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Résumé

Cette dernière décennie a vu l’essor des analyses statiques plus seulement réservées aux systèmes
embarqués critiques (avions, métros, fusées, etc.), mais maintenant disponibles plus largement,
comme le montre l’implication de compagnies telles que Google ou Facebook dans le domaine.

Néanmoins, prouver l’absence de bugs d’un logiciel, (problème que nous savons depuis Turing et
Cook être intrinsèquement difficile) n’est pas le seul challenge en développement logiciel. En effet,
la complexité toujours croissante des logiciels induit un besoin toujours croissant d’optimisations
fiables.

La résolution de ces deux problèmes (fiabilité, optimisation) impose le développement de méthodes
d’analyse statique sûres (sans faux négatifs), efficaces (en temps et en mémoire), mais suffisamment
précises (avec un taux faible de faux positifs). La recherche de tels compromis est au cœur de mes
travaux, qu’ils s’appliquent à la vérification formelle ou au domaine plus contraint des analyses pour
les compilateurs.

Les travaux détaillés dans ce manuscrit décrivent mes activités de recherche pendant la période
de 2009 à 2017. Durant cette période, j’ai contribué aux développements d’analyses statiques ap-
pliquées aux deux domaines connexes que sont la vérification de logiciels et la compilation. Les
analyses proposées sont développées dans le cadre de l’interprétation abstraite, pour des domaines
numériques, et plus récemment, des domaines mémoire. Elles font de plus l’objet de validation ex-
périmentale en terme de précision et de coût, ainsi que de leur impact dans des analyses clientes
(terminaison, optimisations) lorsque cela est pertinent.
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Summary

This last decade was the occasion to see the rise of static analyses that are now no longer reserved for
critical embedded systems (airplanes, subways, rockets, etc.). They are now more widely available,
as evidenced by the novel implication of companies like Google or Facebook in the domain.

Nevertheless, proving the absence of bugs in a given software (problem which has been known to be
intrinsically hard since Turing and Cook) is not the only challenge in software development. Indeed,
the ever growing complexity of software increases the need for more trustable optimisations.

Solving these two problems (reliability, optimisation) implies the development of safe (without false
negative answers) and efficient (wrt memory and time) analyses, yet precise enough (with few false
positive answers). Finding such compromises is the core of my works, whether it deals with formal
verification or the more specific domain of analyses inside compilers.

The work which is detailed in this manuscript was done over a period going from 2009 to 2017.
During this period, I contributed to static analyses in the two related domains that are software
verification and compilation. The proposed analyses have been developed within the abstract in-
terpretation framework, for numerical domains, or, more recently, memory domains. They are also
experimentally validated, according to precision and cost criteria, and also according to their impact
on client analyses (termination, code optimisation) whenever appropriate.
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1 Introduction: from Program Verification to
Program Optimisation

Software reliability has always been one of the major issues in Computer Science, as the spectacular
accident of Ariane 5 in 1996 illustrated. The accident is described in these terms in the accident re-
port1: “Only about 40 seconds after initiation of the flight sequence, at an altitude of about 3700m,
the launcher veered off its flight path, broke up and exploded”. The cause of this accident was the use
of the code of the preceding rocket model, Ariane 4, which was not retested in the correct environ-
ment. In the last two decades, a series of accidents caused by software has led the NASA to refresh
their validation methodology [28]. Other software related accidents were even more critical in terms
of human lives, for instance the Panama radiotherapy accident [23] in 2000, that caused the death of
21 patients who received an overdose of radiotherapy treatment induced by a bug in the software.

Many complementary approaches exist to deal with software reliability, from software engineering,
development methodology, formal methods based development, as well as testing and proofs [71].
All these techniques have proved their efficiency in the development of safety critical systems such
as space rockets, airplanes, nuclear plant controllers, automatic subways. Among all the tools of this
ecosystem, let us cite the ASTRÉE code analyser [19] which was capable of proving the absence of
runtime errors of the “primary flight control software of an Airbus model”2.

However, all these techniques cause a huge overhead on the software development process, and for
the moment, they did not have a huge impact on the development of non critical systems such as
laptop operating systems or hardware. This is especially due to the fact that:

• They have a huge impact on the development duration.

• They have a cost in terms of human resources.

• The analyses and tools were developed for the specific domain of safety critical systems, where
code rules can be imposed to developers, and assumptions can be made on the shape of the
code they produce. These constraints are clearly unreasonable in other contexts.

• The analyses and tools were developed for development environments that do not include ag-
gressive code optimisation, since safety-critical systems are designed to be simple and usually
run on over-sized platforms.

In the last decade nevertheless, the ever-growing number of static analysis tools demonstrated the
need for safer (mode generalist, less critical) code as well as the visibility of the scientific community
of static analysis3. Start-ups as well as major companies have developed their tools for the growing
market of software validation. Among the commercial tools we can cite GrammaTech’s Code Sonar4

1http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
2https://www.absint.com/astree/index.htm
3https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
4https://www.grammatech.com/products/codesonar
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CHAPTER 1. INTRODUCTION: FROM PROGRAM VERIFICATION TO PROGRAM OPTIMISATION

which focuses on code security and Facebook’s Infer5 that provides a precise diagnostic of memory
management.

All these techniques and tools mainly prove the absence of bugs in their specialised area of appli-
cation, or gives hints to the developer for a better understanding of his code, but they address only
a part of the challenges toward software reliability. I believe that the effort to design a better code
and prove the absence of errors has to be continued in two complementary directions: applicability
(static analysis for every developer) and expressivity (static analysis for everyday problems). My work
on static analyses for verification and compilation follows this philosophy: static analyses must ver-
ify but also be used to optimise runtime and memory footprint of programs. However, static analyses
inside compilers are lagging far behind the state-of-the-art of static analyses for software verification
or bug tracking. Clearly, the usage in compilers avoid the use of unsound techniques (all faulty be-
haviours should be detected); moreover, the complexity of the compiler code itself advocates for
the design of “easy-to-implement” static analyses and code optimisations (bugs in compilers are
frequent and a major issue [103]).

The success story of the Compcert compiler6 and the Verasco7 project show that we can design cer-
tified (proved by the Coq theorem prover) compilers and static analysers for general C programs.
However the optimisations that are proposed in these two tools are still very far from the current
production compilers, in which aggressive and clever optimisations are made. To bridge the gap be-
tween the two communities (static analysis and code optimisation), we propose to design abstract-
interpretation based static analyses, which are correct by-construction (as opposed to formally vali-
dated in Coq) and scalable enough to provide useful information for further optimisations.

My current research concerns the development of dedicated static analyses for verification and com-
pilation, that are capable to express complex properties at a reasonable cost. My contributions were
driven by the idea that the world of verification and the world of compilation do not sufficiently use
their cross-fertilisation potential. This was declined in all topics, from my Phd [DG07] where ve-
rification of embedded systems was the only application domain to the synthesis of numerical invari-
ants, to my current activities where compute-intensive code (High Performance Computing kernels)
as well as general purpose programs are under concern.

1.1 Static analysis for verification

Program analysis for verification aims at automatically checking that programs fit their specifica-
tions, these specification being explicit (“this program sorts an array”) or implicit (“this program
does not make any array out-of-bounds access”). In the general case, a perfect (sound and complete)
program analysis is impossible (due to the undecidability of the halting problem). In order to render
it possible, at least one of the following must hold: unsoundness (some violations of the specification
are not detected), incompleteness (some correct programs are rejected because spurious violations
are detected), or the state space should be finite (and not too large, so as to be enumerated explicitly
or implicitly).

Among various techniques for program analysis, Abstract interpretation [37] is sound, but incom-
plete: it over-approximates the set of behaviours of the analysed program; if the over-approximated
set contains incorrect behaviours that do not exist in the concrete program, then false alarms are
produced. A central question in abstract interpretation for verification is to reduce the number of
false alarms, while keeping memory and time costs reasonable [19].

5http://fbinfer.com/
6http://compcert.inria.fr/
7http://verasco.imag.fr/wiki/Main_Page
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CHAPTER 1. INTRODUCTION: FROM PROGRAM VERIFICATION TO PROGRAM OPTIMISATION

1.2 Static analysis for compilation of general purpose software

The rise of embedded systems and high performance computers in the last decade has revealed
an increasing need for code optimisation. The applications are diverse, from compute-intensive
embedded applications to massively parallel scientific code on large grids, as well as general purpose
programs like web browsers or system schedulers.

Program analysis has two different usage in compilers:

• reject the program or print warnings if the program is not well-formed or has undefined be-
haviour.

• compute information and propagate to further code optimisation/transformation.

The central question in program analysis for optimising compilers is to design specialised analyses
that scale well, while remaining expressive. In addition, these analyses must remain simple enough
to be implemented in production compilers and usable for client analyses inside these compilers
(like loop transformations to optimise locality, scheduling, automatic parallelization etc.).

1.3 Challenges for static analyses

The success of abstract interpretation for safety-critical programs demonstrates the robustness of
the framework as well as its capability to provide precise analysers for complex properties (from
array out-of-bounds to non interference of variables in parallel programs). However, if we want
to cope with more generalist programs, or use abstract-interpretation invariant generation inside
production compilers, there still remains numerous challenges that are partially addressed in this
manuscript.

• Analyses must apply to more generalist programming languages (as opposed to a very spe-
cific subset of C or Java) ([SMO+14, GMR15], . . . ), or, at the opposite, be specially designed for
domain-specific languages ([GG11], [FGG12]).

• Analyses must be scalable, in order to deal with the increasing size of programs, and to be used
as pre-analyses for code optimisation [SMO+14, PMB+16, MPR+17], . . . ).

• Nevertheless, analyses must remain expressive enough to be capable of deriving precise infor-
mation when necessary ([MG11, MG16], . . . )

1.4 Related publications

For the sake of brevity and uniformity, this manuscript does not cover the publications related to
my Phd ([DG07], [GH06], [HMG06], [GS14]), or made during my master studies [GHR04] and my
postdoctoral studies ([GB09], [GB09], [GB08]). The work we made on theoretical aspects of Domain
Specific Languages [RGC11] is also not exposed in this manuscript.
This document is a synthesis of the research articles, journals, or research reports, listed below.

Numerical Domains

[FGG12] Paul Feautrier, Abdoulaye Gamatié, and Laure Gonnord. Enhancing the Compilation of
Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction. CSI
Journal of Computing, 1(4):8:86–8:99, 2012. Unknown impact factor.
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CHAPTER 1. INTRODUCTION: FROM PROGRAM VERIFICATION TO PROGRAM OPTIMISATION

[GG11] Abdoulaye Gamatié and Laure Gonnord. Static analysis of synchronous programs in signal
for efficient design of multi-clocked embedded systems. In Proceedings of the Conference on
Languages, Compilers, Tools and Theory for Embedded Systems (LCTES 2011), Chicago, USA,
April 2011. Acceptation rate 33% (17/51)

[MG11] David Monniaux and Laure Gonnord. Using bounded model checking to focus fixpoint it-
erations. In Proceedings of the 18th International Static Analysis Symposium, SAS’11, Venice,
Italy, September 2011. Springer. Acceptation rate 32% (22/67)

[SMO+14] Henrique Nazaré Willer Santos, Izabella Maffra, Leonardo Oliveira, Fernando Pereira,
and Laure Gonnord. Validation of Memory Accesses Through Symbolic Analyses. In Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages And Applications (OOPSLA’14), Portland, Oregon, United States, October 2014.
Selection rate 27% (52/186)

Termination analyses

[AAG12] Guillaume Andrieu, Christophe Alias, and Laure Gonnord. SToP: Scalable termination
analysis of (C) programs (tool presentation). In International Workshop on Tools for Au-
tomatic Program Analysis (TAPAS’12), Deauville, France, September 2012.

[ADFG10] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart Programs. In Pro-
ceedings of the 17th International Static Analysis Symposium, SAS’10, Perpignan, France,
September 2010. Springer. Selection rate 37% (22/58)

[GAA12] Guillaume Andrieu, Christophe Alias and Laure Gonnord Modular termination of C pro-
grams. Research Report RR-8166, INRIA, December 2012.

[GMR15] Laure Gonnord, David Monniaux, and Gabriel Radanne. Synthesis of ranking functions
using extremal counterexamples. In Proceedings of the 2015 ACM International Confer-
ence on Programming Languages, Design and Implementation (PLDI’15), Portland, Oregon,
United States, June 2015. Selection rate 19% (58/303)

[RAPG14] Raphael Ernani Rodrigues, Péricles Alves, Fernando Pereira, and Laure Gonnord. Real-
world loops are easy to predict : a case study. In Workshop on Software Termination, Vienne,
Austria, July 2014.

Memory Analyses

[MG16] David Monniaux and Laure Gonnord. Cell morphing: from array programs to array-free
Horn clauses. In Xavier Rival, editor, 23rd Static Analysis Symposium (SAS 2016), Static Anal-
ysis Symposium, Edimbourg, United Kingdom, September 2016. Selection rate 38% (21/55)

[MPMQPG17] Maroua Maalej, Vitor Paisante, Fernando Magno Quintao Pereira, and Laure
Gonnord. Combining Range and Inequality Information for Pointer Disambiguation. Sci-
ence of Computer Programming, 2017.

[MPR+17] Maroua Maalej, Vitor Paisante, Pedro Ramos, Laure Gonnord, and Fernando Pereira.
Pointer Disambiguation via Strict Inequalities. In International Symposium on Code Gen-
eration and Optimisation, Austin, United States, February 2017. Selection rate 22% (26/116)
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[PMB+16] Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and Fernando
Magno Quintao Pereira. Symbolic Range Analysis of Pointers. In International Symposium
on Code Generation and Optimization, pages 791–809, Barcelon, Spain, March 2016. Selec-
tion rate 23% (25/108).

[SMO+14] Henrique Nazaré Willer Santos, Izabella Maffra, Leonardo Oliveira, Fernando Pereira,
and Laure Gonnord. Validation of Memory Accesses Through Symbolic Analyses. In Pro-
ceedings of the 2014 ACM International Conference on Object Oriented Programming Systems
Languages And Applications (OOPSLA’14), Portland, Oregon, United States, October 2014.
Selection rate 27% (52/186)

1.5 Outline of the document

This manuscript develops the contributions made in the domain of static analysis. Each chapter
exposes a different application domain and the techniques we developed for enhancing precision,
scalability and applicability:

• Chapter 2 exposes our works around the correct design of static analyses for numerical pro-
grams (in our context, numerical programs are programs that manipulate integer variables),
with a particular focus on scalability and applicability inside specialised or general purpose
compilers.

• Chapter 3 summarises our contributions on proving termination of sequential numerical pro-
grams. This chapter illustrates how verification can take advantage of compilation techniques.

• Chapter 4 reports our works on the effective design of static analyses to deal with memory
properties inside production compilers, and a more fundamental work on proving complex
array properties.

• Chapter 5 gives the conclusion and draws future research directions.
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2 Numerical domains

Since the seminal paper [37], abstract interpretation has proved its success for the verification of
safety properties. The success story of ASTRÉE [19] shows the applicability of the method for safety
critical systems (avionics). However, there still remain numerous motivations to continue working
on the effective design of numerical domains:

• Classical abstract interpretation suffers from a lack of semantic-driven iteration heuristics (the
algorithm usually scans the program under analysis in a deep-first search manner, regardless
the meaning of the program itself). Some attempts have been made to design clever iteration
strategies [36]. However they often fail when the invariant to be proved is disjunctive. Like
abstract acceleration [DG07], semantic driven strategies would enable to gain both in terms of
precision and time.

• The expressivity potentiality of some numerical analyses are not exploited as they could be.
Synchronous languages compilers are an example of such missed opportunity of code optimi-
sation. From the beginning of Lustre [62] and Signal [78], the choice has been make to design
syntax directed simple code generation, and to avoid clever analyses as much as possible, in
order to simplify the validation process of the compiler itself. However there is a need for more
powerful analyses, especially to be able to compile for parallel platforms, while remaining sim-
ple enough to be embedded in synchronous compilers.

• Production compilers (GCC, LLVM, ICC) do not currently use the most advanced techniques/
abstract domains produced by the static analysis community in the last decades. Despite the
original relationship between dataflow analyses inside compilers (liveness of variables, con-
stant propagation), the actual number of abstract-interpretation based analyses actually im-
plemented in production compilers are very few, mainly because of their algorithmic com-
plexity 1. Thus, designing numerical abstract domain that scale enough to be embedded in
production compilers still remain a challenge.

Summary and Outline This chapter summarises the contributions made to improve expressivity,
scalability and applicability of numerical abstract domains.
Section 2.1 describes the model of programs we use and the main context, which is abstract inter-
pretation, and SMT-solving. Some of the tools we use are described in Section 2.2.
Then, the chapter presents two contributions that follow the recent advances in SMT solving and
combine abstractions and SMT-solving:

• Section 2.3 explains how to use SMT-solvers to drive the fixpoint iterations in order to get more
precise numerical invariants.

1While waiting an hour for a safety critical program to be analysed is accepted, in general it is not the case for a one-hour
lasting compilation for a general purpose software package
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CHAPTER 2. NUMERICAL DOMAINS

• Section 2.4 shows how a new Numerical Boolean abstraction can improve the capabilities of
synchronous language compilers.

The last contribution of the chapter, described in Section 2.5 is a new abstract domain based on
intervals, whose design focuses on the effectivity as well as expressivity.

2.1 Model of programs, abstract interpretation, SMT-solving

We write matrices with capital letters (as A) and column vectors in boldface (as x). If x has dimen-
sion d , its components are denoted x[i ], with 0 ≤ i < d . Thus, its i -th component is x[i −1]. Sets are
represented with calligraphic letters such as W , K , etc.

2.1.1 Integer Interpreted Automata

In the tradition of most previous work on program termination and static analysis, we first transform
the program to be analysed into an abstraction: the associated integer interpreted automaton. This is
similar to the flowcharts used a long time ago to express programs (see, e.g., Manna’s book [80]) until
the advent of structured programming. In fact, when one looks at real-life programs, many devia-
tions from the strict structured model can occur, including premature loop termination, exceptions,
and even the occasional goto. Reasoning with flowcharts abstracts the details of the syntax and
semantics of the source language, which can be dealt with by an appropriate pre-processor.
In our work, a program is represented by an affine (integer) interpreted automaton.

Definition 1 (affine (integer) interpreted automaton). An affine (integer) interpreted automaton (AIA)
is a tuple A = (K ,n,ki ni t ,T ) defined by:

• a finite set K of control points;

• n integer variables represented by a vector x of size n;

• an initial control point ki ni t ∈K ;

• a finite set T of 4-tuples (k, g , a,k ′), called transitions, , where k ∈K (resp. k ′ ∈K ) is the source
(resp. target) control point, g : Zn 7→ B = {true, false}, the guard, is a logical formula expressed
with affine inequalities Gx + g ≥ 0, and a :Zn 7→Zn , the action, assigns, to each variable valu-
ation x , a vector x ′ of size n, expressed by an affine expression x ′ = Ax +a. Here, G and A are
matrices, g and a are vectors.

To represent non-determinism or to approximate non-affine or non-analysable assignments in the
program, we may have to assign the value “?”, representing an arbitrary integer, to a variable, but we
will not elaborate on this point.

k0
t2

x ≤ 10 ∧ 0 ≤ y
x := x+ 1
y := y − 1

t1
0 ≤ x ∧ 0 ≤ y
x := x− 1
y := y − 1

Semantics The set of states is Σ = K ×Zn . A trace from (k0, x0) to (k, x) is a sequence of states
(k0, x0), (k1, x1), . . . , (kp , xp ) such that kp = k, xp = x and for each i , 0 ≤ i < p, there exists in T a
transition (ki , gi , ai ,ki+1) such that gi (xi ) = true and xi+1 = ai (xi ). Given an initial valuation v , a
state (k, x) is reachable from v iff (if and only if) there is a trace from (ki ni t , v ) to (k, x). A state (k, x)
is reachable if there exists v ∈ Zn such that (k, x) is reachable from v . The set of reachable states is
denoted by R.
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Invariants The guard g in a transition t = (k, g , a,k ′) gives a necessary condition on variables x to
traverse the transition t and to apply its corresponding action a. To get the exact valuations x of
variables for which the action a can be performed, one would need to take into account the initial
valuations and the successive conditions that led to the control point k. We denote by Rk set of
possible valuations x of variables when the control is in k:

Rk = {x ∈Zn | (k, x) ∈R}.

Then, there exists a trace containing the transition (k, g , a,k ′) iff x ∈Rk and g (x) is true. Note that Rk

does not depend on any initial valuation. More precisely, it is the union, for all initial valuations v ,
of the set of vectors x such that (k, x) is reachable from v . In practice, it is difficult to determine the
set Rk exactly but it is possible to give over-approximations, thanks to the notion of invariants. An
invariant on a control point k is a formulaφk (x) that is true for all reachable states (k, x). It is affine if
it is the conjunction of a finite number of affine conditions on program variables. The set Rk is then
over-approximated by the integer points within a polyhedron Pk . To compute invariants, we rely on
standard abstract interpretation techniques, widely studied since the seminal paper of Cousot and
Halbwachs [42]. These sets Pk represent all the information on the values of variables that can be
deduced from the program by state-of-the-art analysis techniques.

2.1.2 Background and Notations in Abstract Interpretation

Let us denote by τk,k ′ the concrete set semantics of the edge (k,k ′), ie a function that maps a set of
states before the transition (k,k ′) to the set of states after the transition. Thus given a control point
k, the set Rk of reachable values at this control point is the least solution of a system of semantic
equations [41]:

Rk = Ik ∪
⋃

(k ′,k)∈T

τ(k ′,k)(Rk ′),

where Ik designs the possible initial values at control point k, i.e., in our case Ik =
{
Zn if k = ki ni t

; else.
.

Abstract interpretation replaces the concrete sets of states Rk by elements of an abstract domain
D . In lieu of applying exact operations τ to sets of concrete program states, we apply abstract coun-
terparts τ].2 An abstraction τ] of a concrete operation τ is deemed to be correct if it never “forgets”
states:

∀X ∈ D τ(X ) ⊆ τ](X ) (2.1)

We also assume an “abstract union” operation t, such that X ∪Y ⊆ X tY . For instance, Σ can beQn ,
D can be the set of convex polyhedra and t the convex hull operation [11, 42, 61].

Solving the abstract system In order to find an inductive invariant 3, one solves a system of ab-
stract semantic inequalities (Xk denotes possible valuations at control point k):{

∀k Ik ⊆ Xk

∀(k ′,k ′) ∈T τ
]

(k ′,k)(Xk ′) ⊆ Xk .
(2.2)

Since the τ]e are correct abstractions, it follows that any solution of such a system defines an inductive
invariant; one wishes to obtain one that is as strong as possible (“strong” meaning “small with respect
to ⊆”), or at least sufficiently strong as to imply the desired properties.

2Many presentations of abstract interpretation distinguish the abstract element x] ∈ D from the set of states γ(x]) it
represents. We opted not to, for the sake of brevity.

3An inductive invariant is a formula which is true at the initial state(s) of the transition system, and which is stable: if the
valuation of variables satisfy this formula at a given control point, then after each possible transition, the new valuation
also satisfies this formula.
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Assuming that all functions τ]e are monotonic with respect to ⊆, and that t is the least upper bound
operation in D with respect to ⊆, one obtains a system of monotonic abstract equations:

Xk = Ik t
⊔

(k ′,k)∈T

τ
]

(k ′,k)(Xk ′).

If (D,⊆) has no infinite ascending sequences (d1 ( d2 ( . . . with d1,d2, · · · ∈ D), then one can solve
such a system by iteratively replacing the contents of the variable on the left hand side by the value
of the right hand side, until a fixed point is reached. The order in which equations are iterated does
not change the final result ([39], “cahotic iterations” chapter).

Solving with extrapolation Many interesting abstract domains, including that of convex polyhe-
dra, have infinite ascending sequences. One then classically uses an extrapolation operator known
asO and denoted byO in order to enforce convergence within finite time. The iterations then follow
the “upward iteration scheme”:

Xk := XkO

(
Xk t

⊔
(k ′,k)∈T

τ
]

(k ′,k)(Xk ′)

)
(2.3)

where the contents of the left hand side gets replaced by the value of the right hand side. The con-
vergence property is that any sequence un of elements of D of the form un+1 = unOvn , where vn is
another sequence, is stationary [41]. It is sufficient to apply widening only at a set of program control
nodes PW such that all cycles in the control flow graph are cut. Then, through a process of chaotic
iterations [39, Def. 4.1.2.0.5, p. 127], one converges within finite time to an inductive invariant satis-
fying Rel. 2.2.

Definition 2 (Widening for intervals). The widening operator on intervals is defined as [xl , xr ]O[x ′
l , x ′

r ] =

[x"l , x"r ] where x"l =
{

xl if xl = x ′
l

−∞ else.
, and x"r =

{
xr if xr = x ′

r

+∞ else.
.

Algorithm 1 Abstract Interpretation: classic Algorithm

1: A ← {ki ni t }; . Initialise the work-list A
2: while A is not empty do . Fixpoint Iteration
3: Choose k1 ∈ A
4: A ← A \ {k1}
5: for all outgoing edge (e) from k1 do
6: Let k2 be the destination of e :
7: if k2 ∈ PW then
8: X temp ← Xk2O

(
Xk2 tτ

]
e (Xk1 )

)
. Widening node;

9: else
10: X temp ← Xk2 tτ

]
e (Xk1 ) ;

11: end if
12: if X temp 6⊆ Xk2 then . The value must be updated
13: Xk2 ← X temp ;
14: A ← A∪ {k2};
15: end if
16: end for;
17: end while; . End of Iteration
18: Possibly narrow.
19: return all Xki s;
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Algorithm, implementation A naive implementation of the upward iteration scheme described
above is to maintain a work-list of program points k such that Xk has recently been updated and
replaced by a strictly larger value (with respect to ⊆), pick and remove the foremost member k, ap-
ply the corresponding rule Xk := . . . , and insert into the work-list all k ′ such that (k,k ′) ∈ T (This
algorithm is formally described in Algorithm 1).
This algorithm also performs an improvement of the obtained invariant; once an inductive invariant
is found, it is possible to improve it by iterating the ψ] function defined as Y = ψ](X ), noting X =
(Xk )k∈K and Y = (Yk )k∈K , with Yk = Ik t

⊔
(k ′,k)∈T τ

]

(k ′,k)(Xk ′). If X is an inductive invariant, then for

any n, ψ]
n

(X ) is also an invariant. This technique is an instance of narrowing iterations, which may
help recover some of the imprecision induced by widening [41, §4].

