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General Introduction

Composite materials are known as new generation of strong-stiff and lightweight materials. Yet this kind of material has existed in nature for thousands of years now, like wood, bamboo and bones, long before the modern engineering community thought of developing the first composite material. In general a composite is made from two or more distinct materials with significantly different physical and/or chemical properties, which produce a material with properties different from those of the individual components. The first phase of composite material is called matrix and its main role is to transfer load to reinforcing agents. Polymeric matrices are under concern in this work. Scientists developed the first polymers, a result of the polymerisation process of monomers, at the beginning of the 20 th century. Examples of synthetic polymeric structures, amongst others, include nylon, polyethylene, polyster, and epoxy. According to their thermomechanical properties, two categories of polymeric matrices can be found: Thermoset (e.g. epoxies) and thermoplastic (e.g. nylon, polypropylene, high density polyethylene, polycarbonate) polymers. The primary physical difference is that thermoplastics, with linear and branched chains, can be remelted back into a liquid form, whereas thermoset plastics, with crosslinked chains, will always remain in a permanent solid state. Given the relatively "weak" properties of polymeric materials, reinforcement is needed to create a stiff material. Therefore, a second phase is introduced as reinforcing agent like particles, nanotubes, nanoparticles or fibres (continuous, long or short). A relation between density and Young's modulus for various materials can be seen in Figure 1.1, where the high mechanical properties of reinforcement (fibres, particles), compared to those of polymeric ones, are highlighed. With fibre reinforcement, it is well established that stiffness, strength and, for many polymers, toughness are improved. The dimensional stability, creep resistance, ageing and weathering properties, crucial in some applications, can also be improved. The increase in stiffness and failure stress of a Polypropylene matrix reinforced by 40% in volume fraction of short glass fibres and loaded in main fibre direction is highlighed in Figure 1.2.

Two categories of reinforcing fibres can be distinguished: continuous (or long) and short fibres.

The fibre reinforced composites with the highest mechanical properties are those with continuous fibre reinforcement. However, such materials cannot be adapted easily to mass production and are generally confined to products in which the property benefits outweigh the cost penalty. Short fibre reinforced composites (SFRC) can offer a unique combination of properties with interestingly superior mechanical properties over the parent polymers. Among other advantages, short-fibre reinforced composites are interesting from an industrial point of view for their relatively low cost and easy manufacturing process as they can be processed in a manner similar to polymeric materials. In the case of thermoplastics, conventional fabrication techniques, such as extrusion compounding and injection moulding, are available, allowing mass production of components with quite intricate shapes.
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Figure 1.2: Polypropylene matrix reinforced with 40% of short glass fibres under uniaxial tension test at a constant strain rate. In the figure σ f represents the failure stress [1].

In this context, short fibre reinforced composites are finding ever-increasing interest in engineering applications, such as automotive industry (e.g. for the manufacturing of instrument panels of vehicules).

The kind of composite material to be further discussed in this manuscript is a thermoplastic matrix reinforced with short glass fibres. The properties of SFRC are partly induced by the composition (fibre volume fraction) and partly by the processing, giving a wide range of property combinations to which both designer and manufacturer should be alert. By adding suitable fibres and by controlling factors such as the aspect ratio, the dispersion, the fibres orientation and the fibre-matrix adhesion, significant improvements in property can be achieved.

The extensive use of these composites needs, however, a thorough theoretical knowledge of their properties and their interactions with process and/or loading conditions the material will have to withstand. This becomes more crucial under extreme loading conditions (e.g. crash or impact loading) with the material behaviour complexity (e.g. polymeric matrices viscosity). In that context, characterisation of short fibre composite materials, prediction of effective mechanical properties and micromechanical analytical modelling under various loading conditions are a field of study for researchers. For instance, when targeted structures are subjected to high speed loading application, robust theoritical approche that can take strain-rate sensitivity into account, in addition to other specificities (like reinforcement complexity and damage phenomena) are needed for a reliable prediction of the materials behaviour.
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Taking all the aforementioned into consideration, the ultimate objective of this thesis work is to present an efficient approach for the numerical modelling of short fibre composite in the framework of dynamic loading. Major guidelines for this work is that most important interdependent phenomena, for instance, viscosity, complex anisotropy, failure mechanisms, are to be fully adressed in a unified modelling. The proposed approach is at an intermediate scale between complex homogenisation approaches and often inaccurate purely phenomenological descriptions.

The current approach is based on the additive decomposition of the composite thermodynamic potential. The composite is thus seen as the assembly of a matrix medium and several media of embedded fibres. The deformation gradient, applied to the composite as a whole, and its multiplicative decomposition implicitly link the media. A main asset of this approach is its adaptability to all kinds of reinforcement characteristics (orientation and geometrical properties) and matrix behaviour while keeping the implementation relatively easy. The matrix behaviour is modelled as strain rate dependent using a coupled Viscoelastic (VE)-Viscoplastic (VP) scheme. Complex distributions of fibre orientation are considered, leading to an accurate representation of the actual reinforcement orientations. Thus, the coupled influence of strain rate and anisotropy of SFRC behaviour can be modelled. An experimental compaign is conducted in order to identify the material parameters used in the model. According to experimental observations, damage mechanisms, mainly matrix ductile damage and fibre-matrix decohesion occur during the material loading. These phenomenon are introduced in the constitutive model which is implemented in an explicit finite element code. The accuracy of the developped model is evaluated by comparison with experimental tests at various loading configurations and for a wide range of strain rates.

In order to fullfil the afformentioned objectives the work is structured according to the following major lines: A part is dedicated to the proposition of a modelling approach with the developpement and implementation of constitutive laws for short fibre reinforced thermoplastic material subjected to dynamic loadings. A second part is about the experimental investigations conducted in order to identify the material parameters, to microscopically characterise the fibres distribution of orientation and to characterise the composite behaviour under different loading configurations.

A Final part is devoted to the modelling of failure mechanisms in SFRC as a progression of damage phenomena leading to composite's ultimate failure.

Outlines of the report

The manuscript is structured around the most important issues to deal with when modelling and characterizing the composite behaviour untill its ultimate failure. It is organized as follows:

• Chapter 2 introduces general aspects related to the material under investigation and provides a background for the mechanical characterisation of short fibre composite thermoplastics. Most important contributions for the modelling of short fibre reinforced composites are reviewed throughout this chapter. Different approaches that have been developed will be presented and a bigger attention to the fundamental approches on micromechanical modelling will be payed. Finally the chapter highlights the motivations of the modelling choices presented in this work.

• Chapter 3 deals with the developped constitutive model. Firstly, the thermodynamic basis of the approach is presented. Then the different constitutive laws associated to the matrix, the fibres and the short-fibre-reinforced composite are presented for non damaged material.

• Chapter 4 deals with the experimental procedure for the identification of the involved material parameters and the characterisation of the composite material behaviour. Tests and procedure for identification of matrix material parameters are first described. The composite microstructure is then analysed, in particular thanks to the characterisation of complex distributions of fibre orientation by micro-computed tomography. Finally the proposed constitutive model is validated by comparison between the simulation results and the experimental data.

• Chapter 5 is devoted to the modelling of damage mechanisms and ultimate failure of short fibre reinforced composites. Damage modelling is performed by associating an anisotropic ductile damage model to the matrix material and an interfacial damage model to fibre-matrix interface. Identification of the involved parameters is based on experimental tests realised on a SFRC. Finally, a fracture criteria is defined as a threshold of the predicted damage amount that a SFRC can withstand.

• Finally Chapter 6 gives a conclusion of this work. The manuscript ends with perspectives for further study and some possibilities of improvements of the current work.

Chapter 2

State of art of short fibre reinforced composites behaviour and modelling

Short fibre reinforced composite materials (SFRC) are attractive for many industrial applications thanks to interesting mechanical and physical properties. Their superior mechanical properties in combination with low manufacturing cost are the main reasons behind their wide use and study.

A wide range of investigations have been done in order to assess the potential and limitations of such materials in different loadings or environmental conditions, for numerous combinations of matrix and reinforcement materials. It was widely reported that main factors governing the physical and mechanical behaviour of SFRC are the properties of the individual constituents, fibre volume fraction, fibre orientation and length distributions and fibre-matrix interface strength.

The present chapter provides a background for general aspects and mechanical characterisation of short fibre composite materials. Through this chapter different experimental investigations and numerical approaches that have been developed by numerous researchers through the years will be presented. The chapter begins by discussing the main aspects and manufacturing processes with the major factors affecting the behaviour of short fibre composite. It continues by addressing the major results about the characterisation of the material's behaviour and then the fundamental numerical methods and theoretical approaches on micromechanical analytical modelling.

Generalities about short-fibre reinforced thermoplastics

The significant improvements induced by adding fibres to thermoplastics in mechanical (stiffness, strength, toughness, resistance to creep, dimensional stability) and thermal (maximum service temperature) properties can be obtained without sacrificing the mouldability of the materials for SFRC. Conventional extrusion compounding and injection moulding machines designed for 8 CHAPTER 2. STATE OF ART unfilled thermoplastics, allowing rapid production of components with complex shapes, can then be used for SFRC [2]. In fact, common commercial grades of fibre reinforced thermoplastics can be processed at temperature, pressure, injection rate and cycle duration similar to those used to process unfilled thermoplastics. There are, however, differences between processing of fibre reinforced materials and unfilled thermoplastics that must be heeded. For instance, the fibre length degradation, which affects fibre aspect ratio, depends on tools and operating conditions [3].

Most influencing process parameters are flow speed and temperature and mould geometry [4,5].

Other crucial properties of SFRC, such as fibres' distribution of orientation, are strongly dependent on manufacturing process. In addition, as reported for instance by Milewski [6] and Fu et al [7], increasing the volume fraction of fibres increases the probability of fibre to fibre interaction and then has a direct consequence on the fibre length, aspect ratio and orientation. In the following of this section, attention is payed to morphological aspects of SFRC and then to the fibre orientation as main source of anisotropy in the material.

Microstructure of short fibre reinforced composites

The macroscopic behaviour of short fibre reinforced composites is directly dependent on its constituents properties (i.e. fibres and matrix material properties), fibre/matrix interfacial properties and the reinforcement configuration. Among microstructural characteristics of SFRC the reinforcement configuration and properties are of great importance (i.e. fibre volume fraction, fibre orientation and length distributions, interfacial properties,...). The fibre volume fraction is usually fairly controlled, though local variations of fibre density (i.e. significantly higher and lower fibre content than the average value) may occur. There are, however, very few reports of measurements of this in the literature. In contrast, short fibre orientation is difficult to control (see Figure 2.3) and constitutes a process-dependent property that greatly influences the overall properties of the composite material.

Tool geometry and processing conditions are beyong process parameters to be manipulated specifically to control the fibre orientation distribution in the product. Attempts to control distributions of fibre orientation have been proposed by developping models for the dependence of fibre orientation distribution on processing conditions [9,10]. A study was performed by Goettler [11] on fibre orientation during injection flow in order to optimise the composite directional strength and stiffness using a kinematic model. Akay and Barkley [12] have treated process parameters, fibre orientation distribution and mechanical properties as inter-related variables for injection-moulded short-glass fibre-reinforced polypropylene. They have shown that an increase in melt and mould 2.1. GENERALITIES ABOUT SHORT-FIBRE REINFORCED THERMOPLASTICS 9 Figure 2.1: Example of a microstructure: Polyamide 6.6 matrix reinforced with short glass fibres [8] temperature and injection speed cause a significant decrease in short fibre alignement along the injection flow direction. In their study they also investigated the gradual change in the preferential fibre alignement in the mouldings. In fact, an injection moulded short fibre composite tends to have a stratified morphology in which the most prominent feature is the variation of fibre orientation distribution through the thickness. This layered structure is mainly induced by differential solidification, shearing and melt-flow or fountain-flow patterns effect (including divergence, convergence and shape of the flow fronts). A shematic representation of the fountain flow process is given in Figure 2.2. Interactions with neighbouring fibres and/or with mould wall are also reported to be of significant influence on the fibre alignement during melt-flow process. Base on microscopic observation, it has been reported that injection moulded samples exhibit a skin/shell/core/shell/skin organisation through thickness with different fibre orientation [12,[START_REF] Thin | Measurement of fibre orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography[END_REF].

The fibres in the shell regions are predominantly aligned along the flow direction due to high shearing near the mould wall surface. The core region consists, however, on predominanly tranverse fibre alignement, owing to low shearing and high extensional flow. Finally, the fibres in skin regions, i.e. in areas adjacent to the walls of the mould cavity, adopt random orientation because they are rapidly freezed in contact with comparatively cold walls during the fountain flow process [START_REF] Tadmor | Molecular Orientation in Injection Molding[END_REF][START_REF] Hull | An introduction to composite materials[END_REF].

A study on the layered structure of short fibre reinforced polymers was recently presented by Thi [START_REF] Thin | Measurement of fibre orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography[END_REF], where it is found that layer proportions, i.e. layers relative thickness, are globally dependent on the process parameters (e.g. mould geometry, matrix material viscosity, injection speed, fibre CHAPTER 2. STATE OF ART content and aspect ratio,...). According to the work presented by Akay and Barkley [12], fibre orientation within injection moulded SFRC has a direct effect on tensile properties of the composite.

They examined the evolution of the elastic moduli and ultimate tensile strength values and found that they are reduced when increasing the core relative thickness.

Given the complexity of SFRC microstructure and its crucial effect on the mechanical behaviour, a number of researchers have been interested in developing accurate techniques for measuring the fibre orientation in injection-molded parts formed from short-fibre composite.

Techniques of orientation measurement

Measuring fibre orientations started first by acquiring data either from polished sections by reflective microscopy or from microtomed samples by transmission optical microscopy or contact microradiography. Experimental results in this category are reported in [4,[START_REF] Sirkis | Image processing based method of predicting stifness characteristics of short fibre reinforced injection molded parts[END_REF][START_REF] Vincent | Experimental study and calculations of short glass fibre orientation in a center gated molded disc[END_REF][START_REF] Ranganathan | Characterization of orientation clustering in short-fibre composites[END_REF].

Fischer and Eyerer [START_REF] Fischer | Measuring spatial orientation of short fibre reinforced thermoplastics by image analysis[END_REF], Bay and Tucker [START_REF] Bay | Stereological measurement and error estimates for three-dimensional fibre orientation[END_REF], Zhu et al [START_REF] Zhu | Determination of non-symmetric 3-D fibre-orientation distribution and average fibre length in short-fibre composites[END_REF] and Hine et al [START_REF] Hine | Modelling of the elastic properties of fibre/reinforced composites. I: Orientation measurement[END_REF] measured shortfibre orientations by examining polished cross-sections by optical reflective microscopy. In these works, they considered the ellipse-shaped intersection of a fibre with a plane to calculate the misalignment angle of the fibres axis. Later, Zak [START_REF] Zak | Estimation of Three-Dimensional Fibre-Orientation Distribution in Short-Fibre Composites by a Two-Section Method[END_REF] proposed a three-dimensional measurement of distribution of fibre orientation by combining data from two consecutive closely spaced crosssections of a specimen. This method was presented as an unbiased distribution data for the nearzero misalignment angles and a solution to the orientation duality problem. Eberhardt and Clarcke [START_REF] Eberhardt | Fibre-orientation measurements in short-glass-bre composites. Part I: automated, highangular-resolution measurement by confocal microscopy[END_REF] and Clarcke et al [START_REF] Clarke | Measurements of fibre direction in reinforced polymer composites[END_REF][START_REF] Clarke | A novel technique for determining the 3D spatial distribution of Glass fibres in polymer composites[END_REF] presented automated techniques of the use of confocal laser scanning microscopy for the measurement of 3D distributions of orientation which enables semi-
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Compared to conventional optical and electron microscopies, acoustic, and scanning tunneling microscopies, x-ray microtomography offers unique imaging capabilities, for instance the possibility of three-dimensional scanning. A comparison between optical and tomographic methods is performed by Bernasconi et al [START_REF] Bernasconi | Analysis of bre orientation distribution in short bre reinforced polymers: a comparison between optical and tomographic methods[END_REF]. The system consists of a high-resolution imaging x-ray detector and high-speed tomographic image reconstruction procedures together with a collimated monochromatic area-filling x-ray beam. Tomography scanning technique is based on mathematical analysis that consists on the reconstruction of a function from values of its line integrals [START_REF] Bracewell | Strip integration in radio astronomy[END_REF]. Transmission tomography implements the needed mathematics to create non-destructive cross-sectional images of the internal structure of a sample from measurement and analysis of penetrating radiation directed through the sample in multiple coplanar rays [START_REF] Hounsfield | Computerized transverse axial scanning (Tomography): Part I Description of system[END_REF]. Shen et al [START_REF] Shen | Direct observation and measurement of ber in short ber-polymer composite foam through Micro-CT imaging[END_REF] used micro-CT to observe and measure the fibre orientation in a 5 wt% short-glass-fibre-reinforced phenolic foam. They reconstructed the 3D fibre distribution of the foam from the obtained micro-CT images, and then they imported this 3D quantitative information into the software program Auto-CAD and used it to analyze the spatial length and orientation of the individual fibres. A global characterisation of fibre orientation distribution by micro-CT was proposed by Nguyen Thi et al [START_REF] Nguyen Thi | Numerical approach of the injection molding process of ber-reinforced composite with considering ber orientation[END_REF] for high fibre content.

In this work, x-ray microtomography will be used for the characterisation of the reinforcement configuration in a short-glass-fibre-reinforced polypropylene at microscopic scale.

Behaviour of thermoplastic matrices

In this thesis work, composites under study are polymer reinforced composites. General aspects about polymeric behaviour and, more precisely, thermoplastic polymers are reviewed in the following paragraphs.

Polymer materials result of the polymerisation of small size organic molecules, called monomers.

The structure of the formed macromolecules differs and give rize to different architectures. Two main types can be distiguished according to these architectures; thermoset and thermoplastic polymers. Attention will be paid here to thermoplastics as widely used polymers in the case of short fibre reinforced polymers. The molecular structure of thermoplastic polymers is either crystalline (organized, in which the chains are aligned), amorphous (not organised, e.g. Polystyrene (PS) and Polycarbonate (PC)) or semi-crystalline, where the two structures coexist and the corresponding polymer is characterised by a degree of crystallinity (e.g. Polyethylene (PE) and Polypropylene CHAPTER 2. STATE OF ART (PP)) [START_REF] Olabisi | Handbook of thermoplastics[END_REF].

Many studies have been dedicated to the characterisation of thermoplastic behaviour when subjected to a wide range of loading conditions. The rate dependency is one of the main features of semi-crystalline thermoplastics that becomes more crucial when dealing with high speed applications, in particular. Zhang and Moore [START_REF] Zhang | Nonlinear mechanical response of high density polyethylene. Part I: Experimental investigation and model evaluation[END_REF] have shwon the significant increase in the response of High Density Polyethylene (HDPE) as the strain rate hardening is varied.

For the global behaviour of thermoplastic polymers usually a distinction is made between the linear elastic and/or linear viscoelastic regime at small strains, the nonlinear viscoelastic response at moderate strains and the viscoplastic behaviour at rather large strains. The modeling of the mechanical response of these polymers can be a difficult task because the numerical model representing material's behaviour must account for all of these deformation regimes. In the literature, these polymer materials are usually described and modelled as viscoelastic (VE), elasto-viscoplastic (EVP) or viscoelastic-viscoplastic (VE-VP). The difference between these classes of behaviour can be illustrated by a uniaxial tension test which comprises a monotonic loading phase followed by unloading to zero stress. In the case of viscoelasticity, the response is rate dependent in both phases, which implies that the stress-strain slope (Young's modulus) increases with increasing strain rate. Upon unloading to zero stress, the material retrieves its initial zero stress state, not instantly, after a sufficient waiting time. A complete description of viscoelastic behaviour is given by Christensen [START_REF] Christensen | Theory of Viscoelasticity[END_REF], Findley [START_REF] Findley | Creep and Relaxation of nonlinear viscoelastic materials[END_REF] and Salençon [START_REF] Salençon | [END_REF]. An elasto-viscoplastic polymer will behave differently during the same uniaxial loading/unloading test. Below an initial yield stress, the response is rate-independent linear elastic. Beyong it the stress-strain response is both nonlinear and rate-dependent, with the stress increasing with the strain rate. After unloading to zero stress, there remains an irreversible strain which decreases but does not disappear even after a long time.

For a description of EVP models, one can refer to Perzyna [START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF] and Lemaitre and Chaboche [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF].

A thermoplastic polymer can also behave as a combination of these two types of behaviour. In fact, when the response is rate dependent below and above the yield stress, the overall behaviour is classified as viscoelastic-viscoplastic. This combination has got a physical explanation in the case of semi-crystalline thermoplastics. Indeed, several micromechanical observations tend to show that crystalline lamellae and amorphous chains are assembled in series and obey VE and VP behaviour, respectively [START_REF] Nikolov | Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers[END_REF]. Chaboche [START_REF] Chaboche | Thermodynamic formulation of constitutive equations and application to the viscoelasticity and viscoplasticity of metals and polymers[END_REF] considered this case to develop a combined constitutive model for polymeric materials. A more thorough study of viscoelastic-viscoplastic behaviour modelling will be further adressed in the manuscript. In addition to rate dependency, thermoplastics can show a strong dependency to temperature, as demonstrated by Karger-Kocsis and Friedrech [START_REF] Karger-Kocsis | Temperature and strain-rate effects on the fracture toughness of poly(ether ether ketone) and its short glass-fibre reinforced composite[END_REF]. The
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Other features can characterise the behaviour of thermoplastics when subjected to a wide range of loading conditions. For instance they can exhibit non isochoric plastic flow and pressure dependent behaviour. Non-isochoric plastic flow of polymers has been studied by various authors.

The volumetric strain of polyethylene terephtalate (PET) and high-impact polystyrene (HIPS) has been measured by G'Sell [START_REF] Gsell | Experimental characterization of deformation damage in solid polymers under tension and its interrelation with necking[END_REF] using a video-controlled testing where the longitudinal and transverse strains are measured by tracking markers positioned on the specimens. In the same way, the volume strain measurement for polypropylene (PP) material was quantified by G'Sell et al [START_REF] Gsell | Polypropylene/polyamide 6/polyethyleneoctene elastomer blends. Part II: volume dilatation during plastic deformation under uniaxial tension[END_REF] and Jerabek et al [START_REF] Jerabek | Filler/matrix-debonding and micro-mechanisms of deformation in particulate filled polypropylene composites under tension[END_REF]. From the obtained results, authors concluded that the plastic deformation should not be considered as an isochoric process. The effect of hydrostatic pressure on the behaviour and for instance on the yield stress of polymers has been widely studied as well (e.g., Wang and Pan [START_REF] Wang | A non-quadratic yield function for polymeric foams[END_REF]; Khan and Farrokh [START_REF] Khan | Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, experimental results over wide ranges of temperatures and strain rates[END_REF]). It was reported that this is caused by the structure of the polymer chains in thermoplastic polymers. Under a load, a specific energy is needed to move a chain segment or side chain. The flexibility of chains requires a certain free volume, which is smaller at higher hydrostatic pressures. Thereby, the inner molecular forces have a stronger effect. Thus, the molecular flexibility is restricted and is affected by the applied hydrostatic pressure. Sauer and Pae [START_REF] Sauer | The ow of solid polymers under high pressure[END_REF] have highlighted the particular dependency to hydrostatic pressure in semi-crystalline polypropylene.

As stated in introduction, polymeric materials often serves as the blinder in composite materials when reinforced by stiff inclusions (particles, fibres (long or short), platelets, etc...). In this case, the complexity of their behaviour is enhanced by the presence of fillers with complex properties, in terms of geometry, orientation. The following section highlights the main aspects in the behaviour of reinforced polymers and precisely in the case of short fibre reinforced thermoplastics.

Behaviour of short fibre reinforced composites

The mechanical behaviour of short fibre reinforced composites can be complex because of the complexity of the polymeric matrix behaviour and of the reinforcement characteristics, for instance in terms of distribution of orientation and length. Experimental investigations exist in the literature for the characterisation of short fibre reinforced composites. An extended study on mechanical and thermal properties of short fibre composite materials has been presented by Thomason [START_REF] Thomason | Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus[END_REF]. The author investigates the influence of fibre length and volume fraction of a composite consisting of short glass fibres embedded in a polypropylene matrix. Results show that CHAPTER 2. STATE OF ART stiffness increases almost linearly with respect to fibre concentration up to a volume fraction of 60%. A similar dependency between fibre length and stiffness was observed. Composites with higher fibre content show lower stiffness which may be due to fibre packing and out-of-plane orientation tendency. Moreover, when applications with severe loading conditions, such as crash or impact, are targeted, it is crucial to characterise the dependency of the material to strain rate.

