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1 Introduction

English version

Figure 1.1: The Kanizsa trian-
gle. A white triangle occluding
three black disks is phenomeno-
logically perceived. There is an
apparent contour separating the
triangle from the �gure, indeed
the interior looks whiter than
the background. There is also
a strati�cation of �gures, the
triangle emerges and seems to
be above the disks. This type
of phenomenon is classi�ed by
Kanizsa as modal completion.

Figure 1.2: An example of
amodal completion. The �gure
is perceived as a black circle oc-
cluded by a gray square. The cir-
cle is present in the visual �eld,
but the completion is performed
without an illusory contour.

The aim of this thesis is to present neuromathematical mod-
els for visual perception and to deal with such phenomena in
which there is a visible gap between what is represented and
what we are able to perceive. Such breaches are particularly
interesting because they allow to understand the di�cult and
fascinating mechanisms of seeing, enabling scientists to �ll the
gap (or at least trying) wheter it is possible. This is the rea-
son why illusory phenomena have always been at the center of
many studies, from the psychological, quantitative and qualita-
tive point of view [57, 185, 130]. In the �eld of phenomenology
of perception, i.e. the branch studying how percept arises to our
consciousness (Husserl, Merleau-Ponty, [118]), the integration
of contours in vision has been largely studied by the Gestalt the-
ory since the beginning of the twentieth century [184, 105, 106,
100]. The Gestalt psychology established basic “grouping laws”
which are crucial in constructing a phenomenological represen-
tation of the physical world: points having one or several char-
acteristics in common, are grouped together to form a new and
larger visual object, a gestalt. This approach jointed with quan-
titative measured parameters provided computational models
of Gestalt (for example [48]). One of the phenomenon which
drew the interest most is amodal completion, deeply analyzed
by Kanizsa [100]: it consists in perceiving a completion of a par-
tially occluded object, as the one presented in �gure 1.2. The
observer perceives a black circle occluded by a gray square. The
circle is perceived without the modality of vision, since we only
guess its presence, in contrast with modal completion present
for example in the Kanizsa triangle of �gure 1.1, where we per-
cieve the triangle with the modality of vision, even though its
boundaries are not present in the stimulus. Boundaries recon-
structed by our visual system with both modalities are called
illusory contours. How we are able to perform completion is
an important question, who lead research in vision and image
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processing. The prototype of models for curve completion and
illusory contours can be found in [125, 132] (Mumford) and has
been generalized to level sets of a surface in [115]. On the other
hand, partial occlusion occurs also when we look at damaged
images such as the ones presented in �gure 1.3. Such process-
ing, known as inpainting, has been introduced by Bertalmio et
al. in [9]. In neurophysiology, most of the neural processing

Figure 1.3: Left: macula cieca,
an example of corrupted sur-
face. Center: an occluded image
(from U. Boscain et al. ([14])).
Right: a well known example of
damaged image, from Bertalmio
et al [9].

for boundary coding is performed by the primary visual cor-
tex (V1/V2), [95]. This evidence emerges from an impressive
amount of experiments based mostly on measuring the neu-
ral activity by means of dye-electrode recording and cortical
imaging [93, 94]. The word neurogeometry has been introduced
by Jean Petitot [139] in 1990s and refers to geometrical mod-
els of the functional architecture of primary visual areas. The
�rst geometric models of the functionality of the visual cor-
tex date back to the papers of Ho�mann [86], Koenderink and
van Doorn [104], and August and Zucker [3]. Petitot and Ton-
dut in [139] proposed a model of single boundaries completion
through constraint minimization, obtaining a neural counter-
part of the models of Mumford. In this setting Citti and Sarti
introduced a cortical based model [28], which justi�es the pre-
sented illusory phenomena at a neural level and provides a neu-
rogeometrical model for the primary visual cortex.

Another class of very interesting phenomena are Geometri-
cal optical illusions (GOIs), known in literature since the end
of the XIX century [83, 187, 190]. GOIs arise when there is a
mismatch of geometrical properties between an item in object
space and its associated percept [185]. Let us consider an exam-
ple such as the one presented in �gure 1.4 top left: the Hering il-
lusion. In this image the presence of a radial background bends
the two vertical lines, which are actually parallel instead. Psy-
chological and mathematical models for explaining such phe-
nomena have been presented and summarized for example in
[85, 58, 57, 130] as well as quantitative studies to measure the
magnitude of the illusion. Both topics will be adressed to in
chapter 6 and 7 and an overview of the huge amount of liter-
ature for these phenomena will be provided. The fundamen-
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Figure 1.4: Top, from left to right.
Hering illusion: two straight ver-
tical lines in front of a radial
background appear as if they
were bowed outwards. Wundt-
Illusion: an opposite bending
e�ect with respect to the Her-
ing illusion. Ehm [58] Square:
the context of concentric circles
bends inwards the edges of the
square. Bottom, from left to
right. Wundt-Hering illusions
merged together: the bending ef-
fect is inhibited by the presence
of con�itting inducers. Zollner
illusion: a pattern of oblique
inducers surrounding parallel
lines creates the illusion they are
unparallel. Poggendor� illusion:
the presence of a central surface
induces a misalignement of the
crossing transversals.

tal idea developed in this thesis is that these phenomena arise
due to a polarization of the connectivity of the primary visual
cortex, which will be responsible for the misperception. Start-
ing from the neuromathematical model proposed by Citti and
Sarti in [28] in which the connectivity building contours in the
primary visual cortex is modeled through a sub- Riemannian
metric, we will extend it claiming that in such phenomena the
cortical response to the stimulus modulates the connectivity
of the cortex, becoming a coe�cient for the sub- Riemannian
metric. Many GOIs will be processed through the presented
method, also complex illusions, such as the ones involving the
size. Size is an estimation of the actual width of an object, and
the context in which a target is immersed can a�ect its size per-
ception. If we look at images as the ones presented in �gure 1.5,
left, the central target is perceived as shrinking or enlarging
depending on the size of the surrounding circles, which form
an annulus around the central circle (target). The challenge
of this last approach is to introduce a plausible mathematical
model which would justify the phenomenon. A comparison
which judgemental studies will be provided, in the attempt to
uniform a theory which has been divided and compared to a
“babel tower” [130] since when those phenomena have been
studied. We believe that the only way to uniform it is to pro-
vide a cortical based mathematical model, which will provide
an explanation for those phenomena correct from the quantita-
tively and qualitatively point of view.
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Figure 1.5: Left couple: Ebbing-
haus (or Tichtner) illusion: two
circles of identical size are
placed near to each other, and
one is surrounded by large cir-
cles while the other is sur-
rounded by small circles. In
the left part of the stimulus, in-
ducers are larger in size than
the central circle, inducing a
decreasing size-perception of
the latter. In the same way
when inducers are smaller in
size than the target size, the
size-perception of the latter in-
creases. Right couple: Delbouef
illusion: the presence of an an-
nulus around the target (black
circle) induces a misperception
of the size of the latter. If the
annulus is big, the target tends
to shrink or not displace at all
(left). As long as we decrease its
width, the target is perceived as
expanding.

The �rst three chapters of this thesis introduce and de�ne
concepts that will be at the basis of the original contributions
we will present. The other chapters can be read independently
of each other, except for chapter 8 which is linked to chapter
6. Original contributions and their relative published material
are referenced at the beginning of each chapter.

In chapter 2 neurophysiological and phenomenological pre-
liminaries are provided. First we will perform an overview of
illusory phenomena, starting from Gestalt theory and �nishing
with Geometrical optical illusions. The second part of the chap-
ter contains the neurophysiology of the primary visual cortices
V1/V2. The visual process is explained starting from its early
stage, from when the light impacts the retina and its signal is
further processed by the cortex. The functional architecture
of the primary visual cortices will be described, particularly
focusing on the hypercolumnar structure (Hubel and Wiesel
[93, 94]): for each point of the retina a whole set of cortical
cells will respond, each one sensitive to a speci�c instance of a
certain feature. In case of simple cells, we will have a whole set
of cells, each one sensitive to a speci�c orientation. The max-
imum over this set will be the tangent direction of the visual
stimulus. A cortical mechanism of non maxima suppression is
able to select the maxima orientation. This mechanisms can
be extended to other features, such as the scale (i.e. distance
from a boundary). We will conclude the chapter introducing
the connectivity mechanisms responsible for the formation of
contours and surfaces.

In chapter 3 all mathematical instruments necessary for un-
derstanding the cortical based models we will introduce later
on are presented. We will provide an introduction to di�er-
ential geometry, explaining the concept of �ber bundle, which
will model the hypercolumnar structure of the cortex. Then we
will focus on Lie Groups and their properties, ending the chap-
ter with notion of sub- Riemannian geometry. The anisotropic
structure arising from these elements will account for the con-
nectivity arising in the cortex.
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In chapter 4 we will present the neurogeometric model intro-
duced by Citti and Sarti in [28]. Their ideas are at the basis of
all concepts developed later on in this thesis. We will see how
neurophysiology of V1 and the geometrical notions introduced
before merge together, providing a di�erential structure which
naturally endow the cortex and allows to model the connectiv-
ity. In this setting perceptual phenomena arise as curves and
surfaces of di�erential operator of R2×S1 in the sub- Rieman-
nian metric introduced as model for the anisotropic connectiv-
ity of the cortex.

In chapter 5 we will develop the sub- Riemannian operator of
mean curvature �ow which allows to model the perceptual aris-
ing of surfaces. In particular, the phenomenon of amodal com-
pletion will be explained and we will see how this approach is at
the basis of a performant image processing algorithm, allowing
to recover damaged parts of an image (inpainting, [9]). Further-
more, the problem of existence of vanishing viscosity solutions
(in the sense of Crandall, Ishii and Lions [37]) will be faced
from a theoretical point of view. The main idea of the proof
will be to look for solutions of the approximating operator for
which the classical results hold. Then we will pass to the limit
in order to recover the sub- Riemannian solution of the mean
curvature �ow equation. The latter will have the property of
being a surface of minima area and will model the perceptual
completion of missing parts of an image. If we let the equation
evolving on the whole image, we can perform enhancement,
i.e. a technique allowing to put in evidence contours and make
them brighter [53, 54]. These results are published in [30].

Figure 1.6: Poggendor� illusion:
the presence of a central surface
induces a misalignement of the
crossing transversals.

In chapter 6 we will look for a mathematical model able to
explain Geometrical optical illusions, i.e. those situations in
which there is a mismatch of geometrical properties between
the item in the object space and its associated percept ([185]).
The main idea is to consider a polarization of the sub- Rieman-
nian metric introduced before which is now modelled by the
response of simple cells to the initial stimulus. In this approach
is the output of simple cells which modulates the connectivity
responsible for the deformation of the initial stimulus, see for
example the set of images in �gure 1.4. Projecting the polar-
ized metric from R2×S1 to R2 we obtain a new metric from
which we can derive a direct expression for the displacement,
using in�nitesimal strain theory tools. We will end with dis-
placement vector �elds that once applied to the initial stimulus
will allow to represent what we actual perceive when we look
at such images. These results are published in [69, 68].

In chapter 7 the previous approach is extended, but the chal-
lenge is to understand if the deformation curves derived as ex-
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plained in chapter 6 can arise as minima of the polarized met-
ric modulated by the output of simple cells. This allows to
explain such phenomena in which the amodal completion of
a surface intervenes, generating misalignment of transversals,
see for example the well known Poggendor� illusion 1.6. Once
the output of receptive pro�les of V1 is determined and the po-
larized metric arise as model for the connectivity, geodesics are
computed through sub- Riemannian Fast- Marching, a method
which extends the one introduced by Sethian [156], developed
by Sanguinetti et al. in [152] starting from a Riemannian adap-
tation due to Mirebeau, see [120]. It consists in computing the
approximating solution of the Eikonal equation, from which
a distance map in the sub- Riemannian metric from a certain
given boundary condition is calculated. In this setting, geodesics
are back- tracked (gradient descent) on this map and minimize
the length of their paths. The perceptual curves arising in GOIs
will be these geodesics. These results will be contained in the
papers [67, 66].

In chapter 8 we extend the previous models to the analysis
of scale/size illusions, such as the ones presented in �gure 1.5.
The mechanism is similar to the one applied in section 6, but
with a di�erent feature: �rst the distance (scale) of a point from
the nearest boundary is detected, then the size is evaluated
from it. Here we will evaluate the interaction between the in-
dividuated perceptual units (circles, �gure 1.5) introducing an
isotropic functional connectivity related to the feature of scale,
starting from the model proposed in [154]. The perceived size
of the central target in the Ebbinghaus and Delbouef illusion
will be then derived and these results will be compared with
judgemental studies [116] which evaluate how the perceived
size changes in relation with the numbers of inducers and their
sizes. The result will be contained in [65].

Finally chapter 9 summarizes the original contributions of
this thesis and possible extensions
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French version

Figure 1.7: Le triangle de
Kanizsa. On perçoit un trian-
gle blanc obstrué par trois cer-
cles noirs. Un contour illusoire
sépare le triangle du reste de
l’image, et la partie intérieure du
triangle apparaît plus blanche
que celle au dehors. On observe
aussi une strati�cation des �g-
ures: le triangle émerge et sem-
ble être au-dessus des cercles.
Ce type de phénomène est clas-
si�é par Kanizsa sous le nom de
complétion modale.

Figure 1.8: Un exemple de com-
plétion amodale. L’image est
perçue comme un cercle noir oc-
clus par un carré gris. Le cercle
est présent dans le champ visuel,
mais la complétion est e�ectuée
sans un contour illusoire.

L’objectif de cette thèse est de présenter des modèles neuro-
mathématiques pour la perception visuelle et de s’interésser
aux phénomènes dans lesquels on identi�e une brèche visible
entre ce qui est représenté et ce qui est perçu. Ces brèches
constituent un intérêt particulier parce qu’elles permettent de
comprendre le di�cile et fascinant mécanisme de la vision et
les scienti�ques peuvent donc essayer de remplir ce “gap”, à
condition que cela soit réalisable. Cela explique en grande par-
tie la raison pour laquelle les phénomènes illusoires ont tou-
jours été au centre de nombreuses études, d’un point de vue
psychologique, quantitatif et qualitatif [57, 185, 130]. Dans la
branche de la phénoménologie de la perception, c’est-à-dire des
études analysant la manière dont le percept apparaît à notre
conscience (Husserl, Merleau-Ponty, [118]), l’intégration des
contours en vision a été énormément étudié par les théoriciens
de la Gestalts, et ce à partir du début du 20ème siècle [184,
105, 106, 100]. La psychologie de la Gestalt a établi des rè-
gles basiques de “grouping” qui sont cruciales pour constru-
ire une répresentation phénoménologique du monde physique:
les points qui ont une ou plusieurs caractéristiques en com-
mun sont groupés (grouping) ensemble pour former un nou-
veau et plus large objet, une “gestalt”. Cette approche, jointe
avec les paramètres mesurés quantitativement, a permis de con-
struire des modèles computationels pour la Gestalt (voir exem-
ple [48]). Un phénomènes des plus intéressant est la complétion
amodale, largement analysée par Kanizsa [100]: ce phénomène
consiste à percevoir la complétion d’un objet partiellement oc-
clus, comme celui représenté dans l’image 1.8. L’observateur
perçoit un cercle noir occlus par un carré gris. Le cercle est
perçu sans la modalité de la vision, car nous devinons seule-
ment sa présence. Ce phénomène contraste avec celui de la
complétion modale, présente par exemple dans le triangle de
Kanizsa, image 1.7, dans laquelle nous percevons le triangle
avec la modalité de la vision, même si les contours ne sont pas
présents dans le stimulus. Les contours reconstruits par notre
système visuel avec les deux modalités sont appelés des con-
tours illusoires. Comment sommes-nous capables de réaliser la
complétion est une question absolument centrale, qui a guidé la
recherche dans la branche de la vision et du traitement des im-
ages. Le prototype des modèles pour la complétion de courbes
et contours illusoires - que nous pouvons retrouver dans [125,
132] (Mumford) - a été généralisé aux courbes de niveau d’une
surface en [115]. Ce processus, connu sous le nom d’ “inpaint-
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ing”, a été introduit par Bertalmio et al. dans [9]. En neuro-

Figure 1.9: Gauche: macula
cieca, un exemple de surface
corrompue. Centre: une im-
age occluse (dans U. Boscain et
al. ([14])). Droite: un exem-
ple connu d’image endommagée,
dans Bertalmio et al [9].

physiologie, la plupart du traitement du signal neural pour le
coding des contours est réalisé par les cortex visuels primaires
(V1/V2) [95]. Cette évidence émerge de nombreuses expéri-
ences de mesures de l’activité neurale par enregistrement avec
électrodes et instruments d’imagerie cérébrale [93, 94]. Le mot
neuro-géométrie a été introduit par Jean Petitot [139] en 1990 et
se rééfère aux modèles géométriques pour l’architecture fonc-
tionnelle des régions visuelles primaires. Les premiers mod-
èles géométriques pour la fonctionnalité du cortex visuel sont
attribués aux travaux de Ho�mann [86], Koenderink et van
Doorn [104], et August et Zucker [3].
Petitot et Tondut dans [139] ont proposé un modèle pour la
complétion de contours avec des contraintes de minimisation,
équivalent neurale du modèle proposé par Mumford. Dans cet
environnement, Citti et Sarti introduisent un modèle basé sur
l’architecture fonctionnelle du cortex visuel [28], qui justi�e
les illusions à un niveau neurale et envisage un modèle neuro-
géométrique pour V1.

Une autre classe des phénomènes particulièrement intéres-
santes est celle des illusions d’optique géométrique (GOIs), con-
nues en littérature à partir de la �n du XIX-ème siècle [83, 187,
190]. GOIs apparaît en présence d’une di�érence entre ce qui
est présent dans l’espace (objet) et la perception associée [185].
On se réfèrera par exemple à l’image de la �gure 1.10, en haute
à gauche: il s’agit de l’illusion de Hering. Dans cette image, la
présence du fond radial courbe les lignes verticales, qui sont
tout-à-fait parallèles.
Des modèles mathématiques et psychologiques pour expliquer
ces phénomènes ont été introduits et résumés dans [85, 58, 57,
130], ainsi que des études quantitatives pour mesurer la mag-
nitude de l’illusion. Nous traiterons les deux sujets dans les
chapitres 6 et 7, et un résumé d’une grande partie de la littéra-
ture sur ces phénomènes sera fournie. L’idée fondamentale
développée dans cette thèse est que ces phénomènes se pro-
duisent suite à une polarisation de la connectivité des cortex
visuels primaires, responsables de l’illusion. A partir du mod-
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Figure 1.10: En haut, de gauche à
droite. Illusion de Hering: deux
lignes parallèles sont posées sur
un fond constitué des lignes
radiales, en apparaissant cour-
bées vers l’extérieur. Illusion
de Wundt: un e�et de courbure
opposé à celui présenté dans
l’illusion de Hering. Carré de
Ehm [58]: le contexte de cer-
cles concentriques courbe vers
l’intérieur les bords du carré. En
bas, de gauche à droite. Les il-
lusions de Wundt et Hering fu-
sionnées: l’e�et de courbure est
annulé par la présence des induc-
teurs en con�it. Illusion de Zoll-
ner: des inducteurs obliques en-
vironnant deux lignes parallèles
donnent lieu à un e�et de non-
parallèlisme. Illusion de Poggen-
dor�: la présence d’une surface
coupant une ligne cause un e�et
de désalignement.

èle neuro-mathématiques proposé par Citti et Sarti en [28], où
la connectivité qui construit les contours en V1 est modelée
avec une metrique sub-Riemannienne, on étend cela en disant
que pour les GOIs la réponse corticale du stimulus initial mod-
ule la connectivité du cortex, en devenant un coe�cient pour
la metrique. Beaucoup de GOIs seront traitées avec la méthode
présentée ici, ainsi que des illusions plus complexes, comme
celles qui concernent l’échelle. L’échelle est une estimation de
la largeur réelle d’un objet et le contexte dans lequel l’objet dont
on cherche à évaluer la largeur est immergé peut a�ecter cette
évaluation. Si nous regardons les images représentées dans la
�gure 1.11, le cercle central est perçu rétréci ou agrandi par
rapport à l’échelle des cercles qui entourent le cercle central
(cible). Le challenge de cette approche est d’introduire un mod-
èle mathématique plausible décrivant le phénomène présenté.
Nous fournirons une comparaison avec des études “judgemen-
tal”, en cherchant à uni�er une théorie qui à été comparée à
“la tour de Babel” [130] depuis que ces phénomènes ont été
découverts. Nous croyons que la seule façon de réaliser cela
est de fournir un modèle mathématique basé sur l’architecture
fonctionnelle, capable d’ expliquer les illusions du point de vue
quantitatif et qualitatif.

Les trois premiers chapitres de cette thèse introduisent et
dé�nissent des concepts qui seront à la base des contributions
originales que nous présentons. Les autres chapitres peuvent
être lus de manière indépendante, sauf le chapitre 8 qui est lié
au chapitre 6. Les contributions originales et les matériaux pub-
liés qui les contiennent sont cités au début de chaque chapitre.

Dans le chapitre 2 nous présentons les prérequis neuro- phys-
iologiques et phénoménologiques. D’abord, on fera une présen-
tation des phénoménes illusoires, à partir de la théorie de la
Gestalt et en �nissant avec les illusions d’optique géométrique.
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Figure 1.11: Couple à gauche: il-
lusion de Ebbinghaus (ou Ticht-
ner): deux cercles centraux qui
ont la même échelle sont en-
tourés, l’un des cercles plus
larges (gauche), l’autre de cer-
cles plus petits (droite). Les
grands inducteurs modi�ent la
perception du cercle central
(cible), qui apparaît plus pe-
tit que sa largeur réelle (son
échelle). L’e�et opposé se pro-
duit quand les inducteurs sont
petits. Couple à droite: illusion
de Delbouef. La présence d’un
anneau autour du cercle cen-
tral crée une mauvaise percep-
tion de son échelle. Si l’anneau
est grand, la cible ressemble
plus petit. Si la largeur de
l’anneau diminue, la cible est
perçu comme s’il était plus
grande en échelle.

La deuxième partie du chapitre décrira la neurophysiologie des
cortex visuels primaires V1/V2. Nous expliquerons le processus
visuel à partir de ses étapes initiales, quand la lumière touche
la rétine et le signal est traité par le cortex. L’architecture fonc-
tionnelle des cortex visuels primaires sera décrite, en se con-
centrant sur la structure hypercolomnaire (Hubel et Wiesel [93,
94]): pour chaque point sur la rétine une collection entière de
cellules corticales répond, et chacune de ces cellules est sensible
à une certaine valeur de la caractéristique (couleur, orientation,
échelle) que le cortex est en train de traiter. Dans le cas des cel-
lules simples de V1, nous aurons un ensemble entier de cellules,
chacune sensible à une orientation spéci�que. Le maximum
sur cet ensemble sera la direction tangente du stimulus visuel
passant par le point considéré. Le mécanisme cortical de sup-
pression non-maximal est capable de sélectionner l’orientation
maximale. Ce mécanisme peut être étendus aux autres carac-
téristiques de l’image, comme l’échelle (distance entre un point
et les contours le plus proches). Nous conclurons le chapitre
en introduisant le mécanisme de connectivité responsable de
la réalisation des contours et surfaces dans le cortex.

Nous verrons dans le chapitre 3 les instruments mathéma-
tiques nécessaires pour comprendre les modèles corticaux qu’on
introduira dans les chapitres suivants. Nous donnerons une in-
troduction à la géométrie di�érentielle, en expliquant le con-
cept de �bration, qui modélisera la structure hypercolumnaire
du cortex. Ensuite les groupes de Lie et leurs propriétés seront
traités et on terminera le chapitre avec des notions de géométrie
sub-Riemannienne. La structure anisotrope que nous obtenons
des éléments traités nous aidera à expliquer la connectivité que
l’on retrouve dans V1/V2.

Dans le chapitre 4 on présentera le modèle neurogéométrique
introduit par Citti et Sarti en [28]. Leurs idées sont à la base de
toutes les contributions développés dans cette thèse.
Nous verrons comment la neurophysiologie de V1 et les no-
tions de géométrie dont on a parlé dans les chapitres précé-
dents fusionnent en donnant une structure di�érentielle qui
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modélise naturellement le cortex et sa connectivité. Dans cet
environnement, les phénomènes perceptifs émergent comme
courbes et surfaces des opérateurs di�érentiels de R2×S1 dans
la métrique sub- Riemannienne introduite comme modèle pour
la connectivité anisotrope du cortex.

Dans le chapitre 5, nous développens l’opérateur de �ux de
courbure moyenne qui permet de modeler l’émersion percep-
tive des surfaces. En particulier nous expliquerons la complé-
tion amodale et nous verrons comment cette approche est à la
base des algorithmes de traitement des images, en nous perme-
ttant de reconstruire des parties corrompues d’une �gure (in-
painting, [9]). En plus, le problème d’existence des solutions de
type vanishing viscosity (dans le sens de Crandall, Ishii et Lions
[37]) sera traité d’un point de vue théorique. L’idée principale
de l’épreuve est de chercher des solutions, approximations de
l’opérateur initial, pour lesquelles les résultats classiques sont
valides. Ensuite nous ferons la limite pour retrouver la solution
sub- Riemannienne à l’équation du �ux de courbure moyenne.
Cette solution aura la propriété d’être une surface avec aire
minimale et modélisera la complétion perceptive des parties
manquantes d’une image. Si nous laissons évoluer l’équation
sur la �gure entière on peut e�ectuer l’enhancement, cet à dire
une technique qui permit de mettre en evidence les contours
[53, 54]. Ces résultats sont publiés en [30].

Figure 1.12: Illusion de Poggen-
dor�: la présence d’une surface
coupant une ligne cause un e�et
de désalignement.

Dans le chapitre 6, nous cherchons un modèle mathématiques
capable d’expliquer les illusions d’optique géométrique, qui ap-
paraissent en présence d’une di�érence entre ce qui est présent
dans l’espace (objet) et la perception associée ([185]). L’idée
fondamentale est de considérer une polarisation de la métrique
sub- Riemannienne introduite auparavant, modulée maintenant
par les réponses des cellules simples de V1 au stimulus ini-
tial. En suivant cette idée, la réponse des cellules modulant la
connectivité est responsable de la déformation du stimulus ini-
tial (par exemple, regarder l’ensemble d’images de �gure 1.10).
En faisant une projection de la métrique polarisée de l’espace
R2×S1 à l’espace R2, on obtient une nouvelle métrique, à par-
tir de laquelle nous derivons une expression directe pour le dé-
placement. Les instruments utilisés viennent de la théorie in-
�nitésimale des déformations. Cels nous permettra de calculer
les champs vectoriels du déplacement qui, une fois appliqués
à l’image initiale, représenteront le percept, cet-à-dire ce que
nous percevons en présence des stimuli illusoires. Ces résul-
tats sont publiés en [69, 68].

Dans le chapitre 7, l’approche précédente est étendue, mais
le challenge est de comprendre si les courbes de déformation
obtenues en suivant l’explication du chapitre 6 peuvent être
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aussi calculées comme minima de la métrique polarisée par la
réponse des cellules simples. Cela permettra d’ expliquer les
phénomènes dans lesquels la complétion amodale des surfaces
joue un role, en créant le désalignement d’une ligne (par ex-
emple illusion de Poggendor�, 1.12). Une fois que les réponses
des pro�ls récepteurs de V1 et V2 sont déterminées, et que la
métrique polarisée émerge comme modèle pour la connectivité
neurale, les géodésiques sont calculées avec le Fast- Marching
sub- Riemannienne, une méthode qui élargit celle qui fut intro-
duite par Sethian [156], développée par Sanguinetti et al. en
[152] à partir d’une adaptation Riemannienne due à Mirebeau,
voir [120]. La méthode consiste à calculer la solution approchée
de l’équation Eikonal, avec laquelle on peut déduire une fonc-
tion distance entre les points de l’ensemble et la condition à la
frontière, en métrique sub- Riemannienne.
Dans cet environnement, les géodésiques sont trouvées par de-
scente du gradient sur la fonction distance et elles minimisent
la longueur de leurs trajets. Les courbes perceptives que nous
voyons dans le GOIs seront ces géodésiques. Les résultats sont
contenues dans les articles [67, 66].

Dans le chapitre 8, nous poursuivons avec le modele précé-
dent en cherchant une extension aux illusions d’échelle, comme
celles que nous pouvons observer dans l’image 1.11. Le mécan-
isme décrit est similaire à celui appliqué dans le chapitre 6 mais
avec une caractéristique (feature) di�érente analysée: d’abord,
la distance (échelle) entre un point et le contour le plus proche
est calculée. Ensuite, la taille de l’objet est évaluée. Ici, nous
considérons l’interaction entre les unités perceptives détectées
dans l’image (les circle, �gure 1.11) et nous introduirons une
connectivité fonctionnelle isotrope liée à l’échelle à partir du
modèle proposé en [154]. La taille de la cible centrale perçue
dans les illusions de Ebbinghaus et Delbouef sera calculée et ces
résultats seront comparés avec des études ‘’judgemental” [116],
qui évaluent comment la taille perçue change en relation avec
le numéro des inducteurs et leurs tailles. La contribution origi-
nale sera contenue dans [65].

Le chapitre �nal 9 résume toutes les contributions originales
de la thèse et leurs possibles extensions.
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2 Phenomenology of perception

and neurophysiology of V1 and V2

Figure 2.1: A representation of
the visual path, from Hubel [95].

Our aim in this chapter is to give the psychological and
neurophysiological basis for understanding the visual processes
responsible for the phenomenon of amodal completion of sur-
faces and for the illusory contours formation in Geometrical
optical illusions. Many concepts were introduced by the expo-
nents of Gestalt movement in psychology and we will under-
stand the role this approach had in carrying out researches in
perception. In fact, the interest on illusions relies on the fact
that they could provide an insight about how the visual pro-
cess is actually carried out while a subject undergoes a visual
stimulus. The �rst class of stimuli refers to the psychological
principles organizing visual contents while we look at a stim-
ulus. The second class contains deformation of the space, in-
troducing a pure mismatch between what is represented in the
real world and what is perceived. On the other hand the en-
lightened mechanisms in psychology need to be contextualized
through an overview of the neuro-physiology of brain parts in-
volved, i.e. the functional architecture of the primary visual
cortices (V1/V2, Brodmann area 17/18 respectively). The basic
idea is that neural interaction strongly depends on the organi-
zation and connectivity of neurons in the cortex and it actively
partecipates in generating such phenomena. We will restrict
our attention to the structures relevant to the model presented
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in the later chapters: receptive �elds and receptive pro�les of
simple cells in V1/V2, the hypercolumnar structure of V1, the
cortical connectivity. In the following table you can �nd the
organization of the contents for this chapter.
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2.1 Phenomenology of perception

2.1.1 Gestalt psychology

One of the big question about vision is how the act of sight
happens and which elements partecipate to realize it. Visual
perception is not a simple acquisition of the real stimulus, but
is the result of a series of complex processes which mediate
between the physical stimuli and the phenomenological orga-
nization of such stimuli. According to Gaetano Kanizsa, one of
the main exponents of the Gestalt psychology,

“Perception consists of an active construction by means of which
sensory data are selected, analyzed and integrated with proper-
ties not directly noticeable but only hypothesized, deduced, or
anticipated, according to available information and intellectual
capacities.”

