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Abbreviations and notations

Acronyms/Abbreviations

SFRC Short Fibre Reinforced Composite

SFRT Short Fibre Reinforced Thermoplastic

PP Polypropylene

µ-CT Micro-Computed Tomography

IFD Injection Flow Direction

VE Viscoelastic

VP Viscoplastic

E-VP Elasto-Viscoplastic

VE-VP Viscoelastic-Viscoplastic

DMA Dynamic Mechanical Analysis

MFR Melt Flow Rate

DIC Digital Image Correlation

Operators

xi component i of a vertor x

xi j component ij of a second-order tensor x

xi jkl component ijkl of a fourth-order tensor x

xT Transpose of tensor x

ẋ Material time derivative of x

⟨.⟩ Macauley bracket

δi j Kronecker symbol

: Double contraction of tensors
∂x
∂a

Partial derivative of x with respect to a

δi j Kronecker symbol
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Variables and parameters

Matrix viscoelasticity

σM Cauchy stress tensor of the matrix material

σM,dev Deviatoric part of the matrix stress tensor

σM,H Dilatational part of the matrix stress tensor

ε Total strain tensor

εve Viscoelastic part of the strain tensor

εve
dev Deviatoric part of the viscoelastic strain tensor

εve
H Dilatational part of the viscoelastic strain tensor

ρM Density of the matrix material

ϕM Helmholtz free energy of the matrix material

ϕ ve
M Viscoelastic part of the Helmholtz free energy

Rve Fourth-order relaxation tensor

E∞ Long-term elastic modulus

Ei ith time dependent modulus

G Shear relaxation function

K Bulk relaxation function

G∞ Long-term shear modulus

K∞ Long-term bulk modulus

Gi ith shear relaxation modulus

Ki ith bulk relaxation modulus

τd
i ith deviatoric relaxation time

µd
i ith deviatoric viscous coefficient

τv
i ith volumetric relaxation time

µv
i ith volumteric viscous coefficient



Abbreviations and notations 5

Matrix viscoplasticity

ψvp
M Viscoplastic potential of dissipation

εvp Viscoplastic part of the strain tensor

n Viscoplastic flow direction tensor

λ Viscoplastic multiplier

κ Hardening variable/cumulative viscoplastic strain

I1 First invariant of the matrix Cauchy stress tensor

I2 Second invariant of the matrix Cauchy stress tensor

f Raghava yield surface

Fvp Dynamic yield surface

σ vp Viscous overstress function

µ Hydrostatic pressure dependency parameter

σcomp Yield surface in compression

σt Yield surface in tension

H Hardening thermodynamic force/function

a+ Volume variation parameter under positive pressure

a− Volume variation parameter under negative pressure

m Strain rate sensitivity parameter

κ̇0 Viscosity parameter
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Fibre/Composite parameters

a⃗i Fibre orientation vector of the ith fibre medium

Ai Orientation matrix of the ith fibre medium

vi
F Volume fraction of the ith fibre medium

vF Total volume fraction of fibres

vM Matrix volume fraction

σ 0, i
F 1D fibre axial stress

σ i
F Stress tensor of the ith fibre medium

σc Composite stress tensor

F i
F Tensor of deformation gradient of the ith fibre medium

F Total deformation gradient tensor

C Right Cauchy-Green tensors of the composite

Ci
F Right Cauchy-Green tensors of the ith fibre medium

ε0, i
F 1D Hencky strain of the fibres

τ Interfacial Shear Strength

Li Fibres length in the ith medium

ri Fibre radius in the ith medium

E i
F Elasticity modulus in the ith fibre medium

N f am Number of fibre media

ρ Density of the composite material

ρ i
F Density of the ith fibre medium

ϕ i
F Helmholtz free energy of the ith fibre medium



Abbreviations and notations 7

Ductile damage parameters

D Damage scalar variable

σ̃M Effective Cauchy stress tensor of the matrix material

D Fourth-order damage tensor

D ′ Derivative of the damage tensor

Dα Intermediate fourth-order damage tensor

M α Inverse of the intermediate fourth-order damage tensor

Y Damage thermodynamic force

Ydev Deviatoric part of the damage thermodynamic force

YH Hydrostatic part of the damage thermodynamic force

ψD
M Damage dissipation potential

S Damage parameter

Interfacial debonding and failure parameters

εth Threshold strain value of devonding initiation

LαD Microfailure length over the partially debonded fibre for fibre medium α

deltaα length on wich load transmission is prevented for fibre medium α

νnucl
v Volume fraction of nucleated voids

νcrit
v Crtical volume fraction of nucleated voids
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Chapter 1

General Introduction

Composite materials are known as new generation of strong-stiff and lightweight materials. Yet

this kind of material has existed in nature for thousands of years now, like wood, bamboo and

bones, long before the modern engineering community thought of developing the first composite

material. In general a composite is made from two or more distinct materials with significantly

different physical and/or chemical properties, which produce a material with properties different

from those of the individual components. The first phase of composite material is called matrix and

its main role is to transfer load to reinforcing agents. Polymeric matrices are under concern in this

work. Scientists developed the first polymers, a result of the polymerisation process of monomers,

at the beginning of the 20th century. Examples of synthetic polymeric structures, amongst others,

include nylon, polyethylene, polyster, and epoxy. According to their thermomechanical properties,

two categories of polymeric matrices can be found: Thermoset (e.g. epoxies) and thermoplastic

(e.g. nylon, polypropylene, high density polyethylene, polycarbonate) polymers. The primary

physical difference is that thermoplastics, with linear and branched chains, can be remelted back

into a liquid form, whereas thermoset plastics, with crosslinked chains, will always remain in a per-

manent solid state. Given the relatively “weak” properties of polymeric materials, reinforcement

is needed to create a stiff material. Therefore, a second phase is introduced as reinforcing agent

like particles, nanotubes, nanoparticles or fibres (continuous, long or short). A relation between

density and Young’s modulus for various materials can be seen in Figure 1.1, where the high

mechanical properties of reinforcement (fibres, particles), compared to those of polymeric ones,

are highlighed.

1



2 CHAPTER 1. GENERAL INTRODUCTION

5

Carbon fibre

Kevlar fibre

Carbon fibre
composites

Diamond

Steel
Alumina

Titanium

Glass

Glass fibre
composites

Carbon fibre
composites

(// fibres)

( fibres)
Wood

(// grain)

Polymer resins

Wood
( grain)

0.2 0.5 1 2 5 100.1
0.1

1

10

100

1000

Density, ρ (Mg m-3)

Yo
u
n
g
's

M
od

u
lu

s,
 E

 (
G

Pa
)

Yo
u
n
g
 M

od
u
lu

s
(G

Pa
)

Figure 1.1: Stiffness of various materials with respect to their densities

With fibre reinforcement, it is well established that stiffness, strength and, for many polymers,

toughness are improved. The dimensional stability, creep resistance, ageing and weathering prop-

erties, crucial in some applications, can also be improved. The increase in stiffness and failure

stress of a Polypropylene matrix reinforced by 40% in volume fraction of short glass fibres and

loaded in main fibre direction is highlighed in Figure 1.2.

Two categories of reinforcing fibres can be distinguished: continuous (or long) and short fibres.

The fibre reinforced composites with the highest mechanical properties are those with continuous

fibre reinforcement. However, such materials cannot be adapted easily to mass production and are

generally confined to products in which the property benefits outweigh the cost penalty. Short fibre

reinforced composites (SFRC) can offer a unique combination of properties with interestingly

superior mechanical properties over the parent polymers. Among other advantages, short-fibre

reinforced composites are interesting from an industrial point of view for their relatively low

cost and easy manufacturing process as they can be processed in a manner similar to polymeric

materials. In the case of thermoplastics, conventional fabrication techniques, such as extrusion

compounding and injection moulding, are available, allowing mass production of components

with quite intricate shapes.
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Figure 1.2: Polypropylene matrix reinforced with 40% of short glass fibres under uniaxial tension test at a
constant strain rate. In the figure σ f represents the failure stress [1].

In this context, short fibre reinforced composites are finding ever-increasing interest in engineering

applications, such as automotive industry (e.g. for the manufacturing of instrument panels of

vehicules).

The kind of composite material to be further discussed in this manuscript is a thermoplastic matrix

reinforced with short glass fibres. The properties of SFRC are partly induced by the composition

(fibre volume fraction) and partly by the processing, giving a wide range of property combinations

to which both designer and manufacturer should be alert. By adding suitable fibres and by con-

trolling factors such as the aspect ratio, the dispersion, the fibres orientation and the fibre-matrix

adhesion, significant improvements in property can be achieved.

The extensive use of these composites needs, however, a thorough theoretical knowledge of their

properties and their interactions with process and/or loading conditions the material will have to

withstand. This becomes more crucial under extreme loading conditions (e.g. crash or impact load-

ing) with the material behaviour complexity (e.g. polymeric matrices viscosity). In that context,

characterisation of short fibre composite materials, prediction of effective mechanical properties

and micromechanical analytical modelling under various loading conditions are a field of study for

researchers. For instance, when targeted structures are subjected to high speed loading application,

robust theoritical approche that can take strain-rate sensitivity into account, in addition to other

specificities (like reinforcement complexity and damage phenomena) are needed for a reliable

prediction of the materials behaviour.
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Taking all the aforementioned into consideration, the ultimate objective of this thesis work is to

present an efficient approach for the numerical modelling of short fibre composite in the frame-

work of dynamic loading. Major guidelines for this work is that most important interdepen-

dent phenomena, for instance, viscosity, complex anisotropy, failure mechanisms, are to be fully

adressed in a unified modelling. The proposed approach is at an intermediate scale between

complex homogenisation approaches and often inaccurate purely phenomenological descriptions.

The current approach is based on the additive decomposition of the composite thermodynamic

potential. The composite is thus seen as the assembly of a matrix medium and several media of

embedded fibres. The deformation gradient, applied to the composite as a whole, and its multi-

plicative decomposition implicitly link the media. A main asset of this approach is its adaptability

to all kinds of reinforcement characteristics (orientation and geometrical properties) and matrix

behaviour while keeping the implementation relatively easy. The matrix behaviour is modelled

as strain rate dependent using a coupled Viscoelastic (VE)-Viscoplastic (VP) scheme. Complex

distributions of fibre orientation are considered, leading to an accurate representation of the actual

reinforcement orientations. Thus, the coupled influence of strain rate and anisotropy of SFRC

behaviour can be modelled. An experimental compaign is conducted in order to identify the

material parameters used in the model. According to experimental observations, damage mech-

anisms, mainly matrix ductile damage and fibre-matrix decohesion occur during the material

loading. These phenomenon are introduced in the constitutive model which is implemented in

an explicit finite element code. The accuracy of the developped model is evaluated by comparison

with experimental tests at various loading configurations and for a wide range of strain rates.

In order to fullfil the afformentioned objectives the work is structured according to the following

major lines: A part is dedicated to the proposition of a modelling approach with the developpe-

ment and implementation of constitutive laws for short fibre reinforced thermoplastic material

subjected to dynamic loadings. A second part is about the experimental investigations conducted

in order to identify the material parameters, to microscopically characterise the fibres distribution

of orientation and to characterise the composite behaviour under different loading configurations.

A Final part is devoted to the modelling of failure mechanisms in SFRC as a progression of damage

phenomena leading to composite’s ultimate failure.
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Outlines of the report

The manuscript is structured around the most important issues to deal with when modelling and

characterizing the composite behaviour untill its ultimate failure. It is organized as follows:

• Chapter 2 introduces general aspects related to the material under investigation and pro-

vides a background for the mechanical characterisation of short fibre composite thermoplas-

tics. Most important contributions for the modelling of short fibre reinforced composites

are reviewed throughout this chapter. Different approaches that have been developed will

be presented and a bigger attention to the fundamental approches on micromechanical

modelling will be payed. Finally the chapter highlights the motivations of the modelling

choices presented in this work.

• Chapter 3 deals with the developped constitutive model. Firstly, the thermodynamic basis

of the approach is presented. Then the different constitutive laws associated to the matrix,

the fibres and the short-fibre-reinforced composite are presented for non damaged material.

• Chapter 4 deals with the experimental procedure for the identification of the involved ma-

terial parameters and the characterisation of the composite material behaviour. Tests and

procedure for identification of matrix material parameters are first described. The composite

microstructure is then analysed, in particular thanks to the characterisation of complex dis-

tributions of fibre orientation by micro-computed tomography. Finally the proposed consti-

tutive model is validated by comparison between the simulation results and the experimental

data.

• Chapter 5 is devoted to the modelling of damage mechanisms and ultimate failure of short

fibre reinforced composites. Damage modelling is performed by associating an anisotropic

ductile damage model to the matrix material and an interfacial damage model to fibre-matrix

interface. Identification of the involved parameters is based on experimental tests realised on

a SFRC. Finally, a fracture criteria is defined as a threshold of the predicted damage amount

that a SFRC can withstand.

• Finally Chapter 6 gives a conclusion of this work. The manuscript ends with perspectives

for further study and some possibilities of improvements of the current work.





Chapter 2

State of art of short fibre reinforced

composites behaviour and modelling

Short fibre reinforced composite materials (SFRC) are attractive for many industrial applications

thanks to interesting mechanical and physical properties. Their superior mechanical properties in

combination with low manufacturing cost are the main reasons behind their wide use and study.

A wide range of investigations have been done in order to assess the potential and limitations

of such materials in different loadings or environmental conditions, for numerous combinations

of matrix and reinforcement materials. It was widely reported that main factors governing the

physical and mechanical behaviour of SFRC are the properties of the individual constituents, fibre

volume fraction, fibre orientation and length distributions and fibre-matrix interface strength.

The present chapter provides a background for general aspects and mechanical characterisation

of short fibre composite materials. Through this chapter different experimental investigations and

numerical approaches that have been developed by numerous researchers through the years will

be presented. The chapter begins by discussing the main aspects and manufacturing processes

with the major factors affecting the behaviour of short fibre composite. It continues by addressing

the major results about the characterisation of the material’s behaviour and then the fundamental

numerical methods and theoretical approaches on micromechanical analytical modelling.

2.1 Generalities about short-fibre reinforced thermoplastics

The significant improvements induced by adding fibres to thermoplastics in mechanical (stiffness,

strength, toughness, resistance to creep, dimensional stability) and thermal (maximum service

temperature) properties can be obtained without sacrificing the mouldability of the materials

for SFRC. Conventional extrusion compounding and injection moulding machines designed for

7
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unfilled thermoplastics, allowing rapid production of components with complex shapes, can then

be used for SFRC [2]. In fact, common commercial grades of fibre reinforced thermoplastics

can be processed at temperature, pressure, injection rate and cycle duration similar to those used

to process unfilled thermoplastics. There are, however, differences between processing of fibre

reinforced materials and unfilled thermoplastics that must be heeded. For instance, the fibre length

degradation, which affects fibre aspect ratio, depends on tools and operating conditions [3].

Most influencing process parameters are flow speed and temperature and mould geometry [4, 5].

Other crucial properties of SFRC, such as fibres’ distribution of orientation, are strongly dependent

on manufacturing process. In addition, as reported for instance by Milewski [6] and Fu et al [7],

increasing the volume fraction of fibres increases the probability of fibre to fibre interaction and

then has a direct consequence on the fibre length, aspect ratio and orientation. In the following of

this section, attention is payed to morphological aspects of SFRC and then to the fibre orientation

as main source of anisotropy in the material.

2.1.1 Microstructure of short fibre reinforced composites

The macroscopic behaviour of short fibre reinforced composites is directly dependent on its con-

stituents properties (i.e. fibres and matrix material properties), fibre/matrix interfacial properties

and the reinforcement configuration. Among microstructural characteristics of SFRC the rein-

forcement configuration and properties are of great importance (i.e. fibre volume fraction, fibre

orientation and length distributions, interfacial properties,...). The fibre volume fraction is usually

fairly controlled, though local variations of fibre density (i.e. significantly higher and lower fibre

content than the average value) may occur. There are, however, very few reports of measurements

of this in the literature. In contrast, short fibre orientation is difficult to control (see Figure 2.3)

and constitutes a process-dependent property that greatly influences the overall properties of the

composite material.

Tool geometry and processing conditions are beyong process parameters to be manipulated specif-

ically to control the fibre orientation distribution in the product. Attempts to control distributions

of fibre orientation have been proposed by developping models for the dependence of fibre orien-

tation distribution on processing conditions [9, 10]. A study was performed by Goettler [11] on

fibre orientation during injection flow in order to optimise the composite directional strength and

stiffness using a kinematic model. Akay and Barkley [12] have treated process parameters, fibre

orientation distribution and mechanical properties as inter-related variables for injection-moulded

short-glass fibre-reinforced polypropylene. They have shown that an increase in melt and mould
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Figure 2.1: Example of a microstructure: Polyamide 6.6 matrix reinforced with short glass fibres [8]

temperature and injection speed cause a significant decrease in short fibre alignement along the

injection flow direction. In their study they also investigated the gradual change in the preferential

fibre alignement in the mouldings. In fact, an injection moulded short fibre composite tends to have

a stratified morphology in which the most prominent feature is the variation of fibre orientation

distribution through the thickness. This layered structure is mainly induced by differential solidifi-

cation, shearing and melt-flow or fountain-flow patterns effect (including divergence, convergence

and shape of the flow fronts). A shematic representation of the fountain flow process is given

in Figure 2.2. Interactions with neighbouring fibres and/or with mould wall are also reported to

be of significant influence on the fibre alignement during melt-flow process. Base on microscopic

observation, it has been reported that injection moulded samples exhibit a skin/shell/core/shell/skin

organisation through thickness with different fibre orientation [12, 13].

The fibres in the shell regions are predominantly aligned along the flow direction due to high

shearing near the mould wall surface. The core region consists, however, on predominanly tran-

verse fibre alignement, owing to low shearing and high extensional flow. Finally, the fibres in skin

regions, i.e. in areas adjacent to the walls of the mould cavity, adopt random orientation because

they are rapidly freezed in contact with comparatively cold walls during the fountain flow process

[14, 15].

A study on the layered structure of short fibre reinforced polymers was recently presented by Thi

[13], where it is found that layer proportions, i.e. layers relative thickness, are globally dependent

on the process parameters (e.g. mould geometry, matrix material viscosity, injection speed, fibre
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Figure 2.2: Melt flow profile of short fibre reinforced polymer within mould cavity during filling.

content and aspect ratio,...). According to the work presented by Akay and Barkley [12], fibre ori-

entation within injection moulded SFRC has a direct effect on tensile properties of the composite.

They examined the evolution of the elastic moduli and ultimate tensile strength values and found

that they are reduced when increasing the core relative thickness.

Given the complexity of SFRC microstructure and its crucial effect on the mechanical behaviour,

a number of researchers have been interested in developing accurate techniques for measuring the

fibre orientation in injection-molded parts formed from short-fibre composite.

2.1.2 Techniques of orientation measurement

Measuring fibre orientations started first by acquiring data either from polished sections by re-

flective microscopy or from microtomed samples by transmission optical microscopy or contact

microradiography. Experimental results in this category are reported in [4, 16, 17, 18].

Fischer and Eyerer [19], Bay and Tucker [20], Zhu et al [21] and Hine et al [22] measured short-

fibre orientations by examining polished cross-sections by optical reflective microscopy. In these

works, they considered the ellipse-shaped intersection of a fibre with a plane to calculate the

misalignment angle of the fibres axis. Later, Zak [23] proposed a three-dimensional measurement

of distribution of fibre orientation by combining data from two consecutive closely spaced cross-

sections of a specimen. This method was presented as an unbiased distribution data for the near-

zero misalignment angles and a solution to the orientation duality problem. Eberhardt and Clarcke

[24] and Clarcke et al [25, 26] presented automated techniques of the use of confocal laser

scanning microscopy for the measurement of 3D distributions of orientation which enables semi-
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transparent materials to be optically sectioned for a given distance from the sample’s surface.

Compared to conventional optical and electron microscopies, acoustic, and scanning tunneling

microscopies, x-ray microtomography offers unique imaging capabilities, for instance the pos-

sibility of three-dimensional scanning. A comparison between optical and tomographic methods

is performed by Bernasconi et al [27]. The system consists of a high-resolution imaging x-ray

detector and high-speed tomographic image reconstruction procedures together with a collimated

monochromatic area-filling x-ray beam. Tomography scanning technique is based on mathemat-

ical analysis that consists on the reconstruction of a function from values of its line integrals

[28]. Transmission tomography implements the needed mathematics to create non-destructive

cross-sectional images of the internal structure of a sample from measurement and analysis of

penetrating radiation directed through the sample in multiple coplanar rays [29]. Shen et al [30]

used micro-CT to observe and measure the fibre orientation in a 5 wt% short-glass-fibre-reinforced

phenolic foam. They reconstructed the 3D fibre distribution of the foam from the obtained micro-

CT images, and then they imported this 3D quantitative information into the software program

Auto-CAD and used it to analyze the spatial length and orientation of the individual fibres. A

global characterisation of fibre orientation distribution by micro-CT was proposed by Nguyen Thi

et al [31] for high fibre content.

In this work, x-ray microtomography will be used for the characterisation of the reinforcement

configuration in a short-glass-fibre-reinforced polypropylene at microscopic scale.

2.2 Behaviour of thermoplastic matrices

In this thesis work, composites under study are polymer reinforced composites. General aspects

about polymeric behaviour and, more precisely, thermoplastic polymers are reviewed in the fol-

lowing paragraphs.

Polymer materials result of the polymerisation of small size organic molecules, called monomers.

The structure of the formed macromolecules differs and give rize to different architectures. Two

main types can be distiguished according to these architectures; thermoset and thermoplastic poly-

mers. Attention will be paid here to thermoplastics as widely used polymers in the case of short

fibre reinforced polymers. The molecular structure of thermoplastic polymers is either crystalline

(organized, in which the chains are aligned), amorphous (not organised, e.g. Polystyrene (PS) and

Polycarbonate (PC)) or semi-crystalline, where the two structures coexist and the corresponding

polymer is characterised by a degree of crystallinity (e.g. Polyethylene (PE) and Polypropylene
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(PP)) [32].

Many studies have been dedicated to the characterisation of thermoplastic behaviour when sub-

jected to a wide range of loading conditions. The rate dependency is one of the main features of

semi-crystalline thermoplastics that becomes more crucial when dealing with high speed applica-

tions, in particular. Zhang and Moore [33] have shwon the significant increase in the response of

High Density Polyethylene (HDPE) as the strain rate hardening is varied.

For the global behaviour of thermoplastic polymers usually a distinction is made between the

linear elastic and/or linear viscoelastic regime at small strains, the nonlinear viscoelastic response

at moderate strains and the viscoplastic behaviour at rather large strains. The modeling of the me-

chanical response of these polymers can be a difficult task because the numerical model represent-

ing material’s behaviour must account for all of these deformation regimes. In the literature, these

polymer materials are usually described and modelled as viscoelastic (VE), elasto-viscoplastic

(EVP) or viscoelastic-viscoplastic (VE-VP). The difference between these classes of behaviour

can be illustrated by a uniaxial tension test which comprises a monotonic loading phase followed

by unloading to zero stress. In the case of viscoelasticity, the response is rate dependent in both

phases, which implies that the stress-strain slope (Young’s modulus) increases with increasing

strain rate. Upon unloading to zero stress, the material retrieves its initial zero stress state, not

instantly, after a sufficient waiting time. A complete description of viscoelastic behaviour is given

by Christensen [34], Findley [35] and Salençon [36]. An elasto-viscoplastic polymer will behave

differently during the same uniaxial loading/unloading test. Below an initial yield stress, the

response is rate-independent linear elastic. Beyong it the stress-strain response is both nonlinear

and rate-dependent, with the stress increasing with the strain rate. After unloading to zero stress,

there remains an irreversible strain which decreases but does not disappear even after a long time.

For a description of EVP models, one can refer to Perzyna [37] and Lemaitre and Chaboche [38].

A thermoplastic polymer can also behave as a combination of these two types of behaviour. In

fact, when the response is rate dependent below and above the yield stress, the overall behaviour is

classified as viscoelastic-viscoplastic. This combination has got a physical explanation in the case

of semi-crystalline thermoplastics. Indeed, several micromechanical observations tend to show that

crystalline lamellae and amorphous chains are assembled in series and obey VE and VP behaviour,

respectively [39]. Chaboche [40] considered this case to develop a combined constitutive model

for polymeric materials. A more thorough study of viscoelastic-viscoplastic behaviour modelling

will be further adressed in the manuscript. In addition to rate dependency, thermoplastics can show

a strong dependency to temperature, as demonstrated by Karger-Kocsis and Friedrech [41]. The
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later property is however not in the scope of this work.

Other features can characterise the behaviour of thermoplastics when subjected to a wide range

of loading conditions. For instance they can exhibit non isochoric plastic flow and pressure de-

pendent behaviour. Non-isochoric plastic flow of polymers has been studied by various authors.

The volumetric strain of polyethylene terephtalate (PET) and high-impact polystyrene (HIPS)

has been measured by G’Sell [42] using a video-controlled testing where the longitudinal and

transverse strains are measured by tracking markers positioned on the specimens. In the same

way, the volume strain measurement for polypropylene (PP) material was quantified by G’Sell

et al [43] and Jerabek et al [44]. From the obtained results, authors concluded that the plastic

deformation should not be considered as an isochoric process. The effect of hydrostatic pressure

on the behaviour and for instance on the yield stress of polymers has been widely studied as

well (e.g., Wang and Pan [45]; Khan and Farrokh [46]). It was reported that this is caused by

the structure of the polymer chains in thermoplastic polymers. Under a load, a specific energy is

needed to move a chain segment or side chain. The flexibility of chains requires a certain free

volume, which is smaller at higher hydrostatic pressures. Thereby, the inner molecular forces

have a stronger effect. Thus, the molecular flexibility is restricted and is affected by the applied

hydrostatic pressure. Sauer and Pae [47] have highlighted the particular dependency to hydrostatic

pressure in semi-crystalline polypropylene.

As stated in introduction, polymeric materials often serves as the blinder in composite materials

when reinforced by stiff inclusions (particles, fibres (long or short), platelets, etc...). In this case,

the complexity of their behaviour is enhanced by the presence of fillers with complex properties, in

terms of geometry, orientation. The following section highlights the main aspects in the behaviour

of reinforced polymers and precisely in the case of short fibre reinforced thermoplastics.

2.3 Behaviour of short fibre reinforced composites

The mechanical behaviour of short fibre reinforced composites can be complex because of the

complexity of the polymeric matrix behaviour and of the reinforcement characteristics, for in-

stance in terms of distribution of orientation and length. Experimental investigations exist in

the literature for the characterisation of short fibre reinforced composites. An extended study

on mechanical and thermal properties of short fibre composite materials has been presented by

Thomason [48]. The author investigates the influence of fibre length and volume fraction of a

composite consisting of short glass fibres embedded in a polypropylene matrix. Results show that
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stiffness increases almost linearly with respect to fibre concentration up to a volume fraction of

60%. A similar dependency between fibre length and stiffness was observed. Composites with

higher fibre content show lower stiffness which may be due to fibre packing and out-of-plane

orientation tendency. Moreover, when applications with severe loading conditions, such as crash

or impact, are targeted, it is crucial to characterise the dependency of the material to strain rate.

As thermoplastic polymers, such as polypropylene (PP) exhibit a viscoelastic and/or viscoplastic

behaviour, i.e. sensitive to strain rate, the mechanical behaviour of composite material is likely

to be directly impacted by this property of matrix material. This strain rate sensitivity is reported

by Mouhmid et al. for a short-glass-fibre reinforced PA6,6 [49], Reis et al. for a short-glass-fibre

reinforced polyurethane [50] and Schofig et al. [51] for glass-fibre-reinforced polypropylene and

polybutene-1. In the same way Fitoussi et al. proved the sensitivity of a glass-fibre-reinforced

ethylene-propylene copolymere to strain rate by tensile tests performed in the injection flow

direction of the composite [52] (Figure 2.3). In such materials, where the complexity of matrix

behaviour can be added to that of the reinforcement properties, the strain rate sensitivity has to

be associated to the anisotropy induced by the fibres. Therefore, the coupled effect of strain rate

dependency and fibre orientation has to be characterised in the case of SFRC. There is however a

lack of data concerning this issue. A work is presented by Krivachy et al [53] on the characteri-

sation of the mechancal behaviour of short fibre thermoplastic (Crastin: Polybutylene-terephthalat

and Acrylnitril/Styrol/Acrylester with 20 weight % short-glass fibres) under compression, shear

and tension loadings at different velocities. Results show that the material appeared to be strongly

anisotropic and strain rate dependent, with additional influence of hydrostatic pressure on plasticity

and failure behaviour. The study was however limited to an orthotropic assimilation of the material

and no coupled effect of anisotropy and strain rate sensitivity was directly studied. Finally, the

behaviour of short fibre reinforced composites can be considerably affected by different coexisting

damage phenomena. It is reported in literature that the most important are fibre-matrix interfacial

debonding and matrix anisotropic ductile damage [54, 55]. A more particular attention is payed to

the developpement of damage phenomea within a short fibre reinforced composite in the chapter

4 of this report.

2.4 Modelling of short fibre reinforced composites

Computation of macroscopic stress-strain relationship of SFRC is treated in the literature mainly

on the basis of micro-mechanical approaches. For these approaches, the macroscopic response of
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Figure 2.3: Stress-strain diagrams for PP with 40 wt.% glass fibres at different strain rates [52]

the heterogeneous material depends on the properties of its constituents as well as on their spatial

distribution, i.e., the microstructure configuration. Among them one may cite: direct finite element

(FE) analysis on representative cells of the microstructure [56], mean-field homogenization (MFH)

techniques and the asymptotic or mathematical theory of homogenization [57, 58].

The mechanical behaviour modelling of a short fibre composite was first adressed by the imple-

mentation of micromechanical models. Innovative works were released first in 1889 by Voigt and

in 1929 by Reuss. Both models were reference works since the earlier developed models were

mainly based on the Voigt and Reuss models, known later as the Rule of Mixtures (RoM) and the

Inverse Rule of Mixtures (IRoM), respectively. A modification of the Rule of Mixture was later

proposed in the pioneering work by Cox in 1952 [59] based on stress distribution along a fibre

using the shear lag model. It consisted on modifying the Rule of Mixture by introducing a fibre

length factor. The shear lag model uses microstructural parameters such as fibre length and fibre

to fibre distance in order to calculate macroscopic effective properties.

Later, the problem of multi-phases materials started to be differently and more thoroughly adressed.

The concept of phase concentration tensor of stress and strain was fist introduced by Hill [60, 61].

In his work, Hill treated the calculation of macroscopic elastic properties by taking into account the

relative concentration and geometry of inclusions. Inclusions are assumed to be aligned ellipses

and to have the same elastic properties as that of short fibres. The method is based on the solution of
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the auxiliary elastic problem involving a uniformly loaded infinite mass containing an ellipsoidal

inhomogeneity.