As thermoplastic polymers, such as polypropylene (PP) exhibit a viscoelastic and/or viscoplastic behaviour, i.e. sensitive to strain rate, the mechanical behaviour of composite material is likely to be directly impacted by this property of matrix material. This strain rate sensitivity is reported by Mouhmid et al. for a short-glass-fibre reinforced PA6,6 [START_REF] Mouhmid | A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation[END_REF], Reis et al. for a short-glass-fibre reinforced polyurethane [START_REF] Reis | Tensile behaviour of glass fibre reinforced polyurethane at different strain rates[END_REF] and Schofig et al. [START_REF] Schossig | Mechanical behavior of glass-fiber reinforced thermoplastic materials under high strain rates[END_REF] for glass-fibre-reinforced polypropylene and polybutene-1. In the same way Fitoussi et al. proved the sensitivity of a glass-fibre-reinforced ethylene-propylene copolymere to strain rate by tensile tests performed in the injection flow direction of the composite [START_REF] Fitoussi | Effect of matrix behavior on the damage of ethylene-propylene glass fiber reinforced composite subjected to high strain rate tension[END_REF] (Figure 2.3). In such materials, where the complexity of matrix behaviour can be added to that of the reinforcement properties, the strain rate sensitivity has to be associated to the anisotropy induced by the fibres. Therefore, the coupled effect of strain rate dependency and fibre orientation has to be characterised in the case of SFRC. There is however a lack of data concerning this issue. A work is presented by Krivachy et al [START_REF] Krivachy | Characterisation and modelling of short fibre reinforced polymers for numerical simulation of a crash[END_REF] on the characterisation of the mechancal behaviour of short fibre thermoplastic (Crastin: Polybutylene-terephthalat and Acrylnitril/Styrol/Acrylester with 20 weight % short-glass fibres) under compression, shear and tension loadings at different velocities. Results show that the material appeared to be strongly anisotropic and strain rate dependent, with additional influence of hydrostatic pressure on plasticity and failure behaviour. The study was however limited to an orthotropic assimilation of the material and no coupled effect of anisotropy and strain rate sensitivity was directly studied. Finally, the behaviour of short fibre reinforced composites can be considerably affected by different coexisting damage phenomena. It is reported in literature that the most important are fibre-matrix interfacial debonding and matrix anisotropic ductile damage [START_REF] Notta-Cuvier | Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations[END_REF][START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF]. A more particular attention is payed to the developpement of damage phenomea within a short fibre reinforced composite in the chapter 4 of this report.

Modelling of short fibre reinforced composites

Computation of macroscopic stress-strain relationship of SFRC is treated in the literature mainly on the basis of micro-mechanical approaches. For these approaches, the macroscopic response of % glass fibres at different strain rates [START_REF] Fitoussi | Effect of matrix behavior on the damage of ethylene-propylene glass fiber reinforced composite subjected to high strain rate tension[END_REF] the heterogeneous material depends on the properties of its constituents as well as on their spatial distribution, i.e., the microstructure configuration. Among them one may cite: direct finite element (FE) analysis on representative cells of the microstructure [START_REF] Charles | Stiffness prediction for unidirectional short-fiber composites: Review and evaluation[END_REF], mean-field homogenization (MFH) techniques and the asymptotic or mathematical theory of homogenization [START_REF] Smit | Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level element modeling[END_REF][START_REF] Ghosh | Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[END_REF].

The mechanical behaviour modelling of a short fibre composite was first adressed by the implementation of micromechanical models. Innovative works were released first in 1889 by Voigt and in 1929 by Reuss. Both models were reference works since the earlier developed models were mainly based on the Voigt and Reuss models, known later as the Rule of Mixtures (RoM) and the Inverse Rule of Mixtures (IRoM), respectively. A modification of the Rule of Mixture was later proposed in the pioneering work by Cox in 1952 [START_REF] Cox | The elasticity and strength of paper and other fibrous materials[END_REF] based on stress distribution along a fibre using the shear lag model. It consisted on modifying the Rule of Mixture by introducing a fibre length factor. The shear lag model uses microstructural parameters such as fibre length and fibre to fibre distance in order to calculate macroscopic effective properties.

Later, the problem of multi-phases materials started to be differently and more thoroughly adressed.

The concept of phase concentration tensor of stress and strain was fist introduced by Hill [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF].

In his work, Hill treated the calculation of macroscopic elastic properties by taking into account the relative concentration and geometry of inclusions. Inclusions are assumed to be aligned ellipses and to have the same elastic properties as that of short fibres. The method is based on the solution of CHAPTER 2. STATE OF ART the auxiliary elastic problem involving a uniformly loaded infinite mass containing an ellipsoidal inhomogeneity.

This concept was originally proposed by Eshelby in 1957 by analysing the heterogeneities of stress and strain fields caused by an ellipsoidal inclusion embedded in an infinite matrix. The analysis is based on a four steps virtual experiment, where the infinite matrix is subjected to a far field strain. The strain and stress perturbations induced by the presence of the inclusion are treated by an elastic accomodation between the inclusion and its surroundings [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF].

The common process of homogenization methods can be summerized in two steps. Firstly, a local problem of a single inclusion has to be solved in order to obtain the local response and secondly a process of averaging of the local behaviour to obtain the global response takes place.

The assumption of non-interaction between inhomogeneities is considered to be valid in case of low volume fraction of reinforcement. However, industrial applications of short fibre composites generally demands relatively high fibre volume fraction, as a consequence this assumption is rarely respected. Therefore, different theories have been developed to take into account such interactions in the stress/strain fields. One of the most used homogenisation schemes is the model proposed by Mori and Tanaka [START_REF] Mori | Average stress in matrix and average elastic energy of materials with mis tting inclusions[END_REF]. Similarly, The dilute diffusion model and the self-consistent model have been developped, respectively, for the cases of low and high concentration of fillers. The direct use of the homogenization methods was limited to linear elastic composites. Its extension to different and more complex types of behaviour was first dealt with in the case of linear viscoelastic composites. It consisted on applying the homogenisation schemes to an equivalent linear isothermal elastic representation of the viscoelastic behaviour, but in Laplace-Carson space. Using the correspondance principle, constitutive equations are recast in a linear elastic form into the Laplace domain [START_REF] Fiebel | General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions[END_REF][START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF]. After homogenisation in the Laplace space, the effective properties are found by the inverse transform. The case of non-linear behaviour was more complicated when dealing with homogenizations schemes. Some formulations were proposed to tackle the problem of inelastic composites by linearizing the constitutive laws and retrieving a linear elastic-like representation of the model. Two of the most used linearization methods are secant [START_REF] Berveiller | An extension of the self-consistent scheme to plastically-owing polycrystals[END_REF][START_REF] Tandon | A theory of particle-reinforced plasticity[END_REF] and incremental methods [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF].

In the same way elasto-viscoplastic behaviour was dealt with. Masson and Zaoui [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic bahvior of polycrystalline materials[END_REF] and Pierard and Doghri [START_REF] Pierad | An enhanced affine formulation and the corresponding numerical algorithms for the meanfield homogenization of elasto-viscoplastic composites[END_REF] used the correspondance principle to model linearised elasto-viscoplastic composites. Ju [START_REF] Ju | Consistent tangent moduli for a class of viscoplasticity[END_REF] and Doghri [START_REF] Doghri | Mechanics of deformable solids. Linear, nonlinear, analytical and computational aspects[END_REF] worked on the linearization of time-discretized constitutive equations. Later, the affine [START_REF] Molinari | A self consistent approach at the large deformation polycrystal viscoplasticity[END_REF][START_REF] Masson | Self-consistent estimates for the ratedependent elasto-plastic behavior of polycrystalline materials[END_REF][START_REF] Masson | An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals[END_REF][START_REF] Pierard | An enhanced affine formulation and the corresponding numerical algorithms for the meanfield homogenization of elasto-viscoplastic composites[END_REF] and the incrementally affine formulations [START_REF] Doghri | Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method[END_REF] where the proposal leads to thermo-elastic-like relations in the Laplace-Carson (L-C) and the time do-mains, respectively, have been proposed.

The case of viscoelastic-viscoplastic composites is more complicated and there are few available models. Indeed, compared to viscoelastic or elasto-(visco) plastic behaviour modelling, the modelling of viscoelastic-viscoplastic (VE-VP) short-fibre reinforced composites has received little attention up to now and even less in case of relatively complex microstructure. A micromechanical model was proposed by Kim and Muliana [START_REF] Kim | A time-integration method for the viscoelastic viscoplastic analyses of polymers and finite element implementation[END_REF] for predicting a VE-VP response of particle reinforced composites. The studied composite consists of linear elastic spherical particles dispersed in a homogeneous VE-VP matrix. The proposed model is actually an extension of a previously proposed micromechanical model by Muliana and Kim [START_REF] Kim | A time-integration method for the viscoelastic viscoplastic analyses of polymers and finite element implementation[END_REF] for nonlinear VE composites. It assumes a composite microstructure with randomly distributed particles, idealized by periodically distributed cubic particles in a matrix medium. A unit-cell micromodel is then generated with this microstructure. The cells and subcells homogenization method is developed in terms of the average strains and stresses in the subcells. Good results were obtained with this model for low volume fractions of particles, i.e. when interactions between particles can be neglected.

Aboudi [START_REF] Aboudi | Michromechanically established constitutive equations for multiphase materials with viscoelasticviscoplastic phases[END_REF] proposed a micromechanical model for multiphase materials in which matrix and reinforcements phases can both behave as a VE-VP material. The model is based on an asymptotic homogenization technique of composite materials with a periodic microstructure. The response of the developped model depends highly on the complexity of composite's microstructure.

All the aforementioned models are micromechanical models. The common base of the presented theoretical work in micromechanical aspects is the idealisation of the materials morphology, based on assumptions like equal distances between fibres, the uniform length and orientation, etc. Yet, a closer examination of material's morphology can give rise to a more realistic representation of the microstructure of the composite taking into account various geometric parameters and allows to develop more accurate material behaviour laws which can be evaluated through a computational approach.

Works dealing with numerical models for short fibre composites considering microstructures or micromechanical properties have been proposed in the litterature. Hine [START_REF] Lusti | Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites[END_REF] has proposed finite element model for the prediction of elastic properties of composites with aligned short fibres of uniform length. Representations of the microstructure are realised by geometric periodicity.

Pan [START_REF] Pan | A Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption[END_REF] also studied the effect of random fibre orientation on the macroscopic effective stiffness properties of composite. Through the paper, the author underlines the difficulty of creating models that represent the geometry at micro-level for high volume fraction. A method of generating three dimensional, random fibrous realisations is presented which is based on the Random Sequential CHAPTER 2. STATE OF ART Absorption (RSA) algorithm. Fibres were simulated as sphere-cylinders, which are cylinders with a hemisphere attached to both ends. LRSM is a method proposed by Ianita and Weitsmann [START_REF] Ionita | On the mechanical response of randomly reinforced chopped-fibers composites: Data and model[END_REF] and is a windowing approach able to rapidly evaluate a large number of fibre arrangements for inplane orientation. Calculations of effective properties are based on the classical laminate theory.

The method has the ability to measure the statistical inhomogeneity in the material by information derived from local region. Berger el al [START_REF] Berger | Numerical and analytical approaches for calculating the effective thermomechanical properties of three-phase composites[END_REF] investigates the elastic constants of short fibre composite materials using a three dimensional RVE. Fibres were simulated as cylinders for the case of random orientation and aligned fibres. The periodic microstructure was created using the RSA method. The author discusses the limitation of the fibre volume fraction with this method.

As it was explained by Kari et al. [START_REF] Kari | Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites[END_REF] the main advantage of analysing SFRC using numerical models is the ability to approach, to a satisfactory degree, the real micro-structure of the material.

The author evaluates the effective mechanical properties of a randomly distributed short fibre composite, for relatively high fibre volume fraction (40%).

Although various constributions have been proposed to model short fibre reinforced composites, there are still remarkable efforts to do in order to attain a satisfying accuracy and efficiency of modelling. In fact, handling simultaneously the two most important features about the composite behaviour, i.e. complex microstructure and behaviour laws is still a field of study. Numerical models can be limited by the heterogeneity of the reinforcement and its properties and specially by the time consuming computation. Moreover, in addition to limitations dealing with constituents' behaviour laws, homogenization methods, based on inclusion-type problems can become very difficult to handle in the case of reinforcement with non-aligned short fibres. To overcome this difficulty, Doghri and Tinel [START_REF] Doghri | Micromechanics of inelastic composites with misaligned inclusions: numerical treatement of orientation[END_REF] have developed a double step homogenisation procedure. In a first step, a two-phase "pseudo-grain" constituted of the matrix material reinforced with identical and aligned fibres is homogenised. The second step then consists in the homogenisation of all pseudo-grains to compute mechanical properties at the representative elementary volume scale, taking all orientations of the fibres into account.

All these contributions show that the difficulty of implementing homogenisation based models for SFRC increases significantly as the behaviour of constituents and fibres orientation distribution become more complex. The main drawback of this approach is its numerical cost related to the inversion of the Laplace transform. Alternative approaches need then to be developped in order to present a unified model, where the materials complexity can be efficiently taken into account.
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Conclusion

In this chapter, most important mechanical and microstructural properties of short-fibre reinforced thermoplastics are presented with a highlight on short fibre orientation. The most important existing results about the polymeric materials, and more precisely thermoplastics, and mechanical behaviour of short fibre reinforced composites are presented. This litterature survey concerns, in a second part, the main theoretical models developped through the years. Micromechanical models provide a useful tool for the prediction of material mechanical behaviour. There is, however, a lack of contributions where an acurate representation of the microstructure is represented while the complexity of the materials behaviour is taken into account. Indeed, the complexity of the composite microstructure, constituents behaviour, and interactions between them, are main features to be adressed for an efficient modelling of the material behaviour. Considering the case of extreme loading, when additional phenomena can intervens (i.e. damage mechanisms), and the high cost of the available approaches in terms of computation time, it can be concluded that effort is still needed for an efficient and complete modelling that goes beyond the limits of the existing models.

The presented litterature survey is also an indicator that a more simple and holistic approach can be proposed as an alternative to the computation time costly avalaible approaches. It is therefore very interesting to consider models of composite behaviour at an intermediate scale between very complex homogenisation approaches and often inaccurate purely phenomenological descriptions.

Consequently, in this thesis, an alternative modelling based on the additive decomposition of the composite thermodynamic potential is considered. The composite is seen as the assembly of a matrix medium and several media of embedded fibres. The deformation gradient, applied to the composite as a whole, and its multiplicative decomposition implicitly link the media. Nedjar [START_REF] Nedjar | An anisotropic viscoelastic fibre-matrix model at finite strains: continum formulation and computational aspects[END_REF] used this approach for viscoelastic materials, assuming that fibres carry load only in tension.

Klinkel et al. [START_REF] Klinkel | Elastoplastic fibre-matrix material model at finite elastic-plastic strains[END_REF] showed it can be theoretically applied to non-linear elasto-plastic behaviour for the matrix and the fibres but without a practical application of their implementations in the analysis of a short-fibre-reinforced material's behaviour. More recently, Notta-Cuvier et al. [START_REF] Notta-Cuvier | An efficient modelling of inelastic composites with misaligned short fibres[END_REF] used this approach to deal with rate-independent elastoplastic SFRC behaviour. A main asset of this approach is its adaptability to all kinds of reinforcement characteristics (orientation and geometrical properties) and matrix behaviour while keeping the implementation relatively easy.

The present work treats the modelling of SFRC's behaviour when subjected to severe loading conditions, in particular at high strain rates. To this end, the matrix behaviour is modelled using a coupled VE-VP scheme. Complex distributions of fibre orientation are considered, leading to an CHAPTER 2. STATE OF ART accurate representation of the actual reinforcement orientations so that the coupled influence of strain rate and anisotropy of SFRC behaviour can be modelled.

Chapter 3

Constitutive model for short-fibre reinforced composites

It is reported from the existing contributions, described in chapter 2, that mechanical behaviour modelling of short-fibre reinforced composites (SFRC) becomes very difficult when dealing with complex behaviour of the constituents (e.g. non-linear time-rate dependent behaviour) and/or complex reinforcement configuration (e.g. complex fibre orientation). To the author's knowledge, no direct or practical application is presented today for the modelling of fibre reinforced strain rate dependent matrix with distributions of fibre orientation. Given the issues raised in previously reported works, it can be very interesting to consider models of composite behaviour at an intermediate scale between generally limited and inaccurate phenomenological descriptions and complex homogenization approaches. Following this line, we focus in this work on an alternative approach originally proposed by Nedjar [START_REF] Nedjar | An anisotropic viscoelastic fibre-matrix model at finite strains: continum formulation and computational aspects[END_REF] and Klinkel et al. [START_REF] Klinkel | Elastoplastic fibre-matrix material model at finite elastic-plastic strains[END_REF] that consists in assimilating the composite to an assembly of a matrix medium with several media of embedded fibres. One of main assets of this approach is its adaptability to all kinds of behaviour of matrix and fibre media while keeping a relative simplicity of implementation. Recently, this approach has been used by Notta-Cuvier et al. [START_REF] Notta-Cuvier | Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations[END_REF][START_REF] Notta-Cuvier | An efficient modelling of inelastic composites with misaligned short fibres[END_REF] for the modelling of non-linear pressure dependent and damageable behaviour of SFRC. In the current work, we consider the later approach to adress the modelling of SFRC behaviour when subjected to severe loading conditions, and more precisely, at high strain rates (e.g. cases of crash, impact...). Moreover, the division of the short fibres into several families having their own mechanical and geometrical properties and orientation allows easy consideration of all types of reinforcement characteristics, including distributed or random orientations. In order to reproduce the strain rate dependency of the matrix material, a coupled viscoelastic-viscoplastic (VE-VP) model is implemented in the framework of nonassociated viscoplasticity. The case of distributed orientations is considered for the reinforcing fibres with load transmission at fibre/matrix interface described by an adapted shear-lag model 22 CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC [START_REF] Bowyer | On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres[END_REF]. This chapter presents, in a first part, the developped constitutive laws for matrix, fibres, load transfer and composite mechanical response. The implementation of those laws in an explicit temporal integration scheme and its validation are subsequently presented.

Presentation of the approach for SFRC modelling

In the current modelling, the composite is seen as the assembly of a matrix medium and several media of embedded fibres. The deformation gradient, applied to the composite as a whole, and its additive decomposition implicitly link the media, combined with the assumption of thermodynamic potentials (elastic, plastic, viscoelastic..., as relevant) proper to each constituent. The reinforced composite material is formed of short fibres assumed to be uniformly dispersed in a thermoplastic matrix. Fibres with the same orientation, geometrical characteristics and mechanical behaviour are grouped into a same family. Each fibre family -or medium -is therefore characterised by its own orientation vector, expressed in a global coordinate system, i.e. linked to the matrix, and volume fraction, computed according to actual fibre distribution of orientations and geometrical characteristics. It can be noted that in the present work, all fibres will be assumed to have the same geometrical characteristics but distributions of fibre length could be considered, for instance. A fundamental assumption is that fibres carry load only in their direction of orientation.

Each medium of fibres is therefore assumed to behave as one-dimensional and the deformation gradient tensor applied to a given fibre family is the projection of the global deformation gradient tensor, which is applied to the composite, along fibre orientation. It is worth noticing that the distribution of the short fibres into several families allows to model all types of fibres orientation, including distributed and random orientations, in a simple way. The fibres' behaviour is assumed to remain linear elastic. Indeed, it is very likely that the composite fails before the stress applied to the fibres reaches their initial yield stress, because of ductile damage of matrix material and/or fibres debonding, for example. So, extending the implementation to irreversible fibre strain seems irrelevant. The strain-rate dependency of the SFRC is introduced through a coupled viscoelasticviscoplastic constitutive model associated to the matrix material response. The mechanical behaviour of each medium is solved separately before composite's behaviour is established using an additive decomposition of the specific free energy potential, as described in the next sections. 

CONSTITUTIVE LAWS OF SFRC BEHAVIOUR MODEL

Viscoelastic-viscoplastic behaviour model of thermoplastic matrix

One of the challenges when modelling SFRC is to introduce an accurate modelling of the constitutive behaviour of the polymeric matrix, for instance thermoplastic matrix, that takes all behaviour specificities (e.g. dependency to strain-rate and temperature, non-isochoric hardening, ductile damage) into account. The mechanical response of a thermoplastic polymer strongly depends on the loading conditions, especially if it is likely to be subjected to extreme operating ones (e.g. high loading speed). In the two last decades, many constitutive models, following physical and phenomenological approaches, have been developped for the behaviour modelling of polymers.

The viscoelastic and viscoplastic behaviour of thermoplastics have been modelled using multiscale approaches, as presented in [START_REF] Nikolov | A micro/macro constitutive model for the small-deformation behavior of polyethylene[END_REF][START_REF] Drozdov | Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene[END_REF][START_REF] Drozdov | Cyclic viscoplasticity of high-density polyethylene: experiments and modeling[END_REF]. In these models, representative volume elements are considered as aggregates of two-phase composite inclusions. Each inclusion consists on a stack of parallel crystalline lamellae in the amorphous phase. The physically-based theories are attractive in the modelling of polymers macroscopic behaviour as it takes the micro-structural phenomena into account. However, the identification of the associated material parameters is complex and cannot be done by simple experimental tests (e.g., tension or compression tests ...). In the case of phenomenologically-based approaches, viscoelastic-viscoplastic rheological models have been proposed based on the connection of Newton, Hooke and Slider elements. Khan et al. [START_REF] Khan | Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, experimental results over wide ranges of temperatures and strain rates[END_REF] have proposed a phenomenological model to describe the time and temperature dependency of thermoplastics. However, in these models an important number of parameters are required to obtain good predictions. Another formalism, coming within the framework of continuum mechanics, considers that the physical discontinuities at the micro-structural level are globally described, i.e. at the scale of a homogenised bulk element of the material. Chaboche [START_REF]Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers[END_REF] has discussed the ability of classic thermodynamics of irreversible processes to describe the behaviour of polymers and proposed a viscoelastic model based on an extension of the "Generalised Standard Material" concept. Some authors have modelled the behaviour of polymeric materials as nonlinear viscoelastic, for instance, by using a combination of linear and/or nonlinear dashpots and springs [START_REF] Khan | Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part I, experimental results over wide ranges of temperatures and strain rates[END_REF][START_REF] Ayoub | Effects of crystal content on mechanical behaviour of polyethylene[END_REF][START_REF] Zairi | Effects of crystal content on mechanical behaviour of polyethylene[END_REF]. Strain-rate dependency of thermoplastics have also been described by Elasto-Viscoplastic (E-VP) constitutive models as presented by Regrain et al. [START_REF] Regrain | Multi-mechanism model for semi-crystalline polymers[END_REF], Drozdov et al. [START_REF] Drozdov | Cyclic viscoplasticity of semicrystalline polymers with finite deformations[END_REF] and Balieu et al. [START_REF] Balieu | A full coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer[END_REF]. More recently, elasto-viscoplastic constitutive models based on viscous overstress (VBO) and derived from the unified state variable theory for metallic materials have been extended to polymer modelling by Krempl and Khan [START_REF] Krempl | Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers[END_REF], Khan and Yeakle [101] and Colak [102]. Finally, for a more reliable and complete modelling of the strain rate dependency in both parts of the behaviour, i.e. elastic and inelastic, coupled viscoelastic-viscoplastic (VE-VP) laws have been proposed by Ayoub et al [START_REF] Ayoub | Modelling large deformation behaviour under loadingunloading of semicrystalline polymers: Application to a high density polyethylene[END_REF], Khan and Zhang [START_REF] Khan | Finite deformation of a polymer: experiments and modeling[END_REF] and Miled et al [105]. This part of the work is devoted to the modelling of strain rate dependency of SFRC by introducing a coupled viscoelastic-viscoplastic law for the matrix behaviour prediction. The VE-VP model of the homogeneous thermoplastic polymer is written under small strain hypothesis and isothermal conditions. The model is developped within the formalism of the thermodynamics of irreversible processes based on the works proposed by Christensen [START_REF] Christensen | Theory of Viscoelasticity[END_REF] and Christensen and Naghdi [START_REF] Christensen | Linear non-isothermal viscoelastic solids[END_REF]. It is worth mensionning that the undammaged state of the matrix material is considered in this part, i.e. damage developpement is not taken into account at this level of the modelling.

