J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen et al., Recent progress in efficient hybrid lead halide perovskite solar cells, National Institute for Materials Science, 2015.
DOI : 10.1039/C4FD00160E

URL : http://www.tandfonline.com/doi/pdf/10.1088/1468-6996/16/3/036004?needAccess=true

J. Nelson, The physics of solar cells, 2003.
DOI : 10.1142/p276

L. C. Hirst and N. J. , Fundamental losses in solar cells, Progress in Photovoltaics: Research and Applications, vol.32, issue.3, 2011.
DOI : 10.1007/BF00688821

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.6, issue.17, p.510, 1961.
DOI : 10.1109/JRPROC.1957.278348

X. Wang, J. Byrne, L. Kurdgelashvili, and &. A. Barnett, High efficiency photovoltaics: on the way to becoming a major electricity source, Wiley Interdisciplinary Reviews: Energy and Environment, vol.31, issue.481, pp.132-151, 2012.
DOI : 10.1063/1.1735750

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and &. E. Dunlop, Solar cell efficiency tables (version 40), Progress in Photovoltaics: Research and Applications, pp.606-614, 2012.
DOI : 10.1016/S0038-092X(03)00005-7

N. Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today, vol.18, issue.2, pp.65-72, 2014.
DOI : 10.1016/j.mattod.2014.07.007

URL : https://doi.org/10.1016/j.mattod.2014.07.007

. Ho-baillie, Solar cell efficiency tables, Progress In Photovoltaics, vol.25, issue.1, pp.3-13, 2016.

M. A. Green, Silicon solar cells: evolution, high efficiency design and efficiency enhancements. Semiconductor, Science and Technology, vol.8, issue.1, 1993.
DOI : 10.1088/0268-1242/8/1/001

A. Kojima, K. Teshima, Y. Shirai, and &. Miyasaka, Novel Photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds, 2008.

J. S. Manser, J. A. Christians, and P. V. Kamat, Intriguing Optoelectronic Properties of Metal Halide Perovskites, Chemical Reviews, vol.116, issue.21, pp.12956-13008, 2016.
DOI : 10.1021/acs.chemrev.6b00136

URL : http://doi.org/10.1021/acs.chemrev.6b00136

J. Burschka, N. Pellet, S. Moon, R. Humphry-baker, P. Gao et al., Sequential deposition as a route to high-performance perovskitesensitized solar cells, Science, vol.499, pp.316-319, 2013.
DOI : 10.1038/nature12340

W. Nie, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, vol.76, issue.18, pp.522-525, 2015.
DOI : 10.1103/PhysRevB.76.024116

H. Kim, H. Choi, J. Jeong, S. Kim, B. Walker et al., Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells, Nanoscale, vol.14, issue.12, pp.6679-6683, 2014.
DOI : 10.1039/b403482a

J. Werner, Efficient NIR-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite / Silicon Tandem Cells, 2016.
DOI : 10.1021/acsenergylett.6b00254

URL : http://doi.org/10.1021/acsenergylett.6b00254

D. P. Mcmeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, vol.5, issue.6240, p.351, 2016.
DOI : 10.1038/ncomms6757

T. C. Sum and &. N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics, Energy Environ. Sci., vol.4, issue.1, pp.2518-2534, 2014.
DOI : 10.1038/ncomms3885

URL : http://pubs.rsc.org/en/content/articlepdf/2014/ee/c4ee00673a

D. Bi, C. Yi, J. Luo, J. Décoppet, F. Zhang et al., Polymer-templated nucleation and crystal groxth of perovskite films for solar cells with efficiency greater than 21%, Nature, p.16142, 2016.