This concept was originally proposed by Eshelby in 1957 by analysing the heterogeneities of stress

and strain fields caused by an ellipsoidal inclusion embedded in an infinite matrix. The analysis

is based on a four steps virtual experiment, where the infinite matrix is subjected to a far field

strain. The strain and stress perturbations induced by the presence of the inclusion are treated by

an elastic accomodation between the inclusion and its surroundings [62].

The common process of homogenization methods can be summerized in two steps. Firstly, a

local problem of a single inclusion has to be solved in order to obtain the local response and

secondly a process of averaging of the local behaviour to obtain the global response takes place.

The assumption of non-interaction between inhomogeneities is considered to be valid in case of

low volume fraction of reinforcement. However, industrial applications of short fibre composites

generally demands relatively high fibre volume fraction, as a consequence this assumption is rarely

respected. Therefore, different theories have been developed to take into account such interactions

in the stress/strain fields. One of the most used homogenisation schemes is the model proposed

by Mori and Tanaka [63]. Similarly, The dilute diffusion model and the self-consistent model

have been developped, respectively, for the cases of low and high concentration of fillers. The

direct use of the homogenization methods was limited to linear elastic composites. Its extension to

different and more complex types of behaviour was first dealt with in the case of linear viscoelastic

composites. It consisted on applying the homogenisation schemes to an equivalent linear isother-

mal elastic representation of the viscoelastic behaviour, but in Laplace-Carson space. Using the

correspondance principle, constitutive equations are recast in a linear elastic form into the Laplace

domain [64, 65]. After homogenisation in the Laplace space, the effective properties are found by

the inverse transform. The case of non-linear behaviour was more complicated when dealing with

homogenizations schemes. Some formulations were proposed to tackle the problem of inelastic

composites by linearizing the constitutive laws and retrieving a linear elastic-like representation

of the model. Two of the most used linearization methods are secant [66, 67] and incremental

methods [68].

In the same way elasto-viscoplastic behaviour was dealt with. Masson and Zaoui [69] and Pier-

ard and Doghri [70] used the correspondance principle to model linearised elasto-viscoplastic

composites. Ju [71] and Doghri [72] worked on the linearization of time-discretized constitutive

equations. Later, the affine [73, 74, 75, 76] and the incrementally affine formulations [77] where

the proposal leads to thermo-elastic-like relations in the Laplace-Carson (L-C) and the time do-
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mains, respectively, have been proposed.

The case of viscoelastic-viscoplastic composites is more complicated and there are few available

models. Indeed, compared to viscoelastic or elasto-(visco) plastic behaviour modelling, the mod-

elling of viscoelastic-viscoplastic (VE-VP) short-fibre reinforced composites has received little

attention up to now and even less in case of relatively complex microstructure. A micromechanical

model was proposed by Kim and Muliana [78] for predicting a VE-VP response of particle rein-

forced composites. The studied composite consists of linear elastic spherical particles dispersed

in a homogeneous VE-VP matrix. The proposed model is actually an extension of a previously

proposed micromechanical model by Muliana and Kim [78] for nonlinear VE composites. It

assumes a composite microstructure with randomly distributed particles, idealized by periodi-

cally distributed cubic particles in a matrix medium. A unit-cell micromodel is then generated

with this microstructure. The cells and subcells homogenization method is developed in terms

of the average strains and stresses in the subcells. Good results were obtained with this model

for low volume fractions of particles, i.e. when interactions between particles can be neglected.

Aboudi [79] proposed a micromechanical model for multiphase materials in which matrix and

reinforcements phases can both behave as a VE-VP material. The model is based on an asymptotic

homogenization technique of composite materials with a periodic microstructure. The response of

the developped model depends highly on the complexity of composite’s microstructure.

All the aforementioned models are micromechanical models. The common base of the presented

theoretical work in micromechanical aspects is the idealisation of the materials morphology, based

on assumptions like equal distances between fibres, the uniform length and orientation, etc. Yet, a

closer examination of material’s morphology can give rise to a more realistic representation of the

microstructure of the composite taking into account various geometric parameters and allows to

develop more accurate material behaviour laws which can be evaluated through a computational

approach.

Works dealing with numerical models for short fibre composites considering microstructures or

micromechanical properties have been proposed in the litterature. Hine [80] has proposed finite

element model for the prediction of elastic properties of composites with aligned short fibres

of uniform length. Representations of the microstructure are realised by geometric periodicity.

Pan [81] also studied the effect of random fibre orientation on the macroscopic effective stiffness

properties of composite. Through the paper, the author underlines the difficulty of creating models

that represent the geometry at micro-level for high volume fraction. A method of generating three

dimensional, random fibrous realisations is presented which is based on the Random Sequential
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Absorption (RSA) algorithm. Fibres were simulated as sphere-cylinders, which are cylinders with

a hemisphere attached to both ends. LRSM is a method proposed by Ianita and Weitsmann [82]

and is a windowing approach able to rapidly evaluate a large number of fibre arrangements for in-

plane orientation. Calculations of effective properties are based on the classical laminate theory.

The method has the ability to measure the statistical inhomogeneity in the material by information

derived from local region. Berger el al [83] investigates the elastic constants of short fibre com-

posite materials using a three dimensional RVE. Fibres were simulated as cylinders for the case

of random orientation and aligned fibres. The periodic microstructure was created using the RSA

method. The author discusses the limitation of the fibre volume fraction with this method.

As it was explained by Kari et al. [84] the main advantage of analysing SFRC using numerical

models is the ability to approach, to a satisfactory degree, the real micro-structure of the material.

The author evaluates the effective mechanical properties of a randomly distributed short fibre

composite, for relatively high fibre volume fraction (40%).

Although various constributions have been proposed to model short fibre reinforced composites,

there are still remarkable efforts to do in order to attain a satisfying accuracy and efficiency of

modelling. In fact, handling simultaneously the two most important features about the composite

behaviour, i.e. complex microstructure and behaviour laws is still a field of study. Numerical

models can be limited by the heterogeneity of the reinforcement and its properties and specially by

the time consuming computation. Moreover, in addition to limitations dealing with constituents’

behaviour laws, homogenization methods, based on inclusion-type problems can become very

difficult to handle in the case of reinforcement with non-aligned short fibres. To overcome this

difficulty, Doghri and Tinel [85] have developed a double step homogenisation procedure. In a

first step, a two-phase “pseudo-grain” constituted of the matrix material reinforced with identical

and aligned fibres is homogenised. The second step then consists in the homogenisation of all

pseudo-grains to compute mechanical properties at the representative elementary volume scale,

taking all orientations of the fibres into account.

All these contributions show that the difficulty of implementing homogenisation based models for

SFRC increases significantly as the behaviour of constituents and fibres orientation distribution

become more complex. The main drawback of this approach is its numerical cost related to the

inversion of the Laplace transform. Alternative approaches need then to be developped in order to

present a unified model, where the materials complexity can be efficiently taken into account.
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2.5 Conclusion

In this chapter, most important mechanical and microstructural properties of short-fibre reinforced

thermoplastics are presented with a highlight on short fibre orientation. The most important ex-

isting results about the polymeric materials, and more precisely thermoplastics, and mechanical

behaviour of short fibre reinforced composites are presented. This litterature survey concerns, in a

second part, the main theoretical models developped through the years. Micromechanical models

provide a useful tool for the prediction of material mechanical behaviour. There is, however, a

lack of contributions where an acurate representation of the microstructure is represented while

the complexity of the materials behaviour is taken into account. Indeed, the complexity of the com-

posite microstructure, constituents behaviour, and interactions between them, are main features to

be adressed for an efficient modelling of the material behaviour. Considering the case of extreme

loading, when additional phenomena can intervens (i.e. damage mechanisms), and the high cost

of the available approaches in terms of computation time, it can be concluded that effort is still

needed for an efficient and complete modelling that goes beyond the limits of the existing models.

The presented litterature survey is also an indicator that a more simple and holistic approach can

be proposed as an alternative to the computation time costly avalaible approaches. It is therefore

very interesting to consider models of composite behaviour at an intermediate scale between very

complex homogenisation approaches and often inaccurate purely phenomenological descriptions.

Consequently, in this thesis, an alternative modelling based on the additive decomposition of the

composite thermodynamic potential is considered. The composite is seen as the assembly of a

matrix medium and several media of embedded fibres. The deformation gradient, applied to the

composite as a whole, and its multiplicative decomposition implicitly link the media. Nedjar [87]

used this approach for viscoelastic materials, assuming that fibres carry load only in tension.

Klinkel et al. [88] showed it can be theoretically applied to non-linear elasto-plastic behaviour

for the matrix and the fibres but without a practical application of their implementations in the

analysis of a short-fibre-reinforced material’s behaviour. More recently, Notta-Cuvier et al. [86]

used this approach to deal with rate-independent elastoplastic SFRC behaviour. A main asset

of this approach is its adaptability to all kinds of reinforcement characteristics (orientation and

geometrical properties) and matrix behaviour while keeping the implementation relatively easy.

The present work treats the modelling of SFRC’s behaviour when subjected to severe loading

conditions, in particular at high strain rates. To this end, the matrix behaviour is modelled using a

coupled VE-VP scheme. Complex distributions of fibre orientation are considered, leading to an
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accurate representation of the actual reinforcement orientations so that the coupled influence of

strain rate and anisotropy of SFRC behaviour can be modelled.



Chapter 3

Constitutive model for short-fibre

reinforced composites

It is reported from the existing contributions, described in chapter 2, that mechanical behaviour

modelling of short-fibre reinforced composites (SFRC) becomes very difficult when dealing with

complex behaviour of the constituents (e.g. non-linear time-rate dependent behaviour) and/or

complex reinforcement configuration (e.g. complex fibre orientation). To the author’s knowledge,

no direct or practical application is presented today for the modelling of fibre reinforced strain

rate dependent matrix with distributions of fibre orientation. Given the issues raised in previ-

ously reported works, it can be very interesting to consider models of composite behaviour at an

intermediate scale between generally limited and inaccurate phenomenological descriptions and

complex homogenization approaches. Following this line, we focus in this work on an alternative

approach originally proposed by Nedjar [87] and Klinkel et al. [88] that consists in assimilating

the composite to an assembly of a matrix medium with several media of embedded fibres. One

of main assets of this approach is its adaptability to all kinds of behaviour of matrix and fibre

media while keeping a relative simplicity of implementation. Recently, this approach has been

used by Notta-Cuvier et al. [54, 86] for the modelling of non-linear pressure dependent and

damageable behaviour of SFRC. In the current work, we consider the later approach to adress the

modelling of SFRC behaviour when subjected to severe loading conditions, and more precisely,

at high strain rates (e.g. cases of crash, impact...). Moreover, the division of the short fibres

into several families having their own mechanical and geometrical properties and orientation

allows easy consideration of all types of reinforcement characteristics, including distributed or

random orientations. In order to reproduce the strain rate dependency of the matrix material,

a coupled viscoelastic-viscoplastic (VE-VP) model is implemented in the framework of non-

associated viscoplasticity. The case of distributed orientations is considered for the reinforcing

fibres with load transmission at fibre/matrix interface described by an adapted shear-lag model

21
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[89].

This chapter presents, in a first part, the developped constitutive laws for matrix, fibres, load

transfer and composite mechanical response. The implementation of those laws in an explicit

temporal integration scheme and its validation are subsequently presented.

3.1 Presentation of the approach for SFRC modelling

In the current modelling, the composite is seen as the assembly of a matrix medium and several

media of embedded fibres. The deformation gradient, applied to the composite as a whole, and

its additive decomposition implicitly link the media, combined with the assumption of thermo-

dynamic potentials (elastic, plastic, viscoelastic..., as relevant) proper to each constituent. The

reinforced composite material is formed of short fibres assumed to be uniformly dispersed in a

thermoplastic matrix. Fibres with the same orientation, geometrical characteristics and mechanical

behaviour are grouped into a same family. Each fibre family - or medium - is therefore charac-

terised by its own orientation vector, expressed in a global coordinate system, i.e. linked to the

matrix, and volume fraction, computed according to actual fibre distribution of orientations and

geometrical characteristics. It can be noted that in the present work, all fibres will be assumed to

have the same geometrical characteristics but distributions of fibre length could be considered, for

instance. A fundamental assumption is that fibres carry load only in their direction of orientation.

Each medium of fibres is therefore assumed to behave as one-dimensional and the deformation

gradient tensor applied to a given fibre family is the projection of the global deformation gradient

tensor, which is applied to the composite, along fibre orientation. It is worth noticing that the

distribution of the short fibres into several families allows to model all types of fibres orientation,

including distributed and random orientations, in a simple way. The fibres’ behaviour is assumed

to remain linear elastic. Indeed, it is very likely that the composite fails before the stress applied

to the fibres reaches their initial yield stress, because of ductile damage of matrix material and/or

fibres debonding, for example. So, extending the implementation to irreversible fibre strain seems

irrelevant. The strain-rate dependency of the SFRC is introduced through a coupled viscoelastic-

viscoplastic constitutive model associated to the matrix material response. The mechanical be-

haviour of each medium is solved separately before composite’s behaviour is established using an

additive decomposition of the specific free energy potential, as described in the next sections.
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3.2 Constitutive laws of SFRC behaviour model

3.2.1 Viscoelastic-viscoplastic behaviour model of thermoplastic matrix

One of the challenges when modelling SFRC is to introduce an accurate modelling of the constitu-

tive behaviour of the polymeric matrix, for instance thermoplastic matrix, that takes all behaviour

specificities (e.g. dependency to strain-rate and temperature, non-isochoric hardening, ductile

damage) into account. The mechanical response of a thermoplastic polymer strongly depends

on the loading conditions, especially if it is likely to be subjected to extreme operating ones (e.g.

high loading speed). In the two last decades, many constitutive models, following physical and

phenomenological approaches, have been developped for the behaviour modelling of polymers.

The viscoelastic and viscoplastic behaviour of thermoplastics have been modelled using multi-

scale approaches, as presented in [90, 91, 92]. In these models, representative volume elements are

considered as aggregates of two-phase composite inclusions. Each inclusion consists on a stack of

parallel crystalline lamellae in the amorphous phase. The physically-based theories are attractive

in the modelling of polymers macroscopic behaviour as it takes the micro-structural phenomena

into account. However, the identification of the associated material parameters is complex and

cannot be done by simple experimental tests (e.g., tension or compression tests ...). In the case

of phenomenologically-based approaches, viscoelastic-viscoplastic rheological models have been

proposed based on the connection of Newton, Hooke and Slider elements. Khan et al. [93] have

proposed a phenomenological model to describe the time and temperature dependency of thermo-

plastics. However, in these models an important number of parameters are required to obtain good

predictions. Another formalism, coming within the framework of continuum mechanics, considers

that the physical discontinuities at the micro-structural level are globally described, i.e. at the scale

of a homogenised bulk element of the material. Chaboche [94] has discussed the ability of classic

thermodynamics of irreversible processes to describe the behaviour of polymers and proposed a

viscoelastic model based on an extension of the “Generalised Standard Material” concept. Some

authors have modelled the behaviour of polymeric materials as nonlinear viscoelastic, for instance,

by using a combination of linear and/or nonlinear dashpots and springs [93, 95, 96]. Strain-rate

dependency of thermoplastics have also been described by Elasto-Viscoplastic (E-VP) constitutive

models as presented by Regrain et al. [97], Drozdov et al. [98] and Balieu et al. [99]. More recently,

elasto-viscoplastic constitutive models based on viscous overstress (VBO) and derived from the

unified state variable theory for metallic materials have been extended to polymer modelling by

Krempl and Khan [100], Khan and Yeakle [101] and Colak [102]. Finally, for a more reliable
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and complete modelling of the strain rate dependency in both parts of the behaviour, i.e. elastic

and inelastic, coupled viscoelastic-viscoplastic (VE-VP) laws have been proposed by Ayoub et al

[103], Khan and Zhang [104] and Miled et al [105].

This part of the work is devoted to the modelling of strain rate dependency of SFRC by introducing

a coupled viscoelastic-viscoplastic law for the matrix behaviour prediction. The VE-VP model of

the homogeneous thermoplastic polymer is written under small strain hypothesis and isothermal

conditions. The model is developped within the formalism of the thermodynamics of irreversible

processes based on the works proposed by Christensen [34] and Christensen and Naghdi [106]. It

is worth mensionning that the undammaged state of the matrix material is considered in this part,

i.e. damage developpement is not taken into account at this level of the modelling.

3.2.1.1 Thermodynamic formulation

A coupled viscoelastic-viscoplastic model is introduced here in the framework of thermodynamics

of irreversible processes for the description of thermodynamic matrix behaviour. A non-associated

viscoplasticity formulation is used where a pressure dependent yield surface is introduced. The

theory of Generalised Standard Materials, where constitutive equations derive from two different

potentials, is adopted. As presented by Lemaitre and Chaboche [38], the first potential designates

the material free energy and the second one its dissipation function. The formulation is restricted

to small strain and isothermal conditions.

Based on the first and second laws of thermodynamics, the Clausius-Duhem inequality postulates

that the change in entropy is positive or null [34] and leads, when assuming isothermal conditions,

to the inequality:

σM : ε̇ −ρMϕ̇M > 0 (3.1)

ρM is the density of the matrix material and ϕ̇M is the time derivative of its Helmholtz free energy.

σM and ε̇ are, respectively, the matrix Cauchy stress tensor and time derivative of the strain

tensor. Under isothermal conditions, the total strain, ε , is the observable state variable. Irreversible

phenomena are described by the internal state variables, as defined later.

The derivation of the state laws is based on the decomposition of the total strain into two parts: a

viscoelastic (VE) strain, εve, and a viscoplastic (VP) one, εvp, [99, 107, 108] so that:

ε = εve + εvp (3.2)
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It is worth noting that this decomposition is valid in the framework of small deformation only,

which is consistent with the composite behaviour modelling. Indeed, although unreinforced poly-

meric matrix can exhibit high level of deformation, strain at break of short-fibre reinforced matrix

generally does not exceed a few percent (as subsequently highlighted in the experimental investi-

gation). Based on this split, it is assumed that the Helmholtz free energy can be decomposed into a

VE part, ϕ ve
M , and a VP part, ϕ vp

M , representing stored energies due to, respectively, the viscoelastic

response and the material hardening [105, 38, 109]. Then:

ϕM = ϕ ve
M +ϕ vp

M (3.3)

A representation of the VE part of the free energy is given by Christensen and Naghdi [106] in

terms of linear and quadratic functionals of temperature and strain tensor components for linear VE

solids. Using their results in the case of isothermal conditions, an expression of ϕ ve
M as a functional

of εve
i j is given by:

ρMϕ ve
M =

1
2

∫ t

−∞

∫ t

−∞
Fi jkl (t − τ, t −ζ )

∂εve
i j (τ)
∂τ

∂εve
kl (ζ )
∂ζ

dτdζ (3.4)

where the Einstein summation convention is used. According to Christensen and Naghdi [106],

the integrating function, F , verifies the following symmetry properties:


Fi jkl (ζ ,τ) = Fi jkl (τ,ζ )

Fi jkl (ζ ,τ) = Fjikl (ζ ,τ) = Fi jlk (ζ ,τ)
(3.5)

and the following property:

Fi jkl (τ ,ζ ) = Rve
i jkl (τ +ζ ) (3.6)

with Rve the fourth-order relaxation tensor of the matrix material. Given these properties, the VE

free energy can be expressed as follows:

ρMϕ ve
M =

1
2

∫ t

−∞

∫ t

−∞
Rve

i jkl (2t − τ −ζ )
∂εve

i j (τ)
∂τ

∂εve
kl (ζ )
∂ζ

dτdζ (3.7)

For the calculation of the free energy time derivative, the integral in Equation (3.7) is first rewritten

as follows:

ρMϕ ve
M =

∫ t

−∞

∫ t

−∞
C (t,τ ,ζ )dτdζ (3.8)
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where the function C is assumed to verify the differentiability and continuity conditions, so that

the time derivative of the VE free energy can be expressed as:

ρMϕ̇ ve
M =

∫ t

−∞

∫ t

−∞

∂C (t,τ ,ζ )
∂ t

dτdζ +
∫ t

−∞
C (t,τ , t)dτ +

∫ t

−∞
C (t, t,ζ )dζ (3.9)

Given the later expression, ρMϕ̇ ve
M (3.7) is written as follows:

ρMϕ̇ ve
M =

(∫ t

−∞
Rve

i jkl (t −ζ )
∂εve

kl (ζ )
∂ζ

dζ
)

ε̇ve
i j +

1
2

∫ t

−∞

∫ t

−∞

∂Rve
i jkl

∂ t
(2t − τ −ζ )

∂εve
i j (ζ )
∂ζ

∂εve
kl (τ)
∂τ

dτdζ
(3.10)

The expression of the VP part, ϕ vp
M , of the Helmholtz free energy (3.3) and its time derivative are

expressed, according to Lemaitre and Chaboche [38], as:

ρMϕ vp
M (κ (t)) =

∫ κ(t)

−∞
H (ζ )dζ

ρMϕ̇ vp
M = Hκ̇

(3.11)

where H and κ are the hardening thermodynamic force and its associated variable, respectively.

Given the expressions (3.10) and (3.11), the time derivative of the total free energy becomes:

ρMϕ̇M =

(∫ t

−∞
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ
)

: ε̇ve+

1
2

∫ t

−∞

∫ t

−∞

∂εve (τ)
∂τ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (ζ )
∂ζ

dτdζ +Hκ̇
(3.12)

The Clausius-Duhem inequality is then expressed as follows:(
σM −

∫ t

−∞
Rve (t − τ) :

∂εve (τ)
∂τ

dτ
)

: ε̇ve +σM : ε̇vp

− 1
2

∫ t

−∞

∫ t

−∞

∂εve (ζ )
∂ζ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (τ)
∂τ

dτdζ −Hκ̇ > 0
(3.13)

The dissipation inequality (3.13) has to be verified for any transformation, in particular for any

value of the time derivative of viscoelastic strain. This implies that:

σM −
∫ t

−∞
Rve (t − τ) :

∂εve (τ)
∂τ

dτ = 0 (3.14)
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and

σM : ε̇vp − 1
2

∫ t

−∞

∫ t

−∞

∂εve (ζ )
∂ζ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (τ)
∂τ

dτdζ −Hκ̇ > 0 (3.15)

In addition, VE part of the dissipation term (3.15) have to be positive or null, so that:

− 1
2

∫ t

−∞

∫ t

−∞

∂εve (ζ )
∂ζ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (τ)
∂τ

dτdζ > 0 (3.16)

The state law verified by the matrix Cauchy stress tensor, σM , is finally given by:

σM =
∫ t

0
Rve (t − τ) :

∂εve (τ)
∂τ

dτ (3.17)

3.2.1.2 Linear viscoelasticity

The viscoelastic fourth-order relaxation tensor of the matrix material is expressed based on the

phenomenological Generalised Maxwell model. In that case, the unidimensional relaxation mod-

ulus modelled by an N-elements Generalised maxwell model is expressed in terms of Prony series

as follows:

E (t) = E∞ +
N

∑
i=1

Ei (t) (3.18)

where E∞ is the long-term elastic modulus and the Ei, i ∈ {1, . . . ,N}, are the time dependent mod-

uli. Within this formalism, the fourth-order relaxation tensor of the matrix material is expressed as

follows:

Rve (t) = 2G(t) Idev +3K (t) Ivol (3.19)

where Ivol and Idev are volumetric and deviatoric operators defined by: Ivol =
1
3

1⊗ 1 and Idev =

I − Ivol , with 1 and I are respectively the second and the fourth order identity tensors. G(t) and

K (t) are, respectively, shear and bulk relaxation functions and are expressed as:


G(t) = G∞ +

N

∑
i=1

Giexp
(
− t

τd
i

)
K (t) = K∞ +

N

∑
i=1

Kiexp
(
− t

τv
i

) (3.20)

τd
i , τv

i , Gi and Ki, i∈{1, . . . ,N}, are respectively the deviatoric and volumetric relaxation times and

their corresponding shear and bulk moduli. G∞ and K∞ are respectively the long-term shear and

bulk moduli. According to Ohkami and Ichikawa [110], the deviatoric and volumetric relaxation
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times are expressed as follows:

τd
i =

ηd
i

Gi
, τv

i =
ηv

i
Ki

∀i ∈ {1, ...,N} (3.21)

where ηd
i and ηv

i are the deviatoric and volumetric viscous coefficients.

The VE strain tensor εve (t) is divided, in the same way, into deviatoric, εve
dev (t), and dilatational,

εve
H (t), parts:

εve (t) = εve
dev (t)+ εve

H (t)1 (3.22)

Consistently, and based on developpements described by Miled et al. [105], a deviatoric, σM,dev (t),

and a dilatational, σM,H (t), parts of the stress tensor are defined by:


σM,dev (t) = σM∞,dev (t)+

N

∑
i=1

σMi,dev (t)

σM,H (t) = σM∞,H (t)+
N

∑
i=1

σMi,H (t)
(3.23)

where 
σM∞,dev (t) = 2G∞εve

dev (t)

σM∞,H (t) = 3K∞εve
H (t)

(3.24)


σMi,dev (t) = 2Gi

∫ t

−∞
exp
(

ζ − t
τd

i

)
∂εve

dev (ζ )
∂ζ

dζ

σMi,H (t) = 3Ki

∫ t

−∞
exp
(

ζ − t
τv

i

)
∂εve

H (ζ )
∂ζ

dζ
(3.25)

3.2.1.3 Non-associated viscoplasticity

In addition to linear viscoelastic behaviour, matrix material can show a non-linear plastic be-

haviour, possibly strain-rate dependent, i.e. viscoplastic (VP). The thermoplastic matrix behaviour

is also pressure sensitive, i.e. sensitive to the nature of loading (e.g., tension, compression...) and

non-isochoric in the plastic domain. Consequently, the framework of non-associated viscoplas-

ticity is considered in this work, following Perzyna model [37]. The pressure dependency of the

viscoplastic flow is introduced by Raghava yield surface [111]. Viscoplastic flow occurs as soon

as the first invariant, I1 (Eq. 3.26a), and the second invariant, I2 (Eq. 3.26b), of the matrix Cauchy

stress tensor reach a critical combination given by the yield surface expression (Eq. 3.27).

I1 = tr (σM (t)) = tr (σM,H (t)) (3.26a)
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I2 =
1
2

σM,dev (t) : σM,dev (t) (3.26b)

f (I1, I2,R) =
(η −1) I1 +

√
(η −1)2 I2

1 +12ηI2

2η
−σt −H (κ)≥ 0 (3.27)

In previous expression, the hydrostatic pressure dependency parameter, η , is defined by the ratio

between the quasi-static initial yield stresses in compression, σcomp, and in tension, σt , so that

η = σcomp/σt . A representation of the Raghava yield surface in the
√

3I2 - I1 plane, for different

values of the hydrostatic pressure parameter η , is given in Figure 3.1. It can be seen that for a

value of η set to 1, the Raghava yield surface becomes the pressure independent von Mises yield

surface.
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von Mises yield surface

σ t

1.2 σ t

Figure 3.1: Raghava yield surface for different values of the hydrostatic pressure dependency parameter, η

In expression 3.27, H (κ) is the isotropic hardening function that must be identified in tension for

the considered polymeric material. It is important to note that all types of hardening laws can be

considered in the present behaviour model. For the applications considered in this work, hardening

law given by Eq. (3.28) will be considered.

H (κ) = h1exp
(
h2κ2)(1− exp(−h3κ)) (3.28)

where h1, h2 and h3 are material parameters and κ , defined as the hardening variable, can be
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assimilated to the cumulated viscoplastic strain (Eq 3.29) in the case of undamaged material.

κ =
∫

t

√
2
3

ε̇vp : ε̇vpdt (3.29)

with ε̇vp the viscoplastic strain rate tensor. The non-symmetric and non-isochoric plastic flow of

the polymeric matrix is modelled by a hyperbolic viscoplastic dissipation potential [99], defined

by:

ψvp
M (I1, I2) =

√
3I2 +

1
3

(
a+ ⟨I1⟩2 +a− ⟨−I1⟩2

)
(3.30)

where the symbol ⟨.⟩ is the Macauley braket defined by ⟨x⟩ = (x+ |x|)
2

, for any scalar x. a+ and

a− are volume variation parameters under positive and negative hydrostatic pressure, respectively.

The viscoplastic dissipation potential is presented in terms of I1 in Figure 3.2, for different values

of parameters a+ and a−.
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Figure 3.2: Viscoplastic dissipation potential for different values of a+ and a−

In the framework of non-associated viscoplasticity, ε̇vp is derived from the viscoplastic potential

of dissipation, ψvp
M , and expressed by the normality rule in terms of the viscoplastic multiplier rate,

λ̇ , as follows:

ε̇vp = λ̇
∂ψvp

M
∂σM

= λ̇n (3.31)

where n is the viscoplastic flow direction tensor. Given the expression of ψvp
M , (3.30), the expres-
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sion of the viscoplastic strain rate tensor becomes:

ε̇vp = λ̇
3
2 σM,dev +

1
9 (a

+ ⟨I1⟩+a− ⟨−I1⟩) I

3I2 +
1

27

(
a+ ⟨I1⟩2 +a− ⟨−I1⟩2

) (3.32)

The viscoplastic multiplier rate, λ̇ , is calculated here using the approach of overstress based

viscoplasticity. According to the latter theory, the static yield surface, f (Eq. 3.27), is extended

to a dynamic yield surface, Fvp, defined as follows [37]:

Fvp (I1, I2,H, κ̇) =
(η −1) I1 +

√
(η −1)2 I2

1 +12ηI2

2η
− (σt +H (κ))−σ vp (3.33)

where σ vp is the viscous overstress. As postulated in Perzyna’s model [37], this overstress is

defined as follows:

σ vp = (σt +H (κ))
(

κ̇
κ̇0

)m

(3.34)

where m and κ̇0 are the strain rate sensitivity and viscosity parameters, respectively. κ̇ is the

equivalent viscoplastic strain-rate, defined by:

κ̇ =

√
2
3

ε̇vp : ε̇vp = λ̇
√

2
3

n : n (3.35)

The standard Kuhn-Tucker loading/unloading conditions are then applied to the dynamic yield

surface (i.e., Fvp ≤ 0, λ̇ ≥ 0, λ̇Fvp = 0) for the determination of the viscoplastic multiplier. It

can be noted that both static and dynamic yield surfaces are updated all along the implementation.

As a consequence, during unloading overstress does not systematically vanish and stress state

can remain in the viscoplastic domain (i.e. stress state above the static yield surface, on updated

dynamic surface). The rate form of the viscoplastic multiplier is obtained by substituting its

expression into the dynamic yield surface and is as follows:

λ̇ =


0 , if f < 0,

κ̇0√
2
3n : n

(η −1) I1 +
√

(η −1)2 I2
1 +12ηI2

2η (σt +H (κ))


1
m

, if f ≥ 0
(3.36)
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Finally, the viscoplastic strain rate tensor is given by:

ε̇vp =


0 , if f < 0,

κ̇0√
2
3n : n

(η −1) I1 +
√

(η −1)2 I2
1 +12ηI2

2η (σt +H (κ))


1
m

n , if f ≥ 0
(3.37)

In the constitutive model, the dynamic yield surface takes place only if the static yield function

is positive or null ( f ≥ 0). When the current stress lies in the viscoelastic domain ( f < 0), the

viscoplastic strain rate tensor ε̇vp vanish. The viscoplastic deformation takes place only when the

condition f ≥ 0 is satified.

