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A Giulia, Antonio and Martina, Antonella, mia madre e Maria-Luisa, mia nonna A white triangle occluding three black disks is phenomenologically perceived. There is an apparent contour separating the triangle from the gure, indeed the interior looks whiter than the background. There is also a strati cation of gures, the triangle emerges and seems to be above the disks. This type of phenomenon is classi ed by Kanizsa as modal completion. T of this thesis is to present neuromathematical models for visual perception and to deal with such phenomena in which there is a visible gap between what is represented and what we are able to perceive. Such breaches are particularly interesting because they allow to understand the di cult and fascinating mechanisms of seeing, enabling scientists to ll the gap (or at least trying) wheter it is possible. This is the reason why illusory phenomena have always been at the center of many studies, from the psychological, quantitative and qualitative point of view [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF][START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF]. In the eld of phenomenology of perception, i.e. the branch studying how percept arises to our consciousness (Husserl, Merleau-Ponty, [START_REF] Merleau-Ponty | Phenomenology of perception[END_REF]), the integration of contours in vision has been largely studied by the Gestalt theory since the beginning of the twentieth century [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF][START_REF] Ko | Principles of Gestalt psychology[END_REF][START_REF] Köhler | Gestalt psychology: An introduction to new concepts in modern psychology[END_REF][START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]. The Gestalt psychology established basic "grouping laws" which are crucial in constructing a phenomenological representation of the physical world: points having one or several characteristics in common, are grouped together to form a new and larger visual object, a gestalt. This approach jointed with quantitative measured parameters provided computational models of Gestalt (for example [START_REF] Desolneux | Computational gestalts and perception thresholds[END_REF]). One of the phenomenon which drew the interest most is amodal completion, deeply analyzed by Kanizsa [START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]: it consists in perceiving a completion of a partially occluded object, as the one presented in gure 1.2. The observer perceives a black circle occluded by a gray square. The circle is perceived without the modality of vision, since we only guess its presence, in contrast with modal completion present for example in the Kanizsa triangle of gure 1.1, where we percieve the triangle with the modality of vision, even though its boundaries are not present in the stimulus. Boundaries reconstructed by our visual system with both modalities are called illusory contours. How we are able to perform completion is an important question, who lead research in vision and image processing. The prototype of models for curve completion and illusory contours can be found in [START_REF] Mumford | Elastica and computer vision[END_REF][START_REF] Nitzberg | Filtering, segmentation and depth[END_REF] (Mumford) and has been generalized to level sets of a surface in [START_REF] Masnou | Level lines based disocclusion[END_REF]. On the other hand, partial occlusion occurs also when we look at damaged images such as the ones presented in gure 1.3. Such processing, known as inpainting, has been introduced by Bertalmio et al. in [START_REF] Bertalmio | Image inpainting[END_REF]. In neurophysiology, most of the neural processing Right: a well known example of damaged image, from Bertalmio et al [START_REF] Bertalmio | Image inpainting[END_REF].

for boundary coding is performed by the primary visual cortex (V1/V2), [START_REF] David | Eye, brain, and vision[END_REF]. This evidence emerges from an impressive amount of experiments based mostly on measuring the neural activity by means of dye-electrode recording and cortical imaging [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]. The word neurogeometry has been introduced by Jean Petitot [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] in 1990s and refers to geometrical models of the functional architecture of primary visual areas. The rst geometric models of the functionality of the visual cortex date back to the papers of Ho mann [START_REF] Ho Man | The visual cortex is a contact bundle[END_REF], Koenderink and van Doorn [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF], and August and Zucker [START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF]. Petitot and Tondut in [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] proposed a model of single boundaries completion through constraint minimization, obtaining a neural counterpart of the models of Mumford. In this setting Citti and Sarti introduced a cortical based model [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], which justi es the presented illusory phenomena at a neural level and provides a neurogeometrical model for the primary visual cortex.

Another class of very interesting phenomena are Geometrical optical illusions (GOIs), known in literature since the end of the XIX century [START_REF] Ewald | Beiträge zur physiologie[END_REF][START_REF] Max | Die geometrisch-optischen Täuschungen[END_REF][START_REF] Zöllner | Ueber eine neue art von pseudoskopie und ihre beziehungen zu den von plateau und oppel beschriebenen bewegungsphänomenen[END_REF]. GOIs arise when there is a mismatch of geometrical properties between an item in object space and its associated percept [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF]. Let us consider an example such as the one presented in gure 1.4 top left: the Hering illusion. In this image the presence of a radial background bends the two vertical lines, which are actually parallel instead. Psychological and mathematical models for explaining such phenomena have been presented and summarized for example in [START_REF] Ho Man | Visual illusions of angle as an application of lie transformation groups[END_REF][START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF][START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF] as well as quantitative studies to measure the magnitude of the illusion. Both topics will be adressed to in chapter 6 and 7 and an overview of the huge amount of literature for these phenomena will be provided. The fundamen- Hering illusion: two straight vertical lines in front of a radial background appear as if they were bowed outwards. Wundt-Illusion: an opposite bending e ect with respect to the Hering illusion. Ehm [START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF] Square: the context of concentric circles bends inwards the edges of the square. Bottom, from left to right. Wundt-Hering illusions merged together: the bending effect is inhibited by the presence of con itting inducers. Zollner illusion: a pattern of oblique inducers surrounding parallel lines creates the illusion they are unparallel. Poggendor illusion: the presence of a central surface induces a misalignement of the crossing transversals. tal idea developed in this thesis is that these phenomena arise due to a polarization of the connectivity of the primary visual cortex, which will be responsible for the misperception. Starting from the neuromathematical model proposed by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] in which the connectivity building contours in the primary visual cortex is modeled through a sub-Riemannian metric, we will extend it claiming that in such phenomena the cortical response to the stimulus modulates the connectivity of the cortex, becoming a coe cient for the sub-Riemannian metric. Many GOIs will be processed through the presented method, also complex illusions, such as the ones involving the size. Size is an estimation of the actual width of an object, and the context in which a target is immersed can a ect its size perception. If we look at images as the ones presented in gure 1.5, left, the central target is perceived as shrinking or enlarging depending on the size of the surrounding circles, which form an annulus around the central circle (target). The challenge of this last approach is to introduce a plausible mathematical model which would justify the phenomenon. A comparison which judgemental studies will be provided, in the attempt to uniform a theory which has been divided and compared to a "babel tower" [START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF] since when those phenomena have been studied. We believe that the only way to uniform it is to provide a cortical based mathematical model, which will provide an explanation for those phenomena correct from the quantitatively and qualitatively point of view.

Figure 1.5: Left couple: Ebbinghaus (or Tichtner) illusion: two circles of identical size are placed near to each other, and one is surrounded by large circles while the other is surrounded by small circles. In the left part of the stimulus, inducers are larger in size than the central circle, inducing a decreasing size-perception of the latter. In the same way when inducers are smaller in size than the target size, the size-perception of the latter increases. Right couple: Delbouef illusion: the presence of an annulus around the target (black circle) induces a misperception of the size of the latter. If the annulus is big, the target tends to shrink or not displace at all (left). As long as we decrease its width, the target is perceived as expanding.

The rst three chapters of this thesis introduce and de ne concepts that will be at the basis of the original contributions we will present. The other chapters can be read independently of each other, except for chapter 8 which is linked to chapter 6. Original contributions and their relative published material are referenced at the beginning of each chapter.

In chapter 2 neurophysiological and phenomenological preliminaries are provided. First we will perform an overview of illusory phenomena, starting from Gestalt theory and nishing with Geometrical optical illusions. The second part of the chapter contains the neurophysiology of the primary visual cortices V1/V2. The visual process is explained starting from its early stage, from when the light impacts the retina and its signal is further processed by the cortex. The functional architecture of the primary visual cortices will be described, particularly focusing on the hypercolumnar structure (Hubel and Wiesel [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]): for each point of the retina a whole set of cortical cells will respond, each one sensitive to a speci c instance of a certain feature. In case of simple cells, we will have a whole set of cells, each one sensitive to a speci c orientation. The maximum over this set will be the tangent direction of the visual stimulus. A cortical mechanism of non maxima suppression is able to select the maxima orientation. This mechanisms can be extended to other features, such as the scale (i.e. distance from a boundary). We will conclude the chapter introducing the connectivity mechanisms responsible for the formation of contours and surfaces.

In chapter 3 all mathematical instruments necessary for understanding the cortical based models we will introduce later on are presented. We will provide an introduction to di erential geometry, explaining the concept of ber bundle, which will model the hypercolumnar structure of the cortex. Then we will focus on Lie Groups and their properties, ending the chapter with notion of sub-Riemannian geometry. The anisotropic structure arising from these elements will account for the connectivity arising in the cortex.

In chapter 4 we will present the neurogeometric model introduced by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. Their ideas are at the basis of all concepts developed later on in this thesis. We will see how neurophysiology of V1 and the geometrical notions introduced before merge together, providing a di erential structure which naturally endow the cortex and allows to model the connectivity. In this setting perceptual phenomena arise as curves and surfaces of di erential operator of R 2 ×S 1 in the sub-Riemannian metric introduced as model for the anisotropic connectivity of the cortex.

In chapter 5 we will develop the sub-Riemannian operator of mean curvature ow which allows to model the perceptual arising of surfaces. In particular, the phenomenon of amodal completion will be explained and we will see how this approach is at the basis of a performant image processing algorithm, allowing to recover damaged parts of an image (inpainting, [START_REF] Bertalmio | Image inpainting[END_REF]). Furthermore, the problem of existence of vanishing viscosity solutions (in the sense of Crandall, Ishii and Lions [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF]) will be faced from a theoretical point of view. The main idea of the proof will be to look for solutions of the approximating operator for which the classical results hold. Then we will pass to the limit in order to recover the sub-Riemannian solution of the mean curvature ow equation. The latter will have the property of being a surface of minima area and will model the perceptual completion of missing parts of an image. If we let the equation evolving on the whole image, we can perform enhancement, i.e. a technique allowing to put in evidence contours and make them brighter [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part i: Linear left-invariant di usion equations on se (2)[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]. These results are published in [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF]. In chapter 6 we will look for a mathematical model able to explain Geometrical optical illusions, i.e. those situations in which there is a mismatch of geometrical properties between the item in the object space and its associated percept ( [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF]). The main idea is to consider a polarization of the sub-Riemannian metric introduced before which is now modelled by the response of simple cells to the initial stimulus. In this approach is the output of simple cells which modulates the connectivity responsible for the deformation of the initial stimulus, see for example the set of images in gure 1.4. Projecting the polarized metric from R 2 ×S 1 to R 2 we obtain a new metric from which we can derive a direct expression for the displacement, using in nitesimal strain theory tools. We will end with displacement vector elds that once applied to the initial stimulus will allow to represent what we actual perceive when we look at such images. These results are published in [START_REF] Franceschiello | A neuro-mathematical model for geometrical optical illusions[END_REF][START_REF] Franceschiello | Mathematical models of visual perception for the analysis of geometrical optical illusions[END_REF].

In chapter 7 the previous approach is extended, but the challenge is to understand if the deformation curves derived as ex-plained in chapter 6 can arise as minima of the polarized metric modulated by the output of simple cells. This allows to explain such phenomena in which the amodal completion of a surface intervenes, generating misalignment of transversals, see for example the well known Poggendor illusion 1.6. Once the output of receptive pro les of V1 is determined and the polarized metric arise as model for the connectivity, geodesics are computed through sub-Riemannian Fast-Marching, a method which extends the one introduced by Sethian [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF], developed by Sanguinetti et al. in [START_REF] Sanguinetti | Sub-riemannian fast marching in se (2)[END_REF] starting from a Riemannian adaptation due to Mirebeau, see [START_REF] Mirebeau | Anisotropic fast-marching on cartesian grids using lattice basis reduction[END_REF]. It consists in computing the approximating solution of the Eikonal equation, from which a distance map in the sub-Riemannian metric from a certain given boundary condition is calculated. In this setting, geodesics are back-tracked (gradient descent) on this map and minimize the length of their paths. The perceptual curves arising in GOIs will be these geodesics. These results will be contained in the papers [START_REF] Franceschiello | Modelling of geometrical optical illusions via sub-riemannian geodesics in the roto-translation group[END_REF][START_REF] Franceschiello | Modelling of the poggendor illusion via sub-riemannian geodesics in the roto-translation group[END_REF].

In chapter 8 we extend the previous models to the analysis of scale/size illusions, such as the ones presented in gure 1.5. The mechanism is similar to the one applied in section 6, but with a di erent feature: rst the distance (scale) of a point from the nearest boundary is detected, then the size is evaluated from it. Here we will evaluate the interaction between the individuated perceptual units (circles, gure 1.5) introducing an isotropic functional connectivity related to the feature of scale, starting from the model proposed in [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF]. The perceived size of the central target in the Ebbinghaus and Delbouef illusion will be then derived and these results will be compared with judgemental studies [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF] which evaluate how the perceived size changes in relation with the numbers of inducers and their sizes. The result will be contained in [START_REF] Franceschiello | A neuromathematical model for ebbinghaus and delboeuf illusions[END_REF].

Finally chapter 9 summarizes the original contributions of this thesis and possible extensions 
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de cette thèse est de présenter des modèles neuromathématiques pour la perception visuelle et de s'interésser aux phénomènes dans lesquels on identi e une brèche visible entre ce qui est représenté et ce qui est perçu. Ces brèches constituent un intérêt particulier parce qu'elles permettent de comprendre le di cile et fascinant mécanisme de la vision et les scienti ques peuvent donc essayer de remplir ce "gap", à condition que cela soit réalisable. Cela explique en grande partie la raison pour laquelle les phénomènes illusoires ont toujours été au centre de nombreuses études, d'un point de vue psychologique, quantitatif et qualitatif [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF][START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF]. Dans la branche de la phénoménologie de la perception, c'est-à-dire des études analysant la manière dont le percept apparaît à notre conscience (Husserl, Merleau-Ponty, [START_REF] Merleau-Ponty | Phenomenology of perception[END_REF]), l'intégration des contours en vision a été énormément étudié par les théoriciens de la Gestalts, et ce à partir du début du 20ème siècle [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF][START_REF] Ko | Principles of Gestalt psychology[END_REF][START_REF] Köhler | Gestalt psychology: An introduction to new concepts in modern psychology[END_REF][START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]. La psychologie de la Gestalt a établi des règles basiques de "grouping" qui sont cruciales pour construire une répresentation phénoménologique du monde physique: les points qui ont une ou plusieurs caractéristiques en commun sont groupés (grouping) ensemble pour former un nouveau et plus large objet, une "gestalt". Cette approche, jointe avec les paramètres mesurés quantitativement, a permis de construire des modèles computationels pour la Gestalt (voir exemple [START_REF] Desolneux | Computational gestalts and perception thresholds[END_REF]). Un phénomènes des plus intéressant est la complétion amodale, largement analysée par Kanizsa [START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]: ce phénomène consiste à percevoir la complétion d'un objet partiellement occlus, comme celui représenté dans l'image 1.8. L'observateur perçoit un cercle noir occlus par un carré gris. Le cercle est perçu sans la modalité de la vision, car nous devinons seulement sa présence. Ce phénomène contraste avec celui de la complétion modale, présente par exemple dans le triangle de Kanizsa, image 1.7, dans laquelle nous percevons le triangle avec la modalité de la vision, même si les contours ne sont pas présents dans le stimulus. Les contours reconstruits par notre système visuel avec les deux modalités sont appelés des contours illusoires. Comment sommes-nous capables de réaliser la complétion est une question absolument centrale, qui a guidé la recherche dans la branche de la vision et du traitement des images. Le prototype des modèles pour la complétion de courbes et contours illusoires -que nous pouvons retrouver dans [START_REF] Mumford | Elastica and computer vision[END_REF][START_REF] Nitzberg | Filtering, segmentation and depth[END_REF] (Mumford) -a été généralisé aux courbes de niveau d'une surface en [START_REF] Masnou | Level lines based disocclusion[END_REF]. Ce processus, connu sous le nom d' "inpaint-ing", a été introduit par Bertalmio et al. dans [START_REF] Bertalmio | Image inpainting[END_REF]. En neuro-Figure 1.9: Gauche: macula cieca, un exemple de surface corrompue. Centre: une image occluse (dans U. Boscain et al. ([14])). Droite: un exemple connu d'image endommagée, dans Bertalmio et al [START_REF] Bertalmio | Image inpainting[END_REF]. physiologie, la plupart du traitement du signal neural pour le coding des contours est réalisé par les cortex visuels primaires (V1/V2) [START_REF] David | Eye, brain, and vision[END_REF]. Cette évidence émerge de nombreuses expériences de mesures de l'activité neurale par enregistrement avec électrodes et instruments d'imagerie cérébrale [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]. Le mot neuro-géométrie a été introduit par Jean Petitot [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] en 1990 et se rééfère aux modèles géométriques pour l'architecture fonctionnelle des régions visuelles primaires. Les premiers modèles géométriques pour la fonctionnalité du cortex visuel sont attribués aux travaux de Ho mann [START_REF] Ho Man | The visual cortex is a contact bundle[END_REF], Koenderink et van Doorn [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF], et August et Zucker [START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF]. Petitot et Tondut dans [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] ont proposé un modèle pour la complétion de contours avec des contraintes de minimisation, équivalent neurale du modèle proposé par Mumford. Dans cet environnement, Citti et Sarti introduisent un modèle basé sur l'architecture fonctionnelle du cortex visuel [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], qui justi e les illusions à un niveau neurale et envisage un modèle neurogéométrique pour V1.

Une autre classe des phénomènes particulièrement intéressantes est celle des illusions d'optique géométrique (GOIs), connues en littérature à partir de la n du XIX-ème siècle [START_REF] Ewald | Beiträge zur physiologie[END_REF][START_REF] Max | Die geometrisch-optischen Täuschungen[END_REF][START_REF] Zöllner | Ueber eine neue art von pseudoskopie und ihre beziehungen zu den von plateau und oppel beschriebenen bewegungsphänomenen[END_REF]. GOIs apparaît en présence d'une di érence entre ce qui est présent dans l'espace (objet) et la perception associée [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF]. On se réfèrera par exemple à l'image de la gure 1.10, en haute à gauche: il s'agit de l'illusion de Hering. Dans cette image, la présence du fond radial courbe les lignes verticales, qui sont tout-à-fait parallèles. Des modèles mathématiques et psychologiques pour expliquer ces phénomènes ont été introduits et résumés dans [START_REF] Ho Man | Visual illusions of angle as an application of lie transformation groups[END_REF][START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF][START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF], ainsi que des études quantitatives pour mesurer la magnitude de l'illusion. Nous traiterons les deux sujets dans les chapitres 6 et 7, et un résumé d'une grande partie de la littérature sur ces phénomènes sera fournie. L'idée fondamentale développée dans cette thèse est que ces phénomènes se produisent suite à une polarisation de la connectivité des cortex visuels primaires, responsables de l'illusion. A partir du mod-Figure 1.10: En haut, de gauche à droite. Illusion de Hering: deux lignes parallèles sont posées sur un fond constitué des lignes radiales, en apparaissant courbées vers l'extérieur. Illusion de Wundt: un e et de courbure opposé à celui présenté dans l'illusion de Hering. Carré de Ehm [START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF]: le contexte de cercles concentriques courbe vers l'intérieur les bords du carré. En bas, de gauche à droite. Les illusions de Wundt et Hering fusionnées: l'e et de courbure est annulé par la présence des inducteurs en con it. Illusion de Zollner: des inducteurs obliques environnant deux lignes parallèles donnent lieu à un e et de nonparallèlisme. Illusion de Poggendor : la présence d'une surface coupant une ligne cause un e et de désalignement.

èle neuro-mathématiques proposé par Citti et Sarti en [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], où la connectivité qui construit les contours en V1 est modelée avec une metrique sub-Riemannienne, on étend cela en disant que pour les GOIs la réponse corticale du stimulus initial module la connectivité du cortex, en devenant un coe cient pour la metrique. Beaucoup de GOIs seront traitées avec la méthode présentée ici, ainsi que des illusions plus complexes, comme celles qui concernent l'échelle. L'échelle est une estimation de la largeur réelle d'un objet et le contexte dans lequel l'objet dont on cherche à évaluer la largeur est immergé peut a ecter cette évaluation. Si nous regardons les images représentées dans la gure 1.11, le cercle central est perçu rétréci ou agrandi par rapport à l'échelle des cercles qui entourent le cercle central (cible). Le challenge de cette approche est d'introduire un modèle mathématique plausible décrivant le phénomène présenté. Nous fournirons une comparaison avec des études "judgemental", en cherchant à uni er une théorie qui à été comparée à "la tour de Babel" [START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF] depuis que ces phénomènes ont été découverts. Nous croyons que la seule façon de réaliser cela est de fournir un modèle mathématique basé sur l'architecture fonctionnelle, capable d' expliquer les illusions du point de vue quantitatif et qualitatif.

Les trois premiers chapitres de cette thèse introduisent et dé nissent des concepts qui seront à la base des contributions originales que nous présentons. Les autres chapitres peuvent être lus de manière indépendante, sauf le chapitre 8 qui est lié au chapitre 6. Les contributions originales et les matériaux publiés qui les contiennent sont cités au début de chaque chapitre.

Dans le chapitre 2 nous présentons les prérequis neuro-physiologiques et phénoménologiques. D'abord, on fera une présentation des phénoménes illusoires, à partir de la théorie de la Gestalt et en nissant avec les illusions d'optique géométrique. La deuxième partie du chapitre décrira la neurophysiologie des cortex visuels primaires V1/V2. Nous expliquerons le processus visuel à partir de ses étapes initiales, quand la lumière touche la rétine et le signal est traité par le cortex. L'architecture fonctionnelle des cortex visuels primaires sera décrite, en se concentrant sur la structure hypercolomnaire (Hubel et Wiesel [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]): pour chaque point sur la rétine une collection entière de cellules corticales répond, et chacune de ces cellules est sensible à une certaine valeur de la caractéristique (couleur, orientation, échelle) que le cortex est en train de traiter. Dans le cas des cellules simples de V1, nous aurons un ensemble entier de cellules, chacune sensible à une orientation spéci que. Le maximum sur cet ensemble sera la direction tangente du stimulus visuel passant par le point considéré. Le mécanisme cortical de suppression non-maximal est capable de sélectionner l'orientation maximale. Ce mécanisme peut être étendus aux autres caractéristiques de l'image, comme l'échelle (distance entre un point et les contours le plus proches). Nous conclurons le chapitre en introduisant le mécanisme de connectivité responsable de la réalisation des contours et surfaces dans le cortex.

Nous verrons dans le chapitre 3 les instruments mathématiques nécessaires pour comprendre les modèles corticaux qu'on introduira dans les chapitres suivants. Nous donnerons une introduction à la géométrie di érentielle, en expliquant le concept de bration, qui modélisera la structure hypercolumnaire du cortex. Ensuite les groupes de Lie et leurs propriétés seront traités et on terminera le chapitre avec des notions de géométrie sub-Riemannienne. La structure anisotrope que nous obtenons des éléments traités nous aidera à expliquer la connectivité que l'on retrouve dans V1/V2.

Dans le chapitre 4 on présentera le modèle neurogéométrique introduit par Citti et Sarti en [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. Leurs idées sont à la base de toutes les contributions développés dans cette thèse. Nous verrons comment la neurophysiologie de V1 et les notions de géométrie dont on a parlé dans les chapitres précédents fusionnent en donnant une structure di érentielle qui modélise naturellement le cortex et sa connectivité. Dans cet environnement, les phénomènes perceptifs émergent comme courbes et surfaces des opérateurs di érentiels de R 2 ×S 1 dans la métrique sub-Riemannienne introduite comme modèle pour la connectivité anisotrope du cortex.

Dans le chapitre 5, nous développens l'opérateur de ux de courbure moyenne qui permet de modeler l'émersion perceptive des surfaces. En particulier nous expliquerons la complétion amodale et nous verrons comment cette approche est à la base des algorithmes de traitement des images, en nous permettant de reconstruire des parties corrompues d'une gure (inpainting, [START_REF] Bertalmio | Image inpainting[END_REF]). En plus, le problème d'existence des solutions de type vanishing viscosity (dans le sens de Crandall, Ishii et Lions [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF]) sera traité d'un point de vue théorique. L'idée principale de l'épreuve est de chercher des solutions, approximations de l'opérateur initial, pour lesquelles les résultats classiques sont valides. Ensuite nous ferons la limite pour retrouver la solution sub-Riemannienne à l'équation du ux de courbure moyenne. Cette solution aura la propriété d'être une surface avec aire minimale et modélisera la complétion perceptive des parties manquantes d'une image. Si nous laissons évoluer l'équation sur la gure entière on peut e ectuer l'enhancement, cet à dire une technique qui permit de mettre en evidence les contours [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part i: Linear left-invariant di usion equations on se (2)[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]. Ces résultats sont publiés en [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF]. Dans le chapitre 6, nous cherchons un modèle mathématiques capable d'expliquer les illusions d'optique géométrique, qui apparaissent en présence d'une di érence entre ce qui est présent dans l'espace (objet) et la perception associée ([185]). L'idée fondamentale est de considérer une polarisation de la métrique sub-Riemannienne introduite auparavant, modulée maintenant par les réponses des cellules simples de V1 au stimulus initial. En suivant cette idée, la réponse des cellules modulant la connectivité est responsable de la déformation du stimulus initial (par exemple, regarder l'ensemble d'images de gure 1.10). En faisant une projection de la métrique polarisée de l'espace R 2 ×S 1 à l'espace R 2 , on obtient une nouvelle métrique, à partir de laquelle nous derivons une expression directe pour le déplacement. Les instruments utilisés viennent de la théorie innitésimale des déformations. Cels nous permettra de calculer les champs vectoriels du déplacement qui, une fois appliqués à l'image initiale, représenteront le percept, cet-à-dire ce que nous percevons en présence des stimuli illusoires. Ces résultats sont publiés en [START_REF] Franceschiello | A neuro-mathematical model for geometrical optical illusions[END_REF][START_REF] Franceschiello | Mathematical models of visual perception for the analysis of geometrical optical illusions[END_REF].

Dans le chapitre 7, l'approche précédente est étendue, mais le challenge est de comprendre si les courbes de déformation obtenues en suivant l'explication du chapitre 6 peuvent être aussi calculées comme minima de la métrique polarisée par la réponse des cellules simples. Cela permettra d' expliquer les phénomènes dans lesquels la complétion amodale des surfaces joue un role, en créant le désalignement d'une ligne (par exemple illusion de Poggendor , 1.12). Une fois que les réponses des pro ls récepteurs de V1 et V2 sont déterminées, et que la métrique polarisée émerge comme modèle pour la connectivité neurale, les géodésiques sont calculées avec le Fast-Marching sub-Riemannienne, une méthode qui élargit celle qui fut introduite par Sethian [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF], développée par Sanguinetti et al. en [START_REF] Sanguinetti | Sub-riemannian fast marching in se (2)[END_REF] à partir d'une adaptation Riemannienne due à Mirebeau, voir [START_REF] Mirebeau | Anisotropic fast-marching on cartesian grids using lattice basis reduction[END_REF]. La méthode consiste à calculer la solution approchée de l'équation Eikonal, avec laquelle on peut déduire une fonction distance entre les points de l'ensemble et la condition à la frontière, en métrique sub-Riemannienne. Dans cet environnement, les géodésiques sont trouvées par descente du gradient sur la fonction distance et elles minimisent la longueur de leurs trajets. Les courbes perceptives que nous voyons dans le GOIs seront ces géodésiques. Les résultats sont contenues dans les articles [START_REF] Franceschiello | Modelling of geometrical optical illusions via sub-riemannian geodesics in the roto-translation group[END_REF][START_REF] Franceschiello | Modelling of the poggendor illusion via sub-riemannian geodesics in the roto-translation group[END_REF].

Dans le chapitre 8, nous poursuivons avec le modele précédent en cherchant une extension aux illusions d'échelle, comme celles que nous pouvons observer dans l'image 1.11. Le mécanisme décrit est similaire à celui appliqué dans le chapitre 6 mais avec une caractéristique (feature) di érente analysée: d'abord, la distance (échelle) entre un point et le contour le plus proche est calculée. Ensuite, la taille de l'objet est évaluée. Ici, nous considérons l'interaction entre les unités perceptives détectées dans l'image (les circle, gure 1.11) et nous introduirons une connectivité fonctionnelle isotrope liée à l'échelle à partir du modèle proposé en [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF]. La taille de la cible centrale perçue dans les illusions de Ebbinghaus et Delbouef sera calculée et ces résultats seront comparés avec des études ''judgemental" [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF], qui évaluent comment la taille perçue change en relation avec le numéro des inducteurs et leurs tailles. La contribution originale sera contenue dans [START_REF] Franceschiello | A neuromathematical model for ebbinghaus and delboeuf illusions[END_REF].

Le chapitre nal 9 résume toutes les contributions originales de la thèse et leurs possibles extensions.

2 Phenomenology of perception and neurophysiology of V1 and V2 O is to give the psychological and neurophysiological basis for understanding the visual processes responsible for the phenomenon of amodal completion of surfaces and for the illusory contours formation in Geometrical optical illusions. Many concepts were introduced by the exponents of Gestalt movement in psychology and we will understand the role this approach had in carrying out researches in perception. In fact, the interest on illusions relies on the fact that they could provide an insight about how the visual process is actually carried out while a subject undergoes a visual stimulus. The rst class of stimuli refers to the psychological principles organizing visual contents while we look at a stimulus. The second class contains deformation of the space, introducing a pure mismatch between what is represented in the real world and what is perceived. On the other hand the enlightened mechanisms in psychology need to be contextualized through an overview of the neuro-physiology of brain parts involved, i.e. the functional architecture of the primary visual cortices (V1/V2, Brodmann area 17/18 respectively). The basic idea is that neural interaction strongly depends on the organization and connectivity of neurons in the cortex and it actively partecipates in generating such phenomena. We will restrict our attention to the structures relevant to the model presented in the later chapters: receptive elds and receptive pro les of simple cells in V1/V2, the hypercolumnar structure of V1, the cortical connectivity. In the following table you can nd the organization of the contents for this chapter.

Phenomenology of perception 2.1.1 Gestalt psychology

One of the big question about vision is how the act of sight happens and which elements partecipate to realize it. Visual perception is not a simple acquisition of the real stimulus, but is the result of a series of complex processes which mediate between the physical stimuli and the phenomenological organization of such stimuli. According to Gaetano Kanizsa, one of the main exponents of the Gestalt psychology, "Perception consists of an active construction by means of which sensory data are selected, analyzed and integrated with properties not directly noticeable but only hypothesized, deduced, or anticipated, according to available information and intellectual capacities." The movement of Gestalt was started by Wertheimer, Köhler and Ko ka, with the basic idea that the visual phenomena need to be considered as global events, not reducible to the set of its parts. There exist local and global laws which justify the "act of sight " (the appearance of the perceptual units which compose an image). Then complex phenomena can be understood considering the idea of structure more than a single element, i.e. the parts of a visual stimulus are grouped together to form the whole, and the whole is what we actual see rst. These characteristics allowing the formation of the percept are de ned as laws that describe the in uence of global context in the perception of local features. Elements tend to be perceptually grouped and made salient in case of proximity, similarity, closure, good continuation and alignment. Let us go through these local rules (Kanisza, [START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]):

• Proximity: elements constitute a single perceptual unit if they are close to each other and apart from the rest of the elements which belong to the image, see Figure 2.3. • Similarity: elements constitute a single perceptual unit if they are similar in color, shape, texture or orientation, see Figure 2.4. • Good continuation and alignment: elements aligned (or with comparable alignment) tend to form a continuous curve. In gure 2.6 we perceive a unique curve of black dots even if the black bar interrupts them. More than one grouping law at a time, as we saw in the previous example, can contribute to the perception of a complex object. In this sense the local laws contribute to the formation of the percept. Another observation coming out from the previous experiments is that the perceptual reality is formed in each time by a discrete number of objects, which do not necessarily depend on the existence of correspondent physical objects.

