
HAL Id: tel-01635625
https://theses.hal.science/tel-01635625

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward organic ambient intelligences ? : EMMA
Clément Duhart

To cite this version:
Clément Duhart. Toward organic ambient intelligences ? : EMMA. Artificial Intelligence [cs.AI]. Uni-
versité du Havre, 2016. English. �NNT : 2016LEHA0035�. �tel-01635625�

https://theses.hal.science/tel-01635625
https://hal.archives-ouvertes.fr

THESE

Pour obtenir le diplôme de doctorat

Spécialité Informatique

Préparée au sein de l'Université du Havre

Toward Organic Ambient Intelligences ?
EMMA

Présentée et soutenue par

Clément DUHART

Thèse soutenue publiquement le (date de soutenance)
devant le jury composé de

Mme Salima HASSAS Professeur Université Claude Bernard Lyon 1 CNRS Rapporteur

Mr Frederic WEIS Maître de Conférences Université de Rennes 1 HDR IRISA Rapporteur

Mr Francis ROUSSEAUX Professeur Université de Reims IRCAM Examinateur

Mr Joseph PARADISO Professeur MediaLab MIT Examinateur

Mr Laurent GEORGE Professeur ESIEE Paris INRIA Examinateur

Mr Cyrille BERTELLE Professeur Université du Havre LITIS Directeur de thèse

Mr Jean-Marc LACROIX Chercheur à Thalès Securité Invité

Mr David MENGA Chercheur à Électricité de France (EDF) Invité

Cyrille BERTELLE, LITIS

PhD prepared at
LITIS – EA 4108
Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes
Université du Havre
25 Rue Philippe Lebon,
76600 Le Havre, FRANCE

PhD in collaboration with
LACSC
Laboratoire d’Analyse et Contrôle des Systèmes Complexes
ECE Paris
37, Quai de Grenelle
Paris, 75725, FRANCE

PhD in collaboration with
MIT Medialab
Media Art and Sciences
Massachusetts Institute of Technology
75 Amherst St,
Cambridge, MA 02139, USA

Les pages se tournent
et ne se ressemblent pas, mais quand celle-ci est la dernière, celle qui clôt un chapitre, on
y respire à travers le temps passé. Certains instants dans la vie d’un doctorant peuvent
ressembler à une traversée du désert où essoufflé, seul et désorienté, on oublie de lever
les yeux pour voir la forêt qui nous entoure. Tout a commencé dans le sous-bois de l’ECE
Paris, où deux chênes protecteurs, Brouaye et Rouyres ont formé l’étudiant devenu enseignant.

C’est alors que dans un coin ensoleillé, le discret marronnier Laurent George, par une
coque tombée, m’indiquait la voie de la Recherche. Au loin se distinguait le cyprès Cyrille
Bertelle qui me montrait l’entrée de cette forêt où j’allais pendant quatre ans cheminer.
J’avançais en quête d’idées, quand David Menga, le plus haut des peupliers, m’orienta sur le
sentier de l’internet des objets. Depuis la canopée, ce guide ne m’a jamais quitté.

Perdu dans mes pensées, il m’est souvent arrivé d’être rappelé à la réalité lorsque mon
pas décidé croisait le destin d’une Pierre, tantôt Courbin tantôt Sauvage dans la mousse
dissimulée. Quand certains jours la thèse était trop lourde à porter, j’ai pu échanger avec
les Ents Faust, Worms et Fauberteau toujours enclins à m’accompagner. Plongé au cœur de
cette forêt en perpétuelle régénération, j’y ai puisé des graines auprès des noisetiers Sylvain
Leroy ou encore Cherrier. Ces dernières tout juste plantées ont permis aux jeunes arbustes
Mardegan et Sonti de pousser.

C’est en préparant ma sortie de forêt que la liane Xiao Xiao m’a hissé vers cette anci-
enne contrée dont les mythes m’ont toujours hanté. J’y ai fait la rencontre de JoeP, le Baobab
atypique, qui nourrit sa communauté au rythme incessant des promeneurs égarés.

Quand le vent a trop soufflé, j’ai toujours su où m’harnacher auprès des arbres Sensei
Lecouvé, Zerhat et Taieb et de leurs protégés Khalifa, Carl et bien d’autres ...

À tous ces arbres.

À mes amis qui ont su être là.

À ma famille qui a su me faire pousser droit.

À ma douce fiancée qui a su ne pas être jalouse d’Emma.

Author’s publication list

Peer Review Conferences and Journal
1. [DCB13]Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle.

“Lightweight Distributed Adaptive Algorithm for Voting Procedures by Us-
ing Network Average Consensus”. English. In: PRIMA 2013: Principles
and Practice of Multi-Agent Systems. Volume 8291. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pages 421–428. isbn:
978-3-642-44926-0. doi: 10.1007/978-3-642-44927-7_30

2. [DCB14]Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle.
“Wireless Sensor Network Cloud Services: Towards a Partial Delegation”.
In: Proceedings of 5th International Conference on Smart Communications
in Network Technologies 2014 (IEEE SaCoNeT 2014). Vilanova i la Geltru,
Spain, June 2014

3. [DB14] Clement Duhart and Cyrille Bertelle. “Methodology
for Artificial Neural controllers on wireless sensor network”. In: IEEE
Conference on Wireless Sensors (ICWiSE). 2014, pages 67–72. doi: 10.
1109/ICWISE.2014.7042663

4. [DB15] Clement Duhart and Cyrille Bertelle. “Toward Organic
Computing Approach for Cybernetic Responsive Environment”. In: Inter-
national Journal of Ambient Systems and Applications (IJASA) 3.4 (2015).
doi: DOI:10.5121/ijasa.2015.3401

Submissions
1. [DSB] Clement Duhart, Pierre Sauvage, and Cyrille Bertelle.

“A Resource Oriented Framework for Service Choreography over Wireless
Sensor and Actor Networks”. In: Submission in International Journal of
Wireless Information Networks (IJWI) ()

2. [May+16] Brian Mayton, Gershon Dublon, Spencer Russell, Evan
F. Lynch, Vasant Ramasubramanian, Donald Derek Haddad,
Clement Duhart, Qiansheng Li, Glorianna Davenport, and
Joseph A. Paradiso. “Deploying the Living Observatory: From Environ-
mental Sensor Network to Networked Sensory Landscape”. In: Submission
in ACM. 2016

http://dx.doi.org/10.1007/978-3-642-44927-7_30
http://dx.doi.org/10.1109/ICWISE.2014.7042663
http://dx.doi.org/10.1109/ICWISE.2014.7042663
http://dx.doi.org/DOI:10.5121/ijasa.2015.3401

Contents

I Introduction 1

1 General introduction 3
1.1 Internet of Things . 3

1.1.1 Business Opportunities . 4
1.1.1.1 Economy, Society and Technologies 4
1.1.1.2 Many Visions Converging 4
1.1.1.3 Current and Future Applications 4

1.1.2 Technology Challenges . 6
1.1.2.1 A Meeting of Engineering 6
1.1.2.2 Ubiquitous Computing 6
1.1.2.3 Towards Web 3.0 6

1.2 Motivations of the Thesis . 7
1.3 Contributions and Content . 8

2 State of the Art 9
2.1 Introduction . 10
2.2 Wireless Sensor and Actor Networks 11

2.2.1 Connected Objects . 12
2.2.1.1 Identification, Sensing and Acting 12
2.2.1.2 Energy, Computation and Communication 12
2.2.1.3 Lifetime, Design and Maintenance 13

2.2.2 IP-Based Network . 14
2.2.2.1 Low Power ZigBee Technologies 14
2.2.2.2 Network, Routing and Security 15
2.2.2.3 Heterogeneity and Internet Integration 17

2.2.3 Software Architectures . 17
2.2.3.1 Data Formatting and Application Protocols . . . 18
2.2.3.2 Web Service Orchestration and Choreography . . 19
2.2.3.3 Object Abstraction and Middleware 20

2.3 Ambient Intelligence . 22
2.3.1 Responsive Environment 24

2.3.1.1 Event Condition Action Rules 24
2.3.1.2 Action Planning 24
2.3.1.3 Decision Tree . 24

2.3.2 Reasoning Engine . 25
2.3.2.1 Fuzzy Rule-Based Engine 25
2.3.2.2 Context-Awareness System 25
2.3.2.3 Learning Techniques 25

4 Contents

2.3.3 Ambient Intelligence Architectures 26
2.3.3.1 Autonomic Computing 26
2.3.3.2 Multi-Agent System 27

2.4 Organic Computing Approach . 28
2.4.1 Principles and Challenges 28

2.4.1.1 Trustworthy Systems 28
2.4.1.2 Self-X Properties 28
2.4.1.3 Design Methodology 29

2.4.2 Models and Architectures 29
2.4.2.1 Observer-Controller Model 29
2.4.2.2 Multi-Scale Architecture 30
2.4.2.3 Evolutionary Computation 30

2.4.3 Application Examples . 31
2.4.3.1 System on Chip 31
2.4.3.2 Traffic Lights in a Smart City 32
2.4.3.3 Energy Management in Smart Homes 32

2.5 Synthesis . 33

Contribution: An Organic Ambient Intelligence 37

II An Organic IoT Framework 41

3 Capillar Internet Network 43
3.1 Introduction . 44
3.2 Network Infrastructure . 45

3.2.1 Wireless Sensor and Actor Networks 46
3.2.1.1 IP Connectivity: 6LoWPAN 46
3.2.1.2 Routing Protocol: RPL 46
3.2.1.3 Gateway: Border Edge Router 47

3.2.2 Home Information System 47
3.2.2.1 Permanent Gateway 48
3.2.2.2 Mobile Gateway 48
3.2.2.3 IPv6 Backbone 49

3.2.3 Internet Integration . 49
3.3 Service-Oriented Architectures . 51

3.3.1 Resource-Oriented Architecture 51
3.3.2 Experimental Model Analysis 52

3.3.2.1 Service Orchestration 52
3.3.2.2 Service Choreography 53

3.4 Software Tool Contributions . 54
3.4.1 Active Resource Middleware 54

Contents 5

3.4.2 Hybrid Network Simulator 54
3.4.3 Service Choreography Software 55
3.4.4 Network Tools and Connectors 55

3.5 Summary . 56

4 Active Resource Middleware 57
4.1 Introduction . 58
4.2 Architecture . 59

4.2.1 System Components . 59
4.2.2 Resource File System . 60
4.2.3 COAP Web service Interface 61

4.3 System Dynamic . 62
4.3.1 Basic Services . 62

4.3.1.1 Local Service . 62
4.3.1.2 System Service 62
4.3.1.3 Agent Service . 63

4.3.1.3.1 Publish-Subscribe Agent 63
4.3.1.3.2 Composed Agent 64
4.3.1.3.3 Self-X Agent 64

4.3.2 Computation Flows . 65
4.3.3 Graphical Model . 66

4.4 Service Choreography . 67
4.4.1 Hierarchical Composition 67
4.4.2 Web Service Heterogeneity 68
4.4.3 Name Space Security . 69

4.5 Summary . 70

5 Service Choreography Deployment 71
5.1 Introduction . 72
5.2 Network Mapping Process . 73

5.2.1 Stages Overview . 74
5.2.1.1 Functional Design 74
5.2.1.2 Instantiation and Simulation 74
5.2.1.3 Network Mapping 75

5.2.2 Dynamic Deployment . 76
5.2.2.1 Residual Network Agents 76
5.2.2.2 Dynamic Network Agents 76
5.2.2.3 Self-X Agents . 76

5.2.3 Deployment Process . 77
5.2.3.1 Direct Deployment 77
5.2.3.2 Deployment Container 77
5.2.3.3 Self-Deployment Container 78

6 Contents

5.3 Theoretical Background . 79
5.3.1 Model Definitions . 79

5.3.1.1 Network . 79
5.3.1.2 Resources . 79
5.3.1.3 Scopes . 79
5.3.1.4 Places . 80

5.3.2 Problem Formulation . 80
5.3.2.1 Knapsack Problems 80
5.3.2.2 Service Choreography Mapping 80

5.3.3 Pseudo-Boolean Optimization 81
5.3.3.1 Communication Cost Function 82
5.3.3.2 Constraint Set 82

5.4 Experimental Results . 83
5.4.1 Dining Philosopher Mapping 83
5.4.2 Deployment Evaluation . 86
5.4.3 Deployment Strategy . 89

5.5 Summary . 90

III Toward Neural Intelligence 91

6 Artificial Neural Controller 93
6.1 Introduction . 94
6.2 Neural Control Architecture . 95

6.2.1 Preliminary Analysis . 95
6.2.1.1 Artificial Neural Networks 95
6.2.1.2 Classifier Learning Complexity 97

6.2.2 Agent Model . 100
6.2.2.1 Behavior Classifiers 101
6.2.2.2 Controller Scheduling 102
6.2.2.3 Behavior Online Training 103

6.3 Knowledge-Based Training . 104
6.3.1 Training Data Generation 105
6.3.2 Inferred Knowledge Transfer 106

6.4 EMMA System Integration . 107
6.4.1 Controller Service . 108
6.4.2 Service Choreography . 109

6.4.2.1 Local Control . 109
6.4.2.2 Remote Training 109
6.4.2.3 Initial Deployment 109

6.5 Summary . 110

Contents 7

7 Neural Voting Procedure 111
7.1 Introduction . 112
7.2 Voting Procedure Architecture . 113

7.2.1 Theoretical Background 113
7.2.1.1 Preference Model 113
7.2.1.2 Aggregation Process 114
7.2.1.3 Distributed Decision Rules 114

7.2.2 Implementation Arrangements 116
7.2.2.1 Finite Time Convergence 116
7.2.2.2 Multi-Scale Adaptive Accuracy 116
7.2.2.3 Voting Procedure Algorithm 117

7.3 Experimentations . 118
7.3.1 Execution Example . 118
7.3.2 Time Convergence . 123
7.3.3 Alignment Property Discussions 124

7.3.3.1 Veto Policy . 124
7.3.3.2 Byzantine Threat 124

7.4 EMMA System Integration . 125
7.4.1 Voting Procedure Choreography 125
7.4.2 Application Scenarios . 126

7.5 Summary . 127

IV MIT Medialab Experience 129

8 Ambient Sound Recognition 131
8.1 Tidmarsh Living Observatory . 132

8.1.1 Environment Sensing and Network 132
8.1.2 Data Visualization: Cross-Reality and Sonification 133
8.1.3 Towards Wildlife Geolocalization 134

8.2 TidZam Contribution . 135
8.2.1 Architecture Overview . 135
8.2.2 Signal Footprint Background 136

8.3 Deep Learning Stack . 137
8.3.1 Restricted Boltzmann Machine 137
8.3.2 Stacked Autoencoder . 138
8.3.3 Classifier Decision Function 139

8.4 Experimentations . 140
8.4.1 Wildlife Recognition . 140
8.4.2 Human Computer Interface 141
8.4.3 Speaker Recognition . 142

8.5 Summary . 143

8 Contents

V Conclusion and perspectives 145

9 Conclusion 147
9.1 An Organic Internet of Things Framework 148
9.2 Towards Neural Ambient Intelligence 149
9.3 Perspectives . 150

Appendix 153

Glossaries 157
Acronyms . 157

References 166

List of Figures

2.1 Service-oriented architecture: orchestration and choreography . . 19
2.1.1 Orchestration architecture 19
2.1.2 Choreography architecture 19

2.2 MAPE-K control loop instantiated for Ambient Intelligence (AmI). 26
2.3 Architecture for a multi-agent system for ambient intelligence. . . 27
2.4 Generic observer-controller model for organic computing. 29
2.5 The different scales of observer-controller architecture. 30

2.5.1 Centralized . 30
2.5.2 Decentralized . 30
2.5.3 Multi-scale . 30

2.6 Example of the energy management policy in a smart home. . . . 32
2.7 Thesis Overview: Environment Monitoring and Management Agent

(EMMA) Architecture. 38

3.1 Illustration of a classical Internet of Things (IoT) network infras-
tructure. 45

3.2 Sequence diagram of IPv6 LoW Power Wireless Area Networks
(6LoWPAN)-RPL network establishment. 46

3.3 WSAN Multiple Routing RPL DAG. 47
3.4 6LoWPAN integration on a plug computer based on GNU/Linux. 48
3.5 6LoWPAN integration on a mobile phone based on Android. . . . 48
3.6 Wireless Sensor and Actor Network (WSAN) Integration in Home

Information System (HIS). 49
3.7 HIS integration into an Internet Protocol version 4 (IPv4) hetero-

geneous multi-site infrastructure. 50
3.8 Service Orchestration (SO) evaluation on a random network. . . . 52
3.9 Service Choreography (SC) evaluation on a random network. . . . 53
3.10 Screenshot of the simulator plug-in emma-cooja-analysis. 54
3.11 Screenshot of the emma-design application. 55

4.1 EMMA middleware UML diagram. 60
4.2 EMMA middleware resource file system schema. 60
4.3 EMMA node overview schema. 61
4.4 Illustration of a computation flows by an event chain of requests. . 65
4.5 Example of an EMMA graphical model created by a Petri network. 66
4.6 Illustration of SC composition. 67
4.7 Overview of the EMMA secured architecture. 69

5.1 Network mapping process for a multi-layer perceptron. 73

10 List of Figures

5.2 Petri network of a DNA deployment container. 77
5.3 Petri network of a DNA self-deployment container agent. 78
5.4 Petri network of dining philosophers in an emma-design tool. . . . 84
5.5 Dining philosopher mapping in an emma-design tool. 84
5.6 Number of constraints according to the number of scopes and nodes. 85
5.7 Mapping resolution time according to the number of scopes and

nodes. 85
5.8 Self-discovering agent deployment in the emma-cooja tool. 87
5.9 Composed agent deployment in the emma-cooja tool. 87
5.10 Composed agent deployment time in a deep network. 88
5.11 Self-deployment agent deployment time in a deep network. 88

6.1 Artificial Neural Network (ANN) complexity for linear transition
functions. 98

6.2 ANN complexity for quadratic transition functions. 98
6.3 ANN complexity for mixed transition functions. 99
6.4 Scheme of a multi-classifier ANN. 99
6.5 Model overview of an ANC . 100
6.6 Behavior classifier learning result. 101
6.7 ANC scheduling player example 102
6.8 ANC behavioral online training 103
6.9 Methodology process for ANC behavior training. 104
6.10 Statistical data generation based on logical rules. 105
6.11 Knowledge extraction for associative rules’ inference. 106
6.12 ANC component implementation on an ARM 107

7.1 Network graph of 25 nodes randomly connected to five neighbors. 118
7.2 Initial node’s utility functions ui(0) of 25 nodes at the start of

Voting Procedures (VP). 119
7.3 Profile utility of each node convergence until reaching the final

aggregated one u̇. 120
7.4 Interval error ε between nodes for each profile according to NAC

execution. 121
7.5 Aggregated utility function u̇ is reached for all agents according to

the last ε value. 122
7.6 Number of iterations according to the number of nodes and channels

u̇. 123
7.7 Voting procedure algorithm implementation across ARM agents . 125

8.1 WSN on Tidmarsh. 132
8.1.1 Base station . 132
8.1.2 Station-2 . 132
8.1.3 Sensor node . 132

List of Figures 11

8.1.4 Microphone . 132
8.2 Cross-reality to visualize in situ marsh environment evolution. . . 133

8.2.1 Unity virtual environment 133
8.2.2 Real environment in Tidmarsh 133

8.3 Example of the main different categories of spectrograms (frequency
between 50 Hz and 7 kHz vs. time of 500 ms) at Tidmarsh. 134
8.3.1 Human . 134
8.3.2 Blue jay . 134
8.3.3 Crow . 134
8.3.4 Sparrow . 134
8.3.5 Frog . 134

8.4 TidZam architecture overview. 135
8.5 Restricted Boltzmann machine execution until thermal equilibrium.137
8.6 Two-layer feature space on a human voice signal. 138

8.6.1 L1 . 138
8.6.2 L2 . 138

8.7 Stacked autoencoder architecture. 139
8.8 Screenshot of TidZam Web administration interface. 141
8.9 Bird rendering in the (VR) based on TidZam detection. 141

9.1 DVS scheme and PCB for EMMA middleware (MIT Media Lab). 153
9.2 DVS platform built for EMMA middleware (MIT Medialab). . . . 154

List of Tables

2.1 Examples of platform miniaturization progress for WSAN 13

4.1 Memory footprints of EMMA modules on the Contiki OS. 59
4.2 List of system resources on EMMA node. 62
4.3 WSAN challenges addressed by active resource middleware 70

6.1 ANN complexity synthesis . 97
6.2 Resource list of ANC services. 108
6.3 Memory footprints of an ANC service on the Contiki OS. 108

8.1 TidZam results (%) for the wildlife recognition application. 140
8.2 TidZam results (%) for the speaker recognition experimentation. . 142

9.1 TidZam classifier details on wildlife recognition application. 155

List of Algorithms

6.1 Gradient descent learning algorithm 96

7.1 Voting procedure algorithm executed on each node i. 117

Listings

4.1 Example of a periodic publish-subscribe agent. 63
4.2 Example of a relay agent. 64
4.3 Example of a self-deployer agent. 64
4.4 Sequence diagram of an SC for heterogeneity management. 68

Part I

Introduction

Chapter 1

General introduction

L’homme est une corde tendue entre l’animal et la
Surhomme une corde au-dessus d’une abîme.

Man is a rope stretched between the animal and the
Superman–a rope over an abyss.

Friedrich Nietzsche [Nie17]

Contents
1.1 Internet of Things . 3

1.1.1 Business Opportunities 4
1.1.1.1 Economy, Society and Technologies 4
1.1.1.2 Many Visions Converging 4
1.1.1.3 Current and Future Applications 4

1.1.2 Technology Challenges . 6
1.1.2.1 A Meeting of Engineering 6
1.1.2.2 Ubiquitous Computing 6
1.1.2.3 Towards Web 3.0 6

1.2 Motivations of the Thesis 7
1.3 Contributions and Content 8

1.1 Internet of Things
The term Internet of Things (IoT) is used in very different ways. Its common
sense nature refers to the set of physical devices connected to the Internet.
They are mainly composed of the Responsive Environments (RE) and wearable
devices. On the one hand, the Internet provides its services within physical
environments in which people are more and more connected. On the other hand,
the Internet has become a huge database of knowledge for human being in which
Artificial Intelligence (AI) already has an important place. The underlying idea
is that everything will be connected to Internet, including people, things and
environments, in order to help people in their daily tasks, while macro issues,
such as resource sharing, should be self-managed by intelligent systems in the
general interests of society.

4 Chapter 1. General introduction

1.1.1 Business Opportunities
1.1.1.1 Economy, Society and Technologies

There are a lot of possible uses, such as environmental preservation, residential
protection, assistance for elderly people and augmented reality. Major techno-
logical firms predict an explosion in the development of the IoT, such as Cisco’s
estimation that 50 billion objects will be connected by 2020 1. Several social
aspects will be affected by the incorporation of the Internet into daily envi-
ronments. Moreover, this must be discreetly managed in order to facilitate its
acceptance by people before intelligent systems are able to provide some kind of
education in response to irrational human behaviour. For example, on a human
scale, people are not conscientious in relation to their daily actions within the
global environment. The promises are significant, however, while there are a
lot of technological and theoretical issues still to be solved. For example, the
huge number of connected objects in the future is already forcing engineers to
consider new designs in order for global energy consumption to be sustainable.
This constraint has a large impact on the future connectivity between the IoT
and the Internet core. Therefore, new paradigms for future applications and
services using the Internet must be investigated to prepare for the arrival of the
cybernetic world in the future.

1.1.1.2 Many Visions Converging

This technology will affect all society domains, such as private residences, trans-
portation, cities and industries. Therefore, a lot of different visions will appear,
reflecting different interests. Aggarwal et al. [AAS13] summarize the classification
into three major groups. The Things-Oriented Vision assumes that connected
objects in the future will be intrinsically heterogeneous because of the important
difference in their application requirements. Meanwhile, the Internet-Oriented
Vision supposes that this heterogeneity must be abstracted by a communication
layer, such as the Internet Protocol (IP). Finally, the Semantic-Oriented Vision
is interested in the management of the heterogeneity at a data level without any
consideration for the network specificities. During the last decade, new theoretical
and technical frameworks have been investigated to provide new materials relating
to these different visions. Nowadays, it is necessary to determine how they can
be integrated into the same framework.

1.1.1.3 Current and Future Applications

Historically, the development of this technology has been promoted by the moni-
toring of structural health. Kim et al. [Kim+06] present a complete architecture

1Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing
Everything. Cisco Internet Business Solutions Group, IBSG (2011)

1.1. Internet of Things 5

to monitor the vibrations of the Golden Gate Bridge. This kind of application
requires numerous sensors that are spatially distributed in the region of interest.
They use wireless networks, which are less expensive and much easier to deploy.
Another application concerns the preservation of heritage buildings by monitoring
their evolution over time [Cer+09]. Hence, the main requirements involve the
collection of time-lined data and the definition of easy deployment solutions in
large spaces at low-cost. The development of smart grids represents an important
challenge in terms of optimizing energy consumption around the world. The
increase in world energy consumption has caused a lot of problems regarding its
management in large-scale networks [YLD07]. The storage of significant amounts
of energy is difficult, even if hydraulic dams temporarily address this problem.
Hence, energy production should be adapted in real-time so that consumption
is facilitated through the use of renewable energies. Energy providers require
detailed information about local energy consumption and production through
smart grids. In addition, some regulation strategies, such as preventing energy
drops, require some home appliances to be turned off remotely to avert a peak
in energy consumption. Finally, energy providers need real-time information
to regulate energy used in multi-scale architecture at a national level as well
as home appliances. This technology has been progressively applied in human
environments, such as hospitals for healthcare applications [Ko+10]. The trace-
ability of drugs, patients and personnel is a permanent issue in hospitals with
possible dramatic consequences. Hence, monitoring and traceability are improved
by collecting real-time information to facilitate medical coordination by central in-
formation systems. This application uses sensitive data, which must be protected
to maintain patient and staff privacy. Moreover, this application is itself sensitive
regarding the impact upon patient health in cases of malfunctions. Therefore,
the system must be safe and secure in order to protect human integrity.

Nowadays, daily environments are being studied in order to improve comfort,
safety and accessibility. The first type of environment concerns houses and other
buildings where people spend most of their time. Moreover, these buildings
consume a lot of energy. These places require large-scale infrastructures, which
must be secure, energy efficient and evolutionary. Some domotic systems are
available to address these different issues. Traditionally, a central computer
manages a domotic system. Most of the time, these systems are not designed
to be interoperable with other ones. Hence, the systems are limited in their
evolutionary possibilities; moreover, they are dependent on manufacturers, who
can stop their production and maintenance at any time. But, these systems must
be deployed and maintained during the entire lifetime of the building. Therefore,
applying the IoT in relation to important infrastructures requires heterogeneity
to be supported at the hardware and application levels in order to ensure the
sustainability of the system. The definition of standards for IoT technologies and
protocols is a primary requirement.

6 Chapter 1. General introduction

1.1.2 Technology Challenges
Gubbi et al. [Gub+13] present a vision, different architectural elements and future
directions for the IoT. The architecture requires a lot of different technologies,
from the design of devices and the network to the implementation of different
services. Moreover, the emergence of new software paradigms, such as ubiquitous
computing, is profoundly changing the vision of the Internet.

1.1.2.1 A Meeting of Engineering
The IoT is the meeting of different engineering areas. The design of connected
objects by manufacturers requires experts in electronic and embedded systems.
The establishment of a common network must be performed by security and
telecommunication experts, while service applications for end users should be
designed by software engineers. Although these domains seem naturally compart-
mentalized, they are strongly connected; for example, they must be embedded
in a single device. Hence, an important technology challenge is the definition of
abstraction layers to limit the requirement of multiple expertise. Without easy
solutions for designing devices, networks and applications, IoT would not exist.

1.1.2.2 Ubiquitous Computing
Ubiquitous Computing (UC), which appeared at the same time as the development
of the IoT, is a concept within software engineering relating to pervasive services.
Such software has the capacity to communicate with users and other software
applications through any interface and in any place with any format. The
leitmotif of UC is everywhere and anywhere. The services follow the users in
their daily activities in order to assist and provide them with information. Hence,
the software design evolves towards high-level languages in order to be not
only accessible through the Internet but also proactive with regard to multiple
interfaces: wearable, RE and others.

1.1.2.3 Towards Web 3.0
The extension of the Internet into the physical environment will drastically increase
the number of networks around the world known as the Capillary Internet. As
this huge network will collect data from appliances around the world, this raises
the issue of data access. In previous decades, a similar discussion about the
browsing data content concluded that the Web is very adaptable in terms of
linking data together. Its concept of hypertext associates a new remote resource
to a word contained in the text. This simple feature has continued with the
development of Web 2.0 which adds the concept of semantic links. Nowadays, a
word can refer to a set of remote resources, while browsing is dependent on the
semantic context of interests, such as the Wikipedia platform. Web 3.0 could
provide the features needed to link the digital and physical worlds through the
concept of cross-reality.

1.2. Motivations of the Thesis 7

1.2 Motivations of the Thesis
The growing interest in the IoT is promising in terms of improving the protection
of people and the environment. It should help to improve accessibility, security
and comfort in the daily environment, while saving energy and other consumable
resources. The term itself is new, but the referent concepts exist in science fiction
from several years ago. Nowadays, the technologies exist, but:
What kind of Ambient Intelligence (AmI) is required and how can it be done?

The motivations of the thesis are based on the observation that several
theoretical and technological activities are converging within autonomous systems.
On the one hand, AI techniques are incorporated in relation to Multi Agent
System (MAS) in order to design role-based agents for adaptive systems. On the
other hand, the Embedded System (ES) has become more and more powerful to
the extent that the entire Operating System (OS) can be hosted in a single chip.
To this extent, this thesis focuses on the study of their combination in the direction
of the distributed AmI. The bio-inspired proposal considers systems, such as
an Artificial Organism (AO), which are composed of the different appliances in
a managed environment. This approach focuses on interaction mechanisms in
order to model system intelligence instead of a programming approach. The main
assumption is that the programming approach cannot support evolving features
in the same way as a biological system. It depends of an initial coding style to
validate the operations at a compilation step; meanwhile, an interaction model
evaluates the feasibility of an operation during the process runtime, as is the
case in chemical systems, in which evolving reactions are produced according
to molecular interactions. More exactly, the investigations focus on the AmI
design, such as a cyberbrain composed of several interacting Artificial Neural
Network (ANN). Each of them corresponds to a particular cognitive function,
including context learning, controlling appliances and cognitive synchronization.
This autonomous cyberbrain is composed of distributed neuron groups across
different appliances in order to minimize the network communications.

The EMMA framework has not only been developed for the purpose of
cyberbrain design. It offers a complete solution for the IoT infrastructure to
appliance manufacturers, network administrators and service providers. A set of
interfaces and tools independently facilitates the development of different system
parts in order to integrate them easily into an existing IoT infrastructure. The
differently used technologies are standard formats of the Internet Engineering
Task Force (IETF) and the Institute of Electrical and Electronics Engineers
(IEEE), allowing the EMMA system to be interconnected with Internet services
and other frameworks at the appliance, network and application layer level. In
addition, it is assumed that the user privacy and data security can be only
preserved within fully distributed architectures in which data stays located in
the managed environment.

8 Chapter 1. General introduction

1.3 Contributions and Content
• Part I introduces the concept of the Internet of Things (IoT) and Ambient

Intelligence (AmI) in Chapter 1. Chapter 2 provides more details of the
different aspects of WSANs, AmIs and Organic Computings (OCs).

• Part II presents a framework contribution entitled the EMMA framework,
with an introduction in Chapter 3 on the technologies used for WSANs
and discussions about the impact made by centralized versus decentralized
software architecture. Chapter 4 details the developed middleware based on
Resource Oriented Architecture (ROA) for the choreography of Web services.
Each appliance has its hard-coded services within containers, which publish
data through resources. Based on an interaction model, mobile agents allow
the data flows to be routed between the different appliance services in order
to build Service Choreography (SC). A graphic model, based on a Petri
network, allows the system to be analyzed and composed in order to design
distributed AmI. Chapter 5 presents the deployment methodology, which
is bio-inspired by the DNA-RNA process. A set of mobile agents forms
Dynamic Network Agent (DNA) in order to deploy an Residual Network
Agent (RNA) graph, according to its reactions with appliance resources.

• Part III presents two algorithms for AmI with theoretical studies and
practical implementations over the distributed EMMA middleware. Chapter
6 presents an Artificial Neural Controller (ANC) to automatically drive the
appliances based on empirical learning and logical rule-based descriptions.
The knowledge transfer between the logical space of rules and the statistical
space of data allows experts to understand, at a global level, the system
operations that are encoded in Artificial Neural Network (ANN). Chapter 7
presents a Voting Procedures (VP), which synchronizes decisions between
different AmI components. This VP is fully distributed and fault-tolerant
regarding time delays, switching topology and packet loss.

• Part IV presents the contribution made to the Tidmarsh Project at the
MIT Media Lab. An ambient sound recognition engine entitled TidZam has
been designed in order to recognize animal calls from outdoor microphones.
Based on deep learning technology, the system acts as event detector to
locate animals on a three-dimensional virtual environment. An additional
application involving speaker recognition is also presented.

• Part V brings the current state of work contributions, with regards to the
EMMA organic framework and the first implementations of components
for future neural-based Ambient Intelligence (AmI), to a close. Several
perspectives are discussed in relation to general discussions about the IoT,
the OC and the AmI, while some framework improvements are proposed in
terms of their current limitations.

Chapter 2

State of the Art

Se méfier des penseurs dont l’esprit ne fonctionne qu’á
partir d’une citation.

Beware of thinkers whose minds function only when they
are fueled by a quotation.

Emil Michel Cioran [Cio95]

Contents
2.1 Introduction . 10

2.2 Wireless Sensor and Actor Networks 11

2.2.1 Connected Objects . 12

2.2.1.1 Identification, Sensing and Acting 12

2.2.1.2 Energy, Computation and Communication . . . 12

2.2.1.3 Lifetime, Design and Maintenance 13

2.2.2 IP-Based Network . 14

2.2.2.1 Low Power ZigBee Technologies 14

2.2.2.2 Network, Routing and Security 15

2.2.2.3 Heterogeneity and Internet Integration 17

2.2.3 Software Architectures . 17

2.2.3.1 Data Formatting and Application Protocols . . . 18

2.2.3.2 Web Service Orchestration and Choreography . 19

2.2.3.3 Object Abstraction and Middleware 20

2.3 Ambient Intelligence . 22

2.3.1 Responsive Environment 24

2.3.1.1 Event Condition Action Rules 24

2.3.1.2 Action Planning 24

2.3.1.3 Decision Tree . 24

2.3.2 Reasoning Engine . 25

2.3.2.1 Fuzzy Rule-Based Engine 25

2.3.2.2 Context-Awareness System 25

2.3.2.3 Learning Techniques 25

10 Chapter 2. State of the Art

2.3.3 Ambient Intelligence Architectures 26

2.3.3.1 Autonomic Computing 26

2.3.3.2 Multi-Agent System 27

2.4 Organic Computing Approach 28

2.4.1 Principles and Challenges 28

2.4.1.1 Trustworthy Systems 28

2.4.1.2 Self-X Properties 28

2.4.1.3 Design Methodology 29

2.4.2 Models and Architectures 29

2.4.2.1 Observer-Controller Model 29

2.4.2.2 Multi-Scale Architecture 30

2.4.2.3 Evolutionary Computation 30

2.4.3 Application Examples . 31

2.4.3.1 System on Chip 31

2.4.3.2 Traffic Lights in a Smart City 32

2.4.3.3 Energy Management in Smart Homes 32

2.5 Synthesis . 33

2.1 Introduction
The state-of-the-art technology discussed in this chapter encompasses the different
research domains relating to Wireless Sensor and Actor Networks (WSANs),
Ambient Intelligences (AmIs) and Organic Computings (OCs). This chapter’s
main framework is organized by a set of papers, which are briefly summarized by a
single paragraph, in order to present the Internet of Things (IoT) in a bottom-up
approach from hardware to intelligence systems. The papers have been selected
according to their impact in the relevant research community, their originality or
their relevance to the main concepts presented in this thesis.

The first two sections focus on parallel works between a WSAN and an AmI.
The first section looks at the hardware, network and programming paradigm
pertinent to the construction of the IoT, whereas the second section considers the
information system needed to control it intelligently. The last section presents
the new paradigm of OC in order to discuss its application to the IoT. The main
framework is focused on the use of distributed AmI techniques to address the
challenge posed by the requirements in WSANs.

2.2. Wireless Sensor and Actor Networks 11

2.2 Wireless Sensor and Actor Networks

Wireless Sensor and Actor Network (WSAN) is a technological term referring to
a group of sensors and actuators connected by a wireless medium. Sensors collect
data from the physical world and the actuators operationalize actions within an
environment. The control loop is composed of sensing, controlling and acting.

[Mio+12] Miorandi et al. present current and future applications of
WSANs, such as in smart homes/smart cities, environmental monitoring, health-
care, smart business/inventories and security/surveillance with current enabling
technologies. The authors propose a taxonomy of WSAN technology at the
intersection of the embedded systems, the distributed system and the distributed
intelligence. WSANs have features and issues in different technological domains.
New engineering paradigms must be invented to uncouple problems associated
with electronic design, networking and information system development.

[AIM10] Atzori et al. extend the discussion around the concept of
middleware. It is a piece of software inside the connected object to create a
bridge between the hardware, the network and the applications. The object
and network functionalities are encapsulated inside service containers in order to
facilitate application design. Middleware is responsible for providing mechanisms
for service composition and its management, as well as object abstractions and
system sustainability (trust, privacy, integrity and security).

[AK04] Akyildiz et al. has identified several problems in the information
system in relation to the coordination of actuators according to sensing events.
Authors have focused on distributed models in which actor-actor communications
are performed. In some situations, the action plans are dependent on successive
events in different sensors, whose execution can require several time-lined actions
performed by different actors. The information should be transmitted to all con-
cerned actors and sensors to allow them to evaluate the situation. They have to
communicate together in order to synchronize their decisions. Authors emphasize
the issues around such distributed coordination to ensure the consistency of the
respective action plan.

The next section presents the features and constraints of connected objects in
order to understand network requirements. Connected object, as a term, refers
to an autonomous device that communicates with other ones in order to manage
an environment. The literature on networking focuses on the major technologies
enabling the extension of the Internet inside the physical world. The last section
presents some of the different approaches to software architecture and application
protocols, which will need to coexist in the future Internet of Things (IoT).

12 Chapter 2. State of the Art

2.2.1 Connected Objects
A connected object is composed of a wireless communication module, a computa-
tion unit and an electronic application layer of sensors or actuators. They are
spatially distributed in the environment to form a large-scale network. Given their
significant prevalence, they must be energy efficient and remotely maintainable
in order to ensure a long lifetime for the system.

2.2.1.1 Identification, Sensing and Acting

[Mio+12] Miorandi et al. identify four main roles for connected objects:

• Acting: these actively change the environment and inform the system about
manual controls performed by people

• Sensing: these gather information from the environment and people’s
behavior in order to synchronize their representation in the system

• Information: these inform the user about current system parameters and
the state of the managed environment

• Identification: these are used to identify an unconnected object or people
using Radio Frequency IDentification (RFID) technology

2.2.1.2 Energy, Computation and Communication

[SM11] Soua et al. discuss techniques used to save energy in a WSAN.
Most applications use a large number of nodes, which are spatially distributed
and function with a small battery. Given their number leads, it can be very
difficult to change their battery. Therefore, energy harvesting techniques are
used to reload batteries, while software has been designed to decrease energy
consumption. Energy is mainly consumed by the transceiver radio during data
transmissions. Hence, numerous proposals have focused on the network stack in
terms of reducing the protocol overhead and improving packet routing, as well as
proposing protocols for the avoidance of communication collisions or highlighting
the ongoing development of mechanisms relating to duty cycles for sleeping modes.

[KEW02] Krishnamachari et al. study the impact of application layers on
energy consumption. They evaluate global energy-saving using data aggregation.
Several producers of data are randomly distributed over a WSAN using different
models. Their data are aggregated before reaching the data gathering stage.
The conclusions show that an energy gain is possible when data producers are
clustered. Hence, data-centric architecture is another leverage to save energy.

