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General Introduction

Context

The electrical systems take a significant place in many industries now that the tech-
nologies provide a great efficiency for a lower cost. For example, the hybridization
of cars requires the use of power converters from AC to DC and vice versa. The DC
part is used to supply multiple on-board devices or to store the energy, whereas the
electric motor supplies work in AC as well as the regenerative braking systems. The
same goes for many applications, where the former hydraulic or thermal motors are
replaced by electrical motors, as actuators.

The new technologies also allow us to product more compact devices, lowering the
volume occupation. In return of the minimization and the increase of the operating
frequency, the electrical circuits are more likely to interfere internally or with other
nearby devices.

Engineers are then required to study these electromagnetic interferences (EMI),
in order to ensure the electrical devices are complying with the constraints imposed
by the standards on the electromagnetic compatibility (EMC). The standards usually
depend on the country, the application or the business sector.

Electromagnetic Compatibility

The EMC phenomena can be divided in two categories: internal and external. The
internal events occurring in a device are mainly related to the loss of signal integrity,
due to parasitic coupling between the circuits (or the conductors).
The external effects, for which standards apply, are usually subdivided in:

• immunity, which is the ability of a system to resist the impact of the electro-
magnetic environment. The interferences coming from the environment can be
natural, caused by atmospheric phenomena (as lightning) or extraterrestrial
(as cosmic radiations), or they can be artificial. The artificial (or man-made)
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interferences mostly come from the telecommunications, but, there are more
impactful interferences caused by the power distribution, the static converters
or other supplies.

• emissions, which are the interferences generated by the system and which
disturb the surrounding areas.

Ensuring the electromagnetic compatibility of the system means for engineers
increasing the immunity, while limiting the emissions. But, EMC studies are very
complex since the interferences can appear through various couplings, as far field
plane waves, capacitive or inductive crosstalks, or common-impedance ground loops.
Moreover, EMI can occur on a very wide band of frequencies; in fact, for both
immunity and emission phenomena. Typically, two bands of frequencies can be
differentiated: the conducted, from 10 kHz to 30 MHz and the radiated from 30
MHz to 6 GHz. The interferences by conductions (suffered or generated) affect
the devices via parasitic currents flowing through conductors or parasitic mutual
couplings. The radiative interferences are EM waves represented by the fields (H,
E) in free space.

Due to high levels of current flowing inside them, power electronics devices (the
applications aimed by these works) need to be mostly studied from the emission
point-of-view.

Power Electronics devices

The power electronics devices are very often mechanically supported by printed cir-
cuit boards, as in Figure 1, leading to multi-layers structures separated by dielectric
blocks. These circuits usually have a length and a width of 15 to 30 cm, but their
thickness can vary from a few millimeters to some centimeters. The printed conduc-
tors have commonly a thickness of 35 or 70 µm, but their other dimensions greatly
vary. For example, the power/ground planes can be very long and wide, whereas
the tracks are long with a fixed width and follow complex paths, due to the routing
constraints. The geometric complexity of these devices is also increased by the pres-
ence of vias, i.e.: conductive hollow cylinders linking tracks and planes positioned
on different layers.

There is a rule stating the wave propagation effects can be neglected while the
greater dimension of the problem dmax is significantly lower than the wavelength
λ, a heuristic consists in ensuring dmax ≤ λ/10. As mentioned above, the power
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Figure 1: Variable speed drive (Schneider-Electric).

electronics devices typically have a characteristic dimension between 15 to 30 cm,
which leads to a frequency of about 100 to 200 MHz as limit threshold for quasi-
static models (without propagation). However, the studies of these devices require
crossing last limits since the standards consider frequencies up to few gigahertz, i.e.:
about one decade above. The numerical methods then need to be able to cross a bit
these limits.

On the other hand, the current density in the conductors is not uniformly flowing
across a section: it is concentrated on the border due to the skin effects, non-
negligible in this band of frequencies. Surface models can be adapted for high
frequencies but not for the lower band, where volume approaches must be used. A
mesh inside the conductive volumes has to be setup and therefore has to take into
account the skin depth

δ =
√

2
ωµσ

,

the distance inside the conductors within the current density decays by 37% of its
value on the surface. The skin depth for a conductor made of copper, at the previous
frequencies, is between 2.09 µm and 1.48 µm. So, even the thinnest conductors (35
µm) must have mesh subdivisions along their thickness.

Moreover, some ferromagnetic materials can also be found in these electrical
devices, interacting strongly at the low and the middle frequencies. So, taking
into account all these characteristics in a numerical model is a very big challenge.
The choice of the method is therefore a critical point, as discussed in the following
paragraph.
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A quick survey of methods for low frequencies

In electrical engineering, the most popular numerical method was the Finite Element
Method (FEM), or Finite Element Analysis (FEA) in the past years. It allows us to
solve electromagnetic problems computing only the interactions of nearby degrees-of-
freedom (DOF). The result is a low memory consumption and a fast assembly, since
only a few interactions have to be computed and stored in a sparse matrix. Even
with the advent of the first workstations and computers, the amount of memory
available for computations remained very limited, thus pushing the FEM to gain
even more interest for computational solutions. Researchers from multiple disciplines
(electromagnetism, mechanic, etc.) focused their efforts in the study of the FEM’s
numerical aspects [1–3], making the FEM one of the most robust method.

Integral Equation Methods
At the end of the twentieth century, as the technology evolves, another method
regains some interest: the integral equation method (IEM). Contrary to the FEM,
the IEM computes all interactions between each DOF in order to solve a problem.
It implies assembling dense matrices, which require a high amount of memory and
suffer of quadratic complexities in terms of storage and basic arithmetic operations.
Let’s take for example the matrix-vector product (Ax), for a square matrix A ∈ Rn:
the complexity of the product is n2. Because of this, the use of an iterative solver
could have become prohibitive if it had not converged in a few iterations.

On the other hand, the IEM needs to mesh only the active materials (see Fig.
2a) like conductors, dielectrics, etc., whereas the FEM also have to mesh the inactive
regions (see Fig. 2b) like the air or a vacuum. We can see on the comparison of
the figures 2a and 2b that the mesh used for the IEM contains significantly fewer
elements than the FEM’s. The IEM could be more interesting to solve problems
containing a large amount of air. Since it usually has less DOFs, we could hope the
assembly and solution to be computed faster than the FEM’s.

However, the memory consumption was limiting its range of applications. To-
day’s technologies make available a large amount of computational memory (RAM),
for instance, 4 GBytes of RAM is nowadays the minimum amount available for lap-
tops and high-end smartphones. This major evolution enables the IEM to enlarge its
range of applications for larger and more complex applications. However, the IEM is
still hardly applicable to industrial or compact/dense (in terms of active materials)
problems, without the use of any compression techniques.
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(a) (b)

Figure 2: Comparison of meshes used by both methods on a power wireless transfer
application. (a) Only the coils have to be meshed for the IEM. (b) A mesh of the
coils and the air is required for the FEM.

Compressions
The most popular compression techniques in electromagnetism are the Fast Multi-
pole Methods [4,5] (FMM), their Multi Level version (ML-FMM), and most recently
the Cross Approximation based techniques. Their principle is to compute a tree
structure to define near- and far-interactions and then approximate/compress the
far-interactions. The FMM use multipole expansions to compute the approximations
and usually an octree to define the interaction range (near or far). The expansion
approach requires an explicit analytic formulæ for each kernel function, therefore
limiting the method to known kernels. However, the FMM succeeded in reducing
the complexity of the storage and the assembly to a linear complexity (O(n)).

The Cross Approximation techniques take advantage of the rank deficiency of far-
interactions to use a low-rank approximation and therefore reduce the storage. The
low-rank approximation can be computed using the Adaptive Cross Approximation
[6–8] (ACA), an algebraic method, or the Hybrid Cross Approximation [9] (HCA),
a semi-analytical method. A hierarchical structure based on a binary-tree called a
Hierarchical matrix [10–12] is used to define the interactions and store the matrices.
Moreover, the H-matrix format also allows us to compute an efficient, fast and light
preconditioner.

The H-matrices are relatively new in the low-frequency community, so we have
interests in studying and applying it to the low-frequency formulations.
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Low Frequencies
The study of devices in the low frequencies mostly consists in focusing the impact of
the resistive effects and the magnetic effects. The higher frequencies effects, as the
capacitive or propagative effects are neglected. So, the solution of these problems
can be done using eddy currents models.

The operating frequency of devices has now increased to a point that the mod-
els have to be improved to be able to work at the middle frequencies. Thus, the
capacitive effects have to be added in the formulations. Taking for example the
busbars in Figure 3, the conductors are separated by dielectrics. At low frequencies,
the inductive couplings have to be modeled, but when the frequency increases the
capacitive effects between conductors increase as well.

Figure 3: Example of busbars used on hybrid vehicles (source: Mersen).

The high-frequency community can provide formulations taking into account the
capacitive effects with the use of the Method of Moments [13], for example, which
suffers of the low-frequency breakdown [14–19]. Some cures exist for this issue, with
the use of Loop-Star [20] decompositions. However, a more suitable method for the
power electronics is the Partial Element Equivalent Circuit (PEEC) [21–23], which
does not suffer of the frequency breakdown and enables external circuit couplings.

In the power electronics applications, the circuit approaches are crucial at low
frequencies to study converters, printed circuit boards, etc., and to insure their
design works and satisfies some specifications. The PEEC has been adapted for
low frequencies [24–26] and the software InCa3D [27] (Inductance and Capacitance
calculation for 3D geometries) has been created from these works.

PEEC method
The PEEC method has arisen from the inductance [28] and capacitance [21] calcula-
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tion needs that EMC engineers had. The formulations based on the PEEC method
are based on Maxwell’s integral equations and an equivalent circuit representation
of the domain. A simple example of an equivalent circuit is presented in the Fig-
ures 4a and 4b, we can see that an element (a hexahedron here) corresponds to one
resistance, one self-inductance and mutuals (not represented here). Capacitive cou-
plings between elements are also included in the model to take into account higher
frequency effects. The values of these circuit elements are computed thanks to the
integral equations, so the solution of the problem consists in solving the circuit
equations (Kirchhoff’s laws).

(a) (b)

Figure 4: Simplified example of the equivalent circuit representation of a C-shape
conductor. (a) The conductor meshed with hexahedra and an overview of the circuit.
(b) A more detailed equivalent circuit, where the mutual inductances are hidden for
a matter of understanding

Its first version suffered from few limitations, only structured (or Manhattan
type) meshes were supported and it used 0-order (constant by element) shape func-
tions for instance. Improvements have been developed to overcome the rectangular
mesh limitation [29–33] and the most recent works [32, 33] use RWG [34] shape
functions to also improve the accuracy.

The major and most problematic issues of the PEEC remain its ill-conditioning
[35, 36] and the dense matrices it has to assemble since it is based on the integral
equations. Some works tried to overcome the ill-conditioning using regularization
techniques [36] or stating restricting assumptions with a DOF renumbering [37].
But we haven’t found in the literature a general solution to this issue. On the other
side, to significantly reduce the dense matrix storage and assembly time, we can use
matrix compression techniques.
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Objectives of this work

This PhD. takes place in the context of a collaboration between the G2Elab (Greno-
ble Electrical Engineering Laboratory) and the CEDRAT company (recently ac-
quired and absorbed by Altair Engineering France). More specifically in the context
of InCa3D, a software developed by both Parties.

InCa3D is a simulation software dedicated to power electronics applications for
low and medium frequencies, as in Figure 5. Based on a classical inductive PEEC
method, InCa3D provides models for EMC studies, electrical interconnection sim-
ulations and circuit element extraction. InCa3D’s last version has arisen from V.
Ardon’s [38] PhD works consisting in a weak coupling of the inductive PEEC formu-
lation with an electrostatic formulation using the Boundary Integral Method (BIM)
to add into account capacitive effects and dielectrics.

(a) (b)

Figure 5: (a) A driver circuit. (b) The InCa3D model. (CEDRAT News N◦67)

Today’s version of InCa3D (3.1) is able to efficiently analyze structures made of linear
conductors and dielectrics with resistive-inductive and capacitive behavior, through
parasitic capacitance extraction or resonance frequency computation. Due to the
fact that capacitive behavior is added a posteriori to inductive models, two different
meshes have to be handled (boundary triangular elements for the electrostatic com-
putation and volume hexahedra for classical PEEC) and their compatibility ensured
for the coupling. Consequently, the electrostatic formulation is based on capacitive
macro-elements (a set of mesh elements) that have to be defined and linked to a
different set of hexahedra with Π- or T- connections by the user in order to solve
the problem. The need to define and connect macro-elements significantly restraints
the range of applications and the ease-of-use of InCa3D.
These limitations can be overcome by either trying to find a procedure to define
and connect properly the macro-elements or using another formulation. This PhD
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will propose a new formulation able to be easily used and without specifications or
a deep knowledge of the device functioning to be simulated.

The objectives of this PhD are to develop a formulation allowing efficient cir-
cuit coupling of problems containing linear conductors, dielectrics and to provide a
complete electromagnetic simulation with resistive, inductive and capacitive effects.
As secondary objectives, we will focus on the formulation’s numerical properties,
as conditioning for the solution’s efficiency and compression-compatibility to solve
large scale problems. The most suited tool to reach these objectives is the H-matrix
allowing us to compress and construct an efficient preconditioner.





Chapter I
H-matrices

Life is like riding a bicycle. To keep your balance,
you must keep moving.

Albert Einstein
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Resume

In this chapter, we are presenting the H-matrices through a brief overview of
the theory. We aim to present the tool, so we won’t provide a deep analysis
of the theory. However, all the references will be provided for further details.
The H-matrices are then applied to an electrostatic and a magnetostatic for-
mulation, in order to show their efficiency.
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I.1 Introduction

In the integral equation methods context, the use of compression techniques is
mandatory to avoid the high costs coming from dense matrices. Let us consider
a classical integral equation [39, Chap.3]:∫

Ω
ϕi(x)

n−1∑
j=0

∫
Ω
G(x,y)ϕj(y)ujdydx =

∫
Ω
ϕi(x)F(x)dx 0 ≤ i < n, (I.1)

arising from a standard Galerkin discretization and projected in the n-dimensional
space Vn = span{ϕ0, . . . , ϕn−1}, with G a Green kernel function, F the right-hand-
side and the discrete solution Un = ∑n−1

i=0 ϕiui projected in Vn. The equation (I.1)
can be expressed as:

Gu = f (I.2)

where

Gi,j =
∫

Ω
ϕi(x)

∫
Ω
G(x,y)ϕj(y)dydx,

fi =
∫

Ω
ϕi(x)F(x)dx,

The problematic dense matrices (i.e.: all entries are not zeros) that we will encounter
can be written as G, a classical form of integral equation matrices. To avoid the
issues arising from the dense matrix G, we have to reduce a maximum the number
of entries to compute and store.

I.1.a Compression Context

An approach to reduce the costs is to take advantage of the rank deficiency of the far-
interactions of G. Let’s take an example to illustrate the principle of this approach.
First, we are considering a domain Ω = C1 ∪ C2 containing two distant cubes C1

and C2, illustrated in Figure I.1. The interactions of G can be separated as:

G =

C1 C2

C1 G|C1×C1 G|C1×C2

C2 G|C2×C1 G|C2×C2

(I.3)

The diagonal blocks correspond to near-interactions (i.e.: each cube against itself)
and the extra-diagonal to far-interactions (one cube against the other). Let us take
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for example a mesh where the cube’s boundary is discretized with quadrangles (4 per
faces ⇒ 24 by cubes) and using 0-order shape functions (ϕi element-wise constant),
we have G|C1×C2 ∈ R24×24. It suffers of a rank deficiency rank(G|C1×C2) = 16 and
usually a few ranks are enough to approximate it precisely. Computing the classical
(non truncated) Singular Value Decomposition (SVD) of G|C1×C2 :

G|C1×C2 = UΣVT (I.4)

we get the singular values (plotted in the figure I.2) stored in the diagonal of Σ =
diag(σ1, . . . , σn). The equation (I.4) is a low-rank matrix representation called the
orthonormal outer-product form since U and V have orthonormal columns. The
SVD allows us to define the minimal rank of the approximation for a given error
criterion ε. For examples, if ε = 10−2 (1%) we can approximate G|C1×C2 using only
a rank-1 approximation R1 defined as

R1 = U(:, 1)Σ(1, 1)V(:, 1)T , (I.5)

using the Matlab syntax. The error of this approximation is

‖R1 −G|C1×C2‖
‖G|C1×C2‖

∼ 1.04× 10−4, (I.6)

it could also be estimated using the singular values in Figure I.2 and knowing that the
relative error of a rank-k can be computed using εr(k) = σk+1

σ1
. If we need a greater

precision ε = 10−6 for example, the rank-4 approximation R4 gives a relative error
of 2.44×10−8. The memory requirement of R4 = U(:, 1 : 4)Σ(1 : 4, 1 : 4)V(:, 1 : 4)T

is of mk + k + kn = 196 entries against mn = 576 for G|C1×C2 , dividing by almost

1

1

1
20

1

19

1

1

C1

C2

20

Figure I.1: The geometry of the example
considered. The dimensions are in mm

units

5 10 15 20
10−30

10−25

10−20

10−15

10−10

Singular Values

Figure I.2: Plot of the singular values
of G|C1×C2 .
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3 the amount of memory required. Note that, in this manuscript, m and n is
used to denote the number of rows and columns of a matrix, respectively, and k

is usually used for the rank’s approximation. The low-rank matrix representation
also reduces the complexity of basic arithmetic operations, for instance, the product
matrix-vector Rkb have a complexity of O (k(m+ n)) instead of O (mn). We can
see, thank to this example, the gains when using low-rank matrix approximations
in term of memory consumption and complexity.

I.1.b Solution Context

Once the assembly is done (i.e.: the compressions and the full assemblies), the
previous matrix G can be approximated by:

G ≈ G̃ =

G1 Rk

RT
k G2

(I.7)

where Gi = G|Ci×Ci
for i = 1, 2, the green blocks are compressed and the red ones

are dense matrices. We can note that this format is the simplest form of a H-matrix.
The problem (I.2) can then be solved very efficiently using the approximation G̃

and taking advantage of its format. A hierarchical LU decomposition, similar to a
block-LU factorization, can be applied to G̃:

RT
k

RkG1

G2

=

L2

L1

L3

0

0

0 U2

U1

U3

0

0
0

(I.8)

where its construction comes down in solving the next linear system

G1 = L1U1 gives L1 and U1,

Rk = L1U2 − U2,

RT
k = L2U1 − L2,

G2 = L2U2 + L3U3 − L3 and U3.

In the previous system, we have to compute two LU decompositions (first and last
steps) and two forward substitutions. This LU factorization has a lower cost than



16 I. H-matrices

one applied directly on G, since such decomposition scales with O (n3) and the
last system requires two smaller decompositions. Moreover, we can note that the
hierarchical structure of G̃ is preserved, and therefore the memory consumption is
also reduced.
The problem can finally be solved using forward and back block-substitutions, as
the block LU-decompositions. Any examples as light as this one can be easily
solved using direct solvers, but for real examples, a direct solution cannot always
be achieved. An iterative solution therefore has to be employed. We will see later
on that this hierarchical LU decomposition can also be used as a preconditioner to
accelerate an iterative solver.

We have shown an overview of what the H-matrices can bring to the table with
the low-rank approximations as a compression technique, and how we can take
advantage of it to compute efficient solutions.

On this particular example the identification of far-interactions is trivial, but for
more general 3D geometries, we will have to use a clustering technique. The next
section of this chapter will be dedicated to the clustering techniques used to define
the near- and far-interactions for any geometry. We have computed the approxi-
mations using the SVD, unfortunately, it is a very expensive method with a high
complexity, and so cheaper methods have to be used. Two low-rank approximation
techniques with a small cost and complexity will be presented in the sections I.3
and I.4. In Section I.5, we give an overview of the arithmetic operations essential
for an efficient preconditioner construction. Some numerical tests are finally given
in Section I.6 in order to show the efficiency of the H-matrices.

I.2 Clustering Technique

As previously mentioned, the H-matrices are based on a hierarchical structure in
order to define blocks of interactions. The near- and far-interactions can be easily
defined for trivial examples, but for more general problems a cluster tree has to be
used.

