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Résumé 

La microscopie à force atomique (AFM) est un outil de caractérisation d’échantillons 

tant organiques qu’inorganiques d’intérêt en physique, en biologie et en métallurgie. Le champ 

d’investigation de la microscopie AFM reste néanmoins restreint à l’étude des propriétés 

surfaciques des échantillons et la caractérisation sub-surfacique à l’échelle nanométrique n’est 

pas envisageable au-delà de la nano-indentation. Lors de ce travail, nous nous sommes 

intéressés à deux techniques de sonde locale complémentaires pour l’investigation volumique 

haute résolution. 

La première technique proposée est la microscopie de champ proche ultrasonore (MS-

AFM),  mise en place et exploitée en collaboration avec Dr. L. Tétard de l’Université Centrale 

de Floride. Cette technique fournie des informations localisées en profondeur en utilisant des 

ondes acoustiques dans la gamme de fréquences du MHz. Une étude complète de l’influence 

des paramètres de fréquences a été réalisée sur des échantillons de calibration et a permis de 

valider un modèle d’interprétation numérique. Cette technique ultrasonore, non invasive, a été 

appliquée à la caractérisation de vésicules lipidiques au sein de bactéries lors d’une 

collaboration avec les Pr. A. Dazzi et M.-J. Virolle, de l’Université Paris Sud Orsay. Un 

couplage a été réalisé avec la  microscopie AFM infra-rouge (AFM-IR). Cette étude a démontré 

le potentiel d’investigation et d’analyse  volumique et chimique d’échantillons biologiques. 

La seconde technique étudiée est la microscopie micro-onde (SMM), développée en 

collaboration avec la société Keysight. Cette technique, tout comme la microscopie acoustique, 

est non invasive et conduit à une caractérisation physico-chimique basée sur l’interaction de 

micro-ondes (0.2-16 GHz) avec la matière. Dans le cas de métaux, un lien entre la fréquence et 

la profondeur d’investigation a été mis en évidence. Cette technique a été appliquée à l’étude 

de la diffusion d’élément chimique léger au sein de métaux et à la mesure des propriétés 

mécaniques des matériaux.  

L’ensemble de ces résultats ouvre un nouveau champ d’investigation de la tomographie 3D 

dans l’analyse volumique à l’échelle nanométrique que ce soit dans le domaine de la biologie 

ou de la métallurgie. 

Mots clés : Microscopie à force atomique (AFM), Microscopie à force atomique micro-onde 

(SMM), Microscopie à force atomique acoustique (MSAFM), tomographie et reconstruction 

3D. 
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Abstract 

The atomic force microscope (AFM) is a powerful tool for the characterization of 

organic and inorganic materials of interest in physics, biology and metallurgy. However, 

conventional scanning probe microscopy techniques are limited to the probing surface 

properties, while the subsurface analysis remains difficult beyond nanoindentation methods. 

Thus, the present thesis is focused on two novel complementary scanning probe techniques for 

high-resolution volumetric investigation that were develop to tackle this persisting challenge in 

nanometrology. 

 The first technique considered, called Mode Synthesizing Atomic Force Microscopy 

(MSAFM), has been exploited in collaboration with Dr. Laurene Tetard of University of Central 

Florida to explore the volume of materials with high spatial resolution by means of mechanical 

actuation of the tip and the sample with acoustic waves of frequencies in the MHz range. A 

comprehensive study of the impact of the frequency parameters on the performance of 

subsurface imaging has been conducted through the use of calibrated samples and led to the 

validation of a numerical model for quantitative interpretation. Furthermore, this non-invasive 

technique has been utilized to locate lipid vesicles inside bacteria (in collaboration with Pr. A. 

Dazzi and M.-J. Virolle of Université Paris Sud, Orsay). Furthermore, we have combined this 

ultrasonic approach with infra-red microscopy, to add chemical speciation aimed at identifying 

the subsurface features, which represents a great advance for volume and chemical 

characterization of biological samples. 

 The second technique considered is the Scanning Microwave Microscopy, which was 

developed in collaboration with Keysight society. Similar to acoustic-based microscopy, this 

non-invasive technique provided physical and chemical characterizations based on the 

interaction of micro-waves radiations with the matter (with frequency ranging from 0.2 and 16 

GHz). Particularly, for metallic samples we performed volumetric characterization based on the 

skin effect of the materials. On the other hand, we have used this technique to analyze the 

diffusion of light chemical elements in metals and measured the effect of changes in mechanical 

properties of materials on their conductivity. 

Overall, these results constitute a new line of research involving non-destructive subsurface 

high resolution analysis by means of the AFM of great potential for several fields of research. 

Key words: Atomic force microscopy (AFM), Mode Synthesizing atomic force microscopy 

(MSAFM), Scanning microwave microscopy (SMM), tomography and 3D reconstruction. 
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General Introduction 

One of the major challenges of nanotechnology is the non-destructive characterization of 

materials with high sensitivity and high spatial resolution. In this context, Atomic Force 

Microscopy (AFM) is an outstanding tool, because of its high spatial resolution for surface 

characterization and its versatility to explore properties of dielectric and biological samples, as 

well as solid-state materials, such as metals. 

However, time-consuming data acquisition (limited by the processing time of the acquisition 

loop and the bandwidth of the piezoelectric scanners) and lack of sensitivity for non-surface 

features constitute two major drawbacks of standard atomic force microscopy. 

Data acquisition has been greatly improved in the 2010s with the development of high-speed 

atomic force microscopy, by Professor T. Ando at the University of Kanazawa. Other groups 

have since exploited and developed this technique. Currently, acquisition speed of 25-50 

frames/sec can be reached, making it possible to capture the dynamics of biological samples 

such as proteins in real time. 

In this thesis, we present a new approach for high resolution tomographic characterization based 

on atomic force microscopy. We focus on two technologies operating with two different sample 

actuations: acoustic atomic force microscopy and scanning microwave microscopy. 

Specifically, the acoustic nanoscale microscopy prototype, called Mode Synthesizing Atomic 

Force Microscope (MSAFM), has been exploited in collaboration with Dr. Laurene Tétard from 

Nanoscience Technology Center of University of Central Florida. Acoustic microscopy is 

particularly effective to study changes in the volume of soft samples, such as biological and 

organic materials, and of dielectric materials. However, we found that it was quite challenging 

the access subsurface information in metals with acoustic microscopy. For our purpose, this 

limitation could be overcome using scanning microwave microscopy (SMM). 
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We also found that MSAFM and SMM are limited in obtaining the local chemical properties 

of the materials, which we address by implementing the MSAFM measurements on a platform 

developed for nanoscale IR spectroscopy. This has been achievec in collaboration with 

Professor Alexandre Dazzi and Marie-Joelle Virolle from the University of Paris Sud, Orsay. 

The development of SMM using tunable frequencies was inspired from macroscopic 

measurements. In 2008, the AREVA Company decided to invest in this technique for the 

investigation of defects in metallic samples. The proof of concept was established. For this 

reason we focused on the characterization of metallic samples by SMM.  

Metal products are commonly used in automobile, aeronautic, aerospace, railway, construction 

and nuclear industries. In some structures, they represent the first mechanical resistance barrier 

subjected to wear. Non-destructive testing (NDT) methods are used to monitor their condition. 

The optimization of the service life of such metallic components evolving in fluctuating 

environments (temperature, pressure, electric and magnetic fields, gas, etc.) would require the 

detection, identification and monitoring of defects formed beneath the surface. However, 

conventional NDT techniques only permit the detection of wear or defective areas at late stage 

of their development (i.e., macro-cracking), while early stages of defect formation (micro-

cracking) remain overlooked.  

Material degradation of metallic components can also be accelerated by the diffusion of light 

chemical elements such as oxygen, helium, hydrogen or nitrogen. The presence and migration 

of these light elements in solids can induce substantial local changes with macroscopic 

irreversible effects such as residual stress, ductility loss or change in mechanical strength. Most 

of these changes are detrimental to the components functionality. However, mapping the 

distribution of light chemical elements near and below the surface of a metal is not 

straightforward with the most common surface analysis techniques. This is due to the lack of 
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sensitivity of the techniques, and to the volatility and mobility of the species (hydrogen H, 

helium He), or the surface contamination by the surrounding environment (oxygen O). 

Overall, the detection limit of conventional systems capable of probing volume properties of 

complex heterogeneous materials makes early defect formation quite challenging. This 

constitutes a major drawback when the parts operate under extreme conditions (high 

temperature, high pressure, mechanical stress, radiation exposure, etc.), as the propagation of 

defects is often greatly accelerated, leading to the emergence of critical defects with higher 

incidence rate. Thus, improving this detection limit of imaging and spectroscopic techniques is 

crucial to understand the processes of defect propagation and to improve materials quality. 

We thus propose to overcome these existing limitations of non-destructive methods by 

developing a platform capable of monitoring local changes in mechanical properties in 

heterogeneous materials, as it is well known that mechanical constraints can be generated 

during components production due to residual stress, hardening and surface chemical 

composition.  

To address the above needs, on the basis on an AFM platform, an acoustic-based microscope 

(MSAFM) and a micro-wave-based microscope (SMM) have been implemented. Acoustic 

AFM works in a MHz frequency range while SMM works in a frequency range between 0.2 

GHz and 16 GHz. On the one hand MSAFM is mainly used to study soft samples. On the other 

hand, SMM can be used to study the evolution of the behavior and aging of solid and metallic 

components, in particular regarding: 

the non-destructive early detection of defects that can evolve from nanometer to micrometer 

size, the indirect measurement of gradual changes in materials properties engendered  by the 

diffusion of light chemical elements and the effect microstructural changes such as residual 

stress, dislocation or nanocrystallization. 
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In this respect, the thesis focuses on the acoustic and microwave microscopes as well as on their 

development towards the access to a more comprehensive high-resolution tomographic 

characterization of soft or solid samples.  

This work is organized as follows: 

In the first chapter, the state of the art of non-destructive methods on soft and hard materials is 

discussed. The description of the foundations of NDT techniques for volume and three-

dimensional investigations is carried out via the review of the main techniques used in 

laboratories and in the industry. 

The second chapter is focused on the review of near-field techniques used and implemented in 

this work to achieve tomographic exploration of heterogeneous samples with a nanometric 

spatial resolution. 

The third chapter presents the results obtained on soft samples using acoustic atomic force 

microscopy and its coupling to the infrared atomic force microscope (AFM-IR). 

The fourth chapter discusses the advances realized using SMM to achieve near field 

tomography on solid and metallurgical samples to tackle industrial problems concerning the 

non-destructive early detection of defects and the effect of light chemical elements 

contaminations on metal lattice and on its mechanical properties. A part of the chapter will 

discuss the promising use of microwave microscopy for the detection of residual stress inside 

materials to establish connections to the performance of the components being produced. 

Finally, the conclusion confers the promising use of near-field microscopy for non-destructive 

testing at the nanoscale and provides an overview of the possibility of transforming SMM into 

a portable version, in order to achieve high-resolution in-situ analyzes for industrial use. 
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Having access to sub-surface high information with high-spatial resolution via non-destructive 

characterization techniques is a real challenge in various scientific fields such as biology, 

material science, or even metallurgy. Early detection of the presence of particles, or viruses in 

host cells remains a challenge in biology. Moreover, highlighting diffusion in materials would 

improve the optimization treatments for better efficiency in material development. 

Tomographic techniques have emerged for the characterization of buried structures inside solid 

or soft matter.  In this chapter we present the state of the art of existing volumetric techniques 

useful either in biology or in material sciences. Then, we discuss the near-field techniques 

presently being used for surface and subsurface characterization and we conclude on the need 

to develop new local probe techniques for high spatial resolution, subsurface investigation. 
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1.1. Needs for having access to subsurface information 

1.1.1. Current limitation in biology and life sciences 

1.1.1.1. Health 
Volume investigation of biological elements such as bacteria or cells would allow a better 

understanding of the various fundamental mechanisms such as the internal processes in bacteria 

or the effect of chemical and physical stresses on them. Monitoring and characterizing virus/cell 

interactions, or the influence of the external environment on live biological systems is of a great 

interest for fundamental science1 and also for applications such as the development of new 

pharmaceutical treatments2. 

1.1.1.2. Toxicity 
With the swift development of nanotechnology and particularly the use of nanoparticles in 

health and other industry, safety and toxicity issues arise. Assessing the toxicity caused by such 

small particles at the single cell level remains challenging. This is due to the lack of suitable 

tools to probe their local interactions with the material/tissue3. In the case of targeted drug 

delivery using nanoparticles on the interaction of stress agents with cells, the following 

mechanisms remain unclear, including the characteristics of the functionalized nanoparticles-

cells interactions, or the mechanisms of penetration of the nanoparticles through the membrane. 

Consequently, tools that would allow us to characterize cell properties with high spatial 

resolution and to monitor their behavior in situ, both at their surface and in their volume, is of 

a great importance.  
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1.1.2. Current limitations in material science 

1.1.2.1. Security issues 
Early detection of damages in industrial metallic components is of great interest to optimize the 

lifetime of parts subjected to harsh environments (temperature, pressure or other) 4. Detecting 

material failure and cracks in their early stages is all the more important in the nuclear field to 

avoid major accidents like the one that occurred in March 2011 on the site of the Fukushima 

plant5. Non-destructive methods are needed at different stages of an event related to part failure. 

Before the accident: More accurate non-destructive methods would have permitted to have an 

understanding of the state of the components (minor defects and physical characteristics of 

materials). The desired tools could assess the limits of current parts in operation. This would 

facilitate predictions of minor accidents to plan timely repairs. 

During the accident: Monitoring the status of the materials will feed calculation algorithms 

useful to predict the behavior of the structure during the accident.  

After the accident: After the accident happened, an accurate diagnosis of the components 

involved is performed. Non-destructive characterization methods are aimed to facilitate the 

analysis of the components to support the decision making about the future of the structure and 

its potential reconstruction. 

1.1.2.2. Economic issues 
The maintenance and replacement operations are generally triggered only if the component in 

use in the reactor system is found to be significantly damaged, or if a component of the same 

type was damaged on another similar installation. As a result, the maintenance and renovations 

can be costly. For instance, AREVA replaced 32 old steam generators in France for a total cost 

of 1.1 billion euros. 

Superior non-destructive methods would permit the early detection of defects in components 

already in use or ideally when they just come out of production. The will enable the 



11 

development of strategies for predictive servicing that would be much less expensive than the 

strategies currently in place. This approach would also be much “greener” as it would prevent 

early replacement of some pieces. 

1.1.2.3. Scientific issues 
In recent decades, scientific and technical advances have been reported in defectology6. Among 

them we find ultrasonic and electromagnetic sensors, adaptive probes (conformable or flexible), 

contactless sensors (LASER and electro-magneto-acoustic) as well as simulation and image 

reconstruction tools. However, there is still a lack in understanding the mechanisms involved 

in fatigue and defect formation. This is partly due to the lack in sensitivity and reproducibility 

of the conventional techniques available, as well as difficulties encountered to interpret the 

measurements performed with traditional sensors.  

Moreover, although methods of good potential exist, few are applied today in line or on-site to 

study degraded service materials. There are several main reasons for this lack of implementation 

in the field. First, most publications are limited to qualitative observations and do not interpret 

the evolution of signals related to the metallurgical analysis of the mechanisms of damage and 

aging 7 8. Furthermore, most methods of physical measurement used in non-destructive control 

fail to benefit from a straightforward relationship between the measured signal and the desired 

characteristic of the phenomenon studied and many methods are sensitive to various intrinsic 

material parameters (dislocation density, residual stress strain, the presence and nature of 

precipitates, surface state…) or extrinsic (stress level, temperature…). The decorrelation of 

these important parameters is often difficult. In addition to that, the signal variations are 

generally small and often marred by high uncertainty related to the measurement or to the 

heterogeneity of the material 9. Finally, the information collected by conventional methods are 

sometimes local and the connection to the behavior of the entire component to determine a 

maintenance plan remains an uncertain leap. 
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1.2. Current non-destructive techniques used for subsurface 
characterization 

1.2.1. Techniques used in biology 

1.2.1.1. Fluorescence microscopy 

Fluorescence microscopy10,11 is currently the most commonly used method for the study of 

structures and dynamics inside biological systems such as cells 12. It is based on conventional 

light microscopy, with added features to detect selected fluorescence properties of the sample. 

In a conventional microscope the light source used is in the visible range (wavelength from 400 

to 700 nm), while in a fluorescence microscope a light source with much higher intensity (as a 

laser source, Xenon or Mercury arc-discharge lamp) is used to excite the sample at a specific 

wavelength. With sufficient energy, molecules in the sample undergo electronic transitions, 

followed by relaxation resulting in the emission of photons with lower energy (longer 

wavelength). These photons are detected to form the fluorescence images. Fluorescent 

microscopy is often used to image small entities inside biological systems such as living cells13. 

This can be accomplished by attaching fluorescent tags to antibodies that in turn attach to 

targeted antigens. The reflected and background fluorescence light is filtered in order to detect 

only the targeted species. We can then have access to a distribution map of the tagged entities 

inside a biological sample with a lateral resolution of up to 200 nm14. Note that the spatial 

resolution is directly related to the wavelength used to illuminate the sample. The description 

of the microscope is presented in Figure 1 and an example of fluorescence image of a bacteria 

can be seen in Figure 2. 
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Fluorescence measurements can be achieved with different kinds of configurations: 

Epifluorescence microscopy16: the excitation light comes from the objective and the 

fluorescence signal collected by the same objective, in a reflection configuration as shown in 

Figure 3. This configuration is of interest to limit the interference from the incoming light, since 

the materials studied are mostly transparent. The fluorescence emission being isotropic, a 

reflection collection does not impede the signal measured. 

Confocal microscopy17 , shown in Figure 4, offers better lateral (up to half of the excitation 

wavelength) and volume (up to 400nm) resolution than classical optical microscopy. In fact, 

confocal imaging has long been the platform of choice for 3D imaging of biological samples18. 

Samples should also be tagged to visualize the structures of interest. The fluorescent tag should 

be selected in conjunction with the excitation wavelengths available. To collect an image, the 

laser is rastered across the selected region. This results in fluorescence emission, which can be 

collected to form an image of the select plane. Due to the combination of pinholes in the system, 

the light emitted from “out of pane” are blocked, making images more resolved compared to 

conventional microscopy.  

Total internal reflection microscopy allows a better depth of field (200nm) than confocal 

microscopy (400nm) but only at the interface between the sample and the sample support19 due 

to the evanescent nature of the field at the substrate interface used for imaging. This is used to 

monitor small entities such as fibrils or interfaces such as the membrane of a bacterial cell in 

the vicinity of the substrate.  

The fluorescence correlation spectroscopy (FCS)20 which allows to study the diffusion and the 

interaction of the molecules. 
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1.2.1.2. Radio-elements imaging 

Scintigraphy21 is an imaging technique to follow a radioactive isotope. This is classified as 

emission imaging because the radiation originates from the organ after the tracer is injected, 

which is the association of a carrier molecule and a radioactive label, is injected to the patient. 

The radioactive marker serves as a "transmitter spy" that makes it possible to track the particles 

by detecting the gamma rays emitted using an external detector called gamma camera (Figure 

5).  

Scintigraphy is widely used in nuclear medicine, it allows detection of many diseases, such as 

early screening for cancer, for example. Each organ setting isotopes in different, we do not use 

the same isotopes for all organs. A scintigraphy image is presented in Figure 6. 

 

Figure 5: Illustration of the data acquisition scheme in brain gamma scintigraphy22. Gamma 
rays are collected by the camera, data analysis is performed to form an image representing the 
analyzed organ. 
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This detection has different stages: 

1 - Selection by a collimator of only photons emitted perpendicular to the camera.  

2 - Gamma photons interacting with a NaI (Tl) crystal. This step permits to transform the 

gamma photons into electrons and electrons into visible light (scintillation). Each gamma 

photon is responsible for hundreds of light photons emitted in all directions. 

3 - Transformation of photons into electrical current at the photocathode of the photomultiplier 

positioned behind the crystal. 

4 - Spatial and energy selection of photons. The above processing leads to the formation of 

signals from which it is possible to accurately determine the initial position of each photon, and 

their energy. 

5 - Following this selection, it is possible to reconstruct the image of the photon distribution in 

the studied organ. 

 

Figure 6: Scintillography of a cross-section of human brain obtained in Positron-Emission 
Tomography: (a) diseased brain with low neuronal activity and (b) healthy brain23. The image 
is formed by reconstruction using false-color representation. 
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In the case of X-ray tomography (CT-scan) or micro-tomography (μCT), the projection images 

are obtained through the use of X-rays, and the different orientations are obtained by turning 

the emitter and detector around the patient. In the case of electron tomography it is the sample 

that is rotated under the electron beam with a goniometer stage, by tilting the grid on which the 

specimen is deposited. 

The final quality of the reconstructed volume depends on the number of projections and on the 

interval between acquisition angles. For X-ray acquisition, the span of the angles is 180°, which 

can provide a high quality 3D reconstruction with sufficiently small intervals26. In the case of 

electronic tomography, the sample holder cannot have a 90° angle and the observation width 

increase as 1/cos (observation angle), adding constraints to the reconstruction.  

The samples to be observed by electron tomography undergo the same preparation as for 

conventional transmission electron microscopy, i.e. dehydration and inclusion in a resin. The 

attachment may be chemical or physical (high pressure followed by freeze-substitution 

fixation). For 3D reconstruction, thick sections of the order of 200 to 500 nm are preferred28. 

This requires the use of microscope voltages of 200 keV to 120 keV28. 

 
Figure 8: Image of a multilysosomal body obtained by conventional TEM image. (a) represents 
the complex 3D arrangement of the various membrane-bound structures in the interior of the 
organelle after electron tomography and (b) the modelling29.  
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1.2.2.2. Ultrasound tomography (Non-contact techniques) 
The laser ultrasonic technique30-32(LUT) consists of generating and detecting elastic ultrasound 

waves in a solid, liquid or gaseous medium, using a laser source. In general, short laser pulses 

(from tens of nanoseconds to femtoseconds) are used to locally heat the structure studied, 

causing expansion phenomena (thermoelastic regime)33 or ablation. In thermoelastic regime the 

generation of ultrasounds is created by the sudden thermal expansion due to the heating of a 

small surface of the material by the pulsed Laser. In the ablation mode, if the laser power is 

enough high to heat the surface above the material boiling point, some material is evaporated 

(typically some nanometers). Following the ablation, a recoil force is generated, which is the 

source of a compression (longitudinal) ultrasonic wave (Figure 9).  

