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Résumé

La microscopie a force atomique (AFM) est un outil de caractérisation d’échantillons
tant organiques qu’inorganiques d’intérét en physique, en biologie et en métallurgie. Le champ
d’investigation de la microscopie AFM reste néanmoins restreint a 1’étude des propriétés
surfaciques des échantillons et la caractérisation sub-surfacique a 1’échelle nanométrique n’est
pas envisageable au-dela de la nano-indentation. Lors de ce travail, nous nous sommes
intéressés a deux techniques de sonde locale complémentaires pour 1’investigation volumique
haute résolution.

La premicre technique proposée est la microscopie de champ proche ultrasonore (MS-
AFM), mise en place et exploitée en collaboration avec Dr. L. Tétard de I’Université Centrale
de Floride. Cette technique fournie des informations localisées en profondeur en utilisant des
ondes acoustiques dans la gamme de fréquences du MHz. Une étude compléte de 1’influence
des paramétres de fréquences a été réalisée sur des échantillons de calibration et a permis de
valider un modéle d’interprétation numérique. Cette technique ultrasonore, non invasive, a été
appliquée a la caractérisation de vésicules lipidiques au sein de bactéries lors d’une
collaboration avec les Pr. A. Dazzi et M.-J. Virolle, de I’Université Paris Sud Orsay. Un
couplage a ¢été réalisé avec la microscopie AFM infra-rouge (AFM-IR). Cette ¢tude a démontré
le potentiel d’investigation et d’analyse volumique et chimique d’échantillons biologiques.

La seconde technique étudiée est la microscopie micro-onde (SMM), développée en
collaboration avec la société Keysight. Cette technique, tout comme la microscopie acoustique,
est non invasive et conduit a une caractérisation physico-chimique basée sur I’interaction de
micro-ondes (0.2-16 GHz) avec la matiére. Dans le cas de métaux, un lien entre la fréquence et
la profondeur d’investigation a ét¢ mis en évidence. Cette technique a été appliquée a 1’étude
de la diffusion d’élément chimique léger au sein de métaux et a la mesure des propriétés
mécaniques des matériaux.

L’ensemble de ces résultats ouvre un nouveau champ d’investigation de la tomographie 3D
dans I’analyse volumique a I’échelle nanométrique que ce soit dans le domaine de la biologie
ou de la métallurgie.

Mots clés : Microscopie a force atomique (AFM), Microscopie a force atomique micro-onde
(SMM), Microscopie a force atomique acoustique (MSAFM), tomographie et reconstruction

3D.
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Abstract

The atomic force microscope (AFM) is a powerful tool for the characterization of
organic and inorganic materials of interest in physics, biology and metallurgy. However,
conventional scanning probe microscopy techniques are limited to the probing surface
properties, while the subsurface analysis remains difficult beyond nanoindentation methods.
Thus, the present thesis is focused on two novel complementary scanning probe techniques for
high-resolution volumetric investigation that were develop to tackle this persisting challenge in
nanometrology.

The first technique considered, called Mode Synthesizing Atomic Force Microscopy
(MSAFM), has been exploited in collaboration with Dr. Laurene Tetard of University of Central
Florida to explore the volume of materials with high spatial resolution by means of mechanical
actuation of the tip and the sample with acoustic waves of frequencies in the MHz range. A
comprehensive study of the impact of the frequency parameters on the performance of
subsurface imaging has been conducted through the use of calibrated samples and led to the
validation of a numerical model for quantitative interpretation. Furthermore, this non-invasive
technique has been utilized to locate lipid vesicles inside bacteria (in collaboration with Pr. A.
Dazzi and M.-J. Virolle of Université Paris Sud, Orsay). Furthermore, we have combined this
ultrasonic approach with infra-red microscopy, to add chemical speciation aimed at identifying
the subsurface features, which represents a great advance for volume and chemical
characterization of biological samples.

The second technique considered is the Scanning Microwave Microscopy, which was

developed in collaboration with Keysight society. Similar to acoustic-based microscopy, this
non-invasive technique provided physical and chemical characterizations based on the
interaction of micro-waves radiations with the matter (with frequency ranging from 0.2 and 16
GHz). Particularly, for metallic samples we performed volumetric characterization based on the
skin effect of the materials. On the other hand, we have used this technique to analyze the
diffusion of light chemical elements in metals and measured the effect of changes in mechanical
properties of materials on their conductivity.
Overall, these results constitute a new line of research involving non-destructive subsurface
high resolution analysis by means of the AFM of great potential for several fields of research.
Key words: Atomic force microscopy (AFM), Mode Synthesizing atomic force microscopy
(MSAFM), Scanning microwave microscopy (SMM), tomography and 3D reconstruction.
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General Introduction



General Introduction

One of the major challenges of nanotechnology is the non-destructive characterization of
materials with high sensitivity and high spatial resolution. In this context, Atomic Force
Microscopy (AFM) is an outstanding tool, because of its high spatial resolution for surface
characterization and its versatility to explore properties of dielectric and biological samples, as
well as solid-state materials, such as metals.

However, time-consuming data acquisition (limited by the processing time of the acquisition
loop and the bandwidth of the piezoelectric scanners) and lack of sensitivity for non-surface
features constitute two major drawbacks of standard atomic force microscopy.

Data acquisition has been greatly improved in the 2010s with the development of high-speed
atomic force microscopy, by Professor T. Ando at the University of Kanazawa. Other groups
have since exploited and developed this technique. Currently, acquisition speed of 25-50
frames/sec can be reached, making it possible to capture the dynamics of biological samples
such as proteins in real time.

In this thesis, we present a new approach for high resolution tomographic characterization based
on atomic force microscopy. We focus on two technologies operating with two different sample
actuations: acoustic atomic force microscopy and scanning microwave microscopy.
Specifically, the acoustic nanoscale microscopy prototype, called Mode Synthesizing Atomic
Force Microscope (MSAFM), has been exploited in collaboration with Dr. Laurene Tétard from
Nanoscience Technology Center of University of Central Florida. Acoustic microscopy is
particularly effective to study changes in the volume of soft samples, such as biological and
organic materials, and of dielectric materials. However, we found that it was quite challenging
the access subsurface information in metals with acoustic microscopy. For our purpose, this

limitation could be overcome using scanning microwave microscopy (SMM).



We also found that MSAFM and SMM are limited in obtaining the local chemical properties
of the materials, which we address by implementing the MSAFM measurements on a platform
developed for nanoscale IR spectroscopy. This has been achievec in collaboration with
Professor Alexandre Dazzi and Marie-Joelle Virolle from the University of Paris Sud, Orsay.
The development of SMM using tunable frequencies was inspired from macroscopic
measurements. In 2008, the AREVA Company decided to invest in this technique for the
investigation of defects in metallic samples. The proof of concept was established. For this
reason we focused on the characterization of metallic samples by SMM.

Metal products are commonly used in automobile, aeronautic, aerospace, railway, construction
and nuclear industries. In some structures, they represent the first mechanical resistance barrier
subjected to wear. Non-destructive testing (NDT) methods are used to monitor their condition.
The optimization of the service life of such metallic components evolving in fluctuating
environments (temperature, pressure, electric and magnetic fields, gas, etc.) would require the
detection, identification and monitoring of defects formed beneath the surface. However,
conventional NDT techniques only permit the detection of wear or defective areas at late stage
of their development (i.e., macro-cracking), while early stages of defect formation (micro-
cracking) remain overlooked.

Material degradation of metallic components can also be accelerated by the diffusion of light
chemical elements such as oxygen, helium, hydrogen or nitrogen. The presence and migration
of these light elements in solids can induce substantial local changes with macroscopic
irreversible effects such as residual stress, ductility loss or change in mechanical strength. Most
of these changes are detrimental to the components functionality. However, mapping the
distribution of light chemical elements near and below the surface of a metal is not

straightforward with the most common surface analysis techniques. This is due to the lack of



sensitivity of the techniques, and to the volatility and mobility of the species (hydrogen H,
helium He), or the surface contamination by the surrounding environment (oxygen O).
Overall, the detection limit of conventional systems capable of probing volume properties of
complex heterogeneous materials makes early defect formation quite challenging. This
constitutes a major drawback when the parts operate under extreme conditions (high
temperature, high pressure, mechanical stress, radiation exposure, etc.), as the propagation of
defects is often greatly accelerated, leading to the emergence of critical defects with higher
incidence rate. Thus, improving this detection limit of imaging and spectroscopic techniques is
crucial to understand the processes of defect propagation and to improve materials quality.

We thus propose to overcome these existing limitations of non-destructive methods by
developing a platform capable of monitoring local changes in mechanical properties in
heterogeneous materials, as it is well known that mechanical constraints can be generated
during components production due to residual stress, hardening and surface chemical
composition.

To address the above needs, on the basis on an AFM platform, an acoustic-based microscope
(MSAFM) and a micro-wave-based microscope (SMM) have been implemented. Acoustic
AFM works in a MHz frequency range while SMM works in a frequency range between 0.2
GHz and 16 GHz. On the one hand MSAFM is mainly used to study soft samples. On the other
hand, SMM can be used to study the evolution of the behavior and aging of solid and metallic
components, in particular regarding:

the non-destructive early detection of defects that can evolve from nanometer to micrometer
size, the indirect measurement of gradual changes in materials properties engendered by the
diffusion of light chemical elements and the effect microstructural changes such as residual

stress, dislocation or nanocrystallization.



In this respect, the thesis focuses on the acoustic and microwave microscopes as well as on their
development towards the access to a more comprehensive high-resolution tomographic
characterization of soft or solid samples.

This work is organized as follows:

In the first chapter, the state of the art of non-destructive methods on soft and hard materials is
discussed. The description of the foundations of NDT techniques for volume and three-
dimensional investigations is carried out via the review of the main techniques used in
laboratories and in the industry.

The second chapter is focused on the review of near-field techniques used and implemented in
this work to achieve tomographic exploration of heterogeneous samples with a nanometric
spatial resolution.

The third chapter presents the results obtained on soft samples using acoustic atomic force
microscopy and its coupling to the infrared atomic force microscope (AFM-IR).

The fourth chapter discusses the advances realized using SMM to achieve near field
tomography on solid and metallurgical samples to tackle industrial problems concerning the
non-destructive early detection of defects and the effect of light chemical elements
contaminations on metal lattice and on its mechanical properties. A part of the chapter will
discuss the promising use of microwave microscopy for the detection of residual stress inside
materials to establish connections to the performance of the components being produced.
Finally, the conclusion confers the promising use of near-field microscopy for non-destructive
testing at the nanoscale and provides an overview of the possibility of transforming SMM into

a portable version, in order to achieve high-resolution in-situ analyzes for industrial use.






Chapter 1 — State of the Art



Having access to sub-surface high information with high-spatial resolution via non-destructive
characterization techniques is a real challenge in various scientific fields such as biology,
material science, or even metallurgy. Early detection of the presence of particles, or viruses in
host cells remains a challenge in biology. Moreover, highlighting diffusion in materials would
improve the optimization treatments for better efficiency in material development.
Tomographic techniques have emerged for the characterization of buried structures inside solid
or soft matter. In this chapter we present the state of the art of existing volumetric techniques
useful either in biology or in material sciences. Then, we discuss the near-field techniques
presently being used for surface and subsurface characterization and we conclude on the need

to develop new local probe techniques for high spatial resolution, subsurface investigation.



1.1. Needs for having access to subsurface information

1.1.1.  Current limitation in biology and life sciences

1.1.1.1. Health
Volume investigation of biological elements such as bacteria or cells would allow a better

understanding of the various fundamental mechanisms such as the internal processes in bacteria
or the effect of chemical and physical stresses on them. Monitoring and characterizing virus/cell
interactions, or the influence of the external environment on live biological systems is of a great
interest for fundamental science' and also for applications such as the development of new

pharmaceutical treatments?.

1.1.1.2. Toxicity
With the swift development of nanotechnology and particularly the use of nanoparticles in

health and other industry, safety and toxicity issues arise. Assessing the toxicity caused by such
small particles at the single cell level remains challenging. This is due to the lack of suitable
tools to probe their local interactions with the material/tissue®. In the case of targeted drug
delivery using nanoparticles on the interaction of stress agents with cells, the following
mechanisms remain unclear, including the characteristics of the functionalized nanoparticles-
cells interactions, or the mechanisms of penetration of the nanoparticles through the membrane.
Consequently, tools that would allow us to characterize cell properties with high spatial
resolution and to monitor their behavior in situ, both at their surface and in their volume, is of

a great importance.



1.1.2. Current limitations in material science

1.1.2.1. Security issues
Early detection of damages in industrial metallic components is of great interest to optimize the

lifetime of parts subjected to harsh environments (temperature, pressure or other) *. Detecting
material failure and cracks in their early stages is all the more important in the nuclear field to
avoid major accidents like the one that occurred in March 2011 on the site of the Fukushima
plant®. Non-destructive methods are needed at different stages of an event related to part failure.
Before the accident: More accurate non-destructive methods would have permitted to have an
understanding of the state of the components (minor defects and physical characteristics of
materials). The desired tools could assess the limits of current parts in operation. This would
facilitate predictions of minor accidents to plan timely repairs.

During the accident: Monitoring the status of the materials will feed calculation algorithms
useful to predict the behavior of the structure during the accident.

After the accident: After the accident happened, an accurate diagnosis of the components
involved 1s performed. Non-destructive characterization methods are aimed to facilitate the
analysis of the components to support the decision making about the future of the structure and

its potential reconstruction.

1.1.2.2. Economic issues
The maintenance and replacement operations are generally triggered only if the component in

use in the reactor system is found to be significantly damaged, or if a component of the same
type was damaged on another similar installation. As a result, the maintenance and renovations
can be costly. For instance, AREVA replaced 32 old steam generators in France for a total cost
of 1.1 billion euros.

Superior non-destructive methods would permit the early detection of defects in components

already in use or ideally when they just come out of production. The will enable the
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development of strategies for predictive servicing that would be much less expensive than the
strategies currently in place. This approach would also be much “greener” as it would prevent

early replacement of some pieces.

1.1.2.3. Scientific issues
In recent decades, scientific and technical advances have been reported in defectology®. Among

them we find ultrasonic and electromagnetic sensors, adaptive probes (conformable or flexible),
contactless sensors (LASER and electro-magneto-acoustic) as well as simulation and image
reconstruction tools. However, there is still a lack in understanding the mechanisms involved
in fatigue and defect formation. This is partly due to the lack in sensitivity and reproducibility
of the conventional techniques available, as well as difficulties encountered to interpret the
measurements performed with traditional sensors.

Moreover, although methods of good potential exist, few are applied today in line or on-site to
study degraded service materials. There are several main reasons for this lack of implementation
in the field. First, most publications are limited to qualitative observations and do not interpret
the evolution of signals related to the metallurgical analysis of the mechanisms of damage and
aging 7 ®. Furthermore, most methods of physical measurement used in non-destructive control
fail to benefit from a straightforward relationship between the measured signal and the desired
characteristic of the phenomenon studied and many methods are sensitive to various intrinsic
material parameters (dislocation density, residual stress strain, the presence and nature of
precipitates, surface state...) or extrinsic (stress level, temperature...). The decorrelation of
these important parameters is often difficult. In addition to that, the signal variations are
generally small and often marred by high uncertainty related to the measurement or to the
heterogeneity of the material °. Finally, the information collected by conventional methods are
sometimes local and the connection to the behavior of the entire component to determine a

maintenance plan remains an uncertain leap.
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1.2. Current non-destructive techniques used for subsurface
characterization

1.2.1.  Techniques used in biology
1.2.1.1. Fluorescence microscopy

1011 §s currently the most commonly used method for the study of

Fluorescence microscopy
structures and dynamics inside biological systems such as cells 2. It is based on conventional
light microscopy, with added features to detect selected fluorescence properties of the sample.
In a conventional microscope the light source used is in the visible range (wavelength from 400
to 700 nm), while in a fluorescence microscope a light source with much higher intensity (as a
laser source, Xenon or Mercury arc-discharge lamp) is used to excite the sample at a specific
wavelength. With sufficient energy, molecules in the sample undergo electronic transitions,
followed by relaxation resulting in the emission of photons with lower energy (longer
wavelength). These photons are detected to form the fluorescence images. Fluorescent
microscopy is often used to image small entities inside biological systems such as living cells'>.
This can be accomplished by attaching fluorescent tags to antibodies that in turn attach to
targeted antigens. The reflected and background fluorescence light is filtered in order to detect
only the targeted species. We can then have access to a distribution map of the tagged entities
inside a biological sample with a lateral resolution of up to 200 nm'*. Note that the spatial
resolution is directly related to the wavelength used to illuminate the sample. The description

of the microscope is presented in Figure 1 and an example of fluorescence image of a bacteria

can be seen in Figure 2.
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Figure 1: Conventional fluorescence microscopy. A selected combination of excitation
and emission filters are selected to collect wavelength of interest.

Figure 2: Fluorescence confocal microscopy image showing E. coli bacteria (red fluorescence)
with synthetic adhesins targeting an antigen (green fluorescence) expressed on the surface of
human tumor cells (nuclei and bacterial DNA stained in blue) !5
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Fluorescence measurements can be achieved with different kinds of configurations:

Epifluorescence microscopy'®: the excitation light comes from the objective and the
fluorescence signal collected by the same objective, in a reflection configuration as shown in
Figure 3. This configuration is of interest to limit the interference from the incoming light, since
the materials studied are mostly transparent. The fluorescence emission being isotropic, a

reflection collection does not impede the signal measured.

Confocal microscopy'’ , shown in Figure 4, offers better lateral (up to half of the excitation
wavelength) and volume (up to 400nm) resolution than classical optical microscopy. In fact,
confocal imaging has long been the platform of choice for 3D imaging of biological samples'®.
Samples should also be tagged to visualize the structures of interest. The fluorescent tag should
be selected in conjunction with the excitation wavelengths available. To collect an image, the
laser is rastered across the selected region. This results in fluorescence emission, which can be
collected to form an image of the select plane. Due to the combination of pinholes in the system,
the light emitted from “out of pane” are blocked, making images more resolved compared to

conventional microscopy.

Total internal reflection microscopy allows a better depth of field (200nm) than confocal
microscopy (400nm) but only at the interface between the sample and the sample support!® due
to the evanescent nature of the field at the substrate interface used for imaging. This is used to
monitor small entities such as fibrils or interfaces such as the membrane of a bacterial cell in

the vicinity of the substrate.

The fluorescence correlation spectroscopy (FCS)?° which allows to study the diffusion and the

interaction of the molecules.
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Figure 3 and Figure 4 illustrate the difference between far field microscopy and confocal

microscopy which offer a better resolution.
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Figure 3: Conventional far-field microscope. Incoming light is focused onto the sample with
the objective and collected by the detector.
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Figure 4: Schematic of conventional confocal microscope. The pinholes are used to restrict the
rays of light on the focal plane and to the detection.
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1.2.1.2. Radio-elements imaging

Scintigraphy?! is an imaging technique to follow a radioactive isotope. This is classified as
emission imaging because the radiation originates from the organ after the tracer is injected,
which is the association of a carrier molecule and a radioactive label, is injected to the patient.
The radioactive marker serves as a "transmitter spy" that makes it possible to track the particles
by detecting the gamma rays emitted using an external detector called gamma camera (Figure

5).

Scintigraphy is widely used in nuclear medicine, it allows detection of many diseases, such as
early screening for cancer, for example. Each organ setting isotopes in different, we do not use

the same isotopes for all organs. A scintigraphy image is presented in Figure 6.

EnergyData Spectrometry correction and
analvysis
PositionData Linearity and uniformity
corrections

Figure 5: Illustration of the data acquisition scheme in brain gamma scintigraphy®>. Gamma
rays are collected by the camera, data analysis is performed to form an image representing the
analyzed organ.
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This detection has different stages:

1 - Selection by a collimator of only photons emitted perpendicular to the camera.

2 - Gamma photons interacting with a Nal (Tl) crystal. This step permits to transform the
gamma photons into electrons and electrons into visible light (scintillation). Each gamma

photon is responsible for hundreds of light photons emitted in all directions.

3 - Transformation of photons into electrical current at the photocathode of the photomultiplier

positioned behind the crystal.

4 - Spatial and energy selection of photons. The above processing leads to the formation of
signals from which it is possible to accurately determine the initial position of each photon, and

their energy.

5 - Following this selection, it is possible to reconstruct the image of the photon distribution in

the studied organ.

Figure 6: Scintillography of a cross-section of human brain obtained in Positron-Emission
Tomography: (a) diseased brain with low neuronal activity and (b) healthy brain®*. The image
is formed by reconstruction using false-color representation.
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1.2.2. Tomography techniques

1.2.2.1. Electronic tomography
The transmission electronic microscopy (TEM) is mostly used for cellular and intra-cellular

imaging >*?°. However, a lot of intracellular structures cannot be apprehended in one time, with
a single image. Only the combination of several views taken in several directions or in depth
can allow reconstructing the geometry of these structures. Electronic tomography allows having
access to the tridimensional volume of a sample in electronic microscopy.

The general principle of electron tomography is based on the collection of projection images of
a sample taken at different orientations 2°. A projection image contains the information of the
projected 3D volume, i.e. summed on the 2D image. By varying the angle of the projection, it
is possible to obtain different views of this 3D information. With a sufficient number of views

the 3D reconstruction of the original volume can be obtained using a set of projections (Figure

electron beam a

\

7).

Specimen at different tilts

Projection views

Reconstructed
volume

a) b)

Figure 7: Illustration of the 3D electron tomography principle. (a) The sample is tilted to
selected angles around an axis perpendicular to the electron beam. A serie of corresponding
projection images is recorded. (b) Schematic of a set of 2D projection views generated by tilting
a 3D object to different angles. The final volume is calculated by summation of all the back-
projection profiles and represented as a series of stacked thin slices?’.
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In the case of X-ray tomography (CT-scan) or micro-tomography (LCT), the projection images
are obtained through the use of X-rays, and the different orientations are obtained by turning
the emitter and detector around the patient. In the case of electron tomography it is the sample
that is rotated under the electron beam with a goniometer stage, by tilting the grid on which the
specimen is deposited.

The final quality of the reconstructed volume depends on the number of projections and on the
interval between acquisition angles. For X-ray acquisition, the span of the angles is 180°, which
can provide a high quality 3D reconstruction with sufficiently small intervals®. In the case of
electronic tomography, the sample holder cannot have a 90° angle and the observation width
increase as 1/cos (observation angle), adding constraints to the reconstruction.