2.2. Wireless Sensor and Actor Networks 13

2.2.1.3 Lifetime, Design and Maintenance

[RDT07] Rubio et al. discuss programming approaches for connected objects.
Most WSANs are only deployed once and are intended to operate for a long time.
Their initial programming would require update mechanisms for maintenance
or functionality extension. Therefore, the design of their software must include
reprogramming features. Moreover, their hardware must support remote deploy-
ment in term of networking and memory capacity because they are distributed in
a large-scale network. The approaches made by components should be preferable
in order to partially update the software. The network bandwidth is used less
than for entire node reprogramming during data transmission and consumes less
memory for the update storage.

[Bel+05] Bellis et al. proposes an implementation of a wireless sensor
module based on Field-Programmable Gate Array (FPGA) technology. Instead
of executing the program by a Central Processing Unit (CPU), it is hard-coded
at the physical layer. The program is event-driven by its input pins, which allows
the system to sleep most of the time and, therefore, save energy. Their research
team is interested in the miniaturization of connected objects at the scale of a 10
mm cube. They have successfully built a 25 mm platform, which is compared
with other manufacturer platforms, such as those shown in Table 2.1. It appears
that this technology significantly decreases energy consumption and platform size,
while increasing the data rate of a radio transceiver. This is promising for the
next generation of miniaturized connected objects.

The software technology for connected objects is still not defined. The remote
reprogramming is essential to maintain a long lifetime for the system. The
implementation technology is evolving with the aim of reducing the size of
connected objects and saving energy.

Reference TelosB Mote Raven Platform ZigBit Module Atmega128rfa1 SoC
CPU 8 MHz 8 MHz 8 MHz 16 MHz
RAM 10 Kb 16 Kb 8 Kb 16 Kb
Flash 48 kB 128 Kbytes 128 Kbytes 128 Kbytes
AES No No No Yes

Table 2.1 – Examples of platform miniaturization progress for WSAN

14 Chapter 2. State of the Art

2.2.2 IP-Based Network

[VD10] Vasseur et al. describe an overview of WSAN developments in the last
decade. At the beginning, academics and industries were developing their own
protocol solutions. This exploration phase was helpful for the identification of
usages, constraints and approaches. Therefore, the future IoT will be composed
of different technologies, networks and applications. A common stack of network
communications has to be determined, with Internet Protocol version 6 (IPv6) as
the most likely candidate.

[RN10] Rodrigues et al. present a survey of IP-based solutions for
WSANs. Initially, finding a solution was considered inappropriate according to
the complexity of the TCP/IP protocol and its overhead. However, the use of a
proxy to translate the protocol into a heterogeneous infrastructure raises more
problems regarding the single point of failure, network congestion, maintenance
and scalability. Therefore, the research community has already started work
on adapting IP technology for WSANs. After several implementations of IP
solutions, a new standard has appeared: 6LoWPAN [SB11]. Nowadays, intensive
efforts are being undertaken focused on using or adapting standard protocols in
line with the technological development of the Internet.

[Hog+12] Höglund et al. present an example of a 6LoWPAN application for
the monitoring of energy quality in the supplier chain. Their solution monitors the
amount of energy produced by the supplier and consumed by customers. Several
parameters are collected in the process, such as frequency, voltage and power.
Data are sent periodically to the energy management system through a 6LoWPAN
mesh network. The network is auto-established with IP connectivity, with the
communications performed over the Internet without an intermediate proxy. This
application validates the use of such technology in industrial applications.

2.2.2.1 Low Power ZigBee Technologies

[Lay13] IEEE 802.15.4 norm is the major radio frequency technology used in
relation to 6LoWPAN. It is a standard defined for low power wireless technology.
All its features have been designed to save energy during listening and trans-
mission. It consumes 1,600 % less energy with a cover range of 25% compared
to Wi-Fi. This norm defines the radio frequency and the Media Access Control
(MAC) layer in an OSI model when building a scalable mesh network. Nowadays,
numerous products use this norm, such as ZWave, Sensinode and ThingSquare.
The solutions used in their software vary according to the use of the 6LoWPAN
standard or a proprietary protocol.

2.2. Wireless Sensor and Actor Networks 15

2.2.2.2 Network, Routing and Security

[Dun03] Dunkel proposed, in 2003, an innovative implementation of 6LoWPAN
over IEEE 802.15.4, known as uIP. As well as being very efficient in terms of
memory usage, its event-driven kernel, the Contiki OS, is very reactive with a
low energy consumption. Many industrialists and researchers are still reliant on
it to evaluate new algorithms, applications or platforms.

[JZS12] Jara et al. proposed, in 2012, another IPv6-based protocol that
does not follow the 6LoWPAN standard, known as the Glowbal IP. It was imple-
mented using the Contiki OS to replace the uIP network stack. Their motivations
concerned overhead protocol reduction and easy curve learning to build WSANs
and their applications. As it is not standardized, it requires a proxy to translate
network exchanges between traditional networks and the Glowbal WSAN.

[RN10] Rodrigues et al. conduct a survey of previously published solutions,
6LoWPAN implementations and operating systems for WSANs. The authors
conclude that the two main approaches, namely, sensor stack-based and proxy-
based architecture, must be merged in future WSANs. They expect that nodes
will have auto-configuration mechanisms that need to be partially autonomous.
Meanwhile, network functionalities, such as routing and security, must be under
the responsibility of a proxy-based gateway to save program memory for the node
applications.

[YF04] Younis et al. propose an energy efficient routing protocol for
WSANs. They propose a cluster-based approach called the HEED protocol.
Particular nodes are elected to route network traffic according to the residual
energy of their battery. They demonstrate the efficiency of their hierarchical
routing network and open a discussion about a trade-off between energy savings,
accuracy and latency.

[Gun+07] Gungo et al. investigate the possibility of defining a routing
protocol that considers mixed metrics. Routing tables are dynamically estab-
lished according to the link quality between nodes and their residual energy. This
proposal validates the possibility of simultaneously addressing the objectives of
the connected objects and those of networks using metric aggregation.

[SSS+10] Singh et al. present a survey on main routing protocols ac-
cording to their approach and applications, such as mobile networks, hierarchical
protocols, Quality of Service (QoS) protocols and multi-path protocols. They
conclude that the routing protocol is inherently dependable of network topology,
application and routing objectives (energy-saving, bandwidth optimization etc.).

16 Chapter 2. State of the Art

[TED10] Tsiftes et al. present an implementation on the Contiki OS of
the IETF candidate for a routing protocol in 6LoWPAN. The Routing Protocol
for Low power and Lossy Networks (RPL) protocol has been designed to provide
a flexible protocol that addresses, as much as possible, common use cases. It
uses mixed metrics, customizable at the application level, to define routing path
orientation over WSANs. The results of their implementation show several years
of network lifetime on Tmote Sky motes. It should be noted that the Contiki
OS has been implemented to easily change any layer of the uIP network stack,
including the routing protocol.

[BBB08] Bojkovic et al., [PLH06] Pathan et al., [CY05] Camtepe et al. and
[BN08] Boyle et al. discuss the major security issues relating to WSANs. The
physical protection of systems is an intractable problem because communications
are wireless and spatially distributed in an open-system environment. Therefore,
the security aspects that are addressed by these authors concern communication
protection through encrypted communications. As most attacks are based on
the insertion of false information, communications must be encrypted and an
intruder detection policy should be defined. Several approaches are introduced
concerning the scale of the key cryptography distribution scheme: network-keying,
group- or node-keying, or pair-wise keying (between each node). All of these
schemes can be applied to different network stack layers: data link, network or
application layers. According to these security schemes, the design of a secured
WSAN depends on the node capacities and on the addressed threats.

[KRM13] Krentz et al. present a security framework for 6LoWPAN at
the link layer. Their pair-wise key scheme, using Advanced Encryption Standard
(AES), is energy efficient and has a low memory footprint, in the same way that
most platforms for WSANs have a dedicated AES chip. Their proposal focuses
on the security protocol to protect the network against Denial of Service (DoS)
attacks. As the link layer protection requires all nodes to have the same security
protocol, a heterogeneous network with secured and unsecured nodes cannot
coexist.

[Uki+13] Ukil et al. propose another pair-wise key scheme using AES
for 6LoWPAN encryption, but one that is applied to the application layer. The
authors propose a secured Constrained Application Protocol (COAP) with double
authentication. It should be noted that the COAP is a candidate for the applica-
tion layer according to the IETF, which increases the interest in this proposal.
It is energy efficient with a low memory footprint and allows the WSAN to be
composed of heterogeneous nodes. Network establishment is performed identically
by secured and unsecured nodes. However, the proposed protocol cannot protect
against DoS attacks.

2.2. Wireless Sensor and Actor Networks 17

2.2.2.3 Heterogeneity and Internet Integration

[Del+06] Delicato et al. are interested in the architecture of WSAN applica-
tions. They warm about the risk of designing rigid WSANs in which applications
are strongly coupled with hardware and the network. They insist that future
usages of a WSAN cannot be predicted, as new devices and services can be added
during its runtime. Moreover, in the case of failures, services must be partially
maintained. This constraint implies self-adaptivity of the system. They proposes
the use of Web technologies at the application level of nodes in order to introduce
application flexibility. Instead of designing hard-linked applications for nodes,
Web services should be used on nodes to interface and share services. The data
are exchanged from one Web service to another, which facilitates the management
of application heterogeneity. This proposal is consistent with IP-based proposals
for the network stack, while extending the scope of earlier ideas through the use
of ontologies to homogenize data semantics between the nodes and other services
on the Internet.

2.2.3 Software Architectures
[RDT07] Rubio et al. resume previously presented requirements about soft-
ware architecture and programming approaches for WSANs. They identify that
nodes and the network must have auto-configuration and security mechanisms
available for large-scale networks. The node software must be lightweight with
reprogramming mechanisms to ensure its maintenance and evolution. WSAN
applications must be coordinated and executed in real time to manage the envi-
ronment. Finally, software architecture has to support application heterogeneity
and a huge amount of data. The authors present several programming paradigms
along with their advantages and drawbacks. There are two main kinds of ar-
chitecture: data centralization and distributed applications. Both of them have
to respect previously presented requirements to be practical in WSANs. Au-
thors classify programming approaches into three categories. The node-centric
approach consists of independently implementing each connected object behavior.
This approach is very efficient in terms of program optimization and analysis.
Meanwhile, the macro behavior of a WSAN is difficult to anticipate. Conversely,
macro-programming determines the set of tasks assigned to each node. The
data exchanges involved are fully determined to manage WSAN coordination.
Although the system consistency is easily maintainable, the system overhead is
important and the WSAN has to be homogeneous. The third concerns the use of a
middleware, which is a trade-off between the node-centric and macro-programming
approaches. The middleware provides the information and the functionalities of
a WSAN to each connected object, such that they can adapt their behavior and
synchronize information according to the WSAN state.

18 Chapter 2. State of the Art

2.2.3.1 Data Formatting and Application Protocols

The establishment of an homogeneous connectivity between WSANs and the
Internet has implied the necessity to define a standard for a network stack for
communications inside a WSAN. The data, their formatting and their semantic,
however, are strongly dependent on the applications. To this extent, the following
papers discuss the management of these heterogeneities in relation to the current
investigation about the application protocol for 6LoWPAN.

[JMS05] Jammes et al. propose service-oriented architecture for WSANs.
Each node provides a Web service interface using Devices Profile for Web Service
(DPWS). This protocol is a technology used on the Internet to interconnect
heterogeneous Web services in order to form a distributed application. It manages
data formatting and its meta-description with Extensible Markup Language
(XML), its transport through Simple Object Access Protocol (SOAP) and the
security layer. However, this protocol is too heavy for tiny target platforms.

[DH+10] Dawson et al. propose an Simple Measurement and Actuation
Profile (sMAP) to describe and format data. It is based on JavaScript Object
Notation (JSON) formatting language, which is lighter than XML. sMAP is a
data profile that defines a set of attributes and objects to exchange data in a
WSAN. The main idea is to uncouple the data format and its semantics from the
data transfer protocol. Hence, according to the application, and independently of
the data, the application protocol can be selected.

[KDD11] Kovatsch et al. present their implementation of a COAP
protocol on the Contiki OS. It is the application protocol candidate of IETF
for 6LoWPAN. Similar to the Hyper Text Transfer Protocol (HTTP), it is used
in REpresentational State Transfer (RESTFUL) architecture to facilitate Web
service management. Each set of data is encapsulated in a resource with its own
representation profile. Hence, traditional HTTP requests retrieve data or manage
them directly on the node. Additional mechanisms are added in COAP, such as
data block fragmentation or a publish-subscribe engine to facilitate Web service
composition.

[HJ08] Huang et al. present their designed architecture for managing data
heterogeneity using ontologies. All data are collected on a gateway to be stored
in an Resource Description Framework (RDF) semantic database. Therefore,
all data can be managed similarly and independently of their formatting and
meta-description language.

2.2. Wireless Sensor and Actor Networks 19

2.2.3.2 Web Service Orchestration and Choreography

[KLD12] Kovatsch et al. present their gateway platform to manage a WSAN
known as Actinium. Each object has a proxy object inside the framework, which
is synchronized with the real connected object through the WSAN. In this or-
chestration architecture, each object communicates only with the gateway, as
illustrated in Figure 2.1.1. This kind of architecture has significant limitations
regarding network congestion on routers around the gateway in large-scale net-
works. However, this proposal is very innovative due to its use of mobile and
scripted applications. Instead of developing hard-coded applications executed on
the gateway, they use Node.JS scripts to build applications. They are executed
in an independent container in order to manage applications through resource
utilization. The authors consider applications, such as any data, which are man-
aged in the same way as any connected object providing a service.

[Che+13; Che+11] Cherrier et al. have worked on choreography archi-
tecture in which services of connected objects communicate directly together, as
illustrated in Figure 2.1.2. The gateway configures node services to send requests
directly to the concerned service. When an event occurs on a sensor, the node
processes a small treatment locally to send a request to another mote. Successive
requests are sent over the WSAN to execute operations on actuators or treatments
on other nodes. This event diffusion over the network is stopped when the system
reaches a static state. The authors demonstrate the efficiency of the choreography
approaches in comparison with orchestration for large-scale networks. However,
the stability of such system is an important challenge, while applications are
limited by node capacities to perform complex operations. In this sense, authors
propose a logic model to validate distributed application consistency, known as
DL-Lite, and an associated protocol called SALT.

2.1.1: Orchestration architecture 2.1.2: Choreography architecture

Figure 2.1 – Service-oriented architecture: orchestration and choreography

20 Chapter 2. State of the Art

2.2.3.3 Object Abstraction and Middleware

[Ban+11] Bandyopadhyay et al. present the main reasons for the use of
middleware in IoT applications. Firstly, it is necessary to abstract hardware and
networking regarding the huge number of diverse devices and application domains.
It is conducted in a uniform manner to manage the heterogeneity of data and
software components using an adaptation layer. They provide an Application
Programming Interface (API) to hide the particularities of the connected objects.
Hence, they facilitate application implementation.

[MA06] Molla et al. compare six examples of middleware to conclude
that there is significant trade-off between the challenge of resource constraint and
middleware scalability and adaptability. Moreover, they emphasize that, most of
the time, QoS, security and context awareness are either partially or not at all
supported by middleware.

Hadim et al. [HM06], Rubio et al. [RDT07], Wang et al. [Wan+08] and
Rahman et al. [Rah06] propose a middleware classification according to the
programming approach taken:

• Application-driven middleware provides the applications with access
to network and system configurations.

[Dun03; Dun+06] Dunekls et al. have developed the Contiki OS for
WSANs. It includes a uIP 6LoWPAN stack, which is manageable by the
applications, and a mechanism for remote installations as well as updates
of applications over wireless communications.

Advantage: Program optimization.
Drawback: No control on global WSAN behavior.

• Message-oriented middleware is based on a publish-subscribe mecha-
nism to provide an abstraction layer between producers and consumers of
data. It facilitates asynchronous communications over a WSAN.

[Sou+04] Souto et al. have developed Mires middleware based on the
Tiny OS. The node applications subscribe to topics that are filled with
sensor data by the operating system. The authors highlight the potential
energy gain by only transmitting messages that refer to subscribed topics.

Advantage: Easy design of applications.
Drawback: Low network scalability.

• Database middleware provides an abstraction in order to consider WSANs,
such as a distributed database. Queries are diffused over the network and
the responses are aggregated in order to generate the final one on the sink.

2.2. Wireless Sensor and Actor Networks 21

[Mad+05] Madden et al. have developed TinyDB middleware based
on the Tiny OS. The authors provide an advanced SQL-like language to
request data over the WSAN. It allows requests to create local storage,
aggregate temporal data, and trigger data collection and others mechanisms.
They use a duty cycle mechanism to save energy during data aggregation
and request resolution.
Advantage: WSAN abstraction.
Drawback: Only for data collection.

• Service-oriented middleware facilitates service choreography in provid-
ing features of service discovery and binding.
[Kus+07] Kushwaha et al. have developed an OASIS framework,
which is composed of middleware and a set of tools to design and deploy
choreography over a WSAN. The mapping of communication flows and
tasks are performed offline on dedicated platforms in order to be deployed
on the connected objects when online .
Advantage:: Management of WSAN heterogeneity
Drawback: Requires offline supervisors.

• Tuple space middleware is based on the concept of associative memories.
The applications exchange data through a distributed and shared memory
space, which is fragmented over the WSAN.
[Cos+07] Costa et al. have developed TeenyLIME middleware based
on the Tiny OS. Applications are fully uncoupled from connected object
functionalities using a tuple space. The authors explain that this model is
very efficient for one-to-many and many-to-many communications thanks to
the use of common tuples. Moreover, the concurrent access of functionality
by several applications is easily manageable by mutex and semaphors.
Advantage:: Global system management.
Drawback: Network bandwidth consumption.

• Virtual machine middleware interprets the applications through a run-
time engine. They are implemented in separate and small modules with a
high level language in order to be distributed over the WSAN.
[Kwo+06] Kwon et al. have developed ActorNet based on the Tiny
OS. Applications are designed similarly to agents, which have the ability to
migrate to other connected objects. This feature offers new techniques for
application design. Instead of collecting data to be moved to the applica-
tions, they are moved to the data.
Advantage: Advance programming.
Drawback: Virtual machine overhead.

22 Chapter 2. State of the Art

2.3 Ambient Intelligence
[ANA10] Augusto et al. reflect on the historical development of Ambient
Intelligence (AmI) since the advent of technology: at the beginning of the previous
century, computers occupied an entire room, whereas, nowadays, they can be
camouflaged in the human environment. The term AmI was introduced at the
end of the previous century to name the system that manages an environment
through a physical infrastructure, which has henceforth been called Smart-X. This
multidisciplinary area and the huge number of possible applications have resulted
in numerous visions. The system design is oriented differently according to the
environment, the connected object, the network, human-computer interfaces or
artificial intelligence. In all visions, the system has to adapt its behavior according
to the evolution of the managed environment and the applications. However,
calculating the societal implications is still at the experimental stage, in which
its impact on human behavior in a world of hidden and permanent technological
assistance is being evaluated:

• [Aug09] Augusto et al. present a survey on smart classroom experimen-
tations. Several uses have been developed with different kinds of collected
data. The main idea is to increase interactivity between students and
teachers through digital supports, such as tablets and Web interfaces. The
authors argue that the post-analysis and the online capture of student
behavior and annotations can improve course content and teacher pedagogy.
Moreover, AmI can help to adapt the course online to the students through
the use of alternative pedagogical material and e-learning. Finally, not
enough experimentations have been conducted to enable conclusions about
the AmI framework for education, although it looks very promising for the
future.

• [PBG07] Paganelli et al. present a context-aware e-tourism application.
Additional information is provided to visitors according to their location,
profile, and their preferences and those of other tourists. When a tourist
arrives at a destination, the system evaluates who else is in the same place
and encourages the exchange of their opinions through a chat messaging.
Context awareness is a feature allowing a system to adapt its decisions
according to a multi-modal and sequential analysis of a situation. The
system does not make a decision according to the local states of variables,
but according to their correlation in a global scheme. Hence, the system is
managed globally, which guarantee its consistency. The authors use a com-
bined object-oriented data model to collect and manage information with
an ontology-based model to implement a reasoning engine. Their e-tourism
application facilitates interactions between visitors and highlights the best
places at the respective destination according to their recommendations.

2.3. Ambient Intelligence 23

• [AE10] Alemdar et al. present a survey on AmI requirements, architec-
ture and technologies for healthcare applications. They identify three scales
of infrastructure. The body area network is composed of sensors located
on patients, nurses and doctors, as well as on pills, in order to improve
care traceability. The personal area network refers to the set of sensors
to manage the residential environment, such as video cameras, bed track-
ing and environment monitoring (brightness, pressure, temperature), and
provide rich contextual information to the AmI applications. Meanwhile,
the wide area network is the communication backbone needed to manage
the system remotely through human-computer interfaces over the Internet.
Security issues and enabling technologies are listed in different studies. The
conclusion emphasizes the necessity to develop multi-modal sensor systems
to address the challenge of context-aware and pervasive applications in
healthcare, while also considering security and privacy issues.

• [RM13] Rashidi et al. present a survey on AmI challenges and techniques
for assisting older adults. People are increasing living longer, which in turn
affects their mobility and autonomy. While robotics has offered promise in
recent decades, its usage with older people is difficult because robots are
not accepted by this population. As such, a smart environment seems to be
more practicable because intelligence and operations are camouflaged within
the environment for assisted people. The authors refer to enabling tech-
nology and its usage, but also the main issues surrounding this topic. The
identification of human activity is the principal challenge. Context-aware
features allow a system to consider itself in its global state, whereas human
activity identification tends to predict what humans need next. However,
older people can be inconsistent in terms of their actions according to their
current needs because of their gradual physical and cognitive decline. Hence,
a system must have enough knowledge not to be influenced by such behavior
in the course of providing assistance.

[Sad11] Sadri presents a comprehensive survey on AmI. The development
of such technology has become urgent regarding the aging population. It can
help older people with independent living, as well as other handicapped people,
such as those who are blind. The whole of society may possibly benefit from
applications in spaces for the elderly, healthcare, business, commerce, leisure
and smart homes. The author lists an important number of projects imple-
mented in real experimentations using different kinds of technology. In doing
so, she identifies two main approaches, one of which is based on technological
automation for elementary decision mechanisms, while the other is based on
adaptive intelligence with complex reasoning engines and knowledge represen-
tation. Furthermore, the author studies the role of affective computing and
human emotions in AmI, as well as its social impact on a group of people. Finally,
while the technology is available, its acceptance by humans is not still guaranteed.

24 Chapter 2. State of the Art

2.3.1 Responsive Environment
2.3.1.1 Event Condition Action Rules

[Aug+08; AN04] Augusto et al. have developed a framework based on Event-
Condition-Action (ECA) rules to model complex patterns of appliance interactions
in smart homes. According to an event occurring on a sensor, the system must
respond in order to assist in human activity or adapt the environment. The
authors propose a new language that is capable of handling spatiotemporal and
uncertainty conditions for smart homes. Its semantics facilitate the description of
the events needed to formulate the conditions to operate an action. These rules
are used to drive the environment from a knowledge database that is filled by
experts. The belief-rule-base component takes into account the degree of belief
in order to ensure the consistency of decisions when several condition rules are
satisfied. An evidential reasoning approach is used to generate the proper output
state for actuators. Conversely, when none of the rules can be applied, the system
must learn by extracting rules from human activity. Although this symbolic
space for describing system behavior is powerful because the internal state of the
system cannot be understood by the expert, the use of a description language is
difficult in order to describe complex states and actions.

2.3.1.2 Action Planning

[Sim+06] Simpson et al. provide a survey on planning techniques for a smart
home. This problem consists of determining a path of actions to reach a goal
state from an initially known one. A plan is a sequential ordered collection of
actions determined by analyzing the current situation. Firstly, the system has
to identify the current context in a smart home according to the sequence of
previous events. Then, it has to select the corresponding action plans to control
the smart home. An important issue appears when the subsequent states can be
derived from the expected state because of actuator errors, external events or
human activity. Hence, the planning engine must consider the probability of fails
in order to avoid an intractable situation.

2.3.1.3 Decision Tree

[ST06] Stankovski et al. discuss the use of decision tree in smart home
applications. A decision tree is a graphical representation in which possible
actions are represented by a rectangle, while the probability of reaching the next
state is represented by a circle. Hence, a decision does not guarantee that the
desired next state is reached. It takes into account the possibility of derivation
during the planning phase. Its design requires a lot of experimental data to
determine the model, but the planning simply uses the expected utility function
and classical inference algorithms.

2.3. Ambient Intelligence 25

2.3.2 Reasoning Engine
2.3.2.1 Fuzzy Rule-Based Engine

[DHC05] Doctor et al. present the project known as iDorm, which is an
AmI based on the fuzzy logic model. Each piece of information has an associated
degree of certainty in order to compute operations with a tolerance interpretation.
For example, the term the door is a little open can be represented mathematically
by the value ’open’ and a certainty degree of 1

2 . Hence, the reasoning engine
deduces action plans in terms of the door being neither completely open nor
closed. The fuzzy logic model introduces the inaccuracy of language semantics
inside the model. It facilitates the modeling of continuous functions in a symbolic
space, which avoids the determination of a strict system state according to the
sensor values. The authors present results in which their engine of fuzzy logic
produces fewer decision errors than other logic systems.

2.3.2.2 Context-Awareness System

[Mag+06] Magerkurth et al. present the project known as Amigo, which is
an ontology model based on AmI. It is used to separate the language logic from
its semantics. The keywords are described in terms of a relationship between
two other keywords. This set of descriptions defines a graph called an ontology.
This technique is used to facilitate knowledge transfer between heterogeneous
devices, such as several types of AmI that do not share a common description
language. The authors use ontologies to establish advanced relationships be-
tween the different pieces of informations used to model the system context.
Hence, the system focuses on the relationship between the pieces of informa-
tion instead of their content, which improves the efficiency of the context analysis.

2.3.2.3 Learning Techniques

[AIA10] Aztiria et al. present a survey on learning techniques for AmI. The
learning process consists of extracting a general function to associate an output
with an input from empirical data. For example, the state of the actuators is
determined according to the current context of the system. There are two main
approaches: the extraction of a statistical model, such as one involving ANC
or a Bayesian network; and symbolic inference, which tries to built associative
rules between input and output, such as fuzzy logic, sequence discovery, instance
learning and pattern matching. The trade-off for learning techniques is their
ability to learn quickly with the best possible accuracy using a minimal set of
data. Meanwhile, the result must be understandable by a human expert. The
authors conclude that no learning techniques currently exist that enables AmI to
simultaneously address all of these requirements.

26 Chapter 2. State of the Art

2.3.3 Ambient Intelligence Architectures
2.3.3.1 Autonomic Computing

[ATK11] Andrushevich et al. discuss the application of autonomic architecture
within AmI. This kind of architecture was introduced by IBM in 2001 in order to
build self-adaptive systems [Com+06]. Their architecture is based on a MAPE-K
control loop, as illustrated in Figure 2.2, for AmI applications. It is composed
of four main components, which share a common knowledge space representing
system parameters, user preferences and extracted system information:

• Monitoring consists of aggregating and filtering the data collected from the
sensors and the actuator states.

• Analysis determines the system context by evaluating the human and
environment activities in order to select an action plan.

• Planning generates or updates the action plan according to possible future
scenarios and system goals.

• Execution deploys and executes the selected plan on the actuators.

This control loop has been designed for self-x properties (self-optimization, self-
healing and others). At each iteration, the different components create new
knowledge that they learn from and exploit in order to improve their results.

Figure 2.2 – MAPE-K control loop instantiated for AmI.

2.3. Ambient Intelligence 27

2.3.3.2 Multi-Agent System

[SV05] Da Silva et al. present architecture for MAS in order to design a
form of AmI. It is composed of a set of software agents representing the physical
devices or residents in a digital environment, as illustrated in Figure 2.3. Each
agent is synchronized bidirectionally with the status of the real device. Hence, the
agents can communicate together without any network costs. Within their MAS
architecture, the agents exchange data and negotiate the shared resources through
a tuple space, which represents the physical world. The authors emphasize the
interest in MAS for designing complex interactions in AmI. Instead of designing
a global artificial intelligence, which drives everything, each agent has its own
intelligence that collaborates with others’ intelligence to achieve its own goals.

[SM06] Spanoudakis et al. present another form of architecture of MAS for
the purposes of designing AmI. The authors are interested in the interoperability
of their work with other approaches. Firstly, they use the Agent Communica-
tions Language (ACL) defined by the Foundation for Intelligent Physical Agents
(FIPA). This language defines a set of protocols and performatives to implement
agent dialogues. Hence, the addition of new agents does not require particular
knowledge about their specific platform. Secondly, they integrate their MAS
platform into an Open Services Gateway initiative (OSGi) platform. This kind of
platform offers a set of interfaces and functionalities to interconnect heterogeneous
components and devices. Finally, this platform can be easily extended by adding
a new agent without having particular knowledge and being interconnected with
other platforms.

Figure 2.3 – Architecture for a multi-agent system for ambient intelligence.

28 Chapter 2. State of the Art

2.4 Organic Computing Approach

[MSSU11] Müller-Schloer et al. present a compilation of papers focused on
Organic Computing (OC). This new paradigm is motivated by the necessity to
define a framework in order to control self-organization processes in large and
complex networks. Although numerous contributions in Multi Agent System
(MAS) have proposed frameworks with self-x properties, there are no well-defined
definitions that are commonly used. In this book, the authors propose a frame-
work to mathematically define the terms of autonomy, organization, adaptivity,
robustness and others with their relationships. The OC framework focuses on
methodology to develop self-organized MAS with trustworthy responses.

2.4.1 Principles and Challenges

2.4.1.1 Trustworthy Systems

[Ste+10] Steghöfer et al. discuss the challenges and perspectives concerning
trustworthy OC systems. Behind the idea of the self-organized system is the
reduction in control parameters for a managed system. A system increases its
autonomy when the number of parameters is reduced to cover the same number
of different tasks. Therefore, the removed parameters are self-established by the
system itself. A trustworthy system provides a correct response independently of
internal or external disturbances through the self-adaptation of its internal pa-
rameters. The authors define trust in terms of a multi-faceted concept composed
of functional correctness, safety, security, reliability, credibility and usability.
They derive these concepts in relation to trust models, trust metrics and trust
algorithms. Finally, they conclude that these kinds of technology will be only
available in the industrial sector once they are trusted, controlled and comparable.

2.4.1.2 Self-X Properties

[Naf+10] Nafz et al. present a formal framework for the compositional
verification of self-x properties in OC systems. The authors use a temporal logic
to guarantee that the system outputs stay inside a specified acceptance space for
the functioning mode. They split the problem into two parts: the validation of
the functional system and the self-x algorithms. Based on these two analyses,
the authors provide theorems to determine the robustness of the entire system.
They evaluate their proposal using an application of the self-organized data flow
problem. Their future work will be interested in extending their formal framework
to liveness properties.

2.4. Organic Computing Approach 29

2.4.1.3 Design Methodology

[KB05] Kasinger et al. propose a framework and a methodology for designing
Multi Agent System (MAS) that is extendible into OC architecture by adding
self-x properties. The authors present a metamodel that can be instantiated
through 14 design phases until reaching the final operational OC system. They
use an extended Unified Modelling Language (UML) model to represent the
different components of the OC system. Their methodology is illustrated on a
manufacturing control system, in which a traditional MAS is designed before-
hand to add self-x properties. Their contribution is a first step towards software
engineering methodology for OC using standard tools.

2.4.2 Models and Architectures

2.4.2.1 Observer-Controller Model

[Ric+06] Kasinger et al. present the generic observer-controller model for
OC systems, as illustrated in Figure 2.4. The component observer evaluates the
current situation of the System under Observation and Control (SuOC) according
to an observation model, which is selected by an expert. This model configures
the observer engine by selecting the proper analyzers and event predictors to
provide context information to the controller. This latter evaluates the possible
actions according to the constraints, then selects the best one according to its
history database. The constraint model is updated by a simulation engine, which
adapts the human requirement to the SuOC.

Figure 2.4 – Generic observer-controller model for organic computing.

30 Chapter 2. State of the Art

2.4.2.2 Multi-Scale Architecture

[Bra+06] Branke et al. present an application of organic traffic control on city
roads. Informed by the generic observer-controller model discussed above, they
introduce its application on a different scale, as illustrated in Figure 2.5. The
SuOC can be considered differently according to its application or architectural
choices. If the observer and controller engines are located in an independent
system, the data are centralized and the orders are remotely distributed over
SuOC, as shown in Figure 2.5.1. Conversely, each component of the managed
system can have its own observer-controller engines in order to form a Multi
Agent System (MAS), as in Figure 2.5.2. The combination of both approaches is a
MAS managed by another observer-controller engine in a multi-scale architectural
style, as in Figure 2.5.3.

2.5.1: Centralized 2.5.2: Decentralized 2.5.3: Multi-scale

Figure 2.5 – The different scales of observer-controller architecture.

2.4.2.3 Evolutionary Computation

[MKD11] Matsumaru et al. present a paper on organization-oriented chemical
programming (OOCP). In an Organic Computing (OC) system, the observer-
controller model supervises an SuOC, which is mostly a complex system, such as
one found in a physical environment or a complex network. This SuOC, however,
can be also implemented intentionally in the same way as a complex system. The
authors present the OOCP framework in an OC system. The resolution of a
problem is performed by a set of interactions between artificial chemical elements.
The problem is defined as a set of possible interaction rules: positive or negative
reactions. At the end of the process, the result is encoded in terms of final con-
centration of the artificial chemical components. Hence, the observer-controller
engine prepares the initial conditions for the SuOC analysis and controls the
emergence phenomena in order to collect the results. Such an approach has a
very strong robustness with regard to failures and system disturbances, which is
due to problem resolution not being dependent on hardware computations but
the result of an emergency at the software level.

2.4. Organic Computing Approach 31

2.4.3 Application Examples
2.4.3.1 System on Chip

[BKK08] Buchty et al. have developed an innovative self-configuring bio-
inspired architecture known as the Digital on-Demand Computing Organism
(DodOrg). Their project involves fully distributed middleware in order to dis-
tribute tasks over multi-core architecture. They present a complete framework
composed of three levels: an application test bed, organic middleware and the
Organic Processing Cells (OPC). The tasks are implemented with a high level
language in order to be distributed over the middleware to minimize global chip
temperature. Each computation unit, which is implemented on FPGA, embeds
its own observer-controller model and communicates with others by an hormonal
interaction system. The authors argue that their system is extremely robust,
self-organizing, flexible, real-time, large-scale and self-healing system.

[SHB09] Schuck et al. present, in detail, the architecture of OPC tech-
nology. The authors work focuses on the remote reprogramming of cells through
the internal configuration access port of Xilinx Virtex-FPGA technology. The
DodOrg project offers a new generation of computers, in which tasks are dynami-
cally distributed over the cell according to the computation requirements of the
application, as well as factors in the computer environment, such as temperature.
This contribution adds the possibility of changing FPGA programming of the
DodOrg system in order to deploy new functionalities inside the chips.

[Bou+06] Bouajila et al. present another type of System on Chip (SoC)
architecture, based on OPC technology. SoC technology is highly sensitive to
environmental variations, which can introduce bit and timing errors. Hence,
the authors have developed a system on FPGA to control execution pipeline
consistency for Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
technology. This is a first step towards self-correction properties for SoC technol-
ogy at the hardware execution level.

[FS05] Fey et al. present OPC architecture for image preprocessing tasks in
future Complementary Metal Oxide Semiconductor (CMOS) camera chips. The
system architecture is fully distributed over the FPGA. Instead of using a sensor
matrix connected to the process unit, each pixel has its own observer-controller
system. Hence, the camera chip is composed of a set of OPC. The authors propose
a concept of marching pixels, which uses mobile agents located in each OPC
to detect an object. The proposed algorithm is similar to an algorithm with
attractive and repulsive mechanisms to help the agents become fixed in an interest
area. Therefore, either the detection or the tracking of an object involves the
analysis of the position of agents on the OPC. The authors expect to extend their
work for three-dimensional cameras, which are strongly limited by traditional
computation approaches. Indeed, they require much more computations and, in
turn, powerful chips that are difficult to miniaturize.

32 Chapter 2. State of the Art

2.4.3.2 Traffic Lights in a Smart City

[Pro+08; Pro+11] Prothmann et al. present an application of OC principles
and architecture for traffic control in a smart city. The system regulates the
vehicle flows by managing the traffic lights in order to reduce network congestion
and the average delay time at the intersections. The system is composed of two
observer-controller layers. The first one determines the best policy for the traffic
lights according to the observations on current vehicle flows. The second one
creates offline classifiers in order to predict the traffic according to the period and
the events in the surrounding area.

2.4.3.3 Energy Management in Smart Homes

[Bec+10] Becker et al. present a smart home project based on OC technology.
The system is composed of multi-scale architecture. Each appliance has its own
observer-controller engine in order to locally monitor its usage and its energy
consumption, as well as to control them. A main observer-controller engine is
responsible for managing all of the appliances. It has to manage the appliance
scheduling according to the requirements of the residents and the energy grid
operator. In the proposed scenario, the system has to even out the total energy
consumption of the smart house. Some appliances have a flexible energy con-
sumption, such as the dishwasher, which can be deferred to a later point in the
day. Similarly, an electric car can be powered during the night, while it can also
be used to supply power during high levels of demand for energy in order to
reduce the energy provided by the provider grid. Hence, the system differs and
load-balances energy consumption, as shown in Figure 2.6.

Figure 2.6 – Example of the energy management policy in a smart home.

2.5. Synthesis 33

2.5 Synthesis
This chapter has been presented state-of-the-art developments relating to IoT
research activities. It is composed of three parts, from the technological require-
ments and constraints, to the Ambient Intelligence (AmI) techniques and forms
of architecture, which have been extended due to the growing involvement of
Organic Computing (OC).

Applications relating to the IoT require massive data produced by smart
objects. Their huge number exposes several issues regarding their communications
in a large-scale network, which has to be easily connected to the Internet. The
constraint in having limited energy consumption can reduce their computation
and memory capacities. Being at the intersection between the physical and digital
worlds, they will be produced by known IoT experts. Therefore, middleware
technology has been intensively developed to provide an efficient abstraction layer
between the physical object and the digital world in order to build secure, reliable
and heterogeneous architecture, which is composed of thousands of tiny nodes.

The IoT is developing jointly with AmI in order to build smart environments.
The technological constraints on the IoT have to be considered when designing
intelligent systems. On the one hand, new techniques of artificial intelligence
have been investigated in order to address the challenge of smart environments,
while, on the other hand, traditional approaches have to be redesigned to be used
on existing IoT architecture. Historically, an intelligent system was located in
a set of identified platforms in order to remotely manage a system. Nowadays,
they must be distributed over a network of embedded systems in order to locally
manage the environment, while the system consistency must be maintained at a
macro level.

Some researchers have started a new initiative to develop a paradigm for such
a complex system. The OC approach is a bio-inspired technology that is interested
in designing a distributed and autonomic system, in which the system control
is not operated by a central decision system, but the interactions of individual
agents, in order to facilitate the emergence of the desired global behavior. Current
developments focus on the definition of standard architecture and models, which
can be evaluated in real use cases. However, there is still no generic framework
for the design of IoT applications, such as an autonomic OC system.

The present thesis has been motivated by proposals for tools needed to design
operational IoT systems that are compatible with OC requirements, as stated in
Part II. At the same time, it relates to Part III, in which distributed algorithms
for context learning and distributed decisions are proposed in relation to an
OC-like approach.

Contribution: An Organic
Ambient Intelligence1

1Summarized in Clement Duhart and Cyrille Bertelle. “Toward Organic Computing
Approach for Cybernetic Responsive Environment”. In: International Journal of Ambient
Systems and Applications (IJASA) 3.4 (2015). doi: DOI:10.5121/ijasa.2015.3401

http://dx.doi.org/DOI:10.5121/ijasa.2015.3401

In Organic Computing (OC) community, the term of Organic refers to systems
in which the degree of autonomy is increased thanks to a supervisor layer Ob-
server/Controller which self-managed some internal parameters. Therefore such
systems are able to change their configuration in order to reduce required human
interventions during the dynamic of the managed environment. The reflexion is
oriented on a new generation of software architecture based on stacked layers of
different functional levels to adapt the system behaviour on runtime. However
based on previous State of the Art, there is no major research on intrinsic prop-
erties of organic chemistry of self-adaptation which allows atomic elements to
be self-organized to form functional materials at higher levels and multi-scales.
In optimization problems based on neural networks, genetic and ant algorithms
or others, the information is not stored in their atomic components of neurons,
ants, genes but in the self-organization of their interactions. Because the cur-
rent computers are based on sequential execution, such algorithms have to be
adapted to simulate interaction computation with the issues of parallel executions,
asynchronous communications and independent process life-cycle.