  

Figure 9 : The two modes of photothermic generation: (a) Thermoelastic mode where 
ultrasounds are created by the sudden thermal expansion due to the heating of a small surface 
of the material by the pulsed Laser and (b) Ablation mode where some of the material under 
test is evaporated34. 
 

Then the ultrasounds generated are detected by a Laser detection35. This detection is based on 

the demodulation by an optical interferometer of the laser light reflected or backscattered from 

the surface of the material. A single frequency, laser light is focused on the point of impact of 
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the generation laser beam on the surface of the material. Any motion of the analyzed at the 

impact point of the detection laser is recorded on the reflected light as a frequency (or phase) 

variations - Doppler Effect - (Figure 10). 

The laser ultrasounds allow ultrasonic inspection of materials in a wide variety of applications 

ranging from inspection of aerospace composite materials36, to coating analysis36. 

There are numerous advantages of this method. Compared to traditional methods (piezoelectric 

transducers), no mechanical contact is required for photoacoustic generation and detection. 

Inspecting immersed materials in harsh environments (very high or low temperature) presenting 

complex geometries (cylindrical shapes) is possible37. Hence, control of the structure can be 

done from a distance without causing any damage or favorable conditions for corrosion 

development since no coupling media is used. Lastly, the implementation of these methods is 

usually quite fast. 

 

Figure 10: Laser detection of ultrasounds. The laser light is focused on the point of impact of 
the generation laser beam on the surface of the material. Any motion of the analyzed at the 
impact point of the detection laser is recorded on the reflected light as a frequency (or phase) 
variations34. 

 

Ultrasonic waves can also be generated and detected in metallic materials using EMAT 

(Electromagnetic Acoustic Transducer) transducers in a frequency range of several megahertz, 

much smaller than in ultrasonic Laser. EMAT is not a contact technique which is based on the 
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Lorentz force, which results from the combined actions of eddy currents and permanent 

magnetic field (Figure 11). 

 

 

Figure 11 : Principle of acoustic wave generation by Piezoelectric and EMAT sensors38. 
Piezoelectric crystal generates acoustic waves under an electrical stimulation which causes 
mechanical distortion of the crystal and EMAT sensor is a transducer that employs a 
magnetostrictive effect to transmit and receive ultrasonic waves.  

 

1.2.2.3. Eddy-current testing (ECT) 
Eddy Current testing is based on electromagnetic induction phenomenon39 (ref). In the eddy 

current probe, an alternating current (AC) flows through a wire coil and generates an oscillating 

magnetic field (Figure 12). When the probe and the generated magnetic field are placed close 

to a conductive sample, induced currents are created inside the material, known as Eddy 

currents. Variations in the electrical conductivity and magnetic permeability of the test object 

as well as the presence of defects inside the material cause a change in Eddy current. Thus, a 

corresponding change in phase and amplitude that can be observed by measuring the impedance 

changes in the coil, which is a sign of the presence of defects40.  

However, due to the electrical nature of ECTB, this technique is limited to conductive materials 

with a depth investigation limited by the skin depth effect41. 



-

 

-

 

-
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1.2.2.4. Infrared stimulated thermography 
Also called infrared radiometry42, this non-destructive method consists in illuminating the 

analyzed sample to a photon energy flux (visible or not, localized or widespread, in pulse form, 

sinusoidal, random). The illumination can be done in different ways: laser beam, flash lamp or 

halogen. The absorption of these photons produces an increase in temperature in the vicinity of 

the area of the material interacting with infrared photons due to the vibrational transitions taking 

place in the material. The resulting heating induces a transient variation of the infrared emission 

of the object. This variation is strongly dependent of optical and thermal properties of the 

material (thermal conductivity, thermal diffusivity, thermal emissivity, temperature, specific 

heat and density), and can be observed using an infrared thermography camera.  Moreover, 

these parameters are correlated to the aspect of the surface (roughness), presence of 

delamination and cracks, and internal structure of the material. The principle of the method 

ensures it is non-destructive, without contact at the excitation and detection (Figure 13). 

 

Figure 13 : Different excitation sources in infrared stimulated thermography: a) by flash lamps 
or b) halogen lamps. 
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The main advantages of this non-destructive method are non-contact, fast implementation and 

remote sensing. The photothermal signal collected is sensitive to homogeneities of the material 

and the presence of surface or underlying defects. Thus, the selection of the excitation source 

and its parameters (duration, amplitude, frequency ...) plays an important role depending on the 

material, size, depth and nature of the defect to be detected43. Halogen light sources and flash 

lamps sources can be used to highlight delamination in composite materials44,45, estimate 

coatings thickness46 and detect cracks and defects inside materials47. 

In the field of thermo-elasticity, infrared thermography working in the passive mode can be 

used to measure stress of materials under mechanical stress as fatigue48.  

1.2.3. Elements analysis techniques 

1.2.3.1. Scanning Electronic Microscopy (SEM) for elements analysis 
The Scanning Electron Microscopy (SEM)49,50 is a powerful observation technique of sample 

topography developed in 1940 - 1960. It is mainly based on the detection of secondary electrons 

coming from the surface under the impact of a focused electron beam (energy between 1 MeV 

and 100 keV) produced by a cathode which scans the surface. Images with a lateral resolution 

until 5 nm and a great depth of field can be obtained. As the mean free path of electrons in the 

air is very low, a vacuum of at least 10-9 atmosphere is usually maintained in the microscope.  

The electrons that provide from the primary electron beam penetrate in the material and affect 

a volume of the material. This volume depends on the average atomic number of the sample 

and on the energy of the incident electrons. Inside this interaction volume, the electrons will 

interact with the matter generating a lot of secondary phenomena that are described in Figure 

14. As a result, other interactions of the electrons with the sample can also be studied to 

complement the measurements of secondary electrons51. Each of these interactions is related to 

the topography and/or the surface composition51. 
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in the spectrum with existing databases for elements (Figure 16). The area of the peaks is 

correlated with the content of the element in the compound, and the energy of the primary beam. 

The limit of detection is typically between 1000 and 3000 ppm and the resolution is in the order 

of 300 nm for lateral resolution and 1 µm for depth information54. 

However, this technique presents some limitations. Due to the interaction of the electron beam 

with the matter, the analysis gives information about an integrated volume of the sample 

(included the surface and the oxide layer that is present in surface of the sample). In the case of 

samples that are not flat, polished and homogeneous, quantification of the results can be quite 

complicated. In addition, this technique is not suitable for low-Z elements. Finally, the sample 

size has to be adapted to the SEM sample holder and must be vacuum compatible.  

 

Figure 16 : EDS spectrum of silver nanoparticles showing Ag Lα and Ag Lβ signatures55. 

 

In order to obtain reliable measurements, an excellent surface flatness, a very well-polished 

surface, a sample that is conductive, stable under the electron beam and vacuum, and a 

homogeneous area for analysis are required. 
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These conditions exclude this technique as an overarching mean for chemical analysis. 

Moreover, in the case of quite rough samples, the topography can induce some absorption 

effects and lead to a wrong quantitative analysis. Cases of changes in the chemical composition 

of the sample under the electronic beam can also be reported. One example is the case of the 

migration of alkali metal ions under the beam influence 56. 

1.2.3.3. Electron Backscattered Diffraction (EBSD) technique 
EBDS is a microstructural crystallographic technique57 to measure the crystal orientation of 

crystalline materials. EBDS can be used to determine to preferential crystallographic 

orientation of any mono- or poly-crystalline material. It can also be used to identify the 

crystalline system in a material. EBDS can also be applied to study defects58, phase 

identification59, grain boundaries60, examination of local heterogeneities61 and deformation 

cartography62 (Figure 17).  

EBSD is commonly implemented in the SEM, provided that it is equipped with an appropriate 

detector 63. The crystalline sample is first polished and positioned in the SEM vacuum chamber 

with a high inclination angle (~70°) to increase the contrast of the backscattered electrons. A 

phosphorescent screen is located inside the SEM chamber with a 90° angle from the electron 

beam and is coupled to an objective focusing the image produced on the screen of a CCD 

camera. Some of the electrons that interact with the sample are backscattered. A small amount 

of these electrons undergo a Bragg reflection on the lattice planes and strike the phosphorescent 

screen 64.  An electron backscatter diffraction pattern (EBSP) is created when several different 

planes diffract the electron to form the Kikuchi lines 65, which correspond to each of the 

diffraction planes of the lattice (Figure 17). It is then possible to link the lines present in the 

EBSP diagram to the phase and the crystallographic orientation of the material (Figure 18).  
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Figure 19: Schematic diagram of a nuclear microprobe: the ion beam is collimated and focused 
to form a spot with a micrometric diameter in the focal plane. An electrostatic deflection system 
allows scanning point by point the area to be analyzed in order to obtain a 2D or 3D map of the 
atomic percentage of the element analysed. 

 

Many characterization techniques can be used in conjunction with a nuclear microprobe. A few 

examples are described here. 

Particle Induced X-ray Emission (PIXE)66: The detection of characteristic X-rays emitted by 

the electronic clouds of the atoms excited by the incident ion beam allows to determine the 

proportion of all the heavier elements present such as sodium (Na). The X-rays emitted by the 

lighter elements are too low in energy to be detected. This analysis is elemental as it provides 

the Z number of protons with a sensitivity suitable to access concentrations of elements to the 

order of ppm. 

Particle Induced Gamma-ray Emission (PIGE)67: PIGE consists of measuring the gamma 

spectrum emitted by the nuclei of atoms excited (mainly Coulomb excitation) in order to detect 

light elements (typically Z less than 19). The identification is isotopic (access to Z and to the 

number of mass A). 

Nuclear Reaction Analysis (NRA)68: This characterization technique allows, by choosing the 

nature of the incident ions and their energy, to generate special nuclear reactions. With ions at 

few MeV energy, only light elements can be measured, because the Coulomb barrier of heavy 

nucleus is too high, which prohibits all nuclear interactions. The reaction probability presents 



32 

sometimes a narrow resonance depending on the energy of the incident beam. By varying this 

energy, we can then determine the concentration profile in depth (2-3 µm) in the sample. This 

method is also isotopic.  

Rutherford Backscattering Spectrometry (RBS)69: RBS consists in measuring the ion 

energy after their scattering on the target nuclei. This energy is characteristic of the nucleus 

mass and allows to determine the mass number A. Ions undergo an electronic deceleration in 

the crossing material. Hence, this method is sensitive to the topography and to the organization 

of the material in-depth (eg. organization and thickness of thin layers, impurities location, 

surface contamination). 
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1.3. Local probe techniques for surface characterization 

It is in 1873, that the first limit of resolution in optics (for the study of a sub-wavelength object) 

was demonstrated. E. Abbe reported70 that light cannot be focused on an infinitesimal point 

without being diffracted. Diffraction phenomena limit the resolving power of an optical 

microscope and do not give a point image of a point object, but rather an Airy disc as shown in 

Figure 20. The image of a perfectly circular hole gives a bright disc surrounded by concentric 

rings alternately bright or dark.  

As the spatial resolution limit of an optical device is dictated by its resolving power, two very 

close points will appear as overlapping regions or as a larger disc when the distance between 

the two points is inferior to the resolving power of the microscope. In far field, the observation 

with optical instruments allow to discriminate two points of an object only if the center of the 

diffraction figure of one of the point is located on the first dark ring of the diffraction figure of 

the other point.  

The resolving power of a far field optical device (R (in meters)) depends on the illumination 

wavelength λ (in meters), the refractive index n (no unit) and the half opening angle θ (in 

radians) of the optical device as:  

𝑅 =  
𝜆

2.𝑛.𝑠𝑖𝑛𝜃
  

Hence, in air (n=1), R is around λ/2. By playing with the numerical aperture (O.N. = n.sinθ) of 

the device it is possible to raise resolution up to λ/3 or λ/4. 
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Figure 20: Representation of Airy discs and their associated intensity distribution. (a) Airy disk 
for a single object (diffraction pattern containing a central maximum surrounded by other orders 
1st, 2nd …). (b) Two overlapping Airy disks for two objects at the limit of optical resolution 
when the distance between the disks is larger than their radii and they are resolvable. (c) Two 
overlapping Airy disks in the case of the distance between centers of zero order maxima is less 
than the width of these maxima 71. 

 

Figure 20 illustrates the resolution problem encounters by classical far field optical 

characterization techniques. The electromagnetic field diffracted by a sub-wavelength object is 

composed of a fundamental mode and several superior modes. The fundamental mode contains 

information related to large details of the object whereas superior modes contain information 

related to small details (high spatial frequencies) 72. 

The superior modes are evanescent. As a result, far field characterization only measures the 

fundamental mode of the field diffracted by the sample. Thus, the information detected in far 

field measurements is not sensitive to small details of the object.  To capture the contribution 

of superior modes it is necessary to get very close from the surface in the near field zone (Figure 

21) 73. Indeed, the amplitude of an evanescent wave decreases exponentially from the interface 

as a function of distance d. Dipolar model in air shows that the amplitude decrease of the 

radiated fields in near-field follows a 1/d3 law 74. The spatial resolution depends on the distance 

between the observer and the sample but also on the dimensions of the extremities of the probe 
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used to perform the measurement. The sharper the probe, the narrower the region of field 

enhancements used as the illuminating beam to characterize the sample. 

 

Figure 21: Illustration of far and near-field regions around an emitting antenna. 

 

1.3.1. Photon Scanning Tunneling Microscopy (PSTM) 
PSTM 75 platforms are composed of an optical fiber brought close to the surface of a sample 

placed on a prism by means of an index gel. The index gel provides optical continuity between 

the media as well as a good mechanical adhesion. The sample is illuminated by total internal 

reflection so that the optical fiber frustrates the evanescent part of the wave scattered by the 

sample surface, but the fundamental mode does not interfere with the measurement.  

A schematic of the setup can be seen in Figure 22. 
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Figure 22: PSTM setup for near-field optical collection of the light emitted by the sample 
excited by incoming polarized LASER light in Total Internal Reflection configuration76. 

 

The interpretation of PSTM images is based on the study of the scattering of electromagnetic 

surface waves by defects at the sample’s surface. Illuminating the sample in a total internal 

reflection configuration generates bi-dimensional surface waves: these waves propagate in the 

plane of the sample’s surface and their amplitude decrease exponentially in the direction normal 

to the surface (z direction in the schematics in Figure 22). By approaching the local probe 

(optical fiber) very close to the surface, surface waves can be detected. 

Figure 23 presents an example of PSTM images for the detection of optical index changes in a 

material.  

The topographic and PSTM images are recorded simultaneously. In this configuration, the 

regulation between the tip and the sample is not based on the decay of the evanescent field but 

on the forces between the probe and the sample. This configuration facilitates the discrimination 

of the nature of the defects. In fact, for a volume defect, this mode acts as constant height 

detection whereas for a topographic defect the optical signal at constant height becomes 

constant. The experimental measurement was performed on a step of 400 µm height. Features 
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of different optical index were positioned on the sample. Topography and optical images are 

recorded simultaneously. One notice that the optical answer of the topographic step remains 

constant (excepted on the edge of the step) whereas the AFM image reveals it perfectly (Figure 

23a and Figure 23c). The opposite phenomena is observed of the index step which is reveals 

by the optical image and not by the AFM one (Figure 23b and Figure 23d).  

 

Figure 23: Comparison of AFM and PSTM images on a same sample. (a) Topography AFM 
image. (b) AFM image of the sample presenting optical index differences. (c) PSTM image of 
a topographical variation without any optical changes. (d) PSTM image of the sample 
presenting variations in the optical index77.  
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To investigate the nature of the force between the tip and the sample, one can perform a “force 

curve” at a fixed point by varying the tip-sample distance incrementally and recording the 

vertical deflection of the cantilever. The profile of the resulting curve is presented in Figure 

26.  

 

Figure 26: Cantilever deflection vs the piezo z displacement curve. (1-3) are representative of 
the approach and (4-6) of the withdraw phase. 

 

The different phases illustrated in Figure 26 can be described as following: 

1- The tip/sample distance decreases. There is no interaction between the tip and the 

sample. 

2- The cantilever bends downward as a result of the attractive forces of the surface. The 

deflection of the cantilever ‘decreases’ as the tip engages in contact with the surface 

(electrostatic attraction and/or capillarity forces). 

3- The tip presses the surface, the cantilever bends upward. The repulsive forces are 

predominant in the regime. 

4- The pressure exerted by the tip decreases. The motor initiate the steps to withdraw the 

cantilever. The tip remains in contact with the sample, now bound by adhesion forces. 



 

Frictional information = (A+B) – (C+D) 
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Peak Force QNM mode (Quantitative NanoMechanics) 
Peak Force QNM mode88 is based on Tapping mode but allows to measure the mechanical 

properties of materials such as adhesion, deformation or elasticity89 (Figure 30).  In this 

configuration, force curves at a frequency range of 0.5 - 4 kHz are acquired at each pixel of the 

image. Force curves are then used as retro-control for imaging.  Resolution equivalent to the 

classic tapping mode has been demonstrated 89. This can be used on all types of materials from 

the inorganic to the organic.  

 

Figure 30: AFM Peak Force QNM images of a multilayer film composed of polymer 
multi-layers. (Scan size 10 x 10 µm). (a) Topography (b) Adhesion (c) Elasticity89. 

 

Force curve modeling for Young modulus extraction 
Derjagin, Muller, Toropov (DMT) 90 is a standard model used to fit tip-sample force curves in 

Peak Force QNM. The retract part of the force curve, when the cantilever-sample distance 

increases, is fitted using the DMT model, and the result of the fit corresponds to the reduced 

modulus E* calculated by: 

𝐹 −  𝐹𝑎𝑑ℎ =  
4

3
𝐸∗√𝑅(𝑑 −  𝑑0)3 

where  𝐹 − 𝐹𝑎𝑑ℎ is the force applied on the cantilever, 𝑑 − 𝑑0 the sample deformation 

and R is the tip radius. 

An example of different surface properties provided by Peak Force NM mode (including 

eleasticity) is given in Figure 31. 
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Figure 31: AFM image of human monocyte rafts obtained by Peak Force Mode. (a) 
Topography, (b) signal error, (c) modulus (elasticity), (d) LogModulus, (e) adhesion, (f) 
deformation (images Ece Abayke). 
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1.4. Development of near-field microscopes for subsurface 
investigation 

1.4.1. Scanning Thermal Atomic Force Microscope 
Scanning Thermal Microscopy (SThM)91 mode was developed to probe thermal properties at 

the nanoscale level. This technique maps the thermal properties of a sample by using a 

nanofabricated thermal probe that contains a resistive element near the apex of the probe tip92, 

93, 94. This resistor is incorporated into a Wheatstone bridge circuit, which allows the system to 

monitor the resistance.  

 

Figure 32: Thermal AFM setup95. A special AFM cantilever constitutes the fourth leg of the 
Wheatstone bridge for temperature measurements. 

 

Figure 32 represents the experimental device of SThM AFM. A “V” shaped resistive element 

is mounted at the end of a cantilever. While the distance between the probe tip and sample 

surface is controlled by usual AFM scheme, the thermal probe forms one leg of a Wheatstone 

bridge. It is this Wheatstone bridge which is used as a feedback to adjust and balance the bridge 

voltage in order to measure the probe’s temperature (TCM) or maintain a constant probe 

temperature (CCM). A topographical AFM image can also be generated from changes in the 
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cantilever’s amplitude deflection. Thus, topographic information can be separated from local 

variations in the sample’s thermal properties, and the two types of images can be collected 

simultaneously. 

Two qualitative sub-modes are available for SThM, the Temperature Contrast Mode (TCM) 

that allows measuring the temperature variations of the sample and the Conductivity Contrast 

Mode (CCM) that provides measurement of thermal conductivity variations. Sample 

temperatures are typically measured on active device structures such as magnetic samples, laser 

diodes or electrical circuits 96. Conversely, thermal conductivity is more typically measured on 

composite samples 97. In these measurements, a higher voltage is applied to the probe increasing 

it further the room temperature. The thermal conductivity of the sample will affect the 

temperature of the probe by draining more or less heat away from the tip. 

Although the preferred method for SThM operation is via solid-to-solid direct conduction, it is 

possible that conduction occurs within the liquid meniscus at the tip surface in the presence of 

aqueous species, which can also be affected by gas conduction. For this reason the preferred 

method of operation is to perform the measurements under vacuum conditions. The 

fundamental limit of resolution of the measurements is proportional to kT, where k is the 

Boltzman constant and T the temperature. At room temperature, kT is between 10 and 21 Joules. 

Some of the major applications for SThM are for defect and “hot spot” detection in 

semiconductors 98 or the detection of subsurface features 99, which cannot be observed by AFM.  

Typical material parameters that can be observed include the thermodynamic characterization 

of material properties such as conductance, specific heat capacity, and glass transition 

temperatures 100. The technology is also of particular relevance to pharmaceutical compounds 

and for the analysis of biomolecules101. Figure 33 illustrates the potential of this technique with 

the characterization of local phase transitions in a polymer that are not detectable by classical 

AFM. 



μ

μ
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Figure 34: NanoIR setup: molecular vibrations in the sample are excited by illumination in the 
infrared range using a total internal reflection configuration. The ringing of the cantilever 
resulting from the pulse of light interacting with the matter is captured by an oscilloscope. Next 
FFT is performed to extract the absorption spectrum or chemical measurements. 

 

Figure 35 illustrates the use of nanoIR microscopes for mapping the distribution of lipids inside 

bacteria.  

 

Figure 35: Results obtained with the AFM-IR system on S. lividans bacteria: (a) AFM 
topography, (b) chemical map at 1740 cm−1, and (c) local IR spectra acquired at selected 
points: on and off a lipid inclusion109.  
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Moreover, in 1937, Sokolov described a technique for underwater imaging called “Sokolov 

tube” also know under the name of Acoustic Electron-Ray Converter (AERC) 111.This device 

is composed of a special Piezoelectric Element Matrix (PEM) lens composed of about 1000 

square elements electrically connected to a vacuum cathode-ray tube or Cathode-Ray Converter 

(CRC). An electron beam scanning this surface converts the electrical image into a time 

dependent output signal that can be processed and displayed as an image112, 113, 114. In 1955, the 

first successful experiments were carried at the Andreev`s Acoustical Institute, Moscow, 

Russia115.  

The first scanning acoustic microscope (SAM) was developed in 1973 by A. Lemon and C.F. 

Quate at Stanford University116. The acoustic microscope principle relies on the fact that the 

speed of sound in a medium is directly related to physical properties of that medium such as 

density and elasticity. 