Thermodynamic formulation

A coupled viscoelastic-viscoplastic model is introduced here in the framework of thermodynamics of irreversible processes for the description of thermodynamic matrix behaviour. A non-associated viscoplasticity formulation is used where a pressure dependent yield surface is introduced. The theory of Generalised Standard Materials, where constitutive equations derive from two different potentials, is adopted. As presented by Lemaitre and Chaboche [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], the first potential designates the material free energy and the second one its dissipation function. The formulation is restricted to small strain and isothermal conditions.

Based on the first and second laws of thermodynamics, the Clausius-Duhem inequality postulates that the change in entropy is positive or null [START_REF] Christensen | Theory of Viscoelasticity[END_REF] and leads, when assuming isothermal conditions, to the inequality:

σ M : ε -ρ M φM 0 (3.1)
ρ M is the density of the matrix material and φM is the time derivative of its Helmholtz free energy.

σ M and ε are, respectively, the matrix Cauchy stress tensor and time derivative of the strain tensor. Under isothermal conditions, the total strain, ε, is the observable state variable. Irreversible phenomena are described by the internal state variables, as defined later.

The derivation of the state laws is based on the decomposition of the total strain into two parts: a viscoelastic (VE) strain, ε ve , and a viscoplastic (VP) one, ε vp , [START_REF] Balieu | A full coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer[END_REF][START_REF] Voyiadjis | Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity[END_REF][START_REF] Krairi | A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage[END_REF] so that:

ε = ε ve + ε vp (3.2)
It is worth noting that this decomposition is valid in the framework of small deformation only, which is consistent with the composite behaviour modelling. Indeed, although unreinforced polymeric matrix can exhibit high level of deformation, strain at break of short-fibre reinforced matrix generally does not exceed a few percent (as subsequently highlighted in the experimental investigation). Based on this split, it is assumed that the Helmholtz free energy can be decomposed into a VE part, ϕ ve M , and a VP part, ϕ vp M , representing stored energies due to, respectively, the viscoelastic response and the material hardening [105, [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF][START_REF] Haouala | Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles[END_REF]. Then:

ϕ M = ϕ ve M + ϕ vp M (3.3)
A representation of the VE part of the free energy is given by Christensen and Naghdi [START_REF] Christensen | Linear non-isothermal viscoelastic solids[END_REF] in terms of linear and quadratic functionals of temperature and strain tensor components for linear VE solids. Using their results in the case of isothermal conditions, an expression of ϕ ve M as a functional of ε ve i j is given by:

ρ M ϕ ve M = 1 2 ∫ t -∞ ∫ t -∞ F i jkl (t -τ,t -ζ ) ∂ ε ve i j (τ) ∂ τ ∂ ε ve kl (ζ ) ∂ ζ dτdζ (3.4)
where the Einstein summation convention is used. According to Christensen and Naghdi [START_REF] Christensen | Linear non-isothermal viscoelastic solids[END_REF],

the integrating function, F, verifies the following symmetry properties:

     F i jkl (ζ , τ) = F i jkl (τ, ζ ) F i jkl (ζ , τ) = F jikl (ζ , τ) = F i jlk (ζ , τ) (3.5) 
and the following property:

F i jkl (τ, ζ ) = R ve i jkl (τ + ζ ) (3.6)
with R ve the fourth-order relaxation tensor of the matrix material. Given these properties, the VE free energy can be expressed as follows:

ρ M ϕ ve M = 1 2 ∫ t -∞ ∫ t -∞ R ve i jkl (2t -τ -ζ ) ∂ ε ve i j (τ) ∂ τ ∂ ε ve kl (ζ ) ∂ ζ dτdζ (3.7)
For the calculation of the free energy time derivative, the integral in Equation (3.7) is first rewritten as follows:

ρ M ϕ ve M = ∫ t -∞ ∫ t -∞ C (t, τ, ζ ) dτdζ (3.8)
where the function C is assumed to verify the differentiability and continuity conditions, so that the time derivative of the VE free energy can be expressed as:

ρ M φ ve M = ∫ t -∞ ∫ t -∞ ∂C (t, τ, ζ ) ∂t dτdζ + ∫ t -∞ C (t, τ,t) dτ + ∫ t -∞ C (t,t, ζ ) dζ (3.9)
Given the later expression, ρ M φ ve M (3.7) is written as follows:

ρ M φ ve M = ( ∫ t -∞ R ve i jkl (t -ζ ) ∂ ε ve kl (ζ ) ∂ ζ dζ ) εve i j + 1 2 ∫ t -∞ ∫ t -∞ ∂ R ve i jkl ∂t (2t -τ -ζ ) ∂ ε ve i j (ζ ) ∂ ζ ∂ ε ve kl (τ) ∂ τ dτdζ (3.10)
The expression of the VP part, ϕ vp M , of the Helmholtz free energy (3.3) and its time derivative are expressed, according to Lemaitre and Chaboche [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], as:

ρ M ϕ vp M (κ (t)) = ∫ κ(t) -∞ H (ζ ) dζ ρ M φ vp M = H κ (3.11)
where H and κ are the hardening thermodynamic force and its associated variable, respectively.

Given the expressions (3.10) and (3.11), the time derivative of the total free energy becomes:

ρ M φM = ( ∫ t -∞ R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ ) : εve + 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve (τ) ∂ τ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (ζ ) ∂ ζ dτdζ + H κ (3.12)
The Clausius-Duhem inequality is then expressed as follows:

( σ M - ∫ t -∞ R ve (t -τ) : ∂ ε ve (τ) ∂ τ dτ ) : εve + σ M : εvp - 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve (ζ ) ∂ ζ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (τ) ∂ τ dτdζ -H κ 0 (3.13)
The dissipation inequality (3.13) has to be verified for any transformation, in particular for any value of the time derivative of viscoelastic strain. This implies that:

σ M - ∫ t -∞ R ve (t -τ) : ∂ ε ve (τ) ∂ τ dτ = 0 (3.14)
and

σ M : εvp - 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve (ζ ) ∂ ζ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (τ) ∂ τ dτdζ -H κ 0 (3.15)
In addition, VE part of the dissipation term (3.15) have to be positive or null, so that:

- 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve (ζ ) ∂ ζ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (τ) ∂ τ dτdζ 0 (3.16)
The state law verified by the matrix Cauchy stress tensor, σ M , is finally given by:

σ M = ∫ t 0 R ve (t -τ) : ∂ ε ve (τ) ∂ τ dτ (3.17)

Linear viscoelasticity

The viscoelastic fourth-order relaxation tensor of the matrix material is expressed based on the phenomenological Generalised Maxwell model. In that case, the unidimensional relaxation modulus modelled by an N-elements Generalised maxwell model is expressed in terms of Prony series as follows:

E (t) = E ∞ + N ∑ i=1 E i (t) (3.18)
where E ∞ is the long-term elastic modulus and the E i , i ∈ {1, . . . , N}, are the time dependent moduli. Within this formalism, the fourth-order relaxation tensor of the matrix material is expressed as follows:

R ve (t) = 2G (t) I dev + 3K (t) I vol (3.19)
where I vol and I dev are volumetric and deviatoric operators defined by: I vol = 1 3 1 ⊗ 1 and I dev = I -I vol , with 1 and I are respectively the second and the fourth order identity tensors. G (t) and K (t) are, respectively, shear and bulk relaxation functions and are expressed as:

         G (t) = G ∞ + N ∑ i=1 G i exp ( - t τ d i ) K (t) = K ∞ + N ∑ i=1 K i exp ( - t τ v i ) (3.20) τ d i , τ v i , G i and K i , i ∈ {1, .
. . , N}, are respectively the deviatoric and volumetric relaxation times and their corresponding shear and bulk moduli. G ∞ and K ∞ are respectively the long-term shear and bulk moduli. According to Ohkami and Ichikawa [START_REF] Ohkani | Linear non-isothermal viscoelastic solids[END_REF], the deviatoric and volumetric relaxation CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC times are expressed as follows:

τ d i = η d i G i , τ v i = η v i K i ∀i ∈ {1, ..., N} (3.21)
where η d i and η v i are the deviatoric and volumetric viscous coefficients. The VE strain tensor ε ve (t) is divided, in the same way, into deviatoric, ε ve dev (t), and dilatational, ε ve H (t), parts:

ε ve (t) = ε ve dev (t) + ε ve H (t) 1 (3.22)
Consistently, and based on developpements described by Miled et al.

[105], a deviatoric, σ M,dev (t), and a dilatational, σ M,H (t), parts of the stress tensor are defined by:

         σ M,dev (t) = σ M ∞ ,dev (t) + N ∑ i=1 σ M i ,dev (t) σ M,H (t) = σ M ∞ ,H (t) + N ∑ i=1 σ M i ,H (t) (3.23) 
where

     σ M ∞ ,dev (t) = 2G ∞ ε ve dev (t) σ M ∞ ,H (t) = 3K ∞ ε ve H (t) (3.24) 
       σ M i ,dev (t) = 2G i ∫ t -∞ exp ( ζ -t τ d i ) ∂ ε ve dev (ζ ) ∂ ζ dζ σ M i ,H (t) = 3K i ∫ t -∞ exp ( ζ -t τ v i ) ∂ ε ve H (ζ ) ∂ ζ dζ (3.25)

Non-associated viscoplasticity

In addition to linear viscoelastic behaviour, matrix material can show a non-linear plastic behaviour, possibly strain-rate dependent, i.e. viscoplastic (VP). The thermoplastic matrix behaviour is also pressure sensitive, i.e. sensitive to the nature of loading (e.g., tension, compression...) and non-isochoric in the plastic domain. Consequently, the framework of non-associated viscoplasticity is considered in this work, following Perzyna model [START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF]. The pressure dependency of the viscoplastic flow is introduced by Raghava yield surface [START_REF] Raghava | The macroscopic yield behaviour of polymers[END_REF]. Viscoplastic flow occurs as soon as the first invariant, I 1 (Eq. 3.26a), and the second invariant, I 2 (Eq. 3.26b), of the matrix Cauchy stress tensor reach a critical combination given by the yield surface expression (Eq. 3.27).

I 1 = tr (σ M (t)) = tr (σ M,H (t)) (3.26a) I 2 = 1 2 σ M,dev (t) : σ M,dev (t) (3.26b) f (I 1 , I 2 , R) = (η -1) I 1 + √ (η -1) 2 I 2 1 + 12ηI 2 2η -σ t -H (κ) ≥ 0 (3.27)
In previous expression, the hydrostatic pressure dependency parameter, η, is defined by the ratio between the quasi-static initial yield stresses in compression, σ comp , and in tension, σ t , so that In expression 3.27, H (κ) is the isotropic hardening function that must be identified in tension for the considered polymeric material. It is important to note that all types of hardening laws can be considered in the present behaviour model. For the applications considered in this work, hardening law given by Eq. (3.28) will be considered.

η = σ comp /σ t . A
H (κ) = h 1 exp ( h 2 κ 2 ) (1 -exp (-h 3 κ)) (3.28)
where h 1 , h 2 and h 3 are material parameters and κ, defined as the hardening variable, can be CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC assimilated to the cumulated viscoplastic strain (Eq 3.29) in the case of undamaged material.

κ = ∫ t √ 2 3 εvp : εvp dt (3.29)
with εvp the viscoplastic strain rate tensor. The non-symmetric and non-isochoric plastic flow of the polymeric matrix is modelled by a hyperbolic viscoplastic dissipation potential [START_REF] Balieu | A full coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer[END_REF], defined by:

ψ vp M (I 1 , I 2 ) = √ 3I 2 + 1 3 ( a + ⟨I 1 ⟩ 2 + a -⟨-I 1 ⟩ 2 ) (3.30)
where the symbol ⟨.⟩ is the Macauley braket defined by ⟨x⟩ = (x + |x|) 2 , for any scalar x. a + and a -are volume variation parameters under positive and negative hydrostatic pressure, respectively.

The viscoplastic dissipation potential is presented in terms of I 1 in Figure 3.2, for different values of parameters a + and a -. 

εvp = λ ∂ ψ vp M ∂ σ M = λ n (3.31)
where n is the viscoplastic flow direction tensor. Given the expression of ψ vp M , (3.30), the expres-sion of the viscoplastic strain rate tensor becomes:

εvp = λ 3 2 σ M,dev + 1 9 (a + ⟨I 1 ⟩ + a -⟨-I 1 ⟩) I 3I 2 + 1 27 ( a + ⟨I 1 ⟩ 2 + a -⟨-I 1 ⟩ 2 ) (3.32)
The viscoplastic multiplier rate, λ , is calculated here using the approach of overstress based viscoplasticity. According to the latter theory, the static yield surface, f (Eq. 3.27), is extended to a dynamic yield surface, F vp , defined as follows [START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF]:

F vp (I 1 , I 2 , H, κ) = (η -1) I 1 + √ (η -1) 2 I 2 1 + 12ηI 2 2η -(σ t + H (κ)) -σ vp (3.33)
where σ vp is the viscous overstress. As postulated in Perzyna's model [START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF], this overstress is defined as follows:

σ vp = (σ t + H (κ)) ( κ κ0
) m (3.34) where m and κ0 are the strain rate sensitivity and viscosity parameters, respectively. κ is the equivalent viscoplastic strain-rate, defined by:

κ = √ 2 3 εvp : εvp = λ √ 2 3 n : n (3.35)
The standard Kuhn-Tucker loading/unloading conditions are then applied to the dynamic yield surface (i.e., F vp ≤ 0, λ ≥ 0, λ F vp = 0) for the determination of the viscoplastic multiplier. It can be noted that both static and dynamic yield surfaces are updated all along the implementation.

As a consequence, during unloading overstress does not systematically vanish and stress state can remain in the viscoplastic domain (i.e. stress state above the static yield surface, on updated dynamic surface). The rate form of the viscoplastic multiplier is obtained by substituting its expression into the dynamic yield surface and is as follows:

λ =              0 , if f < 0, κ0 √ 2 3 n : n   (η -1) I 1 + √ (η -1) 2 I 2 1 + 12ηI 2 2η (σ t + H (κ))   1 m , if f ≥ 0 (3.36)
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Finally, the viscoplastic strain rate tensor is given by:

εvp =              0 , if f < 0, κ0 √ 2 3 n : n   (η -1) I 1 + √ (η -1) 2 I 2 1 + 12ηI 2 2η (σ t + H (κ))   1 m n , if f ≥ 0 (3.37)
In the constitutive model, the dynamic yield surface takes place only if the static yield function is positive or null ( f ≥ 0). When the current stress lies in the viscoelastic domain ( f < 0), the viscoplastic strain rate tensor εvp vanish. The viscoplastic deformation takes place only when the condition f ≥ 0 is satified.

Summary of the matrix constitutive model (algorithm)

In this section, the incremental formulation of the stress update is presented. A viscoelastic predictor/viscoplastic corrector scheme is used in order to integrate the constitutive laws of behaviour model. This schema is an extension of classical return-mapping algorithms implemented in the framework of elastoplasticity [START_REF] Simo | Computational Inelasticity[END_REF]. More precisely, the aim of the algorithm detailed hereafter is to compute values of variables at a given time t n+1 , knowing their values at t n (current step) and the total strain increment, ∆ε, between t n and t n+1 . During the trial prediction, the strain increment is assumed to be entirely viscoelastic, i.e. ∆ε = ∆ε ve and ∆ε vp = 0. As a consequence, viscoplastic and cumulative viscoplastic strains in the trial step remain at the value computed at increment n.

Trial deviatoric and hydrostatic stresses at t = t n+1 are therefore given by:

σ tr M ∞ ,dev (t n+1 ) = 2G ∞ ε ve dev (t n+1 ) (3.38) σ tr M ∞ ,H (t n+1 ) = 3K ∞ ε ve H (t n+1 ) (3.39) σ tr M i ,dev (t n+1 ) = exp ( - ∆t τ d i ) σ M i ,dev (t n ) + 2G i ∫ t n+1 t n exp ( ζ -t n+1 τ d i ) ∂ ε ve dev (ζ ) ∂ ζ dζ (3.40) σ tr M i ,H (t n+1 ) = exp ( - ∆t τ v i ) σ M i ,H (t n ) + 3K i ∫ t n+1 t n exp ( ζ -t n+1 τ v i ) ∂ ε ve H (ζ ) ∂ ζ dζ (3.41)
In order to compute the integrals in equations (3.40) and (3.41) over [t n ,t n+1 ], the VE strain rate is assumed to be constant over this time interval. Using the approximation ∆ε ve = εve (t n+1 ) ∆t, it leads to:

σ tr M i ,dev (t n+1 ) = exp ( - ∆t τ d i ) σ M i ,dev (t n ) + 2G i [ 1 -exp ( - ∆t τ d i )] τ d i ∆t ∆ε ve dev (3.42) σ tr M i ,H (t n+1 ) = exp ( - ∆t τ v i ) σ M i ,H (t n ) + 3K i [ 1 -exp ( - ∆t τ v i )] τ v i ∆t ∆ε ve H (3.43)
Then, recalling expression (3.23), updated trial stress can be computed as follows:

σ tr M,dev (t n+1 ) = σ tr M ∞ ,dev (t n+1 ) + N ∑ i=1 2 ḠM i ∆ε ve dev + exp ( - ∆t τ d i ) σ M i ,dev (t n ) (3.44) σ tr M,H (t n+1 ) = σ tr M ∞ ,H (t n+1 ) + N ∑ i=1 3 KM i ∆ε ve H + exp ( - ∆t τ v i ) σ M i ,H (t n ) (3.45)
where

Ḡi = G i [ 1 -exp ( - ∆t τ d i )] τ d i ∆t (3.46) and Ki = K i [ 1 -exp ( - ∆t τ v i )] τ v i ∆t (3.47) 
The computed trial stress tensor can then be recast as follows:

σ tr M (t n+1 ) = σ tr M,dev (t n+1 ) + σ tr M,H (t n+1 ) I (3.48)
Once the trial Cauchy stress tensor is known, the corresponding trial yield surface can be expressed:

f tr ( I tr 1 , I tr 2 , κ n ) = (η -1) I tr 1 + √ (η -1) 2 I tr 2 1 + 12ηI tr 2 2η -σ t -H (κ n ) (3.49)
The trial first and second stress invariants are determined in terms of the trial stress tensor, i.e. I tr

1 = I 1 ( σ tr M (t n+1 )
)

and

I tr 2 = I 2 ( σ tr M (t n+1 )
)

. In case of purely viscoelastic deformation (i.e. f tr < 0), quantities computed at the trial step are solutions of the problem at increment n + 1. In particular, σ M,n+1 = σ tr M , ε ve n+1 = ε ve,tr and κ n+1 = κ tr = κ n . Otherwise the deformation is viscoelasticviscoplastic and a viscoplastic corrector schema is needed to compute matrix behaviour. In particular, the actual strain increment tensor must be split into a viscoelastic and a viscoplastic part, i.e. ∆ε = ∆ε ve + ∆ε vp . Then, considering that ∆ε vp = ∆λ n n+1 , with n n+1 the viscoplastic flow direction tensor, expressed in terms of stress invariants, I n+1 incremental form of the plastic multiplier ∆λ is given by Eq. (3.51).

n n+1 = 3 2 σ M,n+1 + 1 9 ( a + ⟨ I n+1 1 ⟩ + a -⟨ -I n+1 1 ⟩) I √ 3I n+1 2 + 1 27 ( a + ⟨ I n+1 1 ⟩ 2 + a - ⟨ -I n+1 1 ⟩ 2 ) (3.50) ∆λ = ∆t κ0 √ 2 3 n n+1 : n n+1 ⟨ σ vp n+1 σ t + H (κ n ) ⟩ 1 m (3.51)
where

σ vp n+1 = (η -1) I n+1 1 + √ (η -1) 2 I n+1 2 1 + 12ηI n+1 2 2η -σ t -H (κ n ) (3.52)
An updated cumulative viscoplastic strain, κ n+1 , is obtained from κ n following κ n+1 = κ n + ∆κ with the cumulative viscoplastic strain increment ∆κ expressed as follows:

∆κ = √ 2 3 n n+1 : n n+1 ∆λ (3.53) 
Finally, all state variables are updated and stored for the next time step. The complete algorithm for the viscoelastic-viscoplastic matrix constitutive model is summarised in Table 3.1. 
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σ tr M i ,dev ( t n+1 ) = exp ( - ∆t τ d i ) σ M i ,dev (t n ) + 2 Ḡi ∆ε ve dev , (3.23) σ tr M i ,H (t n+1 ) = exp ( - ∆t τ v i ) σ M i ,H (t n ) + 3 Ki ∆ε ve H , (3.23) σ tr M ( t n+1 ) = N ∑ i=1 σ tr M i ,dev ( t n+1 ) + σ tr M i ,H (t n+1 ) I I tr 1 = tr ( σ tr M ) , I tr 2 = 1 2 N ∑ i=1 σ tr M i ,dev : N ∑ i=1 σ tr M i ,dev (3.26) (iii) Assess (visco)plastic flow: if f tr n+1 ( I tr 1 , I tr 2 , κ n ) ≤ 0 then ( . ) n+1 = ( . ) tr (3.27)
else (iv) Viscoplastic strain increment-viscoplastic stress return:

σ vp n+1 = (η -1) I n+1 1 + √ (η -1) 2 I n+1 2 1 + 12ηI n+1 2 2η -σ t -H (κ n ) (3.34)
n n+1 = 3 2 σ n+1 M,dev + 1 9 ( a + ⟨ I n+1 1 ⟩ + a -⟨ -I n+1 1 ⟩) I √ 3I n+1 2 + 1 27 ( a + ⟨ I n+1 1 ⟩ 2 + a - ⟨ -I n+1 1 ⟩ 2 ) (3.31) ∆λ = ∆t κ0 √ 2 3 n n+1 : n n+1 ⟨ σ vp n+1 σ t + H (κ n ) ⟩ 1 m (3.36) ∆ε vp = ∆λ n n+1 (3.37), ∆κ = √ 2 3 n n+1 : n n+1 ∆λ (3.35) (v) update stresses: σ M i ,dev (t n+1 ) = exp ( - ∆t τ d i ) σ M i ,dev (t n ) + 2G i [ 1 -exp ( - ∆t τ d i )] τ d i ∆t (∆ε ve dev -∆ε vp dev ) σ M i ,H (t n+1 ) = exp ( - ∆t τ v i ) σ M i ,H (t n ) + 3K i [ 1 -exp ( - ∆t τ v i )] τ v i ∆t (∆ε ve H -∆ε vp H ) (vi) store ε ve n+1 , κ n+1
Output: Matrix stress tensor, σ M CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC

Modelling of fibres mechanical response

In SFRC, the load applied to the polymeric matrix is transferred to embedded fibres through the interface. Due to relatively high aspect ratio of fibres (i.e. length divided by diameter), generally higher than 15 [START_REF] Bernasconi | Analysis of the dependence of the tensile behaviour of a short fibre reinforced polyamide upon fibre volume fraction, length and orientation[END_REF]), each fibre family is assumed to carry load only in its axis direction, i.e.

behaves unidimensionnaly. As a consequence, fibres are assumed to deform longitudinally while keeping a constant diameter, i.e. deformation is assumed to remain negligible in transverse directions. Moreover, as already stated in section (3.1), it is assumed that fibre behaviour remains linear elastic. The presence of fibres with variable characteristics in the composite material is modelled by the coexistence of N f am families. Each family i

(i ∈ { 1, ..., N f am }
) is characterized by its elastic properties (Young modulus E i F ), its orientation vector, ⃗ a i , and therefore orientation matrix, A i , defined by A i = ⃗ a i ⊗⃗ a i , i.e. A i kl = a i k ⊗ a i l , ∀k, l, and its geometric properties (i.e., diameter and length). It can be noted that no reorientation of fibres upon loading will be considered in this work, i.e. ⃗ a i and A i remain constant during loading. A volume fraction, v i F , is associated to each family of fibres so that:

N f am ∑ i=1 v i F = v F = 1 -v M (3.54)
v F and v M are respectively the total volume fraction of fibres and matrix in the composite material.

The computation of 1D fibre axial stress, σ 0, i F is based on the assumption of a local iso-strain state between the fibres and the matrix, in the fibre axis direction. The tensor of deformation gradient sustained by the fibres, F i F , is defined as the projection of the total deformation gradient tensor, F, (i.e., applied to the composite material) in the direction of fibres' orientation.

F i F = FA i ∀i ∈ { i, ..., N f am } (3.55)
The right Cauchy-Green tensors of the composite, C, and fibre families, C i F , are defined by Equation (3.56) and are therefore linked by the relation (3.57).