Figure 2.2: Gaetano Kanizsa, one
of the father of the Gestalt psy-
chology, author of Grammatica
del vedere (Organization in Vi-
sion, [100]).

The movement of Gestalt was started by Wertheimer, Köhler
and Ko�ka, with the basic idea that the visual phenomena need
to be considered as global events, not reducible to the set of its
parts. There exist local and global laws which justify the “act
of sight ” (the appearance of the perceptual units which com-
pose an image). Then complex phenomena can be understood
considering the idea of structure more than a single element, i.e.
the parts of a visual stimulus are grouped together to form the
whole, and the whole is what we actual see �rst. These char-
acteristics allowing the formation of the percept are de�ned as
laws that describe the in�uence of global context in the percep-
tion of local features. Elements tend to be perceptually grouped
and made salient in case of proximity, similarity, closure, good
continuation and alignment. Let us go through these local rules
(Kanisza, [100]):

• Proximity: elements constitute a single perceptual unit if they
are close to each other and apart from the rest of the elements
which belong to the image, see Figure 2.3.

Figure 2.3: An example of prox-
imity, [100]. In this example
three groups of elements are per-
ceived.

• Similarity: elements constitute a single perceptual unit if
they are similar in color, shape, texture or orientation, see
Figure 2.4.
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Figure 2.4: An example of simi-
larity, Kanizsa, [100]. in this ex-
ample we identify six groups, di-
vided by law of proximity and
similarity. Black dots which
form a line are separated from
the other black dots and form a
perceptual unit.

• Closure: our perception tends to close contours, because per-
ception is stronger in case of closed contours and to facilitate
a pop up of the �gure, see Figure 2.5.

Figure 2.5: An example of clo-
sure: we clearly perceive a pop-
up of a rectangle and a circle,
even if the contours are inter-
rupted.

• Good continuation and alignment: elements aligned (or with
comparable alignment) tend to form a continuous curve. In
�gure 2.6 we perceive a unique curve of black dots even if
the black bar interrupts them.

Figure 2.6: An example of good
continuation, adapted from
Kanizsa, [100]

More than one grouping law at a time, as we saw in the pre-
vious example, can contribute to the perception of a complex
object. In this sense the local laws contribute to the formation
of the percept. Another observation coming out from the previ-
ous experiments is that the perceptual reality is formed in each
time by a discrete number of objects, which do not necessarily
depend on the existence of correspondent physical objects.

2.1.2 Perceptual completion

Phenomena in which there is a phenomenological presence of
boundaries without a physical stimulus (such as in the famous
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Kanizsa-Triangle, �gure 2.7 right) describe the mechanisms of
modal and amodal completion, which are examples of grouping
according to good continuation and alignment. Perceptual com-
pletion refers to the ability of the perceptual process to clearly
individuate and identify the presence of objects even if they
are occluded (�gure 2.7 left, amodal completion) or the bound-
aries are not present in the image (�gure 2.7 right). Illusory
contours, as the ones presented in �gure 2.7 right, constitute
an example of modal completion. They generate a percept of
a contrast border in image regions that are physically homoge-
neous [172]. Kanizsa studied in depth these examples, which
are important because they underline the fact that the visual
stimuli and their phenomenological organization in general do
not coincide and for this reason such phenomena help to under-
stand the behaviour of the visual cortex during the act of sight.

Figure 2.7: (Left) An example
of amodal completion. The �g-
ure is perceived as a black cir-
cle occluded by a gray square.
The circle is present in the visual
�eld, but the completion is per-
formed without an illusory con-
tour. (Right) The Kanizsa trian-
gle. A white triangle occluding
three black disks is phenomeno-
logically perceived. There is an
apparent contour separating the
triangle from the �gure, indeed
the interior looks whiter than
the background. There is also
a strati�cation of �gures, the
triangle emerges and seems to
be above the disks. This type
of phenomenon is classi�ed by
Kanizsa as modal completion.

A point underlined by these studies is that in both cases of com-
pletion the occluding and the occluded objects are perceived at
the same time in the scene and therefore there are points in
the input stimulus corresponding to more than one �gure at
the perceptual level. This suggests that the phenomenological
space has a higher dimension than that of the physical space,
as in this example of a two dimensional image.

2.1.3 Geometrical optical illusions

Perception and the corresponding meaning of the act of per-
ception are a deep research theme and constitute a huge �eld
of investigation, in which many disciplines converge into. For
our purposes it will be enough to take into account the di�er-
ence between the physical source of the stimulus and its per-
ception. In psychology the distal stimulus is de�ned as the light
re�ected o� a physical object in the external world: when we
look at an image (distal stimulus) we cannot actually experi-
ence the image physically with vision, we can only experience
it in our mind as proximal stimulus, i.e. the internal sensory re-
sponse [105, 77]. Geometrical optical illusions arise when the
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distal stimulus and its percept di�er in a perceivable way. Sim-
ple images where the illusion is particularly strong can help
to study vision mechanisms which usually take place, so that
they appear to be fundamental in understanding the act of vi-
sual perception. As explained by Westheimer in [185], we can
conveniently divide illusions into those in which spatial defor-
mations are a consequence of the exigencies of the processing
in the domain of brightness and the true geometrical-optical il-
lusions, which are misperceptions of geometrical properties of
contours in simple �gures. Some of the most famous geometric
illusions of this last type are shown in �gure 2.8. Since the aim

Figure 2.8: From [80]. Top (left),
Hering illusion: the presence of
a crossing background induce
a deformation of the red lines,
which are parallel. Top (right)
Ehrenstein illusion: a circle and
a square are represented over
a radial background, which in-
duces a deformation of the ge-
omtrical shapes. Bottome (left)
Poggendor� illusion: the pres-
ence of a central surface creates
a perceived misalignement of
two segments belonging to the
same transversal. Bottom (right)
Zollner illusion: the oblique in-
ducers generate a phenomenon
of divergence of the four parallel
lines.

of this thesis is to present a neuro-mathematical model which
rely on the structure and phenomenology of the primary visual
cortex (V1/V2) for both presented phenomena (perceptual com-
pletion and geometric optical illusions), we need to go through
to its physiological structure and organization.

2.2 The visual cortex

In order to describe from a mathematical point of view the pre-
vious phenomena in which we are interested in, we �rst need to
focus on the functional architecture of the primary visual cor-



2. Phenomenology of perception and neurophysiology of V1 and V2. 35

tex (Brodmann area 17) and in its basic structures. Receptive
�elds and receptive pro�les of simple cells will be fundamental
for boundary coding, one of the �rst process we will treat, as
basis for all other complex functions of the cortex. The three
most important structures implemented in the neural circuitry,
the layered, the retinotopic and the hypercolumnar structure
will be described from the neurophysiological and functional
point of view with a qualitatively characterization. Then the
pinwheel structure, the topological implementation of the hy-
percolumnar structure will be introduced. In particular we will
focus on simple cells of the primary visual cortex, the �rst ones
which process the visual signal, and on the connectivity pat-
tern between them. For further references about these part see
Hubel in [95], Hubel and Wiesel [93, 94] and Petitot [138].

2.2.1 The cerebral cortex and the visual pathway

Figure 2.9: The visual path of the
brain.

The cerebral cortex is the outermost layer of neural tissue in
the two cerebral hemispheres. It plays a central role in sensory
and cognitive processing since most of the neurons responsible
for these processes are located here. It is commonly divided in
three parts: sensory, motor, and association. We are interested
in the �rst of these, which is the part of the cortex that receives
sensory inputs. In particular the visual cortex is the area that
serves the sense of vision and receives the optical information
from the visual path (see �gure (2.9)). Light enters the eyes
and arrives to the retina, which is composed of thin layers of
brain tissue where the neural processing of visual stimuli be-
gins. One of those layer, the nearer one to the optic nerve, is
formed mainly of photoreceptors: they have the role of mea-
suring the signal and pixelize it. It is composed by rods and
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Figure 2.10: An enlarged por-
tion of the retina, at the right,
shows the relative positions of
the three main retinal layers. Im-
age from Hubel, see [95].

cones. The others two layers consists of ganglion cells and
bipolar cells: these layers are connected together through hor-
izontal and amacrine cells. Figure 2.10 shows the organization
of cells in the retina layers. The mechanisms connecting these
layers are direct and indirect: photoreceptors are responsible
for the transduction of the optical signal in action potential.
The receptive �eld of a ganglion cell is the region of retina over
which a light stimulation can produce a �ring. In section 2.2.2
we will go trough the concept of receptive �eld and receptive
pro�le, and their role in decoding the visual signal. As �gure
2.10 explains, the layers send the �nal output of the retina (in
the form of action potentials) away from the eyes using their
long axons. These axons form the optic nerve, which transmits
the visual signals to the lateral geniculate nucleus (LGN) of the
thalamus, a structure in the middle of the brain which connects
the sensory organs to their main sensory processing cortical
areas. From the LGN the signal goes to various destinations:
the most important is the visual cortex, situated in the back of
the head, where the larger part of the visual processing is per-
formed. The primary visual cortex (V1) is the area to which
most of the retinal output �rst arrives and is the most widely
studied visual area, associated to the other layer responsible for
what it is called early stage visual process.

2.2.2 Simple cells of V1/V2: Receptive fields and receptive
profiles

As the axons of the ganglion cells project a detailed spatial rep-
resentation of the retina to the LGN, the LGN projects a similar
representation to the primary visual cortex. As we saw each
cell in V1 is characterized by its receptive �eld, the portion of
the retinal plane which responds to visual stimulation: the ac-
tion of light alters the �ring of the neuron starting from the
ganglion layer of the retina. Classically a receptive �eld is sub-
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divided into ON and OFF areas. The area is considered ON
if the cell spikes in positive way responding to a signal (exci-
tatory response to a light stimulus) and OFF if it spikes neg-
atively responding to a signal (inhibitory response to a light
signal). Hence it is possible to de�ne the receptive pro�le of a

Figure 2.11: In this representa-
tion, a receptive pro�le of a sim-
ple neuron (simple cell) of V1.
On the right, from De Angelis
et al. [44], the recording of level
set lines, on the left, the scheme
of the structure of the receptive
pro�le with its + (ON) part and
its - (OFF) part.neuron as a functionψ (x ,y) measuring the response of the cell,

ψ : D→ R where D is the receptive �eld and (x ,y) are retinal
coordinates. In this way what is measured is the response of the
neuron relatively to a signal at point (x ,y) of the retina. This
function models the neural output of the cell in response to a
punctual stimulus in the 2 dimensional point (x ,y). The tem-
poral precision with whom the stimulus is treated is around
the millisecond order. Accurate electrophysiological method
allowed De Angelis et al. [44], see �gure 2.11 to map receptive
�elds and their correspondent receptive pro�les. The charac-
terization given by Hubel and Wiesel in ([93, 94]) classi�es the
cells in V1 according to their responses. Cells which have sep-
arate ON/OFF zones are called simple cells, all the others com-
plex cells. Simple cells have directional receptive pro�les, while
complex cells are not sensitive to orientation, [138].

2.3 V1 and its functional architecture

To understand the processing of the image operated by these
cells, it is necessary to consider the functional structures of the
primary visual cortex: the layered, the retinotopic and the hy-
percolumnar structure. We refer to the functional architecture
as the spatial organization and the connectivity between neu-
rons inside a cortical area. In V1 we can identify three struc-
tures we mentioned before: the layered structure, the retino-
topic structure, the hypercolumnar structure.

2.3.1 The layered structure

The layered structure indicates that the primary visual cortex
is formed of 6 horizontal layers, as shown in �gure 2.12. This
feature made V1 to be the �rst area of the cortex to be distin-
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Figure 2.12: A cross section of
the striate cortex taken at higher
magni�cation shows cells ar-
ranged in layers. Layers 2 and 3
are indistinguishable; layer 4A is
very thin. The thick, light layer
at the bottom is white matter.
Image from Hubel, [95].

guished from the rest. We also refer to it as striate cortex, due to
this property. Figure 2.13 schematizes the neural projection of
each layer of V1 to other cortical regions. For example Layers
2 and 3 and layer 4B project mainly to other regiones, while
the deep layers project down to subcortical structures. Layer 6
projects mainly back to the lateral geniculate body. All layers
except 1, 4A and 4C send �bers out of the cortex. Let us notice
that Ramon y Cajal was the �rst, at the beginning of 1900, to
realize how short connections within the cortex are: the richest
connections run up and down.

Figure 2.13: The main connec-
tions made by axons from the
lateral geniculate body to the
striate cortex and from the stri-
ate cortex to other brain regions.
Image from Hubel, [95].

2.3.2 The retinotopic structure

The retinotopic structure is the topographical organization of
the cells in the cortex. The simple cells are arranged in the
cortex in such a way that what is near in the visual �eld is near
in the cortex. Precisely we can de�ne a map from the retina
to the layers of the primary visual cortex, which introduces a
simple deformation of the stimulus, quantitative modeled as a
complex logaritmic map.
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Figure 2.14: In this experi-
ment by Roger Tootell [165], the
target-shaped stimulus with ra-
dial lines was centered on an
anesthetized macaque monkey’s
right visual �eld for 45 minutes
after injection with radioactive
2-deoxyglucose. One eye was
held closed. The right picture
shows the labeling in the stri-
ate cortex of the left hemisphere.
This autoradiograph shows a
section parallel to the surface.
The roughly vertical lines of la-
bel represent the (semi)circular
stimulus lines; the horizontal
lines of label represent the radial
lines in the right visual �eld.

2.3.3 The hypercolumnar structure

The hypercolumnar structure refers to the the organization of
cortical cells in columns corresponding to parameters such as
orientation, ocular dominance, color, etc. For the simple cells,
sensitive to orientation, columnar structure means that to ev-
ery retinal position is associated a set of cells (hypercolumn)
sensitive to all the possible orientations. At a certain scale
and resolution, for each point of the retina (x ,y) there exists a
whole set of neurons in V1, each one maximally responding to
a speci�c local orientation θ of the stimulus at the point (x ,y).
Since ideally the position on the retina takes values in the plane
R2 and the orientation preference in the circle S1, the visual cor-
tex can be locally modelled as the product space R2 × S1. Each
point (x ,y,θ ) of this 3D space, represents a column of cells in
the cortex associated to a retinal position (x ,y), all of which
are tuned to the orientation given by the angle θ .
Figure 2.15 shows a schematic representation of the visual cor-
tex. The hypercolumns are drawn vertically. The di�erent col-
ors represent di�erent orientations. The coordinates (x ,y,θ )
of this 3D space isomorphic to R2 × S1 are the parameters of
the receptive �elds (RPs): (x ,y) is the retinotopic position and
θ the angle of tuning. The fundamental consideration here is
that V1 is modelled as a 3D space of positions and orientations,
while the cortex is infact a 2D layer. In fact, the 3D represen-
tation provided in �gure 2.15 schematizes what in reality is a
2D layer: it has been shown by Hubel and Wiesel in [93, 94]
that tangential penetration in the super�cial layers of the cor-
tex reveals that the RPs of cells close to each other strongly
overlap while the orientation preference varies smoothly gen-
erating the orientation hypercolumnar structure. The structure
of the cortex allows us to code 3D information in a 2D struc-
ture: this dimensional collapse has been illustrated visually by
the pinwheel structure, a fascinating con�guration observed
by William Bosking et al. using optical imaging techniques in
which the cells’ orientation preference is color-coded and ev-
ery hypercolumn is represented by a pinwheel. These are the
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Figure 2.15: Top: classical cube
representation (in [93, 94]) of
the hypercolumnar structure,
for the orientation parameter,
where L and R represent the oc-
ular dominance columns (Peti-
tot [138]). The orientation hy-
percolumns are arranged tan-
gentially to the cortical sheet.
Bottom: Over each retinotopic
point (x1,x2) there is a set of
cells coding for the set of orien-
tations {θ ∈ S1} and generating
the 3D space R2×S1. Each bar
represent a possible orientation.
The color coded map is the same
used in �gure 2.16. Image from
[149].

structures presented in the two small pictures in the right hand
side of �gure 2.16. A �xed point (x ,y) is surrounded by all ori-
entations θ represented in di�erent colors. The same structure
is repeated over the whole 2D cortical surface in an almost pe-
riodic way. For references see [16]), for its representation see
�gure 2.16. To an overview of experiments which lead to the
discovery of this structure and its neurophysiological basis see
Sanguinetti in [149].

Figure 2.16: Image from Bosk-
ing et al. [16]. The pinwheel
structure observed by the au-
thors in [16]. Cells’ orientation
preferences are color-coded as
before, and every hypercolumn
results to be squeezed on the 2D
layer. Portions of the orienta-
tion preference map shown on
the left are enlarged to demon-
strate that the orientation pref-
erence maps contained both lin-
ear zones and pinwheel arrange-
ments.

2.3.4 The cortical connectivity of V1

The short range connectivity

To conclude our review of the functional architecture of V1 we
discuss now the connectivity between neurons inside the struc-
ture we have seen. In the hypercolumnar structure we can iden-
tify two types of communication between neurons which play
a central role in the model we want to present: The intracorti-
cal circuitry is able to select within the hypercolumns the cell
which gives the maximal response to a visual stimulus and to
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suppress all the others. The mechanism able to produce this se-
lection is called non-maximal suppression or feature selection.

The long range connectivity

The horizontal or cortical connectivity of the primary visual cor-
tex ensures connectivity between hypercolumns. Neurophysio-
logical experiments, for example as the ones conducted in [16]
and [78] revealed the existence of connections parallel to the
cortical surface (along the structure of pinwheels) that run sev-
eral millimeters (6 to 8 mm in the visual cortex). These horizon-
tal (or long range) connections connect cells with the same ori-
entation belonging to di�erent hypercolumns, with non over-
lapping receptive �elds, as shown by the injected marker in
�gure 2.17, from [16]. The injected chemical tracer into a small
area of the visual cortex of a tree shrew was propagated through
the lateral connections and the resulting image was combined
with the orientation maps obtained with optical imaging. In
the immediate vicinity of each neuron, the connections are rel-
atively isotropic, but over larger distances they follow the ori-
entation preferences.

Figure 2.17: Image from Bosking
et al. [16]. A marker (biocytin)
is injected in the cortex, at a spe-
ci�c point, and it di�uses mainly
in regions with the same orien-
tation as the point of injection
(see the black path). Same color
refers to same orientation pref-
erence along the 2D orientation
preference map.

2.4 V2, the prestriate cortex

Visual area V2 (Brodmann area 18), or secondary visual cortex,
also called prestriate cortex [75], is the second major area in
the visual cortex, and the �rst region within the visual asso-
ciation area. It receives strong feedforward connections from
V1 (direct and via the pulvinar) and sends strong connections
to upper layers of the visual cortex. Not only the feedforward
but also feedback connections to V1 are strong. In terms of
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anatomy, V2 is split into four quadrants, a dorsal and ventral
representation in the left and the right hemispheres.

Figure 2.18: View of the brain
from behind. Red is Brodmann
area 17 (primary visual cortex);
orange is area 18 (secondary
visual cortex, V2); yellow in-
dicates area 19. The brain’s
surface is extracted from struc-
tural MRI data, from Wellcome
Dept. Imaging Neuroscience,
UCL, UK.

Together, these four regions provide a complete map of the
visual world. V2 has many properties in common with V1:
cells are tuned to simple properties such as orientation, spa-
tial frequency, and colour. The responses of many V2 neu-
rons are also modulated by more complex properties, such as
the orientation of illusory contours [168, 2], binocular dispar-
ity [169], and whether the stimulus is part of the �gure or the
ground [140, 19]. Recent research has shown that V2 cells are
tuned for moderately complex patterns, and may be driven by
multiple orientations at di�erent subregions within a single re-
ceptive �eld.

2.4.1 Receptive fields of V2

As we will recall later, from the neurophysiological point of
view the orientation selectivity, the spatial and temporal fre-
quency of cells in V2 di�ers little from the one in V1 ([110, 111]).
Receptive �elds in V2 are larger from those in V1 ( [101, 110]).
Some of them show more elongated ON-OFF zone in their RFs.
Many studies, which relies on neuro-physiological and imag-
ing data, show the evidence that neurons in at least two visual
areas, V1 and V2, carry signals related to illusory contours, and
that signals in V2 are more robust than in V1 ( [168, 127], re-
views [57, 126]). The cells with elongated RFs observed by Liu
et al. in [111] may be responsible for such behaviour. Finally, as
observed by Tootell et al. in [165], also V2 shows orientation
column organization: columns are spaced further apart than
those in V1, by a factor of about 1.6, but the columns are not
correspondingly wider.
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3 Di�erentiable manifold, Lie groups

and Sub-Riemannian geometry

In this chapter we will introduce the mathematical instru-
ments that will allow us to model the cortical space introduced
in the previous section. We are mainly interested in the struc-
ture of the cortex, which we know is responsible for its func-
tionality: the hypercolumnar structure of the primary visual
cortex will be modelled as the principal �ber bundle of the Lie
group SE(2), endowed with a sub-Riemannian structure. This
is crucial for explaining the orientation selection performed by
cells in V1. Instruments of Lie groups and di�erential geometry
for the description of the visual cortex have been introduced by
Ho�mann in [86], August and Zucker in [3], Petitot and Ton-
dut in [139] and Duits and Franken in [53, 54]. Before focus-
ing on their models, we �rst need to review the de�nition and
basic properties of di�erentiable manifold and Lie group the-
ory, which are fundamental for explaining the simmetry and
the organization of simple cells in the cortex, and the construc-
tion and the properties of a sub-Riemannian manifold which
explain the connectivity we will introduce.
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3.1 Di�erentiable manifold theory

In order to introduce Lie groups and Sub- Riemannian struc-
tures we need to �rst recall fundamental notions of di�eren-
tiable manifold theory. All de�nitions and theorems can be
found in [166].

3.1.1 Topological manifolds, charts and smooth manifolds

De�nition 3.1.1. A topological space M is locally Euclidean
of dimension n if every point p ∈ M has a neighborhoodU such
that there is a homeomorphismϕ fromU onto an open subset of
Rn. We call the pair (U ,ϕ) a chart,U a coordinate neighborhood
and ϕ a coordinate map. We say that a chart (U ,ϕ) is centered
at p ∈ U if ϕ (p) = 0.

De�nition 3.1.2. A topological manifold is said to be of dimen-
sion n if it is locally Euclidean of dimension n.

Suppose (U ,ϕ) and (V ,ψ ) are two charts of a topological
manifold. SinceU ∩V is open inU and ϕ : U → Rn is a homeo-
morphism onto an open subset of Rn, the image ϕ (U ∩V ) will
also be an open subset of Rn. Similarly, ψ (U ∩V ) is an open
subset of Rn.

De�nition 3.1.3. The two charts (U ,ϕ) and (V ,ψ ) of a topo-
logical manifold are C∞-compatible if the two maps:

ϕ ◦ψ−1 : ψ (U ∩V ) → ϕ (U ∩V ) ψ ◦ϕ−1 : ϕ (U ∩V ) → ψ (U ∩V )

are C∞. These two maps are called the transition functions
between the charts. If U ∩ V is empty, then the two charts
are automatically C∞-compatible. To simplify the notation, we
sometimes write Uαβ for Uα ∩Vβ .

Figure 3.1: From Tu, [166]. The
transition functionψ ◦ϕ−1 is de-
�ned on ϕ (U ∩V )

De�nition 3.1.4. A C∞ atlas or simply an atlas on a locally
Euclidean space M is a collection U = {(Uα ),ϕα } of pairwise
C∞-compatible charts that cover M, i.e. M = ⋃

α Uα .

An atlasU on a locally Euclidean space is said to be maximal
if it is not contained in a larger atlas; in other words, if M is
any other atlas containing U, then U = M.

De�nition 3.1.5. A smooth or C∞ manifold is a topological
manifold M together with a C∞ maximal atlas. The maximal
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atlas is also called a di�erentiable structure on M and M is called
di�erentiable (C∞ di�erentiable) manifold. A manifold is said
to have dimension n if all of its connected components have
dimension n. A 1-dimensional manifold is also called a curve,
a 2-dimensional manifold a surface, and a n-dimensional mani-
fold is an n-manifold.

Figure 3.2: A tangent vector as
an arrow.

3.1.2 Tangent spaces, di�erential of a map, vector fields and
integral curves

De�nition 3.1.6. Let N and M be smooth manifolds of dimen-
sion n andm respectively. A map F : N → M is C∞ at a point p
in N if there are charts (V ,ψ ) about F (p) in M and (U ,ϕ) about
p in N such that the composition ψ ◦ F ◦ ϕ−1, a map from the
open subset ϕ (F−1(V ) ∩U ) of Rn to Rm, is C∞ at ϕ (p). If F is
C∞ at every point of N , F is said to be smooth.

Figure 3.3: From Tu [166].
Checking that a map F : N →
M is C∞ at p.

Intuitively the tangent plane to a
surface at p in Rn is the plane that
just “touches” the surface at p. A
vector at p is tangent to a surface if
it lies in the tangent plane at p.

We de�ne a germ of a C∞ func-
tion at p in Rn to be an equiva-
lence class of smooth functions de-
�ned in a neighborhood at p in
Rn , the two functions being equiv-
alent if they agree on some, possi-
bly smaller, neighborhood ofp. The
set of germs of smooth real-valued
functions at p in Rn is denoted by
C∞p (Rn ), an unitary commutative
ring. This concept generalizes to a
manifold M using the local coordi-
nates given by the atlas, for each
point p in M

Let consider p ∈ M , then C∞p (M ) is the set of all function f :
M → R which areC∞ atp. A basic principle in manifold theory
is the linearization principle, according to which a manifold can
be approximated near a point by its tangent space at that point.
For any point p in an open setU in Rn there are two equivalent
ways to de�ne a tangent vector at p:

• as a vector, see �gure 3.2 (see �rst margin note).

• as a point-derivation of C∞p , the algebra of germs (see second
margin note) of C∞ functions at p.

Both de�nitions generalize to a manifold. In the �rst approach,
one de�nes a tangent vector at p in a manifold M by �rst choos-
ing a chart (U ,ϕ) at p and then denoting a tangent vector at p
to be an “arrow” at ϕ (p) in ϕ (U ). This approach, while more vi-
sual, is complicated to work with, since a di�erent chart (V ,ψ )
at p would give rise to a di�erent set of tangent vectors at p and
one would have to decide how to identify the arrows at ϕ (p) in
U with the arrows at ψ (p) in ψ (V ). This happens because the
�rst de�nition depends on the immersion of the manifold M in
Rn. The cleanest and most intrinsic de�nition of a tangent vec-
tor at p in M is as a point-derivation, and this is the approach
we adopt.
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De�nition 3.1.7. Generalizing a derivation at a point p in Rn,
we de�ne a derivation at a point in a manifold M, or a point-
derivation of C∞p to be a linear map Dp : C∞p (M ) → R such
that

Dp ( f s ) = (Dp f )s (p) + f (p)Dps .

De�nition 3.1.8. A tangent vector at a point p in a manifold
M is a derivation at p.

De�nition 3.1.9. The tangent vectors atp form a vector space
Tp (M ), called the tangent space of M at p. We also write TpM .

De�nition 3.1.10. A vector �eld on an open subset U of M
is a function that assigns to each point p in U a tangent vector
Xp ∈ Tp (M ). Since we can assign a basis {∂/∂xi |p } to Tp (M )1, 1 This result is proved in a the-

orem which states that, once
we �x a local frame (x1, . . . ,xn ),
{ ∂
∂xi

���p }i=1,...,n form a basis for
Tp (M ) (see [166])

where the elements of the basis are the n directional derivates
which come from the local coordinates of U in Rn, the vector
Xp is a linear combination:

Xp =
∑

ai (p)
∂

∂xi

�����p
p ∈ U , ai (p) ∈ R

where ai are smooth functions onU . The set of vector �elds on
a manifold M is denoted by X(M ).

Remark 3.1.11. An equivalent de�nition is that a vector �eld
X is a derivation onC∞(M ), i.e. D : C∞(M ) → C∞(M ) R-linear
which satis�es the Leibniz rule, see [166] for the proof.

We will now de�ne the concept of a smooth map between
two manifolds in order to introduce the di�erential of a map:

De�nition 3.1.12. Let F : N → M be a C∞ map between two
manifolds. At each point p ∈ N , the map F induces a linear
map of tangent spaces called its di�erential at p:

(dF )p : Tp (N ) → TF (p) (M )

If Xp ∈ TpN , then (dF )p (X ) is the tangent vector in TF (p)M de-
�ned by:

(dF )p (X ) ( f ) = Xp ( f ◦ F ) ∈ R for f ∈ C∞F (p) (M ).

Here f is a germ at F (p), represented by a C∞ function in a
neighborhood of F (p). Since the previous de�nition is inde-
pendent of the representative of the germ, in practice we can
be relaxed about the distinction between a germ and a repre-
sentative function for the germ.

Remark 3.1.13. If f : M → R is a C∞-function, the di�eren-
tial of f :

d f := X(M ) → C∞(M )
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is globally de�ned as the map which acts as follows on each
vector �eld X ∈ X(M ):

d f (X ) := X ( f )

It is clear that this de�nition descends directly from the general
one.
Remark 3.1.14. If instead of N and M we consider a map F
between Rn and Rm we discover with some computations that
the matrix associated to the linear map

(dF )p : Tp (Rn ) → TF (p) (R
m )

is precisely the Jacobian matrix of F at p. Thus, the di�erential
of a map between manifolds generalizes the derivative of a map
between Euclidean spaces.
De�nition 3.1.15. A smooth curve in a manifold M is by def-
inition a smooth map γ : (a,b) → M from some open interval
(a,b) into M . Usually we assume 0 ∈ (a,b) and we say that γ is
a curve starting at p if γ (0) = p. The tangent vector (or velocity
vector) γ ′(x ) to the curve γ in x ∈ (a,b) is de�ned to be:

γ ′(x ) = (dγ )x

(
d

dt

)
∈ Tγ (x )M

De�nition 3.1.16. We call γ an integral curve of the vector
�eld X on M if γ ′(x ) = Xγ (x ) , ∀x ∈ (a,b), i.e. a smooth
parametrized2 curve γ whose tangent vector at any point coin- 2 A parametrization is the process

of deciding and de�ning the param-
eters necessary for a complete or
relevant speci�cation (characteriza-
tion) of a geometric object.

cides with the value ofX at the same point. In local coordinates
(x1, . . . ,xn ) this means:

γ : (a,b) → ϕu (U ) ∈ Rn

t 7→ (γ1(t ), . . . ,γn (t ))

If we make some calculations we observe:(
Dγ

d

dt

)
( f (x1, . . . ,xn )) =

d

dt
f (γ1(t ), . . . ,γn (t )) =

n∑
i=1

∂ f

∂xi
γ
′

i (t )

Hence

γ ′(t ) =
n∑
i=0

γ ′i (t )
∂

∂xi
.

With respect to the basis { ∂∂x1
, . . . , ∂∂xn } we have

γ ′(t ) = (γ ′1(t ), . . . ,γ ′n (t )).