 

 

Figure 37: Schematic of the Scanning Acoustic Microscope (SAM) using an acoustic lens to 
focus the waves onto the sample. 
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The schematic of the SAM microscope is presented in Figure 37. The acoustic wave is 

transmitted due to a piezoelectric crystal and is propagated inside the sample via a sapphire 

focalization lens. A suitable coupling liquid is required. SAM image formation is based on a 

sequential radiofrequency (RF) electrical pulse with a 50-500 ns period and 10-1000 MHz 

frequency, which is used to excite a piezoelectric transducer fixed on the top of an acoustic lens 

body. The transducer converts the RF pulse into an ultrasonic wave with the same frequency 

that is emitted into the lens body. This ultrasonic wave propagates to a spherical cavity coated 

with a quarter-wavelength-matching layer to increase transmission. The lens cavity is coupled 

by liquid (usually water) to the sample surface, which is located at the focal point of the 

spherical lens (the lens with the spherical cavity). The ultrasonic pulse is transmitted and 

focused by the spherical lens to steer the acoustic wave onto a spot whose size is comparable 

with the acoustic wavelength in the fluid. Then, the wave is reflected back by the sample. The 

amplitude of the reflected pulse is proportional to the difference between the acoustic properties 

of the sample and that of the water at the focal point, so that the amplitude gives a measure of 

the microscopic properties of the sample at that point. The pulse is reconverted into a RF pulse 

by the inverse piezoelectric effect of the RF receiver, tuned to the appropriate frequency. The 

average amplitude of the pulse is determined, converted into a digital signal and sent to a 

computer imaging system. The lens is then mechanically displaced by a small distance and the 

process is repeated, usually  at 500 *500 points, to form an image117.   

This type of microscope can be used both for the observation of hard material and biological 

sample because unlike light and electron microscopy, biological specimens can be examined 

without any alteration during sample preparation. Figure 38 and Figure 39 illustrate the 

imaging possibilities of SAM on hard and soft matter, respectively, at different frequencies. As 

can be seen on the images, the resolution is somewhat limited. Similar to optical techniques, 

the diffraction limit dictates the spatial resolution of the microscope, hence the resolution is 
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dependent on the wavelength of the acoustic wave and the artifacts generated by the lens. 

Another limitation of SAM microscopy is the need to couple the acoustic lens and sample with 

water, preventing the analysis of water sensitive samples. 

 
Figure 38: Acoustic (a) and SEM (b) images of a concrete samples made with granitic aggregate 
grains and Portland cement paste. The acoustic image was set at 400 MHz 118. 

 

 
Figure 39: Optical (in color) and overlaid acoustical (in grey) images of embryonic chicken 
heart muscle cells. The acoustical images have dimensions of 65 x 65 µm and were acquired 
with a center frequency of 860 MHz 117. 
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1.4.3.2. Near field acoustic microscopy 
We mentioned in previous sections that the apex of the AFM cantilever sensor has a curve 

radius of only a few nanometers to several hundred of nanometers. The lateral resolution is 

given by the contact area between the tip radius and the sample radius, which is much smaller 

than what can be obtained with the wavelength of the acoustic waves. 

In order to use the capabilities of ultrasound waves for the volume investigation with nanometer 

resolution, such as what is offered by the local probe effect of the AFM, idea of coupling 

acoustic and AFM techniques was explored.  

Since 1993, several AFM microscopes combining ultrasound imaging  

have been developed, including ultrasound force microscopy (UFM)119, scanning acoustic force 

microscopy (SAFM)120, atomic force acoustic microscopy (AFAM)121, and ultrasonic atomic 

force microscopy (UAFM)122. These techniques can be seen as special types of dynamic force 

microscopy techniques or as near field microscopy techniques in the scope of “nanoscale 

ultrasound imaging”. We will describe them here briefly. 

UFM was the first acoustic near field microscope reported123. UFM combines the principle of 

acoustic microscopy with the resolution of the AFM operating in contact mode. As represented 

in Figure 40, UFM can be designed on the basis of a conventional AFM. To implement the 

acoustic actuation on the sample, the substrate is placed on a piezoelectric transducer connected 

to a radio frequency (RF) signal generator. Longitudinal waves with a frequency range of few 

hundred kHz to several MHz selected so that the cantilever response is negligible119,124,125 (far 

above the first resonant mode and away from the higher resonant modes) are launched through 

the sample. The acoustic wave causes high frequency surface. The sensor tip of the AFM is in 

contact with the vibrating sample surface and when the threshold amplitude is reached, the 

sensor tip lifts off from the surface. The deflection and/or torsional vibration of the cantilever 
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due to its interaction with the acoustic wave are then monitored via a lock-in detection and gives 

nanometer resolution elastic or subsurface images126.  

This ultrasonic method can be used to evaluate the elasticity of stiff samples and to detect 

subsurface defects (Figure 41)119, 123, which are not possible by force curves127 or force 

modulation modes128, 129. Although the force modulation mode using a very stiff cantilever (> 

1000 N/m) can be used to evaluate a stiff sample, such a cantilever is not suitable for soft 

samples. UFM can overcome this shortcoming. UFM detection is performed both in liquid 

medium and in air.  UFM is however limited for the characterization of samples that are too 

large or heavy as the piezoelectric crystal cannot effectively vibrate.  

 

Figure 40: Near-field acoustic microscope setup showing the mechanical actuation of the 
sample using a piezoelectric crystal connected by a frequency generator. 
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Figure 41: UFM images of Ge dots on Si substrate. (a) Topography (c) UFM image at 3 MHz 
of Ge dots on a Si substrate (Scan size 400 x 400 nm). The cross section on the UFM image (d) 
reveals the sharp change in signal at the periphery of the round structure corresponding to a 
cavity in the center of the Ge dot, while the topography profile (b) is perfectly smooth. Height 
of the dots is about 15 nm130. 

 

AFAM 131  principle is very similar to UFM microscopy with a frequency range limited from 

0.1 MHz to 2.5 MHz 132. Moreover, the configuration can be adapt to excite the sample with 

acoustic waves generated by piezoelectric crystal located on the AFM probe 131 instead of the 

excitation of the sample described in UFM. Figure 42 illustrates images of a piezoelectric lead 

zirconate ceramic by AFAM. 

 

 
Figure 42: AFAM images of a piezoelectric lead zirconate ceramic at sample actuations of 600 
kHz and 750 kHz133. 
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1.5. Conclusion 

Although a multitude of characterization techniques for non-destructive investigation of the 

volume of materials are available 134, most of them do not provide sufficient resolution to 

achieve early detection of defects at the nanoscale. Conventional techniques offering great 

sensitivity and spatial resolution do not provide access to subsurface information or consist of 

destructive analysis of the sample. 

The purpose of this work is to achieve continuity of the non-destructive analysis to reach 

nanoscale resolution in order to understand defect formation and propagation in materials. We 

aim to develop an early detection and nanoscale resolution technique to characterize both solid 

materials and biological samples. Moreover, despite the fact that sensitive techniques are 

available for biology analysis, they generally require the use of markers which may have an 

impact on biological elements that cannot be assessed. Consequently, the idea is to observe 

these interactions with high resolution in a non-invasive way is very stimulating. In this work 

we will focus on two techniques– Mode Synthesizing AFM (MSAFM) and Scanning 

Microwave Microscopy (SMM) – which we believe can address some of these issues.  
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Chapter 2 – From topographic study to the 
development of tomographic high resolution 
tools. 
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Since the development of near-field techniques in 198280, the need for powerful high-resolution 

characterization tools capable of probing properties of materials of increasing complexity 

continued to increase. In 1986, the emergence of atomic force microscopy (AFM) paved the 

way to surface information with a lateral resolution of a few nanometers for all materials 

irrespectively of their conductivity78, 79. The rise of AFM then led to new demands in 

characterization of condensed matter beyond morphological studies, for both solid state and 

soft materials (i.e. in the biological field). For instance, the ability to study systems in real time 

requires to significantly increase the image acquisition speed as the performance of about one 

picture in five minutes in conventional AFM platforms hinders the study of fast dynamic 

phenomena such as self-assembly or protein conformational changes. Acquisition time saw a 

breakthrough discovery in 2008 with the development of high speed atomic force microcopy 

(HS-AFM) by the group of Professor Toshio Ando135,  136 (Kanazawa University, Japan), 

capable of imaging the dynamics of myosin and dynamic molecular processes in photoactivated 

bacteriorhodopsin using 1 frame per second135,136. Another limitation of AFM is its limitation 

to surface characterization. Hence research efforts in near-field techniques are very active in 

developing new tools for non-destructive and non-invasive volumetric investigations, while 

maintaining the nanoscale resolution of AFM. New techniques such as acoustic microscopy 

and microwave microscopy emerged from these efforts112, 113, 137, 138.  

This chapter is centered on the description of the capabilities of two new near-field techniques 

to realize high resolution characterization with the aim of achieving 3D tomographic studies. 

Namely, we focus on the techniques developed in the context of this work based on acoustic 

and microwave microscopy for non-invasive and non-destructive volume 

characterization139,140. 
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2.1. Mode Synthesizing Atomic Force Microscopy (MSAFM) 

Acoustic microscopy is a technique that enables in-depth imaging due to the propagation of 

ultrasonic waves and the change in their propagation in the presence of defects. Ultrasound 

waves propagating through the sample are sensitive to material properties such as stiffness or 

density141, 142, 143. A change in these properties is likely to cause variations of amplitude and 

phases of the incident sound wave. 

In the present work, we used AFM to circumvent the diffraction limit of conventional acoustic 

microscopy144. We show here that using this novel approach, it is possible to analyze the sample 

in-depth while maintaining the inherent atomic resolution of AFM139.  

The first AFM devices coupled with acoustic waves such as Ultrasonic Force Microscope 

(UFM)123, 126 and Atomic Force Acoustic Microscope (AFAM)131, 121 were based on the 

interaction a single ultrasound wave launched below the sample with the subsurface defects 

inside the sample, and monitoring the amplitude and phase of the wave detected at the surface 

of the sample by the cantilever. Then, to increase the detection sensitivity the technique was 

improved by adding a second ultrasound wave. The two-wave actuation AFM technique is 

called Scanning Near Field Ultrasound Holography (SNFUH)145 and Mode Synthesizing 

Atomic Force Microscopy (MSAFM)144 was introduced next as a generalization of the multi-

wave actuation and nonlinear mixing. 

The principle of MSAFM is based on the study of amplitude and phase variations of the surface 

waves generated by the interference of two ultrasonic waves carried out by the imaging system. 

In the first report of MSAFM146, two (or more) forces were exerted on the system through 

forced oscillations of the cantilever probe and/or the sample at frequencies, noted fp and fs, 

respectively (Figure 43a). In the case of the microscope developed our laboratory, the actuation 

frequencies applied were varied from 1 MHz to 10 MHz. Using this approach, a subsurface 
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inhomogeneity can be detected due to variation in amplitude and phase of the mixing signal at 

frequency |fp - fs|  (from several kHz to hundreds of kHz) monitored using lock-in detection to 

perform the appropriate analysis of the signal from the AFM photodetector147. Using calibration 

samples, the signals were shown to be sensitive to subsurface defects such as nanoparticles and 

nanostructured defects142, 148, 149, 139, 150. Figure 44 illustrates this phenomenon in a simple 

schematic. The synthesized wave is modified by the presence of a buried particle inside the 

sample. The heterodyne detection used is sensitive to such changes. Heterodyne detection 

consists in transposing the energy of a part of the spectrum at a lower frequency (called 

intermediate) to make the detection possible. Heterodyne scheme of detection was used for all 

MSAFM measurements in order to circumvent the limitation of the AFM detection (cut-off 

after a few MHz) and to make it possible to tune the MSAFM modes synthesized (difference 

in particular) with the resonance of the cantilever in contact with the sample when necessary.  

 

Figure 43 : MSAFM setup. (a) Experimental setup of MSAFM 144. (b) Electronic setup for AFM 
in acoustic mode 144. 



63 

 

Figure 44: Detection principle of a subsurface defect (purple sphere) in a homogeneous material 
(yellow slab). The acoustic wave of fp frequency is represented in blue and the fs frequency 
wave in green. The resulting wave of the nonlinear interaction is represented in red and presents 
a |fp– fs| frequency. 

 

In our experimental setup, acoustic waves are generated by two frequency generators 

(AGILENT 33220A) connected to piezoelectric ceramic (PI France) components of a 0.5 mm 

thickness and resonances in the MHz range (CuNi electode, ceramic PZT PIC 151). A lock-in 

detection is used (SRS 844 Lock-in Amplifier from Standford Research Systems). The two 

outputs of the frequency generators are also connected to a mixing circuit (Mini circuits mixer 

ZAD-6) followed by a low pass filter (DC 1.9 MHz) to isolate the reference signal Δf (defined 

by the difference in frequency Δf = |fp – fs|) for the lock-in measurement. The input of the lock-

in is the signal from the AFM detector. The acoustic image is formed by displaying the 

amplitude and phase reading performed at each point after rerouting the signal measured to the 

auxiliary input channel (Aux C) of the acquisition board of the microscope AFM using the AFM 

signal access module. The image appears on the canal “Aux C” whereas the topographical 

image remains on the canal “Height”. The setup of the experiment is represented in Figure 43.  
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2.1.1. Advances in Quantitative Nanoscale Subsurface Imaging by Mode-
Synthesizing Atomic Force Microscopy 
This part reports on advances towards quantitative non-destructive nanoscale subsurface 

investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy 

(MSAFM) with heterodyne detection addressing the need for a quantitative approach to 

correlate the role of actuation frequencies of the probe fp and the sample fs with depth resolution 

for 3D tomography reconstruction. By developing a simple model and validate the approach 

experimentally through the study of the nanofabricated calibration depth samples, consisting of 

buried metallic patterns139, we demonstrate new avenues for quantitative nanoscale subsurface 

imaging.  Our findings enable the reconstruction of the depth profile of the sample and allow 

high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale 

subsurface imaging offers great promise in the study of the structures and properties of complex 

systems at the nanoscale139. 

2.2.1.1. Theoretical approach 
AFM and related techniques mostly provide surface properties, while the observation of sub-

surface nanoscale defects remains a challenge. Detection of nanoscale structures buried under 

several hundreds of nanometers, well below the contact radius of the AFM tip, was 

demonstrated using acoustic based methods144, 151, 152. As the operating principle of MSAFM is 

founded on the nonlinear mixing of two ultrasonic waves, in this study one wave is launched at 

the base of the AFM probe at frequency fp, and a second wave is launched at the sample base at 

frequency fs
153, 154 (Figure 43). The mixing product occurring as a result of the nonlinear tip-

sample interaction thus contains subsurface information130, 155, 156, 157. Furthermore, previous 

works on biological samples158,159 underline the interest for quantitative volume 

characterization. However, the development of a theoretical model and the design of calibration 

samples for volume investigations are quite challenging160, 152, 161. Here we study the impact of 
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frequency difference Δf=|fp-fs| and ultrasonic frequency range (used for actuation) on the 

investigation depth zΔf using a simple theoretical model and verify the results experimentally.  

Although considered in previous work162, 150, a thorough determination of the effect of Δf on 

zΔf is still lacking. To overcome this, a predictive calculation based on the evaluation of the 

attenuation coefficients of the respective ultrasonic waves, is established here to link zΔf with 

the applied frequencies (fs and fp) and the difference frequency Δf. We consider two ultrasonic 

waves Sp and Ss, launched at the base of the probe and the sample, respectively, and assume 

that their respective amplitudes 𝐴𝑝 and 𝐴𝑠 are such that:  

𝑆𝑝(𝑡) = 𝐴𝑝 𝑒−
𝛼𝑝𝑧

𝑣 cos(𝜔𝑝𝑡 +  𝜑𝑝)                                                    (1) 

 

 𝑆𝑠(𝑡) = 𝐴𝑠 𝑒−
𝛼𝑠𝑧

𝑣 cos(𝜔𝑠𝑡 +  𝜑𝑠)                                                     (2) 

where αp and αs are the attenuation coefficients, and ωp = 2πfp and ωs = 2πfs the frequencies of 

the respective waves. v is the velocity of ultrasonic waves in the material (in our case the 

velocity is considered the same for both waves). As it was reported by Verbiest et al 152 and 

Cantrell et al 153 that the subsurface information is contained in the oscillation at the difference 

frequency Δf, we focus here on the mixing product resulting in the resulting signal detected 𝑆. 

Under the assumption that 𝐴𝑝 =  𝐴𝑠 as the tip and the sample interact, 𝑆 is such that:  

 

𝑆 = 2𝐴(𝑧) cos(∆𝜔𝑡 +  ∆𝜑𝑎) cos(∆𝛺𝑡 + ∆𝜑𝑝)                                  (3) 

 

with  Δ𝜔 =
|𝜔𝑠−𝜔𝑝|

2
= 2𝜋

|𝑓𝑠−𝑓𝑝|

2
= 𝜋∆𝑓  and  Δ𝛺 =

𝜔𝑠+𝜔𝑝

2
 , 
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and the attenuation amplitude of the mixed wave  𝐴(𝑧) is: 

𝐴(𝑧) = 𝐴0𝑒−(
|𝛼𝑝−𝛼𝑠|𝑧

𝑣
)                                                             (4) 

In heterodyne detection, one only monitors the oscillation at frequency Δf, so we simplify the 

expression: 

𝑆′(𝑡) = 𝐴(𝑧)𝑐𝑜𝑠(∆𝜔𝑡 + ∆𝜑𝑎)                                                       (5) 

Eq. (5) shows the role of the attenuation amplitude 𝐴(𝑧), which depends in turn on the 

attenuations coefficients αp and αs as shown in Eq. (4). Hence, 𝑆′(𝑡) will be maximal when 𝐴(𝑧) 

is maximal, i.e. when |𝛼𝑝 − 𝛼𝑠| reaches its minimum value. We detected the changes in 

amplitude and phase of the oscillation at Δf and linked the results to propose a relationship 

between the frequency difference Δf and the investigation depth zΔf. The results are presented 

in Figure 45 for a selected combination of parameters. 

It is important to precise that Eq. (3) describes the mixing product occurring as a result of the 

tip-sample interaction. In previous studies, the behaviour of nanomechanical frequency 

difference mode generation by developing a numerical simulation of the semi-analytical results 

obtained for the amplitude of oscillation at the difference frequency resulting from such mixing 

was explored163. The results point out that: 

 (1) Such mixing is optimum as the force verifies a volume integrated Lennard-Jones (LJ) 

potential; 

(2) The oscillation at the difference frequency is expected to be more sensitive to long-range 

Van der Waals power form than to the short-range power form163 . The results predicted by the 

theory were validated experimentally and the study also showed the effect of tip-sample 

distance d on the amplitude of the difference mode resulting from such mixing163. In addition, 

other works including recent theoretical study by Verbiest et al161 and Cantrell et al164 described 

other aspects of the dynamical aspect of the technique, including replacing the LJ potential by 
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a Derjaguin-Muller-Toporov (DMT model) interaction and demonstrating the importance of 

the repulsive regime in the system. Here, our attempt is to offer a simplified approach of the 

mixing and focus on understanding the "depth perception" of the technique. As it was reported 

in previous works that the subsurface information is contained in the oscillations at the 

difference frequency, we decided here focus on the mixing product. 

 

Figure 45: Predicted evolution of the investigation depth zΔf. (a) Evolution of the attenuation 
coefficient in case of fs<fp. The value of tip frequency fp was fixed at 4.500 MHz while the 
sample frequency fs progressively decreased from 4.475 to 4.425 MHz.  (b) Evolution of the 
attenuation coefficient in case fs>fp. The sample frequency was fixed at fs = 4.500 MHz while 
the tip frequency fp increased from 4.525 MHz to 4.580 MHz. (c) Influence of change of 
frequency range on the investigation depth zf in case fs<fp for a fixed Δf = 100kHz.  (d) Influence 
of change of frequency range on the investigation depth zf in case fs>fp for a fixed Δf = 100kHz 
139. 
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2.2.1.2. Relationship between the frequency difference and the investigation depth 
During its propagation in the bulk of the material, the energy of ultrasonic waves is attenuated 

via various mechanisms (reflection, refraction, scattering, absorption...). Overall, attenuation 

𝐴𝑧(𝑑𝐵) (which is related to|𝐴(𝑧)|2) follows an exponential law that can be expressed in terms 

of intensity 𝐼0 at the entrance of the material and the intensity 𝐼𝑧 at the depth z: 𝐴𝑧(𝑑𝐵) =

10log (𝐼0/𝐼𝑧). Consequently, for a given material and a given ultrasonic frequency, the 

attenuation 𝐴𝑧(𝑑𝐵) increases linearly with investigation depth zΔf such that: 𝐴𝑧(𝑑𝐵) ∝ 𝛼z∆f ∝

𝑓𝑧    where α is the attenuation coefficient (in dB.cm-1),  𝑓 is the frequency (in Hz), and z∆f (in 

cm). In addition, the attenuation coefficient α expressed for each component 𝛼𝑝and 𝛼𝑠, depends 

on the depth zΔf as follows: 

𝛼 = 𝑒−
𝑓∙z∆f ∙𝐿𝑛(10)/10

𝑉                                                                (6) 

Thus, calculating the minimum resulting from attenuation of the mixed waves is connected to 

the absolute value of the difference|𝛼𝑝 − 𝛼𝑠| of the attenuation coefficients. This coefficient is 

calculated for each Δf value under various sets of parameters (Figure 45). 

For example, if considering fp = 4.500 MHz and fs = 4.450 MHz, i.e. a difference Δf =50 kHz 

as depicted in Figure 45a (solid curve), by plotting 𝐴𝑧(𝑑𝐵) as a function of the investigation 

depth zΔf, a minimum in attenuation can be observed at zΔf = 20 nm. This investigation depth 

zΔf, can be linked to the attenuation amplitude 𝐴(𝑧) according to the Eq. (1.2). We then repeat 

this calculation for systematic combinations of parameters to understand the evolution of the 

attenuation and zΔf as a function of fp, fs, their difference and frequency range. 

2.2.1.3. Influence of the order relationship between fp frequency and fs frequency 
We now explore how the depth of investigation zΔf varies as a function of the difference 

frequency Δf and on whether fs < fp or fs > fp (Figure 45a and Figure 45b). 