Perceptual completion

Phenomena in which there is a phenomenological presence of boundaries without a physical stimulus (such as in the famous Kanizsa-Triangle, gure 2.7 right) describe the mechanisms of modal and amodal completion, which are examples of grouping according to good continuation and alignment. Perceptual completion refers to the ability of the perceptual process to clearly individuate and identify the presence of objects even if they are occluded ( gure 2.7 left, amodal completion) or the boundaries are not present in the image ( gure 2.7 right). Illusory contours, as the ones presented in gure 2.7 right, constitute an example of modal completion. They generate a percept of a contrast border in image regions that are physically homogeneous [START_REF] Wagemans | A century of gestalt psychology in visual perception: I. perceptual grouping and gure-ground organization[END_REF]. Kanizsa studied in depth these examples, which are important because they underline the fact that the visual stimuli and their phenomenological organization in general do not coincide and for this reason such phenomena help to understand the behaviour of the visual cortex during the act of sight. The circle is present in the visual eld, but the completion is performed without an illusory contour. (Right) The Kanizsa triangle. A white triangle occluding three black disks is phenomenologically perceived. There is an apparent contour separating the triangle from the gure, indeed the interior looks whiter than the background. There is also a strati cation of gures, the triangle emerges and seems to be above the disks. This type of phenomenon is classi ed by Kanizsa as modal completion.

A point underlined by these studies is that in both cases of completion the occluding and the occluded objects are perceived at the same time in the scene and therefore there are points in the input stimulus corresponding to more than one gure at the perceptual level. This suggests that the phenomenological space has a higher dimension than that of the physical space, as in this example of a two dimensional image.

Geometrical optical illusions

Perception and the corresponding meaning of the act of perception are a deep research theme and constitute a huge eld of investigation, in which many disciplines converge into. For our purposes it will be enough to take into account the di erence between the physical source of the stimulus and its perception. In psychology the distal stimulus is de ned as the light re ected o a physical object in the external world: when we look at an image (distal stimulus) we cannot actually experience the image physically with vision, we can only experience it in our mind as proximal stimulus, i.e. the internal sensory response [START_REF] Ko | Principles of Gestalt psychology[END_REF][START_REF] James | The concept of the stimulus in psychology[END_REF]. Geometrical optical illusions arise when the distal stimulus and its percept di er in a perceivable way. Simple images where the illusion is particularly strong can help to study vision mechanisms which usually take place, so that they appear to be fundamental in understanding the act of visual perception. As explained by Westheimer in [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF], we can conveniently divide illusions into those in which spatial deformations are a consequence of the exigencies of the processing in the domain of brightness and the true geometrical-optical illusions, which are misperceptions of geometrical properties of contours in simple gures. Some of the most famous geometric illusions of this last type are shown in gure 2.8. Since the aim of this thesis is to present a neuro-mathematical model which rely on the structure and phenomenology of the primary visual cortex (V1/V2) for both presented phenomena (perceptual completion and geometric optical illusions), we need to go through to its physiological structure and organization.

The visual cortex

In order to describe from a mathematical point of view the previous phenomena in which we are interested in, we rst need to focus on the functional architecture of the primary visual cor-tex (Brodmann area 17) and in its basic structures. Receptive elds and receptive pro les of simple cells will be fundamental for boundary coding, one of the rst process we will treat, as basis for all other complex functions of the cortex. The three most important structures implemented in the neural circuitry, the layered, the retinotopic and the hypercolumnar structure will be described from the neurophysiological and functional point of view with a qualitatively characterization. Then the pinwheel structure, the topological implementation of the hypercolumnar structure will be introduced. In particular we will focus on simple cells of the primary visual cortex, the rst ones which process the visual signal, and on the connectivity pattern between them. For further references about these part see Hubel in [START_REF] David | Eye, brain, and vision[END_REF], Hubel and Wiesel [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF] and Petitot [START_REF] Petitot | Neurogéométrie de la vision[END_REF]. The cerebral cortex is the outermost layer of neural tissue in the two cerebral hemispheres. It plays a central role in sensory and cognitive processing since most of the neurons responsible for these processes are located here. It is commonly divided in three parts: sensory, motor, and association. We are interested in the rst of these, which is the part of the cortex that receives sensory inputs. In particular the visual cortex is the area that serves the sense of vision and receives the optical information from the visual path (see gure (2.9)). Light enters the eyes and arrives to the retina, which is composed of thin layers of brain tissue where the neural processing of visual stimuli begins. One of those layer, the nearer one to the optic nerve, is formed mainly of photoreceptors: they have the role of measuring the signal and pixelize it. It is composed by rods and cones. The others two layers consists of ganglion cells and bipolar cells: these layers are connected together through horizontal and amacrine cells. Figure 2.10 shows the organization of cells in the retina layers. The mechanisms connecting these layers are direct and indirect: photoreceptors are responsible for the transduction of the optical signal in action potential. The receptive eld of a ganglion cell is the region of retina over which a light stimulation can produce a ring. In section 2.2.2 we will go trough the concept of receptive eld and receptive pro le, and their role in decoding the visual signal. As gure 2.10 explains, the layers send the nal output of the retina (in the form of action potentials) away from the eyes using their long axons. These axons form the optic nerve, which transmits the visual signals to the lateral geniculate nucleus (LGN) of the thalamus, a structure in the middle of the brain which connects the sensory organs to their main sensory processing cortical areas. From the LGN the signal goes to various destinations: the most important is the visual cortex, situated in the back of the head, where the larger part of the visual processing is performed. The primary visual cortex (V1) is the area to which most of the retinal output rst arrives and is the most widely studied visual area, associated to the other layer responsible for what it is called early stage visual process.

The cerebral cortex and the visual pathway

Simple cells of V1/V2: Receptive fields and receptive profiles

As the axons of the ganglion cells project a detailed spatial representation of the retina to the LGN, the LGN projects a similar representation to the primary visual cortex. As we saw each cell in V1 is characterized by its receptive eld, the portion of the retinal plane which responds to visual stimulation: the action of light alters the ring of the neuron starting from the ganglion layer of the retina. Classically a receptive eld is sub-divided into ON and OFF areas. The area is considered ON if the cell spikes in positive way responding to a signal (excitatory response to a light stimulus) and OFF if it spikes negatively responding to a signal (inhibitory response to a light signal). Hence it is possible to de ne the receptive pro le of a On the right, from De Angelis et al. [START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF], the recording of level set lines, on the left, the scheme of the structure of the receptive pro le with its + (ON) part and its -(OFF) part.

neuron as a function ψ (x, ) measuring the response of the cell, ψ : D → R where D is the receptive eld and (x, ) are retinal coordinates. In this way what is measured is the response of the neuron relatively to a signal at point (x, ) of the retina. This function models the neural output of the cell in response to a punctual stimulus in the 2 dimensional point (x, ). The temporal precision with whom the stimulus is treated is around the millisecond order. Accurate electrophysiological method allowed De Angelis et al. [START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF], see gure 2.11 to map receptive elds and their correspondent receptive pro les. The characterization given by Hubel and Wiesel in ( [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]) classi es the cells in V1 according to their responses. Cells which have separate ON/OFF zones are called simple cells, all the others complex cells. Simple cells have directional receptive pro les, while complex cells are not sensitive to orientation, [START_REF] Petitot | Neurogéométrie de la vision[END_REF].

V1 and its functional architecture

To understand the processing of the image operated by these cells, it is necessary to consider the functional structures of the primary visual cortex: the layered, the retinotopic and the hypercolumnar structure. We refer to the functional architecture as the spatial organization and the connectivity between neurons inside a cortical area. In V1 we can identify three structures we mentioned before: the layered structure, the retinotopic structure, the hypercolumnar structure.

The layered structure

The layered structure indicates that the primary visual cortex is formed of 6 horizontal layers, as shown in gure 2.12. This feature made V1 to be the rst area of the cortex to be distin-Figure 2.12: A cross section of the striate cortex taken at higher magni cation shows cells arranged in layers. Layers 2 and 3 are indistinguishable; layer 4A is very thin. The thick, light layer at the bottom is white matter. Image from Hubel, [START_REF] David | Eye, brain, and vision[END_REF].

guished from the rest. We also refer to it as striate cortex, due to this property. Figure 2.13 schematizes the neural projection of each layer of V1 to other cortical regions. For example Layers 2 and 3 and layer 4B project mainly to other regiones, while the deep layers project down to subcortical structures. Layer 6 projects mainly back to the lateral geniculate body. All layers except 1, 4A and 4C send bers out of the cortex. Let us notice that Ramon y Cajal was the rst, at the beginning of 1900, to realize how short connections within the cortex are: the richest connections run up and down. 

The retinotopic structure

The retinotopic structure is the topographical organization of the cells in the cortex. The simple cells are arranged in the cortex in such a way that what is near in the visual eld is near in the cortex. Precisely we can de ne a map from the retina to the layers of the primary visual cortex, which introduces a simple deformation of the stimulus, quantitative modeled as a complex logaritmic map. [START_REF] Roger B Tootell | Functional anatomy of macaque striate cortex. ii. retinotopic organization[END_REF], the target-shaped stimulus with radial lines was centered on an anesthetized macaque monkey's right visual eld for 45 minutes after injection with radioactive 2-deoxyglucose. One eye was held closed. The right picture shows the labeling in the striate cortex of the left hemisphere. This autoradiograph shows a section parallel to the surface. The roughly vertical lines of label represent the (semi)circular stimulus lines; the horizontal lines of label represent the radial lines in the right visual eld.

The hypercolumnar structure

The hypercolumnar structure refers to the the organization of cortical cells in columns corresponding to parameters such as orientation, ocular dominance, color, etc. For the simple cells, sensitive to orientation, columnar structure means that to every retinal position is associated a set of cells (hypercolumn) sensitive to all the possible orientations. At a certain scale and resolution, for each point of the retina (x, ) there exists a whole set of neurons in V1, each one maximally responding to a speci c local orientation θ of the stimulus at the point (x, ). Since ideally the position on the retina takes values in the plane R 2 and the orientation preference in the circle S 1 , the visual cortex can be locally modelled as the product space R 2 × S 1 . Each point (x, , θ ) of this 3D space, represents a column of cells in the cortex associated to a retinal position (x, ), all of which are tuned to the orientation given by the angle θ . Figure 2.15 shows a schematic representation of the visual cortex. The hypercolumns are drawn vertically. The di erent colors represent di erent orientations. The coordinates (x, , θ ) of this 3D space isomorphic to R 2 × S 1 are the parameters of the receptive elds (RPs): (x, ) is the retinotopic position and θ the angle of tuning. The fundamental consideration here is that V1 is modelled as a 3D space of positions and orientations, while the cortex is infact a 2D layer. In fact, the 3D representation provided in gure 2.15 schematizes what in reality is a 2D layer: it has been shown by Hubel and Wiesel in [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF] that tangential penetration in the super cial layers of the cortex reveals that the RPs of cells close to each other strongly overlap while the orientation preference varies smoothly generating the orientation hypercolumnar structure. The structure of the cortex allows us to code 3D information in a 2D structure: this dimensional collapse has been illustrated visually by the pinwheel structure, a fascinating con guration observed by William Bosking et al. using optical imaging techniques in which the cells' orientation preference is color-coded and every hypercolumn is represented by a pinwheel. These are the [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]) of the hypercolumnar structure, for the orientation parameter, where L and R represent the ocular dominance columns (Petitot [START_REF] Petitot | Neurogéométrie de la vision[END_REF]). The orientation hypercolumns are arranged tangentially to the cortical sheet. Bottom: Over each retinotopic point (x 1 , x 2 ) there is a set of cells coding for the set of orientations {θ ∈ S 1 } and generating the 3D space R 2 ×S 1 . Each bar represent a possible orientation. The color coded map is the same used in gure 2.16. Image from [START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

structures presented in the two small pictures in the right hand side of gure 2.16. A xed point (x, ) is surrounded by all orientations θ represented in di erent colors. The same structure is repeated over the whole 2D cortical surface in an almost periodic way. For references see [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]), for its representation see gure 2.16. To an overview of experiments which lead to the discovery of this structure and its neurophysiological basis see Sanguinetti in [START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

Figure 2.16: Image from Bosking et al. [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. The pinwheel structure observed by the authors in [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. Cells' orientation preferences are color-coded as before, and every hypercolumn results to be squeezed on the 2D layer. Portions of the orientation preference map shown on the left are enlarged to demonstrate that the orientation preference maps contained both linear zones and pinwheel arrangements.

The cortical connectivity of V1

The short range connectivity To conclude our review of the functional architecture of V1 we discuss now the connectivity between neurons inside the structure we have seen. In the hypercolumnar structure we can identify two types of communication between neurons which play a central role in the model we want to present: The intracortical circuitry is able to select within the hypercolumns the cell which gives the maximal response to a visual stimulus and to suppress all the others. The mechanism able to produce this selection is called non-maximal suppression or feature selection.

The long range connectivity

The horizontal or cortical connectivity of the primary visual cortex ensures connectivity between hypercolumns. Neurophysiological experiments, for example as the ones conducted in [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] and [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF] revealed the existence of connections parallel to the cortical surface (along the structure of pinwheels) that run several millimeters (6 to 8 mm in the visual cortex). These horizontal (or long range) connections connect cells with the same orientation belonging to di erent hypercolumns, with non overlapping receptive elds, as shown by the injected marker in gure 2.17, from [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. The injected chemical tracer into a small area of the visual cortex of a tree shrew was propagated through the lateral connections and the resulting image was combined with the orientation maps obtained with optical imaging. In the immediate vicinity of each neuron, the connections are relatively isotropic, but over larger distances they follow the orientation preferences.

Figure 2.17: Image from Bosking et al. [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. A marker (biocytin) is injected in the cortex, at a speci c point, and it di uses mainly in regions with the same orientation as the point of injection (see the black path). Same color refers to same orientation preference along the 2D orientation preference map.

V2, the prestriate cortex

Visual area V2 (Brodmann area 18), or secondary visual cortex, also called prestriate cortex [START_REF] Michael S Gazzaniga | Cognitive neuroscience[END_REF], is the second major area in the visual cortex, and the rst region within the visual association area. It receives strong feedforward connections from V1 (direct and via the pulvinar) and sends strong connections to upper layers of the visual cortex. Not only the feedforward but also feedback connections to V1 are strong. In terms of anatomy, V2 is split into four quadrants, a dorsal and ventral representation in the left and the right hemispheres. Together, these four regions provide a complete map of the visual world. V2 has many properties in common with V1: cells are tuned to simple properties such as orientation, spatial frequency, and colour. The responses of many V2 neurons are also modulated by more complex properties, such as the orientation of illusory contours [START_REF] Von | Illusory contours and cortical neuron responses[END_REF][START_REF] Anzai | Neurons in monkey visual area v2 encode combinations of orientations[END_REF], binocular disparity [START_REF] Rüdiger Von Der Heydt | Representation of stereoscopic edges in monkey visual cortex[END_REF], and whether the stimulus is part of the gure or the ground [START_REF] Fangtu | Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules[END_REF][START_REF] Bussey | Memory, perception, and the ventral visual-perirhinalhippocampal stream: Thinking outside of the boxes[END_REF]. Recent research has shown that V2 cells are tuned for moderately complex patterns, and may be driven by multiple orientations at di erent subregions within a single receptive eld.

Receptive fields of V2

As we will recall later, from the neurophysiological point of view the orientation selectivity, the spatial and temporal frequency of cells in V2 di ers little from the one in V1 ( [START_REF] Levitt | Receptive elds and functional architecture of macaque v2[END_REF][START_REF] Liu | Spatial structure of neuronal receptive eld in awake monkey secondary visual cortex (v2)[END_REF]). Receptive elds in V2 are larger from those in V1 ( [START_REF] Kennedy | Receptive eld properties of neurones in visual area 1 and visual area 2 in the baboon[END_REF][START_REF] Levitt | Receptive elds and functional architecture of macaque v2[END_REF]). Some of them show more elongated ON-OFF zone in their RFs. Many studies, which relies on neuro-physiological and imaging data, show the evidence that neurons in at least two visual areas, V1 and V2, carry signals related to illusory contours, and that signals in V2 are more robust than in V1 ( [START_REF] Von | Illusory contours and cortical neuron responses[END_REF][START_REF] Murray | The spatiotemporal dynamics of illusory contour processing: combined highdensity electrical mapping, source analysis, and functional magnetic resonance imaging[END_REF], reviews [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Micah | Illusory contours: a window onto the neurophysiology of constructing perception[END_REF]). The cells with elongated RFs observed by Liu et al. in [START_REF] Liu | Spatial structure of neuronal receptive eld in awake monkey secondary visual cortex (v2)[END_REF] may be responsible for such behaviour. Finally, as observed by Tootell et al. in [START_REF] Roger B Tootell | Functional anatomy of macaque striate cortex. ii. retinotopic organization[END_REF], also V2 shows orientation column organization: columns are spaced further apart than those in V1, by a factor of about 1.6, but the columns are not correspondingly wider.

3 Di erentiable manifold, Lie groups and Sub-Riemannian geometry I we will introduce the mathematical instruments that will allow us to model the cortical space introduced in the previous section. We are mainly interested in the structure of the cortex, which we know is responsible for its functionality: the hypercolumnar structure of the primary visual cortex will be modelled as the principal ber bundle of the Lie group SE(2), endowed with a sub-Riemannian structure. This is crucial for explaining the orientation selection performed by cells in V1. Instruments of Lie groups and di erential geometry for the description of the visual cortex have been introduced by Ho mann in [START_REF] Ho Man | The visual cortex is a contact bundle[END_REF], August and Zucker in [START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF], Petitot and Tondut in [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] and Duits and Franken in [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part i: Linear left-invariant di usion equations on se (2)[END_REF][START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]. Before focusing on their models, we rst need to review the de nition and basic properties of di erentiable manifold and Lie group theory, which are fundamental for explaining the simmetry and the organization of simple cells in the cortex, and the construction and the properties of a sub-Riemannian manifold which explain the connectivity we will introduce.

Di erentiable manifold theory

In order to introduce Lie groups and Sub-Riemannian structures we need to rst recall fundamental notions of di erentiable manifold theory. All de nitions and theorems can be found in [START_REF] Loring | An introduction to manifolds[END_REF]. A topological space M is locally Euclidean of dimension n if every point p ∈ M has a neighborhood U such that there is a homeomorphism ϕ from U onto an open subset of R n . We call the pair (U , ϕ) a chart, U a coordinate neighborhood and ϕ a coordinate map. We say that a chart

(U , ϕ) is centered at p ∈ U if ϕ (p) = 0. De nition 3.1.2. A topological manifold is said to be of dimen- sion n if it is locally Euclidean of dimension n. Suppose (U , ϕ) and (V ,ψ ) are two charts of a topological manifold. Since U ∩V is open in U and ϕ : U → R n is a homeo- morphism onto an open subset of R n , the image ϕ (U ∩ V ) will also be an open subset of R n . Similarly, ψ (U ∩ V ) is an open subset of R n .
De nition 3.1.3. The two charts (U , ϕ) and (V ,ψ ) of a topological manifold are C ∞ -compatible if the two maps:

ϕ • ψ -1 : ψ (U ∩ V ) → ϕ (U ∩ V ) ψ • ϕ -1 : ϕ (U ∩ V ) → ψ (U ∩ V )
are C ∞ . These two maps are called the transition functions between the charts. If U ∩ V is empty, then the two charts are automatically C ∞ -compatible. To simplify the notation, we sometimes write U α β for U α ∩ V β . An atlas U on a locally Euclidean space is said to be maximal if it is not contained in a larger atlas; in other words, if M is any other atlas containing U, then U = M. De nition 3.1.5. A smooth or C ∞ manifold is a topological manifold M together with a C ∞ maximal atlas. The maximal atlas is also called a di erentiable structure on M and M is called di erentiable (C ∞ di erentiable) manifold. A manifold is said to have dimension n if all of its connected components have dimension n. A 1-dimensional manifold is also called a curve, a 2-dimensional manifold a surface, and a n-dimensional manifold is an n-manifold. 

N → M is C ∞ at a point p in N if there are charts (V ,ψ ) about F (p) in M and (U , ϕ) about p in N such that the composition ψ • F • ϕ -1 , a map from the open subset ϕ (F -1 (V ) ∩ U ) of R n to R m , is C ∞ at ϕ (p). If F is C ∞ at every point of N ,
F is said to be smooth. Checking that a map F :

N → M is C ∞ at p.
Intuitively the tangent plane to a surface at p in R n is the plane that just "touches" the surface at p. A vector at p is tangent to a surface if it lies in the tangent plane at p.

We de ne a germ of a C ∞ function at p in R n to be an equivalence class of smooth functions dened in a neighborhood at p in R n , the two functions being equivalent if they agree on some, possibly smaller, neighborhood of p. The set of germs of smooth real-valued functions at p in R n is denoted by

C ∞ p (R n
), an unitary commutative ring. This concept generalizes to a manifold M using the local coordinates given by the atlas, for each point p in M Let consider p ∈ M, then C ∞ p (M ) is the set of all function f : M → R which are C ∞ at p. A basic principle in manifold theory is the linearization principle, according to which a manifold can be approximated near a point by its tangent space at that point. For any point p in an open set U in R n there are two equivalent ways to de ne a tangent vector at p:

• as a vector, see gure 3.2 (see rst margin note).

• as a point-derivation of C ∞ p , the algebra of germs (see second margin note) of C ∞ functions at p. Both de nitions generalize to a manifold. In the rst approach, one de nes a tangent vector at p in a manifold M by rst choosing a chart (U , ϕ) at p and then denoting a tangent vector at p to be an "arrow" at ϕ (p) in ϕ (U ). This approach, while more visual, is complicated to work with, since a di erent chart (V ,ψ ) at p would give rise to a di erent set of tangent vectors at p and one would have to decide how to identify the arrows at ϕ (p) in U with the arrows at ψ (p) in ψ (V ). This happens because the rst de nition depends on the immersion of the manifold M in R n . The cleanest and most intrinsic de nition of a tangent vector at p in M is as a point-derivation, and this is the approach we adopt.

De nition 3.1.7. Generalizing a derivation at a point p in R n , we de ne a derivation at a point in a manifold M, or a pointderivation of C ∞ p to be a linear map

D p : C ∞ p (M ) → R such that D p ( f s) = (D p f )s (p) + f (p)D p s.
De nition 3.1.8. A tangent vector at a point p in a manifold M is a derivation at p.

De nition 3.1.9. The tangent vectors at p form a vector space T p (M ), called the tangent space of M at p. We also write T p M.

De nition 3.1.10. A vector eld on an open subset U of M is a function that assigns to each point p in U a tangent vector

X p ∈ T p (M ). Since we can assign a basis {∂/∂x i | p } to T p (M ) 1 ,
1 This result is proved in a theorem which states that, once we x a local frame (x 1 , . . .

, x n ), { ∂ ∂x i p } i=1,.
..,n form a basis for T p (M ) (see [START_REF] Loring | An introduction to manifolds[END_REF])

where the elements of the basis are the n directional derivates which come from the local coordinates of U in R n , the vector X p is a linear combination:

X p = a i (p) ∂ ∂x i p p ∈ U , a i (p) ∈ R
where a i are smooth functions on U . The set of vector elds on a manifold M is denoted by X(M ).

Remark 3.1.11. An equivalent de nition is that a vector eld X is a derivation on C ∞ (M ), i.e. D : C ∞ (M ) → C ∞ (M ) R-linear which satis es the Leibniz rule, see [START_REF] Loring | An introduction to manifolds[END_REF] for the proof.

We will now de ne the concept of a smooth map between two manifolds in order to introduce the di erential of a map: De nition 3.1.12. Let F : N → M be a C ∞ map between two manifolds. At each point p ∈ N , the map F induces a linear map of tangent spaces called its di erential at p:

(dF ) p : T p (N ) → T F (p) (M ) If X p ∈ T p N , then (dF ) p (X ) is the tangent vector in T F (p) M de- ned by: (dF ) p (X )( f ) = X p ( f • F ) ∈ R for f ∈ C ∞ F (p) (M ).
Here f is a germ at F (p), represented by a C ∞ function in a neighborhood of F (p). Since the previous de nition is independent of the representative of the germ, in practice we can be relaxed about the distinction between a germ and a representative function for the germ.

Remark 3.1.13. If f : M → R is a C ∞ -function, the di eren- tial of f : d f := X(M ) → C ∞ (M )
is globally de ned as the map which acts as follows on each vector eld X ∈ X(M ):

d f (X ) := X ( f )
It is clear that this de nition descends directly from the general one.

Remark 3.1.14. If instead of N and M we consider a map F between R n and R m we discover with some computations that the matrix associated to the linear map

(dF ) p : T p (R n ) → T F (p) (R m )
is precisely the Jacobian matrix of F at p. Thus, the di erential of a map between manifolds generalizes the derivative of a map between Euclidean spaces.

De nition 3.1.15. A smooth curve in a manifold M is by def- inition a smooth map γ : (a, b) → M from some open interval (a, b) into M.
Usually we assume 0 ∈ (a, b) and we say that γ is a curve starting at p if γ (0) = p. The tangent vector (or velocity vector) γ (x ) to the curve γ in x ∈ (a, b) is de ned to be:

γ (x ) = (dγ ) x d dt ∈ T γ (x ) M De nition 3.1.16. We call γ an integral curve of the vector eld X on M if γ (x ) = X γ (x ) , ∀x ∈ (a, b), i.
e. a smooth parametrized2 curve γ whose tangent vector at any point coincides with the value of X at the same point. In local coordinates (x 1 , . . . , x n ) this means:

γ : (a, b) → ϕ u (U ) ∈ R n t → (γ 1 (t ), . . . , γ n (t ))
If we make some calculations we observe:

D γ d dt ( f (x 1 , . . . , x n )) = d dt f (γ 1 (t ), . . . , γ n (t )) = n i=1 ∂ f ∂x i γ i (t )
Hence

γ (t ) = n i=0 γ i (t ) ∂ ∂x i .
With respect to the basis

{ ∂ ∂x 1 , . . . , ∂ ∂x n } we have γ (t ) = (γ 1 (t ), . . . , γ n (t )).
Following the previous de nition γ

(x ) = X γ (x ) this means γ i (t ) ∂ ∂x i = a i (γ 1 (t ), . . . , γ n (t )) ∂ ∂x i
, where a i are the coecients of X in the coordinates (x 1 , . . . , x n ). Since { ∂ ∂x i } forms a basis, γ is an integral curve i γ i (t ) = a i (γ 1 (t ), . . . , γ n (t )) for all i, i.e. γ 1 , . . . , γ n is a solution of the previous system of autonomous ODEs of the rst order.

Fiber bundles and tangent spaces

The collection of tangent spaces in a manifold is called tangent bundle. It is a locally trivial family of tangent vector spaces parametrized by points of the manifold. It locally looks like a certain product space, but globally may have a di erent topological structure. More generally it is possible to de ne ber bundles, or vector bundles, with analogous properties: they locally look like a cartesian product of a base set and a ber (which reduces to a vector space in case of vector bundles) but can have a rich global structure.

De nition 3.1.17. A ber bundle is a structure (E, B, π , F ) where E, B and F are topological spaces and π : E → B is a continuous surjection satisfying the local triviality condition outlined below. The space B is called the base space of the bundle, E the total space, and F the ber. The map π is called the projection map. We require that ∀ x ∈ E there is an open neighborhood U ⊂ B of π (x ) (which will be called trivializing neighborhood) such that π -1 (U ) is homeomorphic to the product space U × F , in such a way that π agrees with the projection onto the rst factor. Thus the following diagram should commute: Example 3.1.18. The Moebius strip is the simplest example of a non-trivial bundle E. The base B is the circle S 1 and the ber F is a line segment. Given x ∈ B, U is a small arc (neighborhood of x on the circle) and π -1 (U ) is homeomorphic to the square U × F . Globally this is not true.

π -1 (U ) U × F U . . . .
A special class of ber bundles, called vector bundles, are those whose bers are vector spaces and the composition of local trivializations is linear over the ber F . De nition 3.1.19. Let M be a smooth manifold and T p M is the tangent space at p de ned in 3.1.9. The tangent bundle of M is the disjoint union of all tangent spaces of M:

T M = p∈M T p M
In this de nition the union is disjoint because for distinct points p and q in M, the tangent spaces T p M and T q M are already disjoint. T M has the structure of a di erentiable manifold and the bundle structure is given by the natural map π : T M → M where ∀p ∈ M, π -1 (p) is the tangent space of the manifold M at the point p and this map does not depend on the choice of atlas or local coordinates for M. As a matter of notation, sometimes a tangent vector ∈ T p M can be identi ed by the pair (p, ), to make explicit the point p ∈ M at which is a tangent vector.

Another special class of ber bundles, called principal bundles, are those bundles on whose bers there is a free and transitive action (see margin note) by a group G is given. The bundle is often speci ed along with the group by referring to it as a principal G-bundle. As we will see we are interested in this de nition because principal ber bundles are used in our model to describe the visual cortex.

De nition 3.1.20.

A topological group is a group G together with a topology on G such that the group's binary operation and the group's inverse function are continuous functions with respect to the topology.

De nition 3.1.21. If G is a group and X is a set, then a (right) group action of G on X is a function X × G → X (x, p) → x • p
that satis es the following two axioms:

• Compatibility x • (ph) = (x • p) • h, for all p, h ∈ G, x ∈ X • Identity x • e = x for all x ∈ X An action is free if, given p, h ∈ G, the existence of an x ∈ X with x • p = x • h implies p = h.
Equivalently: if p is a group element and there exists an x ∈ X with x • p = x (that is, if p has at least one xed point), then p is the identity. An action is transitive if X is non-empty and if for any x, , ∈ X there exists a p in G such that x • p = .

De nition 3.1.22. A principal ber G-bundle, where G denotes any topological group, is a ber bundle π : P → X together with a continuous right action P × G → P such that G preserves the bers of P and acts freely and transitively on them. This implies that the ber of the bundle is homeomorphic to the group G itself.

De nition 3.1.23. Let π : E → M be a vector bundle on M. We call a section of the vector bundle a map ϕ : M → E such that π • ϕ = Id M Remark 3.1.24. A vector eld X (de ned in 3.1.10) on manifold M is a section of the tangent bundle π : T M → M and the vector eld is smooth if it is smooth as a map from M to T M.

All these instruments allow us to de ne other concepts such as an a ne connection, the parallel transport, covariant derivatives and geodesic without requiring the concept of metric. For reader convenience, since we will deal with a sub-Riemannian metric and its Riemannian approximation, we are going to dene these concepts directly in the enriched framework provided by considering a Riemannian manifold.

Lie groups and their properties

In this section we will provide some basic de nitions of the Lie group theory. De nitions and theorems can be found in [START_REF] Seshadri | Lie groups, Lie algebras, and their representations[END_REF].

Definition

De nition 3.2.1. A Lie Group is a group which also carries the structure of a di erentiable manifold in such a way that both the group operation

• : G × G → G, (p, h) -→ p • h for p, h ∈ G and the inversion i : G → G , i (p) = p -1 , p ∈ G are smooth maps.
Examples of Lie Groups are:

• The Euclidean space R n , with the usual sum as group law.

• The set of real/complex square matrices n × n, with the determinant di erent from 0. In this set we consider the standard product of matrices, and the existence of an inverse is ensured by the condition on the determinant. Note that this group is not commutative.

• The circle S 1 ⊂ C of angles mod 2π , with the standard sum of angles.

• The group of rotations and translations on the plane SE (2) which will be described in detail in this thesis.

Properties

De nition 3.2.2. For two vector elds (i.e. two derivations) X and Y in X(M ), their Lie bracket (or commutator) is de ned by their action on functions f : M → R:

[X , Y ]( f ) = X (Y ( f )) -Y (X ( f ))
Note that the Lie bracket is a measurement of the non-commutativity of the operators; it is de ned as the di erence of applying them in reverse order. In particular [X , Y ] is identically 0 if X and Y commute.

De nition 3.2.3. Let G be a Lie group. For any element p ∈ G, we de ne the left-multiplication (or left-translation)

L p : G → G by: L p (h) = p • h for all p ∈ G
where • denotes the group operation in G.

De nition 3.2.4. A vector eld X on G is called left-invariant if: X ( f • L p ) = (X f ) • L p for all p ∈ G De nition 3.2.5.
The Lie Algebra of a Lie group G is the vector space of all left-invariant vector elds on G:

Lie (G) := {X ∈ X(M ) : X is left invariant, i.e. X ( f • L p ) = (X f ) • L p }
for all p ∈ G and f smooth on M.

Remark 3.2.6. A result (see [START_REF] Frank | Foundations of di erentiable manifolds and Lie groups[END_REF]) states that the Lie algebra associated to a Lie group can be identi ed as the tangent space at the identity of the group e, i.e.