3.2.1.4 Summary of the matrix constitutive model (algorithm)

In this section, the incremental formulation of the stress update is presented. A viscoelastic pre-

dictor/viscoplastic corrector scheme is used in order to integrate the constitutive laws of behaviour

model. This schema is an extension of classical return-mapping algorithms implemented in the

framework of elastoplasticity [112]. More precisely, the aim of the algorithm detailed hereafter is

to compute values of variables at a given time tn+1, knowing their values at tn (current step) and

the total strain increment, ∆ε , between tn and tn+1. During the trial prediction, the strain increment

is assumed to be entirely viscoelastic, i.e. ∆ε = ∆εve and ∆εvp = 0. As a consequence, viscoplastic

and cumulative viscoplastic strains in the trial step remain at the value computed at increment n.

Trial deviatoric and hydrostatic stresses at t = tn+1 are therefore given by:

σ tr
M∞,dev (tn+1) = 2G∞εve

dev (tn+1) (3.38)

σ tr
M∞,H (tn+1) = 3K∞εve

H (tn+1) (3.39)

σ tr
Mi,dev (tn+1) = exp

(
−∆t

τd
i

)
σMi,dev (tn)+2Gi

∫ tn+1

tn
exp
(

ζ − tn+1

τd
i

)
∂εve

dev (ζ )
∂ζ

dζ (3.40)

σ tr
Mi,H (tn+1) = exp

(
−∆t

τv
i

)
σMi,H (tn)+3Ki

∫ tn+1

tn
exp
(

ζ − tn+1

τv
i

)
∂εve

H (ζ )
∂ζ

dζ (3.41)

In order to compute the integrals in equations (3.40) and (3.41) over [tn, tn+1], the VE strain rate

is assumed to be constant over this time interval. Using the approximation ∆εve = ε̇ve (tn+1)∆t, it
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leads to:

σ tr
Mi,dev (tn+1) = exp

(
−∆t

τd
i

)
σMi,dev (tn)+2Gi

[
1− exp

(
−∆t

τd
i

)]
τd

i
∆t

∆εve
dev (3.42)

σ tr
Mi,H (tn+1) = exp

(
−∆t

τv
i

)
σMi,H (tn)+3Ki

[
1− exp

(
−∆t

τv
i

)]
τv

i
∆t

∆εve
H (3.43)

Then, recalling expression (3.23), updated trial stress can be computed as follows:

σ tr
M,dev (tn+1) = σ tr

M∞,dev (tn+1)+
N

∑
i=1

2ḠMi∆εve
dev + exp

(
−∆t

τd
i

)
σMi,dev (tn) (3.44)

σ tr
M,H (tn+1) = σ tr

M∞,H (tn+1)+
N

∑
i=1

3K̄Mi∆εve
H + exp

(
−∆t

τv
i

)
σMi,H (tn) (3.45)

where

Ḡi = Gi

[
1− exp

(
−∆t

τd
i

)]
τd

i
∆t

(3.46)

and

K̄i = Ki

[
1− exp

(
−∆t

τv
i

)]
τv

i
∆t

(3.47)

The computed trial stress tensor can then be recast as follows:

σ tr
M (tn+1) = σ tr

M,dev (tn+1)+σ tr
M,H (tn+1) I (3.48)

Once the trial Cauchy stress tensor is known, the corresponding trial yield surface can be ex-

pressed:

f tr (Itr
1 , I

tr
2 ,κn

)
=

(η −1) Itr
1 +

√
(η −1)2 Itr2

1 +12ηItr
2

2η
−σt −H (κn) (3.49)

The trial first and second stress invariants are determined in terms of the trial stress tensor, i.e. Itr
1 =

I1
(
σ tr

M (tn+1)
)

and Itr
2 = I2

(
σ tr

M (tn+1)
)
. In case of purely viscoelastic deformation (i.e. f tr < 0),

quantities computed at the trial step are solutions of the problem at increment n+1. In particular,

σM,n+1 = σtr
M, εve

n+1 = εve,tr and κn+1 = κ tr = κn. Otherwise the deformation is viscoelastic-

viscoplastic and a viscoplastic corrector schema is needed to compute matrix behaviour. In par-

ticular, the actual strain increment tensor must be split into a viscoelastic and a viscoplastic part,

i.e. ∆ε = ∆εve +∆εvp. Then, considering that ∆εvp = ∆λnn+1, with nn+1 the viscoplastic flow

direction tensor, expressed in terms of stress invariants, In+1
1 = Itr

1 and In+1
2 = Itr

2 (Eq. 3.50), the
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incremental form of the plastic multiplier ∆λ is given by Eq. (3.51).

nn+1 =
3
2 σM,n+1 +

1
9

(
a+
⟨
In+1
1

⟩
+a−

⟨
−In+1

1

⟩)
I√

3In+1
2 + 1

27

(
a+
⟨
In+1
1

⟩2
+a−

⟨
−In+1

1

⟩2
) (3.50)

∆λ =
∆tκ̇0√

2
3 nn+1 : nn+1

⟨
σvp

n+1

σt +H (κn)

⟩ 1
m

(3.51)

where

σvp
n+1 =

(η −1) In+1
1 +

√
(η −1)2 In+12

1 +12ηIn+1
2

2η
−σt −H (κn) (3.52)

An updated cumulative viscoplastic strain, κn+1, is obtained from κn following κn+1 = κn +∆κ

with the cumulative viscoplastic strain increment ∆κ expressed as follows:

∆κ =

√
2
3

nn+1 : nn+1∆λ (3.53)

Finally, all state variables are updated and stored for the next time step. The complete algorithm

for the viscoelastic-viscoplastic matrix constitutive model is summarised in Table 3.1.
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Table 3.1: Return-mapping algorithm for the computation of VE-VP thermoplastic matrix behaviour

Input: VE and VP parameters

(i) Trial (visco)elastic strain increment split into a deviatoric part and a hydrostatic part:

∆εve = ∆εve
dev +∆εve

H (3.22)

(ii) Computation of the matrix Cauchy stress tensor components, σ tr
Mi,dev

(
tn+1

)
and σ tr

Mi,H (tn+1),
corresponding to the trial (visco)elastic strain increment:

σ tr
Mi,dev

(
tn+1

)
= exp

(
−∆t

τd
i

)
σMi,dev (tn)+2Ḡi∆εve

dev, (3.23)

σ tr
Mi,H (tn+1) = exp

(
−∆t

τv
i

)
σMi,H (tn)+3K̄i∆εve

H , (3.23)

σ tr
M
(
tn+1

)
=

N

∑
i=1

σ tr
Mi,dev

(
tn+1

)
+σ tr

Mi,H (tn+1) I

Itr
1 = tr

(
σtr

M
)
, Itr

2 =
1
2

N

∑
i=1

σ tr
Mi,dev :

N

∑
i=1

σ tr
Mi,dev (3.26)

(iii) Assess (visco)plastic flow:

if f tr
n+1
(
Itr
1 , I

tr
2 ,κn

)
≤ 0 then ( .)n+1 = ( .)tr (3.27)

else

(iv) Viscoplastic strain increment-viscoplastic stress return:

σvp
n+1 =

(η −1) In+1
1 +

√
(η −1)2 In+12

1 +12ηIn+1
2

2η
−σt −H (κn) (3.34)

nn+1 =
3
2 σ n+1

M,dev +
1
9

(
a+
⟨
In+1
1

⟩
+a−

⟨
−In+1

1

⟩)
I√

3In+1
2 + 1

27

(
a+
⟨
In+1
1

⟩2
+a−

⟨
−In+1

1

⟩2
) (3.31)

∆λ =
∆tκ̇0√

2
3 nn+1 : nn+1

⟨
σvp

n+1

σt +H (κn)

⟩ 1
m

(3.36)

∆εvp = ∆λnn+1 (3.37), ∆κ =

√
2
3

nn+1 : nn+1∆λ (3.35)

(v) update stresses:

σMi,dev (tn+1) = exp
(
−∆t

τd
i

)
σMi,dev (tn)+2Gi

[
1− exp

(
−∆t

τd
i

)]
τd

i
∆t

(∆εve
dev −∆εvp

dev)

σMi,H (tn+1) = exp
(
−∆t

τv
i

)
σMi,H (tn)+3Ki

[
1− exp

(
−∆t

τv
i

)]
τv

i
∆t

(∆εve
H −∆εvp

H )

(vi) store εve
n+1, κn+1

Output: Matrix stress tensor, σM
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3.2.2 Modelling of fibres mechanical response

In SFRC, the load applied to the polymeric matrix is transferred to embedded fibres through the

interface. Due to relatively high aspect ratio of fibres (i.e. length divided by diameter), generally

higher than 15 [113]), each fibre family is assumed to carry load only in its axis direction, i.e.

behaves unidimensionnaly. As a consequence, fibres are assumed to deform longitudinally while

keeping a constant diameter, i.e. deformation is assumed to remain negligible in transverse direc-

tions. Moreover, as already stated in section (3.1), it is assumed that fibre behaviour remains linear

elastic. The presence of fibres with variable characteristics in the composite material is modelled

by the coexistence of N f am families. Each family i (i ∈
{

1, ...,N f am
}

) is characterized by its elastic

properties (Young modulus E i
F ), its orientation vector, a⃗i, and therefore orientation matrix, Ai,

defined by Ai = a⃗i ⊗ a⃗i, i.e. Ai
kl = ai

k ⊗ ai
l , ∀k, l, and its geometric properties (i.e., diameter and

length). It can be noted that no reorientation of fibres upon loading will be considered in this

work, i.e. a⃗i and Ai remain constant during loading. A volume fraction, vi
F , is associated to each

family of fibres so that:
N f am

∑
i=1

vi
F = vF = 1− vM (3.54)

vF and vM are respectively the total volume fraction of fibres and matrix in the composite material.

The computation of 1D fibre axial stress, σ0, i
F is based on the assumption of a local iso-strain state

between the fibres and the matrix, in the fibre axis direction. The tensor of deformation gradient

sustained by the fibres, F i
F , is defined as the projection of the total deformation gradient tensor, F ,

(i.e., applied to the composite material) in the direction of fibres’ orientation.

F i
F = FAi ∀i ∈

{
i, ...,N f am

}
(3.55)

The right Cauchy-Green tensors of the composite, C, and fibre families, Ci
F , are defined by Equa-

tion (3.56) and are therefore linked by the relation (3.57).

C = FT F and Ci
F = F iT

F F i
F ∀i ∈

{
i, ...,N f am

}
(3.56)

Ci
F = AiCAi ∀i ∈

{
i, ...,N f am

}
(3.57)

By construction, each tensor Ci
F has a unique eigenvalue different from zero, called λ i

F , with

associated eigenvector a⃗i. λ i
F actually stands for the square of the ratio of the fibres current length

by initial length. As a consequence, with the small strain assumption, the 1D Hencky strain of the
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fibres, ε0, i
F , is simply expressed from λ i

F as follows:

ε0, i
F =

1
2

ln
(
λ i

F
)

∀i ∈
{

i, ...,N f am
}

(3.58)

A modified shear lag model is used to compute fibre axial stress, σ 0, i
F . This model is based on initial

work by Bowyer and Bader [89], expressing the average stress in a fibre as a function of its length,

L, its radius, r, the interfacial shear strength, τ , and the strain state in the composite material,

ε . This approach has then been extended to cases of complex fibre orientations, as described in

details by Notta-Cuvier et al. [86]. According to the latter formulation, if fibre length in family i,

Li, is higher than a specific length, Li
ε (3.59), fibre stress grows from zero at fibre tip and reaches

a plateau at a distance Li
ε from fibre tip for a maximum value given by E i

Fε0, i
F , ∀i ∈

{
i, ...,N f am

}
.

Li
ε =

E i
Fε0, i

F ri

τ i ∀i ∈
{

i, ...,N f am
}

(3.59)

where ε0, i
F is the fibre axial strain whose computation is described before. It is worth noting that

below this fibre’s length, stress does not reach its maximum value. According to this, the 1D-stress

state of each fibre family, σ 0, i
F , ∀i, can be computed using Eq (3.60). It can be noted that particular

cases where fibres have different elastic properties (i.e. different values of E i
F ) can be dealt with

and that the fibres response under compression is assumed to be the same as under tension (i.e.

buckling is neglected) [86].
σ 0, i

F = ε0, i
F

(
1− E i

Fri

2Liτ i

∣∣∣ε0, i
F

∣∣∣)E i
F

σ0, i
F = sign

(
ε0, i

F

) Liτ i

2ri

if
∣∣∣ε0,i

F

∣∣∣≤ Liτ i

E i
Fri

otherwise
(3.60)

To compute fibre stress tensor in the global coordinate system, “quasi” iso-stress states are as-

sumed between the fibres and the matrix material in transverse and shear directions with respect

to fibre axis, in addition to iso-strain state assumption in fibre axis direction. More precisely, fibre

stresses in those directions are assumed to be equal to those of a fictitious purely viscoelastic

material (with viscoelastic parameters of the matrix material), consistently with the well-known

principle of lower bound assumption. The expression of 3D stress tensor of fibre family i, σ i
F , is
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therefore expressed in the global coordinate system by:

σ i
F = T i



σ 0,i
F σ 0,i

M12 σ0,i
M13

σ 0,i
M12 σ 0,i

M22 σ0,i
M23

σ 0,i
M13 σ 0,i

M23 σ0,i
M33


T i−1 ∀i (3.61)

where T i is the transition matrix from the coordinate system related to the fibre family i to the

global one. σ0,i
Mkl , k, l ∈ {1,2,3}, are stress components of the purely viscoelastic "matrix" material,

expressed in the coordinate system of fibre family i.

3.2.3 Modelling of composite mechanical response

Once 3D stress tensors of the matrix material and all fibre families are computed, the stress tensor

applied to the composite material can be determined, as a combination of the contribution of all

fibre and matrix media [86]. The stress computation of the different constituents is schematically

represented in Figure 3.3.

In practice, the state potential of the composite material, here the Helmholtz free energy, is as-

sumed to be additively split into a part specific to the matrix medium and other parts specific to

each fibre family (3.62).

ρϕc = vMρMϕM +
N f am

∑
i=1

vi
Fρ i

Fϕ i
F (3.62)

where ρ , ρM and ρ i
F are the densities of the composite material, the matrix material and the fibre

family i, respectively. ϕM and ϕ i
F are the Helmholtz free energies of the matrix and the fibre family

i, respectively. These state potentials have to verify Clausius-Duhem inequality, simplified here

for isothermal transformations:

σc : D−

[
vMρMϕ̇M +

N f am

∑
i=1

vi
Fρ i

F ϕ̇ i
F

]
≥ 0 (3.63)

where σc is the composite stress tensor. D is the rate of deformation tensor, assimilated to ε̇ under

the hypothesis of small perturbations. ϕ̇M and ϕ̇ i
F are the time derivative of the Helmholtz free

energies of the matrix and the fibre family i, respectively.
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Figure 3.3: Schematic representation of the computation of composite stress tensor

It is important to note that the composite strain tensor, ε , is here identical to the matrix strain

tensor. The expressions of the total free energy of matrix material and of its time derivative have

been established in section (3.2.1.1). It is reminded that:

ρMϕ̇M =
1
2

∫ t

0

∫ t

0

∂εve (τ)
∂τ

: Rve (2t − τ −ζ ) :
∂εve (ζ )

∂ζ
dτdζ+(∫ t

0
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ
)

: ε̇ve +ρMϕ̇ vp
M

(3.64)

Concerning the fibre media, each potential, ϕ i
F , is a function of the scalar axial strain, ε0, i

F (3.58).

Yet for convenience, the fibre Hencky strain tensors expressed in the global coordinate system

by ε i
F kl = T i

k1T i−1

1l ε0, i
F , ∀k, l, ∀i, are considered, so that

dϕ i
F

dt
=

∂ϕ i
F

∂ε i
F

:
∂ε i

F
∂ t

, ∀i. If assuming small

displacements, the Hencky strain tensors can be assimilated to the Green-Lagrange strain tensors,

E i
F . These are expressed from the right Cauchy-Green tensors by E i

F =
1
2
(
Ci

F − I
)
, ∀i. Relation

(3.57) therefore leads to the approximation
∂ε i

F
∂ t

≈ Ai ∂ε
∂ t

Ai, ∀i. Finally, noting that X :
(
AiYAi)=
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AiXAi) : Y , by construction of matrices Ai, and for any matrices X and Y, these developpements

give rise to a factorized expression of Clausius-Duhem inequality (3.65).

[
σc − vM

∫ t

0
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ −
N f am

∑
i=1

vi
Fρ i

FAi ∂ϕ i
F

∂ε i
F

Ai

]
: ε̇−

1
2

vM

∫ t

0

∫ t

0

∂εve (τ)
∂τ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (ζ )
∂ζ

dτdζ+

vM

∫ t

0
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ : ε̇vp − vMρMϕ̇ vp
M ≥ 0

(3.65)

The Clausius-Duhem inequality (3.65) has to be verified for any state of the strain rate tensor, ε̇ .

Then, the system (Ω ) (3.66) is an admissible solution. Finally, considering the state laws ρ i
F

∂ϕ i
F

∂ε i
F
=

σ i
F , ∀i, and the expression of the matrix stress tensor given in Equation (3.17), the stress state of

the composite material can be expressed by Equation (3.67):

(Ω)



σc = vM

∫ t

0
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ −
N f am

∑
i=1

vi
Fρ i

FAi ∂ϕ i
F

∂ε i
F

Ai

−1
2

vM

∫ t

0

∫ t

0

∂εve (τ)
∂τ

:
∂Rve

∂ t
(2t − τ −ζ ) :

∂εve (ζ )
∂ζ

dτdζ+

vM

∫ t

0
Rve (t −ζ ) :

∂εve (ζ )
∂ζ

dζ : ε̇vp − vMρMϕ̇ vp
M ≥ 0

(3.66)

σc = vMσM +
N f am

∑
i=1

vi
FAiσ i

FAi (3.67)

Through this chapter, a set of parameters, associated to the behaviour laws of matrix and composite

behaviour have been introduced (cf Table 3.2). The identification of those parameters lays on sev-

eral mechanical experiments and microtomographic observations, as described in the next chapter.

Experimental tests will also be used in order to validate the implementation of the composite

behaviour model.

3.3 Conclusion

A behaviour model for SFRC is presented here, based on an original approach that aims to be an

efficient alternative to more complex homogenisation procedures. This part of the work deals with

the presentation of the developped approach and the constitutive laws associated to the different

constituents for the computation of the composite response. The strain rate dependency in the com-

posite behaviour is modelled by a coupled viscoelastic-viscoplastic law associated to the matrix
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Table 3.2: Material parameters of the matrix and composite constitutive laws

Parameters

Matrix parameters Viscoelasticity E∞, Ei, τi for i ∈ (1, ...,N)
Initial yield stress σt

Hardening parameters h1, h2 and h3
Viscoplastic parameters κ̇0, m
Hydrostatic pressure dependency η
Volume variation a+ and a−

Fibres/Composite parameters Distribution of orientation vi
F , a⃗i for i ∈ (1, ...,N f am)

Fibre length and radius Li and ri for i ∈ (1, ...,N f am)

Elastic properties E i
F for i ∈ (1, ...,N f am)

Interfacial Shear Strength τ i for i ∈ (1, ...,N f am)

material. More precisely, a linear viscoelastic is considered and a viscoplastic schema is introduced

to reproduce the strain rate influence over the yield/hardening part of the material response. The

complex fibre orientations, including distributed and random orientations, are modelled in a simple

way, so that actual distributions of fibre orientation can be taken into account. The implementation

of the constitutive model is performed in the framework of small deformations in the explicit finite

element code ABAQUS as a user-material subroutine (VUMAT), written in FORTRAN77.

The identification of the involved material parameters and the reinforcement properties is the

object of the following chapter, where the model validity is verified in the case of short-fibre

reinforced composite subjected to a variety of loading conditions.





Chapter 4

Experimental procedure for the

parameters identification and validation

of the model

Identification and validation of the developped constitutive model are the object of the current

chapter. An identification procedure, based on an experimental investigation, is performed so that

all the parameters involved in the current developpement can be determined. In the first part

of this chapter, the characterisation of the matrix material model is targeted. Viscoelasticity is

characterised by means of Dynamic Mechanical Analysis (DMA). Then, the hardening and flow

parameters (viscoplasticity and pressure dependency parameters) are extracted from monotonic

tests realised at different loading conditions (tension and compression) and loading speeds (i.e.

different strain rates) using optical extensometry or Digital Image Correlation. The identification

of VP parameters is based on the SEĖ method proposed by Lauro et al. [116]. The second part

of the chapter deals with the characterisation of the reinforcement properties (geometry and ori-

entation) so that actual properties can be used for the evaluation of the model accuracy. Finally

the global behaviour of the short-fibre reinforced composite is characterised by experimental tests

carried out at various loading conditions and speeds, so that the anisotropy-strain rate dependency

coupled effect can be investigated. Tensile results are used for the validation of the developped

model for a wide range of strain rate, by comparison with numerical results. Note that at this

stage, failure phenomena (damage and fracture) of SFRC are not adressed.

4.1 Characterisation of the implemented behaviour model

The accuracy of the implemented SFRC constitutive model is now assessed for a polypropylene

(PP) reinforced with short glass fibres.

43



44 CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION

4.1.1 PP matrix VE-VP behaviour model

The matrix material under investigation is a Polypropylene (PP-commercial grade Moplen HP500N

supplied by Lyon dell Basell). According to the supplier, Moplen HP500N is a homopolymer for

injection moulding applications, with a MFR of 12 g.(10min)−1 and a density of 0.9 g.(cm)−3.

PP plates, 200 mm-edge squares with a thickness of 2.5 mm, are injection moulded following the

process conditions prescribed by the supplier.

4.1.1.1 Identification of material parameters based on DMA and monotonic tests at differ-

ent strain rate

In order to characterise the viscoelastic-viscoplastic behaviour of the PP matrix, different experi-

ments are carried out at various loading rates. First, Dynamic Mechanical Analysis is performed

to identify the viscoelastic parameters. Then, flow parameters, i.e. associated to the hardening and

pressure dependent and non-isochoric viscoplastic behaviour, are characterised by means of tensile

(realised at different strain rates) and compression tests. Using data acquired from Digital Image

Correlation (DIC) for tensile tests, the non-isochoric plastic flow behaviour is first caracterised (by

the identification of the expansion parameter). The pressure dependency is then identified based on

tension/compression results. Finally, the use of DIC method has made possible the determination

of the hardening and viscoplastic parameters by means of the SEĖ method [116].

Dynamic Mechanical analyses

Small amplitude oscillatory tensile experiments are performed on an electromagnetic tensile ma-

chine (INSTRON E3000) with a 3 kN cell force. Tests are performed at room temperature on

flat rectangular specimens (Figure 4.1) cut in an injected PP plate. A sinusoidal deformation

characterised by an angular frequency, ω , is applied to the specimen. The imposed strain is

therefore set as follows:

ε (t) = ε0cos(ωt) = ε0Re{exp(iωt)} (4.1)

where ε0 is the strain amplitude, t the time and Re{.} stands for the real part of any complex

number.
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Distance between grips

Figure 4.1: Geometry of DMA specimen

The applied frequency is progressively increased from 0.01 Hz to 30 Hz with several loading

cycles per frequency (Table 4.1). The strain amplitude, ε0, is equal to 0.5% for all cycles and all

frequencies. Five specimens are tested for each frequency. In the framework of small deformations,

Table 4.1: DMA cycles

Frequencies (Hz) number of cycles

0.01 3
0.05 4
0.1 5
0.25 6
0.5 8
1 21
10 201
20 301
30 301

the stress response is sinusoidal as well. As can be seen in Figure 4.2, the stress sinusoidal

evolution is with the same pulsation, ω , but with a different amplitude, σ0, and an out-of-phase

angle (loss angle), δ , compared to applied strain. It takes then the following form:

σ (t) = σ0cos(ωt +δ ) = σ0Re{exp(i(ωt +δ (ω)))} (4.2)

A complex modulus, E∗, dependent on the loading pulsation, is then defined by the ratio of stress

and strain as follows:

E∗ (ω) =
σ0

ε0
exp(iδ (ω)) (4.3)
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Figure 4.2: An example of a stress response to an applied sinusoidal strain for frequencies equal to 0.05,
0.1, 0.25, 0.5 and 1 Hz

E∗ can be split into a real part, E
′
= Re {E∗}, called storage modulus, associated to the elastic

response and in phase with the applied strain, and an imaginary part, E” = I m{E∗}, called loss

modulus, associated to the viscous response and
π
2

out of phase with the applied strain, so that:

E∗ = E
′
+ iE” (4.4)

where the storage and loss moduli are defined by:

E
′
=

σ0

ε0
cos(δ ) (4.5)

E” =
σ0

ε0
sin(δ ) (4.6)

The loss angle, δ , can therefore be expressed from the ratio between the storage and loss moduli

as follows:

tan(δ ) =
E”

E ′ (4.7)

The measured data are shown in Figure 4.3, where the storage modulus increases with the pulsa-

tion, while the loss modulus decreases.
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Figure 4.3: Storage (a) and loss (b) moduli versus angular pulsation for PP matrix

The Maxwell parameters (see Section 3.2.1.2) are identified based on results of DMA. Considering

the case of uniaxial loading, a one-dimensional form of the hereditary integral expression of the

stress-strain relation ( Eq. 3.17) can be expressed as follows:

σM (t) =
∫ t

−∞
E (t −ζ )

dε (ζ )
dζ

dζ (4.8)

where E (t) is the relaxation modulus. Considering that an elastic Hooke element is arranged in
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parallel with a finite number N of Maxwell elements, E (t) can be expressed as follows:

E (t) = E∞ +
N

∑
i=1

Eiexp
(
− 1

τi

)
(4.9)

where Ei and τi correspond to the rigidity and relaxation time of the ith Maxwell element, re-

spectively. E∞ represents the long term modulus of the material. By substituting the deformation

sinusoidal form (Eq. 4.1) into the hereditary integral expression (Eq. 4.8), the complex modulus

can be expressed as follows:

E∗ (ω) = iω
∫ ∞

0
E (t)exp(−iωt)dt (4.10)

By expressing the time dependent modulus, E (t), in its Prony series form (Eq. 4.9), the complex

modulus can be expressed as follows:

E∗ = E∞ +
N

∑
i=1

Ei
(ωτi)

2

1+(ωτi)
2 + i

N

∑
i=1

Ei
ωτi

1+(ωτi)
2 (4.11)

The storage and loss moduli are therefore expressed by:

E
′
= E∞ +

N

∑
i=1

Ei
(ωτi)

2

1+(ωτi)
2 (4.12a)

E” =
N

∑
i=1

Ei
ωτi

1+(ωτi)
2 (4.12b)

N couples of Ei and τi are found following a least square minimization scheme (Eq. 4.14).

min
Ei,τi

M

∑
i=1

( E
′
(ω j)

E ′
exp (ω j)

−1

)2

+

(
E” (ω j)

E”
exp (ω j)

−1

)2
 (4.13)

where E
′
exp (ω j) and E”

exp (ω j) are obtained from measured data at pulsation ω j, j∈ {1, ...,M},

with M the number of imposed frequencies. The identified viscoelastic parameters for a model

composed of 7 Maxwel elements are listed in Table 4.2. Comparisons between the computed

(from the Maxwell generalised model (Eq. 4.12)) and measured moduli are presented in Figure

4.4. It can be noted that the computed storage and loss moduli are in good agreement with the

measured ones.
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Table 4.2: Identified linear viscoelastic parameters of the PP matrix material

Rigidities Ei (MPa) Relaxation times τi (s)

620.7 10+3

195.5 10+2

146.6 10
124.6 1
89.59 10−1

85.06 10−2

79.12 10−3

E∞ (MPa) 551.9
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Figure 4.4: Comparison of measured and identified loss and storage moduli over a wide range of angular
pulsation, ω



50 CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION

After the characterisation of the linear viscoelastic behaviour of the matrix material, next step is to

characterise its non-linear plastic part (viscoplastic flow), based on monotonic tests, as described

in the next paragraph.

Monotonic tests

For the characterisation of the viscoplastic behaviour of unreinforced PP matrix, quasi-static and

dynamic tests are performed at room temperature on specimens cut by water jet in the injection-

moulded PP plates.

Quasi-static tensile tests are carried out using Instron E3000 electromagnetical device with a 3 kN

cell force. The specimen geometry follows ISO527 norm with the shape and dimensions given in

Figure 4.5(a).
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Figure 4.5: Geometry of tensile specimens (dimensions in mm)

Displacement rates of 1, 10 and 60 mm.min−1 are imposed, corresponding respectively to equiva-

lent strain rates of 5.55 10−4 s−1, 5.55 10−3 s−1 and 3.33 10−2 s−1 for a region of interest (ROI) of

30-mm-height. Dynamic tensile tests are carried out using Instron 65/20 hydraulic jack. A specific

set-up for dynamic test, developped in LAMIH to prevent specimen loading as long as imposed test

velocity is not reached, is used to clamp the specimen. The specimen geometry, shown in Figure

4.5(b), is specially designed for this set-up. The imposed displacement rates are of 10, 100 and

1000 mm.s−1, corresponding to equivalent strain rates of 0.5 s−1, 5 s−1 and 50 s−1, respectively.

For both quasi-static and dynamic tensile tests, nominal axial stress, σ , is computed as the ratio
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of load, F, measured by the cell force, by initial cross-section at the centre of the ROI, S0, i.e.

σ = F/S0.

True displacement and true in-plane strain fields are determined using 2D Digital Image Correla-

tion (DIC) technique [45]. A black and white random pattern is created on specimen surface. As

shown in Figure 4.6, the ROI is divided into sub-pixel zones (called facets or Zone Of Interest

(ZOI)), each of them being characterised by a unique signature in grey level.

 ROI 

 ZOI 

Figure 4.6: Definition of ROI and ZOI for the strain field measurement using DIC technique

The facets are tracked by DIC software (VIC 2D) with high speed cameras with different acqui-

sition frequencies depending on the imposed strain rate (Table 4.3). In-plane displacement fields

Table 4.3: DIC acquisition rate

Strain rate Camera frame rate (frs)

5.55 10−4 s−1 2
5.55 10−3 s−1 10
3.33 10−2 s−1 100
0.5 s−1 600
5 s−1 6000
50 s−1 25000

of facet centres are determined with respect to a reference image, recorded at an unloaded stage.

In-plane strain fields are computed at the center of all facets from displacement fields by spatial

derivation.

The facet size influences displacement measurement, and so on computation of strain fields,

because it has an impact on the noise/signal level recorded during the test. In order to find the best

compromise between recorded noise level and spatial resolution, pre-tests with rigid body motion
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are realised. Strain values are computed by DIC using different facet sizes. Strains are theoretically

null during rigid body motion; the computed values are therefore representative of the noise level.

Then, the facet size that allows noise minimisation together with high spatial resolution is selected.