69 

Case of sample frequency lower than probe frequency 
The value of probe frequency fp was fixed at 4.500 MHz and the sample frequency fs 

progressively decreased from 4.475 to 4.425 MHz. The numerical model applied in the case of 

decreasing values of fs highlights a shift of the minimum of absorption as a function of the 

difference frequency Δf used (Figure 45a). Note that for a fixed fp, a decrease in fs corresponds 

to an increase of the frequency difference Δf, from 25 kHz to 75 kHz respectively. We observed 

a shift of the minimum attenuation to lower depths during sample investigation. These results 

suggest that (all other parameters considered here being set) for an increase of Δf equal to 25 

kHz, we observed a decrease of the depth of investigation zΔf in the sample of about 4-5 nm.  

Case of sample frequency higher than probe frequency 
The sample frequency was fixed at fs = 4.500 MHz while the probe frequency fp increased from 

4.525 MHz to 4.580 MHz. As can be seen in Figure 45b, an increase in difference frequency 

Δf leads to a shift of the minimum attenuation, in the direction of the greater investigation 

depths. For an increase of Δf = 25 kHz, the depth of investigation in the sample augmented of 

4-5 nm. 

2.2.1.4. Influence of a change in frequency range 
To complete the study of the influence of the frequency sets used in MSAFM on the 

investigation depth zΔf, the impact of the frequency ranges used on zΔf was explored. By 

maintaining Δf constant, the behavior of  the attenuation coefficient is given from the curves in 

Figure 45c and Figure 45 as a function of zΔf for three different frequency ranges : 3 MHz 

range, 4 MHz range and 5 MHz range. For the two cases considered fs>fp or fs<fp, zΔf appeared  

to change with the range of frequency used. For example, when fs<fp (Figure 45c),  a smaller 

zΔf was measured for (fs,fp) in the 5 MHz range than for (fs,fp) in the 3 MHz range. The opposite 

behavior was predicted in the case of fs>fp (Figure 45d). 
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Thus, our results show that the shift of the attenuation curve, and consequently zΔf, depends not 

only on the frequency difference Δf but also on the range of the frequencies fs and fp. In addition, 

we unveil a change in behavior for the two cases fs>fp or fp>fs.  

2.2.1.5. Experimental validation of the numerical model 
For experimental verification of the model, we used the MSAFM technique described below 

(see schematic in Figure 46). Silicon nitride cantilevers (DNP-S, Bruker, k=0.12N/m) were 

used for all the experiments. We estimated the contact radius of 30±10 nm after MSAFM 

analysis on standard diamond calibration sample. The phase response of the oscillation was 

monitored and sent to the AFM controller to display the image for each step of Δf. After 

acquiring a sequence of images at various Δf, the corresponding depth information could be 

extracted from each image to reconstruct a depth profile of each sample. 

 

 

Figure 46: Experimental setup of MSAFM used to validate our model. The structures designed 
were probed using a tip and sample actuators of fp and fs, respectively. The signal of the 
difference |fp-fs| was monitored heterodyne detection. The phase was captured to successive 
Δf. The reconstruction of the depth profile was obtained by measuring the width of the features 
on each image. 

 

To that end, two sets of calibration samples with buried metallic patterns were fabricated by 

nanolithography using electron-beam lithography (e-LinePlus, Raith). A layer of 300 nm thick 

electro-sensitive polymer poly(methyl methacrylate) (PMMA) was deposited on a silicon 
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(Figure 48d). In addition the width of the surface features in after Ni deposition were measured 

by AFM and are indicated on the respective schematics (1.96 µm in sample series 1 and 1.83 

µm in sample series 2). 

 

Figure 48: Two model samples developed for quantitative nanoscale subsurface imaging with 
MSAFM. (a) Schematic of the design of sample 1. (b) Profile representative of the topography 
of sample 1. (c) Schematic of the design of sample 2. (d) Profile representative of the 
topography of sample 2. 

 

To determine the relevance of the numerical model in the study of buried samples, we compared 

the results presented in Figure 45 with experimental results obtained on the calibrated samples, 

using the same parameter as those considered for the numerical study. In all cases we fixed the 

driving amplitude 𝐴𝑝 =  𝐴𝑠 =  4 Vpp. MSAFM phase images were acquired for a set of 

frequencies from 20 kHz to 420 kHz at each step of 10 kHz. The results are described in Figure 

49 to Figure 51. Note that the set of frequencies selected to acquire the images presented here 

did not coincide with the natural resonances of the cantilever. 
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Case of sample frequency higher than probe frequency 
Here fs was fixed at 4.300 MHz and Δf was increased by decreasing fp.  The MSAFM phase 

images were obtained at different Δf, starting from 20kHz and sequential increase of 10kHz. 

Three of the images obtained during this sequence are depicted in Figure 49: (a) at Δf =20 kHz, 

(b) at Δf =70 kHz, and (c) at Δf =420 kHz. We observed that each one of the MSAFM images 

corresponds to a specific investigation depth zΔf as the contour of the buried pattern (highlighted 

by the dashed blue line on the MSAFM images in Figure 49 appears clearly on the images due 

to phase variation induced by the interface. The structures exhibited different dimensions (width 

and length) for each Δf. To measure the width of the patterns, as indicated by the solid blue line 

on the MSAFM images, the cross-section was extracted for each image (right column in Figure 

49) to perform the width measurement. 

 

Figure 49: MSAFM phase images at various Δf frequencies (Scan size 10 µm acquired at scan 
rate of 0.5 Hz). (a) Δf = 20 kHz – width extracted at the section π = 2.02 µm. (b) Δf = 70 kHz 
– width extracted at the section Π =1.70 µm. (c) Δf = 420 kHz – width extracted at the section 
Π = 1.58 µm. Phase were measured in a specified range (+/-10V) corresponding to a range in 
degrees of (-180/+180 degrees). 
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By combining the width of the buried structures extracted from the cross-sections of the 

MSAFM phase images and the investigation depth zΔf for each Δf using the numerical model, 

we could reconstruct the depth profile characteristic to the samples (Figure 50a and Figure 

50b). Note that the depth scale (z) is not respected on the graph. Line 2 in Figure 50b indicates 

the Si/Ni interface. The experimental results used to reconstruct the pattern profile agree well 

with the tapered angle resulting from the RIE etch. In addition, the etching depth obtained from 

the reconstruction using the numerical model is equal to 31±2 nm (in the Si layer in Figure 

50b), which is in agreement with the AFM profile in Figure 47 (34±2 nm). As a confirmation 

of the approach, we also verified the angle: the angle measurement between the points 2 and 3 

in Figure 50b indicated an angle of 79±2°, instead of 79±1° measured experimentally on ten 

different samples. As a whole, these results are in good agreement with the profile of sample 

calibration.  

Case of sample frequency lower than probe frequency 
The experiment was repeated in the case fs <fp with a fixed fp equal to 4.300MHz. The profile 

pattern is obtained in a similar manner as the previous case with the assumption that a Δf 

increasing corresponds to a diminution of the investigation depth (Figure 49c to Figure 49d). 

Under these conditions, there is a good correlation between the profile and the numerical model. 

However investigation takes place at a closer vicinity of the surface. The smallest value of Δf 

corresponds to the deepest investigation depth and we could find the boundary delimitation Si-

Ni (dotted red line in Figure 51) at Δf=30kHz. 



Δ
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in accordance with the numerical model results, that the variation in the depth investigation was 

modified. In this case, the investigation occurs less deeply in the sample. 

 
In the MSAFM configuration, the difference mode synthesized upon tip-sample interaction is 

very sensitive to characteristics of the tip-sample interactions and provides higher spatial 

resolution compared to conventional AFM methods. Here we took advantage of all the previous 

works mentioned above to extract and quantify the volume information contained in the rich 

dynamics of the system. In addition, we have also taken into account other components of the 

system to confirm our results. 

For instance, the frequency difference used to form the images presented here does not coincide 

with any of the eigenmodes (natural resonance frequencies) of the cantilever used, both away 

from the sample (free cantilever) and in contact with the sample (see two spectra below 

presented in Figure 52 and Figure 53). 

 

Figure 52: Frequency spectrum of the Bruker DNP-S cantilever (k= 0.12N/m). The peaks of 
the blue curve correspond to the natural resonance frequencies of the free cantilever (fo = 20kHz, 
f1 = 120 kHz). The difference frequencies used in the measurements presented in Figure 3-5 are 
indicated in the graph (yellow dots), ranging from 20 kHz to 300 kHz by step of 10 kHz. The 
selected frequencies are represented by the green triangular markers (i.e. 20 kHz, 30 kHz, 70 
kHz, 200 kHz, 270 kHz, 370 kHz, and 420 kHz). 
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Figure 53: “Contact” frequency spectrum of Bruker DNP-S cantilever (k= 0.12N/m). The peaks 
of the blue curve correspond to the resonance frequencies of the cantilever in contact with the 
sample. The difference frequencies used in the measurements presented are indicated in the 
graph (yellow dots), ranging from 20 kHz to 300 kHz by step of 10 kHz. The selected 
frequencies are represented by the green triangular markers (i.e. 20 kHz, 30 kHz, 70 kHz, 200 
kHz, 270 kHz, 370 kHz, and 420 kHz). 

 

The force applied by the probe on the sample was carefully controlled. With a tip-sample 

interaction greater than 100pN, topography was found to influence the signal detected by the 

cantilever, likely due to increasing nonlinearity in the interaction.  

Finally, the results reveal the presence of the defects in the sample. On the AFM images (Figure 

54), it is possible to note that these contours exhibit (Figure 54a) a lower contrast than the 

images obtained in the etch area (Figure 54b). This phenomenon may be due to the wave 

propagation in nickel in presence of subsurface stacking fault, showing depression on the 

topographical AFM image 165 (Figure 48c). We observe that on the two samples, for the same 

range of frequency and when fs > fp, the investigation depth is equivalent (39 nm for sample #1 

and 38 nm for sample #2). In both cases, the MSAFM phase images revealed the same etching 

area in silicon with Al depositing. On the other hand, when fs < fp, we used a different range of 

frequency (fs, fp) with the same Δf. The results show that the relative investigation depth is 
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equivalent in both cases and equal to 28 nm for Δf equal to 350 kHz, but not for the same area 

in the sample. In accordance with the numerical prediction, when the couple (fs, fp) is in a lower 

range of frequency, the MSAFM mode used probes a smaller depth of the sample, which 

explains the transition zone air-nickel on the graph of sample #2 (Figure 51c). 

 

Figure 54: MSAFM phase images for sample 2 with fs>fp (fs fixed at 4.3 MHz). (a) Phase image 
at Δf = 70 kHz: the investigation depth is in the nickel layer. (b) Phase image at Δf = 200 kHz: 
the investigation depth is in the etched area of silicon. Phases were measured in a specified 
range (+/-10V) corresponding to a range in degrees of (-180/+180 degrees). 

2.2.1.6. Conclusion 
In summary, through the development of a numerical model, we unveiled the influence of 

various actuation parameters, such as the range of frequencies used (fs, fp) and the variations in 

Δf, on the investigation depth of the sample during MSAFM imaging. This numerical study has 

been validated by experiments on metallic calibration samples with buried patterns. Therefore, 

the relationships of the frequencies range and Δf on the investigation depth zΔf advances the 

capabilities for quantitative subsurface studies. Based on this discovery, the different 

dimensions of the buried structures were identified to reconstruct the depth profile of the sample 

using width variations and theoretical predictions. Importantly, the phase images were not 

related to the sample topography. Overall, we demonstrated that MSAFM has the potential to 

become a very powerful tool for non-destructive control and 3D reconstruction of buried objects 

with high (nanoscale) spatial resolution (lateral resolution, depth resolution). 
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2.1.2. Mode-Synthesizing Atomic Force Microscopy for volume 
characterization of mixed metal nanoparticles 
To better understand the sensitivity of MSAFM, we characterized a structure with subsurface 

variations in the nanometer range. The nanoparticle was composed of two layers of different 

metal materials. We showed that the reconstruction of the depth profile is possible thanks to a 

simple model to connect the actuation waves and the corresponding frequency difference to the 

depth of investigation when probing the sample. We also demonstrate that it is possible to 

discriminate metallic materials of different properties within a nanoparticle166.  

2.2.2.1. Sample fabrication   
The sample fabrication process is described in Figure 55a to Figure 55f. First, a silicon wafer 

was recovered of Polymethacrylate methyl (PMMA) resin by spin coating. The nanostructures 

were then patterned by e-beam lithography on the PMMA film by Scanning Electronic 

Microscopy (SEM – e-Lineplus, Raith) (Figure 55a to Figure 55b). The resin exposed to e-

beam was lifted off and 43 nm of Nickel were deposited by sputtering (Figure 55c to Figure 

55d). Next, the silicon wafer was etched by Reactive Ion Etching (RIE –model GIR 300 

Alcatel) to create a base supporting the nickel dots (Figure 55e). Finally, a gold film (about 55 

nm thick) was deposited by thermal evaporation onto the entire structure (Figure 55f). SEM 

images were realized before and after the gold evaporation (Figure 55f and Figure 55h) to 

have a full view of the steps of fabrication. 
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Figure 55: Schematic of the sample fabrication (a) Deposition of a PMMA resin. (b) E. beam 
exposure by SEM and lift-off. (c) Evaporation of about 43 nm of Nickel. (d) Development of 
the PMMA resin. (e) Etching of the Silicon substrate by Reactive Ion Etching (RIE). (f) Final 
design after evaporation of a 55 nm gold layer. (g), (h) SEM images of the sample g) SEM 
image of the sample before the deposition of the gold layer (after (e) step).  (h) SEM image of 
the final sample structures (after (f)). 

 

 

 

g
)

h
)



82 

2.2.2.2. Study of nanoparticles with a special metal core 
We first characterized the arrays of nanoparticles composed of nickel and gold using AFM and 

SEM standard procedures for surface imaging. The SEM images in Figure 55g show the Ni 

sphere sitting on top of the Si post prior to Au deposition.  After Au deposition, the sample 

consists of an array of Au nanoparticles evenly spaced, as shown in Figure 55h. The 

topography AFM image (Figure 56a) reveals only the size of the global particle (without any 

distinction between the core and the envelope). A structure height of 150 nm and a diameter of 

about 580 nm were measured across the sample (Figure 56), in good agreement with the initial 

design (Figure 55).  

MSAFM phase images were acquired (Figure 56b to Figure 56e) and unveil the presence of 

the core inside the nanoparticles. Standard protocol was followed for data acquisition, as 

detailed in the previous section (2.2). After varying the frequency we could observe a variation 

of the core diameter (Figure 56b to Figure 56e). According to the numerical calculation 

presented above, an increase in Δf corresponds to a decrease in the volume investigated, i.e. the 

plane of the image acquired is closer to the surface. Thus, by adjusting the frequency we could 

observe great variations in the diameter of the core (Figure 57). For a frequency difference Δf 

of 140 kHz a core diameter of 233 nm was measured. While at Δf = 100 kHz an increase of the 

core diameter to 516 nm could clearly be observed. Finally, the diameter in the image decrease 

to 290 nm at Δf = 90 kHz. The levels investigated at each Δf are labeled in the inset of Figure 

56. As can be seen, the change in dimension observed is in good agreement with the sample 

design and follows the evolution predicted by the numerical model.  

The results are all the more significant that both layers of the structures are made of metals, 

thus could not be characterized by elasticity measurements or any other non-destructive 

techniques. In force investigation, the dual constitution between nickel and gold could not be 

distinguished in the elasticity modulus map due to the limitation in depth sensitivity. The results 
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shine light on the special capability of MSAFM to gain access to non-destructive 

characterization of such structures that cannot be studied by conventional ways. 

 

Figure 56 : MSAFM study of sample at different Δf frequencies. (a) Topography image of two 
Ni-Au nanoparticles and corresponding MSAFM phase images at Δf =140kHz (b), Δf =100kHz 
(c), Δf =90kHz (d), and Δf =50kHz (e).  

 

Δf (kHz) Core diameter (nm) Level on Figure 56 

140 233 2 

100 516 3 

90 290 4 

50 258 5 

Figure 57: Evolution of the core diameter with the Δf frequency. 
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2.2.2.3. Conclusion 
Through the development of the numerical model, we unveiled the influence of the variation in 

Δf on the investigation depth during MSAFM characterization. The inner features of the new 

3D calibration sample made of a metal nickel core encapsulated in a gold layer could be 

successfully characterized by MSAFM at different frequencies. We showed the presence of the 

core inside the nanoparticle with its diameter variations according to the Δf variations. This 

numerical model offers special interest for the 3D characterization of complex systems, 

particularly in biological field as in metallic nanoparticles in cells for possible tailored 

nanotechnology-driven therapy.  However, this technique does not provide any chemical 

information. There is no phase or amplitude contrast allowing to discriminate different kind of 

metals. This is explained by the sensitivity of MSAFM to differences of density (see Chapter 

3) and no to differences in electric properties of the materials (such as conductivity). 

Consequently, for studies in which more advanced characterization of metallic components was 

required we had to employ electromagnetic (EM) waves propagations through the sample, as 

unlike acoustic waves, EM waves are sensitive to changes in the conductivity of the material. 

In the second part or this chapter we will focus on the second technique developed during this 

thesis: Scanning Microwave Microscopy (SMM). 
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2.2. Scanning Microwave Microscopy (SMM) 

Scanning microwave microscope is a near-field technique possessing an extended microwave 

frequency range (usually limited to a 1GHz frequency). The first experimental observation of 

sub-wavelength defects in the microwave domain was presented in 1972 by E.A. Ash and G. 

Nicholls 167. Using a hemispheric cavity resonating at a 3 cm wavelength and a flat reflector 

perforated with a sub-wavelength hole (1.5 mm diameter) variations in the cavity resonance 

frequency, and by moving a probe at a distance of 500 µm above metallic lines (width 2 mm) 

and monitoring the, spatial resolution of λ/60 could be achieved.  

2.2.1. Far and near-fields microwave techniques for the detection of defects 
Due to the limitation of their spatial resolution (around λ/2), far field characterization 

techniques are only used for the detection of millimeter defects. The probes used in 

conventional microwave techniques are directive antenna acting as emitter and receptor for 

microwaves. The sample under test is located in the antenna far field zone, i.e. at a distance d 

from the antenna defined by: 

𝑑 >  
2.𝐷²

𝜆
                                                    (7) 

D is the antenna biggest dimension, λ the illuminating wavelength.  So, if a defect bigger than 

λ/2 is located in the illuminating beam of the antenna, one can observe a variation of the 

reflection coefficient (S11) of the antenna. 

By using the Abbe limit, we can calculate the spatial resolution of the defects detected with 

such techniques. With λ in air comprised between 1 mm (for f = 300 GHz) and 1m (for f = 300 

MHz), the limit of spatial resolution of far-field microwave techniques varies from 0.5 mm (for 

f =300 GHz) to 0.5 m (for f = 300 MHz). Thus, the methods based on far-field detection of 

defects are not adapted for the detection of micro (and nano)-defects. 
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a frequency shift Δf and affects the quality factor (Q) of the resonator. This method uses an 

evanescent mode to couple the resonant cavity to a local part of the sample. The most important 

development on this technique was developed by Ash and Nichols170, they were able to 

sensitively recover the signal from the resonator to reconstruct an image of the sample scanned 

under the hole170. 

Figure 58b represents a non-resonant microscopy technique which is based on the 

measurement of complex resistivity R or transmission coefficient T from which properties of 

the sample can be deduced. The most common configuration is the measurement of reflectivity 

from a coaxial transmission line terminated by the sample171. Transmission measurements were 

also reported172. This technique is suitable to map metallic conductivity, sheet resistance and 

dielectric constant171. 

In the configuration presented in Figure 58c, the sample is located near the open end of the 

transmission line resonator and the changes in resonant frequency and quality factor are 

monitored while scanning sample. This configuration uses a field enhancing feature at the end 

of the transmission line, rather than an evanescent aperture in the resonator. The first application 

of this setup was to measure moisture content in paper137. 

The system configuration presented in Figure 58d combines the nanometer resolution of an 

AFM with microwave microscopy. Three different variations of this configuration were 

reported in the literature173, 174, 175.The first one is used to perform localized electron-spin 

resonance measurements173. The second one consists in generating a magnetic field gradient on 

the sample (e.g. with a small magnetic particle on the tip) while immersing it in a radio-

frequency (RF) magnetic field. The sample locally satisfies the magnetic resonance condition 

and exerts a force on the cantilever174, 175. The third scanning probe method uses a sharp 

metallized tip to perform “apertureless” near-field microscopy176. The sharp tip, in close 
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proximity to a metallic sample, will locally enhance radiation introduced by a focused far-field 

beam.  

Finally, Figure 58e represents a method called scanning superconducting quantum interference 

device (SQUID) method. SQUID generates circulating radio frequency currents when a DC 

bias is placed across the loop. The frequency of these currents is directly proportional to the 

applied bias voltage. The currents in turn generate RF magnetic fields, which then impinge on 

the sample. The sample generates its own response currents which modify the inductance of the 

SQUID loop. By monitoring the magnetic-field feedback signal required to keep the SQUID in 

a constant flux state, one can map the electromagnetic response of the sample177.  

In that work, we focused of the AFM coupled with microwave frequencies. 

2.2.2. Micro-wave microscope 
Properties of the sample including complex permittivity, permeability and conductivity affect 

the detection parameters such as the reflection/transmission coefficients, the quality factor, and 

the resonant frequency measured.  A good theoretical modeling of the system can support the 

establishment of a relationship between the quantities detected and the sample properties. Here, 

the near-field tip is considered as an antenna (two terminal, linear, passive system) which is 

connected to the detection apparatus178.  
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2.2.2.2. Definition of the reflection coefficient Г 
When the signal travelling in a coaxial cable encounters an impedance mismatch, a portion of 

the signal will be reflected back to the source. This reflected signal has an amplitude and a 

phase and is measured as the reflection coefficient: 

Г= |Г|.ejϕ = (ZL-Z0) / (ZL+Z0) (in our case Z0 = 50 Ω)                             (10) 

Г represents the charge adaptation quality to the source impedance. It is a complex value with 

an amplitude ρ and an angle θ. ZL is the impedance mismatch of Z0 the impedance of the line. 

A good adaptation is realized when Г tends to 0. 

By using the normalized impedance Z = ZL / Z0, we have: 

Г= (Z-1) / (Z+1) and Z = (1 + Г) / (1 - Г)                                       (11) 

Thus, S11 can also be expressed as S11 = (Z-1) / (Z+1) = Г 

2.2.2.3. Return loss 
The return loss is defined as the loss of power in the signal returned/reflected by a discontinuity 

in the transmission line and it usually expressed as a ratio in decibels (dB) 

𝑅𝐿 (𝑑𝐵) = 10 log
𝑃𝑖

𝑃𝑟
                                                         (12) 

where RL (dB) is the return loss, 𝑃𝑖 is the incident power and 𝑃𝑟 the reflected power. 