Example 1 (Simple example for abstract interpretation). Consider the simple example of Figure 2.1.

int x = 0;

while (true) {

x = x+1;

if (x >= 100) x = 0;

}

(a) Listing for the simple example

k1

k2

k3

x := 0

x := x+ 1
x ≥ 100
x := 0

x < 100

(b) Its CFG

Figure 2.1 – A simple example

The classic algorithm (with the interval abstract domain) performs on this control flow graph (Control
Flow Graph (CFG)) the following iterations :

• Initialisation : Xk1 ← (−∞,+∞), Xk2 ← Xk3 ← Xk4 ←;.
• Step 1: Xk2 ← [0,0], then the transition to k3 is enabled, Xk3 ← [1,1], then the return edge to k2

gives the new point x = 1 to Xk2 , the new interval is then Xk2 = [0,1] after performing the convex
hull. Widening according to Definition 2 gives the interval Xk2 = [0,∞).

• Step 2: Xk3 becomes [1,+∞). The second transition from k3 to k2 is thus enabled, and the back
edge to k2 gives the point x = 0 to Xk2 . At the end of step 2 the convergence is reached.

• The narrowing sequence on the interval Xk2 = [0,∞) performs an intersection with the con-
straint x < 100. After propagation, we end up with the stable invariant Xk2 = [0,100].

In the rest of the manuscript, we will denote by Ik any inductive invariant at control k.

2.1.3 SMT-solving

Satisfiability modulo theory (SMT) solving consists in deciding the satisfiability of a first-order for-
mula with unknowns and relations lying in certain theories. For instance, the following formula
taken from [83]:

(x ≤ 0∨x + y ≤ 0)∧ y ≥ 1∧x ≥ 1

has no solution in R2. A SMT-solver reports whether a formula is satisfiable, and if so, may provide a
model of this satisfaction, for instance (x = 0, y = 1) is such a model for (x ≤ 0∨x + y ≤ 0)∧ y ≥ 1.
SMT encompasses various theories as diverse as character strings, inductive data structures, bit-
vector arithmetic, and ordinary differential equations. In all the following work however, we focus
on the numerical fragments such as quantifier-free linear integer arithmetic (QF_LIA) or quantifier-
free linear real arithmetic (QF_LRA) like in the previous example. These theories subsume Boolean
satisfiability (SAT), the canonical NP-complete problem. However they remain decidable.
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The reader might refer to [83], [17] and [76] for a more complete introduction on SMT and the differ-
ent state-of-the-art solvers/techniques, as well as its applications to program analysis.

2.2 Tools for Abstract Interpretation and SMT-solving

2.2.1 Computing numerical invariants from C-programs

There are many tools for the computations of numerical invariants. Here is a non exhaustive list of
some recent ones:

• NBAC4 implements the classic LRA in combination to dynamic partitioning ([72]). Contrary to
ASPIC, the tool is dedicated to the verification of properties of LUSTRE programs. The method
performs forward and backward analysis from a minimal control structure, and the CFG is par-
titioned w.r.t. the analysis results (and the proof goal). Our technique can be used to improve
the precision of invariants during each forward/backward analysis.

• LASH5 and FASTER6 use acceleration techniques to compute, when possible, the exact reach-
ability sets of counter automata. Theoretical results concerning the acceleration of some sub-
classes of loop have been obtained this last ten years (for difference bound constraints [35], a
subclass of affine guarded functions [22, 52] and more recently for octagonal relations [24]).
However, the tools based on these algorithms are not fully automatic (LASH), or are not guar-
anteed to terminate (FASTER), in particular for nested loops.

• STING7, and INVGEN8 use a combination of LRA and Farkas’ lemma to discover numerical in-
variants. The main drawback of the method is the use of template invariants, which prevents
the analysis to discover any invariant which is not of the right form. To improve the precision,
INVGEN performs an execution of the program to add some additional constraints, which in-
crease the global analysis time.

• There are many C parsers and experimental compilers, including CIL [85], LLVM [77] and
Suif [108]. Extracting an automaton from their intermediate representation, let alone do the
complex approximations and transformations that are necessary prior to precise numerical in-
variant generation is not a straightforward activity. Moreover, at the time of the RANK toolchain
design (see Chapter 3), LLVM was not mature enough to make the bet of designing a prepro-
cessing based on it.

• Pagai [67] is a numerical invariant generation designed at Verimag (Grenoble) since 2012. It
implements the more recent developments in abstract interpretation with numerical abstract
domains, such as [65]. Pagai performs classic abstract interpretation on the LLVM intermedi-
ate representation.

During my PhD and since then, I maintain ASPIC, a numerical polyhedral invariant generator for
interpreted automata (based on a variation on abstract interpretation called abstract acceleration,
that was the main contribution of my Phd thesis). In 2009/2010, Paul Feautrier made a C parser that
is able to generate automata in the ASPIC input format. We used this tool chain for some of the works
detailed in the manuscript. Some implementation details are described in [FG10].

4http://pop-art.inrialpes.fr/~bjeannet/nbac/index.html
5http://www.montefiore.ulg.ac.be/~boigelot/research/lash
6http://www.lsv.ens-cachan.fr/fast/
7http://theory.stanford.edu/~srirams/Software/sting.html
8http://www.model.in.tum.de/~guptaa/invgen/
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2.2.2 SMT-solvers

SMT solvers can be used as a library, from an application programming interface, typically from
C/C++ or Python, or as an independent process, that reads and writes outputs from a common for-
mat called SMT-lib[12]. In the prototypes we developed we often used the SMT-lib format to first
prototype examples, then either we chose to use their API (TERMITE- see section 3.2.3 - uses Z3’s
API) or a pipe to the SMT-lib format (this is the case for SYNC2SMT in Section 2.4 ) which uses a Yices
version of the format).

2.3 Enhancing fixpoint iterations with SMT-solvers

In this section, I detail the contribution of the SAS’11 paper [MG11]. The method is based on the
study of the two following examples, where classic abstract interpretation with widening and nar-
rowing fail to compute precise invariants. Here again, the abstract domain we choose is the interval
abstract domain.

Example 2 (Motivating example 1). Consider Figure 2.2 that depicts a simplification of a fragment
of an actual industrial reactive program: indexing of a circular buffer used only at certain iterations
of the main loop of the program, chosen non-deterministically. Its representation with an affine au-
tomaton is depicted in the right of the figure.

int x = 0;

while (true) {

if (nondet ()) {

x = x+1;

if (x >= 100) x = 0;

}

}

(a) Listing for the circular buffer

k1

k2

k3

x := 0

x := x+ 1
x ≥ 100
x := 0

x < 100

(b) Its CFG

Figure 2.2 – The circular buffer example

If we perform the classic analysis like we did for the (very similar) Example 1, widening yields [0,+∞),
and this is not improved by narrowing because of the epsilon transition around k2! 9

However, if we focus on the loop: assume(nondet()); x = x+1; assume(x < 100);, we could
iterate on this loop first, compute the result [0,99] and continue to perform the classic analysis, this
invariant is inductive for the original loop, thus the analysis stops with this invariant. Our method
will formalise this idea.

Example 3 (Motivating example 2). Listing 2.1 depicts a C implementation of y = sin(x)/x −1, with
the −0.01 ≤ x ≤ 0.01 range implemented using a Taylor expansion around zero in order to avoid loss
of precision and division by zero as sin(x) ' x → 0.
Consider the following listing:

Listing 2.1 – Motivating example 2

if (x >= 0) { xabs = x; } else { xabs = -x; }

9On this example, it is possible to compute the [0,99] invariant by so called “widening up-to” [60, Sec. 3.2], or with
“thresholds” [19]: essentially, the analyser notices syntactically the comparison x < 100 and concludes that 99 is a “good
value” for x, so instead of widening directly to +∞, it first tries 99. This method only works if the interesting value is a
syntactic constant.
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if (xabs >= 0.01) {

y = sin(x) / x - 1;

} else {

xsq = x*x; y = xsq *( -1/6. + xsq /120.);

}

In order to prove that there cannot be a division by zero in the first branch of the second if-then-else, one
would need the non-convex property that x ≥ 0.01∨x ≤−0.01. An analysis representing the invariant
at that point in a domain of convex properties (intervals, polyhedra, etc.) will fail to prove the absence
of division by zero (incompleteness).
Obviously, we could represent such properties using disjunctions of convex polyhedra [10], but this
leads to combinatorial explosion as the number of polyhedra grows: at some point heuristics are
needed for merging polyhedra in order to limit their number; it is also unclear how to obtain good
widening operators on such domains. The same expressive power can alternatively be obtained by
considering all program paths separately (“merge over all paths”) and analysing them independently
of each other. In order to avoid combinatorial explosion, the trace partitioning approach [91] applies
merging heuristics. In contrast, our method will rely on the power of modern SMT-solving techniques.

We have seen two examples of programs where classic polyhedral analysis fails to compute good
invariants. How could we improve on these results?

• In order to get rid of the imprecision in Example 3, one could “explode” the control-flow graph:
in lieu of a sequence of n if-then-else, with n merge nodes with 2 input edges, one could dis-
tinguish the 2n program paths, and having a single merge node with 2n input edges. As already
pointed out, this would lead to exponential blowup in both time and space.

• One way to get rid of imprecision of classic analysis on the program from Fig. 2.2 would be
to consider each path through the loop at a time and compute a local invariant for this path.
Again, the number of such paths could be exponential in the number of tests inside the loop.

The contribution of our article [MG11] is a generic method that addresses both of these difficulties.
First, we encode the program in a way that enables the search for “interesting paths” for which we
will compute a precise invariant. Then, we transform Algorithm 1 in order to integrate this “path
focusing.” In the rest of the section, I describe an instantiation of the algorithm on affine automata,
but the article deals with arbitrary transitions systems.

2.3.1 Finding interesting paths in a program

We first give a way to express the concrete semantics of the program in term of an SMT formula called
ρ. The Control Flow Graph of the program is first transformed into the Single Static Assignment (SSA)
form, where all variables are statically assigned once [43]; standard techniques exist for converting to
SSA.
As usual in abstract interpretation, we consider a set KW ⊆ K of widening nodes. Let us take a
superset KR of KW “abstraction points”. KR can be taken equal to KW , or may include other nodes.
In the sequel, the nodes in KR are in bold.

Example 2 (continuing from p. 12). In Figure 2.3 we depict the transformations we do on the SSA
CFG of the program of Figure 2.2 in order to encode its semantics inside a first-order affine formula.
Figure 2.3(a) gives the SSA version of the CFG: x2 = φ(x1, x4, x3, x2) is a merge SSA statement that en-
codes the fact that the x2 variable is updated with one of the four values x1, x2, x3, x4 depending on
the preceding node/transition: for instance, if the previous node was k1, now x2 has the value x1.
Figure 2.3(b) gives the disconnected SSA form graph where k1 and k2 have been split. The resulting
formula is depicted below. For instance , the transition from k s

1 to kd
2 is encoded as (e1 = (x1 = 0)∧bs

1)
and bd

2 = e1 ∨ . . .. This kind of transformation is classic in model-checking.
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k1

k2 : x2 = φ(x1, x4, x3, x2)

k3

x1 = 0

x3 := x2 + 1x3 ≥ 100
x4 = 0

x3 < 100

(a) SSA CFG

ks1 ks2

k3

kd2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5
x3 ≥ 100
x4 = 0

e4 x3 < 100
e2

e1x1 = 0

(b) Disconnected (SSA) CFG

(
e1 = (x1 = 0)∧bs

1)∧ (e2 = bs
2 ∧¬c s

2)∧ (e3 = (x3 = x2 +1)∧bs
2 ∧ c s

2)∧ (e4 = b3 ∧x3 < 100)∧
(e5 = b3 ∧x3 ≥ 100∧x4 = 0)∧ (bd

2 = e1 ∨e4 ∨e5 ∨e2)∧ (b3 = e3)∧ (x ′
2 = ite(e1, x1, ite(e5, x4, ite(e4, x3,

x2)))
)

Figure 2.3 – SSA CFG and its disconnected version for the motivating example, and the corresponding
SMT formula (ρ). ite(b,e1,e2) is “if b then the value of e1 else the value of e2”. To each node kx

corresponds a Boolean bx and an optional choice variable cx ; to each edge, a Boolean ey .

In order to find a path from program point k1 ∈ KR , with variable state x1, to program point k2 ∈ KR ,
with variable state x2, we simply conjoin ρ with the formulas x1 ∈ Xk1 and x2 ∉ Xk2 , with x1, x2,
expressed in terms of the SSA variables. For instance, if Xk1 and Xk2 are convex polyhedra defined
by systems of linear inequalities, one simply writes these inequalities using the names of the SSA-
variables at program points k1 and k2.
We apply SMT-solving over that formula. The result is either “unsatisfiable”, in which case there is no
path from k1, with variable values x1, to k2, with variable values x2, such that x1 ∈ Xk1 and x2 ∉ Xk2 , or
“satisfiable”, in which case SMT-solving also provides a model of the formula (a satisfying assignment
of its free variables); from this model we easily obtain such a path, unique by construction of ρ.
Indeed, a model of this formula yields a trace of execution: those bk predicates that are true desig-
nate the program points through which the trace goes, and the other variables give the values of the
program variables.

2.3.2 Final algorithm: path focusing for abstract interpretation

Algorithm 2 consists in the iteration of the path finding method of Sec. 2.3.1, coupled with forward
abstract interpretation along the paths found and, optionally, path acceleration.
The proof of correctness and termination is done in the paper. We also extend the algorithm, in the
spirit of [GH06] on the special case of self loops, in order to perform more precise iterations. Let us
illustrate this algorithm on the motivating example.

Example 2 (continuing from p. 12). Let us perform Algorithm 2 on the modified CFG of the running
example, that we recall in Figure 2.4:

• Initialisation: KR = {k1,k2}, A ← {k1}.

• Step 1 : Is there a feasible path from control point k1 to control point k2? Yes. On the Figure, the
obtained model corresponds to the transition from k s

1 to kd
2 , and leads to the interval Xk2 = [0,0].

• Step 2 : Is there a path from k2 with x = 0 to k2 with x 6= 0? Yes, there is such a path (e3,e4),
on which we now focus. This path is considered as a loop and we therefore do a local iteration
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Algorithm 2 Path-focused Fixpoint Iterations

1: Compute SSA-form of the control flow graph.
2: Choose KR , compute the disconnected graph (P ′,E ′) accordingly.
3: ρ← computeFormula(P ′,E ′) . Precomputations
4: A ←;;
5: for all k ∈ KR such that Ik 6= ; do
6: A ← A∪ {k}
7: end for;
8: while A is not empty do . Fixpoint Iteration on the reduced graph
9: Choose k1 ∈ A

10: A ← A \ {k1}
11: repeat

12: r es ← SmtSolve

(
ρ∧bk1 ∧x1 ∈ Xk1 ∧

∨
k2|(k1,k2)∈E ′

(
bk2 ∧x2 6∈ Xk2

))
13: if r es is not “unsat” then
14: Compute e ′ ∈ E ′ from r es . Extraction of path from the model (§2.3.1)
15: Y ← τ

]
e ′(Xk1 ) . Computation of the “effect” of the path onto the abstract value

16: if k2 ∈ KW then
17: X temp ← Xk2O

(
Xk2 tY

)
. Final point k2 is a widening point

18: else
19: X temp ← Xk2 tY
20: end if

. at this point X temp 6⊆ Xk2 otherwise k2 would not have been chosen
21: Xk2 ← X temp

22: A ← A∪ {k2}
23: end if
24: until r es=“unsat”
25: end while . End of Iteration
26: Possibly narrow.
27: Compute Xki for ki 6∈ KR

28: return all Xki
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ks1 ks2

k3

kd2 : x′2 = φ(x1, x4, x3, x2)

e3x3 = x2 + 1

e5
x3 ≥ 100
x4 = 0

e4 x3 < 100
e2

e1x1 = 0

Figure 2.4 – Modified CFG and SMT-requests for the running example

with widenings (loopiter). Xk2 becomes [0,1], then after widening [0,∞]. A narrowing step gives
finally Xk2 = [0,99], which is thus the result of loopiter.

• Step 3 : Is there a path from k2 with x ∈ [0,99] to k2 with x ′ ∉ [0,99]? No.

The iteration thus ends with the desired invariant.

2.3.3 Validation

We validated this technique manually, the implementation inside ASPIC was unfortunately not ma-
ture enough to perform more experiments. However the method was implemented in the PAGAI

tool [67] by Julien Henry, combined with other methods [56] and the impact of path focusing has
been evaluated in the paper [65].

2.4 A combined numerical-Boolean abstraction for synchronous programs

This contribution has been published in the conference paper [GG11] and an extended version in
the journal [FGG12].

In this work, we propose an enhancement of the compilation of synchronous programs with a com-
bined numerical-Boolean abstraction. While our approach applies to synchronous dataflow lan-
guages in general, here, we consider the SIGNAL language for illustration. With this new abstraction,
we determine the absence of reaction captured by empty clocks; mutual exclusion captured by two
or more clocks whose associated signals never occur at the same time; or hierarchical control of
component activations via clock inclusion. The abstraction we propose can be used early in the
development process (validate simple properties while writing code), or be used to provide infor-
mation to optimise or improve the quality of the generated code.

Overview of the approach Given the performance level reached by recent progress in Satisfiability
Modulo Theory (SMT) (see Section 2.1.3) we use an SMT solver to reason on the new abstraction.
The advocated approach is depicted by Fig. 2.5. Given a synchronous dataflow program P , we de-
fine a corresponding abstraction, used to check the satisfiability of properties of interest, i.e., those
involving numerical expressions.
Once identified, all properties of interest are concretized into synchronous dataflow programs, which
are later composed with the initial program P . The resulting composed program is equivalent to P in
which properties involving numerical expressions have been made explicit in a form that is suitably
addressable by a synchronous language compiler. Then, it becomes easier for the compiler to do an
efficient analysis and code generation. Notice that an important advantage of this contribution is its
modular, i.e., non-intrusive, implementation regarding compilers. This clearly facilitates its integra-
tion to a given compiler and makes it easy to isolate a bug in the global framework (in comparison
to a compiler-intrusive solution).
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Figure 2.5 – An overview of our approach: steps and tools.

2.4.1 Preliminaries: the SIGNAL language

SIGNAL [54, 78] is a data-flow relational language that handles unbounded series of typed values
(xt )t∈N, called signals, implicitly indexed by discrete time, and denoted as x. For instance, a signal
can be either of Boolean or integer or real types. At any logical instant t ∈N, a signal may be present,
at which point it holds a value; or absent and denoted by ⊥ in the semantic notation. There is a
particular type of signal called event. A signal of this type always holds the value true when it is
present. The set of instants at which a signal x is present is referred to as its clock, noted ^x. A process
is a system of equations over signals, specifying relations between values and clocks of the signals. A
program is a process.

Primitive constructs SIGNAL relies on six primitive constructs: the core language. The syntax of the
constructs is given below, with some informal explanations. Their formal semantics can be found in
the paper.

• Instantaneous relations: y:= R(x1,...,xn) where y, x1, . . .xn are signals and R is a point-
wise n-ary relation extended canonically to signals. This construct imposes y, x1, . . .xn i) to
be simultaneously present, i.e. ^y = ^x1 = . . . = ^xn (i.e. synchronous signals), and ii) to hold
values satisfying y = R(x1,...,xn) whenever they occur.

• Delay: y:= x $ 1 init c where y, x are signals and c is an initialisation constant. It im-
poses i) x and y to be synchronous, i.e. ^y = ^x, while ii) y must hold the value carried by x on
its previous occurrence.

• Under-sampling: y:= x when b where y, x are signals and b is of Boolean type. This con-
struct imposes (i) y to be present only when x is present and b holds the value true while (ii)
y holds the value of x at those logical instants. Let us denote by [b] (resp. [¬b]) denotes the
set of instants where b is true (resp. false). Then i) rephrases itself into ^y = ^x ∩ [b] (where
[b]∪ [¬b] = ^b and [b]∩ [¬b] =;),

• Deterministic merging: z:= x default y where x, y and z are signals. This construct im-
poses i) z to be present when either x or y are present, i.e. ^z = ^x ∪ ^y, while ii) z holds the
value of x if present, otherwise that of y.

• Composition: P ≡ P1|P2 where P1 and P2 are processes. It denotes the union of equations
defined in processes, leading to the conjunction of the constraints associated with these pro-
cesses. A signal variable cannot be assigned a value in both processes P1 and P2. SIGNAL adopts
single assignment. A variable defined in P1 can be an input of P2, and vice versa. The compo-
sition operator is commutative and associative.
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• Restriction (or Hiding): P≡ P1 where x, where P1 and x are respectively a process and a signal.
It states that x is a local signal of process P1. Process P holds the same constraints as P1.

Syntactic sugar: clock operators, sub-processes. The core language of SIGNAL is expressive enough
to derive new constructs of the language for programming comfort and structuring. In particu-
lar, SIGNAL allows one to explicitly manipulate clocks through some derived constructs that can be
rewritten in terms of primitive ones. For instance, the clock extraction statement y:= ^x, meaning
y is defined as the clock of x, is equivalent to y:= (x = x) in the core language.
For syntactical convenience, SIGNAL enables a modular definition of processes by providing a no-
tion of sub-process (or local process). The statement P1 where P2, where P1 and P2 are processes,
denotes the fact that the latter process is a sub-process of the former process.

Example 4 (Bathtub example). The simple SIGNAL process shown in Listing 4 specifies the status of a
bathtub [16]. It has no input signal (line 02), but has three output signals (line 03).

process Bathtub =

2 (?

! integer level; boolean alarm , ghost_alarm; )

4 (|(| level := zlevel + faucet - pump

| zlevel := level$1 init 1

6 | faucet := zfaucet + (1 when zlevel <= 4)

| zfaucet := faucet$1 init 0

8 | pump := zpump + (1 when zlevel >= 7)

| zpump := pump$1 init 0 |)

10 |(| overflow := level >= 9

| scarce := 0 >= level

12 | alarm := scarce or overflow

| ghost_alarm := (true when scarce when overflow)

14 default false |)|)

where

16 integer zlevel ,zfaucet ,zpump ,faucet ,pump;

boolean overflow ,scarce;

18 end;

The signal level, defined at line 04, reflects the water level in the bathtub at any instant. It is de-
termined by considering two signals, faucet and pump, which are respectively used to increase and
decrease the water level. These signals are increased by one under some specific conditions (lines 06
and 08), in order to maintain the water level in a suitable range of values.
An alarm signal is defined at line 12 whenever the water overflows (line 10) or becomes scarce (line
11) in the bathtub. An additional “ghost” alarm is defined at line 13/14, which is not expected to
occur. Here, it is just introduced to illustrate one limitation of the static analysis of SIGNAL. The
clock of this signal is not completely specified in Bathtub. As stated before, this clock is the union
of those associated with the two arguments of the default operator. The clock of the left argument
is exactly known. The clock of the right-hand one is contextual because the argument is a constant
(that is, a constant signal is always available whenever required by its context of usage): it is equal
to the difference of ghost_alarm’s clock and first argument’s clock. Since, this difference cannot be
defined exactly from the program, further clock constraints on ghost_alarm will be required from the
environment of Bathtub for an execution.
Our abstraction will demonstrate that the ghost_alarm signal will never occur as well as both signals
pump and faucet.

2.4.2 A new numerical-boolean abstraction for SIGNAL traces

We define an abstraction for SIGNAL program analysis. All considered programs are supposed to be
in the syntax of the core language.
Our abstraction for program P is a logical formula Φ on the variables and clocks of P in a decidable
theory (here, linear arithmetic of integers or reals) such that at any logical instant in an execution of
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P , the current values of signals and clocks satisfyΦ. In other words, at any instant in an execution of
P , its variables and clocks are a model of Φ.
Let P be a SIGNAL program. We denote by XP = {x1, x2 . . . xn} the set of all variables of P. Here, we
consider scalar variables only. With each variable xi (numerical, Boolean or event), we associate
two abstract values: x̂i and x̃i encoding respectively its clock and values. Intuitively, in such a couple,
the first component encodes the clock of a signal, where true and false respectively mean presence
and absence of instant in the clock. The second component encodes the value taken by a signal
according to its presence.

The abstract semantics of the program, is a set of couples of the form ( ,̂ )̃ where:

• function :̂ XP →B= {true, false} assigns to a variable a Boolean value;

• function :̃ XP →R∪B assigns to a variable a numerical or Boolean value.

The abstract semantics (a set of couples (̂,˜)) will be represented as a first order logic formula ΦP

in which atoms are x̃i and x̂i , and the operators are usual logic operators and integer comparison
functions. This abstraction into a first order logic formula naturally induces a loss of precision, as we
will see later.
Intuitively, the abstract semantics encodes in the Φ formula all Boolean and numeric relations be-
tween variables and clocks that are valid “for all instants.” This semantics will not be sufficient to
prove any relation between variables at a given instant and their value an instant before, for instance.

Abstraction for expressions The abstraction of a given numerical SIGNAL expression nexp (resp.
a Boolean expression bexp) is a numerical expression (resp. a Boolean expression) that expresses its
behaviour in terms of a SMT formulaφ. The abstraction is straightforward (expressions are the same
at every instant), more details can be found in [GG11].

Example 5. Let b = (x + y = 4) and (y < 10) be a Boolean expression. Its abstraction is φ(b) = x̃ + ỹ =
4∧ ỹ < 10.

Abstraction of signal primitives The abstraction ΦP of a given process P is the intersection of the
abstractions of all its statements stmi :

ΦP =
n∧
i
Φ(stmi )

where each Φ(stmt ) is a formula in quantifier-free linear integer arithmetic (QF_LIA) or quantifier-
free linear real arithmetic (QF_LRA), defined according to the syntax of process definition.

• Instantaneous relations: y:= R(x1,...,xn). The abstraction Φ of instantaneous relations is
defined as follows:

∧n
i=1(ŷ ⇔ x̂i )∧

(
ŷ ⇒ ỹ =φ(exp)

)

where R(x1,...xn) is denoted by exp (for boolean expressions, = means ⇔ ).

These expressions express the equalities between clocks and values that are induced by SIGNAL

semantics.

• Delay: y:= x $ 1 init c. The abstraction Φ of the delay construct is defined as follows:

ŷ ⇔ x̂
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The abstraction here only expresses the equalities between clocks. A better abstraction could
be performed if the user (or a pre-analysis) provides invariants for numerical variables. In that
case, the global abstraction would be :

(
ŷ ⇔ x̂

)∧(
ŷ ⇒ (

i nvar (x̃)[x̃/ỹ] ∨ (ỹ = c)
))

where i nvar (x̃)[x̃/ỹ] denotes the substitution of ỹ in a formula that expresses a constraint on
x’s values. Such an invariant can be a result of abstract interpretation techniques.