Lie (G) T e G

Riemannian and Sub-Riemannian manifolds

So far we have dealt with di erentiable objects. Now we will introduce some concepts, the a ne connection (and the ones that follow: Christo el symbols, parallel transport and geodesics) that could have been introduced without mentioning any metric in our space, as the reader will notice directly from the definition. A metric (or inner product) is an instrument which allows to measure the length of any vector of the tangent space.

In order to simplify the concepts and their usage, we work directly in Riemannian manifolds, i.e. manifolds equipped with a Riemannian metric. However, for reader convenience we will crearly state whether in the de nitions there will be dependence on the metric. For further references see [START_REF] Robert K Hladky | Constant mean curvature surfaces in sub-riemannian geometry[END_REF], [START_REF] Wilkins | A course in riemannian geometry[END_REF][START_REF] Montgomery | A Tour of Subriemannian Geometries, Their Geodesics and Applications[END_REF], [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF].

De nition 3.3.1. Let V be a vector space. An inner product (or metric) on V is a bilinear form, symmetric and positive de ned, i.e.

•, • : V × V → R such that:

(i) u 1 + u 2 , = u 1 , + u 2 , ∀u 1 , u 2 , ∈ V ; (ii) λu, = λ u, ∀u, ∈ V , ∀ λ ∈ R; (iii) u, = , u ∀u, ∈ V . (iv) u, u ≥ 0 ∀u ∈ V , with u, u = 0 ⇔ u = 0.

Riemannian manifolds

The easiest example of Riemannian manifold is R n equipped with the Euclidean metric.

De nition 3.3.2. Let M be a C ∞ manifold of dimension m.
A Riemannian metric on M is given by a scalar product on each tangent space T p M which depends smoothly on the base point p ∈ M (i.e. for each couple of vector elds X , Y , the map p → p (X p , Y p ) is di erentiable). A Riemannian manifold is a di erentiable manifold, equipped with a Riemannian metric.

The compatibility condition mean that ∇ ≡ 0. From an intuitive point of view this ensures that Leibniz condition holds along the ber bundle T M. Furthermore the metric is constant along parallel transport, which means that parallel trasport is an isometry.

De nition 3.3.3. Let M be a C ∞ manifold of dimension m. An a ne connection on M is a di erential operator, sending smooth vector elds X and Y to a smooth vector eld ∇ X Y which satis es the following conditions:

• ∇ X Y is C ∞ (M ) -linear in X: ∇ f X 1 +sX 2 Y = f ∇ X 1 Y + s∇ X 2 Y • ∇ X Y is linear over R in Y: ∇ X (aY 1 + bY 2 ) = a∇ X Y 1 + b∇ X Y 2 • Product rule: ∇ X ( f Y ) = f ∇ X Y + (X f )Y where f , s ∈ C ∞ (M ), a, b ∈ R. ∇ X Y
is called the covariant derivative of the vector eld Y along the tangent vector X.

In general there are an in nite number of a ne connections for a given metric tensor. However, in this speci c case, we are interested in a connection compatible with the Riemannian metric of the space (i.e. a metric connection). The unique a ne connection compatible with the Riemannian metric is the Levi-Civita connection (and it satis es the Koszul identity). Christoffel symbols Γ k ij are the local coe cients of a connection. They can be de ned for any a ne connection:

∇ ∂ ∂x i ∂ ∂x j = Γ k ij ∂ ∂x k
with i, j, k ∈ {1, . . . , n}. However, in case of the Levi-Civita connection in a Riemannian manifold, Christo el symbols have an expression which depend directly on the Riemannian metric. Given a local frame for T M, { ∂ ∂x i } i=1,...,n , then the Christo el symbols Γ k ij will have the following expression:

The result that states the Levi-Civita connection is the unique connection compatible with the metric is fundamental in Riemannian geometry, because it ensures all conditions presented in the previous footnote are satis ed.

Γ k ij = 1 2 lk ∂ ∂x i jl + ∂ ∂x j il + ∂ ∂x l ij (3.1)
where we apply Einstein summation convention 3 and ( ij ) =

3 It means that all contravariance indexes which have a covariant counterpart have to be summed. For example:

= c i x i = 3 i=1 c i x i
where in this case i ∈ {1, 2, 3}.

In our general example i, j, l ∈ {1, . . . , n}.

( ij ) -1 , (i.e. il l j = δ ij ). Let now [a, b] be a closed interval in R, γ : [a, b] → M a smooth curve.
The length of γ is de ned as:

L(γ ) := b a γ (t ) dt (3.2) 
where given a tangent vector

∈ T p M the norm is = √ , .
The energy of γ is de ned as 

E (γ ) := 1 2 b a γ (t )
+ Γ i jk (x (t )) ẋj (t ) ẋk (t ) = 0 (3.4)
where Γ i jk have the previous de nition. De nition 3.3.5. Geodesics are critical points of the energy functional E.

In particular minima of the energy functional E are critical points, hence geodesics. In addition it can be proved that minima of the functional E also minimize the length functional L de ned in 3.2. These geodesics will be called minimizing geodesics: This means that geodesics are critical points of the energy functional E.

De nition 3.

Sub-Riemannian manifolds

We will now establish a notation to introduce the concept of the sub-Riemannian metric, a tool which allows us to describe the connections between the hypercolumns in our model. Let us start from the de nition of distribution, which is still an object which does not depend on the metric. De nition 3.3.8. Let M be a C ∞ manifold of dimension m, and let n m. Suppose that for each p ∈ M, we assign an n-dimensional subspace ∆ p ⊂ T p (M ) of the tangent space in such a way that for a neighborhood N p ⊂ M of p there exist n linearly independent smooth vector elds X 1 , . . . , X n ∈ X(M ) such that for any point q ∈ N p we have X 1 (q), . . . , X n (q) span ∆ q . We let ∆ refer to the collection of all the ∆ p for all p ∈ M and we will call ∆ a distribution of dimension n on M. The set of smooth vector elds {X 1 , . . . , X n } is called a local basis of ∆ De nition 3.3.9. A sub-Riemannian manifold is the datum of a smooth manifold M, a smooth constant rank distribution H M ⊂ T M and a smooth inner product •, • on HM. The bundle H M is known as the horizontal bundle.

De nition 3.3.10. A sub-Riemannian manifold with a complement, henceforth a sRC manifold, is a sub-Riemannian manifold together with a smooth bundle V M such that HM ⊕ V M = T M. The bundle V M is known as the vertical bundle. The two sRCmanifolds M, N , are sRC-isometric if there exists a di eomorphism π : M → N such that (dπ )HM = H N , (dπ )V M = V N and (dπ )X , (dπ )Y N = X , Y M for all horizontal vectors X , Y . Remark 3.3.11. The de nition of a sub-Riemannian manifold is more general than the one of Riemannian manifold. This last one can be seen as a sub-Riemannian manifold in which the smooth rank distribution has the same dimension as the manifold, i.e. H M = T M (this implies that the vertical bundle is null). Equivalently a sub-Riemannian manifold can be seen as a Riemannian manifold in which the metric is degenerate, i.e. a sub-Riemannian metric can be seen as the limit of a Riemannian metric.

The Euclidean gradient is de ned as the vector of the partial derivatives of a function f with respect to the set of coordinates.

Remark 3.3.12. If we consider a Riemannian manifold (M, p ) and f ∈ C 1 (M ) a function, for each p ∈ M we de ne the gradient of f in p as the vector eld ∇f satisfying:

d p f ( ) = p (∇f , ) ∀ ∈ T p M
The Riemannian gradient has the same useful properties as the gradient of the Euclidean calculus, such as it vanishes in the extremal point for f . We can also write the formula for the gradient in local coordinates:

∇f (x ) = n i=1 n j=1 ij (x ) ∂ f ∂x i ∂ ∂x i (3.5)
where ij are the local expressions of the inverse of the matrix of the metric.

De nition 3.3.13. A sub-Riemannian manifold with a complement (M, HM, V M, •, • ) is r-graded if there are r smooth constant rank bundles V (j) , with 0 < j ≤ r , such that:

V M = V (1) ⊕ . . . ⊕ V (r )
and we have:

H M ⊕ V (j) ⊕ [HM,V (j) ] ⊆ HM ⊕ V (j) ⊕ V (j+1)
for each 0 ≤ j ≤ r . Here we have adopted the convention that

V (0) = H M and V (k ) = 0 for k > r .
De nition 3.3.14. The grading is j-regular if

H M ⊕ V (j) ⊕ [HM,V (j) ] = HM ⊕ V (j) ⊕ V (j+1)
and equiregular if it is j-regular for all 0 ≤ j ≤ r .

Let us now de ne a metric extension:

De nition 3.3.15. A metric extension for an r-graded sub-Riemannian manifold is a Riemannian metric which coincides with •, • on HM that makes the split

T M = HM 1≤j≤r V (j)
orthogonal.

For convenience of notation, we shall denote a section V (k ) by X (k ) and set:

V (j) = k j V (k )
De nition 3.3.16. From the previous observations we can dene the horizontal gradient for a sub-Riemannian manifold as

∇ 0 = (X 1 , . . . , X m )
where {X 1 , . . . , X m } span the horizontal bundle. In the same way if a metric extension (which is a Riemannian metric) has been chosen we can denote the gradient as

∇ = (X 1 , . . . , X m , X m+1 , . . . , X n )
where {X m+1 , . . . , X n } span the vertical bundle.

Remark 3.3.17. If a metric extension has been chosen then V (j) = (V (j) ) ⊥ is the orthogonal complement of V (j) .

Remark 3.3.18. Every sRC-manifold that admits an r-grading also admits k-gradings for all 1 ≤ k < r by setting:

Ṽ (j) = V (j) 0 ≤ j < k, Ṽ (k ) = j≥k V (j)
De nition 3.3.19. The unique 1-grading on each sRC-manifold, V (1) = V M is known as the basic grading.

Example 3.3.20. A Carnot group (of step r) is a Lie group, whose Lie algebra g is strati ed in the sense that:

g = g ⊕ g ⊕ . . . ⊕ g r- and [g, g j ] = g j+ j = 1 . . . r , g r = 0
together with a left-invariant metric •, • on HM. The vertical bundle V M consists of the left translates of g ⊕ . . . ⊕ g r-.

4 Neurogeometry of V1/V2 I , starting from the functional architecture of the primary visual cortices V1/V2 introduced in chapter 2, a neuro-mathematical model involving tools presented in chapter 3 will account for the organization of cells in the cortex and their connectivity. In particular the modelization of receptive elds and pro les of simple cells will be recalled, as well as how orientation detection could be modelled through the introduced instruments. Oriented lters have been used as models for receptive elds of simple cells since the 80's and lots of possible interpretations have been presented. However in this work we will focus on Gabor lters, which result to be a biologically based model for receptive pro les of V1/V2. The roto-translations invariance intrinsic in the organization of the simple cells in the cortex suggests that a good model for the hypercolumnar structure of V1/V2 is given by the ber bundle of the rototranslation group SE(2) = R 2 ×S 1 . For each point of the retina (x 1 , x 2 ) a whole ber of orientations {θ ∈ S 1 } is associated and a tangent direction is selected, through the short range connectivity (intra-cortical circuitry). The action of the group SE (2) over the basis of the tangent bundle { ∂ ∂x 1 , ∂ ∂x 2 , ∂ ∂θ } allows to recover the vector elds X 1 , X 2 , X 3 , left invariant with respect to the group law and generators of the ber bundle. The metric living in the tangent space spanned by those vector eld will be sub-Riemannian, to model the strongly anisotropy in the X 3 direction of the cortical connection. The rst geometric models of the functionality of the visual cortex date back to the papers of Ho mann [START_REF] Ho Man | The visual cortex is a contact bundle[END_REF], Koenderink and van Doorn [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF] and August and Zucker [START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF]. Petitot and Tondut [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] proposed a model of single boundaries completion through constraint minimization in a contact structure, obtaining a neural counterpart of the models of Mumford [START_REF] Mumford | Elastica and computer vision[END_REF]. The latter will be analyzed and discussed in chapter 7. Here we focus on the model proposed by Sarti and Citti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], and we will analyze its applications and extensions in the next chapters.

Neurogeometry of the primary visual cortices

The visual process is the result of several retinic and cortical mechanisms which act on the visual signal. In chapter 2 the whole mechanism has been analyzed in dept. Let us recall that the receptive eld (RF) of a cortical neuron is the portion of the retina which the neuron reacts to, and the receptive pro le (RP) ψ (ξ ) is the function that models the activation of a cortical neuron when a stimulus is applied to a point ξ = (ξ 1 , ξ 2 ) of the retinal plane. The latter is identi ed with the R 2 -plane, while ξ denotes its local coordinates.

The set of simple cells receptive profiles

Simple cells of visual cortices V1 and V2 are sensitive to position and orientation of the contrast gradient of an image. Their properties have been experimentally described by De Angelis in [START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF], see gure 4.1, who performed so sticated electrophysiological measurements. From the neurophysiological point of view the orientation selectivity, the spatial and temporal frequency of cells in V2 di ers little from the one in V1 ( [START_REF] Levitt | Receptive elds and functional architecture of macaque v2[END_REF]).

A classi cation of di erent visual neurons starting from their receptive pro les has been possible through those recordings as well as make a list of their properties: size, preferred orientation of corresponding RF, position. For example it is known that receptive pro le of LGN neurons (and those of retinal ganglion cell) can be modelled as Laplacian of Gaussian. Receptive elds of simple cells of V1 and V2 have an ON zone elongated, as shown in gure 4.1.

Receptive elds in V2 are larger from those in V1 ( [START_REF] Kennedy | Receptive eld properties of neurones in visual area 1 and visual area 2 in the baboon[END_REF], [START_REF] Levitt | Receptive elds and functional architecture of macaque v2[END_REF]). Considering a basic geometric model, the set of simple cells RPs can be obtained via translations of vector (x 1 , x 2 ) and rotation of angle θ from a unique mother pro le ψ 0 (ξ ). These symmetries between cells in the primary visual cortices suggest the Rototranslation group could play a role to model the hypercolumnar structure of V1/V2 and its physiological properties. In literature it is also known as the 2D Euclidean motion group SE(2), and it is the 3D group of rigid motions in the plane (or equivalently the group of elements invariant to rotations and translations).

Orientation detection

Receptive elds have been modelled as oriented lters in the middle of 80's and since then extraction of orientation in im-age analysis has been subject of several works. The rst models have been presented by [START_REF] John G Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical lters[END_REF] [START_REF] John G Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical lters[END_REF], [START_REF] Jones | An evaluation of the two-dimensional gabor lter model of simple receptive elds in cat striate cortex[END_REF] [START_REF] Jones | An evaluation of the two-dimensional gabor lter model of simple receptive elds in cat striate cortex[END_REF]: they showed that Gabor lters were a good approximation for receptive pro les of simple cells in the primary visual cortices V1 and V2. LGN neuron, on the left is presented a scheme of the receptive pro le with its + (ON) and -(OFF) domains and on the right a recording of its levels lines, from De Angelis [START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF]. Bottom: a scheme of the Laplacian of Gaussian model for a LGN receptive pro le, see [START_REF] Petitot | Neurogéométrie de la vision[END_REF].

Gabor lters are the natural lters of this space: in [START_REF] Sing | Image representation using 2d gabor wavelets[END_REF] Lee showed that they allow a complete representation of an image, and they minimize the uncertainty principle ( [START_REF] John G Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical lters[END_REF]). Almost in the same years Young in [START_REF] Richard | The gaussian derivative model for spatial vision: I. retinal mechanisms[END_REF] (1987) and Koenderink in [START_REF] Koenderink | Receptive eld families[END_REF] (1990) introduced Gaussian derivatives (DoG) to model receptive pro les of simple cells of V1. These lters can be considered special cases of steerable lters, which have been studied in full generality in [START_REF] William T Freeman | The design and use of steerable lters[END_REF] (1991) and [START_REF] Perona | Deformable kernels for early vision[END_REF] (1995). They are a very e cient tool for extracting multiple orientations and perfoming computations since all lters are expressed as a linear combination of basis lters. We also refer to [START_REF] Romeny | Front-end vision and multi-scale image analysis: multi-scale computer vision theory and applications[END_REF] (2008) and [START_REF] Petitot | Neurogéométrie de la vision[END_REF] (2008) for further explanations and details. More recently a new class of multi-orientation lters have been introduced by Duits et al. in [START_REF] Duits | Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group[END_REF] (2007): cake-wavelets. These wavelets are particularly useful since they induce an invertible map (called orientation scores) between the image domain and the features space of positions and orientations. In this space complex structures such as crossings, T-junctions are disentangled. A comparison between cake-wavelets and Gabor lters e ciency has been presented in [START_REF] Bekkers | A multiorientation analysis approach to retinal vessel tracking[END_REF]. Other lifting approaches are orientation lifts and orientation channel representations, see Felsberg in [START_REF] Felsberg | Adaptive ltering using channel representations[END_REF]. Another technique based on orientation detection is inpainting, which consists in restoring damaged portions of an image. The word was coined by Bertalmio et al. in [START_REF] Bertalmio | Image inpainting[END_REF] and the idea was to perform di usion along the orientation of level-lines of the image. Masnou and Morel proposed in [START_REF] Masnou | Level lines based disocclusion[END_REF] a method in accord with Kanizsa's theory of amodal completion. We will see in chapter 5 how the model presented in this chapter applies to image restoration.

Our scope is to model the functionality of the visual cortex. Hence we choose Gabor lters which are a good model of receptive pro les and they provide a good estimation of the spiking responses. In our contribution we will consider odd and even part of Gabor lters, since we will need to be able to measure θ correctly for both contours and lines. A good expression for the mother Gabor lter is:

ψ 0 (ξ ) = ψ 0 (ξ 1 , ξ 2 ) = 1 2πσ 2 e -(ξ 2 1 +α 2 ξ 2 2 ) 2σ 2 e 2i bξ 2 σ , ( 4.1) 
where b > 0 is the ratio between σ and the spatial wavelength of the cosine factor, α > 0 is the spatial aspect ratio of the Gaus- sian envelope. Translations and rotations can be expressed as:

A (x 1 ,x 2 ,θ ) (ξ ) = x 1 x 2 + R θ ξ 1 ξ 2 . (4.2)
where R θ :

R θ = cosθ -sinθ sinθ cosθ
and represents a rotation of angle θ . Hence a general RP can be expressed as:

ψ (x 1 ,x 2 ,θ ) (ξ 1 , ξ 2 ) = ψ 0 (A -1 (x 1 ,x 2 ,θ ) (ξ 1 , ξ 2 )).

The group law

A way of visualizing this space obtained through rotations and translations of a mother receptive pro le ψ 0 is illustrated in gure 4.4: the half-white/half-black circles represent the oriented receptive pro les of odd simple cells, where the angle indicated by the diameter of each circle is the angle of tuning. Every possible receptive pro le is obtained from the origin by translating it through the vector (x 1 , x 2 ) and rotating it over itself by an angle θ . It results clear that the set of all parameters {p = (x 1 , x 2 , θ ), (x 1 , x 2 ) ∈ R 2 and θ ∈ S 1 }, forms a group with the operation induced by the composition A p 1 • A p 2 . This turns out to be: Being induced by the composition law, one can easily check that + R veri es the group operation axioms, where the inverse of a point p = (x 1 , x 2 , θ ) is induced by the rototranslation

p 1 • p 2 = (x 1 , x 2 , θ 1 ) + R ( 1 , 2 , θ 2 ) = x 1 x 2 + R θ 1 1 2 T , θ 1 + θ 2
A -1 x 1 ,x 2 ,θ = R -1 θ • T -1 x 1 ,x 2
and the identity element is given by the trivial point e = (0, 0, 0). The group generated by the operation + R in the space R 2 × S 1 is called Rototranslation group or equivalently SE (2). The structured space of receptive pro les with the symmetries described above accounts for the rototranslation invariance of the V1/V2 in the representation of a retinal image; the signals will be identical no matter what their position or orientation in the phenomenological space. In the gure 4.5 a set of RPs generated with equation (4.2) is shown. The retinal plane is identi ed with the R 2 -plane, whose local coordinates will be denoted with (ξ 1 , ξ 2 ). When a visual stimulus I of intensity I : M ⊂ R 2 → R + , activates the retinal layer of photoreceptors, the neurons whose RFs intersect M spike and their spike frequencies O (x 1 , x 2 , θ ) can be modeled (taking into account just linear contributions) as the integral of the signal I with the set of Gabor lters. Indeed we assume the treated visual stimulus I to be integrable, i.e. I ∈ L 1 (R 2 ). The expression for this output is:

O (x 1 , x 2 , θ ) = M I (ξ 1 , ξ 2 ) ψ (x 1 ,x 2 ,θ ) (ξ 1 , ξ 2 ) dξ 1 dξ 2 . (4.3)
In the right hand side of the equation the integral of the signal with the real and imaginary part of the Gabor lter is expressed. The two families of cells have di erent shapes, hence they detect di erent features. In particular odd cells will be responsible for boundary detection, see gure 4.6. 

Functional architectures of V1/V2 and their connectivity

The rototranslation group accounts for the organization of cells in the primary visual cortices, but in order to model long range connectivity between receptive pro les a di erential structure is needed. For this reason SE (2) will be considered equipped with its di erential structure of Lie group (principal ber bundle), with a sub-Riemannian metric. The base space of thebration is the retina and there will be a map associating to each retinotopic position (ξ 1 , ξ 2 ) ∈ R 2 a ber, which is a copy of the whole possible set of orientations (the hypercolumn).

Hypercolumnar structure

The term functional architecture refers to the organisation of cells in the primary visual cortex in structures. As presented in chapter 2, the hypercolumnar structure, discovered by the neuro -physiologists Hubel and Wiesel in the 60s ( [START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]), organizes the cells of V1/V2 in columns (called hypercolums) covering a small part of the visual eld M ⊂ R 2 and corresponding to parameters such as orientation, scale, direction of movement, color, for a xed retinal position (ξ 1 , ξ 2 ). In our framework over each retinal point we will consider a whole hypercolumn of cells, each one sensitive to a speci c instance of orientation. Hence for each cortical position (x 1 , x 2 ), corresponding to the retinical position (ξ 1 , ξ 2 ) ∈ M ⊂ R 2 , we associate a whole set of lters

RP (x 1 ,x 2 ) = {ψ (x 1 ,x 2 ,θ ) : θ ∈ S 1 }. (4.4)
This expression associates to each point of the proximal stimulus in R 2 all possible feature orientations into the space of where L and R represent the ocular dominance columns (Petitot [START_REF] Petitot | Neurogéométrie de la vision[END_REF]). Bottom: for each position of the retina (x 1 , x 2 ) we have the set of all possible orientations, [START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

features S 1 , and de nes a ber over each point

{θ ∈ S 1 }.
In this way the hypercolumnar structure is described in terms of di erential geometry, but we need to explain how the orientation selectivity is performed by the cortical areas in the space of feature S 1 ([28]).

Cortical connectivity

Physiologically the orientation selectivity is the action of short range connections between simple cells belonging to the same hypercolumn to select the most probable response from the energy of receptive pro les. Horizontal connections are long ranged and connect cells of approximately the same orientation.

Since the connectivity between cells is de ned on the tangent bundle, we de ne now the generator of this space. The change of variable de ned through A in (4.2) acts on the basis for the tangent bundle ( ∂ ∂x 1 , ∂ ∂x 2 ) giving as frame in polar coordinates:

X 1 = cos θ ∂ ∂x 1 + sin θ ∂ ∂x 2 , X 3 = -sin θ ∂ ∂x 1 + cos θ ∂ ∂x 2 (4.5)
As presented in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], the whole space of features (x 1 , x 2 , θ ) is described in terms of a 3-dimensional ber bundle, whose generators are X 1 , X 3 for the base and

X 2 = ∂ ∂θ , (4.6) 
for the ber. These vector elds generate the tangent bundle of R 2 ×S 1 . Since horizontal connectivity is very anysotropic, the three generators are weighted by a strongly anysotropic metric. We introduce now the sub-Riemannian metric with whom Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] proposed to endow the R 2 ×S 1 group to model the long range connectivity of the primary visual cortex V1. Starting from the vector elds X 1 , X 2 and X 3 they rst de ned the horizontal tangent bundle HM, as the distribution generated by X 1 , X 2 (see de nition 3.3.9). Then they proved that cortical curves in V1 are always integral curves of vector elds in H M, which clarify the role of the geometry. As a consequence the connectivity pattern is described by integral curves of vector elds of the horizontal tangent space HM.

The li ing of a curve

Properties of the curves lifted in the cortical space can be obtained analyzing the lifting process operated by simple cells. If we consider a real stimulus, represented as an image I : M → R, we know that cells over each point (ξ 1 , ξ 2 ) ∈ M can code the orientation of the level lines of I . Mathematically a level set is de ned as follows:

Γ c (I ) = {(ξ 1 , ξ 2 ) | I (ξ 1 , ξ 2 ) = c}
i.e. it is a set where the function takes on a given constant value c of I . If I is su ciently regular, the gradient vector to I , denoted by ∇I , is orthogonal to the level lines of I . At points where the gradient does not vanish, we can perform a normalization and associate an orientation to the latter. Formally:

∇I |∇I | = (-sin θ , cos θ ).
This procedure de nes at every considered point an orientation

θ : M → S 1
such that (-sin θ , cos θ ) is orthogonal to the level lines of I . This means that (cos θ (ξ ), sin θ (ξ )) is tangent to the level lines of I at the point (ξ 1 , ξ 2 ). This orientation selectivity is performed by the short-range action of the connectivity which selects at the point ξ the simple cell with the maximum response within the whole hypercolumn and supresses all the others. This mechanism is called lifting. The whole 2D level line can also be identi ed with a 2D retinical curve A contour in a 2D image can be modelled as a curve whose tangent is the vector (cos θ , sin θ ) and its normal direction is ∇I /|∇I | = (-sin θ , cos θ ) as indicated in the gure, [START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

γ 2D = (ξ 1 (t ), ξ 2 (t ),
which is lifted to a new curve γ (t ) in the 3D cortical space:

(ξ 1 (t ), ξ 2 (t )) → (x 1 (t ), x 2 (t ), θ (t )), (4.7) 
where indeed

x 1 = ξ 1 , x 2 = ξ 2 .
We call an admissible curve a curve in R 2 × S 1 if it is the lifting of a contour (identi ed by a planar curve). In gure 4.9 we can see an illustration of the lift- ing process. By the parametrization we have chosen before for the curve γ 2D (the blue curve in gure 4.9) we can immediately express the value of θ :

θ = -arctan x 2 x 1 .
The lifting γ (red curve in gure 4.9) of the curve γ 2D previously seen in ((4.7)) can be expressed by (x 1 , x 2 , θ ) where

γ = (x 1 , x 2 , θ ) = (cos θ , sin θ , θ ) = X 1 + θ X 2
γ (t ) has a non-vanishing component in the direction X 1 and a second component θ in the direction of X 2 . Admissible curves are integral curves of the two vector elds in a 3D (cortical) space, and cannot have components in the orthogonal direction given by the gradient ∇I /|∇I | = X 3 . This property clari es the geometry of the cortical space starting from a biological and neurophysiological evidence and allows to perform a rst choice of a metric.

The metric of the cortical space

Since the only lifted curves in the cortical space are integral curves of the vector elds X 1 and X 2 , Citti and Sarti [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] dened a sub-Riemannian metric on the space, imposing that the horizontal tangent space is spanned by X 1 and X 2 . Imposing that they are orthonormal, we obtain a metric H on HM, with inverse H -1 , which expressed in the frame X 1 , X 2 are simply the identity:

H = 1 0 0 1 , H -1 = 1 0 0 1 (4.8)
If we consider a = a 1 X 1 + a 2 X 2 ∈ HM, its horizontal norm is:

a = (a 1 ) 2 + (a 2 ) 2 .
(4.9)

The inverse metric H -1 can be formally extended to the whole space, to a new degenerate metric G -1 requiring that X 3 is orthogonal to the other directions and that G -1 vanishes along X 3 . This extended metrix can be expressed in the standard frame

∂ x 1 , ∂ x 1 , ∂ θ , as the metric: ij (x 1 , x 2 , θ ) = cos 2 θ sin θ cos θ 0 sin θ cos θ sin 2 θ 0 0 0 1 , ( 4.10) 
with i, j = 1, 2, 3. Let us underline that X 1 , X 2 and X 3 are left invariant with respect to the group law of rotations and translations, so that they are the generators of the associated Lie algebra. The rst classical properties of the distance in these spaces have been established by Nagel, Stein and Wainger (see [START_REF] Nagel | Balls and metrics de ned by vector elds i: Basic properties[END_REF]), and Gromov (see [START_REF] Gromov | Carnot-carathéodory spaces seen from within[END_REF]). The Hörmander condition is satis ed, see [START_REF] Hörmander | Hypoelliptic second order di erential equations[END_REF]:

De nition 4.3.1. We say that the Hörmander condition is satis ed if X 1 ,X 2 and their commutators of any order span the Euclidean tangent space at every given point.

Carnot Caratheodory distances

In the sub-Riemannian setting, the length of such curves is de ned as follows:

l (γ ) := T 0 H γ (t ) ( γ (t ), γ (t )) dt (4.11)
If the Hörmander condition holds, if we arbitrarily x two points η 0 and η 1 , there is always an horizontal curve connecting them.

Hence it is possible to de ne a sub-Riemannian distance between the two given points, as follows: see [START_REF] Nagel | Balls and metrics de ned by vector elds i: Basic properties[END_REF]:

d (η 0 , η 1 ) = inf γ ∈ Lip([0, T ], S E (2)), γ ∈ ∆ | γ , γ (0) = η 0 , γ (T ) = η 1 l (γ ).
(4.12)

5 Sub-Riemannian mean curvature flow for image processing I , we start from the model of perceptual completion introduced by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] expressed via a di usion driven motion by curvature. The main contribution of the chapter is the proof of existence of vanishing viscosity solutions for the mean curvature ow in the rototranslation group SE(2). Then we apply the algorithm to real images to perform impainting, which means to recover missing or damaged parts of an initial stimulus [START_REF] Bertalmio | Image inpainting[END_REF]. Our second contribution is to extend the algorithm to perform boundary enhancement, which means make the structures of images more visible, while reducing the noise [START_REF] Nitzberg | Nonlinear image ltering with edge and corner enhancement[END_REF][START_REF] Cottet | Image processing through reaction combined with nonlinear di usion[END_REF][START_REF] Weickert | Anisotropic di usion in image processing[END_REF][START_REF] Weickert | Coherence-enhancing di usion ltering[END_REF]. Other enhancement algorithms in an analogous geometric setting has been developed by Duits and Franken, see gure 5.3, and comparison of our results with the ones detected via the previous algorithms are performed. This chapter uses material from the following publication by the author [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF]. Scope of this section is to introduce di erential calculus in the sub-Riemannian structure de ned in section 4. Precisely, we will denote X 1 and X 2 the vector elds de ned in (4.5) and (4.6) and we will say that a function u : R 2 × S 1 → R is of class C 1 in the sub-Riemannian sense (we will denote it as u ∈ C 1 SR ) if there exists X 1 u and X 2 u and they are continuous. In this case we will call horizontal gradient of u, ∇u, applying de nition 3.3.16:

∇u = (X 1 u)X 1 + (X 2 u)X 2 .
Thanks to de nition 4.9, the norm of the horizontal gradient is:

∇u = (X 1 u) 2 + (X 2 u) 2 . ( 5.1) 
Let us recall here that the horizontal gradient is the projection of the standard gradient of u on the horizontal plane HM.

Li ing of a image to a regular surface

In section 4.3 we introduced the lifting of a curve in the 3D cortical space. We will now describe the lifting of the whole image at a time. Since each level line of an initial image I is lifted to a curve in the 3D cortical space, the whole image is lifted to a graph, see gure 5.4 (center):

(ξ 1 , ξ 2 ) → (x 1 (ξ 1 , ξ 2 ), x 2 (ξ 1 , ξ 2 ), θ (ξ 1 , ξ 2 )).
Using the fact that x 1 (ξ 1 , ξ 2 ) = ξ 1 and x 2 (ξ 1 , ξ 2 ) = ξ 2 , we can interpret this surface as the zero level set of the function u:

u (x 1 , x 2 , θ ) = θ -θ (x 1 , x 2 ),
and it can be identi ed as a regular surface in the sub-Riemannian structure. The notion of regular surface S was rst introduced by Franchi, Serapioni and Serracassano in [START_REF] Franchi | Regular hypersurfaces, intrinsic perimeter and implicit function theorem in carnot groups[END_REF]: The horizontal normal of S is de ned as

S = {(x 1 , x 2 , θ ) : u (x 1 , x 2 , θ ) = 0 and ∇u (x 1 , x 2 , θ ) 0}. (5.2)
ν = ∇u |∇u| .
Note that in a smooth surface there can be points where the Riemannian gradient is not 0, but its projection on the HM plane vanishes: ∇u = 0.