This thesis is interested in studying a new approach of computation bio-inspired
by organic chemistry, cellular supports and neural architectures.

The background contribution is a reflexion and an experimentation on the
design of Artificial Organism (AO) for autonomic computing. Obviously such
position cannot be fully studied during a single thesis, but the developped
softwares and theorical models provide first Proof-of-Concepts to design, deploy
and execute Artificial Neural Network (ANN) over distributed support of Wireless
Sensor and Actor Network (WSAN) based on interraction of chemistry material
at an atomic layer. It is supposed that the next generation of intelligent systems
would be more interested in new kinds of computation to have adapted hardware
and architectures to Artificial Intelligence (AI) algorithms.

Environment Monitoring and Management Agent (EMMA) is a proposal of
framework for distributed Organic Ambient Intelligence (AmI).

AmI is an interesting application challenge for this approach such as it is an
open and distributed system at hardware, network, service and intelligent layers.
Multi-levels of failures must be considered in addition of their integration with
current and future technological evolution of the concerned research areas. In
addition this kind of systems must be highly adaptable such as their purposes,
constraints and ressources are evolving at each time and over the time. When
AmI will be deployed with the hardware support,the software and the networking,
it should not be possible to determine their future use over building life cycle.
Hence the autonomy, scalability, security and Internet integration of the system
are major concerns of EMMA framework.

The WSAN is considered such as an autonomous System under Observation
and Control (SuOC) managed remotely by one or several supervisors which deploy
or optimize the running services during runtime. Two applications of intelligent
components are proposed: an actuator management by context learning with
Artificial Neural Controller (ANC) and a distributed neural voting procedure for
parameter selection. The SuOC is composed of the connected objects located in
the managed environment. Each of this connected object is a System on Chip
(SoC) with a wireless module executing hard-coded services such as sensor drivers
or system tasks. The Web-based architecture is integrated with Internet services
thanks to the use of last network standards of IPv6 LoW Power Wireless Area
Networks (6LoWPAN). The EMMA middleware abstracts the WSAN to the AmI
thanks to a Resource Oriented Architecture (ROA). Finally, the AmI is resumed
by a set of Service Choreography (SC) which form a graph of interactions between
the object WEB resources. The communication between the ressources of node
services are operated by reactive mobile agents. Hence, the middleware is a
distributed, autonomous and shared tupple space in which mobile agents are
executed. The Service Choreography (SC) act as Observer/Controller component
distributed over the nodes to manage the actuators according to the sensors
through their respective resources. A security layer ensures that operational
communications stay local and encrypted to protect data privacy and system
security. Finally, the supervisors are responsible to manage remotely the SC. In
the proposal, they are implemented according to the MAPE-K architecture. They
compose and deploy the SC from a database according to WSAN requirements
and update them according to the system feedbacks. The Figure 2.7 presents the
architecture overview with the corresponding chapter colors.

Figure 2.7 – Thesis Overview: EMMA Architecture.

2.5. Synthesis 39

Part II
• Chapter 3 - Capillar Internet Network presents the network architecture

on which is running the EMMA framework. It does not contain direct contri-
butions, however the different evaluated approaches to build an integrated
WSAN with Internet Protocol version 6 (IPv6) networks are presented.
Impacts of software architectures between service orchestration and chore-
ography are evaluated in order to validate the use of a distributed model.
Finally, the different tools developed during this thesis are introduced.

• Chapter 4 - Active Resource Middleware presents the Resource Oriented
Architecture (ROA) of the middleware with its mobile agents. They are
used to interconnect the resources in order to build the choreographies of
services which are denoted SC. The specifications of the agents are detailed
including their graphical representations which are based on an augmented
Numerical Petri Network (NPN). The self-x properties of the mobile agents
are discussed regarding to the deployment requirements. Finally, the SC
partitioning for security aspects are presented.

• Chapter 5 - Service Choreography Deployment presents the deployment
process of SC. They must be deployed according to the hosting capacities
of nodes, the network constraints and the application requirements in order
to minimize the network communications. The deployment process is itself
considered such as a SC which must be mapped over the network. The
mathematical formulation is resumed by a pseudo-Boolean optimization
(PBO) to map the mobile agents and their temporal resources on nodes.

Part III
• Chapter 6 - Artificial Neural Controller presents the methodology used in

EMMA system to create ANC. There are two learning loops to exchange
information between a knowledge base composed of logical descriptive rules
and the statistical classifiers of ANC. They are trained to control actuators
according to sensor and system states. The ANC are deployed and executed
directly on service components of the nodes. Mobile agents are responsible
of their deployments and connections with the other system components
through resources.

• Chapter 7 - Neural Voting Procedure presents a fully distributed algorithm
of voting procedure to allow the nodes to take a common decision without
the centralization of their choice preferences. The implementation of this
algorithm is done by mobile agents deployed over the middleware to form
a distributed ANN. The nodes publish their preferences through their
resources which are connected by the mobile agents.

Part II

An Organic IoT Framework

Chapter 3

Capillar Internet Network

Notre progrès technique tant vanté et la civilisation en
général peuvent être comparé á une hache mise dans les
mains d’un psychopathe criminel.

Our entire much-praised technological progress and
civilization generally could be compared to an axe in the
hand of a pathological criminal.

Albert Einstein [Ein71]

Contents
3.1 Introduction . 44
3.2 Network Infrastructure . 45

3.2.1 Wireless Sensor and Actor Networks 46

3.2.1.1 IP Connectivity: 6LoWPAN 46

3.2.1.2 Routing Protocol: RPL 46

3.2.1.3 Gateway: Border Edge Router 47

3.2.2 Home Information System 47

3.2.2.1 Permanent Gateway 48

3.2.2.2 Mobile Gateway 48

3.2.2.3 IPv6 Backbone 49

3.2.3 Internet Integration . 49

3.3 Service-Oriented Architectures 51
3.3.1 Resource-Oriented Architecture 51

3.3.2 Experimental Model Analysis 52

3.3.2.1 Service Orchestration 52

3.3.2.2 Service Choreography 53

3.4 Software Tool Contributions 54
3.4.1 Active Resource Middleware 54

3.4.2 Hybrid Network Simulator 54

3.4.3 Service Choreography Software 55

3.4.4 Network Tools and Connectors 55

3.5 Summary . 56

44 Chapter 3. Capillar Internet Network

3.1 Introduction

The Internet of Things (IoT) is the extension of the Internet into the physical
world in order to collect real-time information about particular environments. For
future applications, such environments should be controlled by intelligent systems
from the Internet in order to improve their accessibility and comfort, as well as
their safety and security, while optimizing global energy consumption. However,
this will require large-scale infrastructure regarding the network, information
systems and applications. Each of these parts are strongly dependent on physical
characteristics. Given the number of objects involves implies that they should be
designed such that their size, cost and energy consumption are limited, which in
turn will have a significant impact on their communications. Their deployment
in large environments, such as buildings, does not allow for the use of wires to
connect them. Hence, wireless communications are preferred.

This chapter presents a proposal for network architecture for the IoT by
combining current technologies to offer a maximum number of possibilities, in
terms of addressability, packet routing and architectural flexibility, in order to
establish end-to-end data flows from appliances to Internet services. Section
3.2 introduces the different technologies and their achievements in building a
complete network solution, composed of appliances and their wireless network,
which is connected to the Internet through gateways. This proposal is based
on current technological standards based on an end-to-end IPv6 connectivity.
Other proposals can be found in the literature, but they are mostly based on an
intermediate multi-protocol proxy. However, such approaches are not compatible
with the spirit of an homogeneous IoT based on the Internet Protocol (IP), which
is the concern of this chapter.

Based on this network overview, an evaluation of Service Oriented Archi-
tecture (SOA) paradigms is investigated in relation to service orchestration or
choreography in Section 3.3. The first paradigm involves architecture in which
all data are collected on a central system, which controls everything. This ap-
proach facilitates the design and deployment of new services, but it has strong
network limitations in large-scale networks. Conversely, service choreography
locally distributes all communications between appliances, which reduces network
congestion; however, the management of such system is a difficult task. Given
that the results have shown that architecture based on service choreography
improves network reactivity, this thesis has been motivated by the proposal of a
framework for the orchestration of service choreographies.

Finally, Section 3.4 presents an overview of the different tools developed
during this thesis to build and manage service choreography infrastructures. The
following chapters, which together form Part II, detail theoretical contributions
and implementation results, in order to provide a software suite using the appliance
software and network management for service development.

3.2. Network Infrastructure 45

3.2 Network Infrastructure

Network infrastructure refers to the set of devices required to establish communi-
cation links between appliances and the Internet. The development of large-scale
wireless networks for IoT applications has raised the issue of energy consumption.
On the one hand, some end-devices run on batteries because power lines are not
accessible in all places; while, on the other hand, a critical number of network
devices can dramatically increase general energy consumption.

Nowadays, standard protocols have been defined in order to improve network
lifetime, while ensuring its sustainability through the use of IP-based protocols.
The Internet Engineering Task Force (IETF) defines the IPv6 LoW Power Wireless
Area Networks (6LoWPAN) protocol for low power and lossy networks. The
energy consumption, memory and computation of network devices are considered
in order to connect them to Internet over wireless communications.

Figure 3.1 presents three kinds of devices, which are considered in such an
infrastructure: a node is an energy constraint device, which must avoid significant
communication in order to prolong its lifetime; a router is an intermediate node
with lower energy constraint needed to establish a mesh network between nodes;
and the Border Edge Router (BER) is a gateway between the Internet and the
Wireless Sensor and Actor Network (WSAN).

Figure 3.1 – Illustration of a classical IoT network infrastructure.

46 Chapter 3. Capillar Internet Network

3.2.1 Wireless Sensor and Actor Networks
A Wireless Sensor and Actor Network (WSAN) is composed of distributed energy
constraint devices, which communicate over a mesh network. The large number
of devices involved and their mobility, in terms of failures or moving physically,
require self-configuration mechanisms to establish and maintain networks.

3.2.1.1 IP Connectivity: 6LoWPAN

The 6LoWPAN protocol, defined in RFC 4944 for IEEE 802.15.4 wireless technol-
ogy, has been designed to address issues concerning RFC 4919: IP connectivity,
limited packet size, self-configuration and security aspects. Most IPV6 mech-
anisms are used in 6LoWPAN, in addition to adaptations for the reduction of
energy consumption through the limitation of packet size by the IP and transport
header compression.

3.2.1.2 Routing Protocol: RPL

The Routing Protocol for Low power and Lossy Networks (RPL) routing protocol,
illustrated in the sequence diagram 3.2, allows WSAN to automatically and
dynamically establish IP addresses and routing tables by using the IPv6 Node
Discovery mechanism (for more details, see draft-ietf-6lowpan-nd and -rpl). Each
node generates its own local IP address (fe80::) until receiving a network prefix
disseminated from a Border Edge Router (BER). The nodes then subscribe to the
first available router in order to maximize the data rate between them and the
BER. This operation can be iterated periodically to maintain the best network
connectivity between nodes and the BER.

Figure 3.2 – Sequence diagram of 6LoWPAN-RPL network establishment.

3.2. Network Infrastructure 47

3.2.1.3 Gateway: Border Edge Router

A gateway is a network device establishing connectivity between two different
networks. A WSAN based on the 6LoWPAN has two major functions. Firstly,
the IPv6 packets must be compressed or uncompressed between the WSAN and
traditional network interfaces. Secondly, the gateway hosts the Border Edge
Router (BER), which is responsible for the network prefix dissemination used
during the establishment of network connectivity by the RPL protocol. In Figure
3.3, the network infrastructure is composed of two BERs (gateways), which leads
to the construction of different overlapped routing trees. Indeed, the IPv6 protocol
allows nodes to have several IPs, which can be used to select the best routing
path according to the communication recipient.

Figure 3.3 – WSAN Multiple Routing RPL DAG.

3.2.2 Home Information System

The Home Information System (HIS) refers to the set of connected appliances
in a residence. Currently, it is mainly composed of multimedia devices, which
are already connected through standard protocols, such as Universal Plug and
Play (UPnP) and Bluetooth. Their development was not initially designed to be
an extension of the Internet, even if more and more HISs are connected to the
Internet because of the emergence of Wi-Fi enabling devices, such as Network
Attached Storage (NAS), wireless printers and tablets.

The integration of Wireless Sensor and Actor Networks (WSANs) on the
Internet should be easy to facilitate given current developments in HIS based
on IP technology. The following section reviews the different devices enabling
WSAN integration into HIS and technological aspects used in this thesis.

48 Chapter 3. Capillar Internet Network

3.2.2.1 Permanent Gateway

Recently, plug computers have appeared in HIS for the purpose of installing local
fanless servers at home. Even if their hardware architecture, which is based on
ARM technology, is designed to limit energy consumption, most of these devices
are able to execute a complete Operating System (OS) based on Linux. They are
used in conjunction with NAS and multimedia platforms, which makes them an
interesting access point for WSANs. On the one hand, the Linux kernel is natively
supporting the IPv6 and includes a set of network management tools. On the
other hand, Contiki, presented in Chapter 2, is an Operating System (OS) for
nodes, which supports Remote Network Driver Interface Specification (RNDIS),
thereby allowing it to communicate natively with the Linux kernel. Hence, the
architecture in Figure 3.4 is a native integration of a 6LoWPAN WSAN in an
HIS based on IPv6.

Figure 3.4 – 6LoWPAN integration on a plug computer based on GNU/Linux.

3.2.2.2 Mobile Gateway

The development of smartphones and the improvement in their Internet connec-
tivity offer new perspectives for gateways in HIS. Firstly, they are platforms that
already host applications and preferences of residents. Secondly, they enjoy a
permanent Internet connection, which can be shared with the HIS instead of
using a dedicated Internet Service Provider (ISP). Hence, they all have gateway
characteristics for WSANs and are interested in privacy; for example, the HIS is
physically disconnected from the Internet when there is no user present.

Figure 3.5 presents architecture for integrating a WSAN to the Internet
through a mobile gateway, such as a tablet. A Tunnel Serial Line Internet
Protocol (TunSLIP) is established between a Contiki OS node and the Linux
kernel of an Android OS. This kind of connection is useful to bypass the lack of
an RNDIS driver on a lightweight Linux kernel.

Figure 3.5 – 6LoWPAN integration on a mobile phone based on Android.

3.2. Network Infrastructure 49

3.2.2.3 IPv6 Backbone

The deployment of IPv6 is still an experimental enterprise on a classical network
infrastructure, even if significant efforts are made to promote it. Currently, the
Internet does not fully support IPv6 routing; moreover, most network tools are
not stable enough for this IP technology. Hence, its use is mainly concerned
with a local network backbone, instead of a general Information Technology (IT)
infrastructure. In such situations, the dissemination of the IPv6 network prefix
can be operated locally from a Border Edge Router (BER) localized on previously
presented gateways. Otherwise, it can be installed on a remote Internet server,
which pushes IPv6 routes through an Internet Protocol version 4 (IPv4) tunnel.

Figure 3.6 presents a general infrastructure based on an IPv6 backbone,
which ensures connection between different WSAN, Wireless Fidelity (WiFi) and
traditional Home Information System (HIS) devices, such as NAS. In turn, each
device has local access to a WSAN; in particular, tablets and mobile phones can
operate like a remote control with personal user applications and preferences.

Figure 3.6 – WSAN Integration in Home Information System (HIS).

3.2.3 Internet Integration

The Internet integration of HIS is a still an open issue in IoT discussions. The
IPv6 should permit direct access to local devices from the Internet; however,
their vulnerability to remote attackers raises difficult security questions. Indeed,
WSANs are very sensitive to Denial of Service (DoS) because of their strongly
limited bandwidth. Even if WSANs are IP enabling, they must be protected.
There are two major use cases for the Internet integration of HIS. On the one hand,
the management of home appliances should be managed by external services,
such as a security guardian company. On the other hand, an IPv6 backbone of

50 Chapter 3. Capillar Internet Network

HIS could be distributed over several distant sites, such as on a campus composed
of different buildings.

Figure 3.7, the two examples are represented in which three 6LoWPAN islands
communicate with each other over the Internet and external IPv4 services.

IPv6 communications can be performed thanks to 6to4 tunneling. The
6LoWPAN packets are uncompressed on the gateway and encapsulated into
IPv4 ones in order to transfer them between HIS islands over the Internet. This
approach is natively supported by IP technology, while the communications can
also be secured using a tunnel based on a Virtual Personal Network (VPN).

IPv4 services have two main solutions for communicating with an IPv6 HIS.
They can translate their IPv4 packets to IPv6 ones thanks to a dual stack IPv4-
IPv6. Hence, the communications are peer-to-peer between 6LoWPAN devices
and external services. Otherwise, the HIS provides a proxy interface, which is
responsible for collecting data and managing devices in the HIS, according to
the requests of external services. As such, there is no direct communication
between the IPv4 external services and the WSAN. This approach is preferred by
the IoT community, as it is much easier to protect WSANs against attackers or
other inappropriate usages on the Internet. However, the proxy interface must
implement all possible uses of the WSAN, as it is the unique controller device.

Figure 3.7 – HIS integration into an IPv4 heterogeneous multi-site
infrastructure.

3.3. Service-Oriented Architectures 51

3.3 Service-Oriented Architectures
The typical network infrastructure for the IoT, as presented in the previous
section, is composed of several network segments connected through gateways.
Long path communications between the Internet and a WSAN are not desirable
if network bandwidth, reactivity and security are to be maintained. Hence, this
section evaluates the relevance of Service Oriented Architecture (SOA) in order
to minimize external communications of a WSAN. Indeed, IoT applications are
mainly composed of collaborations between different objects in the same physical
place. SOA is a generic model in which applications invoke local or remote
services to produce, process or manage data. The two major approaches are:

• Service Orchestration (SO): a central system collects all data and directly
controls all appliances.

• Service Choreography (SC): different appliances are configured in order to
directly exchange information with each other.

3.3.1 Resource-Oriented Architecture

Resource Oriented Architecture (ROA) is software architecture based on SOA in
which an application is a set of software components interconnected at a Web
resource level. Each service is encapsulated into a container, which publishes a
REpresentational State Transfer (REST) interface of resources. Hence, an ROA
application is a program in which operations and variables refer to Web resources.
Its execution is a set of successive Hyper Text Transfer Protocol (HTTP) requests
in order to perform data processing on remote services. The high flexibility
of HTTP allows the requests to be adapted to the target services if they are
constrained. Moreover, the ROA application can be executed from a central
system, such as an SO, or it can be distributed over the services themselves, such
as in the case of SC. In this case, an ROA application is a set of distributed
publish-subscribe mechanisms that interconnect the resources of different services.

Its application on a Wireless Sensor and Actor Network (WSAN) abstracts
the actuators, sensors and other operations by resource. In such situations, the
application of a control loop between sensors and actuators is performed locally
instead of across the differently presented network segments. Therefore, remote
supervisors are responsible for configuring the different devices so that SC can be
deployed between them, which means that only the data concerning the service
and network discovery are collected remotely from the supervisor. As such, the
management of SC is performed remotely, whereas the communications of the
applications are executed locally. Supervisors are only responsible for monitoring
and deploying SC in order to prolong the network lifetime.

52 Chapter 3. Capillar Internet Network

3.3.2 Experimental Model Analysis

The previous sections have presented the standard protocols for Wireless Sensor
and Actor Networks (WSANs) designed for centralized architecture, such as in
cases where communications are transmitted along a routing tree. The discussions
around SOA have emphasized the interest in Service Choreography (SC) in order
to avoid long path communications. The following experimentations evaluate
this apparent conflict in applying SC on WSANs. The experimental setup is
composed of 16 nodes (AVR atmega128rfa1, see Table 2.1), executed in a COOJA
simulator and distributed randomly in order to build a centric routing tree around
the gateway. The longest path to the gateway is limited to 4-hops.

3.3.2.1 Service Orchestration

Orchestration experimentation sends Internet Control Message Protocol (ICMP)
requests one-by-one from the external gateway to each node through an RNDIS
interface. Figure 3.8 shows an important correlation between node activity and
its relative position in routing RPL Directed Acyclic Graph (DAG). Routers
forward more network flows when they are close to the gateway. Conversely, node
response time increases according to the number of intermediate routers until the
gateway is reached. RNDIS interface overcost is very important (more than 200
ms) in comparison with router reactivity (less than 50 ms).

5 10 15
0

200

400

600

800

1000

Node ID

#
 P

a
c
k
e

ts

Orchestration Evaluation

Packets

Error bars

Response time (ms)

Figure 3.8 – Service Orchestration (SO) evaluation on a random network.

3.3. Service-Oriented Architectures 53

3.3.2.2 Service Choreography

In choreography experimentation, each node periodically sends an ICMP request
to a random node in the WSAN. Figure 3.9 presents a similar form of results
for orchestration experimentation because the network traffic follows the routing
path built from the gateway. However, it is more distributed over all routers than
during orchestration. Besides, the response time of all random communications
is significantly reduced by a factor of 10 because there is no overcost due to
6LoWPAN and IPv6 translation on a gateway.

5 10 15
0

200

400

600

800

1000

Node ID

#
 P

a
c
k
e

ts

Choreography Evaluation

Packets

Error bars

Response time (ms)

Figure 3.9 – Service Choreography (SC) evaluation on a random network.

Experimentations show that a decentralized model improves node response
time and therefore network reactivity. This result is very interesting because the
experimentation on SC has been produced in terms of its worst-case scenario.
Indeed, the communications are randomly produced, whereas, in real application,
they would be configured in order to minimize network load. The consumers
of services should be located close to the device that produces the service. It
should be noted that, in the below experimentation, the extreme multi-hop path
is 8-hops, with an average response time between neighbours of 7 ms. Therefore,
the design of efficient service mapping, according to network topology, is a major
key to reducing network load and validating the application of SC on a WSAN.

54 Chapter 3. Capillar Internet Network

3.4 Software Tool Contributions
This section presents the different software that has been developed for deploying
SC over WSANs; more details are given in subsequent chapters.

3.4.1 Active Resource Middleware
emma-node is middleware based on ROA and implemented on the Contiki OS
[Dun03] for 6LoWPAN networked applications.

3.4.2 Hybrid Network Simulator
The emma-cooja package contains a set of plug-ins for the COOJA simulator
[Ost+06]. It provides a simulated radio environment in which WSAN nodes are
emulated. Below is a list of the developed plug-ins:

• emma-cooja-rndis is a plug-in to execute hybrid simulation in which emu-
lated and physical nodes take part in a common application.

• emma-cooja-analysis vis a plug-in for SC behaviour analysis. Resources
are monitored and managed for each node (see Figure 3.10, in which the
network communications are visible in real-time between the nodes, in the
form of a circle with their IP, and the Unified Resource Identifier (URI) of
their internal Web resources is shown in blue typeface).

• emma-cooja-emma is a plug-in to connect the COOJA simulator in the same
way as an EMMA node such as the simulator is an actor of the simulation.

Figure 3.10 – Screenshot of the simulator plug-in emma-cooja-analysis.

3.4. Software Tool Contributions 55

3.4.3 Service Choreography Software
The emma-design package, as illustrated in Figure 3.11, contains two pieces of
JAVA software to design, analyze and deploy SC:

• emma-design-agent is an application for the graphic design of SC based on
an adapted Petri network model, as detailed in Chapter 4. In addition, a
simulator engine is available to evaluate the logical behaviour of SC.

• emma-design-mapper is an application for instantiating designed SC accord-
ing to a WSAN target. This software evaluates the best SC mapping and
deployment process in order to minimize the network load.

Figure 3.11 – Screenshot of the emma-design application.

3.4.4 Network Tools and Connectors
The emma-network package provides a set of tools to connect a WSAN to Internet
gateways and IT administration tools:

• emma-network-security is a REDIS-based application to store AES security
keys for the WSAN on a gateway (see Section 4.4.3).

• emma-network-rndis and emma-network-tunslip allow 6LoWPAN connectiv-
ity between the WSAN and Linux. It is used by gateways, as described in
Section 3.2.2, or by a COOJA simulator for hybrid simulation, as described
in Section 3.4.2.

• emma-network-snmp is an Simple Network Management Protocol (SNMP)
agent, which monitors the WSAN. It allows classical IT network monitoring
tools to monitor an EMMA WSAN.

• emma-network-proxy is a Node.js reverse proxy Constrained Application
Protocol (COAP)-HTTP on a gateway, whose function is to exchange data
between the Internet and the WSAN.

56 Chapter 3. Capillar Internet Network

3.5 Summary
This chapter has introduced the major technologies relating to the development
of Wireless Sensor and Actor Networks (WSANs) and their integration on the
Internet. Since the last decade, numerous studies have permitted the establishment
of network protocols in order to address the issue regarding the energy constraint
of devices and its impact on the general network infrastructure. The proposed
end-to-end infrastructure is based on the standard protocol of 6LoWPAN, which
represents a first step towards the IPv6 Internet. The proposal is composed of
different network segments, which underlie the necessity to propose hierarchical
software architecture given that the direct access of devices from the Internet
raises several issues regarding network bandwidth, reactivity and security.

Service Oriented Architecture (SOA) has a strong interest in Home Information
System (HIS) because it facilitates the service composition of different appliances
in an Responsive Environments (RE). The trivial experimentation between Service
Orchestration (SO) and Service Choreography (SC) has concluded that the
distributed approach is more efficient in terms of network reactivity that the
centralized one. However, the management of a distributed system is a difficult
task, which should be delegated to a supervisor located on a gateway. Hence, the
data flows of applications are located inside the WSAN, which reduces network
congestion around the routers and improves network reactivity and data privacy,
whereas their management should be operated from the Internet.

During this thesis, a set of software has been developed in order to design,
deploy and execute an Internet of Things (IoT) infrastructure, in which appliances
collaborate according to SC applications. These different forms of software permit
the deployment of real WSAN infrastructure, its simulation and the design of
applications based on SC. Different plug-ins have also been developed to analyze
system behaviour during the design, simulation and execution of such applications.

The following chapters in this part of the thesis present the theoretical models,
problem formalization and resolution for the design, execution and deployment
of SC on a Wireless Sensor and Actor Network (WSAN).

Chapter 4

Active Resource Middleware1

L’utopie est le rêve nécessaire et la réalité le défi
permanent.

The utopia is the necessary dream and the reality is the
permanent challenge.

Daniel Cohn Bendit [CB15]

Contents
4.1 Introduction . 58
4.2 Architecture . 59

4.2.1 System Components . 59
4.2.2 Resource File System . 60
4.2.3 COAP Web service Interface 61

4.3 System Dynamic . 62
4.3.1 Basic Services . 62

4.3.1.1 Local Service . 62
4.3.1.2 System Service 62
4.3.1.3 Agent Service 63

4.3.1.3.1 Publish-Subscribe Agent 63
4.3.1.3.2 Composed Agent 64
4.3.1.3.3 Self-X Agent 64

4.3.2 Computation Flows . 65
4.3.3 Graphical Model . 66

4.4 Service Choreography . 67
4.4.1 Hierarchical Composition 67
4.4.2 Web Service Heterogeneity 68
4.4.3 Name Space Security . 69

4.5 Summary . 70

1Published in Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle. “Wireless
Sensor Network Cloud Services: Towards a Partial Delegation”. In: Proceedings of 5th
International Conference on Smart Communications in Network Technologies 2014 (IEEE
SaCoNeT 2014). Vilanova i la Geltru, Spain, June 2014

58 Chapter 4. Active Resource Middleware

4.1 Introduction

Wireless Sensor and Actor Networks (WSANs) are physically distributed systems;
however, the implementation of their information systems can be centralized or
decentralized. In the orchestration approach, central servers receive data from
nodes and take decisions to control them. This involves an upstream that collects
data and a downstream that manages the nodes. The main advantage of this
approach is the easiness of application deployment and extension. Meanwhile,
the communications between applications and nodes produce network congestion
and response latency in large-scale networks, such as those previously presented.
Service choreography involves decentralized architecture in which applications are
located onto the nodes. Communications is performed locally between the nodes,
which avoid long paths of communications. In turn, the issue is the deployment
and execution of such applications on strongly constrained nodes.

The Active Resource Middleware (ARM) is a contribution of Service Choreog-
raphy (SC) middleware applied on a WSAN. It is an abstraction layer between
node services and their data exchanges at the choreography level. Its Resource
Oriented Architecture (ROA) [GTW10], as presented in Section 4.2, facilitates
the software implementation for motes by providing application interfaces, such
as data structure, memory management, resource access, data processing, file
systems and security layers. The EMMA middleware is implemented on the
Contiki OS and designed to save the memory footprint.

The applications located on the nodes are considered as autonomous services
that must be connected in order to design distributed applications through a
Web-based choreography language presented in Section 4.3. This design of an SC
consists of a configuration of distributed publish-subscribe mechanisms between
services located on the nodes. This graphical and flexible high-level language
is based on an augmented Petri network model, which exploits its theoretical
background in a dynamic system analysis. Section 4.4 considers how they can be
easily decomposed in order to design a complex SC.

The SC is performed thanks to reactive agents that model the publish-subscribe
mechanisms. They are executed over the ARM in order to transmit requests
between the node services. In turn, they can be used to manage the heterogeneity
of application protocols with other Constrained Application Protocol (COAP)
services. As they are also resources, they can be managed remotely from supervi-
sors, as well as locally by themselves. An agent can create or delete other agents,
including itself, which offers the agent the ability to rewrite itself. Hence, the SC
can be designed with self-x properties in order to evolve during its execution.

4.2. Architecture 59

4.2 Architecture
An Environment Monitoring and Management Agent (EMMA) node is an input-
output processing module that receives requests, processes them and emits new
requests to other nodes. It is composed of an File System (FS), a COAP client
and a COAP server. Node functionalities can use or produce any type of data,
such as numerical values (for sensors and actuators) and binary streams (for
audio players). All of them are similarly processed in EMMA middleware.

4.2.1 System Components
This middleware is implemented on the Contiki OS by a set of standalone module
applications, which communicate by event messaging in order to make use of the
sleeping mode of microcontrollers. The global architecture is illustrated in Figure
4.1, while the memory footprints are presented in Table 4.1. It consists of:

• emma-server - for managing incoming COAP transactions and access rights

• emma-client - for forging packets and sending COAP transactions

• emma-resource - for storing resource files and managing node services

The interface between node services and the middleware core uses JSON files to
allow the EMMA core to be independent of data types. Moreover, microcontrollers
have a limited RAM memory (between eight and 16 kB); therefore, all resources
are stored and executed from permanent flash memory, which allows large requests
to be processed.

All services implement the emma-resource-services interface and are managed
by the resource file system emma-resource. There are three default services: a
system configuration interface, a numerical data store and an agent evaluator,
which is used for service choreography.

Modules RAM Program memory
emma-client 381 B 8,267 B
emma-server 456 B 4,528 B
emma-resource 648 B 4,108 B
emma-JSONparser 0 B 382 B
emma-preprocessor 95 B 4,116 B
emma-service-system 60 B 2,845 B
emma-service-numeric 10 B 576 B
emma-service-agent 210 B 6,586 B
Total 1.9 kB 31.4 kB

Table 4.1 – Memory footprints of EMMA modules on the Contiki OS.

60 Chapter 4. Active Resource Middleware

EMMA

* ** **

11
1
1

1
1

«interface»
emma-resource-services

A dataX L dataY S

emma-resource

emma-server emma-preprocessor emma-client

Figure 4.1 – EMMA middleware UML diagram.

4.2.2 Resource File System
While all resources have a type according to their responsible service, they are
stored in permanent memory as JSON text files by the resource file system emma-
resource. They are accessible by COAP requests with their Unified Resource
Identifier (URI). To reduce memory costs, they are mapped in permanent memory
by a tree-like organization to avoid being stored in an index table. Therefore, the
resource file system has to navigate between resource files, as shown in Figure
4.2.

Figure 4.2 – EMMA middleware resource file system schema.

4.2. Architecture 61

4.2.3 COAP Web service Interface
EMMA middleware is REpresentational State Transfer (REST) architecture in
which COAP requests change resource states managed by node services. Its Web
service implementation uses the Erbium COAP engine [KDD11] of the Contiki
OS, as illustrated in Figure 4.3. The COAP protocol is an HTTP-like protocol,
which is basically composed of a URI to define the resource target, a payload
containing data and a method to perform an operation. With the right access, a
request can read GET, modify PUT, create POST or delete DELETE a resource.
Each service has its own processing callbacks to change JSON resource files
stored in the permanent memory according to the request method. The IPv6
LoW Power Wireless Area Networks (6LoWPAN) protocol does not include a
fragmentation mechanism that is the responsibility of the application layer. The
block-wise transfer mechanism of the COAP protocol is designed to save memory
buffer. Requests are processed online by a block of 32 bits to avoid requests being
assembled in a large buffer. Moreover, the use of small blocks facilitates network
packet scheduling at the Media Access Control (MAC) layer, such as in the use
of Time Division Multiple Access (TDMA) protocol.

Finally, the set of resource data forms node context, which evolves according to
processed requests. Node behavior depends of this context state to send internal
or external requests in the same way as a cellular system.

Figure 4.3 – EMMA node overview schema.

62 Chapter 4. Active Resource Middleware

4.3 System Dynamic
Node services are provided to EMMA middleware through their resource pub-
lishing. By default, there are three types of resource: system, local and agent,
which are presented in Section 4.3.1. The system dynamic is achieved by the
agents, which generate COAP requests according to the current resource state of
their hosting node. As requests change the internal resource state of the target
node, a distributed computation flow over the WSAN is executed when an agent
triggers other agents, as detailed in Section 4.3.2. Lastly, Section 4.3.3 presents
an EMMA graphical model of an Service Choreography (SC) based on a Petri
network.

4.3.1 Basic Services
The following services are implemented in the same way as any service and can
be removed from EMMA middleware on the Contiki OS compilation to build
simple Web services. However,they are necessary for service choreography over
the Wireless Sensor and Actor Network (WSAN).

4.3.1.1 Local Service

The local service provides simple numerical data resources to store values. Agents
require them during computation flows to store cache values, parameters or data
exchanged between each Service Choreography (SC).

4.3.1.2 System Service

The system resources detailed in Table 4.2 encapsulate data or configuration
parameters for the Contiki OS or EMMA middleware. They are used by agents
to change system configurations or access sensor and actuator drivers.

Resource URI Methods Description
/S/conf GET/PUT EMMA & Network configuration
/S/time GET Node uptime
/S/rand GET Random number
/S/energy GET Energy battery level
/S/ns-uri GET URI to RDF node description
/S/routing GET/PUT/POST/DEL Routing tables
/S/neighbor GET List of neighbor nodes
/S/resources POST/DELETE List of all resources

Table 4.2 – List of system resources on EMMA node.

4.3. System Dynamic 63

4.3.1.3 Agent Service

An agent is a configuration file for the augmented publish-subscribe mechanism,
which specifies ’what, when and where’ to send a COAP request. An EMMA
agent a is a JavaScript Object Notation (JSON) file stored on node n that contains
a set of resources denoted Xn. It is composed of three elements:

• A Boolean activation function PREa(Xn)
Example: /L/threshold < /S/brightness

• A list of denoted resource targets Ya
Example: PUT[IPv6]:port/S/light

• The associated payloads ∀y ∈ Ya, POST ya (Xn, y)
Example: {’value’:’/S/light+ +’};

When Boolean activation function PREa(Xn) is true, it sends COAP requests to
target resource y ∈ Ya according to POST ya (Xn, y), as summarized in Eq. (4.1).

If PREa(Xn) : ∀y ∈ Ya, y ←−
method

POST ya (Xn, y) (4.1)

As illustrated in following agent examples, the PRE field specifies the firing
condition in order to send a request to each resource target stored in the TARGET
field. A target is defined by a COAP method (GET/PUT/POST/DELETE) and
a URI ([IPv6]:port/resource). The payload stored in the POST field for each
resource target is a template file, which is processed to replace variables with
their resource value. If the payload contains mathematical operations, they are
performed before transmitting the request. This payload can contain unresolved
variables, which are replaced by the resource values of the target node.

4.3.1.3.1 Publish-Subscribe Agent The JSON Agent 4.1 is hosted on
a brightness sensor and sends orders to a light to increase its value before
transmitting the measured brightness to a database every 10 seconds if it is lower
than 50.

1 {
2 "NAME": "AgentSensor",
3 "PRE": "L#brightness<50 && S#time%10 == 0",
4 "POST": [
5 "{’value’:’R#light+1’}",
6 "L#brightness"
7],
8 "TARGET": [
9 "PUT[aaaa::2]:5683/L/light",

10 "PUT[aaaa::1]:5683/database/light"
11]
12 }

JSON Agent 4.1 – Example of a periodic publish-subscribe agent.

64 Chapter 4. Active Resource Middleware

4.3.1.3.2 Composed Agent JSON Agent 4.2 locally contains and deploys
other agents before deleting itself, following which the deployed agent transmits
the list of resources to a supervisor.

1 {
2 "NAME": "RelayAgent",
3 "PRE": "A#RelayAgent",
4 "POST": [
5 {
6 "PRE": "S#rand%5==0",
7 "POST":[
8 "{’resources’:S#resources}"
9],

10 "TARGET": [
11 "PUT[aaaa::3]:5683/L/Example"
12]
13 },""
14],
15 "TARGET": ["POST[aaaa::2]:5683/A/TargetAgent",
16 "DELETE[0::1]:5683/A/RelayAgent"]
17 }

JSON Agent 4.2 – Example of a relay agent.

4.3.1.3.3 Self-X Agent The JSON agent 4.3 contains a reference to itself in
the PRE condition, the POST field and the TARGET tables. It is a self-deployer
agent, which sends itself to all its neighbors when it arrives on a node. It then
locally deploys an agent to push the list of resources before deleting itself.

1 {
2 "NAME": "DiscoverDeployer",
3 "PRE": "A#DiscoverDeployer",
4 "POST": [
5 "A#DiscoverDeployer",
6 {
7 "PRE": "S#rand%5==0",
8 "POST":["{’resources’:S#resources}"],
9 "TARGET": ["PUT[aaaa::1]:5683/NetworkInfo"]

10 },""
11],
12 "TARGET": [
13 "POST[ff02::2]:5683/A/DiscoverDeployer",
14 "POST[0::1]:5683/A/DiscoverNotifier",
15 "DELETE[0::1]:5683/A/DiscoverDeployer"
16]
17 }

JSON Agent 4.3 – Example of a self-deployer agent.

4.3. System Dynamic 65

4.3.2 Computation Flows

A computation flow is a set of agent activations produced by a domino effect.
This occurs when agent activations depend on the target resources of the other
ones. An illustration of this interaction chain is illustrated in Figure 4.4. Requests
are emitted by service agents (blue resources) to change another remote or local
resource, which can trigger another agent etc. There is no difference for the
Active Resource Middleware (ARM) between local and remote resources due to
the middleware abstraction layer between the Service Choreography (SC) and
the nodes. A tuple space for agents is provided through the set of all available
resources. The agents are executed independently over the Wireless Sensor and
Actor Network (WSAN), although they are synchronized by events on their
sensitive resources. This event chain moves on the event-driven kernel of the
Contiki OS. Therefore, concurrent access to a resource cannot appear inside
nodes, while parallel execution can only be used over several nodes. New events
are stored in an event pool and processed when the current computation flow of
the node is terminated. This execution constraint allows computation flows to be
managed by the structural design of the Service Choreography (SC), such as in
the case of mutex, semaphore, switching, parallel execution, and synchronization
for load balancing, memory management and task scheduling.

Figure 4.4 – Illustration of a computation flows by an event chain of requests.

66 Chapter 4. Active Resource Middleware

4.3.3 Graphical Model
The EMMA graphical model uses a continuous [SR02] and numerical [JL93]
Petri network [GS07] to design and analyze the logical behavior of the Service
Choreography (SC). It models resource entities and system dynamics through
agent activation conditions and requests.