Based on the obtained results, shown in Figure 4.7, a facet size of 21x21 pix2 is selected for the

present case. It is to note that the same size of ZOI is used for all the tests.
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Figure 4.7: Influence of the facet size on the computation of “Axial strain” in a critical zone during a rigid
body motion test

The use of the DIC technique allows to capture the heterogeneity of deformation fields in the

ROI. Figure 4.8 shows the cartography of the measured strains corresponding to an imposed

axial displacement of 4.5 mm of a test realised at 1 mm/min. In this figure, the evolution of the

local longitudinal, εyy, transversal, εxx, and shear, εxy, strains are also plotted for each ZOI. The

heterogeneity of the strain fields is quantified by the standard deviation of the computed strain at

the selected step as given in Table 4.4.

Table 4.4: Standard deviation of DIC strains (for an axial displacement of 4.5 mm at 1 mm/min)

Standard deviation (%)
εyy 16.53
εxx 3.01
εxy 19.05



4.1. CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 53

0.148 

0.143 

0.137 

0.132 

0.127 

x

y

εyy

(a) εyy

-0.0332 

-0.0334 

-0.0336 

-0.0338 

-0.034 

x

y

εxx

(b) εxx

x ퟏퟎ−ퟑ

4

3

2

1

0.5

0.2

x

y

εxy

(c) εxy

Figure 4.8: DIC strains computed during the test of PP at 1 mm/min
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From results of quasi-static and dynamic tests, presented in Figure 4.9, strain-rate sensitivity of PP

is obvious, with an increase of rigidity and strength with engineering strain rate simultaneously

with a drop in axial strain at break.
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Figure 4.9: Quasi-static and dynamic tensile behaviour of PP, as measured by DIC

To further enrich the data that will be used for the characterisation of matrix behaviour, uni-axial

compression tests are carried out on electromagnetic device INSTRON E3000 at crosshead speeds

of 0.08 mm.min−1 and 0.8 mm.min−1 (Figure 4.10). Specimens are cylinders with a diameter of 5

mm and a height of 2.5 mm cut by water jet in the PP injected plates. The corresponding equivalent
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strain rates are therefore of 5 10−4s−1 and 5 10−3s−1, that is to say similar to those applied during

quasi-static tensile tests.

Figure 4.10: Compression test set-up

Results of compression tests are presented in Figure 4.11 where five specimens are tested for each

loading speed.

Monotonic uniaxial tests are used to identify parameters of the matrix viscoplastic behaviour law.

As presented in Section 3.2.1.3, the non-isochoric flow of the matrix material is modelled in the

framework of non-associated viscoplasticity and a dissipation potential is introduced to capture

the effect of volume change in the flow behaviour. In this modelling, an expansion, a+, and

compaction, a−, parameters of the dissipation potential (Eq. 3.30) are associated, respectively, to

tension and compression flow behaviour. The expansion can be characterised, using tensile tests,

from the determination of the (visco)plastic Poisson coefficient, vp, which is the ratio between the

transverse, εvp
xx , and longitudinal, εvp

yy , viscoplastic strain components, such as:

vp =−εvp
xx

εvp
yy

(4.14)

vp is calculated in all ZOI and for all loading speeds (i.e., quasi-static and dynamic) by neglecting
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the elastic part of the total strain (i.e. εvp
i j ≃ εi j ∀i j).
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Figure 4.11: Compression behaviour of PP at two different strain rates

Figure 4.12 shows the evolution of the (visco)plastic Poisson ratio in function of true axial strain

for all loading speeds and in all ZOI.

It can be seen that the evolution is scattered for the very low strain values and tends to be constant

for higher ones (when εve actually becomes neglectible compared to εvp). The (visco)plastic

Poisson ratio is therefore identified for axial strain level higher than 0.02. As for this strain values

vp is rather constant, it can be expressed in terms of incremental VP strain components:

vp ≃−△εvp
xx

△εvp
yy

(4.15)

Considering the incremental form of the VP strain tensor under tensile loading (i.e. ⟨−I1⟩= 0 (Eq.

4.16)) the expression of vp is given by Eq. 4.17.

∆εvp = ∆λ
3
2 σM,dev +

1
9 (a

+ ⟨I1⟩+a− ⟨−I1⟩) I√
3I2 +

1
27

(
a+ ⟨I1⟩2 +a− ⟨−I1⟩2

) (4.16)

vp =−
3
2 σM,devxx

+ 1
9 a+I1

3
2 σM,devyy

+ 1
9 a+I1

(4.17)
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By definition of the deviatoric stress tensor, σM,dev, Eq. (4.17) becomes:

vp =−
3
2

(
−1

3 I1
)
+ 1

9 a+I1
3
2

(
σyy − 1

3 I1
)
+ 1

9 a+I1
(4.18)

Figure 4.12: Evolution of the viscoplastic Poisson ratio versus true axial strain

The expression of the expansion parameter a+ is finally given by:

a+ =
9
2

(
1−2vp

1+ vp

)
(4.19)

With an identified value of vp equal to 0.43, the expansion parameter a+ is equal to 0.61. A similar

analysis should be done under uniaxial compression loading in order to identify the compaction

parameter a−. Unfortunately the small size of the compression specimen did not allow the use

of Digital Image Correlation technique and only axial displacements were measured by optical

extensometry. Therefore, incompressibility will be assumed in the case of compression loading

and a− will be set to 0 in the following. It is worth noting that it will not biased the validation of

the SFRC behaviour modelling as long as only tensile loadings are considered.

The use of Digital Image Correlation technique allows the determination of local strain but also

local strain rate throughout the test. Then, using the assumption of transverse isotropy, the true

tensile stress of each ZOI can be calculated as follows:

σyyi =
F
S0

exp
(
−2εxxi

)
(4.20)
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where εxxi
is the true transverse strain of the ith ZOI. According to the SEĖ method, developped

by Lauro et al. [116], points of coordinates (σyyi , ei, ėi) are plotted in the stress, strain and strain

rate space to form the SEĖ (“Sigma, Epsilon, Epsilon dot”) surface. ei is the equivalent true strain

expressed as follows:

ei =
∫

t

√
2
3

ε̇ : ε̇dt (4.21)

Figure 4.13: Experimentally obtained behaviour surface with the SEĖ method

This surface represents material’s behaviour for a large strain rate range (Figure 4.13). The harden-

ing and viscoplastic parameters (h1, h2, h3, m and κ̇0) are determined by fitting the expression (Eq.

3.34) with the behaviour surface (Figure 4.14). Note that the equivalent strain and equivalent strain

rate are assumed here to be equal to the equivalent viscoplastic strain, h, and equivalent viscoplastic

strain rate, ḣ, respectively. It is to note that in the constitutive model the yield stress, σt , is identified

as the stress from which the true stress-strain curve becomes non-linear (7 MPa). This leads to a

true equivalent viscoplastic threshold of about 0.5 % which justifies the later assumption.

The hydrostatic pressure dependency of the matrix viscoplastic flow is highlighted in Figure 4.15

where tensile and compression behaviour at the same strain rate of 5.55 10−4 s−1 are compared.

From these results, it is deduced that the uniaxial compression response is stiffer than the uniaxial

tensile stress response.

The pressure dependency parameter η , introduced in the Raghava yield surface (Eq. 3.27), is

defined as the ratio of the compression and tension initial yield stresses. For its identification,
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tensile and compression yield stresses must be measured from the tests realised at the same strain

rate. The above tests are therefore considered, with yield stresses corresponding to the upper limits

of the linear part of the behaviour law. Values of 23 MPa and 7 MPa are identified for the tensile

and compression tests, respectively, corresponding to a value of 3.28 for η .

Figure 4.14: Behaviour laws obtained with the SEĖ method
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Figure 4.15: Tensile and compression behaviour of PP for the identification of the parameter of hydrostatic
pressure dependency (at 1 mm.min−1)

Based on those tests, all parameters involved in the matrix constitutive model are finally identified.
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Viscoplastic parameters are listed in Table 4.5 (it is reminded that viscoelastic parameters are listed

in Table 4.2)

Table 4.5: Viscoplastic parameters of PP matrix material

Parameters Value

σt (3.27) 7 MPa
h1 (3.28) 35.40 MPa
h2 (3.28) 2.17
h3 (3.28) 58.78
κ̇0 (3.34) 10−5 s−1

m (3.34) 0.035
a+ (3.30) 0.61
a− (3.30) 0
η (3.27) 3.28

4.1.1.2 Validation of the implementation of matrix material model

Once all parameters of PP matrix VE-VP behaviour are identified, final step is to assess the

relevance of the implemented constitutive model for the matrix material through its capacity to

reproduce the experimental response of PP material over a relatively large range of strain rate.

To this end, the constitutive equations presented in Section 2 are implemented in Abaqus 6.11

subroutine VUMAT (explicit temporal integration scheme). Uniaxial tensile tests of PP matrix

are then simulated, using the parameters previously identified (Tables 4.2 and 4.5). Obviously,

fibre volume fraction is null in the present numerical tests. Tensile tests are simulated at the same

quasi-static (1, 10 and 60 mm/min) and dynamic (10, 100 and 1000 mm/s) loading speeds as

during experiments. 8 nodes, full integration elements (C3D8) are used. All degrees of freedom

are locked at the basis of the specimen and the loading consists on a prescribed monotonic velocity

on nodes of the upper edge. Numerical results are compared to experimental data (averaged

over the five tests realised for each loading speed) in Figure 4.16. In this figure, numerical and

experimental data are averaged upon the ROI (height of 15 and 20 mm in quasi-static and dynamic

tests, respectively). In fact, strain fields obtained both numerically and from DIC measurements

were verified to be homogeneous enough in the ROI so that the comparison of averaged strains is

reliable for the validation of the model. The presented results show that the numerical model is in

agreement with experimental data at the different investigated loading rates. These results validate
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the developed constitutive laws and their implementation for the prediction of VE-VP behaviour

of thermoplastics over a wide range of strain rate (with a maximum standard deviation value of

11.2%).
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Figure 4.16: Comparison between modelled and experimental tensile behaviour of PP at different loading
rates (Continuous lines = Experimental data, Dashed lines = Numerical data) with scattering bars

4.1.2 Extension of the modelling to PP matrix reinforced with short glass fibres

The constitutive laws of the thermoplastic matrix behaviour model being characterised and their

implementation validated, this section now focuses on the validation of the modelling of short-

glass-fibre-reinforced PP composites. More precisely, the composites under investigation are made

of a homopolymer polypropylene (PP) matrix reinforced with 30 wt.% or 40 wt.% of short-

glass fibres with chemical coupling. Those composites will be called PP-30GF and PP-40GF,

respectively, and are supplied by Albis. Technical information about the composite materials are

given in Table 4.6.

Composite plates, 200 mm-edge-squares with a thickness of about 2.5 mm, are injection moulded

Table 4.6: Supplier specifications of the composites materials

Commercial grade MFR (g.(10min)−1) Density (g. cm−3)
PP-30GF ALTECH PP-H A 2030/159 GF30 CP 2 1.12
PP-40GF ALTECH PP-H A 2040/159 GF40 CP 3 1.22

following the process conditions prescribed by the supplier.
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In order to model the behaviour of the composites using the constitutive laws developed in this

work, their microstructure (in terms of fibre length, radius and distribution of orientation) and

the fibre/matrix interfacial shear strength must be characterised. To this end, extensive campaigns

of micro-computed microtomography (section 4.1.2.1) and tensile tests (section 4.1.2.2) are per-

formed. Quasi-static and dynamic specimens of PP-30GF and PP-40GF, with geometries identical

to the PP ones (Figure 4.5), are cut at different angles, θ , with respect to the injection flow direction

(IFD) (θ = 0◦, 20◦, 45◦, 60◦ and 90◦, Figure 4.17) in order to enrich data with large range of

distributions of fibre orientation.

(a) Specimens for quasi-static tests at θ = 45◦ (b) Specimens for dynamic tests at θ = 20◦

Figure 4.17: Orientation of tensile specimens in injection-moulded plates

4.1.2.1 Microstructure characterisation using micro-computed microtomography

The microstructure of the SFRC is investigated aiming at the characterisation of fibres’ geometrical

properties and orientation. X-ray micro-computed tomography (µ-CT) is used to scan central

volume of some selected specimens. The micro-computed tomography is performed using high-

resolution microtomograph Skyscan 1172 (Bruker Micro CT). A rotation step of 0.4◦, voltage of

30 kV and current of 40 µA are used, leading to a spatial resolution (voxel size) of 3.87 µm. Some

quasi-static specimens (ISO527-type), cut at different angles θ with respect to the injection flow

direction (IFD) (θ = 0◦, 20◦, 45◦, 60◦ and 90◦), are selected for micro-tomography analysis.

As shown in Figure 4.18, a volume centered on the specimen region of interest (ROI), with a

height of about 5 mm and covering all specimen width and thickness, is scanned. An example of

3D representation of the PP-30GF microstructure, obtained using data acquired by µ-CT, is shown

in Figure 4.19. Reconstructed 3D microstructures show that the vast majority of fibres present a

very low out-of-plane angle (i.e. with respect to the (x,y) plane, with y the specimen axis and

z oriented along thickness). In all the following, fibres are therefore assumed to have in-plane



4.1. CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 63

orientation. Sets of 2D greyscale images, in the (x,y) plane, are extracted from slices of the 3D

view, at regular spaced positions in thickness direction.

Figure 4.18: Scanned volume and definition of angles θ and ψ

As shown in Figure 4.20, fibres are first isolated from matrix material, using Fiji tools of Image J

software [114], by applying a grey-level thresholding to the images (based on Otsu mehtod [115]).

Grey-scaled images are then filetered by removing outliers of a size equal to 2 pix.

Figure 4.19: Reconstructed 3D microstructure of PP-30GF by micro-computed tomography



64 CHAPTER 4. EXPERIMENTAL IDENTIFICATION AND VALIDATION

Fiji tools of structure detection and analysis are applied in order to identify and count fibres and

determine their characteristics. Thus, average fibre length and diameter are determined and are

respectively equal to 750 µm and 18 µm. Distributions of fibre orientation are obtained in the

form of directionality histograms with density-angle data for each of the selected 2D greyscale

images.

Grey-scaled X-Y coronal  
image 

Binary image Binary image  
after noise filtering 

y 

x 

Figure 4.20: Treatement of 2D grey-scaled images obtained from µ-CT scan of a PP-30GF specimen

In these diagrams, density of fibres characterised by an angle ψ with respect to specimen axis

within the intervals [α;α +2◦[, for α varying from −90◦ to 86◦, are determined. Data obtained

for a PP-30GF specimen cut at θ = 0◦, i.e. along IFD, are shown in Figure 4.21, for all the analysed

grey-scaled images.
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Figure 4.21: Example of directionality histogram obtained for a PP-30GF specimen cut at 0◦ with respect
to the IFD
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It can be seen that a preferential orientation equal to ψ = 0◦ is detected. A variation of fibre

orientation through specimen thickness is also noticed and is highlighted in Figure 4.22. Fibre

orientation evolves in the thickness direction in accordance with the well-known skin-shell-core

phenomenon [13]. In fact, average angle of fibre orientation increases (close to 45◦) in plate

skins, i.e. at the vicinity of mould walls where fibres tend to orient randomly, then decreases in

shell layers, where fibres are preferentially oriented along IFD, and increases again in core layer.

This layered structure results, as explained in Chapter 2, from the combination of shear flow and

fountain flow in injection moulded process [15].

Data obtained for scanned θ -specimens (i.e. characterised by a cutting angle θ ) are averaged

through the whole specimen thickness for both composites, PP-30GF and PP-40GF, in order to

obtain distributions of fibre orientation representative of the whole scanned volume.

Skin 

Skin 

Shell 

Shell 

Core 

x 

z 

IFD 

Figure 4.22: Variation of the fibre orientation through the specimen thickness (Skin-Shell-Core structure)

It is worth noting that to reduce the time cost of data treatement, the selection of the grey-scaled

images in thickness direction is made with a step of 10 images (equivalent to 41 µm), thus

alowing a reduction by a ratio of 7.25 of the computational cost. In order to validate this choice, a

comparison between results obtained with a step equal to 1 (i.e. all images through the thickness

are included in volume averaged distributions of fibre orientation) and a step of 10 (equivalent
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to 41 µm) is performed. Figure 4.23 shows that there is only a slight effect on the obtained data

(with a maximum standard deviation value of 3%), which validates the choice of a step equal to

10. In those histograms, one can note that fibres are preferentially oriented to 0◦ with specimen

axis, which is consistent with a cutting angle, θ , equal to 0◦ with respect to IFD. The secondary

peak observed at about 50◦ results from the core layer of the specimen where fibres are more

“transversally” oriented.
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Figure 4.23: Comparison of results obtained with a “step” of 1 and 10 from a PP-30GF specimen at an angle
θ = 0◦ for the selection of the 2D grey-scaled images through the thickness

As mentioned before, scanned volumes are centred on specimen ROI with a height of approx-

imately 5 mm. To verify the repeatablity of the distribution of fibre orientation on the whole

specimen ROI, other volumes are scanned along specimen axis. The different scanned zones of

the specimen ROI are shown in Figure 4.24(a). It can be seen in Figure 4.24(b) that distributions

of orientation obtained in all scanned volumes of the ROI are similar to that obtained in the central

volume (V3). That result is valuable from a modelling point a view since it validates the modelling

of fibre distribution of orientation in the whole specimen’s ROI from µ-CT scans performed over

a reduced part of the ROI.
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(a) Different scanned volumes over the specimen ROI
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(b) Distributions of fibre orientation in the different scanned volumes

Figure 4.24: Comparison of scan results at different locations over the specimen ROI

Distribution of fibre orientation obtained in central scanned volumes (step of 10 images through

thickness direction) for the composites PP-30GF and PP-40GF and for specimens with different

cutting angles are presented in Figures 4.25 to 4.27.
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(a) Location of 0◦-specimens in the injection moulded plate
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(b) Distribution of fibre orientation in different specimens cut at θ = 0◦

Figure 4.25: Fibre orientation of specimens cut at different locations and 0◦ with respect to IFD for PP-30GF



4.1. CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 69

−100 −50 0 50 100
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Angle (°)

D
en

si
ty

 

 
PP30−20−6
PP30−20−7

(a) θ = 20◦
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(b) θ = 45◦
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(c) θ = 60◦
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(d) θ = 90◦

Figure 4.26: Fibre orientation of specimens cut at angles equal to 20◦, 45◦, 60◦ and 90◦ with respect to IFD
for PP-30GF
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(a) θ = 0◦
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(b) θ = 20◦
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(c) θ = 45◦
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(d) θ = 60◦
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(e) θ = 90◦

Figure 4.27: Fibre orientation histograms of specimens cut at angles equal to 0◦, 20◦, 45◦, 60◦ and 90◦ with
respect to IFD for PP-40GF

In the case of PP-30GF, fibre orientations in 0◦-specimens are distributed around the value 0◦ as a

preferential orientation (Figure 4.25(b)). More generally, preferential orientation of fibres is IFD,

i.e. equal to ±θ with respect to the specimen axis for all values of θ , as expected (Figure 4.26).
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This property is more pronounced in the case of PP-40GF (Figure 4.27), with a higher fraction

of fibres oriented in IFD, as indicated by higher values of density for an angle equal to θ . This

may be due to the more pronounced shear flow and more fibre to fibre interactions at relatively

high fibre content, i.e. fibres are more likely to inhibit rotation of surrounding fibres during the

flow process. Moreover, histograms obtained for 0◦-specimens show that fibres distribution of

orientation depends on specimen location in the plate. For instance, as illustrated by specimen 0-1

of the PP-30GF (Figure 4.25), the distribution curve tends to be sharper around IFD direction near

plate edge (i.e. fraction of fibres that are oriented in IFD increases).

This characterisation of the microstructure of some selected specimens can be taken into consider-

ation as input data for the implementation of SFRC behaviour model. According to the concept of

“fibre families” of the present approach, fibre distributions of orientations are modelled in the form

of discrete histograms where all fibres characterised by an angle ψ within the interval [α;α +10◦[,

for α varying from 0◦ to 80◦, are grouped into the same family. This way, 9 fibre families are cre-

ated to model fibre distribution of orientation. Discretised data, obtained for different θ -specimens

(i.e. characterised by a cutting angle θ ) are presented in Figures 4.28 and 4.29 for the PP-30GF

and PP-40GF composites, respectively. In those figures, the density calculated over the ith interval

(i.e. [10◦(i−1);10◦i[) is attributed to an angle of orientation equal to 10◦(i− 1)+ 5◦ for the ith

family, with i ∈ {1, ...,9}.
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(a) θ = 0◦ (PP30-0-4)
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(b) θ = 20◦ (PP30-20-6)

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ψ (°)

D
en

si
ty

(c) θ = 45◦ (PP30-45-5)
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(d) θ = 60◦ (PP30-60-5)
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Figure 4.28: Fibre distribution of orientation of specimens cut at angles equal to 0◦, 20◦, 45◦, 60◦ and 90◦

with respect to IFD for PP-30GF
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(a) θ = 0◦ (PP40-0-4)
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(b) θ = 20◦ (PP40-20-6)
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(c) θ = 45◦ (PP40-45-5)
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(d) θ = 60◦ (PP40-60-5)
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Figure 4.29: Fibre distribution of orientation of specimens cut at angles equal to 0◦, 20◦, 45◦, 60◦ and 90◦

with respect to IFD for PP-40GF
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4.1.2.2 Monotonic tensile tests of PP-30GF and PP-40GF and identification of the fibre-

matrix interfacial shear strength

In order to fully characterise the behaviour model of the short-glass fibre reinforced polypropylene,

only one parameter is actually missing, namely the fibre/matrix interfacial shear strength (IFSS, τ -

cf section 3.2.2). In fact, this parameter depends in particular on the nature of the matrix and fibres,

process conditions and fibre volume fraction [118, 119, 120]. Yet, the experimental identification

of the IFSS is not in the scope of this work. Therefore, it will be determined as the one leading to

the best fit between numerically simulated and experimental results in the case of a PP-30GF and

PP-40GF specimens tested at 0◦ and at the lowest loading rate (i.e. 1 mm.min−1 - see hereafter).

In practice, many other tensile tests were actually performed on composite materials with the aim

to validate the implementation of SFRC behaviour model for different cutting angles and over a

wide range of strain-rate. Although the validation of the model is not addressed in this section (but

in the next one), all tensile tests are first presented and analysed in the following, for clarity.

Quasi-static and dynamic tensile tests are performed on composites PP-30GF and PP-40GF at

various loading speeds and for all values of cutting angle θ . Same testing devices and specimen

geometries as for PP are used, as well as same imposed quasi-static and dynamic displacement

rates (Section 4.1.1.1). As tensile behaviour of the composite materials is expected to be more

brittle than that of unreinforced PP and therefore limited to low strain levels, DIC technique

is not used for PP-30GF and PP-40GF. Instead, axial displacements are measured by optical

extensometry, i.e. non-contact elongation measurement based on motion tracking of black-and-

white transition lines. For quasi-static tests, optical extensometer ZS16D (CCD line scan sensor

- Rudolf GmbH), with a precision of 3 µm over 50 mm, is used. Elongation of a white-painted

area of 15-mm-height, centred in the ROI, is followed (Figure 4.30(a)). Axial strain is computed

as the ratio of measured axial elongation by the initial length of 15 mm. For dynamic tests, optical

extensometer 200XR (Rudolf GmbH - precision of 5 µm over 50 mm), which allows higher

acquisition frequency, is used with a tracked zone covering all specimen’s ROI (i.e. gauge length

of 20 mm) (Figure 4.30(b)).



4.1. CHARACTERISATION OF THE IMPLEMENTED BEHAVIOUR MODEL 75

Tracked zone

(a) Quasi-static specimen

Tracked zone

(b) Dynamic specimen

Figure 4.30: Tensile specimens for optical extensometry measurement

Results of the different tensile tests are presented in Figures 4.31 and 4.32 for both materials, where

data is averaged over five tests for each configuration. Note that strain evolution is smoothed for

dynamic behaviour using Matlab function “smooth”. As can be seen, composites PP-30GF and

PP-40GF show quite brittle behaviour at all displacement rates and cutting angles.

Moreover, from comparison with the behaviour of unreinforced PP, presented in Figure 4.33, gain

in tensile stress is observed in the composites for all values of θ . This tendency is directly related

to load transmission from PP matrix to high-rigidity glass fibres [117].
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Figure 4.31: Tensile tests at different strain rates and loading angles for PP-30GF
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Figure 4.32: Tensile tests at different strain rates and loading angles for PP-40GF
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Figure 4.33: Observation of anisotropic behaviour by considering different loading directions from quasi-
static tensile tests (at 1 mm.min−1) for PP (dashed line) and the composite materials (PP-30GF and PP-
40GF)

Table 4.7: Fibre average orientation with respect to specimen axis over the specimen central volume for the
different θ specimens of PPGF30

Angle θ between IFD and specimen axis Specimen Average value of ψ

0◦

PP30-0-1
PP30-0-4
PP30-0-7
PP30-0-8

PP30-0-11

22.30◦

25.88◦

23.55◦

25.45◦

26.76◦

20◦
PP30-20-6
PP30-20-7

28.90◦

29.35◦

45◦
PP30-45-12
PP30-45-4

35.58◦

34.81◦

60◦
PP30-60-5

PP30-60-13
37.21◦

37.83◦

90◦
PP30-90-11
PP30-90-4

43.96◦

43.01◦
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Figure 4.34: Tensile behaviour of 0◦- specimens (at 1 mm.min−1) with different average values of ψ

As can be observed from the presented results and Table 4.7, load transmission, and therefore the

“reinforcement efficiency”, is strongly dependent on fibre orientation ψ with respect to loading

direction. Indeed, at a given strain, the closer is the average value of ψ to the loading direction

the higher is the stress level in the fibres and so on in the composite. In the particular case of an

angle ψ = 0◦ between fibre axis and loading direction, the fraction of load that is transmitted to

that fibre through PP/fibre interface is maximal. In addition to the strong anisotropy induced by

complex distributions of fibre orientation, tensile behaviour of PP-30GF and PP-40GF composites

was also verified to be strain-rate sensitive. This is highlighted in particular by the evolution of the

apparent rigidity and axial stress at break with strain rate, presented respectively in Figures 4.35

and 4.36.
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Figure 4.35: Apparent rigidity of PP-30GF and PP-40GF at different strain rates
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Figure 4.36: Average axial stress at break of PP-30GF and PP-40GF at different strain rates

It is deduced that the strain rate dependency of the composite response is dimmed down for

decreasing θ . In fact, weight of the rate independent behaviour of the fibres in the composite

behaviour is of greater influence when θ is small, as the majority of fibres are in that case loaded

in their axis direction. On the contrary, composite mechanical response is rather dominated by

strain rate dependent behaviour of matrix material at higher values of θ .

As stated in the beginning of this section, the IFSS, τ , is determined as the one leading to the

best fit between numerically simulated and experimental results in the case of a PP-30GF and PP-

40GF specimens tested at 0◦ and at 1 mm.min−1. More precisely, the specimen 0-1 is considered

for both materials because it is the one that presents the highest fraction of fibres oriented in tensile

direction (Figures 4.25 and 4.27). For the simulation of mechanical behaviour of specimen 0-1, 9

families of fibres are considered with angles of orientation, α , varying from 5◦ to 85◦ by step of

10◦ with the corresponding volume fractions identified based on µ−CT scan (average orientations

over the whole scanned volume). The same geometries and boundary conditions are used as in the

case of simulation of PP specimens (Section 4.1.1.2). As presented in Section 3.2.2, fibres have

a linear elastic behaviour and all fibres are assumed to have the same young modulus, EF , equal

to 76 GPa. Length, L, and radius, r, are respectively equal to 750 µm and 18 µm, as determined

by microtomography. Matrix material parameters are those identified in section 4.1 (Tables 4.2

and 4.5). Finally, for the PP-30GF and PP-40GF, the values of, τ = 23 MPa and τ = 26.5 MPa,

respectively, are the ones leading to the best fit between experimental and numerical responses

(FigureS 4.37).

Once the IFSS is identified, all parameters of the behaviour model of short-glass-fibre reinforced

polypropylene are known. In the next section, tensile tests are therefore used in order to validate
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the implementation for both composites, i.e. with 30 and 40 wt.% of glass fibres, in the case of

tensile tests in different loading directions with respect to the injection flow direction and over a

wide range of strain-rate.
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Figure 4.37: Comparison of experimental and numerically simulated tensile behaviour of specimens PP30-
0-1 (τ = 23 MPa) and PP40-0-1 (τ = 26.5 MPa)
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4.1.3 Validation of the composite model for tensile tests at different loading direc-

tion and strain-rate

As described in Section 3.2, the composite material is characterised by a distribution of fibre

orientation having the injection flow direction (IFD) as preferential orientation. As already stated

when dealing with the identification of the interfacial shear strength, 9 families of fibres are

considered in the present model, with angles of orientation, α , varying from 5◦ to 85◦ by step

of 10◦. Corresponding volume fractions are computed using density-angle diagrams from dis-

tributions of orientation averaged over the whole volume of µ−CT scans. An example of input

data for tensile tests simulation of PP-30GF and PP-40GF at 0◦ is presented in Table 4.8. Yet, as

Table 4.8: Angle-Volume fraction data at 0◦ for PP-30GF (PP30-0-1) and PP-40GF (PP40-0-1)

Fibres volume Fraction
Angle (0◦) PP-30GF PP-40GF

5 0,0391 0,0497
15 0,0291 0,0285
25 0,0158 0,0218
35 0,0119 0,0187
45 0,0128 0,0171
55 0,0059 0,0156
65 0,0063 0,0119
75 0,0054 0,0095
85 0,0031 0,0081

shown in section 4.1.2.1, a layered structure is identified with a distribution of fibre orientation

varying through the thickness (Figure 4.22). One might therefore wonder whereas it is accurate

to use orientations averaged through the specimen thickness in the modelling. The validity of this

assumption is therfore assessed by comparison of results obtained with average and “non-average”

data, i.e. by taking into account the layered structure of the fibre orientation. The specimen is

meshed with three or five layers of elements having equal thickness with different distributions of

fibre orientation attributed to the “exterior” and “interior” layers (Figure 4.38). In the three-layers

configuration, distribution of the “exterior” layers corresponds to the identified skin-shell data, i.e.

averaged over a thickness of 0.85 mm, while data associated to the “interior” layer corresponds to

the identified core data for a thickness of 0.80 mm. For the five-layers configuration distributions

are separately introduced with equal thickness. It is to note that the used distributions of orientation

are that obtained from specimen PP30-0-4. Previously identified fibre and matrix parameters are

used.
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Figure 4.38: Representation of the layered structure of the fibre orientation for the computation of the tensile
response of a PP30-0 specimen (at 1 mm.min−1)

Comparison of responses obtained for a simulated tensile test at 1 mm/min, is shown in Figure

4.39. It proves that the model accuracy is not improved by the consideration of different layers

through specimen thickness in the finite element simulation and that these ones can be performed

based on distributions of orientation averaged over the thickness. The tensile tests realised for PP-

30GF and PP-40GF specimens with different cutting angles and at different loading rates (Section

4.1.2.2) are simulated taking into account actual fibre orientations, as far as possible. In fact, all PP-

30GF and PP-40GF specimens were not analysed by µ-CT. Then, distributions of fibre orientation

in specimens, that were not scanned, are assumed to be identical to that of scanned specimens

located at approximately the same position in the plate.
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Figure 4.39: Results of simulated tensile test with layered distributions of fibre orientation of a PP30-0
specimen at 1 mm.min−1

The conditions of simulations are the same as those used for the identification of the IFSS (previous

section 4.1.2.2). The relevance of the developed constitutive model is then evaluated using the set

of identified parameters and actual distributions of fibre orientation. Experimental results obtained

for tensile tests at quasi-static and dynamic loading rates are compared with numerical responses

for all cutting angles (0◦,20◦, 45◦, 60◦ and 90◦). Results presented in Figures 4.40 to 4.44 for PP-

30GF and Figures 4.45 to 4.49 for PP-40GF demonstrate the accuracy of the implemented model

for both composites, since the stress-strain response is well reproduced for the different cases.