I.2.a Cluster Tree

Let us define I = {0, . . . , n− 1} ⊂ N the set of indices corresponding to the indices
of the shape functions ϕi. We can therefore say that I is also representing the DOFs,
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so in order to define blocks of interactions and their admissibility, we want to create
a partition of the product I × I. A general approach to create a partition of I × I
is to construct a cluster tree of I first.

Definition I.2.1 (Cluster Tree). The rooted tree T is a cluster tree TI for I, if
there is a mapping function .̂ : t → t̂ which links each node t of T to a subset of I
called the label of t, and satisfies:

• the label of the root r ∈ T is defined as r̂ = I,

• every node passes on to his sons a disjoint partition of its label, i.e.:

t̂ =
⋃

si∈sons(t)
ŝi and ŝi ∩ ŝj = ∅, ∀i 6= j.

The nodes t of TI are called clusters.

For a matter of pedagogy, let us consider an example of cluster tree in Figure I.3a
with its rooted tree associated in Figure I.3b. This example consists in constructing
a cluster tree for a 1-D geometry: a segment containing 10 points of discretization.
In the first level (the higher), the node r = 1 is the root of the tree and the set
of indices associated is r̂ = I = {0, ..., 9}. In the second level we have cut the
geometry in the middle of the segment, and then created two subsets 2̂ = {0, ..., 4}

{ }0 1 2 3 4 5 6 7 8 9

2̂

{0, 1, 2, 3, 4}
5̂

{5, 6, 7, 8, 9}

3̂

{0, 1, 2}
4̂

{3, 4}
6̂

{5, 6}
7̂

{7, 8, 9}

r̂ = 1̂ = I

(a)

1

2 5

3 4 6 7

(b)

Figure I.3: (a) An example of tree with 7 nodes. (b) The cluster tree, with each
cluster associated to a tree’s node.
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and 5̂ = {5, ..., 9} respecting the last two conditions of the Definition I.2.1. We
repeat the clustering process for each son once more.
The clustering of 1D examples can be trivial, but for n-dimensional problems more
general clustering techniques have to be used in order to construct the cluster tree.

We have mentioned earlier that the indices i ∈ I correspond to the shape function
ϕi, but in the clustering context, a shape function is represented by its support
Ωi = supp(ϕi). However, considering the support itself is very complicated and
might be costly. To simplify the problems, we can choose a point xi ∈ Ωi,∀i ∈ I
to represent the support of ϕi. For example, 0-order shape functions (constant by
element) can be represented by the barycenter of its supporting element.
The general approach starts by setting the root r as the whole index set r̂ = I in
order to satisfy the first condition of the cluster tree definition. Then, considering
all the points xi ∈ Rd (d the dimension, usually 2 or 3) of the cluster t = r, we
want to split them and create two non-overlapping clusters in respect to the other
conditions of Definition I.2.1. To achieve this, we compute a bounding box Bt of the
cluster t, defined by:

Bt = [a1, b1]× · · · × [ad, bd] , with ai, bi ∈ R. (I.9)

Then, we split Bt defining the splitting direction j ∈ {1, . . . , d} and c = (aj + bj)/2.
We define a partition of t as {t0, t1} such as:

t̂0 =
{
i ∈ t̂| (xi)j ≤ c

}
and t̂1 =

{
i ∈ t̂| (xi)j > c

}
(I.10)

with (xi)j the jth dimension of xi. Finally, we repeat this process with the sons
t = t0 and t = t1 until the clusters reach a minimum number of indices nmin.
The definition of the bounding boxes, i.e ai and bi, depends on the method used.
Two main methods can be used: The Regular and the Adaptive.

The regular subdivision method stands on a regular splitting of Bt at each step,
defining the son’s bounding boxes Bt0 and Bt1 as:

Bt0 = [a1, b1]×· · ·×[aj, c]×· · ·×[ad, bd] and Bt1 = [a1, b1]×· · ·×[c, bj]×· · ·×[ad, bd] .

At each step the bounding boxes are split in half following the dimension j. This
regular construction is the most naive and fast method constructing bounding boxes
with the same sizes, but it may construct clusters that are empty.

A method to avoid empty clusters is the adaptive subdivision method, also called
geometric bisection. Contrary to the regular method, this one defines boxes shrinking
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to their minimal size while containing all the points. The bounding boxes are defined
at the beginning of each step as in (I.9) with

ai = min
k∈t̂

((xk)i) and bi = max
k∈t̂

((xk)i) ∀i ∈ {1, . . . , d},

constructing smaller and more distant clusters.
We can see the difference of the methods on a 2D example in the figures I.4. The
first row of figures (I.4a, I.4b, I.4c) shows the splits done at the first two steps
of the regular subdivision, whereas the next row (I.4d, I.4e, I.4f) shows the parti-
tions of the adaptive subdivision. We clearly see that the adaptive method gives
smaller and more distant clusters at the level 1 and 2. Since we want a maximum
of far-interaction blocks, in order to compress more, we choose to use the adaptive
subdivision method for our works.
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Figure I.4: Comparison of two subdivision methods. The left figures are the lvl 0
tree, the middle ones the lvl 1 and the right ones are the lvl 2. (a - c) Regular
subdivision method. (d - f) Adaptive Subdivision method.

The choice of the direction/dimension j to split is not trivial, we choose to split
perpendicularly to the dimension where the bounding boxes are the largest. Another
approach may consist in choosing an initial direction j and incrementing it at each
level.



20 I. H-matrices

We can find pedagogical examples of implementation in the Lecture note of Steffen
Börm and al. [39] using the C programming.

We now know how to split our geometry and create clusters of DOFs. The next
step is to define the blocks of interactions and their admissibility to the compression
or not.

I.2.b Block Cluster Tree and Admissibility

Given two index sets I and J , we want to compute the interactions I×J efficiently
and without quadratic costs. Computing directly the product I × J leads to the
dense matrix G of (I.2). In order to reduce the costs, we have to split the matrix in
near- and far-blocks of interactions, like in (I.3). The definition of these blocks can
be done using the cluster tree TI , TJ and testing the clusters of each tree against
the other. The most-suited structure enabling such approach is called a block cluster
tree.

Definition I.2.2 (Block Cluster Tree). Given two cluster trees TI and TJ , the block
cluster tree TI×J is a rooted tree where the nodes b ∈ TI×J are defined by a pair of
clusters, as b = (t, s) with t ∈ TI and s ∈ TJ . Moreover, the root of TI×J must be
defined as root(TI×J ) = (root(TI), root(TJ )) (as in the level 0 of Figure I.5) and
the sons of each node b = (t, s) are the combination of each son of t and s. Usually
leading to a succession of four sons, as in the next levels of Figure I.5.

The label of b = (t, s) is then given by the index product b̂ = t̂ × ŝ ⊆ I × J .
We will call the nodes b block clusters, whose label corresponds to a subpart of the
whole matrix.

We have presented a general definition of a block cluster tree for two different
cluster trees I and J , but in fact, we usually have I = J and TI = TJ .

The main purpose of such object in the compression context is to partition the
matrix G in sub-blocks and compress as many blocks as possible in order to lower
the costs. We have mentioned earlier that far-interactions blocks can be efficiently
compressed, so to define the admissibility condition of a block (t, s) to the compres-
sion, we want the clusters t and s to be distant. The following Definition provides
a rigorous statement of this last condition.

Definition I.2.3 (Admissibility condition). Let b = (t, s) ∈ TI×J , η ∈ R, b is an
admissible block cluster if it verifies

min {diam(Ωt), diam(Ωs)} ≤ ηdist(Ωt,Ωs) (I.11)
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TI

I

I(2)

I(5)

I(3)

I(4)

I(6)

I(7)

TJ

J

J (2) J (5)

J (3) J (4) J (6) J (7)

(I,J )

(I(5),J (2)) (I(5),J (5))

(I(2),J (2)) (I(2),J (5))

Level 0

Level 1

Level 2

Figure I.5: Example of a block cluster tree level-wise.

with
Ωτ =

⋃
i∈τ̂

Ωi,

the support of the cluster τ .

The condition I.11 may seem easy to check, but for complex geometries, the com-
putation of the diameters and distances of the clusters can be expensive. A simple
way to compute the diameter of a support is using once more the bounding box ap-
proach. A support usually contains multiple elements, so computing the bounding
boxes will simply consist in gathering all the mesh’s points used by these elements
and looking for the minimum and maximum values in each dimension. Figure I.6
shows the elements (filled in gray) used by different types of DOF as well as the set
of nodes (the black circles) tested to get the resulting boxes (in green).
The diameter of a bounding box Bt = [a1, b1]× · · · × [ad, bd] is then computed as

diam(Ωt) = diam(Bt) =
(

d∑
δ=1

(bδ − aδ)2
)1/2

, (I.12)

representing the length of the box’s diagonal. The distance between two bounding
boxes Bt and Bs = [c1, d1]× · · · × [cd, dd] can then be easily computed using:

dist(Bt, Bs) =
(

d∑
δ=1

dist([aδ, bδ], [cδ, dδ])2
)1/2

. (I.13)
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Figure I.6: Example of supports for DOFs of type (from left to right) nodal, edge
and element. The elements filled with grey are the elements used by the DOF in
black. The nodes used to compute the bounding boxes (in green) are represented
by black circles (not filled).

This approach allows us to compute the distances and the diameters of the supports
with low and constant complexity O (1).

We can note that there are other approaches to do such computation as Chebyshev’s
[40]. However, we choose to use the box approach due to its ease of implementation,
whereas the Chebyshev’s is more difficult to implement.

Once the bounding boxes of each cluster of the cluster trees are computed and
an admissibility condition chosen, we can construct the block cluster tree following
the algorithm 1.
The initial call of this recursive algorithm is with (root(TI), root(TJ )) the roots of
both trees, in order to satisfy the first condition of the Definition I.2.2. The next
conditions of this Definition are satisfied by construction.

Let us consider the previous 1D example showed in Figure I.3a with its cluster
tree, and use it to illustrate the block cluster tree construction. We choose the
admissibility condition (I.11) with η a very large number, so that any disjoint clusters
would be admissible. Using the cluster tree TI in Figures I.3a (or I.7a), we are going
to construct the block cluster TI×I . So, applying the Algorithm 1 with the last
admissibility condition, we obtain the hierarchy of the block cluster tree in Figure
I.7b for the first two recursive steps of the construction. Note that this hierarchy
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Algorithm 1 Construction of the Block Cluster Tree TI×J , given TI and TJ .
1: procedure BlockClusterTreeConstruction(t ∈ TI , s ∈ TJ )
2: if (t, s) satisfies the admissibility condition then
3: // Stop the recursive process
4: sons(t× s) = ∅
5: return
6: else
7: // Set the hierarchy
8: sons(t× s) = {t′ × s′ | t′ ∈ sons(t) and s′ ∈ sons(s)}
9: // Check if any sons are admissible
10: for each son: (t′, s′) ∈ sons(t× s) do
11: BlockClusterTreeConstruction(t′, s′)
12: end for
13: end if
14: end procedure

directly corresponds to the matrix structure.
At the 0th level (initial step), we have the block cluster (r, r) which is not admissible,
so we initiate the recursive process with the sons 2 and 5. At the level 1, there are
four block clusters {(2, 2), (5, 5), (2, 5), (5, 2)}. Since the cluster 2 and 5 are disjoint,
the block clusters (2, 5) and (5, 2) are admissible (filled with green) and we can
stop the recursion. The other two block clusters (filled with red) do not satisfy the
condition, so we repeat the process once more at the level 2, and we get the same
results one level deeper.

Now, we have presented all the tools to define the far- (admissible) and near-
interactions (non-admissible), so we have the hierarchical structure to compress a
matrix. The next sections will present the most popular compression techniques
based on low-rank approximations.

I.3 Adaptive Cross Approximation (ACA)

A brief demonstration of the low-rank approximation efficiency using the SVD has
been shown in section I.1 Introduction at the beginning of this chapter. The ap-
proach shown is very expensive in time and memory due to the SVD which is in-
trinsically a very expensive decomposition and requires all the entries of the matrix.
So, we have to find another way to compute low-rank approximations.
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{ }0 1 2 3 4 5 6 7 8 9

2̂

{0, 1, 2, 3, 4}
5̂

{5, 6, 7, 8, 9}

3̂

{0, 1, 2}
4̂

{3, 4}
6̂

{5, 6}
7̂

{7, 8, 9}

r̂ = 1̂ = I
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Figure I.7: (a) Duplicate of the Figure I.3a for a matter of understanding repre-
senting a cluster tree TI . (b) The matrix splits according to the block cluster tree
construction at level 1 and 2.

I.3.a Cross Approximation

We can find in the recent literature the papers [8,41–43] presenting a purely algebraic
approach called Pseudoskeleton approximations (or cross approximations) using low-
rank matrices. This algorithm requires only a few entries of the matrix, so we don’t
have to assembly the whole matrix. This allow us to save memory and quadrature
costs for all admissible block clusters.
The main idea is to construct a low-rank approximation using only a few rows
and columns of the matrix. Let us consider an admissible block cluster (t, s) and
its associated matrix M (a submatrix of G). A cross approximation consists in
choosing pivots (τi, σi) (or crosses, like in figure I.8 on the matrix M), forming a
subset of k rows and columns t∗ = {τi,∀ i = {0, . . . , k− 1}} ⊂ t and s∗ = {σi,∀ i =
{0, . . . , k − 1}} ⊂ s, respectively. The approximation of rank k is then defined as
the following low-rank matrix R:

M ≈ R = ABT (I.14)

with A = G(:, s∗) and B = G(t∗, :) the matrices storing in their columns the chosen
columns s∗ and rows t∗, respectively (see the figure I.8 for example).
The demonstration of the existence of this kind of cross approximations can be found
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≈
M A BT

Figure I.8: Illustrative example of cross approximations.

in [41, Th. 3.1].
The pending point is to define how to choose the crosses. Since we don’t want to
compute all the entries of the matrix, we don’t have any information to choose the
cross, a priori. Therefore, we are using a heuristic to choose an arbitrary index of
row τ0 at first. We usually pick the first index of t̂ or randomly. Once the first row’s
index of the cross is chosen, we set the cross at the column’s index σ0 as

σ0 = argmax
j∈ŝ

|Mτ0,j|

the index of the maximal entry in modulus on the row τ0. We can note that this
procedure can be started by choosing the column’s index first. However, we have
chosen the cross (τ0, σ0) with the need to compute only one row, and one column to
complete the cross. The entire method is presented in Algorithm 2 and consists in
repeating almost the previous procedure k times.
This algorithm is efficient only if we are able to assembly sub-parts of the global
matrix as rows and columns parts, for instance. So, one should be ensured that its
assembling functions enable such feature. Adopting this on-the-go procedure for all
the admissible block clusters will allow us to significantly reduce the costs since it
avoids direct assemblies of all the sub-matrices. The same goes for the complexity,
this procedure can be computed with a linear complexity O

(
k2(#t̂+ #ŝ)

)
, whereas

the usual approach (direct assembly) has a quadratic complexity.
The construction of the approximation requires just the prescribed rank k as param-
eter. The accuracy of the approximation is therefore defined very approximately by
the user experience. Moreover, all the blocks do not give the same accuracy for a
same rank. The global accuracy is finally very hard to estimate a priori. A method
has been published soon after the last one based on the same principles by M. Beben-
dorf in [7]: the Adaptive Cross Approximation (ACA). Probably the most popular
low-rank approximation method nowadays.
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Algorithm 2 Cross approximation algorithm with a Matlab syntax.
1: procedure CrossApproximation(block cluster b = (t, s), rank k ∈ N∗)
2: Set τ0 = min{i ∈ t̂} or τ0 = random(i ∈ t̂)
3: for r = 0, . . . , k − 1 do
4: Seek σr = argmaxj∈ŝ |M(τr, j)| . Compute the row τr

5: Compute δ = M(τr, σr)−A(τr, :)B(σr, :)T

6: if δ = 0 then
7: Terminate with a rank r approximation OR look for another cross
8: else
9: Compute and store the cross in A and B:

10: A(:, r + 1) = M(:, σr)−A(:, 1 : r)B(σr, 1 : r)T . Comp. the col. σr
11: B(:, r + 1) =

(
M(τr, :)−A(τr, 1 : r)B(:, 1 : r)T

)T
12: end if
13: Choose the next pivot’s row: τr+1 = argmaxi∈t̂ \t∗ |B(:, r)|
14: end for
15: return the rank k approximation R = ABT

16: end procedure

I.3.b Adaptive Cross Approximation

Given an approximation accuracy ε ∈ R+ (usually 0 < ε � 1), the ACA aims the
construction of a low-rank matrix R = ABT of rank k(ε) determined adaptively
according to the accuracy which satisfies:

‖M−R‖
‖M‖

≤ ε, (I.15)

the relative error criterion. In fact, checking directly this criterion contradicts what
we want to achieve, because the evaluation of a norm requires all the entries of the
matrix, so another way to estimate the accuracy is needed.
Another heuristic is used to estimate the last criterion. Assuming the approxima-
tion’s accuracy decays at each iteration, we can estimate

‖M−R(r)‖ . ‖M−R(r−1)‖ ≈ ‖R(r) −R(r−1)‖ = ‖A(:, r)B(:, r)T‖ (I.16)

where R(r) is the approximation at iteration r. This estimation allows us to define
the new criterion:

εrel(r) = ‖A(:, r)‖2‖B(:, r)‖2

‖A(:, 1)‖2‖B(:, 1)‖2
≤ ε, (I.17)

approximating (I.15) and requiring only the columns of the low-rank matrix already
computed. Finally, the algorithm of the ACA is the same as Algorithm 2, except at
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line 3: the loop for is replaced by the loop “while εrel(r) > ε”. A more detailed and
concrete algorithm can be found in [44, Algo. 3.9].

The ACA is a very general method since it is purely algebraic and no restrictive
assumptions have been stated. Many publications show his great efficiency and ca-
pacity in solving large scale electromagnetic problems. A counterpart of its efficiency
is the fact that it is based on two heuristics (error criterion and pivot choice). Using
this pivot choice heuristic do not allow any proof of the convergence for the general
case, in fact, there are simple examples where the ACA fails (for example: [39, Ex.
4.8 and 4.9]).
There exists a way to choose the pivots with which the convergence of a cross
approximation can be proved: The full pivoting approach (see in [39, Sec. 4.3]). It
requires to know all entries of the matrix and looks for the maximal entry in absolute
value in order to set the cross. However, the costs and complexity of this approach
are too high and quadratic. A way for such method to have a low complexity and a
proven converge is to sacrifice its generality (the “purely algebraic” criterion), and
finally have some kind of hybrid approach.

I.4 Hybrid Cross Approximation (HCA)

The low-rank matrix approximations can also be computed using an interpolation
approach, usually aiming the separation of variables of the kernel function G. The
interpolation approach is very expensive compared to the ACA, in addition, the
resulting approximation is usually not as accurate (except for cases where the ACA
fails).
The HCA is a hybridization taking advantages of the ACA and an analytical method,
from which results an efficient and robust approximation algorithm. Let us start by
introducing the analytical approach.

I.4.a Analytical approach

As a reminder, we are considering the next matrix

Gi,j =
∫

Ω
ϕi(x)

∫
Ω
G(x,y)ϕj(y)dydx

with G the kernel function depending on the formulation. Considering far-interactions,
the classical kernel functions can be approximated by degenerated expansions (as
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Taylor or Lagrange expansions) allowing the separation of variables as,

G(x,y) ≈ G̃(x,y) =
k−1∑
r=0

ur(x)vr(y). (I.18)

with ur and vr functions given by the expansion and the kernel. Achieving this
allows to approximate the matrix G as well with G̃.

Using the approximation G̃ instead of G in the matrix G gives us

G̃i,j =
∫

Ω
ϕi(x)

∫
Ω
G̃(x,y)ϕj(y)dydx,

=
k−1∑
r=0

(∫
Ω
ϕi(x)ur(x)dx

)(∫
Ω
ϕj(y)vr(y).dy

)
,

= ABT ,

the low-rank matrix approximation of G, defined analytically and depending on the
expansion of the kernel.

The HCA stands on a similar approach to separate the variables and uses the
ACA to choose the proper pivot. In fact, there are two variants presented in [9],
the first HCA(I) uses a Lagrange interpolation and the second HCA(II) is based on
cross approximations. The HCA(II) showed better results on academic examples,
so we will present only this one.

