, 4 o0 Ly,

where
L, :/%(x) dz (3.1)
T

on(z) = % log ||SE.»(2"'2) . .. Sg.v(27) Sg.o(2) || (3.2)

(3.3)

VzeT  Spo(z)= (E_”(m) _1>

1 0

Note that we still get, with the same proof, a pseudo invariance property similar to the
one in lemma of chapter [2} if ¢ = 2logsup,cr ||Sg. ()| then

k
Ve e T ‘gon(2k:n) - gon(:c)’ < e

A natural idea is to reproduce the scheme of the proof made in chapter [2] which begins
with the analytic extension of Sg ,(-) and so the continuous subharmonic extension of .
Unfortunately, it is clear that, contrary to the quasi-periodic dynamics x — = + « that
preserves any complex strip S, = {|Smz| < p}, the complexified doubling map z — 2z
mod (1,0) does not leave it invariant. Consequently, ¢,,(z) is only defined and uniformly

bounded in n and z € S,,, with

But this is an issue as all the estimates in proposition involve the ratio /p which
is now exponentially large. This is why we turn to the inverse branches of the doubling

map.

3.1.2 Main result

We prove the following result of large deviation estimates:

/—[Theorem 3.1} )

Let us denote 1, := T"p,, the average of ¢,, over all inverse images for ma™ (see
(3.2) for the precise definition of T). Then for some v, A € |0;1]

Leb{o €T : (@) — fp pa(t)di] > n~"} Se=
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3.1.3 Strategy of the proof

(i) At first we prove in proposition upper estimates for ¢, that are similar to those
in the quasi-periodic case (proposition . The small difference here is that the
dynamics is not quasi-periodic, so we have to use the mixing of the doubling map
instead of the unique ergodic of irrational rotations. We establish a speed of mixing
for the Cauchy Kernel p. , (see ) and any subharmonic map ¢ on a strip S,,.
Here we use the Fourier coefficients argument of Bourgain that we mentioned in the
section of the previous chapter.

(ii) Then we explain why the size of the strip is actually an issue to get estimates
that do not degenerate as the dynamics of the doubling map is iterated.

(iii) Finally we define the transfer operator T and state in lemmasome of its properties
that we will use throughout this chapter. This leads us to study the inverse branches
of the doubling map. We prove these estimates with the same arguments as in the
previous chapter because v, = T"p,, is now defined on a strip of fixed size < 1

as n — +oo.

3.2 Upper estimates for subharmonic functions on a strip

with pseudo invariance

Using the same protocole as in the previous chapter we obtain:

/—[ Proposition 3.1 }

For any sequence ,, of continuous subharmonic maps uniformly bounded in n

on S, = {|Smz| < p} that satisfy a pseudo invariance for T such as: for a ¢, > 0
p
Vn,p =21 || TP¢n — pnllgos,) < Co (3.5)

the following holds for all positive integers k,n and all 0 < & < p
k 1
lenligogs,) +co + PENG

on(xtie) — [pn <

Ot —

™

Proof.

The proof is the same as in the previous chapter [2] and uses the Brownian motion so

that we get the same results as in proposition and lemma [2.3] concerning the law of
the exit time of the domains H™ and C of a BM starting at % + ie.
The only difference in this context is the unique ergodicity argument of the irrational

rotation x — = + « that cannot be used anymore to evaluate the quantity (see (2.9)) in
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chapter

€ ©n(t) !
E. (‘Pn (BTH+)) = 7T/R(l‘—t)2+€2 dt = /0 4Pn(t) pa,:c(t) dt
where we remind that p. , is the kernel satisfying (see (2.11)) in chapter 2)

1 = €

1
L(u) == d z(u)du =1 3.6
Pea(u) Wk;oo (x —u— k)2 + &2 an /0 Pez(u) du (3.6)

which is a one-periodic positive continuous bounded function on the real axis.

The useful ergodic observation here is that x +— 2x mod 1 is mixing: for all f €

L2([0;1]):
S|
/kat dt—>/ f/g
K—+o0o 0
and so for ¢ = ¢,

1 1 1 1 1
/0 Thppe.y = /O @) pee(u) du s [ olt)at /0 Pe.o(u) du = /0 o

k—+o0

which provides a way to estimate the difference

ot e [Ce0at= [oOpestia- [ewa

if we are able to get some quantitative estimates on the speed of mixing for the kernel p; ;.
Let us define

1
A, = /0 (1) pe.o(2u) du (3.7)
so that
1 1 1 1
/0 go(u)pg,z(Qku) du—/0 o(t) dt/o Pea(u)du = Ay —/0 %
With (3.5)) one can estimate

A= [ Orea®at] = | [T pattdi = [ ot palt) ]

/01 [Tw(t) pex(t) — @(t) pa,m<t)}’ dt

A [ Opea®t] = [t [THote) — o) a

<clk|/n

Hence . .
/ P(t) pea(t) dt‘ <e— (3.8)
0

-
n

So fol @ e and fol ¢ are close if k is chosen appropriately, typically when k =< n? (0 <
d < 1). We want to quantify the difference between these two quantities.
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/—[Lemma 3.1 (Speed of mixing of ¢ — 2t for p., and (,0)]7

For any one-periodic map ¢ with bounded subharmonic extension to a strip S,
we have for all k > 1

’ /O 1sc>(u)1r)5,gc(2'fu) du — lgo(u) du /O lpw(u) du

Proof.
For fixed (e, ), we evaluate (D;);cz, the Fourier coefficients of p. ,, using the Fourier
transform of the Cauchy kernel (remind (3.6)):

1 e—217rwt ) \|
Fltm —) () = dt = e 2w
( 1+t2>(w) /Rl—i-tQ e

This gives for all j € Z

+
1’5. :/11 Zoo € e—?iﬂ'jtdt
T o m A (=t — k)2 4 €2
1

€ —2imjt
= - ¢ dt
/R m(x —1t)? + &2

ﬁj — efZiﬂjxef27r|j|€

We also have for all k£ € N ~\ {0}

Ap = Z @jps(zk')j
JjEZ
= Z @jpsmk')j
je2kZ
A= Gor; Dy
JEZ

where Z denotes the complex conjugate of z € C. Corollary 4.7 in [Bou04] ensures that
the Fourier coefficients of a subharmonic function on S, decay as p~! [k| ™" as |k| — +oo

so that the Cauchy-Schwarz inequality gives

>
11 1
< - = 3.9
This ends the proof since py = py = fol Pe(t)dt =1 (remind (3.6])). |

Finally one obtains the proof of proposition [3.1] thanks to the subharmonicity of ¢ and

the triangular inequality with (3.8)) and (3.9).
[
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3.3 The issue of the too small size of the strip

Of course we want to apply proposition to our function ¢, but this goes wrong for the
following reasons. Note that to control the term k/n one has to chose reasonably small
growth of k such as k < n? with 0 < d < 1. As ¢ — 0 we also need to ensure p2Fe — +oo,
but at the same time we need ¢ < p, = p27" (remind (3.4)) to satisfy in the
case we would adapt the proof made in chapter 2. This is not doable with the previous
assumption on k. We will now focus on the inverse branches for which we can obtain an
estimate because the size of the strip p will be fixed and so will not go to zero too fast

as n goes to infinity.

3.4 Inverse branches: back to the future

To avoid the exponential growth of the doubling map we choose to consider its inverse
branches. Indeed, mo admits two right inverses: if we use T = [0;1]/ ~ and identify =

mod 1 with {x} the fractional part these are

1
fozxn—>g and fl::z,’n—>$;_
so that @ = fo(2x) for € [0; 5] and @ = f1(20) for v € [ §31]

+oo
Note that in terms of shift if x =

Splitting the integration over [0;1/2] and [1/2;1] gives:

ﬁ{ Lemma 3.2

The following holds for all ¢ € L2(T)

1
|e@do=5 [ @ofol@)+po i) do
T T
which can be rephrased in terms of the transfer operator
{LQ(T) — L2(T)
T:
¢ = 3(pofotpofi)

This operator T is Lebesgue invariant: we have [ ¢ dz = [ Toedx for all p €
L2(T). It also satisfies for all ¢, € L%(T)
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[ooT@ @) dr= [ o) v(z) s
T T

From the previous lemma we deduce:

/—E Proposition 3.2 }

Let us denote S = Sg,,. For all integers k,n > 0
Lo =+ [ loglIS(2"a)....8(20)S(a)| da
- = /1og||s (@fa 00 £, @) .. S(fay 00 fy (@) do
(i1, ,1k)€{0 1}k
1
In= 5 = [ 108 15@) S (@) 8(fiy 0+++© fi () da
(1P 6{0 1}”

Proof.

This is just a k-times iteration of lemma for the first equality and an easy change

of variables for the second one.

Remark 3.2

Note that for k = n, we have 2" f;, o---o f; (x) = x so that for a fixed (i1, . ..,in) €
{0;1}" we are just browsing through a branch of the tree of all inverses of z for

the doubling map until an antecedent of order n.

Let us establish a pseudo-invariance property with respect to the dynamics on the

inverse branches:

- Lemma 3.3

For all positive k,n and z € S,

[T 0n(2) — on()| < o

where the estimate is uniform in n,z for z € S,,,.

Proof.

It is enough to prove the case k = 1 since an easy induction argument then gives the
result for all k& thanks to the triangular inequality: if || T*p, — @,|lo < ck/n then for all x
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| TE10,(2) = pn(2)| < [T(TH0n) (@) = THon(@)| + | TEn(z) - @n(a)|
c ck k41
<—+—=c
n o n n

We compute for ¢ = max_cg, log [|S(2)||

nen o fo(x) = logIS(27 'x)... () S(5)
= log [|S(2"z) "1 S(2"z) S(2" ') ... S(x) S(%)||
nen o fo(x) < 2¢+ npy(x)
and nep o fi(z) = log||S(2" 1 =54 .. S(255) S(55H)|
= log ||S(2"2) 1 S(2"x) S(2"1z) ... S(z) S(£LL) ||
nen o fi(r) < 2¢+ npy(x)
SO Ton(x) — @n(z) < 27
Then similarly:
nen(z) = log |[S(2"x) ... 5(x) S(5)
= 5 log|S(2"x)S(2"'x) .. (w)S(%)S(%)flll
+3log[|S(2"2) S(2" @) ... S(x) S(*5+) S(+5H) 7|
nen(x) < 2¢+ T, (x)
and nen o fi(x) = log ||S(2"_1“T+1) .. S(2%1) S(:”TI)H
= log [|S(2"x) "' S(2"x) S(2" ') ... S(x) S(TFH)|
nen o fi(x) < 2c+ nen(z)

3.5 LDT for the inverse branches

3.5.1 Upper bounds

As we noticed in section we cannot directly apply the result for ¢, as the estimate in
proposition degenerates as n — 400 and € = £(n) — 0. Let us however consider the

inverse branches: by this we mean that we work with

(3.10)

Y =Ty

Remark that 1, (x) is the average over all the 2" inverse images of = for ms™. Indeed
= ka o ,’ik) S {O;I}k where f(),f1
are the previous left inverses of ms. We compute with lemma

(%w0f00f0+%¢0f00f1+%<p0f10fo+%<ﬂ0f10f1)

Zsoo

16{0 1}?

let us denote f(®) -+ o fi, o fi, for an index i = (iy,. ..

1
T2p = =
¥ 2
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Then an easy induction gives

1 .
Tp=on > o ft
ic{0;1}"
As {f(i) () = 1€{0; 1}"} is the set of all inverses images of x for my"™, we obtain the
claim about the average. Let us just give some details in order to interpret 1 in terms of

the transfer matrices that are involved. We observe that for i = (i1,...,4,) € {0;1}" and
all ke [1;n]

2k f@ = f oo fy

And so

pn o fO(z) = %bg 1S(2) S(fir (%)) S(fiy © fir () .. S(fD (@)

This is the log-norm product of the transfer matrices browsing through a branch in
the tree of all inverses images and so it explains that v, is the average over the 2" inverse
branches of order n of the dynamics x +— 2x mod 1. Notice that this function ,, admits
a well defined continuous subharmonic extension on {|Sm z| < p} a strip of size =, 1
(contrary to ¢,) because each branch is locally subharmonic as the log of an analytic
map. This extension still is a one-periodic function as, when evaluating at z + 1, one only
permutes the 2" inverse images of a point z for mso™ so that the averaged sum that defines
1, remains unchanged. Each ¢, o f( verifies the pseudo-invariance criteria and so does

the average 1,,. According to proposition we then have the following estimate

/—[Proposition 3.3}
For € < p and all integers k,n > 1

k i 1
n  p2k/e

with a constant in  that only depends on max.cs, log ||Sg.(2)]-

1 €
Yn(z +ie) — [V S =+
0 p

Similarly to the work done in chapter 2, one could obtain an upper estimate on T for
all z. Indeed, using subharmonicity of 1,,, choosing k =< n® with 0 < @ < 1 and £ < 27"

one would obtain

Yn(z) —

Ct—r

1
VY < SUPger Yn (T +1i) — [ by Sno!
0

Thanks to (3.10) and lemma we have fol vy = fol ©n S0 we have proved with
a =1—a >0 that

1

na

Ve e T T () — [ pn <

/

O
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3.5.2 Lower bounds

We obtained in chapter [2] that the set K,,(\) of the bad points (see (2.15)), where the lower
estimate is violated, has exponentially small measure. The proof made in section of
chapter [2] totally adapts here because the arguments are independent from the dynamics
but rely on the potential theory in the complex plane that we exposed in the previous
chapter in section and the guiding principle in section [2.5.

The only assumption required (see proposition is an upper estimate like in propo-

sition [3.3] which was proved in the previous section. This ensures theorem
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4.1 Introduction, main result and ideas of the proof

4.1.1 Setting and notations

Let us define the following potential

65
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v(w,z) = dwo + V() = A\Wy(w) + V(z) (4.1)

for (w,z) € Q x T, where:

e 0 = R®Z s a product probability space endowed with P = Py®% for some Py €
Prob(R); the only assumption we need on the probability is that we can use Fubini’s
theorem with dPg and dz the Haar-Lebesgue measure on T. For example this is
the case when dPj is absolutely continuous w.r.t. the Lebesgue measure on R with

a compactly supported L' density;

T ~ [0;1] is the one-dimensional torus;
V € €P(T,R) is a real potential (which will ultimately be needed as small as \) the

regularity of which will be specified when needed;

Wi : Q23 (wn)nez — wo € R is the random potential;

e )\ is a positive real coupling constant.

Of course V will be assumed small but we first carry out our analysis without
specifying the smallness of V compared to A until the very end of the chapter
where we discuss this condition to establish the formula for the Lyapunov expo-

nent.

Let us define the dynamics on 2 x T as the direct product of the full-shift o on

U(Wn)nez = (WnJrl)nEZ (42)

with the rotation r, : x — = + @ mod 1 on the torus:

OxT —OxT
T=0Xry: (4.3)
(w,z) — (ow,x + «)
The cocycle for an energy E is then defined on €2 x T by
OxTxR? — QxTxR?
(T,Sg): (4.4)
(w,z,u) > (ow,x + a, SEw U)

E - -1
where Swz = SEwz = ( vl(w,a:) 0 )
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We keep the dependency on E implicit when no confusion is possible. The iterates of the
cocycle are denoted by (T,Sg)" = (T", S(En)) where

0
VneN  SU(w,2) = Sp 1 t(um) B Twe) SBwr = L] SET*wa)
k=n—1
To compute the Lyapunov exponent we need an ergodic measure for T. The Lyapunov
exponent in our context of mixed quasi-periodic and random Schrédinger cocycle is defined

as follows:

f—[Deﬁnition 4.1 (LE for quasi-periodic + random dynamics)]i

The Lyapunov exponent that we are interested in is:

— i 2~ (n) — lim 2+ (n)
L(E) = ngr}rloo n/QXT log ||Sg  (w, z)|| dP(w) dz = ngrfoo - E/T log ||Sg (w, z) || d
(4.5)

4.1.2 Main theorem

In this chapter we prove that a Figotin-Pastur formula remains valid when the potential
is a small mixture of quasi-periodic and random potentials, provided the quasi-periodic

part is differentiable enough w.r.t. the diophantine condition.

f—[Theorem 4.1 (Figotin-Pastur formula QP + random)]—

Assume the potential (4.1)) is given by v(w, z) = € (V(z) + Wo(w)). For an energy
E = 2 cos(nf3) with 8 in some diophantine class DCy(k, T) w.r.t. a (see (1.7))) then
the Lyapunov exponent of the quasi-periodic and random cocycle (4.5 admits the

following perturbative development of Figotin-Pastur type: for V € €4 +11(T)

and sufficiently small €

V(W &
L(E) = 2(4(_ E)2f2 +0 (;&(48— E2)3>

4.1.3 Strategy of the proof

To prove the previous theorem, we use the notion of random diffeomorphism induced by
the projective action of the cocycle (see )

Firstly we establish a formula (proposition that relates the Lyapunov exponent
of the initial Schrédinger cocycle to the exponent of the induced random diffeomorphism
on T?.
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We obtain a development for any stationary measure of the random diffeomorphism
obtained after an adequate conjugacy made in section As this diffeomorphism is
actually close to a rotation on T?, we show that our goal can be achieved if we are able to
solve cohomological equations for the rotation. These equations are of course more
explicit and workable: under an arithmetic assumption on the frequencies of the rotation,
the €*-norms of the solution can be controlled (see lemma .

An additional usefull conjugacy is exploited to get a simpler formula for the LE (propo-
sition . Once all the error terms are properly analyzed (see ), we apply the
development of a stationary measure to get an expansion of the Lyapunov exponent using
explicit Taylor developments for the Lyapunov exponent of the random diffeomorphism:
this is formula .

We end this chapter by commenting on the error term and the smallness required
on V in the potential and, ultimately, why despite the vanishing assumption on
the expectation of the potential is not necessary to our work, one cannot perturb the

potential to insure the arithmetic condition (4.28]) needed on the energy for our approach

(remark [4.7).

4.2 Random diffeomorphisms and Lyapunov exponent

4.2.1 Random diffeomorphisms

We shall now give the setting of random diffeomorphism we will use throughout the re-
mainder of the manuscript. Let us remind that, given a probability space (Q,7,P), a

random map f on a topological space X is a map

AOx X — X

(w,x) — fulx)
such that for all x € X’ the map w — f,(x) is measurable. The definition of a random dif-

feomorphism additionally requires that for almost every w, the map f,, is a diffeomorphism
(see chapter I in [Kif12] and chapter 1 in [Mall2]).

In this context, the relevant notion of invariance is the notion of stationary measure.
A probability measure ;1 on T? is said stationary if it is invariant under the transfer

operator .7 defined as follows
Vo e LY(T?) T =E(poF) (4.6)

We recall that a stationary measure is said ergodic if it is an extremal point among all
stationary measures.
There is a way to translate all what precedes about random diffeomorphisms into a

classical dynamical setting. If © = ON and F(w, x) = (0w, fu, (X)) then
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Fn(wa X) = (Unw()a fwn—l ©---0 fwo(X))

so that the dynamics of F gives access to the random dynamics of f.

This relates the random diffeomorphism F to the dynamical system F and SO, a mea-
sure u € Prob(X) is stationary for f if and only if P x p is invariant for F, and the
ergodicity of the measures are equivalent. The interesting thing is that we can use the
ergodicity of P x p in terms of the convergence of Birkhoff’s averages given by standard
results about dynamical systems. Stated in this context, the standard Birkhoff theorem
ensures that if o is any L'(X, u) function then for pu-almost every Xo € X we have for P

almost every w

1 n

- k

n,;,lgp(F‘”(Xo)) — /X pdp

where FF = F s 1,00 F,,.
Let us see the random diffeomorphism that arises in our setting where X = T2 and

Q = RZ is already a product space.

f—LDeﬁnition 4.2}

Let E € R be fixed. The elementary transfer matrix Sg, , induces a random

diffeomorphism f,, » = fgw. on the torus by its projective action

. iTy
elwfw,z(y) — SE:w:xe

= 4.7
1550207 (4.7

. cost
where we write abusively e't = ( ) t) identifying C and R?.
in

S

We then work with
_ { Ox T2 — Qx T2
F:
(w, (z,y)) — (ow,F¥(z,y))
where F¥(z,y) = (z + «, fu,2(y)), so that we have for all n > 1
ﬁn(w7 (.%', y)) = (UnW, T + na, ftgtlﬁt)?(y)) with ftgtlct)r = fT"*l(w,;c) -0 faw,a:—i—a o fw,a:

In order to deal with the whole 2-dimensional dynamics, we need to study the following

random diffeomorphism of T?:

T — T2
Fy: (4.8)

(#,y) — (= + o, fur(y))
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We now deduce an ergodic measure for the initial cocycle which is adapted to the

notion of random diffeomorphism that we just developed.

Lemma 4.1

Let us fix u an ergodic measure for the random diffeomorphism w — F, and
denote i = m.pu. Then = Leby and so P x g is ergodic for T = o X r, on
Q x T whenever « € T\ Q/Z.

Proof.

Such a stationary and ergodic for F,, measure p exists thanks to the compactness

of T2, the Krylov-Bogolyubov theorem, and the existence of extremal points in compact

convex sets. Then, for ¢ € €°(T), the unique ergodicity of = ++  + a for all irrational a

gives
1 n
VreT Vn>1 B, T) = — T+ ka —>/ z)dx
(©)(@) ngw( ) o 2@
1 n
but also Bn(p)(z) = EZ@(akw,Ffj(aﬁ,y)) =B, (?)(w,z,y)

k=1
where ®(w, z,y) = ¢(x) so the ergodicity of P x p ensures that for P-almost every w €
and p-almost every (z,y) € T?

B.(N@) = [ @dPdu= [ o

n—oo QOxT

The previous convergence is valid for p-a.e. x and so

/godLeb:/cpdﬁ
T T

The ergodicity of (2 x T, T,P x 1) comes from the weak-mixing of (2,0,P) and the
ergodicity of (T,r,, Lebr). [

4.2.2 Link between the two notions of Lyapunov exponent

It is clear that Po®% x Lebry is an ergodic measure for the cocycle for any probability
measure Py on R. What is more interesting is its relevance to get estimates with the

theory of random diffeomorphisms. Let us elaborate on the two different notions of LE.