A limitation was however noted with overestimated numerically computed stress levels when

the tensile strain increases in quasi-static case. Actually a softening in the stress-strain curves

is observed on the experimental results and is not predicted by the current constitutive model.

An explanation is that this phenomenon is due to the developpement of damage mechanisms,

mainly fibre-matrix decohesion and matrix ductile damage, in a lesser extent, which are not taken

into account in the present model. It is also observed that this softening is more important at

lower loading angles with respect to IFD (0◦ and 20◦), which reveals the possible anisotropy of

these damage mechanisms. The characterisation and the modelling of matrix ductile damage and

debonding mechanisms are the object of following chapter.
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Figure 4.40: Comparison of experimental and numerical data for tests of 0◦ specimens of PP-30GF
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Figure 4.41: Comparison of experimental and numerical data for tests of 20◦ specimens of PP-30GF
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Figure 4.42: Comparison of experimental and numerical data for tests of 45◦ specimens of PP-30GF
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Figure 4.43: Comparison of experimental and numerical data for tests of 60◦ specimens of PP-30GF
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Figure 4.44: Comparison of experimental and numerical data for tests of 90◦ specimens of PP-30GF
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Figure 4.45: Comparison of experimental and numerical data for tests of 0◦ specimens of PP-40GF
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Figure 4.46: Comparison of experimental and numerical data for tests of 20◦ specimens of PP-40GF
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Figure 4.47: Comparison of experimental and numerical data for tests of 45◦ specimens of PP-40GF
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Figure 4.48: Comparison of experimental and numerical data for tests of 60◦ specimens of PP-40GF
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Figure 4.49: Comparison of experimental and numerical data for tests of 90◦ specimens of PP-40GF

4.2 Conclusion

This part of the work deals with the identification and validation of the developped constitutive

model (presented in Chapter 3). To this end, a characterisation procedure was set-up for the deter-

mination of constitutive parameters used in the matrix, reinforcement and composite modelling.

Parameters involved in the matrix behaviour law are identified based on dynamic mechanical

analysis, compression and tensile tests under a wide range of strain rate realised on PP material.

Then, dealing with the case of injection-moulded PP-short glass fibre composite, a first step

is to characterise the actual distribution of fibre orientation using micro-computed tomography.

Orientations thus identified were input of the behaviour model according to the “families of

fibres” concept. In order to validate the implementation of both matrix and composite models,
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comparisons of numerical and experimental results obtained for PP material and PP-GF were

performed. Simulated quasi-static and dynamic tensile tests of PP-GF with different fibre content

and distribution of fibre orientation proved the consistency of the implemented model.

To go further with the validation of the model, it would be interesting to extend the experimental

campaign to other loading conditions, for instance, non-monotonic tests, triaxial loadings, ...etc .

Finally, the advantageous adaptability of the present modelling offers the possibility to go further

with the matrix material and interface behaviour modelling. Hence, the introduction of damage

mechanisms in the behaviour prediction by the implementation of matrix ductile damage and

fibre-matrix debonding models is dealt with in the following chapter.





Chapter 5

Damage and fracture modelling

The current chapter deals with the modelling of failure mechanisms of SFRC. The description of

damage phenomena and the definition of a failure criteria are therefore adressed in the following

sections. The chapter starts with a highlight on damage models proposed in the litterature for

SFRC. Then, the implementation and validation of laws aiming to describe the complex damage

mechanisms in the composite material are presented. Experimental (cyclic loading/unloading and

tensile tests) are realised on unreinforced and short-glass-fibre reinforced matrix (Chapter 4) in

order to identify the involved parameters. Finally, the definition of a failure criteria, based on

observations from the litterature and the introduced damage laws, is investigated in the last part of

the chapter.

5.1 State of art of damage characterisation and modelling for SFRC

Damage mechanisms in short-fibre reinforced composites have been the object of many exper-

imental and numerical investigations in the litterature [121, 122, 123]. It was established that

the microstructure of short-fibre reinforced composites, the complexity of damage mechanisms

and the diversity of their scenarios significantly influence the composite properties. It has been

extensively reported that damage in such materials occurs at the microscopic level according to

different physical degradation mechanisms, namely: matrix microcracks, interfacial decohesion

and fibre breakage [125]. Mouhmid et al. [134] used acoustic emission and scanning electron

microscopy (SEM) techniques to investigate different types of damage in PA/GF composites.

They reported that the damage mechanisms in PA/GF composites are characterised by matrix

plasticization and microcracks, fibre fracture and pull-out. More recently, the development of X-

ray micro-computed tomography µCT-technique has been used to investigate damage mechanisms

in various composite materials [135, 136] and has pushed forward the quantitative analysis of its

evolution [137]. Arif et al. [121] have studied the specific case of damage evolution, using µCT-

tomography, in PA66-GF30 composite through the measurement of main features of defects, such

91
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as volume, orientation and shape, at several levels of overall damage. Following the analysis of

Horst and Spoormaker [138], they have proposed a damage progression scenario in which the

damage starts at the fibre ends, area where local stress concentration is the highest, and propa-

gates along the fibre in the form of fibre/matrix interfacial debonding. Then, matrix microcracks

develop and propagate in a ductile way accompanied with high matrix deformation bands [121].

For the particular case of short glass fibre reinforced polyamide-66, in-situ damage mechanisms

characterisation under quasi-static monotonic loading were investigated by Sato et al. [122], Horst

et al. [123] and Bernasconi et al. [133]. These authors also reported that in most cases, interfacial

damage starts at the fibre ends and further propagates along the fibre-matrix interface.

Based on the different reported observations, damage mechanisms can be classified in two princi-

pal types. The first class are mechanisms relative to the degradation of the matrix, which includes

initiation, coalescence and propagation of microcracks. The second type of damage mechanisms

are those linked to interfacial decohesion and to any other related process, such as fibre/matrix

friction and fibre pull-out processes.

The developpement of microcracks and ductile damage in the matrix material (void growth and

coalescence), is strongly influenced by the reinforcement characteristics [124]. For the modelling

of such a phenomena, some interesting approaches combine micromechanical and continuum

damage mechanics (CDM) descriptions. For instance, Nguyen and Khaleel [126] have evaluated

the effective and damaged stiffness tensors of composites reinforced by randomly oriented fibres

using self-consistent and Mori-Tanaka schemes, applied to a reference aligned fibre composite

and a distribution over all possible orientations. The evolution of the cracks in an elastic matrix

material was then modelled in the Continuum Damage Mechanics framework [126]. The case of

elastoplastic matrix material was similarly treated by Lee and Simunovic [127]. More recently,

a strongly anisotropic ductile damage of the matrix material was modelled in the framework of

continuum damage mechanics by Notta-Cuvier et al. [54], using a 4th-order damage tensor for

matrix material built based on the characteristics of the reinforcement.

Modelling of the interface degradation in composite materials has received a lot of interest in

the past two decades. One of the developed modelling methods consists in the consideration of

a dedicated fibre coating, also called an interphase, as a third phase of the material [125]. The

main drawback is that such a three-phase model implies the knowledge of coating properties,

which are rarely available. Hashin introduced the imperfect interface approach which accounts

for the displacement and stress jump at the fibre/matrix interface [128, 129]. Zhong and Meguid

[132] developed a new solution for the eigenstrain problem, as defined by Eshelby, of a spherical
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inclusion with an imperfect interface. In addition, the Shear Lag Model (SLM) has been developed

to model the load transmission degradation in the load transmission at fibre/matrix interface [89].

The symbiosis of microscopic observations constitutes an indispensable data-base for the state-

ment of accurate assumptions for the modelling of complex damage phenomena. In particular,

and due to complex fibre configurations in SFRC, all damage phenomena (more precisely matrix

damage and interfacial decohesion) are likely to coexist and may also interact. Obviously, the

nature of dominant damage phenomenon also depends on the kind of loading.

In the following sections, the implemented constitutive model (Chapter 3) is extended to the

case of damageable short-fibre reinforced thermoplastics by taking into account the matrix anisotropic

ductile damage and the progressive fibre/matrix interfacial decohesion mechanisms.

5.2 Modelling of matrix ductile damage

In this part of the chapter, the first damage class, i.e. mechanisms relative to the matrix degradation

is adressed. Bearing in mind the anisotropy induced by the complex orientation of the reinforcing

short fibres, an anisotropic ductile damage is coupled to the matrix constitutive model. The damage

laws are developed in the framework of continuum damage mechanics and identified, consistently

with the previous investigations (Chapter 3), for a PP matrix material, using cyclic tensile tests as

described hereafter.

5.2.1 Anisotropic damage model for the matrix material

As presented by Lemaitre [38], ductile damage mechanism can be interpreted at the microscale

as the creation of microsurfaces of discontinuities (i.e. enlargement of microcavities). At the

mesoscale, the pattern of microcavities may be approximated by the area of the intersections of

all the cavities with a given plane. This area is scaled by the size of a representative element. For

a given plane in a Representative Volume Element (RVE) of a damaged body, damage variable is

therefore defined by a scalar value D bounded between 0 and 1, as follows:

D =
AD

A
(5.1)

where A and AD are the areas of intersections of, respectively, the RVE and the microdefects

within a given plane. In the framework of Continuum Damage Mechanics, the effective stress is

introduced as the stress related to the elementary surface of the material that effectively withstands
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the load, namely (A−AD). In the case of isotropic damage, the effective stress is expressed as

follows [38]:

σ̃ =
σ

1−D
(5.2)

where σ̃ and σ are respectively the effective and true Cauchy stress tensors (Figure 5.1).

Consistently with earlier formulation of the constitutive laws (section 3.2.1.1), damage description

is performed within the framework of thermodynamics of irreversible processes. In the case of

homogeneous material and if the ratio of surface defects is identical in all directions, the damage

can be modelled as isotropic. In that case, it can be entirely characterised by the scalar variable, D.

Figure 5.1: Definition of the damaged and effective configurations in Continum Damage Mechanics

When dealing with anisotropic materials, for instance fibre reinforced matrices, the whole be-

haviour, including damage developement, is governed by the reinforcement properties (Figure

5.2). Anisotropy has, therefore, to be taken into account for the modelling of damage developpe-

ment. In this case, the scalar variable can no longer be representative of the damage developpement

and a 4th-order damage tensor, D , is introduced in order to link the real, σM , and effective, σ̃M ,

Cauchy stress tensors [54] (Equation 5.3).

σM = D σ̃M (5.3)

Indeed, damage development in the matrix material is directly dependent on the orientation and

the volume fraction of fibres.
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Figure 5.2: Damage anisotropy of the reinforced matrix material

In the model, each family of fibres α is assumed to govern the characteristics of damage over the

volume V α
F of the matrix material, which is assumed to be equal to the volume of fibre medium

α , i.e. V α
F = να

F V where V is the volume of the composite material. Matrix damage is therefore

governed by each fibre family over a corresponding volume fraction of the matrix material equal

to να
F /νM with α ∈

{
1, ...,N f am

}
. Intermediate damage tensors, Dα , and corresponding inverse

tensors, M α , are introduced (Equation 5.4).

σα0
M = Dα σ̃α0

M

σ̃α0
M = M ασα0

M

(5.4)

where σ̃α0
M and σα0

M currently stand for, respectively, the effective and real stress tensors that would

be computed for the matrix of a fictitious composite material constituted of one family of fibres

α (with the superscript “0” indicating that mechanical tensors are expressed in the coordinates

system related to the family of fibres α). Note that σ̃α0
M and σα0

M have actually no physical sense.

Anisotropy of the damage mechanism is mainly due to the fact that for a given fibre family, short

fibres prevent the damage in their direction of orientation, so that:

σα0
Mii = σ̃α0

Mii i f i = j = 1

σα0
Mi j = (1−D) σ̃α0

Mi j else (i, j ∈ {1,2,3} and (i, j) ̸= (1,1))
(5.5)
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It leads then to the following expression of the tensor Dα :

Dα
i jkl = δikδ jl [1−Dδi j (1−δi1)−D(1−δi j)] , ∀α (5.6)

where δi j is the Kronecker symbol defined by δi j = 1 if i = j and δi j = 0 if i ̸= j. For the

computation of the real Cauchy stress tensor in the global coordinates system, the transition matrix,

T α , is used to express the effective stresses in fibres’ coordinates system, with σα0
M = T α−1

σα
MT α .

The tensor Dα is then applied to σα0
M , before the real stress tensor is re-expressed in the global

coordinates system. The global damage state of the matrix is described by assembling all the

contributions, i.e. damage effect of all the fibre families, over the volume fractions of the matrix

medium. Finally, the volume fraction of the matrix material, v
′
M , which is not affected by the

presence of the fibres damages isotropically. Note that v
′
M is equal to 1−∑

α
vα

F/vM or equivalently

to 2 − 1/vM. This model is therefore valid for matrix volume fraction higher than 0.5, which

is generally the case in injection moulded short-fibre composites. Taking into account all these

considerations, the tensor D is finally expressed as follows:

Di jkl = v′M (1−D)δikδ jl +
n f am

∑
α=1

vα
M

vM

3

∑
p,q=1

T α
ip

(
T α−1

)
q j

(
T α−1

)
pk

T α
lq Dα

pqpq (5.7)

5.2.2 Thermodynamic formulation of damage evolution laws

As already stated, the framework of thermodynamics of irreversible processes, where the Helmholtz

free energy function is decomposed into a viscoelastic part and a viscoplastic part, is considered.

Damageable materials are dealt with, within this formalism, by coupling damage with the vis-

coelastic part of the free energy. The Helmholtz free energy of the “damageable” matrix therefore

becomes:

ϕM = ϕ ve,D
M +ϕ vp

M (5.8)

where ϕ ve,D
M is the viscoelastic free energy coupled to damage and, according to Lemaitre [38], is

defined by:

ρMϕ ve,D
M =

1
2

∫ t

−∞

∫ t

−∞

∂εve

∂τ
(τ) : Rve

dam (2t − τ −ξ ) :
∂εve

∂ξ
(ξ )dτdξ (5.9)

Rve
dam is the “damaged” fourth-order relaxation tensor of the matrix material and is defined in case

of anisotropic damage by:

Rve
dam = DRve (5.10)
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with 4th order tensor D defined in previous section (5.2.2) and ρM the matrix density. For the

determination of damage fourth-order tensor, D , evolution law of damage scalar variable D has to

be defined. The damage thermodynamic force Y , also defined as the strain energy density release

rate, and its conjugate variable D are related by the state law given as follows [38]:

Y =−∂ρMϕ ve,D
M

∂D
(5.11)

Given the expression of ϕ ve,D
M (5.9), Y is obtained by:

Y (t) =
1
2

∫ t

−∞

∫ t

−∞

∂εve

∂τ
(τ) : D ′Rve (2t − τ −ξ ) :

∂εve

∂ξ
(ξ )dτdξ (5.12)

where D ′ =
∂D

∂D
, i.e. :.

D ′
i jkl =−v′Mδikδ jl +

n f am

∑
α=1

vα
M

vM

3

∑
p,q=1

T α
ip

(
T α−1

)
q j

(
T α−1

)
pk

T α
lq Dα ′

pqpq (5.13)

where Dα ′
is defined as follows:

Dα ′

i jkl = δikδ jl (δi jδi1 −1) , ∀α (5.14)

with straightforward manipulations:

D ′
i jkl =−v′Mδikδ jl +

n f am

∑
α=1

vα
M

vM

3

∑
p,q=1

T α
ip

(
T α−1

)
q j

(
T α−1

pk

)
T α

lq (δpqδp1 −1) (5.15)

The damage thermodynamic force can be written as the sum of a deviatoric, Ydev, and hydrostatic,

YH , parts [105, 109]:

Y (t) = Ydev (t)+YH (t) (5.16)

with 
Ydev (t) =

∫ t

−∞

∫ t

−∞
Gve (2t − τ −ξ )D ′ ∂εve

dev
∂τ

(τ) :
∂εve

dev
∂ξ

(ξ )dτdξ

YH (t) =
9
2

∫ t

−∞

∫ t

−∞
Kve (2t − τ −ξ )D ′ ∂εve

H
∂τ

(τ)1 :
∂εve

H
∂ξ

(ξ )1dτdξ
(5.17)
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The use of Prony series leads then to:

Ydev (t) = G∞D ′εve
dev (t) : εve

dev (t)+
N

∑
i=1

Gi

∫ t

−∞

∫ t

−∞
exp
(

τ − t
τd

i

)
exp
(

ξ − t
τd

i

)
D ′ ∂εve

dev
∂τ

(τ) :
∂εve

dev
∂ξ

(ξ )dτdξ
(5.18)

YH (t) =
9
2

K∞D ′εve
H (t)1 : εve

H (t)1+

9
2

N

∑
i=1

Ki

∫ t

−∞

∫ t

−∞
exp
(

τ − t
τv

i

)
exp
(

ξ − t
τv

i

)
D ′ ∂εve

H (τ)
∂τ

1 :
∂εve

H (ξ )
∂ξ

1dτdξ
(5.19)

By considering the expressions of the deviatoric and hydrostatic stresses (previously defined in

section 3.2.1.2) and introduced here as effective quantities, σ̃M,dev and σ̃M,H , we obtain:

Y (t)=
D ′σ̃M∞,dev : σ̃M∞,dev

4G∞
+

D ′σ̃M∞,H : σ̃M∞,H

2K∞
+

N

∑
i=1

D ′σ̃Mi,dev (t) : σ̃Mi,dev (t)
4Gi

+
N

∑
i=1

D ′σ̃Mi,H (t) : σ̃Mi,H (t)
2Ki
(5.20)

The developped damage model of the matrix material is implemented, as described above, for the

case of short-fibre reinforced matrix, i.e. where the damage anisotropy is taken into account. The

presented damage laws are, in fact, fully identified when the evolution law of the scalar damage

variable D is identified. This parameter can be determined based on tests on unreinforced matrix

material, for which damage is isotropic. In the following the constitutive equations are therefore

simplified considering an isotropic damage for the identification of D.

5.2.3 Characterisation and validation of the matrix damage model

For the particular case of unreinforced materials, damage is assumed to develop isotropically.

Consequently, terms corresponding to the fibre families effect in the expression of Y vanish and it

leads to:

Y (t) =
σ̃M∞,dev : σ̃M∞,dev

4G∞
+

σ̃M∞,H : σ̃M∞,H

2K∞
+

N

∑
i=1

σ̃Mi,dev (t) : σ̃Mi,dev (t)
4Gi

+
N

∑
i=1

σ̃Mi,H (t) : σ̃Mi,H (t)
2Ki

(5.21)

The damage variable D is a state thermodynamic variable and derives from the dissipation potential

of the matrix material using the normality rule. In the present case, i.e. when damage is taken

into account as a dissipation phenomena in the matrix material, the expression of its dissipation

potential becomes:

ψvp,D
M = ψvp

M +ψD
M (5.22)
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where ψvp
M is the viscoplastic dissipation potential defined in section 3.2.1.3 and ψD

M = ψD
M (D)

is the damage dissipation potential associated to the state variable D. Using the viscoplastic

multiplier, λ̇ , the normality rule for the damage variable evolution is expressed as follows:

Ḋ = λ̇
∂ψvp,D

M
∂Y

= λ̇
∂ψD

M

∂Y
(5.23)

According to the fact that the damage variable stands for deterioration of a material and not for

recovery of strength, i.e. Y Ḋ≥ 0, Lemaitre [38] demonstrates that it is correlated to the viscoplastic

strain level and that ψD
M can be expressed as a function of Y 2/(1−D). A damage threshold, κD,

which corresponds to the equivalent viscoplastic strain from which damage begins, is therefore

introduced and the evolution law for the scalar damage variable is given by:


Ḋ = κ̇

Y
S

, if κ ≥ κD,

Ḋ = 0 , else
(5.24)

where κ is the equivalent viscoplastic strain defined in section 3.2.1.3. The damage evolution laws

are coupled to the constitutive laws of the matrix material and the predicted responses are now

expressed in terms of effective and “damaged” ( i.e. real) stress tensors. In order to verify the

current implementation, the extended constitutive law of the matrix material, i.e damage-coupled

viscoelastic-visoplastic law, is tested for several values of damage parameter, S (Equation 5.24).

A unique 3D cubic element (C3D8) is considered for these tests, with an edge size of 1 mm. All

degrees of freedom of nodes at the element basis are constrained to 0, while the upper ones are

subjected to an imposed velocity. Results for the variation of D and the stress-strain response with

different values of the parameter S are given in Figures 5.3 and 5.4.

Several methods exist for the characterisation of damage development in different materials. In

the case of polymers, among methods to charaterise ductile damage, one can cite techniques based

on direct measurement, which consist on a mesocale evaluation of the total crack areas lying on a

surface. This is however a tedious method to perform. Non-direct measurement methods have also

been developped and are judged more straightforward.
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Figure 5.3: Influence of parameter S on the evolution of the damage variable D (1 mm.min−1)
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Figure 5.4: Influence of parameter S on the damaged matrix response at tension (1 mm.min−1)

In this work, the variation of the elastic modulus is used as a non-direct measurement method of

damage. This method is based on the influence of damage on elasticity through the state coupling

defined in the framework of Continum Damage Mechanics (Section 5.2.2). In case of isotropic

damage, an effective elastic modulus of the damaged material is defined by: Ẽ = E (1−D), where

E is the non-damaged elastic modulus. The value of the damage variable, D, can then be derived
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from measurement of Ẽ, provided that E is known, as follows:

D = 1− Ẽ
E

(5.25)

In practice, cyclic loading/unloading tensile tests are performed to assess the evolution of D by

measurement of Ẽ during unloadings (Figure 5.5).
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Figure 5.5: Damage variable determination from cyclic tests using the stiffness-loss method [38]

In this work, this technique is applied to PP with the same specimen geometry and testing set-up

(Instron E3000 electromagnetic device with a 3 kN cell force) as for quasi-static monotonic tests

(see section 4.1.1.1). Cyclic loading is applied with a prescribed displacement at 1 mm.min−1.

During unloading, the imposed strain rate is the same as during loading. It is to note that this

method remains reliable as long as the damage is uniformly distributed in the volume on which

the strain is measured. To assess the validity of this hypothesis, strain values are tracked by Digital

Image Correlation technique so that the homogeneous area of the ROI can be delimited, as shown

in Figure 5.6.
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Figure 5.6: Cartography corresponding to an engineering strain of 0.087 and determination of the ROI of
homogeneous strain
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The evolution stress-strain response is shown in Figure 5.7, where axial strains are averaged over

the homogeneous area of the tracked ROI. It is to note that these data correspond to an average of

three tests, which showed a good repeatability.
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Figure 5.7: Stress-true strain response for cyclic uniaxial tensile test on PP

From these results one can observe the expected hysteresis effect characterising the viscoelastic

behaviour. As shown in Figure 5.7, the loading and unloading phases are not linear. Therefore,

an equivalent stiffness, different from the Young modulus but considered as an indicator of the

damaged material rigidity, is taken between the lower and upper points of each hysteresis. Note

that the “non-damaged” modulus is calculed from the first loading path. The damage variable is

then calculated for each damaged (or equivalent stiffness) modulus, Ẽ, using Equation 5.25. The

obtained values of D are presented in Figure 5.8.
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Figure 5.8: Damage evolution law calculated using the stiffness-loss method

Identification of the damage law

The evolution law of the damage variable (Equation 5.24) can now be identified. The determination

of the parameters S and κD is performed based on the elasticity change method, described above.

Cyclic tensile tests, described hereabove, were realised at a loading speed (1 mm.min−1) assessed

to be sufficiently low so that the time-dependent terms in the expression of the strain energy density

release rate, Y , can be neglected. The Equation 5.21 then becomes:

Y (t)w σ̃M∞,dev : σ̃M∞,dev

4G∞
+

σ̃M∞,H : σ̃M∞,H

2K∞
(5.26)

Expressing Y (in the case of isotropic damage) in terms of real stress tensors leads to:

Y (t)w σM∞,dev : σM∞,dev

4G∞ (1−D)2 +
σM∞,H : σM∞,H

2K∞ (1−D)2 (5.27)

With the performed uniaxial tensile tests, the stress state is unidimensional and is defined as

follows:

σ =


0 0 0

0 σyy 0

0 0 0

 (5.28)
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where σyy is the axial stress component. Based on definitions given in section 3.2.1.2, the corre-

sponding deviatoric, σM∞,dev, and hydrostatic, σM∞,H , stresses are determined as follows:

σM∞,dev =


−1

3
σyy 0 0

0
2
3

σyy 0

0 0 −1
3

σyy

 and σM∞,H =
1
3

σyy (5.29)

Using the later expressions in Equation 5.27, Y can be written as follows:

Y (t) =
2
3 σ2

yy

4G∞ (1−D)2 +
1
3 σ2

yy

2K∞ (1−D)2 =
σ 2

yy

6(1−D)2

(
1

G∞
+

1
K∞

)
(5.30)

where G∞ and K∞ are obtained from previous identification (Section 4.1).

The expression of the damage evolution law, can then be written in a “discretised” form as follows:

dD
dκ

=
Y
S

(5.31)

At each instant of the loading-unloading cycles when the axial viscoplastic strain is available, κi,

Di and σyy,i are known. For the calculation of
(

dD
dκ

)
i

a second order polynomial function, p(κ)

(Equation 5.32), is fitted to the experimental data D(κ), as shown in Figure 5.8.

p(κ) =−0.0017+2κ +142κ2 (5.32)

Using this expression, its derivative, p’, is calculated at each κi so that
(

dD
dκ

)
i
= p′ (κ). The

parameter S can therefore be calculated as follows:

Si =
Yi

p′ (κi)
(5.33)

The computed values of S for the different instants are presented in Figure 5.9, where the final

value is determined as its “average”. A value of 0.05 MPa is obtained for sufficiently high values

of κ (higher than 0.006).

The validation of the implemented model is performed using the determined damage law coupled

with the matrix constitutive parameters previously identified. Comparisons are performed with ten-

sile results of PP matrix where the experimental axial stress is determined with the compressibility
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Figure 5.9: Identification of the parameter S

and transverse isotropy assumptions (Figure 5.10). That leads to express the true axial stress as:

σ =
F
S

exp(−2εxx) (5.34)

where εxx is the true transverse strain, measured by DIC. It is demonstrated from the presented

comparisons that a better fit with experimental results is obtained. Indeed, a stress softening that

occures at a given strain range is well reproduced with the implemented damage law. As it can be

seen in Figure 5.10, this is more valuable for quasi-static tests (i.e. for strain rates of 5.55 10−4

s−1, 5.55 10−3 s−1 and 6.67 10−2 s−1). For higher strain rates, stress stress softening does not

ameliorate the numerical-experimental fit. This is presumably due to a strain-rate dependency of

damage developpement in the polymeric material that should be introduced.

Anisotropy of the matrix damage model

The described damage law is implemented in its anisotropic form, i.e. with the fourth-order

damage tensor, D , taking the effect of the different fibre families into account (Equation 5.7). The

effect of fibre orientation, and therefore the damage anisotropy, are highlighted in Figure 5.11,

for two different distributions of fibre orientation (around 0◦ and 90◦ as preferential direction

of orientation). A difference between the axial effective and real stress components, δσyy, is
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computed for both ditributions of fibre orientation in order to quantify this anisotropy (5.11(b)).

It is to note that the used distributions of fibre orientation are those identified by micro-computed

tomography, as presented in Chapter 4.
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Figure 5.10: Influence of damage on computation of PP matrix tensile behaviour,for a wide range of strain
rate
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Figure 5.11: Anisotropy of the matrix damage for the PP-30GF composite (data computed using distribu-
tions of fibre orientation of specimens PP30-0-4 and PP30-90-4)

5.3 Fibre-Matrix interfacial damage

As explained in the first part of this chapter, the developpement of damage phenomena in short-

fibre reinforced materials is governed by the properties of the reinforcement. More precisely, and in

addition to the anisotropy of matrix damage (dealt with in the first part of the chapter), the effect

of fibres intervens in the progressive failure mechanism through alteration of load transmission

at fibre-matrix interface or fibre breakage. Fibre breakage is not adressed in this work since it
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is assumed that fibre length is sufficiently low with respect to the critical length so that fibre

breakage is unlikely to happen. On the contrary, degradation of fibre/matrix bonds at the interface

is generally considered as a major damage phenomenon of SFRC. It is adressed in this part of

the work based on microscopic observations reported in the literature. In particular, a highlight is

done on the interface degradation process described by Sato et al. [55] for a polyamid reinforced

by short glass fibres. These authors established a scenario of successive steps leading to composite

failure under tension, which constitutes the basis of current developpements. Thanks to direct in-

situ SEM observations, Sato et al. [55] have postulated that mechanism of composite progressive

failure initiates at fibre tips and can be described by the following steps:

1. Initiation of interfacial microfailure at fibre tips due to high tensile stress concentration around

fibre tips (from about 50% of ultimate composite stress).

2. Separation at the interface, formation of microvoids in the matrix material at the vicinity of the

fibre tips.

3. Propagation of interfacial microfailures along fibre sides due to critical shear stress concentra-

tion: from about 75 % of ultimate composite stress.

4. Occurrence of plastic deformation bands in the matrix and ductile crack propagation through

plastic deformation bands.

5. Ultimate failure by brittle crack propagation: failure is governed by a critical value of crack size

propagating through the matrix material.