C = F T F and C i F = F i T F F i F ∀i ∈ { i, ..., N f am } (3.56) C i F = A i CA i ∀i ∈ { i, ..., N f am } (3.57)
By construction, each tensor C i F has a unique eigenvalue different from zero, called λ i F , with associated eigenvector ⃗ a i . λ i F actually stands for the square of the ratio of the fibres current length by initial length. As a consequence, with the small strain assumption, the 1D Hencky strain of the fibres, ε 0, i F , is simply expressed from λ i F as follows:

ε 0, i F = 1 2 ln ( λ i F ) ∀i ∈ { i, ..., N f am } (3.58)
A modified shear lag model is used to compute fibre axial stress, σ 0, i F . This model is based on initial work by Bowyer and Bader [START_REF] Bowyer | On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres[END_REF], expressing the average stress in a fibre as a function of its length, L, its radius, r, the interfacial shear strength, τ, and the strain state in the composite material, ε. This approach has then been extended to cases of complex fibre orientations, as described in details by Notta-Cuvier et al. [START_REF] Notta-Cuvier | An efficient modelling of inelastic composites with misaligned short fibres[END_REF]. According to the latter formulation, if fibre length in family i, L i , is higher than a specific length, L i ε (3.59), fibre stress grows from zero at fibre tip and reaches a plateau at a distance L i ε from fibre tip for a maximum value given by

E i F ε 0, i F , ∀i ∈ { i, ..., N f am } . L i ε = E i F ε 0, i F r i τ i ∀i ∈ { i, ..., N f am } (3.59)
where ε 0, i F is the fibre axial strain whose computation is described before. It is worth noting that below this fibre's length, stress does not reach its maximum value. According to this, the 1D-stress state of each fibre family, σ 0, i F , ∀i, can be computed using Eq (3.60). It can be noted that particular cases where fibres have different elastic properties (i.e. different values of E i F ) can be dealt with and that the fibres response under compression is assumed to be the same as under tension (i.e. buckling is neglected) [START_REF] Notta-Cuvier | An efficient modelling of inelastic composites with misaligned short fibres[END_REF].

       σ 0, i F = ε 0, i F ( 1 - E i F r i 2L i τ i ε 0, i F ) E i F σ 0, i F = sign ( ε 0, i F ) L i τ i 2r i if ε 0,i F ≤ L i τ i E i F r i otherwise (3.60)
To compute fibre stress tensor in the global coordinate system, "quasi" iso-stress states are assumed between the fibres and the matrix material in transverse and shear directions with respect to fibre axis, in addition to iso-strain state assumption in fibre axis direction. More precisely, fibre stresses in those directions are assumed to be equal to those of a fictitious purely viscoelastic material (with viscoelastic parameters of the matrix material), consistently with the well-known principle of lower bound assumption. The expression of 3D stress tensor of fibre family i, σ i F , is CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC therefore expressed in the global coordinate system by:

σ i F = T i            σ 0,i F σ 0,i M12 σ 0,i M13 σ 0,i M12 σ 0,i M22 σ 0,i M23 σ 0,i M13 σ 0,i M23 σ 0,i M33            T i -1 ∀i (3.61)
where T i is the transition matrix from the coordinate system related to the fibre family i to the global one. σ 0,i Mkl , k, l ∈ {1, 2, 3}, are stress components of the purely viscoelastic "matrix" material, expressed in the coordinate system of fibre family i.

Modelling of composite mechanical response

Once 3D stress tensors of the matrix material and all fibre families are computed, the stress tensor applied to the composite material can be determined, as a combination of the contribution of all fibre and matrix media [START_REF] Notta-Cuvier | An efficient modelling of inelastic composites with misaligned short fibres[END_REF]. The stress computation of the different constituents is schematically represented in Figure 3.3.

In practice, the state potential of the composite material, here the Helmholtz free energy, is assumed to be additively split into a part specific to the matrix medium and other parts specific to each fibre family (3.62).

ρϕ c = v M ρ M ϕ M + N f am ∑ i=1 v i F ρ i F ϕ i F (3.62)
where ρ, ρ M and ρ i F are the densities of the composite material, the matrix material and the fibre family i, respectively. ϕ M and ϕ i F are the Helmholtz free energies of the matrix and the fibre family i, respectively. These state potentials have to verify Clausius-Duhem inequality, simplified here for isothermal transformations:

σ c : D - [ v M ρ M φM + N f am ∑ i=1 v i F ρ i F φ i F ] ≥ 0 (3.63)
where σ c is the composite stress tensor. D is the rate of deformation tensor, assimilated to ε under the hypothesis of small perturbations. φM and φ i F are the time derivative of the Helmholtz free energies of the matrix and the fibre family i, respectively. It is important to note that the composite strain tensor, ε, is here identical to the matrix strain tensor. The expressions of the total free energy of matrix material and of its time derivative have been established in section (3.2.1.1). It is reminded that:

ρ M φM = 1 2 ∫ t 0 ∫ t 0 ∂ ε ve (τ) ∂ τ : R ve (2t -τ -ζ ) : ∂ ε ve (ζ ) ∂ ζ dτdζ + ( ∫ t 0 R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ ) : εve + ρ M φ vp M (3.64)
Concerning the fibre media, each potential, ϕ i F , is a function of the scalar axial strain, ε 0, i F (3.58). Yet for convenience, the fibre Hencky strain tensors expressed in the global coordinate system by ε i F kl = T i k1 T i -1 1l ε 0, i F , ∀k, l, ∀i, are considered, so that

dϕ i F dt = ∂ ϕ i F ∂ ε i F : ∂ ε i F ∂t , ∀i. If assuming small
displacements, the Hencky strain tensors can be assimilated to the Green-Lagrange strain tensors, E i F . These are expressed from the right Cauchy-Green tensors by

E i F = 1 2 ( C i F -I ) , ∀i. Relation (3.57) therefore leads to the approximation ∂ ε i F ∂t ≈ A i ∂ ε ∂t A i , ∀i.
Finally, noting that X :

( A i YA i ) = 40 CHAPTER 3. CONSTITUTIVE MODEL FOR SFRC ( A i XA i )
: Y , by construction of matrices A i , and for any matrices X and Y, these developpements give rise to a factorized expression of Clausius-Duhem inequality (3.65).

[

σ c -v M ∫ t 0 R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ - N f am ∑ i=1 v i F ρ i F A i ∂ ϕ i F ∂ ε i F A i ] : ε- 1 2 v M ∫ t 0 ∫ t 0 ∂ ε ve (τ) ∂ τ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (ζ ) ∂ ζ dτdζ + v M ∫ t 0 R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ : εvp -v M ρ M φ vp M ≥ 0 (3.65)
The Clausius-Duhem inequality (3.65) has to be verified for any state of the strain rate tensor, ε.

Then, the system (Ω ) (3.66) is an admissible solution. Finally, considering the state laws

ρ i F ∂ ϕ i F ∂ ε i F = σ i F , ∀i
, and the expression of the matrix stress tensor given in Equation (3.17), the stress state of the composite material can be expressed by Equation (3.67):

(Ω )

                         σ c = v M ∫ t 0 R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ - N f am ∑ i=1 v i F ρ i F A i ∂ ϕ i F ∂ ε i F A i - 1 2 v M ∫ t 0 ∫ t 0 ∂ ε ve (τ) ∂ τ : ∂ R ve ∂t (2t -τ -ζ ) : ∂ ε ve (ζ ) ∂ ζ dτdζ + v M ∫ t 0 R ve (t -ζ ) : ∂ ε ve (ζ ) ∂ ζ dζ : εvp -v M ρ M φ vp M ≥ 0 (3.66) σ c = v M σ M + N f am ∑ i=1 v i F A i σ i F A i (3.67)
Through this chapter, a set of parameters, associated to the behaviour laws of matrix and composite behaviour have been introduced (cf Table 3.2). The identification of those parameters lays on several mechanical experiments and microtomographic observations, as described in the next chapter.

Experimental tests will also be used in order to validate the implementation of the composite behaviour model.

Conclusion

A behaviour model for SFRC is presented here, based on an original approach that aims to be an efficient alternative to more complex homogenisation procedures. This part of the work deals with the presentation of the developped approach and the constitutive laws associated to the different constituents for the computation of the composite response. The strain rate dependency in the composite behaviour is modelled by a coupled viscoelastic-viscoplastic law associated to the matrix 

E i F for i ∈ (1, ..., N f am ) Interfacial Shear Strength τ i for i ∈ (1, ..., N f am )
material. More precisely, a linear viscoelastic is considered and a viscoplastic schema is introduced to reproduce the strain rate influence over the yield/hardening part of the material response. The complex fibre orientations, including distributed and random orientations, are modelled in a simple way, so that actual distributions of fibre orientation can be taken into account. The implementation of the constitutive model is performed in the framework of small deformations in the explicit finite element code ABAQUS as a user-material subroutine (VUMAT), written in FORTRAN77.

The identification of the involved material parameters and the reinforcement properties is the object of the following chapter, where the model validity is verified in the case of short-fibre reinforced composite subjected to a variety of loading conditions. different strain rates) using optical extensometry or Digital Image Correlation. The identification of VP parameters is based on the SE Ė method proposed by Lauro et al. [START_REF] Lauro | The SE Ė method for determination of behaviour laws for strin rate dependent material: Application to polymer material[END_REF]. The second part of the chapter deals with the characterisation of the reinforcement properties (geometry and orientation) so that actual properties can be used for the evaluation of the model accuracy. Finally the global behaviour of the short-fibre reinforced composite is characterised by experimental tests carried out at various loading conditions and speeds, so that the anisotropy-strain rate dependency coupled effect can be investigated. Tensile results are used for the validation of the developped model for a wide range of strain rate, by comparison with numerical results. Note that at this stage, failure phenomena (damage and fracture) of SFRC are not adressed.

Characterisation of the implemented behaviour model

The accuracy of the implemented SFRC constitutive model is now assessed for a polypropylene (PP) reinforced with short glass fibres.

CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION

PP matrix VE-VP behaviour model

The matrix material under investigation is a Polypropylene (PP-commercial grade Moplen HP500N supplied by Lyon dell Basell). According to the supplier, Moplen HP500N is a homopolymer for injection moulding applications, with a MFR of 12 g.(10min) -1 and a density of 0.9 g.(cm) -3 .

PP plates, 200 mm-edge squares with a thickness of 2.5 mm, are injection moulded following the process conditions prescribed by the supplier. characterised by an angular frequency, ω, is applied to the specimen. The imposed strain is therefore set as follows:

ε (t) = ε 0 cos (ωt) = ε 0 Re {exp (iωt)} (4.1)
where ε 0 is the strain amplitude, t the time and Re {.} stands for the real part of any complex number. The applied frequency is progressively increased from 0.01 H z to 30 H z with several loading cycles per frequency (Table 4.1). The strain amplitude, ε 0 , is equal to 0.5% for all cycles and all frequencies. Five specimens are tested for each frequency. In the framework of small deformations, the stress response is sinusoidal as well. As can be seen in Figure 4.2, the stress sinusoidal evolution is with the same pulsation, ω, but with a different amplitude, σ 0 , and an out-of-phase angle (loss angle), δ , compared to applied strain. It takes then the following form:

CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL

σ (t) = σ 0 cos (ωt + δ ) = σ 0 Re {exp (i (ωt + δ (ω)))} (4.2)
A complex modulus, E * , dependent on the loading pulsation, is then defined by the ratio of stress and strain as follows: modulus, associated to the viscous response and π 2 out of phase with the applied strain, so that:

E * (ω) = σ 0 ε 0 exp (iδ (ω)) (4.3)
E * = E ′ + iE " (4.4)
where the storage and loss moduli are defined by:

E ′ = σ 0 ε 0 cos (δ ) (4.5) E " = σ 0 ε 0 sin (δ ) (4.6)
The loss angle, δ , can therefore be expressed from the ratio between the storage and loss moduli as follows:

tan (δ ) = E " E ′ (4.7)
The measured data are shown in Figure 4.3, where the storage modulus increases with the pulsation, while the loss modulus decreases. The Maxwell parameters (see Section 3.2.1.2) are identified based on results of DMA. Considering the case of uniaxial loading, a one-dimensional form of the hereditary integral expression of the stress-strain relation ( Eq. 3.17) can be expressed as follows:

σ M (t) = ∫ t -∞ E (t -ζ ) dε (ζ ) dζ dζ (4.8)
where E (t) is the relaxation modulus. Considering that an elastic Hooke element is arranged in CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION parallel with a finite number N of Maxwell elements, E (t) can be expressed as follows:

E (t) = E ∞ + N ∑ i=1 E i exp ( - 1 τ i ) (4.9)
where E i and τ i correspond to the rigidity and relaxation time of the i th Maxwell element, re- spectively. E ∞ represents the long term modulus of the material. By substituting the deformation sinusoidal form (Eq. 4.1) into the hereditary integral expression (Eq. 4.8), the complex modulus can be expressed as follows:

E * (ω) = iω ∫ ∞ 0 E (t) exp (-iωt) dt (4.10)
By expressing the time dependent modulus, E (t), in its Prony series form (Eq. 4.9), the complex modulus can be expressed as follows:

E * = E ∞ + N ∑ i=1 E i (ωτ i ) 2 1 + (ωτ i ) 2 + i N ∑ i=1 E i ωτ i 1 + (ωτ i ) 2 (4.11)
The storage and loss moduli are therefore expressed by:

E ′ = E ∞ + N ∑ i=1 E i (ωτ i ) 2 1 + (ωτ i ) 2 (4.12a) E " = N ∑ i=1 E i ωτ i 1 + (ωτ i ) 2 (4.12b)
N couples of E i and τ i are found following a least square minimization scheme (Eq. 4. [START_REF] Tadmor | Molecular Orientation in Injection Molding[END_REF].

min E i ,τ i M ∑ i=1   ( E ′ (ω j ) E ′ exp (ω j ) -1 ) 2 + ( E " (ω j ) E " exp (ω j ) -1 ) 2   (4.13)
where E ′ exp (ω j ) and E " exp (ω j ) are obtained from measured data at pulsation ω j , j∈ {1, ..., M}, with M the number of imposed frequencies. The identified viscoelastic parameters for a model composed of 7 Maxwel elements are listed in Table 4.2. Comparisons between the computed (from the Maxwell generalised model (Eq. 4.12)) and measured moduli are presented in Figure 4.4. It can be noted that the computed storage and loss moduli are in good agreement with the measured ones. 
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Monotonic tests

For the characterisation of the viscoplastic behaviour of unreinforced PP matrix, quasi-static and dynamic tests are performed at room temperature on specimens cut by water jet in the injectionmoulded PP plates.

Quasi-static tensile tests are carried out using Instron E3000 electromagnetical device with a 3 kN cell force. The specimen geometry follows ISO527 norm with the shape and dimensions given in 4.3). In-plane displacement fields of facet centres are determined with respect to a reference image, recorded at an unloaded stage.

In-plane strain fields are computed at the center of all facets from displacement fields by spatial derivation.

The facet size influences displacement measurement, and so on computation of strain fields,

because it has an impact on the noise/signal level recorded during the test. In order to find the best compromise between recorded noise level and spatial resolution, pre-tests with rigid body motion Then, the facet size that allows noise minimisation together with high spatial resolution is selected.

Based on the obtained results, shown in Figure 4.7, a facet size of 21x21 pix 2 is selected for the present case. It is to note that the same size of ZOI is used for all the tests. From results of quasi-static and dynamic tests, presented in Figure 4.9, strain-rate sensitivity of PP is obvious, with an increase of rigidity and strength with engineering strain rate simultaneously with a drop in axial strain at break. It can be seen that the evolution is scattered for the very low strain values and tends to be constant for higher ones (when ε ve actually becomes neglectible compared to ε vp ). The (visco)plastic Poisson ratio is therefore identified for axial strain level higher than 0.02. As for this strain values v p is rather constant, it can be expressed in terms of incremental VP strain components:

v p ≃ - △ε vp xx △ε vp yy (4.15)
Considering the incremental form of the VP strain tensor under tensile loading (i.e. ⟨-I 1 ⟩ = 0 (Eq.

4.16

)) the expression of v p is given by Eq. 4.17. The expression of the expansion parameter a + is finally given by:

∆ε vp = ∆λ 3 2 σ M,dev + 1 9 (a + ⟨I 1 ⟩ + a -⟨-I 1 ⟩) I √ 3I 2 + 1 27 ( a + ⟨I 1 ⟩ 2 + a -⟨-I 1 ⟩ 2 ) (4.16) v p = - 3 2 σ M,dev xx + 1 9 a + I 1 3 2 σ M,dev yy + 1 9 a + I 1 (4.
a + = 9 2 ( 1 -2v p 1 + v p ) (4.19)
With an identified value of v p equal to 0.43, the expansion parameter a + is equal to 0.61. A similar analysis should be done under uniaxial compression loading in order to identify the compaction parameter a -. Unfortunately the small size of the compression specimen did not allow the use of Digital Image Correlation technique and only axial displacements were measured by optical extensometry. Therefore, incompressibility will be assumed in the case of compression loading and a -will be set to 0 in the following. It is worth noting that it will not biased the validation of the SFRC behaviour modelling as long as only tensile loadings are considered.

The use of Digital Image Correlation technique allows the determination of local strain but also local strain rate throughout the test. Then, using the assumption of transverse isotropy, the true tensile stress of each ZOI can be calculated as follows:

σ yy i = F S 0 exp ( -2ε xx i ) (4.20)
where ε xx i is the true transverse strain of the i th ZOI. According to the SE Ė method, developped by Lauro et al. [START_REF] Lauro | The SE Ė method for determination of behaviour laws for strin rate dependent material: Application to polymer material[END_REF], points of coordinates (σ yy i , e i , ėi ) are plotted in the stress, strain and strain rate space to form the SE Ė ("Sigma, Epsilon, Epsilon dot") surface. e i is the equivalent true strain expressed as follows: 3.34) with the behaviour surface (Figure 4.14). Note that the equivalent strain and equivalent strain rate are assumed here to be equal to the equivalent viscoplastic strain, h, and equivalent viscoplastic strain rate, ḣ, respectively. It is to note that in the constitutive model the yield stress, σ t , is identified as the stress from which the true stress-strain curve becomes non-linear (7 MPa). This leads to a true equivalent viscoplastic threshold of about 0.5 % which justifies the later assumption.

e i = ∫ t √ 2 
The hydrostatic pressure dependency of the matrix viscoplastic flow is highlighted in Figure 4.15

where tensile and compression behaviour at the same strain rate of 5.55 10 -4 s -1 are compared.

From these results, it is deduced that the uniaxial compression response is stiffer than the uniaxial tensile stress response.

The pressure dependency parameter η, introduced in the Raghava yield surface (Eq. 3.27), is defined as the ratio of the compression and tension initial yield stresses. For its identification, To this end, the constitutive equations presented in Section 2 are implemented in Abaqus 6.11

subroutine VUMAT (explicit temporal integration scheme). Uniaxial tensile tests of PP matrix are then simulated, using the parameters previously identified (Tables 4 As shown in Figure 4.20, fibres are first isolated from matrix material, using Fiji tools of Image J software [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF], by applying a grey-level thresholding to the images (based on Otsu mehtod [START_REF] Otsu | A Threshold Selection Method from Gray-Level Histograms[END_REF]).

Grey-scaled images are then filetered by removing outliers of a size equal to 2 pix. It can be seen that a preferential orientation equal to ψ = 0 • is detected. A variation of fibre orientation through specimen thickness is also noticed and is highlighted in Figure 4.22. Fibre orientation evolves in the thickness direction in accordance with the well-known skin-shell-core phenomenon [START_REF] Thin | Measurement of fibre orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography[END_REF]. In fact, average angle of fibre orientation increases (close to 45 • ) in plate skins, i.e. at the vicinity of mould walls where fibres tend to orient randomly, then decreases in shell layers, where fibres are preferentially oriented along IFD, and increases again in core layer. This layered structure results, as explained in Chapter 2, from the combination of shear flow and fountain flow in injection moulded process [START_REF] Hull | An introduction to composite materials[END_REF].

Data obtained for scanned θ -specimens (i.e. characterised by a cutting angle θ ) are averaged through the whole specimen thickness for both composites, PP-30GF and PP-40GF, in order to obtain distributions of fibre orientation representative of the whole scanned volume. It is worth noting that to reduce the time cost of data treatement, the selection of the grey-scaled images in thickness direction is made with a step of 10 images (equivalent to 41 µm), thus alowing a reduction by a ratio of 7.25 of the computational cost. In order to validate this choice, a comparison between results obtained with a step equal to 1 (i.e. all images through the thickness are included in volume averaged distributions of fibre orientation) and a step of 10 (equivalent CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION to 41 µm) is performed. Figure 4.23 shows that there is only a slight effect on the obtained data (with a maximum standard deviation value of 3%), which validates the choice of a step equal to 10. In those histograms, one can note that fibres are preferentially oriented to 0 • with specimen axis, which is consistent with a cutting angle, θ , equal to 0 • with respect to IFD. The secondary peak observed at about 50 • results from the core layer of the specimen where fibres are more "transversally" oriented. In the case of PP-30GF, fibre orientations in 0 • -specimens are distributed around the value 0 • as a preferential orientation (Figure 4.25(b)). More generally, preferential orientation of fibres is IFD, i.e. equal to ±θ with respect to the specimen axis for all values of θ , as expected (Figure 4.26).

Skin

CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 71

This property is more pronounced in the case of PP-40GF (Figure 4.27), with a higher fraction of fibres oriented in IFD, as indicated by higher values of density for an angle equal to θ . This may be due to the more pronounced shear flow and more fibre to fibre interactions at relatively high fibre content, i.e. fibres are more likely to inhibit rotation of surrounding fibres during the flow process. Moreover, histograms obtained for 0 • -specimens show that fibres distribution of orientation depends on specimen location in the plate. For instance, as illustrated by specimen 0-1 of the PP-30GF (Figure 4.25), the distribution curve tends to be sharper around IFD direction near plate edge (i.e. fraction of fibres that are oriented in IFD increases).

This characterisation of the microstructure of some selected specimens can be taken into consideration as input data for the implementation of SFRC behaviour model. According to the concept of "fibre families" of the present approach, fibre distributions of orientations are modelled in the form of discrete histograms where all fibres characterised by an angle ψ within the interval [α; α + 10 

Monotonic tensile tests of PP-30GF and PP-40GF and identification of the fibrematrix interfacial shear strength

In order to fully characterise the behaviour model of the short-glass fibre reinforced polypropylene, only one parameter is actually missing, namely the fibre/matrix interfacial shear strength (IFSS, τcf section 3.2.2). In fact, this parameter depends in particular on the nature of the matrix and fibres, process conditions and fibre volume fraction [START_REF] Thomason | Structure-Property relationships in glass-reinforced polyamide, part 1: the effects of fiber content[END_REF][START_REF] Thomason | Structure-Property relationships in glass-reinforced polyamide, part 2: the effects of average fiber diameter and diameter distribution[END_REF][START_REF] Thomason | The influnece of fibre length, diameter and concentration on the stregth and strain to failure of glass fibre-reinforced polyamide 6,6[END_REF]]. Yet, the experimental identification of the IFSS is not in the scope of this work. Therefore, it will be determined as the one leading to the best fit between numerically simulated and experimental results in the case of a PP-30GF and PP-40GF specimens tested at 0 • and at the lowest loading rate (i.e. 1 mm.min -1 -see hereafter).

In practice, many other tensile tests were actually performed on composite materials with the aim to validate the implementation of SFRC behaviour model for different cutting angles and over a wide range of strain-rate. Although the validation of the model is not addressed in this section (but in the next one), all tensile tests are first presented and analysed in the following, for clarity.

Quasi-static and dynamic tensile tests are performed on composites PP-30GF and PP-40GF at various loading speeds and for all values of cutting angle θ . Same testing devices and specimen geometries as for PP are used, as well as same imposed quasi-static and dynamic displacement rates (Section 4.1.1.1). As tensile behaviour of the composite materials is expected to be more brittle than that of unreinforced PP and therefore limited to low strain levels, DIC technique is not used for PP-30GF and PP-40GF. Instead, axial displacements are measured by optical extensometry, i.e. non-contact elongation measurement based on motion tracking of black-andwhite transition lines. For quasi-static tests, optical extensometer ZS16D (CCD line scan sensor -Rudolf GmbH), with a precision of 3 µm over 50 mm, is used. Elongation of a white-painted area of 15-mm-height, centred in the ROI, is followed (Figure 4.30(a)). Axial strain is computed as the ratio of measured axial elongation by the initial length of 15 mm. For dynamic tests, optical extensometer 200XR (Rudolf GmbH -precision of 5 µm over 50 mm), which allows higher acquisition frequency, is used with a tracked zone covering all specimen's ROI (i.e. gauge length of 20 mm) ( data is averaged over five tests for each configuration. Note that strain evolution is smoothed for dynamic behaviour using Matlab function "smooth". As can be seen, composites PP-30GF and PP-40GF show quite brittle behaviour at all displacement rates and cutting angles.