Following the previous de�nition γ ′(x ) = Xγ (x ) this means∑
γ ′i (t )

∂
∂xi
=

∑
ai (γ1(t ), . . . ,γn (t )) ∂∂xi , where ai are the coe�-

cients of X in the coordinates (x1, . . . ,xn ). Since { ∂∂xi } forms a
basis, γ is an integral curve i� γ

′

i (t ) = ai (γ1(t ), . . . ,γn (t )) for
all i , i.e. γ1, . . . ,γn is a solution of the previous system of au-
tonomous ODEs of the �rst order.
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3.1.3 Fiber bundles and tangent spaces

The collection of tangent spaces in a manifold is called tangent
bundle. It is a locally trivial family of tangent vector spaces
parametrized by points of the manifold. It locally looks like a
certain product space, but globally may have a di�erent topo-
logical structure. More generally it is possible to de�ne �ber
bundles, or vector bundles, with analogous properties: they lo-
cally look like a cartesian product of a base set and a �ber
(which reduces to a vector space in case of vector bundles) but
can have a rich global structure.
De�nition 3.1.17. A �ber bundle is a structure (E,B,π , F )
where E,B and F are topological spaces and π : E → B is a con-
tinuous surjection satisfying the local triviality condition out-
lined below. The space B is called the base space of the bundle, E
the total space, and F the �ber. The map π is called the projection
map. We require that ∀ x ∈ E there is an open neighborhood
U ⊂ B of π (x ) (which will be called trivializing neighborhood)
such that π−1(U ) is homeomorphic to the product spaceU × F ,
in such a way that π agrees with the projection onto the �rst
factor. Thus the following diagram should commute:

π−1(U ) U × F

U

.................................................................................................. ............
ϕ

................................................................................................................................................................................................................
....
............

proj1

..........................................................................................................................................
.....
.......
.....

π

where proj1 : U × F → U is the natural projection and ϕ :
π−1(U ) → U × F is a homeomorphism. The set of all {(Ui ,ϕi )} is
called system of local trivializations of the bundle. Thus for any
p in B, the preimage π−1({p}) is homeomorphic to F × {p} (since
proj−1

1 ({p}) clearly is F ) and is called the �ber over p. Every �ber
bundle π : E → B is an open map, since projections of products
are open maps.

Figure 3.4: The Moebius strip, an
example of non-trivial bundle.

Example 3.1.18. The Moebius strip is the simplest example of
a non-trivial bundle E. The base B is the circle S1 and the �ber F
is a line segment. Given x ∈ B, U is a small arc (neighborhood
of x on the circle) and π−1(U ) is homeomorphic to the square
U × F . Globally this is not true.

A special class of �ber bundles, called vector bundles, are
those whose �bers are vector spaces and the composition of lo-
cal trivializations is linear over the �ber F .
De�nition 3.1.19. Let M be a smooth manifold and TpM is
the tangent space at p de�ned in 3.1.9. The tangent bundle of
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M is the disjoint union of all tangent spaces of M :

TM =
⊔
p∈M

TpM

In this de�nition the union is disjoint because for distinct points
p and q in M , the tangent spaces TpM and TqM are already dis-
joint. TM has the structure of a di�erentiable manifold and the
bundle structure is given by the natural map π : TM → M
where ∀p ∈ M , π−1(p) is the tangent space of the manifold M
at the point p and this map does not depend on the choice of
atlas or local coordinates for M. As a matter of notation, some-
times a tangent vector v ∈ TpM can be identi�ed by the pair
(p,v ), to make explicit the point p ∈ M at which v is a tangent
vector.

Another special class of �ber bundles, called principal bun-
dles, are those bundles on whose �bers there is a free and transi-
tive action (see margin note) by a groupG is given. The bundle
is often speci�ed along with the group by referring to it as a
principal G-bundle. As we will see we are interested in this
de�nition because principal �ber bundles are used in our model
to describe the visual cortex.

De�nition 3.1.20. A topological group is a group G together
with a topology on G such that the group’s binary operation
and the group’s inverse function are continuous functions with
respect to the topology.

De�nition 3.1.21. If G is a group and X is a set, then a (right)
group action of G on X is a function

X ×G → X

(x ,p) 7→ x · p

that satis�es the following two axioms:

• Compatibility x · (ph) = (x · p) · h, for all p,h ∈ G, x ∈ X

• Identity x · e = x for all x ∈ X

An action is free if, given p,h ∈ G, the existence of an x ∈ X
with x · p = x · h implies p = h. Equivalently: if p is a group
element and there exists an x ∈ X with x · p = x (that is, if p
has at least one �xed point), then p is the identity. An action is
transitive if X is non-empty and if for any x ,y, ∈ X there exists
a p in G such that x · p = y.

De�nition 3.1.22. A principal �ber G-bundle, where G de-
notes any topological group, is a �ber bundle π : P → X to-
gether with a continuous right action P ×G → P such that
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G preserves the �bers of P and acts freely and transitively on
them. This implies that the �ber of the bundle is homeomor-
phic to the group G itself.
De�nition 3.1.23. Let π : E → M be a vector bundle on M .
We call a section of the vector bundle a map ϕ : M → E such
that π ◦ϕ = IdM

Remark 3.1.24. A vector �eld X (de�ned in 3.1.10) on mani-
fold M is a section of the tangent bundle π : TM → M and the
vector �eld is smooth if it is smooth as a map from M to TM .

All these instruments allow us to de�ne other concepts such
as an a�ne connection, the parallel transport, covariant deriva-
tives and geodesic without requiring the concept of metric. For
reader convenience, since we will deal with a sub-Riemannian
metric and its Riemannian approximation, we are going to de-
�ne these concepts directly in the enriched framework provided
by considering a Riemannian manifold.

3.2 Lie groups and their properties

In this section we will provide some basic de�nitions of the Lie
group theory. De�nitions and theorems can be found in [167].

3.2.1 Definition

De�nition 3.2.1. A Lie Group is a group which also carries the
structure of a di�erentiable manifold in such a way that both
the group operation

· : G ×G → G, (p,h) 7−→ p · h forp,h ∈ G

and the inversion

i : G → G , i (p) = p−1,p ∈ G

are smooth maps.
Examples of Lie Groups are:

• The Euclidean space Rn, with the usual sum as group law.

• The set of real/complex square matricesn×n, with the deter-
minant di�erent from 0. In this set we consider the standard
product of matrices, and the existence of an inverse is en-
sured by the condition on the determinant. Note that this
group is not commutative.

• The circle S1 ⊂ C of angles mod 2π , with the standard sum
of angles.

• The group of rotations and translations on the plane SE (2)
which will be described in detail in this thesis.
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3.2.2 Properties

De�nition 3.2.2. For two vector �elds (i.e. two derivations)
X and Y in X(M ), their Lie bracket (or commutator) is de�ned
by their action on functions f : M → R:

[X ,Y ]( f ) = X (Y ( f )) −Y (X ( f ))

Note that the Lie bracket is a measurement of the non- commu-
tativity of the operators; it is de�ned as the di�erence of apply-
ing them in reverse order. In particular [X ,Y ] is identically 0 if
X and Y commute.

De�nition 3.2.3. LetG be a Lie group. For any element p ∈ G,
we de�ne the left-multiplication (or left-translation) Lp : G → G
by:

Lp (h) = p · h for all p ∈ G

where · denotes the group operation in G.

De�nition 3.2.4. A vector �eld X onG is called left-invariant
if:

X ( f ◦ Lp ) = (X f ) ◦ Lp for all p ∈ G

De�nition 3.2.5. The Lie Algebra of a Lie groupG is the vector
space of all left-invariant vector �elds on G:

Lie (G ) := {X ∈ X(M ) : X is left invariant, i.e.

X ( f ◦ Lp ) = (X f ) ◦ Lp }

for all p ∈ G and f smooth on M .

Remark 3.2.6. A result (see [175]) states that the Lie algebra
associated to a Lie group can be identi�ed as the tangent space
at the identity of the group e , i.e.

Lie (G ) � TeG

3.3 Riemannian and Sub-Riemannian manifolds

So far we have dealt with di�erentiable objects. Now we will in-
troduce some concepts, the a�ne connection (and the ones that
follow: Christo�el symbols, parallel transport and geodesics)
that could have been introduced without mentioning any met-
ric in our space, as the reader will notice directly from the def-
inition. A metric (or inner product) is an instrument which al-
lows to measure the length of any vector of the tangent space.
In order to simplify the concepts and their usage, we work di-
rectly in Riemannian manifolds, i.e. manifolds equipped with a
Riemannian metric. However, for reader convenience we will
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crearly state whether in the de�nitions there will be depen-
dence on the metric. For further references see [84], [186, 121],
[99].

De�nition 3.3.1. LetV be a vector space. An inner product (or
metric) on V is a bilinear form, symmetric and positive de�ned,
i.e.
〈·, ·〉 : V ×V → R such that:

(i) 〈u1 +u2,v〉 = 〈u1,v〉 + 〈u2,v〉 ∀u1,u2,v ∈ V ;

(ii) 〈λu,v〉 = λ〈u,v〉 ∀u,v ∈ V ,∀λ ∈ R;

(iii) 〈u,v〉 = 〈v ,u〉 ∀u,v ∈ V .

(iv) 〈u,u〉 ≥ 0 ∀u ∈ V ,with 〈u,u〉 = 0⇔ u = 0.

3.3.1 Riemannian manifolds
The easiest example of Riemannian
manifold is Rn equipped with the
Euclidean metric.

De�nition 3.3.2. Let M be a C∞ manifold of dimension m.
A Riemannian metric д on M is given by a scalar product on
each tangent space TpM which depends smoothly on the base
point p ∈ M (i.e. for each couple of vector �elds X , Y , the map
p → дp (Xp ,Yp ) is di�erentiable). A Riemannian manifold is a
di�erentiable manifold, equipped with a Riemannian metric.

The compatibility condition mean
that ∇д ≡ 0. From an intuitive
point of view this ensures that Leib-
niz condition holds along the �ber
bundle TM . Furthermore the met-
ric is constant along parallel trans-
port, which means that parallel
trasport is an isometry.

De�nition 3.3.3. Let M be a C∞ manifold of dimension m.
An a�ne connection on M is a di�erential operator, sending
smooth vector �elds X and Y to a smooth vector �eld ∇XY
which satis�es the following conditions:

• ∇XY is C∞(M ) - linear in X:

∇f X1+sX2Y = f ∇X1Y + s∇X2Y

• ∇XY is linear over R in Y:

∇X (aY1 +bY2) = a∇XY1 +b∇XY2

• Product rule:

∇X ( f Y ) = f ∇XY + (X f )Y

where f , s ∈ C∞(M ), a,b ∈ R. ∇XY is called the covariant
derivative of the vector �eld Y along the tangent vector X.

In general there are an in�nite number of a�ne connections
for a given metric tensor. However, in this speci�c case, we
are interested in a connection compatible with the Riemannian
metric of the space (i.e. a metric connection). The unique a�ne
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connection compatible with the Riemannian metric is the Levi-
Civita connection (and it satis�es the Koszul identity). Christof-
fel symbols Γkij are the local coe�cients of a connection. They
can be de�ned for any a�ne connection:

∇ ∂
∂xi

∂

∂xj
= Γkij

∂

∂xk

with i , j,k ∈ {1, . . . ,n}. However, in case of the Levi-Civita con-
nection in a Riemannian manifold, Christo�el symbols have an
expression which depend directly on the Riemannian metric.
Given a local frame for TM , { ∂∂xi }i=1,...,n, then the Christo�el
symbols Γkij will have the following expression: The result that states the Levi-

Civita connection is the unique con-
nection compatible with the metric
is fundamental in Riemannian ge-
ometry, because it ensures all con-
ditions presented in the previous
footnote are satis�ed.

Γkij =
1
2д

lk

(
∂

∂xi
дjl +

∂

∂xj
дil +

∂

∂xl
дij

)
(3.1)

where we apply Einstein summation convention3 and (дij ) =

3 It means that all contravariance in-
dexes which have a covariant coun-
terpart have to be summed. For ex-
ample:

y = cix
i =

3∑
i=1

cix
i

where in this case i ∈ {1, 2, 3}.
In our general example i , j, l ∈
{1, . . . ,n}.

(дij )
−1, (i.e. дilдl j = δij). Let now [a,b] be a closed interval in R,

γ : [a,b] → M a smooth curve. The length of γ is de�ned as:

L(γ ) :=
∫ b

a
‖γ ′(t )‖dt (3.2)

where given a tangent vector v ∈ TpM the norm is ‖v ‖ =
√
〈v ,v〉. The energy of γ is de�ned as

E (γ ) :=
1
2

∫ b

a
‖γ ′(t )‖2dt (3.3)

Lemma 3.3.4. The Euler-Lagrange equations for the energy E
are

ẍi (t ) + Γijk (x (t ))ẋ
j (t )ẋk (t ) = 0 (3.4)

where Γi
jk

have the previous de�nition.

De�nition 3.3.5. Geodesics are critical points of the energy
functional E.

In particular minima of the energy functional E are critical
points, hence geodesics. In addition it can be proved that min-
ima of the functional E also minimize the length functional
L de�ned in 3.2. These geodesics will be called minimizing
geodesics:

De�nition 3.3.6. Minimizing geodesics are minima of the length
functional L.

De�nition 3.3.7. A smooth curve γ : [a,b] → M which satis-
�es equation (3.4) is called a geodesic.

This means that geodesics are critical points of the energy
functional E.
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3.3.2 Sub-Riemannian manifolds

We will now establish a notation to introduce the concept of the
sub-Riemannian metric, a tool which allows us to describe the
connections between the hypercolumns in our model. Let us
start from the de�nition of distribution, which is still an object
which does not depend on the metric.

De�nition 3.3.8. Let M be a C∞ manifold of dimension m,
and let n 6 m. Suppose that for each p ∈ M , we assign an
n-dimensional subspace ∆p ⊂ Tp (M ) of the tangent space in
such a way that for a neighborhood Np ⊂ M of p there exist n
linearly independent smooth vector �elds X1, . . . ,Xn ∈ X(M )
such that for any point q ∈ Np we have X1(q), . . . ,Xn (q) span
∆q . We let ∆ refer to the collection of all the ∆p for all p ∈ M
and we will call ∆ a distribution of dimension n on M . The set
of smooth vector �elds {X1, . . . ,Xn} is called a local basis of ∆

De�nition 3.3.9. A sub-Riemannian manifold is the datum
of a smooth manifold M , a smooth constant rank distribution
HM ⊂ TM and a smooth inner product 〈·, ·〉 on HM . The bun-
dle HM is known as the horizontal bundle.

De�nition 3.3.10. A sub-Riemannian manifold with a comple-
ment, henceforth a sRCmanifold, is a sub-Riemannian manifold
together with a smooth bundleVM such that HM ⊕VM = TM .
The bundle VM is known as the vertical bundle. The two sRC-
manifolds M ,N , are sRC-isometric if there exists a di�eomor-
phism π : M → N such that (dπ )HM = HN , (dπ )VM = VN
and 〈(dπ )X , (dπ )Y 〉N = 〈X ,Y 〉M for all horizontal vectors X ,Y .

Remark 3.3.11. The de�nition of a sub-Riemannian manifold
is more general than the one of Riemannian manifold. This last
one can be seen as a sub-Riemannian manifold in which the
smooth rank distribution has the same dimension as the man-
ifold, i.e. HM = TM (this implies that the vertical bundle is
null). Equivalently a sub-Riemannian manifold can be seen as
a Riemannian manifold in which the metric is degenerate, i.e.
a sub-Riemannian metric can be seen as the limit of a Rieman-
nian metric.

The Euclidean gradient is de�ned as
the vector of the partial derivatives
of a function f with respect to the
set of coordinates.

Remark 3.3.12. If we consider a Riemannian manifold (M ,дp )
and f ∈ C1(M ) a function, for each p ∈ M we de�ne the gradi-
ent of f in p as the vector �eld ∇f satisfying:

dp f (v ) = дp (∇f ,v ) ∀ v ∈ TpM

The Riemannian gradient has the same useful properties as the
gradient of the Euclidean calculus, such as it vanishes in the
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extremal point for f . We can also write the formula for the
gradient in local coordinates:

∇f (x ) =
n∑
i=1

( n∑
j=1

дij (x )
∂ f

∂xi

)
∂

∂xi
(3.5)

where дij are the local expressions of the inverse of the matrix
of the metric.

De�nition 3.3.13. A sub-Riemannian manifold with a com-
plement (M ,HM ,VM , 〈·, ·〉) is r- graded if there are r smooth
constant rank bundles V (j ) , with 0 < j ≤ r , such that:

VM = V (1) ⊕ . . . ⊕V (r )

and we have:

HM ⊕V (j ) ⊕ [HM ,V (j ) ] ⊆ HM ⊕V (j ) ⊕V (j+1)

for each 0 ≤ j ≤ r . Here we have adopted the convention that
V (0) = HM and V (k ) = 0 for k > r .

De�nition 3.3.14. The grading is j-regular if

HM ⊕V (j ) ⊕ [HM ,V (j ) ] = HM ⊕V (j ) ⊕V (j+1)

and equiregular if it is j-regular for all 0 ≤ j ≤ r .

Let us now de�ne a metric extension:

De�nition 3.3.15. A metric extension for an r-graded sub-
Riemannian manifold is a Riemannian metric which coincides
with 〈·, ·〉 on HM that makes the split

TM = HM
⊕
1≤j≤r

V (j )

orthogonal.

For convenience of notation, we shall denote a section V (k )

by X (k ) and set:
V̂ (j ) =

⊕
k,j

V (k )

De�nition 3.3.16. From the previous observations we can de-
�ne the horizontal gradient for a sub- Riemannian manifold as

∇0 = (X1, . . . ,Xm )

where {X1, . . . ,Xm} span the horizontal bundle. In the same
way if a metric extension (which is a Riemannian metric) has
been chosen we can denote the gradient as

∇ = (X1, . . . ,Xm,Xm+1, . . . ,Xn )

where {Xm+1, . . . ,Xn} span the vertical bundle.
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Remark 3.3.17. If a metric extension has been chosen then
V̂ (j ) = (V (j ) )⊥ is the orthogonal complement of V (j ) .

Remark 3.3.18. Every sRC-manifold that admits an r-grading
also admits k-gradings for all 1 ≤ k < r by setting:

Ṽ (j ) = V (j ) 0 ≤ j < k , Ṽ (k ) =
⊕
j≥k

V (j )

De�nition 3.3.19. The unique 1-grading on each sRC-manifold,
V (1) = VM is known as the basic grading.

Example 3.3.20. A Carnot group (of step r) is a Lie group,
whose Lie algebra g is strati�ed in the sense that:

g = g ⊕ g1 ⊕ . . . ⊕ gr−1

and
[g, gj] = gj+1 j = 1 . . . r , gr = 0

together with a left-invariant metric 〈·, ·〉 on HM . The vertical
bundle VM consists of the left translates of g1 ⊕ . . . ⊕ gr−1.
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4 Neurogeometry of V1/V2

In this chapter, starting from the functional architecture of
the primary visual cortices V1/V2 introduced in chapter 2, a
neuro-mathematical model involving tools presented in chap-
ter 3 will account for the organization of cells in the cortex and
their connectivity. In particular the modelization of receptive
�elds and pro�les of simple cells will be recalled, as well as
how orientation detection could be modelled through the in-
troduced instruments. Oriented �lters have been used as mod-
els for receptive �elds of simple cells since the 80’s and lots
of possible interpretations have been presented. However in
this work we will focus on Gabor �lters, which result to be
a biologically based model for receptive pro�les of V1/V2. The
roto-translations invariance intrinsic in the organization of the
simple cells in the cortex suggests that a good model for the hy-
percolumnar structure of V1/V2 is given by the �ber bundle of
the rototranslation group SE (2) = R2×S1. For each point of
the retina (x1,x2) a whole �ber of orientations {θ ∈ S1} is as-
sociated and a tangent direction is selected, through the short
range connectivity (intra-cortical circuitry). The action of the
group SE (2) over the basis of the tangent bundle { ∂∂x1

, ∂∂x2
, ∂∂θ }

allows to recover the vector �eldsX1,X2,X3, left invariant with
respect to the group law and generators of the �ber bundle. The
metric living in the tangent space spanned by those vector �eld
will be sub-Riemannian, to model the strongly anisotropy in
the X3 direction of the cortical connection.
The �rst geometric models of the functionality of the visual cor-
tex date back to the papers of Ho�mann [86], Koenderink and
van Doorn [104] and August and Zucker [3]. Petitot and Ton-
dut [139] proposed a model of single boundaries completion
through constraint minimization in a contact structure, obtain-
ing a neural counterpart of the models of Mumford [125]. The
latter will be analyzed and discussed in chapter 7. Here we fo-
cus on the model proposed by Sarti and Citti in [28], and we will
analyze its applications and extensions in the next chapters.
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4.1 Neurogeometry of the primary visual cortices

The visual process is the result of several retinic and cortical
mechanisms which act on the visual signal. In chapter 2 the
whole mechanism has been analyzed in dept. Let us recall that
the receptive �eld (RF) of a cortical neuron is the portion of
the retina which the neuron reacts to, and the receptive pro�le
(RP)ψ (ξ ) is the function that models the activation of a cortical
neuron when a stimulus is applied to a point ξ = (ξ1, ξ2) of the
retinal plane. The latter is identi�ed with the R2-plane, while
ξ denotes its local coordinates.

4.1.1 The set of simple cells receptive profiles

Simple cells of visual cortices V1 and V2 are sensitive to posi-
tion and orientation of the contrast gradient of an image. Their
properties have been experimentally described by De Angelis
in [44], see �gure 4.1, who performed so�sticated electrophys-
iological measurements. From the neurophysiological point of

Figure 4.1: In vivo registered
odd receptive �eld (left, from
(De Angelis et al., 1995) [44])
and a schematic representation
of it as a Gabor �lter (right), see
equation (4.1).

view the orientation selectivity, the spatial and temporal fre-
quency of cells in V2 di�ers little from the one in V1 ([110]). A classi�cation of di�erent visual

neurons starting from their re-
ceptive pro�les has been possible
through those recordings as well
as make a list of their properties:
size, preferred orientation of corre-
sponding RF, position. For example
it is known that receptive pro�le
of LGN neurons (and those of reti-
nal ganglion cell) can be modelled
as Laplacian of Gaussian. Recep-
tive �elds of simple cells of V1 and
V2 have an ON zone elongated, as
shown in �gure 4.1.

Receptive �elds in V2 are larger from those in V1 ( [101], [110]).
Considering a basic geometric model, the set of simple cells
RPs can be obtained via translations of vector (x1,x2) and ro-
tation of angle θ from a unique mother pro�le ψ0(ξ ). These
symmetries between cells in the primary visual cortices sug-
gest the Rototranslation group could play a role to model the
hypercolumnar structure of V1/V2 and its physiological prop-
erties. In literature it is also known as the 2D Euclidean motion
group SE(2), and it is the 3D group of rigid motions in the plane
(or equivalently the group of elements invariant to rotations
and translations).

4.1.2 Orientation detection

Receptive �elds have been modelled as oriented �lters in the
middle of 80’s and since then extraction of orientation in im-
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age analysis has been subject of several works. The �rst mod-
els have been presented by Daugman (1985) [39], Jones and
Palmer (1987) [98]: they showed that Gabor �lters were a good
approximation for receptive pro�les of simple cells in the pri-
mary visual cortices V1 and V2.

Figure 4.2: Top: receptive pro�le
of a LGN neuron, on the left is
presented a scheme of the recep-
tive pro�le with its + (ON) and -
(OFF) domains and on the right
a recording of its levels lines,
from De Angelis [44]. Bottom: a
scheme of the Laplacian of Gaus-
sian model for a LGN receptive
pro�le, see [138].

Gabor �lters are the natural �lters of this space: in [109] Lee
showed that they allow a complete representation of an image,
and they minimize the uncertainty principle ([39]). Almost in
the same years Young in [188] (1987) and Koenderink in [103]
(1990) introduced Gaussian derivatives (DoG) to model recep-
tive pro�les of simple cells of V1. These �lters can be consid-
ered special cases of steerable �lters, which have been studied
in full generality in [73] (1991) and [137] (1995). They are a very
e�cient tool for extracting multiple orientations and perfom-
ing computations since all �lters are expressed as a linear com-
bination of basis �lters. We also refer to [145] (2008) and [138]
(2008) for further explanations and details. More recently a new
class of multi-orientation �lters have been introduced by Duits
et al. in [56] (2007): cake-wavelets. These wavelets are particu-
larly useful since they induce an invertible map (called orienta-
tion scores) between the image domain and the features space
of positions and orientations. In this space complex structures
such as crossings, T-junctions are disentangled. A comparison
between cake-wavelets and Gabor �lters e�ciency has been
presented in [5]. Other lifting approaches are orientation lifts
and orientation channel representations, see Felsberg in [61].
Another technique based on orientation detection is inpaint-
ing, which consists in restoring damaged portions of an image.
The word was coined by Bertalmio et al. in [9] and the idea was
to perform di�usion along the orientation of level-lines of the
image. Masnou and Morel proposed in [115] a method in ac-
cord with Kanizsa’s theory of amodal completion. We will see
in chapter 5 how the model presented in this chapter applies to
image restoration.

Our scope is to model the functionality of the visual cortex.
Hence we choose Gabor �lters which are a good model of recep-
tive pro�les and they provide a good estimation of the spiking
responses. In our contribution we will consider odd and even
part of Gabor �lters, since we will need to be able to measure
θ correctly for both contours and lines. A good expression for
the mother Gabor �lter is:

ψ0(ξ ) = ψ0(ξ1, ξ2) =
1

2πσ 2e
−(ξ 2

1 +α
2ξ 2

2 )
2σ 2 e

2ib̄ξ2
σ , (4.1)

where b̄ > 0 is the ratio between σ and the spatial wavelength
of the cosine factor, α > 0 is the spatial aspect ratio of the Gaus-
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Figure 4.3: Even and odd part
of the mother pro�leψ0 (ξ ), see
(4.1), [138], chapter 10, joint
work with G. Citti and A. Sarti.

sian envelope. Translations and rotations can be expressed as:

A(x1,x2,θ ) (ξ ) =

(
x1
x2

)
+ Rθ

(
ξ1
ξ2

)
. (4.2)

where Rθ :

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
and represents a rotation of angle θ . Hence a general RP can
be expressed as:

ψ (x1,x2,θ ) (ξ1, ξ2) = ψ0(A
−1
(x1,x2,θ ) (ξ1, ξ2)).

4.1.3 The group law

A way of visualizing this space obtained through rotations and
translations of a mother receptive pro�leψ0 is illustrated in �g-
ure 4.4: the half-white/half-black circles represent the oriented
receptive pro�les of odd simple cells, where the angle indicated
by the diameter of each circle is the angle of tuning. Every
possible receptive pro�le is obtained from the origin by trans-
lating it through the vector (x1,x2) and rotating it over itself
by an angle θ . It results clear that the set of all parameters
{p = (x1,x2,θ ), (x1,x2) ∈ R2 andθ ∈ S1}, forms a group with
the operation induced by the composition Ap1 ◦Ap2 . This turns
out to be:

p1 ◦p2 = (x1,x2,θ1) +R (y1,y2,θ2)

= *
,

((
x1
x2

)
+ Rθ1

(
y1
y2

))T
,θ1 + θ2+

-
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Figure 4.4: The visual cortex
modelled as the group invari-
ant under translations and rota-
tions, [149].

Being induced by the composition law, one can easily check
that +R veri�es the group operation axioms, where the inverse
of a point p = (x1,x2,θ ) is induced by the rototranslation

A−1
x1,x2,θ = R−1

θ ◦T
−1
x1,x2

and the identity element is given by the trivial point e = (0, 0, 0).
The group generated by the operation+R in the space R2× S1 is
called Rototranslation group or equivalently SE (2). The struc-
tured space of receptive pro�les with the symmetries described
above accounts for the rototranslation invariance of the V1/V2
in the representation of a retinal image; the signals will be iden-
tical no matter what their position or orientation in the phe-
nomenological space. In the �gure 4.5 a set of RPs generated
with equation (4.2) is shown.

Figure 4.5: In each image: (top)
even part of Gabor �lters (real
part), (bottom) odd one (imagi-
nary part). Corresponding ori-
entation from left to right: θ = 0,
θ = π/6, θ = 2π/3, θ = 5π/6,
with σ = 4.48 pixels

4.1.4 Output of receptive profiles

The retinal plane is identi�ed with the R2-plane, whose local
coordinates will be denoted with (ξ1, ξ2). When a visual stim-
ulus I of intensity I : M ⊂ R2 → R+, activates the retinal
layer of photoreceptors, the neurons whose RFs intersect M
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spike and their spike frequencies O (x1,x2,θ ) can be modeled
(taking into account just linear contributions) as the integral of
the signal I with the set of Gabor �lters. Indeed we assume the
treated visual stimulus I to be integrable, i.e. I ∈ L1(R2). The
expression for this output is:

O (x1,x2,θ ) =
∫
M

I (ξ1, ξ2)ψ (x1,x2,θ ) (ξ1, ξ2) dξ1dξ2. (4.3)

In the right hand side of the equation the integral of the signal
with the real and imaginary part of the Gabor �lter is expressed.
The two families of cells have di�erent shapes, hence they de-
tect di�erent features. In particular odd cells will be responsible
for boundary detection, see �gure 4.6.

Figure 4.6: From top to bottom:
initial stimulus. A surface is
considered for convolution with
the bank of odd and even re-
ceptive pro�les. Center: result
of the convolution of the ini-
tial surface with even Gabor �l-
ters (Real part). Contours are
detected. Bottom: result of the
convolution of the initial surface
with odd Gabor �lters (Imagi-
nary part). Since the initial im-
age is a surface, polarity plays
a role, it means that contours
with the same orientation but
opposite contrast are referred to
opposite angles, see Favali et al.
[60].

4.2 Functional architectures of V1/V2 and their connec-
tivity

The rototranslation group accounts for the organization of cells
in the primary visual cortices, but in order to model long range
connectivity between receptive pro�les a di�erential structure
is needed. For this reason SE (2) will be considered equipped
with its di�erential structure of Lie group (principal �ber bun-
dle), with a sub-Riemannian metric. The base space of the �-
bration is the retina and there will be a map associating to each
retinotopic position (ξ1, ξ2) ∈ R2 a �ber, which is a copy of the
whole possible set of orientations (the hypercolumn).

4.2.1 Hypercolumnar structure

The term functional architecture refers to the organisation of
cells in the primary visual cortex in structures. As presented
in chapter 2, the hypercolumnar structure, discovered by the
neuro - physiologists Hubel and Wiesel in the 60s ([94]), orga-
nizes the cells of V1/V2 in columns (called hypercolums) cover-
ing a small part of the visual �eldM ⊂ R2 and corresponding to
parameters such as orientation, scale, direction of movement,
color, for a �xed retinal position (ξ1, ξ2). In our framework over
each retinal point we will consider a whole hypercolumn of
cells, each one sensitive to a speci�c instance of orientation.
Hence for each cortical position (x1,x2), corresponding to the
retinical position (ξ1, ξ2) ∈ M ⊂ R2, we associate a whole set
of �lters

RP(x1,x2) = {ψ (x1,x2,θ ) : θ ∈ S1}. (4.4)

This expression associates to each point of the proximal stim-
ulus in R2 all possible feature orientations into the space of
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Figure 4.7: Top: representa-
tion of hypercolumnar structure,
for the orientation parameter,
where L and R represent the oc-
ular dominance columns (Peti-
tot [138]). Bottom: for each po-
sition of the retina (x1,x2) we
have the set of all possible orien-
tations, [149].

features S1, and de�nes a �ber over each point

{θ ∈ S1}.