Stress 
concentration  

zone 

Fibre 

Interfacial 
microfailure 

initiation at fibre 
tips 

Matrix 

Ductile crack 
propagation in the 

matrix  material  

Brittle crack 
propagation 

Interfacial 
microfailure 
propagation 

along fibre sides 

Figure 5.12: A schematic representation of failure scenario in SFRC subjected to an axial loading (in the
direction of the fibre axis)
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Modelling strategy

In this part, the degradation of the fibre-matrix interface is adressed based on the later observations

of Sato et al. [55] and first modelling presented by Notta-Cuvier et al. [139]. The load transmission,

which is governed by shear transfer process, remains unaffected as long as no micro-defects are

initiated on the fibre-matrix interface. Yet, this transmission is degraded as soon as microcracks

start to propagate along fibre tips and sides. For a given fibre medium α , interfacial microfailures,

or voids, are assumed to develop when the fibre axial strain reaches a threshold value called

εth. Then, the voids area extends from each fibre tip to a length equal to LαD and prevents load

transmission over a fibre length equal to δ α ≤ LαD (Figure 5.13).
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Figure 5.13: Effect of fibre/matrix debonding on load transmission

The actual fibre 1D stress state is therefore computed by replacing Lα by Lα −2δ α in the fibre

stress expression (given in Section 3.2.2), so that (for all values of α):
σ 0,α

F = ε0,α
F

(
1− Eα

F rα

2(Lα −2δ α)τα

∣∣∣ε0,α
F

∣∣∣)Eα
F

σ 0,α
F = sign

(
ε0,α

F

) (Lα −2δ α)τα

2rα

if
∣∣∣ε0,α

F

∣∣∣≤ (Lα −2δ α)τα

Eα
F rα

otherwise
(5.35)

δ α is assumed to increase with fibre 1D strain, as soon as it becomes higher than the threshold εth,
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as follows: 
δ α = a

(
εα 1D

F − εth

εth

)b Lα

2
if εα 1D

F ≥ εth,

δ α = 0 otherwise

(5.36)

where a and b are constant parameters to be identified. The loss in load transmission is responsible

for the development of shear stress concentration in matrix material and, consequently, of the

growth and coalescence of voids within the matrix. The volume of nucleated voids around each

fibre is given by 2π (rα
v rα)2 LαD, where rα

v is the average ratio of nucleated voids diameter by

fibre radius. The corresponding volume fraction (i.e. of nucleated voids), νnucl
v , with respect to the

composite volume is therefore given by:

νnucl
v = ∑

α

(
2LαD

Lα

)
rα2

v να
F (5.37)

In the following, it is assumed that values of rα
v and LαD/δ α are the same for all the fibre media,

so that rα
v = rv and LαD/δ α = LD/δ , ∀α . Finally, the volume fraction of nucleated voids is given

by:

νnucl
v =Cnucl ∑

α

(
2δ α

Lα

)
να

F (5.38)

where the parameter Cnucl is introduced as Cnucl = r2
v LD/δ . Using the expression of the nucleated

voids fraction, the evolution of the total voids volume fraction, ν̇ tot
v , is computed as follows:

ν̇ tot
v = Π

[
ν̇nucl

v +Cgrowthνnucl
v σ̇H

]
(5.39)

where ν̇nucl
v is the rate of volume fraction of nucleated voids and Cgrowth is a constant parameter

defining the void growth dependency to macroscopic composite hydrostatic stress, σH , [96]. Ac-

cording to Zairi et al. [96], the parameter Cgrowth is of an order of magnitude close to 1/G, with G

the shear modulus of the composite. In the expression (5.39) the influence of the surrounding

area of debonded fibre is taken into account using the parameter Π. Indeed, at fibre vicinity,

voids nucleation, growth and coalescence and then crack propagation, is strongly influenced by

the fibre environment and its local mechanical state. Void nucleation growth and propagation

may be accelerated when the fibre is surrounded by area of shear stress concentration, a stress

state conductive to debonding, occuring due to the presence of close fibres. On the contrary, if

neighbouring fibres have higher angles of orientation with respect to loading direction than the

debonded fibre, the development of shear bands is delayed as well as debonding developpement.
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Moreover, when neighbouring fibres are transversally oriented to the crack path, they may act

as obstacles to its propagation [139]. Based on these observations, parameter Π is introduced

acording to a probabilistic approach as follows:

Π =
1

ν tot
F

∑
α

να
F

LαD

LD
max

= Π
1

ν tot
F

∑
α

να
F

δ α

δmax
(5.40)

where α designates family of fibres with debonded tips, i.e. α ∈
{

1, ...,N f am
}

and εα 1D
F ≥ εth.

Note that the probability of void nucleation and then growth increases with the number of partially

debonded fibres in the neighbourhood of the debonded fibre. In order to prevent jumps in the

values of Π, the factor LαD/LD
max = δ D/δmax is introduced. where LD

max = maxα
(
LαD) and

∆max = maxα (∆α). Finally, the parameter Cnucl has to be determined. Its value is experimentally

identified as described in Annexe (A).

Once the described laws are implemented and coupled to the developped constitutive model of

SFRC behaviour, first verifications are made to show the effect of each parameter. In particular

the effect of parameters a and b on the evolution of δ α is highlighted in Figures 5.14 and 5.15. As

these two parameters have a coupled effect on the evolution of δ α , they have to be simultaneously

determined. From observations on experimental tensile results of composite material (PP-30GF),

it is found that debonding evolution can not be linear. Therefore the value of the parameter b is

different from 1, and is taken equal to 2. The effect of the parameter a is shown in Figures 5.16

and 5.17 on the fibre and composite axial responses, respectively. Value of a is then identified by

fitting the computed composite axial response to the experimental data obtained for PP-30GF at 1

mm.min−1 (Figure 5.18). For this comparison, the specimen PP30-0-1 is chosen as the one having

the highest density of fibres oriented in loading direction (see section 4.1.2.1). A value of a = 0.15

is obtained.
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Figure 5.14: Influence of parameter b on the fibre length unavailable for load transmission (a fixed at 0.2)
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Figure 5.16: Influence of parameter a on the fibre axial stress (b fixed at 2)
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Figure 5.17: Influence of parameter a on the composite PP-GF30 axial stress (b fixed at 2), in the case of
specimen PP30-0-1 tested at 1 mm.min−1



114 CHAPTER 5. DAMAGE AND FRACTURE MODELLING

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

40

50

60

70

80

C
om

po
si

te
 a

xi
al

 s
tr

es
s 

(M
P

a)

exp (PP30−0−1)

simu (no debonding)

simu (a=0.15, b=2)

Composite axial strain

Figure 5.18: Comparison of experimental and numerical results for the identified parameters a and b
(specimen PP30-0-1 tested at 1 mm.min−1)

5.4 Validation of the damage model

The described laws of debonding evolution are coupled to the previously described constitutive

laws of the composite material (with damageable viscoelastic-viscoplastic matrix).

A flowchart summarising the implementation of the behaviour model, including laws of the

matrix ductile damage and fibre-matrix debonding, is presented in Figure 5.19.

The validation of the complete model is performed by comparison with experimental tensile data

obtained for the PP-30GF with the different loading angles (realised at 1 mm.min−1). Note that

the effect of strain rate on the developement of damage mechanisms is not adressed in this work.

Results presented in Figure 5.20 show that the predicted response of the implemented model is in

a better agreement with the experimental results for the presented cases compared with previous

results, obtained without the consideration of damage phenomena. So, these comparisons prove

the ability of the present model to reproduce the damage phenomena occuring in the composite

material.
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         Computation of the fibre axial strain: εF
α 1D 

        If εF
α 1D >  εth  

             Debonding:  
             Computation of δα 
             Update of the effective length Lα − 2δα 

        Computation of the fibre axial stress σF
α 1D  

              (shear-lag model) 
        Computation of other components of fibre stress tensor  
               (by iso-stress condition) 
  End 

   Computation of increment of nucleated voids fraction:  νv
nucl 

   Computation of parameter Π 
   Computation of total voids increment νv

tot 

• Matrix material parameters 

• Reinforcement characteristics: 

Number of fibre media (N) 

Update of the matrix volume fraction 

Outputs: 

For a=1 to N 

 Initialisation: Fibre variables at previous increment (n)    

 Prediction of the fibre media behaviour : 

End 

Viscoelastic effective response 
Viscoplastic correction (when needed) 
     Computation of the equivalent VP strain κ 
If κ > κ𝐷 
    Computation of damage variable increment ∆D 
    Computation of the fourth-order damage tensor D 

Computation of the true matrix stress tensor 
 

Initialisation: Matrix variables at previous increment (n) 

Prediction of the matrix behaviour: 

  

Fibre length, radius, elastic modulus 

Distribution of fibre orientation 

Interfacial parameter (IFSS) 

(VE, VP , hardening and ductile damage) 

Inputs: 

• Composite stress tensor at all Gauss points and increments 
• The different stored variables: VE and VP strain tensors, equivalent  
      VP strain, axial strain and stresses of fibre media, fully debonded  
      lengths, voids volume fraction 

End 

Computation of composite stress tensor (at increment (n+1)) 

Figure 5.19: Implementation scheme
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Figure 5.20: Verification of the model with the implemented matrix and interfacial damage models by
comparison with experimental results in the case of PP-30GF
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5.5 Fracture modelling

Failure of short fibre reinforced composites have been the object of some experimental and nu-

merical investigations in the litterature. Most of the research work on fracture modelling were

performed in the framework of fracture mechanics, where the concept of dissipation energy is

investigated [140, 141, 142]. Among this, Lauke and Pompe [143] have treated failure of SFRC

as a combination of different energy dissipation mechanisms (fibre debonding and sliding, brittle

and ductile matrix fracture,...) acting within a zone ahead of a notch tip. They proposed then a

fracture criterion based on the basis of an energy principle. This approach is however limited

by the difficulty to identify the distinct dissipation energies in case of complex microstructure.

Very few works have been proposed for the prediction of SFRC ultimate failure on the basis of

damage mechanisms accumulation. In this part of the work, a failure criterion is introduced in

order to predict SFRC macroscopic mechanical state at break. The implemented criterion is based

on the assumption that SFRC failure is governed by the developpement of damage mechanisms

[139], in particular, fibre/matrix interfacial debonding and matrix ductile damage (Sections 5.2

and 5.3). The objective is to identify this failure criterion for a SFRC with known reinforcement

characteristics, including reinforcement distribution of orientation, and then to use it to predict

failure of a similar composite, i.e. made of the same constituents but with other reinforcement

characteristics (i.e. orientations) and/or kinds of loading. This study is applied to the PP-30GF

subjected to quasi-static uniaxial tensile loadings in two different directions with respect to the

injection flow direction. Identification and validation of the implemented fracture criterion are

therefore performed based on results of these experimental tests.

5.5.1 Damage development based criteria

A failure criterion is defined here based on a critical void content reached in the composite material

as a consequence of the developpement of damage “quantities”. As stated above, several damage

mechanisms can simultaneously develop depending on the microstructure/reinforcement proper-

ties of the composite material. Among them, fibre/matrix interfacial debonding is undoubdtedly a

predominant damage phenomena, as indicated by the presence of debonded fibres on the fracture

surface of PP-30GF (Figure 5.21).



118 CHAPTER 5. DAMAGE AND FRACTURE MODELLING

It is assumed here that ultimate failure is function of the voids induced by interfacial debonding

that develops at fibre tips. It is therefore defined by the critical fraction of the cumulated voids,

with void fraction evolving according to equations of section 5.3.

0

100 μm

100 μm 50 μm

debonded fibres

Cavities created 
due to fibre 
debonding

Figure 5.21: Fibre debonding in a fracture surface of PP-30GF tested at 1mm.min−1 (visualised by MEB)

Critical void fraction, νcrit
v , is identified for a reference composite with “perfectly” known

reinforcement characteristics, by noting the value of ν tot
v that is reached at composite break.

Then, νcrit
v is a failure criterion that can be used to predict the strain at break of all composites

made from the same constituents in nature than the reference composite, whatever reinforcement

characteristics, particularly in terms of fibre orientation. This failure description is consistent with

the experimental observations stating that composite strain at break increases with fibre angle

of orientation with respect to loading direction [133]. Indeed, the nucleated void fraction, νnucl
v

(Equation 5.37), and therefore the total void fraction, ν tot
v (Equation 5.39), decreases when fibre

angle of orientation increases, at identical composite strain sate, and higher values of loading have
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therefore to be reached to fulfill the failure criterion.

ν tot
v = νcrit

v (5.41)

The evolution of the cumulated void fraction in PP-30GF is computed for different distributions

of fibre orientation, as presented in Figure 5.22. The considered orientations correspond to those

established by µ-computed tomography for specimens cut at different angles, θ , with respect to

the injection flow direction (see Section 4.1.2.1). It can be reminded that in those cases, θ is the

preferential (but not unique) orientation of fibres with respect to loading direction.
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Figure 5.22: Evolution of cumulated void volume fraction with different distributions of fibre orientation
resulting from different cutting angles θ

As expected, the volume fraction of voids induced by interfacial debonding is higher and

increases faster as fibre orientation becomes closer to loading direction.

5.5.2 Tensile tests with notched specimens

In order to characterise the failure criterion, uniaxial tensile tests are performed with notched

specimens of the composite PP-30GF (Figure 5.23). Notched specimens are characterised by a

weakened section resulting in a strain concentration zone that leads to damage localisation (notch

zone). The uniaxial tensile tests are performed on the electromagnetical device with a cell force of

3KN (INSTRON E3000). Load is applied with a prescribed displacement of 1 mm.min−1 and with
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specimens cut at angle θ equal to 0◦ and 90◦ with respect to the injection flow direction (IFD).

True in-plane strain fields are determined using 2D Digital Image Correlation (DIC) technique for

a local measurement within the area of strain concentration (Figure 5.23). The facets are tracked

by DIC software (VIC 2D) at an acquisition rate of 2 im/s. The influence of facet size and step

size on the measured strains is studied. They are chosen as a compromise between a good level

of accuracy of the measured strains (in terms of captation of strain localisation in particular) and

the avoidance of loss of data at the step preceeding failure. As shown in Figure 5.24, a loss of data

occurs at step 150 (corresponding to an engineering strain of 0.04) for relatively small sizes of

facet and step. Based on this observation a facet size of 31x31 pix2 and step size equal to 15 pix

are chosen.

1
3

1
3 4

7.96 mm

Figure 5.23: Notched specimen geometry and definition of the ROI
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(a) Facet size of 15x15 pix2 (b) Facet size of 21x21 pix2

(c) Facet size of 31x31 pix2 (d) Facet size of 51x51 pix2

Figure 5.24: Influence of the facet size on the measured axial strain at the step 150 (corresponding to an
engineering strain of 0.04)

5.5.3 Identification and verification of the fracture criteria

For the determination of failure axial strain, the computed local axial strains at the pre-failure step,

i.e. final step before failure, in notched specimens cut at 0◦ with respect to loading direction are

presented. To verify the consistency of the measurement, three specimens are tested and results

are presented in Figure 5.25. It can be observed that failure occurs when a high level of strain is

locally reached. This is of great importance for the following concerns, as this indicates that the

failure occurs when a critical strain value is reached and is not the consequence of a material local

defect (e.g. created during the manufacturing process).

Failure strain is determined as the maximum value reached in the strain localisation zone of a

reference specimen, the PP30-0-4. Its value is determined as the average of local strain values

over a diameter of 1.68 mm (Figure 5.26) and is equal to 0.048.
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(a) PP30-0-4 (b) PP30-0-5

(c) PP30-0-6

Figure 5.25: Cartography of axial strains at the pre-failure step (last step) for 0◦-specimens with a facet size
of 31x31 pix2

Figure 5.26: Local strain measurement at the pre-failure step of the specimen PP30-0-4
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It is to note that the choice of this specimen (PP30-0-4) for the failure strain identification is

made based on the fact that its distribution of fibre orientation is known. Knowing the actual fibre

orientation will be of great importance when identifying the critical cumulated void fraction as

presented later.

The notched specimen tests are simulated using the developped constitutive model with all the

identified parameters. Geometry of notched specimens presented in Figure 5.23 is used. Tests are

simulated with the same boundary conditions and applied velocity as those described in section

4.1.3. Attention is paid to element size for the computation of local axial strain values at the

notched zone. As presented in Figure 5.27, three sizes are considered and no significant effect is

observed on the strain localisation in the critical zone (i.e. notched zone). Computation is therefore

realised with a mesh size of 0.5 mm. Similarly to experimental tests, results are averaged over a

critical zone with a diameter of 2 mm (Figure 5.28).

(a) Mesh size of 0.4 mm (b) Mesh size of 0.5 mm (c) Mesh size of 0.7 mm

Figure 5.27: Influence of the mesh size on the strain localisation at the notch zone
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2 m
m

Figure 5.28: simulated zone of failure initiation

The critical cumulated void fraction is then determined as the one corresponding to the measured

failure strain in the case of a 0◦-specimen. More precisely, the considered distribution of fibre

orientation is that of the specimen PP30-0-4. As shown in Figure 5.29, a critical void fraction of

0.057 is found.
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Figure 5.29: Identification of the critical cumulated void fraction with results obtained for the specimen
PP30-0-4

In order to highlight the sensitivity of the computed total void fraction on the fibre orientation,

ν tot
v is computed for different distributions of fibre orientation of 0◦-specimens (Figure 5.30).
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Figure 5.30: Evolution of the cumulated void (a) with different distributions of fibre orientation obtained
from specimens cut at θ = 0◦ (b)

The corresponding failure strains are then computed (Table 5.1). It can be noted that for the same

loading angle, θ = 0◦, a variation in the computed critical strain values exists, which is due to

the fact that different distributions of fibre orientation (corresponding to 0◦-specimens scanned at

different positions) are present.

Failure strains computed with simulated 0◦-notched tensile tests are presented in Figure 5.31 and

are within the experimental values range.
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Table 5.1: Values of critical axial strain for different distributions of fibre orientation of 0◦-specimens

Specimen Critical axial strain

PP30-0-1 0.046
PP30-0-4 0.048
PP30-0-7 0.05

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

Axial strain

A
xi

al
 s

tr
es

s 
(M

P
a)

simu PP30−0−1

simu PP30−0−4

simu PP30−0−7

Figure 5.31: Failure criteria at 0◦ with respect to IFD (dashed vertical lines correspond to the experimental
minimum (PP30-0-5) and maximum (PP30-0-6) failure strains obtained with notched specimens

As shown in this figure, experimental minimum and maximum failure strains measured from

notched specimens are of the values of 0.046 (PP30-0-5) and 0.057 (PP30-0-6), respectively.

From comparison of these results, it is observed that predicted failure strain values are rather close

to the inferior limit of the experimental range. The relatively important variation of experimental

values of the failure strain, i.e. the large experimental range, is not reproduced by the simulated

one (respective relative deviations are of 23.9 % and 8.7 %). This is presumably due to the fact

that local variation of fibre orientation within the fracture zone, which is not taken into account

with the current distributions of orientation (averaged over the scanned volume), has its effect on

the failure strain level.

The same procedure is adopted for the computation and verification of the failure strain for

specimens cut at 90◦ with respect to the injection flow direction. It is observed from cartography

of axial strain at the pre-failure step (Figure 5.32) that area of high strain values at break is more
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extended than that of 0◦-specimens. In other words, axial strain is less localised in the case of

90◦-specimens. This may be an indicator of a more ductile fracture behaviour for specimens with

higher preferential fibre orientation with respect to loading direction.

(a) PP30-90-3 (b) PP30-90-4

(c) PP30-90-5

Figure 5.32: Cartography of axial strains at the pre-failure step (last step) for 90◦-specimens with a facet
size of 31x31 pix2

Tensile test is simulated with the distribution of fibre orientation of the PP30-90-4 specimen. Note

that one distribution of fibre orientation is used for the tensile test simulation (PP30-90-4) as no

significant difference between available orientations of the scanned specimens is noticed in the

case of 90◦-specimens (see section 4.1.2.1). Using this data, the critical cumulated void is reached

at a composite axial strain of 0.067 (Figure 5.33) and a fairly good correlation with experimental

data is obtained (Figure 5.34).

It is worth mentioning that a higher value of failure strain would be predicted by the implemented

model if fibres were more oriented in transverse direction than in specimen PP30-90-4, which is

characterised by an important proportion of fibres with low angle with respect to loading direction
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(Figure 5.33(b)). This is highlighted in Figure 5.35, where theoretical extreme cases of aligned

fibres are treated for the computation of total cumulated void fraction. The case of fibre families

with intermediate orientation angles is highlighted in Table 5.2, where ν tot
v computed at an axial

strain of 0.05 is presented for different angles of aligned fibres. Note that the selected orientation

angles correspond to highly oriented fibres (higher than 45◦) so that the significant decrease of the

computed void fraction can be quantified for such angles. As shown in Table 5.2, the computed

total void fraction can be neglected from an angle of 75◦.

Table 5.2: Total void computed at a composite axial strain of 0.05 for different angles of fibre orientation

Orientation angle ν tot
v

45◦ 0.041
55◦ 0.031
65◦ 0.019
75◦ 0.009
85◦ 0.002

Extreme orientations, similar to the ones considered in Figure 5.35, are unlikely to be reached in

real composites with injection moulding process because of the layered structure of the composite,

i.e. the contribution of the different orientations. It can however be barely approximated with high

volume fraction of reinforcement, where fibres are more preferentially oriented in the injection

flow direction.

In those cases, debonding initiated at fibre tips becomes negligeable when the vast majority of

fibres is highly angled with respect to the loading direction. In those cases of SFRC with high

proportion of highly angled fibres with respect to loading direction, composite failure is more

likely to be governed by debonding initiated at fibre sides whatever, in case of complex loading,

all phenomena are likely to coexist. In order to accurately predict the void developpement, and

therefore the failure state, for composites with all kind of orientation and subjected to more

complex loadings, transverse interfacial decohesion should be introduced in the current debonding

model.
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Figure 5.33: Identification of the failure strain with notched specimen PP30-90-4
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Figure 5.34: Failure criteria at 90◦ with respect to IFD (dashed vertical lines correspond to the experimental
minimum (PP30-90-3) and maximum (PP30-90-5) failure strains obtained with notched specimens
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Figure 5.35: Cumulated void evolution for theoretical composites with aligned fibres (0◦ and 90◦)

5.6 Conclusion

Damage phenomena leading to failure of short fibre reinforced composites are the object of the

modelling presented in this chapter. Earlier developpements, presented in Chapter 3, for the mod-

elling of SFRC behaviour over a wide range of strain rate, are therefore extended in the present
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chapter to deal with damage/failure mechanisms. The representation of the composite reinforce-

ment as an assembly of fibre families has enabled the modelling of damage mechanisms in an

independent way. The matrix degradation has been introduced using an anisotropic ductile damage

model, so that the effect of fibre orientation on its evolution is taken into account. The identification

of the matrix damage model is based on cyclic tensile tests, where the stiffness loss method is used.

Fibre/matrix interfacial decohesion is described by a tip-debonding model. Void creation at fibre

tips, zone of stress concentration is modelled, followed by defect nucleation and growth at fibre

side. Both damage models are verified by comparison with experimental results under different

loading conditions. A failure criterion is defined in terms of the critical content of created voids

at fibre/matrix interface. Its identification is then based on strain at break of a composite with

known characteristics. Extending the current tip-debonding model to take into account debonding

initiated at fibre side is in the scope of a further work.





Conclusion

5.7 General conclusion

The principle objective of this thesis is to propose an efficient modelling for the prediction of

the mechanical behaviour of short-fibre reinforced thermoplastics. The main guidelines of this

approach is to take SFRC’s behaviour specificities into acount, in particular for the case of extreme

loading conditions, for instance high strain-rate loading. The originality of this contribution is to

propose constitutive laws for SFRC behaviour modelling that include strain rate dependency and

damage mechanisms while taking into account the real properties of the reinforcement in terms

of complex fibre orientations. The composite is thus constituted of a damageable viscoelastic-

viscoplastic matrix reinforced by short fibres with distributed orientations. In addition, load trans-

mission from matrix to fibre through the interface can be affected by progressive fibre/matrix

debonding.

After a bibliographic review in Chapter 2, first part of the present work (Chapter 3) aimed to de-

scribe the constitutive laws of the model for an undamaged state of the material. A linear viscoelas-

tic model is coupled to overstress based viscoplastic model in order to predict the viscoelastic-

viscoplastic (VE-VP) behaviour of the matrix material. Viscoplasticity is implemented in the

framework of non-associated plasticity so that the dependency to hydrostatic pressure can be taken

into account. The coupled VE-VP laws are described in the framework of thermodynamics of

irreversible processes with a return mapping algorithm based on two steps, a VE predictor followed

by a VP corrector. The prediction of the SFRC response is based on its assimilation to an assembly

of several fibre media (or families) embedded in the polymeric matrix medium. Each of the fibre

medium is modelled as linear elastic and is characterised by its own geometrical and mechanical

properties. The composite response is then computed based on an additive decomposition of the

state potential. One of the main assets of this approach, apart from the possibility to introduce

complex behaviour laws for the matrix material, is that complex reinforcement properties can

be dealt with. In this work we focus on the complex orientations of short fibres. A distribution

133
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of orientation is thus associated to a finite number of fibre families. The developped model is

implemented in the explicit finite element code ABAQUS as a user-material subroutine (VUMAT).

In the second part of the work (Chapter 4), an experimental procedure is conducted aiming at

characterising the material behaviour and identifying the parameters involved in the developed

constitutive model. We propose here to verify the model validity for the case of a Polypropylene

(PP) matrix reinforced by short glass fibres (PP-GF; weight fraction of 30 or 40 %). Different

kinds of tests (DMA, tensile and compression) have been realised on PP material for the iden-

tification of the viscoelastic and viscoplastic parameters of the matrix behaviour laws. Digital

Image Correlation technique has been used in order to represent, according to the SEĖ method, a

behaviour surface of the material over a wide range of strain rate. Then, the characterisation of the

reinforcement properties is performed using micro-computed tomography. Identified orientations

are input of the behaviour model according to the “families of fibres” concept. In order to validate

the implementation of both matrix and composite behaviour models, comparisons of numerical

and experimental results obtained for PP material and PP-GF were performed. Simulated quasi-

static and dynamic tensile tests of PP-GF at different loading angles with respect to injection flow

direction (i.e. preferential orientation of fibres in the composite) and with different fibre content

proved the consistency of the implemented model.

As the advantageous adaptability of the present modelling offers the possibility to go further

with the developped laws, the third part of the work (Chapter 5) aimed to introduce damage

mechanisms in the behaviour prediction. First an anisotropic ductile damage, whose evolution is

governed by fibre orientation, has been introduced. Then, fibre/matrix interfacial decohesion was

described by a tip-debonding model. Void creation is described as being initated at fibre tips, zone

of stress concentration and therefore of defect nucleation and growth. Both damage models are

identified and validated using experiments (cyclic loading/unloading tests for the matrix damage

model and tensile tests with notched specimens for the fibre/matrix debonding model). Finally, a

failure criterion is defined in terms of a critical content of voids.
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5.8 Future works

Among future improvements of the current work, some issues that deserve further investigations

are proposed in the following paragraphs.

The current modelling of the matrix material viscoelasticity is performed using a linear viscoelastic

law. It is however established in the litterature that polymers can exhibit nonlinear viscoelastic

responses. Going further with the matrix material modelling by introducing non-linearities in the

modelling of matrix viscoelasticity should be addressed in a future work. It can be noted that the

influence of a modification in the matrix viscoelastic response modelling will be more pronounced

as fibre volume fraction decreases in the composite. Indeed, behaviour of composites with low

fibre content is more sensible to the non-linearities of matrix behaviour.

The implemented viscoplastic correction scheme for the thermoplastic matrix material enables to

reproduce the sensitivity to hydrostatic pressure of viscoplastic flow behaviour. Therefore, it might

be of great interest to go beyond the case of uniaxial loading and investigate the triaxiality effect in

order to fully adress this feature. Future experimental work should therefore concerns non-uniaxial

loadings with various triaxiality ratios in order to validate the matrix behaviour model under such

loading conditions.

In the modelling of the composite damage mechanisms, fibre-matrix interfacial decohesion is

currently assumed to initiate at fibre tips and then develop along fibre sides. This formulation

is motivated by the existing microscopic observations stating that fibre tip is an area of stress

concentration which favours void nucleation and growth. The initiation of decohesion in SFRC

may however not be restricted to fibre tips and may happen at fibre sides.

This limitation can be highlighed by considering highly angled fibres with respect to the loading

direction, where transverse fibre-matrix interface is the most sollicitated and may become the

area of defect creation. Further developpement of the debonding model should take the different

decohesion mechanisms by introducing the debonding initiation at fibre sides. Moreover, a direct

characterisation of damage mechanisms, i.e. direct measurement of the tip and transverse inter-

facial defects (e.g. by in-situ tests), is to be investigated, so that an occurate identification of the

involved initiation and evolution parameters as well as the failure state should be performed.

Finally, in the current investigations, the strain rate dependency of damage phenomena is not

adressed. This, however, might be an important feature of the material behaviour, especially when
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large strain rate range applications are targeted. For instance, strain rate effect on the dominant

damage mechanisms, i.e. matrix ductile damage and/or fibre/matrix interfacial debonding, might

be a key point in the prediction of ultimate failure at high strain rate. This idea is motivated

by an observation of fracture surface of SFRC (PP-30GF) loaded at low and high strain rates

(Figure 5.36), where a different surface state of fibres may be indicator of strain rate dependency.

Indeed, it can be observed that fibre/matrix debonding is more pronounced on the fracture surface

of the SFRC subjected to low speed loading (Figure 5.36a) and fibre surface appear clean, i.e.

without residue of matrix. At the contrary, at high speed loading (Figure 5.36b), a better adhesion

between matrix and fibres is observed on the fracture surface, which may be an indicator of the

predominance of matrix damage in the mechanisms leading to composite failure.

0
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Figure 5.36: Fracture surface of PP-30GF tested at (a) 1 mm.min−1 and (b) 1000 mm.min−1 obtained by
SEM obserbations.

At longer term, composites with more complex reinforcement properties could be investigated.

For instance, the current modelling could be extended to the case of natural fibres, which are

characterised by a large variability of physiscal, geometrical and mechanical properties.



Bibliography

[1] White JR, De SK. Survey of short fibre-polymer composites. Woodhear Publishing Limited, Cambridge England,
1996.

[2] Rosato DV, Rosato MG. Injection molding handbook: Springer Science, Business Media, 2000.

[3] Vu-Khanh T, Denault J, Habib P, Low A. The effects of injection molding on the mechanical behavior of long-
fiber reinforced PBT/PET blends. Composites science and technology;1991;4:423-435.

[4] Kamal MR, Song L, Singh P. Measurement of fibre and matrix orientations in fibre reinforced composites.
Polymer Composites 1986;7:323-329.

[5] Ramani K, Bank D, Kraemer N. Effect of screw design on fiber damage in extrusion compounding and composite
properties. Polymer composites 1995;16:258-266.

[6] Milewski JV. A study of the packing of milled fiberglass and glass beads, 1974.

[7] Fu SY, Lauke B, Mai YW. Science and engineering of short fibre reinforced polymer composites. Woodhead
Publishing, 2009.

[8] Zhou Y, Mallick PK. A non-linear damage model for the tensile behavior of an injection molded short E-glass
fiber reinforced polyamide-6,6. Mater. Sc. and Eng. A 2005;393:303-209.

[9] Bay RS, Tucker III CL. Fiber Orientation in Simple Injection Moldings. Part I: Theory and Numerical Methods.
Polymer Composites 1992;13:317-331.

[10] Advani SG, Tucker III CL. Closure approximations for three-dimensional structure tensors. Polymer Composites
1990;11:367-382.

[11] Goettler LA. Mechanical property enhancement in short-fiber composites through the control of fiber orientation
during fabrication. Polymer Composites 1984;5:60-71.