• Under-sampling: y:= x when b. The abstraction Φ of the under-sampling construct is de-
fined as follows:

(
ŷ ⇔ (x̂ ∧ b̂ ∧ b̃)

)∧(
ŷ ⇒ ỹ = x̃

)
which expresses the fact that the signal y is present if and only if both signals b and x are

present and b is true. The constraints on values are straightforward.

• Deterministic merging: z:= x default y. The abstraction Φ of the deterministic merging
construct is defined as follows:

(
ŷ ⇔ (x̂ ∨ ẑ)

)∧(
ŷ ⇒ (

(x̂ ∧ (ỹ = x̃)) ∨ (¬x̂ ∧ (ỹ = z̃))
))

The clock of variable y is the union of the clocks of x and z, and values are determined ac-
cording to the presence of x.

• Composition: P ≡ P1|P2. The abstraction Φ of the composition operator is defined as follows:

Φ≡ΦP1 ∧ΦP2

Example 4 (continuing from p. 18). By applying our abstraction to the Bathtub code, which is divided
into P1 (lines 04 to 09) and P2 (lines 10 to 14) according to the process hierarchy, we obtainΦBathtub =
ΦP1 ∧ΦP2 , where ΦP1 equals to:

ΦP1 = (�level ⇔ àzl evel ⇔ áf aucet ⇔ àpump ⇔ ábz f aucet ) ∧ (�l evel = âzl evel + ãf aucet − âpump)

∧ ( áz f aucet ⇔ ( àzlevel ∧ âzl evel ≤ 4)
) ∧ ( áz f aucet ⇒ ãf aucet = ( ãz f aucet +1)

) ∧ (àpump ⇔ ázpump)

∧ ( ázpump ⇔ ( àzl evel ∧ âzlevel ≥ 7)
) ∧ ( ázpump ⇒ âpump = ( ãzpump +1)

)
For ΦP2 , we first rewrite equation at line 13/14 as follows:

(| y1 := true when scarce

| y2 := y1 when overflow

| ghost_alarm := y2 default false |)

Then, we obtain:

ΦP2 = ( áover f low ⇔ �l evel ⇔ àscar ce) ∧ ( ãover f low ⇔ (�l evel ≥ 9)
) ∧ ( âscar ce ⇔ (�level ≤ 0)

∧ ( àal ar m ⇔ àscar ce ⇔ áover f low) ∧ àal ar m ⇒ ( âal ar m ⇔ ( âscar ce ∨ ãover f low)
)

∧ (
ŷ2 ⇔ ( âscar ce ∧ ãover f low ∧ àscar ce ∧ áover f low)

) ∧ (ŷ2 ⇒ ỹ2) ∧ (àg host ⇔ (ŷ2 ∨ �f al se))

∧
(àg host ⇒

((
ŷ2 ∧ (âg host ⇔ ỹ2)

)∨ (¬ŷ2 ∧¬âg host
)))

Our abstraction is sound, in the sense that it preserves the behaviours of the abstracted programs: if
a (safety) property is true on the abstraction, then it is also the case on the program. A proof of its
soundness is given in [GG11].
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2.4.3 Application to the analysis and compilation of SIGNAL programs

We have implemented the previous abstraction as a standalone tool called Sync2Smt (5k Ocaml
LOC). Our toolchain is depicted in Figure 2.5.

Validation on common patterns We first validate our method on a few SIGNAL program patterns
for which our abstraction helps in detecting some “clocks bugs” (“timing anomalies”, in the litera-
ture). Such properties cannot be detected currently by the SIGNAL compiler because they involve
numerical expressions, which are not addressed by a Boolean abstraction. Our abstraction allows
their easy detection. These examples can be found in [FGG12].

Using the abstraction for clock analysis In [FGG12], we also demonstrate the relevance of our ab-
straction for analysing clock properties that combine both logical and numerical expressions. For in-
stance, checking the mutual exclusion between multiple computation nodes whose activation con-
ditions consist of such clocks, is useful to address sharing problems in a GALS system10. The GALS
model is used to design multi-clock distributed system where each computation node holds its own
clock providing a local (synchronous) vision of time. In addition, establishing that some nodes or

events in a system never occur, via empty clocks, can serve to guarantee that undesired behaviours
never happen, or conversely to detect that some expected behaviours are never observed. This kind
of observation can sightly improve the quality of the C code generated by the SIGNAL compiler, com-
pared to the quite simplistic actual compilation scheme. On the one hand, dead code elimination is
made possible thanks to information resulting from the analysis of our abstraction. As an example,
we explain the impact of our analysis on the compilation of the Bathtub example.

Example 4 (continuing from p. 18). Given the formula ΦBathtub obtained previously, as the abstrac-
tion of the bathtub SIGNAL specification, the main properties of interest are the following 11:

1. pump and faucet have disjoint clocks: ¬(áf aucet ∧ àpump),
2. The water cannot overflow and be scarce at the same time: ¬( âscar ce ∧ ãover f low ∧ àscar ce ∧áover f low

)
,

3. alarm and level have the same clock: àal ar m ⇔ �level .

The conjunction of these three properties will be sufficient to prove that the ghost_alarm signal never
occurs (equivalently, has an empty clock), and also that all other signals have empty clocks.
These properties are easily verified on the abstraction of Bathtub process. As a result, their correspond-
ing concretisations can be safely composed with Bathtub without changing its semantics. Possible
concretisations of the above properties in SIGNAL are as follows:

1. faucet ^* pump ^= ^0 (^= denotes the equality on clocks, ^* the intersection)
2. true when scarce when overflow ^= ^0

3. alarm ^= level

By composing these statements with Bathtub, one obtains the semantically equivalent process, named
Bathtub_Bis, shown in the following:

process Bathtub_Bis =

(?

! integer level; boolean alarm , ghost_alarm; )

(|(| level := zlevel + faucet - pump

...

| ghost_alarm :=( true when scarce when overflow)

default false |)

|(| true when scarce when overflow ^= ^0

| faucet ^* pump ^= ^0

| alarm ^= level |) |)

where

10Globally Asynchronous Locally Synchronous
11These properties cannot be verified by the current version of the SIGNAL compiler.
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integer zlevel ,zfaucet ,zpump ,faucet ,pump;

boolean overflow ,scarce;

end;

The result of its analysis performed by the compiler is now as follows:

(| CLK_ghost_alarm := ^ghost_alarm

| CLK_ghost_alarm ^= ghost_alarm

| (| ghost_alarm := not CLK_ghost_alarm |)

|);%^0 ^= level ^= alarm

^= zlevel ^= zfaucet ^= zpump

*** WARNING: null clock signals%

The whole set of constraints inferred by the compiler is now restricted to the fact that the ghost_alarm
signal is always equal to false. The compiler has also detected that the clocks of the other signals are
all empty (lines 04/04b). Finally, the corresponding generated code is provided below, where the dead
code is avoided.

01: { ghost_alarm = FALSE;

02: /* produce output value

03: for the signal ghost_alarm */ } ...

2.5 Revisiting interval analysis for scalability

In this section we present our contribution on improving both precision and scalability of range
analyses. This work is the first analysis of the paper [SMO+14], whose goal was to design a complete
toolchain for securing memory accesses in the C programming language, and will be explained in
detail in Chapter 4.

Range analysis, as originally defined by Cousot and Cousot [37], associates variables with integer
intervals. This approach enables several compiler optimisations, but it is not effective to validate
memory accesses, as demonstrated by Logozzo and Fähndrich [79].
The program in Figure 2.6 illustrates this deficiency: a traditional range analysis will not find, in
this program, constants onto which to rely upon, to prove that variables i and j only access valid
positions of array p.

Example 6 (Motivating example). Figure 2.6 shows examples of three types of analyses, including the
Symbolic Range Analysis that we describe in Section 2.5.1. The information associated with a variable
depends on which part of the program we are; hence, the figure shows the results of each analysis at
three different regions of the code. In this example, classic range analysis can only infer positiveness of
variables. Pentagons can infer also that j is always strictly less than N inside the loop. Octagons are
more precise since they are able to find that m = i at control points b and c, for instance.

We could also use state-of-the-art relational analyses from the abstract interpretation community
like octagons, but they do not scale enough for our target which is compilation.
The objective of this work is thus:

• to improve the precision of range analysis by considering symbolic ranges, originally defined
by Blume and Eigenmann [20];

• while still remaining scalable, that’s why we design a sparse analysis.

2.5.1 Sparse Symbolic Range Analysis

To scale an analysis, the Static Single Information (Static Single Information (SSI)) framework [5]
propose to focus on the preservation of the following invariants:

• We attach one abstract value per variable (and not to a set of variables).
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unsigned N = read();

int* p = alloc(N);

int i = 0;

int m = 0;

int j = N - 1;

while (i < j) {

  p[i] = -1;

  p[j] = 1;

  i++;

  j--;

  m++;

}

p[m] = 0;

Range analysis Symbolic range analysisPentagons

F(N) = [0, +∞]
F(i) = [0, 0]
F(j) = [−1, +∞]
F(m) = [0, 0]

F(i) = [0, +∞]
F(j) = [1, +∞]
F(m) = [0, +∞]

F(i) = [0, +∞]
F(j) = [−1, +∞]
F(m) = [0, +∞]

F(N) = {}, [0, +∞]
F(i) = {}, [0, 0]
F(j) = {N}, [−1, +∞]
F(m) = {}, [0, 0]

F(i) = {N}, [0, +∞]
F(j) = {N}, [−1, +∞]
F(m) = {}, [0, +∞]

F(N) = [N, N]
F(i) = [0, 0]
F(j) = [N−1, N−1]
F(m) = [0, 0]

F(i) = {j, N}, [0, +∞]
F(j) = {N}, [1, +∞]
F(m) = {}, [0, +∞]

(a)

(b)

(c)

Octagons

F(i, i, +) = i ≥ 0
F(i, i, −) = −i ≥ 0
F(N, j, +) = N − j ≥ 1
F(N, j, −) = j − N ≥ −1
F(m, i, +) = i − m ≥ 0
F(m, i, −) = m − i ≥ 0

F(i, i, +) = i ≥ 0
F(j, i, −) = j − i ≥ 0
F(j, i, +) = j + i ≥ 1

F(i, i, +) = i ≥ 0
F(m, i, −) = m − i ≥ 0
F(m, i, +) = m + i ≥ 0

F(i) = [0, N−2]
F(j) = [1, N−1]
F(m) = [0, +∞]

F(i) = [0, max(0, N−1)]
F(j) = [−1, max(0, N−2)]
F(m) = [0, +∞]

(a)

(b)

(c)

Figure 2.6 – A comparison between four different types of static analyses. Only a few relations are
shown for Octagons.

• The abstract state of any variable must be invariant in every program point where this variable
is alive. A variable v is alive at a label ` if there is a path in the program’s control flow graph
from ` to another label `′ where (i) v is used and (ii) v is not redefined along this path.

The strategy for the second point is to split the live ranges of variables: splitting a given variable
v , at program label `, by inserting a copy v ′ = v at ` and renaming every use of v to v ′ in points
dominated12 by `. According to Tavares et al. [104], it is enough to split live ranges at places (control
points) where information originates: for instance, for a numeric range analysis, a new version of x
should be “invented” each time a new value is assigned to x (which is what is done in the classical
SSA form), but also after each test, which we will see in the sequel in the context of Symbolic Range
Analysis.

Splitting Required by Symbolic Range Analysis. For the range analysis we want to perform, it is
sufficient to propagate the information from the definition of variables and from conditional tests
that use these variables. Thus, to make this analysis sparse, we must split live ranges at these places.

Splitting at definitions creates the Static Single Assignment representation. Splitting at conditionals
creates the representation that Bodik et al. have called the Extended Static Single Assignment form
(Extended Static Single Assignment Form (eSSA)) [21]. In the sequel, we consider programs into eSSA
form 13: for each conditional, we name the variables created at the “true” side of the branch at and
bt and the variables created at the “false” side of it a f and b f . As a convenience, we shall mark these
copies with aσ, indicating that they have been introduced due to live range splitting at conditionals.
We emphasise that these σ’s are just a notation to help the reader to understand our way to split live
ranges and have no semantics other than being ordinary copies14. We borrow this notation from
Ananian’s work [5].

Example 6 (continuing from p. 22). Figure 2.7b shows the program in Figure 2.6 after live range split-
ting.

12A node ` dominates a node n if every path from the entry node to n must go through `.
13We design a better splitting strategy in the paper, that we do not recall here for the sake of brevity.
14Bodik et al. [21] would name similar instructions π-functions
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N = •
p = alloc(N)

i0 = 0
m0 = 0

j0 = N − 1

i1 = φ(i0, i2)
j1 = φ(j0, i2)

m1 = φ(m0,m2)
(i1 < j1)?

if = σ(i1)
jf = σ(j1)
pm = p+mf

∗pm = 0

it = σ(i1)
jt = σ(j1)
pi = p+ it

∗pi = −1
pj = p+ jt

∗pj = 1
i2 = it + 1
j2 = jt − 1
m2 = mt + 1

(a) The program in Figure 2.6 converted into
extended static single assignment form

0th 1th 2nd 3r d (+∇)
N ; [0, N ] [0, N ] [0, N ]
i0 ; [0,0] [0,0] [0,0]

m0 ; [0,0] [0,0] [0,0]
j0 ; [−1, N −1] [−1, N −1] [−1, N −1]
i1 ; [0,0] [0,max] [0,max]
j1 ; [−1, N −1] [−1, N −1] [−1, N −1]

m1 ; [0,0] [0,1] [0,+∞]
it ; [0, N −2] [0, N −2] [0, N −2]
jt ; [1, N −1] [1, N −1] [1, N −1]
i2 ; [1, N −1] [1, N −1] [1, N −1]
j2 ; [0, N −2] [0, N −2] [0, N −2]

m2 ; [1,1] [1,2] [1,+∞]
i f ; − − [−1,max]
j f ; − − [−1,max]

(b) Symbolic range analysis: Steps

Figure 2.7 – Running example: steps of the analysis within the SymBoxes domain, max = max(0, N −
1).

Symbolic Range Analysis on E-SSA control flow From the tailored intermediate representation
that is the E-SSA form, we now have to construct our symbolic abstract domain SymBoxes that will
associate to each variable x of the program a symbolic range R(x).
A symbolic interval is a pair R = [l ,u], where l and u are symbolic expressions (ie expressions on
variables that are either constants known at compile time, or input values: random values, user-
provided values, function arguments. . . ).
We denote by (R↓,R↑) the lower (l) and upper-bound (u) of the interval R.
We define the partially ordered set of (symbolic) intervals S2 = (S×S,v), where the ordering operator
is defined as: [l0,u0] v [l1,u1], if l1 ≤ l0 ∧u1 ≥ u0

We then define the semi-lattice SymBoxes of symbolic intervals as (S2,v,t,;, [−∞,+∞]), where the
join operator “t” is defined as: [a1, a2]t [b1,b2] = [min(a1,b1),max(a2,b2)]. Our lattice has a least
element ; and a greatest element [−∞,+∞].
Clearly, this lattice is infinite; therefore, in order to end up the computation of the set of constraints
we use a widening operator defined by (under the assumption R1 v R2):

R1∇R2 = [l ,u], where


l = R1↓ if R1↓ = R2↓
l =−∞ otherwise

u = R1↑ if R1↑ = R2↑
u =+∞ otherwise

This is the extension of the classic widening on intervals to symbolic intervals: a lower (resp. upper)
bound of a given symbolic interval can only be stable or diverge towards −∞ (resp. +∞), thus our
widening operator will ensure the convergence of our analysis.

Abstract Interpretation with constraints To apply the abstract interpretation framework, we also
have to give an interpretation of the operations of the program. This is done in Figure 2.8.

• assignments after reads give only symbolic information.
• assignments to expressions makes use of “abstract transformers.”
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• φ functions are “join nodes”, thus we perform a (symbolic) interval union.
• On intersection nodes (tests), we perform a (symbolic) interval intersection.

v = • ⇒ R(v) = [v, v]

v = o ⇒ R(v) = R(o)

v = v1 ⊕ v2 ⇒ R(v) = R(v1)⊕I R(v2)

v =φ(v1, v2) ⇒ R(v) = R(v1)tR(v2)

other instructions ⇒ ;

Figure 2.8 – Constraints for the symbolic range analysis.

The abstract transformers denoted by ⊕I in Figure 2.8 are for instance:

- [l0,u0]+I [l1,u1] = [l0 + l1,u0 +u1], [l ,u]+I ;= [l ,u].

- [l0,u0]×I [l1,u1] = [min(T ),max(T )], where T = {l0×l1, l0×u1,u0×l1,u0×u1}, [l ,u]×I ;= [l ,u].

Solving From a given program we thus generate a system of constraints that we solve using a
Kleene iteration. The analysis is sparse since we do not need the control points any more. The
information is only attached to variables. Widening is applied on a φ node only after 3 iterations of
symbolic evaluation (“delayed widening”). This decision is arbitrary, and a larger number of itera-
tions might increase the precision of our results. However, in our experiments we only observed very
marginal gains when using more iterations.

Example 6 (continuing from p. 22). Figure 2.7b shows the steps that our analysis performs on the pro-
gram of Figure 2.7a. The order in which we evaluate constraints is given by the reverse post-ordering of
the program’s control flow graph. This ordering tends to reduce the number of iterations of our fixpoint
algorithm [86, p.421]. However, any order of evaluation would led to the same result. In this example,
we let “max” be max(0, N −1).

On the evaluation of symbolic expressions. As shown in the preceding paragraphs, we have to
evaluate symbolic expressions (simplification of expressions like max(e1,e2), equality tests, . . . ). We
rely on GiNaC [13], a library for symbolic manipulation, to perform these operations15. For the
equality test, if GiNaC is not able to prove a given equality between symbolic expressions, we con-
servatively assume that the two expressions are not comparable. As a consequence, we may widen
an expression to +∞ even if it was stable.

Proposition 1. The former analysis always returns an over-approximation of the actual ranges of the
variables of the program (no matter the valuations of the symbols would be).

2.5.2 Validation

Runtime We run our experiments in a twelve-core Intel(R) Xeon(R) CPU E5-2620 at 2.00GHz, with
15,360KB of cache, and 16GB of RAM. Neither our compiler, nor our benchmarks, run in parallel.
The run time of our analysis compares favourably to the run time of equivalent algorithms, as Fig-
ure 2.9 shows.

15GinaC is available at http://www.ginac.de/
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The figure compares the runtime of our symbolic range analysis, Rodrigue et al.’s range analysis,
and Pentagons, for the 60 largest benchmarks in the LLVM test suite and SPEC CPU 2006. These
programs gave us over 5.18 million bytecodes to analyse. We tried to our best to be as faithful to the
original description of Pentagons as possible.

0 10 20 30 40 50 60 70
benchmarks

10-2

10-1

100
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 (

s)
S+I
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Figure 2.9 – Runtime comparison of three non-relational analysis. Timings are in seconds. S: sym-
bolic range analysis. I: integer overflow elimination. RA: Rodrigues et al.’s range analysis [93]. Pen-
tagons [79]. Y axis is runtime, in seconds. Each X point is a benchmark, sorted by size (from 4k to 1M
instructions).

Precision The precision of our analysis is evaluated through its use in a bigger framework called
GreenArrays, that we will study later (Section 4.2).

2.6 Conclusion

In this chapter I summarised the contributions made in the domain of numerical programs analysis.
This chapter is an illustration of the impact of combining techniques from different communities,
from SMT-solving to abstract interpretation or compilation, or from abstract interpretation to com-
pilation. One lesson of this work is that the effort of bringing a technique to another community is
non trivial, however, it deserves to be made.
The last contribution advocates for the design of more scalable abstract domains. We strongly be-
lieve that such abstract domains must be thought in term of scalability and expressivity at the same
time. The SSI-framework proposes guidelines to design such abstract domains, however, there is
still an open research question for fully relational analyses: can they scale? are there ways to degrade
their expressivity in a generic way so as to improve their precision?
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3 Static Termination Analysis

Proving termination is one key application of invariant generation and static analyses techniques.
This problem, which was studied since the early days of Computer Science, and its companion prob-
lem, which is the computation of the WCCC (worst-case computational complexity), has many ap-
plications:

• for proving full correctness: since the seminal paper of Floyd [53], termination and partial
correctness are complementary. However, much more attention has been given to partial cor-
rectness: we affix assertions to each program point and prove that they are consequences of
the assertions of its predecessors in the program control graph. The assertions at the entry
point of the program are its preconditions, the assertions at loop entry points are invariants,
while the assertions at its exit point must entail correctness, according to some set of require-
ments 1). However, this method proves only partial correctness, i.e., that the program gives
the correct result if and when it terminates. Termination thus still has to be proved to fully
prove the correctness of programs, and despite the early definition of the problem, has clearly
received less attention from the program analysis community.

• for proving safety of reactive programs: in reactive programs, we have to prove functional cor-
rectness as well as reactivity, i.e. that the code inside the infinite reactive loop executes itself
in finite bounded time. Moreover, in order to parametrise the sensors and actuators of a given
platform, we have to compute a safe bound on the sampling rate. An accurate worst-case exe-
cution time can be derived from WCCC results, with the help of abstract static cache analyses
such as [7]. Static analyses can improve the precision of the global worst-case execution time
computation, as shown for instance in [66].

• for detecting hotspots in intensive computations and thus perform best-effort optimisation
in these particular pieces of code. This is a particular case of prediction. In static compilers,
loops with a high number of iterations may benefit from aggressive code motion strategies, or
polyhedral-based optimisation [50] whose cost might be too high to be applied at any point of
the program.

Summary of the chapter The main idea of this work was initially to explore the link between
scheduling and termination [44, 45], through making a parallel between schedules and ranking func-
tions. Using a classical algorithm of the program scheduling literature, combined with numerical
invariants computed by abstract interpretation, we first demonstrate the expressivity of the method
in [ADFG10]. This work was further extended to deal with larger programs [AAG12] by classical static
analyses techniques adapted to the particular case of termination.

1The Frama-C tool, developed at the CEA, is capable of checking such Hoare triples http://frama-c.com/
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More recently, in [GMR15] we showed how to drastically decrease the size of the constraint systems
we solve while computing ranking functions using ideas from the static analysis community (namely,
counter-example guided refinement).
Another experience in termination was the study [RAPG14] of the Mozilla Firefox Just-In-Time com-
piler in which detecting “intensive” loops is crucial for performance.
In all these works, from theory to practice, the results we obtain show the relationships and the cross
fertilisation of compilation techniques and static analyses techniques.

Outline Section 3.1 defines the main theoretical tools used for proving termination of sequen-
tial programs. Section 3.2 exposes the two main algorithmic contributions published in [ADFG10]
and [GMR15] as well as their experimental evaluation. Section 3.3 describes our techniques to im-
prove the scalability of the tools. Finally Section 3.4 summarises our case study on the Mozilla JIT
compiler.

3.1 Model of programs, termination, ranking functions

In this chapter, we also consider programs as Integer Interpreted automata, as described in Sec-
tion 2.1.1. We also assume that they have been obtained through a safe abstraction procedure. The
problem is now to prove termination of a given automaton, i.e. to prove that there is no infinite path
from the initial states.
The standard technique for proving termination is to consider ranking functions to well-founded
sets. A well-founded set W is a set with a (total or partial) order ¹ (we write a ≺ b if a ¹ b and a 6= b)
such that there is no infinite descending chain, i.e., no infinite sequence (xi )i∈N with xi ∈ W and
xi+1 ≺ xi for all i ∈N.

Definition 3. A ranking function (ρ) is a function ρ : K ×Zn → W , from the automaton states to a
well-founded set (W ,¹), whose values decrease at each transition t = (k, g , a,k ′):

x ∈Rk ∧ g (x) = true∧x ′ = a(x) ⇒ ρ(k ′, x ′) ≺ ρ(k, x) (3.1)

where Rk are the reachable valuations at control point k (any over-approximation Ik can replace i).
It is said affine if it is affine in the second parameter (the variables).

Definition 4. A ranking function is one-dimensional if its co-domain is (N,≤). It is k-dimensional
(or multi-dimensional of dimension k) if its co-domain is (Nk ,¹k ), where the order ¹k is the standard
lexicographic order on integer vectors.

Obviously, the existence of a ranking function implies program termination for any valuation v at
the initial control point ki ni t . A well-known property is that an integer interpreted automaton ter-
minates for any initial valuation if and only if it has a ranking function (not necessarily expressible
in our (Nk ,¹k ) setting). Furthermore, if it terminates and has bounded non-determinism 2, there is
a one-dimensional ranking function, which is not necessarily affine.

Example 7 (Motivating example ). An example program is given in Fig. 3.1, with its corresponding
automaton. The control points are labelled for convenience, and transitions are depicted with arrows

indexed by
g

a
(g is omitted when g = true). State names are assigned arbitrarily by our parser.

The C code features two nested loops, which do not fit into the structured programming model, since
the inner counter, y, is modified in the outer loop. The indet function abstracts non-determinism or
an intractable test.
The outcome of non-determinism is that, in the corresponding automaton, both transitions out of state
lbl5 have a true guard. The right of Fig. 3.1 successively gives, assuming m > 0, the invariants as found

2Each non deterministic choice lies in a finite set.
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y = 0;

x = m;

while(x>=0 && y>=0){

if(indet()){

while(y <= m && indet())

y++;

x--;

}

y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := m; y := 0

0 6 x ∧ 0 6 yx < 0 ∨ y < 0

true

true

y 6 m

y := y + 1

x := x − 1

y := y − 1

c. point Invariant
lbl4 m ≥ x > 0,m ≥ y > 0
lbl5 m ≥ x ≥ 0,m ≥ y ≥ 0
lbl6 m ≥ x ≥ 0,m +1 ≥ y ≥ 0

lbl10

{
m ≥ x ≥−1,m +1 ≥ y ≥ 0

2m ≥ x + y
c. point Ranking Function
st ar t 2m +4
lbl4 (2x +3,3y +3)
lbl5 (2x +3,3y +2)
lbl6 (2x +2,m − y +1)
lbl10 (2x +3,3y +1)

WCCC (whole program)
5+7m +4m2

Figure 3.1 – Illustrating example of [ADFG10]. True guards and ε actions are ommited.

by ASPIC (an abstract-interpretation based invariant generator, see Section 2.2.1), followed by the bi-
dimensional rankings and the corresponding WCCC computed by RANK, our tool that implements the
algorithms of [ADFG10]. These rankings expressions are positive and lexicographically decrease along
each transition. For instance, the first component of the ranking function decreases from 2x+3 at l bl5

to 2x +2 at lbl6, then 2x +3 at lbl10, but since x is changed to x −1 by the corresponding transition,
the ranking has really decreased.