ﬂDeﬁnition 4.3 (LE of a diffeomorphism)}

The Lyapunov exponent of a random diffeomorphism F = F,, of T? for a sta-

tionary and ergodic measure p for F is defined as:

Y= 7(F7 p) =E /1‘2 In ‘det(DFw)(az,y)‘ dp(z, y)
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We will prove the following:

/—[Proposition 4.1 (LE of the cocycle vs LE of the random diffeo.)

The Lyapunov exponent of the cocycle (4.5) and the one of the random diffeo-
morphism it induces on T? as in (4.7)) are related as follows:

L(E) = 5 h(F)] (4.9)

Actually the equality L(E) = —1~(F) holds in many situations as we will conclude
at the end of this chapter with the Figotin-Pastur formula we obtain.

Proof.
We define on Q x T2, ¥ : (w,x,y) — log [|Sw..e™|| so that for k € N

W o F¥(w, 2, ) = 10g [|Syre o pae ™o @]

But the definition

eimfu(y) — iw
[Sw,ze'™||
and an easy induction argument give:
(n) i
VneN el o g See™
I1STeimy|
which leads to
(k+1) _in
158 eimy||

This ensures that Birkhoff’s sums of ¥ under F are telescopic. Moreover thanks to
the ergodicity of P x i, the Fiirstenberg-Kesten theorem implies that for all (w,z,y) in a

set B; of P X i measure one

1 n) ,im im
~log |Se™ | —— | log||Syze™||dP(w) dp(x, ) (4.10)

n—oo QOXT

Now using Oseledets’ theorem (see [Led84, [ABOS|) there exists B € ©Q x T with
P x i(B) = 1 and for all (w,z) € B there is at most one so named direction of con-

traction uy, , € T such that

L(E) VyeT-\ {u;m}

1 n
V(w,z) eB  =log||STeimy|| ——
n e | =L(E) ify =wug,
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Consequently the set B =B; N (B x T) is of P x u measure one and for (w,z) in this
set, the previous limit exists and is equal to the integral in . It is also equal either
to L(E) or —L(E). Hence we can conclude that the sign is constant on B and that, with
the non negativity of L(E)

L) = | [ log [Suwe ™| dP(w) du(z. )
OxT2

We finish by proving a link between the previous equality and the Lyapunov exponent
of the random diffeomorphism F,.

Since S,z € SL2(R) for all w, x the area conservation formula gives
1w ,ee ™ [[[|Sw,ze™ || [sinw(f(y) — £ ()| = [sin7(y — /)|
and letting 3/ — y gives
1= [[Suze™™1? | fue' ()]

Let us remark that

1 0
(DFw) (@) = (am foaly) fW,m’(y)>

such that f, ' (y) = det(DF,,) ;) which yields to the announced formula.

4.3 Estimation of a stationary measure

4.3.1 The initial change of variables

The formula (4.9) obtained in the previous section brings us to get estimates for any sta-
tionary measure p. Intuitively, if we suppose that the potential of the Schrédinger oper-
ator we initially considered is small, the random diffeomorphism F,, is close to be the 2-

dimensional rotation of T2:
Rag: (z,y) = (z 4+ o,y + B) (4.11)

where

B =pE)= %Arc cos (E/2) (4.12)

This is due to algebraic conjugacy, used by Figotin-Pastur and Chulaevsky and Spencer
in [PF92, [CS95], by the matrix

(1 —cosmp
Fs= (0 sin 73 > (4.13)
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This conjugacy gives a new cocycle which is close to the 73-rotation in R? (remind that

v(w, ) is supposed to be small). The elementary matrix for the new cocycle is then
Sux=PsSBwaPs' =Reg+ Nua (4.14)

where

—si 1 t
Ryg — cosf3 sinwf N, = cot wf3 and Nuw = —v(w, 2)N;
sinwtf  coswf 0 0

(4.15)

As a consequence, both cocycles have the same Lyapunov exponent and the cocycle
obtained after the conjugacy is a small perturbation of the rotation R,z in R?, which
explains why F,, is close to the rotation R, g of T2. This is an argument in favor of the
closeness of y to the Lebesgue measure on T? under some arithmetic condition on (a, 3).

After some notations, we shall give precise estimates.

4.3.2 Functional & calculus notations

We denote ¢*(T?) the space of real €% functions on T2. Let ¢ be in €*(T?) and j, j' be
two natural integers with j + 7/ < k. We define

Ity
Ielss = sup |5 55,7 (4.16)
And so is €*(T?) equipped with the norm
el = oREx Il

We also denote for a random €% map w +—— ¢, (that is ¢, is €% for almost every w):

1/2
llelle = E (llell?) (4.17)

so that with Jensen’s and Cauchy-Schwarz inequalities

E [[olle = el
Remind the definition of F,, in (4.8). Let .7 be the operator on L?(T?)

T :pr— E(poF,) (4.18)
and .7 the composition operator on L?(T?) for the translation Rq g
T:pr—@poRyp (4.19)

For ¢ € L%(T?, C) we denote @, », the usual Fourier coefficient by
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P = / p(z,y) e ATmEtm) 4z dy
T2

4.3.3 Cohomological equation

We want to prove that [pe 1 dp ~ [12 1 dzdy or, equivalently, that [p. (¢ — 120,0) dpu =0
where &mn stands for the Fourier coefficient of ¢ of index (m,n). As F,, =~ Ry and

Jr2 E(p o F)dp = [12 @ du the result is guaranteed provided we can write

Y — / Y(z,y)dedy = ¢ —poRap (4.20)
T2

Here we need an arithmetic conditions on the couple (a, 3) in order to get quantitative

estimates.

f—[Deﬁnition 4.4 (Diophantine Vector)}
We say that (o, 3) € T? belongs to the diophantine classe DC(k, ) if

K

m,n 2\ mao n =
Vimm) €22\ {00} matnflz > @t

(4.21)

For fixed o and T > 1, the set of 3’s satisfying for some k > 0 has full
Lebesgue measure. If is only satisfied for n = +1 then we are in the case
B € DCq(k, ) of (L.7).

A particular case when is not satisfied for which we say that [ is

resonant for o (or a-resonant) is

FkeZ B=ka (4.22)

Now we can prove the following result for the cohomological equation:

,—[Lemma 4.2 (Cohomological operator, diophantine case)]i

Suppose («, B) satisfies (4.21) for k = ko . Then the linear operator U = U, 3
defined as follows:

cgj+27+4(T2) SN ng(TQ)
Uap:

) +— ¢ the solution of p — po Ry g =1 — [pepdzdy
which is explicitly given by (see (4.26))):

TZ ) im(ma+n
U pt(z,y) = Z - eQi:(“;aJrnﬂ) o 2im(ma+ny) (4.23)

(m,n)#(0,0)
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is continuous and has norm

Ul < (720 ka,p) ™! =t cap S 1/kap (4.24)

Proof.
We are then interested in solving the previous cohomological equation (4.20)). Using

Fourier series this is equivalent to
V(m,n) € Z2~ {(0,0)} (1 —eZrmatndg = (4.25)

The minimal condition to solve equation (4.25)) is that («, ) is rationally independent
which means that the quantity ma + nf only vanishes for (m,n) = (0,0). But we also

need some estimates on the regularity of the solution:

b= Y e emn Where e T3 (a,y) e HTY
(mm)£0.0) "~ ©
(4.26)
Clearly, for all integers k, k', £, ¢,
o+l D .
oukoyt %é:(o o L — e matnd) (2im)™ e n e,
m,n ,
d al Fran = e O s = 5,0
and also Ymn = W " Vi, = W y @ij,n
=N 1 8k+[¢
so that P <
‘ m,n‘ (27‘(’)k+[ |m‘k |TL|£ 8xk‘ay£ 0
We set dp,n, = ‘eQi”(maJr”ﬁ) — 1’ = ‘—21 sin 7(ma + nﬁ)ei”(m"“r”ﬁ)‘. Then

dmn = 2|sinT(mo + np)|

= 2sin7||ma + np||z|
2

> 2 x =7|lma+ nBlz
T

dmn = 4|[ma +np||z

Under the assumption (4.21)) we get for all integers k, k', ¢, ¢/

M|l _ 1 > (2m)5E |m* |n|” (jm] + ‘nDTlW)H
ka0 X PN 2 0 k'
0T o 00 (2T) Il

But convexity arguments and basic calculus show that for all 7 > 0 there is ¢; > 0 such
that for all real x,y one has (|z| + |y|)” < ¢-(Jz|” + |y|”). Indeed ¢, = 1 if 7 < 1 and

¢ =271 if 7 > 1. Thus we have

m|
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1 1 1 1
Gy e DY) ( + ) (K
K+0—k—t K —k—7 | 0'—¢ 0—— K —k ,
o REmFT (200 \ml T 0| [ [m|

the sum which is involved converges if and only if &’ > k+7+1 and ¢ > ¢+7+1. This means
we can solve the cohomological equation , and so , with a loss of regularity
strictly greater than 7 + 1 in each direction. For example we can take ¥’ = k + 7 + 2 and
¢! =0+ 7+ 2 and get

ak+€ ©
Oxkoyt

< 1 1
lelle < 7oz W llkrrszeerse
this gives el < capll¥llj+arta
So there is a global loss of 27 + 4 derivatives. The lemma is proved. |

Remark 4.3

We shall say a few words on the dual operator of U in L(T? R) that we will

need in the sequel. The operator U has a dense domain as it is well defined and
continuous on €*°(T?). Solving for all ¢, € €*°(T% R)

/ Uy - pdedy = / - U*pdady
T2 T2
gives the expression of U*:

—~
Pm,n

1 — e —2im(ma+np)

@070 =0 and V(m, TL) 7& (Oa 0) @m,n = (427)

this proves that U* : €772 +4(T?) — ¥7(T?) has same domain and same norm
as U.

[Remark 4.4}

Let us point out that, for our purpose of computing a formula for the Lyapunov

exponent, we will actually need a weaker diophantine condition on («, 3). Indeed,
the functions that arise in the computation of the LE will be trigonometric poly-
nomials in the variable y of degree at most 2 of the form ¢, (z)e?™ +c_ (z)e ~2™Y.
Hence we will only require that € DC,(k,7) which means

K
[m|”

vm e Z ~ {0} |ma + 5| > (4.28)

Also note that under the condition 3 € DC,(k,T) the operator U is bounded
on the space of trigonometric polynomials of degre 2 in y and still verifies (4.24)).

Now we give the key proposition to get a Figotin-Pastur formula.
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4.3.4 Estimates for a stationary measure

Remark 4.5

From now on we denote O(Q) a quantity which is bounded by ¢Q where c is
a constant depending at most on («, f3), namely some power of the constant
Ca,B X x~! mentioned in the previous paragraph (see ) We shall remind
this fact in the final formula to elaborate on the error term in the perturbative

development we obtain.

To state our estimate we need to define

/—[Deﬁnition 4.5 (2-dim. adjoint)}
For a function f on T? — R? written f(z,y) = (fi(x,y), f2(x,y)) we define the
action of the adjoint U*

U*f = (U"f1,U" f) (4.29)

where U* is defined in ({4.27) for maps T? — R.

/—[Proposition 4.2}
We have the following development for any stationary measure ji:
(i) For all ¢ € €7+5(T?)

/ Yy = / ¥ dz dy + O(el|¢]|2r+5)
T2 T2

(ii) Now if ¢ € €47 +19(T?) we have more precisely

/Wm:/ zpdxdy—i—/ (U*E) - Vop de dy + O (€2][]]4r+10)
T2 T2 T2

with the following notations: (remember (4.17]))

E=F,—Rag
E=E(EoR_,_p) (4.30)
e = [I=lll2r+s

Proof.

(i) A Taylor expansion to order 0 gives

7
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poFy,=wvoRas+O(Elollell)
so that with the definitions in (4.18]), (4.19), taking expectation gives
T =S¢+ O([Ellllell) = Zop + O (ellel1)
The stationarity of the measure p leads to
/ @du=/ %oduz/ Topdu+ O (eflellr)
T2 T2 T2
We apply this equation to ¢ = Ut and get with (4.24))
[pan— [ vdedy= | (0 fravdedy)dp=O(elvlrss)  (431)
T2 T2 T2
(ii) A first order Taylor expansion yields
poF,=@oRas+E-VeoRas+ 0 (lell=l5)

then T = Top+E(E-VeoRag)+ 0 (]pll2)
= Jop+ (EE) - Vo oRag+ O (€]0ll2)

Integrating the previous relation w.r.t p and using the first estimation (4.31]) leads

to
| o= Tovdn= | BE)-VeoRasdedy+O0(e EE)- VeoRaglerss) +0 () ¢l
= s E(EoR o p)-Vedzdy + O (€[[¢ll2r+6) + O (€]l¢]l2)

/90—%90du=/ 2. Vipda dy + O (€2]|¢]|ar16)
T2 T2

once again for ¢ = Uty we obtain

| o= Todu= [ wdu- [ vdedy
T2 T2 T2

and with (4.24): l¢ll2r+6 = O ([[¥l4r+10)

An easy computation gives for ¢ : T> - R
V(Uy) = (U(Ve)1, U(Ve)2) (4.32)

We can then compute with (4.32) and (4.29)
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o

[11R

-Vgoda;dy:/ 2 (U(Ve)1, U(Ve)g) da dy

T2
— 21.U(VY)1 4 E2.U(VY)g da dy
__/'U* (V)1 + U*(E). (V)2 de dy

/E'Vgodxdy:/ U*(é)'vwdxdy
T2 T2

which ensures the result we announced.

|
4.4 Proof of the formula for a.e. rotation and energy
The key proposition is the following:
/—LProposition 4.3}
Let us denote &, (resp. €) the second coordinate of Z,, (resp. =) (see ([A.30)):
gw(ajay) = fw,x(y) - (y + 6) (433)
§0,y) =E&(r -0,y = B) =E(fopaly—8) — (v = 5) (4.34)
We also set (remind definition (4.17)) of ||| - [||):
€ = [IEMllars11 = Mewlllar+1a (4.35)
Then we have
y(F,p) = -1 E/ tr? (DE + DU*(E) - DU*(E) 0 Rag) dedy + O (¢?)
T
- ~ 2
= 4B [ (06@v) + 0,08,y - 8,08 +a,y+p)) dody
+0 (€®)
Proof.
Let us define
T? — T?
g: and G=Idp2—g (4.36)

(2,9) — U'Z = (0,(U"§)(,p))
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ﬂ Lemma 4.3

The following properties hold:
(i) the map G is a €*-diffeomorphism of T? for ||g|l1 < 1/4;

(i) llgllx S El€llirorta S MElletarta
(i) |G~ —Id]lo < [lgllo
)

(DG 1)x = Iz + Dgg-1(x) + O (Ilgll3)

(iv

Proof.

(i) The mean value theorem ensures that

3
IGEX) = G| = 71X = XI|

Hence G is injective. Let us denote G any lift of G on R2. Then DG = DG = I,—Dyg

so that G is invertible everywhere for ||g||; < 1 and the previous estimate yields

I1G (2, y)|| ———— +oo

|yl —+o0
Applying Hadamard-Lévy’s theorem gives that G is a ¢* diffeomorphism of R? and
we can conclude for G.
(ii) This comes from || E(¢)||x < E(||¢][x) and ||U|| = ||U*|| (see remark [4.3).
(iii) This is an easy consequence of X = G(G™1(X)) = G71(X) — g(G~}(X)).
(iv) With DG = I~ Dg, D(GV)x = (DGg-11x)) ", and (L—A) "' = 5> A for |A] <1
we can conclude. "
[

Now we use G to conjugate a stationary measure and get nicer estimates that more

explicitly exhibits the negativity of v(F, ). Let us define py = Guu. Then one has

/sodm:/ poGdu
T2 T2
= | jelw.) = Vela.w) - ga.u) + O (gl Iell2) du.v)
=/T290—Vs0-gdu+0(62||90”2)
— . 2
= | ededy+ [ g Vodudy+0 (@l¢lirp0)

—/ng Vedady +0 (ellg - Vellyrys)
Finally
[pdm = [ @dwdy+0 (elars) (4.37)
T2 T2

Let us define
“=GoF,oCG™! (4.38)
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The stationarity of u leads to
Y(F, 1) =y(F1, 1) (4.39)

Indeed

")/(Fl, Iu,l) =E /1‘2 In det(DGFOG—l(G(X)).DFg—l(G(X)).(DGg—l(G(X)))_l) du(X)
:E/ lndet(DGoF)d,u—FE/ lndetDFd,u—E/ Indet DG du
T2 T2 T2
=E / Indet DF du
T2

Y(F1, 1) = v(F, p)

Let us recall that for square matrices A, H, K:

D% deta (H,K) = det A [tr (A7 H) tr (A7'K) — tr (A"'HA'K)]

which ensures  det(I+ H) =1+ tr H+ % (tr2(H) — tr (H?)) + HOO(H3)
—

Let us set with (4.38])

[1]

A second order Taylor expansion and estimate (4.37)) then give

’y(Fl,,ul) = E/I‘2 ln(Ig + DEl)d,ul
_E Tz(tr (DZ1) - §tr (DZ:2) + O (|DZ17) ) dpm
Y(F1, ) = E /T (tr(DE1) = tr(D=12)) dedy + O (€ E||tr (DE1) ar+10) + O (JIDE4]I})

And so we deduce
V(F1, 1) = E/FQ (tr(DE)) — Jtr (DE1%)) dzdy + O (%) (4.41)
Writing tr D=1 = 0,(Z1)1 + 0y(Z1)2 one gets for all w

/1‘2 tr (D=Y)dzdy =0

We shall now give an estimate on DZ; with = and g. Equations (4.30) and (4.38)
ensure that
DF; = DGpoq-1DFq-1D(G™) (4.42)

= (I = Dg)rog-1(I2 + DE)g-1D(G™)
Then (4.36), (4.40) and lemma [4.3] give
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DZg-1(x) = DEx + O (|[Ell2llgllo) = DEx + O ([I¢]3-+4)
Dga-1(x) = Dgx + O (llgllollgll) = Dgx + O (|I&][3-+5)

F(G™!(X)) = Rap 0 GTH(X) + Z(G7H(X)) = Ra,8(X) + O (llgllo) = Ra,s(X) + O ([[¢]l2r+4)

Dgrog-1 = Dg o Ras + Ollgllollgll2) = Dg o Ra,s + OI&][3, 1.6)

so that in
(DF1)x = (12 - DgFonl(X)) (12 + DEG*(X)) (12 + Dgg-1(x) + O (HQH%))
=Ts + DEg-1(x) + Dga-1(x) — Dgroc-1(x) + O ([€3-+6)

(DFy)x = Iz + D=+ Dg — Dg o Ra,5 + O([[€]13,46)
We finally obtain with these estimates and definition (4.40):

D=y = DE+ Dg — DgoRap + O([|€]316) (4.43)

(DZ1)? = (DE+Dg — Dg o Ra5)* + O([[¢]137-+6)
It remains to compute, using (4.30), (4.33]) and (4.36))

D=E+D D R 0 0
= — oR,3 = ~ ~
I7 IR T 0y(6+ UE — U0 Rap)

This ends the proof of the theorem with , and .
|
Let us now give an explicit formula for £ = &, (recall (£.33)). Let us recall the
definitions , and . Then one can compute
e L4 Ny (om0t
11+ N, 5 (eim).e —in(y+5)|

as a consequence

14+ Ny .(e™).e —im(y+5)

17T€ = log ‘1 + Nw’m(eiﬂ—y).e_i”(y"'ﬁ)‘

The Taylor-Young expansion of the complex logarithm to the first order log(1l + z) =
2 .
z 4+ z9}0(,2 ) gives

i =z — 1 (2Re2) + O(2?)
=iQmz + O(z?)
where (see definition (4.15))

2 =Ny ,(e'™).e T mWHh) — _vw2) sin(m(8 + y)) e TTWHH) (4.44)

sin
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This leads to &, = £ + &P with

sinf3 (4.45)

o ¢ is an explicit trigonometric polynomial in y of order 1 such that ED o =
O(IINw )3

o ¢ satisfies 5&2) (r,y) =
bounded in S.

Remark 4.6

Note that we could obtain a development of &, at any order if we expanded the

1

2 . .
—— v (w,T)a for some analytic map ag uniforml
g (w,z) ag(y) y P ag y

complex logarithm sufficiently far. For example to the second order we have
log(1+z) =2z— 3224+ O (%) and so we would get
z—0
imé =iQmz —iRez Smz + O(23)
which would give &, = &(}) + &9) + &(03) with
& (z,y) = LOm>
5&2)(%?/) = —% Smz Rez

€9 —g,— ) - f?

o {U(Jl) is a trigonometric polynomial in y of order 1 such that [|€M o =
O(INu )
. 55,2) is a trigonometric polynomial in y of order 2 with |||®)|[lo = O(||[Ny 2 ||?)
3 1 2 .

o &) =e,— el — &l satisties €[l = O(|Nool®)
However, this makes the error term degenerate since N, , has a fac-
tor 1/ sin(r3) =< (E? —4)~'/2 (see ([#.15)) ): the more we want a precise expansion
of &, the more the error term degenerates as a positive power of (E2 — 4)71.

Besides, the first order will be sufficient for our estimates

The definitions and estimates of (4.45)) coupled with proposition give for 51) =
E (&) oR o g):

Y(F,p) = —LE /T [0 @.y) + 0,0%EW (@) UV (@ + oy + B)] dwdy (4.46)
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up to an error term (recall that € = [|Z||4r411 = [[éollar11 and & = €W +¢@) with ([{30)

and (IL5))
0 =0 (& E (€0 ars5 1EPl2r45) B [€P[13,.15) (4.47)
= O (B [€ll}rr11E (I€Dlar15 €2 lar45) , BIIEP 3, 45)

Let us analyze this error term with (4.1) and (4.45):

1 AWol + [[Vll2r+s)
L B _
1€ ||grys = O(|s1 |()\|W0|+ ||V||2¢+5)) —O( (4 —E2)1/2 )
1 A2 [Wol* + |[VI[3,.45)
@ _ RN 9 9 _ 2745
1€ |2r+5 = O <|Sin7rﬁ|2()\ [Wol” + ||VH27+5)> 0 ( 4 — E?