I.4.b Hybrid Cross Approximation (II)

Let assume that the kernel can be written as

G = DxDyγ, (I.19)

with γ : R3×R3 → R a smooth generator function, Dx andDy two partial differential
operators defined as :

Dx = 〈cx,∇x〉+ cx0 ,

Dy = 〈cy,∇y〉+ cy0 ,

with cx, cy : Ω→ R3 and cx0 , c
y
0 : Ω→ R. Taking for example the single layer poten-

tial (SLP) kernel GSLP (x,y) = (4π‖x− y‖2)−1, satisfying (I.19) is straightforward
with γ = GSLP and Dx = Dy = 1.
It may seem limiting to write the kernel function as an application of two operators,
but in fact, most (if not all) of the kernels can. For examples, we are able to treat
electrostatic, magnetostatic and magnetodynamic formulations.
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Once the decomposition (I.19) is achieved, we want to approximate γ by a skele-
ton function [42, 2. There is a skeleton...] of the form:

γ̃1(x,y) = γ(x,yj1)γ(xi1 ,y)
γ(xi1 ,yj1) (I.20)

in order to separate the variables. Since the ACA is really efficient to choose the
right pivots (xiq ,yjq), we want to apply it to γ. However, applying it directly to γ
on a general mesh won’t allow to prove the convergence since we will fall back to
the previous issues. So, we get rid of the mesh and use interpolation points instead.
For instance, we use the (m + 1)3 points xip and yjq from a mth tensor-product
Chebyshev interpolation scheme of an admissible bounding box Bt ×Bs.

Then we apply the ACA on γ(xip ,yjq) in order to choose the pivots in the
interpolation points set. Once the ACA is done and the pivots chosen, we get the
approximation given by:

γ̃(x,y) =
k∑
p=1

k∑
q=1

[
γ(x,yjq)

] [
γ(xip ,yjq)

]−1 [
γ(xip ,y)

]
(I.21)

= AS−1BT

We note that we need to inverse the matrix S, but a direct invert is very expensive to
compute. A new variant of the ACA has been proposed in [45] allowing to construct
a LU-decomposition of S = LU on-the-go, where L and U are lower and upper
triangular matrices, respectively. The final approximation is therefore given by

γ̃(x,y) =
k∑
l=1

 l∑
q=1

γ(x,yjq)U−1
l,q

 l∑
q=1

γ(xiq ,y)L−1
l,q

 , (I.22)

where U−1 and L−1 can be computed very efficiently.
Finally, the kernel’s approximation is

G̃(x,y) =
k∑
l=1

 l∑
q=1

Dxγ(x,yjq)U−1
l,q

 l∑
q=1

Dyγ(xiq ,y)L−1
l,q

 (I.23)

and at the matrix level, we get:

G̃i,j =
(
ÃU−1

) (
B̃L−1

)T
(I.24)

with

Ãi,q =
∫

Ω
ϕi(x)Dxγ(x,yjq)dx and B̃j,q =

∫
Ω
ϕi(y)Dyγ(xiq ,y)dy.
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Algorithm 3 Hybrid Cross Approximation algorithm.
1: procedure HCA(block cluster b = (t, s), error criterion ε, interpol. order m)
2: // Compute the bounding boxes of t and s
3: Bt = ComputeBoundingBox(t) ; Bs = ComputeBoundingBox(s)
4: // Compute the Chebyshev’s interpolation nodes of both boxes
5: xip = CompChebyshevNodes(Bt) ; yjq = CompChebyshevNodes(Bs)
6: // Compute the ACA for the pivots and the LU-decomposition
7: {Pivots (x̃ir , ỹjr), r = 1, . . . , k; Matrices L,U} = ACAlu

(
γ(xip ,yjq), ε

)
8: // Compute the single integrals

Ãi,q =
∫

Ω
ϕi(x)Dxγ(x, ỹjq)dx and B̃j,q =

∫
Ω
ϕi(y)Dyγ(x̃iq ,y)dy

9: return the low-rank matrix
(
ÃU−1

) (
B̃L−1

)T
10: end procedure

The construction of the approximation (I.24) requires the assembly of two single
integrals A and B, instead of a twofold integral for G, and point-wise evaluations of
γ for the pivots’ choices. The algorithm of the HCA described previously is defined
in Algorithm 3.

The order of the interpolation has to be defined by the user, since it’s an input of
the algorithm. Setting a too high order will lead into an excess of computations,
whereas a lower order may lead into inaccuracies. Some tests have been made
in [39, Sec. 4.8.4] to determine approximately the accuracy ε in function of m,
leading to ε = 10−m−1. However, it assumes m to be chosen first when we have
the accuracy criterion first. Therefore, we use the same equation but backward, i.e.:
assuming ε = 10−p̃ we setm = p̃−1. These tests were made using Laplace single and
double layer potentials, but we use the same criterion for other kernels by default.

The HCA succeeds in mixing an interpolation approach, very expensive but ro-
bust, and a cross approximation technique, really efficient with a lack of robustness.
This hybrid approach has a linear complexity of O

(
k2(#t̂+ #ŝ) + k2m

)
, depending

on the interpolation order m, and allows proving its convergence [9].

Now that we have presented the tools to define the hierarchical structure and
how to construct low-rank approximations, we know how to assembly a H-matrix.
In the next section, we introduce the essential of the H-matrix arithmetic’s.
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I.5 H-matrix arithmetic’s

Putting together all the pieces, a H-matrix is a block cluster tree where the non-
recursive block clusters store either a classical or a low-rank matrix, depending on
their admissibility. In this section, we will see an overview of all basic arithmetic
operations and the LU decomposition for H-matrices, the H-LU decomposition.

The H-matrices are usually used in the context of an iterative solution, since
they significantly lower the computational costs and are able to construct efficient
preconditioners. Note that it is also possible to compute a direct solution with a
certain accuracy. Let us start by introducing the most intensively used operation
for iterative solutions: the H-matrix-vector product.

I.5.a H-matrix-vector product

Let us consider the recursive block cluster b = (t, s) with 4 sons which, at the matrix
level, can be represented as by 2×2 block-matrix B. So, theH-matrix-vector product
Bx = y comes down to compute B1 B2

B3 B4

 x1

x2

 =
 y1

y2

 , (I.25)

where Bi represents bi, the ith son of b. The equation (I.25) is equivalent to: y1 = B1x1 + B2x2

y2 = B3x1 + B4x2
. (I.26)

The products Bixj of the sons are computed depending on the admissibility or the
recursion of bi. We can find three cases:

a) bi is recursive, we repeat the same process for bi, one level deeper in the hierarchy.

b) bi is admissible, Bi is a low-rank matrix and the product can be computed di-
rectly.

c) bi is non-admissible, Bi is a dense matrix and the product can also be computed
directly.

The Algorithm 4 is straightforward, it consists in exploring the hierarchy and
computing products with sub-vectors. This product has a complexity of O (n log n)
and for an optimized implementation, one should work directly with x and y sub-
parts, instead of using temporary vectors at each level of recursion.
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Algorithm 4 H-matrix-vector product algorithm.
1: procedure Hprod(block cluster b = (t, s), vector x, vector y)
2: if b is recursive then
3: for all bi ∈ sons(b) do
4: Hprod(bi, x, y)
5: end for
6: else
7: if b is admissible then
8: Compute Bx|ŝ = UVTx|ŝ = y|̂t
9: else . b is non-admissible

10: Compute Bx|ŝ = y|̂t
11: end if
12: end if
13: end procedure

The cost of the product, as well as other arithmetic operations, obviously depends
on the complexity of the hierarchy. We can find in the literature a technique to
simplify the hierarchical structure using the SVD: the Agglomeration [46] (also called
Coarsening).

I.5.b Agglomeration

The assembly of a H-matrix can lead to a complex hierarchical structure, which
significantly reduces the efficiency of such storage. A way to simplify the hierarchy
is to merge/agglomerate some blocks into one non-recursive block.
The idea is to approximate (or agglomerate), with a prescribed accuracy εagglo, a
recursive block cluster by one low-rank matrix as follows A1 A2

A3 A4

 ≈ UXVT , (I.27)

under the assumption that the Ai are low-rank matrices under the orthonormal
outer-product form, i.e.: Ai = UiXiVT

i . The block clusters resulting from the H-
matrix assembly are not under the orthonormal outer-product form, so preliminary
conversions have to be computed first.
To convert non-admissible blocks into admissible blocks with a low-rank under the
right form, we use a reduced (or truncated) SVD decomposition M ≈ ŨΣ̃ṼT sat-
isfying the prescribed accuracy ‖M − ŨΣ̃ṼT‖ ≤ ‖M‖εagglo. Note that we have
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already presented this procedure in the section I.1 Introduction.
The low-rank matrices resulting from the ACA (or the HCA) are under the outer-
product form, i.e.: R = ABT . Their conversion consists in applying the SVD of
low-rank matrices to R, so that R = UΣVT . This SVD (sometimes called rkSVD)
is described in [46, Sec. 1.1.4].
This procedure can also be seen as a recompression procedure if we truncate last
SVD with the accuracy εagglo.

Once the conversions completed, we can write A1 A2

A3 A4

 = ÛX̂V̂T (I.28)

with

Û =
 U1 U2

U3 U4

 , X̂ =


. . . 0

Xi

0 . . .

 and V̂ =
 V1 V3

V2 V4

 .
Then, we compute the following QR decompositions

[U1,U2] = Q1R1, [U3,U4] = Q2R2, [V1,V3] = Q3R3 and [V2,V4] = Q4R4

and partitioning Ri = [R′i,R′′i ] according to the ranks lead us to:

ÛX̂V̂T =
 Q1

Q2

 R′1X1R′3
T R′′1X2R′4

T

R′2X3R′′3
T R′′2X4R′′4

T


︸ ︷︷ ︸

rSVD
≈ ŨΣ̃ṼT

 QT
3

QT
4

 .

Computing the reduced SVD on the middle matrix, with the accuracy of εagglo,
finally allows us to verify (I.27) with

Û =
 Q1

Q2

 Ũ, X̂ = Σ̃ and V̂ =
 Q3

Q4

 Ṽ.

If the approximation ÛX̂V̂T uses less memory than the recursive structure, we
overwrite it by an admissible block cluster which contains the approximation, as
shown in Figure I.9. If not, we keep the actual structure and therefore stop the
agglomeration process of the current branch of the hierarchy.

The agglomeration is a recursive procedure (as illustrated in Figure I.9) starting
at the deepest level possible of the hierarchy, and trying to go back up to the higher
level while agglomerating as many block clusters as possible.
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Agglo.Agglo. → R

Agglo.Agglo.

Figure I.9: Example of the agglomeration procedure on a recursive block cluster.
The green blocks “R” and red blocks “F” represent admissible and non-admissible
block clusters, respectively.

Let us illustrate the efficiency of the agglomeration by considering a simple example:
the single layer potential on a sphere discretized with 572 triangles. The initial H-
matrix MH assembled using the HCA with an error ε = 10−4 is shown in Figure
I.10a. Note that the numbers inside the green blocks correspond to their rank. On
its right-hand side, we can see Figure I.10b showing the agglomerated H-matrix
M̃H with the same accuracy εagglo = ε. The structure has obviously been greatly
simplified, and the storage has reduced from 3.23 kB/dof to 2.36 kB/dof. In the
figures I.10c and I.10d, we can see the evolution of the H-matrix when the accuracy
is deteriorated to εagglo = 10−3 and 10−2, respectively.

The agglomeration is very useful to lower the costs of the arithmetic operations,
but it also plays a key role for the preconditioning, since it allows us to control the
accuracy of a H-matrix. We will introduce the preconditioner and see the role of
the agglomeration in the next subsection.

I.5.c H-LU decomposition, an efficient preconditioner

The LU decompositions (or LU factorizations) are well-known in linear algebra and
have proven to be really efficient and robust for direct solution of problems, espe-
cially with multiple right-hand-side (RHS) vectors. A LU decomposition consists in
factoring a matrix M ∈ Rn×n as

 M

 =


1 0

. . .
Li,j 1




U1,1 Ui,j

. . .
0 Un,n

 , (I.29)
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(a) (b)

(c) (d)

Figure I.10: (a) The H-matrix resulting from the assembly with a prescribed error
ε = 10−4. (b) The previous H-matrix agglomerated with the same accuracy εagglo =
ε. (c) Agglomeration with εagglo = 10−3. (d) Agglomeration with εagglo = 10−2.

the product of a lower and an upper triangular matrices L and U, respectively. The
linear problem Mx = b is then equivalent to Ly = b

Ux = y

which can be easily solved using forward and backward substitutions. Note that
there are some variants which use partial or full pivoting in order to improve their
robustness.
As most of the factorizations, the LU factorizations suffer of a very high complexity
of O (n3) and require all entries of the matrix. Even though this factorization is one
of the most efficient and fast method to compute a direct solution, its computational
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costs are still too high.
The alternative to avoid these costs is the iterative solution. We can find a

few options in the literature, but the most competitive methods usually are the
Krylov subspace based methods as: the Conjugate gradient (CG), the Bi-Conjugate
gradient stabilized (BiCGStab) and the (Flexible-) Generalized minimum residual
((F-)GMRes). Their main asset is to be able to solve a problem using matrix-vector
products only.
Keeping in mind that a classical matrix-vector product has a quadratic complexity
(O (n2)), the gain of an iterative solver therefore depends on the number of iter-
ations required to reach the solution. The estimation of the convergence speed is
given by the conditioning of the problem, defined via the condition number of the
matrix: κ(G). A problem is well-conditioned if its condition number is low, and
ill-conditioned if it is high. So, a problem with large condition number would con-
verge after more iterations, which may lead to a very high cost and could even make
the solution impossible to reach. That is the main reason why the conditioning of a
formulation is very important.
In order to cure an ill-conditioned formulation, a preconditioning technique has
to be used. The preconditioning consists in constructing a preconditioner P, an
object (matrix, decomposition, etc) to approximate the inverse of G. The accuracy
of the preconditioner defines its efficiency in lowering the number of iterations, in
fact, if P = G−1 then the solution has to be obtained instantaneously. However,
constructing a very accurate inverse is very expensive in time and memory.
We have a few options when it comes to choose a preconditioner, we can find analyt-
ical preconditioners, which consist in curing the conditioning issue at the operator
level (a nice recipe for operator preconditioning is presented in [47]). There are also
algebraic preconditioners, which usually are decompositions. Both approaches are
robust but the operator preconditioning has shown little efficiency, therefore, we will
focus on the second kind of preconditioning.
As mentioned above, the algebraic preconditioner usually are complete or partial
decompositions. We have started this section introducing the LU decomposition, a
direct solver, but it also could be used as preconditioner if its costs were not too
high. Based on the same idea, we have the incomplete LU (iLU) decompositions
G ≈ L̃Ũ which approximate G using the lower and upper triangular matrices L̃
and Ũ, respectively. The iLU decomposition therefore allows to approximate the
inverse G−1 using the same process as for the LU decompositions. Many variants
of iLU decompositions are available, as the threshold (iLUT) or the iLUT with per-
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mutations (iLUTP). They are usually applied on sparse matrices, but they can also
be efficient for truncated dense matrices. Here “truncated” means that only few en-
tries of the matrix have been wisely chosen and used for the factorization. However,
the iLU factorizations have proved to be very useful since some of their parameters
are used to control/limit their sparsity, and therefore their accuracy and memory
consumption. The sparsity control is a powerful feature, it allows to significantly
reduce the complexity and the computational costs of such decomposition.

The H-matrix format also provides its LU decomposition, the H-LU:

=

H LH UH

(I.30)

which preserves the hierarchical structure. Its algorithm is very similar to the block-
LU decomposition at the root level, the equations to solve are H(0)

1 H(0)
2

H(0)
3 H(0)

4

 =
 L(0)

1 0
L(0)

2 L(0)
3

 U(0)
1 U(0)

2

0 U(0)
3

 , (I.31)

equivalent to:

H(0)
1 = L(0)

1 U(0)
1 gives L(0)

1 and U(0)
1 via H-LU,

H(0)
2 = L(0)

1 U2 − U(0)
2 − H-forward substitution,

H(0)
3 = L(0)

2 U1 − L(0)
2 − transposed ——— ,

H(0)
4 = L(0)

2 U(0)
2 + L(0)

3 U(0)
3 − L(0)

3 and U(0)
3 − H-LU.

This last system is solved using a recursive algorithm, which constructs the factor-
ization starting at the top left corner block to the bottom right corner, following
a Z-like path. The major difficulty is to preserve the hierarchical structure and
admissibility of all the blocks (as shown in I.30), since we are dealing with three dif-
ferent formats (hierarchical, low-rank and classical matrices). The lecture note [39]
provides a great support for a deeper understanding of this factorization.

One may want to compute the H-LU decomposition of the H-matrix resulting
from the assembly directly, but the complexity of its hierarchical structure will reflect
in a very high cost. The idea to reduce the costs is to compute a deteriorated, sparser
decomposition as the incomplete-LU. The only tool we have to reduce the complexity
of the structure and sparsify a H-matrix is the agglomeration.
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We saw in subsection I.5.b Agglomeration, the efficiency of such technique in sim-
plifying/sparsifying a H-matrix according to a prescribed tolerance εagglo. Taking
advantage of this, we want to agglomerate a copy of the H-matrix which results
from the assembly and then apply the H-LU to this copy. The deteriorated copy
will therefore be the preconditioner. We can point out that, the more we deteriorate
the copy, the lower the preconditioner efficiency is. So, there is a balance to find
between the deterioration/savings and the efficiency.

The demonstration of the efficiency of this preconditioner is shown in the next
section, considering some examples dealing with matrices used in the next Chapters.
The key role of the accuracy control will also be highlighted.

I.6 Numerical results

In this section, we are considering two examples of formulations, the first is an
electrostatic formulation, where we will compare the H-matrices and the Adaptive
Multi-Level Fast Multipole Method (AMLFMM). The second example is a magne-
tostatic formulation with a spherical shell and we will see what the agglomeration
brings to the solution. The efficiency of the H-LUpreconditioner will also be demon-
strated during the previous example.

The numerical results are obtained using a laptop DELL PRECISION M4800
with an Intel(R) Core(TM) i7-4800MQ CPU @2.70GHz.

I.6.a Electrostatic example

Let us consider an electrostatic equation on a sphere S (see Figure I.11) with a
standard Galerkin discretization of the SLP

1
4π

∑
j

(∫
S

∫
S

ϕi(x)ϕj(y)
‖x− y‖

dydx
)
qj =

∫
S
ϕi(x)V0(x)dx, ∀i, (I.32)

where ϕj are piece-wise constant functions, qj are the charge density unknowns and
V0 a real constant.

To compare the FMM and the H-matrices, in the assembly step we set ε, the
relative error in Froebenius norm for each block, to 10−4 so that both methods
provide an equivalent accuracy. The relative norm of the residual in the iterative
solver GMRes has to be lower than 10−6. The histogram in Figure I.12 shows the
assembly and solution times for both methods.
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Figure I.11: Example of a meshed sphere.
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Figure I.12: Comparison of the FMM and H-matrix times.

We can see that the H-matrix is faster than the FMM on almost all cases. The as-
sembly of H-matrices takes more time. In return, the FMM’s iterations are about 10
times slower than the H-matrix’s, because the chosen FMM variant consists in stor-
ing only the near-interactions and computing the far-interactions on-the-go, during
each product. This variant allows us to use little memory as shown in Figure I.13.
Note also that the H-matrix storage (here in kB/DOF) is close to the theoretical
logarithmic complexity.

For these results we did not use the H-LU preconditioning of the H-matrices be-
cause it is a well-conditioned problem. The next example will highlight the efficiency



40 I. H-matrices

104 105
100

101

102

Number of elements n

S
to
ra
ge

in
k
B
/D

O
F

FMM
H-matrix

n
log n

Figure I.13: Storage requirements.

of the H-LU preconditioner.

I.6.b Magnetostatic formulation

Let us consider the ferromagnetic behavior law

M(x) = χ(x,H)H(x), ∀x ∈ Ω, (I.33)

with M the magnetization, H the magnetic field and Ω an isotropic ferromagnetic
material with χ its magnetic susceptibility. We define χ as a constant for the next
experiments. The magnetic field can be written as

H = Hred + H0

with Hred the reduced magnetic field created by the ferromagnetic material and H0

the magnetic source field created by current flows.
We consider the following integral equation [48] using the total scalar potential Φ

Φ(x) + 1
4π

∫
Ω
χ(y,H)∇Φ(y) · (x− y)

‖x− y‖3 dy = Φ0(x) (I.34)

with Φ0 the scalar potential deriving from the magnetic field H0. Using a P1 finite
element approximation for Φ and the Galerkin discretization leads to the linear
system

(M + G) Φ = D (I.35)
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with the mass matrix and the right-hand-side vector

Mi,j =
∫

Ω
ϕi(x)ϕj(x)dx, Di =

∫
Ω
ϕi(x)Φ0(x)dx, (I.36)

and the volume integral

Gi,j = 1
4π

∫
Ω
ϕi(x)

∫
Ω
χ∇ϕj(y) · ∇y

1
‖x− y‖

dydx. (I.37)

Solving (I.35) permits to compute the magnetic field H in the air [49]. The matrix
M is a finite element matrix with a sparse storage, so the limitation here is the dense
matrix G.