3.2 Computing ranking functions of imperative programs

Unlike previous work [26, 59] where the construction of invariants is coupled with the termination
proof or evaluation of iteration bounds, the invariants Ik on all control points of the programs are
pre-computed (The non-precision of the invariant will be the unique source of loss of precision of
our method, as we will see later). In both papers [ADFG10] and [GMR15], we use ASPIC 3 to compute
these invariants.

3.2.1 Key observation: ranking functions are schedules

The polyhedral model is a collection of techniques developed around a common intermediate repre-
sentation of programs: integer polyhedra. Such a mathematical representation of programs inherits
nice properties from the underlying mathematical structure. For instance, when loop transforma-
tions are represented as affine functions, compositions of transformations are also affine functions
due to closure. The polyhedral representation was linked to loop programs by an analysis proposed
by Feautrier [48] that provides exact dependence analysis 4 information where statement instances
(i.e., statements executed at different loop iterations) and array elements are distinguished. The ex-
act dependence information through this analysis and the use of linear programming techniques
to explore the space of legal schedules [49] is what constitutes the base of the polyhedral model for
loop transformations. The key idea of all these techniques is that any loop transformation is valid if
dependencies are not broken (in other words, if statement A depends on statement B, then B will be
always scheduled before A).

In the polyhedral framework, a schedule can be described as a function that associates (logical) dates
with operations that is strictly increasing from some starting date (say, 0) and fulfilling the depen-
dencies, as described in Example 8.

3http://laure.gonnord.org/pro/aspic/aspic.html
4In the context of polyhedral optimisation, a statement A depends on another statement B if computes a result which

will be later used by A.
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Example 8 (Illustration for the polyhedral model framework ). Figure 3.2 is a loop kernel computing
the Smith-Waterman optimal sequence alignment algorithm5. The polyhedral model provide us tools
to automatically compute the dependencies that are depicted on the right: each point represents an
execution of the block S computing H[i][j] for a given i and j in �0, N�. Such an operation is written
〈S, i , j 〉. The arrows represent the dependencies towards a given 〈S, i , j 〉. For instance the diagonal
arrow means that H[i][j] requires the value of H[i-1][j-1] to be computed.

for(i=0; i<=N; i++)

for (j=0; j<=N; j++)

//Block S

{

m1[i][j] = Integer.MIN_VALUE;

for(k=1; k<=i; k++)

m1[i][j] = max(m1[i][j],H[i-k][j] + W[k]);

m2[i][j] = Integer.MIN_VALUE;

for(k=1; k<=j; k++)

m2[i][j] = max(m2[i][j],H[i][j-k] + W[k]);

H[i][j] = max(0,H(i-1,j-1)+s(a[i],b[i]),

m1[i][j],m2[i][j]);

}

j

i

Figure 3.2 – Polyhedral scheduling: an example. The Smith-Waterman sequence alignment algo-
rithm and its dependencies. Each point (i , j ) represents an execution of the block S, denoted by
〈S, i , j 〉.

From these dependencies, we are able to describe valid schedules, for instance S(i , j ) → (i , j ) or S(i , j ) =
i + j are valid since they respect dependencies. Clearly these two schedules grow from 0 and are
bounded.

Similarly, in a numerical automaton, a ranking function associates a non-negative expression to each
computation of the program that strictly decreases each time the program takes a transition (e.g.,
change in loop iterators). The main idea was to use the previous work on multidimensional polyhe-
dral loop scheduling [49], but in the larger scope of general control flow graphs (instead of static for
loops and array optimisation) and programs operating on numerical variables.

From monodimensional ranking function to multidimensional Another observation is that a mul-
tidimensional (affine) ranking function can be computed iteratively using an algorithm that gener-
ates a monodimensional (affine) function on a maximal set of transitions.
This algorithm relies on a notion of “maximal termination power” property that we enforce for the
ranking functions synthesised in both papers. In the same way, we prove that despite this greedy
approach, our technique is weakly complete (which means that if our invariants are precise enough
to prove that there exist a multidimensional affine ranking function, then we find it). Furthermore
the multidimensional affine ranking functions that our algorithms compute have the least possible
number of dimensions.

Synthesising 1D-ranking functions To find a suitable function ρ at Line 3 for a subset T of transi-
tions (T ), we use linear programming. The set of inequalities that we need to solve are the following:

• The ρ function must be non-negative on T

5See https://en.wikipedia.org/wiki/Smith-Waterman_algorithm. We consider two sequences of the same
length N .
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Algorithm 3 Multidimensional Termination

Input: An automaton with T its set of transitions, Ik invariants
Output: Yes+ρ/Abort

1: i = 0; T =T ; . Initialise T to the set of all transitions
2: while T is not empty do
3: Find a 1D affine function ρ which is decreasing on all t ∈ T and strictly decreasing on a maxi-

mal subset T ′ ⊆ T .
4: Let ρi = ρ ; i = i +1; . ρi defines the i -th component of ρ
5: If T ′ =; return false . No multi-dimensional affine ranking.
6: T ← T ′ . The transitions have level i
7: end while;
8: d = i ; return true; . There is a d-dimensional ranking

• The ρ function should decrease on all transitions of T , and strictly decrease on a maximal
subset of T .

In the sequel, I will denote by:
• ρ = x 7→ λ · x +λ0 the (monodimensional) ranking function to be discovered, where λs are

unknown.
• I the invariant on the (unique) control point we are considering with m affine constraints

I = {x | ∧m
i=1 ai .x −bi ≥ 0}.

• τ=∪t∈T τt the transition relation for the whole program. For a given transition t ∈ T we de-
note by Qt the polyhedron that encodes the input/output transition relation on (x , x ′) induced
by t :Qt = {y = (x , x ′) | Qt y +qt ≥ 0}.

The constraint we have on ρ are thus expressed by:

∀x ∈I,ρ(x) ≥ 0 (3.2)

∀(x, x ′) ∈ τ, x ∈I,ρ(x)−ρ(x ′) ≥ 0 (3.3)

The way we solve them will be different in the following next sections. We will illustrate them on the
running example.
The two methods rely on the affine form of Farkas’ lemma [96]:

Lemma 1 (Farkas’ lemma, affine form). An affine formφ :Rn →Rwithφ(x) = c .x+c0 is non-negative
everywhere in a non-empty polyhedron {x | Ax +a ≥ 0} iff:

∃λ ∈ (R+)n ,λ0 ∈R+ such that φ(x) ≡λ.(Ax +a)+λ0

The notation ≡ is a formal equality, which means that x can be eliminated and coefficients identified
(from now on, we will use a simple equality sign = for it). In other words:

∃λ ∈ (R+)n ,λ0 ∈R+ such that c =λ.A and c0 =λ.a +λ0

This lemma transforms the search for a ranking function (with an infinite number of unknown coef-
ficients) into the solving of a finite set of affine equations. In other words, it provides a template for
the ranking function to be discovered.
The rest of the section is devoted to the explanation of the two algorithms (SAS10, PLDI15) on the
simple case of programs with one control point 6 and the search for a monodimensional ranking
function of maximal termination power. Both methods will be illustrated by the same running ex-
ample depicted in Example 9.

6This restriction is only for the sake of readability. The two papers contain algorithms to deal with any number of control
points.
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Example 9 (Running example ). Consider the following automaton, where transitions are specified by

( g uar d
acti on ):

k0
t2

x ≤ 10 ∧ 0 ≤ y
x := x+ 1
y := y − 1

t1
0 ≤ x ∧ 0 ≤ y
x := x− 1
y := y − 1

Under initial assumptions x = 5, y = 10, an invariant generator (ASPIC) gives the following inductive
invariant for I:

I = {0 ≤ x +1, x ≤ 11,0 ≤ y +1, y ≤ x +5, x + y ≤ 15}

In other words I = {x | ∧m
i=1 ai .x −bi ≥ 0}. with

a = (1
0

) (−1
0

) (0
1

) ( 1
−1

) (−1
−1

)
b = −1 −11 −1 −5 −15

A possible monodimensional strict linear ranking function for this automaton is ρ(x, y) = y +1: this
expression is always non-negative on I, and both t1 and t2 make this expression strictly decrease.

3.2.2 SAS10 method

The contributions of [ADFG10] are the following:

• An efficient algorithm to compute ranking functions on arbitrary C numerical programs. Our
method, although greedy, is provably complete.

• A new method to derive polynomial upper bounds for the computational complexity (number
of transitions) of the source program from the ranking functions.

• The method is implemented as a tool-chain and validated on a collection of test cases from
the literature.

Method First, Equation 3.3 is rewritten as:

∀(x, x ′) ∈ τ, x ∈I,ρ(x)−ρ(x ′) ≥ εt with 0 ≤ εt ≤ 1 (3.4)

which express a “weak” positivity constraint, and will allow us to define the “termination power” of a
(weak) ranking function as the number of transitions t with εt = 1 7. Of course we want to maximise
this number.

In this paper, the LP problem we solve is deducted from the use of the Farkas’ Lemma to linearize
the constraints coming from equations 3.2 and 3.4:

• On equation 3.2, the ρ function we search for is an affine form, which is positive on the invari-
ant I. As I = {x | ∧m

i=1 ai .x−bi ≥ 0}, there exist constantsα,α0 such that for all x the following
equality holds:

ρ =λ · x +λ0 =α(Ax −b)+α0 (3.5)

by identifying the expressions on all lines of this last equality, we obtain one equation per λi ,
with m unknowns αi .

• On equation 3.4, the “one-step difference function” ρ(x)−ρ(x ′)−1 should be positive on each
Qt , thus for each transition t there exists constants µ,µ0 such that for all x , x ′ the following
equality holds: ρ(x)−ρ(x ′)− 1 = µt (Qt x − rt )+µt0. We obtain a number of equations pro-
portional to the number of transitions times the number of constraints appearing in the sets
Qt s.

7εt can be an integer or a rational, for the rest of the section, we will suppose that it is an integer.
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• The objective is then to maximise
∑

t
εt , that is, the total number of transitions t where the

ranking function is strictly positive.

The result of the LP invocation is the values of α and β unknowns, from with we can derive λs, thus
ρ, as well as the transitions on which this ranking function is not strictly positive.

Algorithm 4 Monolithic Monodimensional Termination (SAS10)

Input: A control point with τ its set of transitions, I invariant
Output: Yes+ρ/Abort

1: Apply Farkas on I to compute the positivity constraints.
2: Apply Farkas on each t ∈T to compute the decreasing constraints.
3: Construct the LP instance, call the PIP solver.
4: From the result, compute λs and ρ and return ρ

Example 9 (continuing from p. 32). On our running example, recall that I = (A.x −b ≥ 0) with:

A =
(
1 −1 0 1 −1
0 0 1 −1 −1

)T

and b = (−1 −11 −1 −5 −15
)T .

• Equations3.5 expressing positivity are thus obtained by identifying terms of the following equal-
ity:

(
λ1
λ2

)
·
(

x
y

)
+λ0 =


α1
α2
α3
α4
α5

(
1 0
−1 0
0 1
1 −1
−1 −1

 ·
(

x
y

)
−


−1
−11
−1
−5
−15

)
+α0,

i.e.:

λ1x +λ2 y +λ0 =α1(x +1)+α2(−x +11)+α3(y +1)+α4(x − y +5)+α5(−x − y +15)+α0

and finally the system:


λ1 =α1 −α2 +α4 −α5

λ2 =α3 −α4 −α5

λ0 =α1 +11α2 +α3 +5α4 +15α5

• Now for the equations expressing decrease:

– Qt1 is the polyhedron defined by the set of 11 (affine) constraints {(x, x ′) such that x ∈I∧
x ≥ 0∧ y ≥ 0∧ x ′ = x −1∧ y ′ = y −1} (5 constraints coming from I, 6 from the transition,
since equalities are transformed into 2 inequalities). Thus, we obtain the existence of µ1

i ,
i ∈ [0,11] such that:

(λ1x+λ2 y+λ0)−(λ1x ′+λ2 y ′+λ0)−ε1 =µ1
0+µ1

1(x+1)+. . .+µ1
10(y ′−y+1)+µ1

11(y−y ′−1).

The termµ1
1(x+1) comes from the invariant I and the termsµ1

10(y ′−y+1) andµ1
10(y−y ′−

1) come from the transition relation t1 (y := y −1 provides the two inequalities y ′ ≥ y −1
and y ′ ≤ y −1).

After identification, we obtain the following set of equations:

λ1 =µ1
1 −µ1

2 +µ1
4 −µ1

5 +µ1
6 −µ1

8 +µ1
9

−λ1 =µ1
8 −µ9

λ2 =µ1
3 −µ1

4 −µ1
5 +µ1

7 −µ1
10 +µ1

11

−λ2 =µ1
10 −µ1

11

ε1 =µ1
1 +11µ1

2 +µ1
3 +5µ1

4 +15µ1
5 +µ1

8 −µ1
9 +µ1

10 −µ1
11
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– Qt2 is the polyhedron defined by the set of (affine) constraints {(x, x ′) such that x ∈I∧x ≤
10∧ y ≥ 0∧ x ′ = x +1∧ y ′ = y −1}. We obtain a set of 5 equalities with 11 new unknowns
µ2

i .

All these equations, with positivity constraints for all the λ,α,µ and ε variables, as well as εi ≤ 1,
form a set of equations that we solve with a LP solver under the objective : Max(ε1 +ε2). The LP
solver we use (PIP) gives us a solution with ε1 = ε2 = 1,λ1 = 0,λ2 = 1,λ0 = 1, thus we have found
our ranking function ρ : (x, y) 7→ y +1.

3.2.3 PLDI15 method

The contributions of [GMR15] are the following:

• A reformulation of the problem of finding ranking functions in a more compact Linear Pro-
gramming instance than in [ADFG10].

• A way to build this instance lazily according to extremal counterexamples (a counterexample
is a path where a candidate ranking function increases) inspired by the CEGAR 8 approach.

• The method is implemented as a standalone tool and benchmarked it against existing analy-
sers.

Intuition The intuition we had came from experiments: our LP problems were quite huge com-
paring to the relative simplicity of the final outputs (in reality, ranking functions are often simple,
they do not imply all program variables, in particular). We thus had the intuition that we could use a
CEGAR-like approach that could iteratively refine a ranking function candidate. This approach is de-
picted in Figure 3.3: the algorithm we use takes the form of an iterative loop that stops if it is able to
synthetize a ranking function or, like before, if the program may non terminate. To improve a given
ranking function candidate, we search in the program if there is a path that makes this ranking func-
tion strictly increase (the “counter example”). From this path, we update the system of constraints
for the computation for the next candidate.

Is there a path that
negates the fact ρ is
a strict ranking func-
tion?

No Yes

• Program τ

• Null ranking
function ρ←~0

• C =;

Add the counter
example in C

4 The program
Terminates!

Compute a new
ranking function
that “satisfies” all
elements of C .

8 Stop : Fail

Figure 3.3 – Counter-example guided ranking function generation

8Counter-example guided abstraction refinement, [31]
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Method As we saw on the running example, the number of unknowns in the LP instance we solve
is growing quickly with the number of transitions and the number of constraints of the underlying
polyhedra. However, the result we obtain is quite simple, and could have been generated with a
lesser set of constraints.
The first difference with the previous paper is that now we consider the whole transition system τ

as a big first order formula with disjunctions, thus the notion of “individual transition” is lost. Then,
from the two constraints 3.2 and 3.3 we will only apply Farkas on the positivity constraints, which
will enable us to construct LP instances with less unknown variables:

• For positivity, Equation 3.5 is still valid, which we simplify into:

∃αi s.t. λ=
m∑

i=1
αi ai (3.6)

since once the condition λ=∑m
i=1γi ai is met then an appropriate choice of λ0 can always be

made.

• For the decreasing constraints, we show that they are equivalent to a finite number of con-
straints obtained by iterating on the generators of a polyhedron:

Definition 5. Let us denote by PI ,τ the set of all reachable 1-step differences:

PI ,τ = {x −x ′′′ | x ∈I ∧ (x , x ′′′) ∈ τ}

The closure of its convex hull will be denoted by P H
I ,τ.

From 3.3 we can derive, using linearity, thatλ·u ≥ 0 for all u ∈PI ,τ. Remark that this condition
is left unchanged if we replace PI ,τ by P H

I ,τ. Without loss of generality, we can now assume

that P H
I ,τ can be described by a finite number (m) of generators vi , and the equation becomes

∀1 ≤ i ≤ m, λ ·vi ≥ 0.

• Now the objective is to maximise the number of vi such that λ ·vi > 0.

In order not to explicitly enumerate all the vi s, we define a family of Linear programming instances
parametrised by a set V :

Definition 6. Given V = {v j |1 ≤ j ≤ N } a set of generators of (the convex hull of) PI ,τ and a set
of vectors Constraints(I) = {ai |1 ≤ i ≤ m}, we denote by LP (V ,Constraints(I)) the following linear
programming instance where αi and εi are the unknowns:

Maximise
∑

i εi s.t.
α1, . . . ,αm ≥ 0
0 ≤ ε j ≤ 1 for all 1 ≤ j ≤ N∑m

i=1αi (v j .ai ) ≥ ε j for all 1 ≤ j ≤ N

The result of such an LP problem is None if the problem is unfeasible, or a valuation of the αi and
εi variables maximising the objective function. In the following, we denote as α the vector with αi

components. The main result is the following:

Proposition 2. Let V = {v j |1 ≤ j ≤ N } be a set of generators of the convex hull of PI ,τ and the set of
vectors Constraints(I) = {ai |1 ≤ i ≤ m} (constraints of I ). Then :

• LP (V ,Constraints(I)) is always feasible.

• LP (V ,Constraints(I)) givesαi s such thatρ(x) =λ·x+λ0 withλ=∑m
i=1αi ai andλ0 =

∑m
i=1αi bi

is a weak ranking function of maximal power on V .
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Computing this set V (or, equivalently, any finite set between it and PI,τ) may be expensive (and
the cardinal of V may be exponential in the number of constraints). Obviously, we could compute a
disjunctive normal form (DNF) for τ∧I, each disjunct denoting a convex polyhedron [14], compute
their generators (x , x ′) and collect all resulting x−x ′; computing the DNF has exponential cost even if
not all disjuncts are needed. The new approach described in this article will only compute extremal
points as needed, as opposed to eagerly expanding the DNF.

A Wrong but Intuitive Algorithm Following a quite common technique [31] in the static analysis
literature, we propose to compute the set of generators and the ranking function incrementally and
at the same time. We propose a candidate (weak) ranking function, and search for generators vi

where this ranking is only weak. If it is not, we won, if not, we add this generator in a set C .
We first propose a simple but somewhat wrong incremental algorithm, which gives the intuition of
the correct algorithm detailed in [GMR15]. C is a set of vectors and ρ(x) = λ · x +λ0 a candidate
ranking function.

Algorithm 5 Incremental Monodimensional Termination

Input: A control point with τ its set of transitions, I invariant
Output: Yes+ρ/Abort

1: C :=;, ρ(x) := 0, thus λ= 0. . Initialisation
2: while true do
3: Ask an SMT-solver if ∃u s.t. I∧τ∧λ ·u ≤ 0.
4: If Unsat, ρ is a strict ranking function. return ρ

5: If Sat, we get u from the SMT model.
6: Add u to C .
7: Call LP (C ,Constraints(I)) . compute a new (candidate) ranking function
8: end while;

Let us illustrate this algorithm on our running example.

Example 9 (continuing from p. 32). Let us recall the automaton and its transition relation:

k0
t2

x ≤ 10 ∧ 0 ≤ y
x := x+ 1
y := y − 1

t1
0 ≤ x ∧ 0 ≤ y
x := x− 1
y := y − 1

τ=
{

(x, y, x ′, y ′)

∣∣∣∣∣ x ≤ 10∧0 ≤ y ∧x ′ = x +1∧ y ′ = y −1
∨

0 ≤ x ∧0 ≤ y ∧x ′ = x −1∧ y ′ = y −1

}
Recall that we are looking for ρ(x) =λ · x +λ0 with λ a positive linear combination of the ai s.
We will follow Algorithm 5 step by step, repeated steps will be denoted by ’.

1. Beginning with C = {} and ρ(x) = 0, that is: λ= 0 and λ0 = 0. The unknown vector u is always(x−x ′
y−y ′

)
.

First iteration.
2. Sat (I∧τ∧0 ·u ≤ 0) ?

Yes and we have the model u = (−1
1

)
3. C ←

{(−1
1

)}
4. Call LP (C ,Constraints(I)) =

Maximise ε1 s.t.
α1,α2,α3,α4,α5 ≥ 0
0 ≤ ε1 ≤ 1
−α1 +α2 +α3 −2α4 ≥ ε1

(The last constraint comes from u ·ai for each i .)
The solver answers α2 = 1, α1 =α3 =α4 =α5 = 0.
We deduce λ= a2 =

(−1
0

)
and λ0 = b2 = 11.

HDR Laure Gonnord 36/92



CHAPTER 3. STATIC TERMINATION ANALYSIS

Second iteration.
2’. Sat

(
I∧τ∧ (−1

0

) ·u ≤ 0
)

?

Yes and we have the model u = (1
1

)
3’. C ←

{(−1
1

)
;
(1

1

)}
4’. Call LP (C ,Constraints(I)) =

Maximise ε1 +ε2 s.t.
α1,α2,α3,α4,α5 ≥ 0
0 ≤ ε1,ε2 ≤ 1
−α1 +α2 +α3 −2α4 ≥ ε1
α1 −α2 +α3 −2α5 ≥ ε2

The solver answers α3 = 1, α1 =α2 =α4 =α5 = 0. We deduce λ= a3 =
(0

1

)
and λ0 = b3 = 1.

Third iteration.
2”. Sat (I∧τ∧ y − y ′ ≤ 0) ? No, we stop.

Return. We have λ= (0
1

)
and λ0 = 1. We obtain ρ(x, y) = y +1, a strict ranking function for (τ,I).

Let us point out the fact that the two models u we obtained correspond to the two transitions t1 and
t2.

Remarks Unfortunately, this simple algorithm suffers from two problems which may prevent its
termination:

• First, termination is guaranteed only if the models provided by the SMT tests come from a fi-
nite set (then the number of iterations is bounded by the cardinality of that set) and also lie
in the boundary of the convex hull P H

I ,τ (if not we could accumulate unoptimally tight con-
straints). To solve this problem, we impose that the model for the SMT-test should minimise
λ ·u, as in “optimisation modulo theory [87, 98].”

• Second, even if the first issue is resolved, the above algorithm terminates only if there is a strict
ranking function (λ·v > 0 for all v ∈ V ). Indeed, termination is ensured by the algorithm never
choosing twice the same u = x − x ′′′, which is the case if there exists a (weak/quasi) ranking
function such that λ ·u > 0. But what if the SMT-solver picks u such that all weak ranking
functions λ satisfy λ ·u = 0? In this case, the algorithm may not terminate, always picking the
same u. To solve that purpose, we force the SMT solver to always search for us that are not
linear combinations of the preceding us.

From this remark, we finally construct an algorithm that satisfies the following proposition:

Proposition 3. Algorithm 1 of [GMR15] always terminates and returns a weak ranking function of
maximal termination power.

3.2.4 Comparison of the two approaches

Despite the fact that they use the same initial ideas and Linear Programming to search for a monodi-
mensional ranking function of maximal ranking function and finally build a multidimensional one
with an iterative algorithm, the two preceding articles have some crucial differences:

• In SAS10, the transition system is given as a union of disjoint functional transitions, in PLDI15
it can be any first order formula.

• In SAS10, the Farkas’ lemma is applied to both decreasing constraints and positivity con-
straints, in PLDI15 we only apply Farkas on the positivity constraints.
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• For decreasing constraints, in SAS10 we construct a LP instance whose size is proportional to
the number of constraints of a given transition, for all individual transitions. In PLDI15 we enu-
merate the generators of a bigger set, but lazily. We expected the number of generators actually
enumerated to be rather small in practice since “actual programs have simple ranking func-
tions” (build on a limited number of variables, thus can be obtained with a limited number of
linear combination of constraints/generators). This has been confirmed by our experiments.

• In SAS10 we only rely on the use of a LP (rational) solver, in PLDI15 we also rely on a Max-SMT
solver, which is capable of maximising a linear function on any first order affine formula.

• Experiments show that in PLDI15’s implementation our LP instances are one-two orders of
magnitude smaller than in SAS10’s one (see Section 3.2.6).

3.2.5 From ranking to worst-case

We define the Worst-case Computational Complexity (WCCC) as an upper bound on the number of
transitions that are executed, given an initial value of the counter variables.
With this definition, one could over-approximate the WCCC of a terminating program by the to-
tal number of reachable states (because a finite trace cannot contain twice the same state), i.e.,
WCCC ≤∑

k #R̃k or even more conservatively WCCC ≤∑
k #Ĩk as Rk is itself over-approximated by

Ik . 9 This is a very rough over-approximation but, even worse, this technique can lead to an infinite
WCCC, even for a terminating automaton, if some invariant Ik is unbounded. Rather, we can use
the ranking function itself to prune the invariant sets. Indeed, consider a trace (k0, x0), . . . , (kp , xp ) in
the execution of the automaton. By definition of a ranking function, ρ(ki+1, xi+1) ≺ ρ(ki , xi ). Since
≺ is a strict order, it follows by transitivity that all ρ(ki , xi ) are distinct in W . Hence, the length of the
trace is bounded by the cardinal of the co-domain of ρ:

WCCC ≤ #
⋃
k
ρ(k,Ĩk ) ≤

∑
k

#ρ(k,Ĩk ) (3.7)

The first inequality is more accurate but harder to compute as it involves a union of sets. Instead,
we use the second less accurate inequality. In [ADFG10] we propose a simple solution based on
a computation of the number of the numerical points of a given Z-polyhedron (intersection of an
integral lattice, here Zn , and a polyhedron, here I ). The main tool we use for that purpose are
Ehrhart polynomials [32, 105]. The experimental results of Section 3.2.6 show that these evaluations
are precise enough for classical algorithms of the literature.

3.2.6 Experimental results

Implementation For SAS10, we implemented a tool suite with C2FSM and ASPIC as front-ends (See
Section 2.2.1) The third tool, RANK (3000 lines of C++) , from the integer interpreted automaton and
the invariants given by ASPIC, tries to prove the termination of the program by computing (multidi-
mensional affine) ranking functions. In case of success, RANK computes the worst-case computa-
tional complexity of the program. Also, in case of failure (denoted by “Don’t Know”), RANK tries to
exhibit a counterexample that causes non-termination. The linear programs involved in the termi-
nation part are solved thanks to the PIP tool. The PIP tool may fail if the generated LP instance is too
big.
For PLDI15, we implemented our prototype TERMITE in 3k lines of OCAML 10. As depicted in Fig-
ure 3.5 Termite uses LLVM11 to compile C code into a Single Static Assignment intermediate repre-
sentation [43]. PAGAI [65, 67] is used to compute invariants from the LLVM IR. The transition relation

9Here, the notation S̃ means the integral points in a set S , and #S̃ denotes the cardinal of S̃ .
10http://termite-analyser.github.io/
11http://llvm.org/
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Figure 3.4 – RANK tool-chain. DK is “I do not know”. Too much variables indicates that we generated a LP instance that is too

big for PIP

is produced from these invariants and the LLVM IR. Then, the core analyser implements the mul-
tidimensional, multiple control point algorithm described herein. Z312 answers (optimising) SMT
and LP queries.