The return loss is the negative of the magnitude of the reflection coefficient in dB and is given 

by the following relation: 

𝑅𝐿(𝑑𝐵) =  −20 log |Γ|                                                  (13) 

Thus, a large positive return loss indicated the reflected power is small relative to the incident 

power which indicated a good impedance adaptation. 
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2.2.2.4. Penetration depth 

The penetration depth 𝛿, or so-called skin depth, is a measure of the depth of microwave 

penetration in a material. The penetration depth of the EM field is defined as the distance from 

the surface of the material at which the magnitude of the field strength decreases to 1/e (= 0.368) 

of its value at the surface179. The penetration depth of the electric field can be expressed by the 

equation: 𝛿 =  
1

𝛼
 

where α is the attenuation factor and can be represented as: 

𝛼 =  𝜔 (
µ0µ𝑟𝜎

2
)

2

[(1 + (𝑡𝑎𝑛𝛥)2)1/2 − 1]
1/2

                                    (14) 

With µ0 is the permeability of the vacuum (4π10-7H/m), µr the permeability relating to the 

conductor, σ the electric conductivity (in S.m-1), ω the radial frequency - ω=2πf- in rad.s-1 and 

tanΔ the loss tangent factor which represents the efficiency of the material to convert absorbed 

energy into heat. 

Hence, the penetration depth is inversely proportional to the frequency of the electromagnetic 

field.  

In the particular case of the penetration depth of the electromagnetic field for a conducting 

material – which is high loss medium - the previous equation can be expressed as: 

𝛿 =
1

𝛼
=  

1

√𝜋µ0µ𝑟𝜎𝑓
                                                          (15) 

with δ the skin depth (in m), 𝜎 the electrical conductivity (in S.m-1) and f the frequency (in Hz). 

Thus, the potential of the microwave microscope lies its ability to differentiate the microwave 

images obtained at different frequencies for volume exploration. The microwave images will 
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provide information about the differences in phase and amplitude of the reflected waves at 

various frequencies, which is directly related to the nature of the material. The frequency of the 

EM wave will influence the skin depth, which we optimized to detect defects in the volume of 

the samples (Figure 60).  

 

Figure 60: Illustration of the skin effect. The radiation frequency applied for the detection of 
defects buried inside the metallic sample should be tuned according to the depth of the defect. 
Depending on the electrical and magnetic properties of the metal, a frequency that is too high 
does not give access to a skin depth (δ1) large enough for detection of the defect. The frequency 
has to be adapted for each material and defect. 

The electric field of the reflected wave through a good conducting material can be written as180: 

𝐸𝑟 =  𝐸𝑟𝑜𝑒(𝑖(𝜔𝑡− 
𝑧

𝛿
)− 

𝑧

𝛿
)                                                    (16) 

with Er the reflected electric field, Er0 the attenuated reflected electric field, ω the angular 

frequency (ω = 2πf), 𝑡 the instant considered, z the component of the direction of propagation 

and δ the skin depth180. 

The phase Φ of the wave defined by Eq. 16 is defined as: 

𝜑 =  
𝑧

𝛿
                                                            (17) 

Thus, in a fixed location z and for all other fixed parameters, the phase will be modified if the 

skin depth varies. Based on Eq. 15, the skin effect is dependent, at constant frequency, on the 
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permeability (δ decreases with increasing permeability) and on the conductivity (δ increases 

with decreasing conductivity) of metallic materials. 

2.2.3. Scanning Microwave Microscope (by Agilent) 
In 2008 Agilent Technologies developed a new scanning probe microscopy (SPM) technique 

that combines the electromagnetic measurement capabilities of a microwave vector network 

analyzer (VNA N5230A, Agilent Technologies) and an AFM (AFM 5600LS, Agilent 

Technologies) to offer nanometer spatial resolution. This new technique, called Scanning 

Microwave Microscopy (SMM), is shown in Figure 61. This nondestructive technique allows 

the characterization of defects located in the volume of a metal sample.  

 

Figure 61: Picture of the microscope used for SMM measurements. SMM, Agilent 
Technologies. 

The principle of operation of SMM is the following: a microwave signal is sent directly from 

the network analyzer and transmitted through a resonant circuit to a conductive AFM probe that 

is in contact with the sample under investigation. Figure 62 illustrates the signal obtained 

outside of the resonant circuit and cantilever, which exhibits frequency peaks. 
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Figure 62: Frequency spectrum obtained at the output of the resonant circuit in the SMM setup. 

From this frequency spectrum, one of the peaks is selected to decide the frequency at which the 
analyses will be conducted.  

 

The conductive tip attached to a solid metal cantilever acts as both as a nanometer-scale AFM 

probe and as a GHz emitter-receiver antenna. The transmitter–receiver system is limited to the 

accessible frequency range given by the cantilever/resonator system and by the interactions 

between the tip and the surface sample (see the example presented in Figure 63), which makes 

it possible to capture the reflected microwave signal locally, from the contact point. By directly 

measuring the complex reflection coefficient from the network analyzer, the impedance 

representing the probe–sample interaction amplitude and the phase at each point probed can 

then be recorded, simultaneously with the surface topography. 
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Figure 63 : Influence of the tip-sample interaction on the SMM amplitude signal. (a) 
Comparison between TiO2 samples. (b) Difference of the amplitude signal obtained on the 
anatase and rutile TiO2 sample obtained by subtracting the two signals in (a). 

 

The AFM tip scans the surface sample and in every measurement point of the scan, the S11 

scattering parameter is acquired by the VNA. The high-frequency signal travels from the VNA 

to the conductive probe, which is in contact with the sample to characterize. Depending on the 

electrical properties of the sample (ie. the impedance of the sample), the sample partly absorbs 

or reflects the high-frequency wave. The reflected wave travels through the transmission line 

back to the VNA where it is compared with a copy of the incident wave.  

By analogy with an optical technique such as Scanning Near-Field Optical Microscopy 

(SNOM), and like many SPM techniques, the transmitter-receiver system depends on the nature 

of the interaction between the tip and the surface sample. SMM images are acquired in real 

space, as in photon scanning tunneling microscopy. 
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Figure 64: SMM cone nose and tip holder. 

 

Figure 65: SMM setup: (left) microscope head and (right) data acquisition scheme. 

The cantilevers used for microwave measurements are SCM-PIT probes from Bruker. Built on 

the model of FESP probe (about 225 µm length), SCM-PIT have a Platinium-Iridium coating 

on the front side of the cantilever to provide a metallic electrical path from the cantilever die to 

the apex of the tip. The coating on the back side of the cantilever compensates for the stress 

created by the front side coating and also enhances laser reflectivity by a factor of up to 2.5 

times (Figure 66). The resonance frequency of the SCM-PIT cantilever is about 75 kHz for a 

spring constant in the range 1 to 5 N/m.  
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Figure 67: Geometry of the coaxial cable used in the model. Axes values are given in mm. Inner 
and outer radii as well as length of the cable were fixed for the calculations. 

 

 Model 1 Model 2 

Coaxial cable 

R_coax 2 [mm] 2 [mm] 

r_coax 1 [mm] 1 [mm] 

L_coax 20 [mm] 20 [mm] 

Cantilever 

d 0.1 [mm] 0.03 [mm] 

hp From 1 to 20 [mm] From 0.1 to 0.3 [mm] 

Tip   

rtip 0.1 [mm] 0.03 [mm] 

htip 0.015 [mm] 0.015 [mm] 

Figure 68: List of parameters used for the Comsol model. 
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We analyzed the distribution of the electric field at the end of the probe under various 

conditions. Calculations of the maximum of the electric field |E| are realized without and with 

tip for different probe length hp and various frequencies. 

First, we analyzed the system composed of a single coaxial cable without any cantilever and 

tip. Figure 69 shows the electric field distribution and reveals an important diffusion at the exit 

of the cable. The same calculations were then realized by adding a micrometer probe and a tip 

to the system. Figure 70 represents the distribution of the electric field in presence of the probe, 

at an 8 GHz frequency. In Figure 70 the electric field is concentrated at the apex of the probe 

with an intensity of about 20000 V/m. Moreover, the diffusion phenomena observed in the case 

of a single coaxial cable observed in Figure 69 disappeared.  

 

 

Figure 69: Representation of the absolute value of the electric field |E| at the coaxial cable 
output. Highest intensity (in yellow) were found at the outer perimeter of the cable output. 
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Figure 70: Representation of the absolute value of the electric field |E| variations in the system. 
The system modeled is composed of the coaxial cable and the probe (and tip) for a 8 GHz 
frequency. Field concentration was observed at the probe location. 

 

In order to evaluate this observation, we plotted the evolution of the calculated electric field as 

a function of different parameters. Figure 71 represents the distribution of the electric field at 

the apex of the coaxial cable as a function of the frequency injected from 4 to 12 GHz. One can 

clearly see the high impact of the tip of the probe on the intensity of the electric field (blue 

curve in Figure 71). In the configuration of the coaxial cable without cantilever, the |E| value 

remains less to 1000 V/m, but increased by a factor of 8 with the addition of a 300 µm length 

probe (red curve in Figure 71). Thus, we could confirm that the probe acts like an antenna and 

provides great exaltations of the electric field. This larger field was doubled with the addition 

of a tip. This model constitutes a strong confirmation of the high sensitivity of SMM microscope 

in the vicinity of the tip of the cantilever for near-field characterization. The cantilever tip 

enhances the electric field at the extremity of the tip. Consequently, contrary to the simple 

coaxial cable measurement, SMM will be of interest for local measurements with enhanced 

sensitivity. 
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Configuration |E| (V/m) 

Coaxial cable 1385 

Coaxial cable and probe (300 µm) 8929 

Coaxial cable, probe (300 m) and tip 17269 

Figure 71: Average value of the absolute value of the electric field |E| for the 4 GHz, 6 GHz, 8 
GHz and 12 GHz frequencies at the out of the coaxial cable in the presence or not of probe and 
tip. 

 

Figure 72 and Figure 73 represent the absolute value of electric field along the vertical and 

horizontal sections for a fixed frequency of 8 GHz at the out of the coaxial cable in presence or 

not of probe and tip . In the case of the coaxial-probe-tip system, the tip is modeled in contact 

with a perfect conductive (metallic) sample. Figure 72 illustrates the skin effect by showing 

the brutal decrease of the electric field in a conductive material as the distance from the surface 

sample increases. As already illustrated in Figure 71, the enhancement of the field due to the 

presence of the probe and tip can be observed with a signal at the surface of the material nearly 

ten times higher than that of the measurement in absence of the probe. 
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Figure 72: Absolute value of the electric field at the out of the coaxial cable in presence or not 
of probe and tip.  

 

Figure 73: Electric field confinement provided by the presence of the probe and the tip. 



103 

Figure 73 represents the variation of the electric field distribution at varying distance from the 

coaxial-probe-tip system. The confinement of the electric field in the vicinity of the probe and 

the tip is clear. This phenomenon explains the high sensitivity detection of the SMM that cannot 

be achieved with a simple coaxial cable. 

The model of the device highlight the great advantage of the local probe which consequently 

exalt the electric field and allow a great sensitivity detection. Thus, coupling the microwave 

spectroscopy with an AFM cantilever allows high resolution characterization with a sensitivity 

that cannot be achieved with a simple coaxial cable system. 

2.2.5. Evidence of in-depth investigation by SMM 
In order to evaluate the influence of microwave frequency on the investigation depth a 

calibrated sample was manufactured by Electron Beam Lithography (EBL) by using a Scanning 

Electron Microscope (SEM) coupled to a device of lithography management RAITH140, 181. 

The sample consists of L-shaped patterns of 30 nm depth were filled with aluminum (Al) film 

of 20 nm thickness. Then, a nickel (Ni) layer of 95 nm thickness was evaporated in order to 

cover these structures. Thus, we obtained buried structures of Al under a calibrated layer of Ni 

(Figure 74a). AFM observations at the final step show the surface of patterns (with height 

variations of 10 nm on the surface). On the topography (Figure 74a), the patterns appears at a 

lower level than on the non-treated surface. 

Nevertheless, to show that the surface is only composed of nickel, an image of friction (scan at 

90° compared to length of the cantilever) was carried out on this sample. Friction maps 

confirmed that the substrate and the patterns are of the same composition since the color 

contrast is identical (Figure 74b).  
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The SMM phase images obtained at various frequencies are presented in Figure 75. For 

frequency f = 4.485 GHz (corresponding to a depth, ∂ =80 nm), the SMM phase image did not 

show any features as the EM wave is probing the homogeneous Nickel layer. For frequency f 

= 3.852 GHz (corresponding to a depth, ∂ =90 nm), the plane probed is located at the Si/Ni 

interface. The SMM phase image shows a light contrast of color between the Ni layer and the 

proximity of the Si patterns, thus revealing the presence of different materials. The outline of 

the patterns also appeared with a contrast of color much more distinguishable. For frequency f 

=1.878 GHz (∂= 120 nm) the system probe a plane located inside the Al patterns. The SMM 

phase image clearly shows a difference in nature between the Al patterns and the Si substrate. 

Si being a semiconductor, it was expected to show a weaker electric conductivity than that of 

metals. These differences in properties are found on the SMM image in the color contrast. For 

frequency f =1.831 GHz, corresponding to an investigation depth of 125 nm, the scanned plane 

reached the level below Al patterns, inside the Si substrate. On the SMM phase image, no 

pattern could be observed. This sample made it possible to correlate the depth investigated at 

each frequency used and indicate that it will be possible to carry out an in-depth cartography in 

a representative thickness of the volume of the sample.  

2.2.6. Conclusion 
In conclusion, the capacity of SMM to detect defects located in the volume of a metal sample 

was established. The theory and modeling developed make it possible to connect the 

investigation depth associated to the frequency used. Moreover, the measurements at successive 

frequencies give access to information located at different depths below the sample surface with 

potential for tomographic study with an in depth resolution 80 nm and beyond. 
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2.3. Conclusion 

In this chapter, we highlighted strong evidence in favor of volume investigation at the nanoscale 

by means of ultrasound-based and microwave-based scanning probe techniques. Both 

approaches were shown to be capable of providing lateral and volume resolution of a few 

nanometers. At the next stage, the practical implementation of these microscopes shall be 

achieved, which then can be applied to the analysis of samples that are of specific interest for 

biology and material sciences. This will be the purpose of the next chapters. 
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Chapter 3 – Advances in the understanding of 
tomography microscopy through the study of 
dielectric and biological samples. 
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This Chapter is focused on the MSAFM capabilities for the characterization of dielectric and 

biological samples. Through the study of polymer, we highlighted the sensitivity of the 

technique to low density changes in the matter. Then, we applied the technique to the 

characterization of bacteria in order to visualize the action of an alcoholic stress on the bacterial 

membrane. Finally, the last part of the chapter is focused on the coupling of AFM-IR and 

MSAFM for the detection of lipid vesicles inside bacteria. 
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3.1. Study of the sensitivity of MSAFM – Analysis of a model 
sample 

Outstanding challenges in nanoscale characterization call for non-invasive, yet sensitive sub-

surface characterization of low-density materials such as polymers. In this work, we present 

new evidence that Mode Synthesizing Atomic Force Microscopy (MSAFM) can be tuned to 

detect minute changes in low-density materials such as the ones engendered in an electro-

sensitive polymer during electron beam lithography (EBL), surpassing all common nanoscale 

mechanical techniques. 

Moreover, we propose a 3D reconstruction of the exposed polymer regions using successive 

high-resolution frames acquired at incremental depths inside the sample. In addition, the results 

clearly show the influence of increasing dwell time on the depth profile of the nano-sized 

exposed regions. Hence the simple approach described here can be considered an 

unprecedented capability for sensitive nanoscale tomography of soft materials with promising 

applications in material sciences, and biology143. 

In this section, we designed and studied calibration samples with series of low-density 

variations patterns created in the volume of an electro sensitive polymer poly-(methy 

methacrylate) (PMMA) layer using various doses and dwell time parameters of controlled 

electron beam lithography (EBL). PMMA is routinely used in EBL as a sacrificial layer for 

positive resist in direct write processes. During e-beam exposure, the primary electrons entering 

the resist layer loose energy by means of inelastic scattering or collisions with other electrons 

and produce secondary electrons. The resulting electron cascade can engender a non-uniform 

spread of the energy deposition. The aim of this study is to track how electron-matter 

interactions modify the conformation of the material in the depth of the PMMA layer (i.e. below 

the surface). First, we show that, compared to AFM Peak Force Quantitative NanoMechanical 
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property mapping (QNM), Lateral Force Microscopy (LFM) and confocal Raman 

spectroscopy, MSAFM exhibits a combination of higher sensitivity and improved depth 

resolution. Second, we studied the influence of parameters such as driving frequency and scan 

rate on image contrast. Then, we evaluated their impact on resolution and on sensitivity of the 

subsurface components of the MSAFM measurements. The study highlights the potential of 

MSAFM for sensitive differentiation of materials presenting similar elastic properties, which is 

of prime interest in material sciences and biology182, 119. 

3.1.1. Methods 

3.1.1.1. Material 
Mode Synthesizing AFM was set up as depicted in Figure 76144, 160. Previous reports show that 

one could obtain images of buried defects with high resolution, although comprehensive 

calibration of the method for volumetric characterization of materials is still lacking. In 

addition, the interpretation of the results obtained with the multi-frequency apparatus proves to 

be quite challenging, in particular for dielectric samples with low-density differences183, 156, 184. 

For all experiments presented in this chapter, silicon nitride cantilevers (DNP-S, Bruker, 

k=0.12N/m), with an estimated contact radius of 10±30 nm81. The profiles of the nanoholes 

were determined using the cross section data analysis tool (Nanoscope Analysis). 

 

Figure 76: MSAFM experimental setup used in the characterization of dielectric materials, 
including multi-frequency actuation and heterodyne detection.  
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The cantilever and that sample are mechanically actuated by piezo actuators at their bases 

connected to respective waveform generators. The frequency mixer is used to select the 

reference frequency of the lock-in amplifier for amplitude and phase. 

3.1.1.2. Peak Force QNM and Lateral Force Microscopy 
Peak Force QNM and Lateral Force Microscopy studies were performed on a Multimode AFM 

(Bruker), with Nanoscope IV controller. Lateral force microscopy (LFM) consists in measuring 

the torsional bending of the AFM cantilever engaged in contact mode. Torsional bending of the 

cantilever is related to the friction force acting on tip. This mode is sensitive to mechanical and 

chemical properties of the material near the surface, underneath the tip of the cantilever. Peak 

Force Quantitative Nanomechanical Property Mapping (QNM), on the other hand, is based on 

force curve mode, which records four force curves at every point (pixel) of the image. This 

mode allows extracting the Young modulus of the sample, with simultaneous topography 

reconstruction. 

Derjagin, Muller, Toropov (DMT) is a standard model used to fit tip-sample force curves in 

Peak Force QNM90. The retract part of the force curve, when the cantilever-sample distance 

increases, is fitted using the DMT model, and the fit corresponds to the reduced modulus E* 

calculated by:  

𝐹𝑡𝑖𝑝 −  𝐹𝑎𝑑ℎ =  
4

3
 𝐸∗√𝑅 (𝑑 −  𝑑0)3                                     (18) 

Where 𝐹𝑡𝑖𝑝 is the force with which the tip is pressed on the surface, 𝐹𝑎𝑑ℎ  the adhesive force 

between the AFM tip and the sample, 𝑑 − 𝑑0 the sample deformation depth with correspond to 

the value indented by the tip in the sample (measured on the force curves) and R is the tip 

radius. 
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3.1.1.3. Raman spectroscopy mapping 
Raman mappings of the calibration samples were performed at the University of Central Florida 

(UCF) in Dr. Laurene Tetard’s group. The results were obtained on a confocal Raman system 

(WITec alpha300 RA) under ambient conditions with an excitation wavelength of 532 nm. The 

spectra were collected with a 100x objective and acquisition time of 0.1s with about 10 points 

per micrometer. The depth profiles were collected by performing XZ scans along the center 

axis (diameter) of the exposed regions. 

3.1.1.4. Sample preparation 
Sets of calibration samples were produced by depositing a 300 nm-thick layer of 

electrosensitive polymer (poly-(methy methacrylate) (PMMA)) on silicon (Figure 77).  

 

Figure 77: Nanofabrication process of the PMMA/Exposed (non-developed) PMMA patterned 
calibration samples. 

 

The resin was then treated using electron beam lithography (EBL) to obtain 100x100 µm 

matrices of disks with doses ranging from 2.5 to 8.0. EBL was performed on a JEOL 6500 

scanning electron microscope (SEM). The following parameters were then selected for the EBL 

process: the step size corresponding to the distance between two exposure points (defined in 

pixel) by the electron beam is adjusted in accordance with the desired structures for a given 

acceleration voltage current of the electron beam on the sample, and the dwell time for exposure 

time per pixel was defined for each step of the electron beam. The dose corresponds to the 

exposure time coefficient that can be locally applied on part of the pattern in order to control 
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the proximity effects and thus the size of exposed features. For instance, dose 1.0 is obtained 

with a step size equal to 20 nm, a dwell time of 0.017 ms, an acceleration voltage of 10 kV and 

a current of 20 pA. Hence, the dose is directly proportional to the dwell time:  

dose a = a x 0.017ms. 

3.1.2. Results and discussions 

 

Figure 78: AFM characterization of the sample. (a) AFM images of the exposed PMMA dots 
resulting from e-beam treatment. (b) AFM cross-sections realized for lines across dots of 
different doses, as labeled in (a). 

 

The nanofabricated structures (Figure 77) were first characterized by AFM (Figure 78a). From 

the profiles of the nanoholes (Figure 78b) it can clearly be seen that the depth of the structures 

and their lateral sizes vary with the dwell time and the dose. Under e-beam exposure, the main 

PMMA polymer chain undergoes scission. As a result, a change in the molecular mass of the 

PMMA is expected in the patterns of exposed dots, inducing a reduction of the space volume 

occupied by the polymer. This exposure induces topographical modifications as can be seen 

from the change in thickness of the treated region. Moreover, due to electrons forward- and 

back-scattering, the resulting shape of the nanostructures modified by the electron beam display 

a classical inverse V-shaped profile (Figure 78b).  
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when imaged with Δf = 110 kHz (Figure 80f). Overall, the minimum size was found for 

Dose=2.5 at Δf = 50 kHz while the largest was found for Dose = 3.5 at Δf = 110 kHz (Figure 

80d). In the series of patterns with dot exposed at higher doses (Figure 80b), the diameter of 

Dose = 7.0 varied from 4.1µm at Δf = 50 kHz to 4.7µm at Δf = 140 kHz. The smallest observed 

structures were found with Δf = 50 kHz of the Dose = 5.0 dots, while the largest diameters were 

found for Dose = 9.0 at Δf = 140 kHz (Figure 80 c-g). It was necessary to increase ∆f to 140 

kHz to probe the bottom of the structure, suggesting larger volume of modified PMMA with 

higher doses. 