Points which have this property are called characteristics and the normal is not de ned at them. However these points are not present in lifted surfaces. At every point of the surface there is a unique unitary tangent vector, which is horizontal:

T = (X 2 u, -X 1 u) |∇u| . (5.3)
The integral curves of this vector eld de ne a foliation of the surface in horizontal curves (also called Legendrian foliationsee [START_REF] Scott D Pauls | H-minimal graphs of low regularity in the heisenberg group[END_REF], [START_REF] Cheng | Regularity of c1 smooth surfaces with prescribed p-mean curvature in the heisenberg group[END_REF], [START_REF] Capogna | Regularity of non-characteristic minimal graphs in the heisenberg group h 1[END_REF] and [START_REF] Galli | Area-stationary and stable surfaces of class c1 in the sub-riemannian heisenberg group h1[END_REF] for the properties of these curves).

Di usion and concentration algorithm

We have seen in subsection 5.1.2 how to lift an image I to a surface S. After that we also lift the level lines of the image I to the function de ned on the surface as

(x 1 (ξ 1 , ξ 2 ), x 2 (ξ 1 , ξ 2 ), θ (ξ 1 , ξ 2 )) = I (ξ 1 , ξ 2 )
de ned on the surface. The surface S and the function de ned on S will be processed through di erential operators de ned on SE(2), which model the propagation of information in the cortex. More precisely two mechanisms operate on the lifted surface S:

(a) a sub-Riemmanian di usion along the vector elds X 1 and X 2 which model the propagation of information through the cortical lateral connectivity. This operator can be expressed as

∂ t -X 11 -X 22
where X 11 and X 22 are the second derivative in the direction X 1 and X 2 respectively. The operator is formally degenerated, in the sense that its second fundamental form has 0 determinant at every point. It has been deeply studied starting from the classical works of Hörmander in [START_REF] Hörmander | Linear partial di erential operators[END_REF], Rothshild and Stein in [START_REF] Preiss | Hypoelliptic di erential operators and nilpotent groups[END_REF] and Jerison [START_REF] Jerison | The poincaré inequality for vector elds satisfying hörmander's condition[END_REF] and it is known that it is hypoelliptic. After that a large literature has been produced on these type of operators, and we refer to [START_REF] Capogna | An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem[END_REF] for a recent presentation of the state of the art.

(b) a concentration on the surface of maxima to model the nonmaximal suppression mechanism and the orientation tuning.

In the Euclidean setting Merrimann, Bence and Osher proved in [START_REF] Merriman | Di usion generated motion by mean curvature[END_REF] the convergence of a similar two step algorithm to the motion by curvature. In Citti and Sarti [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] the authors studied

Curvature is in general related to the choice of the connection of the space. However since we deal with surfaces immersed (canonical) in SE (2), the de nition we are going to introduce depends on the metric induced by the ambient metric of SE (2). Then we can provide the de nition of curvature with metric objects (the divergence). Intuitively it measures how much a manifold, locally and once de ned the metric, di ers from being at.

the motion when (a) and (b) are applied iteratively and proved that at each step the surface performs an increment in the normal direction with speed equal to the sub-Riemannian mean curvature.

5.2 Sub-Riemannian mean curvature flow for image processing

Mean curvature flow

The notion of curvature of a C 2 surface at non characteristic points is already well understood, see ([38, 84, 26, 142, 22]). It can be de ned either as rst variation of the area functional, either as limit of the mean curvature of the Riemannian approximation (see section 5.3) or as horizontal divergence of the horizontal normal:

K = div(ν ) = div ∇u |∇u| .
where the horizontal divergence of a horizontal vector eld w = w 1 X 1 + w 2 X 2 is de ned as follows:

div(w ) = X 1 (w 1 ) + X 2 (w 2 ).
If each point of the surface evolves in the direction of the normal vector with speed equal to the mean curvature, we say that the surface is evolving by mean curvature. From the previously expression of the curvature we formally get the follow-ing equation for the ow, which we can call horizontal (or sub-Riemannian) mean curvature ow:

       u t = 2 i,j=1 δ i,j - X i uX j u |∇u| 2 X i X j u in Ω ⊂ R 2 × S 1 u (•, 0) = u 0 (5.4)
where δ ij is the Kronecker function. An existence result for this equation was not known, and we will provide in the next section an existence theorem. In order to simplify notations we will denote:

The Laplace Beltrami is a second order operator on the horizontal tangent space to the surface (i.e the subset of the horizontal bundle which is tangent to the manifold).

In the present setting we consider the surface

S = {(x 1 , x 2 , θ ) : u (x 1 , x 2 , θ ) = 0},
which has a unique tangent vector eld (see 5.3):

T = X 2 uX 1 -X 1 uX 2 |∇u | .
If : S → R we will call Laplace Beltrami operator the second derivative in the direction of the vector T :

∆ LB = T 2 . A 0 ij (∇u) = δ i,j - X i uX j u |∇u| 2 , i, j = 1, 2.
(5.5)

Laplace-Beltrami flow

Citti and Sarti also conjectured that as a result of the previous mechanisms the function , which contains the gray-levels values, evolves through the ow described by the Laplace Beltrami operator ∆ LB :

t = ∆ LB (•, 0) = 0 . (5.6) 
This operator expresses a di usion of the variable on the surface level set of the variable u. The de nition of Laplace Beltrami operator is recalled in the margin note. Let us note that the described equations become degenerate and the solutions are regular only along the directions of the foliation de ned in (5.3).

Enhancement and

Inpainting in Sub-Riemannian geometry

Inpainting of missing parts of the image

In the previous sections and chapters we described the main instruments necessary for describing the completion model of [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. Let us recall here the proposed algorithm. As usual while restoring damaged portions of an image we assume that the corrupted set ω is known a priori. 2

The surface S and are processed via the algorithm of diffusion and concentration in the corrupted region Ω, where we impose Dirichlet boundary conditions. This leads to the motion by mean curvature of the surface S and to a Laplace Beltrami ow for .

3 The nal result is obtained by re-projecting onto the plane of the image the values of the intensity .

The algorithm has been implemented in [START_REF] Sanguinetti | Implementation of a model for perceptual completion in r 2× s 1[END_REF] via a di usion and concentration method, while it has been implemented via the curvature equation in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. The process is shown and described in gure 5.7.

Enhancement of boundaries

One of the scope of [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF] was to extend the previous completion algorithm to solve the problem of contours enhancement. The aim of this technique is to provide a regularization in the direction of the boundaries, making them clearer and brighter and eliminating noise. We refer to the paper of Duits and Franken [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF], [START_REF] Franken | Crossing-preserving coherence-enhancing di usion on invertible orientation scores[END_REF] for some results of image enhancement in this space.

Precisely they lift the image I in the 3D features space, using an invertible map de ned through Fourier analysis. The lifted version of the image I is processed in the 3D space and then reprojected on the 2D plane to recover an enhanced version of the image I . In particular they also provide results of enhancement in presence of bifurcation or crossing. In our contribution [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF], we face the same problem adapting the algorithm recalled in the previous section.

1 First we lift the level lines of an image I to a surface S = {(x 1 , x 2 , θ (x 1 , x 2 ))} and we lift the gray levels of I to a function always de ned on S.

2 Then we process the surface S via a mean curvature ow and via a Laplace-Beltrami ow. In order to perform enhancement we propose here to let equations (5.4) and (5.6) evolve in the full domain R 2 × S 1 . Let us remark that lifting the image in the 3D group allows to solve the problem of crossing elongated structures. Indeed if two lines cross in the 2D space and have di erent orientations, they are lifted to the 3D space to two di erent planes, allowing completion and enhancement. The directional di usion will give place to a regularization only in the direction of contours.

3 Finally we project into the plane of the image the values of the gray intensity .

Existence of vanishing viscosity solutions

In this section we provide the main result of this chapter which is the proof of existence of solutions for the mean curvature ow in SE (2). We explicitly note that we do not need to develop new results for the Laplace-Beltrami operator, which is linear. As we can immediately observe the PDE becomes degenerate in the singularities of the horizontal gradient of the solution u (. , t ). The notions of viscosity and vanishing viscosity solutions have been introduced in order to overcome this problem. The method of generalized (viscosity) solutions independently developed by Chen, by Giga and Goto [START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature ow equations[END_REF], by Evans and Spruck [START_REF] Lawrence C Evans | Motion of level sets by mean curvature i[END_REF], by Crandall, Ishii and Lions [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF] is now applied to large classes of degenerate equations [START_REF] Ishii | Viscosity solutions of nonlinear second-order partial di erential equations in hilbert spaces[END_REF]. Recently it has been extended also in Carnot groups, see [START_REF] Wang | Viscosity convex functions on carnot groups[END_REF] [START_REF] Capogna | Generalized mean curvature ow in carnot groups[END_REF], and in the Heisenberg group, [START_REF] Ferrari | On the horizontal mean curvature ow for axisymmetric surfaces in the heisenberg group[END_REF]. Finally let us recall that Dirr, Dragoni and Von Renesse in [START_REF] Dirr | Evolution by mean curvature ow in sub-riemannian geometries[END_REF] have recently studied a probabilistic approach to the mean curvature ow in the general setting of Hörmander vector elds. Here we follow the presentation of Evans and Spruck [START_REF] Lawrence C Evans | Motion of level sets by mean curvature i[END_REF], who used the notion of vanishing viscosity to establish existence of solution. Since the curvature equation is degenerate, the idea is to approximate the given equation with an uniformly elliptic one, establish results for the approximating problem and prove that in the limit this leads an existence result for the given equation. In the last section we introduce other notions of viscosity solutions and we clarify the relation between the di erent de nitions of solutions we have introduced.

The notion of vanishing viscosity solution

A vanishing viscosity solution is the limit of the solutions of approximating regular problems. Let us rst explicitly note that the coe cients A 0 ij are degenerate: when the gradient vanishes, they are not de ned. Hence we will apply the regularization procedure proposed by Evans and Spruck in [START_REF] Lawrence C Evans | Motion of level sets by mean curvature i[END_REF] to face singularities, which consists in replacing the coe cients with the following ones:

A τ ij (p) = δ ij - p i p j |p| 2 + τ .
This approximation has a clear geometric interpretation, already provided by Evans and Spruck. In equation (5.4) each level set of u evolves by mean curvature. What we obtain adding a new parameter is the evolution of the graph of u

Γ τ t = {(ξ , ξ n+1 ) ∈ R n+1 |ξ n+1 = u (ξ , t )}
and the introduction in the space of a metric depending on τ . In this approximation equation (5.4) reads as:

       u t = 2 i,j=1 A τ ij (∇ 0 u)X 0 i X 0 j u in Ω ⊂ R 2 × S 1 u (•, 0) = u 0 .
(5.7)

We will now introduce a Riemannian approximation of the mean curvature ow in the graph approximation we made before. We extend G (= G 0 to underline the passage to the limit) to a metric G ϵ de ned on the whole tangent space of SE (2) which makes the vectors X 0 1 , X 0 2 , ϵX 3 orthonormal. Let us note that G ϵ is the Riemannian completion of the horizontal metric. We will always denote

X ϵ 1 = X 0 1 , X ϵ 2 = X 0 2 , X ϵ 3 = ϵX 3 . (5.8)
This notation justi es the choice of calling X 0 i the sub-Riemannian vector elds: we want to underline they can be obtained for ϵ = 0. Recalling section 4.3.1, G ϵ is the Riemannian approximation of G. Let us recall that the Riemannian gradient associated to the metric G ϵ , in the sense of de nition 3.3.16, will be represented as:

∇ ϵ u = X ϵ 1 uX ϵ 1 + X ϵ 2 uX ϵ 2 + X ϵ 3 uX ϵ 3
and, using the fact that X ϵ i are orthonormal, we get:

|∇ ϵ u| = (X ϵ 1 u) 2 + (X ϵ 2 u) 2 + (X ϵ 3 u) 2 .
(5.9)

In the Riemannian setting equation (5.7) reads as:

       u t = 3 i,j=1 A ϵ,τ ij (∇ ϵ u)X ϵ i X ϵ j u in Ω ⊂ R 2 × S 1 u (•, 0) = u 0 (5.10) where A ϵ,τ ij (∇ ϵ u) = δ i,j - X ϵ i uX ϵ j u |∇ ϵ u| 2 + τ .
In order to prove the existence of a solution we apply another regularization, always introduced by Evans and Spruck. It consists in adding a Laplacian, ensuring that the matrix of the coe cients has strictly positive smallest eigenvalue. Then the approximated coe cients will be:

A ϵ,τ ,σ ij (p) = A ϵ,τ ij (p)
+ σδ ij and the associated equation becomes:

       u t = 3 i,j=1 A ϵ,τ ,σ ij (∇ ϵ u)X ϵ i X ϵ j u in Ω ⊂ R 2 × S 1 u (•, 0) = u 0 .
(5.11) This condition makes the coe cients satisfy the coercivity condition and allows to apply the standard theory of uniformly parabolic equations. We are now in condition to give the denition of vanishing viscosity solution:

De nition 5.3.1. A function u is a vanishing viscosity solution of (5.4) if it is limit in the space of locally Lipschitz continuous functions of a sequence of solutions u ϵ k ,τ k ,σ k of equation (5.11).

Solution of the approximating equations

The aim of this sub-section is to study the approximating equation (5.11). Since it is uniformly parabolic we will recognize that standard PDE results provide existence of the solution. We are here interested in establishing estimates independent of all parameters for the solution and its gradient.

Theorem 5.3.2. Assume that u 0 ∈ C ∞ (R 2 × S 1
) and that it is constant on the exterior of a cylinder, i.e. there exists M 0 > 0 such that:

u 0 is constant on R 2 × S 1 ∩ {(x 1 , x 2 , θ ) such that x 2 1 + x 2 2 ≥ M 2 0 }. (5.12)
Then there exists a unique solution u ϵ,τ ,σ ∈ C 2,α (R 2 × S 1 × [0, ∞)) of the initial value problem (5.11). Moreover, for all t > 0 one has:

u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ u 0 L ∞ (R 2 ×S 1 )
(5.13)

∂ x 1 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ (5.14) ≤ ∂ x 1 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) |∂ θ u ϵ,τ ,σ (x, θ , t )| ≤ (1 + 2M 0 + 2|x |) ∇ E u 0 L ∞ (R 2 ×S 1 ) (5.15)
for every x ∈ R 2 , and ∇ E (•) denotes the Euclidean gradient.

This result generalizes to SE(2) the previous results of [START_REF] Lawrence C Evans | Motion of level sets by mean curvature i[END_REF] and [START_REF] Capogna | Generalized mean curvature ow in carnot groups[END_REF]. The rst step of the proof of Theorem 5.3.2 is the existence of the function u and its L ∞ bound: 

ϵ,τ ,σ ∈ C 2,α (R 2 × S 1 × [0, ∞)) such that u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ u 0 L ∞ (R 2 ×S 1 )
(5.16)

Proof. For σ > 0, consider the problem associated to equation (5.11) on a cylinder B(0, r ) × [0,T ], with initial data u ϵ,τ ,σ r (•, 0) = u 0 , (5.17)

and constant value on the lateral boundary of the cylinder. Note that coe cients A ϵ,τ σ ij satisfy the uniform parabolic condition:

σ |p| 2 ≤ A ϵ,τ ,σ ij ( p)p i p j (5.18)
for each p, p ∈ R 3 . Hence the theory of parabolic equations on bounded cylinders ensures that for every xed value of the parameters there exists a unique smooth solution u ϵ,τ ,σ r (see for example Ladyzenskaja, Solonnikov, Ural'tseva [START_REF] Ladyženskaja | Linear and quasi-linear equations of parabolic type[END_REF]). By the maximum principle we have

u ϵ,τ ,σ r (•, t ) L ∞ (R 2 ×S 1 ) ≤ u 0 L ∞ (R 2 ×S 1 ) .
(5.19)

Letting r tend to ∞, we obtain a solution u ϵ,τ ,σ de ned on the whole R n × [0,T ] such that

u ϵ,τ ,σ ∞ ≤ u 0 L ∞ (R 2 ×S 1 ) .
The second step of the proof is the estimate of the gradient. In order to obtain this estimate we di erentiate equation (5.11), obtaining the equation satis ed by the gradient, and we apply the maximum principle. The main di culty to face is the fact that the vector elds X ϵ i do not commute, hence it is not easy to nd a nice equation satis ed by the gradient. We will take the derivatives along the direction of a family of vector elds

Y 1 = ∂ x 1 Y 2 = ∂ θ -x 2 ∂ x 1 + x 1 ∂ x 2 Y 3 = ∂ x 2 .
which are right invariant with respect to the group law. These vector elds are widely used: Mumford in [START_REF] Mumford | Elastica and computer vision[END_REF] used them for a di erent purpose. In particular it is well known that these vector elds commute with the left invariant ones X ϵ i . Let us start directly verifying that the vector elds (X ϵ i ) and (Y i ) commute. Lemma 5.3.4. The vector elds {X ϵ i } i=1,2,3 de ned in (5.8) commute with {Y i } i=1,2,3 , just de ned.

Proof. We calculate their Lie bracket:

[X 0 1 , Y 1 ] = (cos θ ∂ x 1 + sin θ ∂ x 2 )∂ x 1 -∂ x 1 (cos θ ∂ x 1 + sin θ ∂ x 2 ) = cos θ ∂ x 1 x 1 + sin θ ∂ x 2 x 1 -cos θ ∂ x 1 x 1 -sin θ ∂ x 1 x 2 = 0.
Since the coe cients of Y 2 do not depend on θ it is clear that

[X 0 2 , Y 2 ] = 0. Finally [X 3 , Y 3 ] = (sin θ ∂ x 1 -cos θ ∂ x 2 )∂ x 2 -∂ x 2 (sin θ ∂ x 1 -cos θ ∂ x 2 ) = sin θ ∂ x 1 x 2 -cos θ ∂ x 2 x 2 -sin θ ∂ x 1 x 2 + cos θ ∂ x 2 x 2 = 0
The other combinations can be analogously computed.

We can now obtain the estimate of the gradient:

Theorem 5.3.5. Under the assumption of Theorem 5.3.2 and 5.3.3, the solution of the initial value problem (5.11) satis es

∂ x 1 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ (5.20) ≤ ∂ x 1 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) |∂ θ u ϵ,τ ,σ (x, θ , t )| ≤ (1 + 2M 0 + 2|x |) ∇ E u 0 L ∞ (R 2 ×S 1 ) (5.21)
for every x ∈ R 2 and M 0 has been de ned in 5.3.2.

Proof. From Theorem 5.3.3 we know that there exists a unique smooth solution u ϵ,τ ,σ of equation (5.11) and we only have to estimate its gradient. To this end, we can di erentiate equation (5.11) along the directions {Y i } i=1,2,3 , and using Lemma 5.3.4, we obtain the following equation for w i = Y i u ϵ,τ ,σ , for all i = 1, 2, 3, and for

ω 4 = Y 2 u ϵ,τ ,σ -( 2 ∂ x 1 -1 ∂ x 2 )u ϵ,τ ,σ (for every xed value ( 1 , 2 )): ∂ ∂t w i = 3 i,j,k=1 A ϵ,τ ,σ i,j (∇ ϵ u ϵ,τ ,σ )X ϵ i X ϵ j w i + (∂ ξ k A ϵ,τ ,σ i,j )(∇ ϵ u ϵ,τ ,σ )X ϵ i X ϵ j u ϵ,τ ,σ X ϵ k w i .
(5.22)

The parabolic maximum principle ( [START_REF] Ladyženskaja | Linear and quasi-linear equations of parabolic type[END_REF]) applied to the previous equation yields:

Y i u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ Y i u 0 L ∞ (R 2 ×S 1 ) (5.23) 
This implies (5.14). Now we have to establish the estimate of the derivative ∂ θ . For every xed value of = ( 1 , 2 ) we have, using in the last inequality the fact that

|x 1 | ≤ M 0 , |x 2 | ≤ M 0 : |∂ θ u ϵ ,τ ,σ ( 1 , 2 , θ )| = |(Y 2 u ϵ ,τ ,σ -( 2 ∂ x 1 -1 ∂ x 2 )u ϵ ,τ ,σ )( 1 , 2 , θ )| ≤ ≤ |Y 2 u ϵ ,τ ,σ ( 1 , 2 , θ )| + | 2 ||∂ x 1 u ϵ ,τ ,σ ( 1 , 2 , θ )|+ + | 1 ||∂ x 2 u ϵ ,τ ,σ ( 1 , 2 , θ )| ≤ ≤ max (x 1 ,x 2 ,θ ) |Y 2 u 0 (x 1 , x 2 , θ )| + | 2 | max (x 1 ,x 2 ,θ ) |∂ x 1 u 0 (x 1 , x 2 , θ )|+ + | 1 | max (x 1 ,x 2 ,θ ) |∂ x 2 u 0 (x 1 , x 2 , θ )| ≤ max (x 1 ,x 2 ,θ ) |∂ θ u 0 (x 1 , x 2 , θ )| + max (x 1 ,x 2 ,θ ) |x 2 ||∂ x 1 u 0 (x 1 , x 2 , θ )| + max (x 1 ,x 2 ,θ ) |x 1 ||∂ x 2 u 0 (x 1 , x 2 , θ )| + +| 2 | max (x 1 ,x 2 ,θ ) |∂ x 1 u 0 (x 1 , x 2 , θ )| + | 1 | max (x 1 ,x 2 ,θ ) |∂ x 2 u 0 (x 1 , x 2 , θ )| ≤ ≤ (1 + 2M 0 + 2| |) ∇ E u 0 L ∞ (R 2 ×S 1 )
Then |∂ θ u ϵ ,τ ,σ | is locally Lipshitz, and it grows with Let us conclude this section remarking that the proof of Theorem 5.3.2 is a direct consequence of the two Theorems 5.3.3 and 5.3.5.

Existence for the sub-Riemannian mean curvature equation

In order to extend to our setting Evans and Spruck's argument in the proof of [START_REF] Lawrence C Evans | Motion of level sets by mean curvature i[END_REF], as well as the proof of [START_REF] Capogna | Generalized mean curvature ow in carnot groups[END_REF], we need to let the three approximating parameters σ → 0, τ → 0 and ϵ → 0 go to 0. Since the estimates we have established are uniform in all parameters, we immediately have the existence of a vanishing viscosity solution:

Theorem 5.3.6. Assume that u 0 ∈ C(R 2 × S 1 ) is Lipschitz continuous and satis es (5.12). Then there exists a vanishing viscosity solution u ∈ C 1,0 loc of (5.4), which satis es the following properties:

u (•, t ) L ∞ (R 2 ×S 1 ) ≤ u 0 L ∞ (R 2 ×S 1 )
(5.24)

∂ x 1 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ (•, t ) L ∞ (R 2 ×S 1 ) ≤ (5.25) ≤ ∂ x 1 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) + ∂ x 2 u ϵ,τ ,σ 0 L ∞ (R 2 ×S 1 ) |∂ θ u ϵ,τ ,σ (x, θ , t )| ≤ (1 + 2M 0 + 2|x |) ∇ E u 0 L ∞ (R 2 ×S 1 ) (5.26)
Proof. Since u 0 is constant at in nity, we immediately deduce from Weierstrass theorem that the Euclidean gradient ∇ E u 0 is bounded. Employing estimates (5.13), (5.14), (5.15) and Ascoli Arzelà Theorem on each compact subset we can extract two sequences {σ k }, {ϵ k }, {τ k } → 0 of positive numbers such that ϵ k τ k → 0 and such that the corresponding solutions {u k = u ϵ k ,τ k ,σ k } k∈N are convergent in the space of locally Lipshitz functions. Then by de nition the limit is a continuous vanishing viscosity solution.

Here we prove that solutions are uniformly Lipschitz continous. Even in the Euclidean setting this is the best regularity results for solutions of equations expressed as level sets, due to the degeneracy of the equation. Only in the special case of motion by curvature of graphs, higher regularity can be obtained. (see for example Capogna, Citti, Manfredini [START_REF] Capogna | Regularity of mean curvature ow of graphs on lie groups free up to step 2[END_REF]).

Other notions of viscosity solution Viscosity solutions in the sense of Jet spaces

The cortical model previously discussed associates to each planar curve γ 2D its orientation. This procedure can be considered as a lifting of the initial image I (x 1 , x 2 ) to a new function u dened in the space R 2 × S 1 of positions and orientations. We refer to Petitot and Tondut, who rst described the analogous cortical process as a lifting in a jet space [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF]. Another lifting process can be obtained if we associate to each function u : R 2 × S 1 → R its derivatives. In this way a function u is lifted into a Jet-space which contains the formal analogous of its sub-Riemannian gradient ∇ 0 u and the formal analogous of the elements of its horizontal Hessian matrix X 0 i X 0 j (please refer to the Appendix for the de nition of the horizontal Hessian). The definition of viscosity solution in Jet-spaces has been introduced in [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF], and is now widely used in the sub-Riemannian setting (see for example [START_REF] Bieske | Comparison principle for parabolic equations in the heisenberg group[END_REF]). It is based on the Taylor expansion, expressed in terms of these di erential objects. The analogous of the increment in the direction of the gradient p is expressed through the notion of exponential map (see the appendix for its precise de nition), then the increment from a point ξ in the direction 2 i=1 η i X 0 i is expressed as

u exp( 2 i=1 η i X 0 i )(ξ ), t + s -u (ξ , t ).
At non regular points, such as kinks, there is not either a unique vector p which identi es the horizontal gradient and a unique matrix r ij which identi es the horizontal Hessian. Hence we need to give a more general notion. If p i , i = 1, 2 denotes an horizontal vector, (r ij ) a 2 × 2 matrix and q a real number, the triplet (p, r , q) is an element of the superjet J + for u if it satises the following formal analogous of the Taylor development:

u exp( 2 i=1 η i X 0 i )(ξ ), t + s -u (ξ , t ) ≤ 2 i=1 p i η i + 1 2 2 i,j=1
r ij η i η j + qs + o(|η| 2 + s 2 ).

(5.27)

Let us note that if the super jet exists it can be used in place of the derivatives; furthermore a function u is a Jet-space viscosity solution if the di erential equation in which the derivatives are replaced with the elements of the superjet is satis ed. More precisely:

De nition 5.3.7. A function u ∈ C(R 2 × S 1 × [0, ∞)) ∩ L ∞ (R 2 × S 1 × [0, ∞)
) is a jet space-viscosity subsolution of equation (5.4) if for every (p, r , q) in the super-Jet we have:

q ≤ 2 i,j=1 A 0 ij (p)r ij if |p| 0 2 i,j=1 A 0 ij ( p)r ij for some | p| ≤ 1, if |p| = 0.
(5.28)

An analogous de nition is provided for a viscosity supersolution. Then a viscosity solution is a function which is both a subsolution and a supersolution.

Viscosity solutions via test functions

The de nition of viscosity solution in Jet-space of a second order equation can be identi ed as the approximation of the solution u via a second order polynomial, whose coe cients are exactly the elements (p, r , q) of the Jet space. The de nition of viscosity solution via test functions is similar, but it estimates the given solution using smooth functions instead of polynomials alone. This de nition imposes the behavior of the function u at points where uϕ attains a maximum. At such points u and ϕ will have the same rst derivatives, so that ∇ 0 ϕ results to be an exact evaluation of the approximation of ∇ 0 u. Looking at second derivatives, it follows that for every i we have:

X 0 i X 0 i (u -ϕ) ≤ 0,
so that the curvature of ϕ is an upper bound for the curvature of u. Due to this observations we can give the following de nition:

De nition 5.3.8. A function u ∈ C(R 2 × S 1 × [0, ∞)) is a vis- cosity subsolution of (5.4) in R 2 × S 1 × [0, ∞) if for any (ξ , t ) in R 2 × S 1 × [0, ∞) and any function ϕ ∈ C(R 2 × S 1 × [0, ∞)
) such that uϕ has a local maximum at (ξ , t ) it satis es:

∂ t ϕ ≤                    2 i,j=1 A 0 ij (∇ 0 ϕ)X 0 i X 0 j ϕ if |∇ 0 ϕ | 0 2 i,j=1 A 0 ij ( p)X 0 i X 0 j ϕ, for some p ∈ R 2 , | p| 1, if |∇ 0 ϕ | = 0 (5.29) A function u ∈ C(R 2 × S 1 × [0, ∞)
) is a viscosity supersolution of (5.4) if:

∂ t ϕ ≥                    2 i,j=1 A 0 ij (∇ 0 ϕ)X 0 i X 0 j ϕ if |∇ 0 ϕ | 0 2 i,j=1 A 0 ij ( p) X 0 i X 0 j ϕ, for some p ∈ R 2 , | p| 1, if |∇ 0 ϕ | = 0 (5.30)
De nition 5.3.9. A viscosity solution of (5.4) is a function u which is both a viscosity subsolution and a viscosity supersolution.

Relation between the di erent notions of solutions Theorem 5.3.10. The two de nitions of jet spaces viscosity solution and viscosity solution are equivalent.

Proof. We will recall here that a subelliptic equation in SE(2) group can be locally reduced to an equation in the Heisenberg group, via a simple change of variables, so that we will be able to apply the the analogous result proved in the Heisenberg setting in [START_REF] Bieske | Comparison principle for parabolic equations in the heisenberg group[END_REF]. Indeed, calling b = -x 1 sin θ + x 2 cos θ , we can consider the vector elds Z 1 , Z 2 and Z 3 introduced in [29]:

Z 1 = X 1 , Z 2 = X 2 -b X 1 , Z 3 = [Z 1 , Z 2 ] = X 3 ;
It is easy to see that all the other commutators vanishes, so that the Lie algebra generated by {Z i } is an Heisenberg algebra. If we call

B = 1 0 b 1 ∇ Heis = (Z 1 , Z 2 ), (5.31) 
where ∇ Heis denotes the horizontal gradient in the Heisenberg group. Then we have

X i = B ih Z h
We can express equation (5.4) in terms of these vector elds:

u t = 2 i,j,h,k=1 A 0 ij (B ∇ Heis u) B ih Z h (B ik Z k ) u = (5.32) = 2 i,j,h,k=1 A 0 ij (B ∇ Heis u) B ih B ik Z h Z k u + 2 i,j,h,k=1 A 0 ij (B ∇ Heis u) B ih Z h B ik Z k u = Now we call C hk = 2 i,j=1 A 0 ij (B ∇ Heis u) B ih B ik c k = 2 i,j,h=1 A 0 ij (B ∇ Heis u) B ih Z h B ik
As a result equation (5.4) becomes:

u t = 2 h,k=1 C hk Z h Z k u + 2 k=1 c k Z k u.
The matrix C hk is positive de ned by construction, so that we can apply to this equation the analogous result proved in the Heisenberg setting in [START_REF] Bieske | Comparison principle for parabolic equations in the heisenberg group[END_REF], which ensures that the two de nitions of jet spaces viscosity solution and viscosity solution are equivalent.

We will now prove that a vanishing viscosity solution is indeed a viscosity solution: Theorem 5.3.11. Assume that u 0 ∈ C(R 2 × S 1 ) is continuous and satis es (5.12). Then the vanishing viscosity solution detected in Theorem 5.3.6 is a viscosity solution u ∈ C 1,0 of (5.4).