J. Im, J. Chung, S. Kim, and &. Kim, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3, Nanoscale Research Letters, vol.7, issue.1, 2012.
DOI : 10.1016/j.apcatb.2006.07.018

D. Weber, CH3NH3PbX3, a Pb (II) -System with Cubic Perovskite Structure, Naturforsch, vol.33, issue.12, pp.1443-1445, 1978.
DOI : 10.1515/znb-1978-1214

N. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, The Journal of Physical Chemistry Letters, vol.4, issue.15, 2013.
DOI : 10.1021/jz400892a

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and &. A. Guloy, Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets, Science, vol.31, issue.17, pp.1473-1476, 1994.
DOI : 10.1070/RC1962v031n11ABEH001324

C. Li, X. Lu, W. Ding, L. Feng, Y. Gao et al., = F, Cl, Br, I) halide perovskites, Acta Crystallographica Section B Structural Science, vol.64, issue.6, pp.702-707, 2008.
DOI : 10.1107/S0108768108032734

S. Pang, H. Hu, J. Zhang, S. Lv, H. Xu et al., : An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells, Chemistry of Materials, vol.26, issue.3, pp.1485-149, 2014.
DOI : 10.1021/cm404006p

N. Onoda-yamamur, T. Matsuo, and . Hiroshi-suga, Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)???, Journal of Physics and Chemistry of Solids, vol.51, issue.12, pp.1383-1395, 1990.
DOI : 10.1016/0022-3697(90)90021-7

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, vol.67, issue.214, pp.5628-5641, 2013.
DOI : 10.1103/PhysRevB.67.155405

P. Umari, E. Mosconi, and &. Filippo-de-angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications, Scientific Reports, vol.21, issue.1, p.4467, 2014.
DOI : 10.1088/0953-8984/21/39/395502

URL : http://www.nature.com/articles/srep04467.pdf

Y. Chang and C. H. Park, First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites, 2004.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev et al., Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination, Journal of the American Chemical Society, vol.136, issue.14, pp.5189-5192, 2014.
DOI : 10.1021/ja412583t

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. Tse-weiwang et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic???inorganic tri-halide perovskites, Nature Physics, vol.32, issue.7, pp.582-588, 2015.
DOI : 10.1088/0022-3727/32/18/306

M. Lee and A. Petrozza, Excitons versus free charges in organo-lead trihalide perovskites, Nature Communications, 2014.

E. Mosconi, A. Amat, M. Khaja-nazeeruddin, M. Grätzel, and &. F. Angelis, First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications, The Journal of Physical Chemistry C, vol.117, issue.27, 2013.
DOI : 10.1021/jp4048659

M. J. Menelaou, T. Alcocer, &. Leijtens, J. Henry, and . Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, vol.342, pp.341-343, 2013.

I. Koutselas, &. Ducasse, and . Papavassiliou, Electronic properties of threeand low-dimensional semiconducting materials with Pb halide and Sn halide units, J. Phys : Condens. Matter, vol.8, issue.9, 1995.

C. Motta, F. El-mellouhi, and &. S. Sanvito, Charge carrier mobility in hybrid halide perovskites, Scientific Reports, vol.126, issue.1, p.746, 2014.
DOI : 10.1063/1.2408420

URL : http://www.nature.com/articles/srep12746.pdf

E. Knittle and &. R. Teanloz, Synthesis and Equation of State of (Mg,Fe) SiO3 Perovskite to Over 100 Gigapascals, Science, vol.235, issue.4789, pp.668-670, 1987.
DOI : 10.1126/science.235.4789.668

T. Yoshida, T. Pauporte, D. Lincot, T. Oekermann, and H. Minouraa, Cathodic Electrodeposition of ZnO Eosin Y Hybrid Thin Films from Oxygen-Saturated Aqueous Solution of ZnCl2 and Eosin Y, The Journal of the Electrochemical Society, vol.150, issue.9, 2003.

J. H. Noh, S. H. Im, J. H. Heo, and T. N. , Chemical Management for Colorful, Efficient, and Stable Inorganic???Organic Hybrid Nanostructured Solar Cells, Nano Letters, vol.13, issue.4, pp.1764-1769, 2013.
DOI : 10.1021/nl400349b

N. Pellet, Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting, Angewandte Chemie International Edition, vol.3, issue.25, pp.3151-3157, 2014.
DOI : 10.1039/c1nr10867k

W. S. Yang, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, vol.14, issue.6107, pp.1234-1237, 2015.
DOI : 10.1021/nl500390f

J. H. Noh, Chemical Management for Colorful, Efficient, and Stable Inorganic???Organic Hybrid Nanostructured Solar Cells, Nano Letters, vol.13, issue.4, pp.1764-1769, 2013.
DOI : 10.1021/nl400349b

À. Suzuki, H. Okada, and T. Oku, Role of bromine doping on the photovoltaic properties and microstructures of CH 3 NH 3 PbI 3 perovskite solar cells, AIP Conference proceedings, 2015.