In EMMA, the SC is modeled by an augmented Petri network in which
requests are referred by tokens, agents by transitions and resources by places. A
transition is fired if the following two conditions are satisfied: (1) a token appears
in any input place and (2) the agent’s Boolean condition is returned as true.
This transition activation produces a token for each output place and changes
target resource values in the corresponding preprocessed payload. Agents are
also resources then, with each transition associated with a place. If this kind of
place is deleted, the associated transition is destroyed, whether for creation or
editing. Therefore, this Petri network model is dynamic and can change during
its execution. This model illustrated in Figure 4.5 allows SC to be simulated
independently of its execution supports. Its behavior is validated by classical
algorithms found in the literature on Petri networks concerning safety, liveness,
reversibility, determinism, termination, output correctness and input dependence
[BWWH91]. Moreover, classical patterns can be reused directly, such as in cases
of sequence, parallel splits, synchronization, exclusive choices, simple merges,
multi-choices, structured synchronizing merges, multi-merges, arbitrary cycles
and multiple instances [Rus+06].

This Service Choreography (SC) computes the differential value p1(t) =
p0(t− 1)− p0(t). Agent t0 computes the differential value between a new value
of p0 and its previous one stored in p2 by the agent t1. If p1 reaches the value
50, the agent t2 is fired and uninstalls the SC including itself.

Figure 4.5 – Example of an EMMA graphical model created by a Petri network.

This Petri network adaptation, used in emma-design-tools, allows application
behavior to be simulated. According to a set of input resource values, the final
state of the Petri network is stored in a SC profile.

4.4. Service Choreography 67

4.4 Service Choreography

4.4.1 Hierarchical Composition
A Responsive Environments (RE) is composed of several appliances that require a
different SC in order to manage them. Moreover, each SC can require information
to be exchanged with other ones; for example, an SC for a control loop of actuators
should communicate with the SC responsible for energy management. Hence, the
design of a general SC is not suitable, given that its general Petri network ought
to be very complicated and, therefore, unmanageable.

The hierarchical composition of a Petri network is used in order to design
and validate each different SC separately. Each Petri network for an SC has a
set of input and output places in order to abstract the different subplaces and
transitions into a general transition, as illustrated in Figure 4.6. The different SC
are then connected together through their input and output places, as investigated
in Kaaniche et al. [Kaa+12]. The general SC behavior is evaluated by analyzing
those of the different sub-SC. A behavior is defined as a set of output place states
according to a set of possible input stimuli. Hence, at the resource level (detail
view 0), the Petri networks are evaluated by classical algorithms found in the
literature, in order to build the transition function between input and output
places. Then they are abstracted due to a general transition. This approach
significantly simplifies the design and validation of an SC, in the same way as
its sub-SCs are considered as black boxes, which can be reused with an already
validated behavior. Hence, the validation process of SC behavior is resumed by
correspondence analysis between the behavior transitions of its sub-SCs.

Figure 4.6 – Illustration of Service Choreography (SC) composition.

68 Chapter 4. Active Resource Middleware

4.4.2 Web Service Heterogeneity

Internet of Things (IoT) devices are provided by several different manufacturers
with their own information systems. The network protocol has been standardized,
but the application layer has not, given that future usages are unpredictable.
Hence, the management of application heterogeneity at the choreography level is
required. Traditionally, this issue is managed by a proxy server, which translates
the requests. In this sense, the COAP has an internal static publish-subscribe
mechanism, which allows the proxy to collect data from all nodes in order to
ensure translations.

The EMMA middleware allows this translation to be operated directly by the
agents. As their requests are fully specified through the POST and TARGET
fields, they can natively send any kind of payload using any URI. For example,
if remote middleware uses the Extensible Markup Language (XML) formatting
language, the POST field of the agent should contain the required XML template.
Moreover, the agent can generate requests to subscribe to the COAP observer
mechanism in order to collect the data from other middleware. The combination
of these two types of agent allows an EMMA node to ascribe data to other
middleware in order to generate COAP requests for others, as illustrated in the
sequence diagram 4.4.

COAP Node 1 EMMA Node COAP Node 2
	GET /temperature
(registration)	Observe: 0
	Token: 0x4a
+------------------------>	
	2.05 Content
(notifications)	Observe: 12
	Token: 0x4a
	Payload: 22.9 C
	<------------------------+
+--+ /A/Transcoder	
(translation)	
	<+ Payload:?value=L#t
+--+ /A/Sender	
(transmission)	
<-------------------------+ <+	

Sequence Diagram 4.4 – Sequence diagram of an SC for heterogeneity
management.

4.4. Service Choreography 69

4.4.3 Name Space Security
Data privacy and system security are important challenges in the IoT. The
decentralized aspects and the possibility for different service providers to deploy
SCs requires a new approach towards protecting the system. In the EMMA
framework, the SCs have individualized protection through different security
partitions in the namespace. An Name Space (NS) is a set of resources that
shares a same security partition. Access is protected by an AES 128 bits security
key NSKey, which is used to encrypt communications between the resources.
Each secured agent adds an additional field NS to the request in order to indicate
the NSKey ID used for payload encryption. The target resource then uses its
corresponding NSKey located at the URI /L/X/aes-keys to decode the payload.
As a resource can be shared between several SCs in cases of composition, they have
several NSKeys. The deployment process consists of the creation of the resources
in which are included the different required NSKeys. This process is operated
by the supervisor in relation to the different nodes by secure communications.
Each node is accessible thanks to a RootKey, which is deployed manually by
the supervisor (by Radio Frequency IDentification (RFID) or by writing it into
the permanent memory during the compilation of node software). The RootKey
is used by the supervisor to encrypt the payload used for the deployment of
SC resources with their NSKeys. Figure 4.7 summarizes this chapter with three
nodes, which have different resources that are accessible according to their secured
namespace containing an SC implemented by hierarchical composition of three
other ones that are modeled by Petri networks.

Figure 4.7 – Overview of the EMMA secured architecture.

70 Chapter 4. Active Resource Middleware

4.5 Summary
This section has presented the Active Resource Middleware (ARM), which is the
engine core of an EMMA system. It is an abstraction layer between the appliances
with the network and a resource tuple space. These resources are provided by local
node services and connected in order to form an Service Choreography (SC). The
particular agent resources are used to model and deploy the communication rules
by distributed publish-subscribe mechanisms. In addition, this proposed model
offers the possibility of adding self-x properties to an SC, such as self-deployment.
The SC design is totally abstracted to a Wireless Sensor and Actor Network
(WSAN) by an augmented Petri network, which is used to analyze SC behavior
before being deployed on appliances. The management of heterogeneity with
other COAP middleware is natively addressed due to the proposed agent model
in a fully distributed way. In addition, the protection of data privacy is based on
a proposal of secured namespaces in order to partition the SC, which could be
designed by different service providers.

The different classical challenges for WSANs are summarized in Table 4.3 with
their referring components in relation to an EMMA framework. Those challenges
concerning the network are not addressed, such as the EMMA framework, which
focuses on the application layer. However, the quality of service should be possibly
considered through a priority routing engine in the Contiki OS event stack. An
additional field should be added to the agents in order to define the priority of
the computation flows. Hence, the appliances should be able for them to be
scheduled according to their priority.

Layer Challenges Entities

Hardware Abstraction Contiki OS
Energy Efficiency Mapping Deployment

Hardware Constraints Lightweight Services

Network Addressability 6LoWPAN
Routing Protocol RPL
Dynamic Topology None
Quality of Service None

Application

Adaptability Resource tuple Space
Programming Petri Network Model
Knowledge Petri Network Patterns
Scalability Choreography Composition

Data Security Name Space
Heterogeneity Agent

Table 4.3 – WSAN challenges addressed by active resource middleware

Chapter 5

Service Choreography
Deployment1

Le tout est autre chose que la somme de ces parties.

The whole is different than the sum of its parts.

Kurt Koffka [Kof77]

Contents
5.1 Introduction . 72

5.2 Network Mapping Process 73

5.2.1 Stages Overview . 74

5.2.1.1 Functional Design 74

5.2.1.2 Instantiation and Simulation 74

5.2.1.3 Network Mapping 75

5.2.2 Dynamic Deployment . 76

5.2.2.1 Residual Network Agents 76

5.2.2.2 Dynamic Network Agents 76

5.2.2.3 Self-X Agents . 76

5.2.3 Deployment Process . 77

5.2.3.1 Direct Deployment 77

5.2.3.2 Deployment Container 77

5.2.3.3 Self-Deployment Container 78

5.3 Theoretical Background 79

5.3.1 Model Definitions . 79

5.3.1.1 Network . 79

5.3.1.2 Resources . 79

5.3.1.3 Scopes . 79

5.3.1.4 Places . 80
1Submission in Clement Duhart, Pierre Sauvage, and Cyrille Bertelle. “A Resource

Oriented Framework for Service Choreography over Wireless Sensor and Actor Networks”. In:
Submission in International Journal of Wireless Information Networks (IJWI) ()

72 Chapter 5. Service Choreography Deployment

5.3.2 Problem Formulation . 80
5.3.2.1 Knapsack Problems 80
5.3.2.2 Service Choreography Mapping 80

5.3.3 Pseudo-Boolean Optimization 81
5.3.3.1 Communication Cost Function 82
5.3.3.2 Constraint Set 82

5.4 Experimental Results . 83
5.4.1 Dining Philosopher Mapping 83
5.4.2 Deployment Evaluation 86
5.4.3 Deployment Strategy . 89

5.5 Summary . 90

5.1 Introduction
The previous chapter presented models, mechanisms and features of an Active
Resource Middleware (ARM) to build a Service Choreography (SC). From the
design to operational deployment, the different steps are outlined in Section
5.2. Given that Wireless Sensor and Actor Networks (WSANs) have several life
cycles, a deployment process should be adapted. At the first time of starting, all
node and network resources are available for the deployment process, which is no
more possible during the running of services. Consequently, three deployment
processes are considered according to their properties. Direct deployment between
supervisor and nodes is only used for punctual mapping corrections. Meanwhile,
composed deployment facilitates a SC upgrade by delegation to the remote nodes.
Finally, at the initialization step, all WSANs can be used by self-deployment to
map everything, everywhere.

The genericity of the EMMA resource model allows for SC mapping to be
automatic. According to the node services and their resource hosting capacity,
SCs are distributed over entire WSANs to minimize network communication load.
Several constraints are considered in the course of the mapping process regarding
node, network and application specifications. Its mathematical formulation is
successfully resumed by the pseudo-Boolean optimization (PBO) problem in
Section 5.3, which allows any PBO solver to be used. Finally, Section 5.4 presents
results about the complexity of the mapping problem according to number of
resources and WSAN sizes. Analysis shows that, in a large-scale network, it
is preferable to use several deployment partitions instead of one big mapping
process. Evaluation of deployment agents shows their execution time on an ARM
for comparing them and proposing an example of best practice for SC deployment.

5.2. Network Mapping Process 73

5.2 Network Mapping Process

The Service Choreography (SC) mapping process associates an empty resource
space for each place of the SC. Such an association is performed according to the
resource type and the hosting capacity of nodes for each service. The efficiency of
a mapping process is defined by a cost function in Section 5.3, which minimizes,
by default, the network communication load. This mapping process is composed
of three specification stages: the functional design, the instantiated graph and
the network mapping, as illustrated in Figure 5.1 and discussed in the following
sections.

Figure 5.1 – Network mapping process for a multi-layer perceptron.

74 Chapter 5. Service Choreography Deployment

5.2.1 Stages Overview
5.2.1.1 Functional Design

The functional design establishes SC templates, which could be deployed over
different Wireless Sensor and Actor Networks (WSANs). They are abstracted
from the WSAN and node services as a result of the previously discussed Petri
network. A Petri network in a SC connects a set of input places to output places
in order to define their general transition functions. The input and output places
are characterized in order to define compatible resources of node services, which
could be used for this SC.

The different input-output resources produced by the node services are con-
nected through agent resources A (modeled by transitions) in addition to tempo-
rary resources L (corresponding to places). This specification stage introduces
the concept of scope, which manages structural dependencies, as illustrated at
the top of Figure 5.1. The term scope alludes to the mapping specification, which
refers to a group of resources that must be mapped on the same node. For
implementation reasons, a transition resource a must be on the same node n,
which the resources of its input places Xn required due to its activation function
PREa(Xn) in the Petri network. Otherwise, for efficiency reasons, such high
frequency communication exchanges, a SC designer would seek to force several
resources to be located on the same node. The mapping can be constrained by
scopes because of the following:

• Scope multiplicity: A scope that requires several identical scopes is connected
by a link of multiplicity M . For example, an agent of data aggregation
requires M values produced by the sensor resources. Hence, the scope
containing the agent is linked to the scope, which models the sensor resources
by a multiplicity parameter equal to M .

• Scope dependency: The SC design is operated independently of the target
network. However, it is possible to constrain the resource mapping in respect
of network constraints, such as the maximal number of communication hops
between two scopes.

5.2.1.2 Instantiation and Simulation

The instantiation step generates the complete graph of a Service Choreography
(SC) based on the set of functional design templates for a target of WSANs. Based
on the network information collected by the service discovery mechanism (see 4.2),
all SC templates are duplicated for each couple of input-output scopes in order to
satisfy their multiplicities. All final resources are defined and linked to their value
range specifications. If a resource in a SC template has a different value range to
those in a WSAN, an intermediate agent is automatically placed to adapt value

5.2. Network Mapping Process 75

range. During this step, the SC designer will have to check and correct possible
mistakes produced by this automatic process performed by emma-tools-design.

The simulation of the generated SC must validate its behavior. As previously
discussed, the simulation of this final SC for each possible initial marking on
input places produces a large set of tests. The use of composed general compo-
sitions, which have already been simulated, drastically reduces the number of
transitions. All places and transitions contained in a uncorrected template is
resumed by their composed transition. Based on their value ranges on output
places, the input ranges of the next connected transition are reduced. Hence, all
composed transitions, which are connected without an intermediate transition
being manually added, can be reduced to a single one with a fixed value range
of its input and output places. Even if the set of possible initial markings on
input places is large, the simulation is resumed to simulate the manually added
transition with the composed transitions.

Given that the deployment process is also a Service Choreography (SC), as
presented in the previous chapter, it should be validated in the same way. The
deployment process requires some resources, which have to be reserved during the
mapping process. Therefore, the SC of deployment is added into the instantiated
Petri network, although it uses some temporary resources.

5.2.1.3 Network Mapping

Network mapping determines the list of possible matchings between the instanti-
ated SC graph and the resource distribution on the ARM under the functional
design constraints. In addition, this process builds the composed agents, which
install the resources along a specified path of deployment (by default, it follows
the network routing path from the supervisor: the 6LoWPAN edge router). The
mathematical formulation of this mapping problem is resumed by a PBO problem
detailed in Section 5.3.

The process of deployment is based on a set of composed agents (see 4.2
defined in Section 4.3.1.3). They are deployed on a node in order to install the
resources on the hosting node or on the neighbors. In addition, they send other
agents of deployment to other nodes, such as Matroska containers. Given that an
agent is also a resource, the number of resources that it can install is limited by
its maximum size. Hence, several composed agents of deployment are generated
according to the hosting capacity of nodes. The mapping of the deployment
process determines the distribution of the deployment agents over the WSAN
and their composition. This process is performed by backpropagation along the
defined deployment path in order to include the deployment agents with the
others until they reach their maximum size. This process is reiterated until the
coverage for all of the resources to deploy is reached, after which each deployment
agent is sent to its corresponding node.

76 Chapter 5. Service Choreography Deployment

5.2.2 Dynamic Deployment
Dynamic deployment is composed of two stages. Firstly, deployment agents are
diffused over an Active Resource Middleware (ARM) to deploy locally resources.
Then, deployment agents are deleted to allow only service resources. The deploy-
ment agents, called Dynamic Network Agents (DNAs), change the dynamic of
WSAN behavior, which is produced by a set of SC agents called Residual Network
Agents (RNAs). Both these categories are defined to facilitate the organization,
management and understanding of the mapping dynamic.

5.2.2.1 Residual Network Agents

Residual Network Agents (RNAs) are the set of agents deployed by a Dynamic
Network Agent (DNA). They can be considered, from the node perspective, as a
set of interaction rules that define its behavior; from a system perspective, they
can be considered as part of a Service Choreography (SC). The RNA produces
the static system dynamic by diffusing computation flows over the ARM when an
event occurs on input places. These agents do not modify the system dynamic by
modifying other agents.

5.2.2.2 Dynamic Network Agents

Dynamic Network Agents (DNAs) are responsible for updating the system dy-
namic by modifying other agents. They are used during the installation procedures
of a Service Choreography (SC), as well as by a SC with self-x properties. During
a deployment, they are composed agents that contain a set of rules to install the
resources (including other agents) on the nodes. They then delete themselves
when the deployment process is terminated.

5.2.2.3 Self-X Agents

After the deployment process, the DNAs are normally deleted as they have
deployed all the resources. The agent model, however, offers the possibility of
allowing them in standby. Instead of starting the deployment under the condition
that the agent has arrived on a new node, the field PREa(Xn) can be defined
in order to match it with a particular resource context of the node. The agent
then deploys the resources when they are required. Hence, an agent can contain
different SCs, which are deployed according to the online node requirements.

The first use example of this approach involves the establishment of the self-
repair property. If a node resource is accidentally deleted, a sensitive DNA in its
presence could deploy it again. Another example involves the self-deployment of
a common SC, such as a network and service discovery mechanism. A DNA can
contain a set of SCs, which must be deployed on all nodes. Hence, it broadcasts
itself to all nodes in order to install the required resources for a common SC on
them. The new connected node then automatically receives a basic SC.

5.2. Network Mapping Process 77

5.2.3 Deployment Process
The deployment process deploys a different SC from the supervisor to the nodes.
In the literature, different middleware perform this operation in a peer-to-peer
dynamic between the supervisor and the nodes. However, in a large-scale WSAN,
the deployment process produces significant network congestion around the
routers, such as that evaluated in Chapter 3. The EMMA framework proposes
two other strategies through the use of Dynamic Network Agents (DNAs): the
deployment container and self-deployment in addition to direct deployment.

5.2.3.1 Direct Deployment

Direct deployment sends agents directly to each node from the supervisor. In a
large-scale WSAN, this approach is not suitable when the supervisor is far away.
However, as presented in Chapter 3, the supervisor can be localized on a mobile
device. Hence, this communication path can be reduced by physically moving the
supervisor on the region of interest. A technician can then apply local corrections
with their tablet.

5.2.3.2 Deployment Container

A deployment container uses agents to carry other agents. These DNAs, which are
illustrated in Figure 5.2, are sent to nodes and deploy locally required resources.
Other DNAs can be contained within them and sent to other locally accessible
nodes. This composition of a deployment container produces a deployment chain,
such as in the case of Matroska containers. However, the overhead of this kind of
DNA is very important, as evaluated in Section 5.4.

Figure 5.2 – Petri network of a DNA deployment container.

78 Chapter 5. Service Choreography Deployment

5.2.3.3 Self-Deployment Container

A self-deployment container is a deployment container that refers to itself in
PRE, POST and/or TARGET fields; see Agent 4.3. Being sensitive to itself in
the PRE field, it duplicates itself on other nodes on arrival. With the possibility
to refer to itself in the POST field, it can update its definition during its copy
process, which offers evolving possibilities. If this DNA deletes itself after copying
itself in the TARGET field, however, it is a mobile agent.

At first deployment, all nodes have to receive their resources, while WSANs
are not used by any service. Therefore, the use of a flooding technique to reach
all nodes is possible. This DNA embeds all Service Choreographys (SCs) for
deployment on the WSANs. When it arrives on a node, it sends itself to all the
neighbors before deploying local resources. This initializer agent is built to be
sensitive according to the /s/ns-uri resource, which specifies the node type in
order to only deploy the required resources for this node.

Moreover, this DNA can contain other DNAs, which can be used to deploy
self-repair agents or other deployment containers responsible for a particular SC
deployment. For example, the Agent 4.3, defined in Section 4.3.1.3, is a self-
deployment container, as illustrated in Figure 5.3, that is automatically deployed
on new neighbor nodes in order to install a set of Residual Network Agents
(RNAs) with one local resource.

Figure 5.3 – Petri network of a DNA self-deployment container agent.

There are a lot of possible deployment strategies with such DNAs. Some of
them can be used for initial deployment, others to install local SCs and, finally,
others to deploy automatically minimal SCs, such as a discovery service and a
system logger. Best practice is proposed at the end of this chapter.

5.3. Theoretical Background 79

5.3 Theoretical Background
The application mapping problem determines an efficient distribution of resources
on the nodes to minimize communication load. Based on the functional constraints,
the network topology and the hosting capacities of nodes, the instantiated graph
must be mapped over the WSAN with its deployment process.

5.3.1 Model Definitions
5.3.1.1 Network

A WSAN is composed of a set of nodes N = {n1, n2, ...} modeled by a distance
matrix D, in which d(n1, n2) represents the cost metric between n1 and n2. By
default, the cost metric is determined by the routing algorithm according to the
number of hops between two nodes. It can model any others parameters, such as
the bandwidth, the link quality or an aggregation of them. If, and only if, the
communications are bidirectional, ∀n1, n2 ∈ N : d(n1, n2) = d(n2, n1). Due to
node memory limitations, the routing tables of nodes are partial and a node n1
can be unreachable from n2, then d(n2, n1) = −1.

5.3.1.2 Resources

The resource r is an allocated space of memory on a node associated with a
unique access path URI(r), defined by /type/resource_name. Each resource has
a type j ∈ T corresponding to its service (T = {A, S, L, ...}; see Section 4.2.3).
∀n ∈ N , ∀j ∈ T , Rj

n defines the set of resources of type j on node n. Rn then
denotes the set of all resources on node n, Rn = ⋃

j∈T
Rj
n.

Definition 5.1.
cardj(n) refers to the maximum number of resources of type j on node n, which
is defined during the software compilation. Therefore, it is considered fixed for
the mapping process. �

5.3.1.3 Scopes

The scope s is a set of places Ps that must be mapped on the resource spaces
of the same node. Ms refers to the multiplicity of scope s (see Section 5.2.1.1).
The set of scopes S = {S1, ..., Sm} represents all the SCs to be deployed on the
WSAN. Several scopes can be mapped onto the same node, as long as the node
capacities are sufficient. Two scopes are considered linked if at least one place of
the first scope interacts with one of the second. A communication a is modeled
by a data exchange function fa(t) and a weight wa, which represents the number
of packets required to transmit payload. As the function fa(t) cannot be assessed
a priori, we will instead consider an estimated frequency of fa.

80 Chapter 5. Service Choreography Deployment

The set of all communications from scope s1 to scope s2 is denoted by As1,s2 , as
per the sum of all place communication costs defined in Eq. (5.1) between scopes
s1 and s2. Communications between two scopes are generally asymmetric; hence,
c(s1, s2) 6= c(s2, s1).

c(s1, s2) =
∑

a∈As1,s2

ca =
∑

a∈As1,s2

fa × wa (5.1)
5.3.1.4 Places

The place p ∈ Ps is a requirement defined by an access path of URI(p), such as
/type/place_name for the mapping of scope s on a node. There are two subsets,
such as Ps = ⋃

j∈T

{
P j
s

⋃
Ṗ j
s

}
.

• ∀j ∈ T , P j
s defines the set of places that requires an available resource

space of type j on the node. Example: The place p ∈ PL
s requires an empty

resource space of type L on the node.

• ∀j ∈ T , Ṗ j
s defines the set of places which requires a resource of type j on the

node. Example: The place ṗ ∈ ṖL
s , specified with the URI(p) = /L/temp,

requires a resource with the same URI on the node.

5.3.2 Problem Formulation
5.3.2.1 Knapsack Problems

The formulation of a SC mapping problem is composed of two variants of the
knapsack problem:

• Multiple Knapsack Problem (MKP): Each node is considered to be like a
knapsack in which places should be mapped according to the node capacity.

• Multiple Choice Knapsack Problem (MCKP): The nodes have a finite parti-
tion for each resource type. The number of elements by type is limited on
each node because of node’s hosting capacity.

Finally, the problem formulation can be summarized thus:

How can scopes, which require different numbers and types of places over a set of
nodes and which do not have the same hosting capacities in terms of resource
type and memory size, be mapped in order to minimize the network load?

5.3.2.2 Service Choreography Mapping

Definition 5.2.
The operator size() is defined as follows:

• size(r) refers to the memory space used by the resource r.
• size(R), R ∈ {Rn, R

j
n} refers to the memory space used by resources in R.

• size(P j
s) refers to the memory space used by all places in P j

s .

5.3. Theoretical Background 81

• size(n) refers to the total memory space of the node n.
�Definition 5.3.

∀s ∈ S,Ns ⊆ N denotes the set of nodes on which the scope s is mappable. A
scope s is mappable on a node n ∈ N if, and only if, the following applies:

• Constraint (5.2) defines that the node n has a free resource for each place
p ∈ P j

s in scope s of type j.
∀j ∈ T , |P j

s |+ |Rj
n| ≤ cardj(n) (5.2)

• Constraint (5.3) defines that the node n has a resource of type j for each
ṗ ∈ Ṗ j

s .
∀ṗ ∈ Ṗ j

s , ∃r ∈ Rj
n / URI(ṗ) = URI(r) (5.3)

• Constraint (5.4) defines that the node n has enough hardware memory to
contain the places of scope s.∑

j∈T
size(P j

s) ≤ size(n)− size(Rn) (5.4)

�Definition 5.4.
A Service Choreography (SC), defined by its set S of scopes, is not mappable if
one of its scopes is not mappable, due to its multiplicity:

∃s ∈ S, |Ns| < Ms (5.5)

�Definition 5.5.
The set of scopes that can be mapped on the node n is denoted ∀n ∈ N,Sn ⊆
S. �

5.3.3 Pseudo-Boolean Optimization
The PBO minimizes a pseudo-Boolean function under a set of pseudo-Boolean
constraints expressed by equations or inequations. The best SC mapping associates
the places of the scopes with the available resource spaces on the nodes in order
to minimize network load over the WSAN.
Definition 5.6.
The mapping of the scope s ∈ S onto its possible hosting nodes in n ∈ Ns is
denoted by the Boolean vector xns . The set X then determines the mappings of
all scopes among their possible hosting nodes.

∀s ∈ S,∀n ∈ Ns : X = {x0
0, x

1
0..., x

0
1, x

1
1, ..., x

n
s}

In turn, Eq. (5.6) resumes the total number of Boolean literals for the PBO,
such as the number of possible mapping permutations on the nodes.

|X| =
∑
s∈S
|Ns| (5.6)

�

82 Chapter 5. Service Choreography Deployment

5.3.3.1 Communication Cost Function

The cost function z(X) evaluates the impact of the mappings X on the network
communication load. The pseudo-Boolean optimization (PBO) solver determines
the best combinations of scopes and nodes among the set X of permutations
in order to minimize the communication costs between the linked scopes. The
communication cost of SC mapping is defined, for example, as the sum of its scope
link costs c(s1, s2), defined in Eq. (5.1), multiplied by the network distance d(n, n′)
between their respecting hosting nodes. Then the pseudo-Boolean function of
general WSAN communication costs, which must be minimized, is defined in Eq.
(5.7).

z(X) =
∑
s1∈S

∑
n∈Ns1

∑
s2∈S

∑
n′∈Ns2

c(s1, s2)d(n, n′)xns1x
n′

s2 (5.7)

5.3.3.2 Constraint Set

The minimization of the function z(X) is constrained by the following set of
(in)equations to define available mappings of the SC.

• Constraint (5.8) defines that each scope must be mapped several times
according to its multiplicity parameter Ms.

∀s ∈ S :
∑
n∈Ns

xns = Ms (5.8)

• Constraint (5.9) forces the mapping of linked scopes to have a network
route between their hosting nodes. If there are communications between s1
and s2 (c (s1, s2) > 0), they can be mapped respectively on n and n′ if, and
only if, d(n, n′) ≥ 0.

∀(s1, s2) ∈ S2,∀n ∈ Ns1 ,∀n′ ∈ Ns2 :
c(s1, s2)d(n, n′)xns1x

n′

s2 ≥ 0 (5.9)

• Constraint (5.10) defines that the total available resource space required by
all scopes mapped on a node n does not exceed its capacity.

∀n ∈ N,∀j ∈ T :
∑
s∈Sn
|P j
s |xns ≤ cardj(n)− |Rj

n| (5.10)

• Constraint (5.11) limits the total memory usage by the mapped resources
on a node to its available hardware memory.

∀n ∈ N :
∑
s∈Sn

∑
j∈T

size(P j
s)xns ≤ size(n)− size(Rn) (5.11)

5.4. Experimental Results 83

5.4 Experimental Results
This experimental section presents results regarding mapping complexity and the
execution time of deployment agents. Firstly, the number of constraints for the
pseudo-Boolean optimization (PBO) problem is evaluated according to the size
of the Service Choreography (SC) and the Wireless Sensor and Actor Network
(WSAN). The second section evaluates the deployment agent execution for the
service discovery mechanism over the Active Resource Middleware (ARM). Based
on these results, deployment strategies are discussed in order to determine best
practice concerning SC mapping and its deployment on an EMMA framework.

5.4.1 Dining Philosopher Mapping
The dining philosopher mapping process is a classical problem faced by distributed
systems in terms of synchronization issues within concurrent resource access. In
the case of a smart home under an energy contract with power delivery limitations,
the different appliances must not simultaneously consume electricity. Therefore,
they must be scheduled. One distributed approach involves each appliance
negotiating permission with the others to be turned on. For example, the electric
car and the hot water tank alternate their scheduling.

Figure 5.4 presents the functional design, while Figure 5.5 presents its mapping
on the EMMA framework of a Petri network involving dining philosophers, as
detailed in [HV+87]. Each appliance is represented by a philosopher and then a
scope. They must exchange energy tokens in order that an appliance can consume
energy, provided it has the tokens of the other appliances, which should not be
turned on simultaneously.

The purpose of this experimentation is the evaluation of the resolution time
of the mapping process according to the number of scopes and nodes. Figure
5.6 illustrates the number of generated constraints, which depend on the literals
xns ∈ X. They increase linearly and, in the main, according to the number of
nodes, whereas the number of scopes has a lower impact. Figure 5.7 shows that
the resolution time increases drastically according to the number of nodes, which
is an expected result, such that the Knapsack problem is NP-complete.

Hence, the mapping process can be performed simultaneously for a lot of
Service Choreographys (SCs), but only on a WSAN partition, which limits
the number of nodes. This limitation is not particularly punitive because the
deployment process is already partitioned by the composed agents.

Setup This experimentation has been realized with the PBO solver, based
on an SAT4J framework on processor 4 cores at 2.2 GHz with multi-threading
support and 8 GB of RAM memory. After several experimentations, available
RAM memory for a Glucose solver seems to be the major factor on the resolution

84 Chapter 5. Service Choreography Deployment

time.

Figure 5.4 – Petri network of dining philosophers in an emma-design tool.

Figure 5.5 – Dining philosopher mapping in an emma-design tool.

5.4. Experimental Results 85

nodes
scopes

0

50

100

#
 c

o
n
s
tr

a
in

ts

150

200

250

300

20
30

40
50

10
0

40
60

80
100

0
20

Figure 5.6 – Number of constraints according to the number of scopes and nodes.

nodes
scopes

0

20

ti
m

e
 (

s
)

40

60

80

20
30

40
50

100

10
0 0

20
40

60
80

Figure 5.7 – Mapping resolution time according to the number of scopes and
nodes.

86 Chapter 5. Service Choreography Deployment

5.4.2 Deployment Evaluation
EMMA agents allow the deployment process to be performed by three different
approaches: direct deployment, composed deployment and self-deployment. Direct
deployment is the common approach in most contributions for SC middleware.
However, it produces significant network congestions around routers in a deep
network because all deployments are transmitted from the supervisor. The below
results compare the two proposed strategies by EMMA between a self-deployment
Agent 4.3 (Figure 5.11) and a composed agent 4.1, as defined in Section 4.3.1.3
(Figure 5.10), deployed on a 14-hop network, as illustrated in Figure 5.9. The
experimentation evaluates the deployment of the service and network discovery
mechanism. Figure 5.10 prints the deployment time D as equal to the agent
writing time W to store the agent contained in a payload of size P , transmitted
in T ms to the node and executed in L ms on it. As the agent execution is
processed en bloc, transmission time for the deployment agent i is equal to
the total transmission time less the writing time on the next node, which is
summarized in Eq. (5.12).

D(i) = W (i) + (T (i)−W (i+ 1)) + L(i) (5.12)

This figure shows the impact of cumulated agent overhead along the deployment
path. For each node, the deployment agent contains SC agents and the composed
agents for the next node. This strategy is interesting in terms of delegating
the deployment process to particular nodes over WSAN areas. Hence, several
deployments can be performed simultaneously without any interference between
them. The peer-to-peer communications between the supervisor and the nodes
are resumed on the transmission of the deployment agents. In turn, all other
communications for the deployment process are local and, therefore, without a
long communications path. However, the important overhead produced because
of the agent composition can be avoided in case of the redundancy of the SC to
deploy. Figure 5.11 presents the deployment of a self-deployment agent, which is
broadcast over the WSAN. It deploys the SC on the node on arrival before moving
onto the next nodes. Its use is very interesting in relation to the deployment of
SCs on several nodes, such that its constant overhead is low regarding contained
SCs. However, the deployment of numerous different SCs implies that the payload
is very large. Hence, self-deployment is efficient for the installation of common
SCs on initialization in order to avoid redundant compositions, whereas composed
deployment is used for resource deployment delegation to a local node in the
WSAN area of interest.

Setup The different results have been experimented on using a COOJA sim-
ulator, with an Atmel AVR Raven board composed of an IEEE 802.15.4 radio
transceiver and an ATmega1284PV 8-bit microcontroller at 8 MHz with 16 kB of
RAM and 128 kB of flash memory.

5.4. Experimental Results 87

Figure 5.8 – Self-discovering agent deployment in the emma-cooja tool.

Figure 5.9 – Composed agent deployment in the emma-cooja tool.

88 Chapter 5. Service Choreography Deployment

Figure 5.10 – Composed agent deployment time in a deep network.

Figure 5.11 – Self-deployment agent deployment time in a deep network.

5.4. Experimental Results 89

5.4.3 Deployment Strategy
Previous results have shown that the mapping problem complexity increases
exponentially with WSAN size, while the composed agent overhead limits its
capacity to deploy several Service Choreographys (SCs) simultaneously. Therefore,
the deployment process must be performed for each WSAN partition and for each
SC. The supervisor must schedule SC deployment to avoid network congestion
and reduce mapping process complexity. All nodes require identical SCs, such
as service discovery and system log collection, which can be deployed by a self-
deployment agent. It does not require offline mapping;moreover it consumes free
resources on the node, which reduces mapping this is combinatory for others’ SC
mapping.

1. On WSAN initialization: The network topology and node resources are
unknown, while all bandwidth is available. The supervisor should deploy
all SCs with a secure NodeKeys.

(a) Self-deployment agents are sent by flooding in order to deploy inde-
pendent SCs to the nodes, especially service discovery agents.

(b) The mapping resolution of SC templates on available free resources
according to the received resource lists from the service discovery
agents.

(c) Generation of Dynamic Network Agents (DNAs) to deploy Residual
Network Agents (RNAs) with the NSKeys.

(d) Scheduling of DNA transmission to manage the network load according
to SC dependencies and their spatial localities.

2. During WSAN running time: SCs are already deployed and running on the
ARM; new deployment should not disturb these SCs.

(a) The mapping preprocessor adds new SCs to the current mapping.
(b) RNA generations for fewer disturbances according to the simulator.
(c) Scheduling DNA transmission to control the network flow.

3. For local Corrections: The target node is not accessible from the edge router
and there is no free resource to host the delegation of the composed agent
for deployment.

(a) The supervisor (on a mobile device) moves spatially in the node area
to obtain network access.

(b) The supervisor collects information and applies deployments or correc-
tions directly through COAP Web services with the NodeKey.

90 Chapter 5. Service Choreography Deployment

5.5 Summary
This chapter has presented, in detail, how to design and deploy services on an
Environment Monitoring and Management Agent (EMMA) system. Based on
functional design descriptions, these templates are instantiated and mapped
according to Wireless Sensor and Actor Network (WSAN) specifications. The
mathematical background has revealed that the Service Choreography (SC) graph
can be mapped onto the WSAN topology by a pseudo-Boolean optimization
(PBO) formulation. The EMMA system offers several ways to deploy, such a SC
graph over a WSAN. Although the traditional approach by direct transmission
to a node is possible, its use is, at least, inefficient and, at worst, impossible
in large-scale networks. Two other approaches use the flexible language of an
Active Resource Middleware (ARM) to design SCs to deploy SCs. The first one
uses some temporary nodes to delegate the responsibilities of SC deployment
by a composed agent. The other one uses mobile agents, which move across
the WSAN to deploy SCs according to node requirements. The experimentation
section concludes that all of these approaches have limitations and advantages.
The proposed deployment procedure uses all of them according to the WSAN life
cycle and constraints.

The impact of the EMMA system for service choreography over a WSAN
is in relation to its interaction model. Firstly, it is a new paradigm in which
services are completely abstracted from the WSAN. If common middleware
provide hardware and network abstractions, an ARM is itself abstracted through
a resource tuple. Secondly, this framework facilitates collaborative working
between specialists through three levels of tools. Manufacturers use emma-node
software to build their smart objects without considering future usages. Services
served by the WSAN are designed through functional templates by software
engineering experts. They use emma-design-tools, which do not require any
knowledge about electronics or networks, allowing them to connect the WSAN
to external internet services. Meanwhile, network administrators can deploy
new services over a WSAN without considering SC implementation or node
hardware. They can use the emma-network-analyzer to compare the network
behavior prediction of emma-design-tools and real network monitoring through
Simple Network Management Protocol (SNMP) interfaces. Finally, the totality
of the EMMA system has been designed with privacy and security considerations
at each level, from the Internet backbone to the resource level. All data stay
contained inside the WSAN in which they are processed in order to address data
privacy and security.

Part III

Toward Neural Intelligence

Chapter 6

Artificial Neural Controller1

Enseigner c’est apprendre deux fois.

To teach is to learn twice.

Joseph Joubert [Jou66]

Contents
6.1 Introduction . 94

6.2 Neural Control Architecture 95

6.2.1 Preliminary Analysis . 95

6.2.1.1 Artificial Neural Networks 95

6.2.1.2 Classifier Learning Complexity 97

6.2.2 Agent Model . 100

6.2.2.1 Behavior Classifiers 101

6.2.2.2 Controller Scheduling 102

6.2.2.3 Behavior Online Training 103

6.3 Knowledge-Based Training 104

6.3.1 Training Data Generation 105

6.3.2 Inferred Knowledge Transfer 106

6.4 EMMA System Integration 107

6.4.1 Controller Service . 108

6.4.2 Service Choreography . 109

6.4.2.1 Local Control 109

6.4.2.2 Remote Training 109

6.4.2.3 Initial Deployment 109

6.5 Summary . 110

1Published in Clement Duhart and Cyrille Bertelle. “Methodology for Artificial
Neural controllers on wireless sensor network”. In: IEEE Conference on Wireless Sensors
(ICWiSE). 2014, pages 67–72. doi: 10.1109/ICWISE.2014.7042663

http://dx.doi.org/10.1109/ICWISE.2014.7042663

94 Chapter 6. Artificial Neural Controller

6.1 Introduction
Applications of Artificial Neural Network (ANN) [PSY88] on WSANs have re-
cently emerged to define a new concept of Neural Wireless Sensor Networks
(NWSNs). This has been formulated due to the similarity of these applications’
graphic structures, which are jointly used to address complex issues [KFV11],
such as the design and deployment of networks, localization, data aggregation
and sensor fusion, energy-aware routing and clustering, scheduling, security and
quality of services. Some implementations have demonstrated the technological
suitability for deploying ANN on constrained hardware [Far+05], which allows
real use cases to be validated, such as real-time forest fire detection [YWM05] or
geolocalization in a grid [SZM07]. These applications use detection techniques
relating to faults or unusual events [MS08; KD05] in complex distributed sensory
systems addressed by a multilayered perceptron (supervised model) or an ART
neural network (unsupervised model). Moreover, an ANN is used to optimize
communication bandwidth in a WSAN [PA08; HZM09] by defining efficient cluster
heads, data aggregation or parallel pattern recognition [KM04]. Indeed, fault tol-
erance is usually addressed by system redundancy, which increases infrastructural
complexity. Noteworthy studies, however, have demonstrated that an ANN has
the ability to correct incomplete or corrupted input patterns through an artificial
recurrent neural network, such as the Hopfield model [OM06]. Based on data
pattern recognition studies [Tei+14], new investigations have been conducted,
which capture human behavior patterns in smart home system designs [BH06].
This chapter deals with the methodology to control actuators according to cap-
tured human behavior patterns. On the one hand, these patterns are learnt by
recurrent neural networks, which can learn stochastic nonlinear systems [BB11].
On the other hand, the control system is ensured by using control theory studies
of nonlinear dynamic systems [LN93; SSU94]. There are several motivations
for using NWSNs in smart home information systems, such as load-balancing
for bandwidth reduction and local data processing. Another very important
motivation is the ability of an ANN to encode and compress the information in
its weighted matrix in order to make it unreadable. This is helpful for security
reasons, such as in password encryption [BB11] or in the case of EMMA, in terms
of maintaining secret system functioning rules.