Proof. In order to prove that u is a viscosity solution we consider a function ϕ ∈ C ∞ (R 2 × S 1 × [0, ∞)) and we suppose that uϕ has a strict local maximum at a point (ξ 0 , t 0 ) ∈ R 2 × S 1 × [0, ∞). Since u is a Lipschitz continuous vanishing viscosity solution, it can be uniformly approximated by solutions (u k ) of the approximating Riemannian problem (see also Theorem 5.3.11). As u k → u uniformly near (ξ 0 , t 0 ), u kϕ has a local maximum at a point (ξ k , t k ), with

(ξ k , t k ) → (ξ 0 , t 0 ) as k → ∞ (5.33)
Since u k and ϕ are smooth, we have

∇ E u k = ∇ E ϕ , ∂ t u k = ∂ t ϕ and D 2 E (u k -ϕ) ≤ 0 at (ξ k , t k )
where D 2 E is the Euclidean Hessian. Thus

∂ t ϕ -δ ij - X ϵ k i ϕX ϵ k j ϕ |∇ ϵ k ϕ | 2 + τ 2 k X ϵ k i X ϵ k j ϕ ≤ 0 at (ξ k , t k ) (5.34)
This inequality can be equivalently expressed in terms of the coe cients A ϵ,τ i,j as follows. At the point

(ξ k , t k ) ∂ t ϕ -A ϵ k ,τ k i,j (∇ ϵ k ϕ)X ϵ k i X ϵ k j ϕ (5.35) ≤ ∂ t u k -A ϵ k ,τ k i,j (∇ ϵ k u k )X ϵ k i X ϵ k j (u k + ϕ -u k ) ≤ 0 (5.36) If ∇ 0 ϕ (ξ 0 , t 0 )
0, also ∇ 0 ϕ (ξ k , t k ) 0 for su ciently large k. Then letting k → ∞ we obtain from (5.36):

∂ t ϕ ≤ 2 i,j=1 δ ij - X 0 i ϕX 0 j ϕ |∇ 0 ϕ | 2 X 0 i X 0 j ϕ at (ξ 0 , t 0 ) (5.37)
which implies that u is a viscosity subsolution. If ∇ 0 ϕ (ξ 0 , t 0 ) = 0 then we set

η k = ∇ ϵ k ϕ (ξ k , t k ) |∇ ϵ k ϕ (ξ k , t k )| 2 + τ 2 k There exists η ∈ R 3 such that η k → η. Note that |(η k ) 3 | = ϵ k |X 3 ϕ (ξ k , t k )| |∇ ϵ k ϕ (ξ k , t k )| 2 + τ 2 k ≤ (ϵ k /τ k )|X 3 ϕ (ξ k , t k )| (ϵ k /τ k ) 2 2 i=1 (X 0 i ϕ (ξ k , t k )) 2 + 1
Since the expression vanishes as k → ∞ we have η 3 = 0. The PDE (5.36) now reads as:

∂ t ϕ (ξ k , t k ) - 3 i,j=1 (δ ij -η k i η k j )X ϵ k i X ϵ k j ϕ (ξ k , t k ) ≤ 0 so as k → ∞ we obtain ∂ t ϕ (ξ 0 , t 0 ) ≤ 2 i,j=1 (δ ij -η i η j )X 0 i X 0 j ϕ (ξ 0 , t 0 ) (5.38)
concluding the proof for the case in which uϕ has a local strict maximum at point (ξ 0 , t 0 ). If uϕ has a local maximum, but not necessarily a strict local maximum at (ξ 0 , t 0 ), we can repeat the argument above replacing ϕ (x 1 , t ) with

φ (ξ , t ) = ϕ (ξ , t ) + |ξ -ξ 0 | 4 + (t -t 0 ) 4
again to obtain (5.37), (5.38). Consequently u is a weak subsolution. That u is a weak supersolution follows analogously.

From the above result we can only say that there is a subsequence of u ϵ,τ ,σ which is convergent to the vanishing viscosity solution u. In order to prove the uniqueness of the vanishing viscosity solution, we would need the sub-Riemannian analogous of estimate established by Deckelnick and Dzuik in [START_REF] Deckelnick | Convergence of numerical schemes for the approximation of level set solutions to mean curvature ow[END_REF]: Proposition 5.3.12. There exists a constant C > 0 independent of σ , τ and ϵ such that:

u ϵ,τ ,σ -u ∞ ≤ Cτ α (5.39)
Letting ϵ and σ go to 0 we also get:

u τ -u ∞ ≤ Cτ α (5.40)
where u τ is a solution of (5.7).

Numerical scheme

In this part we provide the numerical approximation we used to implement the sub-Riemannian motion by curvature which performs inpainting and enhancement. Since our scheme is directly inspired by the classical one of Osher and Sethian (see [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF]), we will explain how to adapt the discretization to the sub-Riemannian setting. The mean curvature ow (5.7) can be explicitly written as:

u t = = (X 0 2 (u)) 2 • X 0 11 (u) + (X 0 1 (u)) 2 • X 0 22 (u) -X 0 1 (u)X 0 2 (u) • 2X 0 12 (u) (X 0 1 (u)) 2 + (X 0 2 (u)) 2 + τ + X 0 1 (u)X 0 2 (u) • [X 0 1 , X 0 2 ](u) (X 0 1 (u)) 2 + (X 0 2 (u)) 2 + τ (5.41)
This equation presents two distinct terms: the rst part of the ow presents second order derivatives and corresponds to the curvature term, the second one has only rst order derivatives and correspond to the metric connection. The solution u (x 1 , x 2 , θ , t ) is discretized on a regular grid with points x 1,i = i∆x 1 , x 2,j = j∆x 2 , θ k = k∆θ , with time discretization t s = s∆t. We will denote D +x 1 U (i, j, k, s), D -x 1 U (i, j, k, s), D 0x 1 U (i, j, k, s) the forward, backward and central di erence of a discrete function U at point (i, j, k, s) with respect to x 1 , and use analogous notations for the other variables x 2 an θ . In terms of these derivatives we will de ne the analogous di erences in the direction of the vector elds X 0 1 and X 0 2 . Precisely if we have discretized the direction θ with K points, we will denote θ k = kπ /K for k = 1, • • • K, and we will call

D +X 1 U (i, j, k, s) = cos θ k D +x 1 U (i, j, k, s) + sin θ k D +x 2 U (i, j, k, s)
and analogously de ne backward and central di erence D -X 1 , D 0X 1 for the vector X 0 1 and for the vector X 0 2 . Let us adapt the scheme proposed by Osher and Sethian in [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF] to our case:

(i) the rst order term X 0 1 (u)X 0 2 (u) • [X 0 1 , X 0 2 ](u) is discretized using the upwind scheme for [X 0 1 , X 0 2 ] = X 3 .
Taking into account the upwind scheme for the vector eld X 3 , the rst order term is given by:

W 1 (U ) = - max(-sin θ k D 0X 1 U D 0X 2 U , 0)D -x 1 U |D 0X 1 U | 2 + |D 0X 1 U | 2 + τ (5.42) + min(-sin θ k D 0X 1 U D 0X 2 U , 0)D +x 1 U |D 0X 1 U | 2 + |D 0X 1 U | 2 + τ - max(cos θ k D 0X 1 U D 0X 2 U , 0)D -x 2 U |D 0X 1 U | 2 + |D 0X 1 U | 2 + τ + min(cos θ k D 0X 1 U D 0X 2 U , 0)D +x 2 U |D 0X 1 U | 2 + |D 0X 1 U | 2 + τ .
(ii) second order derivatives are implemented as usual as

D -X 1 D +X 1 , D -X 2 D +X 2 , D 0X 1 D 0X 2 ,
which lead to second order central nite di erence. We will implemented as central di erences the rst derivatives coe cients of D -X 1 D +X 1 , D -X 2 D +X 2 . The rst derivative with respect to X 0 1 , coe cient of the second mixed derivative, will be upwinded as before. Generalizing an idea of [START_REF] Mitsuru | Numerical analysis for motion of a surface by its mean curvature[END_REF], the denominator will be a mean of central derivatives:

|D int U | 2 (i, j, k, s) + τ = 1 3 k 1 ∈{k-1,k,k+1} |D 0X 1 U | 2 (i, j, k 1 , s) + 1 5 i 1 ∈I |D 0X 2 U | 2 (i 1 , j 1 , k, s) + τ ,
where I is the family of indices I = {(i -1, j), (i, j), (i + 1, j), (i, j -1), (i, j + 1)}.

The second order discretized operator will be denoted

W 2 (U )(i, j, k, s).
The di erence equation associated to the continuous equation (5.41) will be expressed as:

U (i, j, k, s + 1) = U (i, j, k, s) + ∆t (W 2 U )(i, j, k, s) + ∆t (W 1 U )(i, j, k, s)
with initial condition U (., 0) = U 0 . We recall that convergence of di erence schemes for the mean curvature ow inspired by the scheme of Osher and Sethian has been object of a large number of papers in the Euclidean setting. The stability of one of them was proved in [START_REF] Mitsuru | Numerical analysis for motion of a surface by its mean curvature[END_REF]. Another monotone scheme was proposed by Crandall and Lions (see [START_REF] Michael | Convergent di erence schemes for nonlinear parabolic equations and mean curvature motion[END_REF]) and its convergence was proved by Deckelnick in [START_REF] Deckelnick | Error bounds for a di erence scheme approximating viscosity solutions of mean curvature ow[END_REF] and Deckelnick & Dzuik in [START_REF] Deckelnick | Convergence of numerical schemes for the approximation of level set solutions to mean curvature ow[END_REF]. The ideas at the basis of the stability proof of [START_REF] Mitsuru | Numerical analysis for motion of a surface by its mean curvature[END_REF] can be extended to the present version of the Osher and Sethian scheme, leading to the following result:

Theorem 5.4.1. The di erence scheme presented above is stable in the sense that if ∆t ≤ h 2 10 , then

||U || ∞ ≤ ||U 0 || ∞ Proof. If U is a solution of the discrete equation, also V = U - ||U 0 || ∞
is a solution of the same equation:

V (i, j, k, s + 1) = V (i, j, k, s) + ∆t (W 2 V )(i, j, k, s) + ∆t (W 1 V )(i, j, k, s).
Hence V (0) ≤ 0, and we have to prove V ≤ 0, for all time. In order to study the term W 1 (V ) we have to discuss the sign of

a 1 = -sin θ k D 0X 1 V D 0X 2 V and a 2 = cos θ k D 0X 1 V D 0X 2
V : we will assume that they are both positive since the proof is similar in all the other cases: In this case (W 1 V )(i, j, k, s) = -a 1 (V (i,j,k,s)-V (i-1,j,k,s))

|D 0X 1V | 2 +|D 0X 2V | 2 +τ
+ a 2 (V (i,j,k,s)-V (i,j-1,k,s))

|D 0X 1V | 2 +|D 0X 2V | 2 +τ ≤ -(cos(θ k )-sin(θ k ))D 0X 1 V (i,j,k,s)D 0X 2 V (i,j,k,s) (|D 0X 1V | 2 +|D 0X 2V | 2 +τ )h 2 V (i, j, k, s) ≤ -V (i,j,k,s) 2h 2
Analogously, having upwinded the coe cient of (W 2 V )(i, j, k, s), we get a similar behavior. The mixed derivatives term can be estimated as:

- 2 cos θ k D 0X 1 (D 0X 2 )V D 0X 2 V |D int V | 2 + τ V (i, j, k, s) ≤ - 10V (i, j, k, s) h 2 .
In conclusion

V (i, j, k, s + 1) ≤ V (i, j, k, s)(1 - 10∆t h 2 ) ≤ 0.
The assertion then follows by induction. Now we recall that the equation is uniformly parabolic in the sub-elliptic sense. Arguing as in [START_REF] Deckelnick | Convergence of numerical schemes for the approximation of level set solutions to mean curvature ow[END_REF] the estimates of 4th order derivatives can be reduced to the estimates of graphs over the considered group. Hence estimates can be obtained by a recent result of Capogna, Citti and Manfredini (see [START_REF] Capogna | Regularity of mean curvature ow of graphs on lie groups free up to step 2[END_REF]). Since for τ xed the equation is uniformly parabolic in the sub-elliptic sense, these estimates allow to prove that: Theorem 5.4.2. If u τ is the solution of (5.7) with initial condition u 0 and U is the solution of the discrete scheme considered here and α is xed, there exist a constant

C = C (τ , h, α ) such that if ∆t ≤ C (τ , h), then |u τ (i∆x 1 , j∆x 2 , k∆θ , s∆t ) -U (i, j, k, s)| ≤ τ α ,
As a consequence, applying the uniqueness Theorem 5.3.12, we deduce the following convergence result for the solution of the mean curvature equation (5.4) with initial condition u 0

|u (i∆x 1 , j∆x 2 , k∆θ , s∆t ) -U (i, j, k, s)| ≤ τ α as ∆t ≤ C (τ , h).

Results

In this section we present and discuss our results. We rst compare the results obtained with the original algorithm [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] with some results recently appeared in the literature. Results of our new model for enhancement are proposed and compared with previous results of Duits and Franken [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]. Finally we show examples of inpainting and enhancement of images.

Inpainting results

In all the upcoming numerical experiments we have discretized the angular coordinate θ in 32 di erent orientations (see Section 5.4). The evolution time (or equivalently the number of iterations of the discrete versions) for both the mean curvature ow (5.4) and the Laplace-Beltrami ow (5.6) have been set long enough so that a steady solution is ensured. Our algorithm performs particularity well for completing gray level images which have non vanishing gradient at every point. We start with a couple of images already contained in [START_REF] Sanguinetti | Implementation of a model for perceptual completion in r 2× s 1[END_REF]: an arti cial one (see gures 5.8), and a natural one (see gure 5.8, bottom). In both images a very big black hole is present, and the algorithm correctly reconstructs the missed part of the image.

Recently Boscain et al. in [START_REF] Boscain | Hypoelliptic di usion and human vision: a semidiscrete new twist[END_REF] tried to replace this non linear equation by a di usion followed by a 'heuristic complement'. In gure 5.9 left we consider an image from [START_REF] Boscain | Hypoelliptic di usion and human vision: a semidiscrete new twist[END_REF] partially occluded by a grid: rst we show the results of completion per-Figure 5.8: Top: An example of completion performed by the algorithm. In this articial image the image gradient is lifted in the R 2 × S 1 space and the black hole is completed by mean curvature ow. Since the level lines of the image are approximately circular, the algorithm performs very well. Bottom: completion result on a real image through sub-Riemannian mean curvature ow in R 2 × S 1 , as described in [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF].

formed in [START_REF] Boscain | Hypoelliptic di usion and human vision: a semidiscrete new twist[END_REF] (second image from left), then the results obtained through the heat equation in the 2D space (third image from left) and nally the ones obtained with Citti and Sarti model (right). A detail is shown in gure 5.10. Since the considered image is a painting, extremely smooth, with low contrast, the 2D heat equation is able to perform a simple version of completion (see for example [START_REF] Bertalmio | Inpainting. In Computer Vision[END_REF]). The curvature model reconstructs correctly the missed contours and level lines, and presents a strong completion capability, absent in the other two methods. In gure 5.11 (and in the detail taken from it in g- ure 5.12) we consider an other example taken from the same paper. In this image the grid of points which are missed is larger, and the previous e ect is even more evident. In a more [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic di usion[END_REF]) introduced a linear di usion with coe cients depending on the gradient of the initial image, which they call 'heuristic'. In gure 5.13 we compare the results obtained with this model, with the heat equation on the image plane and with the strongly geometric model of Citti and Sarti. Then we test our implementation on piecewise constant images. Since the gradient is 0 in large part of the image, the lifted gradient is not de ned in the largest part of the image. On the other side, since the lifting mimics the behavior of the simple cells of the V1 cortical layer, the Citti and Sarti algo- an image taken from the survey [START_REF] Bertalmio | Inpainting. In Computer Vision[END_REF]. The present reconstruction is correct in the part of the image characterized by strong boundaries, but the results of [START_REF] Bertalmio | Inpainting. In Computer Vision[END_REF] obtained with the model of Masnou and Morel (see [START_REF] Masnou | Level lines based disocclusion[END_REF]) seems to be better. The main point is the boundary detection, which is very accurate in the model of Masnou and Morel, while here the boundaries are detected with a gradient, after smoothing the image. processed with the model of [START_REF] Masnou | Level lines based disocclusion[END_REF]. Right: image processed with our model.

Enhancement results

We will show in this section results of the application of the enhancement method we have introduced in Section 5.2.5. Let us recall that enhancement consists in an image ltering that underlines directional coherent structures. With respect to the completion problem there is no part of the image to be disoccluded and all the parts of the initial data are evolved. In Figure 5.16 it is shown a microscopy image of bone tissue to be ltered to reconstruct the crossing bers (from Duits and Franken([54]). The second image from left shows the enhancement computed by using CED-OS, see [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF][START_REF] Franken | Crossing-preserving coherence-enhancing di usion on invertible orientation scores[END_REF], while the third image shows the result obtained using the proposed method. Finally, we show in gure 12 (zoomed in gure 13) an example combining the techniques of completion and enhancement. We see in this case that enhancement homogenizes the original non occluded part with the reconstructed one. Here we 7]); the enhanced image using CED-OS, see [START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]; the enhanced image obtained using the proposed method. propose a detail of the previous image in order to underline the e ects of the discussed techniques. 

Discussion

In this chapter we have proved existence of viscosity solutions of the mean curvature ow PDE in SE (2) = R 2 × S 1 equipped with a sub-Riemannian metric. The ow has been implemented with a suitable adaptation of the Osher and Sethian technique [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF] and a sketch of the proof of convergence of the numerical scheme is provided. Results of completion and enhancement are obtained on arti cial and natural images both. We also provide comparisons with other existing algorithms. The algorithm leads to results comparable with the classical ones of Bertalmio et al. in [START_REF] Bertalmio | Image inpainting[END_REF], of Masnou and Morel in [START_REF] Masnou | Level lines based disocclusion[END_REF], but performs much better than the results shown by Boscain et al. in [START_REF] Boscain | Hypoelliptic di usion and human vision: a semidiscrete new twist[END_REF], or by Prandi et al. [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic di usion[END_REF]. The method can be applied in presence of crossing edges and to perform enhancement: our results have been compared with the previous of Duits et al. [START_REF] Duits | Invertible orientation scores as an application of generalized wavelet theory[END_REF].

6 Geometrical optical illusions

I
we introduce a neuro-mathematical model for Geometrical Optical illusions, based on the cortical based model introduced in chapter 4. Geometrical-optical illusions (GOIs) have been discovered in the XIX century by German psychologists (Oppel 1854 [START_REF] Joseph | Uber geometrisch-optische tauschungen[END_REF], Hering, 1878, [START_REF] Ewald | Beiträge zur physiologie[END_REF]) and have been de ned as situations in which there is an awareness of a mismatch of geometrical properties between an item in object space and its associated percept [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF]. The distinguishing feature of these illusions is that they relate to misjudgements of geometrical properties of contours and they show up equally for dark con gurations on a bright background and viceversa. An historical survey of the discovery of geometrical-optical illusions is included in Appendix I of [START_REF] Westheimer | Illusions in the spatial sense of the eye: Geometrical-optical illusions and the neural representation of space[END_REF]. The reason why we should be interested generally in illusory phenomena has been well explained by Eagleman in [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF]:

"The historical study of systematic misperceptions, combined with a recent explosion of techniques to measure and stimulate neural activity, has provided a rich source for guiding neurobiological frameworks and experiments." Figure 6.1: In [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF] Eagleman provided an historal summary in which he pointed how the link between Illusory phenomena and the relevance they had in guiding researches in neuroscience. In this image we present the rst part. See next pages for the following, gure 6.1.

Our intention here is not to make a classi cation of these phenomena, which is already widely present in literature (Coren e Girgus, 1978, [32]; Robinson, 1998, [START_REF] Outram | The psychology of visual illusion[END_REF]; Wade, 1982, [171]). The aim of this chapter is to propose a mathematical model for GOIs based on the functional architecture of low level visual cortex (V1/V2). This neuro-mathematical model will allow us to interpret at a neural level the origin of GOIs and to reproduce the arised percept for this class of phenomena. The main idea is to adopt the model of the functional geometry of V1 provided in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] and presented in chapter 4, and to consider that the image stimulus will modulate the connectivity. When projected onto the visual space, the modulated connectivity gives rise to a Riemannian metric which is at the origin of the visual space deformation. The displacement vector eld at every point of the stimulus is mathematically computed by solving a Poisson problem and the perceived image is nally reproduced. The considered phenomena consist, as shown in gure 6.3, in straight lines over di erent backgrounds (radial lines, concentric circles, etc). The interaction betwen target and context either induces an e ect of curvature of the straight lines ( g. 6.3, (a), (b), (c) ), eliminates the bending e ect ( g. 6.3, (d)), or induces an e ect of unparallelism ( g. 6.3, (e)). This chapter is or-Figure 6.2: Second part of the timeline, from gure 6.1: in [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF] Eagleman provided an historal summary in which he pointed how the link between Illusory phenomena and the relevance they had in guiding researches in neuroscience.

ganised as follows: in section 2.1.3 geometrical optical illusions are presented from the neurophysiological and phenomenological point of view. In section 6.2 previous mathematical models for GOIs are presented. The state of the art for what concerns mathematical modeling will be reviewed. In 6.3.1 starting from the cortical based model introduced in chapter 4 a neuromathematical model for GOIs will be proposed, taking into account the modulation of the functional architecture induced by the stimulus. Finally in 6.4 the numerical implementation of the mathematical model will be explained and applied to a number of examples. Results are nally discussed as well as conclusions and perspectives of this work. The contributions developed in this chapter are published in the following papers by the author et al. [START_REF] Franceschiello | A neuro-mathematical model for geometrical optical illusions[END_REF][START_REF] Franceschiello | Mathematical models of visual perception for the analysis of geometrical optical illusions[END_REF]. 

Role of Geometrical optical illusions (GOIs)

The importance of this study, particularly focused on GOIs, lies in the possibility, through the analysis of these phenomena combined with physiological recordings, to help to guide neuroscienti c research (Eagleman, [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF]) in understanding the role of lateral inhibition, feedback mechanisms between di erent layers of the visual process and to lead new experiments and hypothesis on receptive elds of V1 and V2. Many studies, which relies on neuro-physiological and imaging data, show the evidence that neurons in at least two visual areas, V1 and V2, carry signals related to illusory contours, and that signals in V2 are more robust than in V1 ( [START_REF] Von | Illusory contours and cortical neuron responses[END_REF][START_REF] Murray | The spatiotemporal dynamics of illusory contour processing: combined highdensity electrical mapping, source analysis, and functional magnetic resonance imaging[END_REF], reviews [START_REF] David M Eagleman | Visual illusions and neurobiology[END_REF][START_REF] Micah | Illusory contours: a window onto the neurophysiology of constructing perception[END_REF]), see gure 6.4 from [START_REF] Micah | Illusory contours: a window onto the neurophysiology of constructing perception[END_REF]. A more recent study on the tilt illusion, see gure 6.5, in which the perceived orientation of a grating di ers from its physical orientation when surrounded by a tilted context, measured the activated connectivity in and between areas of early visual cortices ( [START_REF] Song | E ective connectivity within human primary visual cortex predicts interindividual diversity in illusory perception[END_REF]). These ndings suggest that for GOIs these areas may be involved as well. Neurophysiology can help to provide a physical basis to phenomenological experience of GOIs opening to the possibility of mathematically modeling them and to integrate subjective and objective experiences. 

Mathematical models proposed in literature

The pioneering work of Ho man [START_REF] Ho Man | Visual illusions of angle as an application of lie transformation groups[END_REF] dealt with illusions of angle (i.e. the ones involving the phenomenon of acute-angle expansion, which is the tendence to perceive under certain conditions acute angles as larger) modeling the generated perceived curves as orbits of a Lie group acting on the plane. The proposed model allows to classify the perceptual invariance of the considered phenomena in terms of Lie Derivatives, and to predict the slope. Another model mathematically equivalent to the one proposed by Ho man has been proposed by Smith, [START_REF] David | A descriptive model for perception of optical illusions[END_REF], who stated that the apparent curve of geometrical optical illusions of angle can be modeled by a rst-order di erential equation depending on a single parameter. By computing this value an apparent curve can be corrected and plotted in a way that make the illusion being not perceived anymore (see for example g. 8 of [START_REF] David | A descriptive model for perception of optical illusions[END_REF]). This permits to introduce a quantitative analysis of the perceived distortion. Ehm and Wackerman in [START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF], started from the assumption that GOIs depend on the context of the image which plays an active role in altering components of the gure. On this basis they provided a variational approach computing the deformed lines as minima of a functional depending on length of the curve and the de ection from orthogonality along the curve. This last request is in accordance to the phenomenological property of regression to right angle. One of the problems pointed out by the authors is that the approach doesn't take into account the underlying neurophysiological mechanisms. This model will be discussed later on, in chapter 7. An entire branch for modeling neural activity, the Bayesian framework, had its basis in Helmholtz's theory [START_REF] Hermann Von | Treatise on physiological optics[END_REF]: our percepts are our best guess as to what is in the world, given both sensory data and prior experience. The described idea of unconscious inference is at the basis of the Bayesian statistical decision theory, a principled method for determining optimal performance in a given perceptual task ( [START_REF] Wilson | Illusions, perception and bayes[END_REF]). These methods consists in attributing a probability to each possible true state of the environment given the stimulus on the retina and then to establish the way prior experience in uences the nal guess, the built proximal stimulus (see [START_REF] David | Perception as Bayesian inference[END_REF] for examples of Bayesian models in perception). An application of this theory to motion illusions has been provided by Weiss et al in [START_REF] Weiss | Motion illusions as optimal percepts[END_REF], and a review in [START_REF] Wilson | Illusions, perception and bayes[END_REF]. Fermüller and Malm in [START_REF] Fermüller | Uncertainty in visual processes predicts geometrical optical illusions[END_REF] attributed the perception of geometric optical illusions to the statistics of visual computations. Noise (uncertainty of measurements) is the reason why systematic errors occur in the estimation of the features (intensity of the image points, of positions of points and orientations of edge elements) and illusions arise as results of errors due to quantization. Walker ( [START_REF] Harris | A mathematical theory of optical illusions and gural aftere ects[END_REF]) tried to combine neural theory of receptive eld excitation together with mathematical tools to provide an equation able to determine the disparity between the apparent line of an illusion and its corresponding actual line, in order to reproduce the perceptual errors that occur in GOIs (the ones involving straight lines). In our model we aim to combine psycho-physical evidence and neurophysiological ndings, in order to provide a neuro-mathematical model able to interpret and simulate GOIs.

Scope of the chapter The contribution of this chapter is to introduce a mathematical model which takes into account the cortical activation of simple cells in V1 and V2. The modulated connectivity in the cortex is projected onto the visual space and gives rise to a Riemannian metric, at the basis of the visual deformation. Our intention is to interpret the new metric in the in nitesimal strain theory framework to compute the displacement vector eld solving a Poisson problem which arises from the proposed model. The proximal stimulus is nally recovered. In chapter 4 we saw the expression for the sub-Riemannian metric ( ij ) i,j=1,2,3 which models the connectivity patterns in the primary visual cortex, as proposed by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. The functional architectures built in R 2 ×S 1 correspond to the neural connectivity measured by Angelucci et al. in [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF] and Bosking et al. in [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. A qualitatively and quantitative comparison between the kernels and the connectivity patterns has been done by Favali et al. in [START_REF] Favali | Local and global gestalt laws: A neurally based spectral approach[END_REF]. In this contribution a local formulation of the kernel presented in [START_REF] Favali | Local and global gestalt laws: A neurally based spectral approach[END_REF] will be used: in [START_REF] Favali | Local and global gestalt laws: A neurally based spectral approach[END_REF] the connectivity is modelled with the sub-Riemannian heat kernel with minima de ned by the distributional lift [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], (x 1 , x 2 , θ ) where θ is the lifted orientation. Here we consider just the restriction of the heat kernel to the point (x 1 , x 2 ) by varying the orientation θ . It corresponds to exp -sin(θ -θ ) 2 2σ , expressing the local polarization of the horizontal connectivity, well estimated by the energy in (6.1). In gure 6.6 the local polarization of the hypercolumn is shown: for each (x 1 , x 2 , θ ) the corresponding value of exp -sin(θ -θ ) 2 2σ weights the sub-Riemannian metric ( ij ) i,j=1,2,3 . We will see in section 6.3.2 how the Riemannian metric is introduced. Let us remark that it has been shown by Sanguinetti et al. in [151] that the geometry of fuctional architecture formally introduced in chapter 4 is naturally encoded in the statistics of natural images. Hence these geometrical structures are compatible with Bayesian learning methods.

A neuro-mathematical model for GOIs

Output of Simple Cells and connectivity metric

We will now de ne a connectivity metric tensor on the image plane R 2 starting from the connectivity metric ( ij ) i,j=1,2,3 and the output of simple cells. Let us rst recall other interesting techniques for extracting local features of images: rst the more recent, tensor voting, by Medioni [START_REF] Medioni | Tensor voting: Theory and applications[END_REF], [START_REF] Mordohai | Tensor voting: a perceptual organization approach to computer vision and machine learning[END_REF], which propagates contour saliency information from input points to their neighbors through tensor elds, providing with a completion technique. An extension of Medioni's work has been provided in [START_REF] Franken | An e cient method for tensor voting using steerable lters[END_REF], where tensor voting is implemented based on steerable lters theory. The already well-known structure tensor, present in literature and directly inspired by the structure of the image, has been introduced in its linear formulation by Förstner and Gülch in [START_REF] Förstner | A fast operator for detection and precise location of distinct points, corners and centres of circular features[END_REF] (1987) and by Bigün et al. in [START_REF] Bigun | Optimal orientation detection of linear symmetry[END_REF] (1987). It encodes local gradient features of a processed image and the application of a Gaussian convolution averages the information within a neighborhood, allowing to perform orientation estimation, optic ow computation, corner detection, etc. Steps forward to overcome limitations due to the linear approach have been proposed by Weickert [START_REF] Weickert | Anisotropic di usion in image processing[END_REF] (1998) and Brox et al. in [START_REF] Brox | Nonlinear structure tensors[END_REF] (2006). Weickert replaced Gaussian smoothing with non-linear di usion techniques, which adapt tensor to the original data respecting discontinuities. He also pointed out that new lter models would allow to accomplish tasks in image processing which involve semi-local or global information. Here we build a modi ed structure tensor: it would give very similar results to the one in [START_REF] Weickert | Anisotropic di usion in image processing[END_REF] in case of using only odd Gabor lters ( [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]). Our images are composed by lines, they are not cartoon images, hence we need a technique able to correctly measure θ for contours and lines: this is the reason why we combine odd and even Gabor lters. Another point is that in our tensor, we do not normalize over the gradient as in [START_REF] Weickert | Anisotropic di usion in image processing[END_REF]. Finally we propose a tensor biologically based, since it encodes the action of Gabor lters and the cortical connectivity. We consider simple cells at xed value of σ depending on position and orientation. For each point (x 1 , x 2 , θ ) ∈ R 2 ×S 1 , we restrict the connectivity tensor ( ij (x 1 , x 2 , θ )) i,j=1,2,3 to the R 2 plane generated by {∂ x 1 , ∂ x 2 }, subset of the tangent space to R 2 ×S 1 at the point (x 1 , x 2 , θ ), and obtain the tensor cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ .

The metric ( ij ) i,j=1,2,3 is invariant for rotation and translation, then we can x a point without loss of generality. For every value of θ this tensor has only one non zero eigenvalue. The Figure 6.7: Representation of p -1 (blue). Principal and second eigenvectors correspond to rst and second semi-axes of the ellipses. Lengths of the semiaxes is given by the magnitude of the corresponding eigenvalues. Principal eigenvectors of ellipses are oriented along the maximum activity registred at θ over each point (x 1 , x 2 ), marked in cyan vector. Along part of the stimulus strongly oriented, ellipses are elongated. At the crossing point the orientation of the tensor, resulting by the vectorial sum of the orientations of the orthogonal lines, will be ball, with no preferred orientation. The tensor at the crossing point of two non-orthogonal lines is no more rounded, and will have a preferred orientation (vectorial sum of the orientations of the two crossing lines). The previous observation is ampli ed if we consider three crossing lines corresponding eigenvector has orientation θ . We will assign to the norm of the output the usual meaning of energy

E (x 1 , x 2 , θ ) = O (x 1 , x 2 , θ ) , (6.1) 
where • denotes the complex modulus of the output O dened in (4.3), which is evaluated at the xed value of σ . We will discuss in section 6.3.4 the choice of σ for our experiments. Each point of the hypercolumn is weighted by the energy of simple cells normalized over the whole set of hypercolumn responses:

E (x 1 , x 2 , θ ) π 0 E (x 1 , x 2 , θ )dθ . ( 6.2) 
The normalization of the output expresses the probability that a speci c cell sensitive to θ within the hypercolumn over (x 1 , x 2 ) is selected. The mechanism of intracortical selection attributing a probability to each possible orientation given the initial stimulus is connected to the long-range activity: simple cells belonging to di erent hypercolumns in a neighbourhood of a point (x 1 , x 2 ) sensitive to the same orientation will have a high probability. The connectivity tensor restricted to the R 2 plane and modulated by the output of simple cells will become:

E (x 1 , x 2 , θ ) π 0 E (x 1 , x 2 , θ )dθ cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ . ( 6.3) 
This last expression corresponds to a connectivity polarized by the normalized energy of simple cells shown in (6.2) at points (x, , θ ). From the mathematical point of view it is the pullback onto the R 2 of ij , weighted by the energy. The overall cometric (inverse of the metric tensor) arising from the action within the hypercolumn over each retinal point (x 1 , x 2 ) is obtained summing up along θ the previous modulated metric in (6.3) and will have the following expression:

p -1 (x 1 , x 2 ) = γ -1 π 0 E (x 1 , x 2 , θ ) cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ dθ π 0 E (x 1 , x 2 , θ )dθ , ( 6.4 
) where γ -1 is a normalization constant obtained as the L ∞ norm of the inverse of the determinant of the metric which appears in (6.4). This tensor will have principal eigenvector along the ori-Figure 6.8: Proximal stimulus (Hering illusion). Representation of p -1 (blue). Principal and second eigenvectors correspond to rst and second semi-axes of the ellipses. Lengths of the semiaxes is given by the magnitude of the corresponding eigenvalues. Principal eigenvectors of ellipses are oriented along the maximum activity registred at θ over each point (x 1 , x 2 ), marked in cyan vector. Here we show a detail of the tensor eld representation: we notice that along parts of the stimulus strongly oriented, ellipses are elongated.