The samples to be observed by electron tomography undergo the same preparation as for
conventional transmission electron microscopy, i.e. dehydration and inclusion in a resin. The
attachment may be chemical or physical (high pressure followed by freeze-substitution
fixation). For 3D reconstruction, thick sections of the order of 200 to 500 nm are preferred?®,

This requires the use of microscope voltages of 200 keV to 120 keV?,

Figure 8: Image of a multilysosomal body obtained by conventional TEM image. (a) represents
the complex 3D arrangement of the various membrane-bound structures in the interior of the
organelle after electron tomography and (b) the modelling?’.
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1.2.2.2. Ultrasound tomography (Non-contact techniques)
The laser ultrasonic technique®®**(LUT) consists of generating and detecting elastic ultrasound

waves in a solid, liquid or gaseous medium, using a laser source. In general, short laser pulses
(from tens of nanoseconds to femtoseconds) are used to locally heat the structure studied,
causing expansion phenomena (thermoelastic regime)*? or ablation. In thermoelastic regime the
generation of ultrasounds is created by the sudden thermal expansion due to the heating of a
small surface of the material by the pulsed Laser. In the ablation mode, if the laser power is
enough high to heat the surface above the material boiling point, some material is evaporated
(typically some nanometers). Following the ablation, a recoil force is generated, which is the

source of a compression (longitudinal) ultrasonic wave (Figure 9).

Thermal gradient L —

b)

Figure 9: The two modes of photothermic generation: (a) Thermoelastic mode where
ultrasounds are created by the sudden thermal expansion due to the heating of a small surface
of the material by the pulsed Laser and (b) Ablation mode where some of the material under
test is evaporated®*.

Then the ultrasounds generated are detected by a Laser detection®. This detection is based on

the demodulation by an optical interferometer of the laser light reflected or backscattered from

the surface of the material. A single frequency, laser light is focused on the point of impact of
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the generation laser beam on the surface of the material. Any motion of the analyzed at the
impact point of the detection laser is recorded on the reflected light as a frequency (or phase)
variations - Doppler Effect - (Figure 10).

The laser ultrasounds allow ultrasonic inspection of materials in a wide variety of applications
ranging from inspection of aerospace composite materials*®, to coating analysis>®.

There are numerous advantages of this method. Compared to traditional methods (piezoelectric
transducers), no mechanical contact is required for photoacoustic generation and detection.
Inspecting immersed materials in harsh environments (very high or low temperature) presenting
complex geometries (cylindrical shapes) is possible’’. Hence, control of the structure can be
done from a distance without causing any damage or favorable conditions for corrosion
development since no coupling media is used. Lastly, the implementation of these methods is

usually quite fast.

Figure 10: Laser detection of ultrasounds. The laser light is focused on the point of impact of
the generation laser beam on the surface of the material. Any motion of the analyzed at the
impact point of the detection laser is recorded on the reflected light as a frequency (or phase)
variations*.

Ultrasonic waves can also be generated and detected in metallic materials using EMAT
(Electromagnetic Acoustic Transducer) transducers in a frequency range of several megahertz,

much smaller than in ultrasonic Laser. EMAT is not a contact technique which is based on the
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Lorentz force, which results from the combined actions of eddy currents and permanent

magnetic field (Figure 11).

Piezoelectric UT EMAT UT

Lorentz Force
Magnetic Field
Eddy

Currents ——f=— Ultrasonic
—— Wave

A\

Figure 11 : Principle of acoustic wave generation by Piezoelectric and EMAT sensors>®.

Piezoelectric crystal generates acoustic waves under an electrical stimulation which causes
mechanical distortion of the crystal and EMAT sensor is a transducer that employs a
magnetostrictive effect to transmit and receive ultrasonic waves.

1.2.2.3. Eddy-current testing (ECT)
Eddy Current testing is based on electromagnetic induction phenomenon®® (ref). In the eddy

current probe, an alternating current (AC) flows through a wire coil and generates an oscillating
magnetic field (Figure 12). When the probe and the generated magnetic field are placed close
to a conductive sample, induced currents are created inside the material, known as Eddy
currents. Variations in the electrical conductivity and magnetic permeability of the test object
as well as the presence of defects inside the material cause a change in Eddy current. Thus, a
corresponding change in phase and amplitude that can be observed by measuring the impedance
changes in the coil, which is a sign of the presence of defects*’.

However, due to the electrical nature of ECTB, this technique is limited to conductive materials

with a depth investigation limited by the skin depth effect*!.
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Figure 12: Principle of an eddy-current device. (a) The alternating current flowing through the
coil at a chosen frequency generates a magnetic field around the coil. (b) When the coil is placed
close to an electrically conductive material, eddy-current is induced in the material. (¢) If a flaw
in the conductive metal disturbs the eddy-current circulation, the magnetic coupling with the
probe changes and a defect signal can be read by measuring the coil impedance variation.
The major parameters to take into include:
- Every local variation of the sample’s electrical conductivity and magnetic permeability
will lead to artifact of measurements.
- The distance between the probe and the sample has to be maintained constant to avoid
disruptive effects.

- The excitation frequency of the coil has to be tuned to obtain the skin depth desired

and a good signal from the sample.

This technique does not require any special sample preparation or any coupling media. The
speed of analysis is very fast (up to several meters per second). However, the fast attenuation
of Eddy current limits this technique to the skin depth, which varies from a few nm to pm
depending on the frequency used and on the metal under test. Moreover, the quantitative
interpretation of the signals can be complicated if the signal/noise ratio is not optimized and the

characterization of a defect type crack is delicate.
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1.2.2.4. Infrared stimulated thermography

2, this non-destructive method consists in illuminating the

Also called infrared radiometry*
analyzed sample to a photon energy flux (visible or not, localized or widespread, in pulse form,
sinusoidal, random). The illumination can be done in different ways: laser beam, flash lamp or
halogen. The absorption of these photons produces an increase in temperature in the vicinity of
the area of the material interacting with infrared photons due to the vibrational transitions taking
place in the material. The resulting heating induces a transient variation of the infrared emission
of the object. This variation is strongly dependent of optical and thermal properties of the
material (thermal conductivity, thermal diffusivity, thermal emissivity, temperature, specific
heat and density), and can be observed using an infrared thermography camera. Moreover,
these parameters are correlated to the aspect of the surface (roughness), presence of

delamination and cracks, and internal structure of the material. The principle of the method

ensures it is non-destructive, without contact at the excitation and detection (Figure 13).
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Figure 13 : Different excitation sources in infrared stimulated thermography: a) by flash lamps
or b) halogen lamps.
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The main advantages of this non-destructive method are non-contact, fast implementation and
remote sensing. The photothermal signal collected is sensitive to homogeneities of the material
and the presence of surface or underlying defects. Thus, the selection of the excitation source
and its parameters (duration, amplitude, frequency ...) plays an important role depending on the
material, size, depth and nature of the defect to be detected*’. Halogen light sources and flash

4445 estimate

lamps sources can be used to highlight delamination in composite materials
coatings thickness*® and detect cracks and defects inside materials®’.

In the field of thermo-elasticity, infrared thermography working in the passive mode can be

used to measure stress of materials under mechanical stress as fatigue®®,.

1.2.3. Elements analysis techniques

1.2.3.1. Scanning Electronic Microscopy (SEM) for elements analysis

The Scanning Electron Microscopy (SEM)*-?

is a powerful observation technique of sample
topography developed in 1940 - 1960. It is mainly based on the detection of secondary electrons
coming from the surface under the impact of a focused electron beam (energy between 1 MeV
and 100 keV) produced by a cathode which scans the surface. Images with a lateral resolution
until 5 nm and a great depth of field can be obtained. As the mean free path of electrons in the
air is very low, a vacuum of at least 10” atmosphere is usually maintained in the microscope.

The electrons that provide from the primary electron beam penetrate in the material and affect
a volume of the material. This volume depends on the average atomic number of the sample
and on the energy of the incident electrons. Inside this interaction volume, the electrons will
interact with the matter generating a lot of secondary phenomena that are described in Figure
14. As a result, other interactions of the electrons with the sample can also be studied to

complement the measurements of secondary electrons®!. Each of these interactions is related to

the topography and/or the surface composition>!.
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Figure 14: Diagram of the electrons/matter interactions used in nanocharacterization with
electron beam.

SEM requires a conductive sample, thus non-conductive samples should be metallized by the
evaporation of a few nanometer layer of a conductive material such as gold or chromium. The
electron source requiring a high vacuum it is important to remove all the air presents in the
sample before its introduction in the SEM observation chamber and to observe object with a
reasonable size (a few mm? is possible). Nevertheless these difficulties can be overcome by
working at a very low temperature (cryo-SEM)>. Cryo-SEM requires however a long and
complex preparation of sample (samples with a thickness superior to 500nm have to be frozen

and cut into thin sections - 40 nm to 200 nm thick- with a diamond knife in a cryomicrotome at

temperatures lower than -135°C).

In the following sub-section, we focus on two analysis technique that can be provided by SEM

microscopy: Energy Dispersive Spectrometry (EDS) and Electron Backscattered Diffraction

(EDSD).

26



1.2.3.2. Energy dispersive spectrometry (EDS)
The electron beam from the SEM (possessing energy between 10 and 40 keV) interacts with

the sample’s atoms. Here we focus on inelastic collisions. As described in Figure 15, the atoms
are ionized and as the incident electrons can eject an electron of the atom (usually valence one).
This ejected electron is called secondary electron. Then, rearrangement of the atom’s electronic
cloud occurs and one of the atoms in the excited states decays to the lower energy state. This
mechanism engenders the emission of X-ray photons, which are characteristic of the atom. By
placing an X-ray detector in the microscope chamber, this radiation can be detected and
recorded. Two types of detectors may be used operating either as energy dispersions (EDS)>

or wavelength dispersion (WDS) spectrometries.

Incident electron
. Photon X

Figure 15: Energy Dispersion Spectroscopy (EDS) principle. The incident electron constitutes
an external stimulation that results in an electron being kicked out of inner shell. An electron
from an outer shell transitions to the hole created. The difference in energy results on the
emission of a X-ray photon that can be detected to determine the energy of the transition for
elemental analysis.

EDS detectors consist of an active portion of silicon. The incident X-ray photons generate
electron-hole pairs in the crystal of the detector. With the polarization of the detector, electrons
migrate toward the anode and a leakage current is recorded. This current is proportional to the
photon energy of the incident X-ray. The data collected is in the form of a spectrum with the

radiative transitions specific to each element, which can be identified by comparing the peaks
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in the spectrum with existing databases for elements (Figure 16). The area of the peaks is
correlated with the content of the element in the compound, and the energy of the primary beam.
The limit of detection is typically between 1000 and 3000 ppm and the resolution is in the order
of 300 nm for lateral resolution and 1 pm for depth information>.

However, this technique presents some limitations. Due to the interaction of the electron beam
with the matter, the analysis gives information about an integrated volume of the sample
(included the surface and the oxide layer that is present in surface of the sample). In the case of
samples that are not flat, polished and homogeneous, quantification of the results can be quite
complicated. In addition, this technique is not suitable for low-Z elements. Finally, the sample

size has to be adapted to the SEM sample holder and must be vacuum compatible.
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Figure 16 : EDS spectrum of silver nanoparticles showing Ag La and Ag Lp signatures®>.

In order to obtain reliable measurements, an excellent surface flatness, a very well-polished
surface, a sample that is conductive, stable under the electron beam and vacuum, and a

homogeneous area for analysis are required.
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These conditions exclude this technique as an overarching mean for chemical analysis.
Moreover, in the case of quite rough samples, the topography can induce some absorption
effects and lead to a wrong quantitative analysis. Cases of changes in the chemical composition
of the sample under the electronic beam can also be reported. One example is the case of the

migration of alkali metal ions under the beam influence >°.

1.2.3.3. Electron Backscattered Diffraction (EBSD) technique
EBDS is a microstructural crystallographic technique’’ to measure the crystal orientation of

crystalline materials. EBDS can be used to determine to preferential crystallographic
orientation of any mono- or poly-crystalline material. It can also be used to identify the
crystalline system in a material. EBDS can also be applied to study defects®®, phase
identification®, grain boundaries®’, examination of local heterogeneities®! and deformation
cartography®? (Figure 17).

EBSD is commonly implemented in the SEM, provided that it is equipped with an appropriate
detector %. The crystalline sample is first polished and positioned in the SEM vacuum chamber
with a high inclination angle (~70°) to increase the contrast of the backscattered electrons. A
phosphorescent screen is located inside the SEM chamber with a 90° angle from the electron
beam and is coupled to an objective focusing the image produced on the screen of a CCD
camera. Some of the electrons that interact with the sample are backscattered. A small amount
of these electrons undergo a Bragg reflection on the lattice planes and strike the phosphorescent
screen . An electron backscatter diffraction pattern (EBSP) is created when several different
planes diffract the electron to form the Kikuchi lines %, which correspond to each of the
diffraction planes of the lattice (Figure 17). It is then possible to link the lines present in the

EBSP diagram to the phase and the crystallographic orientation of the material (Figure 18).
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Figure 17: Example of a diffraction diagram (La>Zr,07, 20 kV, A = 0.086 A) (NEEL institute
CNRS/UGA UPR2940).
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Figure 18: Schematic of the EBSD principle (NEEL institute CNRS/UGA UPR2940).

1.2.3.4. Nuclear microprobe
Nuclear microprobe appeared about fifteen years ago in the field of analytical and imaging

techniques using ion beam. Taking advantage of multiple ion-matter interactions accessible at
both nuclear and atomic scale, this instrument stands out for its versatility and its excellent
analytical performance. The principle of operation of a nuclear microprobe is similar to that of
a SEM. Simply, the "probe" is a focused beam of light ions (mostly protons, deuterons, alpha
particles) instead of an electron beam. In general, the beam is delivered by a positive ion
accelerator in order of energy of MeV. The spatial resolution obtained with such a technique is

around a few micrometers (Figure 19).
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Figure 19: Schematic diagram of a nuclear microprobe: the ion beam is collimated and focused
to form a spot with a micrometric diameter in the focal plane. An electrostatic deflection system
allows scanning point by point the area to be analyzed in order to obtain a 2D or 3D map of the
atomic percentage of the element analysed.

Many characterization techniques can be used in conjunction with a nuclear microprobe. A few
examples are described here.

Particle Induced X-ray Emission (PIXE)®: The detection of characteristic X-rays emitted by
the electronic clouds of the atoms excited by the incident ion beam allows to determine the
proportion of all the heavier elements present such as sodium (Na). The X-rays emitted by the
lighter elements are too low in energy to be detected. This analysis is elemental as it provides
the Z number of protons with a sensitivity suitable to access concentrations of elements to the
order of ppm.

Particle Induced Gamma-ray Emission (PIGE)®’: PIGE consists of measuring the gamma
spectrum emitted by the nuclei of atoms excited (mainly Coulomb excitation) in order to detect
light elements (typically Z less than 19). The identification is isotopic (access to Z and to the
number of mass A).

Nuclear Reaction Analysis (NRA)®: This characterization technique allows, by choosing the
nature of the incident ions and their energy, to generate special nuclear reactions. With ions at
few MeV energy, only light elements can be measured, because the Coulomb barrier of heavy

nucleus is too high, which prohibits all nuclear interactions. The reaction probability presents
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sometimes a narrow resonance depending on the energy of the incident beam. By varying this
energy, we can then determine the concentration profile in depth (2-3 um) in the sample. This
method is also isotopic.

Rutherford Backscattering Spectrometry (RBS)®°: RBS consists in measuring the ion
energy after their scattering on the target nuclei. This energy is characteristic of the nucleus
mass and allows to determine the mass number A. Ions undergo an electronic deceleration in
the crossing material. Hence, this method is sensitive to the topography and to the organization
of the material in-depth (eg. organization and thickness of thin layers, impurities location,

surface contamination).
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1.3. Local probe techniques for surface characterization

It is in 1873, that the first limit of resolution in optics (for the study of a sub-wavelength object)
was demonstrated. E. Abbe reported’® that light cannot be focused on an infinitesimal point
without being diffracted. Diffraction phenomena limit the resolving power of an optical
microscope and do not give a point image of a point object, but rather an Airy disc as shown in
Figure 20. The image of a perfectly circular hole gives a bright disc surrounded by concentric
rings alternately bright or dark.

As the spatial resolution limit of an optical device is dictated by its resolving power, two very
close points will appear as overlapping regions or as a larger disc when the distance between
the two points is inferior to the resolving power of the microscope. In far field, the observation
with optical instruments allow to discriminate two points of an object only if the center of the
diffraction figure of one of the point is located on the first dark ring of the diffraction figure of
the other point.

The resolving power of a far field optical device (R (in meters)) depends on the illumination
wavelength A (in meters), the refractive index n (no unit) and the half opening angle 0 (in
radians) of the optical device as:

A
2.n.sinf

Hence, in air (n=1), R is around A/2. By playing with the numerical aperture (O.N. = n.sin8) of

the device it is possible to raise resolution up to A/3 or A/4.
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Figure 20: Representation of Airy discs and their associated intensity distribution. (a) Airy disk
for a single object (diffraction pattern containing a central maximum surrounded by other orders
15t, 2n ). (b) Two overlapping Airy disks for two objects at the limit of optical resolution
when the distance between the disks is larger than their radii and they are resolvable. (¢) Two

overlapping Airy disks in the case of the distance between centers of zero order maxima is less

than the width of these maxima 7'

Figure 20 illustrates the resolution problem encounters by classical far field optical
characterization techniques. The electromagnetic field diffracted by a sub-wavelength object is
composed of a fundamental mode and several superior modes. The fundamental mode contains
information related to large details of the object whereas superior modes contain information
related to small details (high spatial frequencies) 72

The superior modes are evanescent. As a result, far field characterization only measures the
fundamental mode of the field diffracted by the sample. Thus, the information detected in far
field measurements is not sensitive to small details of the object. To capture the contribution
of superior modes it is necessary to get very close from the surface in the near field zone (Figure
21) 7. Indeed, the amplitude of an evanescent wave decreases exponentially from the interface
as a function of distance d. Dipolar model in air shows that the amplitude decrease of the
radiated fields in near-field follows a 1/d*law 7*. The spatial resolution depends on the distance

between the observer and the sample but also on the dimensions of the extremities of the probe
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used to perform the measurement. The sharper the probe, the narrower the region of field

enhancements used as the illuminating beam to characterize the sample.
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Figure 21: Illustration of far and near-field regions around an emitting antenna.

1.3.1.  Photon Scanning Tunneling Microscopy (PSTM)

PSTM 7 platforms are composed of an optical fiber brought close to the surface of a sample
placed on a prism by means of an index gel. The index gel provides optical continuity between
the media as well as a good mechanical adhesion. The sample is illuminated by total internal
reflection so that the optical fiber frustrates the evanescent part of the wave scattered by the
sample surface, but the fundamental mode does not interfere with the measurement.

A schematic of the setup can be seen in Figure 22.
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Figure 22: PSTM setup for near-field optical collection of the light emitted by the sample
excited by incoming polarized LASER light in Total Internal Reflection configuration’®.

The interpretation of PSTM images is based on the study of the scattering of electromagnetic
surface waves by defects at the sample’s surface. [lluminating the sample in a total internal
reflection configuration generates bi-dimensional surface waves: these waves propagate in the
plane of the sample’s surface and their amplitude decrease exponentially in the direction normal
to the surface (z direction in the schematics in Figure 22). By approaching the local probe
(optical fiber) very close to the surface, surface waves can be detected.

Figure 23 presents an example of PSTM images for the detection of optical index changes in a
material.

The topographic and PSTM images are recorded simultaneously. In this configuration, the
regulation between the tip and the sample is not based on the decay of the evanescent field but
on the forces between the probe and the sample. This configuration facilitates the discrimination
of the nature of the defects. In fact, for a volume defect, this mode acts as constant height
detection whereas for a topographic defect the optical signal at constant height becomes

constant. The experimental measurement was performed on a step of 400 um height. Features
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of different optical index were positioned on the sample. Topography and optical images are
recorded simultaneously. One notice that the optical answer of the topographic step remains
constant (excepted on the edge of the step) whereas the AFM image reveals it perfectly (Figure
23a and Figure 23c). The opposite phenomena is observed of the index step which is reveals

by the optical image and not by the AFM one (Figure 23b and Figure 23d).

Figure 23: Comparison of AFM and PSTM images on a same sample. (a) Topography AFM
image. (b) AFM image of the sample presenting optical index differences. (c) PSTM image of
a topographical variation without any optical changes. (d) PSTM image of the sample
presenting variations in the optical index”’.
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1.3.2.  Conventional Atomic Force Microscopy

1.3.2.1. Working principle
Atomic Force Microscopy (AFM) is a near-field microscopy technique developed in 1986 by

Binnig, Quate and Gerber’® 7. AFM belongs to the family of near-field techniques. Its principle
is based on the interatomic forces between the sample and the surface with a very fine tip
attached to the AFM cantilever. The schematic of the dispositive is represented in Figure 24.
Before AFM, scanning tunneling microscope (STM) was developed to study conductive or
semi-conductive samples by detecting a tunneling current between the tip and the analyzed
surface ¥. AFM was developed to overcome the conductivity requirement limitation so that all
types of samples (from metal to soft matter) can be analyzed. The major advantage this
technique consists in its versatility, in particular to analyze samples in various environments.
Thus, studies in liquid medium can be conducted in order to be close to physiological conditions

in biology.

Photodiode LASER diode

AFM cantilever

Sample

AFM controller

electronics

Detector
Electronics

Piezoelectrique
Tube

Figure 24: Atomic Force Microscopy setup including the read-out system used to monitor the
cantilever deflection and the electronics for feedback loops and sample rastering.
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The choice of cantilever’s spring constant is a crucial parameter — generally conditioned by the
nature of the sample or the type of measurement performed - to realize high quality
measurements and AFM images (Figure 25). Furthermore, the tip has to be very sharp (a few
nanometers) to get the high spatial resolution. The cantilever possesses a spring constant (from

0.01 N/m to 15 N/m) and a natural resonance frequency ranging from 10 kHz to the MHz.

DNP Cantilever (Bruker) Sharpened DNP tip

Figure 25: SEM view of the DNP cantilevers (Bruker) (left) and high resolution view of
the cantilever tip (right)3!.