In this way the hypercolumnar structure is described in terms
of di�erential geometry, but we need to explain how the orien-
tation selectivity is performed by the cortical areas in the space
of feature S1 ([28]).

4.2.2 Cortical connectivity

Physiologically the orientation selectivity is the action of short
range connections between simple cells belonging to the same
hypercolumn to select the most probable response from the
energy of receptive pro�les. Horizontal connections are long
ranged and connect cells of approximately the same orientation.
Since the connectivity between cells is de�ned on the tangent
bundle, we de�ne now the generator of this space. The change
of variable de�ned through A in (4.2) acts on the basis for the
tangent bundle ( ∂∂x1

, ∂∂x2
) giving as frame in polar coordinates:

X1 = cosθ ∂
∂x1
+ sinθ ∂

∂x2
, X3 = − sinθ ∂

∂x1
+ cosθ ∂

∂x2
(4.5)

As presented in [28], the whole space of features (x1,x2,θ ) is
described in terms of a 3-dimensional �ber bundle, whose gen-
erators are X1, X3 for the base and

X2 =
∂

∂θ
, (4.6)
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for the �ber. These vector �elds generate the tangent bundle of
R2×S1. Since horizontal connectivity is very anysotropic, the
three generators are weighted by a strongly anysotropic met-
ric. We introduce now the sub-Riemannian metric with whom
Citti and Sarti in [28] proposed to endow the R2×S1 group to
model the long range connectivity of the primary visual cor-
tex V1. Starting from the vector �elds X1, X2 and X3 they �rst
de�ned the horizontal tangent bundle HM , as the distribution
generated by X1,X2 (see de�nition 3.3.9). Then they proved
that cortical curves in V1 are always integral curves of vector
�elds inHM , which clarify the role of the geometry. As a conse-
quence the connectivity pattern is described by integral curves
of vector �elds of the horizontal tangent space HM .

4.3 The li�ing of a curve

Properties of the curves lifted in the cortical space can be ob-
tained analyzing the lifting process operated by simple cells. If
we consider a real stimulus, represented as an image I : M →
R, we know that cells over each point (ξ1, ξ2) ∈ M can code the
orientation of the level lines of I . Mathematically a level set is
de�ned as follows:

Γc (I ) = {(ξ1, ξ2) | I (ξ1, ξ2) = c}

i.e. it is a set where the function takes on a given constant value
c of I . If I is su�ciently regular, the gradient vector to I , denoted
by ∇I , is orthogonal to the level lines of I . At points where the
gradient does not vanish, we can perform a normalization and
associate an orientation to the latter. Formally:

∇I

|∇I |
= (− sin θ̄ , cos θ̄ ).

This procedure de�nes at every considered point an orientation

θ̄ : M → S1

such that (− sin θ̄ , cos θ̄ ) is orthogonal to the level lines of I .
This means that (cos θ̄ (ξ ), sin θ̄ (ξ )) is tangent to the level lines
of I at the point (ξ1, ξ2). This orientation selectivity is per-
formed by the short-range action of the connectivity which
selects at the point ξ the simple cell with the maximum re-
sponse within the whole hypercolumn and supresses all the
others. This mechanism is called lifting. The whole 2D level
line can also be identi�ed with a 2D retinical curve

γ2D = (ξ1(t ), ξ2(t ),
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Figure 4.8: A contour in a
2D image can be modelled as
a curve whose tangent is the
vector (cos θ̄ , sin θ̄ ) and its nor-
mal direction is ∇I/|∇I | =
(− sin θ̄ , cos θ̄ ) as indicated in
the �gure, [149].

which is lifted to a new curve γ (t ) in the 3D cortical space:

(ξ1(t ), ξ2(t )) → (x1(t ),x2(t ), θ̄ (t )), (4.7)

where indeed x1 = ξ1, x2 = ξ2. We call an admissible curve a
curve in R2 × S1 if it is the lifting of a contour (identi�ed by a
planar curve). In �gure 4.9 we can see an illustration of the lift-

Figure 4.9: A contour repre-
sented by the curve γ2D (t ) is
lifted into the rototranslation
group obtaining the red curve
γ (t ). The tangent space of the ro-
totranslation group is spanned
by the vectors X1 and X2. Cour-
tesy of Sanguinetti, [149].

ing process. By the parametrization we have chosen before for
the curve γ2D (the blue curve in �gure 4.9) we can immediately
express the value of θ̄ :

θ̄ = −arctan

(
x′2
x′1

)
.

The liftingγ (red curve in �gure 4.9) of the curveγ2D previously
seen in ((4.7)) can be expressed by (x1,x2, θ̄ ) where

γ ′ = (x′1,x′2, θ̄ ′) = (cosθ , sinθ , θ̄ ′) = X1 + θ̄
′X2
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γ ′(t ) has a non-vanishing component in the direction X1 and a
second component θ̄ ′ in the direction of X2. Admissible curves
are integral curves of the two vector �elds in a 3D (cortical)
space, and cannot have components in the orthogonal direction
given by the gradient ∇I/|∇I | = X3. This property clari�es
the geometry of the cortical space starting from a biological
and neurophysiological evidence and allows to perform a �rst
choice of a metric.

4.3.1 The metric of the cortical space

Since the only lifted curves in the cortical space are integral
curves of the vector �elds X1 and X2, Citti and Sarti [28] de-
�ned a sub-Riemannian metric on the space, imposing that the
horizontal tangent space is spanned by X1 and X2. Imposing
that they are orthonormal, we obtain a metricH on HM , with
inverse H −1, which expressed in the frame X1, X2 are simply
the identity:

H =

(
1 0
0 1

)
, H −1 =

(
1 0
0 1

)
(4.8)

If we consider a = a1X1 + a2X2 ∈ HM , its horizontal norm is:

‖a‖ =
√
(a1)2 + (a2)2. (4.9)

The inverse metricH −1 can be formally extended to the whole
space, to a new degenerate metric G−1 requiring that X3 is or-
thogonal to the other directions and thatG−1 vanishes alongX3.
This extended metrix can be expressed in the standard frame
∂x1 , ∂x1 , ∂θ , as the metric:

дij (x1,x2,θ ) =
*..
,

cos2 θ sinθ cosθ 0
sinθ cosθ sin2 θ 0

0 0 1

+//
-

, (4.10)

with i , j = 1, 2, 3. Let us underline that X1,X2 and X3 are left
invariant with respect to the group law of rotations and trans-
lations, so that they are the generators of the associated Lie
algebra. The �rst classical properties of the distance in these
spaces have been established by Nagel, Stein and Wainger (see
[128]), and Gromov (see [82]). The Hörmander condition is sat-
is�ed, see [87]:

De�nition 4.3.1. We say that the Hörmander condition is sat-
is�ed if X1,X2 and their commutators of any order span the Eu-
clidean tangent space at every given point.
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4.4 Carnot Caratheodory distances

In the sub- Riemannian setting, the length of such curves is
de�ned as follows:

l (γ ) :=

T∫
0

√
Hγ (t ) (γ̇ (t ), γ̇ (t )) dt (4.11)

If the Hörmander condition holds, if we arbitrarily �x two points
η0 and η1, there is always an horizontal curve connecting them.
Hence it is possible to de�ne a sub- Riemannian distance be-
tween the two given points, as follows: see [128]:

d (η0,η1) = inf
γ ∈ Lip([0,T ], SE (2)),

γ̇ ∈ ∆ |γ , γ (0) = η0,γ (T ) = η1

l (γ ). (4.12)
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5 Sub-Riemannian mean curvature flow for image

processing

In this chapter, we start from the model of perceptual com-
pletion introduced by Citti and Sarti in [28] expressed via a
di�usion driven motion by curvature. The main contribution

Figure 5.1: An example of
amodal completion. The inter-
nal surface arises even if the con-
tours are not actually present in
the image, due to the presence
of black inducers. We will see in
this chapter how this perceptual
phenomenon is model through
mean curvature �ow.

of the chapter is the proof of existence of vanishing viscosity
solutions for the mean curvature �ow in the rototranslation
group SE (2). Then we apply the algorithm to real images to
perform impainting, which means to recover missing or dam-
aged parts of an initial stimulus [9]. Our second contribution

Figure 5.2: Left: macula cieca,
an example of corrupted sur-
face. Center: an occluded image
(from U. Boscain et al. ([14])).
Right: a well known example of
damaged image, from Bertalmio
et al [9].

is to extend the algorithm to perform boundary enhancement,
which means make the structures of images more visible, while
reducing the noise [131, 33, 176, 177]. Other enhancement algo-
rithms in an analogous geometric setting has been developed
by Duits and Franken, see �gure 5.3, and comparison of our
results with the ones detected via the previous algorithms are
performed. This chapter uses material from the following pub-
lication by the author [30].
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Figure 5.3: Left: the original
image, from Duits and Franken
([54, Fig. 7]); right: the en-
hanced image using CED-OS,
see [54].

5.1 Notation and li�ing of an image in SE (2)

5.1.1 Subriemannian di�erential calculus

Figure 5.4: Top: the horizon-
tal tangent planes HM of SE (2),
span of the vector �elds X1 and
X2, adapted from [153]. Cen-
ter: lifting of an image to a reg-
ular surface, inside the contact
structure. Bottom: lifted sur-
face: in red we marked the con-
tact planes ofHM tangent to the
level lines of the surface.

Scope of this section is to introduce di�erential calculus in the
sub- Riemannian structure de�ned in section 4. Precisely, we
will denote X1 and X2 the vector �elds de�ned in (4.5) and (4.6)
and we will say that a function u : R2 × S1 → R is of class C1

in the sub-Riemannian sense (we will denote it as u ∈ C1
SR) if

there exists X1u and X2u and they are continuous. In this case
we will call horizontal gradient of u, ∇u, applying de�nition
3.3.16:

∇u = (X1u)X1 + (X2u)X2.

Thanks to de�nition 4.9, the norm of the horizontal gradient is:

‖∇u‖ =
√
(X1u)2 + (X2u)2. (5.1)

Let us recall here that the horizontal gradient is the projection
of the standard gradient of u on the horizontal plane HM .

5.1.2 Li�ing of a image to a regular surface

In section 4.3 we introduced the lifting of a curve in the 3D
cortical space. We will now describe the lifting of the whole
image at a time. Since each level line of an initial image I is
lifted to a curve in the 3D cortical space, the whole image is
lifted to a graph, see �gure 5.4 (center):

(ξ1, ξ2) → (x1(ξ1, ξ2),x2(ξ1, ξ2), θ̄ (ξ1, ξ2)).

Using the fact that x1(ξ1, ξ2) = ξ1 and x2(ξ1, ξ2) = ξ2, we can
interpret this surface as the zero level set of the function u:

u (x1,x2,θ ) = θ − θ̄ (x1,x2),

and it can be identi�ed as a regular surface in the sub- Rieman-
nian structure. The notion of regular surface S was �rst intro-
duced by Franchi, Serapioni and Serracassano in [70]:

S = {(x1,x2,θ ) : u (x1,x2,θ ) = 0 and ∇u (x1,x2,θ ) , 0}. (5.2)
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Figure 5.5: Recalling section 4.3:
a contour represented by the
curve γ2D (t ) is lifted into the
rototranslation group obtaining
the red curve γ (t ). The tan-
gent space of the rototransla-
tion group is spanned by the
vectors X1 and X2. From San-
guinetti, [151].

Figure 5.6: A lifted surface, foli-
ated in Goedesics in the sense of
[136, 27, 23, 74]. Tangent vector
in the bundle TSE (2) is denoted
as tε , normal vector is nε . The
projection of nε on the contact
plane generated by X1 and X2 is
n0.

The horizontal normal of S is de�ned as

ν =
∇u

|∇u |
.

Note that in a smooth surface there can be points where the Rie-
mannian gradient is not 0, but its projection on the HM plane
vanishes:

∇u = 0.
Points which have this property are called characteristics and
the normal is not de�ned at them. However these points are not
present in lifted surfaces. At every point of the surface there is
a unique unitary tangent vector, which is horizontal:

T =
(X2u,−X1u)

|∇u |
. (5.3)

The integral curves of this vector �eld de�ne a foliation of the
surface in horizontal curves (also called Legendrian foliation -
see [136], [27], [23] and [74] for the properties of these curves).

5.1.3 Di�usion and concentration algorithm

We have seen in subsection 5.1.2 how to lift an image I to a
surface S . After that we also lift the level lines of the image I
to the function v de�ned on the surface as

v (x1(ξ1, ξ2),x2(ξ1, ξ2), θ̄ (ξ1, ξ2)) = I (ξ1, ξ2)

de�ned on the surface. The surface S and the functionv de�ned
on S will be processed through di�erential operators de�ned
on SE (2), which model the propagation of information in the
cortex. More precisely two mechanisms operate on the lifted
surface S :

(a) a sub-Riemmanian di�usion along the vector �elds X1 and
X2 which model the propagation of information through the
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cortical lateral connectivity. This operator can be expressed
as

∂t −X11 −X22

where X11 and X22 are the second derivative in the direction
X1 and X2 respectively. The operator is formally degener-
ated, in the sense that its second fundamental form has 0
determinant at every point. It has been deeply studied start-
ing from the classical works of Hörmander in [88], Rothshild
and Stein in [146] and Jerison [97] and it is known that it is
hypoelliptic. After that a large literature has been produced
on these type of operators, and we refer to [22] for a recent
presentation of the state of the art.

(b) a concentration on the surface of maxima to model the non-
maximal suppression mechanism and the orientation tuning.

In the Euclidean setting Merrimann, Bence and Osher proved
in [119] the convergence of a similar two step algorithm to the
motion by curvature. In Citti and Sarti [28] the authors studied Curvature is in general related to

the choice of the connection of the
space. However since we deal with
surfaces immersed (canonical) in
SE (2), the de�nition we are going
to introduce depends on the met-
ric induced by the ambient metric
of SE (2). Then we can provide the
de�nition of curvature with metric
objects (the divergence). Intuitively
it measures how much a manifold,
locally and once de�ned the metric,
di�ers from being �at.

the motion when (a) and (b) are applied iteratively and proved
that at each step the surface performs an increment in the nor-
mal direction with speed equal to the sub-Riemannian mean
curvature.

5.2 Sub-Riemannian mean curvature flow for image pro-
cessing

5.2.1 Mean curvature flow

The notion of curvature of a C2 surface at non characteristic
points is already well understood, see ([38, 84, 26, 142, 22]). It
can be de�ned either as �rst variation of the area functional,
either as limit of the mean curvature of the Riemannian ap-
proximation (see section 5.3) or as horizontal divergence of the
horizontal normal:

K = div(ν ) = div
(
∇u

|∇u |

)
.

where the horizontal divergence of a horizontal vector �eld
w = w1X1 +w2X2 is de�ned as follows:

div(w ) = X1(w1) +X2(w2).

If each point of the surface evolves in the direction of the nor-
mal vector with speed equal to the mean curvature, we say
that the surface is evolving by mean curvature. From the pre-
viously expression of the curvature we formally get the follow-
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ing equation for the �ow, which we can call horizontal (or sub-
Riemannian) mean curvature �ow:




ut =
2∑

i ,j=1

(
δi ,j −

XiuX ju

|∇u |2

)
XiX ju in Ω ⊂ R2 × S1

u (·, 0) = u0

(5.4)

where δij is the Kronecker function. An existence result for
this equation was not known, and we will provide in the next
section an existence theorem. In order to simplify notations we
will denote: The Laplace Beltrami is a second

order operator on the horizontal
tangent space to the surface (i.e
the subset of the horizontal bundle
which is tangent to the manifold).
In the present setting we consider
the surface

S = {(x1,x2,θ ) : u (x1,x2,θ ) = 0},

which has a unique tangent vector
�eld (see 5.3):

T =
X2uX1 −X1uX2

|∇u |
.

If v : S → R we will call
Laplace Beltrami operator the sec-
ond derivative in the direction of
the vector T :

∆LBv = T
2v .

A0
ij (∇u) = δi ,j −

XiuX ju

|∇u |2
, i , j = 1, 2. (5.5)

5.2.2 Laplace-Beltrami flow

Citti and Sarti also conjectured that as a result of the previous
mechanisms the functionv , which contains the gray-levels val-
ues, evolves through the �ow described by the Laplace Beltrami
operator ∆LB : {

vt = ∆LBv
v (·, 0) = v0. (5.6)

This operator expresses a di�usion of the variablev on the sur-
face level set of the variable u. The de�nition of Laplace Bel-
trami operator is recalled in the margin note. Let us note that
the described equations become degenerate and the solutions
are regular only along the directions of the foliation de�ned in
(5.3).
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5.2.3 Enhancement and Inpainting in Sub-Riemannian geom-
etry

5.2.4 Inpainting of missing parts of the image

In the previous sections and chapters we described the main
instruments necessary for describing the completion model of
[28]. Let us recall here the proposed algorithm. As usual while
restoring damaged portions of an image we assume that the
corrupted set ω is known a priori.

Figure 5.7: Top: the initial stim-
ulus considered. It presents a
damaged portion, the black hole
in the center of the image. Cen-
ter, left: the image is lifted to
the SE (2) cortical space. Cen-
ter, right: the lifted image is dif-
fused and concentrated through
the mechanism in 5.1.3, item (a),
(b). This models the information
propagation through the cortical
lateral connectivity. This leads
to the motion by mean curva-
ture of the surface S . Bottom:
the completed image is repro-
jected and the color is completed
through the Laplace Beltrami op-
erator, 5.2.2.

1 An image I is lifted to a surface S = {(x1,x2, θ̄ (x1,x2)} in the
Lie group SE (2) of rotations and translations, and the gray
levels of I to a function v de�ned on S . In the lifting the
corrupted part of the image becomes Ω = ω × S1, where no
surface is de�ned.

2 The surface S and v are processed via the algorithm of dif-
fusion and concentration in the corrupted region Ω, where
we impose Dirichlet boundary conditions. This leads to the
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motion by mean curvature of the surface S and to a Laplace
Beltrami �ow for v .

3 The �nal result is obtained by re-projecting onto the plane
of the image the values of the intensity v .

The algorithm has been implemented in [150] via a di�usion
and concentration method, while it has been implemented via
the curvature equation in [28]. The process is shown and de-
scribed in �gure 5.7.

5.2.5 Enhancement of boundaries

One of the scope of [30] was to extend the previous completion
algorithm to solve the problem of contours enhancement. The
aim of this technique is to provide a regularization in the direc-
tion of the boundaries, making them clearer and brighter and
eliminating noise. We refer to the paper of Duits and Franken
[54],[71] for some results of image enhancement in this space.
Precisely they lift the image I in the 3D features space, using
an invertible map de�ned through Fourier analysis. The lifted
version of the image I is processed in the 3D space and then re-
projected on the 2D plane to recover an enhanced version of the
image I . In particular they also provide results of enhancement
in presence of bifurcation or crossing. In our contribution [30],
we face the same problem adapting the algorithm recalled in
the previous section.

1 First we lift the level lines of an image I to a surface S =
{(x1,x2, θ̄ (x1,x2))} and we lift the gray levels of I to a func-
tion v always de�ned on S .

2 Then we process the surface S via a mean curvature �ow and
v via a Laplace-Beltrami �ow. In order to perform enhance-
ment we propose here to let equations (5.4) and (5.6) evolve
in the full domain R2 × S1. Let us remark that lifting the
image in the 3D group allows to solve the problem of cross-
ing elongated structures. Indeed if two lines cross in the 2D
space and have di�erent orientations, they are lifted to the
3D space to two di�erent planes, allowing completion and
enhancement. The directional di�usion will give place to a
regularization only in the direction of contours.

3 Finally we project into the plane of the image the values of
the gray intensity v .
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5.3 Existence of vanishing viscosity solutions

In this section we provide the main result of this chapter which
is the proof of existence of solutions for the mean curvature
�ow in SE (2). We explicitly note that we do not need to de-
velop new results for the Laplace-Beltrami operator, which is
linear. As we can immediately observe the PDE becomes de-
generate in the singularities of the horizontal gradient of the
solution u (. , t ). The notions of viscosity and vanishing viscos-
ity solutions have been introduced in order to overcome this
problem. The method of generalized (viscosity) solutions inde-
pendently developed by Chen, by Giga and Goto [25], by Evans
and Spruck [59], by Crandall, Ishii and Lions [37] is now ap-
plied to large classes of degenerate equations [96]. Recently it
has been extended also in Carnot groups, see [174] [21], and
in the Heisenberg group, [63]. Finally let us recall that Dirr,
Dragoni and Von Renesse in [50] have recently studied a prob-
abilistic approach to the mean curvature �ow in the general
setting of Hörmander vector �elds. Here we follow the pre-
sentation of Evans and Spruck [59], who used the notion of
vanishing viscosity to establish existence of solution. Since the
curvature equation is degenerate, the idea is to approximate
the given equation with an uniformly elliptic one, establish re-
sults for the approximating problem and prove that in the limit
this leads an existence result for the given equation. In the last
section we introduce other notions of viscosity solutions and
we clarify the relation between the di�erent de�nitions of so-
lutions we have introduced.

5.3.1 The notion of vanishing viscosity solution

A vanishing viscosity solution is the limit of the solutions of ap-
proximating regular problems. Let us �rst explicitly note that
the coe�cientsA0

ij are degenerate: when the gradient vanishes,
they are not de�ned. Hence we will apply the regularization
procedure proposed by Evans and Spruck in [59] to face sin-
gularities, which consists in replacing the coe�cients with the
following ones:

Aτij (p) =

(
δij −

pipj

|p |2 + τ

)
.

This approximation has a clear geometric interpretation, already
provided by Evans and Spruck. In equation (5.4) each level set
of u evolves by mean curvature. What we obtain adding a new
parameter is the evolution of the graph of u

Γτt = {(ξ , ξn+1) ∈ Rn+1 |ξn+1 = u (ξ , t )}
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and the introduction in the space of a metric depending on τ .
In this approximation equation (5.4) reads as:




ut =
2∑

i ,j=1
Aτij (∇0u)X

0
i X

0
j u in Ω ⊂ R2 × S1

u (·, 0) = u0.
(5.7)

We will now introduce a Riemannian approximation of the mean
curvature �ow in the graph approximation we made before. We
extendG (= G0 to underline the passage to the limit) to a metric
Gϵ de�ned on the whole tangent space of SE (2) which makes
the vectors X 0

1 , X 0
2 , ϵX3 orthonormal. Let us note that Gϵ is

the Riemannian completion of the horizontal metric. We will
always denote

X ϵ
1 = X 0

1 , X ϵ
2 = X 0

2 , X ϵ
3 = ϵX3. (5.8)

This notation justi�es the choice of callingX 0
i the sub- Rieman-

nian vector �elds: we want to underline they can be obtained
for ϵ = 0. Recalling section 4.3.1, Gϵ is the Riemannian ap-
proximation of G. Let us recall that the Riemannian gradient
associated to the metricGϵ , in the sense of de�nition 3.3.16, will
be represented as:

∇ϵu = X ϵ
1uX

ϵ
1 +X

ϵ
2uX

ϵ
2 +X

ϵ
3uX

ϵ
3

and, using the fact that X ϵ
i are orthonormal, we get:

|∇ϵu | =
√
(X ϵ

1u)
2 + (X ϵ

2u)
2 + (X ϵ

3u)
2. (5.9)

In the Riemannian setting equation (5.7) reads as:




ut =
3∑

i ,j=1
Aϵ ,τ
ij (∇ϵu)X

ϵ
i X

ϵ
j u in Ω ⊂ R2 × S1

u (·, 0) = u0

(5.10)

where
Aϵ ,τ
ij (∇ϵu) =

(
δi ,j −

X ϵ
i uX

ϵ
j u

|∇ϵu |2 + τ

)
.

In order to prove the existence of a solution we apply another
regularization, always introduced by Evans and Spruck. It con-
sists in adding a Laplacian, ensuring that the matrix of the co-
e�cients has strictly positive smallest eigenvalue. Then the
approximated coe�cients will be:

Aϵ ,τ ,σ
ij (p) = Aϵ ,τ

ij (p) + σδij

and the associated equation becomes:




ut =
3∑

i ,j=1
Aϵ ,τ ,σ
ij (∇ϵu)X

ϵ
i X

ϵ
j u in Ω ⊂ R2 × S1

u (·, 0) = u0.
(5.11)
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This condition makes the coe�cients satisfy the coercivity con-
dition and allows to apply the standard theory of uniformly
parabolic equations. We are now in condition to give the de�-
nition of vanishing viscosity solution:

De�nition 5.3.1. A function u is a vanishing viscosity solu-
tion of (5.4) if it is limit in the space of locally Lipschitz contin-
uous functions of a sequence of solutions uϵk ,τk ,σk of equation
(5.11).

5.3.2 Solution of the approximating equations

The aim of this sub-section is to study the approximating equa-
tion (5.11). Since it is uniformly parabolic we will recognize
that standard PDE results provide existence of the solution. We
are here interested in establishing estimates independent of all
parameters for the solution and its gradient.

Theorem 5.3.2. Assume that u0 ∈ C∞(R2 × S1) and that it is
constant on the exterior of a cylinder, i.e. there exists M0 > 0
such that:

u0 is constant on R2× S1∩ {(x1,x2,θ ) such thatx2
1 +x

2
2 ≥ M2

0 }.
(5.12)

Then there exists a unique solution uϵ ,τ ,σ ∈ C2,α (R2 × S1 ×
[0,∞)) of the initial value problem (5.11). Moreover, for all
t > 0 one has:

‖uϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ ‖u0‖L∞ (R2×S1) (5.13)

‖∂x1u
ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ (5.14)

≤ ‖∂x1u
ϵ ,τ ,σ
0 ‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ
0 ‖L∞ (R2×S1)

|∂θu
ϵ ,τ ,σ (x ,θ , t ) | ≤ (1 + 2M0 + 2|x |)‖∇Eu0‖L∞ (R2×S1) (5.15)

for every x ∈ R2, and ∇E (·) denotes the Euclidean gradient.

This result generalizes to SE (2) the previous results of [59]
and [21]. The �rst step of the proof of Theorem 5.3.2 is the
existence of the function u and its L∞ bound:

Theorem 5.3.3. Under the assumption of Theorem 5.3.2 on
the initial datum, the initial value problem (5.11) has an unique
solution uϵ ,τ ,σ ∈ C2,α (R2 × S1 × [0,∞)) such that

‖uϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ ‖u0‖L∞ (R2×S1) (5.16)
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Proof. For σ > 0, consider the problem associated to equation
(5.11) on a cylinder B (0, r ) × [0,T ], with initial data

uϵ ,τ ,σ
r (·, 0) = u0, (5.17)

and constant value on the lateral boundary of the cylinder. Note
that coe�cients Aϵ ,τσ

ij satisfy the uniform parabolic condition:

σ |p |2 ≤ Aϵ ,τ ,σ
ij (p̃)pipj (5.18)

for each p̃,p ∈ R3. Hence the theory of parabolic equations
on bounded cylinders ensures that for every �xed value of the
parameters there exists a unique smooth solution uϵ ,τ ,σ

r (see for
example Ladyzenskaja, Solonnikov, Ural’tseva [133]). By the
maximum principle we have

‖uϵ ,τ ,σ
r (·, t )‖L∞ (R2×S1) ≤ ‖u0‖L∞ (R2×S1) . (5.19)

Letting r tend to ∞, we obtain a solution uϵ ,τ ,σ de�ned on the
whole Rn × [0,T ] such that

‖uϵ ,τ ,σ ‖∞ ≤ ‖u0‖L∞ (R2×S1) .

�

The second step of the proof is the estimate of the gradient.
In order to obtain this estimate we di�erentiate equation (5.11),
obtaining the equation satis�ed by the gradient, and we apply
the maximum principle. The main di�culty to face is the fact
that the vector �elds X ϵ

i do not commute, hence it is not easy
to �nd a nice equation satis�ed by the gradient. We will take
the derivatives along the direction of a family of vector �elds

Y1 = ∂x1

Y2 = ∂θ − x2∂x1 + x1∂x2

Y3 = ∂x2 .

which are right invariant with respect to the group law. These
vector �elds are widely used: Mumford in [125] used them for
a di�erent purpose. In particular it is well known that these
vector �elds commute with the left invariant ones X ϵ

i .
Let us start directly verifying that the vector �elds (X ϵ

i ) and
(Yi ) commute.

Lemma 5.3.4. The vector �elds {X ϵ
i }i=1,2,3 de�ned in (5.8) com-

mute with {Yi }i=1,2,3, just de�ned.

Proof. We calculate their Lie bracket:

[X 0
1 ,Y1] = (cosθ∂x1 + sinθ∂x2 )∂x1 − ∂x1 (cosθ∂x1 + sinθ∂x2 )

= cosθ∂x1x1 + sinθ∂x2x1 − cosθ∂x1x1 − sinθ∂x1x2

= 0.
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Since the coe�cients of Y2 do not depend on θ it is clear that

[X 0
2 ,Y2] = 0.

Finally

[X3,Y3] = (sinθ∂x1 − cosθ∂x2 )∂x2 − ∂x2 (sinθ∂x1 − cosθ∂x2 )

= sinθ∂x1x2 − cosθ∂x2x2 − sinθ∂x1x2 + cosθ∂x2x2

= 0

The other combinations can be analogously computed. �

We can now obtain the estimate of the gradient:

Theorem 5.3.5. Under the assumption of Theorem 5.3.2 and
5.3.3, the solution of the initial value problem (5.11) satis�es

‖∂x1u
ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ (5.20)

≤ ‖∂x1u
ϵ ,τ ,σ
0 ‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ
0 ‖L∞ (R2×S1)

|∂θu
ϵ ,τ ,σ (x ,θ , t ) | ≤ (1 + 2M0 + 2|x |)‖∇Eu0‖L∞ (R2×S1) (5.21)

for every x ∈ R2 and M0 has been de�ned in 5.3.2.

Proof. From Theorem 5.3.3 we know that there exists a unique
smooth solution uϵ ,τ ,σ of equation (5.11) and we only have to
estimate its gradient. To this end, we can di�erentiate equation
(5.11) along the directions {Yi }i=1,2,3, and using Lemma 5.3.4, we
obtain the following equation forwi = Yiu

ϵ ,τ ,σ , for all i = 1, 2, 3,
and for ω4 = Y2u

ϵ ,τ ,σ − (y2∂x1 − y1∂x2 )u
ϵ ,τ ,σ (for every �xed

value (y1,y2)):

∂

∂t
wi =

3∑
i ,j,k=1

(
Aϵ ,τ ,σ
i ,j (∇ϵu

ϵ ,τ ,σ )X ϵ
i X

ϵ
j wi

+ (∂ξkA
ϵ ,τ ,σ
i ,j ) (∇ϵu

ϵ ,τ ,σ )X ϵ
i X

ϵ
j u

ϵ ,τ ,σX ϵ
kwi

)
.