AWyl + HVH4T+11)>
4 — E?

1
1€llar411 = O (W(A |Wol + ||V||4r+11)> =0 (

Recall remark @ the estimates obtained for &, €1, £(2) actually hide some positive

X2 [Wol® + VI3 411)
_ -3 47411
O=0 </<; e (4.48)

power of k~*. Thus

Let us finish with the computation of a simpler expression of the formula for the LE. Using

Sm(z12z2) = Smz; Re 2o — Im 22 Ne 21, de Moivre’s formulee we get in definition (4.45)):

. 2 )
€W (z,y) = Wv(m z) = — Re (%(;n‘?ﬁ 21”(“5)) teg(z)  (4.49)
. _ v(w,x)
with ) = G siunp

Note that we actually have to calculate the integral of a function that is a trigonometric
polynomial of small degree as explained in remark [f.4] The diophantine condition on
w.r.t. « is then enough to be able to use and get a development.

Since the formula only requires derivatives along y, the quantity cg does not
contribute to y(F, u). We recall that £ = E&, (- — - B). Expanding the potential
v(w,z) (see (4.1)) in Fourier series on the form v(w, x) Sohee ( W), e 2TMT we obtain
thanks to (4.27) and (4.49)

=1 +o00 e—217r(ma+ﬁ) - ” ”
U*f( )(l" y) 27rsm7r,3 Re Z [ — o —2intmatd) E(me) e 2mB o 2im(maty)

m=—0o0

so that

*¢(1) = ¢ —Amimath) W 2im B , 2im(maz+y)
ayU 3 ($7 y) smrrﬁ Rei Z 1 — e —2im(ma+p) E(U m) e €

m=—0Q

+00
1 _ . .
smﬂ-,B Rei Z 1 — o —2in(math) E(v9,,) @ 2imB o 2im(ma+y)

m=—0oQ

GyU*g(l)(x +a,y+8) =
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Denoting
A(z,y) = 0,UEW (2, y) — 9,UEW (@ + o,y + §)

we get the following expression

A(a:,y) = sm7rﬁ ( Z E vw QiﬂﬂeQiﬂ(mery)))

m=—0Q0

= Re [iE(v(w’x)) e2i7r(y+6)]

sin 3

Then with (4.49)) we also have

ayé-(l) <3:', y) — éRe |:1/U(UJ7:L‘) e2iw(y+5)

sinmf3

which, using definition , leads to
L(@,y) : = 9,68 (@,y) + 0,U €W (w,y) — 9,0V (z + a,y + )

— _am v(w,x) — E(v(w, x))eziw(zﬁﬁ)}
sin 73

Lo(@,9)* = gqirg [0(w, 2) = E(u(w, 0)|* — g cos(d(y + 5)) [u(w, ) — E(v(w, 2)[*

= 5575 | Wo — E(Wo)|” — cos(4n(y + B)) [Wo — E(Wo)|?

1
2sin2 78

The quantity cos(47(y+3)) [Wo — E(Wo)|? vanishes after integration in , y and taking
expectation because it is a trigonometric polynomial in ¢y with no constant term. So it
remains in (4.46))

1
V() = " 4sin? 3 )2
In our setting v(z,w) = V(z) + AWy(w) and 8 = Arccos (E/2), so we compute
4 — E?
4
Reminding (see (£9)) that L(E) = % |y(F,u)| gives the sign in this formula and the

expansion:

V(v(w,z))dz + O

V(U(Wa l‘)) = \2 V(WQ) and sin? =

V(W)

m)ﬁ + 0 (4.50)

L(E) = ~(F. ) =

We shall say a few words on O in and on the size of the quasi-periodic part
V(z) of the potential in compared to the coupling constant A for the random part
of the potential. The formulae and prove a Figotin-Pastur formula for V
in €47 T1(T) whose norm is at least as small as A for all 3 = Arccos(E/2) which is
diophantine with respect to . That means for a positive set of energies in | —2;2][ the
measure of which depends on the diophantine constant of 5 w.r.t. . Notice that we also
have the result when v(w,x) = eWy(w) + vV (x) where v is a coupling constant smaller

than €, and it clearly applies when v < e.
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In particular, if the random and quasi-periodic parts of the potential are of comparably

same small size €, then we obtain the proof of theorem

Remark 4.7

Notice that the previous theorem does not require any assumption on the vanish-
ing expectation of the potential v(w,x) = ¢ (V(x) + Wy,). This may seem strange
for two reasons. The first is that Figotin-Pastur’s formula ((14.57) in [PF92]) has
been established for random potentials with zero expectation. So setting V = 0
in our context should recover their result. The second and more relevant question
here is that one would then think of moving away from non-diophantine energies
(i.e. those for which B = 1 Arccos (E/2) does not belong to any DCq(k, ) for
any Kk,T — see ) to diophantine energies to get the result for all energies.
Let us explain why this is not doable with our analysis. Indeed, suppose that
B in is not diophantine w.r.t. . In order to apply our technique based
on the resolution of the cohomological equation for the rotation R, g, we
need to move to a diophantine energy. So one would fix Av some constant which
they would perturb the potential v(w, x) with: v(w,z) = e(V(x) + Wog + Av) and
such that the energy is now E = E — eAv = 2cos(m(8 + eAB)) with AS = Av
and § + eAS in some class DCq (K, T):
Yn#0  |(B+eAB) +nal > #

then for n = 1 we get by triangular inequality A > € ‘s and so Av > ket
which cannot be since we need the potential to be uniformly bounded otherwise
the error term in degenerates. So, even if none of the vanishing expectation
hypotheses [ f(x)dz =0, or E(Wq) =0 or [ f(z)dx+E(Wq) = 0 (resp. for x
or w or even in the global variable (x,w)) is needed for our result, one cannot

move the potential to apply the diophantine regime strategy to all energies.
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5.1 The problem, its difficulties and ideas to solve it

5.1.1 The point of view

In this chapter we want to study the case when the energy E is close to £2, both by
superior and inferior values. Such a problem is interesting because the free operator, which
means when € = 0, 7.e. when the potential is identically zero and E = 2, has spectrum
Y(He—o) = [—2;2]. This also corresponds to the case B(E) = Arccos(E/2) =~ 0, a
particular case of resonant B with respect to « (see (4.22])) for which we cannot solve the
cohomological equation as in chapter @ and where the error terms in the previous chapter
degenerate because they are positive powers of ﬁ (see ) As we will see, instead
of being close to an elliptic regime with good estimates, we are now close to a parabolic

dynamics that we conjugate close to the identity with good estimates.

The setting is the following: the elementary transfer matrix for the Schrodinger cocycle
is
E+e(V(z) + W)

SE,w,E(x) = ( 1

—1
0 ) where E =2+ ode" (5.1)

where o is a sign + that reflects whether the energy is inside or outside the free spectrum,
and d > 0 is some parameter. We assume that E(W,) = 0 and V(W,) > 0, and
Jp V(z)dz = 0. This means that we perturb the free operator with a quasi-periodic and
random potential and then approach the band edge of the spectrum at a speed =< £".

A final important remark is that we will also obtain estimates for positive d, that is
we are able to obtain a formula for the Lyapunov exponent outside the spectrum when
E = 2 + de", in the hyperbolic regime of the free operator perturbed by a potential of

min(n,1) of the free operator

Sp—o = (i _01> (5.2)

Note that we have now completely lost control of the 1/v/4 — E? term. The cocycle is,
as in the previous chapter (see (4.4))), defined on 2 x T x R? by

size € . So all boils down to study a perturbation of size

OxTxR2— QxTxR?
(T,S):

(w,z,u)  +— (0w, + @, Spwe(T)u)
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Let us mention that we use the notation with ¢ as an index and x as a variable for the
cocycle to highlight the dependency w.r.t. x that we want to cancel up to a certain order

of approximation as we will explain in the strategy below.

5.1.2 Strategy of the proof

We first get rid of the dependency on x which brings us back to the situation of a perturba-
tion of the identity in order to deal with an easier cohomological equation. A perturbatively
method is developed to get an asymptotic expansion of any stationary measure of the ran-
dom diffeomorphism of T? induced by the cocycle. As seen in the previous chapter, such
an estimate for a stationary measure ultimately allows to compute an asymptotic formula
for the Lyapunov exponent.

The principle is based on the following elementary remark. If we are looking for an
estimation of [12 ¢ dp for a stationary measure p, and if we can write ¢ as a coboundary
i.e. ) = E(poF,)—¢, then the definition of stationarity (remind ([4.6)) gives [p ¢ dp = 0.
Obviously every function ¢ cannot be a coboundary and we rather want to solve, for a
given map v : T? — R regular enough, a cohomological equation (in ¢) with obstruction

terms

Y =E(poF,)— ¢+ Obs(y) (5.3)

The estimate for a stationary measure y = p. would then be

[ pdu= [ obs(w)d

Of course we are looking for obstructions that are as explicit as possible and especially
concerning their order w.r.t. £. Note that in the previous chapter (proposition we
found the obstruction to be of the following type

Obs() = [ v dedy+2A, + O ¥])

where 9 +— Ay is a linear map. So our obstruction were “simply” constants (and not
functions). This means that we were able to compute an asymptotic development of .
as € — 0 for functions with enough regularity, and where the main order term was the
Lebesgue measure on T?2.

We shall prove similar estimates but with obstructions that can involve a density with
respect to the Lebesgue measure at the first order or Dirac peaks, depending on the

dynamical regime of the mean diffeomorphism.

5.2 Reduction of the problem: getting rid of the

dependency on x

We will use elementary ideas of the well developed theory of the reducibility of cocycles

close to constants, that is conjugating quasi-periodic cocycles to constant cocycles. This
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theory has initially been developed by Moser and Poschel ([MP84]), and then improved
and extended by Eliasson and Kuksin ([EK09]), and also Avila and Krikorian (JAKO06]).

ﬂ Lemma 5.1

Let us set

my = min(1 + 7, 2) (5.4)

Assume V € €P(T,R) with p € N U {oo,w} and a € DC(k,7) (remind
definition (2.3))). Then there exists Y € €P~37(T,sly(R)) such that B(-) = e¥()
satisfies for all x € T

B(z + a) Sgwe(z) B(x)f1 =Sz + Oy (™)

E+e(Vo+W,) -1
Sw,g:( (Vo + Wo) ) (5.5)
1 0
Ou z(e™) = ™7, (z)
for some matrix Z,,(z) which is €P737 w.r.t x.
Proof.
Let us define Sg = Sg—2 (recall (5.2)) and (5.1))) and decompose
SEwe(x) =So + €Ll z + elod M
with
10
M = (O O) and Loz = (V(z) + W, )M (5.6)

The Taylor formula with Lagrange remainder gives

B(z + ) = Y@+ — ) 4 Y (2 + o) 4+ 2D(x)
B(z) ' =YY@ =1, — cY(2) + 2E(x)

so that
\ Wy de 0
B(z + a)Spwe(z) B(x) ™! = So +&(Y(z + a)So — SoY(x)) + (5( () + ) ) + ode O)
+e"™Z,(x)
with Z,(z) € Ra[Lwe, M, Y (2), Y(2 + ), D(z), E(x)]. It is then enough that Y satisfies
V() — V(l‘) O)

Y(:C + a)So — S()Y(.%') = ( 0 0
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or, equivalently, Y(z + o) — SoY(x)So~! = M(z) where

M(z) = (Vo —Ov(ﬂf) 8) 3,1

Denoting, for A € GLy(R), the map Ada : M € My(R) — AMA~! we then want to
solve

Y(z + a) — Adg, Y(x) = M(z) (5.7)
Using Fourier series this is equivalent to

. _ - 10
vneZ  (e™ld - Ads,) Vi = —Va(1 = du0) (o 0) S~ (5.8)

We obviously need information about the inverse of the linear operator e 2™*Id — Adsg,
with some estimates on the €*-regularity of the solution. Let us recall the following facts
from basic linear algebra about the operator Ada on sly(R) (look also at appendice [A. 1))

~ Lemma 5.2

For A € SLy(R) let us consider the operator

S[Q(R) — E[Q(R)
Ady:
X — AXA™!

e Aut(sk(R))

The spectrum (eigenvalues) of Adp consists of {l,eiﬁ ,e 1P } where 2 = det B
and B € sly(R) satisfies A = eB. More precisely

o f e R~ {0} if A is elliptic (tr A <2) ;

o 5 €iR ~\ {0} if A is hyperbolic (tr A > 2) ;

e (3 =0 if A is parabolic (tr A = £2).
Let us denote 3 = B/(2m). Then for n € Z the operator L, = e?™1d — Adsg,
is invertible for e ™" ¢ {l,eiﬂ,e_iﬂ} that is 0 + na ¢ Z and na ¢ Z. Under
these conditions we denote the solution Y = L, !(F) and one has the following
explicit formula:

(i) in the diagonalizable case (f # 0): if X\ is the projection of X on the
e -eigenspace for Ady we have

Fy
VAE{0,6,-8Y Vo= gy
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(ii) in the non diagonalizable case (8 = 0) we can write the Jordan normal form

of A
+1 1
A:P( )P—1
0 =+1

When A has spectrum {1} (+-sign case) one gets Y = (aY by ) where

cy —ay
CN
cy = £
Tn
o — aF —CY  TnOF — Cp
v - 2
Tn Tn
by _ BTV HCY 2 b + 29 05 + (1 — )cg
Tn 'Yng
F=PFP and ~, =e2m™a_]

If A has spectrum {—1} the formula are analogous.

Let us use these results in our context. We impose the condition 3?0 = 0 such that we
only have to solve (e27*Id — Ads,) Y, = —V,M where M = (}9)Sy™" for n € Z ~ {0}.
In our case, A is not diagonalizable and has spectrum {1} so we only need an arithmetic
condition on off to get nice estimates on the solution. Namely, if a € DC(k, 7) satisfies
the associated diophantine condition ([2.3]) one gets the following €* or %y’ (which stands
for the analytic norm on a strip {|Sm z| < h}) estimates

1
[Yller S —IF

Eh+3T
-3
K
1Y |[nr<n S WHFHh

Thus we can find a Y(-) as required. |

5.3 Random diffeomorphisms induced on T? by the cocycle

5.3.1 Influence on the Lyapunov exponents

We have proved in the previous section that the cocycle Sk, () can be conjugated to
the perturbation of (2 ') (see lemma ([5.1))): with a cocycle conjugacy we obtained

C(z + a) Spwe(x) Clx) ! = §w76 = Swe + Oy (™)

1 has multiplicity at least 1 for dim {X € M2(R) | [A,M] =0} > 2 and if [A,M] = 0 then [A,M —
(tr M)Iz] = 0.
*whereas in general one needs 8 to be diophantine with respect to « in order to have estimates of the

solution.
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This shows that the cocycle (o, w,Sg <(x)) is conjugated to (a,w,gw@) such that their
Lyapunov exponents are equal. We then have to look for a stationary measure for the
random diffeomorphism of T? induced by S, . which we will algebraically conjugate to
a perturbation of the identity with no dependency on x up to a term of order m,. The
error term given by ™17, () (see (5.5)) will be taken into account for the estimate of the
Lyapunov exponent in the end. It will actually be of higher order than the other error
term that arises from our analysis to come term, so that it will not explicitly appear in

the estimates.

5.3.2 Computation of the diffeomorphism

Any SLs(R) cocycle S induces a diffeomorphism fg of T by its projective action (see

definition (4.7)):

oinfsly) — 4 ™)
[S(e™)||

Since the cocycle is a perturbation of the identity of the form S = Is + N where N is

supposed to be small, here the adequate sign for the projective action is 4. Let us set
z = N(e™).e 71mY (5.9)

which is small by assumption, and compute

S(e™) ™ 4+ N(e'™) o2y 1+2

S(eiﬂy) e—imy | N(eiﬂy) 1+7%2

e 2iﬂ'fs (y) —

=e2™ (14+2)(1-2+22+0(z%))
eAm(FsW)=y) = 1 4 2 Sm(z) + 2% — |2)* + O(z%)
A second order Taylor expansion of the complex logarithm near 1 then leads to

fs(y) =y + % Sm s — % Sm(z) Re(z) + O(N3) (5.10)

Let us sum up all the important notations we will use later on. The random diffeo-

morphism of T? for which we have to find a stationary measure is:

Fo(z,y) = (2 + a,y + 0u(y)) (5.11)
where the random perturbation v, (y) = }];% e f; + O(e™) is, up to an error term, a

linear combination of analytic functions f; with coefficients that are increasing powers

of e.
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Please note that the O(e®) involved are actually functions of the variables .,y

multiplied by €°.

5.3.3 The argument of the time-one map of vector fields on T

Let us mention another way to compute the random diffeomorphism f,, , using tools from

Lie algebras. We define the following functions on T:

cly) = %cos(%ry) s(y) = %sin(%ry) and Wy) = %

If {a,b} = [ad,bd] = (abl — a’b)0 is the Lie bracket of the vector fields X = ad and
Y = b0 on T then it is straightforward that
{e,s} =2 {t,s} =2c and {t,s} = —2s

so that X = Vect {10, c0, s0} endowed with [-,-] is a 3-dimensional Lie algebra of vector

fields on T. The following matrices

1 -1 -1
C= 0 S = 0 and 7= 0
10 0 1 1 0
form a basis of the Lie algebra sly(R) endowed with the classical Lie bracket for matrices

[M, N] = MN — NM and satisfy the same brackets relations as ¢, s, ¢ (with self-explanatory

notations). As a result, the following linear mapping is a Lie algebra isomorphism
c+—C s+— S and L+— 71

We shall explain why the following diagram commutes

B € sly (R) XB € X
exp in Mp(R) i \L@l (time-one)

A=eBe SLQ(R)ﬁ fA\(I)IIB

/—[Proposition 5.1}
If ®% denotes the time-one map of the vector field X on T and xp the vector

field associated to the matrix B € sly(R) through the previous dictionary, then
feB = (P}(B

In terms of Lie algebras: the exponential map in sla(R) corresponds to the ex-

ponential map in X.
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Proof.

The previous map p used in the above diagram is actually an SLy(R)-action on T

SLy(R) —» Diff(T)
: A — fa

We write - for the action, which means B -y = f(y). Set gg(t) = e'B the usual matrix
exponentiation and y(t) = gg(t) - y. We then have y(t + h) = gg(t + h) -y = gs(t +
h)gs(®)™" - y(t) = gs(h) - y(t)
We can also compute, as done in the previous subsection,
o 2imgn(h)y (I+hB+0(h?))(e'™)
(I+ hB + O(h?))(el™v)

1 . .

which gives ga(h) -y —y = h=Sm (B(e'™).e ") + O(h?)
m

Setting B = (¢ %, ) and letting h — 0 in the ratio w leads to

a

J(B) = x(u(t)  where  x(y) = > Sm (B(e¥™).e )

e ) nn)

s ™

This exactly means that y = xp for the previous dictionary. We have just proved

fer(y) =y(1) =@} _(y)

as expected. |
It only remains to give an expression of the time-one map. We have &% = eX9 for
X € X, in the sense that for all (real) analytic f

—+00 n

n=0

f where  ((X0)f)(y) =X(y).f'(y) (yeT) (5.12)

This follows from the differentiation of any analytic observation of the flow ¢ +—

F(@'(y)):
%f@t(y)) = X(2'(y))-1'(®'(y))

and so Sl @) = X))
t=0
an easy induction gives
dn
Sl H@) = (X0 )
t=0

The Cauchy-Kowalevska theorem ensures that t — fo®!(y) is analytic, so the claim (5.12)

is proved since we just computed its Taylor coefficients at 0.
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5.3.4 Transfer operator and cohomological equation

We recall the definition of the transfer operator (see (5.11)) for F,)
T:po—— E(poFy,) (5.13)

In order to find the appropriated obstruction, let us try to solve ¢ = T — ¢ to understand
where this obstruction comes from.

Using Taylor expansions, one can compute the action of the transfer operator for
© € E€PTHT?):

To(z,y) = B <s0(:v o)+ 3 fell) @ 4 o) v )t

1
+1%!Uw(y)(p+1) /0 (1—s)P <Pz(/p+1)(=’17 + o,y + sv,(y)) ds)

=E / 2 [ v d
= (w(w+a,y)+<py(x+a7y)vw(y)+vw(y) /0( —8) py(r + a,y + sv,(y)) S)

The second equality holds in the particular case p = 2. As we will see, for our purpose
the expansion for p = 2,3 will be enough.

We use Fourier series in 2 and write f,(y) = fu(y) = Jp f(@,y)e 2™ dz. The former
equation is then equivalent to the fact that for all n € Z, the following equation is
satisfied in L2(T)

¥n = Tn(@n) (5.14)

where we set (the integer p can be chosen as large as needed for the computations as long
as  is €PT(T?))

Top(y) = mey) + an Y 2o ) Blou(y))
k=1"
+ % B (w1 =P el ™y + o)) ds)

= me(y) + anzvk )+ pf E < ()t /01(1 ~ At ) dS)

(5.15)

and for integers k > 1 and n € Z
1 .
7, = —E (vwk) a, = eimna Yo = Qpn — 1 (5.16)

We remind that we assume a diophantine condition (2.3)) on «. Let us point out
the fundamental difference between equations (5.14)): for n # 0 the equation has a non

vanishing derivative of order 0 whereas 79 = 0, so we have a pseudo differential equation
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of order 2, meaning that oo satisfies a first order differential equation. Moreover, g’
multiplied by a small function v, that passes on the error term. We will compute the 7;’s

in each case we study.