AFM is sensitive to forces in the order of piconewtons (1012 N). By adjusting the position (X,
Y, Z) of the piezoelectric tube to maintain a constant force between the tip and the surface,
through a feedback loop, the topographic information of the sample surface can be unveiled. In

conventional systems, scan rate of the order of Hertz is used for the cantilever raster.

1.3.2.2. Different working modes

Contact mode and Lateral Force Microscopy (LFM)

The contact mode or constant force mode consists in monitoring the cantilever/sample force
during the scanning of the tip over the sample surface as described above.

The vertical deflection of the cantilever is monitored using a readout system composed of a
Laser diode and of a four quadrant photodetector. The cantilever deflection is monitored in

focalizing the Laser beam on the cantilever which is then reflected on the photodetector.
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To investigate the nature of the force between the tip and the sample, one can perform a “force
curve” at a fixed point by varying the tip-sample distance incrementally and recording the
vertical deflection of the cantilever. The profile of the resulting curve is presented in Figure

26.

Deflection A
(nm)

( Setpoint

5

Y Piezo Z displacement (um)

Figure 26: Cantilever deflection vs the piezo z displacement curve. (1-3) are representative of
the approach and (4-6) of the withdraw phase.

The different phases illustrated in Figure 26 can be described as following:

1- The tip/sample distance decreases. There is no interaction between the tip and the
sample.

2- The cantilever bends downward as a result of the attractive forces of the surface. The
deflection of the cantilever ‘decreases’ as the tip engages in contact with the surface
(electrostatic attraction and/or capillarity forces).

3- The tip presses the surface, the cantilever bends upward. The repulsive forces are
predominant in the regime.

4- The pressure exerted by the tip decreases. The motor initiate the steps to withdraw the

cantilever. The tip remains in contact with the sample, now bound by adhesion forces.
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5- The tip-sample distance increases further, the tip is subjected to the surface adhesions
until the “jump out of contact” point.
6- The tip is free, there is no more (or negligible) interactions between the tip and the
sample.
Lateral Force Microscopy (LFM)®? is also based on the AFM contact mode. In LFM we measure
the cantilever horizontal component of the deflection. The lateral deflection is the result of the
friction forces. Their contribution is accentuated when the cantilever moves in a direction
normal to the direction (length) of the cantilever (sweep with a 90° angle). This mode is very
useful for studying a sample whose surface is composed of inhomogeneous compounds and to
enhance contrast at a boundary between different compounds (Figure 27 and Figure 28).
Friction signal can be represented as the difference in the signals recorded in the right (A+B)

and left (C+D) cells.

Frictional information = (A+B) — (C+D)

Lateral component

A C
B D/'.i Vertical
component

Photodetector

Topography EN
- Friction é

Figure 27: Lateral Force Microscopy principle: the lateral variation of the cantilever deflection
is captured to extract the friction profile across the sample.
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Figure 28: Topography (a) and (b) LFM image of human hair. (20 pm scan size). One can
clearly observe the difference in frictional areas of keratin protein in (b) *.

Oscillant Tapping mode
The friction phenomena between the tip and the sample in contact mode may damage the

sample surface, especially for soft materials. Tapping mode was developed to overcome the
capillary and friction forces ®*. Later, it was demonstrated that this mode provides access to the
nano-mechanical properties (measured point by point) of the surfaces such as variations in
elastic properties of materials regardless the medium used for the study (air or liquid medium)®*

8 (Figure 29).

+ Topography

1 Phase

Figure 29: Schematic of tapping mode AFM. The cantilever oscillates close to the surface
and the tip intermittently touches or taps the sample. The advantage of tapping the surface
is improved lateral resolution on soft samples. Lateral forces such as drag, common in
contact mode, are virtually eliminated 7.
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Peak Force QNM mode (Quantitative NanoMechanics)
Peak Force QNM mode®® is based on Tapping mode but allows to measure the mechanical

properties of materials such as adhesion, deformation or elasticity®® (Figure 30). In this
configuration, force curves at a frequency range of 0.5 - 4 kHz are acquired at each pixel of the

image. Force curves are then used as retro-control for imaging. Resolution equivalent to the

classic tapping mode has been demonstrated %°. This can be used on all types of materials from

the inorganic to the organic.

Figure 30: AFM Peak Force QNM images of a multilayer film composed of polymer
multi-layers. (Scan size 10 x 10 ym). (a) Topography (b) Adhesion (c) Elasticity®.

Force curve modeling for Young modulus extraction
Derjagin, Muller, Toropov (DMT) *° is a standard model used to fit tip-sample force curves in

Peak Force QNM. The retract part of the force curve, when the cantilever-sample distance
increases, is fitted using the DMT model, and the result of the fit corresponds to the reduced

modulus E” calculated by:
4
F — Faan = §E* R(d — dy)?

where F — F,,, is the force applied on the cantilever, d — d, the sample deformation
and R is the tip radius.
An example of different surface properties provided by Peak Force NM mode (including

eleasticity) is given in Figure 31.
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Figure 31: AFM image of human monocyte rafts obtained by Peak Force Mode. (a)
Topography, (b) signal error, (c) modulus (elasticity), (d) LogModulus, (¢) adhesion, (f)
deformation (images Ece Abayke).
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1.4. Development of near-field microscopes for subsurface
investigation

1.4.1.  Scanning Thermal Atomic Force Microscope
Scanning Thermal Microscopy (SThM)’! mode was developed to probe thermal properties at

the nanoscale level. This technique maps the thermal properties of a sample by using a
nanofabricated thermal probe that contains a resistive element near the apex of the probe tip®*
93. 94 This resistor is incorporated into a Wheatstone bridge circuit, which allows the system to

monitor the resistance.

High Sensitivity Thermal Feedback

Topography feedback

Wheatstone
bridge

Figure 32: Thermal AFM setup®. A special AFM cantilever constitutes the fourth leg of the
Wheatstone bridge for temperature measurements.

Figure 32 represents the experimental device of SThM AFM. A “V” shaped resistive element
is mounted at the end of a cantilever. While the distance between the probe tip and sample
surface is controlled by usual AFM scheme, the thermal probe forms one leg of a Wheatstone
bridge. It is this Wheatstone bridge which is used as a feedback to adjust and balance the bridge
voltage in order to measure the probe’s temperature (TCM) or maintain a constant probe

temperature (CCM). A topographical AFM image can also be generated from changes in the
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cantilever’s amplitude deflection. Thus, topographic information can be separated from local
variations in the sample’s thermal properties, and the two types of images can be collected
simultaneously.

Two qualitative sub-modes are available for SThM, the Temperature Contrast Mode (TCM)
that allows measuring the temperature variations of the sample and the Conductivity Contrast
Mode (CCM) that provides measurement of thermal conductivity variations. Sample
temperatures are typically measured on active device structures such as magnetic samples, laser
diodes or electrical circuits °®. Conversely, thermal conductivity is more typically measured on
composite samples °’. In these measurements, a higher voltage is applied to the probe increasing
it further the room temperature. The thermal conductivity of the sample will affect the
temperature of the probe by draining more or less heat away from the tip.

Although the preferred method for SThM operation is via solid-to-solid direct conduction, it is
possible that conduction occurs within the liquid meniscus at the tip surface in the presence of
aqueous species, which can also be affected by gas conduction. For this reason the preferred
method of operation is to perform the measurements under vacuum conditions. The
fundamental limit of resolution of the measurements is proportional to kT, where k is the
Boltzman constant and T the temperature. At room temperature, kT is between 10 and 21 Joules.
Some of the major applications for SThM are for defect and “hot spot” detection in
semiconductors °® or the detection of subsurface features *°, which cannot be observed by AFM.
Typical material parameters that can be observed include the thermodynamic characterization
of material properties such as conductance, specific heat capacity, and glass transition
temperatures '%°. The technology is also of particular relevance to pharmaceutical compounds
and for the analysis of biomolecules'®!. Figure 33 illustrates the potential of this technique with
the characterization of local phase transitions in a polymer that are not detectable by classical

AFM.
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Figure 33: Thermal measurements from a SEBS polymer sample. (a) Topography before
thermal measurements. (b) Thermal image which shows induced local phase transitions in the
SEBS materials (Scan size: 1 x2 pm) %2,

1.4.2. Nano-Infrared Microscopy (nanolR)

The nanolR microscope (developed by Anasys Instruments) combines the high resolution
imaging capability of an AFM with the power of infrared spectroscopy to perform chemical
characterization 1%

NanolR consists of a near-field technique based on photothermal %4 195, 106

expansion of a
sample due to the absorption of IR radiations '°7 19, The sample is placed on an IR-transparent
prism and irradiated with an IR nanosecond pulsed laser tuned to a wavelength corresponding
to an absorption band of the sample. The absorbed light induced a temperature increase and
consequently a rapid thermal expansion of the absorbing material. This local deformation (or
expansion) is detected with the AFM tip in contact with the sample. As the expansion is related
to the nanosecond scale, the cantilever undergoes a pulse and oscillates on its eigenmodes
(Figure 34). Mapping this oscillation amplitude versus position creates a spatially resolved map
of IR absorption that can be used to localize specific chemical species with sub-100 nm lateral.
Tracking the oscillation amplitude while tuning the wavelength leads to the formation of a
spectrum for a fixed position of the AFM. We work with the nanoIR™ microscope from Anasys
Instruments using an optical parametric oscillator (OPO) as a benchtop tunable IR laser (range

4000-1000 cm™). Topographic images were acquired in contact mode with cantilever of 0.03

N/m (umasch HQ:CSC/AIBS).
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Figure 34: NanolR setup: molecular vibrations in the sample are excited by illumination in the
infrared range using a total internal reflection configuration. The ringing of the cantilever
resulting from the pulse of light interacting with the matter is captured by an oscilloscope. Next
FFT is performed to extract the absorption spectrum or chemical measurements.

Figure 35 illustrates the use of nanolR microscopes for mapping the distribution of lipids inside

bacteria.
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Figure 35: Results obtained with the AFM-IR system on S. lividans bacteria: (a) AFM
topography, (b) chemical map at 1740 cm—1, and (c) local IR spectra acquired at selected
points: on and off a lipid inclusion'?.
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1.4.3. Acoustic microscopy

1.4.3.1. Far field acoustic microscopy
Sergei Y. Sokolov, was the first who proposed in 1928 (and later demonstrated) a technique

based on through-transmission of sound for detecting irregularity and defects in solids such as
metals (sounds waves travel as longitudinal, vibrations whose velocity depends on the elasticity
and temperature of the medium) ''°. He also proved that high frequency sounds wave could be

used to create a new kind a microscope based on a reflective principle ''°.

In the far field reflection technique, a pulsed acoustic wave is generated from one side of the
sample through the sample and reflected on far side to return to a receiver located at the
emission point. When it encounters a defect or a crack inside the material, the acoustic signal
is reflected and its traveling time is modified. The traveling time delay can provide a measure
of the defect's location. Thus, a map of the material can be generated to illustrate the location

and geometry of the defects (Figure 36).

W Time of flight

Defect  Defect

Signal top bottom Backwall
amplitude

echo

U.S. probe Burried defect

Sample

Figure 36: Far-field acoustic microscopy principle. The top and bottom interfaces of the buried
defects lead to a reflection of the wave that can be captered by the pulse/detection.
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Moreover, in 1937, Sokolov described a technique for underwater imaging called “Sokolov
tube” also know under the name of Acoustic Electron-Ray Converter (AERC) ''!.This device
is composed of a special Piezoelectric Element Matrix (PEM) lens composed of about 1000
square elements electrically connected to a vacuum cathode-ray tube or Cathode-Ray Converter
(CRC). An electron beam scanning this surface converts the electrical image into a time
dependent output signal that can be processed and displayed as an image!!> !> 114 In 1955, the
first successful experiments were carried at the Andreev's Acoustical Institute, Moscow,

Russia!®>.

The first scanning acoustic microscope (SAM) was developed in 1973 by A. Lemon and C.F.
Quate at Stanford University!'®. The acoustic microscope principle relies on the fact that the
speed of sound in a medium is directly related to physical properties of that medium such as

density and elasticity.
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Figure 37: Schematic of the Scanning Acoustic Microscope (SAM) using an acoustic lens to
focus the waves onto the sample.
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The schematic of the SAM microscope is presented in Figure 37. The acoustic wave is
transmitted due to a piezoelectric crystal and is propagated inside the sample via a sapphire
focalization lens. A suitable coupling liquid is required. SAM image formation is based on a
sequential radiofrequency (RF) electrical pulse with a 50-500 ns period and 10-1000 MHz
frequency, which is used to excite a piezoelectric transducer fixed on the top of an acoustic lens
body. The transducer converts the RF pulse into an ultrasonic wave with the same frequency
that is emitted into the lens body. This ultrasonic wave propagates to a spherical cavity coated
with a quarter-wavelength-matching layer to increase transmission. The lens cavity is coupled
by liquid (usually water) to the sample surface, which is located at the focal point of the
spherical lens (the lens with the spherical cavity). The ultrasonic pulse is transmitted and
focused by the spherical lens to steer the acoustic wave onto a spot whose size is comparable
with the acoustic wavelength in the fluid. Then, the wave is reflected back by the sample. The
amplitude of the reflected pulse is proportional to the difference between the acoustic properties
of the sample and that of the water at the focal point, so that the amplitude gives a measure of
the microscopic properties of the sample at that point. The pulse is reconverted into a RF pulse
by the inverse piezoelectric effect of the RF receiver, tuned to the appropriate frequency. The
average amplitude of the pulse is determined, converted into a digital signal and sent to a
computer imaging system. The lens is then mechanically displaced by a small distance and the

process is repeated, usually at 500 *500 points, to form an image'!”.

This type of microscope can be used both for the observation of hard material and biological
sample because unlike light and electron microscopy, biological specimens can be examined
without any alteration during sample preparation. Figure 38 and Figure 39 illustrate the
imaging possibilities of SAM on hard and soft matter, respectively, at different frequencies. As
can be seen on the images, the resolution is somewhat limited. Similar to optical techniques,

the diffraction limit dictates the spatial resolution of the microscope, hence the resolution is
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dependent on the wavelength of the acoustic wave and the artifacts generated by the lens.
Another limitation of SAM microscopy is the need to couple the acoustic lens and sample with

water, preventing the analysis of water sensitive samples.

Figure 38: Acoustic (a) and SEM (b) images of a concrete samples made with granitic aggregate
grains and Portland cement paste. The acoustic image was set at 400 MHz %,

Peripheral area (c)
Cytoplasm

Nucleus

=

Figure 39: Optical (in color) and overlaid acoustical (in grey) images of embryonic chicken
heart muscle cells. The acoustical images have dimensions of 65 x 65 um and were acquired
with a center frequency of 860 MHz '’
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1.4.3.2. Near field acoustic microscopy
We mentioned in previous sections that the apex of the AFM cantilever sensor has a curve

radius of only a few nanometers to several hundred of nanometers. The lateral resolution is
given by the contact area between the tip radius and the sample radius, which is much smaller
than what can be obtained with the wavelength of the acoustic waves.

In order to use the capabilities of ultrasound waves for the volume investigation with nanometer
resolution, such as what is offered by the local probe effect of the AFM, idea of coupling
acoustic and AFM techniques was explored.

Since 1993, several AFM  microscopes combining  ultrasound  imaging
have been developed, including ultrasound force microscopy (UFM)!!?, scanning acoustic force
microscopy (SAFM)!?°, atomic force acoustic microscopy (AFAM)'?!, and ultrasonic atomic
force microscopy (UAFM)!?2. These techniques can be seen as special types of dynamic force
microscopy techniques or as near field microscopy techniques in the scope of “nanoscale
ultrasound imaging”. We will describe them here briefly.

UFM was the first acoustic near field microscope reported'**. UFM combines the principle of
acoustic microscopy with the resolution of the AFM operating in contact mode. As represented
in Figure 40, UFM can be designed on the basis of a conventional AFM. To implement the
acoustic actuation on the sample, the substrate is placed on a piezoelectric transducer connected
to a radio frequency (RF) signal generator. Longitudinal waves with a frequency range of few
hundred kHz to several MHz selected so that the cantilever response is negligible!!*!2412> (far
above the first resonant mode and away from the higher resonant modes) are launched through
the sample. The acoustic wave causes high frequency surface. The sensor tip of the AFM is in
contact with the vibrating sample surface and when the threshold amplitude is reached, the

sensor tip lifts off from the surface. The deflection and/or torsional vibration of the cantilever
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due to its interaction with the acoustic wave are then monitored via a lock-in detection and gives
nanometer resolution elastic or subsurface images'?¢.

This ultrasonic method can be used to evaluate the elasticity of stiff samples and to detect
subsurface defects (Figure 41)''> 23 which are not possible by force curves'?’ or force
modulation modes'?® '?°. Although the force modulation mode using a very stiff cantilever (>
1000 N/m) can be used to evaluate a stiff sample, such a cantilever is not suitable for soft
samples. UFM can overcome this shortcoming. UFM detection is performed both in liquid
medium and in air. UFM is however limited for the characterization of samples that are too

large or heavy as the piezoelectric crystal cannot effectively vibrate.
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Figure 40: Near-field acoustic microscope setup showing the mechanical actuation of the
sample using a piezoelectric crystal connected by a frequency generator.

54



100 nmk’_}‘\‘/\————h

Figure 41: UFM images of Ge dots on Si substrate. (a) Topography (c) UFM image at 3 MHz
of Ge dots on a Si substrate (Scan size 400 x 400 nm). The cross section on the UFM image (d)
reveals the sharp change in signal at the periphery of the round structure corresponding to a
cavity in the center of the Ge dot, while the topography profile (b) is perfectly smooth. Height
of the dots is about 15 nm'3°.

AFAM B! principle is very similar to UFM microscopy with a frequency range limited from
0.1 MHz to 2.5 MHz ¥, Moreover, the configuration can be adapt to excite the sample with
acoustic waves generated by piezoelectric crystal located on the AFM probe 3! instead of the
excitation of the sample described in UFM. Figure 42 illustrates images of a piezoelectric lead

zirconate ceramic by AFAM.

Topography Ultrasonic amplitude

0 nm 100 nm

Figure 42: AFAM images of a piezoelectric lead zirconate ceramic at sample actuations of 600
kHz and 750 kHz!®.
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1.5. Conclusion

Although a multitude of characterization techniques for non-destructive investigation of the

volume of materials are available '3*

, most of them do not provide sufficient resolution to
achieve early detection of defects at the nanoscale. Conventional techniques offering great
sensitivity and spatial resolution do not provide access to subsurface information or consist of
destructive analysis of the sample.

The purpose of this work is to achieve continuity of the non-destructive analysis to reach
nanoscale resolution in order to understand defect formation and propagation in materials. We
aim to develop an early detection and nanoscale resolution technique to characterize both solid
materials and biological samples. Moreover, despite the fact that sensitive techniques are
available for biology analysis, they generally require the use of markers which may have an
impact on biological elements that cannot be assessed. Consequently, the idea is to observe
these interactions with high resolution in a non-invasive way is very stimulating. In this work

we will focus on two techniques— Mode Synthesizing AFM (MSAFM) and Scanning

Microwave Microscopy (SMM) — which we believe can address some of these issues.
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Chapter 2 — From topographic study to the
development of tomographic high resolution
tools.
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Since the development of near-field techniques in 19828, the need for powerful high-resolution
characterization tools capable of probing properties of materials of increasing complexity
continued to increase. In 1986, the emergence of atomic force microscopy (AFM) paved the
way to surface information with a lateral resolution of a few nanometers for all materials
irrespectively of their conductivity’® 7. The rise of AFM then led to new demands in
characterization of condensed matter beyond morphological studies, for both solid state and
soft materials (i.e. in the biological field). For instance, the ability to study systems in real time
requires to significantly increase the image acquisition speed as the performance of about one
picture in five minutes in conventional AFM platforms hinders the study of fast dynamic
phenomena such as self-assembly or protein conformational changes. Acquisition time saw a
breakthrough discovery in 2008 with the development of high speed atomic force microcopy
(HS-AFM) by the group of Professor Toshio Ando'*> '3¢ (Kanazawa University, Japan),
capable of imaging the dynamics of myosin and dynamic molecular processes in photoactivated
bacteriorhodopsin using 1 frame per second!3>!%. Another limitation of AFM is its limitation
to surface characterization. Hence research efforts in near-field techniques are very active in
developing new tools for non-destructive and non-invasive volumetric investigations, while
maintaining the nanoscale resolution of AFM. New techniques such as acoustic microscopy
and microwave microscopy emerged from these efforts!!? 113 137 138,

This chapter is centered on the description of the capabilities of two new near-field techniques
to realize high resolution characterization with the aim of achieving 3D tomographic studies.
Namely, we focus on the techniques developed in the context of this work based on acoustic
and microwave microscopy for non-invasive and non-destructive  volume

characterization'3%14,
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2.1. Mode Synthesizing Atomic Force Microscopy (MSAFM)

Acoustic microscopy is a technique that enables in-depth imaging due to the propagation of
ultrasonic waves and the change in their propagation in the presence of defects. Ultrasound
waves propagating through the sample are sensitive to material properties such as stiffness or
density!#!: 142 143" A change in these properties is likely to cause variations of amplitude and
phases of the incident sound wave.

In the present work, we used AFM to circumvent the diffraction limit of conventional acoustic

144 We show here that using this novel approach, it is possible to analyze the sample

microscopy
in-depth while maintaining the inherent atomic resolution of AFM'¥.

The first AFM devices coupled with acoustic waves such as Ultrasonic Force Microscope
(UFM)!% 126 and Atomic Force Acoustic Microscope (AFAM)!3! 121 were based on the
interaction a single ultrasound wave launched below the sample with the subsurface defects
inside the sample, and monitoring the amplitude and phase of the wave detected at the surface
of the sample by the cantilever. Then, to increase the detection sensitivity the technique was
improved by adding a second ultrasound wave. The two-wave actuation AFM technique is
called Scanning Near Field Ultrasound Holography (SNFUH)!** and Mode Synthesizing
Atomic Force Microscopy (MSAFM)!'* was introduced next as a generalization of the multi-
wave actuation and nonlinear mixing.