As far as we move toward crossing points, ellipses lost their elongated form and become less or more rounded, in dependence with the orientation response of lines at crossing points entation θ , corresponding to the maximum energy within the hypercolumn. A visualization of p -1 is given in gure 6.7 and 6.8. Hence this process describes the selection at every point (x 1 , x 2 ) of the most likely orientation of propagation of the connectivity, expressed by the values attained by the energy.

From metric tensor field to image distortion

In the previous section we described the response of the cortex in the presence of a visual stimulus.

(1) The distal stimulus is projected onto the cortex by means of activity of simple cells.

(2) The joint action of the short and long range connectivity induces a Riemannian tensor p -1 on the R 2 retinal plane.

Even though it is not completely clear in which cortical area the perceived image is reconstructed, from a phenomenological point of view it is evident that our visual system recostructs the perceived image. Hence a third mechanism takes place, able to construct the perceived stimulus from the cortical activation. With this mechanism the image distortion which induces the metric tensor p (inverse of p -1 ) is estimated. Here we propose to apply in nitesimal strain theory and to identify its inverse p with the strain tensor to compute the deformation. Once the displacement vector eld is applied to the distal stimulus, we obtain a distorted image which models the proximal one. In this way we justify the mechanism at the basis of geometrical optical illusions. The mechanism of recostruction of the image at a neuro-physiological level is still an open problem. Although the cortex with its complete set of Gabor lters would be able to reconstruct the image (Lee et al. [START_REF] Sing | Image representation using 2d gabor wavelets[END_REF]), it is not clear if the cortex accomplishes this task and we did not take into account this process. We considered just the capability of the cortex to generate a Riemannian metric which is able to deform the image, without considering its reconstruction. We simply apply the deformation vector eld to the original image. In this approach we consider the medium to be subjected only to small displacements, i.e. the geometry of the medium and its constitutive properties at each point of the space are assumed to be unchanged by deformation.

Strain tensor -displacement vector field Figure 6.9: Here we superimpose two red lines to the original distal stimulus (Hering illusion) to remark that vertical lines present in the stimulus are straight. Representation of the displacement eld

{ ū (x 1 , x 2 )} (x 1 ,x 2 ) ∈R 2 . Perceived deformation.
The mathematical question is how to reconstruct the displacement starting from the strain tensor p. We think at the deformation induced by a geometrical optical illusion as an isometry between the R 2 plane equipped with the metric p and the R 2 plane with the Euclidean metric Id:

Φ : (R 2 , p) → (R 2 , Id).
From the mathematical point of view this means that we look for the change of variable which induces the new metric (see Jost [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]), i.e.

∂Φ k ∂x i Id kl ∂Φ l ∂x j = p ij (x ), (6.5) 
where x = (x 1 , x 2 ) ∈ R 2 , p ij and Id kl indicate the components of tensor p and the identity Id respectively and we use Einstein summation convention. Using this expression, we obtain:

p(x ) = (∇Φ) T (∇Φ). (6.6) 
Let us notice p -1 corresponds to Φ -1 , the map representing the process which builds the modulated connectivity we discussed before. In strain theory p satisfying (6.6) is called right Cauchy-Green tensor associated to the deformation Φ, which from the physical point of view is a map Φ : Ω → R 2 associating the points of the closure of a bounded open set Ω ⊂ R 2 (initial conguration of a body) to Φ(Ω) ⊂ R 2 (deformed con guration). For references see [START_REF] Lubliner | Plasticity theory[END_REF], [START_REF] Marsden | Mathematical foundations of elasticity[END_REF]. It is possible to introduce the displacement as a map ū (x 1 ,

x 2 ) = Φ(x 1 , x 2 ) -(x 1 , x 2 ), where (x 1 , x 2 ) ∈ R 2 . It follows ∇ ū = ∇Φ -Id.
We can now express the right Cauchy-Green tensor in terms of displacement:

p = p ij (x ) = (∇Φ) T (∇Φ) = (∇ ū + Id) T (∇ ū + Id) = (∇ ū) T (∇ ū) + (∇ ū) + (∇ ū) T + Id.
The concept of strain is used to evaluate how much a given displacement di ers locally from a rigid body displacement. For in nitesimal deformations of a continuum body, in which the displacement gradient is small ( ∇ ū 1), it is possible to perform a geometric linearization of strain tensor introduced before, in which the non-linear second order terms are neglected. The linearized right Cauchy-Green tensor has the following form:

G(ū) ≈ (∇ ū) + (∇ ū) T , (6.7) 
which is used in the study of linearized elasticity, i.e. the study of such situations in which the displacements of the material particles of a body are assumed to be small (in nitesimal strain theory.) Here we give the expression in components of ϵ ( ū) = 1 2 G(ū) (the so called Green-Lagrangian strain tensor):

ϵ ij ( ū) = ∂u 1 ∂x 1 1 2 ∂u 1 ∂x 2 + ∂u 2 ∂x 1 1 2 ∂u 2 ∂x 1 + ∂u 1 ∂x 2 ∂u 2 ∂x 2 , ( 6.8) 
where ū = (u 1 , u 2 ). Expressing ϵ ij in terms of the metric (p ij ) i,j with whom the initial con guration of the considered body was equipped we obtain:

ϵ ij ( ū) ≈ 1 2 ((p ij ) ij -Id), (6.9) 
and in its matrix form:

p 11 p 12 p 21 p 22 - 1 0 0 1 = ∂u 1 ∂x 1 1 2 ∂u 1 ∂x 2 + ∂u 2 ∂x 1 1 2 ∂u 2 ∂x 1 + ∂u 1 ∂x 2 ∂u 2 ∂x 2 . (6.10) Poisson problems -displacement
Starting from (6.10) we obtain a system of equations with this form:

         p 11 -1 = ∂u 1 ∂x 1 p 22 -1 = ∂u 2 ∂x 2 p 12 = p 21 = 1 2 ( ∂ ∂x 2 u 1 + ∂ ∂x 1 u 2 ) (6.11) 
Di erentiating, substituting and imposing Neumann boundary conditions to system (6.11) we end up with the following di erential system:

                   ∆u 1 = ∂ ∂x 1 p 11 + 2 ∂ ∂x 2 p 12 -∂ ∂x 1 p 22 in M ∆u 2 = ∂ ∂x 2 p 22 + 2 ∂ ∂x 1 p 12 -∂ ∂x 2 p 11 ∂ ∂ n u 1 = 0 in ∂M ∂ ∂ n u 2 = 0 (6.12)
where M is an open subset of R 2 and ∂M is Lipschitz continuous, with normal de ned almost everywhere. Solutions for equation (6.12) are well de ned up to an additive constant, which is recovered imposing u (0, 0) = (0, 0) = 0 for simmetry reasons, where (0, 0) is the center of our initial domain M. Let us explicitly note that tensor p is obtained after convolution of Gabor lters, so that it is di erentiable, allowing to write the system. Hence we solve (6.12), recovering the displacement eld ū (x 1 , x 2 ).

Numerical Implementation

The inverse of tensor expressed in formula (6.4) is computed discretizing θ as a vector of 32 values equally spaced in the interval [0, π ]. The scale parameter σ varies in dependence of the image resolution and is set in concordance with the stimulus processed. It is taken quite large in all examples in such a way to obtain a smooth tensor eld covering all points of the image. This is in accordance with the hypothesis previously introduced that mechanisms in V2, where the receptive eld of simple cells is larger than in V1, play a role in such phenomena. The constant γ has been chosen for all the examples as γ = 2 • 10 -2 . The di erential problem in (6.12) is approximated with a central nite di erence scheme and it is solved with a classical PDE linear solver. We now start discussing all results obtained through the presented algorithm.

Results

Hering illusion

The Hering illusion, introduced by Hering, a German physiologist, in 1861 [START_REF] Ewald | Beiträge zur physiologie[END_REF] is presented in gure 6.10. In this illusion two vertical straight lines are presented in front of radial background, so that the lines appear as if they were bowed outwards. In order to help the reader, in gure 6.10 (top left) we superpose to the initial illusion two red vertical lines, which indeed coincide with the ones present in the stimulus. As described in the In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to better clarify the curvature of the target lines.

previous sections, we rst convolve the distal stimulus with the entire bank of Gabor lters: we take 32 orientations selected in [0, π ), σ = 6.72 pixels. Following the process, we compute p -1 using equation (6.4), we solve equation (6.12) obtaining the perceived displacement ū : R 2 → R 2 . Once it is applied to the initial stimulus, the proximal stimulus is recovered. The result of computation is shown in gure 6.10 (bottom right). The distorted image folds the parallel lines (in black) against the straight lines (in red) of the original stimulus (given in gure 6.3, a). 

Wundt Illusion

A variant of the Hering illusion, introduced by Wundt in the 19th century, [START_REF] Max | Die geometrisch-optischen Täuschungen[END_REF] is presented in gure 6.12. In this illusion two straight horizonal lines look as if they were bowed inwards, due to the distortion induced by the crooked lines on the background. For the convolution of the distal stimulus with Gabor lters we select 32 orientations in [0, π ), σ = 11.2 pixels. Then we apply the previous model, and obtain the result presented in gure 6.12. Computed vector elds are concentrated in the central part of the image and point toward the center. They indicate the direction of the displacement, which bends the parallel lines inwards. In gure 6.12 (center right) the proximal stim-ulus is computed through the expression: (x 1 , x 2 ) + ū (x 1 , x 2 ). In black we indicate displaced dots of the initial image: the straight lines of the distal stimulus are bent by the described mechanism (black). In red we put the straight lines of the original distal stimulus. This provide a comparison between the lines pre/post processing. In gure 6.12 (bottom) details of the distances between the bent curves and the original straight lines are shown. Figure 6.12: Here we superimpose two red lines to the Wundt illusion, presented in gure 6.3, b, in order to clarify that the horizontal lines present in the image are indeed straight. Representation of p -1 , projection onto the retinal plane of the polarized connectivity in 6.3. The rst eigenvalue is tangent to the level lines of the distal stimulus. In blue the tensor eld, in cyan the eigenvector related to the rst eigenvalue. Computed displacement eld ū. Displacement applied to the image. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to put in evidence the curvature of the target lines. Finally, details of the perceived distortion in the computed proximal stimulus in the Wundt illusion are presented.

Square shape over Ehrenstein context

This illusion, introduced by Ehm and Wackermann in [START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF], consists in presenting a square over a background of concentric circles, gure 6.3, c. This context, the same we nd in Ehrenstein illusion, bends the edges of the square (red lines in gure 6.13, top left) toward the center of the image. Here we take the same number of orientations, 32, selected in [0, π ) and σ = 13.44 pixels. The resulting distortion is shown in gure 6.13, bottom right. Figure 6.13: Here we superimpose red edges to the original illusion shown in 6.3, (c). Representation of p -1 , projection onto the retinal plane of the polarized connectivity in 6.3. The rst eigenvalue is tangent to the level lines of the distal stimulus. In blue the tensor eld, in cyan the eigenvector related to the rst eigenvalue. Computed displacement eld ū. Displacement applied to the image. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give a square as reference, in order to put in evidence the curvature of the target lines.

Modified Hering illusion

Here we present three modi ed Hering illusions (see gure 6.14): in the rst one straight lines are positioned further from the center than in the classical Hering illusion. In the second one straight lines are positioned nearer the center than in the reference Hering illusion. For coherence with the Hering example, orientations selected are 32 in [0, π ) and σ = 6.72 pixels. All other parameters are xed during these three experiments. In the proposed modi ed Hering illusions, see gure 6.14 the vertical lines are straight and parallel as in the Hering, but since they are located further/nearer the center of the image the perceived bending results to be less/more intense. In accordance with the displacement vector elds shown in gure 6.10, bottom left, as far as we outstrip/approach the center the magnitude of the computed displacement decreases/increases. In gure 6.14, bottom right, two straight lines are put over an incoherent background, composed by random oriented segments. As we can see from gure 6.15, bottom right, any displacement is perceived nor computed by the present algorithm.

Wundt-Hering illusion

The Wundt-Hering illusion ( gure 6.3, (d)) combines the e ect of the background of the Hering and Wundt illusions. In this Figure 6.14: Top left: Hering illusion, distal stimulus. Top right: modi ed Hering illusion: in this example straight lines are further from the center with respect to the classical example of Hering illusion. Bottom left: modi ed Hering illusion: in this example straight lines are placed nearer the center with respect to the classical example of the Hering illusion. Bottom right: modi ed Hering illusion with a incoherent background, composed by random-oriented segments. Figure 6.15: Displacement applied to the Hering illusion. Displacement applied to the rst modi ed Hering illusion, in which the distance from the center is increased. Displacement applied to second modi ed Hering illusion, in which the distance from the center is decreased. Displacement applied to the third modi ed Hering illusion, with an incoherent background of random-oriented segments. In this last example no deformation is perceived. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to put in evidence how much target lines are bent, or not bent. illusion two straight horizontal lines are presented in front of inducers which bow them outwards and inwards at the same time, inhibiting the bending e ect. As a consequence the horizontal lines are indeed perceived as straight. As previously explained for the modi ed Hering illusion, also this phenomenon can be interpreted in terms of lateral interaction between cells belonging to the same neighborhood. Here we take 32 orientations selected in the interval [0, π ), σ = 6.72 pixels. Figure 6.16: Here we superimpose two red horizontal lines to the original Wundt-Hering illusion, gure 6.3, (d). Representation of p -1 , projection onto the retinal plane of the polarized connectivity in 6.3. The rst eigenvalue is tangent to the level lines of the distal stimulus. In blue the tensor eld, in cyan the eigenvector related to the rst eigenvalue. Computed displacement eld ū. Displacement applied to the image. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to put in evidence the curvature of the target lines.

Zöllner illusion

The Zöllner illusion ( gure 6.3, (e)) consists in a pattern of oblique segments surrounding parallel lines, which creates the e ect of unparallelism, [START_REF] Zöllner | Ueber eine neue art von pseudoskopie und ihre beziehungen zu den von plateau und oppel beschriebenen bewegungsphänomenen[END_REF]. As in the previous experiments, in gure 6.3, (e), we superimpose two red lines to identify the straight lines. Here we take 32 orientations selected in the interval [0, π ), σ = 10.08 pixels.

Ehrenstein illusion

In the Ehrenstein illusion, see gure 6.18 top left, the top and bottom edges of the square appear to be unparallel due to the presence of the crossing lines in the background.

Discussion

In this chapter we presented a neuro-mathematical model based on the functional architecture of the visual cortex to explain Figure 6.17: Here we superimpose two red horizontal lines to the original Zollner Illusion. Representation of p -1 , projection onto the retinal plane of the polarized connectivity in 6.3. The rst eigenvalue is tangent to the level lines of the distal stimulus. In blue the tensor eld, in cyan the eigenvector related to the rst eigenvalue. Computed displacement eld ū. Displacement applied to the image. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to put in evidence the unparallelism of the target lines. and simulate perceptual distortion due to geometrical-optical illusions and to embed geometrical context. In our model perceptual distortion is due to the Riemannian metric induced on the image plane by the connectivity activated by the image stimulus. Its inverse is interpreted as a strain tensor and we computed the deformation in terms of displacement eld which arises as solution of (6.12). This technique has been applied to a number of test cases and results are qualitatively in good agreement with human perception. In the future this work could be extended to functional architectures involving the feature of scale, starting from models provided by Sarti, Citti and Petitot in [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF], [START_REF] Sarti | Functional geometry of the horizontal connectivity in the primary visual cortex[END_REF]. This will allow to provide a model for scale illusions, such as the Delbouf, see [START_REF] Andrew M Colman | A dictionary of psychology[END_REF]. Indeed, another direction for future works will be to provide a quantitative analysis for the described phenomena, such as the one proposed by Smith [START_REF] David | A descriptive model for perception of optical illusions[END_REF] and to direct compare the developed theory with observations of GOIs through neuro-imaging techniques. in GOIs T of this chapter is to model geometrical optical illusions as geodesics of the polarized metric in SE(2) introduced in the previous chapter [START_REF] Bekkers | A pde approach to data-driven sub-riemannian geodesics in se (2)[END_REF]. In this framework, starting from the model proposed in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] which looks for illusory contours as lenght minimizers of the distance between two points (geodesic, [START_REF] Montgomery | A Tour of Subriemannian Geometries, Their Geodesics and Applications[END_REF]) in the sub-Riemannian (SR) metric ij , see (4.10) in chapter 4, we extend the model to this framework, in which we state illusory contours in GOIs arise as geodesics of the polarized metric. From the numerical point of view a very fast and accurate method for computing geodesics in the Euclidean metric has been introduced by Sethian in [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF][START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Theory, algorithms, and applications of level set methods for propagating interfaces[END_REF], and it is called Fast-Marching (FM). Fast -marching consists in looking for approximate solutions for the Eikonal problem: where e is the boundary initial value and ∇ E denotes the Euclidean gradient; (x 1 , x 2 , x 3 ) ∈ R 3 (we refer to section 5.3 for a review de nition and properties of solutions in the viscosity sense, rst introduced by [START_REF] Michael G Crandall | User's guide to viscosity solutions of second order partial di erential equations[END_REF][START_REF] Michael | Convergent di erence schemes for nonlinear parabolic equations and mean curvature motion[END_REF]). Physically the solution W (η) is the shortest time needed to travel from e to η inside the domain of the equation, with f (x ) being the speed at η. When f = 1, W is the distance from the boundary e. In the latter case, once the distance map W has been computed, geodesics are recovered as integral curves of its gradient starting from the nal point η on W , and ending at point e. Indeed they will be minimal lenght path from e to η. In this way they can be interpreted as the fastest paths connecting the two points. The Eikonal equation has been studied from the analytical point of view in di erent setting by many authors. Viscosity solution for this type of PDEs have been provived in the 80s by Crandall and Lions, see [START_REF] Michael | Viscosity solutions of hamilton-jacobi equations[END_REF] and for uniqueness see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] (recent version). The theoretical counterpart for viscosity solu-tion of the Eikonal equation in the sub-Riemmanian case can be found in [START_REF] Cancelier | Agmon metric for sum-of-squares operators[END_REF][START_REF] Dragoni | Carnot-Carathéodory metrics and viscosity solutions[END_REF][START_REF] Dragoni | Metric hopf-lax formula with semicontinuous data[END_REF]. The Fast marching method for computing approximate solutions has been extended in other setting by Mirebeau, [START_REF] Mirebeau | Anisotropic fast-marching on cartesian grids using lattice basis reduction[END_REF], and in [START_REF] Bekkers | A pde approach to data-driven sub-riemannian geodesics in se (2)[END_REF] was developed in the SE(2) equipped with a SR metric.

∇ E W (x 1 , x 2 , x 3 ) E = 1 f (x 1 ,
In this chapter we look for perceptual curves as sub-Riemannian geodesics of SE (2) and we will compute them through the FM method. Especially we will apply our hypothesis over Poggendor illusion, see gure 7, in which a surface makes the two collinear transversals appear misaligned. The perceptual curve projects in at some point over the right boundary of the surface, and our aim is to compute it, stating it will be a length minimizer for the polarized metric in the SE(2) space. The contributions relative to modeling illusory curves as Geodesics in R 2 ×S 1 will be contained in [START_REF] Franceschiello | Modelling of the poggendor illusion via sub-riemannian geodesics in the roto-translation group[END_REF][START_REF] Franceschiello | Modelling of geometrical optical illusions via sub-riemannian geodesics in the roto-translation group[END_REF].

Sub-Riemannian Geodesics as perceptual curves in GOIs

In the previous chapter we have presented a neuro-geometrical model for GOIs in which the deformation induced by the stimulus is recovered through in nitesimal strain theory instruments. Let us consider now the contribution given in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] by Citti

For reader convenience we recall here both formulas introduced in Chapter 4 the mother Gabor lter has the following expression:

ψ 0 (ξ ) = ψ 0 (ξ 1 , ξ 2 ) = 1 2πσ 2 e -(ξ 2 1 +α 2 ξ 2 2 ) 2σ 2 e 2i b ξ 2 σ ,
where b = 0.56 is the ratio between σ and the spatial wavelength of the cosine factor. The output of the convolution between the image and the entire bank of Gabor lters is

O (x 1 , x 2 , θ ) = M I (ξ 1 , ξ 2 ) ψ (x 1 ,x 2 ,θ ) (ξ 1 , ξ 2 ) dξ 1 dξ 2 .
Later on we will consider R(x 1 , x 2 , θ ), the odd lter part contribution to the previous output. and Sarti, in which the natural connectivity metric with whom the cortical space SE (2) in endowed is sub-Riemannian. In the presented metric, in formula (4.10), completion curves (subjective boundaries) arise as geodesics of the R 2 ×S 1 space. Furthermore, they are lifting in the 3D space of the classic elastica curves. Elastica curves, i.e. curves minimizing the functional γ (1 + k 2 )ds were introduced in [START_REF] Nitzberg | Filtering, segmentation and depth[END_REF] as classical reconstruction for subjective boundaries, which can be either linear or curvilinear. In the previous formula, the integral is computed along the missing boundary γ and k denotes its curvature. The equivalence between the minimization problem proposed by Nitzberg, Mumford and Shiota in [START_REF] Nitzberg | Filtering, segmentation and depth[END_REF] and the one proposed by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] has been shown in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. In this way the problem of looking for minima has been reduced to a problem of geodesics in the natural metric of the space R 2 ×S 1 . The idea is then to extend this approach for modeling Geometrical Optical Illusions. In the same way as subjective boundaries, the deformation curves of the proximal stimulus of Geometrical Optical illusions arise as geodesics of a metric strongly polarized by the output of simple cells of V1/V2. So the basic idea is to provide a natural environment for this type of phenomena and to model them through geodesics of this space. We assume that the output of the simple cells induce a reinforcement of the connectivity which become stronger at the activated cells. This idea is modelled through a polarized metric of the sub-Riemannian space, obtained multiplying the natural metric H -1 of the space, de ned in (4.8) with a suitable function R = R(x 1 , x 2 , θ ) which only depends on the output O of the cells, de ned in formula 4.3). In the frame X 1 , X 2 the metric and its inverse become (for de nitions see section 4.3.1)

H = 1 R 1 0 0 1 , H -1 = R 1 0 0 1 (7.2)
We postulate that perceptual curves for the GOIs such as the one presented in gure 7 are length minimizers of the polarized metric in (7.2). Until now psychologists have been looking

for the paths of perceptual curves through quantitative perceptual experiments, [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF][START_REF] David | Factors a ecting perceived orientation of the poggendor transversal. Attention, Perception, &amp[END_REF]. Here we will provide spatial coordinates for such curves, looking for them through a neuralbased mathematical model. The original contribution of this chapter will be to provide a neural based mathematical model able to recover perceptual curves in GOIs, and to compare them with previous psychophysical estimations of those curves.

Geodesics, distance and Eikonal equation

In De nitions 3.3.5 and 3.3.6 we provided the de nition of Riemannian geodesics and minimizing geodesics. The same de nitions could be given in the sub-Riemannian setting, but for our application we are mainly interested in minimizing geodesics [START_REF] Montgomery | A Tour of Subriemannian Geometries, Their Geodesics and Applications[END_REF]: De nition 7.2.1. Given two points η 0 , η 1 and a curve γ on which the minimum in 4.11 is attained, we call such curve a geodesic.

Sub-Riemannian geodesics and their application to image analysis were also studied in [START_REF] Ben-Yosef | A tangent bundle theory for visual curve completion[END_REF][START_REF] Robert K Hladky | Constant mean curvature surfaces in sub-riemannian geometry[END_REF][START_REF] Mashtakov | Parallel algorithm and software for image inpainting via sub-riemannian minimizers on the group of rototranslations[END_REF]. For explicit formulas of SR-geodesics in SE (2) in the particular case of uniform external cost R = 1, see [START_REF] Sachkov | Cut locus and optimal synthesis in the sub-riemannian problem on the group of motions of a plane[END_REF]. By the de nition 4.12, the length of the minimizing geodesics between two points η 0 and η 1 is the Carnot Carathéodory distance between them (section 4.4). It is known that this distance is a solution of the sub-Riemannian eikonal equation, see [START_REF] Cancelier | Agmon metric for sum-of-squares operators[END_REF]. In the metric de ned in (7.2) the equation has the following expression:

∇ H W (η) H = 1 for η e, W (e) = 0, (7.3) where H is the metric de ned in (4.8). The Eikonal equation belongs to the class of Hamilton-Jacobi equations. Let us recall that viscosity solutions for this kind of problems in the Euclidean setting have been provided by Crandall and Lions [START_REF] Michael | Viscosity solutions of hamilton-jacobi equations[END_REF][START_REF] Michael G Crandall | Some properties of viscosity solutions of hamilton-jacobi equations[END_REF]. For uniqueness see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] (recent version). We refer to section 5.3 for a summary of the contributions to the notion of viscosity solution. Monti improved the previous result showing that the equation holds almost everywhere. Because of the uniqueness of the solution, necessarily the solution W will be the distance from a point [START_REF] Monti | Surface measures in carnot-carathéodory spaces[END_REF]. See also Dragoni, [START_REF] Dragoni | Carnot-Carathéodory metrics and viscosity solutions[END_REF][START_REF] Dragoni | Metric hopf-lax formula with semicontinuous data[END_REF]. For the solution in the case of the Heisenberg group, see [START_REF] Monti | Some properties of carnot-carathéodory balls in the heisenberg group[END_REF]. In this theoretical framework the solution of (7.3) will be the sub-Riemannian distance in the metric H , opportunely weighted by R, from the point e. In gure 7.2 the minimum along θ of the sub-Riemannian distance map computed through the SR-FM is presented. Colors indicate the distance from the boundary value e.

Riemannian approximation of sub-Riemannian distance

Let us recall that the subriemannian distance d can be approximated via a family of suitable Riemannian distances. For 0 < ϵ 1 we de ne the metric

G ϵ = diag( 1 R , 1 R , 1 ϵ 2 R
),

with respect to the frame X 1 , X 2 , X 3 , and we call d ϵ the associated Riemannian distance. G ϵ is the Riemannian approximation of the metric G, which extends to the whole space the metric H . See sections 4.3.1 and 5.3.1, here the reference frame is modi ed up to a constant with respect to sec 5.3.1. Its inverse is expressed as

G -1 ϵ = diag(R, R, ϵ 2 R),
so that G -1 ϵ formally tends to G -1 . Accordingly for every ϵ > 0 the Riemannian distance d ϵ (η, e) satis es the Riemannian Eikonal equation:

∇ G ϵ W ϵ (η) G ϵ = 1 for η e, W ϵ (e) = 0, (7.4) 
It is important to note that the equality in the limit is not only formal. Indeed it has bee proved by Gromov in [START_REF] Gromov | Carnot-carathéodory spaces seen from within[END_REF] that d is approximated by the Riemannian distance d ϵ . As a consequence the solution W ϵ tends to W as ϵ goes to 0.

Sub-riemannian fast marching 7.3.1 Solution of the Eikonal Equation

Fast-Marching is a fast and accurate technique introduced by Sethian in [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF][START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Theory, algorithms, and applications of level set methods for propagating interfaces[END_REF], for solving the stationary eikonal equation when the metric is isotropic (proportional at each point to the identity matrix). It allows to compute an approximate solution of the latter, i.e. the Euclidean distance map from a certain boundary initial condition. Let us go through the method, as originally proposed by Sethian in the Euclidea setting. First, equation (7.1) is discretized with an upwind scheme presented in formula (8.2) of [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF] and in [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF].

           max(D -x 1 ijk W , -D +x 1 ijk W , 0) 2 max(D -x 2 ijk W , -D +x 2 ijk W , 0) 2 max(D -x 3 ijk W , -D +x 3 ijk W , 0) 2            1/2
= 1 (7.5)

Figure 7.3: Progress of the Fast Marching method along the grid points of the stencil, see [START_REF] Sethian | Level Set Methods and Fast Marching Methods[END_REF].

with f (x 1 , x 2 , x 3 ) = 1, D +/- ijk denoting forward and backward di erences along x 1 , x 2 or x 3 , directions in R 3 . Scheme in (7.5) can be solved, as proposed in [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF], through iteration. The key innovation proposed by Sethian in [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Theory, algorithms, and applications of level set methods for propagating interfaces[END_REF] is to construct the solution W using only upwind values, which guarantees the information is propagated one-way starting from the boundary, from small values of W to larger ones. At each step we march downwind and we identify the points around the boundary which minimize the solution W . This cannot yield a value smaller than that at any of the already computed points. The grid point containing the minimum of W becomes the new boundary value, and the propagation follows this scheme. To summarize it: rst, boundary value points are tagged as Known; then, all points that are one grid point away are tagged as Trials. Finally, all the others are tagged as Far. Then a loop over the stencil is performed, as follows:

(1) Begin loop: let A be the Trial point with the smallest W values.

(2) Add the point A to Known; remove it from Trial.

(3) Tag as Trial all the neighbors of A that are not Known. If the neighbor is in Far, remove, and add to the set Trial.

(4) Recompute the values of W at all Trial neighbors of A according to equation (7.5) by solving the quadratic equation (backsolve).

(5) Return to top of loop. See gure 7.3.1 for the evolution of the process through the explained iterations. The fast-marching method has been extended in the case of Riemannian metric by Mirebeau, [START_REF] Mirebeau | Anisotropic fast-marching on cartesian grids using lattice basis reduction[END_REF], and in [START_REF] Bekkers | A pde approach to data-driven sub-riemannian geodesics in se (2)[END_REF] was developed in the SE (2) equipped with a sub-Riemannian metric, with arbitrary external cost. These recent method belong to the Dijkstra's class of algorithms [START_REF] Edsger | A note on two problems in connexion with graphs[END_REF], in which the approach for solving the Eikonal equation is slighty di erent. While the method proposed by Sethian looks for the solution of the continuous problem, Dijkstra's method applies to graphs, where the front propagates by looking for the node reached with the smallest current cost, i.e. the prescribed weight of the nodes of the graph. In order to deal with the anistropic eikonal equation associated to a given Riemannian metric (important for its application to control problems [START_REF] James | Ordered upwind methods for static hamiltonjacobi equations: Theory and algorithms[END_REF] and medical image analysis [START_REF] Benmansour | Tubular structure segmentation based on minimal path method and anisotropic enhancement[END_REF]), Mirebeau in [START_REF] Mirebeau | Anisotropic fast-marching on cartesian grids using lattice basis reduction[END_REF] introduced a Fast Marching using lattice basis reduction (LBR, has been introduc in [START_REF] Phong | Low-dimensional lattice basis reduction revisited[END_REF]). This means that the considered stencil is sparse and non-negative, in order to adapt to the anisotropic solution we are looking for.