5.4 Energies inside the free spectrum (0 = —1) with 5 < 3

The main theorem is the following:

Theorem 5.1 (L.E. inside the free spectrum)}

For % <n< %, the following asymptotic expansion holds for € small enough:

2—n
L(2 — de") = %V(Ww)% +0 (d-5(c37,43))

5.4.1 Conjugacy close to an elliptic matrix

For an energy E = 2 — de", we are in presence of a QPR (quasi-periodic and random)

perturbation of the following elliptic matrix of SLa(R)

9 _de" —
A= de 1
1 0

It has eigenvalues et which are the roots of the polynomial X2 — (2 — de")X + 1 with

0=0.€[0;m]. Thus Q := <C°f9 Sige) diagonalizes A. to Ry the rotation matrix by the

Lt oy, [0 o0
@ (0 O)Q_<cot9 1)

And with 2cosf =2 — de" we get

angle . We also compute

1 13
- n/2 3/2_30/2
cot 0 N de“ + O(d? =) (5.17)

-1 -1
Using Ry =expb (? 0 ) =Ih+46 <(1) 0 ) — 1021, + O(a3/231/2)

0 0
we obtain  C(x + a)Sy ,C(x) ™1 = Rg + W,
cotd 1

) + O(emn=1/2 /\/d)

- 12 + Nw,a
where C(x) = Q7 'B(x) and

0 -1 gl-n/2 00 1
Ny = Vde"? + W, — Zdey + W,0(e) + O 5.18
o c <1 0) Vd 1 o) 29°2 () (5.18)
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with
0=0 (5%"d3/2, Vet 3, 6’”’7_%/\/3) =0 (d_%(sgn,52_g)> (5.19)

Note that we write W, 0(q) for a quantity that is proportional to W, times a quantity ¢
which is independent of w. The main error term in O depends on the position of n relatively
to 1. But we already need the condition 1 < 2 for this development ({5.18]) to be properly

perturbative.

5.4.2 The diffeomorphism in the elliptic regime

In this elliptic regime we have in (5.9))

z = i\/agn/Q + Ww COS(Wy)ie_iﬂyW — %dgn + WMO(E) + O
where O is defined by (5.19)). So we obtain
51717/2

+0

Smz = Vde"? + W, cos?(my)

Vd

in(2 1-n/2
sin(27y) — Lde" + W,0(e) + O

2 Vd

Rez =W,

2—-n
Then Sm(z) Re(2) = W2 cos?(my) sin(27ry)€7 + W,0(e) + 10

Finally we get with formula (5.10))

f—[Deﬁnition 5.1 (Random diffeomorphism, inner energies case)}ﬁ

In the case E = 2 — de" the random diffeomorphism is

F=F,.:T?3 (2,y) — (z+ o,y +v,(y))

with the following random part

v (y) = 1\/&577/2 — iVV 2 cos? (my) sin(27ry)€2—_77
© s or d
LW, cos2(my) . 4 W,0(e) + O
+ — W, cos (Wy)W—i- wO(e) + O
where 0Oy =0 (d_% (6%’7,53(1_g ))

Notice that, for the averaged dynamics, the lowest order term is v/de”/? which does not
vanish when 7/2 < 2 —n: that is the condition n < % as in [SSBO7]. This hypothesis more
likely ensures an elliptic behaviour of our dynamics which is close to the (fixed) rotation

y—y+ % de"/?. For n > %, the diffeomorphism rather exhibits a hyperbolic behaviour
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with two fixed points. The case n = % will be called the parabolic case; it is treated in the

next section.

5.4.3 Transfer operator and cohomological equation for ¢ = —1
We compute

1 1 g2
v, = ﬁde” + =~ cos () =W, 2 + W,0(e) + W,O('+7/2)

d
O(d2(?1,e71/2)) ifn <1

_l’_
O(d=2e>1/2) ifn>1

Let us state precise results for the equations (5.14)).

- Lemma 5.3

The equations given by the Fourier transform of the cohomological equation

(5.14)) can be solved as follows:
(i) for n # 0, we can find p,(+) such that

Tpn=tnten  with |eo] S 100l omin(23.31)
oy
(ii) for n = 0 we can solve
@bo—)\w :T0<,0+A¢
with the following quantities:
o? =V(W,) =E(W,? (5.21)

Ay = o0 = /T;/f(w,y) dz dy
Ay = 1%/ de"/? + %a2 (1 cos* () ¢y’ — cos? () sin(27-) (1o — )\1/,)) d—3e2-3m
™ s
+0 (I[goll2 d=3(e",€*721))
= 0 (|IYolld~3(c#,2727)) (5.22)

Proof.
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(i) Let us begin with n # 0. Then at its lowest order in e the equation is 1, = Vp¢n.

Let us set ¢, 0 = ﬂ%ﬂwn. We evaluate the error made with this approximation:

Tn@n,l) =, + En,l

1
with En1 = an B (Uw/ @n,Ol(' + sv) dS)
0

O 1
=g (Uw/ U (- + svy) ds>
Tn 0
En,1 = 0 (,yn—lgmin(gﬂ—n))

Obviously we want to continue this procedure and write —e,1 = Tpep1. Again,
looking at the lowest terms in this equation, we set
€n,1 Qp (07N _9__
Pn1 = ——= = —%Uﬂﬁn'— Tngﬁn”*'o(% 273)
n

n Tn

The error made is then

Tn(Pn,l = —€p1 tEn2

with €n,2

1
on E (vw/ o1’ (- + svy) ds)
0

= anpn1’ U1+ O (on,1" 02)

1 1
and s’ = =25 (w0 ds ol [+ 0 ds)
n 0 0

79 _ _
— _ﬁ¢n/E(vw’)—i—O((UQ-FE‘UwIUw‘)’Yn QHdJHHHO)
= O (2 d 2 [ lo(e>7, %172, €30 0/2) 1))

on1’ = O (1 =2d72 ([ |lo(e?77,&"))

Finally en2 =0 <’Yn72 d=3 HIDnHHO(&Tg"/27527"/276472’7))
Now ¢p, := ¢n0 + @n,1 solves

Trnpn = Y + €n,2

with an error ¢, 2 which is of order 571,12.

It is possible to go on with this procedure and solve —ey 2 = T\, o Which
would give a better approximation. What we lose of course is some deriva-

tives, since at the k-th step we would get a factor v, %, which implies
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some loss of the derivatives in order to control the convergence of the €*
norms of the solution. Anyway we limit ourselves to the second step, as
it will be sufficient considering the obstructions that occur for the Fourier

coefficient ¢q.

(ii) We only solve the equation at its lowest order (provided n > 4/3)
Yo = (% dgn/2) 0’
This is an antiderivative equation but we are interested in one-periodic solution so

that we need [ 10dy = 0. The obstruction is then Ay = [pYody = [12 ¢ dzdy so

that we rather solve

T
\/&5% (1/10 - )\d)) = 900/
That gives ,
T
eo(y) = \/&g’é/o (o — Ay) (5.23)
such that for any & > 1 )
ol < WII%HH (5.24)

Then we evaluate the error made by computing
Togo = 01 + 0" 7+ B (1 [ (1= 5) 0o+ ) s
= 1o — Ay — =02 cos?(m-) sin(27) po'd L2 + O (H(po’Ho d=1(e3/2, 53(1*”/2)))
+¢0" T2 + O(lleolls E(|vw?]))

With the definitions of ¢g and 75 (remind and (5.16])) what precedes leads to
Towo = tho — Ay — 0% cos?(m-) sin(27) (¢ — )\w)d*%gZ—?ﬂ?/? +0 (HwOHOCF%(g},ES_%))
gy’ Do~ Ed % + O ([[oll2 B(|v.?)e~?)
=10 — Ay + %71}0/ de/? + %02 (% cos*(m-) o’ — cos?(m-) sin(27-) (Yo — )\w)) d—3 £2-3n/2
+0 ([l = (7,277, 4-20)

Topo = Yo — Ay + Ay,

where Ay, is the quantity defined by (5.22) in the proposition.
[

Consequently we can solve the cohomological equation with obstructions (5.3)) as fol-

lows:
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/—E Corollary 5.1 }

Given a v € €P(T?) with p > max(4,2 + 27), we can construct ¢ which satisfies

-2 2-3 —6 ~min —
Y = Ay + vyd 22737 4 E(poF,)—p+0 (||¢||07max(4727+2+)d 6 cmin(n,4 3?7))

where Vy = 02/ Y(x,y) cos?(ry) sin(2my) dx dy
T2

Proof.

Remind our notations ||¢l|;;» introduced in chapter 4| with (4.16)). We set ¢(z,y) =

> on(y)e?™®, Then
neZ

To—p= Y. Ynen+ D 5nen+¢0—)\¢—Aw
neZ~{0} n€eZ~{0}

=V —Ap+ Y enen— Ay
neZ~{0}

Thanks to the diophantine condition ([2.3)) one has

1 ko (T 2
Y lenl S Sltllogs X [l TFd3eminGz 2
nez~{0} || neZ{0}

1 ~3 min(2.2—
S 5 Nllryas d-deminEa=n)

The estimate (5.22)) on A, ensures that ¢ verifies

Y=y =Tp—p+0 (||

-3 2 _2-3
0,max(2,74+17) d (577/ € 217))

We apply the same procedure to A = Ay — >, cz. {0y En€n and construct ¢ such that

A=da=A-da, =T =&+ O ([[Allpmaxrsind (72, 2757)

=To—-90+0 (||¢||0,2 max(2,7’+1+)d_3(8n7 54_3"))

Now ¢ := ¢ + ¢ obviously satisfies

Y=y —Aa, = B(00Fu) = 6+ O ([¢lomax(azrian) d 0, £175))
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It remains to give an estimate of Aa . With its expression, it is straightforward that

:/ Ay dzdy
“Jr ( p'e + 307 (icos4<wy>wo'<y>—cos2<wy>sin<2wy><¢o<y>—w)d—zgzsnﬂ)dy
0 (lwollad=3(e7,>77,c5-21))
1

- 502 (/Nlr cos’ (my) o' (y) dy — /r cos?(my) sin(27y) Yo(y) dy) d-3.2-4n
+0 (Iollzd (e, 2,5720))

2
. o _3 _ _
Aa, = (/1“ cos?(my) sin(27y) vo(y) dy) 2d3/262 2140 <||1/10H2d 3(eh, &3 277)))

This ends the proof. |

5.4.4 Stationary measure and LE in the elliptic regime

We are now in a position to state the result for any stationary measure of our random
diffeomorphism F, : (z,y) — (z + a,y + v,(y)) (remind definition [5.1]).

/—[ Proposition 5.2 }

In the elliptic regime n < %, any stationary measure . for F,, satisfies for any

1 differentiable enough
o223
/ el = / wdmdy+(/ ¥ (3,9) p dxdy>dg/2+0

p(y) = cos®(my) sin(2my) = 3 Lsin(27y) + 1 Lsin(47y)
with
0=0 <||¢||O,max(4,27-+2+) d_ﬁ(gn, 54_377))

Note that this is a proper asymptotic development to the first order if 2 — %n <n
which is the condition 1 > %. Otherwise we only have the 0-th order which is the Lebesgue
measure of course.

Proof.

Let us prove theorem [5.11 We use the formula L(E) = 3 |v(F)| established in chapter
(see (4.9)). To use it we need to compute

L WLO0(E) — 1W,2 (cos(2r i)
+W,0(e) - § W, )+ :
\/E (6) 2 (COS( ) COS( ))

+0 (d_%(£%",€3(1_5))>

v, = =Wy, sin(27r-)€
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and also
2—n
(v.))? = W2 sir12(27r-)€T +0 (d—%(82—g’51+n’ 54_277))
=0 i 20-0)
Hence
1 82—7] 5 5 .
E(Uw/) = —502 (cos(2m) + 005(477-.)) — +0 (dia(&‘?n?g?'(l*i)))

2—n
B [(Uw,)ﬂ =0’ SiHQ(QW‘)ET +0 (d_%(g_g,el‘”?’ 54_277))

Consequently, with proposition (|5.2])
2—-n
/ E {(”Uw')Q)} du=02"—+0 (d*%(g*g,a”", 54*2’7))
T2

Now we can compute with definition and proposition ,

~(F) = / Eln|l+v./| dg
T2

- JLB(e - bR 0 (1) da
V(F) = T +0 (d_%(5%77754_g77))

1 o2 9 9, 3 5
i _Z — Z_2-n —3(e3M g4—35n)
Finally 2'y(F) i’ +0 (d 2(e2",e%7 2 )
Therefore can conclude for the announced formula of the Lyapunov exponent in theo-

rem with (4.9). This formula gives a proper development as long as 2 —n < %77 that
isnp > % and we find back the condition on 7 that arises in [SSB07]. Note that the term

coming from the conjugacy of order €™ is included in the error term we have written
(remind (5.4)) and section [5.3]).
[

5.5 The parabolic case E = 2 — d=*/3

We will prove the following:
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f—LTheorem 5.2 (LE, parabolic case)} \

The Lyapunov exponent admits the asymptotic expansion below:
2e2/3
4d

where p is some density defined by the L' normalization solution of an explicit

4

L(2 —de3) =

| (costzmy) + cos?(2my)(y) dy| + O(de)

first-order differential equation.

.

5.5.1 The diffeomorphism in the parabolic regime

All the computations we need have been made in the previous section (see definition (5.1)))

4 n _

to conclude that, when n = 3, i.e. 3 =2 —n:

’—[Deﬁnition 5.2 (Random diffeomorphism for E = 2 — de?/ 3)]7
4/3

For an energy E = 2 — de*/° the random diffeomorphism is

F=F,.:T?5 (z,9) — (z+ a,y + v,(y))

with the following random part:
1/3 2/3
— 1W. cos2(m) e 4 (Ld3 — LW .2 cos? ; g -z
Vo (y) = =Wy, cos?(my) 7 +<7rd2 5= W~ cos”(my) sm(27ry)> 7 +0 (d 26)

5.5.2 Transfer operator and cohomological equation in the parabolic

case

Let us state what we obtain in the parabolic case.

/—[Proposition 5.3 (Parabolical cohomological equation)]i

For a given ¢ € g3+t (T?), we are able to solve the approximated cohomological

equation
_ -I 1/3
Y=y =Tp—¢+0 (d 2|19 ll0,max(2,7+1+)€ )
where the obstruction Ay is defined by
Ao = [ (@) ply) dody
T2

with p a density which is the L'-normalized solution of an explicit first-order

differential equation p f' + (p' — q) f = 1.

Here are some quantities we need in the sequel:
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2
g = —— — — cos*(m+) sin(27-)
T (5.25)
p= 7 cost(m)
272
So we have
2/3
E (v,) = q% +0 (d*3/25>
2/3
vo? = H W, cos4(7r-)7 + O (d~3)
Ty = L 2y — ﬂ -3
vy = 3 E(v,?) =p g + 0 (d%)

This is what we obtain for the operators T,, (equations ([5.15)):

ﬂ Lemma 5.4

e for n =0 we can find ¢y such that

Towo — o =1%o — Ay +O (51/3037% WOHZ)

with Ay = /T Yo(y) p(y) dy

where p is the L'-normalized solution of the one-periodic solution of the

differential equation

pff+@ -9 f=1

e for n # 0 the quantity ¢, = %nwn verifies

_3
Tnon =vn+0 (ﬁ”lﬁn\hd 281/3)

Proof.
The equation for T truncated at its lowest order gives the following differential equa-
tion
22/3
Yo = (g0’ +Po") 0

Note that p admits % as its only zero on [0; 1] which is of order 4, and in the meantime

Q(%) > 0. We also compute

(4) 2 d4
p _ o —
(q) (3) = md 1/248d7r2d7/1 cosi(m),_y = 3d7?or? > 0
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Hence we are in situation (iv) of Proposition 3 in [SSB07]. That means that the

differential equation
p® +qd=V (5.26)

admits ¢ solutions on [0;1]. These are unique for y > % and have one free parameter

for y < % They are given by ®_ on {O;% { and ¢ on} %;1} where

o_(y) ( /76 )ew_@)
D (y) —e—w+(y)/ —eW
s) :/gﬂp

We are of course looking for one-periodic solutions with zero average on T since the

solution should be the one-periodic antiderivative of a solution of a first-order differential
equation. The periodicity condition imposes the value of the free parameter with ®(0) =

®, (1). For the zero average condition we need to say a few more words:

ﬂ Lemma 5.5

Let p,q and f be one-periodic smooth functions such that p, q satisfy the condi-
tions of Proposition 3 (iv) in [SSBO7]. Then the equation

py) v +q(y)u=f

admits a 1-periodic solution with zero average on T iff

/f y)dy =0

where 0 = 0, , is the 1-periodic solution of

pd +@ —qb=1

Moreover, the solution 0, , does not vanish on T.

Proof.

The existence and uniqueness of one-periodic solutions of the two differential equations

involved directly comes from the item (iv) of Proposition 3 in [SSB0O7] mentioned above.

Concerning the criterion of zero average let us define the differential operator of order 2

Ap=p¢"+aq¢

We can compute its adjoint A* on L2( )

/(p(y)w (y) +a(y) ¢'(v) dy—/@ (p)"(y) = (q¥)'(y)) d
T

so that A* 32( ) —09(q)
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It is a well know fact that (Im A)* = Ker (A*) and obviously
Ap=0 = pP'+@ -qv=c"

This proves that Ker A* is spanned by 6 the 1-periodic solution of p#’ + (p' — ¢) 6 = 1.

Now we write for ¢ a solution of pu’ +qu = f

Asoz/Tw(pH’Jr(p’ /9 Py +qp) = /9f

which gives the equivalence stated in the lemma.

The non-vanishing condition is a consequence of the resolvent formula, once one takes
in account the singularities and chooses properly the relevant antiderivatives for y > % or
y < %, and because in this case p(y) = cos*(ry) > 0 and ¥ =1 > 0. [ |

Hence, in order to get a solution with zero average we rather solve

£2/3
Yo — Ay = (g0’ +pwo”) 4

and so we must have

/F(z/z—)\w)ﬁdyzo

This imposes the obstruction as follows:

Ay /170 ; zr/Two(y)p(y)dy (5.27)
y

where p is the density defined by:
p=10/0q

Note that 6§ does not depend on € so that, with respect to € we have Ay = O (||1o]|0)-

Let us compute the error made with ¢ constructed this way:

Topo = o — Ay + O (@0’ d*3/25) + O (0" d3¢) + O (¢ d3¢)

7
= o = Ay + O (ol d"261/%)
For the other coefficients ¢,, with n # 0 we use the first step of the iterative method
which gives:

Yn
Tn

Pn =
That is enough to ensure
Trnon = n+0 (H‘an E |Uw|)

= 9n + O (Bl Ynllid—21/3)
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Now proposition can be proved. Indeed, the map ¢(z,y) = >.2°  pn(y)edi™®

meets all the criteria as it has been constructed for this purpose and we estimated all the

error terms required.

5.5.3 Formula for the exponent in the parabolic regime
In order to prove theorem we need to compute with proposition [5.5]
E (v,”) = W,0 (51/3) — 1W,% (cos(7) + cos(4n)) d~1e¥/3 + O(dfgs)
/2 E (v.)) dpe = —30? (cos(m) + cos(4n-)) d~1e?/3 + O(d_%e)
T
E (vw’Z) = W, 2sin?(2n-)d 1/ + O(d_%s)
/ E (vw’2> dpe = o?sin?(2m)d—1e?/3 + O(dfgs)
T2
So that with proposition [5.5|
~(F) = / Eln|l + 0./| d.
T2

= (~40? [ (cos2my) +cos(amy) + sin (2m) ply) dy ) a3 + O (a-e)

2

A8 = (=g [ (cost2my) + cos?m) plu) dy) € + 0 (a-Ee)
2d° Jr
And with L(E) = § |y(F)| (remind (£.9)) we obtain

2.2/3
L(2 — de*/?) = g

1 /r(cos(27ry) + cos?(27y)) p(y) dy‘ +0 (d’%e) (5.28)

2

As before, in this regime the term coming from the conjugacy of order €™ = &° can be

included in the error term we have written (remind ([5.4) and section |5.3)).

Remark 5.3

Note that the non-cancellation of the given integral in @ is unclear, like
in [SSBO7].

5.6 The case 0 = 1: energies outside the free spectrum

The main theorem is the following:
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f—LTheorem 5.3 (LE outside the free spectrum)} \

For % <n< %, the Lyapunov exponent admits the following asymptotics for

small enough:

L(2+de") = Vde"2 + O (d_3 (51’%,5%”*1’ g%ﬁ))

5.6.1 Conjugacy close to an hyperbolic cocycle

When the energy is E = 2 + de”, we are facing a QPR perturbation of the following
hyperbolic matrix of SLa(R):
2+de" -1
A, = +de
1 0

It has eigenvalues A, \™! which are the roots of X% — (24 de")X +1 =0 with A = \. € R
1
and so Q := (? i‘) diagonalizes A. to A = Diag (A~%, \). We also compute

~ 10 1 [-1 =\?
-1
— - 5.29
ama (! Nam gt (1) o
From the quadratic equation we get A = 1 + u. where
U = %de” + %\/4d5” + d2e2n
= Vde? + $de" + O(dgegn)
So that the other eigenvalue is
A= th =1 -+ e+ 0(u?)
— 1 —de? + Lde" + O(d2e2)

This gives the development
. -1 n -1 0 1 3 3
A = Diag( A", \) = Iy + Ve 01 + 2de" + O(d2e2")
and in (5.29) we have
G- 1 -1 -1 N 1 —(2ue +u?) 0
us+u (11 2ue +u? \ 2u.+u? 0

1 -1 -1 -1 0 ,
- - —52n/2
\/&snﬂ(l 1>+<1 0>+O(d °c )
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Therefore

C(z+a)SwesClz) ' = A+ eW,Q+ O <€m"g> (5.30)

5=

= I2 + Nw7a

where C(x) = Q7'B(x) and

-1 0

Nw,a = \/&En/2
0 1

1-1
c wo (T T e w O(e) + O
owd “\1 1 2 “

0 =0(d1?(c2n,274)) (5.31)

Let us now compute the random diffeomorphism. We have

z = Ny -(e™).e 7Y

— _e2my /e84 den + AW, (cos(my) + sin(my)) (—1 +1i
+W,0(e) + O (d_1/2 (a‘%”, g2~

NS ~—

So equation (5.31)) gives
7 1_ﬂ
Sm z = sin(2ry)Vde? + % (cos(my) + sin(my))? 6\/5 +W,0(e)+ O
n 817%
Rez = — cos(2my)Vde? + S — W (cos?(my) — sin?(my)) +W,0()+0

Vd

(\ ; d_n _ W2 ; e?n -1 (.3n 2-1
Smz Rez = —sin(4ry)5e” — = (1 + sin(27y)) o + W,0(e)+ O (d (52 ,E 2))

Finally, thanks to (5.10)), outside the free spectrum the diffeomorphism to study is
(x + a,y + v,(y)) where
o — sin(27-) e 4 sin(47r-)al€17 WL (1 4+ sin(27-)) cos(2m-) 277
T 2 47 d

1 4 sin(2m-) ' =/2

—1 (250 2-n/2
+W,, 5 7 + W,0(e)+ O (d (62 ,E ))
Please notice that, whether 7, = 7 is greater or smaller than 7, = 2 — 7 gives a

different dynamical behaviour for the averaged diffeomorphism. Indeed, when n; < 79,

that is n < %, the development to the first order of f, is
in(2
n sin(27y) et
T

whose fixed points are: 0 that is repulsive and % that is attractive. This indicates a
hyperbolic dynamics and so any stationary measure should rather be close to a convex
combination of the Dirac peaks at 0 and % Actually we will show that only the Dirac

peak at % contributes to the stationary measure.
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Now if 1 > 1o that is n > % then the first-order of f, is

n
2

, (1 +sin(27y)) cos(2my) e~
4dr d
3

whose fixed points are: % which is simple and attractive, whereas ¥ is of order 3 and

neither attractive or repulsive. In this situation it is unclear if a hyperbolical behavior

Yyr——>y+o

still could ensure Dirac peaks, and what combination of those two peaks it would give. So

we will call hyperbolic the situation when 7 < %. Let us make an additional basis change

by
P
e 0
P.s= 5.32

with § =1 — % is positive in this setting. This is the same conjugacy made by [SSB07]
to obtain what they call a second-order anomaly. The reason for this change of basis is
that it seems more doable to deal with a second-order anomaly than with the hyperbolic
first-order one. Their analysis of first-order anomalies basically works well for elliptic
anomalies.