The principle of MSAFM is based on the study of amplitude and phase variations of the surface
waves generated by the interference of two ultrasonic waves carried out by the imaging system.
In the first report of MSAFM!#® two (or more) forces were exerted on the system through
forced oscillations of the cantilever probe and/or the sample at frequencies, noted f, and f;,

respectively (Figure 43a). In the case of the microscope developed our laboratory, the actuation

frequencies applied were varied from 1 MHz to 10 MHz. Using this approach, a subsurface
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inhomogeneity can be detected due to variation in amplitude and phase of the mixing signal at
frequency |f;, - fs| (from several kHz to hundreds of kHz) monitored using lock-in detection to

147 Using calibration

perform the appropriate analysis of the signal from the AFM photodetector
samples, the signals were shown to be sensitive to subsurface defects such as nanoparticles and
nanostructured defects'#> 148 149, 139, 150 "Figure 44 illustrates this phenomenon in a simple
schematic. The synthesized wave is modified by the presence of a buried particle inside the
sample. The heterodyne detection used is sensitive to such changes. Heterodyne detection
consists in transposing the energy of a part of the spectrum at a lower frequency (called
intermediate) to make the detection possible. Heterodyne scheme of detection was used for all
MSAFM measurements in order to circumvent the limitation of the AFM detection (cut-off
after a few MHz) and to make it possible to tune the MSAFM modes synthesized (difference
in particular) with the resonance of the cantilever in contact with the sample when necessary.
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Figure 43 : MSAFM setup. (a) Experimental setup of MSAFM %4, (b) Electronic setup for AFM
in acoustic mode 4,
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Figure 44: Detection principle of a subsurface defect (purple sphere) in a homogeneous material
(yellow slab). The acoustic wave of f, frequency is represented in blue and the fs frequency
wave in green. The resulting wave of the nonlinear interaction is represented in red and presents
a [fp— f;| frequency.

In our experimental setup, acoustic waves are generated by two frequency generators
(AGILENT 33220A) connected to piezoelectric ceramic (PI France) components of a 0.5 mm
thickness and resonances in the MHz range (CuNi electode, ceramic PZT PIC 151). A lock-in
detection is used (SRS 844 Lock-in Amplifier from Standford Research Systems). The two
outputs of the frequency generators are also connected to a mixing circuit (Mini circuits mixer
ZAD-6) followed by a low pass filter (DC 1.9 MHz) to isolate the reference signal Af (defined
by the difference in frequency Af = |fp — fs|) for the lock-in measurement. The input of the lock-
in is the signal from the AFM detector. The acoustic image is formed by displaying the
amplitude and phase reading performed at each point after rerouting the signal measured to the
auxiliary input channel (Aux C) of the acquisition board of the microscope AFM using the AFM
signal access module. The image appears on the canal “Aux C” whereas the topographical

image remains on the canal “Height”. The setup of the experiment is represented in Figure 43.
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2.1.1. Advances in Quantitative Nanoscale Subsurface Imaging by Mode-
Synthesizing Atomic Force Microscopy
This part reports on advances towards quantitative non-destructive nanoscale subsurface

investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy
(MSAFM) with heterodyne detection addressing the need for a quantitative approach to
correlate the role of actuation frequencies of the probe f, and the sample f; with depth resolution
for 3D tomography reconstruction. By developing a simple model and validate the approach
experimentally through the study of the nanofabricated calibration depth samples, consisting of
buried metallic patterns'*, we demonstrate new avenues for quantitative nanoscale subsurface
imaging. Our findings enable the reconstruction of the depth profile of the sample and allow
high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale
subsurface imaging offers great promise in the study of the structures and properties of complex

systems at the nanoscale!*.

2.2.1.1. Theoretical approach
AFM and related techniques mostly provide surface properties, while the observation of sub-

surface nanoscale defects remains a challenge. Detection of nanoscale structures buried under
several hundreds of nanometers, well below the contact radius of the AFM tip, was
demonstrated using acoustic based methods!** !3!- 152, As the operating principle of MSAFM is
founded on the nonlinear mixing of two ultrasonic waves, in this study one wave is launched at
the base of the AFM probe at frequency f;, and a second wave is launched at the sample base at
frequency fi!>* 5% (Figure 43). The mixing product occurring as a result of the nonlinear tip-
sample interaction thus contains subsurface information!'3% 55 156. 157 Fyrthermore, previous

works on biological samples!%!%

underline the interest for quantitative volume
characterization. However, the development of a theoretical model and the design of calibration

samples for volume investigations are quite challenging'®® 132 161 Here we study the impact of
p g q ging y p
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frequency difference Af=[fy-fs] and ultrasonic frequency range (used for actuation) on the
investigation depth zarusing a simple theoretical model and verify the results experimentally.

Although considered in previous work!6% 130

, a thorough determination of the effect of Af on
zaris still lacking. To overcome this, a predictive calculation based on the evaluation of the
attenuation coefficients of the respective ultrasonic waves, is established here to link zar with
the applied frequencies (fs and fp) and the difference frequency Af. We consider two ultrasonic

waves Sp and Ss, launched at the base of the probe and the sample, respectively, and assume

that their respective amplitudes A, and A; are such that:

ApZ

Sp(t) =4, e_% cos(wpt + @p) (D)

S.(t) = Aq e_% cos(wst + @5) (2)

where o, and as are the attenuation coefficients, and wp = 2nf, and ws = 2nf; the frequencies of
the respective waves. v is the velocity of ultrasonic waves in the material (in our case the
velocity is considered the same for both waves). As it was reported by Verbiest et al !> and
Cantrell et al '3 that the subsurface information is contained in the oscillation at the difference
frequency Af, we focus here on the mixing product resulting in the resulting signal detected S.

Under the assumption that A, = A as the tip and the sample interact, S is such that:

S = 2A(z) cos(Awt + Ag,) cos(A0t + A(pp) 3)

|ws‘wp|__

with Aw == = 27T|fS;—fp|=7TAf and A =

ws+wp
2 2
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and the attenuation amplitude of the mixed wave A(z) is:

lap—as|z

A(z) = Age™C v ) 4)

In heterodyne detection, one only monitors the oscillation at frequency Af, so we simplify the

expression:
S'(t) = A(z)cos(Awt + Agpy) (5)

Eq. (5) shows the role of the attenuation amplitude A(z), which depends in turn on the
attenuations coefficients apand asas shown in Eq. (4). Hence, S'(t) will be maximal when A(z)
is maximal, i.e. when |ap - asl reaches its minimum value. We detected the changes in
amplitude and phase of the oscillation at Af and linked the results to propose a relationship
between the frequency difference Af and the investigation depth zar. The results are presented
in Figure 45 for a selected combination of parameters.

It is important to precise that Eq. (3) describes the mixing product occurring as a result of the
tip-sample interaction. In previous studies, the behaviour of nanomechanical frequency
difference mode generation by developing a numerical simulation of the semi-analytical results
obtained for the amplitude of oscillation at the difference frequency resulting from such mixing
was explored!®®. The results point out that:

(1) Such mixing is optimum as the force verifies a volume integrated Lennard-Jones (LJ)
potential;

(2) The oscillation at the difference frequency is expected to be more sensitive to long-range
Van der Waals power form than to the short-range power form!¢® . The results predicted by the
theory were validated experimentally and the study also showed the effect of tip-sample
distance d on the amplitude of the difference mode resulting from such mixing'®*. In addition,
other works including recent theoretical study by Verbiest et al'®! and Cantrell et al'®* described

other aspects of the dynamical aspect of the technique, including replacing the LJ potential by
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a Derjaguin-Muller-Toporov (DMT model) interaction and demonstrating the importance of
the repulsive regime in the system. Here, our attempt is to offer a simplified approach of the
mixing and focus on understanding the "depth perception" of the technique. As it was reported
in previous works that the subsurface information is contained in the oscillations at the

difference frequency, we decided here focus on the mixing product.
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Figure 45: Predicted evolution of the investigation depth zar. (a) Evolution of the attenuation
coefficient in case of fs<f,. The value of tip frequency f, was fixed at 4.500 MHz while the
sample frequency f; progressively decreased from 4.475 to 4.425 MHz. (b) Evolution of the
attenuation coefficient in case f>f,. The sample frequency was fixed at f; = 4.500 MHz while
the tip frequency f, increased from 4.525 MHz to 4.580 MHz. (c) Influence of change of
frequency range on the investigation depth zrin case fs<f,, for a fixed Af=100kHz. (d) Influence

of change of frequency range on the investigation depth zrin case f>f, for a fixed Af = 100kHz
139
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2.2.1.2. Relationship between the frequency difference and the investigation depth
During its propagation in the bulk of the material, the energy of ultrasonic waves is attenuated

via various mechanisms (reflection, refraction, scattering, absorption...). Overall, attenuation
A,(dB) (which is related to|A(z)|?) follows an exponential law that can be expressed in terms
of intensity I, at the entrance of the material and the intensity I, at the depth z: A,(dB) =
10log(ly/1,). Consequently, for a given material and a given ultrasonic frequency, the
attenuation A, (dB) increases linearly with investigation depth zar such that: A,(dB) & az,f X
fz where o is the attenuation coefficient (in dB.cm™), f is the frequency (in Hz), and z, (in
cm). In addition, the attenuation coefficient o expressed for each component a,and a;, depends

on the depth zar as follows:

_f-zAf ‘Ln(10)/10

a=e v (6)

Thus, calculating the minimum resulting from attenuation of the mixed waves is connected to
the absolute value of the difference|ap - a5| of the attenuation coefficients. This coefficient is
calculated for each Af value under various sets of parameters (Figure 45).

For example, if considering f, = 4.500 MHz and f; = 4.450 MHz, i.e. a difference Af =50 kHz
as depicted in Figure 45a (solid curve), by plotting A,(dB) as a function of the investigation
depth zaf, a minimum in attenuation can be observed at zar = 20 nm. This investigation depth
zas, can be linked to the attenuation amplitude A(z) according to the Eq. (1.2). We then repeat
this calculation for systematic combinations of parameters to understand the evolution of the
attenuation and zaras a function of f,, f;, their difference and frequency range.

2.2.1.3. Influence of the order relationship between f, frequency and f; frequency
We now explore how the depth of investigation zar varies as a function of the difference

frequency Af and on whether f; < f;, or f; > f; (Figure 45a and Figure 45b).
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Case of sample frequency lower than probe frequency
The value of probe frequency f, was fixed at 4.500 MHz and the sample frequency f

progressively decreased from 4.475 to 4.425 MHz. The numerical model applied in the case of
decreasing values of f; highlights a shift of the minimum of absorption as a function of the
difference frequency Af used (Figure 45a). Note that for a fixed f}, a decrease in f; corresponds
to an increase of the frequency difference Af, from 25 kHz to 75 kHz respectively. We observed
a shift of the minimum attenuation to lower depths during sample investigation. These results
suggest that (all other parameters considered here being set) for an increase of Af equal to 25
kHz, we observed a decrease of the depth of investigation zar in the sample of about 4-5 nm.
Case of sample frequency higher than probe frequency

The sample frequency was fixed at f; =4.500 MHz while the probe frequency f, increased from
4.525 MHz to 4.580 MHz. As can be seen in Figure 45b, an increase in difference frequency
Af leads to a shift of the minimum attenuation, in the direction of the greater investigation
depths. For an increase of Af = 25 kHz, the depth of investigation in the sample augmented of

4-5 nm.

2.2.1.4. Influence of a change in frequency range
To complete the study of the influence of the frequency sets used in MSAFM on the

investigation depth zar, the impact of the frequency ranges used on zar was explored. By
maintaining Af constant, the behavior of the attenuation coefficient is given from the curves in
Figure 45¢ and Figure 45 as a function of zar for three different frequency ranges : 3 MHz
range, 4 MHz range and 5 MHz range. For the two cases considered fs>f,, or f;<f},, zar appeared
to change with the range of frequency used. For example, when {;<f, (Figure 45¢), a smaller
zar was measured for (fs,f,) in the 5 MHz range than for (fs,f,) in the 3 MHz range. The opposite

behavior was predicted in the case of f>1, (Figure 45d).
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Thus, our results show that the shift of the attenuation curve, and consequently zaf, depends not
only on the frequency difference Af'but also on the range of the frequencies fs and f;,. In addition,

we unveil a change in behavior for the two cases f>f; or f,>1;.

2.2.1.5. Experimental validation of the numerical model
For experimental verification of the model, we used the MSAFM technique described below

(see schematic in Figure 46). Silicon nitride cantilevers (DNP-S, Bruker, k=0.12N/m) were
used for all the experiments. We estimated the contact radius of 3010 nm after MSAFM
analysis on standard diamond calibration sample. The phase response of the oscillation was
monitored and sent to the AFM controller to display the image for each step of Af. After
acquiring a sequence of images at various Af, the corresponding depth information could be

extracted from each image to reconstruct a depth profile of each sample.

Cantilever

Lock-in L phase s
amplifier
in ref re AF ¢
Al buried )
structures Image display 52
at each Af
Function Depth profile reconstruction:
u I
— Af h
generator (f,) <>depthz,,
Function 1{ Z,¢
generator (f ) -

Figure 46: Experimental setup of MSAFM used to validate our model. The structures designed
were probed using a tip and sample actuators of fp and fs, respectively. The signal of the
difference |fp-fs| was monitored heterodyne detection. The phase was captured to successive
Af. The reconstruction of the depth profile was obtained by measuring the width of the features
on each image.

To that end, two sets of calibration samples with buried metallic patterns were fabricated by
nanolithography using electron-beam lithography (e-Line’™, Raith). A layer of 300 nm thick

electro-sensitive polymer poly(methyl methacrylate) (PMMA) was deposited on a silicon
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substrate. The electro-sensitive resin was then insulated point by point by electron beam
exposure. Next, a combination of solvents was used to dissolve the marked areas of the polymer,
therefore revealing the desired patterns. Reactive ion etching (RIE) was performed to etch the
design patterns into the Si substrate. The patterned silicon surface was controlled by AFM to
determine the etch depth in silicon (34+2 nm) and the angle edge a (79+1°) (Figure 47), which

was verified for 10 different samples per set.

a) b)

RIE pattern

Height (nm)
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Relative position (um)

Figure 47: Calibration of the reactive ion etching (RIE) step used for fabrication of the sample.
(a) Topography AFM image after reactive ion etching. (b) Cross section extracted at the
selected blue line on (a).

The buried structures were obtained by Al deposition, polymer lift-off and a final Ni layer
deposition. The calibration samples thus consist of buried aluminum (Al) structures covered by
a nickel (Ni) layer. In the first set of samples (Figure 48a), the Al structures were 11442 nm in
height, covered by 95+2 nm thickness of Ni. The cross section of the pattern, obtained from the
topographical AFM image, reveals a height difference of 80 nm resulting from the mismatch
between the thicknesses of Al deposited and the initial depth etched in the silicon substrate
(Figure 48b). The second set of samples (Figure 48c) was obtained by deposition of a 17+1
nm Al layer and coating with a 95+2 nm Ni layer. This pattern exhibited dips of 17+1 nm on

the surface, resulting from the mismatch between the Al thickness and the depth silicon etching
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(Figure 48d). In addition the width of the surface features in after Ni deposition were measured
by AFM and are indicated on the respective schematics (1.96 um in sample series 1 and 1.83

um in sample series 2).

1.96 um
a SAMPLE b) 100~
) 80 nm $ SERIES 1 ) ] ==z==
—~ 80
Ni £ 1
£ 60
95 nm Em 40 82 nm
\y_ $ 80 nm 2 5]
34 nm_ Si ° . S
A
Relative position (um)
c) 1.83um SAMPLE d)
< > i SERIES 2 _
717 nm Ni g
95 nm E‘
]
T

24 v 3
nm AJ;‘ 17 nm Si

0.0 0.5 1.0 1.5 2.0 25
Relative position (um)

Figure 48: Two model samples developed for quantitative nanoscale subsurface imaging with
MSAFM. (a) Schematic of the design of sample 1. (b) Profile representative of the topography
of sample 1. (c) Schematic of the design of sample 2. (d) Profile representative of the
topography of sample 2.

To determine the relevance of the numerical model in the study of buried samples, we compared
the results presented in Figure 45 with experimental results obtained on the calibrated samples,
using the same parameter as those considered for the numerical study. In all cases we fixed the
driving amplitude A, = A; = 4 Vpp. MSAFM phase images were acquired for a set of
frequencies from 20 kHz to 420 kHz at each step of 10 kHz. The results are described in Figure
49 to Figure 51. Note that the set of frequencies selected to acquire the images presented here

did not coincide with the natural resonances of the cantilever.
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Case of sample frequency higher than probe frequency
Here fs was fixed at 4.300 MHz and Af was increased by decreasing f,. The MSAFM phase

images were obtained at different Af, starting from 20kHz and sequential increase of 10kHz.
Three of the images obtained during this sequence are depicted in Figure 49: (a) at Af =20 kHz,
(b) at Af=70 kHz, and (c) at Af =420 kHz. We observed that each one of the MSAFM images
corresponds to a specific investigation depth zar as the contour of the buried pattern (highlighted
by the dashed blue line on the MSAFM images in Figure 49 appears clearly on the images due
to phase variation induced by the interface. The structures exhibited different dimensions (width
and length) for each Af. To measure the width of the patterns, as indicated by the solid blue line
on the MSAFM images, the cross-section was extracted for each image (right column in Figure

49) to perform the width measurement.
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Figure 49: MSAFM phase images at various Af frequencies (Scan size 10 um acquired at scan
rate of 0.5 Hz). (a) Af = 20 kHz — width extracted at the section © = 2.02 pm. (b) Af =70 kHz
— width extracted at the section M =1.70 um. (c) Af = 420 kHz — width extracted at the section
M = 1.58 um. Phase were measured in a specified range (+/-10V) corresponding to a range in
degrees of (-180/+180 degrees).
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A clear variation in width of the pattern with respect to Af was measured. It may be noted that
in this case, in Figure 49, the width decreases when Af increases. The width profile of the
buried pattern was described in Figure 47 i.e. etching angle of a~79°, and the width of the
pattern decreased from 1.84 pum at the surface to 1.47 um at the bottom of the structure.
According to the dimensions of the patterns in the calibration sample and the behavior we
predicted from the numerical model, the change in width observed in the acoustic phase images
is in good agreement with a tunable investigation depth zar. In order quantify zar in the
experimental data, the frequency values used in the experiment were applied to the numerical
model discussed in previous sections. With this approach, Af step of 10 kHz could be correlated

to a depth variation through a nearly linear relationship as shown in Figure 50a.
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Figure 50: Subsurface composition reconstructions of the depth profile of calibration samples
#1 and #2 based on MSAFM measurements and numerical model for the case in which fs > f,,.
(a) Representation of the dependence of relative depth investigation as a function of Af in the
case fo>1, with fixed fs = 4.300 MHz. (c) Reconstruction of the depth composition of sample #2
(area depicted in inset) profile pattern in case fs>f, based on the compilation of MSAFM data
with (fs,fp) in the 4 MHz range.
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By combining the width of the buried structures extracted from the cross-sections of the
MSAFM phase images and the investigation depth zar for each Af using the numerical model,
we could reconstruct the depth profile characteristic to the samples (Figure 50a and Figure
50b). Note that the depth scale (z) is not respected on the graph. Line 2 in Figure 50b indicates
the Si/Ni interface. The experimental results used to reconstruct the pattern profile agree well
with the tapered angle resulting from the RIE etch. In addition, the etching depth obtained from
the reconstruction using the numerical model is equal to 3142 nm (in the Si layer in Figure
50b), which is in agreement with the AFM profile in Figure 47 (3442 nm). As a confirmation
of the approach, we also verified the angle: the angle measurement between the points 2 and 3
in Figure 50b indicated an angle of 79+2°, instead of 79+£1° measured experimentally on ten
different samples. As a whole, these results are in good agreement with the profile of sample
calibration.

Case of sample frequency lower than probe frequency

The experiment was repeated in the case fs <f, with a fixed f, equal to 4.300MHz. The profile
pattern is obtained in a similar manner as the previous case with the assumption that a Af
increasing corresponds to a diminution of the investigation depth (Figure 49c¢ to Figure 49d).
Under these conditions, there is a good correlation between the profile and the numerical model.
However investigation takes place at a closer vicinity of the surface. The smallest value of Af
corresponds to the deepest investigation depth and we could find the boundary delimitation Si-

Ni (dotted red line in Figure 51) at Af=30kHz.
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Figure 51 : Subsurface composition reconstructions of of calibration samples #1 and #2 based
on MSAFM measurements and numerical model — fs < fp case. (a) Curve calculated to link the
relative depth investigation to Af (b) Reconstruction of the depth composition of sample #1
pattern (area depicted in inset) in case fi<f, based on the compilation of MSAFM data with
fixed f, =4.300 MHz. The depth was extracted from the curve in (a) as indicated by the markers
of Af and relative difference in height. (¢) Reconstruction of the depth composition of sample
#2 profile (area depicted in inset) pattern in case fs<f, based on the compilation of MSAFM data
with (fs,fp) in the 3 MHz range.

The same study is realized on sample #2, together with the numerical modeling. Thus, the two
cases fs > f, (with f; fixed at 4.3 MHz) and f; < f;, (with f;, fixed at 3.6 MHz) were studied and
the results are presented in Figure 50c¢ and Figure 51c, respectively. In Figure 50c¢ the results
show that the values of the profiles (obtained by MSAFM) associated with the investigation
depth calculated with the numerical model provide a value of 30 nm of total silicon etching,
including a 15 nm of aluminum thickness (the border of each zone is identified by the dotted

boundary in Figure 50c¢, in good agreement with AFM measurements presented in Figure 47.

In the last experiment, the frequency was in the 3 MHz range. The results (Figure 51¢) show,
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in accordance with the numerical model results, that the variation in the depth investigation was

modified. In this case, the investigation occurs less deeply in the sample.

In the MSAFM configuration, the difference mode synthesized upon tip-sample interaction is
very sensitive to characteristics of the tip-sample interactions and provides higher spatial
resolution compared to conventional AFM methods. Here we took advantage of all the previous
works mentioned above to extract and quantify the volume information contained in the rich
dynamics of the system. In addition, we have also taken into account other components of the
system to confirm our results.