Moreover, from comparison with the behaviour of unreinforced PP, presented in Figure 4.33, gain in tensile stress is observed in the composites for all values of θ . This tendency is directly related to load transmission from PP matrix to high-rigidity glass fibres [START_REF] Notta-Cuvier | Coupled influence of strain rate and heterogeneous fibre orientation on the mechanical behaviour of short-glass-fibre reinforced polypropylene[END_REF]. As can be observed from the presented results and Table 4.7, load transmission, and therefore the "reinforcement efficiency", is strongly dependent on fibre orientation ψ with respect to loading direction. Indeed, at a given strain, the closer is the average value of ψ to the loading direction the higher is the stress level in the fibres and so on in the composite. In the particular case of an angle ψ = 0 • between fibre axis and loading direction, the fraction of load that is transmitted to that fibre through PP/fibre interface is maximal. In addition to the strong anisotropy induced by complex distributions of fibre orientation, tensile behaviour of PP-30GF and PP-40GF composites was also verified to be strain-rate sensitive. This is highlighted in particular by the evolution of the apparent rigidity and axial stress at break with strain rate, presented respectively in Figures 4.35 (a) PP-30GF
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Strain rate (푠 -1 ) Average stress at break (MPa) It is deduced that the strain rate dependency of the composite response is dimmed down for decreasing θ . In fact, weight of the rate independent behaviour of the fibres in the composite behaviour is of greater influence when θ is small, as the majority of fibres are in that case loaded in their axis direction. On the contrary, composite mechanical response is rather dominated by strain rate dependent behaviour of matrix material at higher values of θ .

As stated in the beginning of this section, the IFSS, τ, is determined as the one leading to the best fit between numerically simulated and experimental results in the case of a PP-30GF and PP-40GF specimens tested at 0 • and at 1 mm.min -1 . More precisely, the specimen 0-1 is considered for both materials because it is the one that presents the highest fraction of fibres oriented in tensile direction (Figures 4.25 The conditions of simulations are the same as those used for the identification of the IFSS (previous section 4. 1.2.2). The relevance of the developed constitutive model is then evaluated using the set of identified parameters and actual distributions of fibre orientation. Experimental results obtained for tensile tests at quasi-static and dynamic loading rates are compared with numerical responses for all cutting angles (0 • ,20 A limitation was however noted with overestimated numerically computed stress levels when the tensile strain increases in quasi-static case. Actually a softening in the stress-strain curves is observed on the experimental results and is not predicted by the current constitutive model.

An explanation is that this phenomenon is due to the developpement of damage mechanisms, mainly fibre-matrix decohesion and matrix ductile damage, in a lesser extent, which are not taken into account in the present model. It is also observed that this softening is more important at lower loading angles with respect to IFD (0 • and 20 • ), which reveals the possible anisotropy of these damage mechanisms. The characterisation and the modelling of matrix ductile damage and debonding mechanisms are the object of following chapter. 
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Conclusion

This part of the work deals with the identification and validation of the developped constitutive model (presented in Chapter 3). To this end, a characterisation procedure was set-up for the determination of constitutive parameters used in the matrix, reinforcement and composite modelling.

Parameters involved in the matrix behaviour law are identified based on dynamic mechanical analysis, compression and tensile tests under a wide range of strain rate realised on PP material.

Then, dealing with the case of injection-moulded PP-short glass fibre composite, a first step is to characterise the actual distribution of fibre orientation using micro-computed tomography.

Orientations thus identified were input of the behaviour model according to the "families of fibres" concept. In order to validate the implementation of both matrix and composite models, To go further with the validation of the model, it would be interesting to extend the experimental campaign to other loading conditions, for instance, non-monotonic tests, triaxial loadings, ...etc .

Finally, the advantageous adaptability of the present modelling offers the possibility to go further with the matrix material and interface behaviour modelling. Hence, the introduction of damage mechanisms in the behaviour prediction by the implementation of matrix ductile damage and fibre-matrix debonding models is dealt with in the following chapter.

Chapter 5

Damage and fracture modelling

The current chapter deals with the modelling of failure mechanisms of SFRC. The description of damage phenomena and the definition of a failure criteria are therefore adressed in the following sections. The chapter starts with a highlight on damage models proposed in the litterature for SFRC. Then, the implementation and validation of laws aiming to describe the complex damage mechanisms in the composite material are presented. Experimental (cyclic loading/unloading and tensile tests) are realised on unreinforced and short-glass-fibre reinforced matrix (Chapter 4) in order to identify the involved parameters. Finally, the definition of a failure criteria, based on observations from the litterature and the introduced damage laws, is investigated in the last part of the chapter.

State of art of damage characterisation and modelling for SFRC

Damage mechanisms in short-fibre reinforced composites have been the object of many experimental and numerical investigations in the litterature [START_REF] Arif | Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66[END_REF][START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF][START_REF] Horst | Fatigue fracture mechanisms and fractography of short-glass fibre-reinforced polyamide 6[END_REF]. It was established that the microstructure of short-fibre reinforced composites, the complexity of damage mechanisms and the diversity of their scenarios significantly influence the composite properties. It has been extensively reported that damage in such materials occurs at the microscopic level according to different physical degradation mechanisms, namely: matrix microcracks, interfacial decohesion and fibre breakage [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]. Mouhmid et al. [START_REF] Mouhmid | A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation?[END_REF] used acoustic emission and scanning electron microscopy (SEM) techniques to investigate different types of damage in PA/GF composites.

They reported that the damage mechanisms in PA/GF composites are characterised by matrix plasticization and microcracks, fibre fracture and pull-out. More recently, the development of Xray micro-computed tomography µCT-technique has been used to investigate damage mechanisms in various composite materials [START_REF] Bayraktar | Multiscale study of fatigue behaviour of composite materials by X-rays computed tomography[END_REF][START_REF] Withers | Fatigue and damage in structural materials studied by X-ray tomography[END_REF] and has pushed forward the quantitative analysis of its evolution [START_REF] Cosmi | Micro-ct investigation on fatigue damage evolution in short fibre reinforced polymers[END_REF]. Arif et al. [START_REF] Arif | Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66[END_REF] have studied the specific case of damage evolution, using µCTtomography, in PA66-GF30 composite through the measurement of main features of defects, such 92 CHAPTER 5. DAMAGE AND FRACTURE MODELLING as volume, orientation and shape, at several levels of overall damage. Following the analysis of Horst and Spoormaker [START_REF] Horst | Fatigue fracture mechanisms and fractography of short-glass fibre-reinforced polyamide 6[END_REF], they have proposed a damage progression scenario in which the damage starts at the fibre ends, area where local stress concentration is the highest, and propagates along the fibre in the form of fibre/matrix interfacial debonding. Then, matrix microcracks develop and propagate in a ductile way accompanied with high matrix deformation bands [START_REF] Arif | Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66[END_REF].

For the particular case of short glass fibre reinforced polyamide-66, in-situ damage mechanisms characterisation under quasi-static monotonic loading were investigated by Sato et al. [START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF], Horst et al. [START_REF] Horst | Fatigue fracture mechanisms and fractography of short-glass fibre-reinforced polyamide 6[END_REF] and Bernasconi et al. [START_REF] Bernasconi | Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6[END_REF]. These authors also reported that in most cases, interfacial damage starts at the fibre ends and further propagates along the fibre-matrix interface.

Based on the different reported observations, damage mechanisms can be classified in two principal types. The first class are mechanisms relative to the degradation of the matrix, which includes initiation, coalescence and propagation of microcracks. The second type of damage mechanisms are those linked to interfacial decohesion and to any other related process, such as fibre/matrix friction and fibre pull-out processes.

The developpement of microcracks and ductile damage in the matrix material (void growth and coalescence), is strongly influenced by the reinforcement characteristics [START_REF] Meraghni | Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites[END_REF]. For the modelling of such a phenomena, some interesting approaches combine micromechanical and continuum damage mechanics (CDM) descriptions. For instance, Nguyen and Khaleel [START_REF] Nguyen | A mechanistic approach to damage in short-fiber composites based on micromechanical and continuum damage mechanics descriptions[END_REF] have evaluated the effective and damaged stiffness tensors of composites reinforced by randomly oriented fibres using self-consistent and Mori-Tanaka schemes, applied to a reference aligned fibre composite and a distribution over all possible orientations. The evolution of the cracks in an elastic matrix material was then modelled in the Continuum Damage Mechanics framework [START_REF] Nguyen | A mechanistic approach to damage in short-fiber composites based on micromechanical and continuum damage mechanics descriptions[END_REF]. The case of elastoplastic matrix material was similarly treated by Lee and Simunovic [START_REF] Lee | Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites[END_REF]. More recently, a strongly anisotropic ductile damage of the matrix material was modelled in the framework of continuum damage mechanics by Notta-Cuvier et al. [START_REF] Notta-Cuvier | Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations[END_REF], using a 4 th -order damage tensor for matrix material built based on the characteristics of the reinforcement.

Modelling of the interface degradation in composite materials has received a lot of interest in the past two decades. One of the developed modelling methods consists in the consideration of a dedicated fibre coating, also called an interphase, as a third phase of the material [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]. The main drawback is that such a three-phase model implies the knowledge of coating properties, which are rarely available. Hashin introduced the imperfect interface approach which accounts for the displacement and stress jump at the fibre/matrix interface [128,[START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF]. Zhong and Meguid [START_REF] Zhong | On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface[END_REF] developed a new solution for the eigenstrain problem, as defined by Eshelby, of a spherical
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inclusion with an imperfect interface. In addition, the Shear Lag Model (SLM) has been developed to model the load transmission degradation in the load transmission at fibre/matrix interface [START_REF] Bowyer | On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres[END_REF].

The symbiosis of microscopic observations constitutes an indispensable data-base for the statement of accurate assumptions for the modelling of complex damage phenomena. In particular, and due to complex fibre configurations in SFRC, all damage phenomena (more precisely matrix damage and interfacial decohesion) are likely to coexist and may also interact. Obviously, the nature of dominant damage phenomenon also depends on the kind of loading.

In the following sections, the implemented constitutive model (Chapter 3) is extended to the case of damageable short-fibre reinforced thermoplastics by taking into account the matrix anisotropic ductile damage and the progressive fibre/matrix interfacial decohesion mechanisms.

Modelling of matrix ductile damage

In this part of the chapter, the first damage class, i.e. mechanisms relative to the matrix degradation is adressed. Bearing in mind the anisotropy induced by the complex orientation of the reinforcing short fibres, an anisotropic ductile damage is coupled to the matrix constitutive model. The damage laws are developed in the framework of continuum damage mechanics and identified, consistently with the previous investigations (Chapter 3), for a PP matrix material, using cyclic tensile tests as described hereafter.

Anisotropic damage model for the matrix material

As presented by Lemaitre [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], ductile damage mechanism can be interpreted at the microscale as the creation of microsurfaces of discontinuities (i.e. enlargement of microcavities). At the mesoscale, the pattern of microcavities may be approximated by the area of the intersections of all the cavities with a given plane. This area is scaled by the size of a representative element. For a given plane in a Representative Volume Element (RVE) of a damaged body, damage variable is therefore defined by a scalar value D bounded between 0 and 1, as follows:

D = A D A (5.1)
where A and A D are the areas of intersections of, respectively, the RVE and the microdefects within a given plane. In the framework of Continuum Damage Mechanics, the effective stress is introduced as the stress related to the elementary surface of the material that effectively withstands In the model, each family of fibres α is assumed to govern the characteristics of damage over the volume V α F of the matrix material, which is assumed to be equal to the volume of fibre medium α, i.e. V α F = ν α F V where V is the volume of the composite material. Matrix damage is therefore governed by each fibre family over a corresponding volume fraction of the matrix material equal to ν α F /ν M with α ∈ { 1, ..., N f am } . Intermediate damage tensors, D α , and corresponding inverse tensors, M α , are introduced (Equation 5.4).

σ α 0 M = D α σ α 0 M σ α 0 M = M α σ α 0 M (5.4)
where σ α 0 M and σ α 0 M currently stand for, respectively, the effective and real stress tensors that would be computed for the matrix of a fictitious composite material constituted of one family of fibres α (with the superscript "0" indicating that mechanical tensors are expressed in the coordinates system related to the family of fibres α). Note that σ α 0 M and σ α 0 M have actually no physical sense. Anisotropy of the damage mechanism is mainly due to the fact that for a given fibre family, short fibres prevent the damage in their direction of orientation, so that:

σ α 0 Mii = σ α 0 Mii i f i = j = 1 σ α 0 Mi j = (1 -D) σ α 0 Mi j else (i, j ∈ {1, 2, 3} and (i, j) ̸ = (1, 1)) (5.5) 
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It leads then to the following expression of the tensor D α :

D α i jkl = δ ik δ jl [1 -Dδ i j (1 -δ i1 ) -D (1 -δ i j )] , ∀α (5.6) 
where δ i j is the Kronecker symbol defined by δ i j = 1 if i = j and δ i j = 0 if i ̸ = j. For the computation of the real Cauchy stress tensor in the global coordinates system, the transition matrix, T α , is used to express the effective stresses in fibres' coordinates system, with σ α0

M = T α -1 σ α M T α . The tensor D α is then applied to σ α0
M , before the real stress tensor is re-expressed in the global coordinates system. The global damage state of the matrix is described by assembling all the contributions, i.e. damage effect of all the fibre families, over the volume fractions of the matrix medium. Finally, the volume fraction of the matrix material, v ′ M , which is not affected by the presence of the fibres damages isotropically. Note that

v ′ M is equal to 1 -∑ α v α F /v M or equivalently to 2 -1/v M .
This model is therefore valid for matrix volume fraction higher than 0.5, which is generally the case in injection moulded short-fibre composites. Taking into account all these considerations, the tensor D is finally expressed as follows:

D i jkl = v ′ M (1 -D) δ ik δ jl + n f am ∑ α=1 v α M v M 3 ∑ p,q=1 T α ip ( T α -1 ) q j ( T α -1 ) pk T α lq D α pqpq (5.7)

Thermodynamic formulation of damage evolution laws

As already stated, the framework of thermodynamics of irreversible processes, where the Helmholtz free energy function is decomposed into a viscoelastic part and a viscoplastic part, is considered.

Damageable materials are dealt with, within this formalism, by coupling damage with the viscoelastic part of the free energy. The Helmholtz free energy of the "damageable" matrix therefore becomes:

ϕ M = ϕ ve,D M + ϕ vp M (5.8)
where ϕ ve,D M is the viscoelastic free energy coupled to damage and, according to Lemaitre [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], is defined by:

ρ M ϕ ve,D M = 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve ∂ τ (τ) : R ve dam (2t -τ -ξ ) : ∂ ε ve ∂ ξ (ξ ) dτdξ (5.9)
R ve dam is the "damaged" fourth-order relaxation tensor of the matrix material and is defined in case of anisotropic damage by: R ve dam = DR ve (5.10)
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97 with 4 th order tensor D defined in previous section (5.2.2) and ρ M the matrix density. For the determination of damage fourth-order tensor, D, evolution law of damage scalar variable D has to be defined. The damage thermodynamic force Y , also defined as the strain energy density release rate, and its conjugate variable D are related by the state law given as follows [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF]:

Y = - ∂ ρ M ϕ ve,D M ∂ D (5.11)
Given the expression of ϕ ve,D M (5.9), Y is obtained by:

Y (t) = 1 2 ∫ t -∞ ∫ t -∞ ∂ ε ve ∂ τ (τ) : D ′ R ve (2t -τ -ξ ) : ∂ ε ve ∂ ξ (ξ ) dτdξ (5.12)
where

D ′ = ∂ D ∂ D , i.e. :
.

D ′ i jkl = -v ′ M δ ik δ jl + n f am ∑ α=1 v α M v M 3 ∑ p,q=1 T α ip ( T α -1 ) q j ( T α -1 ) pk T α lq D α ′ pqpq (5.13)
where D α ′ is defined as follows:

D α ′ i jkl = δ ik δ jl (δ i j δ i1 -1) , ∀α (5.14) 
with straightforward manipulations:

D ′ i jkl = -v ′ M δ ik δ jl + n f am ∑ α=1 v α M v M 3 ∑ p,q=1 T α ip ( T α -1 ) q j ( T α -1 pk ) T α lq (δ pq δ p1 -1) (5.15) 
The damage thermodynamic force can be written as the sum of a deviatoric, Y dev , and hydrostatic, Y H , parts [105,[START_REF] Haouala | Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles[END_REF]:

Y (t) = Y dev (t) +Y H (t) (5.16) with        Y dev (t) = ∫ t -∞ ∫ t -∞ G ve (2t -τ -ξ ) D ′ ∂ ε ve dev ∂ τ (τ) : ∂ ε ve dev ∂ ξ (ξ ) dτdξ Y H (t) = 9 2 ∫ t -∞ ∫ t -∞ K ve (2t -τ -ξ ) D ′ ∂ ε ve H ∂ τ (τ) 1 : ∂ ε ve H ∂ ξ (ξ ) 1dτdξ
(5.17)
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The use of Prony series leads then to:

Y dev (t) = G ∞ D ′ ε ve dev (t) : ε ve dev (t) + N ∑ i=1 G i ∫ t -∞ ∫ t -∞ exp ( τ -t τ d i ) exp ( ξ -t τ d i ) D ′ ∂ ε ve dev ∂ τ (τ) : ∂ ε ve dev ∂ ξ (ξ ) dτdξ (5.18) Y H (t) = 9 2 K ∞ D ′ ε ve H (t) 1 : ε ve H (t) 1+ 9 2 N ∑ i=1 K i ∫ t -∞ ∫ t -∞ exp ( τ -t τ v i ) exp ( ξ -t τ v i ) D ′ ∂ ε ve H (τ) ∂ τ 1 : ∂ ε ve H (ξ ) ∂ ξ 1dτdξ (5.19)
By considering the expressions of the deviatoric and hydrostatic stresses (previously defined in section 3.2.1.2) and introduced here as effective quantities, σM,dev and σM,H , we obtain:

Y (t) = D ′ σM ∞ ,dev : σM ∞ ,dev 4G ∞ + D ′ σM ∞ ,H : σM ∞ ,H 2K ∞ + N ∑ i=1 D ′ σM i ,dev (t) : σM i ,dev (t) 4G i + N ∑ i=1 D ′ σM i ,H (t) : σM i ,H (t) 2K i (5.20)
The developped damage model of the matrix material is implemented, as described above, for the case of short-fibre reinforced matrix, i.e. where the damage anisotropy is taken into account. The presented damage laws are, in fact, fully identified when the evolution law of the scalar damage variable D is identified. This parameter can be determined based on tests on unreinforced matrix material, for which damage is isotropic. In the following the constitutive equations are therefore simplified considering an isotropic damage for the identification of D.

Characterisation and validation of the matrix damage model

For the particular case of unreinforced materials, damage is assumed to develop isotropically.

Consequently, terms corresponding to the fibre families effect in the expression of Y vanish and it leads to:

Y (t) = σM ∞ ,dev : σM ∞ ,dev 4G ∞ + σM ∞ ,H : σM ∞ ,H 2K ∞ + N ∑ i=1 σM i ,dev (t) : σM i ,dev (t) 4G i + N ∑ i=1 σM i ,H (t) : σM i ,H (t) 2K i (5.21)
The damage variable D is a state thermodynamic variable and derives from the dissipation potential of the matrix material using the normality rule. In the present case, i.e. when damage is taken into account as a dissipation phenomena in the matrix material, the expression of its dissipation potential becomes:

ψ vp,D M = ψ vp M + ψ D M (5.22)
where ψ vp M is the viscoplastic dissipation potential defined in section 3.2.1.3 and ψ D M = ψ D M (D) is the damage dissipation potential associated to the state variable D. Using the viscoplastic multiplier, λ , the normality rule for the damage variable evolution is expressed as follows:

Ḋ = λ ∂ ψ vp,D M ∂Y = λ ∂ ψ D M ∂Y (5.23) 
According to the fact that the damage variable stands for deterioration of a material and not for recovery of strength, i.e. Y Ḋ ≥ 0, Lemaitre [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF] demonstrates that it is correlated to the viscoplastic strain level and that ψ D M can be expressed as a function of Y 2 / (1 -D). A damage threshold, κ D , which corresponds to the equivalent viscoplastic strain from which damage begins, is therefore introduced and the evolution law for the scalar damage variable is given by:

     Ḋ = κ Y S , if κ ≥ κ D , Ḋ = 0 , else (5.24) 
where κ is the equivalent viscoplastic strain defined in section 3.2.1.3. The damage evolution laws are coupled to the constitutive laws of the matrix material and the predicted responses are now expressed in terms of effective and "damaged" ( i.e. real) stress tensors. In order to verify the current implementation, the extended constitutive law of the matrix material, i.e damage-coupled viscoelastic-visoplastic law, is tested for several values of damage parameter, S (Equation 5.24).

A unique 3D cubic element (C3D8) is considered for these tests, with an edge size of 1 mm. All degrees of freedom of nodes at the element basis are constrained to 0, while the upper ones are subjected to an imposed velocity. Results for the variation of D and the stress-strain response with different values of the parameter S are given in Figures 5.3 and 5.4.

Several methods exist for the characterisation of damage development in different materials. In the case of polymers, among methods to charaterise ductile damage, one can cite techniques based on direct measurement, which consist on a mesocale evaluation of the total crack areas lying on a surface. This is however a tedious method to perform. Non-direct measurement methods have also been developped and are judged more straightforward. In this work, the variation of the elastic modulus is used as a non-direct measurement method of damage. This method is based on the influence of damage on elasticity through the state coupling defined in the framework of Continum Damage Mechanics (Section 5.2.2). In case of isotropic damage, an effective elastic modulus of the damaged material is defined by: Ẽ = E (1 -D), where E is the non-damaged elastic modulus. The value of the damage variable, D, can then be derived In this work, this technique is applied to PP with the same specimen geometry and testing set-up (Instron E3000 electromagnetic device with a 3 kN cell force) as for quasi-static monotonic tests (see section 4.1.1.1). Cyclic loading is applied with a prescribed displacement at 1 mm.min -1 .

During unloading, the imposed strain rate is the same as during loading. It is to note that this method remains reliable as long as the damage is uniformly distributed in the volume on which the strain is measured. To assess the validity of this hypothesis, strain values are tracked by Digital Image Correlation technique so that the homogeneous area of the ROI can be delimited, as shown in Figure 5.6. 
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The evolution stress-strain response is shown in Figure 5.7, where axial strains are averaged over the homogeneous area of the tracked ROI. It is to note that these data correspond to an average of three tests, which showed a good repeatability. From these results one can observe the expected hysteresis effect characterising the viscoelastic behaviour. As shown in Figure 5.7, the loading and unloading phases are not linear. Therefore, an equivalent stiffness, different from the Young modulus but considered as an indicator of the damaged material rigidity, is taken between the lower and upper points of each hysteresis. Note that the "non-damaged" modulus is calculed from the first loading path. The damage variable is then calculated for each damaged (or equivalent stiffness) modulus, Ẽ, using Equation 5 

Identification of the damage law

The evolution law of the damage variable (Equation 5.24) can now be identified. The determination of the parameters S and κ D is performed based on the elasticity change method, described above. Cyclic tensile tests, described hereabove, were realised at a loading speed (1 mm.min -1 ) assessed to be sufficiently low so that the time-dependent terms in the expression of the strain energy density release rate, Y , can be neglected. The Equation 5.21 then becomes:

Y (t) σM ∞ ,dev : σM ∞ ,dev 4G ∞ + σM ∞ ,H : σM ∞ ,H 2K ∞ (5.26) 
Expressing Y (in the case of isotropic damage) in terms of real stress tensors leads to:

Y (t) σ M ∞ ,dev : σ M ∞ ,dev 4G ∞ (1 -D) 2 + σ M ∞ ,H : σ M ∞ ,H 2K ∞ (1 -D) 2 (5.27)
With the performed uniaxial tensile tests, the stress state is unidimensional and is defined as follows:

σ =      0 0 0 0 σ yy 0 0 0 0      (5.28)
where σ yy is the axial stress component. Based on definitions given in section 3.2.1.2, the corresponding deviatoric, σ M ∞ ,dev , and hydrostatic, σ M ∞ ,H , stresses are determined as follows:

σ M ∞ ,dev =       - 1 3 σ yy 0 0 0 2 3 σ yy 0 0 0 - 1 3 σ yy       and σ M ∞ ,H = 1 3 σ yy (5.29)
Using the later expressions in Equation 5.27, Y can be written as follows:

Y (t) = 2 3 σ 2 yy 4G ∞ (1 -D) 2 + 1 3 σ 2 yy 2K ∞ (1 -D) 2 = σ 2 yy 6 (1 -D) 2 ( 1 G ∞ + 1 K ∞ ) (5.30) 
where G ∞ and K ∞ are obtained from previous identification (Section 4.1).