From our point of view, the technique used before to solve the cohomological equation

to its lowest order does not work well anymore since the function p multiplied by ¢’
3
first substract functions that cancel the singularity of ¢/p at the zeros of p. It seems

vanishes at so that taking an antiderivative is no longer easily doable. One should

less technical to solve the equation up to the second order of perturbation which makes a
pseudo second-order differential equation arise. By this, we mean that we need to solve
pe’ + qp” = 1) which requires in fact to solve a first-order differential equation and then
take an anti-derivative of its solution, with the properties of periodicity and vanishing
integral.

With an additional conjugacy in by P.; (defined by ), we obtain the

transfer matrix I + N where

W, i (0 0 “1 0 5
N=_—2-_ +Vde? +W,0 (dV2%'72) + W,0 (d~/2e7"
2 \/E <1 0) (0 1) ( ) ( )

+0 (d_1/2 (5%"_1, 51+%>) (5.33)

The random diffeomorphism can now be expanded.

5.6.2 The random diffeomorphism in the hyperbolic regime
In this case we compute z = N(ei"y).e ~I7Y for the new cocycle given by (5.33)
z = $W,, cos(my)ie ™Y A3t — =2\ /den/? W, 0 (dfésl_”/g) +W,0 (d’%ﬁ")

+0 (d_% (5%’7_1, 61+"/4))
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CaXLD)

3 (5%"‘1,61+77/4))

[N

Smz = 1W, cos?(my)d 24 + sin(2my)Vde"? + W,0 + O (d*

Rez = W, sin(2my)1 d-2en/t — cos(2my)Vde"? + W,,0 + O (d_

SmzRez = $W,,? cos?(my) sin(2my) d='e"? + cos(2my)V/de"/?
+W,0 4 0 (473 (171 /1))

With (5.10)), we have in this hyperbolic regime:

f—[Deﬁnition 5.3 (Random diffeomorphism, hyperbolic case.)]i

4/3 the random diffeomorphism is

For an energy E = 2 + de
F=F,.:T?3 (z,y) — (z+ o,y +v,(y))

where
cos?(m) et sin(27) /3 1 9 o /2 3
_ s 1 ) an
v, = Wy, o Vi + - (d2 s Wy, cos*(m )) 7 + W,0 (84 )
+0 (d_%al_”/4, d‘lg%n_l)

5.6.3 Transfer operator and cohomological equation, hyperbolic case

This is the cohomological equation (5.15)) we solve:

Proposition 5.4}
For 1 regular enough we can construct ¢ such that

¥ —Go(3) =To - ¢+ O ([wollad~2 (¢

S
™
—
|
N
=
™
N
T
—
N—
N~—

Proof.
The expansion of v,, in definition [5.3]leads to

I o)

vo? = W,,?

Taking expectations gives:

71 = E(u,) = sin(2r) (d2 — Lo? cos?(r)) 57;/2 +0 (d-t (s, ein1))

2, — B (0,7) = 2 TV o (g2 (31, ))

These are proper perturbative developments when
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g<min<1,%n—1,%n—l,1—g)

which is the condition % >n > %. Under these conditions we want to solve the coho-

mological equation at its lowest order. As we already explained in the previous section,
the equations (&,,) do not provide any difficulty and our iterative method gives a solution
up to a reasonable order that we can always improve if we pay the price of the loss of
derivatives due to the diophantine condition.

For the coefficient ¢y we then have to solve for :

n/2 n/2
1y — Obs(¢)) = lsin(27r-) (dg - éaQ c052(7r-)> S w0’ + i02 cos4(7r-)€7 0o (5.34)
T 7r

which is again of the form for which where we are looking for a one-periodic solution
o = e/ 2d~1ypy' satisfying Jp ®dy =0, and ¥ as well as all its derivatives are of order 1.
The function p admits one zero of order 4: yg = % It is also a zero of order 1 of ¢q. This
type of differential equation has been analyzed in Proposition 3 in [SSB0O7|. Let us use it

in our setting. We need to compute

p\® d3 cos*(my) c dd744y: cos? (y) c
q (yo) = ¢

Nl

i Yy
dy3y:% sin(2ry)  d3/2Y &

sin(2ry) _27Td3/2 <0

y=

Nl

where ¢ = ¢(o?

,m) > 0 is a constant.

We resolve on [0; 1] then look for periodicity conditions. If ¥(1/2) = 0 then there is a
two parameters family of €°° solutions, namely given by ®_ on [0; % [ and ¢, on } % ; 1}
where

d_(y) = (<I>(0)+/Oy‘;'ew> o —w-(y)
Py (y) = (i’(l) —i—/ly;l:em) 0w+ ()

5 q
wi(s) = /mp
2

The continuity, and more generally the €*-properties, are only to be checked at y = %
and easily result from de I’Hopital’s rule. Notice that the values of <I>(k)(%) are imposed
by the differential equation (5.26)). For example any % solution should satisfy

v
() = lim L)
y—3 q(y)

which exists provided \I/(%) = 0 since % is a zero of g of order one. Taking derivatives in

the differential equation gives the other values of ®*) at % for any €**! solution.
We then require ®(0) = ®(1) and

Y Y
<I>(0)/e—wf +<I>(1)/e—w+ - —/ <e—w<y> Y u- +e—w+<y>/ ‘I’em) dy
T T T 0P 1P
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As [p(e™= 4+ e7™+) > 0, this system has a unique solution and our differential

equation admits a unique one-periodic solution with zero average provided \IJ(%) = 0.
This gives rise to the obstruction Obs(y) = (3) in (5.34) and so we solve

n/2 n/2
o — 1/1(%) = %sin(27r-) (d% — %02 6082(7'(")) 87 o’ + 8%02 cos4(7r')€7 wo”

5'7]/2

Considering the solution ® = 7=y and integrating it shows that for all k € N

ol < 1Yollmax(op—1yde ™2 (5-35)
Let us estimate the error made for Typo with the following computations
Topo = o' U1 + 0" T2 + E <Uw3/01(1 — )2 90" (- + sv0) ds)
= o — o(3) + Ay
Ay = 9o/O (471171, 714)) 4 00"0 (472 (377 ,2) ) + O (llvolls Elew )

The ¢*-estimates of ¢q (see ) and the presence of the term v,? ensure
Ay = O (lwollo(ex", €' =4M) + 0 (lwolld=" (27,6 7/2) ) + O ([[golls B(luaf)e ")

= O (Ilollo (7,741 ) + O (ol d=" (217!, £172) ) + O (|l llo d 2= 17=77/2)
Ay =0 (||wo||2 d—2 (8”/4751*%’7,6%”*1))

The lowest order of the error term therefore depends on whether 7 € } % ; % [ is larger
or smaller than % and %
Let us deal now with the coefficients ¢, for n # 0. We use the same procedure as in

the previous section. The first step is enough here: if we set

_ Yn
Pn = —
Yn
then TnSOn =Un +en
1
where cn—E <vw/ 00’ (- + su) ds) — 0 (|lollod1=7)
0

As done previously, we set o(z,y) = 3 pn(y)e? ™, It satisfies
neZ

3 T
TQD - = 1/}0 - ¢0(%) +0 (H’(?Z)H(),max(Q,TJrlJr) d_2 (577/4351_47775477 1))

This ends the proof of proposition [5.4}
|

Integration with respect to p. gives the following expansion of any stationary measure:
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/—E Proposition 5.5 }

For ¢ € g3+t (T?) and any stationary measure p. for F,, we have

/pd}d’ug = QZO(%) +0 (’|W|O,max(2,‘r+1+) d—2 (6%,51_%’7,5%7—1))

with Poly) = /T Y(x,y)dw

5.6.4 Formula for the Lyapunov exponent in the hyperbolic case

We now prove theorem [5.3]
Proof.
With definition [5.3] one gets

E (v,) = 2cos(2m)Vde"? + o (y - %) d=1en/? 4 O(d*%gkg, d_lg%’ﬁl)
/ E (v,)) dpe = —2vde"? +0O(d™3 (E%”,el_g,e%”—l) )
T2

E (”w/Q) =o(y — %)dflen/z +0 (al*2 (5%77’5%77—1))

f B () e = 0 (4t (chn et )

So that proposition [5.5] leads to
V(F) = /T2Eln]1—|-vw" dpie
= —2V/de"/? + 0 (a5 (17,6174 171
The formula L(E) = 5 |(F)| ensures
L(2+de) = Vde"? + O (d75 (37,174, e571))

Note that the formula is properly perturbative provided
g < min (in,l—Z,Zn—l)
which are the conditions n < % (already required), and also n > %. We actually obtain a
little wider range for which the formula established in [SSBO7] holds as they need n > %.
The error term of order €™ due to the initial conjugacy (see and section is also
included in the error term that we wrote.
|
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6.1

The model and its issues

For the purpose of a quite complete energy regime analysis, we now investigate the case

of a Schrodinger cocycle with mixed quasi-periodic and random potential (as previously:

117
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v(w,z) = V(x) + W)

_ (E-ev(w,z) -1
SE,w,z - ( 1 0 ) (61)

when the energy E is supposed to be neither close to 2 nor diophantine with respect to a,

but resonant for v which means
1

B =pB(E)=—Arccos(E/2) = kaa mod 1 (ke Z) (6.2)
T

This obviously prevents the use of the techniques developed in chapter [4] since the
cohomological equation associated with the transfer operator to solve would have no so-
lution. Namely, the Fourier coefficients (@, m)mez of the cohomological solution ¢ would

not necessary be defined as they should satisfy
(e 2im(matnf) _ 1) Pmn & Jm,n

This tends to indicate that the techniques associated to the study of a transfer operator
close to a rotation on T? are not relevant anymore. A better idea is rather to go back
to the case where the random diffeomorphism induced by the cocycle is a perturbation of
the identity function, as in chapter 5 Also we assume k # 0 in because we already

treated the energies at the band-edge of the free spectrum in the previous chapter.

6.2 Outline of the proof

The proof is divided as follows:

(i) At first we apply the conjugacy already mentioned in chapter {4] to conjugate our
cocycle to a perturbation of the identity.

(ii) Then we compute the random diffeomorphism given by the conjugated cocycle which
is now a perturbation of (z,y) — (z + a,y) on T? with a dependance on z on the
second factor. The Fourier transform in x leads to more complicated equations to
solve for the coefficients with rather look driven by the action of a linear operator
that is diagonal at its lowest order. The context of our work is then the setting of
matricial differential operators with exponential decay w.r.t the diagonal (look at
definition .

(iii) Thus we conjugate of the initial operator to a diagonal operator up to some er-
ror terms (proposition . We need to prove estimates for converging sequences
in L?(Z, T) and matricial differential operators acting upon those (proposition .

(iv) Once the equations for the diagonal operator are solved, we can back to the initial
problem solve it (see section . Two regimes where the computations remain

feasible occur, depending on a condition on E(Wq) + Vo — ’\A/k] where k is defined

by .
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(v) We treat those two cases. We will see that the hardest Fourier equation to solve
is actually the one for the coefficient of index 0. This will lead us to study solu-
tions of first-order differential equations with some parameter (lemma . The

computations get quite technical but give an exploitable perturbative formula in the
end.

6.3 Reduction of the problem to a perturbation of the
identity

We will first conjugate our cocycle to a perturbation of the identity. The conjugacy by

Pg = (é gfgi&;ﬁ ) (see |4.13) (algebraically) conjugates our transfer matrix Sg g, , to

R Ev(w,x)N _ (cosmB —sinwf ev(w,z) (sinmf cos7f
™ sinaB P \sin 7B cosmf3 sinm3 0 0
Now we add a cocycle conjugacy of (o, Sgwz) by (0,R_zis): if C(x) = R_grePp then

v(w,x)

e = Olar + )50 C0() ™ = Reriria RrsRoks — = 2 Ror(rt)NoBorks

v(w, x)

= Rﬂ(ﬂ—ka) - R—/mr(x—i-a)NﬁRﬂk:c

sin 3

As = ka mod 1 we have Ry (3_1a) = ol2 where this sign o involved in the expression
depends on the evenness of the integer p = 5 — ka:

o= (—1)fke
We can also compute R_pr(z4a) Ng Rake = 0Qu,o Where

Qo = 0 ( cos (km(z + «))sin (7k(z + «))  cos (km(z + «)) cos (mk(x + @) )
o —sin (k7(z + a)) sin (7k(z + «)) —sin (kn(z + «)) cos (Tk(z + «))

)
) (; sin (2km(z + ) cos? (kr(z + o)) )
)

—sin? (kr(z + @) —3sin (2kn(z + @)

As a result, after this conjugacy we have to work with:

FSVW@ =0 (Ig — ev(w’ x>Qx,a> =0 (Iz - €MQx,a> (6.3)

sinmf3 |sin ko

Therefore, the projective action induced by the cocycle does not depend on the sign o
and, like in previous chapter [5] is a perturbation of the identity map of T that we shall
precisely compute afterwards. The main difference, which will directly lead to a more
complex analysis of the transfer operator, is that the potential now cannot get rid of its

dependency on the variable x.
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6.4 The random diffeomorphism

In this section we compute the random diffeomorphism given by the cocycle FSVWE (see )
obtained after the conjugacy made in the previous section. Namely we show that the

diffeomorphism is of the following type:
Fo(z,y) = (z+ o,y + vu(2,y))

with v, (2,9) = ev1w(7,y) + e2va0(2,y) + O(3). We use the method explained in the
previous chapters (see [5.10]). Let us denote a = k7(xz + «) and also

Q (sin acosa cosZa )
- 2

—sin“a —sinacosa

It is straightforward that for y = my we have z = mea(eiﬂyv).e iy = sin(a + @)e_i(aﬂb
and so with the computations made previously chapter (see [5.10))

B _ev(w,x) ) ~—i(at)
z = ey sin (a 4+ 7) e

Smz = 220 G200 4 )

sin (3
ez = D) Gy ) cosat)

ez =———"=sin(a cos(a
sin /3 4 4
ev(w, x)

- in(2a + 27
2sinmf sin(2a + 25)

This gives the diffeomorphism to study:

f—[Deﬁnition 6.1 (Random diffeomorphism, resonant case)]i

The random diffeomorphism in the resonant case is (x + a, y + v, (x,y)) with

’Uw(ma y) = 5”1,&0(1'3 y) + 82,02,0-)(1” y) + 0(63)

where we set (recall that v(w, x) is the initial potential of the Schrédinger operator

in (6.1])):
B lsin2 (m(k(x+ a)+y))
'Ul,w(wv y) =

T |sin Thka| v(w, )

sin? (7 (k(z + « sin (27 (k(z + «
(o) = S G+ Q) 4) S Or bl b )+ o,

= 3 v1.0(2,y) Oyv1w(z,Y)

v2w(2,y) = §0y(v1.°(2,y))
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6.5 Transfer operator and cohomological equation
We still want to solve cohomological equations of the following type
v =E(poFy) =@+ Obs(¢) + O("|[¢]|x) (6.4)

for some > 0 and k£ € N to be specified later, with obstructions that are as simple as
possible and namely constants (linear forms in v). The cohomological equation is now

obtained when one tries to solve the equation below:

P(z,y) = —p(2,y) + o+ a,y) + @) (z + a,y) E(v,(z,y)) + 2¢l(z + a,y) E(v(z,y)?)
+ O ¢lls)
= —p(z,y) + p(z + o,y) + v (z + a,y) E(v1 w(z, y))
+¢2 (¢ (2 + a,y) Blusu(x,9)) + 39y (z + a,y) Bloru(z,9)%))
+ O ¢lls)
V(. y) = oz +a,y) — p(z,y) + evi(2,y) & (z + a,y)
+ &2 (va(w,y) @) (2 + 0, ) + w(z,y) @@ + ) ) + O(¥|ols)

where we use the following notations

vi(z,y) = E (viw(z,y)) and w(z,y) = %E <vljw2(x,y)) (6.5)

Hence vy =

E (9,(v1.2)) = 10, E (v1.2) = L0,w

=

The cohomological equation is now an “a-schifted” PDE:
v=p(+a) —ptengy(-+a)+e (ng)(+a)twgl-+a,)  (6.6)

with an error term of order O(e?||p||3) which is precisely

E (vw(a:, y)S/Ol(l —5)? (pg(f’) (x+ a,y + sv,(z,y)) ds) (6.7)

Let us use again Fourier series in x. As we noted, the dependency on x in the poten-
tials v; and w ((6.5))) make the computations more complicated. Let us recall that if f, g
are in L2(T?) then

(Ful) = [ @) gl w)e ™ do = 3 fu0) ga-i(v)

keZ

Thanks to the previous computations , we see that we have to find, for all n € Z,
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a function ¢,, satisfying, up to a term of order O(g®||¢||3),

Un(y) = Ynen(y) +€ EEJZ e p (1Y) V1 n—m (y)

+é° ZG:Z e 2imma (om/(y) V2,n—m (W) + on" (y) wn—m(y))

(6.8)

The equations are not independent like in the previous chapter as each one requires

all the ,,’s: we are rather faced with an operator action since, up to terms of order €3,

Up, = YnPn + € Z Ln,m@m + g2 Z Nn,mgpm (69)
meZ meZ

which can be written in an operator theory formalism

(¢n)n€Z = [F +eL + 52N] ((pn)nez

for operators I', L, N defined by their coefficients (Op; ; = (Ope;|e;)) as follows:

Lij=iy  Lij=e® v, ;0, and  Nij=eX™ (v, ;0 +wiy02)
(6.10)
Note that our operator
A:=T+eL+e2N+eM (6.11)

is, up to the third order in e, the diagonal operator I' of multiplication by (7). per-
turbed by differential operators of respective orders 1 and 2. The idea is to conjugate the
operator A to get a simpler equation ¥ = D® to be solved perturbatively. Namely, we
diagonalize A up to the right order of approximation needed (in our case it is 3). First let

us elaborate on our context of matricial operators.

6.6 Matricial operators on L*(Z,T)

The operator A acts on # = L?(Z,T) = {wn('))nez | Y [l € LI(T)} which is a
nez

Hilbert space endowed with the following inner product:

(Wlg) = /T , (Z wn(y)em’m‘”> ( > wn(y)em”m) dz dy

neZ meZ

whose associated norm is

lwa)lr =3 /T [on(y)* dy

neZ
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It is clear that L?(Z, T) is unitarily isomorphic to L?(T?) with

L3(Z, T) — L%(T?)

u: . (6.12)
(1/}71())”62 — ((x7y) = Z wn(y)emwnm)

neZ

which admits the Fourier transform in z as an inverse
L3(T?) — L*(Z,T)
U1=r,:

oo (Jpd(e, ) e M dr),
That means
bl = 3 mal® = 1013 = 3 [ n(o)P® dy
m,nEZ nez”’ T

In order to give proper €”-estimates for any stationary measure in the end, we need
to exploit the exponential decay of the matrix coefficients in w.r.t their distance to
the diagonal. Indeed they are Fourier transform in x of analytic functions provided one
assumes the analyticity of the quasi-periodic part V in the potential (see ) First let

us introduce relevant norms in our context of operators and sequences of functions.

/—[Deﬁnition 6.2 (Matrix differential operators with exponential decay)}

Let (’)g/fh be the set of matrix differential operators Q = (Qi,;)(; j)ez> such that

M
Qij= > i) 85 with g; j¢ € €¢;°(T) (analytic on the strip {|Smz| < h} and
=0

> e g ()lln < o0 (6.13)
(i,)€2?
0<e<M

For Q € O};/fh let us define

1Qllo = 32 e lgi()In < 400 (6.14)
l?]?

We denote Oi\,/[;f the operators Q) for which q; jo = 0 for all i, j that is when the
differential operators have valuation > 1 (i.e. contain no term without derivative).
And finally O, y, O}, are the union of (’)}th (resp. Og/l}’;r). over all M € N (resp.
M>1)

Now that these definitions have been settled, we can state the following lemme about

the composition of matricial differential operators:
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Lemma 6.1
If Qi € O} and Qq € OL? then Q 0 Qz € O} ™2 and we have for the norm:

(M1, My)
1Q1 0 Qallon < =g~ 1Qullon [1Q2]lon

Proof.