For instance, the frequency difference used to form the images presented here does not coincide
with any of the eigenmodes (natural resonance frequencies) of the cantilever used, both away
from the sample (free cantilever) and in contact with the sample (see two spectra below

presented in Figure 52 and Figure 53).
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Figure 52: Frequency spectrum of the Bruker DNP-S cantilever (k= 0.12N/m). The peaks of
the blue curve correspond to the natural resonance frequencies of the free cantilever (fo=20kHz,
f1 = 120 kHz). The difference frequencies used in the measurements presented in Figure 3-5 are
indicated in the graph (yellow dots), ranging from 20 kHz to 300 kHz by step of 10 kHz. The
selected frequencies are represented by the green triangular markers (i.e. 20 kHz, 30 kHz, 70
kHz, 200 kHz, 270 kHz, 370 kHz, and 420 kHz).
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Figure 53: “Contact” frequency spectrum of Bruker DNP-S cantilever (k= 0.12N/m). The peaks
of the blue curve correspond to the resonance frequencies of the cantilever in contact with the
sample. The difference frequencies used in the measurements presented are indicated in the
graph (yellow dots), ranging from 20 kHz to 300 kHz by step of 10 kHz. The selected
frequencies are represented by the green triangular markers (i.e. 20 kHz, 30 kHz, 70 kHz, 200
kHz, 270 kHz, 370 kHz, and 420 kHz).

The force applied by the probe on the sample was carefully controlled. With a tip-sample
interaction greater than 100pN, topography was found to influence the signal detected by the
cantilever, likely due to increasing nonlinearity in the interaction.

Finally, the results reveal the presence of the defects in the sample. On the AFM images (Figure
54), it is possible to note that these contours exhibit (Figure 54a) a lower contrast than the
images obtained in the etch area (Figure 54b). This phenomenon may be due to the wave
propagation in nickel in presence of subsurface stacking fault, showing depression on the
topographical AFM image ' (Figure 48c). We observe that on the two samples, for the same
range of frequency and when fs > f;,, the investigation depth is equivalent (39 nm for sample #1
and 38 nm for sample #2). In both cases, the MSAFM phase images revealed the same etching
area in silicon with Al depositing. On the other hand, when f; < f;,, we used a different range of

frequency (fs, fp) with the same Af. The results show that the relative investigation depth is
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equivalent in both cases and equal to 28 nm for Af equal to 350 kHz, but not for the same area
in the sample. In accordance with the numerical prediction, when the couple (fs, fp) is in a lower
range of frequency, the MSAFM mode used probes a smaller depth of the sample, which

explains the transition zone air-nickel on the graph of sample #2 (Figure 51c¢).
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Figure 54: MSAFM phase images for sample 2 with f>f;, (f; fixed at 4.3 MHz). (a) Phase image
at Af =70 kHz: the investigation depth is in the nickel layer. (b) Phase image at Af =200 kHz:
the investigation depth is in the etched area of silicon. Phases were measured in a specified
range (+/-10V) corresponding to a range in degrees of (-180/+180 degrees).

2.2.1.6. Conclusion
In summary, through the development of a numerical model, we unveiled the influence of

various actuation parameters, such as the range of frequencies used (fs, f,) and the variations in
Af, on the investigation depth of the sample during MSAFM imaging. This numerical study has
been validated by experiments on metallic calibration samples with buried patterns. Therefore,
the relationships of the frequencies range and Af on the investigation depth zar advances the
capabilities for quantitative subsurface studies. Based on this discovery, the different
dimensions of the buried structures were identified to reconstruct the depth profile of the sample
using width variations and theoretical predictions. Importantly, the phase images were not
related to the sample topography. Overall, we demonstrated that MSAFM has the potential to
become a very powerful tool for non-destructive control and 3D reconstruction of buried objects

with high (nanoscale) spatial resolution (lateral resolution, depth resolution).
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2.1.2. Mode-Synthesizing Atomic Force Microscopy for volume
characterization of mixed metal nanoparticles
To better understand the sensitivity of MSAFM, we characterized a structure with subsurface

variations in the nanometer range. The nanoparticle was composed of two layers of different
metal materials. We showed that the reconstruction of the depth profile is possible thanks to a
simple model to connect the actuation waves and the corresponding frequency difference to the
depth of investigation when probing the sample. We also demonstrate that it is possible to

discriminate metallic materials of different properties within a nanoparticle!®®.

2.2.2.1. Sample fabrication
The sample fabrication process is described in Figure 55a to Figure 55f. First, a silicon wafer

was recovered of Polymethacrylate methyl (PMMA) resin by spin coating. The nanostructures
were then patterned by e-beam lithography on the PMMA film by Scanning Electronic
Microscopy (SEM — e-LineP™, Raith) (Figure 55a to Figure 55b). The resin exposed to e-
beam was lifted off and 43 nm of Nickel were deposited by sputtering (Figure 55¢ to Figure
55d). Next, the silicon wafer was etched by Reactive lon Etching (RIE —model GIR 300
Alcatel) to create a base supporting the nickel dots (Figure 55e). Finally, a gold film (about 55
nm thick) was deposited by thermal evaporation onto the entire structure (Figure 55f). SEM
images were realized before and after the gold evaporation (Figure 55f and Figure 55h) to

have a full view of the steps of fabrication.
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200KV X33000 100nm WD 130mm

Figure 55: Schematic of the sample fabrication (a) Deposition of a PMMA resin. (b) E. beam
exposure by SEM and lift-off. (c) Evaporation of about 43 nm of Nickel. (d) Development of
the PMMA resin. (e) Etching of the Silicon substrate by Reactive lon Etching (RIE). (f) Final
design after evaporation of a 55 nm gold layer. (g), (h) SEM images of the sample g) SEM

image of the sample before the deposition of the gold layer (after (e) step). (h) SEM image of
the final sample structures (after (f)).
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2.2.2.2. Study of nanoparticles with a special metal core
We first characterized the arrays of nanoparticles composed of nickel and gold using AFM and

SEM standard procedures for surface imaging. The SEM images in Figure 55g show the Ni
sphere sitting on top of the Si post prior to Au deposition. After Au deposition, the sample
consists of an array of Au nanoparticles evenly spaced, as shown in Figure 55h. The
topography AFM image (Figure 56a) reveals only the size of the global particle (without any
distinction between the core and the envelope). A structure height of 150 nm and a diameter of
about 580 nm were measured across the sample (Figure 56), in good agreement with the initial
design (Figure 55).

MSAFM phase images were acquired (Figure 56b to Figure 56e) and unveil the presence of
the core inside the nanoparticles. Standard protocol was followed for data acquisition, as
detailed in the previous section (2.2). After varying the frequency we could observe a variation
of the core diameter (Figure 56b to Figure 56e). According to the numerical calculation
presented above, an increase in Af corresponds to a decrease in the volume investigated, 1.e. the
plane of the image acquired is closer to the surface. Thus, by adjusting the frequency we could
observe great variations in the diameter of the core (Figure 57). For a frequency difference Af
of 140 kHz a core diameter of 233 nm was measured. While at Af =100 kHz an increase of the
core diameter to 516 nm could clearly be observed. Finally, the diameter in the image decrease
to 290 nm at Af =90 kHz. The levels investigated at each Af are labeled in the inset of Figure
56. As can be seen, the change in dimension observed is in good agreement with the sample
design and follows the evolution predicted by the numerical model.

The results are all the more significant that both layers of the structures are made of metals,
thus could not be characterized by elasticity measurements or any other non-destructive
techniques. In force investigation, the dual constitution between nickel and gold could not be

distinguished in the elasticity modulus map due to the limitation in depth sensitivity. The results
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shine light on the special capability of MSAFM to gain access to non-destructive

characterization of such structures that cannot be studied by conventional ways.

PZT

¥ . Af=50KkHz

Figure 56 : MSAFM study of sample at different Af frequencies. (a) Topography image of two
Ni-Au nanoparticles and corresponding MSAFM phase images at Af=140kHz (b), Af=100kHz
(c), Af=90kHz (d), and Af=50kHz (e).

Af (kHz) Core diameter (nm) Level on Figure 56
140 233 2
100 516 3
90 290 4
50 258 5

Figure 57: Evolution of the core diameter with the Af frequency.
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2.2.2.3. Conclusion
Through the development of the numerical model, we unveiled the influence of the variation in

Af on the investigation depth during MSAFM characterization. The inner features of the new
3D calibration sample made of a metal nickel core encapsulated in a gold layer could be
successfully characterized by MSAFM at different frequencies. We showed the presence of the
core inside the nanoparticle with its diameter variations according to the Af variations. This
numerical model offers special interest for the 3D characterization of complex systems,
particularly in biological field as in metallic nanoparticles in cells for possible tailored
nanotechnology-driven therapy. However, this technique does not provide any chemical
information. There is no phase or amplitude contrast allowing to discriminate different kind of
metals. This is explained by the sensitivity of MSAFM to differences of density (see Chapter
3) and no to differences in electric properties of the materials (such as conductivity).

Consequently, for studies in which more advanced characterization of metallic components was
required we had to employ electromagnetic (EM) waves propagations through the sample, as
unlike acoustic waves, EM waves are sensitive to changes in the conductivity of the material.
In the second part or this chapter we will focus on the second technique developed during this

thesis: Scanning Microwave Microscopy (SMM).
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2.2. Scanning Microwave Microscopy (SMM)

Scanning microwave microscope is a near-field technique possessing an extended microwave
frequency range (usually limited to a IGHz frequency). The first experimental observation of
sub-wavelength defects in the microwave domain was presented in 1972 by E.A. Ash and G.
Nicholls '%7. Using a hemispheric cavity resonating at a 3 cm wavelength and a flat reflector
perforated with a sub-wavelength hole (1.5 mm diameter) variations in the cavity resonance
frequency, and by moving a probe at a distance of 500 um above metallic lines (width 2 mm)

and monitoring the, spatial resolution of A/60 could be achieved.

2.2.1. Far and near-fields microwave techniques for the detection of defects
Due to the limitation of their spatial resolution (around A/2), far field characterization

techniques are only used for the detection of millimeter defects. The probes used in
conventional microwave techniques are directive antenna acting as emitter and receptor for
microwaves. The sample under test is located in the antenna far field zone, i.e. at a distance d

from the antenna defined by:

2.D?

d>/1

(7)

D is the antenna biggest dimension, A the illuminating wavelength. So, if a defect bigger than
M2 is located in the illuminating beam of the antenna, one can observe a variation of the
reflection coefficient (S11) of the antenna.

By using the Abbe limit, we can calculate the spatial resolution of the defects detected with
such techniques. With A in air comprised between 1 mm (for =300 GHz) and 1m (for = 300
MHz), the limit of spatial resolution of far-field microwave techniques varies from 0.5 mm (for
f =300 GHz) to 0.5 m (for f = 300 MHz). Thus, the methods based on far-field detection of

defects are not adapted for the detection of micro (and nano)-defects.
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On the other hand, near field microwave techniques provide a spatial resolution superior to that
of conventional far-field methods, making them the approach of choice to study microscale
defects. The spatial resolution of near-field methods depends principally on the probe
dimensions as well as the probe/sample distance. A number of near field measurements
capitalized on this particular regime to observe surface and subsurface features in a large range
of materials. These techniques were used in a very large range of frequencies from a few GHz
to 100 GHz with spatial resolution up to A/750 000 reported'®s. Two categories of near-field
characterization methods are presented in the literature:

a) The non-resonant techniques: amplitude and phase of the reflection coefficient (S11) or

transmission coefficient (S21) are measured.

b) The resonant techniques: resonator frequency and quality factor are measured.

a) ATf ? b) |R| c) d) e)

Transmission
Line

— —V -

— Sample Sample Sample

Sample

Sample

L]

Figure 58: Representation of various near field microwave characterization techniques. (a)
Microwave cavity resonator. (b) Non-resonant microscopy techniques. (d) Microwave
measurement with AFM. (e) Scanning superconducting quantum interference device (SQUID)
method.

An illustration of few configuration of microwave near-field characterization is provided in
Figure 58. In Figure 58a, the scheme represents the traditional microwave cavity resonator
with a small hole in one of its wall'®. The sample is localized close to the wall and a small

region of the sample, defined by the diameter of hole, perturbs the resonant frequency causing
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a frequency shift Af and affects the quality factor (Q) of the resonator. This method uses an
evanescent mode to couple the resonant cavity to a local part of the sample. The most important
development on this technique was developed by Ash and Nichols'”’, they were able to
sensitively recover the signal from the resonator to reconstruct an image of the sample scanned
under the hole!”°.

Figure S58b represents a non-resonant microscopy technique which is based on the
measurement of complex resistivity R or transmission coefficient T from which properties of
the sample can be deduced. The most common configuration is the measurement of reflectivity
from a coaxial transmission line terminated by the sample!”!. Transmission measurements were
also reported'’2. This technique is suitable to map metallic conductivity, sheet resistance and
dielectric constant!’",

In the configuration presented in Figure 58c, the sample is located near the open end of the
transmission line resonator and the changes in resonant frequency and quality factor are
monitored while scanning sample. This configuration uses a field enhancing feature at the end
of the transmission line, rather than an evanescent aperture in the resonator. The first application
of this setup was to measure moisture content in paper'’.

The system configuration presented in Figure 58d combines the nanometer resolution of an
AFM with microwave microscopy. Three different variations of this configuration were
reported in the literature!’® 7% 175 The first one is used to perform localized electron-spin
resonance measurements'”. The second one consists in generating a magnetic field gradient on
the sample (e.g. with a small magnetic particle on the tip) while immersing it in a radio-
frequency (RF) magnetic field. The sample locally satisfies the magnetic resonance condition
and exerts a force on the cantilever!’* 7>, The third scanning probe method uses a sharp

metallized tip to perform “apertureless” near-field microscopy!’®. The sharp tip, in close
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proximity to a metallic sample, will locally enhance radiation introduced by a focused far-field
beam.

Finally, Figure 58e represents a method called scanning superconducting quantum interference
device (SQUID) method. SQUID generates circulating radio frequency currents when a DC
bias is placed across the loop. The frequency of these currents is directly proportional to the
applied bias voltage. The currents in turn generate RF magnetic fields, which then impinge on
the sample. The sample generates its own response currents which modify the inductance of the
SQUID loop. By monitoring the magnetic-field feedback signal required to keep the SQUID in
177

a constant flux state, one can map the electromagnetic response of the sample

In that work, we focused of the AFM coupled with microwave frequencies.

2.2.2. Micro-wave microscope
Properties of the sample including complex permittivity, permeability and conductivity affect

the detection parameters such as the reflection/transmission coefficients, the quality factor, and
the resonant frequency measured. A good theoretical modeling of the system can support the
establishment of a relationship between the quantities detected and the sample properties. Here,
the near-field tip is considered as an antenna (two terminal, linear, passive system) which is

connected to the detection apparatus'’®,
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2.2.2.1. Microscope model

v

1

IErl

Device Under

U Test (DUT)

Figure 59: Electrical circuit associated to the microwave microscope.

We consider a source of characteristic impedance Zo alimenting the device under-test (DUT)
as depicted in Figure 59.

176

The DUT is composed of two elements’’®, namely an incident wave Ei; and a reflected wave

E:1 such as:
Vi =Eii+ En, and 11 = (Ei1 - En)/Zo ()

The DUT is connected to the source through a certain length of transmission line of impedance
Zy. The voltage along the line is called V1 and the current is called I;.The voltage V1 and current

L.

Erq

7

E.
Furthermore, we note that: a; = — and b; =

N
Where a; and by are the square of the incident and reflected powers.

We also introduce Si; as: Si1 = bi/a;

The impedance of the DUT is noted Zr and can be expressed as:

With Zr = [(1+S11) Zo]/ (1-S11) )
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2.2.2.2. Definition of the reflection coefficient I
When the signal travelling in a coaxial cable encounters an impedance mismatch, a portion of

the signal will be reflected back to the source. This reflected signal has an amplitude and a

phase and is measured as the reflection coefficient:
I'=[.¢" = (ZL-Zo) / (ZL+Z0) (in our case Zo= 50 Q) (10)

I" represents the charge adaptation quality to the source impedance. It is a complex value with
an amplitude p and an angle 6. Z is the impedance mismatch of Zo the impedance of the line.
A good adaptation is realized when I tends to 0.

By using the normalized impedance Z = Z1./ Zo, we have:
I'=(Z-1)/(Z+)andZ=(1+1)/(1-T) (11)

Thus, Si1 can also be expressed as Si1 = (Z-1)/ (Z+1)=T

2.2.2.3. Return loss
The return loss is defined as the loss of power in the signal returned/reflected by a discontinuity

in the transmission line and it usually expressed as a ratio in decibels (dB)
RL (dB) = 10 1og§ (12)

where RL (dB) is the return loss, P; is the incident power and P, the reflected power.
The return loss is the negative of the magnitude of the reflection coefficient in dB and is given

by the following relation:
RL(dB) = —20log|I| (13)

Thus, a large positive return loss indicated the reflected power is small relative to the incident

power which indicated a good impedance adaptation.
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2.2.2.4. Penetration depth

The penetration depth §, or so-called skin depth, is a measure of the depth of microwave
penetration in a material. The penetration depth of the EM field is defined as the distance from
the surface of the material at which the magnitude of the field strength decreases to 1/e (= 0.368)

of its value at the surface!”. The penetration depth of the electric field can be expressed by the

. 1
equation: § = -
where a is the attenuation factor and can be represented as:

= w (%)2 [(1+ (tana)?)V/2 —1]"? (14)

With po is the permeability of the vacuum (4n107"H/m), p. the permeability relating to the
conductor, o the electric conductivity (in S.m™), o the radial frequency - ®=2nf- in rad.s' and
tanA the loss tangent factor which represents the efficiency of the material to convert absorbed

energy into heat.

Hence, the penetration depth is inversely proportional to the frequency of the electromagnetic

field.

In the particular case of the penetration depth of the electromagnetic field for a conducting

material — which is high loss medium - the previous equation can be expressed as:

1
0=2= JrHolrof (15)

with § the skin depth (in m), o the electrical conductivity (in S.m™) and f the frequency (in Hz).

Thus, the potential of the microwave microscope lies its ability to differentiate the microwave

images obtained at different frequencies for volume exploration. The microwave images will
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provide information about the differences in phase and amplitude of the reflected waves at
various frequencies, which is directly related to the nature of the material. The frequency of the
EM wave will influence the skin depth, which we optimized to detect defects in the volume of

the samples (Figure 60).

5 I / High Low
1 frequency 5 frequency
@ 2

Figure 60: Illustration of the skin effect. The radiation frequency applied for the detection of
defects buried inside the metallic sample should be tuned according to the depth of the defect.
Depending on the electrical and magnetic properties of the metal, a frequency that is too high
does not give access to a skin depth (61) large enough for detection of the defect. The frequency
has to be adapted for each material and defect.

The electric field of the reflected wave through a good conducting material can be written as'®’:

E, = E. eli(@-5)-3) (16)

with E; the reflected electric field, Ero the attenuated reflected electric field, » the angular
frequency (o = 2xf), t the instant considered, z the component of the direction of propagation

and § the skin depth!®°,

The phase ¢ of the wave defined by Eq. 16 is defined as:

Q=3 (17)

Thus, in a fixed location z and for all other fixed parameters, the phase will be modified if the

skin depth varies. Based on Eq. 15, the skin effect is dependent, at constant frequency, on the
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permeability (6 decreases with increasing permeability) and on the conductivity (0 increases

with decreasing conductivity) of metallic materials.

2.2.3. Scanning Microwave Microscope (by Agilent)
In 2008 Agilent Technologies developed a new scanning probe microscopy (SPM) technique

that combines the electromagnetic measurement capabilities of a microwave vector network
analyzer (VNA N5230A, Agilent Technologies) and an AFM (AFM 5600LS, Agilent
Technologies) to offer nanometer spatial resolution. This new technique, called Scanning
Microwave Microscopy (SMM), is shown in Figure 61. This nondestructive technique allows

the characterization of defects located in the volume of a metal sample.

Figure 61: Picture of the microscope used for SMM measurements. SMM, Agilent
Technologies.

The principle of operation of SMM is the following: a microwave signal is sent directly from
the network analyzer and transmitted through a resonant circuit to a conductive AFM probe that
is in contact with the sample under investigation. Figure 62 illustrates the signal obtained

outside of the resonant circuit and cantilever, which exhibits frequency peaks.
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Figure 62: Frequency spectrum obtained at the output of the resonant circuit in the SMM setup.

From this frequency spectrum, one of the peaks is selected to decide the frequency at which the
analyses will be conducted.

The conductive tip attached to a solid metal cantilever acts as both as a nanometer-scale AFM
probe and as a GHz emitter-receiver antenna. The transmitter—receiver system is limited to the
accessible frequency range given by the cantilever/resonator system and by the interactions
between the tip and the surface sample (see the example presented in Figure 63), which makes
it possible to capture the reflected microwave signal locally, from the contact point. By directly
measuring the complex reflection coefficient from the network analyzer, the impedance
representing the probe—sample interaction amplitude and the phase at each point probed can

then be recorded, simultaneously with the surface topography.
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Figure 63 : Influence of the tip-sample interaction on the SMM amplitude signal. (a)
Comparison between TiO; samples. (b) Difference of the amplitude signal obtained on the
anatase and rutile TiO2 sample obtained by subtracting the two signals in (a).

The AFM tip scans the surface sample and in every measurement point of the scan, the Sii
scattering parameter is acquired by the VNA. The high-frequency signal travels from the VNA
to the conductive probe, which is in contact with the sample to characterize. Depending on the
electrical properties of the sample (ie. the impedance of the sample), the sample partly absorbs
or reflects the high-frequency wave. The reflected wave travels through the transmission line

back to the VNA where it is compared with a copy of the incident wave.

By analogy with an optical technique such as Scanning Near-Field Optical Microscopy
(SNOM), and like many SPM techniques, the transmitter-receiver system depends on the nature
of the interaction between the tip and the surface sample. SMM images are acquired in real

space, as in photon scanning tunneling microscopy.
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Figure 65: SMM setup: (left) microscope head and (right) data acquisition scheme.

The cantilevers used for microwave measurements are SCM-PIT probes from Bruker. Built on
the model of FESP probe (about 225 um length), SCM-PIT have a Platinium-Iridium coating
on the front side of the cantilever to provide a metallic electrical path from the cantilever die to
the apex of the tip. The coating on the back side of the cantilever compensates for the stress
created by the front side coating and also enhances laser reflectivity by a factor of up to 2.5
times (Figure 66). The resonance frequency of the SCM-PIT cantilever is about 75 kHz for a

spring constant in the range 1 to 5 N/m.
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SCM-PIT Cantilever SCM-PIT Tip

Figure 66: SEM image of SCM-PIT cantilever (Bruker) used in our measurements: (left)
cantilever and (right) tip 8.