(5.22)

The parabolic maximum principle ([133]) applied to the previ-
ous equation yields:

‖Yiu
ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ ‖Yiu0‖L∞ (R2×S1) (5.23)

This implies (5.14). Now we have to establish the estimate of
the derivative ∂θ . For every �xed value of y = (y1,y2) we have,
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using in the last inequality the fact that |x1 | ≤ M0, |x2 | ≤ M0:

|∂θu
ϵ ,τ ,σ

(y1,y2,θ ) | = |(Y2u
ϵ ,τ ,σ
− (y2∂x1 −y1∂x2 )u

ϵ ,τ ,σ
) (y1,y2,θ ) | ≤

≤ |Y2u
ϵ ,τ ,σ

(y1,y2,θ ) | + |y2 | |∂x1u
ϵ ,τ ,σ

(y1,y2,θ ) |+
+ |y1 | |∂x2u

ϵ ,τ ,σ
(y1,y2,θ ) | ≤

≤ max
(x1,x2,θ )

|Y2u0(x1,x2,θ ) | + |y2 | max
(x1,x2,θ )

|∂x1u0(x1,x2,θ ) |+

+ |y1 | max
(x1,x2,θ )

|∂x2u0(x1,x2,θ ) |

≤ max
(x1,x2,θ )

|∂θu0(x1,x2,θ ) | + max
(x1,x2,θ )

|x2 | |∂x1u0(x1,x2,θ ) |

+ max
(x1,x2,θ )

|x1 | |∂x2u0(x1,x2,θ ) | + +|y2 | max
(x1,x2,θ )

|∂x1u0(x1,x2,θ ) |

+ |y1 | max
(x1,x2,θ )

|∂x2u0(x1,x2,θ ) | ≤

≤ (1 + 2M0 + 2|y |)‖∇Eu0‖L∞ (R2×S1)

Then |∂θu
ϵ ,τ ,σ
| is locally Lipshitz, and it grows with y �

Let us conclude this section remarking that the proof of The-
orem 5.3.2 is a direct consequence of the two Theorems 5.3.3
and 5.3.5.

5.3.3 Existence for the sub-Riemannian mean curvature equa-
tion

In order to extend to our setting Evans and Spruck’s argument
in the proof of [59], as well as the proof of [21], we need to
let the three approximating parameters σ → 0, τ → 0 and
ϵ → 0 go to 0. Since the estimates we have established are
uniform in all parameters, we immediately have the existence
of a vanishing viscosity solution:

Theorem 5.3.6. Assume that u0 ∈ C (R2 × S1) is Lipschitz
continuous and satis�es (5.12). Then there exists a vanishing
viscosity solutionu ∈ C1,0

loc
of (5.4), which satis�es the following

properties:

‖u (·, t )‖L∞ (R2×S1) ≤ ‖u0‖L∞ (R2×S1) (5.24)

‖∂x1u
ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ (·, t )‖L∞ (R2×S1) ≤ (5.25)

≤ ‖∂x1u
ϵ ,τ ,σ
0 ‖L∞ (R2×S1) + ‖∂x2u

ϵ ,τ ,σ
0 ‖L∞ (R2×S1)

|∂θu
ϵ ,τ ,σ (x ,θ , t ) | ≤ (1 + 2M0 + 2|x |)‖∇Eu0‖L∞ (R2×S1) (5.26)
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Proof. Since u0 is constant at in�nity, we immediately deduce
from Weierstrass theorem that the Euclidean gradient ∇Eu0 is
bounded. Employing estimates (5.13), (5.14), (5.15) and Ascoli
Arzelà Theorem on each compact subset we can extract two se-
quences {σk }, {ϵk }, {τk } → 0 of positive numbers such that ϵkτk →
0 and such that the corresponding solutions {uk = uϵk ,τk ,σk }k∈N

are convergent in the space of locally Lipshitz functions. Then
by de�nition the limit is a continuous vanishing viscosity solu-
tion. �

Here we prove that solutions are uniformly Lipschitz conti-
nous. Even in the Euclidean setting this is the best regularity
results for solutions of equations expressed as level sets, due to
the degeneracy of the equation. Only in the special case of mo-
tion by curvature of graphs, higher regularity can be obtained.
(see for example Capogna, Citti, Manfredini [24]).

5.3.4 Other notions of viscosity solution

Viscosity solutions in the sense of Jet spaces

The cortical model previously discussed associates to each pla-
nar curve γ2D its orientation. This procedure can be considered
as a lifting of the initial image I (x1,x2) to a new function u de-
�ned in the space R2 × S1 of positions and orientations. We
refer to Petitot and Tondut, who �rst described the analogous
cortical process as a lifting in a jet space [139]. Another lift-
ing process can be obtained if we associate to each function
u : R2× S1 → R its derivatives. In this way a functionu is lifted
into a Jet-space which contains the formal analogous of its sub-
Riemannian gradient ∇0u and the formal analogous of the ele-
ments of its horizontal Hessian matrixX 0

i X
0
j (please refer to the

Appendix for the de�nition of the horizontal Hessian). The def-
inition of viscosity solution in Jet-spaces has been introduced
in [37], and is now widely used in the sub-Riemannian setting
(see for example [11]). It is based on the Taylor expansion, ex-
pressed in terms of these di�erential objects. The analogous
of the increment in the direction of the gradient p is expressed
through the notion of exponential map (see the appendix for
its precise de�nition), then the increment from a point ξ in the
direction ∑2

i=1 ηiX
0
i is expressed as

u
(

exp(
2∑

i=1
ηiX

0
i ) (ξ ), t + s

)
−u (ξ , t ).

At non regular points, such as kinks, there is not either a unique
vector p which identi�es the horizontal gradient and a unique
matrix rij which identi�es the horizontal Hessian. Hence we
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need to give a more general notion. If pi , i = 1, 2 denotes an
horizontal vector, (rij ) a 2 × 2 matrix and q a real number, the
triplet (p, r ,q) is an element of the superjet J + for u if it satis-
�es the following formal analogous of the Taylor development:

u
(
exp (

2∑
i=1

ηiX
0
i ) (ξ ), t + s

)
−u (ξ , t )

≤

2∑
i=1

piηi +
1
2

2∑
i ,j=1

rijηiηj + qs + o( |η |
2 + s2).

(5.27)

Let us note that if the super jet exists it can be used in place of
the derivatives; furthermore a functionu is a Jet-space viscosity
solution if the di�erential equation in which the derivatives are
replaced with the elements of the superjet is satis�ed. More
precisely:

De�nition 5.3.7. A functionu ∈ C (R2× S1× [0,∞))∩L∞(R2×
S1 × [0,∞)) is a jet space-viscosity subsolution of equation (5.4)
if for every (p, r ,q) in the super-Jet we have:

q ≤

{ ∑2
i ,j=1 A

0
ij (p)rij if |p | , 0∑2

i ,j=1 A
0
ij (p̃)rij for some |p̃ | ≤ 1, if |p | = 0. (5.28)

An analogous de�nition is provided for a viscosity superso-
lution. Then a viscosity solution is a function which is both a
subsolution and a supersolution.

Viscosity solutions via test functions

The de�nition of viscosity solution in Jet-space of a second or-
der equation can be identi�ed as the approximation of the so-
lution u via a second order polynomial, whose coe�cients are
exactly the elements (p, r ,q) of the Jet space. The de�nition of
viscosity solution via test functions is similar, but it estimates
the given solution using smooth functions instead of polynomi-
als alone. This de�nition imposes the behavior of the function
u at points where u − ϕ attains a maximum. At such points u
and ϕ will have the same �rst derivatives, so that ∇0ϕ results
to be an exact evaluation of the approximation of ∇0u. Looking
at second derivatives, it follows that for every i we have:

X 0
i X

0
i (u −ϕ) ≤ 0,

so that the curvature of ϕ is an upper bound for the curvature
of u. Due to this observations we can give the following de�ni-
tion:
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De�nition 5.3.8. A function u ∈ C (R2 × S1 × [0,∞)) is a vis-
cosity subsolution of (5.4) in R2 × S1 × [0,∞) if for any (ξ , t ) in
R2 × S1 × [0,∞) and any function ϕ ∈ C (R2 × S1 × [0,∞)) such
that u −ϕ has a local maximum at (ξ , t ) it satis�es:

∂tϕ ≤




2∑
i ,j=1

A0
ij (∇0ϕ)X

0
i X

0
j ϕ if |∇0ϕ | , 0

2∑
i ,j=1

A0
ij (p̃)X

0
i X

0
j ϕ, for some p̃ ∈ R2, |p̃ | , 1, if |∇0ϕ | = 0

(5.29)
A functionu ∈ C (R2 × S1 × [0,∞)) is a viscosity supersolution
of (5.4) if:

∂tϕ ≥




2∑
i ,j=1

A0
ij (∇0ϕ)X

0
i X

0
j ϕ if |∇0ϕ | , 0

2∑
i ,j=1

A0
ij (p̃)X

0
i X

0
j ϕ, for some p̃ ∈ R2, |p̃ | , 1, if |∇0ϕ | = 0

(5.30)

De�nition 5.3.9. A viscosity solution of (5.4) is a function u
which is both a viscosity subsolution and a viscosity superso-
lution.

Relation between the di�erent notions of solutions

Theorem 5.3.10. The two de�nitions of jet spaces viscosity
solution and viscosity solution are equivalent.

Proof. We will recall here that a subelliptic equation in SE (2)
group can be locally reduced to an equation in the Heisenberg
group, via a simple change of variables, so that we will be able
to apply the the analogous result proved in the Heisenberg set-
ting in [11]. Indeed, calling b = −x1 sinθ + x2 cosθ , we can
consider the vector �elds Z1,Z2 and Z3 introduced in [29]:

Z1 = X1, Z2 = X2 −b X1, Z3 = [Z1,Z2] = X3;

It is easy to see that all the other commutators vanishes, so that
the Lie algebra generated by {Zi } is an Heisenberg algebra. If
we call

B =

(
1 0
b 1

)
∇Heis = (Z1,Z2), (5.31)

where ∇Heis denotes the horizontal gradient in the Heisenberg
group. Then we have

Xi = BihZh



5. Sub-Riemannian mean curvature �ow for image processing. 89

We can express equation (5.4) in terms of these vector �elds:

ut =
2∑

i ,j,h,k=1
A0
ij (B ∇Heis u) Bih Zh (Bik Zk )u = (5.32)

=

2∑
i ,j,h,k=1

A0
ij (B ∇Heis u) Bih Bik Zh Zk u

+

2∑
i ,j,h,k=1

A0
ij (B ∇Heis u) Bih Zh Bik Zku =

Now we call

Chk =

2∑
i ,j=1

A0
ij (B ∇Heis u) Bih Bik

ck =
2∑

i ,j,h=1
A0
ij (B ∇Heis u) Bih Zh Bik

As a result equation (5.4) becomes:

ut =
2∑

h,k=1
ChkZhZku +

2∑
k=1

ckZku.

The matrix Chk is positive de�ned by construction, so that we
can apply to this equation the analogous result proved in the
Heisenberg setting in [11], which ensures that the two de�ni-
tions of jet spaces viscosity solution and viscosity solution are
equivalent. �

We will now prove that a vanishing viscosity solution is in-
deed a viscosity solution:

Theorem 5.3.11. Assume that u0 ∈ C (R2 × S1) is continuous
and satis�es (5.12). Then the vanishing viscosity solution de-
tected in Theorem 5.3.6 is a viscosity solution u ∈ C1,0 of (5.4).

Proof. In order to prove that u is a viscosity solution we con-
sider a function ϕ ∈ C∞(R2 × S1 × [0,∞)) and we suppose that
u −ϕ has a strict local maximum at a point (ξ0, t0) ∈ R2 × S1 ×
[0,∞). Since u is a Lipschitz continuous vanishing viscosity
solution, it can be uniformly approximated by solutions (uk )
of the approximating Riemannian problem (see also Theorem
5.3.11). As uk → u uniformly near (ξ0, t0), uk − ϕ has a local
maximum at a point (ξk , tk ), with

(ξk , tk ) → (ξ0, t0) as k → ∞ (5.33)

Since uk and ϕ are smooth, we have

∇Eu
k = ∇Eϕ , ∂tuk = ∂tϕ and D2

E (u
k −ϕ) ≤ 0 at (ξk , tk )
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where D2
E is the Euclidean Hessian. Thus

∂tϕ −
(
δij −

X ϵk
i ϕX

ϵk
j ϕ

|∇ϵkϕ |
2 + τ 2

k

)
X ϵk
i X ϵk

j ϕ ≤ 0 at (ξk , tk ) (5.34)

This inequality can be equivalently expressed in terms of the
coe�cients Aϵ ,τ

i ,j as follows. At the point (ξk , tk )

∂tϕ − Aϵk ,τk
i ,j (∇ϵkϕ)X

ϵk
i X ϵk

j ϕ (5.35)
≤ ∂tu

k −Aϵk ,τk
i ,j (∇ϵku

k )X ϵk
i X ϵk

j (uk +ϕ −uk ) ≤ 0(5.36)

If ∇0ϕ (ξ0, t0) , 0, also ∇0ϕ (ξk , tk ) , 0 for su�ciently large k .
Then letting k → ∞ we obtain from (5.36):

∂tϕ ≤
2∑

i ,j=1

(
δij −

X 0
i ϕX

0
j ϕ

|∇0ϕ |
2

)
X 0
i X

0
j ϕ at (ξ0, t0) (5.37)

which implies that u is a viscosity subsolution.
If ∇0ϕ (ξ0, t0) = 0 then we set

ηk =
∇ϵkϕ (ξk , tk )√

|∇ϵkϕ (ξk , tk ) |2 + τ 2
k

There exists η ∈ R3 such that ηk → η. Note that

|(ηk )3 | =
ϵk |X3ϕ (ξk , tk ) |√
|∇ϵkϕ (ξk , tk ) |2 + τ 2

k

≤
(ϵk/τk ) |X3ϕ (ξk , tk ) |√

(ϵk/τk )2
∑2

i=1(X
0
i ϕ (ξk , tk ))2 + 1

Since the expression vanishes as k → ∞ we have η3 = 0. The
PDE (5.36) now reads as:

∂tϕ (ξk , tk ) −
3∑

i ,j=1
(δij − η

k
i η

k
j )X

ϵk
i X ϵk

j ϕ (ξk , tk ) ≤ 0

so as k → ∞ we obtain

∂tϕ (ξ0, t0) ≤
2∑

i ,j=1
(δij − ηiηj )X

0
i X

0
j ϕ (ξ0, t0) (5.38)

concluding the proof for the case in which u − ϕ has a local
strict maximum at point (ξ0, t0). If u − ϕ has a local maximum,
but not necessarily a strict local maximum at (ξ0, t0), we can
repeat the argument above replacing ϕ (x1, t ) with

ϕ̃ (ξ , t ) = ϕ (ξ , t ) + |ξ − ξ0 |
4 + (t − t0)

4

again to obtain (5.37),(5.38). Consequently u is a weak subsolu-
tion. That u is a weak supersolution follows analogously. �
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From the above result we can only say that there is a subse-
quence of uϵ ,τ ,σ which is convergent to the vanishing viscosity
solution u. In order to prove the uniqueness of the vanishing
viscosity solution, we would need the sub-Riemannian analo-
gous of estimate established by Deckelnick and Dzuik in [46]:
Proposition 5.3.12. There exists a constant C > 0 indepen-
dent of σ ,τ and ϵ such that:

‖uϵ ,τ ,σ −u‖∞ ≤ Cτα (5.39)

Letting ϵ and σ go to 0 we also get:

‖uτ −u‖∞ ≤ Cτα (5.40)

where uτ is a solution of (5.7).

5.4 Numerical scheme

In this part we provide the numerical approximation we used
to implement the sub-Riemannian motion by curvature which
performs inpainting and enhancement. Since our scheme is di-
rectly inspired by the classical one of Osher and Sethian (see
[135]), we will explain how to adapt the discretization to the
sub-Riemannian setting. The mean curvature �ow (5.7) can be
explicitly written as:
ut =

=
(X 0

2 (u))
2 ·X 0

11(u) + (X 0
1 (u))

2 ·X 0
22(u) −X

0
1 (u)X

0
2 (u) · 2X 0

12(u)

(X 0
1 (u))

2 + (X 0
2 (u))

2 + τ

+
X 0

1 (u)X
0
2 (u) · [X

0
1 ,X 0

2 ](u)

(X 0
1 (u))

2 + (X 0
2 (u))

2 + τ

(5.41)
This equation presents two distinct terms: the �rst part of the
�ow presents second order derivatives and corresponds to the
curvature term, the second one has only �rst order derivatives
and correspond to the metric connection.
The solution u (x1,x2,θ , t ) is discretized on a regular grid with
points x1,i = i∆x1,x2,j = j∆x2,θk = k∆θ , with time discretiza-
tion ts = s∆t . We will denote D+x1U (i , j,k , s ), D−x1U (i , j,k , s ),
D0x1U (i , j,k , s ) the forward, backward and central di�erence of
a discrete function U at point (i , j,k , s ) with respect to x1, and
use analogous notations for the other variablesx2 anθ . In terms
of these derivatives we will de�ne the analogous di�erences in
the direction of the vector �elds X 0

1 and X 0
2 . Precisely if we

have discretized the direction θ with K points, we will denote
θk = kπ/K for k = 1, · · ·K , and we will call

D+X1U (i , j,k , s ) = cosθkD+x1U (i , j,k , s ) + sinθkD+x2U (i , j,k , s )
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and analogously de�ne backward and central di�erence D−X1 ,
D0X1 for the vector X 0

1 and for the vector X 0
2 . Let us adapt the

scheme proposed by Osher and Sethian in [135] to our case:

(i) the �rst order term X 0
1 (u)X

0
2 (u) · [X

0
1 ,X 0

2 ](u) is discretized
using the upwind scheme for [X 0

1 ,X 0
2 ] = X3. Taking into

account the upwind scheme for the vector �eld X3, the �rst
order term is given by:

W 1(U ) = −
max(− sinθkD0X1UD0X2U , 0)D−x1U

|D0X1U |2 + |D0X1U |2 + τ
(5.42)

+
min(− sinθkD0X1UD0X2U , 0)D+x1U

|D0X1U |2 + |D0X1U |2 + τ

−
max(cosθkD0X1UD0X2U , 0)D−x2U

|D0X1U |2 + |D0X1U |2 + τ

+
min(cosθkD0X1UD0X2U , 0)D+x2U

|D0X1U |2 + |D0X1U |2 + τ
.

(ii) second order derivatives are implemented as usual as

D−X1D+X1 , D−X2D+X2 , D0X1D0X2 ,

which lead to second order central �nite di�erence. We will
implemented as central di�erences the �rst derivatives co-
e�cients of D−X1D+X1 , D−X2D+X2 . The �rst derivative with
respect toX 0

1 , coe�cient of the second mixed derivative, will
be upwinded as before. Generalizing an idea of [189], the de-
nominator will be a mean of central derivatives:

|DintU |
2(i , j,k , s ) + τ = 1

3
∑

k1∈{k−1,k ,k+1}
|D0X1U |2(i , j,k1, s )

+
1
5
∑
i1∈I

|D0X2U |2(i1, j1,k , s ) + τ ,

where I is the family of indices

I = {(i − 1, j ), (i , j ), (i + 1, j ), (i , j − 1), (i , j + 1)}.

The second order discretized operator will be denoted

W 2(U ) (i , j,k , s ).

The di�erence equation associated to the continuous equation
(5.41) will be expressed as:

U (i , j,k , s + 1) = U (i , j,k , s ) + ∆t (W 2U ) (i , j,k , s )
+ ∆t (W 1U ) (i , j,k , s )

with initial condition U (., 0) = U0. We recall that convergence
of di�erence schemes for the mean curvature �ow inspired by
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the scheme of Osher and Sethian has been object of a large
number of papers in the Euclidean setting. The stability of one
of them was proved in [189]. Another monotone scheme was
proposed by Crandall and Lions (see [35]) and its convergence
was proved by Deckelnick in [45] and Deckelnick & Dzuik in
[46]. The ideas at the basis of the stability proof of [189] can
be extended to the present version of the Osher and Sethian
scheme, leading to the following result:

Theorem 5.4.1. The di�erence scheme presented above is sta-
ble in the sense that if ∆t ≤ h2

10 , then

| |U | |∞ ≤ ||U0 | |∞

Proof. If U is a solution of the discrete equation, also V = U −
||U0 | |∞ is a solution of the same equation:

V (i , j,k , s + 1) = V (i , j,k , s ) + ∆t (W 2V ) (i , j,k , s )
+ ∆t (W 1V ) (i , j,k , s ).

Hence V (0) ≤ 0, and we have to prove V ≤ 0, for all time. In
order to study the term W 1(V ) we have to discuss the sign of
a1 = − sinθkD0X1VD0X2V and a2 = cosθkD0X1VD0X2V : we will
assume that they are both positive since the proof is similar in
all the other cases: In this case

(W 1V ) (i , j,k , s ) = −a1 (V (i ,j,k ,s )−V (i−1,j,k ,s ))
|D0X1V |2+|D0X2V |2+τ

+
a2 (V (i ,j,k ,s )−V (i ,j−1,k ,s ))
|D0X1V |2+|D0X2V |2+τ

≤ −
(cos(θk )−sin(θk ))D0X1V (i ,j,k ,s )D0X2V (i ,j,k ,s )

( |D0X1V |2+|D0X2V |2+τ )h2 V (i , j,k , s )

≤ −
V (i ,j,k ,s )

2h2

Analogously, having upwinded the coe�cient of (W 2V ) (i , j,k , s ),
we get a similar behavior. The mixed derivatives term can be
estimated as:

−
2 cosθkD0X1 (D0X2 )VD0X2V

|DintV |2 + τ
V (i , j,k , s ) ≤ −10V (i , j,k , s )

h2 .

In conclusion

V (i , j,k , s + 1) ≤ V (i , j,k , s ) (1 − 10∆t
h2 ) ≤ 0.

The assertion then follows by induction. �

Now we recall that the equation is uniformly parabolic in the
sub-elliptic sense. Arguing as in [46] the estimates of 4th order
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derivatives can be reduced to the estimates of graphs over the
considered group. Hence estimates can be obtained by a recent
result of Capogna, Citti and Manfredini (see [24]). Since for
τ �xed the equation is uniformly parabolic in the sub-elliptic
sense, these estimates allow to prove that:

Theorem 5.4.2. If uτ is the solution of (5.7) with initial condi-
tion u0 andU is the solution of the discrete scheme considered
here and α is �xed, there exist a constant C = C (τ ,h,α ) such
that if ∆t ≤ C (τ ,h), then

|uτ (i∆x1, j∆x2,k∆θ , s∆t ) −U (i , j,k , s ) | ≤ τα ,

As a consequence, applying the uniqueness Theorem 5.3.12,
we deduce the following convergence result for the solution of
the mean curvature equation (5.4) with initial condition u0

|u (i∆x1, j∆x2,k∆θ , s∆t ) −U (i , j,k , s ) | ≤ τα

as ∆t ≤ C (τ ,h).

5.5 Results

In this section we present and discuss our results. We �rst com-
pare the results obtained with the original algorithm [28] with
some results recently appeared in the literature. Results of our
new model for enhancement are proposed and compared with
previous results of Duits and Franken [54]. Finally we show
examples of inpainting and enhancement of images.

5.5.1 Inpainting results

In all the upcoming numerical experiments we have discretized
the angular coordinate θ in 32 di�erent orientations (see Sec-
tion 5.4). The evolution time (or equivalently the number of
iterations of the discrete versions) for both the mean curva-
ture �ow (5.4) and the Laplace-Beltrami �ow (5.6) have been
set long enough so that a steady solution is ensured. Our al-
gorithm performs particularity well for completing gray level
images which have non vanishing gradient at every point. We
start with a couple of images already contained in [150]: an
arti�cial one (see �gures 5.8), and a natural one (see �gure 5.8,
bottom). In both images a very big black hole is present, and the
algorithm correctly reconstructs the missed part of the image.

Recently Boscain et al. in [14] tried to replace this non linear
equation by a di�usion followed by a ‘heuristic complement’.
In �gure 5.9 left we consider an image from [14] partially oc-
cluded by a grid: �rst we show the results of completion per-



5. Sub-Riemannian mean curvature �ow for image processing. 95

Figure 5.8: Top: An exam-
ple of completion performed by
the algorithm. In this arti�-
cial image the image gradient is
lifted in the R2 × S1 space and
the black hole is completed by
mean curvature �ow. Since the
level lines of the image are ap-
proximately circular, the algo-
rithm performs very well. Bot-
tom: completion result on a real
image through sub-Riemannian
mean curvature �ow in R2 × S1,
as described in [30].

formed in [14] (second image from left), then the results ob-
tained through the heat equation in the 2D space (third image
from left) and �nally the ones obtained with Citti and Sarti
model (right). A detail is shown in �gure 5.10. Since the con-
sidered image is a painting, extremely smooth, with low con-
trast, the 2D heat equation is able to perform a simple version
of completion (see for example [10]). The curvature model re-
constructs correctly the missed contours and level lines, and
presents a strong completion capability, absent in the other two
methods. In �gure 5.11 (and in the detail taken from it in �g-

Figure 5.9: Left: an occluded
image (from U. Boscain et al.
([14])). Second image from left:
the image processed in ([14]).
Third image from left: the same
image processed through the
heat equation. Right: the image
inpainted using Citti and Sarti
algorithm.
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ure 5.12) we consider an other example taken from the same
paper. In this image the grid of points which are missed is
larger, and the previous e�ect is even more evident. In a more

Figure 5.10: A detail of pre-
vious image: Left: the origi-
nal image ([14]); Second image
from left: the image processed
in ([14]); Third image from left:
the image processed through the
heat equation; Right: image in-
painted using the proposed algo-
rithm.

Figure 5.11: From left to right:
the original image ([14]); the im-
age processed in ([14]); the im-
age processed through the heat
equation; the image inpainted
using the proposed algorithm.

recent paper Prandi et al. (see [15]) introduced a linear di�u-
sion with coe�cients depending on the gradient of the initial
image, which they call ‘heuristic’. In �gure 5.13 we compare
the results obtained with this model, with the heat equation on
the image plane and with the strongly geometric model of Citti
and Sarti. Then we test our implementation on piecewise con-
stant images. Since the gradient is 0 in large part of the image,
the lifted gradient is not de�ned in the largest part of the im-
age. On the other side, since the lifting mimics the behavior of
the simple cells of the V1 cortical layer, the Citti and Sarti algo-
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Figure 5.12: A detail of previous
image. Left: the original image
([14]); second image from left:
the image processed in ([14]);
third image from left: the im-
age processed through the heat
equation; right: image inpainted
using the original algorithm of
Citti and Sarti.

Figure 5.13: On the left the oc-
cluded image. From left to right:
results from [15], with 2D heat
equation and our model.
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rithm is always applied on a smoothed version of the image. We
have applied it on a classical toy problem proposed for exam-
ple in [9] by Bertalmio, Sapiro, Caselles and Ballester. Results
are shown in �gure 5.14. In �gure 5.15 we test our method on

Figure 5.14: Inpainting a con-
stant coe�cient image with the
Sarti and Citti algorithm.

an image taken from the survey [10]. The present reconstruc-
tion is correct in the part of the image characterized by strong
boundaries, but the results of [10] obtained with the model of
Masnou and Morel (see [115]) seems to be better. The main
point is the boundary detection, which is very accurate in the
model of Masnou and Morel, while here the boundaries are de-
tected with a gradient, after smoothing the image.

Figure 5.15: Left the occluded
image. Center: image from [10]
processed with the model of
[115]. Right: image processed
with our model.

5.5.2 Enhancement results

We will show in this section results of the application of the en-
hancement method we have introduced in Section 5.2.5. Let us
recall that enhancement consists in an image �ltering that un-
derlines directional coherent structures. With respect to the
completion problem there is no part of the image to be dis-
occluded and all the parts of the initial data are evolved. In
Figure 5.16 it is shown a microscopy image of bone tissue to
be �ltered to reconstruct the crossing �bers (from Duits and
Franken([54]). The second image from left shows the enhance-
ment computed by using CED-OS, see [54, 71], while the third
image shows the result obtained using the proposed method.
Finally, we show in �gure 12 (zoomed in �gure 13) an exam-
ple combining the techniques of completion and enhancement.
We see in this case that enhancement homogenizes the orig-
inal non occluded part with the reconstructed one. Here we
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Figure 5.16: From left to right:
the original image, from Duits
and Franken ([54, Fig. 7]); the
enhanced image using CED-OS,
see [54]; the enhanced image
obtained using the proposed
method.

Figure 5.17: Left: the original
image ([14]). Center: image in-
painted using the proposed algo-
rithm. Right: image inpainted
and enhanced with this algo-
rithm.

propose a detail of the previous image in order to underline
the e�ects of the discussed techniques.

Figure 5.18: From left to right:
a detail of the original image
([14]); a detail of the image in-
painted using the proposed algo-
rithm; same detail of the image
inpainted and enhanced with
this algorithm.

5.6 Discussion

In this chapter we have proved existence of viscosity solutions
of the mean curvature �ow PDE in SE (2) = R2 × S1 equipped
with a sub- Riemannian metric. The �ow has been implemented
with a suitable adaptation of the Osher and Sethian technique
[135] and a sketch of the proof of convergence of the numer-
ical scheme is provided. Results of completion and enhance-
ment are obtained on arti�cial and natural images both. We
also provide comparisons with other existing algorithms. The
algorithm leads to results comparable with the classical ones
of Bertalmio et al. in [9], of Masnou and Morel in [115], but
performs much better than the results shown by Boscain et al.
in [14], or by Prandi et al. [15]. The method can be applied in
presence of crossing edges and to perform enhancement: our
results have been compared with the previous of Duits et al.
[55].
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6 Geometrical optical illusions

In this chapter we introduce a neuro-mathematical model
for Geometrical Optical illusions, based on the cortical based
model introduced in chapter 4. Geometrical-optical illusions
(GOIs) have been discovered in the XIX century by German
psychologists (Oppel 1854 [134], Hering, 1878, [83]) and have
been de�ned as situations in which there is an awareness of a
mismatch of geometrical properties between an item in object
space and its associated percept [185]. The distinguishing fea-
ture of these illusions is that they relate to misjudgements of
geometrical properties of contours and they show up equally
for dark con�gurations on a bright background and viceversa.
An historical survey of the discovery of geometrical-optical il-
lusions is included in Appendix I of [185]. The reason why we
should be interested generally in illusory phenomena has been
well explained by Eagleman in [57]:

“The historical study of systematic misperceptions, combined
with a recent explosion of techniques to measure and stimulate
neural activity, has provided a rich source for guiding neurobio-
logical frameworks and experiments.”

Figure 6.1: In [57] Eagleman
provided an historal summary
in which he pointed how the
link between Illusory phenom-
ena and the relevance they had
in guiding researches in neu-
roscience. In this image we
present the �rst part. See next
pages for the following, �gure
6.1.