W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving to 6, 22%. Adv. Mater, issue.42, pp.28-9333, 2016.
DOI : 10.1002/adma.201602992

M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeld, and M. Gra¨tzel, ) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high Efficiency, Ener. And environ. Sci, 2016.

M. Liu, M. B. Johnston, and &. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol.5, issue.7467, pp.395-398, 2013.
DOI : 10.1039/c2ee23073a

K. Liang, D. B. Mitzi, and M. T. Prikas, Synthesis and Characterization of Organic???Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique, Chemistry of Materials, vol.10, issue.1, pp.403-411, 1998.
DOI : 10.1021/cm970568f

H. Tsai, Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control, Chemistry of Materials, vol.27, issue.16, pp.5570-5576, 2015.
DOI : 10.1021/acs.chemmater.5b02378

J. Burschka, N. Pellet, S. Moon, R. Humphry-baker, P. Gao et al., Sequential deposition as a route to high-performance perovskitesensitized solar cells, Science, vol.499, pp.316-319, 2013.
DOI : 10.1038/nature12340

D. B. Mitzi, Thin-Film Deposition of Organic???Inorganic Hybrid Materials, Chemistry of Materials, vol.13, issue.10, pp.542-544, 2001.
DOI : 10.1021/cm0101677

J. H. Heo, Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Advanced Materials, vol.342, issue.22, pp.3424-3430, 2015.
DOI : 10.1126/science.1243982

Y. Chen, Y. Zhao, and Z. Liang, Non thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH 4 Cl, Chem Mater, vol.26, issue.48, pp.8179-8183, 2015.

J. H. Heo, D. H. Song, and S. H. Im, Planar CH 3 NH 3 PbBr 3 hybrid solar cells with 14 % power conversion efficiency, fabricated by controlled crystallization in the spincoating process, Adv. Mater, issue.48, pp.26-8179, 2014.

N. J. Jeon, Solvent engineering for high-performance inorganic???organic hybrid perovskite solar cells, Nature Materials, vol.6, issue.9, pp.897-903, 2014.
DOI : 10.1063/1.1784556

W. Li, Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%, Journal of the American Chemical Society, vol.137, issue.32, pp.12241-12244, 2015.
DOI : 10.1021/jacs.5b06444

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic???organic hybrid perovskite solar cells, Nature Materials, vol.6, issue.9, pp.897-903, 2014.
DOI : 10.1063/1.1784556

W. Li, J. Fan, J. Li, Y. Mai, and L. Wang, Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%, Journal of the American Chemical Society, vol.137, issue.32, 2015.
DOI : 10.1021/jacs.5b06444

N. Ahn, D. Son, I. Jang, S. M. Kang, M. Choi et al., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide, Journal of the American Chemical Society, vol.137, issue.27, pp.8696-8699, 2015.
DOI : 10.1021/jacs.5b04930

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallisation procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew.Chem, vol.126, 2014.
DOI : 10.1002/ange.201405334

L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist, Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chemistry of Materials, vol.13, issue.12, pp.4395-4398, 2001.
DOI : 10.1021/cm011160s

D. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton et al., ZnO: growth, doping & processing, Materials Today, vol.7, issue.6, pp.34-40, 2004.
DOI : 10.1016/S1369-7021(04)00287-1

URL : https://doi.org/10.1016/s1369-7021(04)00287-1

T. Mitchell, P. Das, K. Blaha, M. Schwarz, and . Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys. Rev, issue.17, p.53, 1996.