Figure 3.5 – TERMITE tool-chain

Results The experimental results first show that the method is expressive enough to prove termi-
nation and compute the WCCC of challenging polynomial programs from the literature. Both tools
RANK (SAS10) and TERMITE (PLDI15) perform well on these benchmarks.
We also show that the size of the LP instances are drastically decreased by the use of our incremental
technique implemented in TERMITE.
Finally, we compare TERMITE with existing state-of-the art tools, and show that despite the fact the
tool is only a prototype, it compares well with other more mature tools.

Expressivity of the tools Our tool chain has been tested on a set of benchmarks from the literature.
Most of the examples were collected in [29] from many other papers dealing with termination anal-
ysis. They can be found at the following web address: http://compsys-tools.ens-lyon.fr/wtc/
index.html.
On Tables 3.1 and 3.1, the first two columns identify the test cases. The symbol ♣ indicates a test
case we developed to check our algorithm 13. Columns 3 to 5 give statistics about the (generated)
automaton: number of relevant variables, of control points, of transitions. The next column gives
the dimension of the ranking function found by our algorithm. The next column gives the timing
measurements on a 2 GHz Pentium with 1 GByte of memory running Debian 2.6. The “Analysis”
measures include the invariants computation time from the ASPIC file, the computation of the rank-
ing function, and the evaluation of the WCCC. In general, the WCCC is the maximum of several
parametric expressions valid on different domains of the program inputs. To make the table simpler,
the last column gives only the expression that can reach the maximum value.

Scalability of TERMITE compared to RANK We compared the two tools on an modified version of
the WTC test suite. On these benchmarks, due to limitations in its front-end and invariant genera-
tor, RANK could only run on 46 files from the WTC test suite, solving 25 of them in total time 76 ms,

12https://github.com/Z3Prover
13These examples have been integrated in the SVCOMP benchmark https://sv-comp.sosy-lab.org/2017/
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Table 3.1 – Experimental results SAS10 for RANK (WTC benchmark)

Name Ref Vars States Trans dimρ Time (s) WCCC
easy1 [29] 3 4 5 1 0.2 43
easy2 [29] 3 3 3 1 0.07 z0 +3

ackermann [15] 2 7 7 1 0.07 4m0 +5
terminate [33] 3 1 1 1 0.08 i0 + j0 +k0 +102

gcd [25] 2 5 1 1 0.2 x0 + y0 +2

rsd ♣ 3 3 4 1 0.2
r 2

o

2
+ 5r0

2
+5

nd_loop ♣ 2 4 6 1 0.05 22
wcet2 ♣ 2 3 5 1 0.15 55−12i0

relation1 ♣ 2 4 4 1 0.14 4
ndecr ♣ 2 4 4 1 0.08 i0 +2

perfect [27] 4 5 12 3 0.35 2+ 3x0

2
+

x2
0

2
cousot16 [38] 2 3 4 1 0.05 106

random2d [29] 5 10 21 1 1.1 6N0 +3
random1d [29] 3 4 6 2 0.1 max +3

wise ♣ 2 6 10 2 0.11 1+
∣∣x0 − y0

∣∣
wcet1 ♣ 3 6 8 2 0.25 n0 +2

complex [58] 2 4 11 2 0.28 1560−9b0 −45a0
nestedLoop [58] 6 5 12 3 1.3 n0m0 +2N0 +n0 +3

exmini ♣ 4 3 6 2 0.1 104+k0 − j0 −x0
aaron2 [29] 3 6 10 2 0.2 2(x0 − y0)+5
while2 ♣ 3 3 4 2 0.1 3+2N +N 2

cousot9 [38] 3 4 5 2 0.2 3+7/2N +5/2N 2

ax ♣ 4 3 6 3 0.16 n2
0 −n0 +2

loops [89] 3 4 5 2 0.15 N 2 −N +5
counterex1 ♣ 4 5 13 3 1.1 x0 +2

determinant [27] 4 6 7 4 0.15
N 3

3
+ N 2

2
+ N

6
+3

maccarthy91 [34] 4 5 18 2 1.2 13773/11−1363/110x
speedpldi2 [58] 4 4 9 2 1.0 2n0 −m0 +3
speedpldi3 [58] 4 6 11 3 1.3 n0m0 +n0 +4
speedpldi4 [58] 3 6 11 2 1.1 2n0 −2m0 +5
speedFails4 [58] 5 4 10 2 1.1 n0 −x0 +4

Table 3.2 – Experimental results SAS10 for RANK (Sorting programs)

Name Ref Vars States Trans dimρ Time (s) WCCC

realselect ♣ 7 5 10 3 0.4
N 2

2
+ 3N

2
+1

insertsort ♣ 3 6 7 2 0.22
N 2

2
+ 3N

2
+1

sipmabubble [29] 4 10 17 3 0.33 N 2 +2N +3
realbubble ♣ 6 5 11 3 0.4 N 2 +2

realshellsort ♣ 8 8 13 4 1.1
N 3

6
− N

6
realheapsort ♣ 10 11 31 3 2.8 4N 2 −11N +9
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Table 3.3 – PLDI15: Comparison of TERMITE and some of the state-of-the-art Termination tools. For

each benchmark suite, the total number of benchmarks and the number of benchmarks proved to terminate by each tool are given.

Timings, in milliseconds, exclude the front-end for TERMITE and LOOPUS and the invariant generator for TERMITE. (l ,c) are the average

number of lines and columns of the linear programming instances.

Suite # benchmarks Termite Loopus AProVE Ultimate
# success time (l ,c) # success time # success time # success time

PolyBench 30 22 117 (9,3) 30 37 0 2100 0 2750
Sorts 6 5 126 (15,4) 3 67 0 12230 0 2980
TermComp 129 119 12 (2,1) 78 15 111 9757 85 5863
WTC 58 46 64 (5,2) 33 48 36 11740 40 4536

with average linear programming problem (lines,columns) = (584,229), much higher than TERMITE’s
(5,2). On some examples however, RANK is able to prove termination that TERMITE is unable to

prove. This essentially comes from the combination of its front-end C2FSM and its invariant genera-
tor ASPIC that sometimes perform clever graph transformations on the control-flow graph and thus
are able to synthesise better invariants than PAGAI (the invariant generator used for TERMITE).

Comparison of TERMITE and state-of-the-art tools In Table 3.3 We have compared TERMITE with
LOOPUS14 [112], APROVE15 [55], Ultimate Büchi Automizer16, RANK [ADFG13] (with the C2FSM front-
end and ASPIC17 [GS14] accelerating invariant generator), on examples from POLYBENCH18, WTC
(V2)19, the termination competition20 and some sorting algorithms (Table 3.3).
TERMITE solves 33% more examples than LOOPUS, in twice the time. APROVE and ULTIMATE are
considerably slower.

All these tools have different approaches to prove termination:

• APROVE uses a complex front-end and relies on term rewriting systems.

• The ULTIMATE technique essentially consist in covering the set of program traces byω-regular
languages of terminating traces (“modules”). The termination argument for each module can
be obtained from a variety of approaches; thus their approach truly is a meta-approach since
a variety of sub-provers can be used. We in fact think that our technique could be adapted into
a sub-prover for their system.

• The algorithm in LOOPUS [112] is similar to ours in some ways; however, it explores all paths in
a given loop, and uses heuristics to syntactically derive ranking functions from the transitions
of the loop. In our experiments, Loopus is able to quickly conclude for termination in many
cases since simple arguments are very often sufficient to prove that a given loop terminates

Difficulties A termination analyser typically consists in 1) a front-end 2) an invariant generator
3) a termination analysis. One therefore compares whole tool-chains instead of only the termination
analyses. One difficulty is that some front-ends are more picky than others; for instance, APROVE’s
front-end crashes on some LLVM opcodes. We have made some reasonable efforts to have our ex-
amples accepted by the various tools when we could identify some obvious reason why they could
not be processed by the front-end or invariant generator.

14http://forsyte.at/software/loopus/
15http://aprove.informatik.rwth-aachen.de/
16http://ultimate.informatik.uni-freiburg.de/BuchiAutomizer/
17http://laure.gonnord.org/pro/aspic/aspic.html
18http://www.cs.ucla.edu/~pouchet/software/polybench/
19http://compsys-tools.ens-lyon.fr/wtc/index.html
20http://termination-portal.org/wiki/Termination_Competition
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3.3 Improving scalability

Improving the scalability of a given termination algorithm might not be sufficient, and clearly none
of our two analysers is capable to deal with large C programs:

• Because of technical reasons: the robustness of the parsers, the fact that we have to deal with
possibly a large number of statement types.

• Because the underlying invariant generators do not scale well: for challenging programs poly-
hedral invariants are really necessary, but their generation is expensive. Improving the scala-
bility of such techniques is a challenging problem as we saw in the previous chapter.

• Because of more intrinsic reasons: a given program is made of a possibly large number of
procedures, and only examining each at its turn might not be sufficient. Moreover for a given
procedure, the number of constraints that are generated might be too big for some LP solvers.

In the research report [GAA12], we propose an incremental scalable analysis implemented in a tool
called STOP (short paper [AAG12]). This tool is based on two classical techniques of static analysis,
slicing, and summaries. The experiments were made above the RANK tool-chain.

Example 10 (Running example: mergesort). We detail our method on an implementation of the
merge sort of an array. The code is taken from [34] and is depicted in Figure 3.6. For sake of read-
ability, we drew boxes around inner-loops, and commented the end of outer loops. For this example,
the RANK tool-suite fails with TWO_MANY_VARIABLES error because the size of the underlying linear
programming instance given to PIP pis too big.

3.3.1 Method

A slicing for termination In Algorithm 6 we depict a simple slicing algorithm based on the notion
of definition sites. It relies on the sub-function DEFINITION_SITES that computes the reaching def-
initions [1] RDstmt(xi) of each variable xi read by a given statement stmt. The result is a set of
assignments which can possibly define the value of xi read by stmt. The property of this algorithm
is that it computes a safe abstraction of all functions for the termination property.

Algorithm 6 Termination-Specific Slicing Algorithm

Input: A function body
Output: A semantically equivalent (w.r.t.) termination function body

1: function DO_SLICE(function_body)
2: while_loop_set = set of while statements
3: SLICE(while_loop_set) . At this point, all the statements belonging to the slice are marked
4: end function
5: function SLICE(stmt_set)
6: for all stmt ∈ stmt_set do
7: if is_not_marked(stmt) then
8: mark(stmt) . Add stmt to the slice
9: SLICE(DEFINITION_SITES(stmt))

10: end if
11: end for
12: end function

Example 10 (continuing from p. 42). The result of the slicing algorithm on the end the motivating
example code is depicted in Figure 3.7
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1 i n t main ( ) {
2 i n t n , i , j , k , l , t , h ,m, p , q , r ;
3 i n t up ; /* r e a l l y boolean */
4 i n t a [2 *n+1]
5 up = 1 ; p = 1 ;
6

7 loop4 : do{ // sort ing a
8 h = 1 ;
9 m = n ;

10 i f (up == 1) {
11 i = 1 ;
12 j = n ;
13 k = n+1;
14 l = 2*n ;
15 } e lse {
16 k = 1 ;
17 l = n ;
18 i = n+1;
19 j = 2*n ;
20 }
21 loop5 : do{
22 i f (m >= p)
23 q = p ;
24 else q = m;
25 m = m−q ;
26 i f (m >= p)
27 r = p ;
28 else r = m;
29 m = m−r ;
30

31 loop0 : while (q>0 && r >0) {
32 i f ( a [ i ] < a [ j ] ) {
33 a [ k ] = a [ i ] ;
34 k = k+h ;
35 i = i +1;
36 q = q−1;
37 } e lse {
38 a [ k ] = a [ j ] ;
39 k = k+h ;
40 j = j −1;
41 r = r −1;}
42

43

44 loop1 : while ( r > 0) {
45 a [ k ] = a [ j ] ;
46 k = k+h ;
47 j = j −1;
48 r = r−1;
49 }
50

51

52 loop2 : while (q > 0) {
53 a [ k ] = a [ i ] ;
54 k = k+h ;
55 i = i +1;
56 q = q−1;
57 }
58

59 h = −h ;
60 t = k ;
61 k = l ;
62 l = t ;
63 } while (m > 0) ; //end of loop5
64

65 up = 1−up ;
66 p = 2*p ;
67

68 } while (p<n) ; //end of loop4
69

70 // f i n a l copy of the array
71 // in the f i r s t h a l f of a
72 i f (up == 0) {
73 i = 1 ;
74

75 loop3 : while ( i <= n) {
76 a [ i ] = a [ i +n ] ;
77 i = i +1;
78 }
79

80 } //end i f t e s t up==0
81

82 return 0 ;
83 }

Figure 3.6 – Our motivating example: iterative merge sort

1 i f (up == 0) {
2 i = 1 ;
3 while ( i <= n) {
4 a [ i ] = a [ i +n ] ;
5 i = i +1;
6 }
7 }

(a) Before slicing

1 i f (up == 0) {
2 i = 1 ;
3 while ( i <= n) {
4 i = ( i + 1) ;
5 }
6 }

(b) After slicing

Figure 3.7 – Slicing Algorithm operating on a piece of code (loop3)

A summary-based algorithm for termination Algorithm 7 depicts the modular algorithm we use
to incrementally prove termination of a given piece of code.. For the sake of readability we only
provide the algorithm for while loops. The rest is straightforward. This algorithm strongly depends
on the notion of summary, that we recall here:

Definition 7 (Summary). Let C be a code and RC (x0, y0, . . . , x, y) be an over-approximation of the re-
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lation between initial variables x0, y0, . . . and final variables x, y, . . .. Then the following code is called
a summary of C :

x0 = x; y0 = y; ...

x = random(); y = random();...

if(!R_C(x0,y0, ..., x, y, ...)) abort

The summary of C is obviously an abstraction of C and thus can be used for proving the termination
of C.

Example 10 (continuing from p. 42). In the running example, loop3 can be replaced by:

i0=i;n0=n;

i=random();y=random();

if (i > n) abort

Algorithm 7 Scalable Algorithm for proving termination (partial)

Input: A statement, and invariants
Output: OK or Don’t Know

1: function MODULARTERM(statement,pcinvs)
2: if statement = while cond do S then
3: r es ← Modul ar Ter m(S, pci nv s)
4: if r es = Don’t Know then
5: return Don’t Know
6: else
7: context ← g etContext (st atement , pci nv s) . provides precise invariants for the

sub-automaton to be analysed.
8: r es ← Rank(context , st atement ) . launch of the whole toolchain depicted in

Figure 3.4.
9: if r es = Don’t Know then

10: return Don’t Know
11: else
12: Compute a summary of the loop and replace in the code.
13: return OK
14: end if
15: end if
16: end if
17: end function

The main function MODULARTERM takes as input a statement and a structure that is able to give an
over approximation of the context of each statement of the program under analysis. These invariants
are computed using ASPIC as input/output relations.
MODULARTERM proceeds the abstract syntactic tree with a depth-first traversal, evaluating each sub-
tree to the value OK if it terminates, or Don't Know if the analysis does not succeed to answer. If a
sub-tree is evaluated to Don't Know, the analysis fails and stops with Don't Know output.
Computing summaries can also be applied at the granularity of functions, but we didn’t implement
it.

3.3.2 Experimental results

We implemented our method as a driver over the RANK tool-chain, written in C++. The total number
of LOC is 3000 for the driver itself, and 150 additional lines for statistics. The code intensively uses
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Table 3.4 – Experiments detailed in [GAA12] . For each benchmark, we give its number of programs, the average number

of lines of codes before (LoCA) and after (LoCB) slicing, Regressions denote the number of regressions (examples that were proved OK

with WTC and for which STOP now answers Don't Know). We also give average execution times of each method.

Benchmark #Progs LoCB LoCA Regressions WTC(s) SToP(s)
WTC 50 28 21 3 0.92 2.45

Sorting 6 55 39 0 3.66 3.52

the source-to-source compiler infrastructure Rose ([90]) : functions for parsing, constructing flow
graphs, searching in the code structure, pretty printing and instrumenting C codes.
Table 3.4 give an extract of the experiments on we made with our tool STOP (the entire benchmark
is available on http://compsys-tools.ens-lyon.fr/stop).
The experiments were done on a Dual Core 2Ghz. As we expected, the execution times on middle-
sized examples are much larger with STOP than WTC, mainly because of the cost of slicing and pro-
ducing intermediate files. These results could be enhanced by hand by calling WTC on larger sub-
programs (some nested loops can be handled with a unique call to WTC). For sorting functions,
the method shows it pertinence in terms of timing results and in terms of precision (it handles
sipmamergesort, which was not handled by RANK before, as the generated LP instance was too
big for PIP) in 22 seconds, but we had to manage the very last step by hand by providing a coarser
abstraction than the one obtained by ASPIC). Thus STOP is able to deal with larger programs than
WTC and seems to scale well. Unfortunately, due to lack of time and manpower we did not make any
further experiments, and STOP is no longer maintained.

3.4 A case study: termination for JIT compilers

In the paper [RAPG14], we study the relevance of fast and simple solutions to compute approxima-
tions of the number of iterations of loops (loop trip count) of imperative real-world programs. The
context of this work is the use of these approximations in compiler optimisations: most of the time,
the optimisations yield greater benefits for large trip counts, and are either innocuous or detrimental
for small ones.
In this particular work, we argue that, although predicting exactly the trip count of a loop is undecid-
able, most of the time, there is no need to use computationally expensive state-of-the-art methods
to compute (an approximation of) it.
We support our position with an actual case study. We show that a fast predictor can be used to
speedup the JavaScript JIT compiler of Firefox - one of the most well-engineered runtime environ-
ments in use today.

3.4.1 Method

Key observation: real-world loops are simple The motivation of using simple heuristics come
from our early work on abstract acceleration ([GH06], [GS14]), in which we compute an overapprox-
imation of the transitive closure of loops at low cost. The experiments show that in many of the
analysed programs, static analysers get more precise results just because they are able to precisely
deal with loops of the form for (int i = M; i < N; i++) (which is an example of a accelerable
loop) in the most precise way.
Following these experiments, we decided to implement a light and fast heuristic to dynamically com-
pute an approximation of the number of executions of loop to be executed, whose main specification
is to be as precise as possible in the case of such simple loops.
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Fast Trip Count Prediction at runtime We apply our heuristic dynamically. In other words, we
instrument a program - or its interpreter - to estimate the trip count immediately before the first
iteration of the loops. Our instrumentation inspects the state of the variables used in the stop con-
dition of each loop.
In the sequel, we only consider perfect loops with a single “interval” exit-condition, i.e. loops of the
form : while (e1 ./ e2) { some computation }. For this kind of loops, we assume that the trip
count will be the absolute difference between e1 and e2. For instance, in a loop such as for (int

i = M; i < N; i++), we say that its trip count will be |val(N) - val(i)| (val(x) is the runtime
value of x when the test is performed).
For each loop of this form, we insert a new instruction before the loop, according to Algorithm 821.
Let us point out that this algorithm only performs a single O(1) operation per loop, without actually
looking inside the body of the loop.
However, for loops of the form for (int i = M; i < N; i=i+s) (s and N invariants in the loops),
this heuristic gives an overapproximation of the total number of loops, and the most precise result
if s = 1. There is no guarantee of precision for the general case, of course, but the experiments will
show that this simple-blind instrumentation fits our needs in practice. Because our heuristic is so
simple, we can execute it quickly. This perfectly suits the needs of a JIT compiler.

Algorithm 8 Trip Count Instrumentation Heuristic
Input: Loop L
Output: Loop L’ with new instructions that estimate its minimum trip count

1: if comparison e1 < e2 controls loop exit then
2: Insert instruction tr i pcount = |e1 −e2| before L, giving L′.
3: end if

3.4.2 Application: Hot code detection in JIT compilers

Virtual environments that combine interpretation and compilation face a difficult question: when
to invoke the JIT compiler [47]? Premature compilation might produce binaries that do not run long
enough to amortise the cost of the JIT transformation. On the other hand, late compilation might
delay the optimisation of critical parts of the program. As an example, the Firefox browser separates
native execution in two parts. After a few rounds of interpretation, the baseline compiler translates
the program into non-optimised native code. Once this basic native code is deemed hot, it is re-
compiled, this time by IonMonkey, an optimising compiler. Figure 3.8 illustrates this behaviour.

First‐level 
compila0on 

Second‐level 
compila0on 

Deop0miza0on 

1,000 
itera0ons 

Op0mizing 
JIT 

Baseline 
JIT 

Trip Count Predic0on Trip Count Predic0on 

10 
itera0ons 

Op0mized 
machine code 

Bytecode 
interpreter 

Generic 
machine code 

un0l 
something 

goes wrong… 

.js 

Figure 3.8 – Life cycle of a JavaScript program in the Mozilla runtime: We can perform trip count
prediction at two different execution stages.

21Obvious adaptations are necessary to handle ≤ and ≥.
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Table 3.5 – Hit rate of our simple heuristic for JavaScript (Bottom). N denotes the number of itera-
tions of a loop observed via profiling, so the interval [N , N ] gives us the exact predictions. We only
produce estimates for interval loops, that account for 71% of the loops in our benchmarks.

JavaScript ]1,
p

N ] ]
p

N , N /2] ]N /2, N ] [N , N ] [N ,2N [ [2N , N 2[ [N 2,∞[

SunSpider 1.0 0.0% 0.0% 0.0% 89.2% 2.0% 4.7% 4.1%
V8 v6 0.6% 1.7% 0.0% 94.8% 2.3% 0.0% 0.6%
Kraken 1.1 0.8% 0.0% 3.2% 83.9% 1.6% 2.4% 8.1%

3d-cube -­‐1% math-cordic 2% ai-astar 1%
3d-morph -­‐1% math-partial-sums -­‐1% audio-beat-detect 0%
3d-raytrace 1% math-spectral-norm -­‐1% audio-dft -­‐4%
access-binary-trees 0% regexp-dna 0% audio-fft 0%
access-fannkuch 2% string-base64 24% audio-oscillator 1%
access-nbody -­‐1% string-fasta -­‐7% img-gaussian-blur -­‐3%
access-nsieve 2% string-tagcloud 1% imaging-darkroom -­‐3%
bitops-3bit-in-byte 0% string-unpack-code 0% imaging-desaturate 0%
bitops-bits-in-byte 1% string-validate-input -­‐5% json-parse-financial 1%
bitops-bitwise-and 3% json-stringify-tinder 1%
bitops-nsieve-bits 3% crypto-aes 6%
ctrlflow-recursive -­‐1% crypto 0% crypto-ccm 2%
crypto-aes 0% deltablue 2% crypto-pbkdf2 7%
crypto-md5 3% earley-boyer 0% crypto-sha256-itrv 6%
crypto-sha1 10% raytrace 0%
date-format-tofte 2% regexp 3%
date-format-xparb 2% richards -­‐1%

splay 1%

SunSpider 1.0 Kraken 1.1SunSpider 1.0

V8 version 6.0

Figure 3.9 – Speedup due to trip count predictor for benchmarks distributed with Firefox.

We have deployed our predictor in the interpreter and in the baseline compiler used in Firefox, as we
illustrate in Figure 3.8. The current distribution of Firefox calls the baseline compiler after 10 events,
and the optimising compiler after 1,000 events. If we predict that a loop will run for more than 10
iterations, we call the baseline compiler immediately, bypassing the warm-up period. Similarly, once
in native mode, we call the optimising compiler immediately upon finding a loop that we estimate
to run more than 1,000 times.
The experiments depicted in Table 3.5 show that although our method is neither sound or complete,
it is capable of precise approximation of the actual trip count of interval loops (approximately 90%
of the loops in the JavaScript benchmarks where correcly predicted).
Figure 3.9 shows the speedup that we obtain using our trip count predictor to perform earlier invo-
cation of the JIT compiler.
Each number is the average of 100 runs. We call the baseline compiler immediately once we pre-
dict that a loop will iterate 10 times, and we call IonMonkey immediately once we predict that a
loop will iterate 1,000 times. Figure 3.9, reveals that our technique has been able to speed up some
benchmarks by a substantial factor. We have also detected slowdowns in a few scripts. This negative
behaviour happens in benchmarks that iterate for a very short time. In this case, early compilation
is not able to pay off the cost of code generation.
All these results advocate the use of simple preprocessing for proving the termination (or counting
the number of loops) of real-world programs that may include proper slicing and simple pattern-
matching.

3.5 Conclusion

This chapter is a synthesis of my contributions in the area of termination. The combination of pow-
erful static analyses with techniques coming from the compilation community has demonstrated its
great potentiality in this particular domain. I believe that there is a continuum to be explored from
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the kernel algorithms to their implementation and their application to specific domain benchmarks.
In this work we particularly focused on the termination of numerical programs with complex control,
for which scalability was already a major concern. Our contributions significantly improved both the
applicability and the scalability of termination provers for this kind of programs.
The next step is now to handle complex data structures or pointer variables, which are in our current
setting abstracted away by a coarse abstraction. Proving termination or functional correctness of
work-list algorithms would be the next challenge. Being able to express and prove properties of
pointers and array is a necessary step toward that purpose, that we will examine in the next chapter.

HDR Laure Gonnord 48/92



4 Dealing with memory

There are numerous motivations for developing static analyses to deal with memory:

• The previous static analyses on numerical variables are only valid when the variables are stored
in different memory locations. If numerical variables and pointer variables coexist in a given
program, we must be sure that the numerical variables locations are only accessed by their
name. If they also can be accessed via their address, then we must take aliasing into account.
This advocates for the design of precise alias analyses.

• Some crucial safety properties such as the absence of array-out-of-bound accesses need to be
ensured in low level like C where there is no clever mechanism such as typing or size tracking
that ensures them. In the case of the C language particularly, there is a need for analyses that
are capable of ensuring such safety properties for general purpose big programs. This advo-
cates for the design of low cost algorithms that can run in a reasonable amount of time inside
production compilers.

• Many compiler optimisations, such as loop transformations, tiling, are very limited in prac-
tice. Indeed one particular feature of imperative programming languages remains to be han-
dled satisfactorily by the current state-of-the-art approaches: the disambiguation of pointer
intervals. This advocates for the design of specialised analyses tailored for some application
characteristics (here, array intensive-computations kernels).