HCA degenerate expansion

In order to apply the HCA to G, we need the degenerate expansion of its kernel. In
(I.37) the kernel function G(x,y) = ∇y

1
‖x− y‖

enables the identifications

γ(x,y) = 1
‖x− y‖

, Dx = Id, Dy = ∇y,

in order to satisfy (I.19). The two single integrals to compute are then∫
Ω

ϕi(x)
‖x− ỹjl‖

dx and
∫

Ω
χ∇ϕj(y) · ∇y

1
‖x̃iq − y‖

dy.

The computational cost of these integrals is proportional to the number of quadra-
ture points per element instead of the quadratic cost of the two-fold integral, allowing
us to have a lower complexity than the ACA for the same rank.

Numerical results

Let us consider a spherical shell meshed with tetrahedra (a cut of the solution is
shown in Figure I.14), we will solve (I.35) and focus our attention on two different
points. We will be focusing on the impact factor of the agglomeration, for assemblies
using ACA and HCA. Then, we will focus on the H-LUperformances.

Study case 1: Keeping the same parameters as for the electrostatic example, we
are assembling H-matrices using the ACA and HCA on 3 meshes of different size.
The computational data are presented in Table I.1, as well as the accuracy of the
results. The accuracy (column “Error”) is computed comparing the results of each
method against those obtained with the classical/full approach. We can see that
the HCA performs faster than the ACA regarding the assembly of an H-matrix,
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Figure I.14: Isovalues of the solution on a spherical shell.

but in counterpart, the HCA requires more memory. These results follow the same
behavior to those found in the literature, which also treat spherical geometries for
other integral equations.

Table I.1: Computing times, storage and error without agglomeration.
NbDOF Assembly (s) Solver (s) Storage (kb/DOF) Error

A 3,846 718 0.5 15.4 1.53%
C 12,938 7,321 10 24.3 0.85%
A 48,154 56,112 89 37.6 0.37%
H 3,846 278 0.6 18.3 5.23%
C 12,938 2,333 12 29.4 1.33%
A 48,154 18,154 109 44.9 1.42%

These memory requirements can be reduced using the algebraic re-compression tech-
nique previously presented, the agglomeration, while keeping the same accuracy.
This technique does not change the asymptotic complexity of the assembly step,
and it allows us to reduce the complexity of the arithmetic operations.
The same procedure is repeated with, in addition, the agglomeration directly applied
after the assembly. The new computational data are presented in Table I.2. The
assembly times have only slightly increased (about 3-4%) compared to Table I.1, but
in counterpart, both methods now have an equivalent and reduced storage. There-
fore, the efficiency of the HCA rose significantly compared to the ACA, providing
an assembly about three times faster for the same memory consumption and about
the same accuracy. Note that the initial block compression is required to be slightly
more accurate before recompression compared to experiments in Table I.1. Accord-
ing to [50], in order to ensure the whole assembly satisfies a tolerance ε, the ACA
(or HCA) has to be computed with an accuracy of ε/20 and the recompression with
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a tolerance of (2 + ε)−1. This is why the error can be lower in Table I.2 compared
to Table I.1. We can also note very small improvements in the column “Solver”,
because the solutions were already very fast.

Table I.2: Computing times, storage and error with agglomeration.
NbDOF Assembly (s) Solver (s) Storage (kB/DOF) Error

A 3,846 952 0.5 7.0 1.66%
C 12,938 9,774 10 10.3 0.27%
A 48,154 74,604 95 14.9 0.45%
H 3,846 287 0.5 7.0 1.63%
C 12,938 2,586 12 10.4 0.54%
A 48,154 18,876 98 14.9 0.72%

To conclude this analysis, the agglomeration provides a great combination with
the HCA, reducing drastically the storage for a very insignificant cost.

Study case 2: Based on the last results, we will be using the HCA for this case
and now focusing on the preconditioning. Using the same meshes, we will compare
the solutions’ data of multiple cases using the H-LUpreconditioners with different
tolerances.

The computational data are presented in Table I.3, we have considered three
cases using the H-LU decomposition with the next accuracies εLU = 0.3, 0.1, 0.01.
We want to specifically look at the number of iterations taken to reach the solution
“NbIt”, and the time taken by the solver “TSolv”, the agglomerations “TAgglo” and
the H-LU decomposition “THLU”. We will compare these data to those from a
solution without preconditioner, in the columns “No Prec.”.
Looking at the results, the balance between the efficiency, i.e.: the number of itera-
tion reduction, and the preconditioner’s accuracy is obvious. The more agglomerated
is the preconditioner, the more iterations are required. On the other hand, we clearly
see the impact of the agglomeration on the H-LU decompositions. As we previously
mentioned, the agglomeration reduces the costs of arithmetic operations, thus, the
results clearly show a significant decrease of the H-LU’s costs.
Focusing on the case with 12, 938 DOFs, the agglomeration took 23.46 seconds which
led to a H-LU taking 19.47 sec. for an accuracy of 0.01; whereas, for a tolerance
of 0.3, the agglomeration is more expensive (34.96 sec.) but the H-LU time has
decreased by a factor 10 (1.91 sec.). As a result, the preconditioner construction is
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usually faster for a low accuracy (0.3 is often used) than for a high accuracy.
On the other hand, the solver will require more iterations, so, the choice of the
accuracy also depends on the number of right-hand-side vectors, directly connected
to the number of solutions required to solve the whole problem. Increasing the
accuracy reduces the number of iterations, therefore, it should shorten the time
taken by the solver. So, a problem with multiple right-hand-side vectors should use
a higher accuracy than one with a single RHS vector.

To conclude this study, we summed the times of each case and gathered them
in Table I.4. We have pointed out the balance with which we have to play, between
the agglomeration and the H-LU cost, let now focus on the time taken to solve
the problem. First of all, we can emphasize the fact that the solution without
preconditioner already converges very fast, so this problem may not highlight the
efficiency of the H-LU. However, the column “0.1” shows an improvement for the
larger mesh, whereas for the other meshes, the time taken by the solution is pretty
similar to those from the non-preconditioned column. The other two cases (0.3 and
0.01) do not bring any improvements, the case 0.3 took too much time to agglomerate
the preconditioner, whereas the case 0.01 spent too much time computing the H-
LU. So, for this example, a preconditioner with an accuracy of 10% shows the best
balance.

I.7 Conclusion

In this chapter, we wanted to present a powerful matrix compression technique,
the H-matrices, that we will be using afterward in the thesis, as a compression and
preconditioning technique. We didn’t bring any contribution to this great tool, so we
intended to give a brief view of the tool and the theory behind, so the reader could
understand the computational challenges we will be facing in the next chapters.

We have started with a presentation of the essential components to a H-matrix,
starting with the hierarchy construction for general n-D geometries and the com-
pression techniques. We have introduced two existing compression techniques based
on low-rank approximations: the ACA, an efficient algebraic method suffering of a
lack of robustness, and the HCA, a hybrid technique which combines the ACA and
an analytical approach, in order to cure the issues of the ACA.

Once the main two components are presented, the assembly of a H-matrix is
straightforward. We could therefore present the indispensable arithmetic operations
to solve a problem. With the aim of a preconditioned iterative solutions, we have
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presented the H-matrix-vector product and the crucial elements for the precondi-
tioner construction. The preconditioner stands on the combination of the H-LU
decomposition and the agglomeration, allowing to deteriorate the preconditioner
with a control on the accuracy. The numerical tests have highlighted the pertinence
of such control.

The first example consisted in comparing the efficiency of the H-matrix and the
FMM to solve an electrostatic problem. The results showed that the H-matrices
are usually faster for the whole solution, even without preconditioner, but the FMM
requires less memory.
Then, we focused on the construction of the low-rank approximations and we com-
pared the ACA and HCA considering two cases. The ACA did not fail for this for-
mulation and the considered examples. Comparing the ACA and HCA, we showed
that the HCA is faster but requires a larger storage. Adding an agglomeration step,
the storages become equivalent for both methods. At the end the HCA, seems more
efficient and reliable than the ACA for this formulation.
Finally, we studied the same examples and we focused our attention on the construc-
tion of the preconditioner. Three different accuracies of preconditioner have been
computed and we compared the results against the case without preconditioner.
We clearly saw the efficiency of the preconditioner, via the reduction of number of
iterations. We have also monitored the time spent in the agglomeration, and we
highlighted a correlation between the agglomeration and the H-LU costs.

Next, we will study similar formulations to the ones we are aiming and we will
focus our attention on their preconditioning, based on H-matrices.



Chapter II
On the preconditioning of eddy current

formulations

On ne fait jamais attention à ce qui a été fait ; on ne
voit que ce qui reste à faire.

Marie Curie Sklodowska
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Resume

In this chapter, we will focus on two different types of “simple” formulations,
in the sense that they consider conductors with resistive and inductive effects
only. These formulations emerged from the different approaches we spoke
about in the section A quick survey of methods for low frequencies. First, we
will present the formulation from the circuit approach: the inductive PEEC,
and then the T formulation, from the “pure” integral equations approach. We
will see that they are very similar formulations, and taking advantage of that,
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we will see how to add circuit elements in the last formulation. In the mean-
time, we will study the potential of preconditioning for each formulation.
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II.1 Introduction

As a remainder, we aim to model problems containing conductors and dielectrics,
taking in consideration the resistive, inductive and capacitive effects with a circuit
coupling. Therefore, at low-frequencies, where the propagation is negligible, we
provide a full electromagnetic solution, i.e.: the electric and magnetic effects are
taken into account. But for a matter of understanding, we decided to introduce
simpler formulations first, where we can directly use the H-matrices as compression
and hopefully as preconditioner.

This chapter arbitrarily takes place in the context of very low-frequencies ap-
plications, where the propagation effects can be neglected as well as the capacitive
effects. The electromagnetic problems are then resumed in modeling resistive and
inductive effects only. Since the capacitive effects are neglected, we can also neglect
any dielectrics. So, the problems are reduced to eddy current problems where we
consider volume and/or thin conductors only, see Figure II.1.

Conductor

Source Field

Induced Field

Source current

Induced current

Figure II.1: Eddy current problem with an inductor and a conductive plate.

These kinds of problems have been widely studied in the past, so various formulations
are available in the literature. They are usually employed for applications as eddy-
current testings for nondestructive analysis, wireless power transfer by induction,
electromagnetic braking, etc.
The method that we intend to use for the more complicated formulation with di-
electrics is based on the PEEC method. We will therefore be studying an inductive
PEEC formulation based on the current density J, as a first step, in order to provide
a better understanding of the difficulties encountered during the PhD.
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Secondly, we will present the T formulation and see if it could allow us to overcome
previous difficulties.

II.2 Inductive PEEC Formulation

The Partial Element Equivalent Circuit method has proven to be very efficient solv-
ing interconnected problems with a need of external circuit coupling. The circuit
coupling is essential for numerous applications, to model the supplies or to add
passive circuit elements (RLC). The efficiency of the PEEC to solve problems with
a circuit approach mainly comes from the fact that it uses an equivalent circuit
representation of the problem.

We have previously discussed in the section A quick survey of methods for low
frequencies about the classical PEEC [21,22, 28], which suffers of important limita-
tions, such as the exclusive use of hexahedral meshes and the current’s interpolation
of low-order (piece-wise constant). The last limitation implies having 1-directional
elements as in Figure II.2, which allow the current to flow along only one direction
(usually the dimension of the larger size). There are 2D elements as well, combining
two 1D elements to allow the current to follow two directions, along the larger and
longer dimension.

•
N1

•N2

•
N1

•
N2

Figure II.2: Equivalent circuit representation of a 1D inductive PEEC-element.

For the eddy current problems, using these 1D or 2D PEEC-elements may lead to
inaccurate solution, since the induced currents are more likely to form circular shapes
that are not uniform across any plane. Another PEEC approach, using different
PEEC elements, therefore has to be used. We are briefly presenting previous works
done in the G2Elab that overcome these limitations [51–54].
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II.2.a PEEC Formulation

In reality the current flows through conductors following a continuous path, but in
a discretized space, we can’t exactly represent such current. The most reliable and
natural way to approach this reality would be to let the current flows in or out of
an element of the mesh. Using the faces of the mesh as a support of the current
seems the most natural way to represent the current flowing. After all, the supply
injections are usually connected through some faces of the device.
The next formulation uses face element to achieve such representation. This work
comes from the Ph.D. of T.T. Nguyen [51].

Maxwell’s equations
Let us start by the development of the Maxwell’s equations in order to reach the
PEEC integral equation corresponding to face element discretization.

In our context the Maxwell’s equations [55] are


curlH = J,

curlE = −jωB,

divB = 0,

(II.1)

(II.2)

(II.3)

with the following constitutive laws
 J = σE,

B = µ0H.

(II.4)

(II.5)

From (II.3) we can define a vector potential A such as B = curlA. Injecting the
last equation in (II.2) also allows us to define a scalar potential V satisfying:

E = −jωA− gradV. (II.6)

Without any ferromagnetic matter, Biot et Savart law gives

A = µ0

4π

∫
Ω

J
r

dΩ, (II.7)

with r the distance between the testing (where A is expressed) and integration
points. So, (II.6) becomes:

E = −jω µ0

4π

∫
Ω

J
r

dΩ− gradV. (II.8)

The problem finally consists in matching the last equation with the first constitutive
law (II.4), leading to

J
σ

+ jω
µ0

4π

∫
Ω

J
r

dΩ = −gradV. (II.9)
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Discretization
As mentioned previously, we want to use the face elements to discretize the currents,
our unknowns, for a better approximation of the reality. But, this also allows us to
overcome the other limitation of the classical PEEC, enabling the use of a general
mesh (triangular, quadrangular, tetrahedral, etc).

We are then discretizing the current density vector using the wi face shape
functions (see Figure II.3), which are Whitney elements of second order [56] (also
called face elements), as follows:

J =
∑
k

wkIk, (II.10)

with Ik the current flowing through the face k. The face elements are well-suited
to interpolate current density, since they preserve the normal components of the J
between elements, therefore allowing to naturally represent the current flowing.

Figure II.3: Face shape functions

We finally apply a standard Galerkin discretization scheme to (II.9) using the
face elements, which leads to the next system under its matrix form:

(R + jωL) I = U, (II.11)

with 

Ri,j =
∫

Ω

wiwj

σ
dΩ,

Li,j =
∫

Ω
wi

∫
Ω

wj

r
dΩdΩ,

Ui = −
∫

Ω
wigradV dΩ.

(II.12)

(II.13)

(II.14)

In addition, we impose the current not to flow outside of the conductors imposing:

J · n = 0

on the border faces that are not connected to the external circuit. The problem is
finally defined as a basic circuit equation: ZI = U, composed of resistances and
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inductances. Now, we have to define the circuit representation associated with such
discretization.

Equivalent circuit representation
In order to know how to construct the equivalent circuit, we are investigating the
meaning of U in (II.11). Let us start by using the Divergence Theorem:

−Ui =
∫

Ω
wigradV dΩ =

∫
Γ
(wi · n)V dΓ−

∫
Ω

(divwi)V dΩ (II.15)

Considering an inner face, we have

−Ui =
∫

Ω
(divwi)V dΩ (II.16)

and we know that the support of the face element wi is shared by two elements (e1

and e2), so we have

Ui =
∫
e1

V

Vol(e1)dΩ−
∫
e2

V

Vol(e2)dΩ (II.17)

knowing that divwi = Vol(ei)−1, with Vol(ei) giving the volume of the element ei.
We can see that (II.17) represents the difference of averaged potential between two
inner elements. So, from a circuit approach, we can assimilate this as the voltage of
a branch linking two elements, as the black lines in Figure II.4.

•

•

••

•

Face Γj 

• Uj

•

•Ui

Figure II.4: Shows the difference of averaged potential between elements (in black)
and between a border face and its inner volume element (in red). The external
circuit is in red and discontinuous lines.

Let’s now consider a face j on the border. Its support is only on one element (e1 for
example), so (II.15) gives

−Uj =
∫

Γ
(wj · n)V dΓ−

∫
e1

V

Vol(e1)dΩ (II.18)
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and knowing that (wj · n) = S−1
j , with Sj the surface of the face j, we have

−Uj =
∫

Γj

V

Sj
dΓ−

∫
e1

V

Vol(e1)dΩ (II.19)

also representing the difference of potential between a border face and its inner
support, as the red lines in Figure II.4.

So, the right-hand-side vector is the potential difference (or voltage) on the circuit
branches, in black and red continuous lines in Figure II.4, the circuit topology is in
fact the dual mesh.

Now that the branches are placed and the topology is set, we have to investigate of
what the branches are composed. In (II.11), the unknowns are the currents flowing
through the faces, which are represented by the circuit branches. When looking
at the equation (II.11), more precisely at the matrices, we see that the model of
each face is composed of one resistance and one inductance. The equivalent circuit
representation therefore consists of branches, containing R and L lumped elements,
which link one element of the mesh to its neighbors throughout the faces they share.
For example, let us take the last mesh (in Figure II.4) and focus the middle prism. In
Figure II.5, the middle prism P0 (in black) shares three of its faces with its neighbors
(P1, P2 and P3 in gray), whereas the top and bottom faces are on the boundary.
So, three RL-branches connect N0, the barycenter of P0, to the barycenters of its
neighbors. Note that we chose this example for a matter of understanding, but
this principle can be easily and directly transposed for other meshes and types of
elements. Like, for example, the rectangles that are now used in InCa3D software.

•N0
•N1 •N2

•
N3

•
N1

•N0 •
N2

•N3

R01 L01 L02 R02

R03

L03

Figure II.5: Equivalent circuit of a mesh-element using a ‘face discretization’.

In the general case, the circuit topology is equivalent to the dual mesh, see Figure
II.6 for example, where the dual edges are RL-branches and the dual vertices are
the circuit nodes.

Circuit solver
We have presented the PEEC integral equations and its equivalent circuit represen-
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Figure II.6: The primal mesh (in black) is a conductive loop meshed with triangles
and the dual mesh is in blue. Each blue edge corresponds to one RL-branch.

tation, but we want to solve problems with external electrical circuits. The solution
therefore can be computed using a circuit solver, which role’s is to solve electrical
circuit problems and thus ensure the current density solenoidality. Such solver only
need two inputs: the circuit topology, providing the informations about the connec-
tions of the branches and their circuit nature (R, L, C, sources, etc.). The second
input is the set of matrices which defines the value of each branch, for our inductive
case, we have to provide the complex matrix: R + jωL, from (II.11). Once the
circuit solver has these informations, the solution can be computed.
The circuit solver consists in reformulating the problem, which is in the branches
basis, into another basis in order to satisfy Kirchhoff’s laws.

We can typically find two types of circuit solvers, which use different basis.
There also exists hybrid approaches that will not be considered here. The first type
of solver uses the first Kirchhoff’s law (the Kirchhoff’s current law), also called the
nodal approach/analysis because it transfers the equation (II.11) into an independent
node basis. This approach is probably the most popular in the literature [57]. The
last type of solver uses the second Kirchhoff’s law (Kirchhoff’s voltage law), which
uses the independent loop basis. We are presenting briefly both approaches:

(a) Nodal analysis.

Based on the circuit topology, given by the equivalent circuit representation, the
nodal analysis consists in writing the circuit equations in an independent node basis.
The independent nodes are a subset of the initial circuit nodes, where one node by
independent circuit has been removed to be consider as the reference. The change-of-
basis is represented via an incidence matrix M•, transferring the equations written
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in the branches basis into the independent node basis. The incidence matrix M•

has to fulfill the next condition:

M•
i,j =


0 if the branch j is not linked to the node i,
1 if the branch j is oriented towards the node i,
−1 if the branch j is not oriented towards the node i.