C. Wöll, The chemistry and physics of zinc oxide surfaces. Progress in surface science, pp.55-120, 2007.

W. J. Li, E. W. Shi, and W. Z. Zhong, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth, vol.203, issue.1-2, pp.96-186, 1999.
DOI : 10.1016/S0022-0248(99)00076-7

D. Raviendra and J. Sharma, Electroless deposition of cadmium stannate, zinc oxide, and aluminum???doped zinc oxide films, Journal of Applied Physics, vol.16, issue.2, pp.838-882, 1985.
DOI : 10.1116/1.570167

W. L. Bond, Measurement of the Refractive Indices of Several Crystals, Journal of Applied Physics, vol.36, issue.5, pp.1674-1677, 1965.
DOI : 10.1063/1.1703106

P. A. Rodnyi and I. V. Khodyuk, Optical and luminescence properties of zinc oxide (Review), Optics and Spectroscopy, vol.111, issue.5, pp.776-785, 2011.
DOI : 10.1134/S0030400X11120216

URL : http://arxiv.org/pdf/1203.4366

K. Tennakone, G. R. Kumara, I. R. Kottegoda, and V. P. Perera, An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc, Chemical Communications, issue.1, 1999.
DOI : 10.1039/a806801a

W. H. Shim, Y. T. Kim, J. Lim, Y. Kim, and K. H. Lee, Effects of Electrodeposited Ga-doped ZnO Buffer Layer on the Performance of Inverted Organic Solar Cells, Journal of Nanoelectronics and Optoelectronics, vol.5, issue.2, pp.181-185, 2010.
DOI : 10.1166/jno.2010.1089

K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magneton sputtering. Thin Solid Films, pp.201-209, 1997.

R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition, Journal of Crystal Growth, vol.294, issue.2, pp.427-431, 2006.
DOI : 10.1016/j.jcrysgro.2006.06.035

R. Cebulla, R. Wendt, and K. Ellmer, Al ?doped zinc oxide films deposited by simultaneous rf and dc excitation of a magneton plasma: relationships between plasma parameters and structural and electrical film properties, J. Appl. Phys, vol.83, issue.2, 1998.

J. Rousset, E. Saucedo, and D. Lincot, Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications, Chem. Mat, vol.21, issue.3, 2009.

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.33, issue.5, 1964.
DOI : 10.1063/1.1777195

R. B. Peterson, C. L. Fields, and &. B. Gregg, Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions, Langmuir, vol.20, issue.12, pp.5114-5118, 2004.
DOI : 10.1021/la049683c

G. C. Yi, C. Wang, and W. I. Park, ZnO nanorods: synthesis, characterization and applications, Semiconductor Science and Technology, vol.20, issue.4, 2005.
DOI : 10.1088/0268-1242/20/4/003

URL : http://bp.snu.ac.kr/Lecture/Energy_Materials/%EC%97%90%EB%84%88%EC%A7%80 %EC%9E%AC%EB%A3%8C%2C %EB%B0%9C%ED%91%9C fall/%EB%B0%95%EC%A7%84%ED%98%B8(1208).pdf

S. Y. Bae, H. W. Seo, and &. J. Park, Vertically Aligned Sulfur-Doped ZnO Nanowires Synthesized via Chemical Vapor Deposition, The Journal of Physical Chemistry B, vol.108, issue.17, pp.5206-5210, 2004.
DOI : 10.1021/jp036720k

R. B. Baxter and &. S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Solar Energy Materials and Solar Cells, vol.90, issue.5, pp.607-622, 2006.
DOI : 10.1016/j.solmat.2005.05.010

K. T. Kuo, D. M. Liu, S. Y. Chen, and &. C. Lin, Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency, Journal of Materials Chemistry, vol.12, issue.37, pp.6790-6788, 2009.
DOI : 10.1039/b907765k

. Bellet, Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by lowcost deposition methods, Applied Physics Letters, p.98
URL : https://hal.archives-ouvertes.fr/hal-00641612

T. Dedova, O. Volobujeva, J. Klauson, A. Mere, and &. M. Krunks, ZnO Nanorods via Spray Deposition of Solutions Containing Zinc Chloride and Thiocarbamide, Nanoscale Research Letters, vol.60, issue.3, 2007.
DOI : 10.1007/s11671-007-9072-6

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1007/s11671-007-9072-6?site=nanoscalereslett.springeropen.com

T. Dedova, M. Krunks, M. Grossberg, O. Volobujeva, and &. I. Acik, A novel deposition method to grow ZnO nanorods: Spray pyrolysis, Superlattices and Microstructures, vol.42, issue.1-6, 2007.
DOI : 10.1016/j.spmi.2007.04.010

M. Guo, P. Diao, X. D. Wang, and &. S. Cai, The effect of hydrothermal gowth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, Thin Solid films, issue.10, pp.178-3210, 2005.