Our intention here is not to make a classi�cation of these phe-
nomena, which is already widely present in literature (Coren
e Girgus, 1978, [32]; Robinson, 1998, [144]; Wade, 1982, [171]).
The aim of this chapter is to propose a mathematical model for
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GOIs based on the functional architecture of low level visual
cortex (V1/V2). This neuro-mathematical model will allow us
to interpret at a neural level the origin of GOIs and to repro-
duce the arised percept for this class of phenomena. The main
idea is to adopt the model of the functional geometry of V1 pro-
vided in [28] and presented in chapter 4, and to consider that
the image stimulus will modulate the connectivity. When pro-
jected onto the visual space, the modulated connectivity gives
rise to a Riemannian metric which is at the origin of the vi-
sual space deformation. The displacement vector �eld at every
point of the stimulus is mathematically computed by solving a
Poisson problem and the perceived image is �nally reproduced.
The considered phenomena consist, as shown in �gure 6.3, in
straight lines over di�erent backgrounds (radial lines, concen-
tric circles, etc). The interaction betwen target and context ei-
ther induces an e�ect of curvature of the straight lines (�g. 6.3,
(a), (b), (c) ), eliminates the bending e�ect (�g. 6.3, (d)), or in-
duces an e�ect of unparallelism (�g. 6.3, (e)). This chapter is or-

Figure 6.2: Second part of the
timeline, from �gure 6.1: in [57]
Eagleman provided an historal
summary in which he pointed
how the link between Illusory
phenomena and the relevance
they had in guiding researches
in neuroscience.

ganised as follows: in section 2.1.3 geometrical optical illusions
are presented from the neurophysiological and phenomenolog-
ical point of view. In section 6.2 previous mathematical mod-
els for GOIs are presented. The state of the art for what con-
cerns mathematical modeling will be reviewed. In 6.3.1 starting
from the cortical based model introduced in chapter 4 a neuro-
mathematical model for GOIs will be proposed, taking into ac-
count the modulation of the functional architecture induced
by the stimulus. Finally in 6.4 the numerical implementation
of the mathematical model will be explained and applied to a
number of examples. Results are �nally discussed as well as
conclusions and perspectives of this work. The contributions
developed in this chapter are published in the following papers
by the author et al. [69, 68].
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Figure 6.3: (a) Hering illusion:
the two vertical lines are straight
and parallel, but since they are
presented in front of a radial
background the lines appear as
if they were bowed outwards.
(b) Wundt-Illusion: the two hor-
izontal lines are both straight,
but they look as if they were
bowed inwards. (c) Square
shape over Ehrenstein context:
the context of concentric circles
bends the edges of the square to-
ward the center of the image. (d)
Wundt-Hering illusions merged
together: the horizontal lines
are straight and parallel and the
presence of inducers which bow
them outwards and inwards at
the same time inhibits the bend-
ing e�ect. (e) Zollner illusion: a
pattern of oblique inducers sur-
rounding parallel lines creates
the illusion they are unparallel.
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6.1 Role of Geometrical optical illusions (GOIs)

The importance of this study, particularly focused on GOIs, lies
in the possibility, through the analysis of these phenomena
combined with physiological recordings, to help to guide neu-
roscienti�c research (Eagleman, [57]) in understanding the role
of lateral inhibition, feedback mechanisms between di�erent
layers of the visual process and to lead new experiments and hy-
pothesis on receptive �elds of V1 and V2. Many studies, which
relies on neuro-physiological and imaging data, show the evi-
dence that neurons in at least two visual areas, V1 and V2, carry
signals related to illusory contours, and that signals in V2 are
more robust than in V1 ( [168, 127], reviews [57, 126]), see �g-
ure 6.4 from [126]. A more recent study on the tilt illusion, see

Figure 6.4: Quoting from
Murray and Herrmann [126]:
(B) Schematic localization of
Illusory contours (IC) sensi-
tivity in human studies. The
colored symbols indicate the
approximate locations of IC
sensitivity for human studies
using electroencephalography
(EEG)/magnetoencephalography
(MEG) source estimations (left),
positron emission tomography
(PET) and functional magnetic
resonance imaging (fMRI)
(middle), and lesion studies or
transcranial magnetic stimula-
tion (TMS) (right). The stars in
the left panel indicate secondary
and subsequent e�ects.

�gure 6.5, in which the perceived orientation of a grating di�ers
from its physical orientation when surrounded by a tilted con-
text, measured the activated connectivity in and between areas
of early visual cortices ( [161]). These �ndings suggest that for
GOIs these areas may be involved as well. Neurophysiology
can help to provide a physical basis to phenomenological ex-
perience of GOIs opening to the possibility of mathematically
modeling them and to integrate subjective and objective expe-
riences.

Figure 6.5: The tilt illusion: the
perceived orientation of a test
line or grating is altered by the
presence of surrounding lines or
grating with a di�erent orienta-
tion (spatial context).

6.2 Mathematical models proposed in literature

The pioneering work of Ho�man [85] dealt with illusions of an-
gle (i.e. the ones involving the phenomenon of acute-angle ex-
pansion, which is the tendence to perceive under certain condi-
tions acute angles as larger) modeling the generated perceived
curves as orbits of a Lie group acting on the plane. The pro-
posed model allows to classify the perceptual invariance of the
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considered phenomena in terms of Lie Derivatives, and to pre-
dict the slope. Another model mathematically equivalent to the
one proposed by Ho�man has been proposed by Smith, [160],
who stated that the apparent curve of geometrical optical illu-
sions of angle can be modeled by a �rst-order di�erential equa-
tion depending on a single parameter. By computing this value
an apparent curve can be corrected and plotted in a way that
make the illusion being not perceived anymore (see for exam-
ple �g. 8 of [160]). This permits to introduce a quantitative anal-
ysis of the perceived distortion. Ehm and Wackerman in [58],
started from the assumption that GOIs depend on the context of
the image which plays an active role in altering components of
the �gure. On this basis they provided a variational approach
computing the deformed lines as minima of a functional de-
pending on length of the curve and the de�ection from orthog-
onality along the curve. This last request is in accordance to the
phenomenological property of regression to right angle. One of
the problems pointed out by the authors is that the approach
doesn’t take into account the underlying neurophysiological
mechanisms. This model will be discussed later on, in chapter
7. An entire branch for modeling neural activity, the Bayesian
framework, had its basis in Helmholtz’s theory [170]: our per-
cepts are our best guess as to what is in the world, given both
sensory data and prior experience. The described idea of un-
conscious inference is at the basis of the Bayesian statistical
decision theory, a principled method for determining optimal
performance in a given perceptual task ( [76]). These methods
consists in attributing a probability to each possible true state
of the environment given the stimulus on the retina and then
to establish the way prior experience in�uences the �nal guess,
the built proximal stimulus (see [102] for examples of Bayesian
models in perception). An application of this theory to motion
illusions has been provided by Weiss et al in [183], and a review
in [76]. Fermüller and Malm in [62] attributed the perception
of geometric optical illusions to the statistics of visual computa-
tions. Noise (uncertainty of measurements) is the reason why
systematic errors occur in the estimation of the features (inten-
sity of the image points, of positions of points and orientations
of edge elements) and illusions arise as results of errors due to
quantization. Walker ( [173]) tried to combine neural theory
of receptive �eld excitation together with mathematical tools
to provide an equation able to determine the disparity between
the apparent line of an illusion and its corresponding actual
line, in order to reproduce the perceptual errors that occur in
GOIs (the ones involving straight lines). In our model we aim
to combine psycho-physical evidence and neurophysiological
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�ndings, in order to provide a neuro-mathematical model able
to interpret and simulate GOIs.

Scope of the chapter The contribution of this chapter is to in-
troduce a mathematical model which takes into account the
cortical activation of simple cells in V1 and V2. The modulated
connectivity in the cortex is projected onto the visual space
and gives rise to a Riemannian metric, at the basis of the visual
deformation. Our intention is to interpret the new metric in
the in�nitesimal strain theory framework to compute the dis-
placement vector �eld solving a Poisson problem which arises
from the proposed model. The proximal stimulus is �nally re-
covered.

6.3 A neuro-mathematical model for GOIs

6.3.1 From the classical neuromathematical model for V1-V2

In chapter 4 we saw the expression for the sub-Riemannian met-
ric (дij )i ,j=1,2,3 which models the connectivity patterns in the
primary visual cortex, as proposed by Citti and Sarti in [28].
The functional architectures built in R2×S1 correspond to the
neural connectivity measured by Angelucci et al. in [1] and
Bosking et al. in [16]. A qualitatively and quantitative compari-
son between the kernels and the connectivity patterns has been
done by Favali et al. in [60]. In this contribution a local formu-
lation of the kernel presented in [60] will be used: in [60] the
connectivity is modelled with the sub-Riemannian heat kernel
with minima de�ned by the distributional lift [28], (x1,x2, θ̄ )
where θ̄ is the lifted orientation.

Figure 6.6: Representation
of the orientation response
exp

(
−sin (θ−θ̄ )2

2σ

)
over each

�ber, with maximum activity
registered in θ̄ .

Here we consider just the restriction of the heat kernel to
the point (x1,x2) by varying the orientation θ . It corresponds
to exp

(
−sin(θ−θ̄ )2

2σ

)
, expressing the local polarization of the hor-

izontal connectivity, well estimated by the energy in (6.1). In
�gure 6.6 the local polarization of the hypercolumn is shown:
for each (x1,x2,θ ) the corresponding value of exp

(
−sin(θ−θ̄ )2

2σ

)
weights the sub-Riemannian metric (дij )i ,j=1,2,3. We will see in
section 6.3.2 how the Riemannian metric is introduced. Let us
remark that it has been shown by Sanguinetti et al. in [151] that
the geometry of fuctional architecture formally introduced in
chapter 4 is naturally encoded in the statistics of natural im-
ages. Hence these geometrical structures are compatible with
Bayesian learning methods.
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6.3.2 Output of Simple Cells and connectivity metric

We will now de�ne a connectivity metric tensor on the im-
age plane R2 starting from the connectivity metric (дij )i ,j=1,2,3
and the output of simple cells. Let us �rst recall other inter-
esting techniques for extracting local features of images: �rst
the more recent, tensor voting, by Medioni [117], [124], which
propagates contour saliency information from input points to
their neighbors through tensor �elds, providing with a com-
pletion technique. An extension of Medioni’s work has been
provided in [72], where tensor voting is implemented based
on steerable �lters theory. The already well-known structure
tensor, present in literature and directly inspired by the struc-
ture of the image, has been introduced in its linear formula-
tion by Förstner and Gülch in[64] (1987) and by Bigün et al. in
[12] (1987). It encodes local gradient features of a processed
image and the application of a Gaussian convolution averages
the information within a neighborhood, allowing to perform
orientation estimation, optic �ow computation, corner detec-
tion, etc. Steps forward to overcome limitations due to the lin-
ear approach have been proposed by Weickert [176] (1998) and
Brox et al. in [17] (2006). Weickert replaced Gaussian smooth-
ing with non-linear di�usion techniques, which adapt tensor
to the original data respecting discontinuities. He also pointed
out that new �lter models would allow to accomplish tasks in
image processing which involve semi-local or global informa-
tion. Here we build a modi�ed structure tensor: it would give
very similar results to the one in [176] in case of using only
odd Gabor �lters ([28]). Our images are composed by lines,
they are not cartoon images, hence we need a technique able
to correctly measure θ for contours and lines: this is the reason
why we combine odd and even Gabor �lters. Another point is
that in our tensor, we do not normalize over the gradient as in
[176]. Finally we propose a tensor biologically based, since it
encodes the action of Gabor �lters and the cortical connectiv-
ity. We consider simple cells at �xed value of σ depending on
position and orientation. For each point (x1,x2,θ ) ∈ R2×S1,
we restrict the connectivity tensor (дij (x1,x2,θ ))i ,j=1,2,3 to the
R2 plane generated by {∂x1 , ∂x2 }, subset of the tangent space to
R2×S1 at the point (x1,x2,θ ), and obtain the tensor(

cos2 θ sinθ cosθ
sinθ cosθ sin2 θ

)
.

The metric (дij )i ,j=1,2,3 is invariant for rotation and translation,
then we can �x a point without loss of generality. For every
value of θ this tensor has only one non zero eigenvalue. The
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Figure 6.7: Representation of
p−1 (blue). Principal and sec-
ond eigenvectors correspond to
�rst and second semi-axes of the
ellipses. Lengths of the semi-
axes is given by the magnitude
of the corresponding eigenval-
ues. Principal eigenvectors of
ellipses are oriented along the
maximum activity registred at θ̄
over each point (x1,x2), marked
in cyan vector. Along part of
the stimulus strongly oriented,
ellipses are elongated. At the
crossing point the orientation of
the tensor, resulting by the vec-
torial sum of the orientations of
the orthogonal lines, will be ball,
with no preferred orientation.
The tensor at the crossing point
of two non-orthogonal lines is
no more rounded, and will have
a preferred orientation (vecto-
rial sum of the orientations of
the two crossing lines). The pre-
vious observation is ampli�ed if
we consider three crossing lines

corresponding eigenvector has orientation θ . We will assign to
the norm of the output the usual meaning of energy

E (x1,x2,θ ) = ‖O (x1,x2,θ )‖, (6.1)

where ‖ · ‖ denotes the complex modulus of the output O de-
�ned in (4.3), which is evaluated at the �xed value of σ . We
will discuss in section 6.3.4 the choice of σ for our experiments.
Each point of the hypercolumn is weighted by the energy of
simple cells normalized over the whole set of hypercolumn re-
sponses:

E (x1,x2,θ )∫ π

0 E (x1,x2,θ )dθ
. (6.2)

The normalization of the output expresses the probability that a
speci�c cell sensitive to θ within the hypercolumn over (x1,x2)
is selected. The mechanism of intracortical selection attribut-
ing a probability to each possible orientation given the initial
stimulus is connected to the long-range activity: simple cells
belonging to di�erent hypercolumns in a neighbourhood of a
point (x1,x2) sensitive to the same orientation will have a high
probability. The connectivity tensor restricted to the R2 plane
and modulated by the output of simple cells will become:

E (x1,x2,θ )∫ π

0 E (x1,x2,θ )dθ

(
cos2 θ sinθ cosθ

sinθ cosθ sin2 θ

)
. (6.3)

This last expression corresponds to a connectivity polarized by
the normalized energy of simple cells shown in (6.2) at points
(x ,y,θ ). From the mathematical point of view it is the pull-
back onto the R2 of дij , weighted by the energy. The overall
cometric (inverse of the metric tensor) arising from the action
within the hypercolumn over each retinal point (x1,x2) is ob-
tained summing up along θ the previous modulated metric in
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(6.3) and will have the following expression:

p−1(x1,x2) = γ
−1

∫ π

0 E (x1,x2,θ )
(

cos2 θ sinθ cosθ
sinθ cosθ sin2 θ

)
dθ∫ π

0 E (x1,x2,θ )dθ
,

(6.4)
where γ−1 is a normalization constant obtained as the L∞ norm
of the inverse of the determinant of the metric which appears in
(6.4). This tensor will have principal eigenvector along the ori-

Figure 6.8: Proximal stimulus
(Hering illusion). Representa-
tion of p−1 (blue). Principal and
second eigenvectors correspond
to �rst and second semi-axes of
the ellipses. Lengths of the semi-
axes is given by the magnitude
of the corresponding eigenval-
ues. Principal eigenvectors of
ellipses are oriented along the
maximum activity registred at θ̄
over each point (x1,x2), marked
in cyan vector. Here we show a
detail of the tensor �eld repre-
sentation: we notice that along
parts of the stimulus strongly
oriented, ellipses are elongated.
As far as we move toward cross-
ing points, ellipses lost their
elongated form and become less
or more rounded, in dependence
with the orientation response of
lines at crossing points

entation θ̄ , corresponding to the maximum energy within the
hypercolumn. A visualization of p−1 is given in �gure 6.7 and
6.8. Hence this process describes the selection at every point
(x1,x2) of the most likely orientation of propagation of the con-
nectivity, expressed by the values attained by the energy.

6.3.3 From metric tensor field to image distortion

In the previous section we described the response of the cortex
in the presence of a visual stimulus.

(1) The distal stimulus is projected onto the cortex by means
of activity of simple cells.

(2) The joint action of the short and long range connectivity
induces a Riemannian tensor p−1 on the R2 retinal plane.

Even though it is not completely clear in which cortical area
the perceived image is reconstructed, from a phenomenological
point of view it is evident that our visual system recostructs the
perceived image. Hence a third mechanism takes place, able to
construct the perceived stimulus from the cortical activation.
With this mechanism the image distortion which induces the
metric tensor p (inverse of p−1) is estimated. Here we propose
to apply in�nitesimal strain theory and to identify its inverse
p with the strain tensor to compute the deformation. Once the
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displacement vector �eld is applied to the distal stimulus, we
obtain a distorted image which models the proximal one. In this
way we justify the mechanism at the basis of geometrical opti-
cal illusions. The mechanism of recostruction of the image at
a neuro-physiological level is still an open problem. Although
the cortex with its complete set of Gabor �lters would be able
to reconstruct the image (Lee et al. [109]), it is not clear if the
cortex accomplishes this task and we did not take into account
this process. We considered just the capability of the cortex to
generate a Riemannian metric which is able to deform the im-
age, without considering its reconstruction. We simply apply
the deformation vector �eld to the original image. In this ap-
proach we consider the medium to be subjected only to small
displacements, i.e. the geometry of the medium and its consti-
tutive properties at each point of the space are assumed to be
unchanged by deformation.

Strain tensor - displacement vector field

Figure 6.9: Here we superim-
pose two red lines to the orig-
inal distal stimulus (Hering il-
lusion) to remark that verti-
cal lines present in the stim-
ulus are straight. Representa-
tion of the displacement �eld
{ū (x1,x2)}(x1,x2)∈R2 . Perceived
deformation.

The mathematical question is how to reconstruct the displace-
ment starting from the strain tensor p. We think at the defor-
mation induced by a geometrical optical illusion as an isometry
between the R2 plane equipped with the metric p and the R2

plane with the Euclidean metric Id:

Φ : (R2,p) → (R2, Id).

From the mathematical point of view this means that we look
for the change of variable which induces the new metric (see
Jost [99]), i.e. (

∂Φk

∂xi

)
Idkl

(
∂Φl

∂xj

)
= pij (x ), (6.5)

where x = (x1,x2) ∈ R2, pij and Idkl indicate the components
of tensor p and the identity Id respectively and we use Einstein
summation convention. Using this expression, we obtain:

p(x ) = (∇Φ)T (∇Φ). (6.6)

Let us notice p−1 corresponds to Φ−1, the map representing the
process which builds the modulated connectivity we discussed
before. In strain theory p satisfying (6.6) is called right Cauchy-
Green tensor associated to the deformation Φ, which from the
physical point of view is a map Φ : Ω̄ → R2 associating the
points of the closure of a bounded open set Ω ⊂ R2 (initial con-
�guration of a body) to Φ(Ω) ⊂ R2 (deformed con�guration).
For references see [112], [113]. It is possible to introduce the
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displacement as a map ū (x1,x2) = Φ(x1,x2) − (x1,x2), where
(x1,x2) ∈ R2. It follows

∇ū = ∇Φ − Id.

We can now express the right Cauchy-Green tensor in terms of
displacement:

p = pij (x ) = (∇Φ)T (∇Φ) = (∇ū + Id)T (∇ū + Id)

= (∇ū)T (∇ū) + (∇ū) + (∇ū)T + Id.

The concept of strain is used to evaluate how much a given dis-
placement di�ers locally from a rigid body displacement. For
in�nitesimal deformations of a continuum body, in which the
displacement gradient is small (‖∇ū‖ � 1), it is possible to per-
form a geometric linearization of strain tensor introduced be-
fore, in which the non-linear second order terms are neglected.
The linearized right Cauchy-Green tensor has the following form:

G(ū) ≈ (∇ū) + (∇ū)T , (6.7)
which is used in the study of linearized elasticity, i.e. the study
of such situations in which the displacements of the material
particles of a body are assumed to be small (in�nitesimal strain
theory.)
Here we give the expression in components of ϵ (ū) = 1

2G(ū)
(the so called Green-Lagrangian strain tensor):

ϵij (ū) = *
,

∂u1
∂x1

1
2

(
∂u1
∂x2
+
∂u2
∂x1

)
1
2

(
∂u2
∂x1
+
∂u1
∂x2

)
∂u2
∂x2

+
-

, (6.8)

where ū = (u1,u2). Expressing ϵij in terms of the metric (pij )i ,j
with whom the initial con�guration of the considered body was
equipped we obtain:

ϵij (ū) ≈
1
2 ((pij )ij − Id), (6.9)

and in its matrix form:(
p11 p12
p21 p22

)
−

(
1 0
0 1

)
= *

,

∂u1
∂x1

1
2

(
∂u1
∂x2
+
∂u2
∂x1

)
1
2

(
∂u2
∂x1
+
∂u1
∂x2

)
∂u2
∂x2

+
-

.

(6.10)

Poisson problems - displacement

Starting from (6.10) we obtain a system of equations with this
form:




p11 − 1 = ∂u1
∂x1

p22 − 1 = ∂u2
∂x2

p12 = p21 =
1
2 (
∂
∂x2

u1 +
∂
∂x1

u2)

(6.11)
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Di�erentiating, substituting and imposing Neumann boundary
conditions to system (6.11) we end up with the following di�er-
ential system:




∆u1 =
∂
∂x1

p11 + 2 ∂∂x2
p12 −

∂
∂x1

p22 in M

∆u2 =
∂
∂x2

p22 + 2 ∂∂x1
p12 −

∂
∂x2

p11

∂
∂~n
u1 = 0 in ∂M
∂
∂~n
u2 = 0

(6.12)

where M is an open subset of R2 and ∂M is Lipschitz con-
tinuous, with normal de�ned almost everywhere. Solutions
for equation (6.12) are well de�ned up to an additive constant,
which is recovered imposing u (0, 0) = v (0, 0) = 0 for simmetry
reasons, where (0, 0) is the center of our initial domain M . Let
us explicitly note that tensor p is obtained after convolution
of Gabor �lters, so that it is di�erentiable, allowing to write
the system. Hence we solve (6.12), recovering the displacement
�eld ū (x1,x2).

6.3.4 Numerical Implementation

The inverse of tensor expressed in formula (6.4) is computed
discretizing θ as a vector of 32 values equally spaced in the in-
terval [0,π ]. The scale parameter σ varies in dependence of
the image resolution and is set in concordance with the stimu-
lus processed. It is taken quite large in all examples in such a
way to obtain a smooth tensor �eld covering all points of the
image. This is in accordance with the hypothesis previously
introduced that mechanisms in V2, where the receptive �eld of
simple cells is larger than in V1, play a role in such phenom-
ena. The constant γ has been chosen for all the examples as
γ = 2 · 10−2. The di�erential problem in (6.12) is approximated
with a central �nite di�erence scheme and it is solved with a
classical PDE linear solver. We now start discussing all results
obtained through the presented algorithm.

6.4 Results

6.4.1 Hering illusion

The Hering illusion, introduced by Hering, a German physiol-
ogist, in 1861 [83] is presented in �gure 6.10. In this illusion
two vertical straight lines are presented in front of radial back-
ground, so that the lines appear as if they were bowed outwards.
In order to help the reader, in �gure 6.10 (top left) we superpose
to the initial illusion two red vertical lines, which indeed coin-
cide with the ones present in the stimulus. As described in the
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Figure 6.10: We superimpose
two red vertical lines to the Her-
ing illusion, represented in �g-
ure 6.3, in order to remark that
vertical lines present in the stim-
ulus are straight. Representa-
tion of p−1, projection onto the
retinal plane of the polarized
connectivity in 6.3. The �rst
eigenvalue is tangent to the level
lines of the distal stimulus. In
blue the tensor �eld, in cyan the
eigenvector related to the �rst
eigenvalue. Computed displace-
ment �eld ū : R2 → R2. Dis-
placement applied to the image.
In black we represent the proxi-
mal stimulus as displaced points
of the distal stimulus: (x1,x2) +

ū (x1,x2). In red we give two
straight lines as reference, in or-
der to better clarify the curva-
ture of the target lines.previous sections, we �rst convolve the distal stimulus with the

entire bank of Gabor �lters: we take 32 orientations selected
in [0,π ), σ = 6.72 pixels. Following the process, we compute
p−1 using equation (6.4), we solve equation (6.12) obtaining the
perceived displacement ū : R2 → R2. Once it is applied to
the initial stimulus, the proximal stimulus is recovered. The re-
sult of computation is shown in �gure 6.10 (bottom right). The
distorted image folds the parallel lines (in black) against the
straight lines (in red) of the original stimulus (given in �gure
6.3, a).

Figure 6.11: Details of the per-
ceived distortion in the com-
puted proximal stimulus in the
Hering illusion.

6.4.2 Wundt Illusion

A variant of the Hering illusion, introduced by Wundt in the
19th century, [187] is presented in �gure 6.12. In this illusion
two straight horizonal lines look as if they were bowed inwards,
due to the distortion induced by the crooked lines on the back-
ground. For the convolution of the distal stimulus with Gabor
�lters we select 32 orientations in [0,π ), σ = 11.2 pixels. Then
we apply the previous model, and obtain the result presented in
�gure 6.12. Computed vector �elds are concentrated in the cen-
tral part of the image and point toward the center. They indi-
cate the direction of the displacement, which bends the parallel
lines inwards. In �gure 6.12 (center right) the proximal stim-
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ulus is computed through the expression: (x1,x2) + ū (x1,x2).
In black we indicate displaced dots of the initial image: the
straight lines of the distal stimulus are bent by the described
mechanism (black). In red we put the straight lines of the orig-
inal distal stimulus. This provide a comparison between the
lines pre/post processing. In �gure 6.12 (bottom) details of the
distances between the bent curves and the original straight
lines are shown.

Figure 6.12: Here we superim-
pose two red lines to the Wundt
illusion, presented in �gure 6.3,
b, in order to clarify that the hor-
izontal lines present in the im-
age are indeed straight. Repre-
sentation of p−1, projection onto
the retinal plane of the polar-
ized connectivity in 6.3. The �rst
eigenvalue is tangent to the level
lines of the distal stimulus. In
blue the tensor �eld, in cyan the
eigenvector related to the �rst
eigenvalue. Computed displace-
ment �eld ū. Displacement ap-
plied to the image. In black we
represent the proximal stimulus
as displaced points of the distal
stimulus: (x1,x2) + ū (x1,x2). In
red we give two straight lines as
reference, in order to put in ev-
idence the curvature of the tar-
get lines. Finally, details of the
perceived distortion in the com-
puted proximal stimulus in the
Wundt illusion are presented.

6.4.3 Square shape over Ehrenstein context

This illusion, introduced by Ehm and Wackermann in [58], con-
sists in presenting a square over a background of concentric cir-
cles, �gure 6.3, c. This context, the same we �nd in Ehrenstein
illusion, bends the edges of the square (red lines in �gure 6.13,
top left) toward the center of the image. Here we take the same
number of orientations, 32, selected in [0,π ) and σ = 13.44
pixels. The resulting distortion is shown in �gure 6.13, bottom
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right.

Figure 6.13: Here we superim-
pose red edges to the original
illusion shown in 6.3, (c). Repre-
sentation of p−1, projection onto
the retinal plane of the polar-
ized connectivity in 6.3. The �rst
eigenvalue is tangent to the level
lines of the distal stimulus. In
blue the tensor �eld, in cyan the
eigenvector related to the �rst
eigenvalue. Computed displace-
ment �eld ū. Displacement ap-
plied to the image. In black we
represent the proximal stimulus
as displaced points of the distal
stimulus: (x1,x2) + ū (x1,x2). In
red we give a square as refer-
ence, in order to put in evidence
the curvature of the target lines.

6.4.4 Modified Hering illusion

Here we present three modi�ed Hering illusions (see �gure
6.14): in the �rst one straight lines are positioned further from
the center than in the classical Hering illusion. In the second
one straight lines are positioned nearer the center than in the
reference Hering illusion. For coherence with the Hering ex-
ample, orientations selected are 32 in [0,π ) and σ = 6.72 pixels.
All other parameters are �xed during these three experiments.
In the proposed modi�ed Hering illusions, see �gure 6.14 the
vertical lines are straight and parallel as in the Hering, but since
they are located further/nearer the center of the image the per-
ceived bending results to be less/more intense. In accordance
with the displacement vector �elds shown in �gure 6.10, bot-
tom left, as far as we outstrip/approach the center the mag-
nitude of the computed displacement decreases/increases. In
�gure 6.14, bottom right, two straight lines are put over an in-
coherent background, composed by random oriented segments.
As we can see from �gure 6.15, bottom right, any displacement
is perceived nor computed by the present algorithm.

6.4.5 Wundt-Hering illusion

The Wundt-Hering illusion (�gure 6.3, (d)) combines the e�ect
of the background of the Hering and Wundt illusions. In this
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Figure 6.14: Top left: Hering illu-
sion, distal stimulus. Top right:
modi�ed Hering illusion: in this
example straight lines are fur-
ther from the center with re-
spect to the classical example
of Hering illusion. Bottom left:
modi�ed Hering illusion: in this
example straight lines are placed
nearer the center with respect to
the classical example of the Her-
ing illusion. Bottom right: mod-
i�ed Hering illusion with a inco-
herent background, composed
by random-oriented segments.

Figure 6.15: Displacement ap-
plied to the Hering illusion. Dis-
placement applied to the �rst
modi�ed Hering illusion, in
which the distance from the
center is increased. Displace-
ment applied to second modi�ed
Hering illusion, in which the
distance from the center is de-
creased. Displacement applied
to the third modi�ed Hering il-
lusion, with an incoherent back-
ground of random-oriented seg-
ments. In this last example no
deformation is perceived. In
black we represent the proxi-
mal stimulus as displaced points
of the distal stimulus: (x1,x2) +

ū (x1,x2). In red we give two
straight lines as reference, in or-
der to put in evidence how much
target lines are bent, or not bent.
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illusion two straight horizontal lines are presented in front of
inducers which bow them outwards and inwards at the same
time, inhibiting the bending e�ect. As a consequence the hori-
zontal lines are indeed perceived as straight. As previously ex-
plained for the modi�ed Hering illusion, also this phenomenon
can be interpreted in terms of lateral interaction between cells
belonging to the same neighborhood. Here we take 32 orienta-
tions selected in the interval [0,π ), σ = 6.72 pixels.

Figure 6.16: Here we superim-
pose two red horizontal lines to
the original Wundt-Hering illu-
sion, �gure 6.3, (d). Represen-
tation of p−1, projection onto
the retinal plane of the polar-
ized connectivity in 6.3. The �rst
eigenvalue is tangent to the level
lines of the distal stimulus. In
blue the tensor �eld, in cyan the
eigenvector related to the �rst
eigenvalue. Computed displace-
ment �eld ū. Displacement ap-
plied to the image. In black we
represent the proximal stimulus
as displaced points of the distal
stimulus: (x1,x2) + ū (x1,x2). In
red we give two straight lines as
reference, in order to put in evi-
dence the curvature of the target
lines.

6.4.6 Zöllner illusion

The Zöllner illusion (�gure 6.3, (e)) consists in a pattern of
oblique segments surrounding parallel lines, which creates the
e�ect of unparallelism, [190]. As in the previous experiments,
in �gure 6.3, (e), we superimpose two red lines to identify the
straight lines. Here we take 32 orientations selected in the in-
terval [0,π ), σ = 10.08 pixels.

6.4.7 Ehrenstein illusion

In the Ehrenstein illusion, see �gure 6.18 top left, the top and
bottom edges of the square appear to be unparallel due to the
presence of the crossing lines in the background.