Note that the incidence matrix is a very light sparse-matrix. The equivalent circuit
is composed of R and L elements (as in Figure II.5), but to add the external circuit
we have to take into account the new branches that can be composed of current and
voltage supplies and RLC passive elements. Taking in consideration these external
branches, the incidence matrix can be written as:

M• =

Ω + RLC I Src. U Src.

lo
op

s

M•
Z M•

I M•
U

← branches →

(II.20)

if the branches are ordered properly. The matrix M•
Z corresponds to the branches

containing the equivalent circuit and the passive elements (R,L or C) added from
the external circuit. Whereas M•

I , M•
U are the incidence matrices restricted to the

branches that contain the current and voltage supplies, respectively.
The ordering used here is entirely arbitrary. One can use another strategy, but for
a matter of ease, the branches should be grouped by types.

Using the first Kirchhoff’s law can lead to the next system of equations:
ZbZ M•

Z
T 0 0

M•
Z 0 M•

U 0
0 M•

U
T 0 0

0 M•
I
T 0 Id




I
VN

UI

IU

 =


0

−M•
III

−UU

0

 (II.21)

where VN is the potential of the independent nodes, I is the current of the branches
related to passive elements. II the currents imposed by the current sources, UI the
unknown voltages of these sources. The same goes for the voltage sources, where UU

are the applied voltages and IU the unknown currents of these sources. The matrix
ZbZ corresponds to the contribution of the passive components, so considering a
circuit coupling gives

ZbZ =
 Z 0

0 Zc

 (II.22)
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where Z is given by the formulation, here Z = R + jωL, and Zc is the impedance
matrix given by the electrical circuit.

This system is not under its usual form, to obtain the classical and smaller (in
terms of size) system one just has to combine the first two equations (or rows).
The combination gives the equation M•

ZYM•
Z
TVN = M•

IIbI , with Y the admittance
matrix. Solving this admittance-equation is very problematical in our context, since
we know how to assemble Z but not Y = Z−1, without inverting Z. There also are
other “modified” or “augmented” variants of the basic nodal approach [57], but they
are also based on the admittance matrix. So, we will be working with the first and
larger (in terms of number of unknowns but not necessarily in terms of memory)
equation (II.21).

(b) Loop Analysis.

A circuit loop is a continuous set of branches which forms a closed loop, and any
node is used only once (no self-intersection), see Figure II.7 for example.

•
•

•

•
•

•

•
•

•

•
•

•

Figure II.7: Example of a set of loops (in red) associated to an equivalent circuit.

We normally use the independent loop approach because it uses fewer unknowns
than the nodal approach. Based on the circuit topology, the solver seeks a set of
loops which form a system of independent equations. The independent loop search
algorithm we are using is published in [58].
The result of the search is the set of independent loops, under the form of an inci-
dence matrix M◦, satisfying:

M◦
i,j =


0 if the branch j is not in the loop i,
1 if the branch j is in the loop i with the same orientation,
−1 if the branch j is in the loop i with the opposite orientation.
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The problem ZI = U in the independent loop basis is then defined as

M◦ZM◦T Im = M◦U, (II.23)

with Im the loop currents (M◦T Im = I) and Z an impedance matrix. The Kirchhoff’s
voltage law gives: M◦U = 0. So, for problems with no external coupling, the
equation to solve is:

M◦ZM◦T Im = 0, (II.24)

with Z = R+jωL. But with a circuit coupling, we have to construct the independent
loop set taking in consideration the additional branches, leading to the incidence
matrix with the following form/split:

M◦ =

Ω + RLC I Src. U Src.

lo
op

s

M◦
Z M◦

I M◦
U

← branches →

(II.25)

with M◦
Z the submatrix corresponding to the passive elements. M◦

I and M◦
U are the

matrices for the current and voltage source branches, respectively.
The circuit equations defining a problem with sources can be written as the next
system: 

M◦
ZZbZM◦

Z
T Im −M◦

IUI = M◦
UUU,

M◦
I
T Im = −II,

M◦
U
T Im + IU = 0.

(II.26)

The equivalent matrix equation of the system (II.26) is
M◦

ZZbZM◦
Z
T −M◦

I 0
M◦

I
T 0 0

M◦
U
T 0 Id




Im
UI

IU

 =


M◦

UUU

−II

0

 . (II.27)

There we have the general circuit equations using the second Kirchhoff’s law. The
solution of the problem finally comes down in solving (II.27).
The circuit solver is an independent tool compatible with any PEEC formulations,
as long as the problem can be represented using a lumped element equivalent circuit.
So, a comparison of the conditioning of both approaches will be done later on.

We have developed the previous PEEC formulation in the general case (with
volume conductors), but we also aim for PCB-like applications which contains very
thin conductor. The last formulation may suffer of inaccuracies coming from the
discretization, so we will present next another formulation which allows to solve
efficiently such problems.
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II.2.b Shell PEEC-formulation

In the context of these works, we are also targeting PCB-like applications. Typically,
we are facing problems with conductors as PCB tracks, i.e.: very thin layers which
have a thickness e ≤ 70µm and with the other dimensions that are much greater than
the thickness. Using very thin (volume) mesh-elements might cause inaccuracy issues
during the integration process if one uses numerical integral computation techniques.
Moreover, the frequency range of these type of application imposes us to take into
account the skin effects. Therefore, we may have to add more mesh-subdivisions
along the thickness, in consequence, we will have even thinner elements.
One solution is to use thin shell approximations in order to use surface elements
instead. We will quickly see how to obtain a thin shell PEEC-formulation [53].

The distribution of current density across the thickness can be estimated an-
alytically, so we are using this information to approximate the current density in
the volume using an average current density supported by a surface. For example,
considering an extruded element, as in Figure II.8, we will use the median rectangle
S to approximate the current density flowing through the left hexahedron.

JS2

JS1

e

S

Jm

Figure II.8: Very thin hexahedron approximated using its median rectangle on the
right.

We typically distinguish two cases to compute the average current density, which
depend on the thickness e and the skin depth δ:

a) e� δ: the current density is uniform across the thickness, as in Figure II.9,
where the hexahedron of Figure II.8 is shown from the side.

Assuming, ∫
Ω

J
r

dΩ ≈
∫
S

1
r

{∫ e

0
J(y)dy

}
dS = e

∫
S

Jm
r

dS, (II.28)

and injecting it in (II.9), the previous integral equation can be approximated by:

J
σ

+ jω
µ0

4πe
∫
S

Jm
r

dS = −gradV. (II.29)
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y

x

Jx

e

Figure II.9: Side view of a case where the current density is flowing through an
element uniformly on y (the thickness).

Since the problem is still using volume quantities, J and V for instance, we are
writing the last equation on the top and bottom sides of the conductor (S1 and
S2) and averaging them gives

Jm
σ

+ jω
µ0

4πe
∫
S

Jm
r

dS = −gradVm (II.30)

with Vm = (VS1 + VS2)/2.

The discretization procedure is similar to the volume’s, the only change is the use
of surface face functions w(s)

i also known as RWG functions [34], see Figures II.10.
Because the face in 3D-meshes degenerates into edges in 2D-meshes, the face
elements are in fact special edge functions.
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Figure II.10: (a-b) Example of a face shape function on a quadrangle and a triangle.

The average current density is discretized using the surface face elements as
follows,

Jm = 1
e

∑
j

w(s)
j I(s)

j (II.31)
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where I(s)
j is the current flowing through the degenerated face j. Following the

same procedure as previously, we apply a standard Galerkin discretization with
the surface face shape functions and the result is(

R(s) + jωL(s)
)

I(s) = U(s), (II.32)

with 

R(s)
i,j =

∫
S

w(s)
i w(s)

j

eσ
dS,

L(s)
i,j =

∫
S

w(s)
i

∫
S

w(s)
j

r
dSdS,

U(s)
i = −

∫
S

w(s)
i gradVmdS.

(II.33)

(II.34)

(II.35)

Putting aside the changes from volume to surface, we can note that this system
is very similar to the volume’s, with only the conductivity that is scaled by the
thickness here. We can see it like an equivalent conductivity that represents the
simple phenomena occurring in the volume.

The case where the current has a uniform distribution may seem trivial and/or
irrelevant for some applications, so we generalize this approximation in the second
case.

b) e & δ: The skin effect cannot be neglected, therefore, we can’t assume the current
to be uniform across the thickness. However, we know that the current has a
tendency to be more concentrate on the top and bottom faces of the volume in
case of thin shell geometries (as in Figure II.11), due to the skin effect.

y

x

Jx

e

Figure II.11: Side view of a case where the current density is flowing through an
element with a hyperbolic evolution along y (the thickness).

Previous works provide an analytical expression of the current density distribu-
tion while taking into account the skin effect and the thickness of the conduc-
tor [59–61]. The average current density expression is given by

Jm = 1
e

∫ e

0
J(y)dy = G

JS1 + JS2

2 , (II.36)
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with G a complex number defined as

G =
2δ tanh

(
e(1+j)

2δ

)
e(1 + j) , (II.37)

which takes into account the skin depth. The factor G was obtained considering
infinite planes, so inaccuracies may occur when dealing with geometries having
corners or complex shapes.

Writing (II.29) on both sides and averaging it here leads to the next equation

Jm
Gσ

+ jω
µ0

4πe
∫
S

Jm
r

dS = −gradVm, (II.38)

and using the same discretization with (II.31) gives:
(
R̃(s) + jωL(s)

)
I(s) = U(s), (II.39)

where

R̃(s)
i,j =

∫
S

1
e

w(s)
i w(s)

j

Gσ
dS. (II.40)

As for the last case, the phenomena happening in the volume are taken into
account using an equivalent complex conductivity (σ∗ = Gσ).

The integral equations to solve are very similar for all the cases we have pre-
sented, but the equivalent circuit should be simplified, since no discretization has
to be considered across the thickness. The independent loop set therefore should
be smaller, which may lead to a lighter problem to solve since (II.23)’s size is the
number of independent loops (without sources). Treating very thin conductors with
one of the last shell formulations reduces the complexity of the problem, the integral
computation times (since we have fewer elements), and as a result, it provides a
more efficient solution.

We have presented two formulations to solve magnetoharmonic problems with
volume or thin shell conductors and a circuit coupling. Both formulations consist
in solving the circuit equations under the form of (II.27). As a remainder, we
have presented these formulations in order to study their conditioning and more
specifically, if we can construct an efficient preconditioner.

II.2.c Preconditioning study

We are investigating the capability to construct an efficient preconditioner for a low
cost, using the H-matrices for a solution using the nodal or the loop analysis.
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Circuit solver using the nodal approach
In a first step, we assume that the external circuit does not contain any passive
elements for a matter of understanding, so ZbZ = Z. The matrix to precondition,
defined in (II.21), is large with a block-structure, however, most of the matrix is
very sparse since only Z is dense. We want to use the H-matrices to compress and
compute the preconditioner of Z, thus we decided to split the matrix as:

Z1,1 Z1,2

Z2,1 Z2,2

.

 =


Z M•T 0 0

M• 0 M•
U 0

0 M•
U
T 0 0

0 M•
I
T 0 Id

 , (II.41)

to isolate Z. The incidence matrices are usually very sparse by construction and as
we can compute an efficient LU decomposition of Z1,1 (via the H-LU), we decided
to use a block-LU which takes in consideration the sparse storages. The block-LU
procedure is actually the same as computing a H-LU with a very simple H-matrix,
so the reader can refer to the first chapter for more details about a 2× 2 block-LU.

The efficiency of this preconditioner will be studied in the next test case, but let
us first analyze the loop approach.

Loop approach
We have to solve the circuit equations arising from the second Kirchhoff’s law (II.23):

ZmIm = M◦
ZZM◦

Z
T Im = 0, (II.42)

for a problem without sources. To study how to construct a preconditioner, we have
to analyze Zm closely.
The matrix Zm ∈ Cnl×nl , with nl the number of independent loops, is a square
matrix that corresponds to the change from the branches basis to the independent
loops basis. This change-of-basis is supported by M◦

Z ∈ Rnl×nb , with nb the number
of branches, the rectangular incidence matrix which stores the informations of the
loops’ path. Our aim here is to find a way to approximate the inverse of Zm at low
costs (in time and memory) using the H-matrices.
The PEEC integral equations of all previous formulations are directly compatible
with the H-matrices, since the matrices L and L(s) are very classic integrals. Note
that the inductance matrices are very similar to the electrostatic matrix in sub-
section I.6.a Electrostatic example, with the only difference that they use a vector
kernel function here. The use of the H-matrices provides a twofold benefit, since we
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want to use it for the compression, in order to lower the costs of the assembly and
storage, and for the H-LU preconditioner.

Keeping these conditions in mind, we started to think about two naive approaches
to invert Zm: the direct and the substitution.

Directly trying to invert Zm leads to assemble some or all of its entries. Nev-
ertheless, Zm is never assembled directly because we did not have the numerical
tools for it and implementing such integration in the loops basis would be very time
consuming. So, instead we assemble and compress Z using the H-matrices, and
we have to handle an explicit change-of-basis. Explicitly assembling Zm is achieved
computing two matrix-products, which requires (nb+nl)nbnl operations, and storing
the result into a dense matrix of size nl × nl. These costs are obviously too impor-
tant to consider assembling totally Zm, alternatively we could afford to assemble it
partially and use a sparse storage for the result. This now leads to the choice of
which part of Zm should be computed. A former PhD student proposed to compute
an incomplete-LU preconditioner using only the near-interactions [62, II.5], but the
results were not satisfactory. Other classical preconditioners have been studied in
these works, so we decided to try to construct a preconditioner in the branches basis,
i.e.: based on Z.

Another naive approach consists in splitting the solution of (II.23) into a system
of three equations obtained by substitution:


My = 0,

Zx = y,

MT Im = x.

(II.43)

(II.44)

(II.45)

Solving this system requires solving rectangular systems, so non-classical solvers has
to be employed. The SuiteSparse provides a sparse QR decomposition (SPQR) [63],
directly usable via Matlab, to solve (II.43) and (II.45) very efficiently. At first
sight, solving the system should not be a problem since we can efficiently solve each
equations. However, the resulting solution does not satisfy the original equation
(II.23), although each of the three solutions gives a correct result. In order to
understand what went wrong, we have to look at these three equations in details. The
second equation is not a problem since it is the H-matrix part and the last equation
is over-determined (more rows/equations than columns/unknowns), therefore the
correct solution should be reached. So, (II.43) is problematical since it is an under-
determined equation, there are an infinite number of solution y, therefore, even
though the solution y satisfies (II.43), it is not the correct one. In fact, when we
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pay more attention to the linear algebra theory and more specially to the conditions
of the substitution, in order to solve (II.43) correctly the next condition have to be
ensured in addition: y ∈ span {Z}. Finally, solving (II.43) with the last constraint
leads to solve the whole problem, so this approach shows no advantages.

No reliable and efficient way to precondition a change-of-basis, or the PEEC
formulations using the second Kirchhoff’s law, have been found. The two most naive
and direct approaches have been explored, since we have not found any publications
on the matter, one has to investigate either more evolved approaches or change the
starting point.

We are comparing the nodal and loop analysis in the next test case, with the
nodal approach that is preconditioned by a block-LU factorization.

Test case
Let us consider an example to evaluate the preconditioner presented for the nodal
analysis and compare it with the loop analysis without preconditioner. The device
we are studying is made of two thin conductive layers with a zigzags shape, a picture
of it is presented in Figure II.12. It is supplied by a current source of 1 A connecting
the two layers by their lower left corners and a short-circuit is linking the layers on
the opposite side (lower right corners). The current density resulting at 1MHz from
the PEEC solver is shown in Figure II.13. Note that the dielectric block separating
the conductive layers was not taken in consideration here.

Figure II.12: Picture of the device. Figure II.13: Isovalues of the current den-
sity magnitude.

We have solved this problem using the independent node (IN) approach with and
without preconditioner (respectively denoted by “IN w/ prec.” and “IN w/o prec.”)
and loop approach (denoted by “IL w/o prec.”), in order to position their perfor-
mances. The residual evolution during the FGMRes of the last three approaches is
presented in Figure II.14.
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Figure II.14: Evolution of the FGMRes residual against the iterations. “IN” (Inde-
pendent Nodes) denotes the nodal analysis and “IL” (Independent Loops) denotes
the loop analysis.

The solution using the IN without preconditioner is naturally taking more it-
erations to converge. Constructing the block-LU preconditioner almost divides by
two the number of iterations, however, the independent loop (IL) solution took less
iterations without preconditioner.

Focusing now on the computational costs of each approach, Figure II.15 and Fig-
ure II.16 contain the elapsed time and the memory used for the solution, respectively.
We can point out that the solution with preconditioner allowed to reduce the solu-
tion time, but as previously, we also clearly see that the IL solution is much faster.
We observe almost the same behavior for the memory consumption, except that the
preconditioned solution requires a large amount of memory compared to the others.
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Figure II.15: Elapsed time taken by the
solutions.
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Figure II.16: Memory requirements of
the solutions.
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To understand better why the preconditioner is requiring that much memory,
we are looking at the blocks of the block-LU factorization. The decomposition is
constructed as:  Z1,1 Z1,2

Z2,1 Z2,2

 =
 L1,1 0

L2,1 L2,2

  U1,1 U1,2

0 U2,2

 (II.46)

with L1,1 and U1,1 given by the H-LU of Z1,1. Keeping the sparse storage of the
extra-diagonal matrices, we want to solve

Z1,2 = L1,1U1,2

Z2,1 = L2,1U1,1

(II.47)

(II.48)

by forward substitutions and get U1,2 and L2,1 with a sparse storage. For this ex-
ample, the pattern of U1,2 and L2,1 are shown in Figure II.17 and II.18, respectively.
Taking advantage of the sparse storage led to solutions (U1,2 and L2,1) filled at 50%,
so it allowed to halved to normal storage requirement. However, since they are very
large blocks, they are consuming too much memory compared to a classical iLU
which can keep the initial matrix sparsity. Moreover, constructing the last matrices
consists in applying an iLU factorization to Z2,2 −L2,1U1,2 = L2,2U2,2, even though
Z2,2 is very sparse, the product L2,1U1,2 is more likely to give a dense matrix. So, in
the end the bigger blocks (i.e.: L2,2 and U2,2) should be dense, which explains the
high needs in memory for this preconditioner.

Figure II.17: Sparsity pattern of UT
1,2. Figure II.18: Sparsity pattern of L2,1.

The block-LU preconditioner might be improved using ordering techniques that are
well-known to reduce the filling factor of factorizations. Or the extra-diagonal blocks
can be neglected to compute only the iLU of Z2,2 and thus avoid the filling of the
blocks. Such approach leads to a poor preconditioner, since Z2,2 is an extremely
sparse block. Moreover, the extra-diagonals are very important since they represent
all the connections and more importantly the supplies coupling with the device.
Other splits of the matrix have been tested, but the conclusions were the same.
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Other approaches have been studied and tested, we mainly have implemented
and experimented the block solvers as the Successive Over Relaxation (SOR). Thus,
we could keep using the H-LU of Z for its solution. Looking carefully to the block-
structure of the matrix to solve in (II.21), we can note that the diagonal contains
two blocks of 0’s. There is one appearing only when the problem has voltage sources,
while the other is very large, constantly there and very problematic since we can’t
approach its inverse numerically. So, even though the other blocks can be precondi-
tioned efficiently, this block of 0’s does not enable us to compute an efficient block
solution.

We have found that our problem without supplies can in fact be written as a
(generalized) saddle point problem [64], but we did not have the time to investigate
seriously the opportunities. It might be an interesting way to follow since it is
a problem shared with other communities and many iterative schemes have been
developed and published.

In conclusion, we did not succeed in computing an efficient preconditioner for
either the nodal or the loop approach. We have only tried algebraic-based techniques
using factorizations or inverses, so one possible continuation is to investigate iterative
scheme to approach the invert of the nodal problems.

However, we could see that the loop analysis provides the most efficient and less
expensive solution, even without preconditioner. So, we have investigated a similar
formulation using the vector potential T as unknown.

II.3 T Formulation

We want to study a formulation which allows the construction of an efficient pre-
conditioner and an electrical circuit coupling. We have found the next formulation
to be very similar to the PEEC method and the loop approach, so, even though the
T formulation does not allow a natural circuit coupling, we will see how to recycle
the previous works in order to improve this one.