This chapter proposes agent-based architecture for extracting human behavior
patterns in an object-centric approach. Each object learns how to drive its
outputs according to its use by humans during the training phase. The proposed
architecture for Artificial Neural Controller (ANC) [PSY88] uses neural classifiers
for output control. After preliminary analysis, Section 6.2 presents an agent
model based on ANC for managed environment control. Section 6.3 discusses
the methodology behind neural behavior learning and symbolic rule inference for
knowledge transfer. Finally, Section 6.4 looks at how ANC is implemented in
relation to an EMMA service component.

6.2. Neural Control Architecture 95

6.2 Neural Control Architecture
In Internet of Things (IoT) applications, connected objects must adapt their
behavior according to their running environment. Such managed environments
can be unknown, open, dynamic and complex. Insertions of new objects or failures
in the system can introduce uncertainty and incompleteness. Unfortunately, the
behavior of humans in these environments cannot be easily modeled with concise
mathematical expressions. More complex theories, however, are used to filter
these inputs, such as fuzzy logic, possibility or probability models. The proposal
investigates the potential for learning environment controls to use statistical
neural classifiers. Operations performed by humans on actuators are learnt by
Artificial Neural Network (ANN) according to the input state of sensors and
actuators. Hence, there is no more requirement placed upon environment models.
Such controllers are adaptive according to human behavior in a given environment.
When system goals (energy saving, comfortable mode etc.) are evolving, object
agents must adapt their behavior. Therefore, it must learn behavior for each
system functioning mode, which is known as context.

6.2.1 Preliminary Analysis
Preliminary analysis evaluates the feasibility to learn all agent behaviors in a single
Artificial Neural Network (ANN). Based upon experimentations with several sets
of generated data, the size of learnt classifiers does not allow their execution by
EMMA target devices. Hence, behaviors that split into several classifiers are
investigated.

6.2.1.1 Artificial Neural Networks
An ANN is a learning technique to approximate control functions between output
and input vectors. There are numerous models that can be used according to
learning interests, such as delayed neural networks [LS07] for periodic functions
or recurrent neural networks [PA08] for stochastic processes. The most used
is an Multi-Layer Perceptron (MLP), which is a feedforward model in which
all neurons are interconnected to join input and output layers by an acyclic
directed graph. The universal approximation theorem [Csá01] proves that an
MLP can approximate any continuous function, which associates input to output
real number intervals for restricted classes of activation functions. Each of its
intermediate neurons is equal to the weighted sum of the input neurons to compute
the output through its decision function. The learning process determines these
weight values in order to provide the right output (called a class) for a given
input vector. Different algorithms are available, of which the most used is called
the gradient descent algorithm by backpropagation. The algorithm 6.1 details
the computation of output errors to update weight values by propagating the
differential error on intermediate neurons layers.

96 Chapter 6. Artificial Neural Controller

In lighting applications, an Artificial Neural Network (ANN) must drive lights
to maintain user brightness preferences. According to sensory inputs, it must
decide whether to change luminosity. An ANN should learn transition functions
in order to change the environment, as well as invariant functions when the
system state is suitable. The set of actuator values is denoted U = {u0, ..., uM}
and the set of sensor values is denoted S = {s0, ..., sN}. At time t, the context
state C(t) = U(t) ∪ S(t) evolves in line with unknown control function gi, which
can either be an invariant function or a transition function, learnt by the ANN
to compute the next actuator vector U , as in Eq. (6.1).

ui(t) = ANNi(uM (t− 1), ..., ui(t− 1), ..., u0(t− 1), sN (t− 1), ..., s0(t− 1)) (6.1)

MLP output prediction is a forward propagation of the information sample
t across all layers in L = {1, . . . , K} that computes new values for each neuron
f = {1, . . . ,M} which composed them until the final output layer is reached.
At the initial step, the first layer is equal to context state vector f t0 = u(t) for
predicting output context state ui(t+ 1) = f tL. To summarize, f tk,j corresponds
to neuron activation j in layer k for sample t, as defined in Eq. (6.2).

f t
k+1,j = F (

M∑
j=1

wk,jf t
k,j + wk,0) (6.2)

Output feedback in an input layer allows an ANN to learn a stochastic process.
The lack of a hidden context layer avoids stability issues for the gradient descent
algorithm in relation to the recurrent neural network, even if it is more practical
and tractable than in Markov chain process applications [Pea95].

Algorithm 6.1: Gradient descent learning algorithm
Data: T
Result: W

1 repeat
2 T i = RandomSelection(T)
3 foreach layer k do
4 foreach neuron j do
5 δj = fk,j(1− fk,j)

∑
l∈dest(j) δkwj,l

6 foreach wl,j from neuron l to j do
7 ∆wl,j = εδjfk,l
8 end foreach
9 end foreach

10 end foreach
11 foreach wi,j do
12 wi,j ← wi,j + ∆wi,j
13 end foreach
14 until i < Imax;

6.2. Neural Control Architecture 97

6.2.1.2 Classifier Learning Complexity
The number of layers and neurons in a classifier defines its complexity. It
depends upon the difficulty in finding a efficient hyperplane in order to separate
each possible output class. In a general way, the power of ANN discrimination
is improved by increasing the size of neuron layers, as well as their numbers.
However, an oversized ANN produces an overtraining effect, which prevents it
from predicting the correct output if inputs are not perfectly accurate. Therefore,
this study evaluates the minimal size needed by an ANN to learn a good classifier.
These results are extended to address questions regarding multi-behavior learning.

According to the complexity of ANNs,
what is the best agreement between one or several classifiers

for the purpose of learning mixed data from different control functions?
Data sets are generated by a random state machine composed of 15 states with

a maximal loop length of 3-hops. The training data set is composed of two million
examples and the printed results are produced by a test data set of 500 examples.
The value ranges of the states are bounded between continuous intervals [−1; 1].
Linear and quadratic transition functions are respectively evaluated in Figure
6.1 and Figure 6.2. Figure 6.3 presents a mixed data set of linear and quadratic
functions. These figures present the error rate for the test data set according to
the number of layers 1 to 5, the number of neurons by layer between 10 to 110 by
steps of 20, and the learning rate ε as multi-curves (0.01, 0.001 and 0.0001).

Table 6.1 – ANN complexity synthesis

Data Type #Neurons #Layers ε Error
Linear A 10 1 0.01 0.06

Quadratic B 70 2 0.01 0.09
Both A+B 100 5 0.001 0.08

Table 6.1 summarizes the minimal size of an ANN for a given prediction
error threshold in relation to test examples. The function of a linear transition
requires a small number of neurons on a single layer, whereas quadratic data
generation requires 14 times more neurons. The combination of these two kinds of
transition function requires many more neurons (500 neurons) to predict output
with the same error rate. Currently, there is no rule in the literature review that
determines ANN complexity according to the input data structure. The general
conclusion is not obvious; however, it is assumed that the parallel use of several
classifiers consumes fewer neurons than a unique one. Given that EMMA nodes
have memory and computation limitations, a multi-classifier model is preferred.
For each different behavior, the minimal size of classifier is determined empirically
by a trial and error approach. During the runtime, the classifier with the lower
error rate, according to the input, is selected in order to drive output layers of
actuators, as illustrated in Figure 6.4.

98 Chapter 6. Artificial Neural Controller

neurons

0.8

1

20
40

60
80

100

0

0.2

0.4

E
rr

o
r

R
a

te 0.6

0 0
1

2
layers

3
4

5

Figure 6.1 – ANN complexity for linear transition functions.

neurons

1

20
40

60
80

100

0

0.2

0.4

E
rr

o
r

R
a

te 0.6

0.8

0 0
1

2
layers

3
4

5

Figure 6.2 – ANN complexity for quadratic transition functions.

6.2. Neural Control Architecture 99

neurons

0.8

1

20
40

60
80

100

0

0.2

0.4

E
rr

o
r

R
a

te 0.6

0 0
1

2
layers

3
4

5

Figure 6.3 – ANN complexity for mixed transition functions.

Figure 6.4 – Scheme of a multi-classifier ANN.

100 Chapter 6. Artificial Neural Controller

6.2.2 Agent Model
The previous experimentation has shown the suitability for correctly predicting
the subsequent states using learning classifiers. As input vectors generated by
multiprocessing are more difficult to learn, the use of a single ANN is not desirable.

Definition 6.1.
ANC agent A is a process for selecting the best ANN classifiers for the purpose
of controlling an output vector according to an input vector. �

The controller selects the best of the classifiers according to the successive
success rate on a current input stream, as illustrated in Figure 6.5. It is assumed
that, if the agent control is not suitable, humans will correct the actuator states.
Therefore, human interaction produces a prediction error for the current agent
classifier. There are two scenarios in this case: an agent does not know this
environment behavior and has to learn it; or the current classifier must be
corrected. Both scenarios are similarly managed. If the agent does not have the
proper classifier (periodic errors), it starts a new learning process. According to
error frequency, the agent decides between the creation of a new classifier and
the update of the current one. In turn, the learning process is based on data
production using manual control by humans in relation to environment actuators.
Given the lack of captured data from real use examples, three kinds of transition
function are used:

• Counting concerns an incremental state data series up until value 32 to
demonstrate prediction suitability in the Markov chain process.

• Fibo is the famous Fibonacci data series up until value 32 to validate the
examples of complex input-output relations.

• Custom data series involves a random state machine of 32 states.

Figure 6.5 – Model overview of an ANC

6.2. Neural Control Architecture 101

6.2.2.1 Behavior Classifiers

Definition 6.2.
The behavior classifier b ∈ B is a transition matrix of a finite N state machine of
the input vector u, encoded in the weight matrix W for Artificial Neural Network
(ANN), such as:

∀t ∈ N, | b(u(t))− u(t+ 1) | < ε with ε << 1

�
A set of behavior classifiers represents agent knowledge to drive output

according to the input data stream. As previously discussed, the learning process
is a difficult challenge to determine minimal ANN complexity for a fixed prediction
error rate. Therefore, a trial and error algorithm is used to explore possible
combinations of neurons, layers and learning rates. Figure 6.6 presents the results
of a classifier that learns the counting transition function that is encoded into a
binary vector. Input samples of Figure 6.6 (a) are used to train the ANN. The
algorithm progressively increases the number of neurons until that target of the
error rate is reached, as illustrated in Figure 6.6 (c). Each step is evaluated with
100 input noise samples shown in Figure 6.6 (b), while the corresponding classifier
response is shown in Figure 6.6 (d). These figures show that, with fewer than
eight neurons, the behavior classifier do not succeed in counting up to 32.

0 50 100 150 200 250 300 350
2

4

6

8

10

12

14

16

(a) Ordered Input Data X

0 200 400 600 800 100012001400
0

5

10

15

20

(b) Input Player u(t) (with additional 0.2 noise)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

(c) Error Rate according #neurons

0 200 400 600 800 100012001400
2

4

6

8

10

12

14

16

(d) Output Learning Player u(t+1)

Figure 6.6 – Behavior classifier learning result.

102 Chapter 6. Artificial Neural Controller

6.2.2.2 Controller Scheduling

Controller scheduling evaluates which behavior classifier is the best for controlling
outputs. Each classifier computes its outputs according to the input stream.
Based on its predictions and the next occurring state, the preference index used
for arbitration is built according to its success rate counter.

Definition 6.3.
The schedulability of behavior classifiers is determined by the agent ability to
possess classifier b ∈ B for input stream u(t) of N states with a cumulative success
rate that is greater than M, such that:

∀t ∈ N,∃b ∈ B / ∀j ∈ [t−M ; t], | b(u(j))− u(j + 1) | < ε with ε << 1 (6.3)

�
Figure 6.7 illustrates the behavior classifier scheduling according to the input

of Figure 6.7 (a). Each of the three classifiers tries to predict the next state, while
their error in relation to each sample is plotted in Figure 6.7 (b). According to
their cumulative success rate for the definition in Eq. 6.3, a preference order of
classifier is found in Figure 6.7 (c), with the purpose of selecting the best one for
the current input data. It can be observed that several behavior classifiers can be
matched; however, only those with the greater success cumulative rate can be
scheduled, as illustrated in Figure 6.7 (d).

0 200 400 600 800 1000
0

5

10

15

20

(a) Input-Output Data
counting fibo noise counting fibo custom counting fibo noise custom

0 200 400 600 800 1000
0
2
4
6
8

10
12

(b) Behaviours predictions Errors

0 200 400 600 800 1000
0

1

2

3

4

(c) Behaviours Preference Order

0 200 400 600 800 1000
0

1

2

3

4

(d) Behaviour Scheduling

Figure 6.7 – ANC scheduling player example

6.2. Neural Control Architecture 103

6.2.2.3 Behavior Online Training

If Eq. 6.3 is not satisfied, the ANC is not able to properly drive the output vector.
An unpredictable input stream means that there is no selected behavior classifier,
while a new one must be trained. At ANC initialization, there is no behavior
at all because it is a new environment with unknown human usages. Therefore,
input stream recording starts until the learning buffer is full or the input stream
becomes predictable again. In turn, the ANC creates a new behavior classifier,
which is trained with recorded data.

Figure 6.8 shows an ANC containing only one behavior at the beginning (red
line). As initial counting of the input signal is not predictable, ANC creates a
new classifier, which is successfully used later. The same operation is observed
for custom input data. In the end, each input stream is properly controlled by
an ANC. Interesting results appear when the input stream changes during new
classifier training. The ANC creates a general classifier for this mixed input
stream, before creating specialized ones. Classifiers are refined until the definition
Eq. 6.3 is satisfied. An analogy can be observed with human behavior, which tries
to learn a complex process. It then tries to learn globally before it understands
that it is composed of different subprocesses. Hence, the initial learning process
is split into several iterations of learning that involve independent training.

0 200 400 600 800 1000
0

5

10

15

20

(a) Input-Output Data
counting fibo noise counting fibo custom counting fibo noise custom

0 200 400 600 800 1000
0
2
4
6
8

10
12

(b) Behaviours predictions Errors

0 200 400 600 800 1000
0

1

2

3

4

(c) Behaviours Preference Order

0 200 400 600 800 1000
0

1

2

3

4

(d) Behaviour Scheduling

Figure 6.8 – ANC behavioral online training

104 Chapter 6. Artificial Neural Controller

6.3 Knowledge-Based Training
An Artificial Neural Controller (ANC) learns statistically desired output controls
according to its input states and current environment context. From behavior
learning to scheduling, the suitability of an ANC is validated for mixed output
controlling. However, classifier training requires a lot of learning examples for all
possible states. The collection of such data is often very difficult, while desired
ANC behavior is fully known. Knowledge-based training is proposed to generate
behavior classifiers based on logical descriptions, which are similar to the KBANN
system [TS94]. Rules are used to generate training data, which are mixed with
recorded ones from human behavior captures. Hence, uncaptured states during
recording phases are also trained with a default behavior. In addition, the inverted
process of associative rule extraction from behavior classifiers allows knowledge
to be transferred between ANCs. All steps in an ANC training process are
summarized in Figure 6.9. The first three concern behavior classifier training
and logical rule inference for knowledge transfer. Classifiers are then deployed
and executed on an Active Resource Middleware (ARM). The black arrow loop
corresponds to previously presented behavior classifier learning processes, whereas
dashed arrows concern training data generation and logical rules inference.

Figure 6.9 – Methodology process for ANC behavior training.

6.3. Knowledge-Based Training 105

6.3.1 Training Data Generation
Statistical data generation for classifier training consists of building input vectors
(composed of sensors and actuator states), which are associated with desired
output vectors (future actuator states). Behavior classifiers are finite states
machines encoded in an Artificial Neural Network (ANN) to manage uncertain
transition state values. There are numerous forms for modeling such behaviors;
examples include Markov chains and probabilistic finite state machines. However,
decision trees are more practicable for agent-based approaches. An Artificial
Neural Controller (ANC) is considered as an autonomous decision maker which
must learn the best policy (a set of coupled state decisions). The state vector is
composed of sensor and actuator values. They can be stationary or transitional.
Indeed, the loop control between the ANC and the managed environment is
continuously executed. The managed environment evolves in relation to the
actuator effects in reaching a new state. If this state is suitable, the ANC
must maintain the same output vector at which to stare. Therefore, on the one
hand, behavior classifiers must be trained for transition conditions to change the
environment state, while, on the other hand, it must learn not to change the
control outputs when the managed environment is in a suitable context.

Finally, while any formalism can be used, it allows a couple of input-output
vectors to be generated for each possible value of sensors and actuators, as
illustrated in Figure 6.10. The generated data set must be blended and equally
distributed to avoid classifier specialization in relation to particular states. Indeed,
they would experience overtraining effects instead of an uniform error rate for each
reachable state. Noise addition on input-output vectors during training increases
fault tolerance for uncertain values produced by actuators or sensors. However,
experimentations has shown that it can inversely increase learning complexity.

Figure 6.10 – Statistical data generation based on logical rules.

106 Chapter 6. Artificial Neural Controller

6.3.2 Inferred Knowledge Transfer
Training data generation helps experts to build behavior classifiers by providing
associative rules between input and output vectors. In the previous section, some
statistical considerations were discussed to ensure efficient learning for all states,
which were represented by generated data. This allowed classifier behavior to be
prepared offline with logical descriptions.

Knowledge transfer is discussed in terms of sharing human behavior captures
between different ANCs. knowledge transfer studies for Artificial Neural Network
(ANN) is an emphasized and very difficult research scope because of the neural
encoding state representation. The common approach is the use of common
hidden layers between ANN [DAG99]. Its application for multilingual structural
transfer has been validated [Hua+13]. However, this kind of knowledge transfer
implies similar neural topologies, which are not necessarily available in relation to
the concerned ANC. Indeed, according to the input, ANC complexity is different,
given the number of neurons and layers. Therefore, the literature review does
not provide solutions for direct knowledge transfer at the neuron level. Others
approaches consist of extracting knowledge to an external symbolic representation
space, as illustrated in Figure 6.11. Based on generated data by the classifier,
associative rules are inferred. Instead of transferring encoded knowledge between
ANN, it is extracted by playing all possible input values in order to generate
corresponding outputs. Therefore, associative rules inference algorithms are
applied to extract data structural models, such as CHARADE [Gan87] or A-Priori
[AS+94]. Several contributions exist in relation to the desired structural model,
such as the finite state machine [Cas96] or associative rules [TS93]. However, the
transition from a statistical to a symbolic space requires the literal definition
for representing a continuous value by a discrete symbol. Implementation, in
this thesis, is concerned with literals that are created for each value of each
sensor. Therefore, the number of literals increases exponentially, whereas fuzzy
logic is mostly used to reduce this combinatorial problem in corresponding data
transcoding (it has not been investigated).

Figure 6.11 – Knowledge extraction for associative rules’ inference.

6.4. EMMA System Integration 107

6.4 EMMA System Integration
Artificial Neural Controller (ANC) integration in an EMMA framework can be
performed by several approaches. One approach directly deploys an Artificial
Neural Network (ANN) over Active Resource Middleware (ARM) resources. Each
neuron is represented by a resource and connected by agents. A feedforward
computation flow is performed by agent activations, which compute new target
neuron values. This connectionist implementation has an important cost in
relation to network communication, computation and memory storage. It can be
used only for small sizes of a single-layered ANN (less than five neurons), such
as a linear control of an actuator. For ANC, which requires a lot of neurons, as
previously studied, there is another approach that consists of the use of ARM
service components. ANC is encapsulated within them in order to execute all
computations at a low level of execution instead of the agent interpreter service.

This section, which presents an ANC service component and its integration in
an ARM. ANC framework, is separated into two parts. ANC runtime mechanisms
are executed on nodes, whereas behavior classifiers are built remotely on the
supervisor platform. Service choreography between nodes, in order to drive online
actuator resources and behavior classifier deployment for the training phase, is
performed by ARM agents.

Figure 6.12 – ANC component implementation on an ARM

108 Chapter 6. Artificial Neural Controller

6.4.1 Controller Service
ANC is encapsulated in the service component to select the best behavior classifier
according to its cumulative success rate of output prediction. Table 6.2 provides
a set of resources produced by an ANC component. It is composed of:

• Behavior register, which contains the weighted matrix for all ANN that are
remotely trained and deployed by the supervisor.

• Out resource, which provides the output vector for the ANC that is con-
nected to the control actuator resources by the ARM agents.

• Behavior resource, which provides the current selected behavior ID and a
manual interface to change the current behavior classifier.

• Record resource, which is an input data storage when stored behavior
classifiers are not efficient to properly predict correct outputs.

The feedforward function of Eq. (6.2) is executed for each stored behavior
classifier at each input event. According to the current input vector and its
previous predictions, its cumulative success counter is incremented or decremented.
According to Eq. 6.3, the ANC decides whether to update the resource with the
prediction vector of best behavior classifiers or to store input data in the record
resource for new classifier training. It should be noted that behavior classifiers
can have different input vectors; however, the output vector has to be the same
(and should be a part of all input vectors).

Resource URI Methods Description
/ANC/out GET Output vector
/ANC/behavior GET/PUT Current behavior used
/ANC/record GET/PUT Last input stream record
/ANC/Bx GET/PUT/POST/DELETE Behavior classifiers

Table 6.2 – Resource list of ANC services.

The ANC service component has a very lightweight implementation because
it simply contains the feedforward function and selector. Storage functionalities
are already provided by the Contiki OS. Hence, memory footprints in Table 6.3
are very small and efficient for the microcontroller target.

Modules RAM Program memory
emma-anc 561 B 11,635 B

Table 6.3 – Memory footprints of an ANC service on the Contiki OS.

6.4. EMMA System Integration 109

6.4.2 Service Choreography
ANC Service Choreography (SC) is required to establish local control links
between actuators, sensors and an ANC, as well as deploying behavior classifiers.
Obviously, the training mechanisms are not executed directly on the nodes due
to their computation limitations. Even if the training processes are delegated to
the supervisor, the classifiers are installed and executed on the node, such as in
relation to Service Choreography (SC) that are published over ARM resources.

6.4.2.1 Local Control

Local control links provide input vectors to behavior classifiers and transmit
control outputs to actuator resources, as illustrated in Figure 6.12. For efficient
implementation reasons, inputs and outputs of an ANC are vectors, which must be
prepared by agents. Therefore, all input (and also output) resources are buffered
locally on an ANC hosting node. Publish-subscribe agents copy the required
remote resources to temporary local ones. Then, each of them is aggregated by
another agent to be sent to each behavior classifier input. If they require different
inputs, several aggregator agents are used. Conversely, output vectors are split
into local temporary resources before they are sent to actuator resources in the
proper format. These last transmission agents adapt Constrained Application
Protocol (COAP) requests, while their payload is in relation to the actuator’s
Web service interface.

6.4.2.2 Remote Training

Behavior classifiers are trained on supervisor devices with recorded input data
from nodes. In the current implementation, training algorithms are executed
on Octave. When an ANC cannot control outputs due to the lack of behavior
classifiers, it stores data until such time that the record buffer is full or input data
become predictable again. At which point, these data are pushed onto record
resources whose agents listen in order to transmit them to the supervisor of the
Web service interface. Following new behavior classifier training, the supervisor
creates new behavior resources on the ANC and pushes the learnt weighted matrix.
Hence, it is automatically included in the ANC scheduler.

6.4.2.3 Initial Deployment

Agents are responsible for the connection establishment between resources of
sensors, actuators and the ANC. They perform small processing for data aggrega-
tion, value range adaptation etc. They are also responsible for data collection for
behavior classifier offline training and their deployment in relation to the ANC. All
of these agents are deployable, as presented in Chapter 5, thanks to deployment
agents. Moreover, classifier behavior can be carried out by such agents in order
to be automatically installed on an ANC during the node initialization and the
configuration step.

110 Chapter 6. Artificial Neural Controller

6.5 Summary
The proposed agent-based architecture is a first step towards an Artificial Neural
Controller (ANC) for a smart home system design. Such approaches capture
human behavior by learning about environment usages in order to automatically
drive it. Instead of defining logical rules, which are limited to symbolic terms,
correlations between current input states and the desired next states are extracted
empirically. The proposal focuses on multi-behavior learning when the environ-
ment use is different according to the context, such as single user or multiple
user, comfortable or saving-energy mode etc.). A single statistical classifier is not
suitable for learning about such a situation, although it is possible theoretically.
Therefore, an ANC behavior is learnt separately and selected automatically ac-
cording to the best response in relation to the last input states. Meanwhile, topical
discusses about knowledge transfer are concerned with generating approximative
classifiers by extracting logical functioning rules relating to the management
environment.

The integration on an ARM with an EMMA framework uses agents to delegate
the training phase to a remote supervisor, whereas actuator control is performed
locally, such as in the case of service choreography. Its implementation is suitable
on microcontrollers, but real use cases have not yet been presented due to a
lack of industrial partnership at the beginning of this project. However, these
preliminary implementations show interesting results for the application of such
kinds of technology on home automation. The main limitations concern an
efficient sensory environment for building critical classifiers.

Interesting phenomena appear when there is several instances of context-
switching during the training phase. An ANC firstly learns to be a bad classifier,
which has some success in terms of predictions, but not enough to be eligible, as
in the case of the selected behavior classifier. Hence, it will be replaced by several
new ones, which are more specialized in terms of the different input streams of
each context. In such situations, the ANC learns about its classifiers, just like the
dichotomy approach towards roughly to specialized classifiers. An analogy with
human behavior can be observed when humans learn several things simultaneously.
They will try to address all tasks as much as they can until they discover how to
split jobs into several modes of training.

Chapter 7

Neural Voting Procedure1

Si voter changeait quelque chose il y a longtemps que ça
serait interdit.

If vote changed anything it would have been prohibited a
long time ago.

Michel Colucci

Contents
7.1 Introduction . 112
7.2 Voting Procedure Architecture 113

7.2.1 Theoretical Background 113
7.2.1.1 Preference Model 113
7.2.1.2 Aggregation Process 114
7.2.1.3 Distributed Decision Rules 114

7.2.2 Implementation Arrangements 116
7.2.2.1 Finite Time Convergence 116
7.2.2.2 Multi-Scale Adaptive Accuracy 116
7.2.2.3 Voting Procedure Algorithm 117

7.3 Experimentations . 118
7.3.1 Execution Example . 118
7.3.2 Time Convergence . 123
7.3.3 Alignment Property Discussions 124

7.3.3.1 Veto Policy . 124
7.3.3.2 Byzantine Threat 124

7.4 EMMA System Integration 125
7.4.1 Voting Procedure Choreography 125
7.4.2 Application Scenarios . 126

7.5 Summary . 127

1Published in Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle.
“Lightweight Distributed Adaptive Algorithm for Voting Procedures by Using Network Average
Consensus”. English. In: PRIMA 2013: Principles and Practice of Multi-Agent Systems. Vol-
ume 8291. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pages 421–428.
isbn: 978-3-642-44926-0. doi: 10.1007/978-3-642-44927-7_30

http://dx.doi.org/10.1007/978-3-642-44927-7_30

112 Chapter 7. Neural Voting Procedure

7.1 Introduction

Inside the Multi Agent System (MAS) community, the Consensus Seeking (CS)
problem has been an attractive topic of research for a long time. Recent emphasis
has been on using new approaches through the Network Average Consensus (NAC)
framework. It has been studied initially in relation to Dynamic System (DS)
and Control Theory (CT), particularly in nonholonomic systems, with topics
including synchronization of coupled oscillators, flocking theory, fast consensus,
rendezvous in space or distributed formation control around issues concerning con-
tinuous vs. discrete time consensus and undirected or directed graphs [OSFM07;
RBA07] and references herein. Several contributions have demonstrated the
insensitivity of NAC convergence according to given conditions for noised com-
munication [KM07], time delay with switching topologies [OSM04; RB04; RB05]
and network costs in real applications with communication failures that are
localized in time [KM09; PBEA07]. After robust study, convergence time has
been intensively investigated [HM05] in relation to network topology (regular
lattice, random, small-world [OSFM07; OS05] and free-scale networks [WG08])
to define a performance indicator λ2, known as algebraic connectivity. Finally,
other update schemes are currently studied for finite time convergence [Cor06;
WX10] and the definition of a framework for general function operators [Cor08].
This brief outline is not comprehensive regarding the amount of work on NAC,
but illustrates its possibility for new kinds of distributed algorithms in MAS,
especially for Voting Procedures (VP).

This chapter focuses on preference aggregation to allow a set of agents to
make a common, consistent and unique decision in dynamic and fully distributed
networks with constrained communication capacity. From its good properties
in terms of robustness in relation to switching communication topologies and
transmission time delay issues, distributed data fusion is performed by parallel
NACs. As it has an asymptotic approximation of consensus equilibrium, finite
time convergence is an issue. The proposed Voting Procedures (VP) solves this
with a multi-scale adaptive algorithm to ensure likewise discrete result values.
This kind of algorithm neither requires advanced semantics nor complex exchange
protocols. Moreover, it requires simple mathematical operations, which are easily
performable by microcontrollers. Therefore, its use over a WSAN is investigated
in terms of allowing smart objects to select common system parameters or mode
arbitration, such as comfort or energy-saving. The summary is organized as
follows. Section 7.2 presents Voting Procedures (VP) architecture, as well as the
theoretical background and implementation requirements. Section 7.3 analyzes
its execution according to a number of nodes and choices, along with presenting
a discussion around its alignment property. Its integration in an EMMA system
with examples of possible uses are detailed in Section 7.4. A conclusion and
possible next steps are provided in Section 7.5.

7.2. Voting Procedure Architecture 113

7.2 Voting Procedure Architecture
In terms of Voting Procedures (VP), a set of agents must select the best candidate,
called a profile, by aggregating preferences. The orchestration of decisions over
a Wireless Sensor and Actor Network (WSAN) is undesirable, as discussed
in previous chapters. Therefore, aggregation and decision-making have to be
distributed across the agents in order to guarantee consistency without involving
external mechanisms. Network Average Consensus (NAC) is used as a distributed
aggregation operator, while the proposed algorithm exploits its properties to
define the distributed decision function.

7.2.1 Theoretical Background
The network is defined with topology G = (V,E) in which each agent only
communicates with its neighboring agents Υi = {j ∈ V : {i, j} ∈ E}, which are
inside a range of radius R. It is assumed that communications are symmetrical
and can be performed simultaneously by broadcast. Network agents are randomly
distributed and constrained in their communication capacity, which prevents large
payloads and a multi-exchange protocol.

Each node has its own preference order, which must be aggregated with
those of the other nodes to represent the whole network preference order. The
preferential model uses a utility function to numerically model the preference
order for each node. Each of these utility functions are aggregated by executing
multi-NAC on them to build up an unique aggregated utility function on which
decision rules are applied. This work proposes a distributed algorithm that
guarantees convergence to an unique preference order produced by the consensus.
This allows nodes to take the same decision at the end of the algorithm without
using extra mechanisms to ensure consistency and uniformity of node decisions.

7.2.1.1 Preference Model

The agent community is composed of N nodes, which must select a common
profile from among a set ρ0, ρ1...ρM , of size M , without the centralization of all
node preferences. The preference notation is defined, such that A is preferred
to B by the node i, which is denoted A �

i
B. It is assumed that each node can

define a partial order of its profile preferences, which are modeled by a strictly
monotonic discrete utility function, denoted ui(t), where uij(t) is the utility value
of profile ρj for the node i at time t and u̇ij = lim

t 7→+∞
uij(t).

A profile preference partial order is representative of each node i, where it is
established for all of them, as defined in Eq. (7.1).

∃j/ ∀k, ρj � ρk ⇐⇒ ∃j/ ∀i, k, ρj �
i
ρk ⇐⇒ ∃j/∀i, k, u̇ij > u̇ik (7.1)

114 Chapter 7. Neural Voting Procedure

7.2.1.2 Aggregation Process

The preference aggregation consists of computing the mean value of each profile
utility assigned by each agent in Eq. (7.1). Based on the discrete utility function
ui(0) of each node i, aggregation process builds utility function u̇, which represents
the preferences of the whole network. As this utility function is discrete, the
aggregation process can be executed independently on each utility value. The
global aggregation process is composed of a set of elementary aggregations by using
the NAC algorithm [RBA05]. In Eq. (7.2), the M-uple (u̇0, ..., u̇M) represents
the result values of the consensus on each profile j, whose final value u̇j is equal
to the means of the utilities uij(0) weighted by their relevant node importance
wi. Therefore, as the NAC algorithm is a decentralized algorithm, the global
aggregation process is also decentralized because it is composed ofM NAC, which
is executed simultaneously. The NAC algorithm has an asymptotic convergence
with the initial value of a node’s utility by using the gradient descent algorithm
with the error approximation ε.

u̇ = (u̇0, ..., u̇M) = 1
N

∑
wiuij(0) =⇒ ∀i, j|u̇j − u̇ij| < ε (7.2)

The analytic form of the iterative algorithm NAC is remembered in Eq. (7.3)
under the necessary condition of convergence given in [OSFM07] : ∀i, wi <
1
∆ with ∆ = max(#Υi) the graph degree of G and #Υi the degree of vertex i .

uij(t+ 1) = uij(t)− wi
N∑
k=0

(uij(t)− ukj (t)) (7.3)

By applying NAC to each profile, each node obtains the same profile utility
function according to error interval] − ε + u̇; u̇ + ε[produced by the asymp-
totic convergence. Unfortunately, this error interval is unknown and cannot be
computed analytically without full knowledge of the problem data. This theory
limitation is bypassed by using an upper bound function as discussed in Section
7.2.2.1.

7.2.1.3 Distributed Decision Rules

After execution of the aggregation process, the nodes must choose the best
profile. However, NAC has an asymptotic convergence in an infinite time process.
Therefore, the aggregation process cannot converge with the ideal average values
of the utility functions. Some agents may reach a lower value, whereas others
may reach an upper one bounded by ε. According to the convergence error, some
cases cannot be discriminated enough. Consequently, the theorem 7.1 stipulates
conditions under which the interval between utility values is large enough to
choose the elected profile without ambiguity. Otherwise, the definition 7.1 defines

7.2. Voting Procedure Architecture 115

the profile equivalence for ambiguous profile utility values. Therefore, arbitrary
decisions can be made to ensure the unity of the decision for each node.

Theorem 7.1.
If, and only if, there exists a profile utility function u̇ij greater than any other
profile utility function u̇ik over 4ε for any decision makers i estimated by network
average consensus, then this profile is preferred to any other profile by all agents.

∀i, k, ∃j/u̇ij > u̇ik and |u̇ij − u̇ik| > 4ε⇐⇒ ρ = ρi = j (7.4)

�

Proof. Network average consensus converges with the average value u̇ of node
initial value u(0) for any network topology if the convergence rate of the gradient
descent algorithm is limited to 1

∆ with ∆ = max(#Υi) [OSFM07]. The average
value u̇ is unique by definition, such that the set of the utility order ui0(0) >
... > uiM(0) of each node i will evolve to an unique average utility order u̇k >
... > u̇j, k, j ∈ [0, M] according to convergence error ε, which defines an error
interval]− ε+ u̇; u̇+ ε[. Assume that there exists a node, which prefers a profile
j different from the other node preferences. This can happen if, and only if, an
interval error of this preference utility is juxtaposed with another interval error
of another near preference utility:]− ε+ u̇j, u̇j + ε[⋂]− ε+ u̇k, u̇k + ε[6= ∅ with
u̇ij ∈]− ε+ u̇j, u̇j + ε[and u̇ik ∈]− ε+ u̇k, u̇k + ε[. If |u̇ij − u̇ik| > 4ε, using triangle
inequality that]− ε+ u̇j, u̇j + ε[⋂]− ε+ u̇k, u̇k + ε[= ∅. Thus, if a node has a
different preference to the other nodes, its preference utility cannot be spaced
from its other preference utility by more than 4 ε.

Definition 7.1.
Two profiles ρi and ρj are defined as equivalent if the distance between their
estimated aggregated utility value is inferior to 4ε. �

ρj ∼ ρk ⇐⇒ |u̇ij − u̇ik| < 4ε (7.5)

Based on the theorem 7.1 and the definition 7.1, a decision rule for the uniqueness
of a profile is defined, as in Eq. (7.6). The theorem 7.1 guarantees that it is
possible to build a unique aggregated order of preferences, which is representative
of each node’s profile preference where a sufficient discriminant interval exists.
The definition 7.1 defines the equivalence state for partial order. Finally, space
U i is the set of the best equivalent utility on which an arbitrary rule is applied to
select one unique, common, consistent and homogeneous profile ρ.

ρ =
U

i ∈ N / j, k ∈ U i if ∀l, i, ρj ∼
i
ρk �

i
ρl

ρi = min(U i)
(7.6)

116 Chapter 7. Neural Voting Procedure

7.2.2 Implementation Arrangements
7.2.2.1 Finite Time Convergence

The aforementioned theoretical background presents a convergence process under
infinite time. It can also be assumed that it is possible to determine a cone
distance ε around ideal average value u̇j, where each estimated value u̇ij is inside
it. Since each node cannot know the utility values of other nodes, however, it is
impossible for them to know when consensus is reached. The Banach fixed-point
theorem can give a bounded time for reaching convergence with the consensus
because NAC uses the gradient descent algorithm. It has a Q-linear convergence
and is a k-lipschitzienne function, as defined in Eq. (7.7).

|uij(t+ 1)− u̇j| ≤ k |uij(t)− u̇j| , k ∈ [0, 1] =⇒ ε ≤ kn

(1− k) [max(u̇ij)−min(u̇ij)]

(7.7)
Unfortunately, and to the best of our knowledge, there is no analytical method

to determine value k without any knowledge about the network topology (such
as algebraic connectivity λ2) and the initial values of each node. Indeed, based
on the initial value, the Laplacian matrix graph and the algebraic value λ2, it is
possible to determine an upper bounded value of required iterations [Cor06] :
||Luj(0)||2

λ2
, when L is the Laplacian graph.

7.2.2.2 Multi-Scale Adaptive Accuracy

The implementation is limited by hardware accuracy and a finite time requirement.
In this case, the proposed algorithm must refine its equivalence to the definition
7.1 between two utility values and its stop condition. The value ε determines
the maximum error interval for a given utility value for all nodes. Then, after
enough iterations, their equivalence in profile, according to ε and encoding base
q, is defined by Eq. (7.8).

∀i, ∃j, k / d
(u̇ij − u̇ik)
(q + 1) ε c = 0 =⇒ ρj ∼ ρk (7.8)

Two profiles can be equivalent without equality of their utility values, according
to ε, because of a lack of significant digits. In order to increase the accuracy of
the estimated utility value, the refining process executes NAC with a decreasing
error interval ε = ε

q
. The refining process must continue until the utility values

are discriminant enough to allow each node to extract the same U i space, which
is defined in Eq. (7.6). As the node decisions must be consistent when defining
the common U space, the process of estimation-refining must stop if each node
has its set U distant enough from the other utility values, according to the ε error
interval and the encoding limitations, as defined in Eq. (7.9).

∀i,∃j, k / u̇ij ∈ U i, u̇ik 6∈ U i, |u̇ij − u̇ik| > qε+ ε⇐⇒ ∀i, U = U i (7.9)

7.2. Voting Procedure Architecture 117

7.2.2.3 Voting Procedure Algorithm

The voting procedure algorithm is composed of the two previously presented steps:
the aggregation of utility values and the selection of the best profile. During
the aggregation step, the nodes communicate with each other by broadcasting
their current values of utility ui(t) to their neighbors. The number of required
iterations is fixed according to the criterion in Eq. (7.7). This step is iterated
with a decreasing value ε until the value of aggregated utility is spaced enough
according to the criterion of convergence defined in Eq. (7.8). Therefore, the
decision function is applied by each node without the risk of an inconsistent
decision. In algorithm 7.1, the decision is based on the max operator, although
any Ordered Weighted Average (OWA) operator can be used.