The expression of the damage evolution law, can then be written in a "discretised" form as follows:

dD dκ = Y S (5.31) 
At each instant of the loading-unloading cycles when the axial viscoplastic strain is available, κ i , D i and σ yy,i are known. For the calculation of Using this expression, its derivative, p', is calculated at each κ i so that ( dD dκ

) i = p ′ (κ).
The parameter S can therefore be calculated as follows:

S i = Y i p ′ (κ i ) (5.33) 
The computed values of S for the different instants are presented in Figure 5.9, where the final value is determined as its "average". A value of 0.05 MPa is obtained for sufficiently high values of κ (higher than 0.006).

The validation of the implemented model is performed using the determined damage law coupled with the matrix constitutive parameters previously identified. Comparisons are performed with tensile results of PP matrix where the experimental axial stress is determined with the compressibility 

σ = F S exp (-2ε xx ) (5.34) 
where ε xx is the true transverse strain, measured by DIC. It is demonstrated from the presented comparisons that a better fit with experimental results is obtained. Indeed, a stress softening that occures at a given strain range is well reproduced with the implemented damage law. As it can be seen in Figure 5.10, this is more valuable for quasi-static tests (i.e. for strain rates of 5.55 10 -4 s -1 , 5.55 10 -3 s -1 and 6.67 10 -2 s -1 ). For higher strain rates, stress stress softening does not ameliorate the numerical-experimental fit. This is presumably due to a strain-rate dependency of damage developpement in the polymeric material that should be introduced.

Anisotropy of the matrix damage model

The described damage law is implemented in its anisotropic form, i.e. with the fourth-order damage tensor, D, taking the effect of the different fibre families into account (Equation 5.7). The effect of fibre orientation, and therefore the damage anisotropy, are highlighted in Figure 5.11, for two different distributions of fibre orientation (around 0 • and 90 • as preferential direction of orientation). A difference between the axial effective and real stress components, δ σ yy , is 106 CHAPTER 5. DAMAGE AND FRACTURE MODELLING computed for both ditributions of fibre orientation in order to quantify this anisotropy (5.11(b)).

It is to note that the used distributions of fibre orientation are those identified by micro-computed tomography, as presented in Chapter 4. 

Fibre-Matrix interfacial damage

As explained in the first part of this chapter, the developpement of damage phenomena in shortfibre reinforced materials is governed by the properties of the reinforcement. More precisely, and in addition to the anisotropy of matrix damage (dealt with in the first part of the chapter), the effect of fibres intervens in the progressive failure mechanism through alteration of load transmission at fibre-matrix interface or fibre breakage. Fibre breakage is not adressed in this work since it

Modelling strategy

In this part, the degradation of the fibre-matrix interface is adressed based on the later observations of Sato et al. [START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF] and first modelling presented by Notta-Cuvier et al. [START_REF] Notta-Cuvier | Modelling of progressive fibre/matrix debonding in short-fibre reinforced composites up to failure[END_REF]. The load transmission, which is governed by shear transfer process, remains unaffected as long as no micro-defects are initiated on the fibre-matrix interface. Yet, this transmission is degraded as soon as microcracks start to propagate along fibre tips and sides. For a given fibre medium α, interfacial microfailures, or voids, are assumed to develop when the fibre axial strain reaches a threshold value called ε th . Then, the voids area extends from each fibre tip to a length equal to L αD and prevents load transmission over a fibre length equal to δ α ≤ L αD (Figure 5.13).

Available length for load

Transmission (L-2δ) Microfailure

L D L 0 δ L-δ L ε L ε +δ L-L ε L-L ε -δ E F ε F

Fibre axial stress

Perfectly bonded fibre Debonded fibre tips The actual fibre 1D stress state is therefore computed by replacing L α by L α -2δ α in the fibre stress expression (given in Section 3.2.2), so that (for all values of α):

       σ 0, α F = ε 0, α F ( 1 - E α F r α 2 (L α -2δ α ) τ α ε 0, α F ) E α F σ 0, α F = sign ( ε 0, α F ) (L α -2δ α ) τ α 2r α if ε 0,α F ≤ (L α -2δ α ) τ α E α F r α otherwise (5.35)
δ α is assumed to increase with fibre 1D strain, as soon as it becomes higher than the threshold ε th , 110 CHAPTER 
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as follows:

       δ α = a ( ε α 1D F -ε th ε th ) b L α 2 if ε α 1D F ≥ ε th ,
δ α = 0 otherwise (5.36) where a and b are constant parameters to be identified. The loss in load transmission is responsible for the development of shear stress concentration in matrix material and, consequently, of the growth and coalescence of voids within the matrix. The volume of nucleated voids around each fibre is given by 2π (r α v r α ) 2 L αD , where r α v is the average ratio of nucleated voids diameter by fibre radius. The corresponding volume fraction (i.e. of nucleated voids), ν nucl v , with respect to the composite volume is therefore given by:

ν nucl v = ∑ α ( 2L αD L α ) r α 2 v ν α F (5.37)
In the following, it is assumed that values of r α v and L αD /δ α are the same for all the fibre media, so that r α v = r v and L αD /δ α = L D /δ , ∀α. Finally, the volume fraction of nucleated voids is given by:

ν nucl v = C nucl ∑ α ( 2δ α L α ) ν α F (5.38)
where the parameter C nucl is introduced as C nucl = r 2 v L D /δ . Using the expression of the nucleated voids fraction, the evolution of the total voids volume fraction, νtot v , is computed as follows:

νtot v = Π [ νnucl v +C growth ν nucl v σH ] (5.39) 
where νnucl v is the rate of volume fraction of nucleated voids and C growth is a constant parameter defining the void growth dependency to macroscopic composite hydrostatic stress, σ H , [96]. According to Zairi et al. [START_REF] Zairi | Effects of crystal content on mechanical behaviour of polyethylene[END_REF], the parameter C growth is of an order of magnitude close to 1/G, with G the shear modulus of the composite. In the expression (5.39) the influence of the surrounding area of debonded fibre is taken into account using the parameter Π. Indeed, at fibre vicinity, voids nucleation, growth and coalescence and then crack propagation, is strongly influenced by the fibre environment and its local mechanical state. Void nucleation growth and propagation may be accelerated when the fibre is surrounded by area of shear stress concentration, a stress state conductive to debonding, occuring due to the presence of close fibres. On the contrary, if neighbouring fibres have higher angles of orientation with respect to loading direction than the debonded fibre, the development of shear bands is delayed as well as debonding developpement.
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Moreover, when neighbouring fibres are transversally oriented to the crack path, they may act as obstacles to its propagation [START_REF] Notta-Cuvier | Modelling of progressive fibre/matrix debonding in short-fibre reinforced composites up to failure[END_REF]. Based on these observations, parameter Π is introduced acording to a probabilistic approach as follows:

Π = 1 ν tot F ∑ α ν α F L αD L D max = Π 1 ν tot F ∑ α ν α F δ α δ max (5.40)
where α designates family of fibres with debonded tips, i.e. α ∈ { 1, ..., N f am } and ε α 1D F ≥ ε th .

Note that the probability of void nucleation and then growth increases with the number of partially debonded fibres in the neighbourhood of the debonded fibre. In order to prevent jumps in the values of Π, the factor L αD /L D max = δ D /δ max is introduced. where L D max = max α ( L αD ) and

∆ max = max α (∆ α ).
Finally, the parameter C nucl has to be determined. Its value is experimentally identified as described in Annexe (A).

Once the described laws are implemented and coupled to the developped constitutive model of SFRC behaviour, first verifications are made to show the effect of each parameter. In particular the effect of parameters a and b on the evolution of δ α is highlighted in Figures 5.14 

Fracture modelling

Failure of short fibre reinforced composites have been the object of some experimental and numerical investigations in the litterature. Most of the research work on fracture modelling were performed in the framework of fracture mechanics, where the concept of dissipation energy is investigated [START_REF] Gaggar | Strength and fracture properties of random fibre polyster composites[END_REF][START_REF] Agarwal | Fracture toughness of short fibre composites in Modes II and III[END_REF][START_REF] Agarwal | Effect of matrix properties on fracture toughness of short fibre composites[END_REF]. Among this, Lauke and Pompe [START_REF] Lauke | Fracture toughness of short-fibre reinforced thermoplastics[END_REF] have treated failure of SFRC as a combination of different energy dissipation mechanisms (fibre debonding and sliding, brittle and ductile matrix fracture,...) acting within a zone ahead of a notch tip. They proposed then a fracture criterion based on the basis of an energy principle. This approach is however limited by the difficulty to identify the distinct dissipation energies in case of complex microstructure. Very few works have been proposed for the prediction of SFRC ultimate failure on the basis of damage mechanisms accumulation. In this part of the work, a failure criterion is introduced in order to predict SFRC macroscopic mechanical state at break. The implemented criterion is based on the assumption that SFRC failure is governed by the developpement of damage mechanisms [START_REF] Notta-Cuvier | Modelling of progressive fibre/matrix debonding in short-fibre reinforced composites up to failure[END_REF], in particular, fibre/matrix interfacial debonding and matrix ductile damage (Sections 5.2 and 5.3). The objective is to identify this failure criterion for a SFRC with known reinforcement characteristics, including reinforcement distribution of orientation, and then to use it to predict failure of a similar composite, i.e. made of the same constituents but with other reinforcement characteristics (i.e. orientations) and/or kinds of loading. This study is applied to the PP-30GF subjected to quasi-static uniaxial tensile loadings in two different directions with respect to the injection flow direction. Identification and validation of the implemented fracture criterion are therefore performed based on results of these experimental tests.

Damage development based criteria

A failure criterion is defined here based on a critical void content reached in the composite material as a consequence of the developpement of damage "quantities". As stated above, several damage mechanisms can simultaneously develop depending on the microstructure/reinforcement properties of the composite material. Among them, fibre/matrix interfacial debonding is undoubdtedly a predominant damage phenomena, as indicated by the presence of debonded fibres on the fracture surface of PP-30GF (Figure 5.21).
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It is assumed here that ultimate failure is function of the voids induced by interfacial debonding that develops at fibre tips. It is therefore defined by the critical fraction of the cumulated voids, with void fraction evolving according to equations of section 5.3. Critical void fraction, ν crit v , is identified for a reference composite with "perfectly" known reinforcement characteristics, by noting the value of ν tot v that is reached at composite break. Then, ν crit v is a failure criterion that can be used to predict the strain at break of all composites made from the same constituents in nature than the reference composite, whatever reinforcement characteristics, particularly in terms of fibre orientation. This failure description is consistent with the experimental observations stating that composite strain at break increases with fibre angle of orientation with respect to loading direction [START_REF] Bernasconi | Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6[END_REF]. Indeed, the nucleated void fraction, ν nucl v (Equation 5.37), and therefore the total void fraction, ν tot v (Equation 5.39), decreases when fibre angle of orientation increases, at identical composite strain sate, and higher values of loading have 

Identification and verification of the fracture criteria

For the determination of failure axial strain, the computed local axial strains at the pre-failure step, i.e. final step before failure, in notched specimens cut at 0 • with respect to loading direction are presented. To verify the consistency of the measurement, three specimens are tested and results are presented in Figure 5.25. It can be observed that failure occurs when a high level of strain is locally reached. This is of great importance for the following concerns, as this indicates that the failure occurs when a critical strain value is reached and is not the consequence of a material local defect (e.g. created during the manufacturing process).

Failure strain is determined as the maximum value reached in the strain localisation zone of a reference specimen, the PP30-0-4. Its value is determined as the average of local strain values over a diameter of 1.68 mm (Figure 5.26) and is equal to 0.048. The corresponding failure strains are then computed (Table 5.1). It can be noted that for the same loading angle, θ = 0 • , a variation in the computed critical strain values exists, which is due to the fact that different distributions of fibre orientation (corresponding to 0 • -specimens scanned at different positions) are present. 5.2, where ν tot v computed at an axial strain of 0.05 is presented for different angles of aligned fibres. Note that the selected orientation angles correspond to highly oriented fibres (higher than 45 • ) so that the significant decrease of the computed void fraction can be quantified for such angles. As shown in Table 5.2, the computed total void fraction can be neglected from an angle of 75 In those cases, debonding initiated at fibre tips becomes negligeable when the vast majority of fibres is highly angled with respect to the loading direction. In those cases of SFRC with high proportion of highly angled fibres with respect to loading direction, composite failure is more likely to be governed by debonding initiated at fibre sides whatever, in case of complex loading, all phenomena are likely to coexist. In order to accurately predict the void developpement, and therefore the failure state, for composites with all kind of orientation and subjected to more complex loadings, transverse interfacial decohesion should be introduced in the current debonding model. 
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Conclusion

Damage phenomena leading to failure of short fibre reinforced composites are the object of the modelling presented in this chapter. Earlier developpements, presented in Chapter 3, for the modelling of SFRC behaviour over a wide range of strain rate, are therefore extended in the present 5.6. CONCLUSION 131 chapter to deal with damage/failure mechanisms. The representation of the composite reinforcement as an assembly of fibre families has enabled the modelling of damage mechanisms in an independent way. The matrix degradation has been introduced using an anisotropic ductile damage model, so that the effect of fibre orientation on its evolution is taken into account. The identification of the matrix damage model is based on cyclic tensile tests, where the stiffness loss method is used. Fibre/matrix interfacial decohesion is described by a tip-debonding model. Void creation at fibre tips, zone of stress concentration is modelled, followed by defect nucleation and growth at fibre side. Both damage models are verified by comparison with experimental results under different loading conditions. A failure criterion is defined in terms of the critical content of created voids at fibre/matrix interface. Its identification is then based on strain at break of a composite with known characteristics. Extending the current tip-debonding model to take into account debonding initiated at fibre side is in the scope of a further work.

Conclusion

General conclusion

The principle objective of this thesis is to propose an efficient modelling for the prediction of the mechanical behaviour of short-fibre reinforced thermoplastics. The main guidelines of this approach is to take SFRC's behaviour specificities into acount, in particular for the case of extreme loading conditions, for instance high strain-rate loading. The originality of this contribution is to propose constitutive laws for SFRC behaviour modelling that include strain rate dependency and damage mechanisms while taking into account the real properties of the reinforcement in terms of complex fibre orientations. The composite is thus constituted of a damageable viscoelasticviscoplastic matrix reinforced by short fibres with distributed orientations. In addition, load transmission from matrix to fibre through the interface can be affected by progressive fibre/matrix debonding.

After a bibliographic review in Chapter 2, first part of the present work (Chapter 3) aimed to describe the constitutive laws of the model for an undamaged state of the material. A linear viscoelastic model is coupled to overstress based viscoplastic model in order to predict the viscoelasticviscoplastic (VE-VP) behaviour of the matrix material. Viscoplasticity is implemented in the framework of non-associated plasticity so that the dependency to hydrostatic pressure can be taken into account. The coupled VE-VP laws are described in the framework of thermodynamics of irreversible processes with a return mapping algorithm based on two steps, a VE predictor followed by a VP corrector. The prediction of the SFRC response is based on its assimilation to an assembly of several fibre media (or families) embedded in the polymeric matrix medium. Each of the fibre medium is modelled as linear elastic and is characterised by its own geometrical and mechanical properties. The composite response is then computed based on an additive decomposition of the state potential. One of the main assets of this approach, apart from the possibility to introduce complex behaviour laws for the matrix material, is that complex reinforcement properties can be dealt with. In this work we focus on the complex orientations of short fibres. A distribution 134 CHAPTER 
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of orientation is thus associated to a finite number of fibre families. The developped model is implemented in the explicit finite element code ABAQUS as a user-material subroutine (VUMAT).

In the second part of the work (Chapter 4), an experimental procedure is conducted aiming at characterising the material behaviour and identifying the parameters involved in the developed constitutive model. We propose here to verify the model validity for the case of a Polypropylene (PP) matrix reinforced by short glass fibres (PP-GF; weight fraction of 30 or 40 %). Different kinds of tests (DMA, tensile and compression) have been realised on PP material for the identification of the viscoelastic and viscoplastic parameters of the matrix behaviour laws. Digital Image Correlation technique has been used in order to represent, according to the SE Ė method, a behaviour surface of the material over a wide range of strain rate. Then, the characterisation of the reinforcement properties is performed using micro-computed tomography. Identified orientations are input of the behaviour model according to the "families of fibres" concept. In order to validate the implementation of both matrix and composite behaviour models, comparisons of numerical and experimental results obtained for PP material and PP-GF were performed. Simulated quasistatic and dynamic tensile tests of PP-GF at different loading angles with respect to injection flow direction (i.e. preferential orientation of fibres in the composite) and with different fibre content proved the consistency of the implemented model.

As the advantageous adaptability of the present modelling offers the possibility to go further with the developped laws, the third part of the work (Chapter 5) aimed to introduce damage mechanisms in the behaviour prediction. First an anisotropic ductile damage, whose evolution is governed by fibre orientation, has been introduced. Then, fibre/matrix interfacial decohesion was described by a tip-debonding model. Void creation is described as being initated at fibre tips, zone of stress concentration and therefore of defect nucleation and growth. Both damage models are identified and validated using experiments (cyclic loading/unloading tests for the matrix damage model and tensile tests with notched specimens for the fibre/matrix debonding model). Finally, a failure criterion is defined in terms of a critical content of voids.
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Future works

Among future improvements of the current work, some issues that deserve further investigations are proposed in the following paragraphs.

The current modelling of the matrix material viscoelasticity is performed using a linear viscoelastic law. It is however established in the litterature that polymers can exhibit nonlinear viscoelastic responses. Going further with the matrix material modelling by introducing non-linearities in the modelling of matrix viscoelasticity should be addressed in a future work. It can be noted that the influence of a modification in the matrix viscoelastic response modelling will be more pronounced as fibre volume fraction decreases in the composite. Indeed, behaviour of composites with low fibre content is more sensible to the non-linearities of matrix behaviour.

The implemented viscoplastic correction scheme for the thermoplastic matrix material enables to reproduce the sensitivity to hydrostatic pressure of viscoplastic flow behaviour. Therefore, it might be of great interest to go beyond the case of uniaxial loading and investigate the triaxiality effect in order to fully adress this feature. Future experimental work should therefore concerns non-uniaxial loadings with various triaxiality ratios in order to validate the matrix behaviour model under such loading conditions.

In the modelling of the composite damage mechanisms, fibre-matrix interfacial decohesion is currently assumed to initiate at fibre tips and then develop along fibre sides. This formulation is motivated by the existing microscopic observations stating that fibre tip is an area of stress concentration which favours void nucleation and growth. The initiation of decohesion in SFRC may however not be restricted to fibre tips and may happen at fibre sides. This limitation can be highlighed by considering highly angled fibres with respect to the loading direction, where transverse fibre-matrix interface is the most sollicitated and may become the area of defect creation. Further developpement of the debonding model should take the different decohesion mechanisms by introducing the debonding initiation at fibre sides. Moreover, a direct characterisation of damage mechanisms, i.e. direct measurement of the tip and transverse interfacial defects (e.g. by in-situ tests), is to be investigated, so that an occurate identification of the involved initiation and evolution parameters as well as the failure state should be performed.

Finally, in the current investigations, the strain rate dependency of damage phenomena is not adressed. This, however, might be an important feature of the material behaviour, especially when CHAPTER 5. DAMAGE AND FRACTURE MODELLING large strain rate range applications are targeted. For instance, strain rate effect on the dominant damage mechanisms, i.e. matrix ductile damage and/or fibre/matrix interfacial debonding, might be a key point in the prediction of ultimate failure at high strain rate. This idea is motivated by an observation of fracture surface of SFRC (PP-30GF) loaded at low and high strain rates (Figure 5.36), where a different surface state of fibres may be indicator of strain rate dependency. Indeed, it can be observed that fibre/matrix debonding is more pronounced on the fracture surface of the SFRC subjected to low speed loading (Figure 5.36a) and fibre surface appear clean, i.e. without residue of matrix. At the contrary, at high speed loading (Figure 5.36b), a better adhesion between matrix and fibres is observed on the fracture surface, which may be an indicator of the predominance of matrix damage in the mechanisms leading to composite failure. At longer term, composites with more complex reinforcement properties could be investigated.

For instance, the current modelling could be extended to the case of natural fibres, which are characterised by a large variability of physiscal, geometrical and mechanical properties. 

Modélisation du comportement des composites à fibres courtes en dynamique

Les thermoplastiques renforcés par des fibres courtes (TRFC) étant de plus en plus utilisés dans des applications industrielles, y compris pour des pièces subissant des sollicitations extrême (pare-chocs d'automobiles par exemple), il est nécessaire de développer des modèles de comportement de ces composites valables pour une large gamme de déformation. Pour permettre une prédiction la plus précise possible, ces modèles doivent prendre en compte l'ensemble des spécificités des TRFC. Avec G(t) et K(t) sont respectivement les modules de cisaillement et de dilatation de la matrice, définis comme suit:

G(𝑡) = 𝐺 ∞ + ∑ 𝐺 𝑖 𝑒𝑥𝑝 (- 𝑡 𝜏 𝑖 𝑑𝑒𝑣 ) 𝑁 𝑖=1 K(𝑡) = 𝐾 ∞ + ∑ 𝐾 𝑖 𝑒𝑥𝑝 (- 𝑡 𝜏 𝑖 𝑣𝑜𝑙 )
𝑁 𝑖=1

(Eq. 3) avec: 

𝐺 ∞ = 𝐸 ∞ 2(1+𝜈) , 𝐺 𝑖 = 𝐸 𝑖 2(1+𝜈) 𝐾 ∞ = 𝐸 ∞ 3(1-2𝜈) , 𝐾 𝑖 = 𝐸 𝑖 3(1-2𝜈) (Eq. 4) Où 𝐺 ∞ et 𝐾 ∞ sont
𝜀 𝐹 0 𝑖 = 1 2 ln(𝑐 𝑖 ) , ∀𝑖 (Eq. 9) 
La contrainte axiale moyenne dans la fibre est ensuite calculée en utilisant un modèle de transfert par cisaillement (Eq. 10), basé sur les travaux originels de Bowyer and Bader [6] (Eq. 12)

Où les ρ sont les masses volumiques, les Φ les potentiels thermodynamiques et les v les fractions volumiques. Les indices C, M et F renvoient respectivement au composite, à la matrice et à un milieu de fibre, caractérisé par un exposant i. Finalement, la résolution de l'inégalité de Clausius-Duhem (Eq. 13) permet d'exprimer le tenseur des contraintes de Cauchy du matériau composite (Eq. 14). 

Identification des paramètres de comportement de la matrice polypropylène (PP)

Les paramètres viscoélastiques de la matrice thermoplastique sont identifiés par des DMA (dynamic mechanical analyses) réalisé à des fréquences de 0.01 Hz à 30 Hz (Figure 1). Les résultats des essais réalisés à plusieurs vitesses de déformation sont présentés dans la Figure 4. 

Identification des distributions d'orientation locale des fibres par microtomographie et de la résistance interfaciale en cisaillement, τ

La microstructure du composite PP-GF est analysée par microtomographie aux rayons X (microtomographe Skyscan 1172 de Bruker Micro CT, pas de rotation de 0.4°, 30 kV, 40 µA pour une résolution de spatiale (taille de voxel) de 3.87 µm -scans à 360°). Plus précisément, les volumes centraux d'éprouvettes de traction de type ISO527, découpées à différents angles θ (0, 20, 45, 60 et 90°) par rapport à la direction d'injection sont scannés (Figure 7a). Les images extraites sont ensuite analysées pour détecter toutes les structures (fibres) présentes et déterminer leurs caractéristiques (longueur, rayon et orientation dans l'image). Une pré-analyse a montré que les fibres étaient quasi-exclusivement orientées dans le plan de la plaque. Leur orientation peut donc être déterminée par la connaissance de l'angle ψ uniquement (Figure 7a). L'identification de la résistance interfaciale en cisaillement, τ, repose sur le recalage du comportement en traction de l'éprouvette 0-1 (i.e. présentant la proportion la plus élevée de fibres orientées dans la direction de chargement) avec la simulation numérique par EF de cet essai, utilisant le modèle de comportement développé (Figure 10). Des essais de caractérisation ont été aussi réalisé pour des composites à des taux massiques de renfort différents (15% et 40% de fibres de verre). L'identification des distributions d'orientation par micro-tomographie a ainsi permis la validation du modèle pour des taux de renforts différents.