Geodesics computations

Once the solution of the Eikonal problem has been recovered, geodesics, length minimizers of the metric, are computed using gradient descent ( gure 7.4). The latter method ensures to move toward the local mimumum of a prescribed map (our distance map W ). This local minimum is reached following the -∇ direction of the function W at a current point. This ensures, looking for example at gure 7.4, that W (x 0 ) > W (x 1 ) > . . . > W (x 4 ), meaning that we converge to a desidered local minimum. Bekkers et al. in [START_REF] Bekkers | A pde approach to data-driven sub-riemannian geodesics in se (2)[END_REF] solve the sub-Riemannian Eikonal equation in (7.3) via the Riemannian approximation introduced in 7.4. In order to do so they suitably adapt the method explained in 7.3.1. Then they call γ (t ) the solution of the Cauchy problem:

γb (t ) = -∇ H W (γ b (t )), t ∈ [0,T ] γ b (0) = η 1 , (7.6) 
and prove that γ (t ) = γ b (Tt ) is the sub-Riemannian geodesic connecting e and η 1 . Poggendor illusion consists in an apparent misalignment of two collinear, oblique, transversals separated by a rectangular surface (shown in Fig. 7.5). It is named after Johann Christian Poggendor , the editor of the journal Annalen der Physik, who discovered it in the gures Johann Karl Friedrich Zöllner submitted when rst reporting on what is now known as the Zöllner illusion, in 1860, see [START_REF] Zöllner | Ueber eine neue art von pseudoskopie und ihre beziehungen zu den von plateau und oppel beschriebenen bewegungsphänomenen[END_REF] and gure 6.3, (e). Refering to gure 7.6, in which a perceptual scheme of the illusion is provided, the perceptual completion of the black line appears

Poggendor illusion

The experiment used to measure the quantitative contribution of the obtuse angle e ect is explained in [START_REF] Day | The components of the poggendor illusion[END_REF], page 542. The right transversal is substituted by a dot. The illusion is still present, meaning that what accounts for it is the elongation of the central bar produced by the obtuse angle, and not the tendency of the transversal to form a right angle with the parallels. This conclusion have been rejected recently by some experiments performed by the same authors in [START_REF] Day | No evidence for apparent extent between parallels as the basis of the poggendor e ect. Attention, Perception, &amp[END_REF] and summarize in [START_REF] Daniel | The logic of misperceived distance (or location) theories of the poggendor illusion[END_REF].

to be the blue segment, instead of the red segment, which corresponds to the geometrical continuation of the black line. An interesting overview of the psychological elements contributing to the misperception in Poggendor illusion has been performed from the 70s by many authors, we recall just few of them [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF][START_REF] David | Factors a ecting perceived orientation of the poggendor transversal. Attention, Perception, &amp[END_REF][START_REF] Day | The components of the poggendor illusion[END_REF][START_REF] Outram | The psychology of visual illusion[END_REF][START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF]. This phenomenon of misalignement occurs in a wide range of gures, see [START_REF] Tolansky | Optical illusions[END_REF][START_REF] Day | The poggendor illusion: Apparent misalignment which is not attributable to apparent orientation of the transversals[END_REF]. In their paper Day and Dickinson, [START_REF] Day | The components of the poggendor illusion[END_REF], identi ed with psychophysicals experiments some of the components of the Poggendor illusions, i.e. the main e ects independent one from the other which contribute to the perceptual distortion. The most critical feature is the obtuse angle e ect, which was measured psychophysically (see margin note): it consists on the fact that the apparent length of the sides of an obtuse angle is greater than that of an obtuse angle of equal physical lengths, meaning that is the segment of the parallel that makes an obtuse angle with the outer transversal segment which elongates the central bar, creating the illusory e ect [START_REF] Day | The components of the poggendor illusion[END_REF][START_REF] David | Factors a ecting perceived orientation of the poggendor transversal. Attention, Perception, &amp[END_REF]. The latter is then produced by a change of the apparent extent in the space between the aligned elements, with consequent change in apparent oblique direction. It follows that the illusion is consistently more perceptually signi cant in those gures in which one or more obtuse angles occured [START_REF] David | Factors a ecting perceived orientation of the poggendor transversal. Attention, Perception, &amp[END_REF]. The latter e ect can also be called shrinkage of the modal space (the space between the transversal), see [START_REF] Tong | Contour displacements and tracking errors: Probing'twixt poggendor parallels[END_REF][START_REF] Day | Zanuttini's "surface shrinkage" explanation of the poggendor misalignment e ect[END_REF] and for a similar approach [START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF]. However, the same authors that claimed for such theory, in later works rejected it through experimental ndings, and a uniform interpretation for this phenomenon is still missing. See, for instance, Weintraub [START_REF] Daniel | The logic of misperceived distance (or location) theories of the poggendor illusion[END_REF], 1993, and Day, [START_REF] Day | No evidence for apparent extent between parallels as the basis of the poggendor e ect. Attention, Perception, &amp[END_REF], 1987. Another possible explanation for the phenomenon was the misperception of the orientation of the transversal in the stimulus, the so called regression to right angles tendency presented in [START_REF] Blakemore | Lateral inhibition between orientation detectors in the human visual system[END_REF][START_REF] Hotopf | The regression to right angles tendency and the poggendor illusion. ii[END_REF][START_REF] Whn Hotopf | The regression to right angles tendency and the poggendor illusion. iii[END_REF], in which the misalignement in the Poggendor illusion is attributed to an apparent angular displacement of the transversals towards a right angle with the parallels, seemed to be insu cient to explain this phenomenon. For example, see gure 7.7, left, it does not account for the abolishment of the e ect when only acute angles are shown. However, these studies Figure 7.7: From Weintraub and Talasli, see [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF][START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF], left: the Poggendor illusion reduced to its acute angular components. Any illusory e ect is perceived. Right: the illusion still holds keeping the obtuse components of the Poggendor stimulus.

were fundamental because they allowed to measure the geometrical components partecipating to the illusion. As it has already been measured by Weirtraub and Krantz in [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF], the actual size of the obtuse angle and of the central bar account for the magnitude of the Poggendor illusion. We should not look for an explanation related to the regression of right angle of the transversal because, as explained in chapter 6, it is a certain number of orientations spiking in a neighbourhood of a spatial point that gives birth to a displacement and a regression to right angle phenomenon (the displacement decreases linearly with the decreasing number of lines which intersect, see the modi ed Hering illusion example). In the Poggendor example only two orientations cross. Another component which seems to play a role, see Weintraub [START_REF] Daniel J Weintraub | The poggendor illusion: consider all the angles[END_REF] and Ninio [START_REF] Ninio | Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them[END_REF] is the orientation at which the gure is presented. Even if the illusory e ect still holds, it decreases and increases in dependence of the angle used to rotate the standard Poggendor stimulus. Even if our model still does not account for this last component, because our setting is invariant for rotations and translations, we believe that our explanation is the most near to the real behaviour of the cortex in presence of this stimulus. If the inducers are able to cortical represent the central surface ( gure 7.7 right) the illusion is still present. Otherwise ( gure 7.7 left) no. Furthermore, as we already said in chapter 6, our approach is in accordance with Bayesian learning theory. Then our ndings are in accord with the ones obtained by Howe et al. [START_REF] Howe | The poggendor illusion explained by natural scene geometry[END_REF], who were able to fully account for all the possible behaviour of the Poggendor illusion and other GOIs [START_REF] Howe | Natural-scene geometry predicts the perception of angles and line orientation[END_REF]. The perceptual representation of the central surface induces a misperception of the two segments belonging to the same transversal. This happens because the path joining the two segment (which can be substituted also by two dots) is not the minimum (in length) if we consider the natural metric of the cortex. Then the perceptual curve for such phenomenon projects at some point over the parallel, di erent from the natural alignement. We will be looking for the perceptual curve as a length minimizer in our metric (7.2).

Polarization of the metric

In the Poggendor illusion two main e ects occur, as the reader may have understood. First the central surface is detected, as we clearly perceive in gure 7.5. This suggests that either the central surface is indenti ed by its boundaries, or it is of constant color (see g 7.8) it a ects the perception of the image. Then there is a misalignment of the two crossing trasversals, and the illusion arises. In presence of the initial stimulus of the Poggendor illusion, even gabor lters, which are able to detect contours, give the same non vanishing response either we work with the central surfaces and lines. Then we can discard this constant contribution and focus only on the one provided by Odd Gabor lters. Their contribution selects only the central surface. Indeed (1) Odd receptive pro les are able to detect the boundaries of the central surface. Indeed their response is maxima along contours in which polarity plays a role. Polarity means that contours with the same orientation but opposite contrast are referred to opposite angles (see [START_REF] Favali | Local and global gestalt laws: A neurally based spectral approach[END_REF]). For this reason we assume that the orientation θ takes values in [0, 2π ), while considering odd lters.

(2) The contribution of odd receptive pro les is null along a straight line. Indeed along a straight line, (see 7.9 left) the only non vanishing contribution is given by the convolution of the initial stimulus with the bank of Even Gabor lters. It follows that the analysis of the three Poggendor illusions in 7.8 can be reduced to the processing of the images in 7.10, in which we neglect the presence of the entry trasversals. The expression of the metric in 7.2 with respect to the Euclidean frame becomes:

h ij (x 1 , x 2 , θ ) = R(x 1 , x 2 , θ ) cos 2 θ sin θ cos θ 0 sin θ cos θ sin 2 θ 0 0 0 1 , (7.7 
) where R(x 1 , x 2 , θ ) is the odd lters response opportunely shifted to positive values to be used as weight for the metric: 

R(x 1 , x 2 , θ ) = 1 + Im(O (x 1 , x 2 , θ )) 1 + Im(O (x 1 , x 2 , θ )) 2 (7.8)

The experiment

Let us now go through the implementation process and its parameters. The rst part of the processing consists in convolving 7.11 (left) shows a section of the graph of R(x 1 , x 2 , θ ), (x 1 , x 2 , θ , R(x 1 , x 2 , θ )), for x 2 xed. In gure 7.11 (right) it is visualized ∇R(x 1 , x 2 , θ ), the gradient of R(x 1 , x 2 , θ ), the cost used in the sub-Riemannian Fast-marching. Up to the Riemannian approximation this gradient directly determines the Christo el symbols Γ k ij which de ne completely the a ne Levi-Civita connection arising from the Riemannian approximation of the metric. Here we omitted the dependence on ϵ to simplify notations. From Γ k ij it is possible to deduce the equation of the geodesics in R 2 ×S 1 in the riemannian approximation and letting ϵ go to 0, to obtain the sub-Riemannian geodesics. For Figure 7.12: The Christo el symbols computed through a Notebook in Mathematica, relative to the metric in formula 7.7. Here (x 1 , x 2 , θ ) are encoded as (x, , t ) and R (1,0,0) denotes the derivative along the coordinate x of R(x 1 , x 2 , θ ), i.e. the rst component of the gradient. In red it is marked how ∇R(x 1 , x 2 , θ ) a ects the Christo el symbols and as a consequence geodesics equations.

this reason the behaviour of ∇R(x 1 , x 2 , θ ) in gure 7.11 (right) already gives us intuitively an idea of the path followed by the computed geodesics, for example for initial angle θ = 0 the ow individuated by the gradient shows no de ection, as perceptually expected if inducers are orthogonal to the central bar. A Mathematica (Wolfram Alpha) notebook allows to compute Christo el symbols given a certain metric. In gure 7.12 we show the symbols for the Riemannian approximation of the metric in formula 7.7. Now that all preliminaries have been clari ed, it is possible to choice initial point and nal point for the geodesic we want to compute. Still, when we look at an image such as the Poggendor illusion, we do know that the transversal are not perceived as collinear, but we want to be able to draw the perceptual projection for such stimulus, and to identify it. In other words, we want to determine where the left transversal projects over the right parallel (equal to identify the red segment in gure 7.6). Then we will x the initial seed and give as nal tips a discretization of points along the right bar, from the geometrical collinear transversal to the orthogonal projection of the left transversal over the right parallel, see gure 7.13. 

Results

As we already saw in the introduction of this section, manipulating the elements partecipating to the Poggendor illusions to understand how to magnify the illusory phenomena has been done in many works, for instance in Day et al. [START_REF] Day | The components of the poggendor illusion[END_REF], page 545, Burmester in [START_REF] Burmester | Beitrag zur experimentellen Bestimmung geometrisch-optischer Täuschungen[END_REF], Weintraub and Krantz in [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF]. Processing of the Initial Stimuli In gure 7.18 we show all the Poggendor illusions, with also the transversals drawn, that have been considered in order to evaluate and compute the perceptual collinear transversal. We recall that the transversal have been used only to determine the boundary conditions. The width of the central surface had the following values (in pixels): 7, 15, 25. The angles of the entry transversal, i.e. the acute component of the initial stimuli shown in gure 7.18, are: θ = π /4, π /6, π /11, π /2. The images are 100 × 50 (except for the one with central surface equal to 25 pixels which is 110 × 50). Once we compute the response and we properly compute R(x 1 , x 2 , θ ) ( gure 7.17), we are ready to use it as external cost (polarization of the metric) for the sub-Riemannian Fast-Marching. The metric h ij (x 1 , x 2 , θ ) in formula (7.7) will be implemented with the following expression:

h i j (x 1 , x 2 , θ ) = R(x 1 , x 2 , θ ) ξ -2 (cos 2 θ + ε 2 sin 2 θ ) ξ -2 (1 -ε 2 ) sin θ cos θ 0 ξ -2 (1 -ε 2 ) sin θ cos θ ξ -2 (sin 2 θ + ε 2 cos 2 θ ) 0 0 0 1 , (7.9) 
The parameter ξ modulates the anisotropy between the two direction, ξ ∆x 1 = ∆θ , where ∆x 1 , ∆θ are the discretization steps along x 1 and θ . It then depends on the entry angle for the transversal and the width of the surface chosen for the experiments: it is directly proportional to the width of the central surface and it varies with a ratio 1/3 if we consider the angle change. The parameter ε indicates the Riemannian approximation and in our experiments is set equal 0.1. As we said, we only x the initial point, which will be in all the experiments the crossing point of the left transversal with the parallel, for example for width = 15 and θ = π /4 it is η 0 = (17, 57, π /4), and we let the nal points varying along the right parallel as shown in gure 7.13. Then the nal points will all share the same x 1 component (i.e. the x 1 -coordinate of the right parallel, 33) and the θ component, θ = π /4, because we know that the perceptual transversal will be parallel to the geometrical collinear one. Once all the parameters and boundary conditions have been set, it is possible to run the sub-Riemannian Fast-Marching, in order to compute the distance map, see gure 7.19, from the initial point, solution of the Eikonal equation (7.3). Geodesics are obtained through gradient descent over the distance map, see section 7.3.2, from the set nal points.

Computed Geodesics As we said in the previous section, in gure 7.20 we show the computed geodesics for each stimulus in gure 7.18. From each initial point, multiple endpoints (tips) were chosen and the corresponding geodesics have been plotted. In red we put in evidence the 2D projection of the curves, while in cyan we underline the length minimizers. The perceptual geodesic (cyan) is the shortest one. In this way we identify the x 2 -component of the perceptual transversal, and we nally get all the coordinates (x 1 , x 2 , θ ) for drawing it. For the representation of the perceptual transversal recovered through the presented method, see gure 7.22. In gure 7.21 we show how the length of the computed geodesics varies along the x 2component of the right parallel. The graph in gure 7.21 has on its x-axis the x 2 -component of the right parallel, while on itsaxis the correspondent lengths. The dot in cyan identi es the minimum, which corresponds to the curve colored in cyan in gure 7.20. It has been obtained for width = 15 pix- have been the horizontal line, starting from the left crossing point between the transversal and the surface and projecting on the right side of the central bar. The sub-Riemannian metric we have introduced depends on the orientation of the trasversal line. Hence if this is not horizontal, also the minimum is not the horizontal line, it is the curve marked in cyan ( gure 7.20). This explains that this model captures the phenomenon and that the intrisic geometry of the cortex responds to the sub-Riemannian model introduced in this thesis.

Summary In this paragraph a table reporting the collected data concerning the sub-Riemannian lengths of the computed curves are presented for width of the central surface equal to 15 pixels, angles of the transversal varied in the range presented before. It refers to the change of length if we consider the perceptual curve and the one connecting the geometric collinear transversals. [START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF], g 1B. Down: using the color notation in gure 7.6, we stress the fact that the gray segment doesn't project onto its co-circular correspondent segment (the red one). It projects at some point that our method wants to identify into the region marked in blue.

Type of curve

Discussion

In this chapter we provide a neuro-mathematical model for the perceptual curves arising in phenomena such as the Poggendor illusion. In this way, the perceptual collinear transversal, which was until now identi ed by mean of psychophysical experiments, is determined through a neuro-geometrical method.

In fact, those perceptual curves are found as sub-Riemannian length minimizers of a certain metric modulated by the output of simple cells of V1. This means that the reason why such phenomena arise needs to be found into a polarization of the connectivity performed by our low-level visual process. The presented study is able to t the changes in the perceived magnitude of the illusion observed by many authors, see [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF][START_REF] Day | The components of the poggendor illusion[END_REF], once the parameters for the computations are set. Further developments will be in the direction of tting quantitative data already present in literature, as well as trying to take into account the rotation of the image (see [START_REF] Daniel J Weintraub | The poggendor illusion: consider all the angles[END_REF]) as a contribution in the perceived magnitude of the illusion. Finally, we believe this method can be extended to other geometrical optical illusions (see gure 6.3) and it will provide important insights in identifying and representing the perceived curves arising in our cortex tion. Our computations will be in agreement with judgemental studied of these phenomena [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF], as well as the observation of how illusions change with the distance between target and inducers, [START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]. These results will be contained in [START_REF] Franceschiello | A neuromathematical model for ebbinghaus and delboeuf illusions[END_REF].

Figure 8.2: Delbouef illusion: the presence of an annulus around the target (black circle) induces a misperception of the size of the latter. If the annulus is big, the target tends to shrink or not displace at all (left). As long as we decrease its width, the target is perceived as expanding. [START_REF] Künnapas | In uence of frame size on apparent length of a line[END_REF]. This means that the early visual process identi es the size of the objects composing an image and we evaluate the interaction between them. For example in gure 8.1 the circles are the perceptual units and we measure their interaction. In order to apply the model introduced in section 6.3.1 we need to modify the metric used for orientation-type illusions. Here we will consider the isotropic functional connectivity related to the detected scale: the activity equation that we will build will decrease with the distance between the objects of the image.

Scale and size of an object

The model

In this section we develop and explain all the passages fundamental to understand the model we built for scale type illusory phenomena. Once the connectivity is described, it will be used as new strain metric tensor in order to allow us to repeat the modeling presented in section 6.3.1 and to recover the displacement vector elds induced by the size perception.

Distance selection in V1

It is well known that primary visual cortices are able to detect the distance of a point from the boundaries of the image. From a neurogeometric perspective, it means that we move from the space of rotations to the one of rotation and dilations, see [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF] and [START_REF] Petitot | Neurogéométrie de la vision[END_REF]. Through the usual convolution process of an image with Gabor lters, described in chapter 4, formula (4.3), we are able to detect the response of the hypercolumns of simple cells varying the orientation feature θ and the scale σ (section 4.2.2). The intra-cortical mechanism selects the maxima over the orientation and scale hypercolumns, providing the selection of two maximal outputs for both features: θ and σ . In gure 8.4 (right) the selection of σ performed through the convolution of the bank of Gabor lters with an initial stimulus ( gure 8.4, left) is shown. Here we will discard the orientation selection and we focus on the scale detection. For each point the color identi es the distance σ from the nearest boundary, selected over the hypercolumns containing all the possible distances σ . 

Non-maximal suppression

Once the σ (x 1 , x 2 ) has been constructed through the selectivity mechanism within the hypercolumnar structure, the aim is to compute the size of each perceptual unit, which is the maximum of σ (x 1 , x 2 ) for each considered object. We did it using an advection equation, which allowed us to propagate the maxima of each circle over the whole region. This permits to associate a single size value, called ρ (x 1 , x 2 ) to each perceptual unit composing the image. Let us look for example at gure 8.5. Starting from the left map representing σ (x 1 , x 2 ), we propagated the maximum information within each circle using an advection equation, (8.2.2) (i.e. motion of a conserved scalar eld, ∇ σ as it is advected by a known velocity vector eld, in this case unitary). We also select the points ( x1 , x2 ) where the maximum is attained.

∂ σ (x 1 , x 2 ) ∂t = -∇ • ∇ σ 8.2.

Connectivity expression for scale type illusion

Here we introduce the isotropic connectivity accounting for the interaction of points in scale illusions. Gabor lters are obtained through translation and dilation, hence with an action of a commutative group. It follows that for all (x 1 , x 2 , σ ), with σ constant, the metric is isotropic and the mechanism explained in section 6.3.1 permits to build an isotropic connectivity metric. Once the stimulus has been acquired and the distance has been detected by simple cells of V1/V2 ( gure 8.4), the size is evaluted (see gure 8.5). We consider the interaction between the scale of the perceptual units composing the stimulus. Let us consider for example the well-known Ebbinghaus illusion, see 8.1. The target circles (the central ones in gure 8.1) and their inducers are the perceptual objects. This example of illusion consists in perceiving the target circle as smaller (left) if the sorrounding circles are larger, while the target is perceived as larger if the sorrounding circles are smaller. The perceived size of the target, which is the perceptual component we want to evaluate in this study varies if the size of the inducers varies [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF][START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF] and if the distance between the inducers and the target increases or decreases [START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]. The perceived size of the central target decreases if the distance among target and inducers increases. Albeit this last observation lead scientists to assimilate Ebbinghaus and Delboeuf illusion [START_REF] Girgus | The interrelationship between the ebbinghaus and delboeuf illusions[END_REF], we will show how the size of the annulus, and not only a matter of distance between the target and the circumference, will play a central role also in the Delboeuf illusion, see gure 8.2. The activity equa- In the left part of the stimulus, black inducers are larger in size than the central orange circle, inducing a decreasing sizeperception of the latter. In the same way when black inducers are smaller in size than the target size, the size-perception of the latter increases.

tion will be expressed as the product between a connectivity kernel, which decreases with the distance between the considered points, and the computed sizes of the objects. function of the selected sizes of the objects. the activity and represents the e ective size of the central target. Once the isotropic functional connectivity has been built, it is used as metric for the strain process explain in chapter 6, which allows us to recover the displacement vector eld and to reconstruct the percept. However, it is still not clear where the nal percept is built in our cortex.

Implementation and Results

In this section we present the implementation of the presented model and we discuss the test performed concerning the Ebbinghaus illusion ( gure 8.1) and the Delboeuf illusion ( gure 8.2). Equation 8.1 becomes in its discretized form:

ρ (x ) = N i=1 exp -|x-x | (ρ (x ) -ρ 0 ) (8.2)
where N is the number of inducers, i.e. points ( x1 , x2 ) where the scale is maxima and coincide with the size. c = 1, the distance |x -x | is expressed in pixels, ρ (x ) is the size of the inducer at point x = (x 1 , x 2 ). We always consider points of the image in which the maximum of the scale is attained.

Ebbinghaus illusion

We present the computed results through our method relative to the Ebbinghaus illusion. As is it shown, in paragraphs 8.3.1, 8.3.1, 8.3.1 we varied the number of inducers, N = 2, 4, 6, we kept the distance xed |x -x | = 6 pixels, ρ 0 = 14.6 pixels, and we varied the size of the inducers, which is constant for each stimulus, ρ (x ) = ρ 0 -8, ρ 0 -4, ρ 0 , ρ 0 + 4, ρ 0 + 8 pixels respectively, from top to bottom of gure 8.8, 8.9, 8.10. For each row of the cited gures we present: left, the initial stimulus. In the central image it is presented the computed displacement through the in nitesimal strain theory approach introduced in chapter 6, section 6.3.3. Finally, the right image containes the perceived central target: we consider the initial stimulus and we apply vector elds ū (x 1 , x 2 ) computed through our method. The red circle is the target reference of the initial stimulus, drawn in order to allow a comparison between the proximal stimulus (displaced image) and the distal one, [START_REF] Ko | Principles of Gestalt psychology[END_REF][START_REF] James | The concept of the stimulus in psychology[END_REF] (see chapter 2). Rows: each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the inducers is increased from the top to the bottom. Fixing the distance between target and inducers, if the latter are small, the target expands, while increasing the dimension of the inducers implies a shrinking of the central target.

The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.

Modified distance between target and inducers Rows: each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the inducers is increased from the top to the bottom. Fixing the distance between target and inducers, if the latter are small, the target expands, while increasing the dimension of the inducers implies a shrinking of the central target.

The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.

Comparison with quantitative results

Our previous observations about how the magnitude of the Ebbinghaus illusion varies in dependence of the distance between the target and the context (inducers) and in relation with the size of the inducers has been proven in our previous experiments. Here we compare our results with the ones obtained through a quantitative analysis by Massaro and Anderson [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF].

In gure 8.12 the left column shows the experimental results, while the right one combines our computations (red graphs) shown in the previous paragraphs. It is easy to see how they correctly match. Furthermore, to reproduce these results, we started from the same size values used in [START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF] for target, inducers and distance between them. The top left graph in gure 8.12 shows how the perceived size of the central target decays as a function of the distance and in dependence of its size. bigger circles around the target. These phenomena are reproduced through our model as shown in gure 8.12 right.

Delboeuf illusion

One of the greatest problem analyzed for the Delboeuf illusion ( gure 8.2) which mislead many research were the identi cation of the features playing a role in this phenomenon. Attempts were made for developing an equivalent approach able to explain both phenomena, see for example [START_REF] Girgus | The interrelationship between the ebbinghaus and delboeuf illusions[END_REF]. One clear fact was the role played by the distance between the inducer (the circumference) and the target ( [START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]), but this is not sucient to explain the phenomenon. In our model we show that the size of the annulus plays a central role in the Delboeuf illusion, see gure 8.2. In we consider again formula (8.2):

ρ (x ) = exp -|x-x | (ρ (x ) -ρ 0 )
where N of formula (8.2) is equal to 1, because the consider inducer is the annulus, c = 1, the distance |x -x | is expressed in pixels and is the distance between the center of the target x and a the center of the annulus x , ρ (x ) is the size of the annulus and ρ 0 refers again to the e ective size. Then (ρ (x ) -ρ 0 ) expresses the di erence between the considered sizes. In gures 8.13 and 8.14 we show the simulation performed with the presented model. On the left column the initial stimulus is presented: we let the size of the annulus ρ (x ) decreasing. In the central column it is presented the computed displacement through the in nitesimal strain theory approach introduced in chapter 6, section 6.3.3. Finally, the right image containes the perceived central target: we consider the initial stimulus and we apply vector elds ū (x 1 , x 2 ) computed through our method.

The red circle is the target reference of the initial stimulus, drawn in order to allow a comparison between the proximal stimulus (displaced image) and the distal one, [START_REF] Ko | Principles of Gestalt psychology[END_REF][START_REF] James | The concept of the stimulus in psychology[END_REF] (see chapter 2).

Discussion of the results

The distance between the center of the annulus and the center of the target |x -x | decreases in column left of gures 8.14, 8.14 and represents a quantity strictly related with the size of the annulus ρ (x ). Infact, increasing ρ 1 means we increase the distance between the target and the circumference. Even though they are related, considering just the distance does not fully account for the perceived phenomenon. When the annulus is big, as in the top left image of gure 8.13, we perceive a shrinking (see page 454 of [START_REF] Girgus | The interrelationship between the ebbinghaus and delboeuf illusions[END_REF]), while if the annulus size is decreased, we observe an enlargement of the central target. This variation is explained by an evaluation of the di erence in size between the target and the annulus, as we did for the Ebbinghaus illusion. In this last chapter we detail the di erent contributions contained within this thesis and we point out possible extension that can be considered in the future.

Contributions

In this thesis we have provided neuromathematical models able to explain and account for many phenomena, starting from amodal completion going through a big set of Geometrical Optical illusions. We underlined the importance of these studies both from an image processing point of view, for developing perceptual based algorithm, and from the neurophysiological perspective of understanding how the visual cortex behaves in presence of such phenomena. This could provide important insights concerning the ventral stream process. Let us go through the original contribution of this thesis. In chapter 5 we provided a perceptual based algorithm for modeling amodal completion and we extend it in order to perform image restoration (inpainting) and contours enhancement. Furthermore a result of existence of solutions for the considered PDEs is shown, as well as a sketch of the proof of convergence of the presented algorithm. This contribution has been published in [START_REF] Citti | Subriemannian mean curvature ow for image processing[END_REF]. In chapter 6 we introduced a neuromathematical model for Geometrical Optical illusions, which allows to recover the perceptual displacement we perceive in presence of such phenomena. This contribution can be found in [START_REF] Franceschiello | Mathematical models of visual perception for the analysis of geometrical optical illusions[END_REF][START_REF] Franceschiello | A neuro-mathematical model for geometrical optical illusions[END_REF]. The previous model is then extended in chapter 7 in which the deformed curves are recovered as geodesics of the considered metric, modulated by the action of simple cells in V1/V2. The work will be contained in [START_REF] Franceschiello | Modelling of the poggendor illusion via sub-riemannian geodesics in the roto-translation group[END_REF][START_REF] Franceschiello | Modelling of geometrical optical illusions via sub-riemannian geodesics in the roto-translation group[END_REF]. Finally in chapter 8 size illusions are considered, using the scale feature. We refer for the latter to [START_REF] Franceschiello | A neuromathematical model for ebbinghaus and delboeuf illusions[END_REF].

Research Perspectives

We aim to enumerate possible research perspectives which will help in contributing to a uni ed theory for such phenomena, enlightening our understanding of how the cortex behaves.

Figure 9.1: The Muller-Lyer illusion: the perceived length of the two central bar is mislead by the angles formed by the lateral inducers: if they are acute, the bar is perceived as shorter (top) while if they are obtuse, the bar seems to be larger.

One of the research perspective will be to provide an extension of the model to other features, in order to study other illusions, such for example the Muller-Lyer illusion, matching it with the experimental studies presented in [START_REF] Weidner | The neural mechanisms underlying the müller-lyer illusion and its interaction with visuospatial judgments[END_REF][START_REF] Weidner | The temporal dynamics of the müller-lyer illusion[END_REF][START_REF] Qiu | The müller-lyer illusion seen by the brain: An event-related brain potentials study[END_REF]. The Muller-Lyer illusion, gure 9.1 is a complex phenomenon subject of many studies. The perceived length of the two central bar is mislead by the angles formed by the lateral inducers: if they are acute, the bar is perceived as shorter (top) while if they are obtuse, the bar seems to be larger. The interesting part of this phenomenon is that recent studies [START_REF] Weidner | The neural mechanisms underlying the müller-lyer illusion and its interaction with visuospatial judgments[END_REF][START_REF] Weidner | The temporal dynamics of the müller-lyer illusion[END_REF][START_REF] Qiu | The müller-lyer illusion seen by the brain: An event-related brain potentials study[END_REF] shown how this illusion takes place at higher stages of the visual process.

It will be important to perform further tests using the approach presented in chapter 7 involving the illusions considered in chapter 6, such as the Hering, Wundt and Zollner illusions. In this way a comparison with the ndings obtained through the in nitesimal strain approach will be possible.

There is a lack of quantitative studies measuring the perceived magnitude of this illusions. Most of the psychological studies involving these illusions start from modi ed stimuli (see for example [START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF][START_REF] Day | The poggendor illusion: Apparent misalignment which is not attributable to apparent orientation of the transversals[END_REF][START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF]) in order to provide a phenomenological and perceptual explanation for them. However, some of those ndings were contradicted by the same authors years later [START_REF] Daniel | The logic of misperceived distance (or location) theories of the poggendor illusion[END_REF][START_REF] Day | No evidence for apparent extent between parallels as the basis of the poggendor e ect. Attention, Perception, &amp[END_REF]. At a very general level what we actually see from a qualitative point of view [START_REF] Daniel | The poggendor illusion: Amputations, rotations, and other perturbations[END_REF] is well known and is in agreement with our ndings. Still there is a lack of quantitive data which would allow a better validation of all the theories proposed until now. It would be important to design a simple but e ective experiment to measure the magnitude of illusions (not only the Poggendor or Muller Lyer). With the recent increasing development of neuroimaging techniques, one very interesting application will be to identify where these phenomena actually take place.

Figure 1 . 1 :

 11 Figure 1.1: The Kanizsa triangle. A white triangle occluding three black disks is phenomenologically perceived.There is an apparent contour separating the triangle from the gure, indeed the interior looks whiter than the background. There is also a strati cation of gures, the triangle emerges and seems to be above the disks. This type of phenomenon is classi ed by Kanizsa as modal completion.