Algorithm 7.1: Voting procedure algorithm executed on each node i.
Data: ui(0), wi
Result: ρ

1 begin
2 ε← 1;
3 repeat
4 ε← ε ∗ 0.1;
5 repeat
6 foreach j=1...M do
7 uij(t+ 1)← uij(t)− wi

∑N
k=0[uij(t)− ukj (t)]

8 end foreach
9 until kn

(1−k) [max(u̇ij)−min(u̇ij)] < ε
2 ;

10 [value, k]← max(u̇i)
11 DONE ← true;
12 foreach j=1...M do

13 if |value − u̇ij| < (q + 1) ε and
⌈

(value−u̇ij)
(q+1) ε

⌋
6= 0 then

14 DONE ← false;
15 end if
16 end foreach
17 until ! DONE ;
18 [value, ρ] = max(u̇i);
19 foreach j=1...M do

20 if d (value−u̇ij)
(q+1) ε c = 0 then

21 ρ← min(ρ, j)
22 end if
23 end foreach
24 end

118 Chapter 7. Neural Voting Procedure

7.3 Experimentations

This experimentation section analyzes the execution of the proposed Voting
Procedures (VP) algorithm by studying a number of iterations required to reach
consensus on the preference profile for all of the agents. This algorithm is adaptive
to guarantee consistency in individual agent decisions. Therefore, the number of
iterations depends on the number of aggregation loops, which depends on the
network topology and the initial distribution of agent preferences. Firstly, a single
experimentation is presented for the better understanding of its execution process.
Convergence time is then studied according to the number of agents and profiles.

7.3.1 Execution Example

Experimentation is composed of 25 agents distributed in a random network graph.
Each node can communicate with an average of five neighbors randomly assigned;
there are no multi-hop communications. The algebraic connectivity of the network
graph, illustrated in Figure 7.1, is λ2(L) = 0.93.

0 2 4 6 8 10

0

2

4

6

8

10

Figure 7.1 – Network graph of 25 nodes randomly connected to five neighbors.

7.3. Experimentations 119

Each agent defines its preference order for 10 profiles, such as for node 1
ρ3 �1 ρ2 �1 ... �1 ρ6. In this experimentation, the preference order is valued by a
linear utility function, such as ρ0 �i ρ1 ⇐⇒ ui0(0) = ui1(0) + 1. However, any kind
of monotonic, discrete and bounded function can be used to convert logical order
into utility functions. Figure 7.2 presents the utility functions ui(0) of each node
i at the beginning of the VP algorithm in order to ensure the preferred profile is
equal to 10, the second one to 9 etc. Each plot corresponds to the utility function
of one node with uij(0) ∈ [0 ; 10] with t=0. They represent the associated utility
value in the y-axis of profile ρj in the x-axis. Initial preference order is generated
randomly for each node. It is stated that numeric base is 10, given that it is an
algorithm parameter for accuracy estimation (q=10).

1

2

3

4

5

6

7

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

1

2

3

4

5

6

7

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

3

4

5

6

7

8

9

10

0 2 4 6 8 10

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

3

4

5

6

7

8

9

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

1

2

3

4

5

6

7

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

Figure 7.2 – Initial node’s utility functions ui(0) of 25 nodes at the start of VP.

120 Chapter 7. Neural Voting Procedure

Figure 7.3 illustrates the evolution of a set of utility values for each profile j
for each node i uij(t). This figure shows the evolution of 10 parallel Multi Network
Average Consensus (MNAC) executions on each profile between all nodes, as
defined in Eq. (7.3). Its Q-linear convergence reaches the final aggregated utility
function u̇ after 47 iterations. It can be observed that the aggregation process
is repeated three times after iteration 19 and after iteration 35. Indeed, the
number of NAC iterations computed by Eq. (7.7), according to the initial fixed
accuracy ε, is not enough because the utility values are not significantly spaced
to be discriminated by all nodes without ambiguity, in line with Eq. (7.4) and
Eq. (7.9).

0

2

4

6

8

10

0 10 20 30 40 50

Figure 7.3 – Profile utility of each node convergence until reaching the final
aggregated one u̇.

7.3. Experimentations 121

Figure 7.4 presents extremum error intervals between utility values. It shows
the error interval of utility values for each profile. The 10 error intervals of the
Multi Network Average Consensus (MNAC) are plotted in addition to the fixed
accuracy ε for the current aggregation loop. It can be observed that interval error
decreases linearly because it is a Q-linear algorithm. When the error interval
of all the NAC is lower than this maximal possible accuracy for the current
aggregation loop and when the utility values are not sufficiently spaced, this
accuracy decreases by a factor of 10 in order to start the aggregation loop again.
Otherwise, the process stops when all the utility values are sufficiently spaced
according to all the NAC error intervals.

This trial and error process of decreasing accuracy parameter minimizes
the number of iterations needed to reach consensus. This approach provides
interesting results in terms of reducing the number of network communications
between agents.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 10 20 30 40 50

Figure 7.4 – Interval error ε between nodes for each profile according to NAC
execution.

122 Chapter 7. Neural Voting Procedure

Finally, the aggregated utility function u̇ is reached for each agent according
to the last accuracy parameter value ε. In this experimentation, all nodes obtain
the same utility function with a maximal error of 10−3 for each profile. Each
agent can apply its Ordered Weighted Average (OWA) decision operator (in
this simulation max operator) to select the elected profile. Their decisions are
guaranteed to be consistent, given that the maximal error of aggregation is lower
than the space between the utility values of a non-equivalent profile. To conclude,
given that there is no method to determine the number of required iterations
to reach consensus at the algorithm in the beginning, this proposal iteratively
estimates an error interval according to the evolution of utility values. It solves
the problem of inconsistent decisions due to the impossibility of determining the
convergence error without full knowledge of the network topology and initial
utility values [Cor06]. Moreover, this approach empirically reduces the number
of iterations and, therefore, the agent communications.

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

4

4.5

5

5.5

6

6.5

7

0 2 4 6 8 10

Figure 7.5 – Aggregated utility function u̇ is reached for all agents according to
the last ε value.

7.3. Experimentations 123

7.3.2 Time Convergence
The previous section presented, in detail, the aggregation step of the Voting
Procedures (VP) algorithm. Figure 7.6 shows the number of iterations required
to solve the VP problem according to the number of nodes and profiles. It can be
observed that the node number increases linearly with the time of convergence,
whereas the number of profiles has a limited impact. However, the convergence
time is also impacted by the network topology, as demonstrated by NAC studies
on random graph, small-world and scale-free topology [OSFM07; OS05; WG08].
Moreover, irregularities in Figure 7.6 are consequences of algorithm adaptation
according to the initial distribution of utility values to ensure consistency in agent
decisions.

To conclude, this kind of algorithm is very interesting with regard to solving
the VP problem because it has fault tolerance properties concerning time delay,
lost packets and switching topology [OSM04; RB04; RB05]. Its complexity
increases linearly with the number of agents, while it only requires neighbor
communications.

profiles
agents10

20

0 0
10

20
30

40
50

0

20

40

#
 i
te

ra
ti
o
n
s

60

80

100

120

50
40

30

Figure 7.6 – Number of iterations according to the number of nodes and
channels u̇.

124 Chapter 7. Neural Voting Procedure

7.3.3 Alignment Property Discussions

The proposed Voting Procedures (VP) algorithm is composed of several parallel
Network Average Consensuss (NACs). This last algorithm is based on the
alignment property of the gradient descent type. It means that each agent
asymptotically reaches an agreement according to its initial values [OSFM07].
Hence, the aggregation process for utility values inherits this property from an
NAC. The main consequence is that all agents retain their utility values, which
converge with a common type according to those of other agents. This is a
direct consequence of the lack of centralization, which is the main purpose of this
proposal. However, it means that, if an agent does not update its utility value
according to NAC, all other agents converge in order to be in agreement with the
former agent. While it can be an interesting feature of a veto policy, it can be
also hazardous in the case of Byzantine agents.

7.3.3.1 Veto Policy

A veto policy forbids the selection of a particular profile by an agent. It is
used when a profile cannot be accepted by an agent or when a human wishes to
manually select the profile without bypassing the aggregation process. It simply
has to ensure that its utility value is higher than all other profiles on one node.
The use of this technique in such situations avoids the need to manually control
all system components. The system runs autonomously, but its parameter and
functioning modes are selected manually, rather than collectively.

Such operations are operated by bypassing the NAC update scheme of the
interested profile, thereby keeping its value lower or higher than all the others.

7.3.3.2 Byzantine Threat

A Byzantine threat is produced by usurpation of a malicious agent. It is a
common threat for system security, which is difficult to address. This Voting
Procedures (VP) algorithm is extremely sensitive to such threats because of its
alignment property. Moreover, the lack of information centralization avoids the
use of analysis techniques in order to detect these situations. However, NAC
has a Q-linear convergence, which is easily observable by comparing transmitted
agent utility values. Therefore, a Byzantine agent that tries to alter how a VP is
solved is easily detectable by observing a non-Q-linear convergence.

A veto policy provides this VP with the ability to select or exclude a particular
profile. However, its use does not allow the system to detect a Byzantine threat
because a veto policy and Byzantine agents have an identical response behavior
regarding Q-linear convergence.

7.4. EMMA System Integration 125

7.4 EMMA System Integration

7.4.1 Voting Procedure Choreography

The Voting Procedures (VP) can be implemented inside a service container, such
as the ANC previously presented, or directly by a combination of agents, as
illustrated in Figure 7.7.

The different mathematical operators used in the algorithm 7.1 are sufficiently
simple in order to be performed by the agent over the middleware. For each
profile x, there is an agent NACx that broadcasts and adds the preference value to
those of its neighbors. The NACx agents of the different nodes are synchronized
approximately at their first data reception. As the algorithm is of the fault
tolerance type regarding lost packets and time delay, there is no need for it to
be perfectly synchronized. This operation is repeated until the convergences are
reached. The aggregation agent decides whether the aggregation phase must be
repeated with a lower epsilon value. If it is not necessary, the selection agent
applies the decision rules to select the elected profile.

The Service Choreography (SC) of the VP is then connected to other SCs or
to node services through agents, which fill in the resources of preference values
for each profile to start the algorithm.

Figure 7.7 – Voting procedure algorithm implementation across ARM agents

126 Chapter 7. Neural Voting Procedure

7.4.2 Application Scenarios

Although the VP has several implications in Ambient Intelligence (AmI), it does
not directly control the environment. It is used as an internal component to
synchronize choices between different subsystems. Hence, there is a non-exhaustive
list of possible scenarios for its use.

1. Artificial Neural Controller (ANC) synchronization is a scenario in which
the different ANCs deployed to manage the actuators have a synchronized
policy of behavior learning and scheduling. Instead of applying their own
local decision about which classifier to use or the necessity to learn a new one,
the ANC builds a preference order for their decision. They are aggregated
and selected by the VP in order to apply the same collective decision. Hence,
the AmI learns to manage the global environment contexts by the local and
synchronized learning of each ANC. This scenario can be implemented by
connecting the SC of a VP to those of an ANC through an agent between
the resource /ANC/behaviors/ and the resources /V P/Px.

2. Functioning mode selection can be used by other SCs that require common
parameters. In a situation involving an Energy Management System (EMS),
there are several profiles of energy consumption, such as a comfort mode
without energy consumption restrictions and, conversely, an economic mode.
Under a strict limitation of the total energy consumption in the smart
home, the different appliances can vote for the common functioning mode
in order to release energy when there is an energy shortage or surge. If the
heaters do not have enough power to maintain the minimal temperature,
they ask for more power by insisting that the other appliances change their
functioning modes.

3. Human Computer Interface (HCI) is an example of an application to make
several users come to an agreement. For example, in a traditional home, the
user settings for brightness or temperature are changed by each user, with
the negotiation is operated directly by them. The VP can be connected
between the control thresholds of actuators and the HCI of each user.
Hence, the system will automatically operate the preference aggregation
to select the most popular settings or an intermediate value according to
the VP configuration. In the future, smart environments will be more
and more responsible in relation to multi-user preference management. In
some situations, the lack of multi-user preference management results in a
significant loss of time for users, such as in hospitals when several patients
cannot agree on the right temperature.

7.5. Summary 127

7.5 Summary
This chapter presents a new distributed algorithm for a Voting Procedures (VP)
in an Multi Agent System (MAS). Its implementation on an EMMA framework
is performed in the same way as a Service Choreography (SC) by a combination
of agents. Several scenarios of its use are proposed to illustrate the importance
of this algorithm. It is composed of a distributed preferences aggregation step
with adaptive refining in line with the requirements of a selection step. The
latter is realized by each agent individually selecting the profile preferred by the
agent community, based on a common decision function. As consistency of the
result is ensured at the aggregation step, the selection step does not require any
mechanism to check whether all the agents have made the same decision.

Alignment property of Network Average Consensus (NAC) allows the chosen
preference model to be extended by adding a veto possibility. A veto is a node’s
behavior, which allows a profile to be excluded by the VP. If any node keeps
the utility value of a profile unchanged and low, the community will converge
asymptotically towards an agreement of exclusion. But, a Byzantine agent
can hit back by using this property to change the profile that is preferred by
the community. In all cases, nodes decisions stay consistent with or without
Byzantine agents in the community. Moreover, the proposed Voting Procedures
(VP) algorithm is interesting due to its good properties inherited from Network
Average Consensus (NAC) research concerning mobile network constraints, such
as robustness in switching topology and large-scale networks, as well as time
delay. This algorithm is based on a utility function relating to preferences for
each node and does not require any extra information about network topology
other than a list of its neighbors. As this algorithm converges asymptotically
and exponentially, as observed on Figure 7.3, it requires several iterations and
exchanges over the network. But these exchanges remain localized in the local
neighbors’ area, which allows network load balancing. As these exchanges have a
very small payload with a null overhead (it only contains the utility vector of the
node), this algorithm is useful to Wireless Sensor and Actor Network (WSAN)
applications, which are extremely limited by their communication capacity.

However, the aggregation operator studied in this chapter is the arithmetic
mean for minimum or maximum operator decision functions. Future work will
focus on studying this algorithm in relation to general functions for reaching
consensus during the aggregation step. J.Cortes [Cor08] proposes several new
NAC update schemes, which will be explored, such as the minimum and maximum
operators, the harmonic mean, the geometric mean, the arithmetic mean and the
root mean square. A study of an ordered weighted average operator as a generic
decision function will also be extended to algorithm genericity.

Part IV

MIT Medialab Experience

Chapter 8

Ambient Sound Recognition1

Vous ne comprenez rien tant que vous ne l’avez pas
appris par plus d’une approche.

You don’t understand anything until you learn it more
than one way.

Marvin Minsky

Contents
8.1 Tidmarsh Living Observatory 132

8.1.1 Environment Sensing and Network 132

8.1.2 Data Visualization: Cross-Reality and Sonification 133

8.1.3 Towards Wildlife Geolocalization 134

8.2 TidZam Contribution . 135

8.2.1 Architecture Overview . 135

8.2.2 Signal Footprint Background 136

8.3 Deep Learning Stack . 137

8.3.1 Restricted Boltzmann Machine 137

8.3.2 Stacked Autoencoder . 138

8.3.3 Classifier Decision Function 139

8.4 Experimentations . 140

8.4.1 Wildlife Recognition . 140

8.4.2 Human Computer Interface 141

8.4.3 Speaker Recognition . 142

8.5 Summary . 143

1Submission in Brian Mayton, Gershon Dublon, Spencer Russell, Evan F. Lynch,
Vasant Ramasubramanian, Donald Derek Haddad, Clement Duhart, Qiansheng Li,
Glorianna Davenport, and Joseph A. Paradiso. “Deploying the Living Observatory:
From Environmental Sensor Network to Networked Sensory Landscape”. In: Submission in
ACM. 2016

132 Chapter 8. Ambient Sound Recognition

8.1 Tidmarsh Living Observatory
Tidmarsh is a 600-acre old cranberry farm located in the south of Massachusetts.
The Living Observatory project is a restoration program on this site closely
situated to marshland. Industrial farms and artificial structures have profound
impacts at an ecological and biodiversity level. The establishment of studies
and techniques to restore the natural environment is an important challenge
facing the future if the industrial development of the last century is to be erased.
This study focuses on the monitoring and analysis, in real time, of those natural
processes whose aim is to help nature to return, as well as providing feedback
on the theoretical models of restoration processes. The wireless sensor network
(WSN) deployed by the Responsive Environment Group (REG) in the MIT Media
Lab provides a large set of data for analyzing the evolution of micro and macro
climates, as well as their impact on life cycles and the re-emergence of bacteria,
flora and animals. The intention has been to design a sensing engine that is able
to geolocalize animals based on their calls, which are recorded in real time using
microphones distributed on the site.

8.1.1 Environment Sensing and Network
The sensing network is composed of sensor nodes distributed over a tight grid
under hostile conditions, in which the hilly land is continuously evolving with
high humidity conditions. Therefore, the whole system must be waterproof and
powered with enough 3-AAA batteries for one year, given that the sensor nodes
are only accessible during sporadic periods of the year. The base station, powered
by solar panels, collects the different data, which are forwarded to the Internet
over long-range Wi-Fi to a fiber connection located at the entry of the site. A set
of secondary stations distributed over a large grid is powered by solar panels in
order to provide real-time pictures and audio streams of the site.

8.1.1: Base station 8.1.2: Station-2 8.1.3: Sensor node 8.1.4: Microphone

Figure 8.1 – WSN on Tidmarsh.

8.1. Tidmarsh Living Observatory 133

8.1.2 Data Visualization: Cross-Reality and Sonification
Data visualization is an important challenge regarding the huge amount of data
produced by the Living Observatory project. Traditionally, data reduction is
applied to extract interesting information; however, the REG is more interested
in looking for alternative data representation instead of their extraction. On the
one hand, all data must be conserved, while, on the other hand, a new kind of
user experience is investigated thanks to cross-reality and sonification.

Cross-reality is a bidirectional meeting between virtual reality and reality itself.
Data representation is replaced by perception in which augmented reality is used
in the environment in situ, while virtual reality provides environment ubiquity.
Hence, in Figure 8.2.1, the gaming platform provides a real-time experience of
the Tidmarsh site, whereas the use of Google Glass notices information about
current and previous states of an observed area on the site. An additional
component named sonification is interested in data representation, due to the
auditory sense. Instead of printing all the information about visual supports, the
auditory sense is used to augment human perception field. Musical contexts are
generated according to the data received from Tidmarsh to indicate any anomaly
or environment context in real time.

8.2.1: Unity virtual environment

8.2.2: Real environment in Tidmarsh

Figure 8.2 – Cross-reality to visualize in situ marsh environment evolution.

134 Chapter 8. Ambient Sound Recognition

8.1.3 Towards Wildlife Geolocalization

Wildlife geolocalization is another kind of sensing, although it cannot be operated
by specialized sensors. Based on the audio streams, however, the system must be
able to identify animal calls in order to localize them in the microphone range
areas and represent them in the virtual environment. While it may be easy to
discriminate a frog sound from a human voice, it is a much more difficult challenge
to differentiate between bird calls.

Figure 8.3 presents the different categories of animal call spectrograms. In
Brand et al. [Bra08], the authors present different approaches, such as Bayesian
classifiers, neural networks and Gaussian mixture models, that work well to
discriminate between bird calls according to their group. They concluded that,
in 2008, there was no available method that works for any of them, although
deep learning had not been evaluated at that stage. If the human voice seems
complicated, with a range between 70 Hz and 4.4 Khz, it is composed of a
fundamental frequency around 70 Hz for men and 100 Hz for women within a set
of formants. In Bevis et al. [Bev10], the complexity of bird calls is significantly
revealed with some birds able to change their voice. Therefore, a single bird must
be considered in relation to several voices. The term voice or song is preferred,
while their vocal structure includes different kinds of phonemes in a large frequency
range, complex rhythmics, syllables and even sentences from some birds. Recent
studies have demonstrated major improvements in bird call classifications by
self-extraction of such features in an unsupervised fashion [SP14].

8.3.1: Human 8.3.2: Blue jay 8.3.3: Crow 8.3.4: Sparrow 8.3.5: Frog

Figure 8.3 – Example of the main different categories of spectrograms (frequency
between 50 Hz and 7 kHz vs. time of 500 ms) at Tidmarsh.

TidZam project has focused on vocal snapshots without considering time-
dependent identification regarding such complexity. The result is that the system
can make mistakes given that some birds can change their voice. The system will
provide several proposals without the capacity to exclude some of them.

8.2. TidZam Contribution 135

8.2 TidZam Contribution
The contribution entitled TidZam is a Web-based platform connected to Tid-
marsh’s audio stream in order to analyze, in real time, the different microphone
channels. The different detected events, such as bird songs, mechanical noise and
human voice, are pushed and stored in Tidmarsh’s information system 2014hy-
permedia. TidZam is composed of a classifier player, a Web-based HCI and a
deep learning stack.

8.2.1 Architecture Overview
Figure 8.4 presents a schematic overview of the system. The input multi-channel
stream is provided by an Icecast platform and transformed into spectrogram
samples (50 Hz to 15 kHz over 500 ms) overlapped by factor of 0.5 to avoid
missing cut samples. They are presented to a pull of binary classifiers, which
are triggered if their learnt signal is matched (animal call, mechanical noise etc.).
Each input sample crosses a band-pass filter, which depends on each classifier,
in order to determine a region of interest to analyze. This step reduces the
complexity of the classifier task because of a focus on the frequency range of the
signal. Finally, a decision function determines whether the classifier outputs are
consistent over the time window of 1.25 s (four samples). If none of the classifiers
is triggered, the signal is considered unknown and stored in the record database
until it is identified by experts.

Figure 8.4 – TidZam architecture overview.

Based on the Web interface, experts listen to unknown signals in order to
associate them with a category or create a new one. For example, if a new kind
of sound is registered, such as a airplane noise, the expert can create a new data
set to create a new classifier. In the same way, a classifier could be improved by
adding new samples. The learning process is composed of two main steps. Firstly,
the system builds a training program in order to generate effective training and
evaluation data sets, which are transmitted to the deep learning stack to create

136 Chapter 8. Ambient Sound Recognition

or improve a classifier. The classifiers are autonomous and, therefore, can be
loaded and unloaded online.

8.2.2 Signal Footprint Background
Classical approaches focus on the discrimination between different classes, which
must be known during the learning process. However, the nature of TidZam
project does not allow all kinds of audio signal present on the site to be known,
such as the return of a new animal, in this the study. Therefore, the deep
learning stack is not interested in the discrimination of the signals but in their
identification.

Each classifier is trained to learn a signal footprint, which is evaluated accord-
ing to its ability to generate samples that are able to imitate the initial signal.
Firstly, the system determines the features that are useful for imitating the signal
beforehand, which will refined and transformed into a classifier. In this approach,
the deep learning stack looks for efficient feature spaces to represent the signal by
unsupervised learning. When the feature space is smaller than the initial space,
the signal is compressed thanks to a dimension reduction. The size of feature
space depends of the complexity of the input signal in terms of information
redundancy, which is similar to that in Principal Component Analysis (PCA),
but also in terms of feature diversity, such as the same bird having different
voices. Therefore, the feature space is initially fixed and refined according to
the difficulty of the system in finding a good feature space to reconstruct the
signal. This operation can be stacked by applying an additional layer, in which
the input space is the previously learnt feature space for extracting a higher level
of feature abstraction. For the complexity of audio signals at Tidmarsh, but also
for speaker recognition, a single layer of feature space is enough. In turn, these
feature spaces are used to initialize a neural network that is trained to build a
binary classifier. This step is very light given that the initial configuration of
the neural weights is already able to match the input signal. The weights are
updated in order to fix output neurons when the input does not contain the signal.
Instead of recognizing the signal, the neural network must learn what the signal
is not, which is a simpler task regarding its initial configuration. This step can be
compared to a kind of crystallization or shear-off of the neural network. Hence,
the learning process is simple, controllable by observing feature space and fast,
as is presented in the experimental section 8.4.

A training program is composed of three different mixed data sets. The first
one is only composed of samples containing the signal, which should be learnt in
order to determine the feature space. The second one mixes samples from the
signal and a random distribution of other samples for the crystallization process.
Finally, the evaluation data set is composed of unused samples of the signal and
all available samples from other signals.

8.3. Deep Learning Stack 137

8.3 Deep Learning Stack
Deep learning refers to neural networks composed of a large number of neural
layers and the set of techniques used to train them. G. Hinton et al. [HS06]
present a framework for reducing the dimensionality of data by using a neural
network with a fully unsupervised approach. It is composed of three main steps.
Firstly, the authors use a restricted Boltzmann machine in order to self-extract
relevant features of the model instead of defining them manually. As such, these
learnt features are used to initialize a neural network trained to reconstruct the
input layer in its output layer. This model, which is a stacked autoencoder,
produces a good neural configuration to model the input data to the extent that
it is able to imitate it. Finally, lightweight supervised learning, which uses a
gradient descent algorithm, is applied to fix class labels in the output layer.

8.3.1 Restricted Boltzmann Machine
An Restricted Boltzman Machine (RBM) is a two-layer network in which binary
stochastic visible inputs are connected to binary stochastic features in an hidden
layer,as illustrated in Figure 8.5. The two layers are connected thanks to sym-
metric weights wi,j, which form a joint distribution E(v, h), which is defined as
an energy function, as in Eq. 8.1, to model probability of correlations between
visible and hidden layers. This model seeks to compute successively visible and
hidden layers until reaching a thermal equilibrium in order to apply the update
function 8.2, known as constructive divergence (CD). When the energy function
is stabilized for a sample, the hidden layer or feature space reaches its capacity to
model the visible layer with its current configuration. Then the weights can be
updated according to the learning rate ε in order to improve the reconstruction
for the current sample.

E(v, h) = −
∑

i∈input
bivi −

∑
f∈features

bjhj −
∑
i,j

vihjwij (8.1)

Figure 8.5 – Restricted Boltzmann machine execution until thermal equilibrium.

∆wij = ε(< vihj >
0
input − < vihj >

∞
recon)

where < vihj >
t= 1

1 + e
∑

wijvj+ci

(8.2)

138 Chapter 8. Ambient Sound Recognition

Each neuron in a hidden layer represents a particular feature, which can be
visualized like a picture. Figure 8.6 represents two stacked layers of an RBM
in which each small square represents the values of weights connected to one
feature neuron. In the first layer, it can be observed that these low features
look like the input, whereas the second layer is an higher level of abstraction.
The fraction dropout technique has been used to avoid coadaptation of feature
detectors (several neurons learn the same feature as in the second layer) by
randomly forgetting the feature neurons in the update scheme [Hin+12].

8.6.1: L1 8.6.2: L2

Figure 8.6 – Two-layer feature space on a human voice signal.

The CD − t algorithm is based on the computation of the t Markov chain
transitions to estimate sample reconstruction. According to t, it may be time-
consuming because it ought to be operated for each sample and could be useless if
the parameter configuration (v,h) is not good. Hence, CD−1 is preferred most of
the time because it provides a good approximation of the gradient of a likelihood
objective function. However, CD−10 considerably improves the feature detectors,
which is required when the signals of the different classes have similar features.
Therefore, CD − 1 is fast and effective in most situations, although CD − 10 is
preferred for difficult tasks, such as bird song classification. In Tieleman et al.
[Tie08], a trick is proposed, called persistent constructive divergence, to reduce
time computation in CD−t with t > 1 using mini-batches to successively compute
hidden and visible layers. The authors demonstrate that it works well and is a
very good trade-off between the accuracy of feature detectors and computation
time, which has subsequently been confirmed by the TidZam project.

8.3.2 Stacked Autoencoder
An Stacked Auto-Encoder (SAE) is deep network architecture composed of stacked
feature spaces to reduce data dimensions for supervised learning. The feature
space learnt by an RBM is unrolled into the stacked architecture of Figure 8.7.
Then the backpropagation of error derivatives is applied across encoding and

8.3. Deep Learning Stack 139

decoding stacks to link the feature spaces in order to reconstruct the input signal.
As the feature spaces are already close to the signal model, this learning is very
light. Finally, the encoding stack of the SAE is extracted in order to build the
classifier, into which is added a last layer for output class labels. This last training
step is very fast, such that the Multi-Layer Perceptron (MLP) only needs to learn
the labeled neurons based on the catalogue of features in the last encoding layer.

Figure 8.7 – Stacked autoencoder architecture.

8.3.3 Classifier Decision Function
The different microphone streams are filtered and presented in parallel to the pull
of classifiers trained to evaluate the probability P (A) in the presence of A, as well
as P (¬A) in its absence, in the input signals. Hence, C(A) = P (A)− αP (¬A)
reveals the confidence degree of the classifier. If no classifier is triggered according
to C(A), the signal is considered unknown and extracted dynamically to the
database in order to be associated with a label by an expert.

Finally, the decision function of TidZam is a sigmoid function of the weighted
average of the classifier response C(A) over T samples for each classifier A, as
defined in Eq. 8.3. Indeed, some signals with a low feature complexity, such as
frog calls, can easily trigger other classifier features. This stochastic function
limits the number of false detections by checking whether this signal continues to
trigger the classifier after a number of time translations due to signal overlapping.

D(A) = 1
1 + e

1
2−
∑T

i

P (A)−αP (¬A)
T

− 1
2 (8.3)

140 Chapter 8. Ambient Sound Recognition

8.4 Experimentations
TidZam, which has been evaluated in relation to two different applications,
has been crucial to the improvement of its deep learning stacks by a cross-
experimentation. The complexity of bird and animal calls has required the study
of feature space dimension, given that birds have very different characteristics of
phonemes and rhythmics in different frequency ranges. Meanwhile, speaker recog-
nition needs to optimize learning parameters in the SAE in order to distinguish
human voice footprints, given that they share a common feature space.

The following results have been produced on an independent evaluation data
set composed of samples that are not used during the learning process. They
are, at least, composed of 100 positive samples according to their availability and
all other samples, including negative ones. Therefore, the evaluation of signal
overestimation is always more accurate than its underestimation.

8.4.1 Wildlife Recognition
Wildlife recognition has been applied to the 53 All-American Bird Songs and
Calls and Peterson Field Guides recording databases, in which samples have been
extracted lasting over four minutes across 97 tracks. Table 8.1 is a subset of the
presented training results of Table 9.1 in the Appendix. It details the percentage
of underestimation and overestimation, the layer structure of the neural classifiers,
the region of interest on which the classifier is trained, and the training time.
The presented results seem very good with an average training time of around
two minutes and an error rate in the evaluation data set lower than 2%. However,
their deployment in the real Tidmarsh environment has revealed some limitations
regarding surrounding noises produced by rain, wind, microphone sensitivity etc.
Hence, the results in real conditions are still under experimentation for evaluating
these issues, as well as improving the signal preprocessing and the deep learning
stack configuration in future works.

Classifiers UE OE Structure ROI TT
Nothing 0.94 0.01 [16928 24 2] 50-14191 Hz 108 s
Cricket 0 0 [54188 16 2] 1003-14786 Hz 144 s
Crow 0 0.21 [25208 16 2] 503-6786 Hz 88 s
Egret 0 1.37 [25208 16 2] 503-6786 Hz 89 s
Frog 1.25 3.64 [54188 24 2] 1003-14786 Hz 150 s

Red woodpecker 0 0.94 [25208 16 2] 503-6786 Hz 101 s
White sparrow 0 0 [25208 16 2] 503-6786 Hz 66 s

...

Table 8.1 – TidZam results (%) for the wildlife recognition application.

8.4. Experimentations 141

8.4.2 Human Computer Interface
The interactive TidZam HCI provides training feedback mechanisms between
users/experts and the neural system in order to improve the knowledge for the
system and the users. On the one hand, the system can be used by users in
order to learn different animal calls, whereas experts can create new classifiers or
improve some of them when mistakes appear. Figure 8.8 presents an overview
of the interface. On the right side, each input channel has an independent plot
in which the classifier outputs D(A) are printed in real time, as defined in Eq.
8.3: nothing, cricket, frog, crow etc. The different buttons on the bottom of
the classifier management window can be used to create a new database of
records, add currently played samples to an existing database, mark mistakes
on a classifier or obtain information on loaded classifiers. The left side provides
the event detection distribution in light of the playback of input sources. It can
be observed that, in 75% of the time, the input signal is undetermined, which
suggests the need to build new classifiers. In Figure 8.9, these recognition events
are used to render wildlife in the virtual environment.

Figure 8.8 – Screenshot of TidZam Web administration interface.

Figure 8.9 – Bird rendering in the (VR) based on TidZam detection.

142 Chapter 8. Ambient Sound Recognition

8.4.3 Speaker Recognition
Speaker recognition has been prompted by discussions with Rebecca Kleinberger,
a Ph.D. candidate at the MIT Media Lab and a specialist in voice and emotional
analysis. During a meeting, different types of people interact in order to propose
ideas and solve problems. Understanding people’s mood should be a powerful
tool for improving meeting efficiency. For the current study, experimentations
were performed by allocating microphones to each speaker in order to determine
who is speaking. TidZam requires only one microphone stream, which is analyzed
by the classifiers to provide feedback in real time for the experimenters or for the
members of the meeting.

The experimentation on speaker recognition was conducted in order to build
statistical distribution over time in relation to the speaking time of each person.
While people presented themselves around the table, TidZam recorded their
voices in order to build their vocal footprints. This recording was possible due to
a prebuilt classifier, which can recognizes nothing; in other words, when nobody is
speaking. Therefore, the system is able to dynamically extract the samples. This
classifier is a main key, given that it should not be sensitive to room acoustics
and could be refined before the meeting.

Table 8.2 presents the results of TidZam in relation to the task of speaker
recognition during a meeting of three men and three women. Their vocal footprints
were created using the first two minutes of recording. From these records,
50 samples were extracted, of which 40 were allocated to training and 10 to
its evaluation of (training underestimation and training overestimation. Real
underestimation and real overestimation are evaluated on a meeting simulation of
30 minutes without rules (people can speak simultaneously). This preliminary
experimentation is a proof of concept, which cannot provide any more information
that TidZam can use on an additional application. Indeed, these results can
be very different according to the proximity between speaker voices. However,
the research community interested in speaker recognition has recently published
results that indicate that the TidZam deep learning stack could see interesting
developments [RRD15; Sai+13].

Classifiers TUE TOE RUE ROE Structure TT
#1 Man 0 4 2.7 9.4 [16560 24 2] 32 s
#2 Man 0 2.5 3.2 6.7 [16560 24 2] 41 s
#3 Man 0 0.5 5.1 7.8 [16560 24 2] 28 s
#4 Women 0 8 4.9 10.1 [16560 24 2] 66 s
#5 Women 10 12.5 15.3 12.8 [16560 24 2] 57 s
#6 Women 7.5 7 9.5 8.2 [16560 24 2] 48 s

Table 8.2 – TidZam results (%) for the speaker recognition experimentation.

8.5. Summary 143

8.5 Summary
In this chapter, deep learning technology has been investigated in order to build
virtual sensors for wildlife detection in the outdoor environments linked to the
Tidmarsh project. Based a set of distributed microphones, TidZam detects animal
calls in order to timestamp, in real time, their localization in the microphone
range. It has presented interesting results in terms of fast classifier training, while
maintaining a relative low error rate, according to its task of wildlife detection.
Given that the neural classifiers have a small size, they can be executed in
parallel and in real time on different microphone channels. Their encapsulation
into a Web-based framework facilitates the system integration into the network
architecture of Tidmarsh. In addition, it has offered the possibility for designing
interactive HCI; this offers to the user the ability to learn more about wildlife in
Tidmarsh, as well the possibility of improving the TidZam sensors by upgrading
or creating new classifiers.

This work has been conducted over a three-month period among the Responsive
Environment Group (REG) at the MIT Medialab. It follows on from previous
Ph.D. studies on Wireless Sensor and Actor Networks (WSANs) and Artificial
Neural Controller (ANC), even when ANC runs on a dedicated server instead of
nodes. The deployment of such technologies in outdoor environments, under real
conditions, requires several iterations in order to validate the concept, evaluate its
reliability and start the design for an integrated solution. The experience during
this stay at Tidmarsh has revealed the complexity of outdoor environments that
are open and intractable. In future work, the design of an embedded chipset,
which is able to execute these tiny classifiers, will be investigated, given that it
could offer the ability to analyze audio streams in situ and, in turn, emit event
information over a WSAN instead of the audio streams. The trade-off between
the energy consumption of these chipsets versus the energy consumption of the
WSAN in streaming these audio channels would be the main problematic in this
context.

Part V

Conclusion and perspectives

Chapter 9

Conclusion

Nous ne pouvons voir uniquement en avant qu’à courte
distance mais nous pouvons y voir des choses à faire.

We can only see a short distance ahead but we can see
plenty there that needs to be done.

Alan Turing [Tur50]

Contents
9.1 An Organic Internet of Things Framework 148

9.2 Towards Neural Ambient Intelligence 149

9.3 Perspectives . 150

Since the last century, Artificial Intelligence (AI) has been a dream of human
beings. From the first simulations of brain capacities, this research area has
been motivated by its incredible potential in terms of future applications. It can
be observed that, according to technological evolution, AI techniques increase
in sophistication as they take less and less inspiration from biological systems.
Hence, expert systems have been inspired by deductive language, Artificial Neural
Network (ANN) has been inspired by the brain and Multi Agent System (MAS) has
been inspired by society, amongst others. These inspirations have been possible
thanks to the technological evolution, which has provided new abstraction ability.
Nowadays, natural emergence and self-organized processes are copiously studied
in Complex System (CS). The hope is that this will result in the application
of evolving features to AI systems. In turn, new kinds of architecture can be
discussed with a view to controlling such systems with self-x properties.

In this thesis, the Environment Monitoring and Management Agent (EMMA)
framework has been proposed for the continuity of the AI impulse. It provides
an abstraction layer over the Internet of Things (IoT) infrastructure for the
purpose of designing distributed AI with self-x properties at the scale of Organic
Computing (OC). Two algorithms are proposed in order to illustrate the design
of such algorithms: an Artificial Neural Controller (ANC) and a neural Voting
Procedures (VP). Both of them have been designed as first elements of a toolbox
for the design of a future cybernetic brain distributed over a Wireless Sensor and
Actor Network (WSAN).

148 Chapter 9. Conclusion

9.1 An Organic Internet of Things Framework
The Internet of Things (IoT) is still an emerging concept promising the next
technological revolution. Even if it is still difficult to predict when, how and
and in what form its future applications will happen, the scientific community
is already exploring new technologies in this vein. One major dimension is its
inherent multidisciplinarity of embedded systems, wireless and lossy networks, and
ubiquitous services that require independently advanced expertise. These different
research areas are evolving very quickly and raise several challenges regarding
end-to-end connectivity, large-scale networks, data heterogeneity, communication
and security, along with their derivative constraints. EMMA proposal is a
framework that considers these aspects in order to design multi-scale and hybrid
IoT architecture, in which services are located indifferently in the cloud, at the
gateway, and on mobile devices and appliances. It is assumed that a single entity
would not be able to manage appliances, their services and the network.

Part II is composed of three chapters in order to present different abstractions
for the different actors identified of the IoT: the manufacturers, the service
providers and the infrastructure administrators. Chapter 3 presents architecture
based on an Internet Protocol (IP) in order to abstract the network and locality
of services for communications. Hence, a service can communicate indifferently
with appliances and other services, which can be local, for example, in the same
Personal Area Network (PAN) or remotely, such as over the Internet. Chapter
4 details with the EMMA middleware used for the Service Choreography (SC),
along with its implementation by the manufacturers and the SC design model,
which is based on a Petri network, for the service providers. Finally, Chapter 5
presents the methodology, the theoretical background and the implementation of
the SC deployment over the EMMA appliances in order to preserve the network.

This abstraction stack opens up the research area for distributed Ambient
Intelligence (AmI). Traditionally, this research area has not been correlated with
the technological aspects of its hardware and network supports. Hence, the
AI is located on a central computer, which manages the system as if it were
external. This work has been motivated by the necessity to prevent such failure
points caused by the distribution of intelligence over the system. In addition,
any solution must be able to relocate its functions in case of failures in their
execution supports, similar to brain plasticity. Hence, the different abstractions
in the EMMA framework have been designed for OC in order to investigate a new
bio-inspired scale for AI technologies. This proposal for an organic framework
presents general architecture with one main self-x property: self-deployment.
This elementary property can be used to allow the system to adapt itself to new
usages, hardware and network failures, as well as colonize new appliances and
evolve by rewriting rules. Although significant effort must be made to address
the different properties required by a complete OC system, this proposal offers
primary materials with which to derive other self-x properties.