We are starting by presenting the formulation, showing that the H-matrices can be
applied directly. In the same time, we will present how the circuit couplings can be
taken in consideration. Finally, we will see if we are able to precondition a problem
using this formulation.
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II.3.a Integral formulation

Let us start as the PEEC formulations, with the Ampère-Maxwell equation

J
σ

+ jω
µ0

4π

∫
Ω

J
r

dΩ = −gradV − jωA0, (II.49)

with A0 a magnetic source field. The current density’s solenoidality: divJ = 0, gives
the existence of an electric vector potential T that satisfies

curlT = J, (II.50)

and using T as unknown leads to the next integral equation:

curlT
σ

+ jω
µ0

4π

∫
Ω

curlT
r

dΩ = −gradV − jωA0. (II.51)

The potential T is discretized using edge elements we,

T =
∑
j

we
jTj (II.52)

and applying a standard Galerkin discretization method leads to the following equa-
tion (

R̃ + jωL̃
)

T = −Ũ− jωÃ0 (II.53)

where the quantities are defined as below

R̃i,j =
∫

Ω

curlwe
i curlwe

j

σ
dΩ,

L̃i,j =
∫

Ω
curlwe

i

∫
Ω

curlwe
j

r
dΩdΩ,

Ũi =
∫

Ω
curlwe

i gradV dΩ.

Ã0 =
∫

Ω
curlwe

iA0dΩ.

(II.54)

(II.55)

(II.56)

(II.57)

with the edge shape functions curlwe
i , as in Figure II.19. Focusing the RHS vector

Ũ, we apply the Divergence theorem and get

Ũi =
∫

Ω
curlwe

i gradV dΩ =
∫

Ω
div (curlwe

i V ) dΩ−
∫

Ω
div (curlwe

i )V dΩ︸ ︷︷ ︸
=0

=
∫

Γ
V (curlwe

i ) · ndΓ.

We have previously set J · n = 0 on the boundary in the PEEC formulations, here
it comes down to (curlwe

i ) · n = 0. Finally, we have Ũ = 0 and thus

R̃ + jωL̃ = −jωÃ0. (II.58)



70 II. On the preconditioning of eddy current formulations

ei

Figure II.19: Overview of the edge element curlwe
i on the edge ei.

The shape function curlwe
i forms a current loop which turns around the edge ei,

as in Figure II.19. Taking a circuit point-of-view, we can perceive and assimilate the
current loops formed by all the edge shape functions as a specific set of loops, as in
Figure II.20. This is very similar to the independent loops approach we presented in
the previous subsection II.2.a PEEC Formulation to solve the circuit equations. But
one major difference is that we are able to directly and easily apply the H-matrices
to (II.53), since we do not have to handle any change-of-basis.

Figure II.20: Top view of a mesh and its set of loops formed by the edge shape
functions.

The assembly of the matrices can be done using the proper curl edge elements
or one can use a discretized form of the curl operator, represented by a sparse curl
matrix Mcurl . This matrix is also called incidence matrix, which links the current
flowing through the faces and the circulation of T along the edges, since J = curlT.
In fact, the currents and the vector potential are linked via I = MT

curlT, so, applying
the curl operator on (II.11) and using T as unknown leads to the next equation(

McurlRMT
curl + jωMcurlLMT

curl

)
T = −jωMcurlÃ0, (II.59)

that is equivalent to (II.53), with the matrices R and L defined as in (II.11). In fact,
one of the first T formulations for eddy-current problems [65] uses this approach.
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The last equation is very similar to the circuit equations obtained using the
second Kirchhoff’s law, in fact, the only difference is the use of Mcurl instead of
M◦. As a short recall, the incidence matrix M◦ is a change-of-basis matrix (from
the branches to the loops) computed by the circuit solver and using graphs theory.
Whereas the discrete curl matrix Mcurl can be seen, from a circuit point-of-view, as
a representation of the small loops, as in Figure II.20. So, Mcurl can be seen as a
specific case of M◦ if the small loops are independents.

In general the T formulation does not ensure the uniqueness of the solution, let
us differentiate two cases:

• Simply-connected regions. The system of equations requires a gauge, typically
T ·u = 0 (using graphs theory [65,66]), and we want to impose J ·n = 0 on the
boundary additionally. One way to do it is imposing T = 0 on the boundary
(so J·n = 0), and then annihilating inner edges using graphs theory [67, Chap.2
Part.B]. In fact, even if the inner edges are not annihilated, the system can
be solved, since the system of equations is compatible [68], and thus auto-
gauging [69] when using iterative solvers (as FGMRes or ICCG for example).

• Non-simply-connected regions, typically geometries with holes. The previous
method is not sufficient in this case, in fact, insuring last gauge requires special
treatments [66]. A classical approach consists in introducing a number of
additional unknowns, corresponding to the number of holes [70].

We are introducing an alternate way to ensure the uniqueness of the solution
while keeping the loops formed by the incidence matrix Mcurl, based on a circuit
approach below.

II.3.b Circuit approach

We have briefly mentioned that using Mcurl to compute the curl operator, is equiv-
alent to assemble directly with the curl edge functions curlwe

i . We also saw that
Mcurl is a specific case of the incidence matrix M◦, arising from the PEEC formu-
lations. The hybridization we want to achieve consists in assembling directly the
matrices in the small loops of the T formulation, that we know how to precondition,
and use a special M◦ to cure the connectivity issues.
Looking at the T formulation with a circuit point-of-view, we can extract a particular
set of small loops (as in Figure II.20), under the form of a matrix Mcurl. We can
enforce this set of loops as an initial set in the construction process of M◦, which
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will look for the exceeding loops (contained in the initial set) and the missing loops
as in Figure II.21. Searching these missing loops is mandatory to solve the problem
and to cure the connectivity issue. This gives us a partially arbitrary matrix:

M◦ =
 M̃curl

Mml

 (II.60)

with Mml representing the missing loops and M̃curl ⊆Mcurl. The initial set of small
loops can contain too many loops, in the sense that some are a linear combination
of other loops, so we should delete these loops (or rows of Mcurl) in order to get
an independent set M̃curl. However, one can keep these loops (so Mcurl = M̃curl),
leading to a compatible system of equations. Some tests showed that the problem
tends to converge faster when the exceeding equations are kept [71]. As we are
aiming for preconditioned iterative solutions, it can be advantageous to keep the
exceeding loops.

Ti

(Im)j

missing loop

Figure II.21: Example of an initial set of small loops (in red) with a missing loop
(in blue and dashed).

Applying M◦ to the integral equation in the faces (or branches) basis, we get the
same equation M◦ZM◦T Im = M◦U as before which gives the next block structure:

M◦ZM◦T =
 McurlZMT

curl McurlZMT
ml

MmlZMT
curl MmlZMT

ml

 (II.61)

with Z = R+jωL. It could seem like we are facing the same issues as the PEEC for-
mulation, but we know that applying the matrix Mcurl to a branch basis is equivalent
to apply the curl operator. So, we have

McurlZMT
curl = Z̃ = R̃ + jωL̃, (II.62)
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the exact equation (II.53) and also

[McurlZ] MT
ml =

[∫
Ω

curlwe
iwj

σ
dΩ + jω

∫
Ω

curlwe
i

∫
Ω

wj

r
dΩdΩ

]
MT

ml. (II.63)

The matrix Z thus does not have to be assembled. Note that the extra-diagonal
terms are symmetrical, so the previous equations can be transposed to get the op-
posite term. Finally, we have the next equation to solve: Z̃ McurlZMT

ml

MmlZMT
curl MmlZMT

ml

  T
Im

 =
 0

MmlU

 (II.64)

with the top left block that we know how to precondition and the additional blocks
to ensure the uniqueness of the solution, in a general purpose.

This hybrid formulation was achieved starting in a circuit context, so we can also
add a circuit coupling to this formulation without much effort.

II.3.c Electrical circuit coupling

The formulation we have reached in fact stands on the construction of M◦, with
an initial set of loops (Mcurl). So, we can add other branches without difficulties,
leading to an incidence matrix of the form:

M◦ =

Ω Circuit

←
lo
op

s
→ Mcurl 0

MΩ
ml Mcir

ml

← branches →

(II.65)

where the first block-row is imposed as previously and the second
[
MΩ

ml,Mcir
ml

]
is

constructed as Mml, looking for the missing loops. Keeping the same ordering as
in (II.25), we can split the circuit branches and get Mcir

ml =
[
MRLC

ml ,MI
ml,MU

ml

]
.

Again, the branch ordering showed here is completely arbitrary and can be changed,
however, one should group the branches wisely for a matter of ease.

Once the “new” M◦ computed in (II.65), we repeat the same procedure used in
the previous subsection with M◦|Ω =

[
Mcurl; MΩ

ml

]
(the first block-column) and we

get (II.64) with Mml replaced by MΩ
ml.
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Adding the circuit coupling simply consists in injecting (II.61) in (II.27) and replac-
ing change-of-basis as previously. The circuit equations resulting are finally:



Z̃ McurlZMΩ
ml
T 0 0

MΩ
mlZMT

curl
MΩ

mlZMΩ
ml
T+

Mcir
mlZcMcir

ml
T −MI

ml 0

0 MI
ml
T 0 0

0 MU
ml
T 0 Id





T

Im

UI

IU


=



Ũ

MU
mlUU

−II

0


. (II.66)

This formulation will be referred as the T− Im formulation.
The problem is now resumed in solving a system with a 4× 4 blocks matrix. As

we repeatedly said previously, we know how to treat efficiently the top left block,
but the other blocks are composed of problematical change-of-basis and ‘0’. These
additional blocks correspond to the missing loops we had to add. The number of
missing loops depends on the geometry of the device. Usually, there are as many
missing loops as holes in the geometry. The point is that the number of missing
loops plus the number of supplies is usually very small and negligible compared to
the number of small loops, i.e.: #Im + #UI + #IU � #T.
Therefore, the preconditioning procedure we intend to use consists in applying the
H-matrices to the matrix Z̃ (any other efficient preconditioner could also be used
actually) and using a trivial and light preconditioner for the other diagonal blocks
(as Jacobi or identities).

II.3.d Preconditioning

In this subsection, we have to put the works in the PhD context, i.e.: we have in-
vestigated this formulation at the end of the PhD, so due to the time constraints,
we could not apply the H-LU. We could however use the classical LU decompo-
sition, giving as a result the maximum reduction of iterations we could get. The
computational times are not presented since they are not relevant in that case.

We have considered two cases, one torus and one loop conductor meshed with
surface and volume elements, respectively. These are academic examples, but they
permit to see the loops completion easily, as well as the maximal efficiency of the
preconditioner.
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Surface torus example
Let us consider the torus meshed using quadrangles in Figure II.22, with an inner
radius of 40mm and the section’s radius of 10mm. A current source is plugged on
opposite sides, on the inner and outer sides as in Figure II.23. The missing loops
found by the circuit solver are also presented in the previous Figure.

Figure II.22: Torus’ surface mesh. Figure II.23: Supply connection and
missing loops.

A torus alone requires two additional loops: one for the middle hole formed by the
torus (in blue) and one turning around the section (in magenta). The supply adds
another cut (in red) to link the electrical circuit. The circuit solver has found all
three, even though their path is not optimal.

We have run a test at a frequency of 100Hz and the resulting current density
magnitude is presented in Figure II.24, with the real part of J in superposition. The
validation of the formulation is done comparing the losses obtained with those of
the inductive PEEC, the relative error of the T− Im formulation is of about 8%.

Figure II.24: Magnitude and real part of the current density at f=100Hz.

The preconditioning results are in Table II.1. Using the FGMRes without precondi-
tioner, the problem is solved after 191 iterations. Whereas, when the preconditioner
is employed, only 9 iterations are required for the convergence. In comparison, the
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inductive PEEC formulation is taking 170 iterations when using the loop analysis
without preconditioner. This example proves the efficiency of this approach: precon-
ditioning only the matrix Z is sufficient to get a significant reduction of iterations.

Table II.1: Number of iterations taken by each approach.
T− Im formulation Inductive PEEC

no precond. with precond. Loop analysis no precond.
Nb Iterations 191 9 170

Volume loop conductor example
The second example is a loop conductor with a rectangular section discretized using
tetrahedra, see Figure II.25. One current source is connected on the two bottom
corners.

Figure II.25: The loop conductor volume mesh.

Only two missing loops have been found here, one for the hole and the other for the
supply connection (see Figure II.26). A solution has been computed at the same
frequency, the real part of the result is shown in Figure II.27 (the imaginary part is
negligible).
The results are presented in Table II.2. The preconditioning is behaving even better
than previously, the number of iterations without preconditioner is of 212, whereas
the preconditioned solution took only 4 iterations. This efficiency is increased here
most probably due to two factors: a) this problem has more unknowns, so the
preconditioned block is bigger, and b) only two missing loops are required here, so
the ratio is in favor of the preconditioning.

Finally, we have found a formulation that we are able to precondition efficiently
and using the H-matrices. We were not able to show any demonstration using
the H-matrices, but based on the last results, we can be very optimistic. This
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Figure II.26: Cuts resulting from the
circuit solver completion.

Figure II.27: Real part of the current
density vector.

Table II.2: Number of iterations taken by each approach.
T− Im formulation Inductive PEEC

no precond. with precond. Loop analysis no precond.
Nb Iterations 212 4 400

formulation is still limited to eddy’s currents problems, however, studying the Loop-
Star formulations might allow us to add in consideration the capacitive effects.

II.4 Conclusion

In this chapter, we have focused the studies toward eddy’s current formulations in
order to show the difficulties we have encountered and the solutions we have chosen
all along this PhD.
Starting by the inductive PEEC formulations for volume and thin conductors, we
introduced the linear systems we have to deal with. Using the loop analysis led to
an equation with a change-of-basis, which we did not succeed in inverting.
The nodal approach does not have any change-of-basis, however, a larger block-
structure has to be handled. We have tried to reuse our knowledge in block-LU
factorization, but the constructed preconditioner has a too high filling factor and
thus requires too much memory. Other block solvers have been tested, but the 0’s
blocks proved to be very problematic.
At the end, we failed to precondition the PEEC formulations. However, we have
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not found any content on this subject, so these works could hopefully be useful for
further works toward the preconditioning of PEEC formulations, or more precisely
of circuit equations.

The last works of this PhD consisted in investigating the T formulation to try and
see if an efficient preconditioner could be constructed. Using the experience acquired
while studying the loop approach, we could add a circuit coupling without many
difficulties. Finally, we proved that this formulation can be easily preconditioned,
since the most important block, in terms of size and physic interpretation, is the
one being preconditioned.
Future works might consist in improving this formulation to take in consideration
the capacitive effects and the dielectrics, or trying to lower the memory consumption
of the block-LU preconditioner used for the nodal approach. An extension of this
formulation has been published in [71], taking into account the magnetic materials.

As a remainder, we aim at a formulation taking into account volume and/or
thin shell conductors and dielectrics with a solution coupling strongly the magnetic
and electric effects. We were able to meet these objectives using the PEEC method
during the first year of this PhD. These formulations are presented in the next
chapter.
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Resume

This last chapter introduces the formulations we have developed to model de-
vices made of conductors and dielectrics, while taking into account the resis-
tive, inductive and capacitive effects.
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III.1 Introduction

We have presented in the previous chapter three inductive formulations to consider
problems with conductors only, but our aim is to treat real devices. The actual
technologies are rarely entirely composed of conductors, dielectric materials are often
present as insulation and/or as a mechanical support. Considering the constant
increase of the operational frequencies, the electromagnetic formulations can no
longer neglect the dielectrics. A complete electromagnetic solution thus has to be
computed, taking in consideration the strong coupling between the magnetic and
the electric effects.

Starting with the inductive PEEC formulation, we will present a way to take into
account the capacitive (or electrostatic) effects. In the first capacitive formulation
the dielectrics will be neglected, nevertheless, it can be used for problems where
the dielectric does not interact significantly. In the case that the dielectric is just a
mechanical support for example. Adding the capacitive effects permits to find the
resonance frequencies of a device (see Figure III.1), and to study the disturbance of
interconnected problems for example.
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Figure III.1: Example of a loop antenna and its impedance magnitude curve with
some resonance frequencies.

In order to satisfy the previous specifications, the dielectric materials consider-
ation will be added in the capacitive formulation, leading to the main formulation
of this PhD. Modeling the conductors and dielectrics allows treating problems with
a compact geometry which leads to strong interactions between different materials.
In particular, the PCB-like applications are very compact and the interactions often
occur through the dielectrics, since the conductors are either buried in or separated
by a dielectric (an example is in Figure III.2).
A particularity of a PCB is its conductive tracks thickness, for the power electronics
devices the printed tracks usually have a thickness lower than 70µm. Compared
to the other dimensions, the thickness is very small. As mentioned in the previous



82 III. Electromagnetic models considering capacitive effects

Figure III.2: Example of PCB with vias and tracks in yellow and dielectric insulation
in green.

chapter, this kind of geometry gives a mesh with also very thin volume elements
and thus, numerical issues may occur during the integral computations. We will see
that the thin shell approximation can be applied to the last formulation, so a thin
shell formulation can be deduced to treat thin conductors and volume dielectrics, as
PCB applications.

The dielectric materials can be very dominant in terms of volume occupation,
leading to large problems. To avoid such problems, another formulation will be
presented: it mixes a PEEC method and a boundary integral method to model the
linear dielectrics using only the boundaries.

III.2 Capacitive PEEC formulation without di-
electrics

With the increase of operational frequencies, the eddy currents formulations do
not suffice to model the devices at their operating frequencies, in consequence, the
electrostatic (or capacitive) effects have to be consider. The inductive PEEC for-
mulations previously introduced can be improved to do so.

III.2.a PEEC Recalls

As a remainder, the inductive PEEC integral equation is the Ampère-Maxwell equa-
tion:

J
σ

+ jω
µ0

4π

∫
Ω

J
r

dΩ = −gradV. (III.1)
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Using the face discretization leads to the next circuit equation

(R + jωL) I = U, (III.2)

with the equivalent circuit representation in Figure III.3.

•N0
•N1 •N2

•
N3

•
N1

•N0 •
N2

•N3

R01 L01 L02 R02

R03

L03

Figure III.3: Equivalent circuit of a mesh-element using a ‘face discretization’.

III.2.b Adding capacitive branches

We can note that the current is not allowed to go out of the volumes, all the branches
are contained in the volume elements by construction. Whereas the electrostatic
charges are located on the boundaries and can move all around the conductors. Rep-
resenting such behavior with a circuit approach consists in adding external branches
to allow a “current” to flow in and out of the matter, as shown in Figure III.4. The
external branches in orange (and dashed) are connected from the boundary faces to
a common node “∞” to allow a current to move onto the border of the conductors,
as the charges would do. Note that there are additional inner branches linking the
previous inner electric nodes to the border nodes in red.
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Figure III.4: Example of capacitive PEEC circuit.
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Assuming the last circuit representation, the contribution of the new branches
has to be expressed. The external branches are capacitive, so we have to look for
their contribution.

III.2.c Formulation

In the paragraph Equivalent circuit representation of subsection II.2.a, we have
shown that the RHS vector U of (III.2) represents the voltage (or the difference
of potential) of all branches. We have added new branches linking the external
faces to a common point ∞ (see Figure III.4), so we have to express the difference
of potential U(ext) of these external branches in order to complete the equations.
Since they are linked to a border face (thus a circuit node) and the node ∞, their
potential is the difference of voltages between these nodes:

U(ext)
i = VΓi

− V∞, (III.3)

with VΓi
the potential of the border face i. Setting arbitrarily the voltage of the node

∞ to 0, we get U(ext)
i = VΓi

. Actually, we have already expressed VΓi
in (II.19):

VΓi
=
∫

Γ

V

Si
dΓ, (III.4)

depending on the electric scalar potential V , which can be written as

jωV = 1
4πε0

∫
Ω

J · grad
(1
r

)
dΩ, (III.5)

in cases with conductors and no dielectrics. Using the Divergence theorem and
knowing that divJ = 0, we get:

V = 1
jωε0

∫
Γ

J · n
4πr dΓ, (III.6)

where n is the normal to Γ = ∂Ω, the boundary of the geometry. Injecting (III.6)
in (III.4) and discretizing J with the face elements gives

U(ext)
i = 1

jωε0

∫
Γ

1
Si

∑
j

(∫
Γ

wj · n
4πr dΓ

)
ICj dΓ, (III.7)

with ICi the current on the external branches. So, (III.7) can be written as:

U(ext) = 1
jω

CIC (III.8)

with
Ci,j = 1

4πε0

∫
Γ

∫
Γ

1
SiSj

1
r

dΓdΓ. (III.9)
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Note that the matrix C is not a capacitance matrix, it is in fact an elastance matrix
(the inverse of C).