[12] Akay M, Barkley D. Fibre orientation and mechanical behaviour in reinforced thermoplastic injection mouldings.
Jounal of Materials Science 1991;26:2731-2742.

[13] Thin TBN, Morioka M, Yokoyama A, Hamanaka S, Yamashita K, Noromura C. Measurement of fibre orientation
distribution in injection-molded short-glass-fiber composites using X-ray computed tomography. Journal of
Material Processing Technology 2015;216:1-9. series.

[14] Tadmor Z. Molecular Orientation in Injection Molding. Journal of Apllied Polymer Science 1974;18:1753-1772.

[15] Hull D, Clyne TW. An introduction to composite materials. 2nd ed. Cambridge solid state science series. 1996.

[16] Sirkis JS, Cheng A, Dasgupta A, Pandelidis I. Image processing based method of predicting stifness character-
istics of short fibre reinforced injection molded parts. Journal of Composite Materials 1994;28:784-799.

[17] Vincent M, Agassant JF. Experimental study and calculations of short glass fibre orientation in a center gated
molded disc. Polymer Composites 1986;7:76-83.

[18] Ranganathan S, Advani SG. Characterization of orientation clustering in short-fibre composites. Journal of
Polymer Science: Part B-Polymer Physics 1990;28:2651-2672.

137



138 Bibliography

[19] Fischer G, Eyerer P. Measuring spatial orientation of short fibre reinforced thermoplastics by image analysis.
Polymer Composites 1988;44:297-304.

[20] Bay RS, Tucker III CL. Stereological measurement and error estimates for three-dimensional fibre orientation.
Polymer Engineering and Science 1992;4:240-253.

[21] Zhu YT, Blumenthal WR, Lowe TC. Determination of non-symmetric 3-D fibre-orientation distribution and
average fibre length in short-fibre composites. Journal of Composite Materials 1997;31:1287-1301.

[22] Hine PJ, Duckett RA, Davidson N, Clarke AR. Modelling of the elastic properties of fibre/reinforced composites.
I: Orientation measurement. Composites Science and Technology 1993;47:65-73.

[23] Zak G, Park CB, Banhabib B. Estimation of Three-Dimensional Fibre-Orientation Distribution in Short-Fibre
Composites by a Two-Section Method. Journal of Composite Materials 2001;35:316-399.

[24] Eberhardt C, Clarke A. Fibre-orientation measurements in short-glass-bre composites. Part I: automated, high-
angular-resolution measurement by confocal microscopy. Composites Science and Technology 2001;61:1389-
1400.

[25] Clarke AR, Davidson NC, Archenhold G. Measurements of fibre direction in reinforced polymer composites.
Journal of Microscopy 1993;171:69-79.

[26] Clarke AR, Archenhold G, Davidson NC. A novel technique for determining the 3D spatial distribution of Glass
fibres in polymer composites. Composites Science and Technology 1995;55:75-91.

[27] Bernasconi A, Cosmi F, Hine PJ. Analysis of bre orientation distribution in short bre reinforced polymers: a
comparison between optical and tomographic methods. Compos. Sci. Technol. 2012;72:2002-2008.

[28] Bracewell RN. Strip integration in radio astronomy. Aust. J. Phys. 1956;9:198.

[29] Hounsfield GN. Computerized transverse axial scanning (Tomography): Part I Description of system. British
Journal of Radiology 1973;46:1016-1022.

[30] Shen H, Nutt S, Hull D. Direct observation and measurement of ber in short ber-polymer composite foam through
Micro-CT imaging. Compos. Sci. Technol. 2004;64:2113-2120.

[31] Nguyen Thi TB, Yokoyama A, Ota K, Kodama K, Yamashita K, Isogai Y, Furuichi K, Nonomura C. Numerical
approach of the injection molding process of ber-reinforced composite with considering ber orientation. AIP
Conf. Proc. 2014:571-577.

[32] Olabisi O, Adewale K. Handbook of thermoplastics. CRC press 1997.

[33] Zhang C, Moore ID. Nonlinear mechanical response of high density polyethylene. Part I: Experimental
investigation and model evaluation. Polym. Eng. Sci. 1997;37:404-413.

[34] Christensen RM. Theory of Viscoelasticity. Academic Press: New York. 1971.

[35] Findley WN, Lay JS, Onaran K. Creep and Relaxation of nonlinear viscoelastic materials. Dover Publication:
New York. 1976.

[36] Salençon J. Viscoélasticité. Presses de l’Ecole Nationale des Ponts et Chaussées: Paris. 1983.

[37] Perzyna P. Fundamental problems in viscoplasticity. Advances in Applied Mechanics 1966;9:234-377.

[38] Lemaitre J, Chaboche JL. Mechanics of Solid Materials. Cambridge University Press: England. 1996.

[39] Nikolov S, Doghri I, Pierard O, Zealouk L, Goldberg A. Multi-scale constitutive modeling of the small
deformations of semi-crystalline polymers. J Mech Physi Solids 2002;50:2275-2302.

[40] Chaboche JL. Thermodynamic formulation of constitutive equations and application to the viscoelasticity and
viscoplasticity of metals and polymers. Int. J. Solids Structures 1966;34:2239-2254.



Bibliography 139

[41] Karger-Kocsis J, Friedrech K. Temperature and strain-rate effects on the fracture toughness of poly(ether ether
ketone) and its short glass-fibre reinforced composite. Polymer 1986;27:1753-1760.

[42] GSell C, Hiver JM, Dahoun A. Experimental characterization of deformation damage in solid polymers under
tension and its interrelation with necking. International Journal of Solids and Structures 2002;3:3857-3872.

[43] GSell C, Bai SL, Hiver JM. Polypropylene/polyamide 6/polyethyleneoctene elastomer blends. Part II: volume
dilatation during plastic deformation under uniaxial tension. Polymer 2004;45:5785-5792.

[44] Jerabek M, Major Z, Renner K, Moczo J, Pukánszky B, Lang RW. Filler/matrix-debonding and
micro-mechanisms of deformation in particulate filled polypropylene composites under tension. Polymer
2010;51:2040-2048

[45] Wang DA, Pan J. A non-quadratic yield function for polymeric foams. International Journal of Plasticity
2006;22:434-458.

[46] Khan AS, Farrokh B. Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part
I, experimental results over wide ranges of temperatures and strain rates. International Journal of Plasticity
2006;22:1506-1529.

[47] Sauer JA, Pae KD. The ow of solid polymers under high pressure. Colloid and Polymer Science 1974;252:680-
695.

[48] Thomason JL, Vlug MA. Influence of fibre length and concentration on the properties of glass fibre-reinforced
polypropylene: 1. Tensile and flexural modulus. Composites Part A: Applied science and manufacturing
1996;27:477-484.

[49] Mouhmid B, Imad A, Benseddiq N, Benmedakhene S, Maazouz A. A study of the mechanical behaviour of a
glass fibre reinforced polyamide 6,6: Experimental investigation. Polymer Testing 2006;25:544-552.

[50] Reis JML, Chaves FL, da Costa Mattos HS (2013) Tensile behaviour of glass fibre reinforced polyurethane at
different strain rates. Materials and Design 49:192-196.

[51] SchoSSig M, Bierögel C, Grellmann W, Mecklenburg T. Mechanical behavior of glass-fiber reinforced
thermoplastic materials under high strain rates. Polymer Testing 2008;27:893-900.

[52] Fitoussi J, Bocquet M, Meraghni F. Effect of matrix behavior on the damage of ethylene-propylene glass fiber
reinforced composite subjected to high strain rate tension. Composites: Part B 2013;45:1181-1191.

[53] Krivachy R, Riedel K, Weyer S, Thoma K.Characterisation and modelling of short fibre reinforced polymers for
numerical simulation of a crash. International Journal of Crashworthiness 2008;13:559-566.

[54] Notta-Cuvier D, Lauro F, Bennani B, Balieu R. Damage of short-fibre reinforced materials with anisotropy
induced by complex fibres orientations. Mechanics of Materials 2014;68:193-206.

[55] Sato N, Kurauchi T, Sato S, Kamigaito. Microfailure behaviour of randomly dispersed short fibre reinforced
thermoplastic composites obtained by direct SEM observation. Journal of Materials Science 1991;26:3891-3898.

[56] Charles LT III, Liang E. Stiffness prediction for unidirectional short-fiber composites: Review and evaluation.
Composites Science and Technology 1999;59:655-671.

[57] Smit RJM , Brekelmans WAM, Meijer HEH. Prediction of the mechanical behavior of nonlinear heterogeneous
systems by multi-level element modeling. Comput Methods Appl Mech Engrg 1998;155:181-192.

[58] Ghosh S, LeeK K, Moorthy S. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic
homogenization and Voronoi cell finite element model. Comput Methods Appl Mech Engrg 1996;132:63-116.

[59] Cox HL. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physiscs
1952;3:72.

[60] Hill R. Elastic properties of reinforced solids: some theoretical principles. Journal of Mechanics and Physics of
Solids 1963;11:357-372.



140 Bibliography

[61] Hill R. A self-consistent mechanics of composite materials. Journal of Mechanics and Physics of Solids
1965;13:213-222.

[62] Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Mathematical
and Physical Sciences, Proceedings of the Royal Society of London 1957;241:376-396.

[63] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with mis
tting inclusions. Acta Metall 1973;21:571-574.

[64] Fiebel C, Doghri I, Legat V. General mean-field homogenization schemes for viscoelastic composites containing
multiple phases of coated inclusions. Int J Solids Struct 2006;43:2513-2541

[65] Hashin Z. Viscoelastic behavior of heterogeneous media. J Appl Mech, ASME 1965;32E:630-636.

[66] Berveiller M, Zaoui A. An extension of the self-consistent scheme to plastically-owing polycrystals. Journal of
the Mechanics and Physics of Solids 1979;26:325-344.

[67] Tandon GP, Weng GJ. A theory of particle-reinforced plasticity. Journal of Applied Mechanics 1988;55:126-135.

[68] Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids
1965;13:213-222.

[69] Masson R, Zaoui A. Self-consistent estimates for the rate-dependent elastoplastic bahvior of polycrystalline
materials. J Mech Phys Solids 1999;47:1543-1568.

[70] Pierad O, Doghri I. An enhanced affine formulation and the corresponding numerical algorithms for the mean-
field homogenization of elasto-viscoplastic composites. Int J Plast 2006a;22:131-157.

[71] Ju J. Consistent tangent moduli for a class of viscoplasticity. J. Engrg. Mech. ASCE 116. 1990;8:1764-1779.

[72] Doghri I. Mechanics of deformable solids. Linear, nonlinear, analytical and computational aspects. Springer,
Berlin 2000.

[73] Molinari A, Canova GR, Ahzi S. A self consistent approach at the large deformation polycrystal viscoplasticity.
Acta Metall. 1987;35:2983-2994.

[74] Masson R, Zaoui A. Self-consistent estimates for the ratedependent elasto-plastic behavior of polycrystalline
materials. J. Mech. Phys. Solids 1999;47:1543-1568.

[75] Masson R, Bornert M, Suquet P, Zaoui A. An affine formulation for the prediction of the effective properties of
nonlinear composites and polycrystals. J. Mech. Phys. Solids 2000;48:1203-1227.

[76] Pierard O, Doghri I. An enhanced affine formulation and the corresponding numerical algorithms for the mean-
field homogenization of elasto-viscoplastic composites. Int. J. Plasticity 2006;22:131-157.

[77] Doghri I, Adam L, Bilger N. Mean-field homogenization of elasto-viscoplastic composites based on a general
incrementally affine linearization method. Int. J. Plasticity 2010;26:219-238.

[78] Kim JS, Muliana AH. A time-integration method for the viscoelastic viscoplastic analyses of polymers and finite
element implementation. Int. J. Numer. Meth. Engng 2009;79:550-575.

[79] Aboudi J. Michromechanically established constitutive equations for multiphase materials with viscoelastic-
viscoplastic phases. Mech. Time-Depend. Mater. 2005;9:121-145.

[80] Lusti HR, Hine PJ, Gusev A. Direct numerical predictions for the elastic and thermoelastic properties of short
fibre composites. Composites science and technology 2002;62:1927-1934.

[81] Pan Y, Iorga L, Pelegri A. A Analysis of 3D random chopped fiber reinforced composites using FEM and random
sequential adsorption. Computational Materials Science 2008;43:450-461.

[82] Ionita A, Weitsman YJ. On the mechanical response of randomly reinforced chopped-fibers composites: Data
and model. Composites science and technology 2006;66:2566-2579.



Bibliography 141

[83] Berger H, Kurukuri S, Kari S, Gabbert U, Rodriguez-Ramos R, Bravo-Castillero J, Guinovart-Diaz R. Numerical
and analytical approaches for calculating the effective thermomechanical properties of three-phase composites.
Journal of Thermal Stresses 2007;30:801-817.

[84] Kari S, Berger H, Gabbert U. Numerical evaluation of effective material properties of randomly distributed short
cylindrical fibre composites. Computational materials science 2007;39:198-204

[85] Doghri I, Tinel L. Micromechanics of inelastic composites with misaligned inclusions: numerical treatement of
orientation. Computer Methods in Applied Mechanics and Engineering 2005;195:1387-1406.

[86] Notta-Cuvier D, Lauro F, Bennani B, Balieu R. An efficient modelling of inelastic composites with misaligned
short fibres. International Journal of Solids and Structures 2013;50:2857-2871.

[87] Nedjar B. An anisotropic viscoelastic fibre-matrix model at finite strains: continum formulation and computa-
tional aspects. Comput Methods Appl Mech Eng 2007;196:1745-1759.

[88] Klinkel S, Gavazzi C, Nigam H. Elastoplastic fibre-matrix material model at finite elastic-plastic strains. Comput
Mech 2005;35:409-417.

[89] Bowyer WH, Bader MG. On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres.
Journal of Materials Science 1972;7:1315-1321.

[90] Nikolov S, Doghri I. A micro/macro constitutive model for the small-deformation behavior of polyethylene.
Polymer 2000;41:1883-1891

[91] Drozdov AD, Gupta RK. Non-linear viscoelasticity and viscoplasticity of isotactic polypropylene. International
Journal of Engineering Science 2003;41:2335-2361

[92] Drozdov A, Christiansen J. Cyclic viscoplasticity of high-density polyethylene: experiments and modeling.
Computational Materials Science 2007;39:465-480

[93] Khan AS, Farrokh B. Thermo-mechanical response of nylon 101 under uniaxial and multi-axial loadings: Part
I, experimental results over wide ranges of temperatures and strain rates. International Journal of Plasticity
2006;22:1506-1529

[94] haboche JL. Thermodynamic formulation of constitutive equations and application to the viscoplasticity and
viscoelasticity of metals and polymers. International Journal of Solids and Structures 1997;34:2239-2254

[95] Ayoub G, Zari F. Effects of crystal content on mechanical behaviour of polyethylene. International Journal of
Plasticity 2011;27:409-417.

[96] Zairi F. Effects of crystal content on mechanical behaviour of polyethylene. International Journal of Plasticity
2011;27:409-417.

[97] Regrain C, Toillon S. Multi-mechanism model for semi-crystalline polymers. International Journal of Plasticity
2009;25:1253-1279.

[98] Drozdov A, Klitkou R, Christiansen J. Cyclic viscoplasticity of semicrystalline polymers with finite deforma-
tions. Mechanics of Materials 2013;56:53-64.

[99] Balieu R, Lauro F, Bennani B, Delille R, Matsumoto T, Mottola E. A full coupled elastoviscoplastic damage
model at finite strains for mineral filled semi-crystalline polymer. International Journal of plasticity 2013;51:241-
271.

[100] Krempl E, Khan F. Rate (time)-dependent deformation behavior: an overview of some properties of metals and
solid polymers. International Journal of Plasticity 2005;19:1069-1095

[101] Khan F, Yeakle C. Experimental investigation and modeling of non-monotonic creep behavior in polymers.
International Journal of Plasticity 2011;27:512-521

[102] Colak OU. Modeling deformation behavior of polymers with viscoplasticity theory based on overstress.
International Journal of Plasticity 2005;21:145-160



142 Bibliography

[103] Ayoub G, Zari F, Nat-Abdelaziz, M, Gloaguen J. Modelling large deformation behaviour under loading-
unloading of semicrystalline polymers: Application to a high density polyethylene. International Journal of
Plasticity 2010;26:329-347.

[104] Khan A, Zhang H. Finite deformation of a polymer: experiments and modeling. International Journal of Plasticity
2001;17:1167-1188

[105] Miled B, Doghri I, Delannay L. Coupled viscoelasticviscoplastic modeling of homogeneous and isotropic
polymers: Numerical algorithm and analytical solutions. Comput. Methods Appl. Mech. Engrg. 2011:3381-
3394.

[106] Christensen RM, Naghdi PM. Linear non-isothermal viscoelastic solids. Acta Mechanica 1967;3:1-12.

[107] Voyiadjis GZ, Abu Al-Rub RK. Thermodynamic based model for the evolution equation of the backstress in
cyclic plasticity. International Journal of Plasticity 2003;19:2121-2147.

[108] Krairi A, Doghri I. A thermodynamically-based constitutive model for thermoplastic polymers coupling
viscoelasticity, viscoplasticity and ductile damage. International Journal of Plasticity 2014;60:163-181.

[109] Haouala S, Doghri I. Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic
solids under large numbers of cycles. International Journal of Plasticity 2015;70:98-125.

[110] Ohkani M, Ichikawa P. Linear non-isothermal viscoelastic solids. Acta Mechanica 1967;3:1-12.

[111] Raghava R, Caddell RM, Yeh GSY. The macroscopic yield behaviour of polymers. Journal of Materials Sciences
1973;8:225-232.

[112] Simo JC, Hughes R. Computational Inelasticity . Interdisciplinary Applied Mechanics, second ed., 1998, vol. 7.
Springer, Berlin.

[113] Bernasconi A, Cosmi F. Analysis of the dependence of the tensile behaviour of a short fibre reinforced polyamide
upon fibre volume fraction, length and orientation. Procedia Eng. 2011;10: 2129-2134.

[114] Schindelin J, Arganda-Carreras I, Frise E. Fiji: an open-source platform for biological-image analysis. Nature
methods 9 2012;7:676-682.

[115] Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and
Cybernetics 1979;9;62-66.
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Appendix A

Identification of the parameter Cnucl

As stated in Section 5.3 the parameter Cnucl (Equation 5.38) is experimentally identified. It is to

note that experimental data used here are obtained from tensile tests realised on notched specimens

of composite material (PP-30GF) and described in section 5.5.1. The parameter Cnucl is identified

by measuring the relative variation of the composite volume, ∆V , using measurements of axial,

εyy, and transversal, εxx, strain fields (by DIC), and by assuming transverse isotropy. The relative

variation of the composite volume, ∆V , is in that case expressed as follows:

∆V = exp(tr (ε))−1 = exp(εyy +2εxx)−1 (A.1)

∆V can be split into a damage volume fraction, ∆V d , equal to ν tot
v , and into a relative variation

of strain volume due to Poisson effect. According to G’Sell et al. [?], the relative variation of

strain volume is the sum of a linear, ∆V ε,L, and a non-linear, ∆V ε,NL, parts. In the linear elastic

range, the variation of strain volume is defined by: ∆V ε,L = (1−2ν)εyy, where ν is the composite

Poisson ratio. Similarly, in the non-linear range, the “tangent Poisson ratio”, νT =−dεxx/dεyy, is

introduced so that:

∆V ε,NL = (1−2νT )εyy (A.2)

As non-linearity of behaviour begins at a relatively low level of axial strain, the ∆V ε,L is neglected

in the following, i.e. ∆V ≃ ∆V εd + ∆V ε,NL. Evolution of fractions of volume change, ∆V and

∆V ε ,NL, is presented in Figure A.1 for the notched specimen PP30-0-4 (as the corresponding

distribution of fibre orientation is known and will be used for the parameter identification). It

is now possible to plot the evolution of ν tot
v and to identify the value of Cnucl as the one leading to

the best fit with experimental data. This way, a value of 12 is found for the parameter Cnucl . Figure

A.2 allows to compare the experimental evolution of damage in the composite to the evolution of

void volume fraction computed with this value of Cnucl and thus demonstrates the accuracy of the

identification.
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Figure A.1: Total volume variation and strain volume variation fraction of the composite material (PP-
30GF)
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Abstract

Short fibre-reinforced composites are commonly used in a variety of engineering applications,

including automotive and aerospace industry. Today, their use is progressively extended to parts

possibly subjected to severe loading conditions (e.g. crash...), characterised by high strain rates.

Therefore, an efficient modelling that takes into account material’s specificities at a large strain rate

range is needed. A constitutive model of viscous behaviour of short-fibre reinforced composites

(SFRC) where complex distributions of fibre orientations are taken into account is proposed in

this work. The approach considered for the computation of composite macroscopic behaviour

is based on an additive decomposition of the state potential. The SFRC is assimilated to an

assembly of several fibre media embedded in a polymeric matrix medium. One of the main assets

of this approach is the possibility to model reinforcement with complex distributions of fibre

orientations. Moreover, this decomposition allows the implementation of complex behaviour laws

coupled with damage models. The polymeric matrix behaviour is typically strain-rate sensitive,

i.e. viscoelastic-viscoplastic. This property has to be taken into account when the modelling of

the composite behaviour over a large range of strain rate is intended. Therefore, a viscoelastic

constitutive model, based on generalised Maxwell model, and a viscoplastic correction scheme,

based on an overstress approach, are implemented for matrix material. The developed constitutive

model is then coupled to two damage laws. The first one is introduced in the framework of

Continuum Damage Mechanics in order to model the anisotropic ductile damage behaviour of

the matrix material. The second one deals with fibre/matrix interfacial degradation through an

interfacial debonding law. In order to identify the parameters involved in the present model,

experimental tests are performed (case of polypropylene reinforced with short glass fibres). Micro-

computed tomography is used for the characterisation of the fibres distribution of orientation.

The efficiency of the proposed model is demonstrated by comparisons between numerical and

experimental responses in different loading conditions, including dynamic loadings.
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Résumé

L’utilisation de composites à matrice thermoplastique renforcée par fibres courtes (TRFC) connait

une forte croissance pour une large gamme d’applications industrielles pour des conditions de

chargement extrmes (e.g. pare-chocs d’automobiles). Il est donc indispensable de développer des

modèles de comportement des TRFC tenant compte des spécificités du matriau pour une large

gamme de vitesse de dformation. Toutefois, le comportement de ces composites est complexe.

Cette complexité est due, en premier lieu, au comportement viscolastique (VE)-viscoplastique

(VP) de la matrice avec une sentibilité à la pression. A cela s’ajoute les caractéristiques complexes

du renfort en termes de distributions d’orientation des fibres courtes. De plus, le comportement de

ces composites est affecté par des phénomènes d’endommagement coexistants (e.g. endommage-

ment de la matrice et décohésion l’interface fibre/matrice). Dans ce travail, un modèle permettant

la prise en compte de l’ensemble de ces phnomnes est proposé. Sa formulation est basée sur la dé-

composition du matériau en un milieu matriciel et plusieurs milieux de fibres, sur la base d’une dé-

composition additive du potentiel thermodynamique. Cette approche permet une implémentation

simplifiée avec une résolution successive (mais non indépendante) du comportement de chaque

milieu. Un avantage immédiat est la possibilité de prendre en compte tout type de comportement

matriciel et tout type d’orientation. L’interface fibre/matrice, siège de la transmission de l’effort

est modélisée par un transfert par cisaillement, avec sur une hypothèse locale d’iso-déformation

dans la direction de la fibre. L’endommagement ductile de la matrice est pris en compte par un

modèle d’endommagement anisotrope. La dégradation de l’interface fibre/matrice est décrite par

un modèle de décohésion initiée en pointe de fibres. Un critère de rupture se basant sur le taux

maximal de vide crée par décohésion est enfin introduit. La caractérisation du modèle est basée

sur des campagnes d’essais quasi-statiques et dynamiques pour le cas de polypropylène pur et

renforcé par fibres courtes de verre, à différents angles de chargement par rapport à la direction

d’injection. Ces essais sont complétés par des observations au microtomographe permettant la

caractérisation des distributions d’orientation locale des fibres. Des observations au MEB ont

enfin permis de constater une éventuelle influence de la vitesse de sollicitation sur les mécanismes

d’endommagement.
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Modélisation du comportement des composites à fibres courtes 

en dynamique 
 
 
Les thermoplastiques renforcés par des fibres courtes (TRFC) étant de plus en plus utilisés dans des 
applications industrielles, y compris pour des pièces subissant des sollicitations extrême (pare-chocs 
d’automobiles par exemple), il est nécessaire de développer des modèles de comportement de ces 
composites valables pour une large gamme de déformation. Pour permettre une prédiction la plus 
précise possible, ces modèles doivent prendre en compte l’ensemble des spécificités des TRFC. En 
premier lieu, le comportement mécanique de la matrice thermoplastique est très généralement 
sensible à la vitesse de déformation (viscoélastique et viscoplastique), avec un écoulement plastique 
sensible à la pression hydrostatique (comportement différent en traction et en compression 
notamment) et non isochore. Aux spécificités de la matrice thermoplastique s’ajoutent les 
caractéristiques complexes du renfort, notamment en termes de distributions d’orientation des fibres 
dans le cas de pièces moulées par injection. Dans le cas de renfort par fibres végétales (non abordé 
ici), il faut aussi tenir compte de la forte variabilité des propriétés constitutives, géométriques et 
mécaniques des fibres. Enfin, le comportement des TRFC est affecté par différents phénomènes 
d’endommagement, comme l’endommagement ductile de la matrice, la décohésion à l’interface 
fibre/matrice (et entre fibrilles dans le cas de fibres végétales) et la rupture des fibres (dans une 
moindre mesure de par leur faible longueur initiale). On peut noter que l’évolution de ces 
phénomènes dépend directement des états de contrainte et de déformation locaux, et donc de 
l’orientation locale des fibres.  
Le modèle développé vise à prendre en compte l’ensemble de ces spécificités du comportement 
mécanique des TRFC. Dans un contexte de sollicitation sous haute vitesse de déformation, le temps 
de calcul des simulations numériques peut vite devenir très important. Ainsi, l’approche proposée 
vise à atteindre le meilleur compromis possible entre précision des comportements simulés et temps 
de calcul (schéma d’intégration temporel explicite), sur la base de deux hypothèses simplificatrices 
majeures par rapport aux méthodes d’homogénéisation plus classiques. 
Le principe du modèle ainsi que les équations constitutives sont décrits en détail dans ce qui suit.  
L’approche repose sur la division du composite en plusieurs milieux : un milieu matriciel et N 
milieux élastiques linéaires de fibres dispersés dans la matrice. Les milieux de fibres sont définis en 
« regroupant » les fibres en fonction de leurs propriétés géométriques (longueur et rayon), 
mécaniques (module d’Young) et leur orientation dans le repère global. La division des fibres en 
plusieurs milieux, chacun ayant sa propre fraction volumique, permet donc en particulier une 
modélisation aisée des distributions d’orientation et/ou de longueur des fibres dans le composite. Le 
comportement de chaque milieu est résolu successivement. Ceci permet notamment l’adaptabilité 
du modèle à tous types de comportement de la matrice.  
Les fibres ont un comportement supposé unidimensionnel et élastique linéaire. Ceci est justifié par 
un important ratio d’aspect de ces fibres. Le comportement de la matrice thermoplastique est 
modélisé en viscoélasticité (VE)-viscoplasticité (VP) pour la prise en compte la dépendance à la 
vitesse de déformation. Enfin, le comportement macroscopique du composite est calculé en 
supposant une partition additive du potentiel thermodynamique du matériau composite.  
 
Comportement viscoélastique-viscoplastique de la matrice thermoplastique : 
 
On se place dans le cadre de l’hypothèse des petites déformations. La modélisation du 
comportement viscoélastique de la matrice repose sur un modèle de Maxwell généralisé.  Le tenseur 
contrainte de Cauchy de la matrice, 𝜎𝑀(𝑡) est linéairement lié à la déformation VE, 𝜀𝑣𝑒 , 
Via l’intégrale de Boltzmann : 
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𝜎𝑀(𝑡) = ∫ 𝑅𝑣𝑒(𝑡 − 𝜁):
𝜕𝜀𝑣𝑒(𝜁)

𝜕𝜁

𝑡

−∞

𝑑ζ 
(Eq. 1) 

 
 
𝑅𝑣𝑒 est le tenseur d’ordre quatre de relaxation de Maxwell. 
 

                                                    𝑅𝑣𝑒(𝑡) = 2𝐺(𝑡)𝐼𝑑𝑒𝑣 + 3𝐾(𝑡)𝐼𝑣𝑜𝑙                           (Eq. 2) 
 
Avec G(t) et K(t) sont respectivement les modules de cisaillement et de dilatation de la matrice, 
définis comme suit: 
 

G(𝑡) = 𝐺∞ + ∑ 𝐺𝑖𝑒𝑥𝑝 (−
𝑡

𝜏𝑖
𝑑𝑒𝑣)𝑁

𝑖=1  

K(𝑡) = 𝐾∞ + ∑ 𝐾𝑖𝑒𝑥𝑝 (−
𝑡

𝜏𝑖
𝑣𝑜𝑙)

𝑁
𝑖=1  

(Eq. 3) 

avec: 
 

𝐺∞ =
𝐸∞

2(1+𝜈)
, 𝐺𝑖 =

𝐸𝑖

2(1+𝜈)
 

𝐾∞ =
𝐸∞

3(1−2𝜈)
 , 𝐾𝑖 =

𝐸𝑖

3(1−2𝜈)
 

(Eq. 4) 

 
Où 𝐺∞ et 𝐾∞ sont les modules indépendant du temps. 𝐺𝑖 et 𝐾𝑖 sont les modules de relaxation 
correspondants aux N éléments Maxwell. 
La partie  non-linéaire du comportement de la matrice est décrite par une surface de charge de type 
Raghava, sensible à la pression hydrostatique, est définie pour marquer la transition (visco)elasto-
plastique (1). 

 

 𝑓(𝐼1, 𝐼2, 𝑝) =
(𝜂−1)𝐼1+√(𝜂−1)2𝐼1

2
+12𝜂𝐼2

2𝜂
− 𝜎𝑡 − 𝑅(𝑝) (Eq. 5) 

 

Où 𝐼1 = 𝑡𝑟(𝜎𝑀(𝑡)), 𝐼2 =
1

2
𝑆𝑀(𝑡): 𝑆𝑀(𝑡), avec SM le déviateur  de la contrainte de Cauchy de la 

matrice; σt est la limite d’élasticité en traction du matériau et p la déformation plastique cumulée. η 
est le paramètre de sensibilité à la pression hydrostatique, défini comme le rapport entre la limite 
d’élasticité en compression et en traction. Enfin, R est la loi d’écrouissage isotrope, à adapter au 
matériau considéré.  La viscoplasticité est modélisée par le principe d’une sur-contrainte visqueuse. 
 La surface de charge f (Eq. 5) est alors étendue à une surface de charge dynamique: 
 
                                                                                 𝐹 = 𝑓 − 𝜎𝑣𝑝                                      (Eq. 6) 
 
avec σvp la sur-contrainte visqueuse. Son expression est par exemple donnée par le modèle de 
Perzyna, à savoir : 
 

                                                        𝜎𝑣𝑝 = (𝜎𝑡 + 𝑅(𝑝)) (
𝑝̇

𝑝̇0
)

𝑚

                      (Eq. 7) 

 
Où 𝑝̇0 et m sont des paramètres matériau. 
Enfin, on se place dans le cadre de la viscoplasticité non associée, avec la définition d’un potentiel 
viscoplastique de dissipation hyperbolique permettant la modélisation de la non-symétrie et de la 
non-isochorie de l’écoulement (visco)plastique: 
 

                                   𝜓𝑀
𝑣𝑝 = √3𝐼2 +

1

3
(𝑎+〈𝐼1〉2 + 𝑎−〈−𝐼1〉2)                                 (Eq. 8) 
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Avec a+ et a- des paramètres matériau et 〈𝑥〉 =
𝑥+|𝑥|

2
. 