9.2. Towards Neural Ambient Intelligence 149

9.2 Towards Neural Ambient Intelligence
The biological organisms have the features needed to adapt and evolve according
to their environment, which makes them more powerful than any artificial system.
The major difference resides in their design, while their high level functions are
produced as a result of complex low-level interaction mechanisms. The significant
prevalence of their possible organizations allows them to model their high level
functions differently according to their environment. For example, brain plasticity
allows a cognitive function to be moved when there are lesions in the brain’s initial
locality. Even if a much work is still required before simulating high-level cognitive
functions, due to low-level bio-inspired execution supports, this abstraction has
been investigated in relation to the EMMA framework. The concern is with
the design of high-level functionality, which is based on the interaction rules of
the EMMA framework for the purpose of exploiting its self-x properties at the
execution level.

Part III is composed of two chapters, in order to propose two elementary
functions for the design of a distributed cybernetic brain using EMMA. Chapter 6
presents an Artificial Neural Controller (ANC) for the control of outputs according
to an input context, including the aforementioned outputs. The purpose, here,
is that the system learns empirically how it should work through its usage, as
operated by a human. A major conclusion is that it is preferable to use several
learning classifiers, which are switched according to their usage context, instead
of a big one. This requirement is also observed in the biological brain, in which
there are several specialized brain areas that manage an identical set of organs or
muscles. Their activations are switched according to the brain’s requirements in
order to prevent deadlocks between some brain functions, which can be observed
in some diseases, such as epilepsy. Hence, Chapter 7 presents a Voting Procedures
(VP) for the purpose of managing the synchronization of decisions among different
appliances. This connectionist algorithm is fully distributed over the WSAN,
which guarantees consistency in the appliance decisions. In addition, it has good
properties in terms of fault tolerance regarding time delay, lossy communications
and switching topology, while being strongly dependent on Byzantine threats.

These two algorithms are functionalities identified in the biological brain by
the motor cortex and the anterior cingulate cortex. They are crucial components,
respectively, in the learning process and the behavioral consistency of different
brain regions. Even if these two elements have been successfully implemented,
in addition to the plasticity feature, thanks to EMMA model, there is still a lot
of work required to connect them. Indeed, the design of a complete cybernetic
brain, based on a distributed neural network, in which the appliances learn
different local behavior that are switched according to global voting behavior by
the aforementioned appliances, should be lead to interesting and intensive work
in the future.

150 Chapter 9. Conclusion

9.3 Perspectives
A lot of general discussions and framework improvements can be derived from
this thesis. A non-exhaustive list, given below, presents a selection of them:

• General Discussions

– Internet of Things (IoT): The scope of IoT technology is very wide
and evolves at a pace. Hence, a framework cannot survive without
collaborations if it is to be integrated in the landscape of the IoT.
Even if much effort is made in relation to the use of standards, the
EMMA framework requires support from a developer community if
technological progress is to be pursued.

– Organic Computing (OC): The control of emergent processes is a gen-
eral issue in OC. The use of a self-rewriting feature in the EMMA agent
could be used to design evolutionary agents. This aspect has not been
investigated in the thesis, but its study through the proposed Dynamic
Network Agent (DNA)-Residual Network Agent (RNA) process ought
to lead to a new perspective for AmI based on emergent processes.

– Neural ambient intelligence: The proposed neural-based approach is
bio-inspired by brain organization, thanks to the observation that its
properties, like plasticity, is inherited from a neural interaction layer,
which produces high-level cognitive functions. Hence, this work has
tried to design an interaction model with neural properties of plasticity
and high-level functions based on elementary interaction rules. In this
context, new neural components should be investigated with the aim
of building a general toolbox to design, deploy and execute distributed
neural-based AI with self-x properties.

• Framework Improvements

– Optimization: The agent implementation by JavaScript Object No-
tation (JSON) is very heavy regarding computation and memory
capacities for target platforms. Indeed, the design of advanced SC,
which is composed of numerous agents, has not been undertaken be-
cause of this issue. This major limitation should be bypassed through
the use of a compressed binary encoding for the agents, in the same
way as the data format Open Building Information Xchange (oBIX).

– Agent logic: The agents are currently limited to basic logic and arith-
metic operations. The addition of other operators should permit the
use of other logical models, such as fuzzy, modal and symbolic logics.
Their implementation should be performed easily on the Active Re-
source Middleware (ARM), due to the agent service, and on the Petri
network simulator.

9.3. Perspectives 151

– Model checking: The adaptation of a Petri network in the design of
SC cannot be used in the present state with model checking found
in the literature. Therefore, a theoretical study should be performed
to evaluate the implication of the EMMA model on a traditional
numerical Petri network and its framework of analysis.

– Web semantics: The semantic schemes of nodes and SC are currently
used to identify their services and resources. However, they could be
used to infer compatibility schemes between different resources. For
example, the design of agents between EMMA and other Constrained
Application Protocol (COAP) nodes is currently performed manually,
whereas the use of semantic schemes can automate this process. There-
fore, description schemes, based on ontology technology, should be
used to automatically adapt a SC to derive resources from the intended
initial ones.

Future collaborations are discussed in order to extend this thesis work.Thales
Security is a society specializing in the development of military projects. The
team headed by Jean-Marc Lacroix has expressed a strong interest in EMMA
technology from the perspective of their projects on the IoT. The developed
administration tools and the secured and flexible ARM for SC have led to the
start of a collaboration on experimental test beds. In addition, the experience
of the Massachusetts Institute of Technology (MIT) Media Lab has been rich in
terms of content and collaborations. A possible post-doc is discussed.

Appendix

During the stay at the MIT Media Lab, an electronic platform was designed
for the purposes of building an electronic devil stick for running the EMMA
middleware. The hardware was composed of an AVR 8-bit Atmega128rfa1
with an IEEE 802.15.4 transceiver, an MPU6050 accelerometer and an FTDI
chipset for serial line interface. The different inputs and outputs, including
the accelerometer, were connected to the EMMA resources. Therefore, all IOs
were accessible over the Internet thanks to an AVR USB stick, which ensured
6LoWPAN <-> IPv6 translation. The administration software was implemented
in the JavaScript language in order to configure the EMMA resources. The
serial line was connected to internal shell interface to administrate and debug the
Contiki OS or the EMMA application. More details on this open-source project
are available at https://github.com/slash6475/DVS.

Figure 9.1 – DVS scheme and PCB for EMMA middleware (MIT Media Lab).

https://github.com/slash6475/DVS

154 Chapter 9. Conclusion

Figure 9.2 – DVS platform built for EMMA middleware (MIT Medialab).

9.3. Perspectives 155

Classifiers UE OE Structure RoI TT
Nothing 0.94 0.01 [16928 24 2] 50-14191 Hz 108 s

Bachman sparrow 0 0.21 [25208 24 2] 503-6786 Hz 106 s
Black grosbeak 2.05 0.88 [25208 24 2] 503-6786 Hz 125 s

Bluebird 0 1.50 [25208 24 2] 503-6786 Hz 89 s
Blue jay 0 0.31 [25208 24 2] 503-6786 Hz 144 s
Bobolink 0.03 0.64 [25208 24 2] 503-6786 Hz 188 s

Canyon wren 0.76 1.91 [25208 24 2] 503-6786 Hz 114 s
Cardinal 2.12 1.34 [25208 24 2] 503-6786 Hz 126 s

Carolina wren 0 0.10 [25208 16 2] 503-6786 Hz 154 s
Catbird 1.55 0.42 [25208 16 2] 503-6786 Hz 156 s

Chachalaca 0.39 0.74 [25208 16 2] 503-6786 Hz 108 s
Coue flycatcher 0 0.52 [25208 16 2] 503-6786 Hz 190 s

Cricket 0 0 [54188 16 2] 1003-14786 Hz 144 s
Crow 0 0.21 [25208 16 2] 503-6786 Hz 88 s

Dowitcher 0 1.18 [25208 16 2] 503-6786 Hz 97 s
Eastern wood pewee 0 0.52 [25208 16 2] 503-6786 Hz 102 s

Egret 0 1.37 [25208 16 2] 503-6786 Hz 89 s
Fox sparrow 0 1.38 [25208 16 2] 503-6786 Hz 88 s

Frog 1.25 3.64 [54188 24 2] 1003-14786 Hz 150 s
Gallinule 0 1.40 [25208 16 2] 503-6786 Hz 177 s

Green heron 0 0.63 [25208 16 2] 503-6786 Hz 144 s
King bird 0 1.59 [25208 16 2] 503-6786 Hz 195 s

Lark bunting 0 2.09 [25208 16 2] 503-6786 Hz 102 s
Marsh wren 0 1.56 [25208 24 2] 503-6786 Hz 138 s
Mockingbird 2.56 0 [25208 16 2] 503-6786 Hz 122 s
Nuthatch 1.16 0.10 [25208 16 2] 503-6786 Hz 107 s

Painted bunting 2.42 1.05 [25208 16 2] 503-6786 Hz 103 s
Pauraque 0 1.90 [25208 16 2] 503-6786 Hz 125 s

Purple finch 6.02 0.6 [25208 16 2] 503-6786 Hz 133 s
Red-tailed hawk 1.45 0 [25208 24 2] 503-6786 Hz 174 s
Red woodpecker 0 0.94 [25208 16 2] 503-6786 Hz 101 s

Robin 0 1.05 [25208 16 2] 503-6786 Hz 126 s
Rose grosbeak 0 2.19 [25208 16 2] 503-6786 Hz 191 s
Rufous towhee 0 0 [57868 24 2] 50-14786 Hz 173 s
Sanderling 2.35 2.85 [25208 16 2] 503-6786 Hz 151 s
Scott oriole 0 0.83 [25208 16 2] 503-6786 Hz 94 s
Scrub jay 3.14 0.95 [25208 16 2] 503-6786 Hz 126 s
Stellar jay 1.12 1.60 [25208 16 2] 503-6786 Hz 142 s

Summer tanager 0 0.62 [25208 16 2] 503-6786 Hz 103 s
Tailed towhee 0 1.28 [25208 16 2] 503-6786 Hz 109 s

Warbler 5.85 0.10 [25208 16 2] 503-6786 Hz 143 s
Western tanager 3.07 1.80 [25208 24 2] 503-6786 Hz 156 s
White sparrow 0 0 [25208 16 2] 503-6786 Hz 66 s
White vireo 0 0.10 [25208 16 2] 503-6786 Hz 83 s
Yellowlegs 0 0.84 [25208 16 2] 503-6786 Hz 95 s

Table 9.1 – TidZam classifier details on wildlife recognition application.

Glossaries

Acronyms
6LoWPAN

IPv6 LoW Power Wireless Area Networks. 9, 14–16, 18, 20, 38, 45–48, 50,
53–56, 61, 75, 192

ACL

Agent Communications Language. 27

ACL

Access Control List.
— Glossary: ACL

AES

Advanced Encryption Standard. 16,
— Glossary: AES

AI

Artificial Intelligence. 3, 7, 37, 147, 148, 150, 192

AmI

Ambient Intelligence. 7–10, 22, 23, 25–27, 33, 37, 38, 126, 148, 150, 192

ANC

Artificial Neural Controller. 8, 25, 38, 39, 94, 100, 103–110, 125, 126, 143,
147, 149, 192

ANN

Artificial Neural Network. 7, 8, 10, 12, 37, 39, 94–101, 105–108, 147,
— Glossary: ANN

AO

Artificial Organism. 7, 37

API

Application Programming Interface. 20

158 Acronyms

ARM

Active Resource Middleware. 58, 65, 70, 72, 75, 76, 83, 89, 90, 104, 107–110,
150, 151

BER

Border Edge Router. 45–47, 49

CMOS

Complementary Metal Oxide Semiconductor . 31,
— Glossary: CMOS

COAP

Constrained Application Protocol. 16, 18, 55, 58–63, 68, 70, 89, 109, 151,
— Glossary: COAP

CPU

Central Processing Unit. 13

CS

Consensus Seeking. 112

CS

Complex System. 147,
— Glossary: CS

CT

Control Theory. 112

DAG

Directed Acyclic Graph. 52

DNA

Dynamic Network Agent. 8, 76–78, 89, 150

DNS

Dynamic Name Server .
— Glossary: DNS

DoS

Denial of Service. 16, 49,
— Glossary: DoS

Acronyms 159

DPWS

Devices Profile for Web Service. 18,
— Glossary: DPWS

DS

Dynamic System. 112

ECA

Event-Condition-Action. 24

EMMA

Environment Monitoring and Management Agent. 7–9, 37–39, 54, 55, 59,
61–63, 66, 68–70, 72, 77, 83, 86, 90, 94, 95, 97, 107, 110, 112, 127, 147–151,
153, 192

EMS

Energy Management System. 126

ES

Embedded System. 7,
— Glossary: ES

FIPA

Foundation for Intelligent Physical Agents. 27,
— Glossary: FIPA

FPGA

Field-Programmable Gate Array. 13, 31,
— Glossary: FPGA

FS

File System. 59

HCI

Human Computer Interface. 126, 135, 141, 143, 192

HIS

Home Information System. 9, 47–50, 56

HTTP

Hyper Text Transfer Protocol. 18, 51, 55

160 Acronyms

ICMP
Internet Control Message Protocol. 52, 53,
— Glossary: ICMP

IEEE
Institute of Electrical and Electronics Engineers. 7

IETF
Internet Engineering Task Force. 7, 16, 18, 45

IoT
Internet of Things. 3–11, 14, 20, 33, 44, 45, 49–51, 56, 68, 69, 95, 147, 148,
150, 151

IP
Internet Protocol. 4, 14, 44–47, 49, 50, 148

IPv4
Internet Protocol version 4. 9, 49, 50

IPv6
Internet Protocol version 6. 14, 39, 44, 46–50, 53, 56

ISP
Internet Service Provider. 48

IT
Information Technology. 49

JSON
JavaScript Object Notation. 18, 63, 64, 150

MAC
Media Access Control. 14, 61,
— Glossary: MAC

MAS
Multi Agent System. 7, 27–30, 112, 127, 147,
— Glossary: MAS

MCKP
Multiple Choice Knapsack Problem. 80

Acronyms 161

MIT

Massachusetts Institute of Technology. 151

MKP

Multiple Knapsack Problem. 80

MLP

Multi-Layer Perceptron. 95, 96, 139,
— Glossary: MLP

MNAC

Multi Network Average Consensus. 120, 121

MOSFET

Metal Oxide Semiconductor Field Effect Transistor . 31,
— Glossary: MOSFET

NAC

Network Average Consensus. 112–114, 116, 120, 121, 123, 124, 127

NAS

Network Attached Storage. 47–49

NPN

Numerical Petri Network. 39

NS

Name Space. 69

NWSN

Neural Wireless Sensor Network. 94

oBIX

Open Building Information Xchange. 150,
— Glossary: oBIX

OC

Organic Computing. 8, 10, 28–30, 32, 33, 37, 147, 148, 150

OPC

Organic Processing Cells. 31

162 Acronyms

OS
Operating System. 7, 48

OSGi
Open Services Gateway initiative. 27,
— Glossary: OSGi

OWA
Ordered Weighted Average. 117, 122

PAN
Personal Area Network. 148

PBO
pseudo-Boolean optimization. 39, 72, 75, 81–83, 90

PCA
Principal Component Analysis. 136

QoS
Quality of Service. 15, 20,
— Glossary: QoS

RBM
Restricted Boltzman Machine. 137, 138

RDF
Resource Description Framework. 18,
— Glossary: RDF

RE
Responsive Environments. 3, 6, 56, 67, 192

REG
Responsive Environment Group. 132, 133, 143

REST
REpresentational State Transfer. 51, 61

RESTFUL
REpresentational State Transfer . 18,
— Glossary: RESTFUL

Acronyms 163

RFID

Radio Frequency IDentification. 12, 69,
— Glossary: RFID

RNA

Residual Network Agent. 8, 76, 78, 89, 150

RNDIS

Remote Network Driver Interface Specification. 48, 52,
— Glossary: RNDIS

ROA

Resource Oriented Architecture. 8, 38, 39, 51, 54, 58, 192,
— Glossary: ROA

RPL

Routing Protocol for Low power and Lossy Networks. 16, 46, 47, 52

SAE

Stacked Auto-Encoder. 138–140

SC

Service Choreography. 8, 38, 39, 62, 65, 66, 72–76, 78–83, 86, 89, 90, 109,
125–127, 148, 150, 151

SC

Service Choreography. 9, 12, 51–56, 58, 62, 65–70, 75, 77, 109

SG

Smart Grid.
— Glossary: SG

sMAP

Simple Measurement and Actuation Profile. 18

SNMP

Simple Network Management Protocol. 55, 90,
— Glossary: SNMP

SO

Service Orchestration. 9, 51, 52, 56

164 Acronyms

SOA
Service Oriented Architecture. 44, 51, 52, 56,
— Glossary: SOA

SOAP
Simple Object Access Protocol. 18,
— Glossary: SOAP

SoC
System on Chip. 31, 38,
— Glossary: SoC

SSL
Secure Socket Layer .
— Glossary: SSL

SuOC
System under Observation and Control. 29, 30, 38

TDMA
Time Division Multiple Access. 61,
— Glossary: TDMA

TunSLIP
Tunnel Serial Line Internet Protocol. 48

UC
Ubiquitous Computing. 6,
— Glossary: UC

UML
Unified Modelling Language. 29

UPnP
Universal Plug and Play. 47,
— Glossary: UPnP

URI
Unified Resource Identifier. 54, 60, 61, 63, 68, 69

VP
Voting Procedures. 8, 10, 112, 113, 118, 119, 123–127, 147, 149, 192

Acronyms 165

VPN
Virtual Personal Network. 50,
— Glossary: VPN

W3C
World Wide Web Consortium.
— Glossary: W3C

WiFi
Wireless Fidelity. 49

WOA
Web Oriented Architecture.
— Glossary: WOA

WSAN
Wireless Sensor and Actor Network. 8–21, 37–39, 45–56, 58, 62, 65, 70, 72,
74–79, 81–83, 86, 89, 90, 94, 112, 113, 127, 143, 147, 149, 192

XML
Extensible Markup Language. 18, 68

166 Glossary

Glossary
ACL

Wikipedia. “An access control list (ACL), with respect to a computer file
system, is a list of permissions attached to an object. An ACL specifies
which users or system processes are granted access to objects, as well as
what operations are allowed on given objects [...]”. 157

AES

Wikipedia. “The Advanced Encryption Standard (AES), also known as
Rijndael (its original name), is a specification for the encryption of electronic
data established by the U.S. National Institute of Standards and Technology
(NIST) in 2001 [...]”. 157

ANN

Wikipedia. “In machine learning and cognitive science, artificial neural
networks (ANNs) are a family of statistical learning models inspired by
biological neural networks (the central nervous systems of animals, in par-
ticular the brain) and are used to estimate or approximate functions that
can depend on a large number of inputs and are generally unknown. Artifi-
cial neural networks are generally presented as systems of interconnected
"neurons" which send messages to each other. The connections have numeric
weights that can be tuned based on experience, making neural nets adaptive
to inputs and capable of learning [...]”. 157

CMOS

Wikipedia. “Complementary metal–oxide–semiconductor (CMOS) is a
technology for constructing integrated circuits. CMOS technology is used
in microprocessors, microcontrollers, static RAM, and other digital logic
circuits [...]”. 158

COAP

Wikipedia. “Constrained Application Protocol (CoAP) is a software protocol
intended to be used in very simple electronics devices that allows them
to communicate interactively over the Internet. It is particularly targeted
for small low power sensors, switches, valves and similar components that
need to be controlled or supervised remotely, through standard Internet
networks. CoAP is an application layer protocol that is intended for use
in resource-constrained internet devices, such as WSN nodes. CoAP is
designed to easily translate to HTTP for simplified integration with the
web, while also meeting specialized requirements such as multicast support,
very low overhead, and simplicity [...]”. 158

Glossary 167

CS

Wikipedia. “Complex systems present problems both in mathematical
modelling and philosophical foundations. The study of complex systems
represents a new approach to science that investigates how relationships
between parts give rise to the collective behaviors of a system and how the
system interacts and forms relationships with its environment [...]”. 158

DNS

Wikipedia. “The Domain Name System (DNS) is a hierarchical distributed
naming system for computers, services, or any resource connected to the
Internet or a private network. It associates various information with domain
names assigned to each of the participating entities. Most prominently, it
translates domain names, which can be easily memorized by humans, to the
numerical IP addresses needed for the purpose of computer services and
devices worldwide [...]”. 158

DoS

Wikipedia. “In computing, a denial-of-service (DoS) attack is an attempt
to make a machine or network resource unavailable to its intended users
[...]”. 158

DPWS

Wikipedia. “The Devices Profile for Web Services (DPWS) defines a minimal
set of implementation constraints to enable secure Web Service messaging,
discovery, description, and eventing on resource-constrained devices. Its
objectives are similar to those of Universal Plug and Play (UPnP) but,
in addition, DPWS is fully aligned with Web Services technology and
includes numerous extension points allowing for seamless integration of
device-provided services in enterprise-wide application scenarios [...]”. 159

ES

Wikipedia. “An embedded system is a computer system with a dedicated
function within a larger mechanical or electrical system, often with real-time
computing constraints. It is embedded as part of a complete device often
including hardware and mechanical parts. Embedded systems control many
devices in common use today [...]”. 159

FIPA

Wikipedia. “The Foundation for Intelligent Physical Agents (FIPA) is a body
for developing and setting computer software standards for heterogeneous
and interacting agents and agent-based systems [...]”. 159

168 Glossary

FPGA
Wikipedia. “A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by a customer or a designer after manufac-
turing – hence "field-programmable". The FPGA configuration is generally
specified using a hardware description language (HDL), similar to that used
for an application-specific integrated circuit (ASIC) [...]”. 159

ICMP
Wikipedia. “The Internet Control Message Protocol (ICMP) is one of the
main protocols of the Internet Protocol Suite. It is used by network devices,
like routers, to send error messages indicating, for example, that a requested
service is not available or that a host or router could not be reached. ICMP
can also be used to relay query messages [...]”. 160

MAC
Wikipedia. “In the seven-layer OSI model of computer networking, media
access control (MAC) data communication protocol is a sublayer of the data
link layer (layer 2). The MAC sublayer provides addressing and channel
access control mechanisms that make it possible for several terminals or
network nodes to communicate within a multiple access network that
incorporates a shared medium, e.g. an Ethernet network. The hardware
that implements the MAC is referred to as a media access controller [...]”.
160

MAS
Wikipedia. “A multi-agent system (M.A.S.) is a computerized system
composed of multiple interacting intelligent agents within an environment.
Multi-agent systems can be used to solve problems that are difficult or
impossible for an individual agent or a monolithic system to solve [...]”. 160

MLP
Wikipedia. “A multilayer perceptron (MLP) is a feedforward artificial
neural network model that maps sets of input data onto a set of appropriate
outputs. A MLP consists of multiple layers of nodes in a directed graph,
with each layer fully connected to the next one. Except for the input
nodes, each node is a neuron (or processing element) with a nonlinear
activation function. MLP utilizes a supervised learning technique called
backpropagation for training the network [...]”. 161

MOSFET
Wikipedia. “The metal–oxide–semiconductor field-effect transistor (MOS-
FET, MOS-FET, or MOS FET) is a type of transistor used for amplifying

Glossary 169

or switching electronic signals [...]”. 161

oBIX

Wikipedia. “oBIX (for Open Building Information Exchange) is a standard
for RESTful Web Services-based interfaces to building control systems.
oBIX is about reading and writing data over a network of devices using
XML and URIs, within a framework specifically designed for building
automation [...]”. 161

OSGi

Wikipedia. “The OSGi specification describes a modular system and a
service platform for the Java programming language that implements a
complete and dynamic component model, something that does not exist in
standalone Java/VM environments. Applications or components, coming
in the form of bundles for deployment, can be remotely installed, started,
stopped, updated, and uninstalled without requiring a reboot; management
of Java packages/classes is specified in great detail. Application life cycle
management is implemented via APIs that allow for remote downloading
of management policies. The service registry allows bundles to detect the
addition of new services, or the removal of services, and adapt accordingly
[...]”. 162

QoS

Wikipedia. “Quality of service (QoS) is the overall performance of a
telephony or computer network, particularly the performance seen by the
users of the network [...]”. 162

RDF

Wikipedia. “The Resource Description Framework is a family of World
Wide Web Consortium (W3C) specifications[1] originally designed as a
metadata data model. It has come to be used as a general method for
conceptual description or modeling of information that is implemented in
web resources, using a variety of syntax notations and data serialization
formats. It is also used in knowledge management applications [...]”. 162

RESTFUL

Wikipedia. “Representational State Transfer is a software architecture
style consisting of guidelines and best practices for creating scalable web
services. REST is a coordinated set of constraints applied to the design of
components in a distributed hypermedia system that can lead to a more
performance and maintainable architecture [...]”. 162

170 Glossary

RFID
Wikipedia. “Radio-frequency identification (RFID) is the wireless use of
electromagnetic fields to transfer data, for the purposes of automatically
identifying and tracking tags attached to objects. The tags contain elec-
tronically stored information [...]”. 163

RNDIS
Wikipedia. “The Remote Network Driver Interface Specification (RNDIS)
is a Microsoft proprietary protocol used mostly on top of USB. It provides a
virtual Ethernet link to most versions of the Windows and Linux operating
systems. A partial RNDIS specification is available from Microsoft, but
Windows implementations have been observed to issue requests not included
in that specification, and to have undocumented constraints [...]”. 163

ROA
Wikipedia. “In software engineering, a resource-oriented architecture (ROA)
is a style of software architecture and programming paradigm for designing
and developing software in the form of resources with REpresentational State
Transfer (RESTFUL) interfaces. These resources are software components
(discrete pieces of code and/or data structures) which can be reused for
different purposes. ROA design principles and guidelines are used during
the phases of software development and system integration [...]”. 163

SG
Wikipedia. “Complex systems present problems both in mathematical
modelling and philosophical foundations. The study of complex systems
represents a new approach to science that investigates how relationships
between parts give rise to the collective behaviors of a system and how the
system interacts and forms relationships with its environment [...]”. 163

SNMP
Wikipedia. “Simple Network Management Protocol (SNMP) is an "Internet-
standard protocol for managing devices on IP networks". Devices that
typically support SNMP include routers, switches, servers, workstations,
printers, modem racks and more.[1] SNMP is widely used in network
management systems to monitor network-attached devices for conditions
that warrant administrative attention [...]”. 163

SOA
Wikipedia. “A service-oriented architecture (SOA) is an architectural pat-
tern in computer software design in which application components provide
services to other components via a communications protocol, typically over

Glossary 171

a network. The principles of service-orientation are independent of any
vendor, product or technology [...]”. 164

SOAP

Wikipedia. “SOAP, originally an acronym for Simple Object Access pro-
tocol, is a protocol specification for exchanging structured information in
the implementation of web services in computer networks. It uses XML
Information Set for its message format, and relies on other application layer
protocols, most notably Hypertext Transfer Protocol (HTTP) or Simple
Mail Transfer Protocol (SMTP), for message negotiation and transmission
[...]”. 164

SoC

Wikipedia. “A system on a chip or system on chip (SoC or SOC) is an
integrated circuit (IC) that integrates all components of a computer or
other electronic system into a single chip. It may contain digital, analog,
mixed-signal, and often radio-frequency functions—all on a single chip
substrate. SoCs are very common in the mobile electronics market because
of their low power consumption. A typical application is in the area of
embedded systems [...]”. 164

SSL

Wikipedia. “Transport Layer Security (TLS) and its predecessor, Secure
Sockets Layer (SSL), are cryptographic protocols designed to provide com-
munications security over a computer network.[1] They use X.509 certificates
and hence asymmetric cryptography to authenticate the counterparty with
whom they are communicating,[2] and to negotiate a symmetric session key.
This session key is then used to encrypt data flowing between the parties.
This allows for data/message confidentiality, and message authentication
codes for message integrity and as a by-product, message authentication
[...]”. 164

TDMA

Wikipedia. “Time division multiple access (TDMA) is a channel access
method for shared medium networks. It allows several users to share the
same frequency channel by dividing the signal into different time slots. The
users transmit in rapid succession, one after the other, each using its own
time slot. This allows multiple stations to share the same transmission
medium (e.g. radio frequency channel) while using only a part of its channel
capacity [...]”. 164

172 Glossary

UC
Wikipedia. “Ubiquitous computing (ubicomp) is a concept in software
engineering and computer science where computing is made to appear
everywhere and anywhere. In contrast to desktop computing, ubiquitous
computing can occur using any device, in any location, and in any format.
A user interacts with the computer, which can exist in many different forms,
including laptop computers, tablets and terminals in everyday objects such
as a fridge or a pair of glasses. The underlying technologies to support
ubiquitous computing include Internet, advanced middleware, operating
system, mobile code, sensors, microprocessors, new I/O and user interfaces,
networks, mobile protocols, location and positioning and new materials [...]”.
164

UPnP
Wikipedia. “Universal Plug and Play (UPnP) is a set of networking proto-
cols that permits networked devices, such as personal computers, printers,
Internet gateways, Wi-Fi access points and mobile devices to seamlessly dis-
cover each other’s presence on the network and establish functional network
services for data sharing, communications, and entertainment. UPnP is
intended primarily for residential networks without enterprise-class devices
[...]”. 164

VPN
Wikipedia. “A virtual private network (VPN) extends a private network
across a public network, such as the Internet. It enables a computer or
network-enabled device to send and receive data across shared or public
networks as if it were directly connected to the private network, while
benefiting from the functionality, security and management policies of the
private network [...]”. 165

W3C
Wikipedia. “The World Wide Web Consortium (W3C) is the main interna-
tional standards organization for the World Wide Web (abbreviated WWW
or W3) [...]”. 165

WOA
Wikipedia. “Web-oriented architecture (WOA) was coined in 2006 by Nick
Gall of the Gartner’s group. It is a software architecture style that extends
service-oriented architecture (SOA) to web-based applications. WOA was
originally created by many web applications and sites, such as social websites
and personal websites [...]”. 165

Bibliography

[AAS13] Charu C Aggarwal, Naveen Ashish, and Amit Sheth. “The
internet of things: A survey from the data-centric perspective”. In:
Managing and mining sensor data. Springer, 2013, pages 383–428.

(Cited on page 4).

[AS+94] Rakesh Agrawal, Ramakrishnan Srikant, et al. “Fast algo-
rithms for mining association rules”. In: Proc. 20th int. conf. very
large data bases, VLDB. Volume 1215. 1994, pages 487–499.

(Cited on page 106).

[AK04] Ian F Akyildiz and Ismail H Kasimoglu. “Wireless sensor
and actor networks: research challenges”. In: Ad hoc networks 2.4
(2004), pages 351–367.

(Cited on page 11).

[AE10] Hande Alemdar and Cem Ersoy. “Wireless sensor networks
for healthcare: A survey”. In: Computer Networks 54.15 (2010),
pages 2688–2710.

(Cited on page 23).

[ATK11] Aliaksei Andrushevich, Stephan Tomek, and Alexander
Klapproth. “The autonomic computing paradigm in adaptive
building/ambient intelligence systems”. In: Ambient Intelligence.
Springer, 2011, pages 98–104.

(Cited on page 26).

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The
internet of things: A survey”. In: Computer networks 54.15 (2010),
pages 2787–2805.

(Cited on page 11).

[Aug09] Juan Carlos Augusto. “Ambient intelligence: Opportunities
and consequences of its use in smart classrooms”. In: Innovation in
Teaching and Learning in Information and Computer Sciences 8.2
(2009), pages 53–63.

(Cited on page 22).

174 Bibliography

[ANA10] Juan Carlos Augusto, Hideyuki Nakashima, and Hamid
Aghajan. “Ambient intelligence and smart environments: A state
of the art”. In: Handbook of ambient intelligence and smart envi-
ronments. Springer, 2010, pages 3–31.

(Cited on page 22).

[AN04] Juan Carlos Augusto and Chris D Nugent. “The use of
temporal reasoning and management of complex events in smart
homes”. In: European Conference on Artificial Intelligence (ECAI).
Volume 16. 2004, page 778.

(Cited on page 24).

[Aug+08] Juan Carlos Augusto, Jun Liu, Paul McCullagh, Hui
Wang, and Jian-Bo Yang. “Management of uncertainty and
spatio-temporal aspects for monitoring and diagnosis in a smart
home”. In: International Journal of Computational Intelligence
Systems 1.4 (2008), pages 361–378.

(Cited on page 24).

[AIA10] Asier Aztiria, Alberto Izaguirre, and Juan Carlos Au-
gusto. “Learning patterns in ambient intelligence environments: a
survey”. In: Artificial Intelligence Review 34.1 (2010), pages 35–51.

(Cited on page 25).

[BB11] Amit Badlani and Surekha Bhanot. “Smart Home System
Design based on Artificial Neural Networks”. In: Proceedings of the
World Congress on Engineering and Computer Science. Volume 1.
2011, pages 146–164.

(Cited on page 94).

[Ban+11] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti,
and Subhajit Dutta. “Role of middleware for internet of things:
A study”. In: International Journal of Computer Science & Engi-
neering Survey (IJCSES) 2.3 (2011), pages 94–105.

(Cited on page 20).

[Bec+10] Birger Becker et al. “Decentralized energy-management to
control smart-home architectures”. In: Architecture of Comput-
ing Systems-ARCS 2010. Springer, 2010, pages 150–161.

(Cited on page 32).

Bibliography 175

[BH06] Rezaul Begg and Rafiul Hassan. “Artificial Neural Networks in
Smart Homes”. In: Designing Smart Homes. Edited by JuanCar-
los Augusto and ChrisD. Nugent. Volume 4008. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006, pages 146–
164. isbn: 978-3-540-35994-4. doi: 10.1007/11788485_9. url:
http://dx.doi.org/10.1007/11788485_9.

(Cited on page 94).

[Bel+05] Stephen J Bellis et al. “Development of field programmable
modular wireless sensor network nodes for ambient systems”. In:
Computer Communications 28.13 (2005), pages 1531–1544.

(Cited on page 13).

[Bev10] John Bevis. aaaaw to zzzzzd The Words of Birds. 2010.
(Cited on page 134).

[BWWH91] Jonathan Billington, Geoffrey R. Wheeler, and Michael
C. Wilbur-Ham. “PROTEAN: a high-level Petri net tool for the
specification and verification of communication protocols”. In: High-
level Petri Nets. Springer, 1991, pages 560–575.

(Cited on page 66).

[BBB08] Zoran S Bojkovic, Bojan M Bakmaz, and Miodrag R Bak-
maz. “Security issues in wireless sensor networks”. In: International
Journal of Communications 2.1 (2008), pages 106–115.

(Cited on page 16).

[Bou+06] Abdelmajid Bouajila et al. “Organic computing at the system
on chip level”. In: Very Large Scale Integration, 2006 IFIP Interna-
tional Conference on. IEEE. 2006, pages 338–341.

(Cited on page 31).

[BN08] David Boyle and Thomas Newe. “Securing wireless sensor
networks: security architectures”. In: Journal of Networks 3.1 (2008),
pages 65–77.

(Cited on page 16).

[Bra08] T Scott Brandes. “Automated sound recording and analysis
techniques for bird surveys and conservation”. In: Bird Conservation
International 18.S1 (2008), S163–S173.

(Cited on page 134).

http://dx.doi.org/10.1007/11788485_9
http://dx.doi.org/10.1007/11788485_9

176 Bibliography

[Bra+06] Jürgen Branke, Moez Mnif, Christian Muller-Schloer,
and Holger Prothmann. “Organic Computing–Addressing com-
plexity by controlled self-organization”. In: Leveraging Applications
of Formal Methods, Verification and Validation, 2006. ISoLA 2006.
Second International Symposium on. IEEE. 2006, pages 185–191.

(Cited on page 30).

[BKK08] Rainer Buchty, David Kramer, and Wolfgang Karl. “An
Organic Computing Approach to Sustained Real-time Monitoring”.
In: Biologically-Inspired Collaborative Computing. Springer, 2008,
pages 151–162.

(Cited on page 31).

[CY05] Seyit A Camtepe and Bülent Yener. “Key distribution mech-
anisms for wireless sensor networks: a survey”. In: Rensselaer
Polytechnic Institute, Troy, New York, Technical Report (2005),
pages 05–07.

(Cited on page 16).

[Cas96] Mike Casey. “The dynamics of discrete-time computation, with
application to recurrent neural networks and finite state machine
extraction”. In: Neural computation 8.6 (1996), pages 1135–1178.

(Cited on page 106).

[Cer+09] Matteo Ceriotti et al. “Monitoring heritage buildings with wire-
less sensor networks: The Torre Aquila deployment”. In: Proceedings
of the 2009 International Conference on Information Processing in
Sensor Networks. IEEE Computer Society. 2009, pages 277–288.

(Cited on page 5).

[Che+11] Sylvain Cherrier, Yacine M Ghamri-Doudane, Stéphane
Lohier, and Gilles Roussel. “D-lite: Distributed logic for inter-
net of things services”. In: Internet of Things (iThings/CPSCom),
2011 International Conference on and 4th International Conference
on Cyber, Physical and Social Computing. IEEE. 2011, pages 16–24.

(Cited on page 19).

Bibliography 177

[Che+13] Sylvain Cherrier, Yacine M Ghamri-Doudane, Stephane
Lohier, and Gilles Roussel. “SALT: a simple application logic
description using transducers for internet of things”. In: Commu-
nications (ICC), 2013 IEEE International Conference on. IEEE.
2013, pages 3006–3011.

(Cited on page 19).

[Cio95] Emil Michel Cioran. “Aveux et anathèmes in Œuvres”. In: Paris:
Gallimard (1995).

(Cited on page 9).

[CB15] Daniel Cohn Bendit. “L’utopie est le rêve nécessaire et la réalité
le défi permanent.” In: Le Monde (2015).

(Cited on page 57).

[Com+06] Autonomic Computing et al. “An architectural blueprint for
autonomic computing”. In: (2006).

(Cited on page 26).

[Cor08] Jorge Cortés. “Distributed algorithms for reaching consensus
on general functions”. In: Automatica 44.3 (2008), pages 726–737.

(Cited on pages 112, 127).

[Cor06] Jorge Cortés. “Finite-time convergent gradient flows with ap-
plications to network consensus”. In: Automatica 42.11 (2006),
1993–2000. url: http : / / www . sciencedirect . com / science /
article/pii/S000510980600269X (visited on 06/27/2013).

(Cited on pages 112, 116, 122).

[Cos+07] Paolo Costa, Luca Mottola, Amy L Murphy, and Gian
Pietro Picco. “Programming wireless sensor networks with the
TeenyLime middleware”. In: Middleware 2007. Springer, 2007,
pages 429–449.

(Cited on page 21).

[Csá01] Balázs Csanád Csáji. “Approximation with artificial neural
networks”. In: Faculty of Sciences, Etvs Lornd University, Hungary
24 (2001).

(Cited on page 95).

http://www.sciencedirect.com/science/article/pii/S000510980600269X
http://www.sciencedirect.com/science/article/pii/S000510980600269X

178 Bibliography

[DH+10] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle,
Jorge Ortiz, and David Culler. “sMAP: a simple measurement
and actuation profile for physical information”. In: Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems.
ACM. 2010, pages 197–210.

(Cited on page 18).

[Del+06] Flávia C Delicato, Luci Pirmez, Paulo F Pires, and José
Ferreira De Rezende. “Exploiting web technologies to build
autonomic wireless sensor networks”. In: Mobile and Wireless Com-
munication Networks. Springer, 2006, pages 99–114.

(Cited on page 17).

[DAG99] Zoltán Dienes, Gerry Altmann, and Shi-Ji Gao. “Map-
ping across domains without feedback: A neural network model of
transfer of implicit knowledge”. In: Cognitive Science 23.1 (1999),
pages 53–82.

(Cited on page 106).

[DHC05] Faiyaz Doctor, Hani Hagras, and Victor Callaghan. “A
fuzzy embedded agent-based approach for realizing ambient intelli-
gence in intelligent inhabited environments”. In: IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans
35.1 (2005), pages 55–65.

(Cited on page 25).

[DB14] Clement Duhart and Cyrille Bertelle. “Methodology for
Artificial Neural controllers on wireless sensor network”. In: IEEE
Conference on Wireless Sensors (ICWiSE). 2014, pages 67–72. doi:
10.1109/ICWISE.2014.7042663.

(Cited on pages 1, 93).

[DB15] Clement Duhart and Cyrille Bertelle. “Toward Organic
Computing Approach for Cybernetic Responsive Environment”.
In: International Journal of Ambient Systems and Applications
(IJASA) 3.4 (2015). doi: DOI:10.5121/ijasa.2015.3401.