6.5 Discussion

In this chapter we presented a neuro-mathematical model based
on the functional architecture of the visual cortex to explain
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Figure 6.17: Here we superim-
pose two red horizontal lines
to the original Zollner Illusion.
Representation of p−1, projec-
tion onto the retinal plane of
the polarized connectivity in 6.3.
The �rst eigenvalue is tangent
to the level lines of the distal
stimulus. In blue the tensor �eld,
in cyan the eigenvector related
to the �rst eigenvalue. Com-
puted displacement �eld ū. Dis-
placement applied to the image.
In black we represent the proxi-
mal stimulus as displaced points
of the distal stimulus: (x1,x2) +

ū (x1,x2). In red we give two
straight lines as reference, in or-
der to put in evidence the unpar-
allelism of the target lines.

Figure 6.18: Ehrenstein illusion,
same process as before. Top Left
the original stimulus; top left
the tensorial representation, bot-
tom left the computed displace-
ment vector �elds; bottom right:
the displacement applied to the
initial image, which bends the
square edges.



6. Geometrical optical illusions. 119

and simulate perceptual distortion due to geometrical-optical
illusions and to embed geometrical context. In our model per-
ceptual distortion is due to the Riemannian metric induced on
the image plane by the connectivity activated by the image
stimulus. Its inverse is interpreted as a strain tensor and we
computed the deformation in terms of displacement �eld which
arises as solution of (6.12). This technique has been applied to a
number of test cases and results are qualitatively in good agree-
ment with human perception. In the future this work could be
extended to functional architectures involving the feature of
scale, starting from models provided by Sarti, Citti and Petitot
in [154], [155]. This will allow to provide a model for scale illu-
sions, such as the Delbouf, see [31]. Indeed, another direction
for future works will be to provide a quantitative analysis for
the described phenomena, such as the one proposed by Smith
[160] and to direct compare the developed theory with obser-
vations of GOIs through neuro-imaging techniques.





7 Geodesics as perceptual curves

in GOIs

The aim of this chapter is to model geometrical optical illu-
sions as geodesics of the polarized metric in SE (2) introduced
in the previous chapter (6). In this framework, starting from
the model proposed in [28] which looks for illusory contours as
lenght minimizers of the distance between two points (geodesic,
[121]) in the sub- Riemannian (SR) metric дij , see (4.10) in chap-
ter 4, we extend the model to this framework, in which we state
illusory contours in GOIs arise as geodesics of the polarized
metric. From the numerical point of view a very fast and ac-
curate method for computing geodesics in the Euclidean met-
ric has been introduced by Sethian in [156, 157, 158], and it is
called Fast- Marching (FM). Fast - marching consists in looking
for approximate solutions for the Eikonal problem:{

‖∇EW (x1,x2,x3)‖E =
1

f (x1,x2,x3)
for η , e ,

W (e ) = 0.
(7.1)

Figure 7.1: In this image we
show the Poggendor� illusion,
in which a surface makes the
two collinear transversals ap-
pear misaligned. The perceptual
curve projects in at some point
over the right boundary of the
surface.

where e is the boundary initial value and ∇E denotes the Eu-
clidean gradient; (x1,x2,x3) ∈ R3 (we refer to section 5.3 for
a review de�nition and properties of solutions in the viscos-
ity sense, �rst introduced by [37, 35]). Physically the solution
W (η) is the shortest time needed to travel from e to η inside the
domain of the equation, with f (x ) being the speed at η. When
f = 1, W is the distance from the boundary e . In the latter
case, once the distance map W has been computed, geodesics
are recovered as integral curves of its gradient starting from
the �nal point η onW , and ending at point e . Indeed they will
be minimal lenght path from e to η. In this way they can be
interpreted as the fastest paths connecting the two points. The
Eikonal equation has been studied from the analytical point
of view in di�erent setting by many authors. Viscosity solu-
tion for this type of PDEs have been provived in the 80s by
Crandall and Lions, see [34] and for uniqueness see [4] (re-
cent version). The theoretical counterpart for viscosity solu-
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tion of the Eikonal equation in the sub-Riemmanian case can
be found in [20, 51, 52]. The Fast marching method for com-
puting approximate solutions has been extended in other set-
ting by Mirebeau,[120], and in [6] was developed in the SE (2)
equipped with a SR metric.

In this chapter we look for perceptual curves as sub- Rie-
mannian geodesics of SE (2) and we will compute them through
the FM method. Especially we will apply our hypothesis over
Poggendor� illusion, see �gure 7, in which a surface makes the
two collinear transversals appear misaligned. The perceptual
curve projects in at some point over the right boundary of the
surface, and our aim is to compute it, stating it will be a length
minimizer for the polarized metric in the SE (2) space. The con-
tributions relative to modeling illusory curves as Geodesics in
R2×S1 will be contained in [66, 67].
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7.1 Sub-Riemannian Geodesics as perceptual curves in
GOIs

In the previous chapter we have presented a neuro-geometrical
model for GOIs in which the deformation induced by the stimu-
lus is recovered through in�nitesimal strain theory instruments.

Let us consider now the contribution given in [28] by Citti For reader convenience we recall
here both formulas introduced in
Chapter 4 the mother Gabor �lter
has the following expression:

ψ0 (ξ ) =

ψ0 (ξ1, ξ2) =
1

2πσ 2 e
−(ξ 2

1 +α
2ξ 2

2 )

2σ 2 e
2ib̄ξ2
σ ,

where b̄ = 0.56 is the ratio between
σ and the spatial wavelength of the
cosine factor. The output of the con-
volution between the image and the
entire bank of Gabor �lters is

O (x1,x2,θ ) =∫
M

I (ξ1, ξ2)ψ (x1 ,x2 ,θ ) (ξ1, ξ2) dξ1dξ2.

Later on we will consider
R (x1,x2,θ ), the odd �lter part
contribution to the previous
output.

and Sarti, in which the natural connectivity metric with whom
the cortical space SE (2) in endowed is sub-Riemannian. In the
presented metric, in formula (4.10), completion curves (subjec-
tive boundaries) arise as geodesics of the R2×S1 space. Fur-
thermore, they are lifting in the 3D space of the classic elastica
curves. Elastica curves, i.e. curves minimizing the functional∫

γ
(1 + k2)ds

were introduced in [132] as classical reconstruction for subjec-
tive boundaries, which can be either linear or curvilinear. In the
previous formula, the integral is computed along the missing
boundary γ and k denotes its curvature. The equivalence be-
tween the minimization problem proposed by Nitzberg, Mum-
ford and Shiota in [132] and the one proposed by Citti and
Sarti in [28] has been shown in [28]. In this way the prob-
lem of looking for minima has been reduced to a problem of
geodesics in the natural metric of the space R2×S1. The idea is
then to extend this approach for modeling Geometrical Optical
Illusions. In the same way as subjective boundaries, the defor-
mation curves of the proximal stimulus of Geometrical Optical
illusions arise as geodesics of a metric strongly polarized by
the output of simple cells of V1/V2. So the basic idea is to pro-
vide a natural environment for this type of phenomena and to
model them through geodesics of this space. We assume that
the output of the simple cells induce a reinforcement of the
connectivity which become stronger at the activated cells. This
idea is modelled through a polarized metric of the sub- Rieman-
nian space, obtained multiplying the natural metricH −1 of the
space, de�ned in (4.8) with a suitable function R = R (x1,x2,θ )
which only depends on the outputO of the cells, de�ned in for-
mula 4.3). In the frameX1,X2 the metric and its inverse become
(for de�nitions see section 4.3.1)

H =
1
R

(
1 0
0 1

)
, H −1 = R

(
1 0
0 1

)
(7.2)

We postulate that perceptual curves for the GOIs such as the
one presented in �gure 7 are length minimizers of the polar-
ized metric in (7.2). Until now psychologists have been looking



124

for the paths of perceptual curves through quantitative percep-
tual experiments, [181, 107]. Here we will provide spatial co-
ordinates for such curves, looking for them through a neural-
based mathematical model.

The original contribution of this chapter will be to provide
a neural based mathematical model able to recover perceptual
curves in GOIs, and to compare them with previous psychophys-
ical estimations of those curves.

7.2 Geodesics, distance and Eikonal equation

In De�nitions 3.3.5 and 3.3.6 we provided the de�nition of Rie-
mannian geodesics and minimizing geodesics. The same de�ni-
tions could be given in the sub- Riemannian setting, but for our
application we are mainly interested in minimizing geodesics
[121]:

De�nition 7.2.1. Given two points η0, η1 and a curve γ on
which the minimum in 4.11 is attained, we call such curve a
geodesic.

Sub-Riemannian geodesics and their application to image
analysis were also studied in [7, 84, 114]. For explicit formu-
las of SR-geodesics in SE (2) in the particular case of uniform
external cost R = 1, see [148]. By the de�nition 4.12, the length
of the minimizing geodesics between two pointsη0 andη1 is the
Carnot Carathéodory distance between them (section 4.4). It is
known that this distance is a solution of the sub- Riemannian
eikonal equation, see [20].

Figure 7.2: Minimum along θ of
the distance mapW , numerical
solution of equation 7.3, from
initial boundary condition e =

(0, 0, 0) and R = 1, i.e. Sub-
riemannian distance as shown
in formula (4.10).

In the metric de�ned in (7.2) the equation has the following
expression: {

‖∇HW (η)‖H = 1 for η , e ,
W (e ) = 0, (7.3)

where H is the metric de�ned in (4.8). The Eikonal equation
belongs to the class of Hamilton- Jacobi equations. Let us re-
call that viscosity solutions for this kind of problems in the
Euclidean setting have been provided by Crandall and Lions
[34, 36]. For uniqueness see [4] (recent version). We refer to
section 5.3 for a summary of the contributions to the notion of
viscosity solution. Monti improved the previous result show-
ing that the equation holds almost everywhere. Because of the
uniqueness of the solution, necessarily the solution W will be
the distance from a point [123]. See also Dragoni, [51, 52]. For
the solution in the case of the Heisenberg group, see [122]. In
this theoretical framework the solution of (7.3) will be the sub-
Riemannian distance in the metric H , opportunely weighted
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by R, from the point e . In �gure 7.2 the minimum along θ of
the sub- Riemannian distance map computed through the SR-
FM is presented. Colors indicate the distance from the bound-
ary value e .

7.2.1 Riemannian approximation of sub-Riemannian distance

Let us recall that the subriemannian distance d can be approx-
imated via a family of suitable Riemannian distances. For 0 <
ϵ � 1 we de�ne the metric

Gϵ = diag( 1
R

, 1
R

, 1
ϵ2R

),

with respect to the frame X1, X2, X3, and we call dϵ the asso-
ciated Riemannian distance. Gϵ is the Riemannian approxima-
tion of the metric G, which extends to the whole space the met-
ric H . See sections 4.3.1 and 5.3.1, here the reference frame is
modi�ed up to a constant with respect to sec 5.3.1. Its inverse
is expressed as

G−1
ϵ = diag(R,R, ϵ2R),

so that G−1
ϵ formally tends to G−1.

Accordingly for every ϵ > 0 the Riemannian distance dϵ (η, e )
satis�es the Riemannian Eikonal equation:{

‖∇GϵWϵ (η)‖Gϵ = 1 for η , e ,
Wϵ (e ) = 0, (7.4)

It is important to note that the equality in the limit is not only
formal. Indeed it has bee proved by Gromov in [82] that d is ap-
proximated by the Riemannian distance dϵ . As a consequence
the solutionWϵ tends toW as ϵ goes to 0.

7.3 Sub-riemannian fast marching

7.3.1 Solution of the Eikonal Equation

Fast-Marching is a fast and accurate technique introduced by
Sethian in [156, 157, 158], for solving the stationary eikonal
equation when the metric is isotropic (proportional at each point
to the identity matrix). It allows to compute an approximate so-
lution of the latter, i.e. the Euclidean distance map from a cer-
tain boundary initial condition. Let us go through the method,
as originally proposed by Sethian in the Euclidea setting. First,
equation (7.1) is discretized with an upwind scheme presented



126

in formula (8.2) of [156] and in [147].



max(D−x1
ijk

W ,−D+x1
ijk

W , 0)2

max(D−x2
ijk

W ,−D+x2
ijk

W , 0)2

max(D−x3
ijk

W ,−D+x3
ijk

W , 0)2



1/2

= 1 (7.5)

Figure 7.3: Progress of the Fast
Marching method along the grid
points of the stencil, see [156].

with f (x1,x2,x3) = 1, D+/−
ijk

denoting forward and backward
di�erences along x1, x2 or x3, directions in R3. Scheme in (7.5)
can be solved, as proposed in [147], through iteration. The key
innovation proposed by Sethian in [157, 158] is to construct the
solution W using only upwind values, which guarantees the
information is propagated one- way starting from the bound-
ary, from small values of W to larger ones. At each step we
march downwind and we identify the points around the bound-
ary which minimize the solutionW . This cannot yield a value
smaller than that at any of the already computed points. The
grid point containing the minimum of W becomes the new
boundary value, and the propagation follows this scheme. To
summarize it: �rst, boundary value points are tagged asKnown;
then, all points that are one grid point away are tagged as Tri-
als. Finally, all the others are tagged as Far. Then a loop over
the stencil is performed, as follows:

(1) Begin loop: let A be the Trial point with the smallest W
values.

(2) Add the point A to Known; remove it from Trial.

(3) Tag as Trial all the neighbors of A that are not Known. If
the neighbor is in Far, remove, and add to the set Trial.

(4) Recompute the values of W at all Trial neighbors of A ac-
cording to equation (7.5) by solving the quadratic equation
(backsolve).

(5) Return to top of loop.

See �gure 7.3.1 for the evolution of the process through the
explained iterations. The fast- marching method has been ex-
tended in the case of Riemannian metric by Mirebeau,[120],
and in [6] was developed in the SE (2) equipped with a sub-
Riemannian metric, with arbitrary external cost. These recent
method belong to the Dijkstra’s class of algorithms [49], in
which the approach for solving the Eikonal equation is slighty
di�erent. While the method proposed by Sethian looks for
the solution of the continuous problem, Dijkstra’s method ap-
plies to graphs, where the front propagates by looking for the
node reached with the smallest current cost, i.e. the prescribed
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weight of the nodes of the graph. In order to deal with the
anistropic eikonal equation associated to a given Riemannian
metric (important for its application to control problems [159]
and medical image analysis [8]), Mirebeau in [120] introduced
a Fast Marching using lattice basis reduction (LBR, has been
introduc in [129]). This means that the considered stencil is
sparse and non- negative, in order to adapt to the anisotropic
solution we are looking for.

7.3.2 Geodesics computations

Once the solution of the Eikonal problem has been recovered,
geodesics, length minimizers of the metric, are computed using
gradient descent (�gure 7.4).

Figure 7.4: Illustration of gradi-
ent descent on a series of level
sets on a prescribed map.

The latter method ensures to move toward the local mimu-
mum of a prescribed map (our distance mapW ). This local min-
imum is reached following the -∇ direction of the functionW
at a current point. This ensures, looking for example at �gure
7.4, thatW (x0) >W (x1) > . . . >W (x4), meaning that we con-
verge to a desidered local minimum. Bekkers et al. in [6] solve
the sub- Riemannian Eikonal equation in (7.3) via the Rieman-
nian approximation introduced in 7.4. In order to do so they
suitably adapt the method explained in 7.3.1. Then they call
γ (t ) the solution of the Cauchy problem:{

γ̇b (t ) = −∇HW (γb (t )), t ∈ [0,T ]
γb (0) = η1, (7.6)

and prove thatγ (t ) = γb (T − t ) is the sub- Riemannian geodesic
connecting e and η1.
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7.4 Poggendor� illusion

Figure 7.5: The original Poggen-
dor� illusion.

Poggendor� illusion consists in an apparent misalignment of
two collinear, oblique, transversals separated by a rectangular
surface (shown in Fig. 7.5). It is named after Johann Chris-
tian Poggendor�, the editor of the journal Annalen der Physik,
who discovered it in the �gures Johann Karl Friedrich Zöllner
submitted when �rst reporting on what is now known as the
Zöllner illusion, in 1860, see [190] and �gure 6.3, (e). Refering

Figure 7.6: Poggendor� illusion
in which both completion (blue)
and collinear continuation (red)
of the left transversal (black) are
shown, see Greist et al. see [81].

to �gure 7.6, in which a perceptual scheme of the illusion is
provided, the perceptual completion of the black line appears The experiment used to measure

the quantitative contribution of the
obtuse angle e�ect is explained
in [42], page 542. The right
transversal is substituted by a dot.
The illusion is still present, mean-
ing that what accounts for it is the
elongation of the central bar pro-
duced by the obtuse angle, and not
the tendency of the transversal to
form a right angle with the parallels.
This conclusion have been rejected
recently by some experiments per-
formed by the same authors in [43]
and summarize in [180].

to be the blue segment, instead of the red segment, which cor-
responds to the geometrical continuation of the black line. An
interesting overview of the psychological elements contribut-
ing to the misperception in Poggendor� illusion has been per-
formed from the 70s by many authors, we recall just few of
them [181, 107, 42, 144, 162]. This phenomenon of misaligne-
ment occurs in a wide range of �gures, see [163, 41]. In their
paper Day and Dickinson, [42], identi�ed with psychophysi-
cals experiments some of the components of the Poggendor�
illusions, i.e. the main e�ects independent one from the other
which contribute to the perceptual distortion. The most criti-
cal feature is the obtuse angle e�ect, which was measured psy-
chophysically (see margin note): it consists on the fact that the
apparent length of the sides of an obtuse angle is greater than
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that of an obtuse angle of equal physical lengths, meaning that
is the segment of the parallel that makes an obtuse angle with
the outer transversal segment which elongates the central bar,
creating the illusory e�ect [42, 107]. The latter is then produced
by a change of the apparent extent in the space between the
aligned elements, with consequent change in apparent oblique
direction. It follows that the illusion is consistently more per-
ceptually signi�cant in those �gures in which one or more ob-
tuse angles occured [107]. The latter e�ect can also be called
shrinkage of the modal space (the space between the transver-
sal), see [164, 40] and for a similar approach [162]. However,
the same authors that claimed for such theory, in later works
rejected it through experimental �ndings, and a uniform inter-
pretation for this phenomenon is still missing. See, for instance,
Weintraub [180], 1993, and Day, [43], 1987. Another possi-
ble explanation for the phenomenon was the misperception of
the orientation of the transversal in the stimulus, the so called
regression to right angles tendency presented in [13, 89, 90],
in which the misalignement in the Poggendor� illusion is at-
tributed to an apparent angular displacement of the transver-
sals towards a right angle with the parallels, seemed to be in-
su�cient to explain this phenomenon. For example, see �gure
7.7, left, it does not account for the abolishment of the e�ect
when only acute angles are shown. However, these studies

Figure 7.7: From Weintraub and
Talasli, see [181, 162], left: the
Poggendor� illusion reduced to
its acute angular components.
Any illusory e�ect is perceived.
Right: the illusion still holds
keeping the obtuse components
of the Poggendor� stimulus.

were fundamental because they allowed to measure the geo-
metrical components partecipating to the illusion. As it has
already been measured by Weirtraub and Krantz in [181], the
actual size of the obtuse angle and of the central bar account for
the magnitude of the Poggendor� illusion. We should not look
for an explanation related to the regression of right angle of the
transversal because, as explained in chapter 6, it is a certain
number of orientations spiking in a neighbourhood of a spa-
tial point that gives birth to a displacement and a regression to
right angle phenomenon (the displacement decreases linearly
with the decreasing number of lines which intersect, see the
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modi�ed Hering illusion example). In the Poggendor� exam-
ple only two orientations cross. Another component which
seems to play a role, see Weintraub [182] and Ninio [130] is the
orientation at which the �gure is presented. Even if the illu-
sory e�ect still holds, it decreases and increases in dependence
of the angle used to rotate the standard Poggendor� stimulus.
Even if our model still does not account for this last component,
because our setting is invariant for rotations and translations,
we believe that our explanation is the most near to the real
behaviour of the cortex in presence of this stimulus. If the in-
ducers are able to cortical represent the central surface (�gure
7.7 right) the illusion is still present. Otherwise (�gure 7.7 left)
no. Furthermore, as we already said in chapter 6, our approach
is in accordance with Bayesian learning theory. Then our �nd-
ings are in accord with the ones obtained by Howe et al. [92],
who were able to fully account for all the possible behaviour of
the Poggendor� illusion and other GOIs [91]. The perceptual
representation of the central surface induces a misperception
of the two segments belonging to the same transversal. This
happens because the path joining the two segment (which can
be substituted also by two dots) is not the minimum (in length)
if we consider the natural metric of the cortex. Then the per-
ceptual curve for such phenomenon projects at some point over
the parallel, di�erent from the natural alignement. We will be
looking for the perceptual curve as a length minimizer in our
metric (7.2).

7.4.1 Polarization of the metric

In the Poggendor� illusion two main e�ects occur, as the reader
may have understood. First the central surface is detected, as
we clearly perceive in �gure 7.5. This suggests that either the
central surface is indenti�ed by its boundaries, or it is of con-
stant color (see �g 7.8) it a�ects the perception of the image.

Figure 7.8: Poggendor� stimu-
lus, with modi�ed width of the
central bar. From left to right: 7
pixels , 15 pixels, 25 pixels, ori-
entation angle of the transversal
π/4.

Then there is a misalignment of the two crossing trasversals,
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and the illusion arises. In presence of the initial stimulus of the
Poggendor� illusion, even gabor �lters, which are able to de-
tect contours, give the same non vanishing response either we
work with the central surfaces and lines. Then we can discard
this constant contribution and focus only on the one provided
by Odd Gabor �lters. Their contribution selects only the cen-
tral surface. Indeed

(1) Odd receptive pro�les are able to detect the boundaries of
the central surface. Indeed their response is maxima along
contours in which polarity plays a role. Polarity means that
contours with the same orientation but opposite contrast are
referred to opposite angles (see [60]). For this reason we as-
sume that the orientation θ takes values in [0, 2π ), while con-
sidering odd �lters.

(2) The contribution of odd receptive pro�les is null along a
straight line. Indeed along a straight line, (see 7.9 left) the
only non vanishing contribution is given by the convolution
of the initial stimulus with the bank of Even Gabor �lters.

Figure 7.9: Left: a straight line,
initial stimulus. Center: the sum
along θ of the responses to the
stimulus of Even Gabor �lters. It
is not null. Right: same summa-
tion along θ of the Odd Gabor
�lters. This last contribution is
null along a line.

It follows that the analysis of the three Poggendor� illusions
in 7.8 can be reduced to the processing of the images in 7.10,
in which we neglect the presence of the entry trasversals. The
expression of the metric in 7.2 with respect to the Euclidean
frame becomes:

hij (x1,x2,θ ) = R (x1,x2,θ )
*..
,

cos2 θ sinθ cosθ 0
sinθ cosθ sin2 θ 0

0 0 1

+//
-

,

(7.7)
whereR (x1,x2,θ ) is the odd �lters response opportunely shifted
to positive values to be used as weight for the metric:

R (x1,x2,θ ) = 1 + Im(O (x1,x2,θ ))√
1 + Im(O (x1,x2,θ ))2

(7.8)



132

Figure 7.10: Simpli�ed Poggen-
dor� stimulus, with width of the
central bar changed. From left
to right: 7 pixels, 15 pixels, 25
pixels.

7.4.2 The experiment

Let us now go through the implementation process and its pa-
rameters. The �rst part of the processing consists in convolving

Figure 7.11: Left: Repre-
sentation of a section of
(x1,x2,θ ,R (x1,x2,θ )), graph
of R (x1,x2,θ ), for x2 �xed.
R (x1,x2,θ ) is the output
positively shifted of odd re-
ceptive pro�les of simple cells.
R (x1,x2,θ ) is constant along
x2. Right: ∇R (x1,x2,θ ) is
visualized in correspondence
of the contours of the central
bar, projected onto the (x1,θ )
plane. We represent x1, and θ

component of ∇R, since the y
component vanishes.

the initial image 7.10 with a bank of odd Gabor �lters with the
following parameters: γ = 1.5,

θ ∈ {−π ,−π + 2π
N

, . . . ,π − 2π
N

,π }

(N = 65 values), σ ∈ {2, 4} (pixels, for central surfaces width
= 15, 25 pixels), σ = 1 for central surface width = 7, σ

λ = 2.
The convolution produces a response, opportunely shifted to
positive values: R (x1,x2,θ ). It corresponds to the polarization
of our sub-Riemannian metric and will be used as weight for
the connectivity. Figure 7.11 (left) shows a section of the graph
of R (x1,x2,θ ), (x1,x2,θ ,R (x1,x2,θ )), for x2 �xed. In �gure 7.11
(right) it is visualized ∇R (x1,x2,θ ), the gradient of R (x1,x2,θ ),
the cost used in the sub-Riemannian Fast-marching. Up to the
Riemannian approximation this gradient directly determines
the Christo�el symbols Γkij which de�ne completely the a�ne
Levi-Civita connection arising from the Riemannian approxi-
mation of the metric. Here we omitted the dependence on ϵ to
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simplify notations. From Γkij it is possible to deduce the equation
of the geodesics in R2×S1 in the riemannian approximation and
letting ϵ go to 0, to obtain the sub- Riemannian geodesics. For

Figure 7.12: The Christo�el sym-
bols computed through a Note-
book in Mathematica, relative to
the metric in formula 7.7. Here
(x1,x2,θ ) are encoded as (x ,y, t )
and R (1,0,0) denotes the deriva-
tive along the coordinate x of
R (x1,x2,θ ), i.e. the �rst com-
ponent of the gradient. In red
it is marked how ∇R (x1,x2,θ )
a�ects the Christo�el symbols
and as a consequence geodesics
equations.

this reason the behaviour of ∇R (x1,x2,θ ) in �gure 7.11 (right)
already gives us intuitively an idea of the path followed by the
computed geodesics, for example for initial angle θ = 0 the
�ow individuated by the gradient shows no de�ection, as per-
ceptually expected if inducers are orthogonal to the central bar.
A Mathematica (Wolfram Alpha) notebook allows to compute
Christo�el symbols given a certain metric. In �gure 7.12 we
show the symbols for the Riemannian approximation of the
metric in formula 7.7. Now that all preliminaries have been
clari�ed, it is possible to choice initial point and �nal point for
the geodesic we want to compute. Still, when we look at an
image such as the Poggendor� illusion, we do know that the
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transversal are not perceived as collinear, but we want to be
able to draw the perceptual projection for such stimulus, and
to identify it. In other words, we want to determine where the
left transversal projects over the right parallel (equal to identify
the red segment in �gure 7.6). Then we will �x the initial seed
and give as �nal tips a discretization of points along the right
bar, from the geometrical collinear transversal to the orthogo-
nal projection of the left transversal over the right parallel, see
�gure 7.13.

Figure 7.13: Tips for the percep-
tual completion curve are cho-
sen along the bar in the Red
zone.

7.4.3 Results

As we already saw in the introduction of this section, manipu-
lating the elements partecipating to the Poggendor� illusions
to understand how to magnify the illusory phenomena has been
done in many works, for instance in Day et al. [42], page 545,
Burmester in [18], Weintraub and Krantz in [181].

Figure 7.14: From [181]: quanti-
tative measurements of the mag-
nitude of the Poggendor� illu-
sion varying the angle of the en-
try transversal and the central
surface width.

Measurements have been performed, see �gure 7.4.3, as fol-
lows: the observer was asked, looking at the Poggendor� stim-
ulus, to move the right transversal in order to put it in a per-
ceptual collinear position with the left transversal. This implies
that the right transversal is displaced along the right parallel:
the measured displacement is called underestimation in �gure
7.4.3, and it is possible to see how it changes modifying the size
of the central surface and the orientation of the transversal. In
�gure 7.15 and 7.16 some frame of two video representation the
change in magnitude of the Poggendor� illusion varying the
size of the central surface and the orientation of the transver-
sal cutted by the central surface.



7. Sub-Riemannian geodesics for GOIs 135

Figure 7.15: These images con-
stitute single frames of a video
which shows how the magni-
tude of the Poggendor� illusion
changes varying the entry angle
of the transversals. If the con-
sider transversal is perpendicu-
lar to the central surface, the il-
lusory e�ect is abolished.

Figure 7.16: These images con-
stitute single frames of a video
created by the author which
shows how the magnitude of the
Poggendor� illusion changes
varying the size of the central
bar. As shown, increasing this
size produces a magni�cation of
the illusory e�ect, while if we
consider a width of the central
surface tending to 0, the illusory
e�ect is abolished.
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Figure 7.17: Representation of a
level set of the cost R (x1,x2,θ ),
output of odd Gabor �lter, pos-
itively shifted, for θ = 0. The
maximum of R (x1,x2,θ ) over θ
is reached over the right bar.

Processing of the Initial Stimuli In �gure 7.18 we show all the
Poggendor� illusions, with also the transversals drawn, that
have been considered in order to evaluate and compute the
perceptual collinear transversal. We recall that the transver-
sal have been used only to determine the boundary conditions.
The width of the central surface had the following values (in
pixels): 7, 15, 25. The angles of the entry transversal, i.e. the
acute component of the initial stimuli shown in �gure 7.18,
are: θ = π/4,π/6,π/11,π/2. The images are 100 × 50 (ex-
cept for the one with central surface equal to 25 pixels which
is 110 × 50). Once we compute the response and we properly
compute R (x1,x2,θ ) (�gure 7.17), we are ready to use it as ex-
ternal cost (polarization of the metric) for the sub- Riemannian
Fast- Marching. The metric hij (x1,x2,θ ) in formula (7.7) will be
implemented with the following expression:

hi j (x1,x2,θ ) = R (x1,x2,θ )
*..
,

ξ−2 (cos2 θ + ε2 sin2 θ ) ξ−2 (1 − ε2) sinθ cosθ 0
ξ−2 (1 − ε2) sinθ cosθ ξ−2 (sin2 θ + ε2 cos2 θ ) 0

0 0 1

+//
-

,

(7.9)
The parameter ξ modulates the anisotropy between the two

direction, ξ∆x1 = ∆θ , where ∆x1,∆θ are the discretization
steps along x1 and θ . It then depends on the entry angle for
the transversal and the width of the surface chosen for the ex-
periments: it is directly proportional to the width of the central
surface and it varies with a ratio 1/3 if we consider the angle
change. Table 7.4.3 shows the values of ξ for the presented ex-
periments.

ξ Width = 7 pix Width = 15 pix Width = 25 pix
θ = π/4 0.51 1.09 1.82
θ = π/6 0.77 1.64 2.74
θ = π/11 1.42 3 5
θ = π/2 0.26 0.55 0.92

The parameter ε indicates the Riemannian approximation and
in our experiments is set equal 0.1. As we said, we only �x the
initial point, which will be in all the experiments the crossing
point of the left transversal with the parallel, for example for
width = 15 and θ = π/4 it is η0 = (17, 57,π/4), and we let the
�nal points varying along the right parallel as shown in �gure
7.13. Then the �nal points will all share the same x1 compo-
nent (i.e. the x1- coordinate of the right parallel, 33) and the
θ component, θ = π/4, because we know that the perceptual
transversal will be parallel to the geometrical collinear one.
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Figure 7.18: Initial stimuli pro-
cessed in this work. Top: �xed
width= 7 pixels, varying the ori-
entation from left to right: θ =
π/4,π/6,π/11,π/2. Central:
�xed width = 15 pixels, vary-
ing the orientation from left to
right: θ = π/4,π/6,π/11,π/2.
�xed width = 25 pixels, varying
the orientation from left to right:
θ = π/4,π/6,π/11,π/2.