 

Figure 80: MSAFM characterization of the calibration samples. (a-c) MSAFM images for high 
doses (D5.0-D9.0) acquired at (a) Δf = 50kHz, (b) Δf = 80kHz, and (c) Δf = 140kHz. (d) 
Evolution of exposed PMMA dots diameters as a function of frequency Δf for doses D2.5 and 
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not reveal significant variations of the Young modulus (Figure 81a), showing no differences 

inside and out of the dots: this proves that the nature of materials was modified and that polymer 

remains inside the dots. The absence of change in the Young modulus between the exposed and 

the non-exposed polymer suggests that the variations measured by MSAFM are not caused by 

a change in modulus of the material. As the speed of the ultrasonic waves depends on the 

propagation medium and varies with the material, the wave speed expression is defined as the 

ratio of the bulk modulus K related to the stiffness of the medium and its resistance to being 

compressed over the density (ρ) of the medium:  

𝑣 = √
𝐾

𝜌
                                                                (19) 

𝑤𝑖𝑡ℎ 𝐾 =  
1

3
 

𝐸

(1 − 2𝑣)
 

and 𝑣 the Poisson coefficient (between 0.4 and 0.43 for the PMMA). With a constant modulus 

E, an increased propagation velocity in the e-beam exposed PMMA can be caused by a decrease 

in density ρ. This would agree with a higher acoustic response, as the one observed in the 

MSAFM map. Thus we infer that the changes observed in Figure 80 are related to the difference 

of density ρ resulting from EBL on PMMA, which is also coherent with a smaller molecular 

weight of the irradiated polymer compared to that of the unexposed polymer. Further, we 

acquired LFM maps of the same region of the sample. LFM is commonly used to detect changes 

in chemical composition or viscosity changes in materials. As can be seen in Figure 81b, no 

contrast could be observed on the LFM images acquired on the calibration samples, except at a 

higher dose (Dose = 3.5), which may be due to topographical variations inducing a peripheral 

friction response. Hence, the results confirm that EBL exposure of PMMA does not affect the 

viscosity and likely does not modify the chemical composition of the thin layer. However, while 

the Peak Force QNM and LFM can provide some insight on the properties of the sample 



120 

surface, they cannot access depth information. Thus, to gain some insight on the volume 

properties of the exposed PMMA film, we acquired Raman depth profile across the dots of the 

matrix (Figure 81c). A comparison of the individual Raman spectra in the exposed and non-

exposed regions confirms that PMMA chains are preserved after e-beam treatment. However, 

the exposed regions exhibit a lower signal in the map, in good agreement with the idea of the 

lower density of the treated material. Thus, MSAFM complemented of Peak Force QNM, LFM 

and Raman data demonstrate and confirm that density in the only parameter changing in the 

sample. We explored the Raman signal further to obtain some information on the in-depth 

profile of the exposed regions. K-means analysis on the Raman data sets revealed a low 

resolution profile of the depth cross section of the exposed dots (Figure 80d). Although with 

poor spatial resolution, the slight enlargement observed is in agreement with the expected 

profile of an electro-sensitive resin by EBL. Therefore the changes in diameter of the exposed 

dots resolved with MSAFM show that the technique is sensitive to depth information and can 

probe the volume information of the sample. By extracting the changes in volume density from 

each MSAFM map and representing it as a function of driving frequencies and difference 

frequency Δf, we propose a simple procedure for the 3D reconstruction of the sample 139. In 

short, by considering the attenuation resulting from the acoustic waves (launched by the 

mechanical actuators located at the base of the cantilever and below the sample) propagation 

through the medium, attenuation amplitude (𝑧) of the mixed waved Δf resulting from the 

nonlinear tip-sample interaction can be formulated: 

𝐴 (𝑧) =  𝐴0𝑒
−(

| 𝛼𝑝− 𝛼𝑠|𝑧

𝑣
)                                                      (20) 

with αi (i=s,p) = αi(f) the attenuation coefficients (depending on frequency f) of the probe and 

the sample, z the investigation depth, and ν the velocity of the ultrasonic wave. By calculating 
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the minimum of attenuation for each combination of Δf in MSAFM, it is then possible to link 

the actuation frequencies and their difference with the investigation depth. 

 

Experimentally, the changes in diameter are extracted for the sequence of MSAFM images 

obtained at each Δf. By assigning an investigation depth (obtained with the simple numerical 

model) for each Δf, it is then possible to reconstruct the three-dimensional profile of the exposed 

region inside the PMMA film. The resulting reconstruction, acquired with ten successive 

MSAFM frames, is presented in Figure 82. The 3D reconstruction of the sample is in good 

agreement with the expected plum shape of exposed PMMA region below the surface. 

 

Figure 82: 3D reconstruction of subsurface structure and composition of the PMMA/exposed 
calibration samples. The 3D reconstruction is obtained by extracting the diameter for a ten 
successive MSAFM phase image. 

 

Another point that is important to notice is the contrast changes that can appear between 

MSAFM images taken at different Δf frequencies (Figure 83). One can notice a contrast 

inversion between the phase images Figure 83c and Figure 83e when the Δf frequency changes 

from 50 kHz to 80 kHz. On the contrary, this phenomenon is not visible on amplitude images 

(Figure 83b and Figure 83d). These observations confirm that the contrast change is not due 

to a modification of the interaction tip/sample (because the amplitude signal is not affected) but 
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in presence of low density variations. In addition, different parameters such as frequencies and 

scan rate were found to play a significant role in the quality of the acoustic picture. The ability 

to image complex systems with low density changes is especially important in biology. Indeed, 

it is a central in the behavior of dynamic entities in intracellular organisms and conformational 

changes in response to various external agents such as chemical or thermal stresses.  

Consequently, our results highlight the great potential of MSAFM for ground breaking 

discoveries in soft matter and life sciences. 

The next parts of this chapter are focus on the use of MSAFM for the study of complex 

biological samples presenting volume elements can cannot be resolved by conventional 

microscopy technique in a non-destructive way.  
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3.2. Study of the action of an alcoholic stress on Oenococcus 
oeni bacteria 

3.2.1. Introduction 
Oenococcus Oeni bacteria play a crucial role in the malolactic fermentation involved in the 

vinification process 185. The conditions of development of this bacteria in wine are not favorable 

mainly due to the high ethanol concentration (12%)186. 

It was shown that the bacteria strain possesses high adaptation capabilities in this environment 

and thus represents a good model for the study of bacteria stress responses187. One of the 

resistance mechanism involves a small heat shock Lo18 protein (sHsp Lo18), which is 

expressed under various stress conditions (temperature variations, presence of alcohol…)188.  

The sHsp Lo18 protein is expressed during the alcoholic fermentation process in Oenocuccus 

Oeni bacteria. As the alcohol induces stress on the bacteria membrane and content, the sHsp 

Lo18 protein will protect the membrane and the intracellular material of the bacteria, as 

response mechanisms presented in Figure 84. 

 

Figure 84: Overview of the response mechanisms of Lo18 protein to external stress. Under a 
stress, the Lo18 protein is produced by O. Oeni bacteria and acts like a molecular chaperon to 
avoid the denaturation of the other proteins present in the bacteria and like a lipochaperon to 
preserve the integrity of the membrane.  
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Recently, a lipo-chaperon activity of the sHsp Lo18 protein was discovered. This lipo-chaperon 

activity is characterized by the association – under thermal stress condition - of a part of the 

protein with the membrane to rigidify it and thus protect the intracellular bacteria material from 

the stress attack189,190.  

The expression of this protein is induced not only upon thermal stress but also under the action 

of some chemical agents, such as benzyl alcohol (BA) or ethanol, responsible of membrane 

fluidizing191. 

In this part, we present our study of the action of an alcoholic stress on the bacteria by MSAFM. 

Next, to mimic the rigidizing of the membrane in presence of the sHsp Lo18 protein induced 

by the stress, we reconstructed an artificial membrane by Langmuir-Blodget technique as a 

model of the Oenococcus Oeni bacteria. 

3.2.2. Characterization of Oenococcus Oeni bacteria under stress by 
MSAFM 
The characterization of Oenococcus Oeni bacteria is realized by MSAFM in different 

environmental conditions: first when the bacteria are subjected to no stress and second after the 

bacteria has undergone a 36 hours’ stress imposed by Benzyl alcohol (BA) treatment. 

For MSAFM observations the bacteria are deposited on stainless steel support and analyzed in 

air.  

Figure 85 presents the Oenococcus Oeni bacteria with no stress in both topography and acoustic 

imaging. The topography is common, with a height of 457nm (± 35nm), a length of 1.5µm 

(±0.2µm) and a width of 1.3µm (±0.2µm). Interestingly, acoustic imaging revealed internal 

structures of the bacteria with high resolution: one can observe compartments and a cell wall 

of about 70nm thick, which is in in agreement with the values of cell walls in Gram positive 

bacteria192. 
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Figure 85: Non-stressed O. Oeni bacteria. (a) Topography. (b) Acoustic MSAFM image – 

f1 = 4.3 MHz, f2 = 4.350 MHz - Δf = 50kHz revealing inner structures. (c) Tomographic 
reconstruction of the bacteria. 

 

Next, to observe the impact of alcoholic stress on a bacterial structure, we realized MSAFM 

images of the cells after a 36h alcoholic stress period. We noticed variations in the dimensions 

of the bacteria on stressed samples, which were not present in the control sample. The 

dimensions are summarized in Figure 86. 
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Stressed bacteria – Heterogeneous dimensions 

Control bacteria – 

homogeneous 

dimensions 

Height: 300±15 nm 

Length: 970±25 nm 

Width: 1.2±0.15 μm 

Height: 229±25 nm 

Length:  1.6±0.2 μm 

Width: 918±45 nm 

Height : 250±17 nm 

Length : 830±36 nm 

Width : 1.0±0.17 μm 

 
Height : 474± 14nm 

 
Length : 1.5±0.10 µm 

 
Width : 1.3±0.17 µm 

 

Figure 86: Topographical dimensions of non-stressed and stressed bacteria. 

 

In addition to the changes observes in the topography – heterogeneity in the dimensions of the 

stressed bacteria – the structures observed with acoustic imaging, as shown in Figure 87, were 

quite different from the control cells in Figure 85. In addition, the frequency range of the 

acoustic signal required to detect the structures shifted from the 4MHz range to a 5MHz range. 

Moreover, the structures observed in the acoustic image of the stressed bacteria are not as well 

defined as the ones shown in Figure 85, and their dimensions changed significantly (Figure 

86). 
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Figure 87: Stressed O. Oeni bacteria. (a) Topography. (b) Acoustic MSAFM image – f1=5 MHz, 
f2 = 5.050 MHz - Δf = 50kHz revealing the inner structures of the bacteria that are different 
from Figure 85. 

 

We surmised that the modifications unveiled by acoustic imaging are related to changes in the 

bacteria density as a result of the alcohol stress. In addition, we formulated the hypothesis that 

during the stress period, membrane rigidizing that result from the sHsp Lo18 protein action 

occurs, modifying the structures and mechanical properties of the bacteria. 

3.2.3. Conclusion 
This study unveiled significant changes in the morphology (height and length) of the 

Oenococcus bacteria as a result of stress on the culture during growth. MSAFM was used for 

in-depth characterization of the inner structures of the bacterial, and brought out modifications 

in the inner structures of the cell wall under stress. Moreover, we found that the acoustic signal 

detected can be significantly different in the case of stressed bacteria. Our current assumption 

is that the strong variations observed in the acoustic images and signals are related to the 

membrane rigidizing of the bacteria due to the lipo-chaperon activity of the sHsp Lo18 protein 

under stress conditions. This study strengthens our argument that MSAFM has the potential to 
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become a strong tool for in-depth characterization of biological elements, in particular to detect 

changes in density in complex biological material.  

The next step of this work consists in using the MSAFM to realize 3D reconstruction of 

biological elements.   
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3.3. Combining AFM-IR and Mode Synthesizing Atomic 
Force Microscopy: Application to the study of Triglyceride 
vesicles inside Streptomyces bacteria 

3.3.1. Introduction 
We explored here another type of bacteria called Streptomyces which are of a great interest in 

the biofuel production193. 

Biofuel is an alternative energy source and a less toxic substitute for petroleum-based diesel 

fuel. Producing biodiesel in a sustainable way will allow this renewable and cost effective fuel 

to ease the world’s high demand in petroleum, while providing economic and environmental 

benefits into the 21st century194. Biofuel is produced from renewable biomass by trans-

esterification of triacylglycerols1 from plant oils, yielding monoalkyl esters of long-chain fatty 

acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters. 

Biofuel solutions promise to have important environmental benefits when used as a mainstream 

alternative to fossil fuels: they are carbon-neutral over their lifetime and are far less toxic than 

the petro-diesel derivatives195. However biofuel solutions are being criticized because of high 

costs associated with production and because they are using agricultural land that could be used 

for alimentation. As an alternative, biologists recently engineered microorganisms to make 

biofuels, such as ethanol, butanol or octanol196, 197, 198. However, the cells cannot produce the 

fuels at industrial scales since the fuel molecules are toxic to the microbes, killing the organisms 

before they can reach high yield production199. Nonetheless, other potential biofuels such as 

oils are stored in specific organelles and are not as toxic for the producing micro-organisms200. 

While the earliest attempts to engineer biofuel-producing microbes were focused on well-

known organisms such as yeasts and E. coli201, 202, 203, scientists also hope to co-opt the unique 

metabolic functions of some other microbial species well known for their ability to grow at an 
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industrial scale. Indeed, Streptomyces bacteria grewn in big fermenters for decades in the 

pharmaceutical industry to produce most of the antibiotics used in modern medicine204, 205, 206. 

Furthermore, these soil-born bacteria have the natural ability to degrade various wastes of the 

agro-industry (lignocellulose, beat pulp...), hence limiting the consumption of products used for 

human alimentation.  The group "Energetic Metabolism of Streptomyces" of the Institut de 

Biologie Intégrative de la Cellule (URA CNRS 1354 - leader: M.J. Virolle) identified different 

Streptomyces species as good candidates to generate bio-oils207. Interestingly, these 

Streptomyces species can store excess of carbon into TriAcylGlycerols (TAGs), a ready-to-use 

source of bio-diesel. There TAGs are chemically and structurally identical to those found in 

commercial fuels. Two patents were recently filed by this group with SOFIPROTEOL (one of 

the main industrial producer of vegetal bio-diesel in Europe) demonstrating the interest of 

Streptomyces as bio-fuel producers.  The microbiology group in Orsay is now actively selecting 

the most promising Streptomyces species for bio-oil production and exploring genetic 

engineering strategies to enhance the natural ability of a model, S. coelicolor, whose genome 

was sequenced. This work is done in the framework of the ProBIO3 project, whose goal is to 

develop an industrial production of microbial bio-oil for bio-diesel/bio jet fuel generation.  

To support the microbiology team, we need tools appropriate for the evaluation of density of 

TAGs accumulation in bacteria. Coupling the chemical imaging capability of Infra-Red Atomic 

Force Microscope and the subsurface detection capability of Mode Synthesizing Atomic Force 

Microscopy (MSAFM) was used to access a complete analysis of the lipids production in the 

bacteria.  

In this section, we present a comparative study of AFM-IR (nanoIR microscope from Anasys 

Instruments) and MSAFM maps of the bacteria to detect triglycerides vesicles in Streptomyces 

bacteria and highlight the synergy between the two methods.  
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Using high-resolution infrared microscopy (nanoIR) with laser illumination at 1740 cm-1 and 

MSAFM with acoustic actuations in the MHz range, we detected the presence of the vesicles 

and we measured their size and position below the surface. We assessed the vesicle size 

distribution in the bacteria with accuracy of at least 50 nm.  The chemical measurement 

confirmed that the structures detected with MSAFM were, indeed, vesicles. A 3D 

reconstruction of bacteria, showing the vesicles distribution inside the bacteria was performed 

to underline the great potential of the acoustic method208. 

3.3.2. Samples preparation 

3.3.2.1. Bacterial strains and growth conditions 
The Streptomyces strains were S. lividans. 106 spores were spread on cellophane disks laid down 

on the top of agar plates. The solid medium was R2YE with no addition of phosphate salts. The 

plates were incubated at 30 °C for 72h. 

3.3.2.2. Sample preparation for AFM-IR measurements 
The cell suspension of each culture was spun down at 5000 x g for 2 min, the supernatant was 

removed, and the cell pellet was diluted in distilled water. To wash the bacteria thoroughly, this 

operation was repeated three times. Finally, a drop was deposited on a ZnSe (transparent in the 

mid-IR) prism and dried at room temperature. 

3.3.3. Results 
The AFM-IR images and MSAFM images of Streptomyces bacteria were realized in the same 

area (scan size 10 µm x 10 µm) to correlate the chemical information with the structures 

identified inside the bacteria. Figure 88 shows a set of images obtained by these two different 

methods. 

Several filaments characteristic to Streptomyces bacteria are detected in topography, showing 

bacteria of about 500 nm in width and filament assemblies of bacteria several micrometers in 

length (Figure 88a). Figure 88b represents the chemical mapping obtained when the energy 
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necessary to excite the of the triacylglycerol vesicles at 1740 cm-1 is used to illuminate the 

sample 109. MSAFM images obtained on the same area, show dark spots that coincide with the 

regions identified as rich in ester carbonyl bonds by the AFM-IR measurements. 

 

Figure 88: MSAFM and AFMIR imaging (Range 10 µm). (a) AFM topography. (b) AFM-IR 
image at 1740 cm-1. (c) MS-AFM ultrasound image (Δf = 50 kHz). (d) Overlay of IR and 
acoustic images. 

 

This suggests that the dark features detected by MSAFM are the vesicles inside the bacteria. 

For vesicles buried deeper into the bacteria (i.e., not close to the membrane) the nano-IR signal 

(Figure 88b) appeared slightly blurry (or larger in diameter) compared to the features resolved 

by MSAFM (Figure 88c). The detection of the thermal expansion in AFM-IR is integrative as 

the signal detected will depend on the distance between the feature absorbing energy and the 

tip in contact with the sample. If the vesicle is small and buried into the bacteria then the signal 
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detected will be weaker and more diffuse than if the vesicle is close to the surface or in direct 

contact with the cantilever tip. On the other hand, the contrast of the acoustic image showed to 

be very strong and the vesicles could clearly be detected due to the dark contrast when compared 

to the filaments response. This strong contrast may be attributed to the low-density property 

139,143  14 of the lipid vesicles that are less dense than the dry matter of the bacteria filaments. 

This high contrast allows us to localize the vesicles, identify how many are located in each 

bacterium and estimate their lateral size.  

However, we noted that a strong change in signal appeared along the filaments at the right 

border of the bacteria (Figure 88c), which was attributed to a shadow effect of the lateral 

acoustic waves and is not correlated to the lipid absorption (Figure 88b). 

The superimposition of MSAFM images and AFM-IR images (Figure 88d) confirms the 

excellent correlation between the image of lipid identified by infra-red and the acoustic image. 

This was repeated over many different regions showing that the black contrast of the acoustic 

image is related to the light contrast of AFM-IR images induced by the presence of lipid vesicles 

(Figure 88). 

After further study of the MSAFM images, we noticed that the acoustic signal inside the 

vesicles was constant, with no gradient or soft interface between the vesicles and the bacteria. 

The MSAFM cross-section (Figure 89c) realized on a vesicle (Figure 89b) the sharp transition 

(about 40-70 nm) compared to the cross section obtained on the AFM elasticity image obtained 

with Peak Force QNM on a bacterium containing lipid vesicle (Figure 89d-f). 
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Figure 89: Comparison between MSAFM and AFM elasticity measurements. (a) AFM 
topography. (b) MSAFM image (Δf = 50 kHz). (c) MSAFM cross-section realized on a vesicle. 
(d) AFM topography. (e) Elasticity response of the bacteria containing lipid vesicles. (f) Cross-
section realized on the elasticity response of a vesicle. 

 

 Figure 89d represents the morphology of the region inspected while Figure 89e shows the 

variations in elasticity detected in the same region. In Figure 89f, the cross-section showing 

the change in elasticity across the vesicle indicates that the transition of stiffness spans over 

300nm.  

These observations suggest that the acoustic signal is not directly proportional to the stiffness 

difference between the membrane surface and the vesicle itself.  The MSAFM image contrast 

is induced by the density difference between the vesicle and the other elements of bacterium. 

For the vesicle, this density at a given level, probed by the fixed value of Δf for each MSAFM 

image, is constant. 
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Figure 90: MSAFM phase images in depth investigation – Evolution of the lipid vesicles size 
with the frequency (Range 4 µm) at frequency Δf= 40 kHz, Δf= 50 kHz and Δf= 70 kHz. 

 

Then we analyzed a bacteria by MSAFM at different Δf frequencies. The results are presented 

in Figure 90 where the evolution of the vesicles size with the frequency- ad thus the depth- can 

be observed. From these results, we took advantage of the sensitivity to volume content to 

reconstruct the 3D profile of the bacteria and the vesicles. This was possible by varying the 

difference Δf in frequency by changing the ultrasound wave transferred into the specimen13, 156. 

The resulting 3D reconstruction of a part of a bacterium with small lipid vesicles localized 

under the surface of the bacterium filament and other occupying the entire filament is presented 

in Figure 91. The results obtained are in good agreement with the vesicles production 

metabolism where we should detect vesicles with a wide range of size and volume. 
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Figure 91: 3D reconstruction of a bacteria containing lipid vesicles. The reconstruction is 
obtained by stacking MSAFM images for 10 different Δf frequencies. (a) Stacking MSAFM 
images for 3 different Δf frequencies (40 kHz, 50 kHz and 70 kHz). (b) Top view of 3D 
reconstruction. (c) Lateral view of 3D reconstruction. 