Extensions du modèle de comportement

Les extensions du modèle de comportement est le sujet de la partie suivante. Les premières évolutions concernent la prise en compte des phénomènes d'endommagement. Leur effet est observable sur les derniers niveaux de chargement du composite avec un adoucissement qui n'est pas pris en compte par le modèle non-endommageable (Figure 11). L'extension du modèle porte sur la prise en compte de l'endommagement ductile anisotrope de la matrice et de la dégradation de l'interface entre fibres et matrice.

Endommagement ductile anisotrope de la matrice

Le comportement de la matrice thermoplastique non renforcée peut être affecté par un endommagement ductile, généralement isotrope. Toutefois, l'endommagement de la matrice dans le composite peut devenir complètement anisotrope, en raison des distributions d'orientation complexes des fibres qui vont modifier les états mécaniques locaux. Ce phénomène peut être modélisé par l'utilisation d'un tenseur d'endommagement du 4 ème ordre. Celui-ci est construit en considérant l'assemblage des contributions de chaque milieu de fibres au pilotage de l'endommagement de la matrice (Eq. 17 (Eq. 17 /𝑣 𝑀 est la fraction volumique de la matrice dont l'endommagement n'est pas affecté par la présence des fibres. Dans l'implémentation, cet endommagement est pris en compte en définissant une contrainte matricielle effective et en utilisant le principe d'équivalence en déformation. Le schéma d'implémentation est semi-couplé. L'évolution de la variable scalaire d'endommagement, d, est définie suivant la mécanique de l'endommagement continu par la loi de Lemaitre (Eq. 19). L'identification de cette loi (détermination des paramètres S et 𝜅 𝐷 ) est réalisée moyennant des essais cycliques sur la matrice PP non-renforcée. Le paramètre S est identifié suivant la méthode de la dégradation de la rigidité équivalente (Figure 12). Cette méthode a permis la détermination de l'évolution de d en fonction de la déformation viscoplastique équivalente, κ (Figure 13). Une évaluation de la loi de comportement de la matrice avec la prise en compte de l'endommagement matriciel est faite pour un état d'endommagement isotrope par comparaison avec les résultats des essais en traction. Cette comparaison a permis la validation de la loi d'endommagement pour plusieurs vitesses de déformation, comme présenté dans la Figure 13. L'anisotropie de la loi d'endommagement dans le cas d'une matrice renforcée par 30% de fibres de verre est vérifiée par la prise en compte de deux distributions d'orientations de fibres différentes (avec des orientations préférentielles proches de 0° et 90°) comme montré dans la Figure 14. La comparaison des deux réponses en traction montre que l'endommagement matriciel est prépondérant pour le cas des fibres fortement orientées par rapport à la direction du chargement. 

Décohésion à l'interface fibre-matrice

La décohésion interfaciale est un phénomène d'endommagement majeur des TRFC. En effet, la décohésion entraîne une diminution de l'effort transmis à la fibre via la matrice, ce qui se traduit par un adoucissement du comportement du composite. De plus, ceci entraine une augmentation de la concentration de contrainte dans la matrice, à proximité des fibres, en raison de la quantité d'effort non transmise, ce qui peut favoriser la localisation de la déformation plastique, l'apparition de microfissure etc… jusqu'à rupture du composite. D'après les travaux de Sato et al. [11], lorsque les fibres sont sollicitées en traction avec un angle proche de 0°, la décohésion s'initie en pointe de fibres, puis, avec l'augmentation du niveau de chargement, des micro-vides se propagent le long de la fibre, à l'interface (Figure 15). Basé sur ces observations, le modèle développé prend en compte la décohésion progressive à l'interface fibre/matrice [12]. Ainsi, la propagation latérale des micro-vides est modélisée par une réduction progressive de la longueur de la fibre disponible pour la transmission de l'effort, à partir d'un seuil en déformation axiale de la fibre, ε th . Dans l'équation (6), permettant le calcul de la contrainte axiale moyenne dans la fibre, la longueur L i est alors remplacée par L i -2δ i , pour tout milieu de fibre i : Où a et b sont des paramètres à identifier. L'identification de ces paramètres a été faite en se basant sur des résultats d'essai de traction réalisé sur une éprouvette de référence (avec une distribution de fibres les plus orientées suivant la direction du chargement). Les paramètres a et b sont simultanément identifiés par la méthode inverse, en assurant la meilleure corrélation avec la réponse expérimentale du composite et en utilisant la distribution d'orientation réelle de l'éprouvette (Figure 17). L'évolution de volume de vide crée est donnée par l'Equation 13.

{
v v nucl = 𝐶 𝑛𝑢𝑐𝑙 ∑ ( 2δ i L i ) 𝑖 v f i (Eq. 23)
Un critère est défini comme étant le taux critique de vide crée par décohésion en s'appuyant sur des résultats de la littérature et des observations faites sur des faciès de rupture du composite, présentés dans la Figure 18. Ce critère est donc défini suivant l'équation suivante :

𝑣 𝑣 𝑡𝑜𝑡 = 𝑣 𝑣 𝑐𝑟𝑖𝑡 (Eq. 24)

Des premiers tests [12] ont permis de montrer qu'il est alors possible d'identifier le taux de vide à rupture pour un composite dans une configuration donnée (en termes d'angle de chargement) et d'utiliser ce taux critique comme critère de rupture pour le même composite, mais chargé avec un angle différent. Les résultats sont très satisfaisant jusqu'à des angles de l'ordre de 45° entre la direction de chargement et la direction d'orientation préférentielle des fibres (ici, direction d'injection), mais moins pour des angles plus élevés. Ceci s'explique très probablement par le fait que, lorsque les fibres sont chargées quasi-transversalement, l'endommagement initié en pointe de fibre, tel qu'il a été observé par Sato et al. [11] et modélisé [12], n'est plus le phénomène d'endommagement prépondérant. La rupture du composite est alors effective avant que le taux de vide critique identifié en utilisant ce modèle ne soit atteint.

Conclusion

Cette thèse porte sur la proposition d'une loi qui permet la modélisation du comportement de thermoplastiques renforcés par fibres courtes en prenant en compte la sensibilité à la vitesse de déformation couplée aux caractéristiques complexes du renfort. La caractérisation du comportement du composite a fait l'objet d'une compagne expérimentale portant sur la réalisation des essais à plusieurs conditions de chargement. L'identification de la loi de comportement viscoélastique linéaire de la matrice a été faite par des essais à excitation fréquentielle permettant la détermination des modules et temps de relaxations. 
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 4 Experimental procedure for the parameters identification and validation of the modelIdentification and validation of the developped constitutive model are the object of the current chapter. An identification procedure, based on an experimental investigation, is performed so that all the parameters involved in the current developpement can be determined. In the first part of this chapter, the characterisation of the matrix material model is targeted. Viscoelasticity is characterised by means of Dynamic Mechanical Analysis (DMA). Then, the hardening and flow parameters (viscoplasticity and pressure dependency parameters) are extracted from monotonic tests realised at different loading conditions (tension and compression) and loading speeds (i.e.
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 111 Identification of material parameters based on DMA and monotonic tests at different strain rateIn order to characterise the viscoelastic-viscoplastic behaviour of the PP matrix, different experiments are carried out at various loading rates. First, Dynamic Mechanical Analysis is performed to identify the viscoelastic parameters. Then, flow parameters, i.e. associated to the hardening and pressure dependent and non-isochoric viscoplastic behaviour, are characterised by means of tensile (realised at different strain rates) and compression tests. Using data acquired from Digital Image Correlation (DIC) for tensile tests, the non-isochoric plastic flow behaviour is first caracterised (by the identification of the expansion parameter). The pressure dependency is then identified based on tension/compression results. Finally, the use of DIC method has made possible the determination of the hardening and viscoplastic parameters by means of the SE Ė method[START_REF] Lauro | The SE Ė method for determination of behaviour laws for strin rate dependent material: Application to polymer material[END_REF].Dynamic Mechanical analysesSmall amplitude oscillatory tensile experiments are performed on an electromagnetic tensile machine (INSTRON E3000) with a 3 kN cell force. Tests are performed at room temperature on flat rectangular specimens (Figure 4.1) cut in an injected PP plate. A sinusoidal deformation
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 524 EXPERIMENTAL IDENTIFICATION AND VALIDATION are realised. Strain values are computed by DIC using different facet sizes. Strains are theoretically null during rigid body motion; the computed values are therefore representative of the noise level.
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 1 CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 59 tensile and compression yield stresses must be measured from the tests realised at the same strain rate. The above tests are therefore considered, with yield stresses corresponding to the upper limits of the linear part of the behaviour law. Values of 23 MPa and 7 MPa are identified for the tensile and compression tests, respectively, corresponding to a value of 3.28 for η.
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 414 Figure 4.14: Behaviour laws obtained with the SE Ė method

Figure 4 . 15 : 60 CHAPTER 4 .

 415604 Figure 4.15: Tensile and compression behaviour of PP for the identification of the parameter of hydrostatic pressure dependency (at 1 mm.min -1 )

Figure 4 . 16 :

 416 Figure 4.16: Comparison between modelled and experimental tensile behaviour of PP at different loading rates (Continuous lines = Experimental data, Dashed lines = Numerical data) with scattering bars

CHAPTER 4 .Figure 4 . 17 :

 4417 Figure 4.17: Orientation of tensile specimens in injection-moulded plates

Figure 4 . 18 :

 418 Figure 4.18: Scanned volume and definition of angles θ and ψ

Figure 4 . 64 CHAPTER 4 .Figure 4 . 20 :Figure 4 . 21 :

 4644420421 Figure 4.19: Reconstructed 3D microstructure of PP-30GF by micro-computed tomography

Figure 4 . 22 :

 422 Figure 4.22: Variation of the fibre orientation through the specimen thickness (Skin-Shell-Core structure)

Figure 4 . 23 :

 423 Figure 4.23: Comparison of results obtained with a "step" of 1 and 10 from a PP-30GF specimen at an angle θ = 0 • for the selection of the 2D grey-scaled images through the thickness

  Distributions of fibre orientation in the different scanned volumes

Figure 4 . 24 :

 424 Figure 4.24: Comparison of scan results at different locations over the specimen ROI

  to 4.27.

CHAPTER 4 .

 4 EXPERIMENTAL IDENTIFICATION AND VALIDATION (a) Location of 0 • -specimens in the injection moulded plate Distribution of fibre orientation in different specimens cut at θ = 0 •

Figure 4 . 25 :

 425 Figure 4.25: Fibre orientation of specimens cut at different locations and 0 • with respect to IFD for PP-30GF

Figure 4 . 26 :

 426 Figure 4.26: Fibre orientation of specimens cut at angles equal to 20 • , 45 • , 60 • and 90 • with respect to IFD for PP-30GF

Figure 4 . 27 :

 427 Figure 4.27: Fibre orientation histograms of specimens cut at angles equal to 0 • , 20 • , 45 • , 60 • and 90 • with respect to IFD for PP-40GF

  • [, for α varying from 0 • to 80 • , are grouped into the same family. This way, 9 fibre families are created to model fibre distribution of orientation. Discretised data, obtained for different θ -specimens (i.e. characterised by a cutting angle θ ) are presented in Figures 4.28

  and 4.29 for the PP-30GF and PP-40GF composites, respectively. In those figures, the density calculated over the i th interval (i.e. [10 • (i -1); 10 • i[) is attributed to an angle of orientation equal to 10 • (i -1) + 5 • for the i th family, with i ∈ {1, ..., 9}.

  θ = 90 • (PP30- 

Figure 4 . 28 :

 428 Figure 4.28: Fibre distribution of orientation of specimens cut at angles equal to 0 • , 20 • , 45 • , 60 • and 90 • with respect to IFD for PP-30GF

Figure 4 . 29 :

 429 Figure 4.29: Fibre distribution of orientation of specimens cut at angles equal to 0 • , 20 • , 45 • , 60 • and 90 • with respect to IFD for PP-40GF

Figure 4 .

 4 30(b)).

Figure 4 . 30 :

 430 Figure 4.30: Tensile specimens for optical extensometry measurement

  and 4.32 for both materials, where

  min -1 10 mm.min -1 60 mm.min -1 10 mm.s -1 100 mm.s -1 1000 mm.s -1 Composite axial stress (MPa) (e) θ = 90 •

Figure 4 . 31 :

 431 Figure 4.31: Tensile tests at different strain rates and loading angles for PP-30GF

Figure 4 . 32 :Figure 4 . 33 :Table 4 . 7 :

 43243347 Figure 4.32: Tensile tests at different strain rates and loading angles for PP-40GF

Figure 4 . 34 :

 434 Figure 4.34: Tensile behaviour of 0 • -specimens (at 1 mm.min -1 ) with different average values of ψ

Figure 4 . 35 : 80 CHAPTER 4 .

 435804 Figure 4.35: Apparent rigidity of PP-30GF and PP-40GF at different strain rates

Figure 4 . 36 :

 436 Figure 4.36: Average axial stress at break of PP-30GF and PP-40GF at different strain rates

2 and 4 . 5 )Figure 4 . 37 :

 245437 Figure 4.37: Comparison of experimental and numerically simulated tensile behaviour of specimens PP30-0-1 (τ = 23 MPa) and PP40-0-1 (τ = 26.5 MPa)

Figure 4 . 38 :

 438 Figure 4.38: Representation of the layered structure of the fibre orientation for the computation of the tensile response of a PP30-0 specimen (at 1 mm.min -1 )

Figure 4 . 39 :

 439 Figure 4.39: Results of simulated tensile test with layered distributions of fibre orientation of a PP30-0 specimen at 1 mm.min -1

  to 4.44 for PP-30GF and Figures 4.45

  to 4.49 for PP-40GF demonstrate the accuracy of the implemented model for both composites, since the stress-strain response is well reproduced for the different cases.
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 440 Figure 4.40: Comparison of experimental and numerical data for tests of 0 • specimens of PP-30GF

Figure 4 . 41 :

 441 Figure 4.41: Comparison of experimental and numerical data for tests of 20 • specimens of PP-30GF

Figure 4 . 42 :

 442 Figure 4.42: Comparison of experimental and numerical data for tests of 45 • specimens of PP-30GF

Figure 4 . 43 :

 443 Figure 4.43: Comparison of experimental and numerical data for tests of 60 • specimens of PP-30GF

Figure 4 . 44 :

 444 Figure 4.44: Comparison of experimental and numerical data for tests of 90 • specimens of PP-30GF

Figure 4 . 45 :

 445 Figure 4.45: Comparison of experimental and numerical data for tests of 0 • specimens of PP-40GF

Figure 4 . 46 :

 446 Figure 4.46: Comparison of experimental and numerical data for tests of 20 • specimens of PP-40GF

Figure 4 . 47 : 88 CHAPTER 4 .

 447884 Figure 4.47: Comparison of experimental and numerical data for tests of 45 • specimens of PP-40GF

Figure 4 . 48 :(

 448 Figure 4.48: Comparison of experimental and numerical data for tests of 60 • specimens of PP-40GF

Figure 4 . 49 :

 449 Figure 4.49: Comparison of experimental and numerical data for tests of 90 • specimens of PP-40GF

  and experimental results obtained for PP material and PP-GF were performed. Simulated quasi-static and dynamic tensile tests of PP-GF with different fibre content and distribution of fibre orientation proved the consistency of the implemented model.
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 52 Figure 5.2: Damage anisotropy of the reinforced matrix material

Figure 5 . 3 :

 53 Figure 5.3: Influence of parameter S on the evolution of the damage variable D (1 mm.min -1 )

Figure 5 . 4 :

 54 Figure 5.4: Influence of parameter S on the damaged matrix response at tension (1 mm.min -1 )

5. 2 .Figure 5 . 5 :

 255 Figure5.5: Damage variable determination from cyclic tests using the stiffness-loss method[START_REF] Lemaitre | Mechanics of Solid Materials[END_REF] 

Figure 5 . 6 :

 56 Figure 5.6: Cartography corresponding to an engineering strain of 0.087 and determination of the ROI of homogeneous strain

Figure 5 . 7 :

 57 Figure 5.7: Stress-true strain response for cyclic uniaxial tensile test on PP

Figure 5 . 8 :

 58 Figure 5.8: Damage evolution law calculated using the stiffness-loss method

  polynomial function, p (κ) (Equation 5.32), is fitted to the experimental data D (κ), as shown in Figure 5.8. p (κ) = -0.0017 + 2κ + 142κ 2(5.32)
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 259 Figure 5.9: Identification of the parameter S

Figure 5 . 10 :Figure 5 . 11 :

 510511 Figure 5.10: Influence of damage on computation of PP matrix tensile behaviour,for a wide range of strain rate

Figure 5 . 13 :

 513 Figure 5.13: Effect of fibre/matrix debonding on load transmission

  and 5.15. As these two parameters have a coupled effect on the evolution of δ α , they have to be simultaneously determined. From observations on experimental tensile results of composite material (PP-30GF), it is found that debonding evolution can not be linear. Therefore the value of the parameter b is different from 1, and is taken equal to 2. The effect of the parameter a is shown inFigures 5.16 

and 5 .Figure 5 . 14 :

 5514 Figure 5.14: Influence of parameter b on the fibre length unavailable for load transmission (a fixed at 0.2)

Figure 5 . 15 :Figure 5 . 16 :Figure 5 . 17 : 1 0Figure 5 . 20 :

 5155165171520 Figure 5.15: Influence of parameter a on the fibre length unavailable for load transmission (b fixed at 2)

Figure 5 . 21 :

 521 Figure 5.21: Fibre debonding in a fracture surface of PP-30GF tested at 1mm.min -1 (visualised by MEB)

( 5 . 41 )Figure 5 . 22 :

 541522 Figure 5.22: Evolution of cumulated void volume fraction with different distributions of fibre orientation resulting from different cutting angles θ

5. 5 . 2

 52 Tensile tests with notched specimensIn order to characterise the failure criterion, uniaxial tensile tests are performed with notched specimens of the composite PP-30GF (Figure5.23). Notched specimens are characterised by a weakened section resulting in a strain concentration zone that leads to damage localisation (notch zone). The uniaxial tensile tests are performed on the electromagnetical device with a cell force of 3KN (INSTRON E3000). Load is applied with a prescribed displacement of 1 mm.min -1 and with CHAPTER 5. DAMAGE AND FRACTURE MODELLING specimens cut at angle θ equal to 0 • and 90 • with respect to the injection flow direction (IFD).True in-plane strain fields are determined using 2D Digital Image Correlation (DIC) technique for a local measurement within the area of strain concentration (Figure5.23). The facets are tracked by DIC software (VIC 2D) at an acquisition rate of 2 im/s. The influence of facet size and step size on the measured strains is studied. They are chosen as a compromise between a good level of accuracy of the measured strains (in terms of captation of strain localisation in particular) and the avoidance of loss of data at the step preceeding failure. As shown in Figure5.24, a loss of data occurs at step 150 (corresponding to an engineering strain of 0.04) for relatively small sizes of facet and step. Based on this observation a facet size of 31x31 pix 2 and step size equal to 15 pix are chosen.

Figure 5 . 23 : 2 Figure 5 . 24 :

 5232524 Figure 5.23: Notched specimen geometry and definition of the ROI

Figure 5 . 25 :pix 2 Figure 5 . 26 :Figure 5 . 27 : 124 CHAPTER 5 .Figure 5 .Figure 5 . 29 :Figure 5 . 30 :

 525252652712455529530 Figure 5.25: Cartography of axial strains at the pre-failure step (last step) for 0 • -specimens with a facet size of 31x31 pix 2

Failure

  strains computed with simulated 0 • -notched tensile tests are presented in Figure 5.31 and are within the experimental values range. CHAPTER 5. DAMAGE AND FRACTURE MODELLING (Figure 5.33(b)). This is highlighted in Figure 5.35, where theoretical extreme cases of aligned fibres are treated for the computation of total cumulated void fraction. The case of fibre families with intermediate orientation angles is highlighted in Table

Figure 5 .

 5 [START_REF] Findley | Creep and Relaxation of nonlinear viscoelastic materials[END_REF], are unlikely to be reached in real composites with injection moulding process because of the layered structure of the composite, i.e. the contribution of the different orientations. It can however be barely approximated with high volume fraction of reinforcement, where fibres are more preferentially oriented in the injection flow direction.

Figure 5 . 33 :Figure 5 . 34 :igure 5 . 35 :

 533534535 Figure 5.33: Identification of the failure strain with notched specimen PP30-90-4

Figure 5 . 36 :

 536 Figure 5.36: Fracture surface of PP-30GF tested at (a) 1 mm.min -1 and (b) 1000 mm.min -1 obtained by SEM obserbations.

  volume Composite volume relative variation ∆ V Strain volume relative variation ∆ V ε,NL

Figure A. 1 :Figure A. 2 :

 12 Figure A.1: Total volume variation and strain volume variation fraction of the composite material (PP-30GF)

(Eq. 14 )

 14 𝑣 𝑀 σ 𝑀 + ∑ 𝑣 𝐹 𝑖 𝐴 𝑖 𝜎 𝐹 𝑖 𝐴 𝑖 𝑁 𝑖=1 Validation du modèle : exemple d'un composite polypropylène + 30% de fibres courtes de verre (PP-GF) moulé par injection Les équations constitutives présentées ci-avant sont implémentées sous Abaqus Explicit (sous forme d'une "VUMAT"). La validation du modèle repose sur des comparaisons entre des données expérimentales et la simulation numérique de ces essais utilisant le modèle développé. Pour cela, il est d'abord nécessaire d'identifier les paramètres du modèle.

Fig. 1 .

 1 Fig. 1. Réponse en contrainte et déformation à un chargement en déplacement sinusoidal

Fig. 2 .. 6 (

 26 Fig. 2. Identification des modules de perte et de gain

Fig. 4 .

 4 Fig. 4. Comportement axial à différentes vitesses de chargement du PP caractérisé par corrélation d'image

Fig. 5 .

 5 Fig. 5. Surface de comportement obtenue par la méthode SE𝐸 ̇ Des essais de compression sur plots permettent l'identification du paramètre η. Le paramètre a + est identifié à partir du coefficient de Poisson plastique mesuré en traction. Malheureusement, il n'a pas été possible d'utiliser des mesures par DIC sur les plots de compression, le paramètre a -est donc fixé arbitrairement à 0. Une comparaison des résultats expérimentaux et numériques est illustrée par la Figure 6 pour le PP. Pour information, les vitesses de déformation « ingénieur » correspondantes sont, par ordre croissant, de 5.55 10 -4 , 5.55 10 -3 , 3.33 10 -2 , 0.5, 5 et 50 s -1 .

Fig. 6 .

 6 Fig. 6. Comportement en traction uniaxial du PP (traits continus : données expérimentales, pointillés = simulation numériques).

Fig. 7 .

 7 Fig. 7. Principe de la détermination des orientations locales des fibres par micro-tomographie.

Fig. 8 .

 8 Fig. 8. Traitement des images 2D obtenue par micro-tomographie.

Fig. 9 .

 9 Fig. 9. Exemples de distributions d'orientation des fibres dans le composite PP-GF et influence sur le comportement entraction.

Fig. 11 .

 11 Fig. 11. Exemples de comparaisons données expérimentales/numériques pour le comportement en traction du PP-GF.

  𝛿 𝑗𝑙 [1 -𝑑(𝛿 𝑖𝑗 (1 -𝛿 𝑖1 ) -(1 -𝛿 𝑖𝑗 ))] ∀𝑎 (Eq. 18)Avec d la variable d'endommagement scalaire;

Fig. 12 .

 12 Fig. 12. Identification de la loi d'endommagement matriciel par la dégradation de la rigidité apparente.

Fig. 13 .

 13 Fig. 13. Evolution de d déterminée par la méthode dégradation de la rigidité apparente.

Fig. 14 .Fig. 15 .

 1415 Fig. 14. Validation de la loi de comportement matricielle avec la prise en compte de l'endommagement

Fig. 16 .

 16 Fig.[START_REF] Sirkis | Image processing based method of predicting stifness characteristics of short fibre reinforced injection molded parts[END_REF]. Décohésion en pointe de fibre et propagation des micro-vides latéralement (images extraites de Sato et al.[10]).

Fig. 17 .

 17 Fig. 17. Identification des paramètres de la loi de décohésion a et b

Fig. 18 .