A. New and C. , ZnO columnar composite film for ETA-solar cells, Physica, vol.14, issue.2, pp.229-232

M. Izaki and &. T. Omi, Transparent zinc ocide films prepared by electrochemical reaction, Applied Physics Letters, p.68, 1996.
DOI : 10.1063/1.116160

S. Peulon and &. D. Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, vol.387, issue.2, pp.166-170, 1996.
DOI : 10.1002/adma.19960080216

K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films, vol.305, issue.1-2, pp.201-209, 1997.
DOI : 10.1016/S0040-6090(97)00215-0

E. Chikoidze, M. Modreanu, V. Sallet, O. Gorochov, and P. Galtier, Electrical properties of chlorine-doped ZnO thin films grown by MOCVD, physica status solidi (a) 205, pp.1575-1579, 2008.
DOI : 10.1557/mrs2000.149

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Extremely Transparent and Conductive ZnO :Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl, H O) as New Doping Material, 1997.
DOI : 10.1143/jjap.36.l1078

S. Haller, J. Jung, J. Rousset, and D. Lincot, Effect of electrodeposition parameters and addition of chloride ions on the structural and optoelectronic properties of Cu2O, Electrochimica Acta, vol.82, pp.402-407, 2012.
DOI : 10.1016/j.electacta.2012.03.149

S. Haller, J. Renou, D. Rousset, and . Lincot, Electrodepostion of nanoporous ZnO on Al-doped ZnO leading to a highly organized structure for integration in Dye Sensitized Solar Cells, EPJ Photovolt, vol.2, 2010.

S. Haller, T. Suguira, D. Lincot, and T. Yoshida, Design of a hierarchical structure of ZnO by electrochemisty for ZnO-based dye-sensitized solar cells, Physica status solidi, vol.207, issue.10, pp.2209-2408, 2010.

J. A. Switzer, Electrochemical synthesis of ceramic films and powders, 1987.

R. T. Coyle and J. A. Switzer, Electrochemical synthesis of ceramic films and Powders, 1989.

M. Pourbaix, Atlas d'équilibres électrochimiques à 25° C, Gauthier-Villars et Cie, 1963.

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Temperature effects on ZnO electrodeposition, Electrochimica Acta, vol.50, issue.11, pp.2239-2248, 2005.
DOI : 10.1016/j.electacta.2004.10.007

T. , C. Sum, and &. N. Mathews, Advancements in Perovskite Solar Cells: Photophysics behind the Photovoltaics, Energy and Environmental Science, vol.7, pp.2518-2534, 2014.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran et al., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. The Jour. Of Amer, Md. K. Nazeeruddin and M. Grätzel, 2012.
DOI : 10.1021/ja307789s

URL : https://zenodo.org/record/12463/files/Mesoscopic_CH3NH3PbI3_TiO2_heterojunction_solar_cells.pdf

H. J. Snaith and &. M. Grätzel, Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells, Applied Physics Letters, vol.89, issue.26, 2006.
DOI : 10.1016/S0301-0104(02)01035-2

. Rensmo, Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When Adding Li-TFSI, The Journal of Physical Chemistry C, vol.116, pp.26300-26305, 2012.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and &. P. Kamat, Architecture, Journal of the American Chemical Society, vol.130, issue.12, pp.4007-4015, 2008.
DOI : 10.1021/ja0782706

W. H. Nguyen, C. D. Bailie, E. L. Unger, and &. D. Mcgehee, in Perovskite and Dye-Sensitized Solar Cells, Journal of the American Chemical Society, vol.136, issue.31, pp.10996-11001, 2014.
DOI : 10.1021/ja504539w

U. B. Cappel, T. Daeneke, and &. U. Bach, Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance, Nano Letters, vol.12, issue.9, pp.4925-4931, 2012.
DOI : 10.1021/nl302509q

E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, High Open-Circuit Voltage Solar Cells Based on Organic???Inorganic Lead Bromide Perovskite, The Journal of Physical Chemistry Letters, vol.4, issue.6, 2013.
DOI : 10.1021/jz400348q

M. Zushi, A. Suzuki, T. Akiyama, and &. T. Oku, Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive, AIP Conference Proceedings, vol.1585, pp.164-170, 2014.