L’ensemble des équations constitutives sont implémentées en suivant un schéma du type 
état test viscoélastique suivi, si besoin, d’une correction viscoplastique. 
 
Comportement élastique linéaire des milieux de fibres 
 
Comme précisé avant, les fibres sont divisées en différents milieux à comportement élastique 
linéaire. Chaque milieu de fibres est ainsi caractérisé par une longueur, L, et un rayon, r, de fibre, un 
module d’Young, EF, et un vecteur d’orientation, 𝑎⃗, dans le repère global (lié à la matrice). On 
définit également la matrice d’orientation, 𝐴 = 𝑎⃗⨂𝑎⃗. 
La première hypothèse fondamentale du modèle est que le tenseur gradient de déformation appliqué 
à chaque milieu de fibre i, 𝐹𝐹

𝑖 , est la projection du tenseur gradient de déformation appliqué au 
composite, F, selon la direction d’orientation des fibres, i.e. 𝐹𝐹

𝑖 = 𝐹𝐴𝑖 , ∀𝑖. On peut d’ores et déjà 
noter que la seconde hypothèse forte est que le tenseur F est transmis en l’état au milieu matriciel. 
La relation 𝐹𝐹

𝑖 = 𝐹𝐴𝑖 , ∀𝑖 permet d’exprimer les tenseurs de Cauchy-Green des familles de fibres, 
𝐶𝐹

𝑖 , comme suit : 𝐶𝐹
𝑖 = 𝐹𝐹

𝑖 𝑇
𝐹𝐹

𝑖 = 𝐴𝑖𝐹𝑇𝐹𝐴𝑖 = 𝐴𝑖𝐶𝐴𝑖 , ∀𝑖, avec C le tenseur de Cauchy-Green du 
composite. On peut noter que, par construction, les tenseurs 𝐶𝐹

𝑖  admettent une unique valeur propre 
non-nulle, notée ci, associée au vecteur propre 𝑎𝑖⃗⃗⃗⃗ , ce qui sous-entend un comportement 
unidimensionnel des fibres. Ce point est cohérent avec le haut ratio d’aspect, longueur sur rayon, 
des fibres courtes, qui permet de négliger les déformations dans les directions transverses à l’axe de 
la fibre. A partir des tenseurs 𝐶𝐹

𝑖 , on peut exprimer la déformation 1D de Hencky de chaque milieu 
de fibre, ainsi : 
 

 𝜀𝐹
0 𝑖 =

1

2
ln(𝑐𝑖) , ∀𝑖 (Eq. 9) 

 
La contrainte axiale moyenne dans la fibre est ensuite calculée en utilisant un modèle de transfert 
par cisaillement (Eq. 10), basé sur les travaux originels de Bowyer and Bader [6] et étendu à des cas 
d’orientations complexes [3].  
 

 {
𝜎𝐹

0 𝑖 = 𝜀𝐹
0 𝑖𝐸𝐹

𝑖 (1 −
𝐸𝐹

𝑖 𝑟𝑖

2𝐿𝑖𝜏𝑖 |𝜀𝐹
0 𝑖|)  𝑠𝑖 |𝜀𝐹

0 𝑖| ≤
𝐿𝑖𝜏𝑖

𝐸𝐹
𝑖 𝑟𝑖

 

𝜎𝐹
0 𝑖 = 𝑠𝑖𝑔𝑛𝑒(𝜀𝐹

0 𝑖)
𝐿𝑖𝜏𝑖

2𝑟𝑖  𝑠𝑖𝑛𝑜𝑛

     ∀𝑖  (Eq. 10) 

 
Dans l’expression précédente, les 𝜏𝑖 sont les résistances en cisaillement de l’interface matrice/fibres 
du milieu n°i. Finalement, le tenseur des contraintes des fibres, 𝜎𝐹

𝑖 , est exprimé dans le repère global 
en utilisant les matrices de passage, T, du repère lié à un milieu de fibre dans le repère global. Les 
contraintes transverses à l’axe de la fibre sont calculées en utilisant des conditions d’iso-contrainte 
avec celles d’un matériau du type matriciel mais dont le comportement serait purement 
viscoélastique (i.e., pas de plasticité). On obtient alors : 
 

 𝜎𝐹
𝑖 = 𝑇𝑖 [

𝜎𝐹
0 𝑖 𝜎𝑀𝑣𝑒 12

0 𝑖 𝜎𝑀𝑣𝑒 13
0 𝑖

𝜎𝑀𝑣𝑒 12
0 𝑖 𝜎𝑀𝑣𝑒 22

0 𝑖 𝜎𝑀𝑣𝑒 23
0 𝑖

𝜎𝑀𝑣𝑒 13
0 𝑖 𝜎𝑀𝑣𝑒 23

0 𝑖 𝜎𝑀𝑣𝑒 33
0 𝑖

] ∀𝑖 (Eq. 11) 

 
L’exposant “0 i” signifie une expression dans le repère local lié au milieu de fibres n°i. 
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Comportement du composite 
 
Le comportement macroscopique du composite est obtenu en considérant une décomposition 
additive de son potentiel thermodynamique, Φ𝐶: 
 

 ρ𝐶Φ𝐶 = 𝑣𝑀ρ𝑀Φ𝑀 + ∑ 𝑣𝐹
𝑖 𝜌𝐹

𝑖 Φ𝐹
𝑖𝑁

𝑖=1  (Eq. 12) 
 
Où les ρ sont les masses volumiques, les Φ les potentiels thermodynamiques et les v les fractions 
volumiques. Les indices C, M et F renvoient respectivement au composite, à la matrice et à un 
milieu de fibre, caractérisé par un exposant i. 
Finalement, la résolution de l’inégalité de Clausius-Duhem (Eq. 13) permet d’exprimer le tenseur 
des contraintes de Cauchy du matériau composite (Eq. 14). 
 

                                        σc: 𝜀̇ − [vMρMϕ̇M + ∑ vF
iNfam

i=1 ρF
i 𝜙̇F

i ] ≥ 0                        (Eq. 13) 
 
 

 σ𝐶 = 𝑣𝑀σ𝑀 + ∑ 𝑣𝐹
𝑖 𝐴𝑖𝜎𝐹

𝑖 𝐴𝑖𝑁
𝑖=1          (Eq. 14) 

 
 
Validation du modèle : exemple d’un composite polypropylène + 30% de fibres courtes de 
verre (PP-GF) moulé par injection 
 
Les équations constitutives présentées ci-avant sont implémentées sous Abaqus Explicit (sous 
forme d’une “VUMAT”). La validation du modèle repose sur des comparaisons entre des données 
expérimentales et la simulation numérique de ces essais utilisant le modèle développé. Pour cela, il 
est d’abord nécessaire d’identifier les paramètres du modèle.  
 
Identification des paramètres de comportement de la matrice polypropylène (PP) 
 
Les paramètres viscoélastiques de la matrice thermoplastique sont identifiés par des DMA (dynamic 
mechanical analyses) réalisé à des fréquences de 0.01 Hz à 30 Hz (Figure 1).  
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Fig. 1. Réponse en contrainte et déformation à un chargement en déplacement sinusoidal 

 
Des modules de gain et de perte sont donc déterminés par la méthodes des moindres carrés avec les 
mesures faites moyennant les essais à chargement sinusoidal (Figure 2). 
 
 

 
          (a) Module de gain                                                  (b) Module de perte 

 
Fig. 2. Identification des modules de perte et de gain 

 
Les paramètres de l’écoulement viscoplastiques sont identifiés en utilisant la méthode SEE grâce à 
une série d’essais de traction uniaxiale, à différentes vitesses de sollicitation quasi-statiques et 
dynamiques, associé à des mesures de champ par corrélation d’images numériques (DIC) (Figure 
3). 
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            (a) Définition de la région et des zones d’interet (ROI et ZOI)  (b) Cartographie des déformations axiales 
 

Fig. 3. Caractérisation en traction du composite par corrélation d’image 
 
Les résultats des essais réalisés à plusieurs vitesses de déformation sont présentés dans la Figure 4. 
 

 
 

Fig. 4. Comportement axial à différentes vitesses de chargement du PP caractérisé par corrélation d’image 
 
 
 La loi d’écrouissage isotrope donnée par l’Eq. 16 est considéré 
 

                                           𝑅(𝑝) = ℎ1 exp(ℎ2𝑝2) (1 − exp(−ℎ3𝑝)))                                (Eq. 16) 
 
 Avec h1, h2 et h3 sont des paramètres matériau. Les paramètres d’écrouissage ainsi que les 
paramètres de viscosité sont déterminés moyennant la méthode SEE. La méthode consiste à 
identifier les paramètres d’écoulement viscoplastique par corrélation avec la surface de 
comportement dans l’espace contrainte-déformation-vitesse de déformation (Figure 5). 
 
 
 
 
 

ROI
ZOI

0.148 

0.143 

0.137 

0.132 

0.127 
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Fig. 5. Surface de comportement obtenue par la méthode SE𝐸̇ 

 
 Des essais de compression sur plots permettent l’identification du paramètre η. Le paramètre a+ est 
identifié à partir du coefficient de Poisson plastique mesuré en traction. Malheureusement, il n’a pas 
été possible d’utiliser des mesures par DIC sur les plots de compression, le paramètre a- est donc 
fixé arbitrairement à 0.  
Une comparaison des résultats expérimentaux et numériques est illustrée par la Figure 6 pour le PP. 
Pour information, les vitesses de déformation « ingénieur » correspondantes sont, par ordre 
croissant, de 5.55 10-4, 5.55 10-3, 3.33 10-2, 0.5, 5 et 50 s-1. 

 
 

 
 

Fig. 6. Comportement en traction uniaxial du PP (traits continus : données expérimentales, pointillés = simulation 
numériques). 

 
 
Identification des distributions d’orientation locale des fibres par microtomographie et de la résistance 
interfaciale en cisaillement, τ 
 
La microstructure du composite PP-GF est analysée par microtomographie aux rayons X 
(microtomographe Skyscan 1172 de Bruker Micro CT, pas de rotation de 0.4°, 30 kV, 40 µA pour 
une résolution de spatiale (taille de voxel) de 3.87 µm – scans à 360°). Plus précisément, les 
volumes centraux d’éprouvettes de traction de type ISO527, découpées à différents angles θ (0, 20, 
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45, 60 et 90°) par rapport à la direction d’injection sont scannés (Figure 7a). Les images extraites  
sont ensuite analysées pour détecter toutes les structures (fibres) présentes et déterminer leurs 
caractéristiques (longueur, rayon et orientation dans l’image). Une pré-analyse a montré que les 
fibres étaient quasi-exclusivement orientées dans le plan de la plaque. Leur orientation peut donc 
être déterminée par la connaissance de l’angle ψ uniquement (Figure 7a). 
 
 

 
 

(a) Définition de l’angle de découpe, θ, et de l’angle d’orientation d’une 
fibre par rapport à la direction de chargement, ψ  

(b) Reconstruction 3D de la 
microstructure 

 
Fig. 7. Principe de la détermination des orientations locales des fibres par micro-tomographie.  

 
 
La détermination de l’ensemble des fibres présentes dans le volume scanné et de leur orientation 
permet d’établir les distributions d’orientations réelles dans le matériau. Une sélection d’image 2D 
(Figure 8)  suivant l’épaisseur du volume scanné et leur traitement moyennant l’outil FiJi permet 
ensuite la détermination d’histogrammes de densité d’orientation.  
 

 

 
Fig. 8. Traitement des images 2D obtenue par micro-tomographie.  

 
La Figure 9a donne ainsi des exemples de distributions d’orientations moyennées dans le volume 
scanné pour des éprouvettes découpées à θ=0°, c’est-à-dire selon la direction d’injection. On peut 
noter que pour tous les angles de découpe, la direction d’orientation préférentielle est toujours égale 
à ± θ, ce qui signifie que les fibres s’orientent préférentiellement dans la direction d’injection dans 
le volume du matériau. Toutefois, la Figure 5a montre que, pour un même angle de découpe (ici 
θ=0°), les distributions d’orientation locale des fibres varient. Dans le cas présent, cette variation est 
liée à une position différente des éprouvettes dans la plaque injectée (Figure 9b - plus on se 
rapproche des bords, plus la proportion de fibres orientées dans la direction d’injection augmente). 
Ces différences sur les caractéristiques du renfort ont un impact non négligeable sur le 



 

9 
 

comportement mécanique du composite, par exemple en traction (Figure 9c). Il est donc évident 
qu’une prédiction correcte du comportement du matériau doit reposer sur un modèle prenant en 
compte les caractéristiques locales du renfort et non pas simplement l’angle de découpe des 
éprouvettes, par exemple. 
 
 

  
(a) Distributions d’orientation des fibres dans les 

éprouvettes découpées selon la direction 
d’injection 

(b) Positionnement des éprouvettes scannées dans 
la plaque de PP-GF 

 
 

 
 

(c) Comportement en traction uniaxiale à 1mm/min des éprouvettes découpées dans la direction d’injection 
 

Fig. 9. Exemples de distributions d’orientation des fibres dans le composite PP-GF et influence sur le comportement en 
traction.  

 
L’identification de la résistance interfaciale en cisaillement, τ, repose sur le recalage du 
comportement en traction de l’éprouvette 0-1 (i.e. présentant la proportion la plus élevée de fibres 
orientées dans la direction de chargement) avec la simulation numérique par EF de cet essai, 
utilisant le modèle de comportement développé (Figure 10). On utilise bien sûr les paramètres de la 
matrice PP identifiés et la distribution d’orientation des fibres déterminée par micro-tomographie 
pour l’éprouvette 0-1. Dans cet exemple d’application, on considère que toutes les fibres ont la 
même longueur, le même rayon et le même module d’Young. Les paramètres géométriques des 
fibres sont issus de l’analyse micro-tomographique et leur module d’Young est issu de la littérature. 
 



 

10 
 

 
Fig. 10. Identification du paramètre de résistance interfaciale en cisaillement.  

 
 
Validation du modèle de comportement pour le composite PP-GF 
 
La Figure 11 donne des exemples de comparaison de comportements en traction du PP-GF, avec 
différents angles de découpe θ des éprouvettes, expérimentaux et simulés numériquement avec le 
modèle développé. Ces résultats permettent de valider les équations constitutives et leur 
implémentation pour la gamme de vitesse de déformation considérée (5.55 10-4 à 50 s-1). 
 

  
(a) θ = 0° 

  
(b) θ = 45° 
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(c) θ = 90° 

 
Fig. 11. Exemples de comparaisons données expérimentales/numériques pour le comportement en traction du PP-GF.  

 
Des essais de caractérisation ont été aussi réalisé pour des composites à des taux massiques de 
renfort différents (15% et 40% de fibres de verre). L’identification des distributions d’orientation 
par micro-tomographie a ainsi permis la validation du modèle pour des taux de renforts différents. 
 
Extensions du modèle de comportement  
 
Les extensions du modèle de comportement est le sujet de la partie suivante. 
Les premières évolutions concernent la prise en compte des phénomènes d’endommagement. Leur 
effet est observable sur les derniers niveaux de chargement du composite avec un adoucissement 
qui n’est pas pris en compte par le modèle non-endommageable (Figure 11). L’extension du modèle 
porte sur la prise en compte de l’endommagement ductile anisotrope de la matrice et de la 
dégradation de l’interface entre fibres et matrice. 
 
Endommagement ductile anisotrope de la matrice  
 
Le comportement de la matrice thermoplastique non renforcée peut être affecté par un 
endommagement ductile, généralement isotrope. Toutefois, l’endommagement de la matrice dans le 
composite peut devenir complètement anisotrope, en raison des distributions d’orientation 
complexes des fibres qui vont modifier les états mécaniques locaux.  
Ce phénomène peut être modélisé par l’utilisation d’un tenseur d’endommagement du 4ème ordre. 
Celui-ci est construit en considérant l’assemblage des contributions de chaque milieu de fibres au 
pilotage de l’endommagement de la matrice (Eq. 17). Pour cela, des tenseurs d’endommagement 
intermédiaires sont construits en considérant notamment que les fibres empêchent 
l’endommagement matriciel dans leur direction d’orientation (Eq. 18). 
 

 𝐷𝑖𝑗𝑘𝑙 = 𝑣′
𝑀(1 − 𝑑)𝛿𝑖𝑘𝛿𝑗𝑙 + ∑

𝑣𝐹
𝑖

𝑣𝑀
∑ 𝑇𝑖𝑝

𝑎 (𝑇𝑎)𝑞𝑗
−1(𝑇𝑎)𝑝𝑘

−1𝑇𝑙𝑞
𝑎 𝐷𝑝𝑞𝑝𝑞

𝑎3
𝑝,𝑞=1

𝑁
𝑎=1  (Eq. 17) 

 𝐷𝑖𝑗𝑘𝑙
𝑎 = 𝛿𝑖𝑘𝛿𝑗𝑙[1 − 𝑑(𝛿𝑖𝑗(1 − 𝛿𝑖1) − (1 − 𝛿𝑖𝑗))]    ∀𝑎 (Eq. 18) 

 
Avec d la variable d’endommagement scalaire; 𝑣′

𝑀 = 1 − ∑ 𝑣𝐹
𝑎𝑁

𝑎=1 /𝑣𝑀 est la fraction volumique 
de la matrice dont l’endommagement n’est pas affecté par la présence des fibres. 
Dans l’implémentation, cet endommagement est pris en compte en définissant une contrainte 
matricielle effective et en utilisant le principe d’équivalence en déformation. Le schéma 
d’implémentation est semi-couplé.  
L’évolution de la variable scalaire d’endommagement, d, est définie suivant la mécanique de 
l’endommagement continu par la loi de Lemaitre (Eq. 19).   
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 {
𝐷̇ = 𝜅̇

𝑌

𝑆
, 𝑖𝑓 𝜅 ≥ 𝜅𝐷

𝐷̇ = 0 𝑒𝑙𝑠𝑒
 (Eq. 19) 

 
 
L’identification de cette loi (détermination des paramètres S et 𝜅𝐷) est réalisée moyennant des 
essais cycliques sur la matrice PP non-renforcée. Le paramètre S est identifié suivant la méthode de 
la dégradation de la rigidité équivalente (Figure 12).  
 

 
Fig. 12. Identification de la loi d’endommagement matriciel par la dégradation de la rigidité apparente.  

 
Cette méthode a permis la détermination de l’évolution de d en fonction de la déformation 
viscoplastique équivalente, κ (Figure 13). 
 
 

 
 

Fig. 13. Evolution de d déterminée par la méthode dégradation de la rigidité apparente.  
 
Une évaluation de la loi de comportement de la matrice avec la prise en compte de 
l’endommagement matriciel est faite pour un état d’endommagement isotrope par comparaison avec 
les résultats des essais en traction. Cette comparaison a permis la validation de la loi 
d’endommagement pour plusieurs vitesses de déformation, comme présenté dans la Figure 13. 
L’anisotropie de la loi d’endommagement dans le cas d’une matrice renforcée par 30% de fibres de 
verre est vérifiée par la prise en compte de deux distributions d’orientations de fibres différentes 
(avec des orientations préférentielles proches de 0° et 90°) comme montré dans la Figure 14. La 
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comparaison des deux réponses en traction montre que l’endommagement matriciel est 
prépondérant pour le cas des fibres fortement orientées par rapport à la direction du chargement. 
 
 
 

 
 

Fig. 14. Validation de la loi de comportement matricielle avec la prise en compte de l’endommagement 
 
 

  
(a) Réponse en contrainte-déformation avec et sans prise 

en compte de l’endommagement matriciel  (b) Différence entre contraintes effective et vrai 
 
 

Fig. 15. Vérification de l’anisotropie de la loi d’endommagement matriciel avec prise en compte de deux distributions 
d’orientation des fibres.  

 
 
Décohésion à l’interface fibre-matrice  
 
La décohésion interfaciale est un phénomène d’endommagement majeur des TRFC. En effet, la 
décohésion entraîne une diminution de l’effort transmis à la fibre via la matrice, ce qui se traduit par 
un adoucissement du comportement du composite. De plus, ceci entraine une augmentation de la 
concentration de contrainte dans la matrice, à proximité des fibres, en raison de la quantité d’effort 
non transmise, ce qui peut favoriser la localisation de la déformation plastique, l’apparition de 
microfissure etc… jusqu’à rupture du composite. D’après les travaux de Sato et al. [11], lorsque les 
fibres sont sollicitées en traction avec un angle proche de 0°, la décohésion s’initie en pointe de  
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fibres, puis, avec l’augmentation du niveau de chargement, des micro-vides se propagent le long de 
la fibre, à l’interface (Figure 15). 

 
 

        
 

Fig. 16. Décohésion en pointe de fibre et propagation des micro-vides latéralement (images extraites de Sato et al. 
[10]).  

 
Basé sur ces observations, le modèle développé prend en compte la décohésion progressive à 
l’interface fibre/matrice [12]. Ainsi, la propagation latérale des micro-vides est modélisée par une 
réduction progressive de la longueur de la fibre disponible pour la transmission de l’effort, à partir 
d’un seuil en déformation axiale de la fibre, εth. Dans l’équation (6), permettant le calcul de la 
contrainte axiale moyenne dans la fibre, la longueur Li est alors remplacée par Li-2δi, pour tout 
milieu de fibre i : 
 

                      {
𝜎𝐹

0 𝑖 = 𝜀𝐹
0 𝑖𝐸𝐹

𝑖 (1 −
𝐸𝐹

𝑖 𝑟𝑖

2(𝐿𝑖−𝛿𝑖)𝜏𝑖 |𝜀𝐹
0 𝑖|)  𝑠𝑖 |𝜀𝐹

0 𝑖| ≤
(𝐿𝑖−𝛿𝑖)𝜏𝑖

𝐸𝐹
𝑖 𝑟𝑖

 

𝜎𝐹
0 𝑖 = 𝑠𝑖𝑔𝑛𝑒(𝜀𝐹

0 𝑖)
(𝐿𝑖−𝛿𝑖)𝜏𝑖

2𝑟𝑖  𝑠𝑖𝑛𝑜𝑛

     ∀𝑖          (Eq. 20) 

 
 avec : 
 

                                           {𝛿𝑖 = 𝑎 (
𝜀𝐹

𝑂 𝑖−𝜀𝑡ℎ

𝜀𝑡ℎ
)

𝑏
𝐿𝑖

2
 𝑠𝑖 𝜀𝐹

𝑂 𝑖 ≥ 𝜀𝑡ℎ

𝛿𝑖 = 0 𝑠𝑖𝑛𝑜𝑛

    ∀𝑖                       (Eq. 21) 

 
Où a et b sont des paramètres à identifier. 
L’identification de ces paramètres a été faite en se basant sur des résultats d’essai de traction réalisé 
sur une éprouvette de référence (avec une distribution de fibres les plus orientées suivant la 
direction du chargement). Les paramètres a et b sont simultanément identifiés par la méthode 
inverse, en assurant la meilleure corrélation avec la réponse expérimentale du composite et en 
utilisant la distribution d’orientation réelle de l’éprouvette (Figure 17).  
 
 
 
 
 
 
 
 
 



 

15 
 

 
 
  

 
 

Fig. 17. Identification des paramètres de la loi de décohésion a et b  
 
L’évaluation du modèle ainsi couplé aux deux lois d’endommagement, matriciel et interfacial, a été 
par comparaison avec les résultats des essais de traction réalisés sur le composite avec différentes 
distribution d’orientation des fibres. Les cas des distributions à 0° et 90° sont présentés dans la 
Figure 18. 
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(a) Essai réalisé à 0° par rapport à l’orientation  

préférentielle des fibres 
(b) Essai réalisé à 45° par rapport à l’orientation  

préférentielle des fibres 
 

 
 

(c) Essai réalisé à 90° par rapport à l’orientation préférentielle des fibres 

 
Fig. 18. Validation du modèle avec implémentation des deux d’endommagement en traction avec différentes 

distributions d’orientation des fibres 
 
On peut noter qu’à partir de l’expression (21), il est possible d’exprimer la fraction volumique totale 
de vides causés par la décohésion (nucléation et coalescence). L’évolution de la fraction volumique 
du vide est définie par l’Equation 22. 
 

                                          𝑣̇v
tot = П[𝑣̇𝑣

𝑛𝑢𝑐𝑙 + 𝐶𝑔𝑟𝑜𝑤𝑡ℎ𝑣𝑣
𝑛𝑢𝑐𝑙𝜎̇𝐻]                                 (Eq. 22) 

 
L’évolution de volume de vide crée est donnée par l’Equation 13. 
 

                                                       vv
nucl = 𝐶𝑛𝑢𝑐𝑙 ∑ (

2δi

Li
)𝑖 vf

i                                     (Eq. 23) 
 
Un critère est défini comme étant le taux critique de vide crée par décohésion en s’appuyant sur des 
résultats de la littérature et des observations faites sur des faciès de rupture du composite, présentés 
dans la Figure 18. Ce critère est donc défini suivant l’équation suivante : 
 

                                                                           𝑣𝑣
𝑡𝑜𝑡 = 𝑣𝑣

𝑐𝑟𝑖𝑡                                              (Eq. 24) 
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Des premiers tests [12] ont permis de montrer qu’il est alors possible d’identifier le taux de vide à 
rupture pour un composite dans une configuration donnée (en termes d’angle de chargement) et 
d’utiliser ce taux critique comme critère de rupture pour le même composite, mais chargé avec un 
angle différent. 
 

 
Fig. 19. Observation des défauts créés par décohésion sur des faciès de rupture du composite testé en traction  

 
L’identification du taux critique de vide est réalisée en se basant sur des essais de traction sur un 

composite chargé à 30% en fibres de verre. A partir de ces essai, suivit par corrélation d’image, la 

déformation maximale atteinte est moyennée sur la zone d’initiation de la rupture (Figure 19). Le 

taux de vide critique correspondant à cette déformation est donc déterminé en simulant ces essais, 

comme montré dans la Figure 20. 
 

 
Fig. 20. Identification de la déformation à la rupture du composite  
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Fig. 21. Identification du taux de vide critique du composite  

 
La validation du critère de rupture est réalisée par comparaison entre les déformations à rupture 
simulées avec différentes orientations des fibres par rapport à la direction du chargement et les 
déformations de rupture mesurée expérimentalement. Les exemples des essais à 0° et 90° sont 
présentés dans la Figure 22. 
 
 

  
 

Fig. 22. Prédiction de la déformation à la rupture pour des composites testés à 0° et 90° par rapport à l’orientation 

préférentielle des fibres 

 
 
Les résultats sont très satisfaisant jusqu’à des angles de l’ordre de 45° entre la direction de 
chargement et la direction d’orientation préférentielle des fibres (ici, direction d’injection), mais 
moins pour des angles plus élevés. Ceci s’explique très probablement par le fait que, lorsque les 
fibres sont chargées quasi-transversalement, l’endommagement initié en pointe de fibre, tel qu’il a 
été observé par Sato et al. [11] et modélisé [12], n’est plus le phénomène d’endommagement 
prépondérant. La rupture du composite est alors effective avant que le taux de vide critique identifié 
en utilisant ce modèle ne soit atteint.  
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Conclusion 
 
Cette thèse porte sur la proposition d’une loi qui permet la modélisation du comportement de 
thermoplastiques renforcés par fibres courtes en prenant en compte la sensibilité à la vitesse de 
déformation couplée aux caractéristiques complexes du renfort. La caractérisation du comportement 
du composite a fait l’objet d’une compagne expérimentale portant sur la réalisation des essais à 
plusieurs conditions de chargement. L’identification de la loi de comportement viscoélastique 
linéaire de la matrice a été faite par des essais à excitation fréquentielle permettant la détermination 
des modules et temps de relaxations. L’identification des paramètres viscoplastique a été faite 
moyennant des essais de compression et de traction réalisés à plusieurs vitesses de déformation. La 
détermination des paramètres viscoplastiques est faite en se basant sur la méthode SEE. Le modèle 
viscoélastique-visoplastique de la matrice est ensuite validé par comparaison avec les essais de 
traction réalisés sur la matrice pure à plusieurs vitesses de déformation. La caractérisation de la 
microstructure du composite avec des taux de renfort de 30% et 40% en masse de fibre de verre a 
été faite par des analyses micro-tomographiques. La géométrie des fibres est identifiée moyennes 
ces analyses. L’orientation des fibres est caractérisée sous forme d’histogramme de densité 
d’orientation. Ces orientations sont ensuite exprimée par des distributions d’orientation et utilisées 
pour alimenter le modèle de comportement du composite.  
Le modèle est validé sur une large de gamme de vitesse de déformation pour le cas d’un composite 
polypropylène – fibres courtes de verre, moulé par injection, caractérisé par une matrice 
viscoélastique, viscoplastique et à écoulement plastique sensible à la pression et non-isochore, et 
par des distributions d’orientation des fibres complexes. Celles-ci sont notamment responsables de 
l’anisotropie du comportement, ainsi que de disparités, même à angle de chargement fixé. 
Deux types d’endommagement sont implémentés : l’endommagement ductile de la matrice 
renforcé, fortement anisotrope, et la décohésion progressive à l’interface fibre/matrice. Ces 
extensions du modèle ont été validées par comparaison avec des résultats expérimentaux. Un critère 
de rupture du composite a été défini en se basant sur le taux de vide critique créé par décohésion. 
Son identification et sa validation a été faite par comparaisons avec les déformations à rupture du 
composite avec plusieurs angles du chargement par rapport à la direction préférentielle des fibres. 
Des extensions de ce travail porteront sur la prise en compte de l’initiation de la décohésion entre 
fibres et matrice sur les côtés des fibres afin de traiter d’une manière plus précise le cas des fibres 
transversalement orientées par rapport à la direction de chargement. Ces perspectives s’intéressent 
aussi à la prise en compte de l’effet de vitesse de déformation sur l’évolution et la prépondérance 
des mécanismes d’endommagement et sur rupture du composite. Cela est motivé par des 
observations sur des faciès de rupture des éprouvettes testées en traction à différentes vitesses de 
déformation comme montré dans la Figure 23. 
 
 

 
 

Fig. 23. Observation au MEB des faciès de rupture des éprouvettes testées à (a) 1mm/min et (b) 1000 mm/s. 
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