• Static analyses for array properties are still suffering from a certain lack of precision. Indeed
the main difficulty is to generate universally quantified invariants with arrays, as we have to
deal with an unbounded number of cells and their content at the same time. We believe that
the design of such static analyses will benefit to the two communities of verification and com-
pilation.

This chapter summarises my contributions to the design of static memory analyses, with a focus on
scalability as well as expressivity and applicability.

Summary and outline Section 4.1 describes the model of programs we use to design most of the
analyses of the chapter. Then the chapter presents three contributions in the domain of sparse anal-
yses of pointers.
Section 4.2 exposes the design of sparse memory region analysis that is capable of eliminating useless
array bound checks. This technique is based on our previous work on symbolic range analyses of
numerical variables (section 2.5).
Section 4.3 then details two static analyses designed to improve the precision of compiler pointer
disambiguation.
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The last contribution of the chapter, described in Section 4.4, is a new abstraction of programs with
arrays. This technique transforms a given program and a property to be proved into a formula with-
out arrays, whose satisfiability entails the property.

4.1 Model of programs

In this chapter, we particularly focus on the design of scalable analyses for C programs with point-
ers. This led us to choose the SSA intermediate representation variant e-SSA (to be able to transfer
information from tests, as we already saw in section 2.5), and a syntax/semantics which mimics the
LLVM Intermediate Representation [77].
Our analyses will be described on the mini language we describe in Figure 4.1, whose semantics will
not be described here (it can be found in [SMO+14] for instance). Branches and jump instructions
will not be represented in our CFGs. All the instructions in this mini-language have the property
to be atomic in the sens that they generate only one new information for a given analysis. This
knowledge appears due to memory allocation (malloc), deallocation (free), pointer arithmetic, in-
tersections and phi-functions. Each of these instructions defines new variables, whose names are
associated with information. For instance, the instruction p0 = free(p1) copies p1 to p0, and binds
p0 to a memory chunk of size 0. Moreover, in our language, there is no more &x instruction since in
LLVM, when the address of a variable is taken, then this variable is no longer in SSA form, it will be
represented in memory (thus it becomes a pointer).

Integer constants ::= {c1,c2, . . .}
Integer variables ::= {i1, i2, . . .}
Pointer variables ::= {p1, p2, . . .}
Instructions (I) ::=
– Allocate memory | p0 = malloc(i0)
– Free memory | p0 = free(p1)
– Pointer plus int | p0 = p1 + i0
– Pointer plus const | p0 = p1 + c0
– Bound intersection | p0 = p1 ∩ [l ,u]
– Load into pointer | p0 =∗p1
– Store from pointer | ∗p0 = p1
– φ-function | p0 =φ(p1 : `1, p2 : `2)
– Branch if not zero | bnz(v,`)
– Unconditional jump | jump(`)

Figure 4.1 – The syntax of our language of pointers.

4.2 Validation of memory accesses through symbolic analyses

The C programming language does not prevent out-of-bounds memory accesses. There exist several
techniques to secure C programs; however, these methods tend to slow down these programs sub-
stantially, because they populate the binary code with runtime checks. To deal with this problem,
in [SMO+14] we have designed and tested two static analyses - symbolic region and range analysis
(described in Section 2.5) - which we combine to remove the majority of these guards. In addition to
the analyses themselves, we bring the following other contributions :

• We describe live range splitting strategies that improve the efficiency and the precision of our
analyses.

• We show how to deal with integer overflows, a phenomenon that can compromise the correct-
ness of static algorithms that validate memory accesses.

• A complete tool chain combined with Address Sanitizer, which improves its applicability.
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4.2.1 Context : Address Sanitizer

AddressSanitizer [99] is an industrial-quality tool built on top of the LLVM compiler [77]. This tool
produces instrumented binaries out of C source code, to either log or prevent any out-of-bounds
memory access. AddressSanitizer has a fairly large community of users, having been employed to
instrument browsers such as Firefox and Chromium. This instrumentation has a cost: in general it
slows down computationally intensive programs by approximately 70%. The analyses we will design
in this section will enable us to remove about half of this overhead, keeping all the guarantees that
AddressSanitizer provides.
Unlike Java where arrays are associated with their sizes, in C, arrays are not packed together with
size information. We have to infer this size automatically. This is the object of the symbolic region
analysis.

4.2.2 Symbolic Region Analysis

To solve this problem, we resort to static analysis. We have designed a novel region analysis, which
binds each pointer to an interval of valid offsets. This analysis makes use of the symbolic region
analysis we depicted in Section 2.5
Like the symbolic range analysis from Section 2.5.1, the region analysis also associates with each
variable an abstract state given by an interval. However, here this abstract state has a very different
interpretation. If we say that W (p) = [`,u], then we mean that all the addresses between the offsets
p +` and p +u are valid. Figure 4.2 clarifies the semantic of W (p). The first instruction of Figure 4.2
allocates n words in memory and assigns the newly created region to pointer v1. Thus, given a stack
S, if b1 = S(v1) is the value of v1, then any address between b1 +0 and b2 +n −1 is valid. The second
instruction increments v1 and calls the new address v2. Similarly, if b2 = S(v2), then the address
b2 −1 is valid and the address b2 −n −2 is also valid.
As we will state in Proposition 4, it is always safe to dereference a pointer if it includes the address
zero among its valid offsets.

v1 = alloc(n) v1

v2 = v1 + 1

W(v1) = [0, n − 1]

v2 W(v2) = [−1, n − 2]

v3 = v1 + n v2 W(v3) = [−n, −1]

n

Figure 4.2 – Semantics for “valid offsets.”

Splitting Required by Symbolic Region Analysis Our symbolic region analysis takes information
from instructions that define pointers and instructions that free memory. We deal with the first
source of information via the standard static single assignment form, as we do for the symbolic range
analysis. Splitting after free is also simple, although this operation requires guidance from alias
analysis. If we free the region bound to a pointer p at a program label `, we know that after ` every
alias of p will point to empty memory space. To make this information clear to our region analysis,
we rename every alias p ′

k of p to a fresh name pk ". We then initialise each of these new names with
the constant zero. In this way, our region analysis will bind these variables to empty array sizes.

The SymRegion abstract domain Our analysis of regions rests on the semi-lattice SymRegion

(S2,v,u, [−∞,+∞],;), which is the inverse of the structure used in the symbolic range analysis of
Section 2.5. Here, we have a meet operator “u", such that:

[a1, a2]u [b1,b2] =
{
;, if a2 < b1 or b2 < a1

[max(a1,b1),min(a2,b2)],otherwise
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v = c,c ∈N  W (v) =;

v1 = alloc(v2)  W (v1) = [0,R(v2)↓−1]

a = b  W (a) =W (b)

free(v);

v ′
1 = 0; v ′

2 = 0. . .

v1, v2, . . . ∈Π(v)

 W (v ′
1) =W (v ′

2) = . . . =;

v =φ(v0, v1)  W (v) =W (v0)uW (v1)

v1 = v2 +n

with n ∈N  W (v1) =
{
; if W (v2) =;,else

[W (v2)↓−n,W (v2)↑−n]

v1 = v2 + v3

with v3 scalar
 W (v1) =


; if W (v2) =;
else [W (v2)↓−R(v3)↓,

W (v2)↑−R(v3)↑]

Figure 4.3 – Constraint generation for the symbolic region analysis. R(x) denotes the (symbolic) range of x

obtained from Section 2.5

The least element of our semi-lattice is ;, the greatest is [−∞,+∞].
Therefore, whereas in Section 2.5 we were always expanding ranges, here we are always contracting
them. In other words, the symbolic range analysis finds the largest ranges covered by variables, i.e.,
it is a may analysis. On the other hand, the symbolic region analysis finds the narrowest regions that
pointers can dereference, i.e., it is a must analysis. In the abstract interpretation jargon, we say that
we are computing under-approximations.

The widening we use is thus a lower widening1, under the terminology of [82]. This operator is de-
fined as follows:

W1∇W2 =
{
; if W2↓ >W1↓ or W2↑ <W1↑
W2 otherwise

where [a,b]↓ = a and [a,b]↑ = b.

An instance of region analysis is thus a set of constraints that we solve with Kleene iterations with
widening points at phi-nodes points. These constraints are extracted from the program’s source
code, according to the rules in Figure 4.3. The figure naturally distinguish between scalars and point-
ers. Pointers are variables that have been initialised with the alloc instruction, or that are computed
as functions of other pointers. Scalars are all the other variables; hence, they are always bound to the
region ;. For the last constraint, we must encode the fact that we cannot add a pointer and a vari-
able, thus v3 must be a scalar. Therefore, if p1 is defined as p1 = p2 + v , then its region is given by
the admissible region of p2 added to all the possible values of v . That is why we must consider the
interval range of v . Before moving on, we draw the reader’s attention to the abstract semantics of the
free(v) instruction. As we explained in Section 2.5.1, this instruction leads us to rename every alias
of v , and all these new names will be bound to the new region ;.

Our region analysis uses a widening operator for φ-functions, to ensure that our algorithm termi-
nates in face of pointer arithmetic.

1Let us point out the fact that, unlike the proposition of [82], we directly widen to ; when one of the bounds is not stable.
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Example 6 (continuing from p. 22). If we run our region analysis on the program of Figure 4.4a, then
we get that W (p) = [0, N −1], W (pi ) = [0,1], W (p j ) = [−1,0], and W (pm) = [0,−∞] =;.

N = •
p = alloc(N)

i0 = 0
m0 = 0

j0 = N − 1

i1 = φ(i0, i2)
j1 = φ(j0, i2)

m1 = φ(m0,m2)
(i1 < j1)?

if = σ(i1)
jf = σ(j1)
pm = p+mf

∗pm = 0

it = σ(i1)
jt = σ(j1)
pi = p+ it

∗pi = −1
pj = p+ jt

∗pj = 1
i2 = it + 1
j2 = jt − 1
m2 = mt + 1

(a) Our running example

(b) Useless bound checks elimination

Figure 4.4 – Array bound check elimination. Highlighted code is useless.

These ranges correctly tell us, for instance, that the largest (safely) addressable offset from address p
is N − 1. The ranges that we find for the program in Figure 4.4a let us remove bound checks for the
memory accesses at lines 7 and 11. The region of pi tells us that pi = p[i ] and pi −1 are safe addresses.
The region of p j indicates that p j = p[ j ] and p j + 1 are also safe addresses. On the other hand, the
range of pm tells us that it is not safe to dereference this pointer without a bound check. In this case,
we have a false-positive, because we conservatively assume that a memory access is unsafe.

Correctness of the Symbolic Region Analysis. Proposition 4 states the key property of our sym-
bolic region analysis, which comes from the fact we follow the Abstract Interpretation framework.
We have defined the proposition for loads, but it is also true for instructions such as ∗v1 = v2, which
store the contents of v2 into the address pointed by v1.

Proposition 4. Let P be a program and pc ∈N, such that P [pc] is v2 =∗v1. If 0 ∈W (v1), then P cannot
be stuck at pc.

The paper contains other contributions sketched in Figure 4.5:

• The safety of the two previous analyses (Symbolic Ranges, Symbolic Regions) is guaranteed
if and only if there is no buffer overflow. We designed a slicing algorithm to find variables
and expressions that should be prevented from buffer overflows. For that purpose, we use the
Sparse Evaluation Graph [43], and propagate data dependencies as well as control dependen-
cies. The result of this analysis is given to an instrumentation tool to add additional overflow
guards before the problematic instructions.

• We have included an optional tainted flow analysis [97] in our framework. If we are interested
in preventing only buffer overflows caused by malicious inputs, then we can restrict our atten-
tion to operations that are influenced by values produced by external functions. We designed
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a constraint-based static analysis to identify which memory accesses can be manipulated by
malicious users, in such a way that the other accesses do not need to be guarded. More details
can be found in [SMO+14].

• We have designed an interprocedural analysis to propagate “less than information” from a
given procedure to all the functions it calls. After we analyse the body of a function g , we
have enough information to compute a less-than relationship between variables declared in its
body. We compute such relationship for every pair of variables that are used as actual parame-
ters of other functions called in the body of g . Let f (v1, v2, . . . , vn) be an instruction, within the
body of g , that calls a certain function f with actual parameters vi ,1 ≤ i ≤ n. We determine the
less-than relation between each vi , v j ,1 ≤ i , j ≤ n. Additionally, we also determine minimum
lower bounds to all the scalar variables vi .

Instrument the program to 
prevent integer overflows from 

compromising the correctness of 
our analyses. Only instructions 
that influence memory accesses 

need instrumentation.

Integer Overflow Analysis

 

LLVM
+

  AddressSanitizer  
 

Check if a memory access 
can be controlled by an 

adversary, e.g, is function 
of the program's input. If 
this is not possible, avoid 

inserting the guard

Tainted Flow Analysis

Find R(i) = [l, u], the lower and 
the upper symbolic bounds of 

variable i. Symbols are made of 
unknown inputs and constants 

that we find in the program code.

Symbolic Range Analysis
Find W(v) = [0, N], the valid 
addressable offsets that can 

be dereferenced from 
pointer v, using the results 
of symbolic range analysis.

Region Analysis

 

int x = v[i]
 

Original program
Efficient, but unsafe

 

if (inBounds(i, v))
    int x = v[i];
else error();
 

Instrumented program
Safe, but inefficient

 

int x = v[i]
 

Optimized program
Safe and efficient

 
If l >= 0, and u < n, 
then remove guard

 

The tainted flow analysis is an optional part of our 
framework.

Figure 4.5 – Overview of our pipeline of static analyses.

4.2.3 Validation

Experimental setting We run our experiments in a twelve-core Intel(R) Xeon(R) CPU E5-2620 at
2.00GHz, with 15,360KB of cache, and 16GB of RAM. Neither our compiler, nor our benchmarks, run
in parallel. The GREENARRAYS toolchain is tested over the integer programs available in the SPEC
CPU 2006 benchmark suite. The paper [SMO+14] reports the experiments, that show that:

• our approach is practical - all our analyses run in acceptable time;
• it is effective - we can eliminate a reasonable number of bound checks, hence speeding up safe

code and reducing its energy consumption; and
• it is competitive with state-of-the-art approaches to bound check elimination.

I only report a few of them here.

Analyses Numbers and Run Times In section 2.5, Figure 2.9, we already show the comparison of
the runtime of our symbolic range analysis with existing other techniques.
The overflow analyses cause the insertion of an overflow test on 77% of all the arithmetic instruc-
tions, which represent themselves 3.5% of the total of the instructions of the LLVM bytecode.
Figure 4.6 depicts the relative times (in seconds) of all the static analyses of the toolchain for some
of the most representative programs of the SPEC benchmark. The less-than tests represent the over-
head for our analysis to be interprocedural, the Figure shows here clearly a possibility of improve-
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ment. However, the total analysis time shows that our toolchain scales well and the total analysis
time is compatible with their use inside production compilers.
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Figure 4.6 – Time taken by static analyses. Split: live range splitting and Overflow instrumentation.
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Figure 4.7 – Impact of our analyses: run time of program after bound check elimination, compared
to run time of program with all the bound checks. The shorter the bar, the faster the program. Pen-
tagon: Logozzo et al [79]. T: Tainted flow analysis. I: Integer overflow analysis. S: Symbolic range
analysis. R: Region analysis. Average speedup: Pentagons = 9.1%, S+R+I = 15.8%, T+S+R+I=17.0%,
Unsafe = 26.4%.

Impact of the analysis Figure 4.7 shows how much we speed up the binaries produced by Address-
Sanitizer with our analyses. On average, we achieve a speedup of 17%. This is less than the 48% of
bound checks that we eliminate, but these instructions account for only a small part of the entire
execution cost. The compulsory cost of a guard consists of two loads, two comparisons, and two
branches. By eliminating these guards, we improve also the quality of the code produced by the reg-
ister allocator, as we increase the average size of basic blocks. We are still 15.2% slower than unsafe
programs, i.e., programs without runtime bound checks.
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4.3 Static pointer analyses for optimising compilers

Pointer analysis is one of the most fundamental compiler technologies. This analysis lets the com-
piler distinguish one memory location from others; hence, it provides the necessary information
to transform code that manipulates memory. Given this importance, it comes as no surprise that
pointer analysis has been one of the most researched topics within the field of compiler construc-
tion [68]. This research has contributed to make the present algorithms more precise [63, 110], and
faster [64, 100]. Pointer and heap analyses have also been designed for other imperative languages
like Java, where the size of allocated regions are statically known, but where some optimizations can
be done if an analysis can precisely capture the relationship between method calls [107] 2. Never-
theless, one particular feature of imperative programming languages remains to be handled satisfac-
torily by the current state-of-the-art approaches: the disambiguation of pointer intervals: state-of-
the-art pointer analyses often fail to disambiguate regions addressed from a common base pointer
via different offsets, as explained by Yong and Horwitz [109]. Therefore, we claim that, to reach their
full potential, compilers need to be provided with more effective alias analyses.

Example 11 (Running example for range-based pointer disambiguation). Figure 4.8 shows a pattern
typically found in distributed systems implemented in C. Messages are represented as arrays of bytes.
In this particular example, messages have two parts: an identifier, which is stored in the beginning of
the array, and a payload, which is stored right after. This behaviour is depicted in Figure 4.9.
The loops in lines 3-6 and 7-10 fill up each of these parts with data If a compiler can prove that the
stores at lines 4 and 8 are always independent, then it can perform optimisations that would not be
possible otherwise. For instance, it can parallelize the loops, or switch them, or merge them into a
single body.
No alias analysis currently available in either GCC or LLVM is able to disambiguate the stores at lines
4 and 8. These analyses are limited because they do not contain range information.

1 void prepare ( char * p , i n t N, char * m) {
char * i , *e , * f ;

3 for ( i = p , e = p + N; i < e ; i += 2) {

* i = 0 ;
5 * ( i + 1) = 0xFF ;

}
7 for ( f = e + s t r l e n (m) ; i < f ; i ++) {

* i = *m;
9 m++;

}
11 }

i n t main( i n t argc , char ** argv ) {
13 i n t Z = atoi ( argv [ 1 ] ) ;

char * b = ( char * ) malloc (Z) ;
15 char * s = ( char * ) malloc ( s t r l e n ( argv [ 2 ] )

) ;
strcpy ( s , argv [ 2 ] ) ;

17 prepare (b , Z , s ) ;
// . . .

19 return 0 ;
}

Figure 4.8 – Example of program that builds up messages as sequences of serialised bytes. We are
interested in disambiguating the locations accessed at lines 4 and 8.

p f
p +N

padding message copy

Figure 4.9 – Behaviour of the prepare procedure.

Example 12 (Running example for “less-than” based pointer disambiguation). To motivate the need
for a new points-to analysis that is capable of deriving “less than” information, we show its application

2A nice comparison of memory models used for analysing variants of C and Java can be found in the paper [101]
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on programs in Figure 4.10 3

void p a r t i t i o n ( i n t *v , i n t N) {
2 i n t i , j , p , tmp ;

p = v [N/ 2 ] ;
4 for ( i = 0 , j = N − 1 ; ; i ++ , j −−) {

while ( v [ i ] < p) i ++;
6 while (p < v [ j ] ) j −−;

i f ( i >= j )
8 break ;

tmp = v [ i ] ;
10 v [ i ] = v [ j ] ;

v [ j ] = tmp ;
12 }

}

Figure 4.10 – A typical challenge for pointer disambiguation techniques

The figure displays a C implementation of the well known partition algorithm. We know that memory
positions v[i] and v[j] can never alias within the same loop iteration, since i and j are never equal.
However, traditional points-to analyses cannot prove this fact.

Typical implementations of alias analyses, built on top of the work of Andersen [6] or Steensgaard [102],
can distinguish pointers that dereference different memory blocks; however, they do not say much
about references ranging on the same array. In this work, we propose two new analyses based on the
computation of offset range information (CGO’16, Section 4.3.1) or “less than” information (CGO’17,
Section 4.3.2). These two analyses share the common “Single information” strategy.

Pointer disambiguation as queries For our pointer analyses to be useful for client analyses such
as tool fusion, code motion, . . . , the analyses should be split into:

• An analysis phase which computes abstract values for all variables of the program. We want
this analysis phase to be scalable and precise.

• A query interface for other compiler phases. This interface should be simple: given a pair of
pointers, it should answer “they do not alias” or “they may alias.” We want this query to be as
fast as possible, so that the client analyses can make intensive calls to it.

4.3.1 CGO 16 : Symbolic range of pointers

The contribution of this work is the (scalable) combination of pointer analysis with range analysis on
the symbolic interval lattice SymBoxes (described in Section 2.5) in the form of a constraint systems
whose solution is a set of abstract states of the form loci +Ri j for each pointer p j .
We use two different strategies to disambiguate pointers: the global and the local test. Our global
pointer analysis goes over the entire code of the program, associating variables that have the pointer
type with elements of an abstract domain that we will define soon. The local analysis, on the other
hand, works only for small regions of the program text.

3The other motivating example of the [MPR+17] paper was actually not solved with the published analysis, for expres-
sivity reasons due to the LLVM representation. We found a workaround which was one of the main motivation of the
algorithms described in the journal paper [MPMQPG17].
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The notion of abstract location Our analysis binds variable names to sets of locations and ranges.
We denote the set of locations in a program by L oc: L oc = {loc0, loc1 . . . , locn−1} where n is the
number of allocation sites. In our representation, i.e., Figure 4.1, new locations are created by malloc
operations.

Z = atoi(...)
b = malloc(Z) “loc′′0
s = malloc(...) “loc′′1

p = b
N = Z
m0 = s
i0 = p
e = p+N

i1 = φ(i0, i3)
(i1 < e)?

i2 = i1 ∩ [−∞, e1]
∗i2 = 0
t0 = i2 + 1
∗t0 = 0xFF
i3 = i2 + 1

i4 = i1 ∩ [e,+∞]
f = e+ strlen(m0)

i5 = φ(i4, i7)
m1 = φ(m0,m2)
(i5 < f)?

i6 = i5 ∩ [−∞, f − 1]
∗i6 = ∗m1

m2 = m1 + 1
i7 = i6 + 1

Figure 4.11 – CFG of the motivating example of Figure 4.8

Example 11 (continuing from p. 56). Figure 4.11 shows the control flow graph of the program seen in
Figure 4.8. The two allocations at lines 14 and 15 are associated respectively with loc0 and loc1.

Collecting information for pointers We already saw in Section 2.5 that we want the collected ab-
stract information to be invariant in the live range of all variables. For pointers, new information
appear at memory allocation (malloc), deallocation (free), pointer arithmetic, intersections and φ-
functions. Each of these instructions defines new variables, whose names are associated with in-
formation. For instance, the instruction p0 = free(p1) copies p1 to p0, and binds p0 to a memory
chunk of size 0.

MemLocs , an Abstract Domain of Pointer Locations. We associate pointers with tuples of size n:
(SymBoxes ·∪⊥)n ; n being the number of program sites where memory is allocated (the cardinal of
L oc) and ·∪ is the disjoint union.
Let @(loci ) denotes the actual address value returned by the i th malloc of the program. By con-
struction, all actual addresses are supposed to be offsets of a given @(loci ). The abstract value
GR(p) = (p0, . . . , pn−1) represents (an abstract version) of the set of memory locations that pointer
variable p can address throughout the execution of a program:

Definition 8 (Abstraction). A set of actual addresses, S = {s | ∃i ∈N,d ∈N, s = @(loci )+d} is abstracted
by α(S) = (p0, p1 . . . , pn−1) where :

• pi =⊥ if there is no address in S which is an offset of @(loci )

• pi = αSymBoxes ({d ∈ Z | s = @(loci )+d ∈ S}), otherwise. The offsets from a given pointer are
abstracted all-together in the SymBoxes lattice.

The goal of our Global Range (GR)analysis is to compute such an abstract value for each pointer of
the program. Some elements in a tuple GR(p) are bound to the undefined location, e.g., ⊥. These
elements are not interesting to us, as they do not encode any useful information. Thus, to avoid
keeping track of them, we rely on the concept of support, which we state in Definition 9.

Definition 9 (Support). We denote by suppGR (p) the set of indexes for which pi is not ⊥ :

suppGR (p) = {i | pi 6=⊥}.
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For sake of readability, let us denote for instance GR(p) = (⊥, [l1,u1],⊥, [l3,u3],⊥), by the set GR(p) =
{loc1+[l1,u1], loc3+[l3,u3]}. In the concrete world, this notation will mean that pointer p can address
any memory location from @(loc1)+ l1 to @(loc1)+u1, and from @(loc3)+ l3 to @(loc3)+u3.
For instance, consider that l1 = 3, u1 = 5, l3 = 3 and u3 = 8. GR(p) = {loc1 + [3,5], loc3 + [3,8]} is then
depicted in Figure 4.12.

loc0

loc1 + l1 loc1 + u1

loc1 loc2 loc3

loc3 + l3 loc3 + u3

Figure 4.12 – The concrete semantics of GR(p) = {loc1 + [3,5], loc3 + [3,8]}. Dark grey cells denote
possible (concrete) values of p.

Now for the abstract operations: (⊥, . . . ,⊥) is the least element of our lattice, and ([−∞,∞], . . . , [−∞,∞])
the greatest one.
Given the two abstract values GR(p1) = (p1

0, . . . p1
n−1) and GR(p2) = (p2

0, . . . p2
n−1), the union GR(p1)t

GR(p2) is the tuple (q0, . . . , qn−1) where:

qi =
{

⊥ if p1
i = p2

i = ⊥
p1 tp2 else

and GR(p1) v GR(p2) if an only if all involved (symbolic) intervals of p1 are included in the ones of
p2: ∀i ∈ [0..(n −1)], p1

i v p2
i (considering ⊥v R and ⊥tR = R for all non-empty intervals R).

We how have to define the widening operator for our abstract domain:

Definition 10. Given GR(p) and GR(p ′) with GR(p) v GR(p ′), we define the widening operator:

GR(p)∇GR(p ′) = (p0∇p ′
0, . . . , pn−1∇p ′

n−1),

where ∇ denotes the widening on SymBoxes , extended with ⊥∇⊥=⊥ and ⊥∇[l ,u] = [l ,u].

We call the new abstract domain we have just defined MemLocs .

Example 11 (continuing from p. 56). For the example depicted in Figure 4.11 where we only have two
malloc sites denoted by loc0 and loc1, we will obtain the following results: GR(p) = GR(b) = {loc0 +
[0,0]}, GR(m0) = GR(s) = {loc1 + [0,0]}, GR(e) = loc0 + [N , N ], GR(m1) = loc1 + [1,+∞], GR(i7) = loc0 +
[N + str len(m0), N + str len(m0)+1].