T. Marinado, D. P. Hagberg, M. Hedlund, T. Edvinson, E. M. Johanson et al., Rhodaninedyes for dye-sensitized solar cells???:??? spectroscopy, energy levels and photovoltaic performance, Phys. Chem. Chem. Phys., vol.298, issue.1, pp.133-141, 2009.
DOI : 10.1016/S0020-1693(99)00407-7

F. Labat, I. Ciofini, and C. Adamo, Modeling ZnO phases using a periodic approach: From bulk to surface and beyond, The Journal of Chemical Physics, vol.108, issue.4, p.131, 2009.
DOI : 10.1103/PhysRevB.6.3056

T. Pauporté and D. Lincot, Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition I. Deposition in Perchlorate Medium, Journal of The Electrochemical Society, vol.6, issue.4, 2001.
DOI : 10.1557/PROC-495-457

T. Pauporté and D. Lincot, Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II???Mechanistic aspects, Journal of Electroanalytical Chemistry, vol.517, issue.1-2, pp.1-2, 2001.
DOI : 10.1016/S0022-0728(01)00674-X

R. Marcus, On the Theory of Oxidation???Reduction Reactions Involving Electron Transfer. I, The Journal of Chemical Physics, vol.24, issue.5, pp.853-857, 1963.
DOI : 10.1039/tf9403500633

T. Pauporté and J. Rathousky, Electrodeposited mesoporous ZnO thin films as efficient photocalaysts for the degradation of dye pollutants, The J. of Phys. Chem. C, issue.21, pp.11-7639, 2009.

P. Persson, S. L. Lunell, and . Ojamäe, Electronic interactions betwen aromatic adsorbates and metal oxide substrates calculated from first principles, Chem. Pys. Lett, 2002.
DOI : 10.1016/s0009-2614(02)01370-2

T. Yoshida, D. Komatsu, N. Shimokawa, and H. Minoura, Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths, Thin Solid Films, vol.451, issue.452, pp.451-452, 2004.
DOI : 10.1016/j.tsf.2003.10.097

K. Hara, T. Horiguvhi, H. Sayama, and . Arakawa, Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO 2 solar cells, Sol. Ener. Mat. and Sol. C, 2001.

D. Angelis, Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions, Journal of Physical Chemistry Letter, vol.5, issue.15, pp.2662-2669, 2014.

Y. Guo, K. Shoyama, W. Sato, Y. Matsuo, K. Inoue et al., Chemical Pathways Connecting Lead(II) Iodide and Perovskite via Polymeric Plumbate(II) Fiber, Journal of the American Chemical Society, vol.137, issue.50, pp.137-15907, 2015.
DOI : 10.1021/jacs.5b10599

C. Jiang, S. L. Lim, W. P. Goh, F. X. Wei, and &. J. Zhang, Formation for Efficient and Better Reproducible Mesoscopic Perovskite Solar Cells, ACS Applied Materials & Interfaces, vol.7, issue.44, 2015.
DOI : 10.1021/acsami.5b07446

S. Giesbrecht, T. Bernstorff, P. Bein, and . M-ller-buschbaum, A Closer Look, 2015.

T. L. Cottrell, The Strengths of Chemical Bonds, 1958.

J. B. Patel, R. L. Milot, A. D. Wright, L. M. Herz, and &. M. Johnston, Perovskite Following Two-Step Layer Deposition, The Journal of Physical Chemistry Letters, vol.7, issue.1, pp.96-102, 2015.
DOI : 10.1021/acs.jpclett.5b02495

URL : http://doi.org/10.1021/acs.jpclett.5b02495

A. Abate, T. Leijtens, S. Pathak, J. Teuscher, R. Avolio et al., Lithium salts as ???redox active??? p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells, Physical Chemistry Chemical Physics, vol.93, issue.7, pp.2572-2579, 2013.
DOI : 10.1063/1.1525866

E. M. Hagfeldt, L. Johansson, G. Sun, and . Boschloo, Comparing Spiro-OMeTAD and P3HT Hole Conductors in Efficient Solid State Dye-Sensitized Solar Cells, Phys. Chem. Chem, vol.14, pp.779-789, 2012.