Finally, to complete the equation (III.2) with the capacitive contributions, we
just have to add U(ext):

(R + jωL) I + 1
jω

CIC = U + U(ext). (III.10)

The last equation in fact is under the next block-form: R + jωL 0
0 1

jω
C

 I
IC

 =
 U

U(ext)

 . (III.11)

For a matter of ease, the concatenated current and voltage vectors will be denoted as
I and U, respectively, with no differentiation between the inner and outer branches,
thus (III.11) can be written as:(

R + jωL + 1
jω

C
)

I = U. (III.12)

The solution of (III.12) is done using the circuit solver, exactly as in subsection II.2.a
PEEC Formulation.
In addition, the thin shell approximation is directly applicable to this formulation,
only the circuit representation changes.

III.2.d Example

Considering the example published in [72]: a very thin loop antenna, shown in
Figure III.5, we want to validate the capacitive PEEC formulation.

Figure III.5: Mesh of the loop antenna.

This example consists in computing the impedance of the device in the frequency
range of 1 to 10 GHz. So, we have computed the impedance magnitude curve using
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the thin shell variant of the last formulation, which is denoted as “Capa. PEEC” in
Figure III.6. Then, we compare the results to those obtained with another method of
the paper. The two curves are greatly matching, but the peaks are approximative.
The magnitude of the peaks depends on the resistance of the device, so it could
reveal an inaccuracy in the resistive computations, maybe due to the mesh or integral
computation or the thin shell approximation.
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Figure III.6: Impedance curves of the approaches.

However, the results are very similar, so the last formulation is considered as vali-
dated.

Here, the capacitive formulation is limited to conductors, thus the next step is
to add the dielectric materials in the formulation.

III.3 Model for conductors and dielectrics

To add the dielectrics to the formulation, we first have to start by defining the fol-
lowing regions: ΩJ and ΩD contain, respectively, the conductors and the dielectrics,
and Ω = ΩJ ∪ ΩD. Their borders are defined as ΓJ = ∂ ΩJ , ΓD = ∂ΩD\ΓJ and
Γ = ΓJ ∪ ΓD, see Figure III.7.

For a matter of understanding, the dielectric formulation has to be detailed
starting from the Maxwell’s equations.
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Figure III.7: Interfaces with multiple materials. ΓJ in black continuous lines and
ΓD in dashed lines.

III.3.a Maxwell’s equations

In a problem with conductors, dielectrics and without any magnetic material, we
have the following constitutive laws


J = σE in ΩJ ,

D = εE = ε0E + P in ΩD,

B = µ0H

(III.13)

(III.14)

(III.15)

where D the displacement current, P the polarization density and ε the permittivity.
According to Maxwell’s equations, we get

curlE = −jωB = −µ0jωH, (III.16)

curlH = J + jωD = (J + jωP) + ε0jωE. (III.17)

As previously, we can write the potentials in the presence of dielectrics and without
propagation effects using the Lorentz gauge as follows,

A = µ0

4π

∫
Ω

J + jωP
r

dΩ (III.18)

jωV = 1
4πε0

∫
Ω

(J + jωP) grad
(1
r

)
dΩ (III.19)

where only the term jωP has been added from the original expression.
The conductive formulations use the current density J as the unknown. The

normal component of the current density is preserved between two elements, so
it seems natural to use the face element discretization. This choice also permits
overcoming the structured mesh limitation of the classical PEEC.
Now, we want to take into account the dielectric materials, so we have to use another
unknown having the same conservative property in order to keep the same benefits.
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We choose the total current density Jtot as the new unknown:

Jtot = J + jωD = σ∗E (III.20)

with σ∗ = σ + jωε, which can be seen as a complex conductivity varying in the
matter. Jtot obviously keeps the same benefits in the conductors, and in the dielectric
Jtot = jωD verifies the same property. In addition, divJtot = 0 everywhere by
definition, thanks to (III.17).

Thus, this integral equation formulation consists in matching the electrical con-
stitutive law (III.20) everywhere in the materials (conductors and dielectrics) with

E = −jωA− gradV (III.21)

resulting in
Jtot
σ∗

= −jωA− gradV. (III.22)

To express the potential based on Jtot, we use the second constitutive law (III.14)
and (III.20) to write

Jtot = J + jωP + jωε0E (III.23)

so we can deduce
J + jωP = σ∗ − jωε0

σ∗
Jtot. (III.24)

And by substituting (III.24) into (III.18) we can write (III.22) as
Jtot
σ∗

+ jω
µ0

4π

∫
Ω

σ∗ − jωε0
σ∗

Jtot
r

dΩ = −gradV. (III.25)

III.3.b Discretization

To be able to treat unstructured meshes, we use the same test and trial functions,
so, we discretize Jtot using the face elements wj as follows:

Jtot =
∑
j

wjIj (III.26)

with Ij the current flowing through the face j.
Finally, applying a standard Galerkin projection to (III.25) with the same func-

tions leads to the matrix system

(Rt + jωLt) I = U (III.27)

Rti,j =
∫

Ω

wiwj

σ∗
dΩ

Lti,j = jω
∫

Ω
wi

∫
Ω

σ∗ − jωε0
σ∗

wj

r
dΩdΩ

Ui = −
∫

Ω
wigradV dΩ

(III.28)

(III.29)

(III.30)
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with Rt a sparse matrix which represents the resistive effect in the conductor and
capacitive effects in the dielectrics, and Lt is the inductive dense matrix. We can
see an example of an equivalent circuit representation in Figure III.9 of the mesh in
Figure III.8. Note that Figure III.9 shows only the self-element contribution (not
the mutuals), but the complete circuit can be easily constructed using [32, Fig. 1
and 2].
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le
ct

ric
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N2

N3

N4

N5

N6

b1
b2

b3

b5

b4

U1

Border nodes
Internal nodes

Primal elements
Dual/Circuit branches

Figure III.8: Example of a topology at the border between a conductor and a di-
electric. Each face of the primal mesh corresponds to a dual branch and the black
(circuit) nodes correspond to volume elements and border faces.
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Figure III.9: The simplified equivalent circuit (the mutuals are hidden) of the ge-
ometry shown in Figure III.8.

Equation (III.27) corresponds to the incomplete circuit equations (U = ZI): the
circuit is not closed (see Figure III.8). So, we will have to add new branches on the
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border faces and to express their contributions, as the previous formulation. For
example, we have to add four capacitive branches in Figure III.9 (linking the nodes
N2, N3, N5 and N6 to the common node ∞) in order to close the circuit, as shown
in Figure III.10.
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le
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ric

U
i

U
i

∞

Border nodes
Internal nodes

Primal elements
Dual/Circuit branches

Capacitive branches

(ext)

Figure III.10: Adding of the capacitive branches.

To complete the equations, we introduce the common node∞ with a null potential,
so we get

U(ext)
j = VΓj

(III.31)

with
VΓj

=
∫

Γj

V

Sj
dΓj. (III.32)

In presence of dielectrics, the potential V is given in (III.19), so we get here

U(ext)
j = 1

4πε0

∫
Γ

1
Sj

∫
Ω

σ∗ − jωε0
jωσ∗

Jtotgrad
(1
r

)
dΩdΓ (III.33)

and using the same discretization procedure, we can write

U(ext) = 1
jω

PtI (III.34)

with
Pti,j = 1

4πε0

∫
Γ

1
Si

∫
Ω

σ∗ − jωε0
σ∗

wjgrad
(1
r

)
dΩdΓ (III.35)

Here we have managed to express the difference of potential on the border faces,
which can be assimilated as capacitive effects. Lastly, we have to solve the equation(

Rt + jωLt + 1
jω

Pt

)
I = Ut. (III.36)

with Ut = U + U(ext) the difference of potential of all the branches.
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At this point, we have presented a general approach to include dielectric materials
and the capacitive effects. This formulation contains matrices with a dependency on
the frequency (σ∗ and σ∗−jωε0

σ∗ for instance). This requires assembling each matrix
once for each frequency we want to study. So, for a frequency study, this is a critical
disadvantage, and necessitates using a more practical formulation.

III.3.c Practical Formulation

In this section, we will present a more practical formulation using the same ap-
proach, but making a few more assumptions to overcome the last critical point. The
next formulation is fundamentally very similar to the previous one, however, its
implementation is significantly improved.

First, we assume that
σ � ωε0 (III.37)

so the previous unknown Jtot becomes

J̃tot =

 J in ΩJ ,

jωD in ΩD.

In other words, the displacement currents are completely neglected in the conductors.
Following the same protocol as in subsection III.3.a Maxwell’s equations, we

write the Ampère–Maxwell equation (III.21) as

E + jω
µ0

4π

∫
Ω

J + jωP
r

dΩ = −gradV (III.38)

and we can also write

J + jωP =


J = J̃tot in ΩJ

jωP = ε− ε0
ε

J̃tot in ΩD

(III.39)

using the behavior laws. In consequence, (III.38) can be rewritten as

E + jω
µ0

4π

(∫
ΩJ

J̃tot
r

dΩ +
∫

ΩD

ε− ε0
ε

J̃tot
r

dΩ
)

= −gradV. (III.40)

Now, we apply the Galerkin projection with the interpolation functions wi:

∫
Ω

wiEdΩ + jω
µ0

4π

∫
Ω

wi

(∫
ΩJ

J̃tot
r

dΩ

+
∫

ΩD

ε− ε0
ε

J̃tot
r

dΩ
)

dΩ = −
∫

Ω
wi · gradV dΩ (III.41)
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and we can easily see from the first two constitutive laws that

E =


J̃tot
σ

in ΩJ ,

J̃tot
jωε

in ΩD.

Using the same discretization as (III.26), we finally have(
R̃ + jωL̃ + 1

jω
C̃
)

I = U. (III.42)

with 

R̃i,j =
∫

ΩJ

wiwj

σ
dΩ

C̃i,j =
∫

ΩD

wiwj

ε
dΩ

L̃i,j = µ0

4π

∫
Ω

wi

(∫
ΩJ

wj

r
dΩ +

∫
ΩD

ε− ε0
ε

wj

r
dΩ
)

dΩ

(III.43)

(III.44)

(III.45)

We can see that we have one more matrix than for (III.27) (C̃). In fact, the previous
matrix Rt has been simplified to R̃ + 1

jω
C̃. So, even if we have added a matrix, the

actual amount of memory needed has been greatly reduced, because Rt is complex
while R̃ and C̃ are real matrices, and Rt computes coupling terms between conduc-
tors and dielectrics. We can make the same remark about L̃ and Lt, so the whole
storage has been globally divided by 4 (if the number of dielectric and conductor
unknowns are equal).
More importantly, we have succeeded in overcoming the previous issue, indeed, the
matrices are no longer depending on the frequency.

At this point, we still have to complete the circuit equation to close the equivalent
circuit, and to take into account the capacitive effects. The protocol is exactly the
same, so let’s begin with (III.31):

U(ext)
i = VΓi

=
∫

Γi

V

Si
dΓi (III.46)

Using (III.39) in (III.19) leads to a separation of the regions as

U(ext)
i = 1

4πε0
1
jω

∫
Γ

1
Si

(∫
ΩJ

J̃tot∇
1
r

dΩ +
∫

ΩD

ε− ε0
ε

J̃tot∇
1
r

dΩ
)

dΓ. (III.47)

In this case, we can simplify the first twofold integral:∫
Γ

1
Si

∫
ΩJ

J̃tot∇
1
r

dΩdΓ =
∫

Γ

1
Si

∫
ΓJ

ε0
εj

(J̃tot · n)1
r

dΓdΓ (III.48)

using the Divergence Theorem and knowing that divJ̃tot = 0. The permittivity
constant εj corresponds to the permittivity there might have on the opposite side
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of the border face j, i.e: if the face j is shared between a conductor and a dielectric
with the permittivity ε1, then εj = ε1.

In addition, assuming that the dielectrics are linear (which implies divP = 0
in each dielectric of ΩD), we can reapply the Divergence Theorem to simplify the
second twofold integral:

∫
Γ

1
Si

∫
ΩD

ε− ε0
ε

J̃tot∇
1
r

dΩdΓ =
∫

Γ

1
Si

∫
ΓD

(ε1 − ε2)ε0
ε1ε2

(J̃tot · n)1
r

dΓdΓ (III.49)

with ε1 and ε2 correspond to the permittivity of the material n comes out from and
goes into, respectively, as in Figure III.7. For example, if n is going out of a FR4
dielectric to go in the air, then ε1 = εFR4 and ε2 = ε0.

Now we use the same discretization on J̃tot and we can write

U(ext) = 1
jω

P̃I (III.50)

with

P̃i,j = 1
4πε0

∫
Γ

1
Si

(∫
ΓJ

1
Sj

ε0
εj

1
r

dΓ +
∫

ΓD

(ε1 − ε2)ε0
ε1ε2

1
Sj

1
r

dΓ
)

dΓ. (III.51)

Here, we have managed to complete the circuit equations with a matrix considering
only boundaries. This matrix is much smaller than Pt, so it requires less memory
and can be assembled faster.

At the end, we have the next equation(
R̃ + jωL̃ + 1

jω

(
C̃ + P̃

))
I = Ut (III.52)

to solve. We can note that the matrices do not have any dependency on the fre-
quency, so we have overcome the last critical point. Moreover, we managed to save
more a significant amount of memory. Note that the matrices are purely real, so,
using real-assembly codes permits lowering the assembly time.

Moreover, the full matrices (L̃ and P̃) are classic in the theory of integral equa-
tions and can be compressed, which could allow us to solve bigger problems.

The shell approximation is also directly applicable to this formulation. As pre-
viously, the only change (apart from the processes related to the mesh) is the con-
ductivity that is either scaled by the thickness e or eG (defined in subsection II.2.b
Shell PEEC-formulation) depending on the case.

The validation of the volume and thin shell variant of the practical formulation
is done next, considering two devices.
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III.3.d Validation

The validation of the practical formulation is done comparing the impedances ob-
tained for two examples: a micro-coil and a real device. The first example will
compare our results to those from an industrial software, and the second will con-
sists in comparing our results against measurements.

III.3.d-i Case 1: Micro-coil

The considered micro-coil (see Figure III.11) is made of three conductive spires with
a dielectric between the I/O. This validation is done comparing the impedances from
the formulation and a development version of an industrial finite element software:
Flux R©3D [73]. Flux3D takes advantage of the symmetry plane on XY , while our in-
tegral code can’t. So, the results will show only a half of the device on Figure III.12a
and Figure III.12b, even though the practical formulation used the entire mesh.

εr =1000

ρ=1.8e-7 Ω.m

OUTPUT

INPUT

Symmetry 
plane 20 µm

2.5 µm

Figure III.11: Studied device: Micro-coil with 3 spires.

For a matter of ease, the Flux3D uses a structured mesh for the active regions
(conductor and dielectric) composed of 9, 579 hexahedra and an usual mesh is used
in the air with 92, 049 elements. For the proposed formulation, we used a mesh of
4, 822 tetrahedra.

The solution of this formulation was done using a FGMRes solver and a Block
LU preconditioner. The FEM solutions used an ICCG solver, so the computational
time cannot be fairly compared.

The numerical results are presented in Figure III.13a for the impedance magni-
tude and in Figure III.13b for the impedance phase. In the last two figures, “FEM”
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(a) (b)

Figure III.12: (a) |J̃tot| isovalues at 100 MHz computed using the FEM. (b) |J̃tot|
using the “practical formulation”.

stands for the results provided by Flux R©3D, which are published in [74].

108 109 1010

100

101

frequency (Hz)

|Z
|(

Ω
)

FEM
Practical Formulation

(a)

108 109 1010
−100

−50

0

50

frequency (Hz)

ar
g
(Z

)
(◦
)

FEM
Practical Formulation

(b)

Figure III.13: (a) Impedance magnitude versus frequency. (b) Impedance phase
versus frequency. In blue (dashed): The reference (FEM), in red: the simulation
results.

The curves look very similar but according to the IEEE standard [75], the Feature
Selective Validation (FSV) techniques have to be used to compare impartially two
curves. These curves have been qualified as an excellent matching. The details of
the validation of the curves are presented in Appendix A.
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III.3.d-ii Case 2: Real device

Figure III.14: Picture and dimensions of the studied device.

Let’s now consider a real device made of two layers of copper 35 µm thick sepa-
rated by a layer of dielectric FR4 with a thickness of 1.47 mm (Figure III.14). Two
cases have been considered to do the measurements: the short-circuit case consist-
ing of connecting each layer by a corner (see Figure III.15) and the open-circuit
case which consists in leaving the layers without a connection between them (see
Figure III.16). Both cases are considered from 1 MHz to 100 MHz.

Figure III.15: The current density isovalues of the short-circuit case at 1 MHz, with
the circuit connections drawn. The magnitude |J̃tot| and the real part <(J̃tot) of the
current density are represented by the colored elements and vectors, respectively.

The same mesh has been used for all the studies and is made of 3, 210 hexahedra
which leads to 16, 951 faces and 8, 148 independent loops (the degrees of freedom).
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Figure III.16: The current density isovalues of the open-circuit case at 1 MHz, with
the circuit connections drawn.

We are using a structured mesh because the geometry is well-suited and the con-
ductors are very thin, but an unstructured mesh could also have been used. The
thickness of each layer is discretized with only one element, because the skin depth
is greater than the thickness for the studied frequencies.

The solutions were done using a classical Lower–Upper (LU) factorization, due to
the ill-conditioning of the problem. The computations were done on the same laptop
as in the previous subsection. The numerical results are presented in Figure III.17a
and Figure III.17b for the short-circuit and the open circuit case, respectively.
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Figure III.17: (a) Impedance magnitude versus frequency for the short-circuit case.
(b) Impedance magnitude versus frequency for the open-circuit case. In blue
(dashed): the reference (measurements), in red: the simulation results.

On the one hand, both cases show a good accuracy regarding the first peak
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frequency. On the other hand, the amplitude of the peaks are underestimated. But
overall, we see a good match between the curves. As for the previous example, the
FSV techniques have been applied to these curves, and their match have been rated
as good to excellent. The details are also in Appendix A.

This device has the properties to be considered as a PCB application. The two
layers of conductors are very thin compared to the other dimensions. The next study
case will focus on comparing the volume and thin shell formulations.

III.3.d-iii Case 3: Volume vs. Thin shell formulation

Considering the same device as for the previous case, the thin shell variant of the
dielectric formulation has been used. This time the range of frequency considered
is from 1MHz to 1GHz, so the formulations are tested to their limits since the
propagation effects should appear beyond 200 MHz. The short-circuit and the open-
circuit case results are presented in Figure III.18 and Figure III.19, respectively.
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Figure III.18: Impedance magnitude curves for the short-circuit case.

The aim is to study the thin shell approximation and compare it with the volume
approach. Both cases show an almost perfect match between the volume and the
thin shell formulation, except on the peaks’ magnitude. Thus, the approximation
does not suffer of significant losses of accuracy here.
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Figure III.19: Impedance magnitude curves for the open-circuit case.

The same discretization as for the volume results has been used, leading here to
10, 920 branches or faces. Comparing to the volume approach, there is a great
reduction: 10, 920 instead of 16, 951. Regarding the number of unknowns, there
are 7, 271 independent loops here, instead of 8, 148 for the volume approach. The
reduction is lower for the loops due to the circuit representation, the surface approach
mainly takes off the branches corresponding to the thickness.
The solution times are presented in Table III.1. The time to compute the solution
(for one frequency) is reduced to about 378.3 seconds, instead of 474.8 sec. for the
volume approach. The thin shell formulation allows us to lower computational time
by ∼ 20%, but, we can also point out that the memory usage greatly decreased,
since the number of branches decreased of about 35%.

Table III.1: Time taken to compute the solution by approach.
Formulation Volume Thin Shell
Solution Time

per frequency (in sec.)
474.8 378.3

The main formulation of this PhD has been validated through the study of the
last two devices. The thin shell variant of the practical formulation showed a great
accuracy and improvements on the PCB device.
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Another particularity of such device is that the dielectrics are very dominant in terms
of volume, thus their consideration can become problematical. The next formulation
allows to significantly reduce the number of dielectric-unknowns.