Let us begin the proof for operators of order one Q; ; = ¢; ;0 and R; ; = r; ;0. Then

(QR)i; = > QifRe;
ez
= 3 qiur; 0+ qigre; 0
ez
(QR)i; = (Z Qv Te,j') 0+ (Z die Tz,j) 0?
ez (cz

So we are looking for the convergence and an upper bound of

+
h

)

The following inequalities, that come from the triangular inequality and Cauchy’s

> Qi Te,5
LEZ

S= > e 1S giorey
ez

(4,4)€22

estimates, will be useful:

2 qiereg|| < 2 llgiellnllre;lln (6.15)
leZ leZ

h
1
e lln < lireslln

e?li=il < eoli=tlgolt=il

Consequently,

S< Y elile=il (g olln llre,lln + lldielln lImelln)

(3.4,)€Z3
S@+4) >0 e lrglln > et =g ol
(j,0)eZ2 iz
<@+ Y e lrgslln Yo el gieln
(j,0)eZ? (i,0)€Z?

S < (1 + %)HR”o,h ”Q”o,h

Mq Mg
!
Now for general Q;j = > qijm 0™ and R;; = > 7;;m 0™ we have
m=0 m/=0
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Mg Mg ,
QieRej = > > Qgm0 (rejm O™)

m=0m'=0

Mq Mg m.o (m—p) .
= ZO /Z: i l,m Zo(p)ré,j,m’ m=p) g

m=0m'=0 p=
MQ+MR MQ Mg m ,
Qi,ZRZ,j = ZO ZO /Z Qi,f,mly—mgm’gy (V_m/)rf,j,m’(m—i_m —v) ¥

v= m=0m'=0

MQJrMR
So that S;; :== (QR)i; = > Si;,0” where:
v=0

Mq Mg

Si,j,l/ = Z Z Z Qi,é,mlu—mgm’gu (Vlnm/)rf,j,m’(
keZ m=0m'=0

m+m’—v)

With the same previous estimates (6.15) and using that m +m’ —v < v < Mg + Mg

one gets:

. 1
|QoR|sn = Z 1Sijwlleli=l < WC(M@MR)HQHU,h IR |o.n
i,5)EZ>?
0<1£Z<]1\2[Q+MR

|
Let us take a look at the behaviour of the action of such operators on analytic sequences
of L2(Z,T).

/—EDeﬁnition 6.3 (Norms on L*(Z, T))}
Let us define for r € N

Eopr 1= {(Son)nez on € €"(T) | Zzegln‘H‘PnHr < +OO} (6.16)
ne
We also set ¢ = (py,) € &y, the following norm:

lollor == X e lonlr (6.17)
neZ

Remark 6.1

Note that for ¥(z,y) = 3,z ¥n(y)e?™, we have ||[Y|lpr := ||tn|lo, is the

€“ x €7-norm of 1), meaning that it is the analytic norm on the first variable,

and the €J-norm on the second one.

Here is some result about the compatibility between the norms of the operators and

those of the sequences:
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( Lemma 6.2

For Q € (’)g/fh and ¢ € &, we have Qp € & ,_\ and

Qe

1
or-M S 7oy Qo (6.18)

Proof.
Let us fix Q € Og/’lh and ¢ € & . For Q;; = qi7j738£. Leibniz’s derivation formula
(Qp)n = D _tnjes”
JEZ

r—M
Q)™ =3 (TN )
jeZ P=

M r-M Ve . .
£ M@ o < 32 8 () lans NPl lsllesp eI Te
nez (n,j)€Z2 p=0

r—M . .
<Y X (e gjllery i ngquHhe"'"*]'
n

jez P=0
-M -M . -M
> e Q)T ™o < 2 S e 1l 1Qlon = 2=t | 6llor QLo
neZ jeZ

M
And so for Q;; = > qije 9% we obtain Qp € Eor—m With
k=0

-M
oM < ME=xt 19llor 1Qllon

1Qe]

|
For our purpose, we will only use operators with bounded degree M, and sequences

with bounded %7-regularity in v.

6.7 Conjugacy of operators on L*(Z,T)

So if we set U = (¢,(+)),,cz and @ = (©n(+)),,cz We have to solve the matricial equation
U= (T+eL+e2N+0(e?)®

As the lowest order term in A is I' which is already a diagonal operator, we seek a

conjugacy close to the identity and our aim is then to find operators Y1, Yo,... such that
A(Id+sY1 +52Y2+...) = (Id+sY1 +52Y2+...) (D0+5D1 +52D2+...> (6.19)

where the D;’s are diagonal operators. Since invertible operators form an open set, this
will be enough for the conjugacy we want because Id 4+ €Y + €2Yy + --- + €Y, will
then be invertible for e small enough provided the Y;’s are bounded. The order of the
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perturbation n will be chosen depending on the order of the Taylor development used for
the cohomological equation. We identify the same order terms in the development in e
that these equations give rise to. With A = I' + L 4 2N + ..., the system obtained

from (6.19) is
I' =Dy

L+TIY;=D1+Y1Dg
N+TYy+LY; =Dy + YD1 + YDy

To the 2nd order (and so that concerns the 3 first equations), this is equivalent to

Do="T
[F,Yl] =D;—-L (6.20)
[P,YQ] =Dys+Y1D;—LY; —N

Let us analyze the equations of “bracket type” [I', Y] = F given by (6.20). Remind
that o, = eZim™a
DC(k,T) on «a (see[2.3). This will provide quantitative estimates for the solutions of the

brackets equations.

and v, = o, — 1, and also that we assumed a diophantine condition

/—[Lemma 6.3 (Bracket equations)}

The equations

[FvY] =F (6.21)

can be solved formally for F having zero diagonal part i.e. Diag F = 0 (that is
F,; =0 for all i € Z) with
1

Vitl Y= Fi, 6.22
=k (6.22)

Moreover, the solution Y is unique up to its diagonal part Diag Y which can
be chosen arbitrarily.

In the case where F € (Dg/lh then the solution verifies Y € O, j, for ' < ¢ and

K,_l

¥lon £ gyl Fllo (6.23)

where K, T are the constant and the exponent in (2.3)).

Proof.
We can compute the coefficients of [I', Y]:
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Y] 0= (v — 7)) Yie

so that the bracket equation (6.21)) is equivalent to (v; —v,) Yj¢ = Fj. Of course we
have v; # v for j # ¢ thanks to the irrationality of a. So the formal solution would be
Y = Yf with coefficients

ViFl Y= Fje
Vi~ e

and one can choose anything for Y; ; under the assumption that Diag I = 0.

M
Next for F; s = > fjop(-)0P one has, if Y denotes the solution,
p=0

M ; T
| iAo
S eyl <3 Y emtootimt I L onia g,

JEZ p=0 (j£)€Z2
SENQlon Y el — g
(4,6)€Z?
iy K
Z el |HYj,€Hh S m 1Q o,h

JAEZ
|

These estimates for the sequences and the operators help us to prove the following

diagonalization result.

ﬂ Lemma 6.4

For o, h such that vy, v2, w admit an analytic extension to the strip {|Smz| < h}

with the convergence conditions (viy),(ven), (wy) € &, we can find Y, €
Oi’;{,Yg € Oz’h matricial differential operators and Dy = I, Dy € (’);Z and

Dy € (’)37{ diagonal matrix operators, all explicit and defined with I', L, N, such

that
AC =CD+¢&°R (6.24)
where
D =Dy +eDy —|—€2D2
C=1d+ €Y +£%Y, (6.25)
R=LYy+NY; — YDy — YDy + S(NYQ = €Y2D2)
and

K_3

||R||o—’,h S m

(6.26)
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Remark 6.2

Please notice that, by definition, R = T + ¢F where T is a differential operator
of order 3 and F € (93’; is of order 4.

Proof.
Let us denote 0 = 0, the operator of differentation along the 2nd variable y. We apply
lemma [6.3] to equations (6.20]) and obtain

D; = Diag L

which means (D1)j.e = 0j0c5v1,0(-) Oy
Since v; — ¢ = o — ay, we get the following coefficients for Y:

O (6.27)

ViFl  (Yi)je=-——"—
Vi~ Ve Vi—t

We also choose Diag Y1 = (0)jez.
Applying the procedure one more time gives
Dy = Diag N + Diag (LY;) — Diag (Y1Dy)
= Diag N + Diag (LY;)

As vy is a real function we have v _,, = U1, and we deduce

o,
(D2);; = a; (Uz,o 0 + wo 32) + > = j_+ (v1j-e (v1e—5) O+ v1jgv1p—;0)
tez—{jy 10T

V1j—t — V15—
= qj (v270 0+ wy 82) + Z Li—t Ulyj,g' 0+ Q; Z Li—t U1,j—¢ 0
tez{5} It vez~{jy Vit
Vim —— 7
(Da)j; = aj (vo0 0 +wo ) +a; > "0 04a; > om0t (6.28)
meZ~{0} Tm meZ~{0} Tm

We can say a little more on the sums involved above by remarking that

> ap(y) bp(y) = /Ta(fv,y) b(x,y)da

pEZ

where a(z,y) =U (ap) ez = S ay(y) o 2iTpT
P pEZ
Hence, if we let v, be the function defined by

,U]., (y) i
vy(z,y) = Y, e
pez~{o} P

it is straightforward that v, (x,y) = vy(x,y) since v p(y) = v1,—p(y) (v1 takes real values)

and also 7, = v_p.
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Remark 6.3

Let us note that v, actually solves the following cohomological equation:

e2i7rpa -1
U’Y(x +a, y) - U’Y(:U> y) = Z 71}1’7,(];) €
pez~{oy P

= Z vl,p(y) e?iTer: =V (CL‘, y) - fT U1 (ZL‘, y) dz
peZ~{0}

2iTpx

Then we deduce the following equalities

Doral@) = [ (e Dol de = [ v,(w,9) 0y (a,9) da
mez~{o} Im T T

s(y) — Z Ul,m(y)

meZ~{0} m

V1,m(Y) :/rvy(as,y) vi(z,y) dx:/rv,y(ac,y) vi(z,y)dz (6.29)

But we can also compute

s()= > 7

V1,m
meZ~{0} Tm
_ Z |U1m| Z‘ <+ 1)
meZ~{0} Tm m>0 Tm T—m

B Z - ‘2 2Reym Z o ’2 2(cos 2mma — 1)
- m - m

i 2
m>0 | m’ m>0 ’6217rmo¢ - 1‘

= _Z |U1,m’2 =5 Z ‘U1m|

m>0 m;éO

1

1
) = —— 2 . — 2
s(+) 2/Tvl (x,-)dx + 5 V10

Finally,

s(y) = —;/rvf(x,y) dz + % <Avl(x,y) dx>2 (6.30)

So that s(y) is non positive by Jensen’s inequality, and vanishes if and only if z
vi(x,y) is constant a.e. We obtain thanks to (6.28]):

(Da);.; = ajr(-) d + ajt(-) 92 (6.31)
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where

(y) = v20(y) + uly) = 50 () + [ 0,(2,) By (o) do

Hy) = woly) + s(y) = wo(y) + [ v,(@.y) (o) da (6:32

Let us give another useful expression of t. By definition,

wo(y) = ;/rw(a:,y) de = ;AE (U17w(fﬁ7y)2> dx

Hence

t(y) = ;/TE (ULW(:U,y)Q) dx — ;/rv12(x,y) do + % (/Tvl(a:,y) dZL‘)2

1 9 1 9 1 2
= 7/ E (vlvw(x,y) ) dz — = | (Eviu(z,y))” de+ = / Ev,(z,y)de
2J)T 2J)1 2 \Jr

- Vit s ([ o)
1

T or |sin Tk

V(W)/Fsin2 (m (k(x + a) +y))dx + % (/r E v, (z,y) dx>2

1 1 2
tly)y=——— V(W) + = Evio(r,y)d
() 47 |sin Tk (W) + 2 (/T VLw(,Y) x)
And finally . )
=———V —vy o2 .
0) = e YOV + 30 ) (633

So that the positivity of ¢ can be granted under some assumption on the largeness
of V(W).

Let us finish by making Y9 explicit. Let us set A; j :=~; — ; for @ # j. The resolution
of the bracket equations then gives Yo with coefficients: for ¢ # j

1
(Y2)ig = 1~ (YiD1)ij = Nij — (LY1)i;5)
Z?J
1
= 5 | (Y0igDjj = Nij = 2 Lip(Y1),
(2% pEZ
1 Lij Ly,
b (7, _W,Lj,j —Nij— > Li,piy, —
1 J J J pGZ\{j} J D
_O‘j2 / 2 Qj 2
(Yo)ij = 5 (V1i—j(v1,0) O+ v1i-jv100°) — (v,i—j O + wi—;j 0?)
(Aij) A
1 Op+j

(V1imp (V1,p—5) O+ V1, j vp—j 0?)

2y peZ~{j} J,P
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Furthermore for D = Do + €Dy + £2D»

AC = (r +el+ €2N> (Id TEY; + 52Y2)
=T 4+e(L+TY) +e2(N+LY; +TYy) + LY + NY; +£'NY,
CD = Do + (D1 +Y1Dg) + &2 (Dy + Y1 Dy + YaDo) + ¥Y 1Dy + YoD; + YDy

and so, as stated in (6.24]), AC =CD + &R

The estimate of ||[R[| 5 comes from the very definition of R, lemmas ﬁ and E

successively applied for Y1 and Yo.

/—E Corollary 6.1 }

For any S € C[Y1,Ys] where Y1,Ys are defined in lemma with positive

valuation and any 0y, = (0n,m)n € Z we have

Sém =0

Proof.

This is straightforward if one remarks that Y1, Y9 have valuation > 1 whereas §,, only

contains constant coefficients. |
All the ingredients required to solve the cohomological equation with obstruction have

now been obtained.

6.8 Solution to the cohomological equation

We want to solve ¢ = Ap + Aydp. The conjugacy we made reduces our problem to solve

the following diagonal coefficient equations:

1 = (1hp) = Do = (Do + €Dy + £2Dy) ()

Indeed, suppose we can find a solution ® = &, to the equation
P — )\1/,(50 = D®y + 1y (6.34)
where Ay is an obstruction and r, is some error term. We obtain with (6.24)), (6.34) and

corollary

C(1p) — Adg) = CDP + Cry,
= AC® — 3R + Cry,
Y+ eYi 4+ XY — Ay = ACO — SR + Cry
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Still using corollary [6.1] it remains that
Y = Py = C‘I%p (635)
solves the equation

Y — Apdo = Ap — RP + Cry — eY11) — Y1)
=Ap+ Ay (6.36)

where

Ay = Cry — *ROy — Y19 — 2 Yo
=1y +eY1ry +2Yory — RPy — Y19 — e2Yor) (6.37)

But (6.18) and remark [6.2| ensure that

HAmer < ”W)HU,T + EHTwHU,r-i-l =+ 52”“&”&7"-%
+ 53”@1/1”077’-&-3 + E4H(I>w o,r+4
+el¢llon + €[]0z (6.38)

Assume that we have the following estimates for some functions m,n: N — R

[Py lor < ™o lr—1 + [¥llor44 (6.39)
Irpllor S e™lvoll + l[9]lora (6.40)

Then it remains in ((6.38))

1A llor S €™ ol + £+ [hollr + 70D b 12
+ D [ o + O [
+ &Y llora + W llorrs + W
+ Y llori7 + MW orrs
+el@llon + XY lloz (6.41)

o,r+6

So, up to the error terms in (6.41)) whose orders depend on % and will be more carefully
analyzed throughout the remainder, the equation ¢ — Ay, = Ay is equivalent to
P — /\w = (Do +eDy + 52D2)g0

Like in chapter [5] this takes the form of an infinite countable system of differential equa-

tions
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as follows:
n = Ynpn +eanvio(-) pn’ + 2anr() on' + 2ant(’) ©n" (6.42)
= Ynn + €an(-) on' + 52bn(') ©n"”

where 7, ¢ (see equation (6.32)) have already been specified and studied, and

an = an(vio+er) and b, = ayt (6.43)

Remark 6.4

Definition [6.1] and Kolmogorov inequalities ensure that

1] < [oa0®] + B [o1,6] Jor,—e™* ] ey
Kzo

1 1 2 + 2
<~ 4z D 147+ gpt1
~ ktsin? (kra) + R/F ‘%m(%y)‘ dx./r ‘896 1o} vl(a:7y)’ dz
1 |k’1+7+

Vlp+1

~

ki sin? (ko)
1 347t
Il S — BT VIl

st

And also the identity t(y) = v1,0%(y) + ———— leads to
’ |sin(kma)|
1 ‘k|27-
< 2 < <
el 5 o0l S szgomey S

where we remind that V is the quasi-periodic part of the potential of the
Schrédinger operator in (6.1)).

In our setting, the degree of all the operators involved is bounded by 4. Moreover we
are interested in ¢7-estimates of Uy (for U see ) the function induced on T? by the
sequence obtained after solving the diagonal equations. Lemmas [6.3 and give us those
estimates. If we look back at the initial cohomological equation , we can see that we
solved it with an additional error term which is O(e3U@). Then we have solved (6.4) with

¢ = U provided we can estimate ||¢||; w.r.t. €.

Let us now investigate the equation 1; = Dy and estimate its attached error terms in

two different cases, depending on the positivity or the vanishing of the following quantity

8 := E(W) + Vo — |V (6.44)
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6.9 The case 6, > 0

6.9.1 The diagonal cohomological equation

When &, = E(W) + V, — ‘\A/'/J > 0 we obtain the following result:

/—[ Proposition 6.1 }

Given a v = (Yn),cz € €4, We can construct ¢ = (¢y,) satisfying the equation

¥n =800 (Ap +EAp wory)) = (Do +eD1 +&2Ds)g), +en
with obstruction

1
M= o 2/ T 12&0(8) ——ds (6.45)
\/(Vo + E(W))? = [Vi|?/T Ok + 2| Vi|sin®(ms + wha — 36)

k 67
and error VA0 llenly S Bl

EH |lolls
I@’3 5k4
With respect to e, we have ¢, = O(1) except for the case n = 0 where

wo = 2¢g and ||@ol|; = O(1) for all integer j.

52

leo] <

Proof.
For n # 0 we have vy, # 0 so the iterative technique developed in the proof of lemmals.3|

(chapter 5) still gives a solution with similar estimates: we solve the equation with a

perturbative scheme and try to improve the order of the error term. We first set ¢, o =

%1/171 and compute the error made compared to an exact solution:
n

YnPn,0 + Ean 9011,0, + €2bn Son,OH =Y + €n,l

An bn 1"
where En1 = Ean P + €2by, 0" = e— by + 2" 1y,
Tn n

so that under the diophantine assumption a € DC(k,7) (see [2.3) and the estimations

of [lan], ||bn|| (see (6.43]) and remark we obtain

In|”
Hg”:lHj S ”7;[)n’|j+2?€
We now want to write for the error term: €, 1 = —Ty,¢p,1. Always considering the lowest

order we set
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€n,l Eln ¢n/ + 82bn 1/}71”
$nl1 = —— = — 2
Tn Tn
so that lenall; = O <H¢n”j2+2€> =0 (Hi/fn‘:LjH |n|2T 5)
K |'Yn ‘ K
and Pn = ©n,0 T Pn,1

The evaluating of the error follows

/

TnPn + €an o’ + £2by, on' = Pn+ En,1 T YnPn,1 +€an ‘Pn,l/ + 2by, Spn,l/
= d}n + En,1 —En,l + €n,2

with En2 = Eap pn1 + e2b,, on1”
/ 7
i ean n’ + 2by, Uy 2 gan Pn’ + 2by, "
= —¢cay 3 —e%b, 3
Tn Tn
[¥n llj+4
50 lenzll; S 25— (lanll3 + 10a]13)
|7
|k|27'

2
< [ vonl|jta Inl*T T sind (ko)

< 2 27 |k|6T
lenzlly S e*llnllj+a Inl™ =5
We could go on with this procedure and obtain an error of order O(¢?) but this is
enough for our purpose.

For the case n = 0 we have to handle the following differential equation of pseudo

order 2
Yo — Ay = €ag o’ + £2by po”

By pseudo order 2 we mean that we have to solve a first-order differential equation for g’
and then take an antiderivative of this solution. The fulfillment of the periodicity condi-
tions on ¢g and g give rise to the obstruction Ay (see lemma in chapter [5)).

We already proved that by = ¢ is positive with bounds depending on the variance V(W)
(see (6.33)). So that one can divide by €%by to actually solve a first-order differential

equation
+1la=0

with ¥ of order =2, Periodic solutions to those equations have ¢7-norms < e||¥||; =
O(e7!) when a does not vanish (see appendix [A.2). Remind that ag = v1o + O(e)
(see (6.43)). Let us analyze vio(y) = [pvi(z,y)de. We recall that we computed in
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section

sin® (7 (k(z + o) + y))
|sin ko

0(7,9) = B (010(r,3)) = ~Bo(w, 7)) (6.16)

1

T on |sin ko

(V(z) + E(Wy)) (1 — cos (2mkx 4 27ka + 27y) )

After integration w.r.t x we obtain

1
27 [sin Tk
1

~ ) (O 2oyt )

vi0(y) = (V1)oly) = (\70 +E(W,) — |\A/'k| cos(2my + 2mka — Gk)> (6.47)

where V, = Jp V(z)e ~2™ dz stands for the k-th Fourier coefficient of V(-) and ) =
Arg \Afk its argument. In the current context, the fact that v; does not vanish is granted
under the condition 6 > 0 (remind (6.44))).