2.2.4. Modelisation of the microwave probe
In order to illustrate the confinement of the electromagnetic field (in this case the

electromagnetic is defined as transverse electric) and its exaltation by the SMM tip, we
performed simulations using the Comsol Multiphysics software.

The geometry of the model is presented in Figure 67. It consists of a coaxial cable of a given
length (L coax) composed of a perfect conductor of radius noted r coax surrounded by a
dielectric materials of radius noted R_coax. At the end of the cable, a typical conductive - here
perfect conductor - STM probe (h, in length and d in diameter) is modeled. A conical tip (hgp
in height and ryp in inferior diameter) is added at the extremity of the STM probe. The list of

the different parameters used by the model is provided in Figure 68.
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Figure 67: Geometry of the coaxial cable used in the model. Axes values are given in mm. Inner

and outer radii as well as length of the cable were fixed for the calculations.

Model 1 Model 2
Coaxial cable
R_coax 2 [mm] 2 [mm]
r_coax 1 [mm] 1 [mm]
L_coax 20 [mm] 20 [mm]
Cantilever
d 0.1 [mm] 0.03 [mm]
hp From 1 to 20 [mm)] From 0.1 to 0.3 [mm)]
Tip
rtip 0.1 [mm] 0.03 [mm]
htip 0.015 [mm] 0.015 [mm]

Figure 68: List of parameters used for the Comsol model.
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We analyzed the distribution of the electric field at the end of the probe under various
conditions. Calculations of the maximum of the electric field |E| are realized without and with
tip for different probe length h, and various frequencies.

First, we analyzed the system composed of a single coaxial cable without any cantilever and
tip. Figure 69 shows the electric field distribution and reveals an important diffusion at the exit
of the cable. The same calculations were then realized by adding a micrometer probe and a tip
to the system. Figure 70 represents the distribution of the electric field in presence of the probe,
at an 8 GHz frequency. In Figure 70 the electric field is concentrated at the apex of the probe
with an intensity of about 20000 V/m. Moreover, the diffusion phenomena observed in the case

of a single coaxial cable observed in Figure 69 disappeared.

onductor |di

2.10%

1.10°

|E| [V/m]

Figure 69: Representation of the absolute value of the electric field |E| at the coaxial cable
output. Highest intensity (in yellow) were found at the outer perimeter of the cable output.
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Figure 70: Representation of the absolute value of the electric field |E| variations in the system.
The system modeled is composed of the coaxial cable and the probe (and tip) for a 8§ GHz
frequency. Field concentration was observed at the probe location.

In order to evaluate this observation, we plotted the evolution of the calculated electric field as
a function of different parameters. Figure 71 represents the distribution of the electric field at
the apex of the coaxial cable as a function of the frequency injected from 4 to 12 GHz. One can
clearly see the high impact of the tip of the probe on the intensity of the electric field (blue
curve in Figure 71). In the configuration of the coaxial cable without cantilever, the |E| value
remains less to 1000 V/m, but increased by a factor of 8 with the addition of a 300 pm length
probe (red curve in Figure 71). Thus, we could confirm that the probe acts like an antenna and
provides great exaltations of the electric field. This larger field was doubled with the addition
of a tip. This model constitutes a strong confirmation of the high sensitivity of SMM microscope
in the vicinity of the tip of the cantilever for near-field characterization. The cantilever tip
enhances the electric field at the extremity of the tip. Consequently, contrary to the simple
coaxial cable measurement, SMM will be of interest for local measurements with enhanced

sensitivity.
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Configuration [E| (V/m)

Coaxial cable 1385
Coaxial cable and probe (300 um) 8929
Coaxial cable, probe (300 m) and tip 17269

Figure 71: Average value of the absolute value of the electric field |E| for the 4 GHz, 6 GHz, 8
GHz and 12 GHz frequencies at the out of the coaxial cable in the presence or not of probe and

tip.

Figure 72 and Figure 73 represent the absolute value of electric field along the vertical and
horizontal sections for a fixed frequency of 8 GHz at the out of the coaxial cable in presence or
not of probe and tip . In the case of the coaxial-probe-tip system, the tip is modeled in contact
with a perfect conductive (metallic) sample. Figure 72 illustrates the skin effect by showing
the brutal decrease of the electric field in a conductive material as the distance from the surface
sample increases. As already illustrated in Figure 71, the enhancement of the field due to the
presence of the probe and tip can be observed with a signal at the surface of the material nearly

ten times higher than that of the measurement in absence of the probe.

101



Coaxial cable
s = With probe (300 um)
20000 — With probe (300 um) and tip

0 y T y T : T y y
0.0 0.5 1.0 1.5 2.0 25

Distance (mm)

Figure 72: Absolute value of the electric field at the out of the coaxial cable in presence or not
of probe and tip.
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Figure 73: Electric field confinement provided by the presence of the probe and the tip.
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Figure 73 represents the variation of the electric field distribution at varying distance from the
coaxial-probe-tip system. The confinement of the electric field in the vicinity of the probe and
the tip is clear. This phenomenon explains the high sensitivity detection of the SMM that cannot
be achieved with a simple coaxial cable.

The model of the device highlight the great advantage of the local probe which consequently
exalt the electric field and allow a great sensitivity detection. Thus, coupling the microwave
spectroscopy with an AFM cantilever allows high resolution characterization with a sensitivity

that cannot be achieved with a simple coaxial cable system.

2.2.5. Evidence of in-depth investigation by SMM

In order to evaluate the influence of microwave frequency on the investigation depth a
calibrated sample was manufactured by Electron Beam Lithography (EBL) by using a Scanning
Electron Microscope (SEM) coupled to a device of lithography management RAITH!4% 181,
The sample consists of L-shaped patterns of 30 nm depth were filled with aluminum (Al) film
of 20 nm thickness. Then, a nickel (Ni) layer of 95 nm thickness was evaporated in order to
cover these structures. Thus, we obtained buried structures of Al under a calibrated layer of Ni
(Figure 74a). AFM observations at the final step show the surface of patterns (with height
variations of 10 nm on the surface). On the topography (Figure 74a), the patterns appears at a
lower level than on the non-treated surface.

Nevertheless, to show that the surface is only composed of nickel, an image of friction (scan at
90° compared to length of the cantilever) was carried out on this sample. Friction maps
confirmed that the substrate and the patterns are of the same composition since the color

contrast is identical (Figure 74b).
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Figure 74: Calibration sample: buried structures of aluminum under a calibrated nickel layer.
(a) AFM image. Scan size: 10 x 10 um. (b) AFM friction image. Scan size: 10 x 10 um.

The sample required using a large frequency to obtain probe appropriate thickness in the
volume. For that, we estimated the depths likely to be probed with the frequencies used. Using
the magnetic permeability and the electric conductivity of nickel (material constituting the
superior layer of the sample) in the “skin depth” equation (Eq. 15), the values of depths

corresponding to the various frequencies were calculated (Figure 75).
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Figure 75: SMM images (phase) of buried Al under a calibrated Ni layer at different
frequencies. Scan size: 10 x 10 um. Phase scale: 0.1 deg. (a) SMM phase image at 4.485 GHz.
(b) SMM phase image at 3.852 GHz. (c) SMM phase image at 2.103 GHz. (d) SMM phase
image at 1.831 GHz. The red dotted line in the inset in each section indicates the position of the
image acquired in the volume of the sample.
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The SMM phase images obtained at various frequencies are presented in Figure 75. For
frequency f =4.485 GHz (corresponding to a depth, 0 =80 nm), the SMM phase image did not
show any features as the EM wave is probing the homogeneous Nickel layer. For frequency f
= 3.852 GHz (corresponding to a depth, 6 =90 nm), the plane probed is located at the Si/Ni
interface. The SMM phase image shows a light contrast of color between the Ni layer and the
proximity of the Si patterns, thus revealing the presence of different materials. The outline of
the patterns also appeared with a contrast of color much more distinguishable. For frequency f
=1.878 GHz (0= 120 nm) the system probe a plane located inside the Al patterns. The SMM
phase image clearly shows a difference in nature between the Al patterns and the Si substrate.
Si being a semiconductor, it was expected to show a weaker electric conductivity than that of
metals. These differences in properties are found on the SMM image in the color contrast. For
frequency f=1.831 GHz, corresponding to an investigation depth of 125 nm, the scanned plane
reached the level below Al patterns, inside the Si substrate. On the SMM phase image, no
pattern could be observed. This sample made it possible to correlate the depth investigated at
each frequency used and indicate that it will be possible to carry out an in-depth cartography in

a representative thickness of the volume of the sample.

2.2.6. Conclusion
In conclusion, the capacity of SMM to detect defects located in the volume of a metal sample

was established. The theory and modeling developed make it possible to connect the
investigation depth associated to the frequency used. Moreover, the measurements at successive
frequencies give access to information located at different depths below the sample surface with

potential for tomographic study with an in depth resolution 80 nm and beyond.

105



2.3. Conclusion

In this chapter, we highlighted strong evidence in favor of volume investigation at the nanoscale
by means of ultrasound-based and microwave-based scanning probe techniques. Both
approaches were shown to be capable of providing lateral and volume resolution of a few
nanometers. At the next stage, the practical implementation of these microscopes shall be
achieved, which then can be applied to the analysis of samples that are of specific interest for

biology and material sciences. This will be the purpose of the next chapters.
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Chapter 3 — Advances in the understanding of
tomography microscopy through the study of
dielectric and biological samples.
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This Chapter is focused on the MSAFM capabilities for the characterization of dielectric and
biological samples. Through the study of polymer, we highlighted the sensitivity of the
technique to low density changes in the matter. Then, we applied the technique to the
characterization of bacteria in order to visualize the action of an alcoholic stress on the bacterial
membrane. Finally, the last part of the chapter is focused on the coupling of AFM-IR and

MSAFM for the detection of lipid vesicles inside bacteria.
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3.1. Study of the sensitivity of MSAFM — Analysis of a model
sample

Outstanding challenges in nanoscale characterization call for non-invasive, yet sensitive sub-
surface characterization of low-density materials such as polymers. In this work, we present
new evidence that Mode Synthesizing Atomic Force Microscopy (MSAFM) can be tuned to
detect minute changes in low-density materials such as the ones engendered in an electro-
sensitive polymer during electron beam lithography (EBL), surpassing all common nanoscale
mechanical techniques.

Moreover, we propose a 3D reconstruction of the exposed polymer regions using successive
high-resolution frames acquired at incremental depths inside the sample. In addition, the results
clearly show the influence of increasing dwell time on the depth profile of the nano-sized
exposed regions. Hence the simple approach described here can be considered an
unprecedented capability for sensitive nanoscale tomography of soft materials with promising
applications in material sciences, and biology'*®.

In this section, we designed and studied calibration samples with series of low-density
variations patterns created in the volume of an electro sensitive polymer poly-(methy
methacrylate) (PMMA) layer using various doses and dwell time parameters of controlled
electron beam lithography (EBL). PMMA is routinely used in EBL as a sacrificial layer for
positive resist in direct write processes. During e-beam exposure, the primary electrons entering
the resist layer loose energy by means of inelastic scattering or collisions with other electrons
and produce secondary electrons. The resulting electron cascade can engender a non-uniform
spread of the energy deposition. The aim of this study is to track how electron-matter
interactions modify the conformation of the material in the depth of the PMMA layer (i.e. below

the surface). First, we show that, compared to AFM Peak Force Quantitative NanoMechanical
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property mapping (QNM), Lateral Force Microscopy (LFM) and confocal Raman
spectroscopy, MSAFM exhibits a combination of higher sensitivity and improved depth
resolution. Second, we studied the influence of parameters such as driving frequency and scan
rate on image contrast. Then, we evaluated their impact on resolution and on sensitivity of the
subsurface components of the MSAFM measurements. The study highlights the potential of
MSAFM for sensitive differentiation of materials presenting similar elastic properties, which is

of prime interest in material sciences and biology!®> !1°,

3.1.1. Methods

3.1.1.1. Material
Mode Synthesizing AFM was set up as depicted in Figure 76'4* '®°. Previous reports show that

one could obtain images of buried defects with high resolution, although comprehensive
calibration of the method for volumetric characterization of materials is still lacking. In
addition, the interpretation of the results obtained with the multi-frequency apparatus proves to

be quite challenging, in particular for dielectric samples with low-density differences!83 156 184,

For all experiments presented in this chapter, silicon nitride cantilevers (DNP-S, Bruker,
k=0.12N/m), with an estimated contact radius of 10+30 nm®!. The profiles of the nanoholes

were determined using the cross section data analysis tool (Nanoscope Analysis).

Amplitude P
» Pha
MSAFM Images

Figure 76: MSAFM experimental setup used in the characterization of dielectric materials,
including multi-frequency actuation and heterodyne detection.
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The cantilever and that sample are mechanically actuated by piezo actuators at their bases
connected to respective waveform generators. The frequency mixer is used to select the

reference frequency of the lock-in amplifier for amplitude and phase.

3.1.1.2. Peak Force QNM and Lateral Force Microscopy
Peak Force QNM and Lateral Force Microscopy studies were performed on a Multimode AFM

(Bruker), with Nanoscope IV controller. Lateral force microscopy (LFM) consists in measuring
the torsional bending of the AFM cantilever engaged in contact mode. Torsional bending of the
cantilever is related to the friction force acting on tip. This mode is sensitive to mechanical and
chemical properties of the material near the surface, underneath the tip of the cantilever. Peak
Force Quantitative Nanomechanical Property Mapping (QNM), on the other hand, is based on
force curve mode, which records four force curves at every point (pixel) of the image. This
mode allows extracting the Young modulus of the sample, with simultaneous topography

reconstruction.

Derjagin, Muller, Toropov (DMT) is a standard model used to fit tip-sample force curves in
Peak Force QNM®’. The retract part of the force curve, when the cantilever-sample distance
increases, is fitted using the DMT model, and the fit corresponds to the reduced modulus E*

calculated by:
4 L.
Ftip — Faan = 3 E*JR (d — d0)3 (18)

Where Ftip is the force with which the tip is pressed on the surface, F,, 45 the adhesive force

between the AFM tip and the sample, d — d, the sample deformation depth with correspond to
the value indented by the tip in the sample (measured on the force curves) and R is the tip

radius.
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3.1.1.3. Raman spectroscopy mapping
Raman mappings of the calibration samples were performed at the University of Central Florida

(UCF) in Dr. Laurene Tetard’s group. The results were obtained on a confocal Raman system
(WITec alpha300 RA) under ambient conditions with an excitation wavelength of 532 nm. The
spectra were collected with a 100x objective and acquisition time of 0.1s with about 10 points
per micrometer. The depth profiles were collected by performing XZ scans along the center

axis (diameter) of the exposed regions.

3.1.1.4. Sample preparation
Sets of calibration samples were produced by depositing a 300 nm-thick layer of

electrosensitive polymer (poly-(methy methacrylate) (PMMA)) on silicon (Figure 77).

e- e- @ Insulated
PMMA

v 'R ‘:"A-‘)
PMMA PMMA
Substrate Substrate

Figure 77: Nanofabrication process of the PMMA/Exposed (non-developed) PMMA patterned
calibration samples.

The resin was then treated using electron beam lithography (EBL) to obtain 100x100 pm
matrices of disks with doses ranging from 2.5 to 8.0. EBL was performed on a JEOL 6500
scanning electron microscope (SEM). The following parameters were then selected for the EBL
process: the step size corresponding to the distance between two exposure points (defined in
pixel) by the electron beam is adjusted in accordance with the desired structures for a given
acceleration voltage current of the electron beam on the sample, and the dwell time for exposure
time per pixel was defined for each step of the electron beam. The dose corresponds to the

exposure time coefficient that can be locally applied on part of the pattern in order to control
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the proximity effects and thus the size of exposed features. For instance, dose 1.0 is obtained
with a step size equal to 20 nm, a dwell time of 0.017 ms, an acceleration voltage of 10 kV and

a current of 20 pA. Hence, the dose is directly proportional to the dwell time:

dose a=ax 0.017ms.

3.1.2. Results and discussions

Height [nm ]

1l Ll
8 o 88

Height [nm ] .

Figure 78: AFM characterization of the sample. (a) AFM images of the exposed PMMA dots
resulting from e-beam treatment. (b) AFM cross-sections realized for lines across dots of
different doses, as labeled in (a).

The nanofabricated structures (Figure 77) were first characterized by AFM (Figure 78a). From
the profiles of the nanoholes (Figure 78b) it can clearly be seen that the depth of the structures
and their lateral sizes vary with the dwell time and the dose. Under e-beam exposure, the main
PMMA polymer chain undergoes scission. As a result, a change in the molecular mass of the
PMMA is expected in the patterns of exposed dots, inducing a reduction of the space volume
occupied by the polymer. This exposure induces topographical modifications as can be seen
from the change in thickness of the treated region. Moreover, due to electrons forward- and
back-scattering, the resulting shape of the nanostructures modified by the electron beam display

a classical inverse V-shaped profile (Figure 78b).
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During the MSAFM measurements, we found that a good synchronization of the scan rate with
the sensitivity of the lock-in detection increased image quality. Although the scan rate did not
influence the width of the exposed areas measured on each MSAFM frame. The optimization
of the signals led to sharper amplitude and phase maps. Accordingly, we acquired the data with

4 Hz scan rate (Figure 79).

Amplitude

Scanrate=1 Hz Scan rate=1Hz
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Figure 79: Influence of the scan rate on MSAFM phase (a,c,e) and amplitude (b,c,e) response
of the difference mode of the MSAFM signals.

Next, we characterized the same region using MSAFM with varying Af. The resulting maps are
presented in Figure 80(a-c).

By direct comparison of the MSAFM images obtained (Figure 80), a clear variation in the
phase signal between the treated and non-treated PMMA can be observed. In addition, the
diameter of the structures exhibited significant changes with increasing Af. In the matrices
exposed at doses varying from 2.5 to 3.5 (Figure 80e, f), the diameter of the dot exposed with

dose 3.0 (middle dot) varied from 3.0 pm when probed with Af=50 kHz (Figure 80e¢) to 3.3um
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when imaged with Af = 110 kHz (Figure 80f). Overall, the minimum size was found for
Dose=2.5 at Af = 50 kHz while the largest was found for Dose = 3.5 at Af = 110 kHz (Figure
80d). In the series of patterns with dot exposed at higher doses (Figure 80b), the diameter of
Dose = 7.0 varied from 4.1um at Af= 50 kHz to 4.7um at Af =140 kHz. The smallest observed
structures were found with Af =50 kHz of the Dose = 5.0 dots, while the largest diameters were
found for Dose = 9.0 at Af = 140 kHz (Figure 80 c-g). It was necessary to increase Af to 140
kHz to probe the bottom of the structure, suggesting larger volume of modified PMMA with

higher doses.
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Figure 80: MSAFM characterization of the calibration samples. (a-c) MSAFM images for high
doses (D5.0-D9.0) acquired at (a) Af = 50kHz, (b) Af = 80kHz, and (c) Af = 140kHz. (d)
Evolution of exposed PMMA dots diameters as a function of frequency Af for doses D2.5 and
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D3.5. (e,f) MFAFM images for lower doses (D2.5-D3.5) acquired at (¢) Af = 50kHz, and (f) Af
= 110kHz. (g) Relationship between dot diameter and Af frequency for doses D5.0 and D7.0.

To better understand the nature of the local polymer conformation change induced by electron-
matter interaction and related MSAFM image formation mechanisms, we performed Peak
Force QNM, Lateral Force Microscopy (LFM), and Raman spectroscopy on the same regions

of the sample.
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Figure 81: Calibration sample characterization by Peak Force QNM (a), Lateral Force
Microscopy (b) and Raman spectroscopy (c¢) including Raman XZ mapping and corresponding
k-means analysis.

After Peak Force QNM mapping, we extracted the reduced Young modulus E* across the
sample using the DMT-based model (see methods), which is an accepted model for standard

AFM-based measure of the Young’s modulus in materials. Peak Force QNM measurements did
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not reveal significant variations of the Young modulus (Figure 81a), showing no differences
inside and out of the dots: this proves that the nature of materials was modified and that polymer
remains inside the dots. The absence of change in the Young modulus between the exposed and
the non-exposed polymer suggests that the variations measured by MSAFM are not caused by
a change in modulus of the material. As the speed of the ultrasonic waves depends on the
propagation medium and varies with the material, the wave speed expression is defined as the
ratio of the bulk modulus K related to the stiffness of the medium and its resistance to being

compressed over the density (p) of the medium:

(19)

[
1
By

1
thK = = ———
W 3 (1-2v)

and v the Poisson coefficient (between 0.4 and 0.43 for the PMMA). With a constant modulus
E, an increased propagation velocity in the e-beam exposed PMMA can be caused by a decrease
in density p. This would agree with a higher acoustic response, as the one observed in the
MSAFM map. Thus we infer that the changes observed in Figure 80 are related to the difference
of density p resulting from EBL on PMMA, which is also coherent with a smaller molecular
weight of the irradiated polymer compared to that of the unexposed polymer. Further, we
acquired LFM maps of the same region of the sample. LFM is commonly used to detect changes
in chemical composition or viscosity changes in materials. As can be seen in Figure 81b, no
contrast could be observed on the LFM images acquired on the calibration samples, except at a
higher dose (Dose = 3.5), which may be due to topographical variations inducing a peripheral
friction response. Hence, the results confirm that EBL exposure of PMMA does not affect the
viscosity and likely does not modify the chemical composition of the thin layer. However, while

the Peak Force QNM and LFM can provide some insight on the properties of the sample
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surface, they cannot access depth information. Thus, to gain some insight on the volume
properties of the exposed PMMA film, we acquired Raman depth profile across the dots of the
matrix (Figure 81c¢). A comparison of the individual Raman spectra in the exposed and non-
exposed regions confirms that PMMA chains are preserved after e-beam treatment. However,
the exposed regions exhibit a lower signal in the map, in good agreement with the idea of the
lower density of the treated material. Thus, MSAFM complemented of Peak Force QNM, LFM
and Raman data demonstrate and confirm that density in the only parameter changing in the
sample. We explored the Raman signal further to obtain some information on the in-depth
profile of the exposed regions. K-means analysis on the Raman data sets revealed a low
resolution profile of the depth cross section of the exposed dots (Figure 80d). Although with
poor spatial resolution, the slight enlargement observed is in agreement with the expected
profile of an electro-sensitive resin by EBL. Therefore the changes in diameter of the exposed
dots resolved with MSAFM show that the technique is sensitive to depth information and can
probe the volume information of the sample. By extracting the changes in volume density from
each MSAFM map and representing it as a function of driving frequencies and difference
frequency Af, we propose a simple procedure for the 3D reconstruction of the sample '*. In
short, by considering the attenuation resulting from the acoustic waves (launched by the
mechanical actuators located at the base of the cantilever and below the sample) propagation
through the medium, attenuation amplitude (z) of the mixed waved Af resulting from the

nonlinear tip-sample interaction can be formulated:

|ap— aslz)

A(2) = Aoe‘< v (20)

with a; (i=s,p) = oi(f) the attenuation coefficients (depending on frequency f) of the probe and

the sample, z the investigation depth, and v the velocity of the ultrasonic wave. By calculating
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the minimum of attenuation for each combination of Af in MSAFM, it is then possible to link

the actuation frequencies and their difference with the investigation depth.