Figure 1 . 2 :

 12 Figure 1.2: An example of amodal completion. The gure is perceived as a black circle occluded by a gray square. The circle is present in the visual eld, but the completion is performed without an illusory contour.

Figure 1 . 3 :

 13 Figure 1.3: Left: macula cieca, an example of corrupted surface. Center: an occluded image (from U. Boscain et al. ([14])). Right: a well known example of damaged image, from Bertalmio et al [9].

Figure 1 . 4 :

 14 Figure 1.4: Top, from left to right.Hering illusion: two straight vertical lines in front of a radial background appear as if they were bowed outwards. Wundt-Illusion: an opposite bending e ect with respect to the Hering illusion. Ehm[START_REF] Ehm | Modeling geometric-optical illusions: A variational approach[END_REF] Square: the context of concentric circles bends inwards the edges of the square. Bottom, from left to right. Wundt-Hering illusions merged together: the bending effect is inhibited by the presence of con itting inducers. Zollner illusion: a pattern of oblique inducers surrounding parallel lines creates the illusion they are unparallel. Poggendor illusion: the presence of a central surface induces a misalignement of the crossing transversals.

Figure 1 . 6 :

 16 Figure 1.6: Poggendor illusion: the presence of a central surface induces a misalignement of the crossing transversals.

Figure 1 . 7 :

 17 Figure 1.7: Le triangle de Kanizsa. On perçoit un triangle blanc obstrué par trois cercles noirs. Un contour illusoire sépare le triangle du reste de l'image, et la partie intérieure du triangle apparaît plus blanche que celle au dehors. On observe aussi une strati cation des gures: le triangle émerge et semble être au-dessus des cercles. Ce type de phénomène est classi é par Kanizsa sous le nom de complétion modale.

Figure 1 . 8 :

 18 Figure 1.8: Un exemple de complétion amodale. L'image est perçue comme un cercle noir occlus par un carré gris. Le cercle est présent dans le champ visuel, mais la complétion est e ectuée sans un contour illusoire.
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 111 Figure 1.11: Couple à gauche: illusion de Ebbinghaus (ou Tichtner): deux cercles centraux qui ont la même échelle sont entourés, l'un des cercles plus larges (gauche), l'autre de cercles plus petits (droite). Les grands inducteurs modi ent la perception du cercle central (cible), qui apparaît plus petit que sa largeur réelle (son échelle). L'e et opposé se produit quand les inducteurs sont petits. Couple à droite: illusion de Delbouef. La présence d'un anneau autour du cercle central crée une mauvaise perception de son échelle. Si l'anneau est grand, la cible ressemble plus petit. Si la largeur de l'anneau diminue, la cible est perçu comme s'il était plus grande en échelle.
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 112 Figure 1.12: Illusion de Poggendor : la présence d'une surface coupant une ligne cause un e et de désalignement.
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 21 Figure 2.1: A representation of the visual path, from Hubel [95].
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 22 Figure 2.2: Gaetano Kanizsa, one of the father of the Gestalt psychology, author of Grammatica del vedere (Organization in Vision, [100]).
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 23 Figure 2.3: An example of proximity, [100]. In this example three groups of elements are perceived.
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 24 Figure 2.4: An example of similarity, Kanizsa, [100]. in this example we identify six groups, divided by law of proximity and similarity. Black dots which form a line are separated from the other black dots and form a perceptual unit.
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 25 Figure 2.5: An example of closure: we clearly perceive a popup of a rectangle and a circle, even if the contours are interrupted.
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 26 Figure 2.6: An example of good continuation, adapted from Kanizsa, [100]

Figure 2 . 7 :

 27 Figure 2.7: (Left) An example of amodal completion. The gure is perceived as a black circle occluded by a gray square.The circle is present in the visual eld, but the completion is performed without an illusory contour. (Right) The Kanizsa triangle. A white triangle occluding three black disks is phenomenologically perceived. There is an apparent contour separating the triangle from the gure, indeed the interior looks whiter than the background. There is also a strati cation of gures, the triangle emerges and seems to be above the disks. This type of phenomenon is classi ed by Kanizsa as modal completion.
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 28 Figure 2.8: From [80]. Top (left), Hering illusion: the presence of a crossing background induce a deformation of the red lines, which are parallel. Top (right) Ehrenstein illusion: a circle and a square are represented over a radial background, which induces a deformation of the geomtrical shapes. Bottome (left) Poggendor illusion: the presence of a central surface creates a perceived misalignement of two segments belonging to the same transversal. Bottom (right) Zollner illusion: the oblique inducers generate a phenomenon of divergence of the four parallel lines.
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 29 Figure 2.9: The visual path of the brain.
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 210 Figure 2.10: An enlarged portion of the retina, at the right, shows the relative positions of the three main retinal layers. Image from Hubel, see [95].

Figure 2 . 11 :

 211 Figure 2.11: In this representation, a receptive pro le of a simple neuron (simple cell) of V1.On the right, from De Angelis et al.[START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF], the recording of level set lines, on the left, the scheme of the structure of the receptive pro le with its + (ON) part and its -(OFF) part.

Figure 2 . 13 :

 213 Figure 2.13: The main connections made by axons from the lateral geniculate body to the striate cortex and from the striate cortex to other brain regions. Image from Hubel, [95].
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 214 Figure 2.14: In this experiment by Roger Tootell [165], the target-shaped stimulus with radial lines was centered on an anesthetized macaque monkey's right visual eld for 45 minutes after injection with radioactive 2-deoxyglucose. One eye was held closed. The right picture shows the labeling in the striate cortex of the left hemisphere. This autoradiograph shows a section parallel to the surface. The roughly vertical lines of label represent the (semi)circular stimulus lines; the horizontal lines of label represent the radial lines in the right visual eld.

Figure 2 .

 2 Figure 2.15: Top: classical cube representation (in[START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF][START_REF] David | Ferrier lecture: Functional architecture of macaque monkey visual cortex[END_REF]) of the hypercolumnar structure, for the orientation parameter, where L and R represent the ocular dominance columns (Petitot[START_REF] Petitot | Neurogéométrie de la vision[END_REF]). The orientation hypercolumns are arranged tangentially to the cortical sheet. Bottom: Over each retinotopic point (x 1 , x 2 ) there is a set of cells coding for the set of orientations {θ ∈ S 1 } and generating the 3D space R 2 ×S 1 . Each bar represent a possible orientation. The color coded map is the same used in gure 2.16. Image from[START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].
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 218 Figure 2.18: View of the brain from behind. Red is Brodmann area 17 (primary visual cortex); orange is area 18 (secondary visual cortex, V2); yellow indicates area 19. The brain's surface is extracted from structural MRI data, from Wellcome Dept. Imaging Neuroscience, UCL, UK.
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 11 Topological manifolds, charts and smooth manifolds De nition 3.1.1.

Figure 3 . 1 :

 31 Figure 3.1: From Tu, [166]. The transition function ψ • ϕ -1 is dened on ϕ (U ∩ V )

Figure 3 . 2 :

 32 Figure 3.2: A tangent vector as an arrow.
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 12 Tangent spaces, di erential of a map, vector fields and integral curves De nition 3.1.6. Let N and M be smooth manifolds of dimension n and m respectively. A map F :

Figure 3 . 3 :

 33 Figure 3.3: From Tu [166]. Checking that a map F : N → M is C ∞ at p.
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 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π where proj 1 : U × F → U is the natural projection and ϕ : π -1 (U ) → U × F is a homeomorphism. The set of all {(U i , ϕ i )} is called system of local trivializations of the bundle. Thus for any p in B, the preimage π -1 ({p}) is homeomorphic to F × {p} (since proj -1 1 ({p}) clearly is F ) and is called the ber over p. Every ber bundle π : E → B is an open map, since projections of products are open maps.

Figure 3 . 4 :

 34 Figure 3.4: The Moebius strip, an example of non-trivial bundle.
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 36 Minimizing geodesics are minima of the length functional L. De nition 3.3.7. A smooth curve γ : [a, b] → M which satises equation (3.4) is called a geodesic.

Figure 4 . 1 :

 41 Figure 4.1: In vivo registered odd receptive eld (left, from (De Angelis et al., 1995) [44]) and a schematic representation of it as a Gabor lter (right), see equation (4.1).

Figure 4 . 2 :

 42 Figure 4.2: Top: receptive pro le of aLGN neuron, on the left is presented a scheme of the receptive pro le with its + (ON) and -(OFF) domains and on the right a recording of its levels lines, from De Angelis[START_REF] Gregory C Deangelis | Receptive-eld dynamics in the central visual pathways[END_REF]. Bottom: a scheme of the Laplacian of Gaussian model for a LGN receptive pro le, see[START_REF] Petitot | Neurogéométrie de la vision[END_REF].

Figure 4 . 3 :

 43 Figure 4.3: Even and odd part of the mother pro le ψ 0 (ξ ), see (4.1), [138], chapter 10, joint work with G. Citti and A. Sarti.

Figure 4 . 4 :

 44 Figure 4.4: The visual cortex modelled as the group invariant under translations and rotations, [149].
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 45 Figure 4.5: In each image: (top) even part of Gabor lters (real part), (bottom) odd one (imaginary part). Corresponding orientation from left to right: θ = 0, θ = π /6, θ = 2π /3, θ = 5π /6, with σ = 4.48 pixels

Figure 4 . 6 :

 46 Figure 4.6: From top to bottom: initial stimulus. A surface is considered for convolution with the bank of odd and even receptive pro les. Center: result of the convolution of the initial surface with even Gabor lters (Real part). Contours are detected. Bottom: result of the convolution of the initial surface with odd Gabor lters (Imaginary part). Since the initial image is a surface, polarity plays a role, it means that contours with the same orientation but opposite contrast are referred to opposite angles, see Favali et al. [60].

Figure 4 . 7 :

 47 Figure 4.7: Top: representation of hypercolumnar structure, for the orientation parameter,where L and R represent the ocular dominance columns (Petitot[START_REF] Petitot | Neurogéométrie de la vision[END_REF]). Bottom: for each position of the retina (x 1 , x 2 ) we have the set of all possible orientations,[START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].
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 48 Figure 4.8:A contour in a 2D image can be modelled as a curve whose tangent is the vector (cos θ , sin θ ) and its normal direction is ∇I /|∇I | = (-sin θ , cos θ ) as indicated in the gure,[START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].
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 49 Figure 4.9: A contour represented by the curve γ 2D (t ) is lifted into the rototranslation group obtaining the red curve γ (t ). The tangent space of the rototranslation group is spanned by the vectors X 1 and X 2 . Courtesy of Sanguinetti,[START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

Figure 5 . 1 :

 51 Figure 5.1: An example of amodal completion. The internal surface arises even if the contours are not actually present in the image, due to the presence of black inducers. We will see in this chapter how this perceptual phenomenon is model through mean curvature ow.

Figure 5 . 2 :

 52 Figure 5.2: Left: macula cieca, an example of corrupted surface. Center: an occluded image (from U. Boscain et al. ([14])). Right: a well known example of damaged image, from Bertalmio et al [9].

Figure 5 . 3 :

 53 Figure 5.3: Left: the original image, from Duits and Franken ([54, Fig. 7]); right: the enhanced image using CED-OS, see [54].
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 154 Figure 5.4: Top: the horizontal tangent planes H M of SE (2), span of the vector elds X 1 and X 2 , adapted from[START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF]. Center: lifting of an image to a regular surface, inside the contact structure. Bottom: lifted surface: in red we marked the contact planes of H M tangent to the level lines of the surface.
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 55 Figure 5.5: Recalling section 4.3:a contour represented by the curve γ 2D (t ) is lifted into the rototranslation group obtaining the red curve γ (t ). The tangent space of the rototranslation group is spanned by the vectors X 1 and X 2 . From Sanguinetti,[START_REF] Sanguinetti | A model of natural image edge co-occurrence in the rototranslation group[END_REF].

Figure 5 . 6 :

 56 Figure 5.6: A lifted surface, foliated in Goedesics in the sense of[START_REF] Scott D Pauls | H-minimal graphs of low regularity in the heisenberg group[END_REF][START_REF] Cheng | Regularity of c1 smooth surfaces with prescribed p-mean curvature in the heisenberg group[END_REF][START_REF] Capogna | Regularity of non-characteristic minimal graphs in the heisenberg group h 1[END_REF][START_REF] Galli | Area-stationary and stable surfaces of class c1 in the sub-riemannian heisenberg group h1[END_REF]. Tangent vector in the bundle T SE(2) is denoted as t ε , normal vector is n ε . The projection of n ε on the contact plane generated by X 1 and X 2 is n 0 .
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 57 Figure 5.7: Top: the initial stimulus considered. It presents a damaged portion, the black hole in the center of the image. Center, left: the image is lifted to the SE(2) cortical space. Center, right: the lifted image is diffused and concentrated through the mechanism in 5.1.3, item (a), (b). This models the information propagation through the cortical lateral connectivity. This leads to the motion by mean curvature of the surface S. Bottom: the completed image is reprojected and the color is completed through the Laplace Beltrami operator, 5.2.2.
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 533 Under the assumption of Theorem 5.3.2 on the initial datum, the initial value problem (5.11) has an unique solution u

Figure 5 . 9 :

 59 Figure 5.9: Left: an occluded image (from U. Boscain et al. ([14])). Second image from left: the image processed in ([14]). Third image from left: the same image processed through the heat equation. Right: the image inpainted using Citti and Sarti algorithm.

Figure 5 .

 5 Figure 5.10: A detail of previous image: Left: the original image ([14]); Second image from left: the image processed in ([14]); Third image from left: the image processed through the heat equation; Right: image inpainted using the proposed algorithm.

Figure 5 . 11 :

 511 Figure 5.11: From left to right: the original image ([14]); the image processed in ([14]); the image processed through the heat equation; the image inpainted using the proposed algorithm.

Figure 5 .

 5 Figure 5.12: A detail of previous image. Left: the original image ([14]); second image from left: the image processed in ([14]); third image from left: the image processed through the heat equation; right: image inpainted using the original algorithm of Citti and Sarti.
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 513514 Figure 5.13: On the left the occluded image. From left to right: results from [15], with 2D heat equation and our model.

Figure 5 . 15 :

 515 Figure 5.15: Left the occluded image. Center: image from [10]processed with the model of[START_REF] Masnou | Level lines based disocclusion[END_REF]. Right: image processed with our model.

Figure 5 . 16 :

 516 Figure 5.16: From left to right: the original image, from Duits and Franken ([54, Fig.7]); the enhanced image using CED-OS, see[START_REF] Duits | Left-invariant parabolic evolutions on se (2) and contour enhancement via invertible orientation scores part ii: Nonlinear left-invariant di usions on invertible orientation scores[END_REF]; the enhanced image obtained using the proposed method.

Figure 5 .

 5 Figure 5.17: Left: the original image ([14]). Center: image inpainted using the proposed algorithm. Right: image inpainted and enhanced with this algorithm.

Figure 5 . 18 :

 518 Figure 5.18: From left to right: a detail of the original image ([14]); a detail of the image inpainted using the proposed algorithm; same detail of the image inpainted and enhanced with this algorithm.
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 63 Figure 6.3: (a) Hering illusion: the two vertical lines are straight and parallel, but since they are presented in front of a radial background the lines appear as if they were bowed outwards. (b) Wundt-Illusion: the two horizontal lines are both straight, but they look as if they were bowed inwards. (c) Square shape over Ehrenstein context: the context of concentric circles bends the edges of the square toward the center of the image. (d) Wundt-Hering illusions merged together: the horizontal lines are straight and parallel and the presence of inducers which bow them outwards and inwards at the same time inhibits the bending e ect. (e) Zollner illusion: a pattern of oblique inducers surrounding parallel lines creates the illusion they are unparallel.

Figure 6

 6 Figure 6.4: Quoting from Murray and Herrmann [126]: (B) Schematic localization of Illusory contours (IC) sensitivity in human studies. The colored symbols indicate the approximate locations of IC sensitivity for human studies using electroencephalography (EEG)/magnetoencephalography (MEG) source estimations (left), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) (middle), and lesion studies or transcranial magnetic stimulation (TMS) (right). The stars in the left panel indicate secondary and subsequent e ects.
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 65 Figure 6.5: The tilt illusion: the perceived orientation of a test line or grating is altered by the presence of surrounding lines or grating with a di erent orientation (spatial context).
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 31 From the classical neuromathematical model for V1-V2

Figure 6

 6 Figure 6.6: Representation of the orientation response exp -sin (θ -θ ) 2 2σ over each ber, with maximum activity registered in θ .

Figure 6 .

 6 Figure 6.10: We superimpose two red vertical lines to the Hering illusion, represented in gure 6.3, in order to remark that vertical lines present in the stimulus are straight. Representation of p -1 , projection onto the retinal plane of the polarized connectivity in 6.3. The rst eigenvalue is tangent to the level lines of the distal stimulus. In blue the tensor eld, in cyan the eigenvector related to the rst eigenvalue. Computed displacement eld ū : R 2 → R 2 . Displacement applied to the image. In black we represent the proximal stimulus as displaced points of the distal stimulus: (x 1 , x 2 ) + ū (x 1 , x 2 ). In red we give two straight lines as reference, in order to better clarify the curvature of the target lines.
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 611 Figure 6.11: Details of the perceived distortion in the computed proximal stimulus in the Hering illusion.

Figure 6 . 18 :

 618 Figure 6.18: Ehrenstein illusion, same process as before. Top Left the original stimulus; top left the tensorial representation, bottom left the computed displacement vector elds; bottom right: the displacement applied to the initial image, which bends the square edges.
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 71 Figure 7.1: In this image we show the Poggendor illusion, in which a surface makes the two collinear transversals appear misaligned. The perceptual curve projects in at some point over the right boundary of the surface.

Figure 7 . 2 :

 72 Figure 7.2: Minimum along θ of the distance map W , numerical solution of equation 7.3, from initial boundary condition e = (0, 0, 0) and R = 1, i.e. Subriemannian distance as shown in formula (4.10).

Figure 7 . 4 :

 74 Figure 7.4: Illustration of gradient descent on a series of level sets on a prescribed map.
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 75 Figure 7.5: The original Poggendor illusion.
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 76 Figure 7.6: Poggendor illusion in which both completion (blue) and collinear continuation (red) of the left transversal (black) are shown, see Greist et al. see [81].
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 78 Figure 7.8: Poggendor stimulus, with modi ed width of the central bar. From left to right: 7 pixels , 15 pixels, 25 pixels, orientation angle of the transversal π /4.

Figure 7 . 9 :

 79 Figure 7.9: Left: a straight line, initial stimulus. Center: the sum along θ of the responses to the stimulus of Even Gabor lters. It is not null. Right: same summation along θ of the Odd Gabor lters. This last contribution is null along a line.

Figure 7 . 10 :

 710 Figure 7.10: Simpli ed Poggendor stimulus, with width of the central bar changed. From left to right: 7 pixels, 15 pixels, 25 pixels.

Figure 7 .

 7 Figure 7.11: Left: Representation of a section of(x 1 , x 2 , θ , R(x 1 , x 2 , θ )), graph of R(x 1 , x 2 , θ ), for x 2 xed. R(x 1 , x 2 , θ ) is the output positively shifted of odd receptive pro les of simple cells. R(x 1 , x 2 , θ ) is constant along x 2 .Right: ∇R(x 1 , x 2 , θ ) is visualized in correspondence of the contours of the central bar, projected onto the (x 1 , θ ) plane. We represent x 1 , and θ component of ∇R, since the component vanishes.

Figure
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 713 Figure 7.13: Tips for the perceptual completion curve are chosen along the bar in the Red zone.
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 714 Figure 7.14: From [181]: quantitative measurements of the magnitude of the Poggendor illusion varying the angle of the entry transversal and the central surface width.

Figure 7 . 15 :

 715 Figure 7.15: These images constitute single frames of a video which shows how the magnitude of the Poggendor illusion changes varying the entry angle of the transversals. If the consider transversal is perpendicular to the central surface, the illusory e ect is abolished.

Figure 7 . 16 :

 716 Figure 7.16: These images constitute single frames of a video created by the author which shows how the magnitude of the Poggendor illusion changes varying the size of the central bar. As shown, increasing this size produces a magni cation of the illusory e ect, while if we consider a width of the central surface tending to 0, the illusory e ect is abolished.
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 717 Figure 7.17: Representation of a level set of the cost R(x 1 , x 2 , θ ), output of odd Gabor lter, positively shifted, for θ = 0. The maximum of R(x 1 , x 2 , θ ) over θ is reached over the right bar.

Figure 7 . 18 :

 718 Figure 7.18: Initial stimuli processed in this work. Top: xed width = 7 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2. Central: xed width = 15 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2. xed width = 25 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2.

Figure 7 . 19 :

 719 Figure 7.19: Minimum of distance mapW (η) from the boundary value condition (initial seed) η 0 = (17, 57, π /4) of equation (7.3), along the direction θ , computed through SR-Fast-Marching.

Figure 7 .

 7 Figure 7.20: Computed geodesic with multiple endpoints (tips). In cyan we color the length minimizer. Fixed width = 7, 15, 25 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2.

Figure 7 . 21 :

 721 Figure 7.21: Here we show how the length of the computed geodesics varies along the x 2component of the right parallel. The graph has on its x-axis the x 2 -component of the right parallel, while on itsaxis the correspondent length. The dot in cyan identi es the minimum, which corresponds to the curve colored in cyan in gure 7.20. It has been obtained for width = 15 pixels and θ = π /4.

Figure 7 .

 7 Figure 7.22: Representation of the perceptual transversal: as explained in section 7.4.3, once all geodesics have been computed, we pick up the length minimizer. Its correspondingnal point gives us the coordinates of the perceptual transversal. Top: xed width = 7 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2. Central: xed width = 15 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2. xed width = 25 pixels, varying the orientation from left to right: θ = π /4, π /6, π /11, π /2.

Figure 7 .

 7 Figure 7.23: Left: 2D projection of the computed geodesics. The perceptual curve is blue, the actual completion of the left side transversal is the red curve. Right: 3D plot of the computed geodesics.

Figure 7 . 25 :

 725 Figure 7.25: Top: Round (or Circular) Poggendor illusion, from Talasli et al. see[START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF], g 1B. Down: using the color notation in gure 7.6, we stress the fact that the gray segment doesn't project onto its co-circular correspondent segment (the red one). It projects at some point that our method wants to identify into the region marked in blue.

Figure 8 . 3 :

 83 Figure 8.3: From Sanguinetti, [149]. The best scale σ for the gray boundary considered is represented in the middle image, in which the receptive pro le is properly aligned, with a correct distance from the boundary.
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 84 Figure 8.4: Left: the initial stimulus processed. Right: the maximum response σ xing θ . For each point the color identi es the distance σ from the nearest boundary, selected over the hypercolumns containing all the possible distances σ .

Figure 8 . 5 :

 85 Figure 8.5: Left: representation of σ (x 1 , x 2 ). Right: propagation of the information within each circle using an advection equation. This allows us to recover for each perceptual unit the corresponding value of size, ρ (x 1 , x 2 ).

Figure 8 . 6 :

 86 Figure 8.6: Ebbinghaus illusion: the size of the black inducers generates a misperception of the size of the central circle (orange).In the left part of the stimulus, black inducers are larger in size than the central orange circle, inducing a decreasing sizeperception of the latter. In the same way when black inducers are smaller in size than the target size, the size-perception of the latter increases.

ρ (x ) = R 2 expFigure 8 . 7 :

 287 Figure 8.7: Delbouef illusion: the presence of a circumference around the target (black circle) induces a misperception of the size of the latter. If the circumference is situated at a consistent distance from the target, the target tends to shrink or not displace at all (left).

Figure 8 . 8 :

 88 Figure 8.8: Computed displacement ū (x 1 , x 2 ) for the Ebbinghaus illusion with two inducers. Rows: each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the inducers is increased from the top to the bottom. Fixing the distance between target and inducers, if the latter are small, the target expands, while increasing the dimension of the inducers implies a shrinking of the central target. The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.
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 89810 Figure 8.9: Computed displacement ū (x 1 , x 2 ) for the Ebbinghaus illusion with four inducers. Rows: each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the inducers is increased from the top to the bottom. Fixing the distance between target and inducers, if the latter are small, the target expands, while increasing the dimension of the inducers implies a shrinking of the central target. The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.

Figure 8 . 11 :

 811 Figure 8.11: Computed displacement ū (x 1 , x 2 ) for the Ebbinghaus illusion with six inducers.Rows: each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the inducers is increased from the top to the bottom. Fixing the distance between target and inducers, if the latter are small, the target expands, while increasing the dimension of the inducers implies a shrinking of the central target. The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.
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 812 Figure 8.12: Top left: here Massaro and Anderson ([START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF]) shown how the perceived size of the central target diminishes while decreasing the distance between the inducers and the target in the Ebbinghaus illusion. This variation is studied also in relationship with the effective size of the central target (from top curve to bottom one). Top right: we reproduce the same analysis shown in the top left image, but only for the target with e ective size ρ 0 = 15. Bottom left: the same authors in ([START_REF] Massaro | Judgmental model of the ebbinghaus illusion[END_REF]) shown how the perceived size of the central target varies in relationship with the size and the numbers of inducers. The little numbers on the right of each curve indicate the di erence between the actual size of the inducers and the target, meaning that if we put smaller circles around the central one the enlargement of the latter increases linearly with the diminishing size of the context inducers, while we obtain the opposite e ect putting bigger circles around the target. Bottom right: the latter phenomena are exactly reproduced through our model.

  In the top right part we shown the same analysis, but for ρ 0 = 15. It corresponds to the central curve in gure 8.12 top left. The bottom part of the gure contains an analysis of how the perception of the central target changes in dependence of the number of inducers and their size. In general, increasing the number of inducers intensi es either the perceived shrinking or enlargement of the central target. The numbers on the right of each curve ( gure bottom left 8.12) indicates the di erence between the e ective size of the inducers and the target, meaning that if we put smaller circles around the central one the enlargement of the latter increases linearly with the diminishing size of the context inducers, while we obtain the opposite e ect putting

Figure 8 . 13 :

 813 Figure 8.13: Computed displacement ū (x 1 , x 2 ) for the Delbouef illusion. Each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the annulus is increased from the top to the bottom. The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.
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 814 Figure 8.14: Computed displacement ū (x 1 , x 2 ) for the Delbouef illusion.Each row contains on the left the initial stimulus, on the center the computed displacement vector elds ū (x 1 , x 2 ), on the right the application of ū (x 1 , x 2 ) to the initial stimulus. This last operation permits to visualize the proximal stimulus, i.e. the perceived deformation of the central target. Columns: the width of the annulus is increased from the top to the bottom. The perceived deformation can be appreciated because each image in the third column contains also a reference circle (red), representing the size of the initial target.

Figure 8 . 15 :

 815 Figure 8.15: Left: the graph shows how the perceived displacement decreases as a function of the distance in our simulations. In the x-axis we put the distance |x -x | and in the yaxis the computed displacement.Right: analysis of the decay of the illusion magnitude as a function of the distance between the target and the inducers, from[START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]. The circles refers to the Delboeuf illusion. Our results are in agreement with the ones shown in this experiment.

Figure 8 .

 8 15 left shows how the perceived displacement decreases as a function of the distance in our computations. In the x-axis we put the distance |x -x | and in the y-axis the computed displacement. In the same gure (right) we proposed the results of an experiments conducted in[START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]: the black dots refers to the Delboeuf illusion and show how experimentally our results are con rmed. ρ 0 still denotes the e ective size of the target. The reconstructed percepts for the Delboeuf illusions shown in the left column images of gures 8.14, 8.14 are presented in the right column. The described shrinking and expanding e ect can be appreciated comparing the perceived stimulus (black) with the red circle, which indicates the original target size.

  

  

  

Table 7

 7 

	ξ	Width = 7 pix Width = 15 pix Width = 25 pix
	θ = π /4	0.51	1.09	1.82
	θ = π /6	0.77	1.64	2.74
	θ = π /11	1.42	3	5
	θ = π /2	0.26	0.55	0.92

.4.3 shows the values of ξ for the presented experiments.

  The intuition of this work is to adapt the previous model of in nitesimal strain theory, chapter 6, section 6.3.1, to di erent stimuli, such as the ones involving the feature of scale, see gures 8.1, 8.2. Scale and size of an object are related concepts: if we consider receptive pro les modelled as Gabor lters, see equation (4.1), the scale σ encodes the distance from the boundary (see formula 4.1). For the extension of the cortical based model presented in chapter 4 to this feature see Sarti, Citti and Petitot in[START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF][START_REF] Petitot | Neurogéométrie de la vision[END_REF]. Size is the spatial dimension of an object and is the maximum output of the scale. We compute it through a non-maximal suppression of the other values of scale within an object. The Ebbinghaus and Delboeuf illusions ( gures 8.1, 8.2) are phenomena in which the context induces a misperception of the size of the central target,

Phenomenology of perception and neurophysiology of V1 and V2.

A parametrization is the process of deciding and de ning the parameters necessary for a complete or relevant speci cation (characterization) of a geometric object.
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Round Poggendor

In this section a variant of the original Poggendor illusion presented in gure 7.5 is presented. The modi ed illusion, which will be called Round Poggendor , is shown in gure 7.24. The Figure 7.24: Left: Round (or Circular) Poggendor illusion, see Talasli et al. see [START_REF] Talasli | Applying emmert's law to the poggendor illusion[END_REF], g 1B. Right: using the color notation in gure 7.6, we stress the fact that the gray segment doesn't project onto its co-circular correspondent segment (the red one). It projects at some point that our method wants to identify into the region marked in blue.

presence of the central surface induces a misperception of the circle, as if the two cutted parts of the circumference (one on the left of the surface and the other on the right) would not belong to the same circumference anymore. In other words, refering to the right gure in Fig. 7.24, the gray part instead of projecting from the perceptual point of view over the co-circular segment in red, it projects at some point at a certain orientation in the region highlighted in blue.

The experiment

Here the parameters which modulate the metric are ξ = 2.5 and

) and then in order to compute the corrected perceptual completion curve we provide again a nal set to the sub-Riemannian Fast-Marching. Possible nal orientations detected space between [0, -π /10], where θ = 0 is the angle corresponding to the orthogonal projection over the left bar and θ = -π /10 is the boundary condition of the circle at crossing point with the left bar. In an analogous way we took a discretization between possible values of the coordinate and we run the Fast-marching, which is able to identify the minimal length curve given a certain seed and multiple tips ( nal points). Once again, the reason why we chose to perform such experiments is that we didn't not which was the right angle and y coordinate for the ending point of the perceptual curve. The SR length of minimizing geodesic is 1.32668. The endpoint for min geodesic is 0.31, 0.88, -0.27. while looking at these phenomena.

8 Scale/size Geometrical Optical Illusions T of this chapter is to extend the model for geometrical optical illusions introduced in chapter 6 to scale-size illusions, those phenomena in which the interaction between objects of di erent size induce a misperception of the width of a target. If we look at images such as the ones presented in gures 8.1 and 8.2, known as Ebbinghaus and Delboeuf illusions respectively, the presence of circular inducers ( gure 8.1) and of an annulus ( gure 8.2) varies the perceive sizes of the central targets. These phenomena have been named for their discoverers, the German psychologist Hermann Ebbinghaus (1850-1909), and the Belgian philosopher and mathematician Joseph Remi Leopold Delboeuf (1831 -1896), [START_REF] Joseph | Note sur certaines illusions d'optique: Essai d'une théorie psychophysique de la maniere dont l'oeil apprécie les distances et les angles[END_REF]. The Ebbinghaus phenomenon has been popularized in the English-speaking world by Edward B. Titchener in a 1901 textbook of experimental psychology, and this is the reason why it is also called Titchener illusion [START_REF] Roberts | The roles of inducer size and distance in the ebbinghaus illusion (titchener circles)[END_REF]. The main idea here is to identify a connectivity metric Figure 8.1: Ebbinghaus (or Tichtner) illusion: two circles of identical size are placed near to each other, and one is surrounded by large circles while the other is surrounded by small circles. In the left part of the stimulus, inducers are larger in size than the central circle, inducing a decreasing size-perception of the latter. In the same way when inducers are smaller in size than the target size, the size-perception of the latter increases. from which it will be possible to compute the displacement and the corresponding perceived misperception. We will consider an isotropic functional connectivity depending on the detected scale and on the distance between the objects composing the stimulus. We will see how this phenomenon is implemented and provide with numerical simulation the perceived deforma-