We could also use this method to solve the entire equation and get the obstruction of

the form Ay, = [ 9 (y) p(y) dy where p is the L' normalization of the solution of
r-ci=1
€
But this would make the computation of the obstruction complicated as one would have
to estimate integrals with respect to a density which is not explicit. So we rather use our

perturbative technique that we call method of order 1 which will extract the £ orders out

of the integrals w.r.t. p: we solve at the lowest order

o — Ay = €v1,0 0’

And consequently we set

1

y
oo(y) = —2m ]Sinwka\/
€ 0

Yo(s) = Ay
Sk + 2|V sin?(7(s + ka) — 16)

which gives the obstruction

/ _¥(s) ds / — - ds
T 6k+2|Vk ‘ sin2(7r(s+ka)f%0k) T ok+2 |V;C | sin? (m(s+ka)— %Gk)

)\d) - / ds - / ds
T 6k+2|§k| Sing(ﬂ'(s—i-ka)—%ek) T 5k+2|§k‘ sin2(7r(s+7rka)—%9k)
— [ 4 pls)as
T
where p(-) = % is a density with
T
1
f(s)

0 + 2|V sin?(n(s + mha) — 36;)

N

[ fdu= (Vo BW)" - [Wif)
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The following €P-estimates of ¢g are straightforward

H(bOHO ’Sln(km-a)’ ||1/}0||0
Vo + BW) - [0 ©

sin(kra) [[#olly-1
Idollo1 S =5 Fmr "

Let us evaluate the error made with this method
eap g0’ + b ¢ = Yo — Ay + €1
!
- A -
e1 = e1(P) = erdo’ +etg” =er Yo~y +et <M>
0

U1,
One can compute

Ao = E/Tr(y)p(y)w +t(y) p(y) <M> dy

V1,0 1,0

= E)\T v—x, T EA (/¢7x¢>’

and also : .
Aey = €/T (rp—(tp)) %U;Owdy
=e [ (o= (t)) (o=} p (fr dtfora(t)) dy
Ao = [ e (0= A) oy
where fri = (i ds/vio(s)) (rp = (tp)) (6.48)

As a consequence

Aal¥) = A smse + O (4ag ) = A~ N (6.49)

1,0 v1,0

Then we want to write —e; = To¢1 and considering the lowest order we set

) =2 [ =2l

The error made with g := ¢g + ¢1 is

ap o’ + €%by o = Yo — Ay + €1+ cag 1’ + €%bg ¢1”
= 1/10—)\1/,4-61—614-)\61 + €9

with €2 =e’r ¢y +e%t "

Such that, with the estimates of remark (6.4)), we deduce
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k3+7-+

l1%ol] 43
le2ll; S 3 e

Ot

Finally the ry in (6.34]) is then the sequence (e,)necz and verifies, for o such that
Y € Es 544 and 0’ < 0,

KufS

6’64(0- _ 0_/)27—+1 ‘|17Z)n||0,s+4

HgnHa/,s < e2k57

Furthermore, (remind (6.12]))

e IR@llor0 < € @llos S e2lmllos < €2llv = Ultn)

0,3

Now we are in possession of all the error terms needed in (6.36)) to write down a formula

for a stationary measure.

Remark 6.5

If ¢» = ¢ (y), and so 1, = 0 for n # 0, or if 1,, # 0 for at most a finite number
of integers n then we have ||¢y||s3 < [|¥]3 and || ¢¥n||os+4 S ||¢]|s+4. These cases

would in particular occur if we chose the quasi-periodic part of the potential V(x)
in (6.1)) to be a trigonometric polynomial.

6.9.2 Development of a stationary measure

We can now conclude for a stationary measure:
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/—E Proposition 6.2 }

In the resonant case E = 2 cos(kmwa) with k # 0 and under the condition

Ok ZE(W)—F{}O = |i\/k} >0

we can estimate the integral of ) € &,8 (remind definition (6.3))) w.r.t. any
stationary measure p. for F, : (z,y) — (z + o,y + vy(z,y)):

/rw dpe = Ay +evy + O o r (€2H¢Hcr,8)

where

Ay =/T2¢(x,y) ply) dzdy

Vp = oy oy = A vry = A (w—w)’ = Aoy oy = Afrap T ApAL,

V1,0 v1,0

for an explicit density p which is the L'-normalization of 1/vy o:

()= ((5k + 2|\A/'k} sin?(m - +mha — %Qk))il

Proof.
In proposition we have solved for any given v, (remind (6.48]))

U — (Aw + 6)‘fr,t(¢—>\w)) On0 = ((DO +¢eDy + 62D2)§5)n T én

This gives (6.36) with ry, = Y- £,e?™ and Ay = —eY 19+ O(e?). Let us write (6.36)
neZ
for ¢ = Ay,

A¢ — ()\Aw + EAfT»t(Aw*AA¢)> 0o = A(pAw + AAw

Thanks to (6.37) we get Aa, = —eXy,y + O(e?).
Note that if v, = \f’n are the Fourier coefficients of a function ¥ on T? (which is the

case for the Lyapunov exponent we compute), then

Yig)o=— S my/— —/I‘vv(x, ) AU (x, ) da

neZ~{0} T=n
= —/ vy(x,-) Oy V¥ (x,-)de (6.50)
T
Hence
AY1yp = = Av, 0,0 (6.51)

With equation (6.36]) and the development of the cohomological equation this proves
that ¢ = U(py + ¢a,) (remember the definition of U in (6.12))) verifies

T — ¢ =1 — Ay — €hv, 0,0 + EXp, (wory) + Doy
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where Aw = O(£2|¢]|s8) since po = O(e~!) (see proposition . [

Remark 6.6

The error term O(g2||¢||4) is proportional to
P (k)
2 T
c AN Ll VA
¥l ) R0

where P, Q, R are polynomials of valuation > 1.

6.9.3 Formula for the exponent

We deduce for the Lyapunov exponent the following formula:

’_[Theorem 6.1} )

Assume « € DC(k, 7). For an a-resonant energy E = 2 cos(kma)) with k # 0 and
under the assumption 0, = Vo + E(W) — |\A/k] > 0, the following development

holds for € small enough:
L(E) = Age? + O (35 ~B5, =)

where A, B, C are integers, 1 — Ay is defined by (6.45) and ® is the positive

function
2
V(W) 10’ 1/ .
= ) ES E 8 w 2 Ea w d

87 |sin(kma)| <v1,0 +1 - [(Byv1,w)%] + [E Oyv1u]” dx
2d vio(y) = e <5k +2 ‘vk‘ sin?(my + Tha — lﬁk))

’ 27 |sin Tk 2

Proof.

Let us use formula established in chapter 4| to compute v(F) (remember (4.3])).
Of course, as expected, the lowest order term of the stationary measure vanishes when one
computes the Lyapunov exponent: indeed we have to integrate vy ¢’ /v1 o w.r.t the Lebesgue
measure. So the first order of the development is crucial to get a non trivial formula for

the exponent. We need the following quantities that we compute using definition (6.1)):



142 Chapter 6. Resonant energies

ava(l’, y) = 58yvl,w(x7 y) =+ 528yv2,w (l'a y) + 0(53)

sin (27w (k(x + a) +v))
|sin(mka)

8yvl,w(x7y) = U(W,LL’)

sin? 27 (k(z + a
(Oyv1w(z,y))* = 2 si(jz((w_li:_a)) * y))v(w,x)2

sin? (27 (k(z + « sin? (7(k(z + a cos (2m(k(x + «
Oy ) = bl ) ) 250 ) ) ol 4 ) +0)

Hence we obtain with a Taylor development
Eln |1+ 0yv,(z,y)| = eli(z,y) + e%la(x,y) + O(e?) (6.52)

where

(2, 9) = E(,01.0(w,1)) = By (a,y) = ST+ O 1))

sin(mka)|
ba(x,y) = Oyva(,y) — 3 E[(Oyv1w(2,9))?] = 50; B(v1.*(2,9)) — 5 E[(Oyv10(2,1))?]

sin? (w(k(zx + a cos (2m(K(x + o
_ (m(k(x + )‘;i/l)g(ﬂka()z (k(z + ) +y)) (V(:U)2+E2(W)+2V($> E(W))

(V(z) + E(W))

We already get

/ L(z,y)dz = v10'(y)

T

so that A, X / v1,0 /v1,0 =0
T

and / 211 dpe = 0+ ey, + O(£?)
T

Then proposition ensures that

Vih = Vuro! (6.53)
- )\”vayll - )\r vio T A, ’)’

V1,0 V1,0

v, = )\v_yagvl - )\TL’OI - )\t(v1 0/)/
v1,0
Remind that (see equations ([6.32))

r=vg0+u=uv20+ / vy (2, ) Oyv1(z, ) da
T

= Luy/(y) + /T vy(z, ) Qi (x, ) dz

1

V(W) + Lue?
47 |sin ko (W) + 3010

t = wy+ / vy(z, ) vi(z, ) da
T
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Let us take a closer look at

(Jr 5725) Avorofono = /F 7:1)10’2/ (6.54)
T,7
= .
Aroyof forg = At
Next we compute
= ;WONJF/T%%( ) By (a d:c+/v7 ) 8201 (x, ) da (6.55)

and also

7
V1,m

/
/81}7 ) Oyvi(z,-)da = Z YLim

meZ~{0} Tm

- ¥ o1

meZ~{0} Tm

= Z ‘Ul,m/‘Q (Vm_l +F)

m>0
==Y P =5 X o
m>0 m;é()

/8 vy(z, ) Oyvr (2, ) da = F(v1,0))? — %/1“ [0yv1(x,y)]? d

Consequently we have

1

/a v (2,-) Byon(x, ) dar = %(ULO'V _ 5/T [E0, 0. (x,y)] da (6.56)

Note that with (6.55)) and (6.56) we get

/lg Jdx = 2w o + / [(Oyv1,w(m,))?] dz
=7 — / Dyvy Oy da —/ vl dx + / (Oyv1,w(x,-))?] da
T T
/I‘lg(di, Jdx =1 — %(1}170’)2 — /I"U,y 85111 dr + §A E [(0yv14(z,))?] dz
With (6.53)), this ensures that we obtained so far:

A, v, = %/\T - )‘t<v1,o’>/

v1,0

where, thanks to Jensen’s inequality, T is the positive quantity below:
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T(y) = /rE [(Dyv1,w(7,))?] dz — (v10')* + /1“ [E 8yv17w(m,y)]2 dx
2
_/ [(Byv1w(2,y))?] do — (/ EJ vlwdx> +/F[E8yv1,w(x,y)]2 dx
_ / Vo (0y010) dz + Vo (B dyv1.0) + / [Ed,010(2,y)]? do
T T

In what just precedes, we denoted V , the variance with respect to x, meaning that for a

numeric function f

me:/rf2(x)dx—(Af(x)dx>2

To continue the computations we set ¢ = ([ dy/ v10)'. An integration by parts
shows that

!/
V1,0 1 c 1.0
)\ ’ 5 = / d _ 5 d
t(v1,0’/v1,0) 47 |Sln lma )| <v10> V1,0 yt 2)1 <vl,0> v1,0¢Y

_ / oLo') g, g (10")?
s |sm kwa )| v1,0° 2J)t v Y
VW) 1
Aoro’o10) = ~ I Tein (e @10/ /01,02 T 3 (w1,0)2

47 |sin(kra)|

As a result, the term 3(vy’)? vanishes in the final expression of y(F) (see (4.3)). This

gives

Y(F) = A\pe? + O(e?)

where ® is the positive function given in the statement of theorem

To make the coefficients explicit, let us add that for all a > 0

1 1 1
/oa—l—sin2( y)dy: ala+1)

1 gin® 27 —
/a—i—sm (iy)dy_< @t _f)

/1 sin? 27y du — 1
0 (a+sin2(7ry))3 Y 2a(a+1)\/ala+1)
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Ok
2|V |

2 -2

T sin®(2mu)

/\(vl,o’/vl,o)2 = / ;2 3 du
dy T (ay, + sin® u)

T Gk +sin?(7y)

B 2 B 2%2\\7/%]2
B 2ak(ar + 1) B 0 (O + 2|\7k|)
22|V |
)\(,U1 0//,01 0)2 = = =
o ok(Vo + |Vi| + E(W))

From which we deduce for ay =

The previous computations and (4.9) give the formula in theorems and for the
Lyapunov exponent.
|

6.10 The case 9. =0

In this section we deal with the parabolic case §; = 0. Let us state what we solve for the
equations (6.42)) that we recall:

Yn = Ynen + eanv1,0(:) n’ + E2anr(-) on' + 2ant(-) on”
= Yn¥n + 5an(') SDn/ + 52bn(') Spn"

ﬁ{ Lemma 6.5

We obtain the following for equations ([6.42)):
(i) for n # 0, we can find ¢, (y) such that

(D@)n = Tnn + Eanvl,()(') (Pn/ + 52@717“(') Son/ + 52ant(') <Pn// = ¢n(y) + €n
with leall; S €llwbnllva Inl?™ K%K

(ii) for n = 0 the differential equation (EDg) is solvable up to obstructions: we

can solve
(D)o =10 — Ay + €0
where g = e2ryq’ with

1-j
leoll; < €73 [[%oll;

where Ay = Ay(€) = /I‘Qw(x,y) pe(y) dz dy

0./t
Jr b/t

ential equation on 0.: 0./ = :(l—y(; 0. + 1 with

and p: = is a density given by the following explicit solvable differ-
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= ( ) 1 2 1 |AVk| .
¢ Tl T2 d — - 1'%l 4in?
) 4r |sin Tka| 2v1.0°(Y) an VL0 = 27 |sin kal sin” m(y — ck)

Moreover the following €’ -estimates of Y, hold:

: _i+a
leo@llo < €775 lIvollj—1

In the setting of section we have found ®,, and ry, that verify
P — >\'¢150 = Dq),z, + 7y

_Jjt4

1@pllo; S 7 |[Yollj—1 + |%]lo,j+4 (6.57)
=7

Irelloy S e voll; + €2l llo,j+a (6.58)

Proof.

For the first item, the technique used in the previous section in the proof of proposi-
tion [6.1] works as well.

For n = 0 we want to find a 1-periodic solution to

o = evio() o’ +€%r(-) o’ + () po” (6.59)

Remind that (see (6.32))

vio(y) = (6 + 2| V| sin(n(y + k) — 6,))

27 |sin wka|
_ Vi
7 |sin ko

__vW)
Hy) = 47 |sin Tk

sin(7(y — cx))

%01,02(9)

So the previous first-order method does not work anymore since vy o vanishes at cj =

50k — ko and we do not really have information on r(y) (see (6.32))). Hence we solve the
differential equation without taking the quantity £2r g’ into account. It will be treated
as an error term. Namely, we resolve:

w0’ (y) — Zaly) ©o'(y) = (6.60)

where

_ vio(y)
a(y) = —
t(y)
With ® = (', this equation is of the following type:

a 1
CI)’:g@—i-ﬁf
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Let us first mention that if u is a solution of (&) then v(y) = u(—y + ¢i) satisfies

viy) = -2 o) Sy re)

1 sin? 7y
I y)

where ¢ and f are affine translates of ¢, f having same positive bounds or €7-properties

v(y) + 52

as t (resp. f).

/—[Lemma 6.6 (“Parabolic” diff. equation with small parameter)}

Let us consider the differential equation with (small) parameter § > 0

(&) o = Zaly)u+ 1) (6.61)

with 1-periodic functions a, f. We assume that the map a is non negative and
only vanishes at 0 with a(x) ~4_o ¥2. Let us be the 1-periodic solution of (6.61]).
The following estimates for general f and also f = § 24 hold:

lusllo S 81211 £llo = 612~2{[ylo
lu§llo S 82 (1 Dllo + 6721 £ Dllo+ -+ 57| flo)  (j EN)

lugllz S 6372|1012

In order to get a one-periodic solution of the initial differential equation of
order 2, we are brought back to find a solution of the previous equation (6.61) with zero
average. As explained in lemma of appendix [A-2] this can be ensured by substracting
the obstruction Ay, = [ ¥(2,y) pe(y) dzdy to ¢g. We deduce from the previous lemma

the following corollary rephrased in our setting:

/—[ Corollary 6.2 }

On can find a one-periodic function g (-) satisfying the differential equation

1 9%o(y) — Ay
g2 t(y)

©o” (y) + a(gy) wo'(y) =

with the respective estimates for j > 1

o

w

Sl S U8 g,

J—1

”‘POHJ' 557(

For the error term in lemma [6.5] note that



148 Chapter 6. Resonant energies

Dypg = ev10(-) po’ + 21 (-) o’ + €2t(-) o”
= o — Ay +€°7(-) @0’
Such that with corollary . 2| we have g9 = £2r(-) o', and so

loll; = O (275" I¥oll) (6.62)
Proof.

(of lemma

As explained in appendix one-periodic solutions do exist. This is what we will

prove first:

- Lemma 6.7

The following estimates hold for all t € [0;1]:

0
[us()] < 6" fllo us@®) S 1/ llo

The second estimate is uniform in (J,t) provided t,1 —t 2 52

Proof.

The resolvent formula gives indeed for fixed §:

e
where u(t) is such that the solution is one-periodic and
Asaly) = Ao — A5(0) = 5 [ a
Note that with our hypotheses on a (see in lemma [6.6) we have for some ¢ > 0:
Vy € [=3/4;3/4]  aly) > cy’

Let us prove the estimates for ¢t € [—1/2;1/2] and then conclude by periodicity.
It is straightforward that for all ¢

Asi(r) —— 400

T—+00
As our solution wug is periodic and hence bounded, this ensures the convergence and the

equality below
“+00 —+00 t+s

us(t) == [ f)e il tds == [ f(s)ema s
t 0
This equality and the inequality |us(t)| < ||f]lo |vs(t)| prove that, in order to get €°-

estimates for ug, it is enough to obtain estimates for

vs(t) := /;OO exp( (15 Hsa(-)) ds

Note that —uvgs is the one periodic solution of
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a
V=-V+1
0
We have
+oo tds +oo t4[s] + ~ ~
/ e 5 J; a(')dsé/ e 5 J; o) ds < fefgao SJe*%aO
1 1 k=1

Then for all t € [—%,%} and u € [%;1} we have ﬁ““a} cg > 0 uniformly in ¢, u so

that
1 s .
/ e*%ftt+ () 45 < e 7
1/4
Finally

l t+s / /
vs(t) = /4e*%ft a0) gs 4 O(e ~/3) =: 1(£) + O(e—</)
0
With the assumption on a we get

+oo (t+s)3—13 +oo 53435243562
I1(t)] < / et ds= / et 5 ds
0 0

The following elementary estimates will be useful: for all x > 0 and all t € R
s+ 352t + 3st2 > 163

s3 + 352t + 3st2

WV
EN[JURNE
~
)
w

It is sufficient to check that for all £ and s > 0
(%—1—12) 24+ st+t2>0
12 4st+2(1-1) >0
But these inequations are true because both discriminants are zero. Then the condition

s = 0 permits to conclude. These lower bounds lead to
lus ()] < 51/3071/3/ e % du < 51/3.-1/3
R

0 —1 —v 0 -1
lus ()] < t—2c /Re dv:t—Zc

Consequently:

,—[ Corollary 6.3 }

Let us be the unique one-periodic solution of w' = §w + f. It satisfies the

following estimates:

lusllo < 63| fllo
1$ullo S [1flo

1($)" ullo < 6111 £llo
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Proof.

The assumption on a ensures that a’(y) ~y—0 2cy. Therefore,

o if 0 <t <o/3

a/ t 61/3
9 uw] £ S-511lo £ 6711l

o if 3 <t <1
a(t)
5

| &

1£llo < 6721 fllo

SIS
)

ut)| 51

Now we go for the €7-estimates using the preliminary result about the ¢°-estimate.

s Lemma 6.8

The function us\9) is the only one-periodic solution of w' + $w = F; where F;

is recursively defined and has the form

Fj =D +cj0($) D us + - +ci5-2(8)" us¥=D + 551 (§) us¥™D

Proof.

Let us give an inductive argument.

The hypothesis is true for j = 0 by definition of the differential equation we solved.

Then if one assume the hypothesis to be true for j:
d . a < AN
St = G usth = (5) ws) 4 B = Fjor
The Leibniz formula ensures that F;’ is the sum of f (G+1) and a linear combination of
the (%) usU™1=) with 1 < i < j+ 1.
[

We finish the proof of proposition by proving inductively that

- Lemma 6.9

For all k € N these estimates hold:
IFjllo S 17D Mo + 63N FGD) + - + 67973 fllo

lusDllo S 83 (I FDllo + 5= FI=D]| + - + 57973 flo)

Proof.

Let us assume that the lemma is true for j > 0. Then lemma [6.8] shows that
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i (1)
IFirillo S U9V o+ D0 1% us®lo
i+p=j+1
i1
i (1)
S+ D0 1%
i+p=j+1
i>2
j—1
IEj1llo S NP9V o + 3 D llus® o + 67 3[[Fllo
p=0
where we used corollary and the boundedness of a(® for i > 2. With lemma we

obtain

us®llo + 1% us@ o

a
Fu| 7Rl

The induction hypothesis at rank j ensures that

[Eja1llo < P50 + $(5"/2) £ llo+
17l + 831 £l

+67 DB fllo + -+ 613 FGDJo)
+0 V3 (I f D o + -+ + 673/ fllo)

SN o+ § (57023 fllo + 6= G=33) fllg + - - + 613 FU=D) )
+5712 (I Dllo + -+ 5733 £l

IFj1allo S NF9H o+ 6~ GHIB fllo + 69| f/llo + - - -+ 6~ /3] £ o
which is the formula expected at the rank j + 1. Using corollary we get

lu§Pllo S 6172 (£G4 g + 6=/ fDlg + - - + 5= G+D/3 o)

This ends the proof of the induction.

|
In our context we have f = 1)/e2 so we obtain the second claim of proposition |
This ends the proof of the lemma [

6.10.1 Development of a stationary measure when 6, = 0

Let us state the result for any stationary measure.

,—[Proposition 6.3}
For an a-resonant energy E = 2cos(kwa) with k # 0 and under the condi-
tion 6 = E(W) + Vo — |\7k| = 0, the integral of 1 € £,8 w.r.t. any stationary
measure pi. for Fy, : (z,y) — (z + o,y + vu(x,y)) can be expanded as follows:

[ 9die = X+ O (0l) +O (#3101
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with Ay = A\g(€) = Jpeg(x,y) pe(y)dady for a density p. which is the Ll-
normalization of 0/t for 0 satisfying

9 — V1,0

=——f0f+1
et u

Proof.
Lemma ensures ((6.36]) 7.e.