(Cited on pages 1, 35).

http://dx.doi.org/10.1109/ICWISE.2014.7042663
http://dx.doi.org/DOI:10.5121/ijasa.2015.3401

Bibliography 179

[DCB13] Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle.
“Lightweight Distributed Adaptive Algorithm for Voting Procedures
by Using Network Average Consensus”. English. In: PRIMA 2013:
Principles and Practice of Multi-Agent Systems. Volume 8291. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pages 421–428. isbn: 978-3-642-44926-0. doi: 10.1007/978-3-642-
44927-7_30.

(Cited on pages 1, 111).

[DCB14] Clement Duhart, Michel Cotsaftis, and Cyrille Bertelle.
“Wireless Sensor Network Cloud Services: Towards a Partial Dele-
gation”. In: Proceedings of 5th International Conference on Smart
Communications in Network Technologies 2014 (IEEE SaCoNeT
2014). Vilanova i la Geltru, Spain, June 2014.

(Cited on pages 1, 57).

[DSB] Clement Duhart, Pierre Sauvage, and Cyrille Bertelle.
“A Resource Oriented Framework for Service Choreography over
Wireless Sensor and Actor Networks”. In: Submission in Interna-
tional Journal of Wireless Information Networks (IJWI) ().

(Cited on pages 1, 71).

[Dun03] Adam Dunkels. “uIP-dunkels-2003”. In: Full TCP/IP for 8-bit ar-
chitectures. Edited by ACM. San Francisco, CA, USA: Proceedings
of the 1st international conference on Mobile systems, applications
and services, 2003, pages 85–98.

(Cited on pages 15, 20, 54).

[Dun+06] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo
Voigt. “Run-time dynamic linking for reprogramming wireless
sensor networks”. In: Proceedings of the 4th international conference
on Embedded networked sensor systems. ACM. 2006, pages 15–28.

(Cited on page 20).

[Ein71] Albert Einstein. “Our entire much-praised technological progress,
and civilization generally, could be compared to an axe in the hand
of a pathological criminal.” In: Letter of 6 December to Heinrich
Zaggler (1971).

(Cited on page 43).

http://dx.doi.org/10.1007/978-3-642-44927-7_30
http://dx.doi.org/10.1007/978-3-642-44927-7_30

180 Bibliography

[Far+05] S. Farshchi, P.H. Nuyujukian, A. Pesterev, I. Mody, and
J.W. Judy. “A TinyOS-Based Wireless Neural Sensing, Archiving,
and Hosting System”. In: Proceedings of 2nd International IEEE
EMBS Conference on Neural Engineering. 2005, pages 671–674.
doi: 10.1109/CNE.2005.1419714.

(Cited on page 94).

[FS05] Dietmar Fey and Daniel Schmidt. “Marching-pixels: a new
organic computing paradigm for smart sensor processor arrays”. In:
Proceedings of the 2nd conference on Computing frontiers. ACM.
2005, pages 1–9.

(Cited on page 31).

[Gan87] Jean-Gabriel Ganascia. “CHARADE: A Rule System Learning
System.” In: IJCAI. Volume 87. 1987, pages 234–239.

(Cited on page 106).

[GS07] Alessandro Giua and Carla Seatzu. “A systems theory view
of Petri nets”. In: Advances in Control Theory and Applications.
Springer, 2007, pages 99–127.

(Cited on page 66).

[Gub+13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic,
and Marimuthu Palaniswami. “Internet of Things (IoT): A
vision, architectural elements, and future directions”. In: Future
Generation Computer Systems 29.7 (2013), pages 1645–1660.

(Cited on page 6).

[GTW10] Dominique Guinard, Vlad Trifa, and Erik Wilde. “A re-
source oriented architecture for the web of things”. In: Internet of
Things (IOT), 2010. IEEE. 2010, pages 1–8.

(Cited on page 58).

[Gun+07] Vehbi C Gungor, Chellury Sastry, Zhen Song, and Ryan
Integlia. “Resource-aware and link quality based routing metric
for wireless sensor and actor networks”. In: Communications, 2007.
ICC’07. IEEE International Conference on. IEEE. 2007, pages 3364–
3369.

(Cited on page 15).

http://dx.doi.org/10.1109/CNE.2005.1419714

Bibliography 181

[HM06] Salem Hadim and Nader Mohamed. “Middleware: Middleware
challenges and approaches for wireless sensor networks”. In: IEEE
distributed systems online 3 (2006), page 1.

(Cited on page 20).

[HM05] Yuko Hatano and Mehran Mesbahi. “Agreement over random
networks”. In: Automatic Control, IEEE Transactions on 50.11
(2005), pages 1867–1872.

(Cited on page 112).

[HZM09] Hongmei He, Zhenhuan Zhu, and E. Makinen. “A Neural
Network Model to Minimize the Connected Dominating Set for Self-
Configuration of Wireless Sensor Networks”. In: Neural Networks,
IEEE Transactions on 20.6 (2009), pages 973–982. issn: 1045-9227.
doi: 10.1109/TNN.2009.2015088.

(Cited on page 94).

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reduc-
ing the dimensionality of data with neural networks”. In: Science
313.5786 (2006), pages 504–507.

(Cited on page 137).

[Hin+12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. “Improving
neural networks by preventing co-adaptation of feature detectors”.
In: arXiv preprint arXiv:1207.0580 (2012).

(Cited on page 138).

[Hog+12] Joel Hoglund, Dejan Ilic, Stamatis Karnouskos, Robert
Sauter, and P Goncalves Da Silva. “Using a 6LoWPAN
smart meter mesh network for event-driven monitoring of power
quality”. In: IEEE Third International Conference on Smart Grid
Communications (SmartGridComm). IEEE. 2012, pages 448–453.

(Cited on page 14).

[HV+87] Mark Holliday, Mary K Vernon, et al. “A generalized timed
Petri net model for performance analysis”. In: IEEE Transactions
on Software Engineering 12 (1987), pages 1297–1310.

(Cited on page 83).

http://dx.doi.org/10.1109/TNN.2009.2015088

182 Bibliography

[Hua+13] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan
Gong. “Cross-language knowledge transfer using multilingual deep
neural network with shared hidden layers”. In: Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE. 2013, pages 7304–7308.

(Cited on page 106).

[HJ08] Vincent Huang and Muhammad Kashif Javed. “Semantic sen-
sor information description and processing”. In: Sensor Technologies
and Applications, 2008. SENSORCOMM’08. Second International
Conference on. IEEE. 2008, pages 456–461.

(Cited on page 18).

[JMS05] François Jammes, Antoine Mensch, and Harm Smit. “Service-
oriented device communications using the devices profile for web
services”. In: Proceedings of the 3rd international workshop on Mid-
dleware for pervasive and ad-hoc computing. ACM. 2005, pages 1–8.

(Cited on page 18).

[JZS12] Antonio J Jara, Miguel A Zamora, and Antonio Skarmeta.
“Glowbal IP: An adaptive and transparent IPv6 integration in the
Internet of Things”. In: Mobile Information Systems 8.3 (2012),
pages 177–197.

(Cited on page 15).

[JL93] A Jirachiefpattana and R Lai. “Verifying Estelle specifications:
numerical Petri nets approach”. In: Network Protocols, 1993. Pro-
ceedings., 1993 International Conference on. IEEE. 1993, pages 334–
341.

(Cited on page 66).

[Jou66] Joseph Joubert. “To teach is to learn twice.” In: De l’éducation,
LXVIII (1866).

(Cited on page 93).

[Kaa+12] Mohamed Kaaniche, Paolo Lollini, Andrea Bondavalli,
and Karama Kanoun. “Modeling the resilience of large and
evolving systems”. In: arXiv preprint arXiv:1211.5738 (2012).

(Cited on page 67).

Bibliography 183

[KM09] S. Kar and J.M.F. Moura. “Distributed Consensus Algorithms
in Sensor Networks With Imperfect Communication: Link Failures
and Channel Noise”. In: IEEE Transactions on Signal Processing
57.1 (2009), pages 355–369. issn: 1053-587X, 1941-0476. doi: 10.
1109/TSP.2008.2007111. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4663899 (visited on
07/01/2013).

(Cited on page 112).

[KM07] Soummya Kar and José MF Moura. “Distributed average con-
sensus in sensor networks with random link failures”. In: Acoustics,
Speech and Signal Processing, 2007. ICASSP 2007. IEEE Inter-
national Conference on. Volume 2. Honolulu, Hawaii, USA, 2007,
II–1013. url: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4217583 (visited on 07/01/2013).

(Cited on page 112).

[KB05] Holger Kasinger and Bernhard Bauer. “Towards a Model-
Driven Software Engineering Methodology for Organic Computing
Systems.” In: Computational Intelligence. 2005, pages 141–146.

(Cited on page 29).

[KM04] A.I. Khan and P. Mihailescu. “Parallel pattern recognition
computations within a wireless sensor network”. In: Proceedings of
the 17th International Conference on Pattern Recognition. Volume 1.
2004, 777–780 Vol.1. doi: 10.1109/ICPR.2004.1334332.

(Cited on page 94).

[Kim+06] Sukun Kim et al. “Wireless sensor networks for structural health
monitoring”. In: Proceedings of the 4th international conference on
Embedded networked sensor systems. ACM. 2006, pages 427–428.

(Cited on page 4).

[Ko+10] JeongGil Ko et al. “Wireless sensor networks for healthcare”. In:
Proceedings of the IEEE 98.11 (2010), pages 1947–1960.

(Cited on page 5).

[Kof77] Kurt Koffka. “The whole is different than the sum of its parts.”
In: Heider (1977), page 383.

(Cited on page 71).

http://dx.doi.org/10.1109/TSP.2008.2007111
http://dx.doi.org/10.1109/TSP.2008.2007111
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4663899
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4663899
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4217583
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4217583
http://dx.doi.org/10.1109/ICPR.2004.1334332

184 Bibliography

[KDD11] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels.
“A Low-Power CoAP for Contiki”. In: 2011 IEEE Eighth Inter-
national Conference on Mobile Ad-Hoc and Sensor Systems (Oct.
2011), pages 855–860. doi: 10.1109/MASS.2011.100.

(Cited on pages 18, 61).

[KLD12] Matthias Kovatsch, Martin Lanter, and Simon Duquen-
noy. “Actinium: A restful runtime container for scriptable internet
of things applications”. In: Internet of Things (IOT), 2012 3rd
International Conference on the. IEEE. 2012, pages 135–142.

(Cited on page 19).

[KRM13] Konrad-Felix Krentz, Hosnieh Rafiee, and Christoph
Meinel. “6LoWPAN security: adding compromise resilience to the
802.15. 4 security sublayer”. In: Proceedings of the International
Workshop on Adaptive Security. ACM. 2013, page 1.

(Cited on page 16).

[KEW02] Bhaskar Krishnamachari, Deborah Estrin, and Stephen
Wicker. “The impact of data aggregation in wireless sensor net-
works”. In: Distributed Computing Systems Workshops, 2002. Pro-
ceedings. 22nd International Conference on. IEEE. 2002, pages 575–
578.

(Cited on page 12).

[KD05] A. Kulakov and D. Davcev. “Tracking of unusual events in
wireless sensor networks based on artificial neural-networks algo-
rithms”. In: Proceedings of International Conference on Information
Technology: Coding and Computing. Volume 2. 2005, 534–539 Vol.
2. doi: 10.1109/ITCC.2005.281.

(Cited on page 94).

[KFV11] R.V. Kulkarni, A. Forster, and G.K. Venayagamoorthy.
“Computational Intelligence in Wireless Sensor Networks: A Survey”.
In: Communications Surveys Tutorials, IEEE 13.1 (2011), pages 68–
96. issn: 1553-877X. doi: 10.1109/SURV.2011.040310.00002.

(Cited on page 94).

http://dx.doi.org/10.1109/MASS.2011.100
http://dx.doi.org/10.1109/ITCC.2005.281
http://dx.doi.org/10.1109/SURV.2011.040310.00002

Bibliography 185

[Kus+07] Manish Kushwaha, Isaac Amundson, Xenofon Koutsoukos,
Sandeep Neema, and Janos Sztipanovits. “OASiS: A Program-
ming Framework for Service-Oriented Sensor Networks”. In: 2007
2nd International Conference on Communication Systems Software
and Middleware (Jan. 2007), pages 1–8. doi: 10.1109/COMSWA.
2007.382431.

(Cited on page 21).

[Kwo+06] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and
Gul Agha. “ActorNet: An actor platform for wireless sensor
networks”. In: Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems. ACM. 2006,
pages 1297–1300.

(Cited on page 21).

[Lay13] MHz Physical Layer. “Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs)”. In: (2013).

(Cited on page 14).

[LN93] A.U. Levin and K.S. Narendra. “Control of nonlinear dynamical
systems using neural networks: controllability and stabilization”. In:
Neural Networks, IEEE Transactions on 4.2 (1993), pages 192–206.
issn: 1045-9227. doi: 10.1109/72.207608.

(Cited on page 94).

[LS07] Kuang-Hui Lin and Chih-Wen Shih. “Multiple almost periodic
solutions in nonautonomous delayed neural networks”. In: Neural
computation 19.12 (2007), pages 3392–3420.

(Cited on page 95).

[Mad+05] Samuel R Madden, Michael J Franklin, Joseph M Heller-
stein, and Wei Hong. “TinyDB: an acquisitional query processing
system for sensor networks”. In: ACM Transactions on database
systems (TODS) 30.1 (2005), pages 122–173.

(Cited on page 21).

[Mag+06] Carsten Magerkurth et al. “An intelligent user service ar-
chitecture for networked home environments”. In: 2nd IET Inter-
national Conference on Intelligent Environments. Volume 1. IET.
2006, pages 361–370.

(Cited on page 25).

http://dx.doi.org/10.1109/COMSWA.2007.382431
http://dx.doi.org/10.1109/COMSWA.2007.382431
http://dx.doi.org/10.1109/72.207608

186 Bibliography

[MKD11] Naoki Matsumaru, Peter Kreyssig, and Peter Dittrich.
“Organisation-Oriented Chemical Programming”. In: Organic Com-
puting — A Paradigm Shift for Complex Systems. Springer, 2011,
pages 207–220.

(Cited on page 30).

[May+16] Brian Mayton et al. “Deploying the Living Observatory: From
Environmental Sensor Network to Networked Sensory Landscape”.
In: Submission in ACM. 2016.

(Cited on pages 1, 131).

[Mio+12] Daniele Miorandi, Sabrina Sicari, Francesco De Pelle-
grini, and Imrich Chlamtac. “Internet of things: Vision, appli-
cations and research challenges”. In: Ad Hoc Networks 10.7 (2012),
pages 1497–1516.

(Cited on pages 11, 12).

[MA06] M.M. Molla and S.I. Ahamed. “A Survey of Middleware for
Sensor Network and Challenges”. In: 2006 International Conference
on Parallel Processing Workshops (ICPPW’06) (2006), pages 223–
228. doi: 10.1109/ICPPW.2006.18.

(Cited on page 20).

[MS08] A.I. Moustapha and R.R. Selmic. “Wireless Sensor Network
Modeling Using Modified Recurrent Neural Networks: Application
to Fault Detection”. In: Instrumentation and Measurement, IEEE
Transactions on 57.5 (2008), pages 981–988. issn: 0018-9456. doi:
10.1109/TIM.2007.913803.

(Cited on page 94).

[MSSU11] Christian Müller-Schloer, Hartmut Schmeck, and Theo
Ungerer. Organic computing—A paradigm shift for complex sys-
tems. Volume 1. Springer Science & Business Media, 2011.

(Cited on page 28).

[Naf+10] Florian Nafz, Hella Seebach, Jan-Philipp Steghöfer,
Simon Bäumler, and Wolfgang Reif. “A formal framework
for compositional verification of organic computing systems”. In:
Autonomic and Trusted Computing. Springer, 2010, pages 17–31.

(Cited on page 28).

http://dx.doi.org/10.1109/ICPPW.2006.18
http://dx.doi.org/10.1109/TIM.2007.913803

Bibliography 187

[Nie17] Friedrich Nietzsche. Ainsi parlait Zarathoustra. Hayes Barton
Press, 1917.

(Cited on page 3).

[OM06] F. Oldewurtel and P. Mahonen. “Neural Wireless Sensor
Networks”. In: Proceedings of International Conference on Systems
and Networks Communications. 2006, pages 28–28. doi: 10.1109/
ICSNC.2006.56.

(Cited on page 94).

[OS05] Reza Olfati-Saber. “Ultrafast consensus in small-world net-
works”. In: American Control Conference, 2005. Proceedings of the
2005. IEEE. Portland Oregon, USA, 2005, pages 2371–2378.

(Cited on pages 112, 123).

[OSFM07] Reza Olfati-Saber, J. Alex Fax, and Richard M. Mur-
ray. “Consensus and Cooperation in Networked Multi-Agent Sys-
tems”. In: Proceedings of the IEEE 95.1 (Jan. 2007), 215–233. issn:
0018-9219. doi: 10.1109/JPROC.2006.887293. url: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4118472 (visited on 05/14/2013).

(Cited on pages 112, 114, 115, 123, 124).

[OSM04] Reza Olfati-Saber and Richard M Murray. “Consensus
problems in networks of agents with switching topology and time-
delays”. In: Automatic Control, IEEE Transactions on 49.9 (2004),
pages 1520–1533.

(Cited on pages 112, 123).

[Ost+06] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas
Finne, and Thiemo Voigt. “Cross-level sensor network simulation
with cooja”. In: Local Computer Networks, Proceedings 2006 31st
IEEE Conference on. IEEE. 2006, pages 641–648.

(Cited on page 54).

[PBG07] Federica Paganelli, Gabriele Bianchi, and Dino Giuli.
“A context model for context-aware system design towards the
ambient intelligence vision: experiences in the eTourism domain”.
In: Universal access in ambient intelligence environments. Springer,
2007, pages 173–191.

(Cited on page 22).

http://dx.doi.org/10.1109/ICSNC.2006.56
http://dx.doi.org/10.1109/ICSNC.2006.56
http://dx.doi.org/10.1109/JPROC.2006.887293
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118472
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118472
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118472

188 Bibliography

[PLH06] ASK Pathan, Hyung-Woo Lee, and Choong Seon Hong.
“Security in wireless sensor networks: issues and challenges”. In:
Advanced Communication Technology, 2006. ICACT 2006. The 8th
International Conference. Volume 2. IEEE. 2006, 6–pp.

(Cited on page 16).

[PA08] Rajendra M. Patrikar and Sudhir G. Akojwar. “Neural
Network Based Classification Techniques for Wireless Sensor Net-
work with Cooperative Routing”. In: Proceedings of the 12th In-
ternational Conference on Communications. ICCOM’08. Herak-
lion, Greece: World Scientific, Engineering Academy, and Soci-
ety (WSEAS), 2008, pages 433–438. isbn: 978-960-6766-84-8. url:
http://dl.acm.org/citation.cfm?id=1580987.1581063.

(Cited on pages 94, 95).

[PBEA07] Stacy Patterson, Bassam Bamieh, and Amr El Abbadi.
“Distributed average consensus with stochastic communication fail-
ures”. In: Decision and Control, 2007 46th IEEE Conference on.
New Orleans, Louisiana, USA, 2007, 4215–4220. url: http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4434917
(visited on 07/01/2013).

(Cited on page 112).

[Pea95] Barak A Pearlmutter. “Gradient calculations for dynamic
recurrent neural networks: A survey”. In: Neural Networks, IEEE
Transactions on 6.5 (1995), pages 1212–1228.

(Cited on page 96).

[Pro+08] Holger Prothmann et al. “Organic control of traffic lights”. In:
Autonomic and Trusted Computing. Springer, 2008, pages 219–233.

(Cited on page 32).

[Pro+11] Holger Prothmann et al. Organic traffic control. Springer, 2011.
(Cited on page 32).

[PSY88] Demetri Psaltis, Athanasios Sideris, and Alan Yamamura.
“A multilayered neural network controller”. In: IEEE control systems
magazine 8.2 (1988), pages 17–21.

(Cited on page 94).

http://dl.acm.org/citation.cfm?id=1580987.1581063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4434917
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4434917

Bibliography 189

[Rah06] MA Rahman. “Middleware for wireless sensor networks: Challenges
and Approaches”. In: IEEE Distributed System Online 7.3 (2006),
pages 2–6.

(Cited on page 20).

[RM13] Parisa Rashidi and Alex Mihailidis. “A survey on ambient-
assisted living tools for older adults”. In: IEEE journal of biomedical
and health informatics 17.3 (2013), pages 579–590.

(Cited on page 23).

[RB05] Wei Ren and R.W. Beard. “Consensus seeking in multiagent sys-
tems under dynamically changing interaction topologies”. In: IEEE
Transactions on Automatic Control 50.5 (May 2005), pages 655–
661. issn: 0018-9286. doi: 10 . 1109 / TAC . 2005 . 846556. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1431045 (visited on 06/27/2013).

(Cited on pages 112, 123).

[RB04] Wei Ren and Randal W Beard. “Consensus of information
under dynamically changing interaction topologies”. In: American
Control Conference, 2004. Proceedings of the 2004. Volume 6. IEEE.
Boston, USA, 2004, pages 4939–4944.

(Cited on pages 112, 123).

[RBA05] Wei Ren, Randal W. Beard, and Ella M. Atkins. “A survey
of consensus problems in multi-agent coordination”. In: American
Control Conference, 2005. Proceedings of the 2005. Portland Oregon,
USA, 2005, 1859–1864. url: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=1470239 (visited on 04/30/2013).

(Cited on page 114).

[RBA07] Wei Ren, Randal W. Beard, and Ella M. Atkins. “Infor-
mation consensus in multivehicle cooperative control”. In: Control
Systems, IEEE 27.2 (2007), 71–82. url: http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=4140748 (visited on
07/01/2013).

(Cited on page 112).

http://dx.doi.org/10.1109/TAC.2005.846556
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1431045
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1431045
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1470239
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1470239
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4140748
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4140748

190 Bibliography

[RRD15] Fred Richardson, Douglas Reynolds, and Najim Dehak.
“Deep neural network approaches to speaker and language recogni-
tion”. In: Signal Processing Letters, IEEE 22.10 (2015), pages 1671–
1675.

(Cited on page 142).

[Ric+06] Urban Richter, Moez Mnif, Jürgen Branke, Christian
Müller-Schloer, and Hartmut Schmeck. “Towards a generic
observer/controller architecture for Organic Computing.” In:Gesellschaft
für Informatik Jahrestagung (1) 93 (2006), pages 112–119.

(Cited on page 29).

[RN10] Joel JPC Rodrigues and Paulo ACS Neves. “A survey on IP-
Based wireless sensor network solutions”. In: International Journal
of Communication Systems 23.8 (2010), pages 963–981.

(Cited on pages 14, 15).

[RDT07] B. Rubio, M. Diaz, and J.M. Troya. “Programming Approaches
and Challenges for Wireless Sensor Networks”. In: Second Inter-
national Conference on Systems and Networks Communications,
ICSNC 2007. 2007, pages 36–36. doi: 10.1109/ICSNC.2007.63.

(Cited on pages 13, 17, 20).

[Rus+06] Nick Russell, Arthur, Wil M. P. van der Aalst, and
Natalya Mulyar. “Workflow Control-Flow Patterns: A Revised
View”. In: BPM Center Report BPM-06-22 (2006).

(Cited on page 66).

[RP14] Spencer Russell and Joseph A Paradiso. “Hypermedia APIs
for Sensor Data: A pragmatic approach to the Web of Things”. In:
Proceedings of the 11th International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services. ICST
(Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering). 2014, pages 30–39.

[Sad11] Fariba Sadri. “Ambient intelligence: A survey”. In: ACM Com-
puting Surveys (CSUR) 43.4 (2011), page 36.

(Cited on page 23).

http://dx.doi.org/10.1109/ICSNC.2007.63

Bibliography 191

[Sai+13] Tara N Sainath, Brian Kingsbury, Abdel-rahman Mo-
hamed, and Bhuvana Ramabhadran. “Learning filter banks
within a deep neural network framework”. In: Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE Workshop on.
IEEE. 2013, pages 297–302.

(Cited on page 142).

[SSU94] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan. “Mem-
ory neuron networks for identification and control of dynamical
systems”. In: Neural Networks, IEEE Transactions on 5.2 (1994),
pages 306–319. issn: 1045-9227. doi: 10.1109/72.279193.

(Cited on page 94).

[SHB09] Christian Schuck, Bastian Haetzer, and Jürgen Becker.
“An interface for a decentralized 2d reconfiguration on xilinx virtex-
fpgas for organic computing”. In: International Journal of Recon-
figurable Computing 2009 (2009), page 7.

(Cited on page 31).

[SZM07] Ali Shareef, Yifeng Zhu, and Mohamad Musavi. “Localiza-
tion Using Neural Networks in Wireless Sensor Networks”. In: Pro-
ceedings of the 1st International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications. MOBILWARE
’08. Innsbruck, Austria: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2007, 4:1–
4:7. isbn: 978-1-59593-984-5. url: http://dl.acm.org/citation.
cfm?id=1361492.1361497.

(Cited on page 94).

[SB11] Zach Shelby and Carsten Bormann. 6LoWPAN: the wireless
embedded internet. Volume 43. John Wiley & Sons, 2011.

(Cited on page 14).

[SV05] Flávio Soares Corrêa da Silva and Wamberto W Vascon-
celos. “Agent-based management of responsive environments”. In:
Advances in Artificial Intelligence. Springer, 2005, pages 224–236.

(Cited on page 27).

http://dx.doi.org/10.1109/72.279193
http://dl.acm.org/citation.cfm?id=1361492.1361497
http://dl.acm.org/citation.cfm?id=1361492.1361497

192 Bibliography

[SR02] Manuel Silva and Laura Recalde. “Petri nets and integrality
relaxations: A view of continuous Petri net models”. In: Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on 32.4 (2002), pages 314–327.

(Cited on page 66).

[Sim+06] Richard Simpson, Debra Schreckenghost, Edmund F Lo-
Presti, and Ned Kirsch. “Plans and planning in smart homes”.
In: Designing Smart Homes. Springer, 2006, pages 71–84.

(Cited on page 24).

[SSS+10] Shio Kumar Singh, MP Singh, DK Singh, et al. “Routing
protocols in wireless sensor networks–A survey”. In: International
Journal of Computer Science & Engineering Survey (IJCSES) Vol
1 (2010), pages 63–83.

(Cited on page 15).

[SM11] Ridha Soua and Pascale Minet. “A survey on energy efficient
techniques in wireless sensor networks”. In: Wireless and Mobile
Networking Conference (WMNC), 2011 4th Joint IFIP. IEEE. 2011,
pages 1–9.

(Cited on page 12).

[Sou+04] Eduardo Souto et al. “A message-oriented middleware for sensor
networks”. In: Proceedings of the 2nd workshop on Middleware
for pervasive and ad-hoc computing - (2004), pages 127–134. doi:
10.1145/1028509.1028514.

(Cited on page 20).

[SM06] Nikolaos I Spanoudakis and Pavlos Moraitis. “Agent-based
Architecture in An Ambient Intelligence Context.” In: EUMAS.
2006.

(Cited on page 27).

[ST06] Vlado Stankovski and Jernej Trnkoczy. Application of De-
cision Trees to Smart Homes. English. Edited by JuanCarlos
Augusto and ChrisD. Nugent. Volume 4008. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, pages 132–
145. isbn: 978-3-540-35994-4. doi: 10.1007/11788485_8. url:
http://dx.doi.org/10.1007/11788485_8.

(Cited on page 24).

http://dx.doi.org/10.1145/1028509.1028514
http://dx.doi.org/10.1007/11788485_8
http://dx.doi.org/10.1007/11788485_8

Bibliography 193

[Ste+10] Jan-Philipp Steghöfer et al. “Trustworthy organic computing
systems: Challenges and perspectives”. In: Autonomic and Trusted
Computing. Springer, 2010, pages 62–76.

(Cited on page 28).

[SP14] Dan Stowell and Mark D Plumbley. “Automatic large-scale
classification of bird sounds is strongly improved by unsupervised
feature learning”. In: PeerJ 2 (2014), e488.

(Cited on page 134).

[Tei+14] Tobias Teich, Falko Roessler, Daniel Kretz, and Susan
Franke. “Design of a Prototype Neural Network for Smart Homes
and Energy Efficiency”. In: Procedia Engineering 69.0 (2014). 24th
{DAAAM} International Symposium on Intelligent Manufactur-
ing and Automation, 2013, pages 603 –608. issn: 1877-7058. doi:
http://dx.doi.org/10.1016/j.proeng.2014.03.032. url:
http : / / www . sciencedirect . com / science / article / pii /
S1877705814002781.

(Cited on page 94).

[Tie08] Tijmen Tieleman. “Training restricted Boltzmann machines using
approximations to the likelihood gradient”. In: Proceedings of the
25th international conference on Machine learning. ACM. 2008,
pages 1064–1071.

(Cited on page 138).

[TS94] Geoffrey G Towell and Jude W Shavlik. “Knowledge-based
artificial neural networks”. In: Artificial intelligence 70.1 (1994),
pages 119–165.

(Cited on page 104).

[TS93] Geoffrey G Towell and Jude W Shavlik. “The extraction of
refined rules from knowledge-based neural networks”. In: Machine
learning. Citeseer. 1993.

(Cited on page 106).

[TED10] Nicolas Tsiftes, Joakim Eriksson, and Adam Dunkels.
“Low-power wireless IPv6 routing with ContikiRPL”. In: Proceed-
ings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks. ACM. 2010, pages 406–407.

(Cited on page 16).

http://dx.doi.org/http://dx.doi.org/10.1016/j.proeng.2014.03.032
http://www.sciencedirect.com/science/article/pii/S1877705814002781
http://www.sciencedirect.com/science/article/pii/S1877705814002781

194 Bibliography

[Tur50] A. M. Turing. Computing Machinery and Intelligence. One of
the most influential papers in the history of the cognitive sciences:
http://cogsci.umn.edu/millennium/final.html. 1950. url: http:
//cogprints.org/499/.

(Cited on page 147).

[Uki+13] Arijit Ukil, Soma Bandyopadhyay, Abhijan Bhattacharyya,
and Arpan Pal. “Lightweight security scheme for vehicle tracking
system using CoAP”. In: Proceedings of the International Workshop
on Adaptive Security. ACM. 2013, page 3.

(Cited on page 16).

[VD10] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting
smart objects with ip: The next internet. Morgan Kaufmann, 2010.

(Cited on page 14).

[WG08] Hua Wang and Yi Guo. “Consensus on scale-free network”. In:
American Control Conference, 2008. IEEE. Seattle, Washington,
USA, 2008, pages 748–752.

(Cited on pages 112, 123).

[WX10] Long Wang and Feng Xiao. “Finite-time consensus problems
for networks of dynamic agents”. In: Automatic Control, IEEE
Transactions on 55.4 (2010), pages 950–955.

(Cited on page 112).

[Wan+08] MM Wang, JN Cao, J Li, and SK Dasi. “Middleware for wireless
sensor networks: A survey”. In: Journal of computer science and
. . . January (2008).

(Cited on page 20).

[YLD07] Yi Yang, Frank Lambert, and Deepak Divan. “A survey on
technologies for implementing sensor networks for power delivery
systems”. In: Power Engineering Society General Meeting, 2007.
IEEE. IEEE. 2007, pages 1–8.

(Cited on page 5).

[YF04] Ossama Younis and Sonia Fahmy. “HEED: a hybrid, energy-
efficient, distributed clustering approach for ad hoc sensor networks”.
In: Mobile Computing, IEEE Transactions on 3.4 (2004), pages 366–
379.

(Cited on page 15).

http://cogprints.org/499/
http://cogprints.org/499/

Bibliography 195

[YWM05] Liyang Yu, Neng Wang, and Xiaoqiao Meng. “Real-time forest
fire detection with wireless sensor networks”. In: Proceedings of
International Conference on Wireless Communications, Networking
and Mobile Computing. Volume 2. 2005, pages 1214–1217. doi:
10.1109/WCNM.2005.1544272.

(Cited on page 94).

http://dx.doi.org/10.1109/WCNM.2005.1544272

Toward Organic Ambient Intelligences ? EMMA

Abstract

The Ambient Intelligence (AmI) is a research area investigating AI techniques to create Responsive Environments
(RE). Wireless Sensor and Actor Network (WSAN) are the supports for communications between the appliances,
the deployed services and Human Computer Interface (HCI).

This thesis focuses on the design of RE with autonomic properties i.e. system that have the ability to manage
themselves. Such environments are open, large scale, dynamic and heterogeneous which induce some difficulties
in their management by monolithic system. The bio-inspired proposal considers all devices like independent
cells forming an intelligent distributed organism. Each cell is programmed by a DNA-RNA process composed of
reactive rules describing its internal and external behaviour. These rules are modelled by reactive agents with
self-rewriting features offering dynamic reprogramming abilities.

The EMMA framework is composed of a modular Resource Oriented Architecture (ROA) Middleware based
on IPv6 LoW Power Wireless Area Networks (6LoWPAN) technology and a MAPE-K architecture to design
multi-scale AmI. The different relations between technical issues and theoretical requirements are discussed
through the platforms, the network, the middleware, the mobile agents, the application deployment to the
intelligent system. Two algorithms for AmI are proposed: an Artificial Neural Controller (ANC) model for
automatic control of appliances with learning processes and a distributed Voting Procedures (VP) to synchronize
the decisions of several system components over the WSAN.

Keywords: Ambient Intelligence, Organic Computing, Autonomic System, Multi-Agent System, Wireless
Sensor and Actor Networks, Resource Oriented Architecture, Artificial Neural Network and Voting Procedure

Vers des Intelligences Ambiantes Organiques ? EMMA

Résumé

L’Intelligence Ambiamte (AmI) est un domaine de recherche investigant les techniques d’intelligence artificielle
pour créer des environnements réactifs. Les réseaux de capteurs et effecteurs sans-fils sont les supports de
communication entre les appareils ménagers, les services installés et les interfaces homme-machine.

Cette thèse s’intéresse à la conception d’Environements Réactifs avec des propriétés autonomiques i.e.
des systèmes qui ont la capacité de se gérer eux-même. De tels environements sont ouverts, à grande échelle,
dynamique et hétérogène, ce qui induit certains problèmes pour leur gestion par des systèmes monolithiques.
L’approche proposée est bio-inspirée en considérant chacune des plate-formes comme une cellule indépendente
formant un organisme intelligent distribué. Chaque cellule est programmée par un processus ADN-RNA décrit
par des règles réactives décrivant leur comportement interne et externe. Ces règles sont modelées par des agents
mobiles ayant des capacités d’auto-réécriture et offrant ainsi des possibilités de reprogrammation dynamique.

Le framework EMMA est composé d’un middleware modulaire avec une architecture orientée ressource basée
sur la technologie 6LoWPAN et d’une architecture MAPE-K pour concevoir des AmI à plusieurs échelles. Les
différentes relations entre les problèmes techniques et les besoins théoriques sont discutées dans cette thèse
depuis les plate-formes, le réseau, le middleware, les agents mobiles, le déploiement des applications jusqu’au
système intelligent. Deux algorithmes pour AmI sont proposés : un modèle de contrôleur neuronal artificiel pour
le contrôle automatique des appareils ménagers avec des processus d’apprentissage ainsi qu’une procédure de
vote distribuée pour synchroniser les décisions de plusieurs composants systèmes.

Mots-clés : Intelligence Ambiante, Informatique Organique, Système Autonomique, Système Multi-Agent,
Réseau de Capteurs et d’Actuateurs sans-Fils, Architecture Orientée Ressource, Réseau de Neurones Artificiels
et Procédure de Vote

	I Introduction
	General introduction
	Internet of Things
	Business Opportunities
	Economy, Society and Technologies
	Many Visions Converging
	Current and Future Applications

	Technology Challenges
	A Meeting of Engineering
	Ubiquitous Computing
	Towards Web 3.0

	Motivations of the Thesis
	Contributions and Content

	State of the Art
	Introduction
	Wireless Sensor and Actor Networks
	Connected Objects
	Identification, Sensing and Acting
	Energy, Computation and Communication
	Lifetime, Design and Maintenance

	IP-Based Network
	Low Power ZigBee Technologies
	Network, Routing and Security
	Heterogeneity and Internet Integration

	Software Architectures
	Data Formatting and Application Protocols
	Web Service Orchestration and Choreography
	Object Abstraction and Middleware

	Ambient Intelligence
	Responsive Environment
	Event Condition Action Rules
	Action Planning
	Decision Tree

	Reasoning Engine
	Fuzzy Rule-Based Engine
	Context-Awareness System
	Learning Techniques

	Ambient Intelligence Architectures
	Autonomic Computing
	Multi-Agent System

	Organic Computing Approach
	Principles and Challenges
	Trustworthy Systems
	Self-X Properties
	Design Methodology

	Models and Architectures
	Observer-Controller Model
	Multi-Scale Architecture
	Evolutionary Computation

	Application Examples
	System on Chip
	Traffic Lights in a Smart City
	Energy Management in Smart Homes

	Synthesis

	Contribution: An Organic Ambient Intelligence
	II An Organic IoT Framework
	Capillar Internet Network
	Introduction
	Network Infrastructure
	Wireless Sensor and Actor Networks
	IP Connectivity: 6LoWPAN
	Routing Protocol: RPL
	Gateway: Border Edge Router

	Home Information System
	Permanent Gateway
	Mobile Gateway
	IPv6 Backbone

	Internet Integration

	Service-Oriented Architectures
	Resource-Oriented Architecture
	Experimental Model Analysis
	Service Orchestration
	Service Choreography

	Software Tool Contributions
	Active Resource Middleware
	Hybrid Network Simulator
	Service Choreography Software
	Network Tools and Connectors

	Summary

	Active Resource Middleware
	Introduction
	Architecture
	System Components
	Resource File System
	COAP Web service Interface

	System Dynamic
	Basic Services
	Local Service
	System Service
	Agent Service
	Publish-Subscribe Agent
	Composed Agent
	Self-X Agent

	Computation Flows
	Graphical Model

	Service Choreography
	Hierarchical Composition
	Web Service Heterogeneity
	Name Space Security

	Summary

	Service Choreography Deployment
	Introduction
	Network Mapping Process
	Stages Overview
	Functional Design
	Instantiation and Simulation
	Network Mapping

	Dynamic Deployment
	Residual Network Agents
	Dynamic Network Agents
	Self-X Agents

	Deployment Process
	Direct Deployment
	Deployment Container
	Self-Deployment Container

	Theoretical Background
	Model Definitions
	Network
	Resources
	Scopes
	Places

	Problem Formulation
	Knapsack Problems
	Service Choreography Mapping

	Pseudo-Boolean Optimization
	Communication Cost Function
	Constraint Set

	Experimental Results
	Dining Philosopher Mapping
	Deployment Evaluation
	Deployment Strategy

	Summary

	III Toward Neural Intelligence
	Artificial Neural Controller
	Introduction
	Neural Control Architecture
	Preliminary Analysis
	Artificial Neural Networks
	Classifier Learning Complexity

	Agent Model
	Behavior Classifiers
	Controller Scheduling
	Behavior Online Training

	Knowledge-Based Training
	Training Data Generation
	Inferred Knowledge Transfer

	EMMA System Integration
	Controller Service
	Service Choreography
	Local Control
	Remote Training
	Initial Deployment

	Summary

	Neural Voting Procedure
	Introduction
	Voting Procedure Architecture
	Theoretical Background
	Preference Model
	Aggregation Process
	Distributed Decision Rules

	Implementation Arrangements
	Finite Time Convergence
	Multi-Scale Adaptive Accuracy
	Voting Procedure Algorithm

	Experimentations
	Execution Example
	Time Convergence
	Alignment Property Discussions
	Veto Policy
	Byzantine Threat

	EMMA System Integration
	Voting Procedure Choreography
	Application Scenarios

	Summary

	IV MIT Medialab Experience
	Ambient Sound Recognition
	Tidmarsh Living Observatory
	Environment Sensing and Network
	Data Visualization: Cross-Reality and Sonification
	Towards Wildlife Geolocalization

	TidZam Contribution
	Architecture Overview
	Signal Footprint Background

	Deep Learning Stack
	Restricted Boltzmann Machine
	Stacked Autoencoder
	Classifier Decision Function

	Experimentations
	Wildlife Recognition
	Human Computer Interface
	Speaker Recognition

	Summary

	V Conclusion and perspectives
	Conclusion
	An Organic Internet of Things Framework
	Towards Neural Ambient Intelligence
	Perspectives

	Appendix
	Glossaries
	Acronyms

	References