Constraint generation for the MemLocs abstract domain (GR) The abstract semantics of each
instruction in our core language is given by Figure 4.13. Figure 4.13 defines a system of equations
whose fixed point gives us an approximation on the locations that each pointer may dereference.

Definition 11 (Concretization). Given GR(p) an abstract value (a set of “abstract addresses for p”),
denoted by GR(p) = (p0, . . . , pn−1), we define its concretization as follows:

γ(GR(p)) =
⋃

i∈suppGR (p)
{@(loci )+o,o ∈ pi }

The concretization function of this abstract value is thus a set of (concrete) addresses, obtained by
shifting a set of base addresses by a certain value in SymBoxes .
Without any surprise, (α,γ) is a Galois connection. We solve the constraint system by Kleene itera-
tion over the system of constraints, with one step of descending iteration.
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j : p = malloc (v)

with v scalar
⇒ GR(p) = (⊥, . . . , [0,0]︸ ︷︷ ︸

j th component

, . . .)

p = free (v)

with v scalar
⇒ GR(p) = (⊥, . . . , ⊥ )

v = v1 ⇒ GR(v) = GR(v1)

q = p + c

with c scalar variable
⇒


GR(q) = (q0, . . . , qn−1) with

qi =
{
⊥ if pi = ⊥
pi +R(c) else

q =φ(p1, p2) ⇒ GR(q) = GR(p1)tGR(p2)

q = p1 ∩ [−∞, p2] ⇒


GR(q) = (q0, . . . , qn−1) with

qi =
{
⊥ if (p1

i = ⊥ or p2
i =⊥)

p1
i u [−∞, p2

i ↑] else

q = p1 ∩ [p2,+∞] ⇒


GR(q) = (q0, . . . , qn−1) with

qi =
{
⊥ if (p1

i = ⊥ or p2
i = ⊥ )

p1
i u [p2

i ↓,+∞] else

q =∗p ⇒ GR(q) = ([−∞,∞], . . . , [−∞,∞])

∗q = p ⇒ Nothing

Figure 4.13 – Constraint generation for GR with GR(p) = (p0, . . . , pn−1) given p in the right hand side
of rules

Answering GR Queries Our queries are based on the following result, that is an immediate conse-
quence of the fact our analysis is an abstract interpretation:

Proposition 5 (Correctness). Let p and p ′ be two pointers in a given program then :

if suppGR (p)∩ suppGR (p ′) =;
or ∀i ∈ suppGR (p)∩ suppGR (p ′), pi up ′

i =;

then γ(GR(p))∩γ(GR(p ′)) =;.

In other words, if the abstract values of two different pointers of the program have a null intersection,
then the two concrete pointers do not alias. This result is directly implied by the abstract interpreta-
tion framework. Thanks to this result, we implement the query QGR(p, p ′) as:

• If GR(p) and GR(p ′) have an empty intersection, then “they do not alias.”
• Else “they may alias.”

Example 11 (continuing from p. 56). In the example, since GR(i7) = loc0+[N+str len(m0), N+str len(m0)+
1] and GR(i2) = loc0 + [0, N −1], i7 and i2 never alias.

About local analysis The global pointer analysis is not path sensitive. As a consequence, this anal-
ysis cannot, for instance, distinguish the effects of different iterations of a loop upon the actual value
of a pointer, or the effects of different branches of a conditional test on that very pointer. To solve
this issue, we propose to combine the global analysis with a local analysis (called LR) where we cre-
ate information at merge nodes (a new abstract location is created). The detail of this analysis can
be found in [PMB+16].

4.3.2 CGO 17 : Pointer Disambiguation via Strict Inequalities

The contribution of the paper [MPR+17] is the (scalable) combination of pointer analysis with a
“Pentagon-like” analysis which is capable to derive “less than” information for numerical variables as
well as pointer variables. This analysis also relies on the symbolic interval latticeSymBoxes described
in Section 2.5. We report the main ideas of the analysis, the complete formalisation can be found in
the paper.
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An additional splitting strategy The objective of the analysis is to derive less-than information
(Less Than Analysis (CGO’17) (LT)) a program into SSA form, for numerical variables as well as
pointer variables.
To derive such information that still have to stay invariant on live ranges, we propose a new splitting
strategy depicted in Figure 4.14. The idea is to derive from an instruction x1 = x2 +n and a pre-
computed range for n that implies that n < 0, the information x1 < x2. However, this information is
only valid after the instruction, thus we invent a new name for x2, namely x3 (Figure 4.14b). We let
x1 = x2 +n ∥ 〈x3 = x2〉 denote a composition of two statements, x1 = x2 +n and x3 = x2. The second
instruction splits the live range of x2. Both statements happen in parallel. Thus, x1 = x2+n ∥ 〈x3 = x2〉
does not represent an actual assembly instruction; it is only used for notation convenience. Similarly,
when transforming conditional tests, we let 〈x1t = x1, x2t = x2〉 denote two copies that happen in
parallel: x1t = x1, and x2t = x2. Whenever there is no risk of ambiguity, we write simply 〈x1t , x2t 〉. As
usual, parallel copies and φ-functions are removed before code generation, after the analyses that
require them have already run.

x1 = x2 + n || 〈x3 = x2〉

`′

renaming x2 to x3 at `
if `′ dominates `

R(n)=[l,u],u<0−−−−−−−−−−→x1 = x2 + n

`′

(a)

(x4 < x1)?

〈x4t = x4〉
〈x1t = x1〉

〈x4f = x4〉
〈x1f = x1〉

`t

renaming x4 to x4t and
renaming x1 to x1t

at ` if `t dominates `

`f

renaming x4 to x4f and
renaming x1 to x1f

at ` if `f dominates `

7→(x4 < x1)?

`t `f

(b)

Figure 4.14 – Splitting strategy for the less-than analysis.

Example 13 (Splitting strategy). Figure 4.15 illustrates the splitting strategy on a toy example.

Constraint generation, solving Once we have a suitable program representation, we use the rules
in Figure 4.16 to generate constraints. These constraints determine the less-than set of variables.
Constraint generation is O(|V |), where V is the set of variables in the target program.

Constraints are solved via a worklist algorithm. We initialise LT(x) to V , for every variable x. During
the resolution process, elements are removed from each LT, until a fixed point is achieved. We prove
that this process terminates and its correction.

Example 13 (continuing from p. 61). The rules in Figure 4.16 produce the following constraints for
the program in Figure 4.15a LT(x0) = ;, LT(x1) = {x0}∪LT(x0), LT(x2) = LT(x1)∩LT(x3), LT(x3) =
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x0 = [0, 1] x1 = x0 + 1 x2 = φ(x1, x3)

x4 = x2 − 2 x3 = x2 + 1

(x4 < x1)? x6 = φ(x4t, x3, x4)

•

true

false

(a) Initial CFG

x0 = • x1 = x0 + 1 x2 = φ(x1, x3)

x4 = x2 − 2||〈x5 = x2〉 x3 = x2 + 1

(x4 < x1)?

〈x4t = x4〉
〈x1t = x1〉

〈x4f = x4〉
〈x1f = x1〉

x6 = φ(x5, x3, x4t)

•

(b) CFG after splitting

Figure 4.15 – Illustration of the splitting strategy on a toy example

x = • 1 LT(x) =;

x1 = x2 +n 2 LT(x1) = {x2}∪LT(x2)

x1 = x2 −n ∥ 〈x3 = x2〉 3

{
LT(x3) = {x1}∪LT(x2)

LT(x1) =;

x =φ(x1, . . . , xn) 4 LT(x) = LT(x1)∩ . . .∩LT(xn)

(x1 < x2)?

{
`t : 〈x1t , x2t 〉
` f : 〈x1 f , x2 f 〉

 5



LT(x2t ) =
{x1t }∪LT(x1)

LT(x1 f ) = LT(x2)

LT(x1t ) = LT(x1)

LT(x2 f ) = LT(x2)

Figure 4.16 – Constraint generation rules. n is a variable such that R(n) = [l ,u], l > 0.

{x2}∪LT(x2), LT(x4) =;, LT(x5) = {x4}∪LT(x3), LT(x1t ) = {x4t }∩LT(x4t ), LT(x1 f ) = LT(x1), LT(x4 f ) =
LT(x1), LT(x4t ) = LT(x4), LT(x6) = LT(x3)∩LT(x4 f )∩LT(x5).
To solve them, we initialise every LT set to {x0, x1, x2, x3, x4, x6, x1 f , x1t , x4 f , x4t }, i.e., the set of program
variables.
Chaotic iterations on those constraints achieves the following fixed point: LT(x0) = LT(x4) = LT(x4t ) =
;; LT(x1) = LT(x2) = LT(x4 f ) = LT(x1 f ) = LT(x6) = {x0}; LT(x3) = {x0, x2}; LT(x5) = {x0, x4}; and
LT(x1t ) = {x4t }.

Answering Queries The less-than check that we have discussed in this section lets us compare
pointers directly, if they are bound to a less-than relation, or indirectly, if they are derived from a
common base. This observation gives the query QLT (p1, p2):

• If p1 ∈ LT(p2) or p2 ∈ LT(p1), then “they do not alias.”
• Else if p1 = p + x1 and p2 = p + x2 with the same base pointer p and x1 ∈ LT(x2) or x2 ∈ LT(x1),

then “they do not alias.”
• Else “they may alias.”

Example 12 (continuing from p. 56). On the example of Figure 4.10, we are able to disambiguate the
two accesses to v + i and v + j of the partition procedure, since we are able to infer j ∈ LT (i ) at lines
9-11.
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The C standard refers to arithmetic types and pointer types collectively as scalar types [70]{§6.2.5.21}.
Notice that the less-than analysis that we have discussed thus far works seamlessly for scalars; thus,
it also builds relations between pointers. For instance, the common idiom “for(int* pi = p; pi < pe;

pi++);” gives us that pi< pe inside the loop.

4.3.3 Experimental Evaluation

Implementation We have implemented our range analysis in the LLVM compiler, version 3.5. An
interprocedural version of the “less-than” analysis has been implemented in LLVM version 3.7.
In this section, we show a few numbers that we have obtained with these two implementations. All
our experiments have been run in a standard machine, Intel i7-4770K, with 8GB of memory, running
a Linux Desktop system.
Our goal with these experiments is to show:

• that our alias analyses are more precise than other alternatives of practical runtime;

• that it scales up to large programs.

It is worth underling that these two evaluations have been reproduced by an independent committee
“Artefact Evaluation Committee” 4 at CGO’16 and CGO’17.
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Figure 4.17 – Runtime of CGO’16 analysis for the 50 largest benchmarks in the LLVM test suite. Each
point on the X-axis represents a different benchmark. Benchmarks are ordered by size. This experi-
ment took less than 10 seconds.

Runtime The chart in Figure 4.17 shows how our CGO 16 analysis scales when applied on pro-
grams of different sizes. We have used the 50 largest programs in the LLVM benchmark suite. These
programs gave us a total of 800,720 instructions in the LLVM intermediate representation, and a total
of 241,658 different pointer variables. We analysed all these 50 programs in 8.36 seconds. We can –
effectively – analyse 100,000 instructions in about one second. In this case, we are counting only the
time to map variables to values in SymBoxes . We do not count the time to query each pair of point-
ers, because usually compiler optimisations perform these queries selectively, for instance, only for
pairs of pointers within a loop. Also, we do not count the time to run the out-of-the-box implemen-
tation of range analysis. The chart provides strong visual indication of the linear behaviour of our
algorithm, the linear correlation between time and number of instructions being 0.98.

Charts in Figure 4.18 compares the two approaches for middle-sized benchmarks (from 2000 to
15000 instructions). While the CGO’17 implementation is faster in average for these benchmarks,
figure 4.18b demonstrates an exponential behaviour. We believe that some of our implementation
choices could clearly be improved in further versions of this implementation. However, for middle-
sized benchmarks, the solving time is already less than 10 ms, which is already a satisfactory result.

4See http://ctuning.org/ae/cgo2016.html and http://ctuning.org/ae/cgo2017.html
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Figure 4.18 – Runtime of our CGO’16 (classic scale) and CGO’17 (log scale) analyses. The experiments were

launched on 20 middle-sized benchmarks from LLVM Multisources. This experiment took less than 20 seconds for CGO16 and CGO17

Pointer analyses evaluation in LLVM To measure the precision of our methods, we compare them
against the techniques already in place in the LLVM compiler. Our metric is the percentage of pointer
queries disambiguated. To generate queries, we resort to LLVM’s aa-eval pass, which tries to disam-
biguate every pair of pointers in the program. Our main competitor will be LLVM’s basic disambigua-
tion technique, the basic-aa algorithm. This analysis uses several heuristics to disambiguate point-
ers, relying mostly on the fact that pointers derived from different allocation sites cannot alias in
well-formed programs 5. We also compare the results obtained by the the “scalar-evolution-based"
(SCEV) alias analysis. This analysis tries to infer closed-form expressions to the induction variables
used in loops. With this information, SCEV can track the ranges of indices which dereference array
a within the loop. Contrary to our analysis, SCEV is only effective to disambiguate pointers accessed
within loops and indexed by variables in the expected closed-form.

Precision of the CGO’16 method To evaluate the precision of the CGO’16 method, we have chosen
three benchmarks that have been used in previous work that compares pointer analyses: Prolangs [95],
PtrDist [111] and MallocBench [57]. Figure 4.19 reports the the results in terms of percentage of pairs
of pointers that are reported not to alias compared with the total number of pointer pairs. We first
notice that in general all the pointer analyses in LLVM disambiguate a relatively low number of point-
ers. This happens because many pointers are passed as arguments of functions, and, not knowing if
these functions will be called from outside the program, the analyses must, conservatively, assume
that these parameters may alias. Second, we notice that our pointer analysis is one order of mag-
nitude more precise than the scalar-evolution based implementation available in LLVM. Finally, we
notice that we are able to disambiguate more queries than the basic analysis. Furthermore, our re-
sults complements it in non-trivial ways. In total, we tried to disambiguate 3.093 million pairs of
pointers. Our analysis found out that 1.29 million pairs reference non-overlapping regions. The ba-
sic analysis has been able to distinguish 953 thousand pairs. By combining these two analyses, we
extended this number to 1.439 thousand pairs of pointers. SCEV could not increase this number any
further.

5it is worth to mention that the LLVM 3.7 version contains other alias analyses, whose results we shall not use, because
they have been able to resolve a very low number of queries in our experiments. Most probably there will be an increasing
number of aliases analyses implemented in LLVM in a soon future, making these lines obsolete.
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Figure 4.19 – Precision of the offset range analysis compared and combined to other LLVM analyses

0 20 40 60 80 100

Benchmarks

101

102

103

104

105

106

107

108

109

McCat's qbsort (Total: 3,351, LT: 73, BA: 713, LT+BA: 747)

MiBench's consumer-typeset (Total: 295,875,797, 
LT: 1,708,678, BA: 9,901,270, LT+BA: 10,818,208)

Total number of queries
LT
BA
BA+LT

Figure 4.20 – Effectiveness of our alias analysis (LT), when compared to LLVM’s basic alias analysis
on the 100 largest benchmarks in the LLVM test suite. Each point in the X-axis represents one bench-
mark. The Y-axis represents total number of queries (one query per pair of pointers), and number of
queries in which each algorithm got a “no-alias” response (the higher the better).

Precision of the CGO’17 method Figure 4.20 shows the results of the three alias analyses when ap-
plied on the 100 largest benchmarks in the LLVM test suite. Our method rarely disambiguates more
pairs of pointers than BA. Such result is expected: most of the queries consist of pairs of pointers
derived from different memory allocation sites, which BA disambiguates, and we do not analyse.
Figure 4.21 compares our analysis (LT), the basic analysis (BA) of LLVM and a variant of Andersen’s
analysis (CF) Our numbers have been obtained in LLVM 3.7, whereas CF’s has been produced via
LLVM 4.0 6 We emphasise that both versions of this compiler produce exactly the same number
of alias queries, and, more importantly, BA outputs exactly the same answers in both cases. This
experiment reveals that there is no clear winner in this alias analysis context. BA+LT is more than
20% more precise than BA+CF in three benchmarks: lbm, milc and gobmk. BA+CF, in turn, is three
times more precise in omnetpp. The main conclusions that we draw from this comparison are the
following:

6The complete methodology can be found in the [MPR+17] paper.
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Figure 4.21 – How two different alias analysis (LT and CF) increase the capacity of LLVM’s basic alias
analysis (BA) to disambiguate pointers. The Y-axis shows the percentage of no-alias responses. The
higher the bar, the better.

• These analysis are complementary.

• Mainstream compilers still miss opportunities to disambiguate alias queries.

4.3.4 Impact on further analyses and optimisations

Applicability of the CGO’17 method: program dependence graph construction. We show how our
new alias analysis improves the construction of a client analysis, the Program Dependence Graph
(PDG) construction, a classic data structure introduced by Ferrante et al. [51]. We use the implemen-
tation of PDGs available in the FlowTracker system [92], which has a distribution for LLVM 3.7. The
PDG is a graph whose vertices represent program variables and memory locations, and the edges
represent dependences between these entities. An instruction such as a[i ] = b creates a data de-
pendence edge from b to the memory node a[i ]. The more memory nodes the PDG contains, the
more precise it is, because if two locations alias, they fall into the same node. In the absence of
any alias information, the PDG contains at most one memory node; perfect alias information yields
one memory node for each independent location in the program. The full methodology of these
experiments can be found in the [MPR+17] paper. The results depicted in Figure 4.22 show that our
analysis combined with BA clearly improves the size of the resulting PDG.

Impact on LLVM memory optimisations We also studied the impact of our analyses on further op-
timisations in the context of Maroua Maalej’s Phd thesis. A more detailed study can be found in her
manuscript. In this paragraph, we show how (a modified and extended version of) our CGO’17 anal-
ysis [MPMQPG17] does not only outperform the state-of-the-art pointer LLVM analyses in terms
of the total number of pointer pairs that are proved to be non aliasing, but also the additional in-
formation is relevant for further analyses and optimisations, and in particular LICM, as we show in
Example 14.

Example 14 (Loop invariant code motion (LICM)). In Figure 4.23 we depict a toy example in which
the underlined statement could be moved from inside the loop to its pre-header at line 5 (N is supposed
to be positive). This optimisation is valid if the statement is invariant in the loop, and also the loop is
guaranteed to execute at least once. The first condition is true since the two pointers p2 and p1 do not
alias. An improved alias analysis thus benefits to the LICM pass.

Figure 4.24 shows that our analysis improves the performance of the LICM optimisation by a factor
of 1.77. This factor does not include the programs for which our analysis combined with the other
LLVM passes reports errors.
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Figure 4.22 – Precision of dependence graph. All benchmarks with the same number of memory
locations (X-axis) are considered together. For each set, we depict the repartition of the number
of nodes of the generated Program Dependence Graphs, with Basic Alias (in blue), and Basic Alias
combined with LT (in red). The more memory nodes the PDG contains, the more precise it is.

1: int∗ p = malloc (2*N*sizeof(int))
2: int ∗p1, ∗p2, ∗a
3: ∗p = 8; ∗a = 10
4: p1 = p + N
5: p2 = p + 2 × N
6: while p2 > p1 do
7: ∗a = ∗p
8: ∗p2 = 4
9: p2- -

10: end while

Figure 4.23 – LICM hoisting load optimisation.

These experiments demonstrate that there is still a need for more precise analyses. Moreover, our
experience in the understanding of the LLVM optimisation phases shows that their design should be
rethought in order to benefit more from generic analyses passes like ours: the tests they perform in
order to perform a given optimisation are often too restrictive.

4.4 Static analyses of programs manipulating arrays

As we saw previously , verifying safety properties of numerical programs is already a hard job, and it
is even harder if the program acts upon arrays or other forms of maps. Contrarily to the preceding
analyses where the properties to prove were only about sets of addresses, here we want to express and
find relational properties between a given (set of) address(es) and its (their) content, which is much
harder.
The main difficulty is to find a way to express and decide properties that may depend on the content
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Program #Inst #callHoistedSunk #loadHoistedSunk
O3 O3sraa O3 O3sraa

cdecl 4859 * * 5 6
football 14529 * X 22 X
simulator 7698 * * 10 16
assembler 6661 * * * *
loader 2263 * * * *
gnugo 5449 * * 10 12
unix-tbl 8101 1 X 61 X
agrep 15382 4 X 53 X
fixoutput 369 * * 1 5
compiler 3515 * * * *
bison 15645 1 1 165 179
archie-client 5939 * * * *
TimberWolfMC 98792 2 7 1287 1447
allroots 574 * * * *
unix-smail 5435 4 4 3 3
plot2fig 3217 1 1 3 3
bc 10632 * * 18 19
yacr2 6583 * * 144 190
ks 1368 * * 8 11
anagram 993 1 1 4 4
ft 1646 * * 4 4
cfrac 7353 1 1 5 6
espresso 50751 1 1 301 398
gs 55281 * X 20 X

Figure 4.24 – Optimisations (call or load motion) performed by LICM with O3 alone, and O3 en-
hanced with our analysis sraa (CGO’17), on the programs of the LLVM testsuite. The number of

instructions is the number of LLVM internal representation instructions just after the parsing phase. A star

means 0, a cross denotes that we were not able to run the analysis, due to implementation issues.

of an unbounded number of memory addresses, or “cells.” Transposing the approaches for verifying
programs operating upon Boolean and integer values (e.g. abstract interpretation, counterexample-
guided abstraction refinement. . . ), is not immediate.
In the SAS paper [MG16], together with D. Monniaux, we propose an alternative approach to ad-hoc
array abstract domains. Instead, we generate an abstraction as a scalar problem and feed it to a
preexisting SMT solver, with tunable precision. Our transformed problem is expressed using Horn
clauses, a common format with clear and unambiguous logical semantics for verification problems.

4.4.1 Models of programs

The syntax of the (CFG of the) programs we consider is depicted in Figure 4.25. This is a simple
language with numerical and array variables. Any statement in the program (control flow graph)
will be: i) either an array read to a fresh variable, v=a[i]; the variables of the program are (x , i , v)
where x is a vector of arbitrarily many variables; ii) either an array write, a[i]=v; (where v and i are
variables) the variables of the program are (x , i , v) before and after the statement; iii) or a scalar
operation, including assignments and guards over scalar variables. More complex statements can
be transformed to a sequence of such statements, by introducing temporary variables if needed: for
instance, a[i ] = a[ j ] is transformed into temp = a[ j ]; a[i ] = temp.

4.4.2 Program Verification with Horn Clauses

As we already saw in Chapter 2, Section 2.1.1, the classical approach to program verification consists
in computing inductive invariants on control-flow graphs. In this work, we propose to express these
invariants to be found as predicates on the program variables, and the control-flow graph itself as a
whole Horn formula.
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Integer constants ::= {c1,c2, . . .}
Integer variables ::= {x1, x2, . . .}
Array variables ::= {a1, a2, . . .}
Instructions (I) ::=
– Array creation | new(a)
– Array read | x1 = a[x1]
– Array write | a[x] = c
– Numerical assignments | x = numexpr
– Branch if not zero | bnz(x,`)
– Unconditional jump | jump(`)

Figure 4.25 – The syntax of language with arrays

Definition 12. A Constrained Horn Clause (Constrained Horn Clause (CFC)) is a formula of the form:∧
i

Pi (x)∧ f (x , x ′) =⇒ P ′(x ′)

where for all i :
• Pi and P ′ are predicates.
• x , x ′ are variables that are local to the clause.
• f is a formula over a given theory (here, integer arithmetic with or without arrays).

A Horn formula is a set of CHCs.

The property to be proved is also expressed in term of a formula, and the verification problems con-
sists in checking if the program semantics implies the property. This is illustrated in example 15.
Various tools can solve systems of Horn clauses (depending on the underlying theory, of course),
that is, can synthesise suitable predicates I ]

`
, which constitute inductive invariants. In this article,

we tried Z37 with the PDR fixed point solver [69], Z3 with the SPACER solver [74, 75],8 and ELDAR-
ICA[94].9 Since program verification is undecidable, such tools, in general, may fail to terminate, or
may return “unknown.”

Example 15 (Motivating example). Consider the program of Figure 4.26 where a given array of un-
known size is filled with the same constant value 42. We would like to prove that this program truly
fills array a[] with value 42.

void array_fill1(int n, int a[n])

{

for(int i=0; i<n; i++)

a[i]=42;

/* assert ∀0 ≤ k < n, a[k] = 42 */

}

(a) Listing for array fill

initstart

loop

end

n > 0
i := 0

i < n
a[i] := 42
i := i+ 1

i ≥ n

(b) Its CFG,

Figure 4.26 – The array fill example

The flat encoding into Horn clauses assigns a predicate (set of states) to each of the control nodes
(Fig. 4.26b), and turns each transition into a Horn rule with variables ranging in Arr (A,B), the type of

7https://github.com/Z3Prover hash 7f6ef0b6c0813f2e9e8f993d45722c0e5b99e152; due to various problems we pre-
ferred not to use results from later versions.

8https://bitbucket.org/spacer/code hash 7e1f9af01b796750d9097b331bb66b752ea0ee3c
9https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc

HDR Laure Gonnord 69/92

https://github.com/Z3Prover
https://bitbucket.org/spacer/code
https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc


CHAPTER 4. MEMORY DOMAINS

arrays of B indexed by A [76, Ch. 7]:

∀n ∈Z ∀a ∈ Arr (Z,Z) n > 0 =⇒ loop(n,0, a) (4.1)

∀n, i ∈Z ∀a ∈ Arr (Z,Z) i < n ∧ loop(n, i , a) =⇒ loop(n, i +1,store(a, i ,42)) (4.2)

∀n, i ∈Z ∀a ∈ Arr (Z,Z) i ≥ n ∧ loop(n, i , a) =⇒ end(n, i , a) (4.3)

∀x,n, i ∈Z ∀a ∈ Arr (Z,Z) 0 ≤ x < n ∧end(n, i , a) =⇒ sel ect (a, x) = 42 (4.4)

where store(a, i , v) is array a where the value at index i has been replaced by v and select(a, x) denotes
a[x]. Equation 4.4 encodes the property to prove. The encoding of the problem is then given to solvers:
if a given solver returns “sat”, it means that it has been able to synthesise invariants for each unknown
predicate, namely init, state and end.
None of the tools we have tried (Z3, SPACER, ELDARICA) has been able to solve this system, presum-
ably because they cannot infer universally quantified invariants over arrays.10 Indeed, here the loop
invariant needed is 0 ≤ i ≤ n ∧ (∀k 0 ≤ k < i =⇒ a[k] = 42). While 0 ≤ i ≤ n is inferred by a variety of
approaches, the rest is tougher.