1/} — )\¢50 - Agp¢ +A¢

where
1-j
lewllog S Ivollj—1 + ¥ lloj+a (6.63)

and we also have ([6.39)) with

_J+4

S5 and ()= L) (6.64)

m(j) =

The lowest order term w.r.t € in Ay (see (6.37)) is actually Cry, because of the equal-
ity (ry)o = 2r¢y’. Moreover the following %°-estimate holds:

1
1Cryllon S e3¢0 (6.65)

The next order term is 53R<I>¢ with

2
[£°Rylo0 S €% [ lo.s (6.66)
Hence ([6.65]) and lead to
1
[Aylloo < ez l¥lloa (6.67)

The other terms in (6.37) have orders O(c'"). With (6.7) and lemma equation ((6.36))
shows that ¢ = Uy (remember (6.12))) verifies

T — ¢ =1 — Ay + O(%[[6]13) + O([|tdAy o) (6.68)
Also ([6.57) gives the &3-estimate for ¢:
_1
[ells S e 5l (6.69)

Integrating with respect to any stationary probability measure ., the estimates (6.63))
and (6.67)) end the proof. [
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Let us finally expand the Lyapunov exponent.

6.10.2 Asymptotic development for the Lyapunov exponent

’_ETheorem 6.2} )
Assume o € DC(k, 7). For an a-resonant energy E = 2 cos(kma) with k # 0 and
a potential £(V(z)+W,) with & = E(W)+ Vo — |\Afk‘ = 0 we have for sufficiently
small € > 0:

L(E) =A. + On,k,ék (65/3)

where A, = _%5>‘v1,0’ + 0(54/3) is a quantity that either vanishes, or is =< /3,

or is a O(e%/3). The constant \, is defined by \,(¢) = [z 9(x,y) pe(y) dz dy for
a density p. which is the L'-normalization of 6/t where 6 satisfies:

9 — V1,0

0+1
5t+

Proof.

We already computed in the previous section (see ((6.52]))

Eln |1+ 0yvy(z,y)| = eli(z,y) + 2ly(z,y) + O(e?)

with
sin (27 (k(z + o) +y))
|sin(mka)

la(w,y) = Oyva(w,y) — 3 E [(Oyv10(2,9))?] = 30; B(vrw®(2,9)) — 5 E[(Oyv10(z,9))?]

sin? (7(k(z + « cos (2m(k(z + a

hiz,y) = E@yu1u(z,y)) = dyvi(z,y) = (V(z) + E(W))

This gives (recall (6.47]))
/I‘ll(xvy) dz = v1,0'(y)

Consequently with the expansion of an integral w.r.t. u stated in proposition [6.3 we obtain

the asymptotic expansion below:
Y(F) = eXy, oy + O(?) + O(7/3) (6.70)

We need some preciser estimates for [ 6. and integrals of vy ¢’ versus .. Let us prove

the following;:
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/—EProposition 6.4}
Let 6. be the solution of

o 1 |Vi| sin? WEy —cp) 041

0)
Then 6. is negative and [ sin(2m(y — ¢x)) 0=(y) dy > 0 with the following esti-

"~ e sinmkal t

mates:

/ 0.(y) dy < —e2/3 and / sin(2m(y — ¢x)) O:(y) dy <
T T

Proof.
Let us denote a(y) = %

|Vk‘ sin? w(y—cg)
m|sin mka t(y)

. The negativity of 8 is a consequence of the
resolvent formula
400 1 [t+s
Hg(t):—/ e =) “ds
0

We proved that ¢ is positive with bounds such that, up to translation by ¢, we can limit
ourselves to get an estimate for [ sin(27y) 6(y) dy where 6 is the solution of 2’ = laz+1
for a(y) = ag sin?(my).

Let us first prove the positivity of the integral with an argument of asymmetry of the

solution 6. The following actually holds

0.2 0.4 0.4 02 \DT 0.2 0.4
. . )
~0.001}

-0.002 {

-0.003 {

-0.004

-0.005

-0.006

-0.007

-0.008

Figure 6.1: The graphs of 6,9-3 and 8;9-¢ for cx—g.

vyel]-1/2;1/2[  0(y) —0(-y) >0

Indeed let us denote F(z) = / sin?(m+) = 5= (272 — sin(27z)). Then
0
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+oo
6(—y) = — /0 o~ LE(—y+9)-F(-v)) 4

_ / T L EW)-Fy-s) g
0

Oy) — 0(—y) = / T A F =9 -F) _ o LHFW-F(u+9) g
0
Now we compute for y € | —=1/2;1/2]
F(y—s) — 2F(y) + F(y + s) = 2sin(2my) sin’(ws) >0

And we conclude for the integral defined by 6(y) — 0(—y). Finally

1/2 1/2
[ sinry) 0y dy = [ sin(2my)(0(9) — o) dy
—1/2 0

so that the positivity of the integral is ensured. The arguments given in the proof of
lemma 6.6 show that 0. (t) = O(I(t)) + O(e ~%/¢) where

1/4
I(t) :/ / efé(u3+3u2t+3ut2) du
0

1
This leads to the estimate for / sin(27y) 0:(y) dy. Then we compute
0

1/3

€
/ 0. ~ 20(0)l/? ~ —£2/3
_1/3
and also
1/2
/ | < 5/ dt /2 = O(e2/3)
[71/2;751/3]U[61/3;1/2] ~ e
so that

2/3

1/2
/ 0| < ¢
—1/2
Given the sign of 0., we can finally conclude that

1
/ 0. < —g2/3
0

With (6.70) and the estimate from proposition we obtain

- 1/3
)\“3,0 = ¢/

Hence (6.70)) and (4.9)) give a perturbative development of the following type:
L(E) = 32k, + O(H9) + O

with either A, =< ¢*/3 or A, vanishes which is unclear, like in the parabolic case of chapter
Thus theorem is proved.
|
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Remark 6.7

The previous formula is not entirely satisfactory. Indeed it is not clear whether
the development gives a positive lowest order term. One would think of opti-
mizing the result about the asymptotic development of a stationary measure in
proposition [6.3. As we already explained in its proof, the lowest order term is
given by 1y, (see ) Its estimate is not good enough. One way of improving
the estimates could be to refine the error term for ¢g in lemmal6.5} The idea is
to “extract” the possible €'/3 order term out of (ry)o = €2r ¢y’

We could reiterate the argument and solve (recall the definition of r in )

D¢y = e2r (,00’ — AEQT@O/ + e2r gf)gl
This would give a new solution for the 0-th Fourier coefficient pg + ¢¢ and a new
ry in lemma with
3-2j
Iryllog S €3 [[¥lloy—1

which has better € -estimates. However this makes the €7-norms of ®,, degen-

erate too rapidly. Indeed

_ 2j+3
Pylloy Se™ 73 [Ulloyjva

which is now a problem for the estimate of £3||¢||3 in (6.68).

The problem actually comes from the presence of the error term (ry)o which
itself emerged because we did not solve the entire differential equation ,
and set the term e’r g’ aside before estimating it thanks to the €'-estimate
of ¢g. Note that we did not solve the differential equation with this term since
it does not fill in the context of lemma [6.6 Indeed the function a is of type
sin?(my + ¢) + er which can vanish. So a first attempt could be to establish
a lemma for the €7-estimates of solutions of “slightly” hyperbolic differential
equations, that is when r takes non positive values on a small region where it is

2 near 0 up to translation. If r is positive, then

negative, and behaves like y? — b
we are in the easier case of an “elliptic” differential equation, meaning that a is
positive with bounds (which is treated in Iemma. Yet, the exact computation

of r in (6.32)) is quite hard and does not seem to be exploitable.
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Conclusion

We studied two aspects of the Lyapunov exponent. Firstly we focused on a large deviation
theorem (LDT) for the transfer matrices of the Schrodinger equation with potential either
quasi-periodic or defined with the doubling map. The second aspect is an asymptotic
expansion of the Lyapunov exponent of Schrédinger cocycles defined with mixed quasi-
periodic and random potentials in a small coupling regime.

In the first part, we used subharmonic techniques and potential theory to prove that
such an LDT is granted on the condition that only an upper estimate involved in the
two-sided inequality is true on a complex strip. These techniques also helped us to find
back the result of [BG0O0] in the quasi-periodic setting and permitted us to obtain a large
deviation theorem for the inverse branches of the doubling map. These should be a good
starting point to prove estimates like Bourgain-Goldstein’s of type L(E) = log A at large
coupling using the avalanche principle and without any exclusion of parameter like in
[Kriil1]. Indeed, our result indicates that in measure, there are a very good proportion of
the inverse branches that also verifies the LDT. Now we would like to get combinatorial
results on the inverse images of a given = at some generation to propagate the estimates
to its predecessors by taking sequences of blocks of adequate size chosen such that this
procedure finally gives a lower bound for the Lyapunov exponent.

The second aspect concerns formulae for the asymptotic development of the Lyapunov
exponent in the case of mixed quasi-periodic and random potentials, both equally small.
The crucial parameter in the analysis is the diophantine or resonant property of the energy
w.r.t. the quasi-periodic frequency a. We recover developments similar to those of several
authors in the random setting. Yet, one would have preferred a formula that gives a
development in terms of some coupling constants A, i respectively for the quasi-periodic

part and the random part of the potential: v(w,z) = pW,, + AV(z) for A, v small but with

157
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different regimes: A =~ v, A > p or A < v. Further analysis based on our result might
prove to be successful, in particular looking for conjugacies (like in chapters [5{and |§[) more
accurately adapted to this extraction of a coupling in both A and v.

Finally, one could also hope to complete the analysis of the resonant case, at first with
computations of the exact orders in the perturbative formula for the condition d; = 0 to
say whether the lowest order obtained vanishes or not. Also we want to treat the situation
where the term of lowest degree in v, the random part of the diffeomorphism (z,y) —
(x4, y+eviw(z,y)+...) has two distinct zeros. One way to begin with this issue could
be to find obstructions that are no longer constants like we did in part II, but rather maps
fy such that ¢ — fy vanishes like [ E (v1(z,y)) dz. We expect a kind of hyperbolic
behaviour to appear, like in chapter [5] for the energies outside the free spectrum. That
should provide help with the evaluation of the integrals of the obstructions that appear

and compute the Lyapunov exponent.



APPENDIX

Adjoint operator and parametric

differential equations

A.1 |Spectrum of the adjoint operator{. . . . . . . . . . . . . . . . . . .159

A.2 |Periodic differential equations with parameter|. . . . . . . . . . . . . .160

A.1 Spectrum of the adjoint operator

: 11
We want to solve (e2™Id — Ada)Y = F € sl5(C) for A = <0 1). We compute

b 1 -2 0 1 1 -1
AdA . “ =aqa + b +c
c —a 0 -1 0 0 1 -1
So that we have to solve the system

—aYp + ¢ = ar
ayn — ¢ = —ar
—2a — ¢ — y,b = bp

C— apC = cp
We successively obtain

159
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¢ = —cp/Yn
__C—ar  —AaFYn —CF
a= = 2
Yn Yn
b br +2a+c
Tn

So we can conclude for lemma

A.2 Periodic differential equations with parameter

/—[Lemma A.1 (Differential equation with small parameter)]i

Let us consider the differential equation with (small) parameter § > 0

o = Saly)ut £(9) (A1)

for 1-periodic € functions a and f. Assume a is positive and bounded below
such as |a| > a, > 0. Let us denote us the unique 1-periodic solution of (|A.1]).
The following estimates hold for all k € N:

)
lluslle < THHf”k
A%

Proof.

Let us quickly explain why periodic solution do exist. We define

As(y) = 5 [ als) s

Then the resolvent formula gives for y € [0;1]

Y
u(y) = u(0) e =A@ + / f(s)ehse)=As) ds
0

Since a and f are l-periodic, the function y — u(1 4 y) is still a solution of the
differential equation . By the Cauchy-Lipschitz theorem this proves that the 1-
periodic solution ug satisfies u5(0) = us(1) and we necessarily have such a solution provided
Jpa(s)ds # 0. In this case

1 1
us(0) = m/ﬂ f(s)etol)=2) g

a
For the estimates of the first item we use the differential equation v’ = — u+ f. Since u
is periodic and €*°, u admits maxima and minima. If u is extremal at ¢ we have u/(t) = 0

and hence a(t) u(t) = —df(t). The assumptions on a ensures

1
<
u(t)] < =61/l
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which gives |[ullo < 6/ax]| fllo-
To prove the other ¢*-estimates we just repeat the procedure using the differential
equation (A.1)) to get equations for the derivatives of u of higher order:
!/
a

U”:gu/-i-%u-i-f/

And so for extremal points ¢ of v/ one gets

!/ _ 1 / /
u'(t) = “a® (@'(t) u(t) +61'(t))

The previous estimate gives

Wl < = (lao L 4 g,

)
Thus lu'llo < prHl

The same method ensures for all integer k:

0
¥ o £ —grll

ﬁLemma A.2J

For one-periodic continuous functions a and f, the equation u' + a(y)u = f

admits a 1-periodic solution with zero average on T iff

/f y)dy =0

where 6 = 0, is the 1-periodic solution of

0 —abh=1

Proof.

Let us define the differential operator of order 2

Ap=¢" +ay

We can compute its adjoint A* on L?(T)
/ ("(y) + aly) ¥'(y) P(y) dy = / e(y) (W' (y) — (ay)'(y)) dy
T T

so that A* =02 —-09(a")
It is a well know fact that (Im A)* = Ker (A*) and obviously
A* =0 <= ' —ayp=c"

This proves that Ker A* is spanned by 6 the 1-periodic solution of ¢/ —af = 1. If p is a

solution of v’ + a(y)u = f we can write
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/go /(p@’—aﬂ /Htp—i—acp /9f

which gives the equivalence stated previously. |
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B.1.1 |Definitions, examples| . . . . . . . . . . . . . . . . . . . . .163
B.1.2 |Crucial examples| . . . . . . . . . . . . . . . . . . . . .. .l64
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Let us recall some basic notions and results of spectral theory that are implicitly used

in this manuscript.

B.1 Spectral theory of operators on Hilbert spaces

B.1.1 Definitions, examples

If 5 is a Hilbert space and D a dense subspace of J# we say that a linear map A €
L(D, ) is bounded when

163
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Au
A= sup 134
ueD~{0} ||UH

< 400

If the above condition holds, there is a unique extension of A to . We denote B(.7)
the set of all bounded operators on .77.

B.1.2 Crucial examples

/—EDeﬁnition B.1 (Laplacian, shorted Laplacian (discrete case))%

Let us define the following Laplacian operators:
(2% — 12(Z29)

° Ad:
N(Un)nezd = (Z||k||1:1 Un+k)nezd
e A=A-2d1d
Then |Ag]| = 2d < +00

The Schrédinger operator also involves the following operator:

/—EDeﬁnition B.2 (Multiplication operator)}

Let us define the multiplication operators either in the continuous or discrete

case
L? — L2 z — 2
o My: o M,y:
f—fe (un) — (unvn)

Then their boundedness is submitted to the following conditions

M, € B(L?) <<= peL®
M, € B({?) <= ve(>®

[Remark B.a J

In the whole manuscript we only consider bounded operators H (the potentials

of the Schrédinger operators are bounded).
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B.1.3 Spectrum of an operator

The notion of spectrum generalizes the notion of eigenvalues of linear maps in finite di-

mension.

/—[Deﬁnition B.3 (Resolvent set, spectrum)}
e p(H)={X € C : H— X is bijective with bounded inverse} is called the re-

solvent set;

e the resolvent of H is
Ru(A) = (H-A)"!

Note that A\ — Ry is holomorphic;

o we define o(H) = C \ p(H) the spectrum of H. It is a compact subset of C
(for bounded H) which is invariant by conjugacy:

o(UHUY) = o(H)

We obviously have {eigenvalues of H} C o(H) and there are many ways to belong to
the spectrum:

e opoint(H) = {A € C : H— X non injective} = {eigenvalues of H}

® Ocontinuous(H) = {A € C : A — X injective with dense range}

® Oresidual(H) = {A € C : A — X injective with non dense range}

B.2 Adjoint, self adjointness

/—[Deﬁnition B.4}
The adjoint of a bounded operator H is the linear operator defined by
Vo, e . (Hplp) = (p[H"Y)

The operator H is said self adjoint (s.a.) if H* = H. Such an operator has real
spectrum: o(H) C R.

For our work, the following examples matter as they naturally arise from the Schrédinger

equation.
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Examples B.1

e The Laplacians A and A are s.a. and

o(A)=[-4d:0]  and  o(A)=[-2d;2d]

L2
e The multiplication operator M ey~ is s.a. iff © ) o and in that case

o(My) =ess. Imyp

whereess. Imp :={2€ C : Ve >0 pu(x:|f(x)—z<e) >0}

is the essential range of .

Actually the Fourier transform conjugates A to Mg cos(2n|||y) SO the first item is

just a consequence of the second.

B.3 Spectral theorem and spectral types

B.3.1 Herglotz maps and representation

Definition B.5 (Herglotz’s functions)}

We write F : HY — HT € Herg to design a function F that is holomorphic and
verifies that z — Sm(z) F(2) is bounded on H™.

/—[Proposition B.1 (Herglotz representation)}

IfF € Herg then there exists a unique positive measure up on (R,Bor(R)) s.t. F

is the Borel transform of ug:

F(z):/Rd'uF(t)

t—=z

B.3.2 Spectral theorem

The maps F, :

z — (z|Ra(2)x) are Herglotz for any A s.a. Hence one obtains spectral

measures fi; and then g, by polarization. So we can integrate with respect to those

measures and get
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f—LTheorem B.1 (Spectral thm - functional calculus version)]ﬁ

Let A be s.a. on 5. Then there exists a unique continuous morphism of C*-
unitary algebras with norm 1 denoted ®4 : Bory(R,C) > f —— f(A) € B(J2).

It verifies

Ap=Xp = [f(A)p=Ff(Ny

(@lf (W) = [ (0 dyizy(®)

This permits to define f(A) for suitable functions f and in particular for E € R

and 7 the projection on a subspace F':

1(g}(A) = TKer (A-E)

Thanks to the spectral theorem we can divide the spectrum into relevant components.

This decomposition is based on the Radon-Nikodym decomposition of measures.

/—[Theorem B.2 (Radon-Nikodym)] \

Let v be any positive measure on (R%, Bor(R%)). Then we can write

V = Upp + Vsc + f Leb where
® vy, is a countable sum of atoms named the pure point part;
® vy, + Ve =: Us L Leb is the singular part of v;
fLeb with f € LY(R?) is the absolutely continuous part (w.r.t. the

Lebesgue measure);

ve = f Leb +ug is the continuous part (without atom).

Then one can define the spectral types of an operator:

Definition B.6 (Spectral types)}

We denote 7, = Vect {eigenvalues of A}
Hpp = I
He = {x € A |y of typee} for e € {c,ac,sc}

Those types lead to the following decomposition of the Hilbert space:
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/—EProposition B.2 (Spectral decomposition)}
The different parts of € satisfy:

(i) Hp = {zx € H | p, is pure point}

(i) H = o ® Hoc® Hoe  and Ay = He*
(iii) 77, is closed and “stable” under A:

[Avf.awﬁ] =0

B.4 Ergodic operators

B.4.1 Basic ergodic theory definitions and results

Let (2, F,m) be a finite measured space. We say that a measurable map T :  — § is
ergodic if for all measurable set A one has m(T~1A) = m(A) and the only T-invariant

subsets are trivial modulo u :
TA=A = pA)e{0;1}
This is equivalent to ask for
Vfelp foT=f = f=c' m-ae.

The main theorem in this setting is:

f—ETheorem B.3 (Birkhoff’s ergodic theorem)} \
If (2, T,m,T) is ergodic then for all f € L*(f2) its average in time coincides with

its spatial one for almost every starting point:

fo o TF(z) "——— /f m

B.4.2 Ergodic families of operators

Those families naturally arise when the potential of the Schrédinger operator contain some

parameter.
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/—EDeﬁnition B.7 (Ergodic s.a. operator)}
A measurable map H : w € Q — H, € SA(X) is said to be an ergodic

self-adjoint operator when
Viel Ywe HTi(w) = Ui* H,U;

where (T;);e1 is a family of ergodic maps on (Q, F,m) and (U;);er a family of

unitary operators on ¢ which requires U;* = U; ! for all i.

In our model of quasi-periodic and random operators, we have such an ergodic operator
thanks to ergodicity of (- + «, o) where o(wp)n = (Wnt1)n-
The most significant result about ergodic operators is the following independence of

the different spectra w.r.t. the parameter.

Theorem B.4 (Pastur, Ishii, Kotani)}

The spectrum of an ergodic s.a. operator is m-a.e. constant.

[Remark B.2 J

The same result also holds for the components of the spectrum opy,, Oac, 0 but

not the eigenvalues oy,.

B.5 Eigenvalue equations

Let us recall why eigenvalue equations Hy) = E¢ are important. Another formulation of

the spectral theorem is the following (see [RS79)])

f—[Theorem B.5 (Spectral thm - mult. operator Version)]—

Let H € B(4€) be s.a.. Then there exists on R finite Borelian measures (jtx)o<k<r

withr € Nsatisfying [11>> jip > o> i > fliss . .. and a unitary operator U €
U, EBZ:1L2(R, Ur)) s.t.

A =U"MpuU and o(H) = Supp i1

e 1 is called the multiplicity of H

e Ly := pp is the spectral measure of H
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[Remark B.3]
For H = H, € B({*(Z%)), we have r = 2, uyg = % (fto,0 + p11,1) in the sense of the

previous spectral measure associated to dy and 6.

Now we relate the spectral measures to the eigenvalue equations.

f—[Deﬁnition B.8 (Spectral meas., generalized e.v.)}

The generalized spectrum (made of generalized eigenvalues) is defined as follows:

Ogen(H) = {E € R | 3y € RZ' \ {0} with polynomial growth s.t. Hy = Ew}

That is we require
o Vn € Z4 — AY(n) + vpp(n) = Etp(n)
e Ja,c>0 VYneZd lY(n)| < 1+ ||n|)®

Note that 1 ¢ ¢2(Z?) a priori. The main result is the following:

/—[Proposition B.3}
e 0yen(H) C o(H)

o 0gen(H) = o(H)

e pn (o(H) N ogen(H)) =0

e (BEREZANSKY) pp-almost every E € R is a generalized eigenvalue.

These polynomially bounded solutions are often used in the literature to prove results
about Anderson localization (see [BS00, BG00]. Those are formal solution verifying a
bound that is not “too bad” which is used to ultimately prove the exponential decay of

formal solutions of the eigenvalue equations.
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