 18 Fig. 18. Validation du modèle avec implémentation des deux d'endommagement en traction avec différentes distributions d'orientation des fibres

Fig. 19 .

 19 Fig. 19. Observation des défauts créés par décohésion sur des faciès de rupture du composite testé en traction

Fig. 20 .Fig. 21 .

 2021 Fig. 20. Identification de la déformation à la rupture du composite

Fig. 22 .

 22 Fig. 22. Prédiction de la déformation à la rupture pour des composites testés à 0° et 90° par rapport à l'orientation préférentielle des fibres

  L'identification des paramètres viscoplastique a été faite moyennant des essais de compression et de traction réalisés à plusieurs vitesses de déformation. La détermination des paramètres viscoplastiques est faite en se basant sur la méthode SEE. Le modèle viscoélastique-visoplastique de la matrice est ensuite validé par comparaison avec les essais de traction réalisés sur la matrice pure à plusieurs vitesses de déformation. La caractérisation de la microstructure du composite avec des taux de renfort de 30% et 40% en masse de fibre de verre a été faite par des analyses micro-tomographiques. La géométrie des fibres est identifiée moyennes ces analyses. L'orientation des fibres est caractérisée sous forme d'histogramme de densité d'orientation. Ces orientations sont ensuite exprimée par des distributions d'orientation et utilisées pour alimenter le modèle de comportement du composite. Le modèle est validé sur une large de gamme de vitesse de déformation pour le cas d'un composite polypropylène -fibres courtes de verre, moulé par injection, caractérisé par une matrice viscoélastique, viscoplastique et à écoulement plastique sensible à la pression et non-isochore, et par des distributions d'orientation des fibres complexes. Celles-ci sont notamment responsables de l'anisotropie du comportement, ainsi que de disparités, même à angle de chargement fixé. Deux types d'endommagement sont implémentés : l'endommagement ductile de la matrice renforcé, fortement anisotrope, et la décohésion progressive à l'interface fibre/matrice. Ces extensions du modèle ont été validées par comparaison avec des résultats expérimentaux. Un critère de rupture du composite a été défini en se basant sur le taux de vide critique créé par décohésion. Son identification et sa validation a été faite par comparaisons avec les déformations à rupture du composite avec plusieurs angles du chargement par rapport à la direction préférentielle des fibres. Des extensions de ce travail porteront sur la prise en compte de l'initiation de la décohésion entre fibres et matrice sur les côtés des fibres afin de traiter d'une manière plus précise le cas des fibres transversalement orientées par rapport à la direction de chargement. Ces perspectives s'intéressent aussi à la prise en compte de l'effet de vitesse de déformation sur l'évolution et la prépondérance des mécanismes d'endommagement et sur rupture du composite. Cela est motivé par des observations sur des faciès de rupture des éprouvettes testées en traction à différentes vitesses de déformation comme montré dans la Figure23.

Fig. 23 .

 23 Fig. 23. Observation au MEB des faciès de rupture des éprouvettes testées à (a) 1mm/min et (b) 1000 mm/s.

  

  

  

  

Table 3 .

 3 1: Return-mapping algorithm for the computation of VE-VP thermoplastic matrix behaviour

	∆ε ve = ∆ε ve dev + ∆ε ve H (3.22)			
	(ii) Computation of the matrix Cauchy stress tensor components, σ tr M i ,dev	( t n+1	)	and σ tr M i ,H (t n+1 ),
	corresponding to the trial (visco)elastic strain increment:			

Input: VE and VP parameters (i) Trial (visco)elastic strain increment split into a deviatoric part and a hydrostatic part:

Table 3 .

 3 2: Material parameters of the matrix and composite constitutive laws

	3.3. CONCLUSION

Table 4 .

 4 

		1: DMA cycles
	Frequencies (Hz) number of cycles
	0.01	3
	0.05	4
	0.1	5
	0.25	6
	0.5	8
	1	21
	10	201
	20	301
	30	301

Table 4 .

 4 2: Identified linear viscoelastic parameters of the PP matrix material Rigidities E i (MPa) Relaxation times τ i (s)

	620.7	10 +3
	195.5	10 +2
	146.6	10
	124.6	1
	89.59	10 -1
	85.06	10 -2
	79.12	10 -3
	E ∞ (MPa)	551.9

Table 4 .

 4 

		3: DIC acquisition rate
	Strain rate	Camera frame rate (frs)
	5.55 10 -4 s -1 2
	5.55 10 -3 s -1 10
	3.33 10 -2 s -1 100
	0.5 s -1	600
	5 s -1	6000
	50 s -1	25000

Table 4 .

 4 4: Standard deviation of DIC strains (for an axial displacement of 4.5 mm at 1 mm/min)

		Standard deviation (%)
	ε yy	16.53
	ε xx	3.01
	ε xy	19.05

Table 4 .

 4 5 (it is reminded that viscoelastic parameters are listed in Table 4.2)

	Table 4.5: Viscoplastic parameters of PP matrix material
	Parameters Value
	σ t (3.27)	7 MPa
	h 1 (3.28)	35.40 MPa
	h 2 (3.28)	2.17
	h 3 (3.28)	58.78
	κ0 (3.34)	10 -5 s -1
	m (3.34)	0.035
	a + (3.30)	0.61
	a -(3.30)	0
	η (3.27)	3.28

4.1.1.2 Validation of the implementation of matrix material model

Once all parameters of PP matrix VE-VP behaviour are identified, final step is to assess the relevance of the implemented constitutive model for the matrix material through its capacity to reproduce the experimental response of PP material over a relatively large range of strain rate.

Table 4 .

 4 6: Supplier specifications of the composites materials

	Commercial grade	MFR (g.(10min) -1 ) Density (g. cm -3 )
	PP-30GF ALTECH PP-H A 2030/159 GF30 CP	2	1.12
	PP-40GF ALTECH PP-H A 2040/159 GF40 CP	3	1.22

following the process conditions prescribed by the supplier.

  • , 45• , 60 • and 90 • ). Results presented in Figures 4.40

Table 5 .

 5 2: Total void computed at a composite axial strain of 0.05 for different angles of fibre orientation

	Orientation angle ν tot v
	45 •	0.041
	55 •	0.031
	65 •	0.019
	75 •	0.009
	85 •	0.002
	Extreme orientations, similar to the ones considered in

• .

  En premier lieu, le comportement mécanique de la matrice thermoplastique est très généralement sensible à la vitesse de déformation (viscoélastique et viscoplastique), avec un écoulement plastique sensible à la pression hydrostatique (comportement différent en traction et en compression notamment) et non isochore. Aux spécificités de la matrice thermoplastique s'ajoutent les caractéristiques complexes du renfort, notamment en termes de distributions d'orientation des fibres dans le cas de pièces moulées par injection. Dans le cas de renfort par fibres végétales (non abordé ici), il faut aussi tenir compte de la forte variabilité des propriétés constitutives, géométriques et mécaniques des fibres. Enfin, le comportement des TRFC est affecté par différents phénomènes d'endommagement, comme l'endommagement ductile de la matrice, la décohésion à l'interface fibre/matrice (et entre fibrilles dans le cas de fibres végétales) et la rupture des fibres (dans une moindre mesure de par leur faible longueur initiale). On peut noter que l'évolution de ces phénomènes dépend directement des états de contrainte et de déformation locaux, et donc de l'orientation locale des fibres. Le modèle développé vise à prendre en compte l'ensemble de ces spécificités du comportement mécanique des TRFC. Dans un contexte de sollicitation sous haute vitesse de déformation, le temps de calcul des simulations numériques peut vite devenir très important. Ainsi, l'approche proposée vise à atteindre le meilleur compromis possible entre précision des comportements simulés et temps de calcul (schéma d'intégration temporel explicite), sur la base de deux hypothèses simplificatrices majeures par rapport aux méthodes d'homogénéisation plus classiques. Le principe du modèle ainsi que les équations constitutives sont décrits en détail dans ce qui suit. L'approche repose sur la division du composite en plusieurs milieux : un milieu matriciel et N milieux élastiques linéaires de fibres dispersés dans la matrice. Les milieux de fibres sont définis en « regroupant » les fibres en fonction de leurs propriétés géométriques (longueur et rayon), mécaniques (module d'Young) et leur orientation dans le repère global. La division des fibres en plusieurs milieux, chacun ayant sa propre fraction volumique, permet donc en particulier une modélisation aisée des distributions d'orientation et/ou de longueur des fibres dans le composite. Le comportement de chaque milieu est résolu successivement. Ceci permet notamment l'adaptabilité du modèle à tous types de comportement de la matrice. Les fibres ont un comportement supposé unidimensionnel et élastique linéaire. Ceci est justifié par un important ratio d'aspect de ces fibres. Le comportement de la matrice thermoplastique est modélisé en viscoélasticité (VE)-viscoplasticité (VP) pour la prise en compte la dépendance à la vitesse de déformation. Enfin, le comportement macroscopique du composite est calculé en supposant une partition additive du potentiel thermodynamique du matériau composite.𝑅 𝑣𝑒 est le tenseur d'ordre quatre de relaxation de Maxwell.

	𝜎 𝑀 (𝑡) = ∫ 𝑅 𝑣𝑒 (𝑡 -𝜁): -∞ 𝑡	𝜕𝜀 𝑣𝑒 (𝜁) 𝜕𝜁	𝑑ζ	(Eq. 1)
	𝑅 𝑣𝑒 (𝑡) = 2𝐺(𝑡)𝐼 𝑑𝑒𝑣 + 3𝐾(𝑡)𝐼 𝑣𝑜𝑙		(Eq. 2)

Comportement viscoélastique-viscoplastique de la matrice thermoplastique :

On se place dans le cadre de l'hypothèse des petites déformations. La modélisation du comportement viscoélastique de la matrice repose sur un modèle de Maxwell généralisé. Le tenseur contrainte de Cauchy de la matrice, 𝜎 𝑀 (𝑡) est linéairement lié à la déformation VE, 𝜀 𝑣𝑒 , Via l'intégrale de Boltzmann :

élastique linéaire des milieux de fibres

  les modules indépendant du temps. 𝐺 𝑖 et 𝐾 𝑖 sont les modules de relaxation correspondants aux N éléments Maxwell. La partie non-linéaire du comportement de la matrice est décrite par une surface de charge de type Raghava, sensible à la pression hydrostatique, est définie pour marquer la transition (visco)elastoplastique(1). des équations constitutives sont implémentées en suivant un schéma du type état test viscoélastique suivi, si besoin, d'une correction viscoplastique.Comme précisé avant, les fibres sont divisées en différents milieux à comportement élastique linéaire. Chaque milieu de fibres est ainsi caractérisé par une longueur, L, et un rayon, r, de fibre, un module d'Young, E F , et un vecteur d'orientation, 𝑎 ⃗, dans le repère global (lié à la matrice). On définit également la matrice d'orientation, 𝐴 = 𝑎 ⃗⨂𝑎 ⃗. La première hypothèse fondamentale du modèle est que le tenseur gradient de déformation appliqué à chaque milieu de fibre i, 𝐹 𝐹 𝑖 , est la projection du tenseur gradient de déformation appliqué au composite, F, selon la direction d'orientation des fibres, i.e. 𝐹 𝐹 𝑖 = 𝐹𝐴 𝑖 , ∀𝑖. On peut d'ores et déjà noter que la seconde hypothèse forte est que le tenseur F est transmis en l'état au milieu matriciel. La relation 𝐹 𝐹 𝑖 = 𝐹𝐴 𝑖 , ∀𝑖 permet d'exprimer les tenseurs de Cauchy-Green des familles de fibres, 𝐴 𝑖 𝐹 𝑇 𝐹𝐴 𝑖 = 𝐴 𝑖 𝐶𝐴 𝑖 , ∀𝑖, avec C le tenseur de Cauchy-Green du composite. On peut noter que, par construction, les tenseurs 𝐶 𝐹 𝑖 admettent une unique valeur propre non-nulle, notée c i , associée au vecteur propre 𝑎 𝑖 ⃗⃗⃗⃗ , ce qui sous-entend un comportement unidimensionnel des fibres. Ce point est cohérent avec le haut ratio d'aspect, longueur sur rayon, des fibres courtes, qui permet de négliger les déformations dans les directions transverses à l'axe de la fibre. A partir des tenseurs 𝐶 𝐹 𝑖 , on peut exprimer la déformation 1D de Hencky de chaque milieu de fibre, ainsi :

	Avec a + et a -des paramètres matériau et 〈𝑥〉 =	𝑥+|𝑥| 2 .
	L'ensemble Comportement 𝐶 𝐹 𝑖 , comme suit : 𝐶 𝐹 𝑖 = 𝐹 𝐹 𝑖 𝑇 𝐹 𝐹 𝑖 =	
			𝑓(𝐼 1 , 𝐼 2 , 𝑝) =	(𝜂-1)𝐼 1 + √ (𝜂-1) 2𝐼 1 2 +12𝜂𝐼 2 2𝜂	-𝜎 𝑡 -𝑅(𝑝)	(Eq. 5)
	Où 𝐼 1 = 𝑡𝑟(𝜎 𝑀 (𝑡)), 𝐼 2 =	1 2	𝑆 𝐹 = 𝑓 -𝜎 𝑣𝑝	(Eq. 6)
	avec σ vp la sur-contrainte visqueuse. Son expression est par exemple donnée par le modèle de
	Perzyna, à savoir :			
			𝜎 𝑣𝑝 = (𝜎 𝑡 + 𝑅(𝑝)) (	𝑚 ̇0) 𝑝ṗ	(Eq. 7)
	Où 𝑝0 et m sont des paramètres matériau.	
	Enfin, on se place dans le cadre de la viscoplasticité non associée, avec la définition d'un potentiel
	viscoplastique de dissipation hyperbolique permettant la modélisation de la non-symétrie et de la
	non-isochorie de l'écoulement (visco)plastique:
			𝜓 𝑀 𝑣𝑝 = √3𝐼 2 +	1 3	(𝑎 + 〈𝐼 1 〉 2 + 𝑎 -〈-𝐼 1 〉 2 )	(Eq. 8)
					3

𝑀 (𝑡): 𝑆 𝑀 (𝑡), avec S M le déviateur de la contrainte de Cauchy de la matrice; σ t est la limite d'élasticité en traction du matériau et p la déformation plastique cumulée. η est le paramètre de sensibilité à la pression hydrostatique, défini comme le rapport entre la limite d'élasticité en compression et en traction. Enfin, R est la loi d'écrouissage isotrope, à adapter au matériau considéré. La viscoplasticité est modélisée par le principe d'une sur-contrainte visqueuse. La surface de charge f (Eq. 5) est alors étendue à une surface de charge dynamique:

  Dans l'expression précédente, les 𝜏 𝑖 sont les résistances en cisaillement de l'interface matrice/fibres du milieu n°i. Finalement, le tenseur des contraintes des fibres, 𝜎 𝐹 𝑖 , est exprimé dans le repère global en utilisant les matrices de passage, T, du repère lié à un milieu de fibre dans le repère global. Les contraintes transverses à l'axe de la fibre sont calculées en utilisant des conditions d'iso-contrainte avec celles d'un matériau du type matriciel mais dont le comportement serait purement viscoélastique (i.e., pas de plasticité). On obtient alors : Le comportement macroscopique du composite est obtenu en considérant une décomposition additive de son potentiel thermodynamique, Φ 𝐶 :

	Comportement du composite					
		ρ 𝐶 Φ 𝐶 = 𝑣 𝑀 ρ 𝑀 Φ 𝑀 + ∑ 𝑣 𝐹 𝑖 𝜌 𝐹 𝑖 Φ 𝐹 𝑖 𝑁 𝑖=1
							et étendu à des cas
	d'orientations complexes [3].					
	{	𝜎 𝐹 0 𝑖 = 𝜀 𝐹 0 𝑖 𝐸 𝐹 𝑖 (1 -𝜎 𝐹 0 𝑖 = 𝑠𝑖𝑔𝑛𝑒(𝜀 𝐹 𝐸 𝐹 𝑖 𝑟 𝑖 2𝐿 𝑖 𝜏 𝑖 |𝜀 𝐹 0 𝑖 |) 𝑠𝑖 |𝜀 𝐹 0 𝑖 | ≤ 0 𝑖 ) 2𝑟 𝑖 𝑠𝑖𝑛𝑜𝑛 𝐿 𝑖 𝜏 𝑖	𝐿 𝑖 𝜏 𝑖 𝐸 𝐹 𝑖 𝑟 𝑖	∀𝑖 (Eq. 10)
			𝜎 𝐹 0 𝑖	𝜎 𝑀𝑣𝑒 12 0 𝑖	𝜎 𝑀𝑣𝑒 13 0 𝑖	
		𝜎 𝐹 𝑖 = 𝑇 𝑖 [	𝜎 𝑀𝑣𝑒 12 0 𝑖	𝜎 𝑀𝑣𝑒 22 0 𝑖	𝜎 𝑀𝑣𝑒 23 0 𝑖	] ∀𝑖	(Eq. 11)
			𝜎 𝑀𝑣𝑒 13 0 𝑖	𝜎 𝑀𝑣𝑒 23 0 𝑖	𝜎 𝑀𝑣𝑒 33 0 𝑖	

L'exposant "0 i" signifie une expression dans le repère local lié au milieu de fibres n°i.

  ). Pour cela, des tenseurs d'endommagement intermédiaires sont construits en considérant notamment que les fibres empêchent l'endommagement matriciel dans leur direction d'orientation (Eq. 18).

	𝐷 𝑖𝑗𝑘𝑙 = 𝑣 ′	𝑀 (1 -𝑑)𝛿 𝑖𝑘 𝛿 𝑗𝑙 + ∑	𝑁 𝑎=1	𝑣 𝐹 𝑖 𝑣 𝑀	∑	3 𝑝,𝑞=1	𝑇 𝑖𝑝 𝑎 (𝑇 𝑎 ) 𝑞𝑗 -1 (𝑇 𝑎 ) 𝑝𝑘 -1 𝑇 𝑙𝑞 𝑎 𝐷 𝑝𝑞𝑝𝑞 𝑎
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CHAPTER 5. DAMAGE AND FRACTURE MODELLING

the load, namely (A -A D ). In the case of isotropic damage, the effective stress is expressed as follows [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF]:

where σ and σ are respectively the effective and true Cauchy stress tensors (Figure 5.1).

Consistently with earlier formulation of the constitutive laws (section 3.2.1.1), damage description is performed within the framework of thermodynamics of irreversible processes. In the case of homogeneous material and if the ratio of surface defects is identical in all directions, the damage can be modelled as isotropic. In that case, it can be entirely characterised by the scalar variable, D. When dealing with anisotropic materials, for instance fibre reinforced matrices, the whole behaviour, including damage developement, is governed by the reinforcement properties (Figure 5.2). Anisotropy has, therefore, to be taken into account for the modelling of damage developpement. In this case, the scalar variable can no longer be representative of the damage developpement and a 4th-order damage tensor, D, is introduced in order to link the real, σ M , and effective, σM , Cauchy stress tensors [START_REF] Notta-Cuvier | Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientations[END_REF] (Equation 5.3).

σ M = D σM (5.3) Indeed, damage development in the matrix material is directly dependent on the orientation and the volume fraction of fibres.
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is assumed that fibre length is sufficiently low with respect to the critical length so that fibre breakage is unlikely to happen. On the contrary, degradation of fibre/matrix bonds at the interface is generally considered as a major damage phenomenon of SFRC. It is adressed in this part of the work based on microscopic observations reported in the literature. In particular, a highlight is done on the interface degradation process described by Sato et al. [START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF] for a polyamid reinforced by short glass fibres. These authors established a scenario of successive steps leading to composite failure under tension, which constitutes the basis of current developpements. Thanks to direct insitu SEM observations, Sato et al. [START_REF] Sato | Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation[END_REF] have postulated that mechanism of composite progressive failure initiates at fibre tips and can be described by the following steps:

1. Initiation of interfacial microfailure at fibre tips due to high tensile stress concentration around fibre tips (from about 50% of ultimate composite stress).

2. Separation at the interface, formation of microvoids in the matrix material at the vicinity of the fibre tips. 

Validation of the damage model

The described laws of debonding evolution are coupled to the previously described constitutive laws of the composite material (with damageable viscoelastic-viscoplastic matrix).

A flowchart summarising the implementation of the behaviour model, including laws of the matrix ductile damage and fibre-matrix debonding, is presented in Figure 5.19.

The validation of the complete model is performed by comparison with experimental tensile data obtained for the PP-30GF with the different loading angles (realised at 1 mm.min -1 ). Note that the effect of strain rate on the developement of damage mechanisms is not adressed in this work.

Results presented in Figure 5.20 show that the predicted response of the implemented model is in a better agreement with the experimental results for the presented cases compared with previous results, obtained without the consideration of damage phenomena. So, these comparisons prove the ability of the present model to reproduce the damage phenomena occuring in the composite material. From comparison of these results, it is observed that predicted failure strain values are rather close to the inferior limit of the experimental range. The relatively important variation of experimental values of the failure strain, i.e. the large experimental range, is not reproduced by the simulated one (respective relative deviations are of 23.9 % and 8.7 %). This is presumably due to the fact that local variation of fibre orientation within the fracture zone, which is not taken into account with the current distributions of orientation (averaged over the scanned volume), has its effect on the failure strain level.

VALIDATION OF THE DAMAGE MODEL

The same procedure is adopted for the computation and verification of the failure strain for specimens cut at 90 • with respect to the injection flow direction. It is observed from cartography of axial strain at the pre-failure step (Figure 5.32) that area of high strain values at break is more 5.5. FRACTURE MODELLING 127 extended than that of 0 • -specimens. In other words, axial strain is less localised in the case of 90 • -specimens. This may be an indicator of a more ductile fracture behaviour for specimens with higher preferential fibre orientation with respect to loading direction. It is worth mentioning that a higher value of failure strain would be predicted by the implemented model if fibres were more oriented in transverse direction than in specimen PP30-90-4, which is characterised by an important proportion of fibres with low angle with respect to loading direction Appendix A

Identification of the parameter C nucl

As stated in Section 5.3 the parameter C nucl (Equation 5.38) is experimentally identified. It is to note that experimental data used here are obtained from tensile tests realised on notched specimens of composite material (PP-30GF) and described in section 5.5.1. The parameter C nucl is identified by measuring the relative variation of the composite volume, ∆V , using measurements of axial, ε yy , and transversal, ε xx , strain fields (by DIC), and by assuming transverse isotropy. The relative variation of the composite volume, ∆V , is in that case expressed as follows:

∆V can be split into a damage volume fraction, ∆V d , equal to ν tot v , and into a relative variation of strain volume due to Poisson effect. According to G'Sell et al. [?], the relative variation of strain volume is the sum of a linear, ∆V ε,L , and a non-linear, ∆V ε,NL , parts. In the linear elastic range, the variation of strain volume is defined by: ∆V ε,L = (1 -2ν) ε yy , where ν is the composite Poisson ratio. Similarly, in the non-linear range, the "tangent Poisson ratio", ν T = -dε xx /dε yy , is introduced so that:

As non-linearity of behaviour begins at a relatively low level of axial strain, the ∆V ε,L is neglected in the following, i.e. ∆V ≃ ∆V εd + ∆V ε,NL . Evolution of fractions of volume change, ∆V and ∆V ε,NL , is presented in Figure A.1 for the notched specimen PP30-0-4 (as the corresponding distribution of fibre orientation is known and will be used for the parameter identification). It is now possible to plot the evolution of ν tot v and to identify the value of C nucl as the one leading to the best fit with experimental data. This way, a value of 12 is found for the parameter C nucl . Figure 

Abstract

Short fibre-reinforced composites are commonly used in a variety of engineering applications, including automotive and aerospace industry. Today, their use is progressively extended to parts possibly subjected to severe loading conditions (e.g. crash...), characterised by high strain rates.

Therefore, an efficient modelling that takes into account material's specificities at a large strain rate range is needed. A constitutive model of viscous behaviour of short-fibre reinforced composites (SFRC) where complex distributions of fibre orientations are taken into account is proposed in this work. The approach considered for the computation of composite macroscopic behaviour is based on an additive decomposition of the state potential. The SFRC is assimilated to an assembly of several fibre media embedded in a polymeric matrix medium. One of the main assets of this approach is the possibility to model reinforcement with complex distributions of fibre orientations. Moreover, this decomposition allows the implementation of complex behaviour laws coupled with damage models. The polymeric matrix behaviour is typically strain-rate sensitive, i.e. viscoelastic-viscoplastic. This property has to be taken into account when the modelling of the composite behaviour over a large range of strain rate is intended. Therefore, a viscoelastic