Most software model checkers attempt constructing invariants from Craig interpolants obtained
from refutations [30] of the accessibility of error states in local [69] or global [81] unfoldings of the
problem. However, interpolation over array properties is difficult, especially since the goal is not to
provide any interpolant, but interpolants that generalise well to invariants [2, 3]. This contribution
instead introduces a way to derive universally quantified invariants from the analysis of a system of
Horn clauses on scalar variables (without array variables).

4.4.3 An encoding of programs with arrays

To use the power of Horn solvers, we soundly abstract problems with arrays to problems without
arrays. In the Horn clauses for Ex. 15, we attached to each program point p` a predicate I` over Z×
Z×Arr (Z,Z) when the program variables are two integers i ,n and one integer-value, integer-indexed
array a. 11 In any solution of the system of clauses, if the valuation (i ,n, a) is reachable at program
point p`, then I`(i ,n, a) holds. Instead, in the case of Ex. 15, we will consider a predicate I ]

`
over

Z×Z×Z×Z (the array key → value has been replaced by a pair (key,value)) such that I ]
`

(i ,n,k, ak )
12 holds for each reachable state (i ,n, a) satisfying a[k] = ak .
This is the same Galois connection [41] as some earlier works [84] [40, Sec. 2.1]; yet, as we shall see,
our abstract transformers are more precise. For simplicity, in the sequel, we will consider that the
vector of values of all variables (except arrays) of the program lies in Zd , the array indexes as well as
the content of each cell also being of type Z.

Definition 13. The “one distinguished cell” abstraction of I ⊆ Zd ×Arr (Z,Z) is α(I ) = {(x , i , a[i ]) |
x ∈ Zd , i ∈ Z}. The concretization of I ] ⊆ Zd × (Z×Z) is γ(I ]) = {(x , a) | ∀i ∈ Z (x , i , a[i ]) ∈ I ]}. In
other words, during the abstraction, the array variable a will be replaced by a couple (i , ai ) ∈Z2, and
predicates on a will be transformed into predicates on (i , ai ).

We depict in Figure 4.27 the abstract semantics of the statements of our mini-language. All the vari-
ables inside predicates are universally quantified.

• For scalar only statements, the abstract transformers are straightforward, they express the nu-
merical semantics of each transition `→ `′ on scalar values, the array being unchanged. For
instance, for a program with two variables x, y and a unique array a, a transition from con-
trol points 1 to 2 of the form x = y +1 is abstracted into I ]1(x, y, i , ai )∧ x ′ = y +1∧ y ′ = y =⇒
I ]2(x ′, y ′, i , ai ).

10Some of these tools can however infer some simpler array invariants.
11For instance, Il oop = l oop(n, i , a), Iend = end(n, i , a).
12also denoted by I ]

`
((i ,n), (k, ak )) for sake of readability.
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new(a)  I ]
`

(x) =⇒ I ]
`′ (x ,k, ak )

x0 = c,c ∈N  I ]
`

(x , x0,k, ak ) =⇒ I ]
`′ (x ,c,k, ak )

x0 = numexpr  I ]
`

(x ,k, ak )∧R(x , x ′) =⇒ I ]
`′ (x ′,k, ak )

x0 6= x1(test example)  I ]
`

(x ,k, ak )∧x0 6= x1 =⇒ I ]
`′ (x ,k, ak )

x0 = a[i ](read)  

{
k 6= i ∧ I ]

`

(
(x , i , x0), (k, ak )

)∧ I ]
`

(
(x , i , x0), (i , ai )

) =⇒ I ]
`′

(
(x , i , ai ), (k, ak )

)
I ]
`

(
(x , i , x0), (i , ai )

) =⇒ I ]
`′

(
(x , i , ai ), (i , ai )

)
a[i ] = x0(write)  

{
I ]
`

(
(x , i , v), (k, ak )

)∧ i 6= k =⇒ I ]
`′

(
(x , i , v), (k, ak )

)
I ]
`

(
(x , i , v), (i , ai )

) =⇒ I ]
`′

(
(x , i , v), (i , v)

)
Φ(x ,k, a[k])(property at`)  I ]

`
(x ,k, ak ) =⇒ Φ(x ,k, ak ).

Figure 4.27 – Horn Clauses Generation (Abstract transformers). All statements are considered to be
from the control point ` to `′, x designs the vector of all scalar variables. Properties are also ab-
stracted.

• For a write statement a[i ] = v the semantics is expressed as two formulas, depending on
whether the distinguished cell is i or not.

• For a read statement, the second formula expresses that ai is assigned to variable v . The
(first) nonlinear rule may be more difficult to comprehend. The intuition is that, to have
both ai = a[i ] and ak = a[k] at the read instruction with a given valuation (x , i ) of the other
variables, both ai = a[i ] and ak = a[k] had to be reachable with the same valuation. We use
two separate rules for k = i and k 6= i for better precision. A single rule I ]1

(
(x , i , v), (k, ak )

)∧
I ]1

(
(x , i , v), (i , ai )

) =⇒ I ]2
(
(x , i , ai ), (k, ak )

)
would not enforce that if i = k then ai = ak in the

consequent.

Applying this transformation on a programs thus gives a set of Horn Clauses that describes the ab-
stract semantics of the program. This transformation is sound and incomplete. Algorithm 9 de-
scribes how to use it to prove a given safety property Φ of a program. Let us recall that the property
to prove is also abstracted according to 4.27.

Algorithm 9 Proving array properties on a CFG

Input: CFG + Φ a property to prove Output: Yes/I do not know

1: To each control point p`, with vector of scalar variables x`, associate a predicate I ]
`

(x`,k, ak )
2: For each transition of the program, generate Horn rules according to Figure 4.27.
3: Also Generate Horn queries from desired properties.
4: Call a solver.
5: if it answers SAT then
6: return Yes
7: else
8: return I do not know
9: end if

Example 15 (continuing from p. 69). Let us now apply Algorithm 9 where the predicates Ik are simply
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denoted by the label of the control point i .

0 ≤ k < n =⇒ loop(n,0,k, ak ) (4.5)

0 ≤ k < n ∧ i < n ∧ loop(n, i ,k, ak ) =⇒ write(n, i ,k, ak ) (4.6)

0 ≤ k < n ∧ i 6= k ∧write(n, i ,k, ak ) =⇒ incr(n, i ,k, ak ) (4.7)

write(n, i , i , ai ) =⇒ incr(n, i , i ,42) (4.8)

0 ≤ k < n ∧ incr(n, i ,k, ak ) =⇒ loop(n, i +1,k, ak ) (4.9)

0 ≤ k < n ∧ i ≥ n ∧ loop(n, i ,k, ak ) =⇒ end(n, i ,k, ak ) (4.10)

Finally, we add the postcondition:

0 ≤ k < n ∧end(n, i ,k, ak ) ⇒ ak = 42 (4.11)

A solution to the resulting system of Horn clauses is found by Z3, thus the property is proved.

4.4.4 Extensions

In [MG16] we provide several extensions to the previous transformation:

• Maps. Maps can be considered as arrays with cells of a given type. Nothing in our abstraction
uses the fact that the cells suppose that our indices are integers, thus our transformations is
also valid for maps.

• 2D arrays. 2D arrays can be classically expressed as 2-indices maps. Our abstraction can thus
be easily adapted to deal with them.

• Expressing sortedness and relations between k-cells. The Galois connection of Def. 13 ex-
presses relations of the form ∀k ∈ Z ϕ(x ,k, a[k]) where x are variables from the program, a a
map and k an index into the map a; in other words, relations between each array element in-
dividually and the rest of the variables. It cannot express properties such as sortedness, which
link two array elements: ∀k1,k2 ∈ Z k1 < k2 =⇒ a[k1] ≤ a[k2]. For such properties, we need
two “distinguished cells”, with indices k1 and k2. In the paper we provide adaptations of the
abstraction for the case of multiple cells.

• Multisets. Our abstraction for maps may be used to abstract (multi)sets, which permits to
express for instance that a given array is a permutation of the input.

4.4.5 Experiments

Implementation We implemented our prototype VAPHOR in 2k lines of OCAML. VAPHOR takes as
input a mini-Java program (a variation of WHILE with array accesses, and assertions) and produces
a SMTLIB2 file13. The core analyser implements the translation for one and two-dimensional arrays
described in Section 4.4.3.
A second prototype was re-factored later by J. Braine, which first computes a SMTLIB2 file within the
theory of Arrays, then computes its array abstraction and then produces a SMTLIB2 without arrays.
A demo page can be found at the following URL: http://laure.gonnord.org/pro/demopage/
vaphor/

Experiments We have tested our analyser on several examples from the literature, including the
array benchmark proposed in [46] also used in [18] (Table 4.1); and other classical array algorithms
including selection sort, bubble sort and insertion sort (Table 4.2). We compared our approach to
existing Horn clause solvers capable of dealing with arrays. All these files are provided in the demo
page.

13http://smtlib.cs.uiowa.edu/
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Table 4.1 – Comparison on the array benchmarks of [46]. (Average) timing are in seconds, CPU time. Abstraction with
N = 1. “sat” means the property was proved, “unsat” that it could not be proved. “hints” means that some invariants had to be manually
supplied to the solver (e.g. even/odd conditions). A star means that we used another version of the solver. Timeout was 5 mn unless
otherwise noted. The machine has 32 i3-3110M cores, 64 GiB RAM, C/C++ solvers were compiled with gcc 4.8.4, the JVM is OpenJDK
1.7.0-85.

Benchmark
Z3/PDR Z3/Spacer Eldarica

CommentRes Time Res Time Res Time
Correct problems, “sat” expected

append sat 2.11 sat 0.85 sat 22.61
copy sat 4.66 sat 0.44 timeout(300s)
find sat 0.20 sat 0.14 sat 12.93
findnonnull sat 0.50 sat 0.34 sat 12.04
initcte sat 0.16 sat 0.26 sat 13.28
init2i sat 0.31 sat 0.16 sat 14.67
partialcopy sat 1.88 sat 0.34 timeout(300s)
reverse sat 40.70 sat 2.19 timeout(300s)
strcpy sat 0.92 sat 0.37 sat* 66.69
strlen sat 0.24 sat 0.22 sat 36.69
swapncopy sat 71.16 timeout(300s) timeout(300s)
memcpy sat 3.54 sat 0.39 timeout(300s)
initeven sat 1.32 sat 0.71 timeout(300s) “hints”
mergeinterleave sat 39.49 sat 4.61 timeout 322.39 “hints”

Incorrect problems, “unsat” expected
copyodd_buggy unsat 0.08 unsat 0.04 unsat 7.42
initeven_buggy unsat 0.06 unsat 0.06 unsat 6.28
reverse_buggy unsat 1.88 unsat 1.28 unsat 58.96
swapncopy_buggy unsat 3.13 unsat 0.74 unsat 27.54
mergeinterleave_buggy unsat 1.16 unsat 0.56 unsat 31.22

Table 4.2 – Other array-manipulating programs, including various sorting algorithms. a star means that
we used another version of the solver, R1 means random_seed=1. The striked out result is likely a bug in Z3; the alternative is a bug in
Spacer, since the same system cannot be satisfiable and unsatisfiable at the same time.

Benchmark N
Z3/PDR Z3/Spacer Eldarica

CommentRes Time Res Time Res Time
bin_search_check 1 sat 0.71 sat 0.34 Crash
find_mini_check 1 sat 4.22 sat 0.82 sat 110.58
revrefill1D_check_buggy 1 unsat 0.03 unsat 0.07 unsat 9.21
array_init_2D 1 sat 0.46 sat 0.22 sat 12.76
array_sort_2D 1 sat 0.78 sat 0.30 sat 26.68
selection_sort (sortedness) 2 sat* 99.04 timeout(300s) timeout(300s)
selection_sort (sortedness) 2 unsat 83 sat 48 timeout 334 manual translation
selection_sort (permutation) 1 timeout 600 sat 9.24 timeout 336 manual translation
bubble_sort_simplified 2 sat 5.98 sat 2.77 sat 158.70
insertion_sort 2 sat(R1) 53.83 timeout(300s) timeout(300s)

Limitations Our tool does not currently implement the reasoning over array contents (multiset
of values). Experiments for these were thus conducted by manually applying the transformations
described in this article in order to obtain a system of Horn clauses. For this reason, because applying
rules manually is tedious and error-prone, the only sorting algorithm for which we have checked that
the multiset of the output is equal to the multiset of the inputs is selection sort.
Some examples from Dillig et al. [46] involve invariants with even/odd constraints. The Horn solvers
we tried do not seem to be able to infer invariants involving divisibility predicates unless these pred-
icates were given by the user. For these cases we added these even/odd properties as additional
invariants to prove.

Efficiency caveats Our tool does not currently simplify the system of Horn clauses that it produces.
We have observed that, in some cases, manually simplifying the clauses (removing useless variables,
inlining single antecedents by substitution. . . ) dramatically reduces solving times. Also, precomput-
ing some simple scalar invariants on the Horn clauses (e.g. 0 ≤ k < i for a loop from k to i −1) and
asserting them as assertions to prove in the Horn system sometimes reduces solving time.
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We have observed that the execution time of a Horn solver may dramatically change depending on
minor changes in the input, pseudo-random number generator seed, or version of the solver. For
instance, the same version of Z3 solves the same system of Horn clauses (proving the correctness of
selection sort) in 3m 40s or 3h 52m depending on whether the random seed is 1 or 0.14

Furthermore, we have run into numerous problems with solvers, including one example that, on
successive versions of the same solver, produced “sat” then “unknown” and finally “unsat”, as well as
crashes.
For all these reasons, we believe that solving times should not be regarded too closely. The purpose
of our experimental evaluation is not to benchmark solvers relative to each other, but to show that
our abstraction, even though it is incomplete, is powerful enough to lead to fully automated proofs
of functional correctness of nontrivial array manipulations, including sorting algorithms. Tools for
solving Horn clauses are still in their infancy and we thus expect performance and reliability to in-
crease dramatically.

4.5 Conclusion

In this chapter I summarised the contributions made in the domain of memory analyses, from scal-
able static analyses for pointer regions to a very expressive program abstraction to prove functional
properties of programs with arrays.
The first contributions on memory abstract domains show that the sparse dataflow framework is the
appropriate technique to design pointer analyses that scale. They also illustrate the need for spe-
cialised analyses to handle more or less restricted classes of programs/classes of properties. These
analyses must be designed by carefully looking at the structural properties of the program to analyse.
The last contribution shows that we can design expressive abstractions that are capable of generating
array invariants with a relatively low solving cost. We think that this work deserves to be pursued in
the direction of more expressive data-structures and also revisited in the compilation community
for instance to generate information for further code optimisation.

14We suspect that different choices in SAT lead to different proofs of unsatisfiability, thus different interpolants and dif-
ferent refinements in the PDR algorithm.

HDR Laure Gonnord 74/92



5 Conclusion and perspectives

The contributions made in this document addressed the design of efficient and expressive static
verifiers or compilers. The approach we consider is the study of each class of properties (numeri-
cal properties, termination, memory properties) through various static approaches that explore the
limits of expressivity and scalability. The algorithms are implemented and validated through exam-
ples of the literature or state-of-the art benchmarks. This choice was motivated by the numerous
applications we can find in software validation and compilation/code optimisation.

Since I joined the LIP lab in Lyon (France) in 2013, I have been developing a new vision which fosters
the combination of abstract interpretation algorithms with compilation-inspired techniques and
tools. Compilation is both an application domain and an inspiration for the design of new solu-
tions. I also benefit from the proximity of the ever growing French Community of Compilation, Code
Generation, Analysis 1 that I co-animate with Florian Brandner and Fabrice Rastello.

5.1 Summary of the manuscript

This manuscript developed the contributions made in the domain of static analysis. Each chapter
exposed a different application domain and the techniques we developed for enhancing precision,
scalability and applicability.

Chapter 2 presented the design of numerical static analyses for numerical programs. The first con-
tribution of the chapter is a novel iteration strategy for abstract interpreters that compute nu-
merical invariants ([MG11]). The “path focusing” algorithm enhanced abstract interpretation
with a more “semantic-directed” computation which results in more accurate numerical in-
variants. The second part of the chapter exposes our work on the design of a novel abstraction
for synchronous languages[GG11], [FGG12], having in mind the performance and the read-
ability of the code produced by synchronous compilers. The third contribution of the chapter
is a novel abstract domain for parametric intervals [SMO+14] whose goal is to provide efficient
information on the range of variables inside SSA (Single Static Assignment)-based compilers.

Chapter 3 exposed a set of contributions that were made in the domain of static analyses for proving
termination of sequential programs. Working on the relationship between program schedul-
ing and termination, we first proposed a (quasi-complete) algorithm [ADFG10] to compute
multidimensional ranking functions from program invariants. This algorithm was implemented
in a standalone tool called RANK, around which we tried to design heuristic strategies ([AAG12],
[GAA12]) to scale better. Then we proposed an enhancement of the algorithm [GMR15] based
on algebraic properties of polyhedra. Finally, in [RAPG14], we demonstrated that proving ter-
mination and computing worst-cases can sometimes be done with relatively simple strategies
for general purpose programs.

1http://compilfr.ens-lyon.fr/
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Chapter 4 presented more recent contributions focusing more on memory properties and optimi-
sation. The first contribution [SMO+14] is the design of a novel array-out-of-bound detection
toolchain inside the LLVM compiler. This work relied on precise yet scalable set of static anal-
yses specially tailored for the application. The chapter then exposed two sparse static anal-
yses for pointers ([PMB+16], [MPR+17]) that were designed with a particular thorough effort
on splitting strategies to improve both scalability and precision. The chapter then described a
more fundamental work on array properties [MG16] that can be seen as one of the foundations
of my future work, especially from an expressivity perspective.

5.2 Future research topics

My contributions strongly promote the cross-fertilisation of abstract-interpretation techniques with
compiler techniques (scheduling, thorough work on intermediate representations). I believe that
the link between the two communities should be reinforced in the following directions:

• Code optimisations are potential clients for code analyses. The tiny link between them is still
currently mainly unexplored, and code optimisations do not often clearly state which kind of
information they rely on. The properties to find would most probably be simple from the static
analysis community, however there will remain two challenges: the design of scalable analyses
to infer them, and their efficient use for code optimisation. The Phd thesis of Maroua Maalej
is only the first step toward a better understanding of this link.

• Code analysis techniques are potentially a source of inspiration in the design of more expres-
sive compilation techniques. We believe that the use of abstractions is still at its early age in-
side compilers, especially in the domain of aggressive compilation of HPC kernels. The design
of expressive code analyses for code (scheduling) optimisation will be enabled by a thorough
study of the notion of dependencies with various techniques from the static analysis and the
rewriting communities, in order to deal with approximation and complex data structures.

Below I give three major subtopics that I would like to address in the years to come, which concern
the synergic exploitation of static analyses and compilation techniques. It will largely benefit from
the results and experience already presented in the document.

5.2.1 Scalable static analyses for compilers

This research project is an ongoing research project in the more general context of the PROSPIEL Inria
associate team led by Sylvain Collange, Inria Rennes, for the period 2015-2017.

The long term objective of this work is to enhance the capabilities of state-of-the-art compilers, so
as for the optimisations phases to benefit from accurate information concerning the program and
its properties. In the particular context of the project static analyses are used in combination with
runtime checks to improve compiler optimisation opportunities [106].
The means we choose is to start from the knowledge we recently gained during the Phd of Maroua
Maalej and mostly described in Chapter 4. The contribution of this PhD thesis is double: the demon-
stration that current state-of-the art compiler optimisations do not reach their maximal power since
the knowledge they get from the preceding analyses is not as precise as it could be ; and also three
novel sparse thus scalable pointer analyses capable of capturing pointer arithmetic properties.

The particular memory analyses we designed all share the common point that they were designed to
address the particular problem induced by pointer arithmetic in production compilers: all optimi-
sations done in a given compiler operate on intermediate representations where the data structures
(arrays, lists, structs) accesses are all expressed in terms of loads and stores from base pointers. Any
clever optimisation (loop code motion, loop fusions, array compaction, . . . ) thus strongly relies on
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a precise handling of the semantics of all these operations. From that perspective, we only made a
first step while designing our analyses: a huge amount of work remains to be done in order to re-
design optimisations that are capable to be generic enough to benefit from any gain in the previous
analyses steps.

In future work we plan to continue the work into the direction of scaling analyses for compilers. In
particular, we have the objective to design specialised analyses but with an explicit notion of cost/-
precision compromise, in the spirit of the paper [88] that tries to formalise the cost/precision com-
promise of interprocedural analyses with respect to a “context sensitivity parameter”. Another chal-
lenge is to find a generic way of adapting existing (relational) abstract domains in the Single Static
Information framework so as to improve their scalability.

Collaborators on this topic Sylvain Collange (Inria Rennes), Fabrice Rastello (Inria Rhône Alpes),
David Monniaux (Verimag), Fernando Pereira (University of Mineas Gerais, Brasil).

5.2.2 Complex data structures, from expressive analyses to efficient scheduling

This research project is the subject of a ANR JCJC (Young researcher funding) project that was accepted
in July 2017. I am the principal investigator of this project.

The long term objective of this work is to give a general way to reason and manipulate programs with
general control flow and complex data structures, so as to be able to extract parallelism information
and schedule them properly.
The means we choose is to start with the current state of the polyhedral model (Section 3.2.1), which
has proved its success in the aggressive compilation and code generation of computation-intensive
kernels2. We want to enhance the framework theoretically and algorithmically in order to be able to
deal with more general programs. As a first step, we first investigate general control flow and focus
on specific data structures, such as lists and trees.

This research project takes inspiration from the termination work we described in Chapter 3, where
the programs had complex control, but the complex data structures were abstracted away by a coarse
abstraction. For instance, write operations were ignored, and read operations were assumed to re-
turn random values. Our array abstractions of Section 4.4 are a first step toward the understanding
of more complex data structures, however we cannot rely on complex solvers for compilation.

In the context of the ANR submission we studied the relationship between termination and the par-
allel complexity of programs operating on abstract data types such as lists and trees. In the prelim-
inary paper [AFG16], we revisited the ideas that were at the origin of the SAS’10 paper ([ADFG10])
by replacing the termination algorithm for numerical programs by a termination algorithm from
the rewriting community (termination of rewriting systems are powerful to deal with abstract data
types). From a termination proof we are capable to infer the “parallel complexity” of the program
under analysis, which gives an upper bound on the complexity of the program if it were executed on
multiprocessors platforms.

In future work we plan to continue the work around this relationship, especially by designing ab-
stractions that will scale enough to capture the behaviour of bigger size programs. These abstrac-
tions should also be precise enough to capture all the computation dependences in complex pro-
grams/data structures. We may draw inspiration of our work on array properties ([MG16]). The
challenge will also to be able to deal with the approximation induced by the abstractions, especially
when we have to generate code, so as to avoid too many useless computations, or worse, optimisa-
tions which would cause the final optimised program to be incorrect.

2http://polyhedral.info/
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Collaborators on this topic Christophe Alias (Inria Rhône Alpes), Carsten Fuhs (University of Bir-
beck, UK), Lionel Morel (Insa Lyon), David Monniaux (Verimag, Grenoble), Tomofumi Yuki (Inria
Rennes).

5.2.3 Dataflow model: from semantics to efficient parallel compilation

This research project is part of a current Inria joint-team proposal at LIP.

The long term objective of this work is to propose a novel intermediate representation to compile to
and from. The novel representation should be expressive enough to be able to deal with all kinds of
parallelism, and simple enough to be able to reason on it and provide scalable analyses on it.

The means we choose is the study of the dataflow model for programs: the dataflow formalism ex-
presses a computation on an infinite number of values, that can be viewed as successive values of a
variable during time. A dataflow program is structured as a set of communicating processes that com-
municate values through communicating buffers. Examples of dataflow languages include the syn-
chronous languages Lustre and Signal for which we already produced static analyses (Section 2.4),
as well as SigmaC [8]; the DPN representation [4] (data-aware process network, in the context of
hardware compilation) is an example of a dataflow intermediate representation for a parallelizing
compiler.

The dataflow model, which expresses at the same time data parallelism and task parallelism, is in our
opinion one of the best models for analysis, verification and synthesis of parallel systems. This model
will be our favourite representation for our programs. Indeed, it shares the “equational” description
of computation and data with the polyhedral model, and the static single assignment representation
inside compilers.

We plan to work on various application domains, from algebra HPC kernels to more complex appli-
cations like software radio or deep learning applications where the main challenge is to be able to
transfer big amount of data between computation units. The work on these various domains will be
driven by the idea that exploring various topics is a way to converge on unifying representations and
algorithms even for specific applications.

All these applications led to the same research goal: finding a way to integrate computations, data,
scheduling, distribution in a common analysis and compilation framework. We will study each of
these problems from the intermediate representation point of view, like in Section 5.2.2. Abstrac-
tions, partial evaluation, and other formal tools will be used in order to revisit the already plethoric
literature on Kahn process network variants [9, 73] where static scheduling is very often the main
purpose. In this research project, we specifically want to take into account the code of the tasks as
well as there producer/consumer characteristics, in a general expressive framework from the pro-
gram to the code generation.

Collaborators on this topic Christophe Alias (Inria Rhône Alpes), Lionel Morel (Insa Lyon), Matthieu
Moy (Verimag, Grenoble).
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A Main Symbols and Acronyms

x Vector of program’s variables. 7

K Set of program’s control points. 7

T Set of program’s transitions. 7

AIA affine (integer) interpreted automaton. 7

Rk Valuation of the program’s variables at control point k. 8

τk,k ′ Concrete semantics of the transition k → k ′. 8

τ] Abstract semantics of the transition τ. 8

τ=∪t∈T τt Transition relation for the whole program. 31

Ik Inductive invariant at control point k. 10

O Widening operator. 9

CFG Control Flow Graph. 10

SSA Single Static Assignment. 13

(̂ , )̃ Clock/Value abstraction for SIGNAL programs. 19

SSI Static Single Information. 22

eSSA Extended Static Single Assignment Form. 23

SymBoxes Symbolic Range abstract domain. 24

R(x) (possibly symbolic) Interval for scalar x. 24

(R↓,R↑) Lower/Upper bound of the interval R. 24

ρ Ranking function. 28

Qt Polyhedral transition relation induced by the transition t . 31

PI ,τ Set of all “reachable one-step differences” of the program. 35

LP (V ,Constraints(I)) LP ranking instance with generators V and invariant I. 35

WCCC Worst-case Computational Complexity. 38
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Main Symbols and Acronyms

W (p) Valid offsets from base p. 51

SymRegion Symbolic Region abstract domain. 51

L oc Set of all allocation sites of the program. 58

MemLocs Memory Locations abstract domain. 58

GR Global Range Analysis (CGO’16). 58

LT Less Than Analysis (CGO’17). 61

CFC Constrained Horn Clause. 69

I ]
`

Abstract invariant predicate at control point ` (SAS’16). 69
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