Experimentally, the changes in diameter are extracted for the sequence of MSAFM images
obtained at each Af. By assigning an investigation depth (obtained with the simple numerical
model) for each Af; it is then possible to reconstruct the three-dimensional profile of the exposed
region inside the PMMA film. The resulting reconstruction, acquired with ten successive
MSAFM frames, is presented in Figure 82. The 3D reconstruction of the sample is in good

agreement with the expected plum shape of exposed PMMA region below the surface.

Figure 82: 3D reconstruction of subsurface structure and composition of the PMMA/exposed
calibration samples. The 3D reconstruction is obtained by extracting the diameter for a ten
successive MSAFM phase image.

Another point that is important to notice is the contrast changes that can appear between
MSAFM images taken at different Af frequencies (Figure 83). One can notice a contrast
inversion between the phase images Figure 83c and Figure 83e when the Af frequency changes
from 50 kHz to 80 kHz. On the contrary, this phenomenon is not visible on amplitude images
(Figure 83b and Figure 83d). These observations confirm that the contrast change is not due

to a modification of the interaction tip/sample (because the amplitude signal is not affected) but
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is the result of the ultrasound waves interaction. Two hypothesis could explain this contrast
inversion observed in phase: a difference between the length travelled by the waves that can be
assimilated to a difference between optical path in the optical field; or the jump around a
resonance peak induced by the frequency change of the cantilever leading to a phase shift as

well.

16.0 um

16.0 um

Figure 83: Highlighting the contrast change effect in MSAFM images with the Af frequency
difference. (a) Topography image (Scan size 16 um). (b) and (c) Amplitude and phase images
at Af=50 kHz. (d) and (¢) Amplitude and phase images at Af =70 kHz.

3.1.3. Conclusion
MSAFM is well adapted for the characterization of low density material and offers the

possibility to create a 3D reconstruction of the device undergoing testing. Its sensitivity was
compared to three standard characterization techniques Peak Force QNM, LFM and Raman

spectroscopy. Our study shows that MSAFM offers the best sensitivity and spatial resolution
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in presence of low density variations. In addition, different parameters such as frequencies and
scan rate were found to play a significant role in the quality of the acoustic picture. The ability
to image complex systems with low density changes is especially important in biology. Indeed,
it is a central in the behavior of dynamic entities in intracellular organisms and conformational
changes in response to various external agents such as chemical or thermal stresses.
Consequently, our results highlight the great potential of MSAFM for ground breaking

discoveries in soft matter and life sciences.

The next parts of this chapter are focus on the use of MSAFM for the study of complex
biological samples presenting volume elements can cannot be resolved by conventional

microscopy technique in a non-destructive way.
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3.2. Study of the action of an alcoholic stress on Oenococcus
oeni bacteria

3.2.1. Introduction

Oenococcus Oeni bacteria play a crucial role in the malolactic fermentation involved in the
vinification process '*°. The conditions of development of this bacteria in wine are not favorable
mainly due to the high ethanol concentration (12%)"%.

It was shown that the bacteria strain possesses high adaptation capabilities in this environment
and thus represents a good model for the study of bacteria stress responses'®’. One of the
resistance mechanism involves a small heat shock Lol8 protein (sHsp Lol8), which is
expressed under various stress conditions (temperature variations, presence of alcohol...)'8s.
The sHsp Lol8 protein is expressed during the alcoholic fermentation process in Oenocuccus
Oeni bacteria. As the alcohol induces stress on the bacteria membrane and content, the sHsp

Lol8 protein will protect the membrane and the intracellular material of the bacteria, as

response mechanisms presented in Figure 84.
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Figure 84: Overview of the response mechanisms of Lol8 protein to external stress. Under a
stress, the Lol8 protein is produced by O. Oeni bacteria and acts like a molecular chaperon to
avoid the denaturation of the other proteins present in the bacteria and like a lipochaperon to
preserve the integrity of the membrane.
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Recently, a lipo-chaperon activity of the sHsp Lo18 protein was discovered. This lipo-chaperon
activity is characterized by the association — under thermal stress condition - of a part of the
protein with the membrane to rigidify it and thus protect the intracellular bacteria material from
the stress attack!3%!%,

The expression of this protein is induced not only upon thermal stress but also under the action
of some chemical agents, such as benzyl alcohol (BA) or ethanol, responsible of membrane
fluidizing™!.

In this part, we present our study of the action of an alcoholic stress on the bacteria by MSAFM.
Next, to mimic the rigidizing of the membrane in presence of the sHsp Lo18 protein induced

by the stress, we reconstructed an artificial membrane by Langmuir-Blodget technique as a

model of the Oenococcus Oeni bacteria.

3.2.2. Characterization of QOenococcus Oeni bacteria under stress by
MSAFM

The characterization of Oenococcus QOeni bacteria is realized by MSAFM in different
environmental conditions: first when the bacteria are subjected to no stress and second after the
bacteria has undergone a 36 hours’ stress imposed by Benzyl alcohol (BA) treatment.

For MSAFM observations the bacteria are deposited on stainless steel support and analyzed in
air.

Figure 85 presents the Oenococcus Oeni bacteria with no stress in both topography and acoustic
imaging. The topography is common, with a height of 457nm (+ 35nm), a length of 1.5um
(£0.2pum) and a width of 1.3pum (£0.2um). Interestingly, acoustic imaging revealed internal
structures of the bacteria with high resolution: one can observe compartments and a cell wall
of about 70nm thick, which is in in agreement with the values of cell walls in Gram positive

bacteria!®?.
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Figure 85: Non-stressed O. Oeni bacteria. (a) Topography. (b) Acoustic MSAFM image —

fi = 4.3 MHz, f; = 4350 MHz - Af = 50kHz revealing inner structures. (c) Tomographic
reconstruction of the bacteria.

Next, to observe the impact of alcoholic stress on a bacterial structure, we realized MSAFM
images of the cells after a 36h alcoholic stress period. We noticed variations in the dimensions
of the bacteria on stressed samples, which were not present in the control sample. The

dimensions are summarized in Figure 86.
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Stressed bacteria — Heterogeneous dimensions

Control bacteria —
homogeneous

dimensions

Height: 300+15 nm
Length: 970+25 nm
Width: 1.2+0.15 pm

Height: 229425 nm
Length: 1.6+£0.2 um
Width: 918445 nm

Height : 25017 nm
Length : 830+£36 nm
Width : 1.0£0.17 um

Height : 474+ 14nm
Length : 1.5£0.10 pm

Width : 1.3+0.17 pm

Figure 86: Topographical dimensions of non-stressed and stressed bacteria.

In addition to the changes observes in the topography — heterogeneity in the dimensions of the

stressed bacteria — the structures observed with acoustic imaging, as shown in Figure 87, were

quite different from the control cells in Figure 85. In addition, the frequency range of the

acoustic signal required to detect the structures shifted from the 4MHz range to a SMHz range.

Moreover, the structures observed in the acoustic image of the stressed bacteria are not as well

defined as the ones shown in Figure 85, and their dimensions changed significantly (Figure

86).
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Figure 87: Stressed O. Oeni bacteria. (a) Topography. (b) Acoustic MSAFM image — fi=5 MHz,
f> = 5.050 MHz - Af = 50kHz revealing the inner structures of the bacteria that are different
from Figure 85.

We surmised that the modifications unveiled by acoustic imaging are related to changes in the
bacteria density as a result of the alcohol stress. In addition, we formulated the hypothesis that
during the stress period, membrane rigidizing that result from the sHsp Lol8 protein action

occurs, modifying the structures and mechanical properties of the bacteria.

3.2.3. Conclusion
This study unveiled significant changes in the morphology (height and length) of the

Oenococcus bacteria as a result of stress on the culture during growth. MSAFM was used for
in-depth characterization of the inner structures of the bacterial, and brought out modifications
in the inner structures of the cell wall under stress. Moreover, we found that the acoustic signal
detected can be significantly different in the case of stressed bacteria. Our current assumption
is that the strong variations observed in the acoustic images and signals are related to the
membrane rigidizing of the bacteria due to the lipo-chaperon activity of the sHsp Lo18 protein

under stress conditions. This study strengthens our argument that MSAFM has the potential to
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become a strong tool for in-depth characterization of biological elements, in particular to detect
changes in density in complex biological material.
The next step of this work consists in using the MSAFM to realize 3D reconstruction of

biological elements.
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3.3. Combining AFM-IR and Mode Synthesizing Atomic
Force Microscopy: Application to the study of Triglyceride
vesicles inside Streptomyces bacteria

3.3.1. Introduction
We explored here another type of bacteria called Strepfomyces which are of a great interest in

the biofuel production'®>.

Biofuel is an alternative energy source and a less toxic substitute for petroleum-based diesel
fuel. Producing biodiesel in a sustainable way will allow this renewable and cost effective fuel
to ease the world’s high demand in petroleum, while providing economic and environmental
benefits into the 21st century!®*. Biofuel is produced from renewable biomass by trans-
esterification of triacylglycerols' from plant oils, yielding monoalkyl esters of long-chain fatty
acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters.
Biofuel solutions promise to have important environmental benefits when used as a mainstream
alternative to fossil fuels: they are carbon-neutral over their lifetime and are far less toxic than

the petro-diesel derivatives'

. However biofuel solutions are being criticized because of high
costs associated with production and because they are using agricultural land that could be used
for alimentation. As an alternative, biologists recently engineered microorganisms to make
biofuels, such as ethanol, butanol or octanol'*® 17 198 However, the cells cannot produce the
fuels at industrial scales since the fuel molecules are toxic to the microbes, killing the organisms

before they can reach high yield production'®’

. Nonetheless, other potential biofuels such as
oils are stored in specific organelles and are not as toxic for the producing micro-organisms>%.
While the earliest attempts to engineer biofuel-producing microbes were focused on well-

201, 202, 203

known organisms such as yeasts and E. coli , scientists also hope to co-opt the unique

metabolic functions of some other microbial species well known for their ability to grow at an
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industrial scale. Indeed, Streptomyces bacteria grewn in big fermenters for decades in the
pharmaceutical industry to produce most of the antibiotics used in modern medicine?** 29% 2%,
Furthermore, these soil-born bacteria have the natural ability to degrade various wastes of the
agro-industry (lignocellulose, beat pulp...), hence limiting the consumption of products used for
human alimentation. The group "Energetic Metabolism of Streptomyces" of the Institut de
Biologie Intégrative de la Cellule (URA CNRS 1354 - leader: M.J. Virolle) identified different

207 Interestingly, these

Streptomyces species as good candidates to generate bio-oils
Streptomyces species can store excess of carbon into TriAcylGlycerols (TAGs), a ready-to-use
source of bio-diesel. There TAGs are chemically and structurally identical to those found in
commercial fuels. Two patents were recently filed by this group with SOFIPROTEOL (one of
the main industrial producer of vegetal bio-diesel in Europe) demonstrating the interest of
Streptomyces as bio-fuel producers. The microbiology group in Orsay is now actively selecting
the most promising Streptomyces species for bio-oil production and exploring genetic
engineering strategies to enhance the natural ability of a model, S. coelicolor, whose genome
was sequenced. This work is done in the framework of the ProBIO3 project, whose goal is to
develop an industrial production of microbial bio-oil for bio-diesel/bio jet fuel generation.

To support the microbiology team, we need tools appropriate for the evaluation of density of
TAGs accumulation in bacteria. Coupling the chemical imaging capability of Infra-Red Atomic
Force Microscope and the subsurface detection capability of Mode Synthesizing Atomic Force
Microscopy (MSAFM) was used to access a complete analysis of the lipids production in the
bacteria.

In this section, we present a comparative study of AFM-IR (nanoIR microscope from Anasys

Instruments) and MSAFM maps of the bacteria to detect triglycerides vesicles in Streptomyces

bacteria and highlight the synergy between the two methods.
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Using high-resolution infrared microscopy (nanolR) with laser illumination at 1740 cm™ and
MSAFM with acoustic actuations in the MHz range, we detected the presence of the vesicles
and we measured their size and position below the surface. We assessed the vesicle size
distribution in the bacteria with accuracy of at least 50 nm. The chemical measurement
confirmed that the structures detected with MSAFM were, indeed, vesicles. A 3D
reconstruction of bacteria, showing the vesicles distribution inside the bacteria was performed

to underline the great potential of the acoustic method?%,

3.3.2. Samples preparation

3.3.2.1. Bacterial strains and growth conditions
The Streptomyces strains were S. lividans. 10° spores were spread on cellophane disks laid down

on the top of agar plates. The solid medium was R2YE with no addition of phosphate salts. The

plates were incubated at 30 °C for 72h.

3.3.2.2. Sample preparation for AFM-IR measurements
The cell suspension of each culture was spun down at 5000 x g for 2 min, the supernatant was

removed, and the cell pellet was diluted in distilled water. To wash the bacteria thoroughly, this
operation was repeated three times. Finally, a drop was deposited on a ZnSe (transparent in the

mid-IR) prism and dried at room temperature.

3.3.3. Results
The AFM-IR images and MSAFM images of Streptomyces bacteria were realized in the same

area (scan size 10 um x 10 um) to correlate the chemical information with the structures
identified inside the bacteria. Figure 88 shows a set of images obtained by these two different
methods.

Several filaments characteristic to Streptomyces bacteria are detected in topography, showing
bacteria of about 500 nm in width and filament assemblies of bacteria several micrometers in

length (Figure 88a). Figure 88b represents the chemical mapping obtained when the energy
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necessary to excite the of the triacylglycerol vesicles at 1740 cm™ is used to illuminate the
sample '%. MSAFM images obtained on the same area, show dark spots that coincide with the

regions identified as rich in ester carbonyl bonds by the AFM-IR measurements.

nanolR —1730 cm™

BN sy Ta

MS-AFM - acoustic MS-AFM / nanolR

Figure 88: MSAFM and AFMIR imaging (Range 10 pm). (a) AFM topography. (b) AFM-IR
image at 1740 cm™. (c) MS-AFM ultrasound image (Af = 50 kHz). (d) Overlay of IR and
acoustic images.

This suggests that the dark features detected by MSAFM are the vesicles inside the bacteria.
For vesicles buried deeper into the bacteria (i.e., not close to the membrane) the nano-IR signal
(Figure 88b) appeared slightly blurry (or larger in diameter) compared to the features resolved
by MSAFM (Figure 88¢). The detection of the thermal expansion in AFM-IR is integrative as
the signal detected will depend on the distance between the feature absorbing energy and the
tip in contact with the sample. If the vesicle is small and buried into the bacteria then the signal
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detected will be weaker and more diffuse than if the vesicle is close to the surface or in direct
contact with the cantilever tip. On the other hand, the contrast of the acoustic image showed to
be very strong and the vesicles could clearly be detected due to the dark contrast when compared
to the filaments response. This strong contrast may be attributed to the low-density property
139.143 14 of the lipid vesicles that are less dense than the dry matter of the bacteria filaments.
This high contrast allows us to localize the vesicles, identify how many are located in each
bacterium and estimate their lateral size.

However, we noted that a strong change in signal appeared along the filaments at the right
border of the bacteria (Figure 88c¢), which was attributed to a shadow effect of the lateral
acoustic waves and is not correlated to the lipid absorption (Figure 88b).

The superimposition of MSAFM images and AFM-IR images (Figure 88d) confirms the
excellent correlation between the image of lipid identified by infra-red and the acoustic image.
This was repeated over many different regions showing that the black contrast of the acoustic
image is related to the light contrast of AFM-IR images induced by the presence of lipid vesicles
(Figure 88).

After further study of the MSAFM images, we noticed that the acoustic signal inside the
vesicles was constant, with no gradient or soft interface between the vesicles and the bacteria.
The MSAFM cross-section (Figure 89c¢) realized on a vesicle (Figure 89b) the sharp transition

(about 40-70 nm) compared to the cross section obtained on the AFM elasticity image obtained

with Peak Force QNM on a bacterium containing lipid vesicle (Figure 89d-f).
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Figure 89: Comparison between MSAFM and AFM elasticity measurements. (a) AFM
topography. (b) MSAFM image (Af =50 kHz). (c) MSAFM cross-section realized on a vesicle.
(d) AFM topography. (e) Elasticity response of the bacteria containing lipid vesicles. (f) Cross-
section realized on the elasticity response of a vesicle.

Figure 89d represents the morphology of the region inspected while Figure 89e shows the
variations in elasticity detected in the same region. In Figure 89f, the cross-section showing
the change in elasticity across the vesicle indicates that the transition of stiffness spans over
300nm.

These observations suggest that the acoustic signal is not directly proportional to the stiffness
difference between the membrane surface and the vesicle itself. The MSAFM image contrast
1s induced by the density difference between the vesicle and the other elements of bacterium.
For the vesicle, this density at a given level, probed by the fixed value of Af for each MSAFM

image, is constant.
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Figure 90: MSAFM phase images in depth investigation — Evolution of the lipid vesicles size
with the frequency (Range 4 pm) at frequency Af=40 kHz, Af= 50 kHz and Af= 70 kHz.

Then we analyzed a bacteria by MSAFM at different Af frequencies. The results are presented
in Figure 90 where the evolution of the vesicles size with the frequency- ad thus the depth- can
be observed. From these results, we took advantage of the sensitivity to volume content to
reconstruct the 3D profile of the bacteria and the vesicles. This was possible by varying the
difference Af in frequency by changing the ultrasound wave transferred into the specimen'® ¢,
The resulting 3D reconstruction of a part of a bacterium with small lipid vesicles localized
under the surface of the bacterium filament and other occupying the entire filament is presented

in Figure 91. The results obtained are in good agreement with the vesicles production

metabolism where we should detect vesicles with a wide range of size and volume.
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Figure 91: 3D reconstruction of a bacteria containing lipid vesicles. The reconstruction is
obtained by stacking MSAFM images for 10 different Af frequencies. (a) Stacking MSAFM
images for 3 different Af frequencies (40 kHz, 50 kHz and 70 kHz). (b) Top view of 3D
reconstruction. (c) Lateral view of 3D reconstruction.

Finally, we further compared the MSAFM images and IR image hot spots corresponding to the
strong local contrast difference observed in acoustics. As previously mentioned, the infrared
absorption signal is linked to the sample-surface distance, leading to diffusion phenomenon
around the position of the vesicles. We expect the diffusion to be more important in the areas
where the vesicles are buried deeper into the bacteria. Indeed as can be seen in Figure 92b, one
can notice the diffusion of the signal resulting from thermal expansion inside the system
hindered the spatial resolution in that neighboring lipid vesicles inside the compact and
complex absorption shape (inside dashed line mark) could not be resolved while acoustic

images (Figure 92¢) clearly reveal the vesicles boundaries.
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Figure 92: Resolution comparison between AFM-IR and MSAFM techniques. (a) AFM
topography. (b) AFM-IR chemical mapping at 1740 cm™’. (c) MSAFM phase image at Af= 50
kHz (Range 4 pm).

3.3.4. Conclusion
The interest of coupling both techniques and showing their complementarity to identify and

estimate the number and size of vesicles inside the bacteria was demonstrated in this study. We
demonstrated the contribution of the acoustic and IR coupling in terms of subsurface and

chemical information, respectively.

AFM-IR analysis is of great interest to screen the lipid content of the bacteria removing acoustic
artifact inside the bacteria while MSAFM analysis improves the spatial resolution for smaller

vesicles or vesicles lying inside the filaments.

As a result, we propose that the lack of discrimination between closer lipid vesicles in the IR
images could be overcome with a technique taking advantage of both MSAFM and AFM-IR
approaches. One aspect of this was recently reported by Dr. Tetard*”. Furthermore, upon 3D
reconstruction, with more advanced image learning methods, it will be possible to determine
the real diameter of each vesicle in the volume, to build a distribution of the vesicle sizes in the

bacteria.
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3.4. Conclusion

This chapter highlights the high potential of MSAFM through the analysis of calibrated
dielectric samples presenting embedded low-density dielectric nanostructures, bacteria and
lipid vesicles. High resolution 3D tomographic reconstructions were realized as well as a first
understanding of the influence of the frequency on depth investigation for dielectric samples.
We also demonstrated that this approach, in combination with AFM-IR, can be used to tackle
complex biological problems, such as bacteria membrane rigidizing or formation and evolution
of lipid vesicles inside bacteria. MSAFM is a very promising tool in the characterization of
biological samples but remains limited for the study of metals because it does not allow the
discrimination of different chemical elements.

The next chapter will focus on the SMM technique in order to answer this problematic for a full

characterization of metal materials.
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Chapter 4 — Application and development of
tomography on metallic samples by Scanning
Microwave Microscopy.
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This Chapter presents the application of near-field technique, SMM, to investigate subsurface
properties in metallic components. We introduce several new approaches to access specific
information describing the metallic components such as residual stress and present novel
advanced methods for near-field microscopy. Subsequently, these studies reveal new

possibilities for the use of the local probe of SMM in the industry.
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4.1. Study of various factors influencing Scanning Microwave
Microscopy Measurements

Predicting quality control and servicing of parts subjected to harsh environments (temperature,
pressure, electric and magnetic fields, and gas) is a challenge in the characterization and
optimization of metallic components. Major problems faced by industries include protection
against corrosion, embrittlement, formation of bubbles of light chemical elements, and various
chemical associations. These can, in turn, have significant effects on the mechanical integrity,
structural stability and other properties of the material. However, early detection of structural
or chemical changes in the material is not yet well established.