 

Finally, we further compared the MSAFM images and IR image hot spots corresponding to the 

strong local contrast difference observed in acoustics. As previously mentioned, the infrared 

absorption signal is linked to the sample-surface distance, leading to diffusion phenomenon 

around the position of the vesicles. We expect the diffusion to be more important in the areas 

where the vesicles are buried deeper into the bacteria. Indeed as can be seen in Figure 92b, one 

can notice the diffusion of the signal resulting from thermal expansion inside the system 

hindered the spatial resolution in that  neighboring lipid vesicles inside the compact and 

complex absorption shape (inside dashed line mark) could not be resolved while  acoustic 

images (Figure 92c) clearly reveal the vesicles boundaries. 
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Figure 92: Resolution comparison between AFM-IR and MSAFM techniques. (a) AFM 
topography. (b) AFM-IR chemical mapping at 1740 cm-1. (c) MSAFM phase image at Δf= 50 
kHz (Range 4 µm). 

3.3.4. Conclusion 
The interest of coupling both techniques and showing their complementarity to identify and 

estimate the number and size of vesicles inside the bacteria was demonstrated in this study. We 

demonstrated the contribution of the acoustic and IR coupling in terms of subsurface and 

chemical information, respectively.  

AFM-IR analysis is of great interest to screen the lipid content of the bacteria removing acoustic 

artifact inside the bacteria while MSAFM analysis improves the spatial resolution for smaller 

vesicles or vesicles lying inside the filaments.  

As a result, we propose that the lack of discrimination between closer lipid vesicles in the IR 

images could be overcome with a technique taking advantage of both MSAFM and AFM-IR 

approaches. One aspect of this was recently reported by Dr. Tetard209. Furthermore, upon 3D 

reconstruction, with more advanced image learning methods, it will be possible to determine 

the real diameter of each vesicle in the volume, to build a distribution of the vesicle sizes in the 

bacteria. 
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3.4. Conclusion 

This chapter highlights the high potential of MSAFM through the analysis of calibrated 

dielectric samples presenting embedded low-density dielectric nanostructures, bacteria and 

lipid vesicles. High resolution 3D tomographic reconstructions were realized as well as a first 

understanding of the influence of the frequency on depth investigation for dielectric samples. 

We also demonstrated that this approach, in combination with AFM-IR, can be used to tackle 

complex biological problems, such as bacteria membrane rigidizing or formation and evolution 

of lipid vesicles inside bacteria. MSAFM is a very promising tool in the characterization of 

biological samples but remains limited for the study of metals because it does not allow the 

discrimination of different chemical elements. 

The next chapter will focus on the SMM technique in order to answer this problematic for a full 

characterization of metal materials. 
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Chapter 4 – Application and development of 
tomography on metallic samples by Scanning 
Microwave Microscopy. 
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This Chapter presents the application of near-field technique, SMM, to investigate subsurface 

properties in metallic components. We introduce several new approaches to access specific 

information describing the metallic components such as residual stress and present novel 

advanced methods for near-field microscopy. Subsequently, these studies reveal new 

possibilities for the use of the local probe of SMM in the industry. 
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4.1. Study of various factors influencing Scanning Microwave 
Microscopy Measurements 

Predicting quality control and servicing of parts subjected to harsh environments (temperature, 

pressure, electric and magnetic fields, and gas) is a challenge in the characterization and 

optimization of metallic components. Major problems faced by industries include protection 

against corrosion, embrittlement, formation of bubbles of light chemical elements, and various 

chemical associations. These can, in turn, have significant effects on the mechanical integrity, 

structural stability and other properties of the material. However, early detection of structural 

or chemical changes in the material is not yet well established. 

First, we focus on a simple case analyzing calibration samples to understand the capabilities of 

SMM. As previously discussed, SMM is based on the detection of the phase and amplitude 

variations of electromagnetic waves occurring upon their interaction with the features of the 

materials. Electrical, magnetic and geometric properties of the material affect the phase 

detected. In previous studies, we showed that SMM is sensitive to materials conductivity and 

that SMM can provide a tomographic view of buried patterns in a sample140, 181.  

According to the empiric Matthiessen law 210, the resistivity of a material is defined by the sum 

of three terms: 

𝜌 =  𝜌𝑇 +  𝜌𝑖 + 𝜌𝐷                                                      (21) 

where 𝜌𝑇 is the contribution to the thermal agitation, 𝜌𝑖 the contribution of impurities present 

inside the material and 𝜌𝐷the contribution of atomic defects. 

This law indicates the role impurities and atomic defects play on the electrical conductivity: 

inside metals, electrons collide with defects, leading to local conductivity variations. 
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In order to investigate the capability and the sensitivity of SMM, we considered factors 

(chemical diffusion, mechanical stress, thermal treatment…) that can influence the mechanical 

properties in materials, leading to conductivity variations that we could detect. 

4.1.1. Realization of a tomographic reconstruction by SMM 
Based on the measurements on buried calibrated samples presented in the Chapter 2, we decided 

to use SMM to reconstruct the volume – or 3D tomography - of the calibrated sample.  By 

superimposing the successive phase images obtained at selected frequencies (from the sample 

surface to the volume) we associated each image with a depth profile of the sample, as shown 

in the 3D profile of the sample in Figure 93.  

 

Figure 93: Three-dimensional tomographic image reconstruction of the volume of the metal 
sample according to the frequency applied onto the SMM probe181. 
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This result opened new possibilities for non-destructive, 3D reconstruction of metallic 

materials181. As a proof of concept that the signal measured in SMM is directly related to a 

variation in the conductivity for metallic materials, we then decided to realize a new set of 

calibration samples with materials presenting different conductivity embedded in a metal.  

4.1.2. Study of the influence of metal conductivity on SMM measurements 

4.1.2.1. Fabrication of the calibrated sample with buried metal patterns 
The calibration sample was fabricated starting from a silicon substrate on which patterns (30 

nm deep) were filled by two different materials of 20 nm thickness (aluminum and chromium), 

before being entirely covered with a 500 nm silicon layer (Figure 94a). 

 

Figure 94: Calibration sample with buried metal patterns. (a) Schematic of the buried patterns 
of Al and Cr. (b) AFM image: topography. Scan size: 16 x 8 μm. Relative height: 50 nm. (c) 
SMM phase image (f = 1.971 GHz). Scan size: 16 x 8 μm. (d) Cross-section of the phase image 
revealing the phase difference between the structures of Al and Cr. (e) Profile of a section 
carried out on the phase image. Estimation of the lateral resolution (scan size: 8 μm). 
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To avoid any confusion between the two materials, the patterns were laid out in reverse 

positions. Traces that are thought to correspond to PMMA residues that were not fully dissolved 

by the solvents remain after evaporation of the silicon layer. We want to point out that it is very 

challenging to obtain samples without topographical effects on the surface. These residuals can 

be used as a reference marker for the investigation of the volume of the sample. AFM 

topography (Figure 94b) at this stage of fabrication, made it possible to measure a difference 

of 12 nm between the structures (Al or Cr) and the real height of the patterns. 

4.1.2.2. Results 
The objectives of this study were two-fold: 1) to investigate the potential of SMM to probe the 

depth of samples and 2) to assess the sensitivity of SMM to differentiate two or more types of 

materials in the sample.  

Knowing the electrical conductivities and magnetic permeabilities of the two materials (Al and 

Cr) and considering that those remain constant in the frequency range used (1–6 GHz), it is 

possible to predict, for a frequency f and the same observation position z, the depth penetration 

δ and the phase ϕ relative to each material. 

For the Al structures: 

𝜑1 =  
𝑧

𝛿1
                                                     (22) 

where 

𝛿1 =  
1

√𝜋µ0µ1𝑓
                                                     (23) 

with the relative permeability μ1 = 1 and the electric conductivity 211 σ1 = 37.7 × 106 S.m−1. 

For the Cr structures: 
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𝜑2 =  
𝑧

𝛿2
                                                       (24) 

where 

𝛿2 =  
1

√𝜋𝜎µ0µ2𝑓
                                          (25)  

with the relative permeability μ2 = 1 and the electric conductivity 211 σ2 = 7.74× 106 S.m−1. 

By comparing the penetration depth through the two materials (Eq. 22) and (Eq. 24) we obtain: 

𝛿1

𝛿2
=  √

𝜎2

𝜎1
                                              (26) 

Therefore, we can write: 

𝜑1

𝜑2
=  

𝛿2

𝛿1
                                                (27) 

Then, we realized SMM phase measurements at a frequency of 1.971 GHz. According to Eq. 

26, we observed a dephasing introduced by chromium, which was higher than that of aluminum 

as shown in Figure 93c. From the cross-section (red dashed line, Figure 93d), we estimated 

that the dephasing introduced by chromium was about two times higher than that of aluminum. 

Thus, it is possible to identify the nature of the materials present on the patterns, using the 

microwave image phase signal given by SMM.  

Another important parameter of the scanning microwave microscope lies in its resolution, 

lateral and in depth. The resolution of the microscope could be estimated while measuring, 

directly on the SMM images, the width of the outline on the buried Al pattern. On the phase 
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image (Figure 93c), a profile (black dashed line) was carried out while placing the two cursors 

with the middle height of the peak representing the outline of the patterns (Figure 93e). The 

result shows a resolution close to 35 nm, knowing that it can be still improved for recording 

images with smaller buried calibrated patterns. In depth, the result shows that SMM is sensitive 

to a buried defect whose thicknesses lay around 20 nm. 

4.1.2.3. Conclusion 
These studies proved the ability of SMM to detect metallic defects in the sample. Moreover, 

contrary to the other experimental techniques investigating the sample volume, SMM has the 

advantage of being completely nondestructive and of providing a complete tomographic view 

of the sample. Another advantage of the SMM technique is its capability to differentiate, via 

the analysis of phase and amplitude SMM signal, metals presenting different conductivities. 

Thus, for the next part of this work, we decided to highlight -in the case of metallic materials- 

properties that can introduce conductivity variations such as the diffusion of light elements or 

residual stress. 



149 

4.2. Study of various factors influencing conductivity by 
SMM 

4.2.1. Study of light elements in metals: Diffusion of a light element in a metal 
The presence and migration of light chemical elements (helium, hydrogen, nitrogen, and 

oxygen) in solids can induce important changes in materials properties, with macroscopic 

effects such as lattice swelling, creep, work hardening and high residual stress. In turn, these 

may lead to irreversible changes in the mechanical properties, such as loss of ductility or 

strength, ultimately causing loss of material functionality. Diffusion of light chemical elements 

is difficult to measure with most conventional high resolution techniques as described earlier 

chapters. However, measuring the spatial distribution of light elements in a metal is useful to 

reach a deeper understanding of the mechanisms governing diffusion or to validate models and 

their parameters. Nuclear reaction analysis facilities (NRA or nuclear microanalysis) are 

usually required to assess light elements distribution in a metal212. Moreover, most common 

techniques are limited to surface measurements (energy dispersive spectrometry – EDS, 

wavelength dispersive spectroscopy – WDS, X-ray photoelectron spectroscopy – XPS, and 

Auger electron spectroscopy). These techniques are essentially used for surface analysis 

because the interactions of the electron beam with the material limit their penetration depth to 

tens of nanometers below the surface213, 214, 215. Hence, to precisely determine the concentration 

of light elements in a metal is nearly impossible with conventional surface techniques especially 

for very volatile species or when surface contamination occurring during surface preparation 

cannot be avoided. Two good examples are the study of hydrogen in metals and oxygen in 

reactive materials. Results obtained with conventional methods correspond to an average of the 

information obtained over a small volume (1μm3 for EDS) including that of the contaminated 

surface, which can present a substantial drawback. 
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In this section, we characterized oxygen concentration in zirconium by Nuclear Reaction 

Analysis (NRA), with a special interest in the subsurface properties. This will constitute a good 

reference to determine the performance of SMM, which we propose to use here.  The study was 

realized on a zirconium sample subjected to oxidation216, 140 because of the significant solubility 

of oxygen in this metal. The oxygen dissolved in zirconium produces noticeable differences in 

the physical and chemical properties of the metal217. The oxidation of zirconium at high 

temperature takes place with the diffusion of oxygen atoms into the metal lattice, up to 29 

atomic percent, followed by a transformation into ZrO2. According to the theory of diffusion218, 

in the Zr–O zone the oxygen concentration resulting from the diffusion processes exhibits a 

complementary error function (erfc) shape. This variation is expected to be the same at several 

depths under the scanned cross-section surface (which is normal to the oxidized face) beyond 

the first few hundreds of nm, as zirconium is well known for its high reactivity with oxygen, 

creating inevitable pollution during sample preparation. These conditions are associated with 

weak precision in the measurement of the diffusion length with conventional surface analysis 

techniques. In addition, measuring low values of oxygen concentration will be very 

challenging140, 

4.2.2.1. Preparation of the oxidized Zirconium sample preparation 
For the study of zirconium oxidation, commercial pure zirconium plates (99.2% Zr from 

Goodfellow) were used. They were first annealed at 750 °C under a secondary vacuum (1.10-6 

bar) for 2 hours and then oxidized in air under atmospheric pressure at 650 °C for 72 hours. 

After oxidation the samples were transversely cut and mirror-polished and then analyzed by 

SEM/EDS, NRA and the SMM technique. Two successive layers cover the pure original metal: 

a ZrO2 exterior region and an intermediate oxygen-enriched metal (Zr–O). The oxygen 

concentration in the enriched zone shows a slow decrease from 29 at. % to 0 at. %. A schematic 

of the sample is presented in Figure 95. 
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Figure 95: Schematic of the cross section of the Zr/ZrO2 sample analyzed. 

4.2.2.2. SMM results 
Figure 96b presents a schematic of the sample and the cross-section used for analysis. Figure 

96a shows the concentration of the oxygen in the sample in atomic percent. The results were 

obtained by EDS and NRA along a line on the cross-section perpendicular to the oxide–metal 

interface. For EDS, the analyzed volume is about 1 μm3 and contains the sample surface, and 

the contaminated subsurface. Due to the high affinity of the zirconium with the oxygen, the 

surface was inevitably enriched with atmospheric oxygen during the cross-section preparation. 

This treatment results in a large quantity of oxygen content in the first few hundreds of nm 

under the surface scanned and can mask the original quantity present in the sample before the 

polishing process. The contamination of the surface with atmospheric oxygen and the over-

evaluation of the light chemical elements by the EDS technique explains the apparent 12% 

oxygen concentration obtained in the pure metal zone. The residual apparent quantity of oxygen 

on the pure Zr can affect the measure of oxygen-enriched area and prevents the identification 

of regions with low oxygen content. 

The nuclear reaction analysis was performed at the Institut Rayonnement Matière de Saclay, 

France, using a Van De Graaff linear accelerator (maximum 3.7 MeV). A 1.45 MeV deuteron 

beam was used to analyze the reaction 16O(d,p1)17O. Lateral resolution is directly related to 

beam size. In this case the beam size was 3 × 3 μm2. And the size of the scanned area was 80 × 

120 μm2. The NRA measurements of the oxygen concentration presented in Figure 96a are 
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very accurate because NRA can eliminate the response of very superficial layers. The oxygen 

content in the pure Zr region is correctly measured and is close to zero. As expected, a longer 

diffusion region is found compared to what was observed with EDS. The spot size in NRA is 

about 3 μm and covers both Zr–O and ZrO2 zones close to the interface. These considerations 

explain the apparent 45 at% oxygen content measured at the interface location. NRA 

measurements will serve as a control measurement to compare with the SMM results. 

 

Figure 96: Analysis and composition of the zirconium sample enriched in oxide. (a) EDS and 
NRA measurements of the oxygen level as a function of depth. (b) Electronic microscope image 
of the analyzed area with line indicating the analysis trace. 

 

To perform the SMM measurements, we selected a frequency range appropriate to obtain a 

profile investigation inside the sample and below the surface layer of pollution. Considering as 

a reference the deep layer of pure Zr, with the conductivity 211 parameter σ = 2.36 × 106 Ω−1 

m−1, the frequencies 11.83 GHz, 6.87 GHz and 2.21 GHz were selected as they should allow 

an in-depth investigation between 3 and 7 microns below the sample surface. Then we avoid 
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the influence of the contaminated surface as shown in the scheme of Figure 95. We focus in 

this study mainly on the oxygen-enriched metal zone. 

 

Figure 97: Depiction of SMM measurements on the cross-section of an oxidized zirconium 
sample probed. At a given frequency (f1= 11.83 GHz) the attenuation of the wave changes as a 
function of the material conductivity (= oxygen concentration). Various frequencies (f2= 6.87 
GHz and f3= 2.21 GHz) are used to probe deeper levels in the material. 

 

SMM analysis of the same sample as the one probed with NRA was performed. AFM 

morphology of the sample and the SMM microwave signal phase shifts for several frequencies 

were recorded as can be seen in Figure 97. 
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Figure 98: Topography and phase shift cartography acquired at various frequencies (scan area 
80 μm). (a) Topography image of the sample and a selected cross-section of the change in height 
of the surface (yellow line). (b) SMM phase shift image at 11.83 GHz. (c) SMM phase shift 
image at 6.87 GHz. (d) SMM phase shift image at 2.21 GHz with profile of the measurement 
indicated by the white line.  

 

Figure 98a presents the topographic cartography obtained from the amplitude signal and the 

profile along the dashed horizontal line. The topography clearly reveals the grains of the metal. 

The profile shows the roughness of the sample along a line. One can see that the ZrO2 region 

shows a different roughness from the Zr–O and Zr zones. The amplitude of the roughness is 

about 20 nm, which is very low compared to the size of the scanned zone, 80 μm.  

The SMM phase shift of the signal used to probe at selected frequencies can be seen in Figure 

98b to Figure 98d. The SMM phase shift images clearly show variations in the phase signal, 

which is introduced solely by a conductivity change in the material, as the relative permeability 

is equal to 1 for Zr. Only oxygen dissolution in the zirconium lattice produces variations of the 

conductivity as it is well known that the mean free path of electrons is influenced by crystal 
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lattice imperfections219 such as structural defects, foreign atoms or thermal agitation of the ions, 

and also the electron mobility μ, proportional to the mean free path of electrons, and thus the 

conductivity is defined by:  

σ = nqμ                                                                        (28) 

with σ the conductivity (S m−1), n the number density of electrons and q the elementary charge. 

Consequently, the electron mobility decreases as the temperature or the number of defects 

increases. The SMM phase shift is necessarily linked to a change in composition of the material 

as the wave propagates deeper into the oxygen-enriched zone in comparison with the area of 

pure Zr (Figure 97). 

The position of the oxide–metal interface is materialized by the sudden change in the phase 

signal within a spatial range less than one micrometer. For a better localization, we used a white 

dashed line to indicate the position of the oxide–metal interface found on the topographic AFM 

image (Figure 98a) on all the phase shift cartographies. The phase shift starts to change close 

to the interface (3 μm, Figure 98b). The interface location can change for different depths as 

the interface is not perfectly planar. We can observe these changes in Figure 98b to Figure 

98d. The transition zone between the oxide and the oxygen-enriched metal can be 

topographically perturbed by the strong difference of hardness of the ZrO2 and Zr–O zones, 

giving rise to differences in the way the polishing/etching technique affects each zone. In this 

particular case the SMM phase shift signal can also be affected. A careful polishing of the 

sample could help avoiding these effects. 

The variations of the phase shift signal in the Zr–O zones are very similar for each frequency. 

In the oxygen-enriched zirconium region, the concentration of the oxygen produces gradual 

modifications in the metal properties and implicitly in the SMM phase response. The size of 

the perturbed zone is about 18 μm for all the depths investigated here. This value is close to the 
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length of diffusion found on the EDS measurements considering that the latter is apparently 

shortened by the surface pollution effect. At different depths under the scanned surface the 

spatial variation of the material properties is similar. The changes in the properties result only 

from the quantity of oxygen dissolved in the zirconium lattice. 

One can also observe that the value of the phase shift increases with the frequency. The deeper 

one looks, the lower the phase shift. 

Figure 99a to Figure 99b present the topography and the phase shift of the pure Zr zone. The 

phase shift signal shows no gradient, as expected. This observation confirms that the SMM 

technique is only influenced by the chemical composition of the sample. 

 

Figure 99: AFM and SMM characterization of pure Zr area. (a) Topography image of pure Zr. 
(b) SMM phase shift image of pure Zr at 6.87 GHz. 

 

Using several frequencies one can obtain information at various depths. To compare the 

information between the signals obtained at various frequencies, a procedure of normalization 

is applied. Scale and shift are chosen in order to obtain 0 value for the pure Zr and 1 for the 

ZrO2 zone. As pointed out in Figure 98a, the topography is flat. Since the signal is not 

influenced by the topography, the phase shift observed can only come from changes in the 

material properties as seen in Eq. 21 and Eq. 23. The only parameter that changes along a line 

is oxygen concentration. As a result, the local enrichment of metal with oxygen is reflected in 
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the phase shift measurements obtained by SMM. The position of the metal–oxide interface is 

indicated by the sudden change in the phase shift signal. The location given by SMM is in 

agreement with the topographic picture. This study confirms that SMM can be used to probe 

oxidation layers in cases for which the topography image does not reveal the interface. 

In the case of zirconium we know that at the oxide–metal interface the oxygen concentration 

should reach the solubility value, i.e. 29 at% 220. The oxygen concentration decreases 

progressively from 29 at% the interface to 0 at% in the pure metal zone. 

According to the skin effect equation, the microwave signal penetration depends on the 

frequency used for the investigation: the lower the frequency, the deeper the penetration. Figure 

100 presents the results obtained at three different depths: 6.8 μm, 3.9 μm and 3 μm, i.e. 

respectively 2.21 GHz, 6.87 GHz and 11.83 GHz along a straight line that contains ZrO2, the 

oxide–metal interface and Zr–O zones. 
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Figure 100: Superimposed phase shift profiles (red, blue and green) for several depths with the 
location of the interface and compared with NRA results for the oxygen concentration (yellow). 

 

The phase shift profiles obtained for three different frequencies, i.e. at three different depths, 

are almost superposed, as can be seen in Figure 100. This confirms that the phase curves are 

only influenced by the chemical composition of the solid solution. We recall here that the 

normalization is performed using only information on the pure Zr (which is set to zero) and 

ZrO2 (which is set to 1) and does not use the Zr–O zone. The phase shift profile can be used to 

reveal the presence of oxygen and to measure its diffusion length. 

Figure 100 shows also the superposition of the SMM curves with the NRA measurements of 

the oxygen concentration in the Zr. One can note that the SMM response shows that the size of 
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the zone where the material has different properties compared to the original metal is sensibly 

the same as the oxygen-enriched zone revealed by NRA. 

The NRA results are obtained with a lateral resolution imposed by the accelerator beam size 

(about 3 × 3 μm2 and a depth of 3 μm) for a step scan size of 2 μm between each measure point. 