Figure 7.19: Minimum of dis-
tance mapW (η) from the bound-
ary value condition (initial seed)
η0 = (17, 57,π/4) of equa-
tion (7.3), along the direction
θ , computed through SR-Fast-
Marching.

Once all the parameters and boundary conditions have been
set, it is possible to run the sub- Riemannian Fast- Marching,
in order to compute the distance map, see �gure 7.19, from the
initial point, solution of the Eikonal equation (7.3). Geodesics
are obtained through gradient descent over the distance map,
see section 7.3.2, from the set �nal points.

Computed Geodesics As we said in the previous section, in �g-
ure 7.20 we show the computed geodesics for each stimulus in
�gure 7.18. From each initial point, multiple endpoints (tips)
were chosen and the corresponding geodesics have been plot-
ted. In red we put in evidence the 2D projection of the curves,
while in cyan we underline the length minimizers. The percep-
tual geodesic (cyan) is the shortest one. In this way we iden-
tify the x2− component of the perceptual transversal, and we
�nally get all the coordinates (x1,x2,θ ) for drawing it. For the
representation of the perceptual transversal recovered through
the presented method, see �gure 7.22. In �gure 7.21 we show
how the length of the computed geodesics varies along the x2−
component of the right parallel. The graph in �gure 7.21 has
on its x− axis the x2− component of the right parallel, while
on its y− axis the correspondent lengths. The dot in cyan iden-
ti�es the minimum, which corresponds to the curve colored in
cyan in �gure 7.20. It has been obtained for width = 15 pix-
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Figure 7.20: Computed geodesic
with multiple endpoints (tips).
In cyan we color the length
minimizer. Fixed width =
7, 15, 25 pixels, varying the ori-
entation from left to right: θ =
π/4,π/6,π/11,π/2.

els and θ = π/4, but this representation has the same quali-
tatively trend for all presented experiments. Finally in �gure
7.23 we show a 3D representation of a couple of geodesics com-
puted for θ = π/4 and the width of the central surface is 15
pixels. Seed = (18, 56,π/4) and �nal tips for the geometri-
cal and perceptual collinear are Tip1 = (32, 41,π/4) and Tip2
= (32, 45,π/4) respectively. Again, the sub-Riemannian length
of the red curve is 2.0480 pixels (the one which connects to ac-
tual collinear transversals), and the sub-Riemannian length of
the blue curve is 1.8094 (the perceptual collinear transversal).
Then as expected, the shortest curve implemented through the
considered metric is the perceptual one.

Remark 7.4.1. In the Euclidean setting this model would not
have worked, since the minimum in the Euclidean metric would
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Figure 7.21: Here we show
how the length of the computed
geodesics varies along the x2−

component of the right parallel.
The graph has on its x− axis the
x2− component of the right par-
allel, while on its y− axis the
correspondent length. The dot
in cyan identi�es the minimum,
which corresponds to the curve
colored in cyan in �gure 7.20. It
has been obtained for width =
15 pixels and θ = π/4.

Figure 7.22: Representation of
the perceptual transversal: as
explained in section 7.4.3, once
all geodesics have been com-
puted, we pick up the length
minimizer. Its corresponding �-
nal point gives us the coordi-
nates of the perceptual transver-
sal. Top: �xed width =
7 pixels, varying the orienta-
tion from left to right: θ =

π/4,π/6,π/11,π/2. Central:
�xed width = 15 pixels, vary-
ing the orientation from left to
right: θ = π/4,π/6,π/11,π/2.
�xed width = 25 pixels, varying
the orientation from left to right:
θ = π/4,π/6,π/11,π/2.
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Figure 7.23: Left: 2D projec-
tion of the computed geodesics.
The perceptual curve is blue,
the actual completion of the left
side transversal is the red curve.
Right: 3D plot of the computed
geodesics.

have been the horizontal line, starting from the left crossing
point between the transversal and the surface and projecting
on the right side of the central bar. The sub- Riemannian metric
we have introduced depends on the orientation of the trasver-
sal line. Hence if this is not horizontal, also the minimum is
not the horizontal line, it is the curve marked in cyan (�gure
7.20). This explains that this model captures the phenomenon
and that the intrisic geometry of the cortex responds to the sub-
Riemannian model introduced in this thesis.

Summary In this paragraph a table reporting the collected data
concerning the sub-Riemannian lengths of the computed curves
are presented for width of the central surface equal to 15 pixels,
angles of the transversal varied in the range presented before.
It refers to the change of length if we consider the perceptual
curve and the one connecting the geometric collinear transver-
sals.

Type of curve Width = 15 pixels
Perceptual curve θ = pi/4 1.945
Actual curve θ = pi/4 2.065
Perceptual curve θ = pi/6 1.64
Actual curve θ = pi/6 1.88
Perceptual curve θ = pi/11 1.32
Actual curve θ = pi/11 1.78
Perceptual curve θ = pi/2 2.92
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7.5 Round Poggendor�

In this section a variant of the original Poggendor� illusion pre-
sented in �gure 7.5 is presented. The modi�ed illusion, which
will be called Round Poggendor�, is shown in �gure 7.24. The

Figure 7.24: Left: Round (or Cir-
cular) Poggendor� illusion, see
Talasli et al. see [162], �g 1B.
Right: using the color notation
in �gure 7.6, we stress the fact
that the gray segment doesn’t
project onto its co-circular corre-
spondent segment (the red one).
It projects at some point that our
method wants to identify into
the region marked in blue.presence of the central surface induces a misperception of the

circle, as if the two cutted parts of the circumference (one on the
left of the surface and the other on the right) would not belong
to the same circumference anymore. In other words, refering to
the right �gure in Fig. 7.24, the gray part instead of projecting
from the perceptual point of view over the co-circular segment
in red, it projects at some point at a certain orientation in the
region highlighted in blue.

7.5.1 The experiment

Here the parameters which modulate the metric are ξ = 2.5 and
ε = 0.1. The seed �xed is (x0,y0,θ0) = (1/

√
2, 1/

√
2,−π/4) and

then in order to compute the corrected perceptual completion
curve we provide again a �nal set to the sub-Riemannian Fast-
Marching. Possible �nal orientations detected space between
[0,−π/10], where θ = 0 is the angle corresponding to the or-
thogonal projection over the left bar and θ = −π/10 is the
boundary condition of the circle at crossing point with the left
bar. In an analogous way we took a discretization between pos-
sible values of the y coordinate and we run the Fast-marching,
which is able to identify the minimal length curve given a cer-
tain seed and multiple tips (�nal points). Once again, the reason
why we chose to perform such experiments is that we didn’t
not which was the right angle and y coordinate for the end-
ing point of the perceptual curve. The SR length of minimizing
geodesic is 1.32668. The endpoint for min geodesic is 0.31, 0.88,
-0.27.
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Figure 7.25: Top: Round (or Cir-
cular) Poggendor� illusion, from
Talasli et al. see [162], �g 1B.
Down: using the color notation
in �gure 7.6, we stress the fact
that the gray segment doesn’t
project onto its co-circular corre-
spondent segment (the red one).
It projects at some point that our
method wants to identify into
the region marked in blue.

7.6 Discussion

In this chapter we provide a neuro- mathematical model for the
perceptual curves arising in phenomena such as the Poggen-
dor� illusion. In this way, the perceptual collinear transversal,
which was until now identi�ed by mean of psychophysical ex-
periments, is determined through a neuro- geometrical method.
In fact, those perceptual curves are found as sub- Riemannian
length minimizers of a certain metric modulated by the output
of simple cells of V1. This means that the reason why such
phenomena arise needs to be found into a polarization of the
connectivity performed by our low- level visual process. The
presented study is able to �t the changes in the perceived mag-
nitude of the illusion observed by many authors, see [181, 42],
once the parameters for the computations are set. Further de-
velopments will be in the direction of �tting quantitative data
already present in literature, as well as trying to take into ac-
count the rotation of the image (see [182]) as a contribution in
the perceived magnitude of the illusion. Finally, we believe this
method can be extended to other geometrical optical illusions
(see �gure 6.3) and it will provide important insights in identify-
ing and representing the perceived curves arising in our cortex
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while looking at these phenomena.





8 Scale/size Geometrical Optical Il-

lusions

The aim of this chapter is to extend the model for geometrical
optical illusions introduced in chapter 6 to scale- size illusions,
those phenomena in which the interaction between objects of
di�erent size induce a misperception of the width of a target. If
we look at images such as the ones presented in �gures 8.1 and
8.2, known as Ebbinghaus and Delboeuf illusions respectively,
the presence of circular inducers (�gure 8.1) and of an annulus
(�gure 8.2) varies the perceive sizes of the central targets. These
phenomena have been named for their discoverers, the Ger-
man psychologist Hermann Ebbinghaus (1850–1909), and the
Belgian philosopher and mathematician Joseph Remi Leopold
Delboeuf (1831 – 1896), [47]. The Ebbinghaus phenomenon has
been popularized in the English- speaking world by Edward
B. Titchener in a 1901 textbook of experimental psychology,
and this is the reason why it is also called Titchener illusion
[143]. The main idea here is to identify a connectivity metric

Figure 8.1: Ebbinghaus (or Ticht-
ner) illusion: two circles of iden-
tical size are placed near to each
other, and one is surrounded
by large circles while the other
is surrounded by small circles.
In the left part of the stimu-
lus, inducers are larger in size
than the central circle, induc-
ing a decreasing size-perception
of the latter. In the same way
when inducers are smaller in
size than the target size, the
size-perception of the latter in-
creases.

from which it will be possible to compute the displacement and
the corresponding perceived misperception. We will consider
an isotropic functional connectivity depending on the detected
scale and on the distance between the objects composing the
stimulus. We will see how this phenomenon is implemented
and provide with numerical simulation the perceived deforma-
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tion. Our computations will be in agreement with judgemental
studied of these phenomena [116], as well as the observation
of how illusions change with the distance between target and
inducers, [143]. These results will be contained in [65].

Figure 8.2: Delbouef illusion:
the presence of an annulus
around the target (black circle)
induces a misperception of the
size of the latter. If the annulus is
big, the target tends to shrink or
not displace at all (left). As long
as we decrease its width, the tar-
get is perceived as expanding.
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8.1 Scale and size of an object

Figure 8.3: From Sanguinetti,
[149]. The best scale σ for the
gray boundary considered is rep-
resented in the middle image,
in which the receptive pro�le is
properly aligned, with a correct
distance from the boundary.

The intuition of this work is to adapt the previous model of
in�nitesimal strain theory, chapter 6, section 6.3.1, to di�erent
stimuli, such as the ones involving the feature of scale, see �g-
ures 8.1, 8.2. Scale and size of an object are related concepts:
if we consider receptive pro�les modelled as Gabor �lters, see
equation (4.1), the scale σ encodes the distance from the bound-
ary (see formula 4.1). For the extension of the cortical based
model presented in chapter 4 to this feature see Sarti, Citti and
Petitot in [154, 138]. Size is the spatial dimension of an object
and is the maximum output of the scale. We compute it through
a non-maximal suppression of the other values of scale within
an object. The Ebbinghaus and Delboeuf illusions (�gures 8.1,
8.2) are phenomena in which the context induces a mispercep-
tion of the size of the central target, [108]. This means that the
early visual process identi�es the size of the objects composing
an image and we evaluate the interaction between them. For
example in �gure 8.1 the circles are the perceptual units and
we measure their interaction. In order to apply the model in-
troduced in section 6.3.1 we need to modify the metric used for
orientation- type illusions. Here we will consider the isotropic
functional connectivity related to the detected scale: the activ-
ity equation that we will build will decrease with the distance
between the objects of the image.

8.2 The model

In this section we develop and explain all the passages funda-
mental to understand the model we built for scale type illusory
phenomena. Once the connectivity is described, it will be used
as new strain metric tensor in order to allow us to repeat the
modeling presented in section 6.3.1 and to recover the displace-
ment vector �elds induced by the size perception.

8.2.1 Distance selection in V1

It is well known that primary visual cortices are able to detect
the distance of a point from the boundaries of the image. From
a neurogeometric perspective, it means that we move from the
space of rotations to the one of rotation and dilations, see [154]
and [138]. Through the usual convolution process of an im-
age with Gabor �lters, described in chapter 4, formula (4.3), we
are able to detect the response of the hypercolumns of simple
cells varying the orientation feature θ and the scale σ (section
4.2.2). The intra- cortical mechanism selects the maxima over
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the orientation and scale hypercolumns, providing the selec-
tion of two maximal outputs for both features: θ̄ and σ̄ . In
�gure 8.4 (right) the selection of σ̄ performed through the con-
volution of the bank of Gabor �lters with an initial stimulus
(�gure 8.4, left) is shown. Here we will discard the orientation
selection and we focus on the scale detection. For each point
the color identi�es the distance σ̄ from the nearest boundary,
selected over the hypercolumns containing all the possible dis-
tances σ .

Figure 8.4: Left: the initial stim-
ulus processed. Right: the max-
imum response σ̄ �xing θ . For
each point the color identi�es
the distance σ̄ from the nearest
boundary, selected over the hy-
percolumns containing all the
possible distances σ .

8.2.2 Non-maximal suppression

Once the σ̄ (x1,x2) has been constructed through the selectiv-
ity mechanism within the hypercolumnar structure, the aim is
to compute the size of each perceptual unit, which is the maxi-
mum of σ̄ (x1,x2) for each considered object. We did it using an
advection equation, which allowed us to propagate the max-
ima of each circle over the whole region. This permits to as-
sociate a single size value, called ρ (x1,x2) to each perceptual
unit composing the image. Let us look for example at �gure
8.5. Starting from the left map representing σ̄ (x1,x2), we prop-
agated the maximum information within each circle using an
advection equation, (8.2.2) (i.e. motion of a conserved scalar
�eld, ∇σ̄ as it is advected by a known velocity vector �eld, in
this case unitary). We also select the points (x̄1, x̄2) where the
maximum is attained.

∂σ̄ (x1,x2)

∂t
= −∇ · ∇σ̄

8.2.3 Connectivity expression for scale type illusion

Here we introduce the isotropic connectivity accounting for
the interaction of points in scale illusions. Gabor �lters are ob-
tained through translation and dilation, hence with an action
of a commutative group. It follows that for all (x1,x2,σ ), with σ
constant, the metric is isotropic and the mechanism explained
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Figure 8.5: Left: representation
of σ̄ (x1,x2). Right: propaga-
tion of the information within
each circle using an advection
equation. This allows us to re-
cover for each perceptual unit
the corresponding value of size,
ρ (x1,x2).

in section 6.3.1 permits to build an isotropic connectivity met-
ric. Once the stimulus has been acquired and the distance has
been detected by simple cells of V1/V2 (�gure 8.4), the size is
evaluted (see �gure 8.5). We consider the interaction between
the scale of the perceptual units composing the stimulus. Let
us consider for example the well-known Ebbinghaus illusion,
see 8.1. The target circles (the central ones in �gure 8.1) and
their inducers are the perceptual objects. This example of illu-
sion consists in perceiving the target circle as smaller (left) if
the sorrounding circles are larger, while the target is perceived
as larger if the sorrounding circles are smaller. The perceived
size of the target, which is the perceptual component we want
to evaluate in this study varies if the size of the inducers varies
[116, 143] and if the distance between the inducers and the tar-
get increases or decreases [143]. The perceived size of the cen-
tral target decreases if the distance among target and inducers
increases. Albeit this last observation lead scientists to assimi-
late Ebbinghaus and Delboeuf illusion [79], we will show how
the size of the annulus, and not only a matter of distance be-
tween the target and the circumference, will play a central role
also in the Delboeuf illusion, see �gure 8.2. The activity equa-

Figure 8.6: Ebbinghaus illusion:
the size of the black inducers
generates a misperception of the
size of the central circle (orange).
In the left part of the stimu-
lus, black inducers are larger in
size than the central orange cir-
cle, inducing a decreasing size-
perception of the latter. In the
same way when black inducers
are smaller in size than the tar-
get size, the size-perception of
the latter increases.

tion will be expressed as the product between a connectivity
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kernel, which decreases with the distance between the consid-
ered points, and the computed sizes of the objects. function of
the selected sizes of the objects.

ρ (x ) =

∫
R2

exp−c |x−x ′ | (ρ (x′) − ρ0) dx
′ (8.1)

where x = (x1,x2) ∈ R2 denotes the coordinates of maximal
scale of the central target, |x − x′| indicates the previously de-
scribed Euclidean retinical distance in R2, ρ0 is a global nor-
malization term denoting the e�ective size. The integral can be
reduced to the points (x̄1, x̄2) where the scale coincide with the
size. From now on we will assume this simpli�cation. Here the
kernel is an exponential, but it can be modelled as a function
decreasing with the distance. The term ρ0 is a mean value for

Figure 8.7: Delbouef illusion:
the presence of a circumference
around the target (black circle)
induces a misperception of the
size of the latter. If the circum-
ference is situated at a consis-
tent distance from the target, the
target tends to shrink or not dis-
place at all (left).

the activity and represents the e�ective size of the central tar-
get. Once the isotropic functional connectivity has been built,
it is used as metric for the strain process explain in chapter 6,
which allows us to recover the displacement vector �eld and to
reconstruct the percept. However, it is still not clear where the
�nal percept is built in our cortex.

8.3 Implementation and Results

In this section we present the implementation of the presented
model and we discuss the test performed concerning the Ebbing-
haus illusion (�gure 8.1) and the Delboeuf illusion (�gure 8.2).
Equation 8.1 becomes in its discretized form:

ρ (x ) =
N∑
i=1

exp−|x−x ′ | (ρ (x′) − ρ0) (8.2)

whereN is the number of inducers, i.e. points (x̄1, x̄2) where the
scale is maxima and coincide with the size. c = 1, the distance
|x − x′| is expressed in pixels, ρ (x′) is the size of the inducer at
point x′ = (x′1,x′2). We always consider points of the image in
which the maximum of the scale is attained.
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8.3.1 Ebbinghaus illusion

We present the computed results through our method relative
to the Ebbinghaus illusion. As is it shown, in paragraphs 8.3.1,
8.3.1, 8.3.1 we varied the number of inducers, N = 2, 4, 6, we
kept the distance �xed |x − x′| = 6 pixels, ρ0 = 14.6 pixels, and
we varied the size of the inducers, which is constant for each
stimulus, ρ (x′) = ρ0 − 8, ρ0 − 4, ρ0, ρ0 + 4, ρ0 + 8 pixels respec-
tively, from top to bottom of �gure 8.8, 8.9, 8.10. For each row of
the cited �gures we present: left, the initial stimulus. In the cen-
tral image it is presented the computed displacement through
the in�nitesimal strain theory approach introduced in chapter
6, section 6.3.3. Finally, the right image containes the perceived
central target: we consider the initial stimulus and we apply
vector �elds ū (x1,x2) computed through our method. The red
circle is the target reference of the initial stimulus, drawn in or-
der to allow a comparison between the proximal stimulus (dis-
placed image) and the distal one, [105, 77] (see chapter 2).



152

Two inducers

Figure 8.8: Computed displace-
ment ū (x1,x2) for the Ebbing-
haus illusion with two induc-
ers. Rows: each row contains
on the left the initial stimulus,
on the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the inducers is in-
creased from the top to the bot-
tom. Fixing the distance be-
tween target and inducers, if the
latter are small, the target ex-
pands, while increasing the di-
mension of the inducers implies
a shrinking of the central target.
The perceived deformation can
be appreciated because each im-
age in the third column contains
also a reference circle (red), rep-
resenting the size of the initial
target.
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Four inducers

Figure 8.9: Computed displace-
ment ū (x1,x2) for the Ebbing-
haus illusion with four induc-
ers. Rows: each row contains
on the left the initial stimulus,
on the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the inducers is in-
creased from the top to the bot-
tom. Fixing the distance be-
tween target and inducers, if the
latter are small, the target ex-
pands, while increasing the di-
mension of the inducers implies
a shrinking of the central target.
The perceived deformation can
be appreciated because each im-
age in the third column contains
also a reference circle (red), rep-
resenting the size of the initial
target.
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Six inducers

Figure 8.10: Computed displace-
ment ū (x1,x2) for the Ebbing-
haus illusion with six inducers.
Rows: each row contains on
the left the initial stimulus, on
the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the inducers is in-
creased from the top to the bot-
tom. Fixing the distance be-
tween target and inducers, if the
latter are small, the target ex-
pands, while increasing the di-
mension of the inducers implies
a shrinking of the central target.
The perceived deformation can
be appreciated because each im-
age in the third column contains
also a reference circle (red), rep-
resenting the size of the initial
target.
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Modified distance between target and inducers

Figure 8.11: Computed displace-
ment ū (x1,x2) for the Ebbing-
haus illusion with six inducers.
Rows: each row contains on
the left the initial stimulus, on
the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the inducers is in-
creased from the top to the bot-
tom. Fixing the distance be-
tween target and inducers, if the
latter are small, the target ex-
pands, while increasing the di-
mension of the inducers implies
a shrinking of the central target.
The perceived deformation can
be appreciated because each im-
age in the third column contains
also a reference circle (red), rep-
resenting the size of the initial
target.
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Comparison with quantitative results

Our previous observations about how the magnitude of the
Ebbinghaus illusion varies in dependence of the distance be-
tween the target and the context (inducers) and in relation with
the size of the inducers has been proven in our previous exper-
iments. Here we compare our results with the ones obtained

Figure 8.12: Top left: here
Massaro and Anderson ([116])
shown how the perceived size
of the central target diminishes
while decreasing the distance
between the inducers and the
target in the Ebbinghaus illu-
sion. This variation is studied
also in relationship with the ef-
fective size of the central tar-
get (from top curve to bottom
one). Top right: we reproduce
the same analysis shown in the
top left image, but only for the
target with e�ective size ρ0 = 15.
Bottom left: the same authors
in ([116]) shown how the per-
ceived size of the central tar-
get varies in relationship with
the size and the numbers of in-
ducers. The little numbers on
the right of each curve indicate
the di�erence between the ac-
tual size of the inducers and the
target, meaning that if we put
smaller circles around the cen-
tral one the enlargement of the
latter increases linearly with the
diminishing size of the context
inducers, while we obtain the
opposite e�ect putting bigger
circles around the target. Bot-
tom right: the latter phenomena
are exactly reproduced through
our model.

through a quantitative analysis by Massaro and Anderson [116].
In �gure 8.12 the left column shows the experimental results,
while the right one combines our computations (red graphs)
shown in the previous paragraphs. It is easy to see how they
correctly match. Furthermore, to reproduce these results, we
started from the same size values used in [116] for target, in-
ducers and distance between them. The top left graph in �gure
8.12 shows how the perceived size of the central target decays
as a function of the distance and in dependence of its size. In the
top right part we shown the same analysis, but for ρ0 = 15. It
corresponds to the central curve in �gure 8.12 top left. The bot-
tom part of the �gure contains an analysis of how the percep-
tion of the central target changes in dependence of the number
of inducers and their size. In general, increasing the number of
inducers intensi�es either the perceived shrinking or enlarge-
ment of the central target. The numbers on the right of each
curve (�gure bottom left 8.12) indicates the di�erence between
the e�ective size of the inducers and the target, meaning that if
we put smaller circles around the central one the enlargement
of the latter increases linearly with the diminishing size of the
context inducers, while we obtain the opposite e�ect putting
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Figure 8.13: Computed displace-
ment ū (x1,x2) for the Delbouef
illusion. Each row contains on
the left the initial stimulus, on
the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the annulus is in-
creased from the top to the bot-
tom. The perceived deformation
can be appreciated because each
image in the third column con-
tains also a reference circle (red),
representing the size of the ini-
tial target.

bigger circles around the target. These phenomena are repro-
duced through our model as shown in �gure 8.12 right.

8.3.2 Delboeuf illusion

One of the greatest problem analyzed for the Delboeuf illusion
(�gure 8.2) which mislead many research were the identi�ca-
tion of the features playing a role in this phenomenon. At-
tempts were made for developing an equivalent approach able
to explain both phenomena, see for example [79]. One clear
fact was the role played by the distance between the inducer
(the circumference) and the target ([143]), but this is not su�-
cient to explain the phenomenon. In our model we show that
the size of the annulus plays a central role in the Delboeuf illu-
sion, see �gure 8.2. In we consider again formula (8.2):

ρ (x ) = exp−|x−x ′ | (ρ (x′) − ρ0)

where N of formula (8.2) is equal to 1, because the consider in-
ducer is the annulus, c = 1, the distance |x − x′| is expressed
in pixels and is the distance between the center of the target x
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Figure 8.14: Computed displace-
ment ū (x1,x2) for the Delbouef
illusion. Each row contains on
the left the initial stimulus, on
the center the computed dis-
placement vector �elds ū (x1,x2),
on the right the application of
ū (x1,x2) to the initial stimulus.
This last operation permits to
visualize the proximal stimulus,
i.e. the perceived deformation
of the central target. Columns:
the width of the annulus is in-
creased from the top to the bot-
tom. The perceived deformation
can be appreciated because each
image in the third column con-
tains also a reference circle (red),
representing the size of the ini-
tial target.

and a the center of the annulus x′, ρ (x′) is the size of the annu-
lus and ρ0 refers again to the e�ective size. Then (ρ (x′) − ρ0)
expresses the di�erence between the considered sizes. In �g-
ures 8.13 and 8.14 we show the simulation performed with the
presented model. On the left column the initial stimulus is
presented: we let the size of the annulus ρ (x′) decreasing. In
the central column it is presented the computed displacement
through the in�nitesimal strain theory approach introduced in
chapter 6, section 6.3.3. Finally, the right image containes the
perceived central target: we consider the initial stimulus and
we apply vector �elds ū (x1,x2) computed through our method.
The red circle is the target reference of the initial stimulus,
drawn in order to allow a comparison between the proximal
stimulus (displaced image) and the distal one, [105, 77] (see
chapter 2).

Discussion of the results

The distance between the center of the annulus and the center
of the target |x′−x | decreases in column left of �gures 8.14, 8.14
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Figure 8.15: Left: the graph
shows how the perceived dis-
placement decreases as a func-
tion of the distance in our sim-
ulations. In the x-axis we put
the distance |x ′−x | and in the y-
axis the computed displacement.
Right: analysis of the decay of
the illusion magnitude as a func-
tion of the distance between the
target and the inducers, from
[143]. The circles refers to the
Delboeuf illusion. Our results
are in agreement with the ones
shown in this experiment.

and represents a quantity strictly related with the size of the
annulus ρ (x′). Infact, increasing ρ1 means we increase the dis-
tance between the target and the circumference. Even though
they are related, considering just the distance does not fully ac-
count for the perceived phenomenon. When the annulus is big,
as in the top left image of �gure 8.13, we perceive a shrinking
(see page 454 of [79]), while if the annulus size is decreased, we
observe an enlargement of the central target. This variation
is explained by an evaluation of the di�erence in size between
the target and the annulus, as we did for the Ebbinghaus illu-
sion. Figure 8.15 left shows how the perceived displacement
decreases as a function of the distance in our computations. In
the x-axis we put the distance |x′−x | and in the y- axis the com-
puted displacement. In the same �gure (right) we proposed the
results of an experiments conducted in [143]: the black dots
refers to the Delboeuf illusion and show how experimentally
our results are con�rmed. ρ0 still denotes the e�ective size of
the target. The reconstructed percepts for the Delboeuf illu-
sions shown in the left column images of �gures 8.14, 8.14 are
presented in the right column. The described shrinking and
expanding e�ect can be appreciated comparing the perceived
stimulus (black) with the red circle, which indicates the original
target size.





9 Conclusion and Perspectives

In this last chapter we detail the di�erent contributions con-
tained within this thesis and we point out possible extension
that can be considered in the future.

9.1 Contributions

In this thesis we have provided neuromathematical models able
to explain and account for many phenomena, starting from
amodal completion going through a big set of Geometrical Op-
tical illusions. We underlined the importance of these studies
both from an image processing point of view, for developing
perceptual based algorithm, and from the neurophysiological
perspective of understanding how the visual cortex behaves in
presence of such phenomena. This could provide important in-
sights concerning the ventral stream process. Let us go through
the original contribution of this thesis. In chapter 5 we pro-
vided a perceptual based algorithm for modeling amodal com-
pletion and we extend it in order to perform image restoration
(inpainting) and contours enhancement. Furthermore a result
of existence of solutions for the considered PDEs is shown, as
well as a sketch of the proof of convergence of the presented
algorithm. This contribution has been published in [30]. In
chapter 6 we introduced a neuromathematical model for Geo-
metrical Optical illusions, which allows to recover the percep-
tual displacement we perceive in presence of such phenomena.
This contribution can be found in [68, 69]. The previous model
is then extended in chapter 7 in which the deformed curves are
recovered as geodesics of the considered metric, modulated by
the action of simple cells in V1/V2. The work will be contained
in [66, 67]. Finally in chapter 8 size illusions are considered,
using the scale feature. We refer for the latter to [65].

9.2 Research Perspectives

We aim to enumerate possible research perspectives which will
help in contributing to a uni�ed theory for such phenomena,
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enlightening our understanding of how the cortex behaves.

Figure 9.1: The Muller-Lyer il-
lusion: the perceived length of
the two central bar is mislead by
the angles formed by the lateral
inducers: if they are acute, the
bar is perceived as shorter (top)
while if they are obtuse, the bar
seems to be larger.

One of the research perspective will be to provide an exten-
sion of the model to other features, in order to study other il-
lusions, such for example the Muller-Lyer illusion, matching it
with the experimental studies presented in [179, 178, 141]. The
Muller- Lyer illusion, �gure 9.1 is a complex phenomenon sub-
ject of many studies. The perceived length of the two central
bar is mislead by the angles formed by the lateral inducers: if
they are acute, the bar is perceived as shorter (top) while if they
are obtuse, the bar seems to be larger. The interesting part of
this phenomenon is that recent studies [179, 178, 141] shown
how this illusion takes place at higher stages of the visual pro-
cess.

It will be important to perform further tests using the ap-
proach presented in chapter 7 involving the illusions consid-
ered in chapter 6, such as the Hering, Wundt and Zollner il-
lusions. In this way a comparison with the �ndings obtained
through the in�nitesimal strain approach will be possible.

There is a lack of quantitative studies measuring the per-
ceived magnitude of this illusions. Most of the psychological
studies involving these illusions start from modi�ed stimuli
(see for example [162, 41, 181]) in order to provide a phenomeno-
logical and perceptual explanation for them. However, some
of those �ndings were contradicted by the same authors years
later [180, 43]. At a very general level what we actually see
from a qualitative point of view [181] is well known and is in
agreement with our �ndings. Still there is a lack of quantitive
data which would allow a better validation of all the theories
proposed until now. It would be important to design a simple
but e�ective experiment to measure the magnitude of illusions
(not only the Poggendor� or Muller Lyer). With the recent in-
creasing development of neuroimaging techniques, one very
interesting application will be to identify where these phenom-
ena actually take place.
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