III.4 PEEC-BIM formulation

To reduce the unknowns linked to the dielectrics, this formulation provides a solution
to model the dielectric without needing its volume, thanks to a coupling between
the conductive PEEC and a boundary integral method (BIM).

Let us start with the inductive PEEC presented in subsection II.2.a, consisting
in matching the constitutive law J = σE with the Ampère-Maxwell equation:

E = −jωA− gradV. (III.53)

The coupling models the conductive materials thank to the PEEC method, whereas
the dielectrics are taken into account through a boundary integral method. The last
method here consists in expressing the contribution of the dielectric volume using
only its boundary, so we want to write the Ampère-Maxwell equation on a dielectric
boundary.

III.4.a BIM coupling

Considering an interface ΓD between two materials with linear permittivities ε1 and
ε2, as in Figure III.7. This interface can correspond to a separation between a
dielectric (ε1 > ε0) and either another dielectric (ε2 > ε0) or the air (ε2 = ε0).
The electric field normal component En = E ·n is not continuous through interfaces,
only its tangential component is preserved. To write the Ampère-Maxwell on ΓD,
we will have to use an average value of the normal field En. From the conservation
of Dn through ΓD, we deduce

ε1En1 = ε2En2 . (III.54)

Knowing that D = ε0E + P, we can also deduce that

∂Pn = Pn1 − Pn2 = ε0 (En2 − En1) (III.55)

using (III.54) in the last equation gives:

En2

(
1− ε2

ε1

)
= ∂Pn

ε0
. (III.56)
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The average electric field (denoted by En) is then given by:

En = En2 + En1

2 = 1
2

(
ε1
ε2

+ 1
)
En2 = 1

2ε0
ε1 + ε2
ε1 − ε2

∂Pn. (III.57)

The Ampère-Maxwell equation can be averaged on the boundary as:

En = −jωAn − (gradV ) · n. (III.58)

Here, an important hypothesis is stated: the vector potential A contribution is
neglected in the dielectric regions. The magnetic effects are negligible compared to
the capacitive effects, since

1
jω

Ci,j

jωLi,j

= O
(

1
ω2εµ0d2

)
≫ 1

and ε0µ0 ≈ 1.79 × 10−19, with d a characteristic dimension. This hypothesis is
therefore acceptable in a limited range of frequencies.
The equation (III.58) then comes down to:

En = − (gradV ) · n. (III.59)

The scalar potential V is continuous but gradV is not, so we also have to compute
its average value. As a remainder, the potential V is defined in (III.19) and in
subsection III.3.c Practical Formulation, we saw that the potential can be expressed
using only the boundaries, thanks to the material linearity, as:

jωV = 1
4πε0

[∫
ΓJ

ε0
ε

Jn
r

dΓ + jω
∫

ΓD

∂Pn
r

dΓ
]
. (III.60)

Only the term ‘r’ (with r = ‖x − y‖) depends on the testing point of V , so the
average value at the testing point x is given by

(gradxV (x)) · nx = 1
4πε0

[
1
jω

∫
ΓJ

ε0
ε
Jn(y)gradx

(1
r

)
· nxdΓ

+
∫

ΓD

∂Pn(y)gradx

(1
r

)
· nxdΓ

]
(III.61)

with y the integration point. Jn is discretized using the face elements (as previously)
Jn = ∑

j(wj · n)Ij, with (wj · n) = 1/Sj. The polarization density is here only
supported by the elements of ΓD and we use 0-order interpolation functions (constant
by elements) ϕi for its discretization: (∂P · n) = ∑

j ϕj
(
δPnj

)
. We are using the

next functions:

ϕj =

 1 on ΓDj,
0 elsewhere.
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Projecting the Ampère-Maxwell equation on ΓD using the last shape functions
finally gives the next integral equation:∫

ΓD

1
2ε0

ε1 + ε2
ε1 − ε2

1
Si

dΓQi =
∫

ΓD

ni
4πε0

∑
j

[∫
ΓD

grady

(1
r

) 1
Sj

dΓ
]
QjdΓ

+ 1
jω

∫
ΓD

ni
4πε0

∑
j

[∫
ΓJ

ε0
ε

grady

(1
r

) 1
Sj

dΓ
]

IjdΓ (III.62)

with δPnj
= Qj/Sj. Note that we used grady

(
1
r

)
= −gradx

(
1
r

)
to invert the sign

and to correspond to the integral computation.
Here the contributions of the dielectrics are computed using only the conductive
and dielectric boundaries, adding new surface unknowns for the dielectrics (i.e: the
charges Q). The boundary integral equation (III.62) can also be written as:

(F + A) Q + 1
jω

BI = 0, (III.63)

with 

Fi,j = −δi,j2ε0
ε1 + ε2
ε1 − ε2

,

Ai,j =
∫

ΓD

ni
4πε0

∫
ΓD

grady

(1
r

) 1
Sj

dΓdΓ,

Bi,j =
∫

ΓD

ni
4πε0

∫
ΓJ

ε0
ε

grady

(1
r

) 1
Sj

dΓdΓ.

(III.64)

(III.65)

(III.66)

We have mentioned at the beginning that the conductors are modeled using the
PEEC method, so we are investigating the changes this coupling brings.

III.4.b Conductive-capacitive PEEC formulation

As a remainder, in order to add into account the capacitive effects into the inductive
PEEC formulation, we had to add capacitive branches and express their contribu-
tion. To determine the capacitive contributions we have investigated the meaning
of the RHS vector and concluded that they are given by the average potential of
the external faces U(ext). In presence of dielectrics, these capacitive contributions
change, so, we are investigating the other contributions we have to add.

The average potential on the conductors’ boundary is given in (III.46) by

U(ext)
i =

∫
Γi

V

Si
dΓi. (III.67)

The potential V is defined in (III.60), so we have the capacitive contributions ex-
pressed by:

U(ext)
i = 1

4πε0

∫
ΓJ

1
Si

[
1
jω

∫
ΓJ

ε0
ε

Jn
r

dΓ +
∫

ΓD

δPn
r

dΓ
]

dΓ. (III.68)
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Using the same discretization for Jn and δPn, we get the next matrix equation:

U(ext) = 1
jω

PcI + PdQ (III.69)

representing the capacitive effects, with:
Pci,j = 1

4πε0

∫
ΓJ

1
Si

∫
ΓJ

ε0
εSj

1
r

dΓdΓ,

Pdi,j = 1
4πε0

∫
ΓJ

1
Si

∫
ΓD

1
Sj

1
r

dΓdΓ.

(III.70)

(III.71)

The capacitive effects coming from the conductors are represented by the matrix
Pc, which is very similar to the matrix C from the subsection III.2.c Formulation,
except that the external permittivity is taken into account with the term ‘ε0/ε’. Note
the additional matrix Pd, representing the contribution of the dielectric boundaries
to the capacitive effects.
The PEEC integral equation here is(

R + jωL + 1
jω

Pc

)
I + PdQ = U, (III.72)

giving the next equation to solve when using the loop approach:

M◦
(

R + jωL + 1
jω

Pc

)
M◦T Im + M◦PdQ = 0. (III.73)

Note that the nodal approach could also have been used here, as well as the thin
shell formulation since the integrals related to the conductors only did not change.

III.4.c Coupled BIM-PEEC formulation

Finally, the formulation coupling the boundary integral equation (III.62) and the
PEEC formulation (III.73) consists in solving the following system: Zm M◦Pd

BM◦T A

 Im
Q

 =
 0

0

 , (III.74)

with Zm = M◦ (R + jωL + (jω)−1Pc) M◦T and M◦T Im = I.
This formulation succeeds in modeling the dielectrics using only their boundaries

thanks to a boundary integral equation and the assumption that the dielectrics have
a linear permittivity. On the other hand, the conductors are modeled with a PEEC
method, allowing to keep the same benefits as previously, but in counterpart, no
preconditioner can be efficiently constructed a priori due to the top left PEEC-
block in (III.74).
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Compared to the matrix in the dielectric formulation (defined in (III.45)), only
the inductances inside the conductors are computed. Therefore, if the volume of
dielectric is very big, very big savings can be expected here since the dense matrix
assembling is very expensive (with a quadratic complexity, without compression).

Next, the validation and computational savings of this coupled formulation are
investigated considering the last real device.

III.4.d Validation

Considering the last real device (introduced in subsubsection III.3.d-ii), the valida-
tion of this coupling is done comparing the numerical results with the measurements
of two different operating cases. The volume of the dielectrics is bigger than that of
the conductors, so the improvements should be significant. The dielectric mesh is
shown in Figure III.20, only the dielectric/air interface is required here. The volume
approach is using a mesh where the inner volume is filled with hexahedra, whereas
only the boundary is partially meshed with rectangular elements here. So, the num-
ber of unknowns linked to the dielectrics is most likely to reduce significantly.

Figure III.20: Dielectric mesh ΓD, corresponding to the interface dielectric/air.

The impedance curves are presented in Figure III.21 and Figure III.22 for the
short-circuit and open-circuit case, respectively. A loss of accuracy can be seen
at about 300 MHz, the PEEC-BIM is suffering of the assumption stated. Indeed,
neglecting the displacement currents is limiting the upper threshold of validity of
the formulation here. The rest of the results are however very satisfying and show a
great match. A difference regarding the magnitude of the peaks can be noted. The
accuracy of the magnitude could be increased by considering the losses of dielectrics
(with a complex ε).

The same mesh discretization is used to run the tests, leading to 3, 843 indepen-
dent loops and 438 elements on the dielectric border, thus 4, 281 DOFs. It is about
the half of the volume approach. The computing times are presented in Table III.2.
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Figure III.21: Impedance magnitude curves for the short-circuit case.
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Figure III.22: Impedance magnitude curves for the open-circuit case.

The average time taken by a direct solution is of 104.5 seconds per frequency, divid-
ing the solution time of the volume formulation by a factor 4.5.

Table III.2: Time taken to compute the solution by approach.
Formulation Volume Thin Shell PEEC-BIM
Solution Time

per frequency (in sec.)
474.8 378.3 104.5

This coupled formulation showed significant reductions here, regarding the num-
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ber of unknowns and the computational costs. We have tested it on only one device
and not compared to other non-PEEC formulations; nevertheless, we can clearly
see that this formulation can be very efficient to treat devices with a big volume of
dielectrics.
No preconditioning studies were made for this formulation since the matrix to solve
contains a PEEC-block. However, the goal here was to significantly reduce the
number of unknowns added to consider the dielectric materials, which in some cases
can be prohibitively too important.

III.5 Conclusion

In this chapter, the formulations based on the PEEC method and considering dielec-
tric materials have been presented. At the very beginning, a purely conductive and
capacitive formulation was introduced in order to show how to add the capacitive
effects occurring in the air.

The capacitive effects linked to the dielectrics were taken into account in the
general formulation, in which no restrictive assumptions were stated. Nevertheless,
it suffers of a critical implementation issue. As a remainder, it requires assembling
all the matrices for each considered frequency. This problem can be avoided in
exchange of its generality.

The practical formulation was deduced from the general formulation stating few
assumptions. For instance, the materials are supposed to have linear properties
here. This is not restricting in our context, these works indeed consider only linear
conductors and dielectrics.
The validation of this formulation was done considering two different devices, one
academic (i.e.: not real) and a real device. In the range of frequencies where the
formulation is valid, the numerical results were excellently matching.
In the last case considered (the PCB device), the thin shell variant of the practical
formulation was compared against the measurements and the volume (previous)
results on a wider range of frequencies. The results of the thin shell formulation did
not show any significant loss of accuracy here, while the computational costs were
significantly reduced. So, the thin shell proved to be very useful for this kind of
applications.

Focusing even more on the PCB application, i.e: with thin conductors and a
large amount of dielectric volume, modeling the volume of the dielectrics can be
prohibitive. Considering the whole volume of dielectrics indeed can significantly
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increase the number of unknowns. So, a formulation coupling the PEEC method and
a boundary integral equation was presented to avoid using the volume of dielectrics
to model them.
The validation of this coupling was achieved thanks to the real device again. Sig-
nificant improvements were observed regarding the number of unknowns and the
solution times. The counterpart is that the frequency range of validity of the for-
mulation is a bit reduced, however at the middle frequencies, the formulation was
still accurate.

In the end, two formulations using the PEEC method are provided to consider
devices made of linear conductors and dielectrics. The entire set of formulations
presented here is also compatible with the thin shell approximation, presented in the
last chapter. The last coupled formulation gives a special treatment for applications
like PCBs, reducing significantly the computational costs.
The proposed formulations should be positioned, comparing the efficiency and the
computation costs against other classical formulations.





Conclusions and Outlooks

This PhD was aiming for new general PEEC formulations able to consider conductors
and dielectrics with a complete electromagnetic simulation. The choice of the PEEC
method was done due to its efficiency in solving circuit coupled problems in a wide
range of frequency. Thus, we considered it as one of the most suitable method to
treat power electronic devices.

These works are a continuation to the PhD of T.-T. Nguyen [51], who imple-
mented an inductive unstructured-PEEC formulation, and to the PhD of V. Ar-
don [38], who developed a coupling between a classical (inductive) PEEC formu-
lation and an electrostatic formulation to add into account the dielectrics and the
capacitive effects. Both of these former PhD candidates studied at the G2Elab and
the works of the last gave birth to the last version of InCa3D.
The implemented formulations are an extension to the inductive unstructured-PEEC
formulation, providing the consideration of dielectric materials and a full electromag-
netic modeling for low- to middle-frequencies. The formulations implemented are
still using the face elements, allowing to overcome the most limiting issues of the
classical PEEC, as the low order interpolation and the requirement of structured
meshes only. As the new formulations keep the same benefits as the former, the
thin shell approximations are directly applicable, providing a variant to these for-
mulations able to model thin conductors very efficiently. These last features also
permit to improve the user-experience of a future InCa3D version, since the actual
is limited to Manhattan-type meshes and requires a deep knowledge of the circuit
theory.
Another asset of the PEEC formulations is that they are compatible with the use of
a compression technique, mandatory to treat complex and industrial devices nowa-
days, and in our industrial context, being able to consider large-scale problems is
critical. The actual version of InCa3D uses the adaptive multi-level fast multipole
method, which proved to be very efficient in enabling the consideration of large-scale
problems. The AMLFMM assembles matrices with low costs, however, the solution



110 Conclusions and Outlooks

through a circuit solver (inheriting from the PEEC method) is very problematic.
The ill-conditioning of the PEEC formulation is well-known, but very few interests
were found to cure such formulations in the literature.

The H-matrices were implemented during the author’s internship to provide a
twofold compression technique also able to construct an efficient preconditioner: the
H-LU factorization. The use of the H-matrices is very recent in the community of
low-frequencies, thus we have great interests in using it to cure these conditioning
issues.

We have presented the equations arising from the circuit theory, using the nodal
and the loop approach, and we explored a few ways to construct a preconditioner
within the H-matrices are used.
The independent loop approach consists in solving an explicit change-of-basis equa-
tion. No literature was found on the matter, so we have started by trying naive
methods, however, we did not succeed in approaching the inverse of the change-of-
basis while using the H-matrices.
The second approach consists in solving very large system with a 4× 4-blocks ma-
trix, mostly populated with zeros. A naive approach to construct a preconditioner
consisted in computing a block-LU factorization, but even if the sparse storages
were taken into account in the factorization to optimize the memory consumption,
the required amount of memory was too important for a preconditioner. At last,
we have noted that the equation could be written as a singular saddle point prob-
lem, we found that there is a dedicated class of iterative solvers for such problems
as Uzawa-SOR (Successive Over-Relaxation) methods. No time was taken to in-
vestigate deeply their potential, instead, we have chosen to study another type of
formulation, very similar to the loop analysis.

At the very end of this PhD, we decided to take a step back and try another
formulation, coming from the pure integral equation community. The T formulation
is a well-known approach to consider eddy currents problems in the low frequencies.
From a circuit perspective, the unknown T is similar to a loop. Taking advantage of
the previous works done on the independent loops approach, we were able to re-use
this knowledge and couple the classical T formulation to an external electrical cir-
cuit. In addition, theH-matrices can be directly applied to this formulation, with no
difficulties. We succeeded in preconditioning this formulation, considering only con-
ductors with resistive and inductive effects, and a circuit coupling in addition. The
last formulation is not complying with the specifications of the PEEC formulations,
nevertheless, it might be the way to follow.
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Indeed, we can find in the high frequencies community formulations based on the
Loop-Star decomposition. These formulations are an extension to the T (or Loop)
formulation, allowing to take into account the capacitive effects “analytically ” (in
the sense of without a circuit approach). A further work may consists in adding the
circuit coupling to the Loop-Star, to be at equal footing compared to the capacitive
PEEC formulation without dielectrics. To go even further, one could try to add the
dielectrics in the formulation in order to perfectly comply with the specifications.

During this PhD, we have explored some ways to precondition a circuit solver,
using the nodal or the loop approach, without success. However, there are still a few
paths to explore, as using the class of Uzawa-SOR methods for the nodal approach
or enabling the circuit coupling in the Loop-Star formulations.

The PEEC formulations were validated on an academic example (three spires
inductor) and a real device, with a simple geometry. So, the formulations should be
tested on industrial and complex devices.
From a research perspective, the magnetic materials could be taken into account to
provide one very complete tool, since the power electronics devices are likely to use
ferrite cores to concentrate the induction flux. Another very important improvement
to the PEEC is the consideration of the thermal aspect, allowing to study the thermal
behavior of a device in operation.





Appendix A
Feature Selective Validation of examples

We are assessing the accuracy of the results using the FSV techniques, accordingly
to the IEEE standard [75]. The stand-alone software FSV tool [76] is employed
to compare and qualify the next curves. In fact, the amplitude difference measure
(ADM) and the feature difference measure (FDM) techniques will be applied, which
give the matching level of two curves.

A.1 Case 1: Micro-coil

In III.3.d-i, a micro-coil has been studied. Its impedance magnitude and phase have
been computed using a FEM software and the proposed “practical” formulation.

The ADM and the FDM have been applied to the impedance magnitude curves
(see Figures A.1a and A.1b) and to the impedance phase curves (see Figures A.2a
and A.2b).
We can see in Figure III.13a and Figure III.13b that the results of both methods
are very similar. This is also supported by the FSV technique results (Figures A.1a,
A.1b, A.2a and A.2b) which rate the match of the curves as excellent.

A.2 Case 2: Real device

In III.3.d-ii, a real device has been studied. We wanted to compare the results
obtained with the “practical formulation” and the experimental data acquired by
V. Ardon, a former PhD Student. To quantify the numerical results, we have used
the same FSV technique as before (using the FSV Tool). The results are shown in
Figs A.3a and A.3b for the open-circuit case and in Figs A.4a and A.4b for the short-
circuit case. The ADM technique rates both cases mostly from good to excellent,
whereas the FDM rates them mostly as excellent.



114 A. Feature Selective Validation of examples

(a) (b)

Figure A.1: (a) Results of the ADM applied to the impedance magnitude curves.
(b) Results of the FDM applied to the impedance magnitude curves.

(a) (b)

Figure A.2: (a) Results of the ADM applied to the impedance phase curves. (b)
Results of the FDM applied to the impedance phase curves.
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(a) (b)

Figure A.3: (a) Results of the ADM applied to the impedance magnitude curves for
the Open-Circuit case. (b) Results of the FDM applied to the impedance magnitude
curves for the Open-Circuit case.

(a) (b)

Figure A.4: (a) Results of the ADM applied to the impedance magnitude curves for
the Short-Circuit case. (b) Results of the FDM applied to the impedance magnitude
curves for the Short-Circuit case.
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Abstract - The classical method PEEC is based on a semi-analytical integral
method to construct an equivalent electric circuit using lumped components. This
method is particularly well-suited to model filiform conductors. It is actually possi-
ble to consider thin conductive regions with this method, but it’s still limited and
sometimes unsatisfactory. In fact, the meshes that can be used are very constrained
(geometrically discretized by quadrangles) and the frequency approach is limited
(capacitive effect is neglected). The aim of this thesis is to introduce the capaci-
tive and magnetic effects into the method PEEC to get a general tool, efficient and
usable at the industry level. Particularly, the generality of the formulation and its
flexibility should enable a simple use of the software InCa3D for non-expert users on
numerical methods. The work consists in: Improving the last works by introducing
the capacitive and magnetic effects in the formulations. Suggesting some methods
of matrix compression to improve the efficiency of the computation, and to lower
the needed memory.

Keywords: electromagnetic formulation, integral methods, H-matrix, power
electronics.
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