Z. Hawash, L. K. Ono, S. R. Raga, M. V. Lee, and Y. Qi, Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films, Chemistry of Materials, vol.27, issue.2, 2015.
DOI : 10.1021/cm504022q

URL : http://doi.org/10.1021/cm504022q

S. Kazim, M. K. Nazeeruddin, M. Gratzel, and S. Ahmad, Perovskite as Light Harvester: A Game Changer in Photovoltaics, Angewandte Chemie International Edition, vol.6, issue.11, pp.53-2812, 2014.
DOI : 10.1039/C3NR05884K

W. Yuan, H. Zhao, H. Hu, S. Wang, and G. L. Baker, Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nano-composites and Application in Solid-State Dye-Sensitized Solar Cell, ACS Appl. Mater. Interfaces, issue.10, pp.5-4155, 2013.

P. Tiwana, P. Docampo, M. B. Johnston, L. Herz, and H. J. Snaith, The origin of an efficiency improving ???light soaking??? effect in SnO2 based solid-state dye-sensitized solar cells, Energy & Environmental Science, vol.114, issue.680, pp.9566-9573, 2012.
DOI : 10.1021/jp908760r

S. Wang, W. Yuan, and Y. S. Meng, Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells, ACS Applied Materials & Interfaces, vol.7, issue.44, pp.24791-24798, 2015.
DOI : 10.1021/acsami.5b07703

H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens et al., Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, vol.5, issue.9, pp.1511-1515, 2014.
DOI : 10.1021/jz500113x

J. Haruyama, K. Sodeyama, L. Han, and &. Tateyama, First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers, Journal of the American Chemical Society, vol.137, issue.32, pp.10048-10051, 2015.
DOI : 10.1021/jacs.5b03615

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim et al., Efficient inorganic???organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nature Photonics, vol.18, issue.6, pp.486-491, 2013.
DOI : 10.1002/adfm.200701428

D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. Johansson et al., Efficient and stable CH 3 NH 3 PbI 3 -sensitized ZnO nanorod array solid-state solar cells, 2013.
DOI : 10.1039/c3nr01542d

D. T. Toolan, N. Pullan, M. J. Harvey, P. D. Topham, and &. J. Howse, In Situ Studies of Phase Separation and Crystallization Directed by Marangoni Instabilities During Spin-Coating, Advanced Materials, vol.42, issue.48, pp.7033-7037, 2013.
DOI : 10.1007/s10853-006-0471-3

N. Lin, J. Qiao, H. Dong, F. Ma, and &. L. Wang, films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity, J. Mater. Chem. A, vol.8, issue.45, pp.22839-22845, 2015.
DOI : 10.1002/cssc.201403442

&. Y. Youab and . Yang, Perovskite solar cells: film formation and properties, Journal of Materials Chemistry A, vol.3, pp.9032-9050, 2015.

Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle et al., perovskite solar cells at high temperatures and humidity, J. Mater. Chem. A, vol.72, issue.15, pp.8139-8147, 2015.
DOI : 10.2298/JSC0709857V

K. Liang, D. B. Mitzi, and &. M. Prikas, Synthesis and characterization of organicinorganic perovskite thin films using versatile two-step dipping technique, pp.403-411, 1998.
DOI : 10.1021/cm970568f

J. H. Heo, M. S. You, M. H. Chang, W. Yin, T. K. Ahn et al., Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode, Nano Energy, vol.15, pp.530-539, 2015.
DOI : 10.1016/j.nanoen.2015.05.014

E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman et al., Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor), Nano Letters, vol.14, issue.2, pp.1000-1004, 2014.
DOI : 10.1021/nl404454h

. Sum, Interface electron transfer barrier at compact TiO 2 /CH 3 NH 3 PbI 3 heterojunction, Small, issue.11, p.3606, 2015.

W. Li, H. Dong, L. Wang, N. Li, X. Guo et al., Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination, J. Mater. Chem. A, vol.2, issue.33, pp.13587-13592, 2014.
DOI : 10.1039/C3TA14160H

. Lee, Advanced functional materials, Energy Environ. Sci, 2015.

F. Tsin, A. Venerosy, J. Vidal, S. Collin, J. Clatot et al., Electrodeposition of ZnO window layerfor an all-atmospheric fabrication process of chalcogenide solar cell, Lincot & J. Rousset. Nature, vol.5, p.8961, 2015.