Also this measurement represents an average value. By SMM, the lateral resolution is superior, 

since between two measure points the step scan size is 100 nm for 20 nm contact radius. This 

difference can explain the variations between the SMM curves and the NRA curve, in particular. 

The small variations in the interfacial region for different investigation depths, as previously 

remarked in Figure 98. 

In addition, the phase shift ϕ in SMM seems to be related to the oxygen concentration c as 

follows: 

𝜑 = 𝐾(𝑐)𝑐                                                                 (29) 

with K(c) the proportionality factor which can be a function of the concentration. One can also 

propose the inverse form of the previous relation: 

𝑐 = 𝐹(𝜑)𝜑                                                          (30) 

with F(φ) a factor to be found by calibration. After calibration, Eq. 30 could be used to measure 

the oxygen concentration by SMM. The assumption of a proportionality relationship between 

the shift phase of SMM and the concentration of oxygen is confirmed when comparing the 

NRA measure with SMM measures. This rapid calibration, with the present measurements, 

shows a linear trend (Figure 101). 
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Figure 101: NRA versus SMM phase shift measurements. The slope of the fitted curve was 
0.94 indicative of a linear relationship between the two values. 

 

Furthermore, by referring with a white dashed line the border between ZrO2 and Zr-O, one can 

observe an evolution of the border position depending on the frequency (and thus on the depth) 

(Figure 102).This highlights that the inhomogeneous nature of the boundary in the volume can 

only be achieved only by this tomographic SMM measurement. 
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Figure 102: Successive SMM images obtained at frequencies (top) 11.83 GHz; (middle) 6.87 
GHz; (bottom) 2.21 GHz, corresponding to different depth in the material. 

 

Consequently, under the ZrO2 layer, the SMM technique reveals a gradient of the metal 

properties. This gradient is related to the quantity of oxygen dissolved in the metal lattice. This 

method shows very encouraging results for the chemical characterization of the oxide–metal 

interface. SMM can facilitate the measure of the diffusion length of the oxygen in the zirconium 

lattice with a spatial resolution of about 50 nm. 
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4.2.3. Conclusion 
In conclusion, the present work shows that the SMM technique not only allows the detection of 

subsurface defects with high resolution. Change in conductivity is associated with the diffusion 

of oxygen in metal. The possibility to characterize the in-depth distribution of the light chemical 

elements like oxygen in the metal represents an important feature of the SMM technique.  The 

great advantage of this technique compared to those currently used is that measurements can be 

realized under the contaminated surface without any specific sample preparation.  

Moreover, we noticed that the phase shift response seems to be proportional to the oxygen 

concentration, confirmed by NRA measurements. The calibration of the SMM phase signal 

with respect to the concentration of the chemical element dissolved in the metal lattice could 

lead to a quantitative technique with sub-micron spatial resolution. The authors are presently 

working on the calibration of the SMM method by comparing several oxygen concentration 

profiles measured by NRA with the corresponding SMM phase shift response. 

As we noticed the sensitivity of SMM to the difference in chemical composition, we propose 

that SMM should be used for the exploration of other phenomena linked to a change in 

conductivity of the material. This includes stress in materials. In the following section of this 

chapter, we explored the performance of SMM to detect local changes in the conductivity due 

to residual stress in metals. 
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4.3. Introduction to the nanoscale non-destructive 
characterization of residual stress by Scanning Microwave 
Microscopy 

Non-destructive characterization of residual stress is a major challenge in research on metallic 

materials. Indeed, its control is necessary to create material with the required properties.  Major 

problem is that metals lifetime and properties are directly related to the stress condition that 

cannot be estimated by in situ, non-destructive, nanoscale methods. Anticipate the stress 

evolution in materials is a major issue, particularly for industry221.  The accurate measurements 

for the stress characterization inside materials are based on destructive methods such as Deep 

hole drilling (DHD)222, or quantitative non-destructive analysis such as X-Ray Diffraction 

(XRD)223, or neutron diffraction224. However, these non-destructive techniques currently used 

take plenty of time (from hours to days) and do not permits the characterization of all kind of 

samples: a complex geometry and/or a not enough thick sample could be really problematic. 

Generally, the measurements correspond to an average of the information obtained on a small 

volume and correlated to the beam diameter (around 100 µm or more for XRD).  

The main advantage of the SMM techniques lies in its precision. By coupling the nanoscale 

resolution of the AFM with the VNA analyzer, one can have access (as presented before) to the 

local conductivity of materials. Here, we present an introduction to a new way to use Scanning 

Microwave Microscopy (SMM) for the non-destructive, high resolution characterization of 

residual stress in metals. 
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4.3.1. Residual stress definition225,226 
Residual stresses are present in almost all solids, including metals, glasses, ceramic, or 

polymers. Mechanical and metallurgical events during the fabrication of the material can cause 

residual stress. Almost every manufacturing process leads to a new state of the residual stress, 

especially if the piece undergoes mechanical treatments. These residual stresses (σR) can be 

multi-axial, self-balanced, elastic static strains, existing in an isolated system of constant 

temperature and with a stable environment. 

Theses stresses exist at different level. Due to the polycrystalline, multi-phased, nature of the 

majority of metallic materials, the deformations at the origin of residual stress can affect the 

material at the macroscopic, microscopic, or submicroscopic scales. Depending on the scale, 

one has to consider at least three different types of stress 227 (Figure 103): 

First order: residual stress (also known as macroscopic) σI
R: they are located at the scale of a 

multiple number of grains or at the scale of the entire component. These stresses are 

homogeneous (constant in intensity and direction on huge domains composed of a great number 

of grains). They can be characterized using gauges, which measure the deformations generated 

by the stress 228. 

Second order: residual stress (homogeneous microscopic residual stress) σII
R: they are 

homogeneous across domains corresponding to a grain or a part of a grain for mono-phased 

materials. They come from the difference of crystalline orientation between neighboring grains. 

During a mechanical solicitation of the material, some grains will reach the elasticity limit 

which will lead to heterogeneity in the material behavior. 

Third order: residual stress (heterogeneous microscopic residual stress) σIII
R: at this level, we 

reach the limit of the stress definition. Stresses are heterogeneous across the crystal and even in 

a few interatomic distances areas. These stresses are generated by all the kind of crystalline 
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defects present in grains such as lack, interstitial defect, substitution of atoms, dislocations, 

sacking defect, or crystal twinning 229. 

Second order residual stresses can be considered as fluctuations around an average value 

formed by the first order stresses, as shown in Figure 103. Third order residual stresses can be 

considered as fluctuations around an average value constituted of variations due to the second 

order stresses. 

 

Figure 103: Profile of the data corresponding to the different orders of residual stresses with 
σR

I, σR
II and σR

III the residual stresses of first, second and third order. 

 

Residual stresses have a great impact on the lifespan and quality of the materials and 

components.  Large residual stresses may cause a material or component to break or fail. The 

defect inducing the rupture of the material often forms at the surface of the piece. Indeed, the 

roughness of the surface and its direct contact with the surrounding media can generate stress 

concentrations. As a result, surface treatments have emerged as an effective solution to improve 

the performance of materials in industrial applications 230 231. 

In some cases however, the presence of residual stresses may be beneficial 232. For instance, 

compressive residual stresses can be introduced to increase the mechanical performance of the 

material 233. Surfaces treatments have been shown to introduce compressive residual stresses in 
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the material and to generate a superficial hardening of the surface (from a few hundredths of 

millimeter to some millimeters) 233. The impact of surface treatment with the case of shot-

peening 234 will be discussed in the next session of this chapter. 

4.3.1. Residual stresses measurements  

4.3.1.1. Destructive techniques (or semi-destructive techniques) 
Mechanical destructive investigation techniques are called relaxation methods. They consist of 

measuring the stress relaxation produced in a material when a portion of it is removed. By 

measuring the deformation resulting from such relaxation, the macro-residual stresses are 

determined by analyzing the successive equilibrium states. The most common techniques 

include hole drilling (determination of residual stress gradient up to 1.5mm) 235 and deep hole 

drilling (determination of residual stress gradient up to 750mm) 236. 

4.3.1.2. Non - destructive techniques 
There are a few non-destructive characterization techniques to determine residual stress in 

materials. The most common and accurate techniques are X-ray diffraction and neutrons 

diffraction techniques 237 238. The analysis of X-ray or neutron spectra allow the determination 

of macro-residual stresses and also provides information on the micro-deformation. 

X-Ray diffraction (XRD) 
Elastic deformations resulting from stress in the material lead to modifications in the crystal 

planes distances of the material. With XRD it is possible to determine the distance between 

these planes and to determine the local elastic strain. Most of the metals are composed of grains, 

with specific orientation depending on their crystallographic arrangement. Polycrystalline 

metals that are submitted to a strain undergo a deformation in their crystal lattice. In the general 

case, the analysis of stress by XRD is based on the measure of the interplanar spacing variation 

of a crystal planes (Figure 104), also known as Bragg’s law. 
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Figure 104: Bragg's law principle: in a material with crystal planes separated by d; d can be 
determined using the relationship between the angle and wavelength of the incoming beam and 
the n index of the refraction of the medium. 

 

Any modification in the interplanar spacing leads to a modification of the X-Ray diffraction 

spectrum in form of a shift of the diffraction peak239. Thus, using Bragg’s law, the elastic 

deformation can be linked to the peak displacement. In addition, the plastic deformation will be 

detected by an enlargement of the diffraction peak239 . Consequently, the stress can be related 

to the deformation measurements realized in XRD (the depth investigation can be adjust from 

20Ǻ to 30µm depending on the materials properties and on the incidence of the X-rays, with a 

minimal spot size of 50µm). 

Neutrons diffraction 
The neutron diffraction and the X-ray diffraction techniques are quite similar because they both 

allow measuring the elastic deformations of a polycrystalline material whose interplanar 

spacing is modified. However, the neutrons and the X-rays interact with the matter in very 

different ways. While X-rays interact with the electronic cloud making them sensitive to high 

atomic number atoms with their large electronic cloud, neutrons interact directly with the atom 

nucleus. Neutrons penetration in metals is greater than X-rays. Neutrons allow measurements 

of residual stress up to a few centimeters (30µm for X-ray). A 3D cartography of the residual 
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stresses inside the material can be achieved with a spot size of the neutron beam between 1mm 

and 5mm.  

In Summary, techniques to study residual stresses at various scales, destructive or not, can range 

from 10µm for XRD to centimeters for all other techniques, as shown in Figure 105. However, 

a majority of these techniques remain destructive and do not provide direct measurement of 

residual stress in a material. Therefore, a non-destructive high resolution, accurate, and fast 

technique providing a direct measure of residual stress with simple of steps is still lacking. We 

will now present our contribution to this limitation. 

 

 

Figure 105: Residual stress measurements techniques presented with respect to the 
measurement depth they can probe and the amount of material removed240. 
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4.3.1. Study of shot-peening influence on stress profile 
We decided to continue the studies on the same kind of material as the one used previously for 

the study of the diffusion of light chemical element. Thus, we will focus on the characterization 

of pure zirconium in order to investigate the influence of a shot-peening treatment on the stress 

profile of this material. The stress profile obtained by SMM will then be compared to the one 

realized by the incremental hole-drilling method217. 

4.3.1.1. Shot-peening treatment241 
Shot peening consist in a cold mechanical treatment used to produce a compressive residual 

stress layer and modify mechanical properties of metals (Figure 106). The surface to be treated 

is impacted with shot of metallic, glass or ceramic balls with a sufficient force to create a plastic 

deformation (Figure 107). The main objective of shot peening, as any surface treatment is to 

introduce compressive residual stresses242 to increase resistance to fatigue and corrosion in 

order to improve the service performance of the mechanical components. However, its main 

disadvantage is the generation of a surface roughness by the impact of particles, which has a 

negative effect on the resistance to fatigue243. Optimization of treatment and compromise are 

needed for each type of materials to obtain high residual stresses over a large depth while 

maintaining acceptable roughness. 
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Figure 106: Illustration of shot-peening method used to prepare our samples244 High speed 
impact between the small balls and the materials modifies the surface by generating residual 
stresses in the material. 

 

 

Figure 107: Characteristic profiles used in shot peening245:  (a) plastic deformation profile, εp 
and (b) residual stress σres variations as a function of depth. 
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In order to optimize this process, several parameters can be changed and affect the residual 

stress state introduced. The main shot-peening parameters which influence the residual stress 

are: the shot peening time, the diameter, the nature and weight of shot and the projection speed. 

For a given ball diameter and a given projection rate, the greater the peening time is plus the 

higher the shot-peening influence depth and the compression stress are. The peak of the 

maximum of the compression stress increases and shifts in the inside direction. 

Similarly, the increase in projection speed has the same effect as increasing the duration of 

treatment. 

Increasing the diameter of the balls causes an increase in the depth affected by the compressive 

residual stress, but does not alter notoriously the value of the compressive stress. 

These parameters and their influences are summarized in Figure 108. 

 

Figure 108: Schematic of the effect of some parameters on the shot-peening stress profile245. 

For our study, shot-peening was realized during 10 minutes on rectangular 80 x 40 x 2mm 

zirconium plates. The parameters were chosen to introduce residual stresses in a stratum of 

about 300 µm thick under the metal surface. The process uses tungsten carbide balls of 2 mm 

of diameter and a sonotrode vibrating at 20 kHz with an amplitude of 24 µm217. 
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4.3.1.2. Obtaining of the stress profile by incremental hole-drilling method 
The incremental hole-drilling method is a quite simple technique to measure residual stress in 

materials. Considered as a semi-destructive, indirect method, the residual stress distribution is 

measured following one direction, a sense and a magnitude depending on the depth of the hole. 

It consists in a hole drilled in the material at the location where one want to measure the residual 

stresses. Due to the drilling of the hole the locked up residual stresses are relieved and the 

corresponding strains on the surface are measured using suitable strain gauges bonded around 

the hole on the surface. From the strains measured around the hole, the residual stresses are 

calculated using appropriate calibration constants246.  

Figure 109 presents the residual stress profile for 10 min shot-peened sample. The 

measurements show a particular shape of the stress distribution: the most superficial layers are 

slightly compressed then deeper the negative stress gradient leads to a minimum algebraic value 

located at circa 100 µm of depth followed by in inversion of the gradient sign leading to positive 

values (tensile stress). This kind a profile is well known in literature217. 

 

Figure 109: Residual stress profile of shot-peened Zr obtained by incremental hole-drilling 
method217. 
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4.3.1.3. Scanning Microwave Microscopy for residual stress measurements 
The shot-peened Zr sample was then analyzed by SMM at a given frequency of 8 GHz. 

As the imaging mode of the SMM is limited of 80 x 80 µm area scan, several images were 

realized and superimposed to reconstruct the complete zone of interest (Figure 110). The shot 

peening surface is represented by the number 5 on Figure 110. 

 

Figure 110: SMM amplitude images realized on the shot peened Zr sample (image full size: 80 
x 400 µm). Repions (1) to (5) represent successive images obtained across the region of interest. 

 

One notice that there is no major contrast changes between the images 1,2,3,4 and 5 as we 

observed in the case of the oxygen diffusion. However, small contrast variation are observed 

between images. To compare these images, we extracted for each image the most prevalent 

value of the phase shift (Figure 111b). Then, we plotted this value as a function of the distance 

for each image. The residual phase profile obtained by SMM measurement is given in Figure 

111a.  

 



174 

 

Figure 111: Phase profile on a shot-peening sample realized by SMM. a) Phase profile obtained 
by measuring the amplitude of the largest peak for each one of the zones. b) Spectrum obtained 
by averaging the collection of spectra obtained for each image in Figure 110. 

 

The profile obtained by SMM is completely similar to the one realized with the incremental 

hole-drilling method. The curve show perfectly the compression and the traction areas, a 

contrary to the hole-drilling the SMM results are obtained in a direct way.  

Imaging being not a necessary condition in that kind of study and taking into account the spatial 

distribution of the residual stress effect (macroscopic effect), we modified the analyze method 

to make it faster and easier.  

Instead of realizing a set of picture, for each point of measure (every 50 µm in that case) we 

realized an amplitude spectrum (Figure 112) in using the displacement of the motorized stage 

allowing a measure step from 5 µm to a few millimeters. Then, for a fixed frequency 

(represented by the black line on Figure 112), we plot the amplitude variation as a function of 

the distance. This method will be from now used for the determination of stress profile shape. 
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Figure 112: Representation of the SMM amplitude peaks versus frequency. Each peak provide 
from a different area of the shot peened sample to analyze.  

 

Consequently, the measurement of the shot-peened Zr sample were realized with the procedure 

previously described. The shot-peening profile can be observed in Figure 113. One can notice 

again the excellent correlation between the profile obtained by SMM and the one obtained by 

indentation measurement 217. The interesting point to notice is that the SMM gives directly the 

profile of the residual stress without any intermediate calculations. 

 

Figure 113: SMM measurements compared to the indentation profile showing a good 
agreement. 
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4.3.2. Study of shot-peening treatment on a brass sample 
Now that the first evidence of the sensitivity of SMM to stress inside a material have been 

highlighted, it is necessary to confirm these results by the study of another kind of material. 

That’s why we focused on a brass sample presenting different shot-peening times. 

SMM measurement were realized as previously described. 

Previously, we showed that a shot-peening treatment leads to an increase of the compression 

stress peak as well as its shift to the inside of the sample (Figure 108). The phenomena is 

checked here and presented in Figure 114 which perfectly highlights the shot-peening treatment 

time impact. Indeed, the shot-peening treatment impact distance previously estimated at 950µm 

for a 20 minutes shot-peened sample rises until 1150µm for a 40 minutes shot-peened sample.  

 

Figure 114: Influence of the shot-peening time - Comparison between 20min and 40min shot 
peened samples (the shot-peened surface is located on the left part of the graphic representation) 
showing a shift in frequency and a change in amplitude that may be used for quantitative 
analysis. 
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4.3.2.4. Conclusion 
In the case of the study of different materials, we highlighted the potential of the SMM 

technique for non-destructive and direct stress profile measurement. The shot-peening surface 

studied presents a stress profile comparable to the one we expected. 

Namely, we assume that SMM technique could provide a direct access to the residual stress 

profile with a sensitivity to the compression and tensile stress.  The next step would be to realize 

a calibration that directly links the amplitude variation (in dB) with the MPa variation. 
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4.4. Conclusion 

In this chapter we highlighted the high potential of SMM for tomographic investigation of 

metallic samples. Due to the high sensitivity of the technique to local changes in the 

conductivity of materials, the diffusion of light chemical element inside zirconium was 

observed. Moreover, we assume that the technique could allow to measure a stress profile in 

material in a direct and easy way with high reproducibility. This advance in characterization 

could lead to a great advance in qualification and quantification of stress in materials. The 

preliminary results obtained lead to the creation of a laboratory in collaboration with ARDPI 

Company.  We focus now on the optimization of this technique for the industry through the 

realization of a portative prototype to realize in situ analyses. 
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Conclusion 
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This thesis reports my PhD work carried out during the years of 2013 to 2016 at the Optique 

Submicronique et Nano Capteurs team of the Institut Carnot de Bourgogne (ICB), under the 

supervision of Pr. Eric Lesniewska and Dr. Eric Bourillot. 

The work was realized in collaboration with Dr. Laurène Tétard from the University of Central 

Florida, Pr. Alexandre Dazzi from Université Paris Sud (and Marie-Joelle Virolle from 

Université Paris Sud 11. 

 

The main objectives if this thesis were to exploit and develop the subsurface nanoscale imaging 

by the use of Atomic Force Microscopy. 

 For the first time, the study of the influence of frequency parameters on the volume 

investigation by acoustic microscopy (MSAFM) was performed. Moreover, through the 

fabrication on nano-calibrated samples realized at the technological platform ARCEN 

(Applications, Recherches et Caractérisation à l’Echelle Nanométrique) of our laboratory, a 

numerical model, aimed at the understanding of the role of frequencies applied for the 

subsurface characterization, was developed and experimentally validated.  

Next, MSAFM was applied to the characterization of dielectric and biological samples. 

Furthermore, the sensitivity of the technique to low density structures was revealed through the 

analysis of polymer samples and the tomographic reconstruction of the insulation profile of the 

polymer by electron beam lithography. Additionally, in order to achieve the complete 

understanding of biological samples, the AFM-IR – which provided chemical information - 

were combined to MSAFM to the study of the distribution of lipid vesicles inside Streptomyces 

bacteria. This allowed the study of the complex biological processes, such as biofuel 

production. A prototype of AFM-IR/MSAFM is being prepared, a disclosure invention was 

realized and the corresponding patent is currently in preparation. 



183 

However, the theoretical model developed for metal samples cannot be applied anymore on 

dielectric ones and a further study to have access to a perfect correlation between frequency 

and depth investigation in soft matter is being developed. 

 

On the other hand, although the power of MSAFM technique combined to AFM-IR for in-

volume and chemical characterization of biological samples was explored, the full 

characterization of metal samples still remains rather obscure. In this respect, the second part 

of the thesis focuses on the SMM, which possess a great sensitivity to local changes in material 

conductivity. This was demonstrated through the analyses of calibrated samples and applied to 

the study of diffusion of light chemical element (oxygen) in metal (zirconium). The promising 

results obtained by this techniques interested the industrial sector, and a research laboratory 

was developed with ARDPI industrial company. 

Moreover, the thesis addresses the perspectives of the SMM technique for the determination of 

residual stress in materials. Interestingly, this technique turns out to offer great and promising 

characterization possibilities for the industry. Specifically, the ICB laboratory is involved in the 

development of an SMM portative version for in-situ measurements. 

 

The next studies to realize consist in developing a data bank to calibrate the SMM on different 

materials and thus being able to link with high accuracy the amplitude and phase variations to 

the electric conductivity of the materials and to the stress value in MPa. 

Actually, a study on metal alloys made of silver and gold is conducted to link the amplitude 

variations to the exact percentage of elements in the sample.  

Moreover, it could be interesting to focus on the study of biological samples by SMM technique 

and to develop a liquid cell to be able to realize in-situ measurements.  
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As a conclusion, MSAFM and SMM techniques offer a whole set of thorough subsurface 

characterization methods, ranging from biological to metallic samples in a frequency range 

from MHz to GHz. The coupling of these two complementary techniques would allow a full, 

in situ characterization of many different materials.  

As the continuation of my scientific research, I start a postdoctoral fellowship at the Institute of 

life science at the Université Catholique de Louvain (UCL, Belgium) in August under the 

direction of Pr. Yves Dufrêne. This new research topic focus on the interaction of bacteria with 

surfaces explored by AFM and force spectroscopy analysis.  
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