First, we focus on a simple case analyzing calibration samples to understand the capabilities of
SMM. As previously discussed, SMM is based on the detection of the phase and amplitude
variations of electromagnetic waves occurring upon their interaction with the features of the
materials. Electrical, magnetic and geometric properties of the material affect the phase
detected. In previous studies, we showed that SMM is sensitive to materials conductivity and
that SMM can provide a tomographic view of buried patterns in a sample!*% 131,

According to the empiric Matthiessen law 2!°, the resistivity of a material is defined by the sum

of three terms:

p=pr+ pit+ pp (21)

where pr is the contribution to the thermal agitation, p; the contribution of impurities present
inside the material and ppthe contribution of atomic defects.
This law indicates the role impurities and atomic defects play on the electrical conductivity:

inside metals, electrons collide with defects, leading to local conductivity variations.
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In order to investigate the capability and the sensitivity of SMM, we considered factors
(chemical diffusion, mechanical stress, thermal treatment...) that can influence the mechanical

properties in materials, leading to conductivity variations that we could detect.

4.1.1. Realization of a tomographic reconstruction by SMM
Based on the measurements on buried calibrated samples presented in the Chapter 2, we decided

to use SMM to reconstruct the volume — or 3D tomography - of the calibrated sample. By
superimposing the successive phase images obtained at selected frequencies (from the sample
surface to the volume) we associated each image with a depth profile of the sample, as shown

in the 3D profile of the sample in Figure 93.
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Figure 93: Three-dimensional tomographic image reconstruction of the volume of the metal

sample according to the frequency applied onto the SMM probe!®!.
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This result opened new possibilities for non-destructive, 3D reconstruction of metallic
materials'®'. As a proof of concept that the signal measured in SMM is directly related to a
variation in the conductivity for metallic materials, we then decided to realize a new set of

calibration samples with materials presenting different conductivity embedded in a metal.

4.1.2. Study of the influence of metal conductivity on SMM measurements

4.1.2.1. Fabrication of the calibrated sample with buried metal patterns
The calibration sample was fabricated starting from a silicon substrate on which patterns (30

nm deep) were filled by two different materials of 20 nm thickness (aluminum and chromium),

before being entirely covered with a 500 nm silicon layer (Figure 94a).
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Figure 94: Calibration sample with buried metal patterns. (a) Schematic of the buried patterns
of Al and Cr. (b) AFM image: topography. Scan size: 16 x 8 um. Relative height: 50 nm. (c)
SMM phase image (f=1.971 GHz). Scan size: 16 x 8 um. (d) Cross-section of the phase image
revealing the phase difference between the structures of Al and Cr. (e) Profile of a section
carried out on the phase image. Estimation of the lateral resolution (scan size: 8 um).
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To avoid any confusion between the two materials, the patterns were laid out in reverse
positions. Traces that are thought to correspond to PMMA residues that were not fully dissolved
by the solvents remain after evaporation of the silicon layer. We want to point out that it is very
challenging to obtain samples without topographical effects on the surface. These residuals can
be used as a reference marker for the investigation of the volume of the sample. AFM
topography (Figure 94b) at this stage of fabrication, made it possible to measure a difference

of 12 nm between the structures (Al or Cr) and the real height of the patterns.

4.1.2.2. Results
The objectives of this study were two-fold: 1) to investigate the potential of SMM to probe the

depth of samples and 2) to assess the sensitivity of SMM to differentiate two or more types of
materials in the sample.

Knowing the electrical conductivities and magnetic permeabilities of the two materials (Al and
Cr) and considering that those remain constant in the frequency range used (1-6 GHz), it is
possible to predict, for a frequency f and the same observation position z, the depth penetration

6 and the phase ¢ relative to each material.

For the Al structures:

Y1 = = (22)

where

1
0, = ——— 23
1 VTTHoM1 f )

with the relative permeability g1 = 1 and the electric conductivity 2!! 61 =37.7 x 10° S.m™".

For the Cr structures:
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P = — (24)

where

1
5, = — 25
2 VIO U2 f (23)

with the relative permeability p, = 1 and the electric conductivity ?!! 6, =7.74x 10° S.m™".

By comparing the penetration depth through the two materials (Eq. 22) and (Eq. 24) we obtain:

51 032

21— == 26

5 o (26)
Therefore, we can write:

P1 P

— = = 27)

P2 81

Then, we realized SMM phase measurements at a frequency of 1.971 GHz. According to Eq.
26, we observed a dephasing introduced by chromium, which was higher than that of aluminum
as shown in Figure 93c. From the cross-section (red dashed line, Figure 93d), we estimated
that the dephasing introduced by chromium was about two times higher than that of aluminum.
Thus, it is possible to identify the nature of the materials present on the patterns, using the

microwave image phase signal given by SMM.

Another important parameter of the scanning microwave microscope lies in its resolution,
lateral and in depth. The resolution of the microscope could be estimated while measuring,

directly on the SMM images, the width of the outline on the buried Al pattern. On the phase

147



image (Figure 93c¢), a profile (black dashed line) was carried out while placing the two cursors
with the middle height of the peak representing the outline of the patterns (Figure 93e). The
result shows a resolution close to 35 nm, knowing that it can be still improved for recording
images with smaller buried calibrated patterns. In depth, the result shows that SMM is sensitive

to a buried defect whose thicknesses lay around 20 nm.

4.1.2.3. Conclusion

These studies proved the ability of SMM to detect metallic defects in the sample. Moreover,
contrary to the other experimental techniques investigating the sample volume, SMM has the
advantage of being completely nondestructive and of providing a complete tomographic view
of the sample. Another advantage of the SMM technique is its capability to differentiate, via
the analysis of phase and amplitude SMM signal, metals presenting different conductivities.

Thus, for the next part of this work, we decided to highlight -in the case of metallic materials-
properties that can introduce conductivity variations such as the diffusion of light elements or

residual stress.
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4.2. Study of various factors influencing conductivity by
SMM

4.2.1. Study of light elements in metals: Diffusion of a light element in a metal
The presence and migration of light chemical elements (helium, hydrogen, nitrogen, and

oxygen) in solids can induce important changes in materials properties, with macroscopic
effects such as lattice swelling, creep, work hardening and high residual stress. In turn, these
may lead to irreversible changes in the mechanical properties, such as loss of ductility or
strength, ultimately causing loss of material functionality. Diffusion of light chemical elements
is difficult to measure with most conventional high resolution techniques as described earlier
chapters. However, measuring the spatial distribution of light elements in a metal is useful to
reach a deeper understanding of the mechanisms governing diffusion or to validate models and
their parameters. Nuclear reaction analysis facilities (NRA or nuclear microanalysis) are
usually required to assess light elements distribution in a metal?!?. Moreover, most common
techniques are limited to surface measurements (energy dispersive spectrometry — EDS,
wavelength dispersive spectroscopy — WDS, X-ray photoelectron spectroscopy — XPS, and
Auger electron spectroscopy). These techniques are essentially used for surface analysis
because the interactions of the electron beam with the material limit their penetration depth to
tens of nanometers below the surface®!* 214215 Hence, to precisely determine the concentration
of light elements in a metal is nearly impossible with conventional surface techniques especially
for very volatile species or when surface contamination occurring during surface preparation
cannot be avoided. Two good examples are the study of hydrogen in metals and oxygen in
reactive materials. Results obtained with conventional methods correspond to an average of the
information obtained over a small volume (1pm? for EDS) including that of the contaminated

surface, which can present a substantial drawback.
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In this section, we characterized oxygen concentration in zirconium by Nuclear Reaction
Analysis (NRA), with a special interest in the subsurface properties. This will constitute a good
reference to determine the performance of SMM, which we propose to use here. The study was
realized on a zirconium sample subjected to oxidation?!® ** because of the significant solubility
of oxygen in this metal. The oxygen dissolved in zirconium produces noticeable differences in
the physical and chemical properties of the metal?!”. The oxidation of zirconium at high
temperature takes place with the diffusion of oxygen atoms into the metal lattice, up to 29
atomic percent, followed by a transformation into ZrO,. According to the theory of diffusion?!®,
in the Zr-O zone the oxygen concentration resulting from the diffusion processes exhibits a
complementary error function (erfc) shape. This variation is expected to be the same at several
depths under the scanned cross-section surface (which is normal to the oxidized face) beyond
the first few hundreds of nm, as zirconium is well known for its high reactivity with oxygen,
creating inevitable pollution during sample preparation. These conditions are associated with
weak precision in the measurement of the diffusion length with conventional surface analysis

techniques. In addition, measuring low values of oxygen concentration will be very

challenging4®

4.2.2.1. Preparation of the oxidized Zirconium sample preparation
For the study of zirconium oxidation, commercial pure zirconium plates (99.2% Zr from

Goodfellow) were used. They were first annealed at 750 °C under a secondary vacuum (1.107
bar) for 2 hours and then oxidized in air under atmospheric pressure at 650 °C for 72 hours.
After oxidation the samples were transversely cut and mirror-polished and then analyzed by
SEM/EDS, NRA and the SMM technique. Two successive layers cover the pure original metal:
a ZrOy exterior region and an intermediate oxygen-enriched metal (Zr—O). The oxygen
concentration in the enriched zone shows a slow decrease from 29 at. % to 0 at. %. A schematic

of the sample is presented in Figure 95.
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Figure 95: Schematic of the cross section of the Zr/ZrO; sample analyzed.

4.2.2.2. SMM results
Figure 96b presents a schematic of the sample and the cross-section used for analysis. Figure

96a shows the concentration of the oxygen in the sample in atomic percent. The results were
obtained by EDS and NRA along a line on the cross-section perpendicular to the oxide—metal
interface. For EDS, the analyzed volume is about 1 um® and contains the sample surface, and
the contaminated subsurface. Due to the high affinity of the zirconium with the oxygen, the
surface was inevitably enriched with atmospheric oxygen during the cross-section preparation.
This treatment results in a large quantity of oxygen content in the first few hundreds of nm
under the surface scanned and can mask the original quantity present in the sample before the
polishing process. The contamination of the surface with atmospheric oxygen and the over-
evaluation of the light chemical elements by the EDS technique explains the apparent 12%
oxygen concentration obtained in the pure metal zone. The residual apparent quantity of oxygen
on the pure Zr can affect the measure of oxygen-enriched area and prevents the identification
of regions with low oxygen content.

The nuclear reaction analysis was performed at the Institut Rayonnement Matic¢re de Saclay,
France, using a Van De Graaff linear accelerator (maximum 3.7 MeV). A 1.45 MeV deuteron
beam was used to analyze the reaction '°O(d,p1)!’O. Lateral resolution is directly related to
beam size. In this case the beam size was 3 x 3 pm”. And the size of the scanned area was 80 x

120 pm?. The NRA measurements of the oxygen concentration presented in Figure 96a are
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very accurate because NRA can eliminate the response of very superficial layers. The oxygen
content in the pure Zr region is correctly measured and is close to zero. As expected, a longer
diffusion region is found compared to what was observed with EDS. The spot size in NRA is
about 3 um and covers both Zr—O and ZrO, zones close to the interface. These considerations
explain the apparent 45 at% oxygen content measured at the interface location. NRA

measurements will serve as a control measurement to compare with the SMM results.
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Figure 96: Analysis and composition of the zirconium sample enriched in oxide. (a) EDS and
NRA measurements of the oxygen level as a function of depth. (b) Electronic microscope image
of the analyzed area with line indicating the analysis trace.

To perform the SMM measurements, we selected a frequency range appropriate to obtain a
profile investigation inside the sample and below the surface layer of pollution. Considering as

21 parameter 6 = 2.36 x 10% Q!

a reference the deep layer of pure Zr, with the conductivity
m !, the frequencies 11.83 GHz, 6.87 GHz and 2.21 GHz were selected as they should allow

an in-depth investigation between 3 and 7 microns below the sample surface. Then we avoid
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the influence of the contaminated surface as shown in the scheme of Figure 95. We focus in

this study mainly on the oxygen-enriched metal zone.

8,=3.0um

9,=3.9um
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Figure 97: Depiction of SMM measurements on the cross-section of an oxidized zirconium
sample probed. At a given frequency (fi= 11.83 GHz) the attenuation of the wave changes as a
function of the material conductivity (= oxygen concentration). Various frequencies (f>= 6.87
GHz and f3=2.21 GHz) are used to probe deeper levels in the material.

SMM analysis of the same sample as the one probed with NRA was performed. AFM
morphology of the sample and the SMM microwave signal phase shifts for several frequencies

were recorded as can be seen in Figure 97.
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Figure 98: Topography and phase shift cartography acquired at various frequencies (scan area
80 um). (a) Topography image of the sample and a selected cross-section of the change in height
of the surface (yellow line). (b) SMM phase shift image at 11.83 GHz. (c) SMM phase shift
image at 6.87 GHz. (d) SMM phase shift image at 2.21 GHz with profile of the measurement
indicated by the white line.

Figure 98a presents the topographic cartography obtained from the amplitude signal and the
profile along the dashed horizontal line. The topography clearly reveals the grains of the metal.
The profile shows the roughness of the sample along a line. One can see that the ZrO, region
shows a different roughness from the Zr—-O and Zr zones. The amplitude of the roughness is
about 20 nm, which is very low compared to the size of the scanned zone, 80 um.

The SMM phase shift of the signal used to probe at selected frequencies can be seen in Figure
98b to Figure 98d. The SMM phase shift images clearly show variations in the phase signal,
which is introduced solely by a conductivity change in the material, as the relative permeability
is equal to 1 for Zr. Only oxygen dissolution in the zirconium lattice produces variations of the

conductivity as it is well known that the mean free path of electrons is influenced by crystal
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lattice imperfections®!® such as structural defects, foreign atoms or thermal agitation of the ions,
and also the electron mobility p, proportional to the mean free path of electrons, and thus the

conductivity is defined by:
0 =nqu (28)

with o the conductivity (S m™'), n the number density of electrons and q the elementary charge.
Consequently, the electron mobility decreases as the temperature or the number of defects
increases. The SMM phase shift is necessarily linked to a change in composition of the material
as the wave propagates deeper into the oxygen-enriched zone in comparison with the area of
pure Zr (Figure 97).

The position of the oxide—metal interface is materialized by the sudden change in the phase
signal within a spatial range less than one micrometer. For a better localization, we used a white
dashed line to indicate the position of the oxide—metal interface found on the topographic AFM
image (Figure 98a) on all the phase shift cartographies. The phase shift starts to change close
to the interface (3 um, Figure 98b). The interface location can change for different depths as
the interface is not perfectly planar. We can observe these changes in Figure 98b to Figure
98d. The transition zone between the oxide and the oxygen-enriched metal can be
topographically perturbed by the strong difference of hardness of the ZrO> and Zr—O zones,
giving rise to differences in the way the polishing/etching technique affects each zone. In this
particular case the SMM phase shift signal can also be affected. A careful polishing of the
sample could help avoiding these effects.

The variations of the phase shift signal in the Zr—O zones are very similar for each frequency.
In the oxygen-enriched zirconium region, the concentration of the oxygen produces gradual
modifications in the metal properties and implicitly in the SMM phase response. The size of

the perturbed zone is about 18 um for all the depths investigated here. This value is close to the
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length of diffusion found on the EDS measurements considering that the latter is apparently
shortened by the surface pollution effect. At different depths under the scanned surface the
spatial variation of the material properties is similar. The changes in the properties result only
from the quantity of oxygen dissolved in the zirconium lattice.

One can also observe that the value of the phase shift increases with the frequency. The deeper
one looks, the lower the phase shift.

Figure 99a to Figure 99b present the topography and the phase shift of the pure Zr zone. The
phase shift signal shows no gradient, as expected. This observation confirms that the SMM
technique is only influenced by the chemical composition of the sample.
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Figure 99: AFM and SMM characterization of pure Zr area. (a) Topography image of pure Zr.
(b) SMM phase shift image of pure Zr at 6.87 GHz.

Using several frequencies one can obtain information at various depths. To compare the
information between the signals obtained at various frequencies, a procedure of normalization
is applied. Scale and shift are chosen in order to obtain 0 value for the pure Zr and 1 for the
ZrO; zone. As pointed out in Figure 98a, the topography is flat. Since the signal is not
influenced by the topography, the phase shift observed can only come from changes in the
material properties as seen in Eq. 21 and Eq. 23. The only parameter that changes along a line

1s oxygen concentration. As a result, the local enrichment of metal with oxygen is reflected in
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the phase shift measurements obtained by SMM. The position of the metal-oxide interface is
indicated by the sudden change in the phase shift signal. The location given by SMM is in
agreement with the topographic picture. This study confirms that SMM can be used to probe
oxidation layers in cases for which the topography image does not reveal the interface.

In the case of zirconium we know that at the oxide—metal interface the oxygen concentration
should reach the solubility value, i.e. 29 at% 2%°. The oxygen concentration decreases
progressively from 29 at% the interface to 0 at% in the pure metal zone.

According to the skin effect equation, the microwave signal penetration depends on the
frequency used for the investigation: the lower the frequency, the deeper the penetration. Figure
100 presents the results obtained at three different depths: 6.8 um, 3.9 pym and 3 pm, i.e.
respectively 2.21 GHz, 6.87 GHz and 11.83 GHz along a straight line that contains ZrO2, the

oxide—metal interface and Zr—O zones.
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Figure 100: Superimposed phase shift profiles (red, blue and green) for several depths with the
location of the interface and compared with NRA results for the oxygen concentration (yellow).

The phase shift profiles obtained for three different frequencies, i.e. at three different depths,
are almost superposed, as can be seen in Figure 100. This confirms that the phase curves are
only influenced by the chemical composition of the solid solution. We recall here that the
normalization is performed using only information on the pure Zr (which is set to zero) and
ZrO (which is set to 1) and does not use the Zr—O zone. The phase shift profile can be used to

reveal the presence of oxygen and to measure its diffusion length.

Figure 100 shows also the superposition of the SMM curves with the NRA measurements of

the oxygen concentration in the Zr. One can note that the SMM response shows that the size of
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the zone where the material has different properties compared to the original metal is sensibly

the same as the oxygen-enriched zone revealed by NRA.

The NRA results are obtained with a lateral resolution imposed by the accelerator beam size
(about 3 x 3 um? and a depth of 3 um) for a step scan size of 2 pm between each measure point.
Also this measurement represents an average value. By SMM, the lateral resolution is superior,
since between two measure points the step scan size is 100 nm for 20 nm contact radius. This

difference can explain the variations between the SMM curves and the NRA curve, in particular.

The small variations in the interfacial region for different investigation depths, as previously

remarked in Figure 98.

In addition, the phase shift ¢ in SMM seems to be related to the oxygen concentration ¢ as

follows:

@ =K(c)c (29)

with K(c) the proportionality factor which can be a function of the concentration. One can also

propose the inverse form of the previous relation:

c=F(p)p (30)

with F(@) a factor to be found by calibration. After calibration, Eq. 30 could be used to measure
the oxygen concentration by SMM. The assumption of a proportionality relationship between
the shift phase of SMM and the concentration of oxygen is confirmed when comparing the
NRA measure with SMM measures. This rapid calibration, with the present measurements,

shows a linear trend (Figure 101).

159



30 y= 1.15x— 0.003
2 _ //.
R*=0.94 -
2E A
A
/J
F 2 rd
- .—"/
B A
o 12 "
z e
. o~
0 e
.-'f
.—"/. .
1/-’
:' ’/ |. T T T T
0.00 005 010 0.15 0.20 0.25
Phase (%)

Figure 101: NRA versus SMM phase shift measurements. The slope of the fitted curve was
0.94 indicative of a linear relationship between the two values.

Furthermore, by referring with a white dashed line the border between ZrO; and Zr-O, one can
observe an evolution of the border position depending on the frequency (and thus on the depth)
(Figure 102).This highlights that the inhomogeneous nature of the boundary in the volume can

only be achieved only by this tomographic SMM measurement.
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Figure 102: Successive SMM images obtained at frequencies (top) 11.83 GHz; (middle) 6.87
GHz; (bottom) 2.21 GHz, corresponding to different depth in the material.

Consequently, under the ZrO, layer, the SMM technique reveals a gradient of the metal
properties. This gradient is related to the quantity of oxygen dissolved in the metal lattice. This
method shows very encouraging results for the chemical characterization of the oxide—metal
interface. SMM can facilitate the measure of the diffusion length of the oxygen in the zirconium

lattice with a spatial resolution of about 50 nm.
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4.2.3. Conclusion
In conclusion, the present work shows that the SMM technique not only allows the detection of

subsurface defects with high resolution. Change in conductivity is associated with the diffusion
of oxygen in metal. The possibility to characterize the in-depth distribution of the light chemical
elements like oxygen in the metal represents an important feature of the SMM technique. The
great advantage of this technique compared to those currently used is that measurements can be

realized under the contaminated surface without any specific sample preparation.

Moreover, we noticed that the phase shift response seems to be proportional to the oxygen
concentration, confirmed by NRA measurements. The calibration of the SMM phase signal
with respect to the concentration of the chemical element dissolved in the metal lattice could
lead to a quantitative technique with sub-micron spatial resolution. The authors are presently
working on the calibration of the SMM method by comparing several oxygen concentration

profiles measured by NRA with the corresponding SMM phase shift response.

As we noticed the sensitivity of SMM to the difference in chemical composition, we propose
that SMM should be used for the exploration of other phenomena linked to a change in
conductivity of the material. This includes stress in materials. In the following section of this
chapter, we explored the performance of SMM to detect local changes in the conductivity due

to residual stress in metals.
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4.3. Introduction to the nanoscale non-destructive
characterization of residual stress by Scanning Microwave
Microscopy

Non-destructive characterization of residual stress is a major challenge in research on metallic
materials. Indeed, its control is necessary to create material with the required properties. Major
problem is that metals lifetime and properties are directly related to the stress condition that
cannot be estimated by in situ, non-destructive, nanoscale methods. Anticipate the stress
evolution in materials is a major issue, particularly for industry®?!. The accurate measurements
for the stress characterization inside materials are based on destructive methods such as Deep
hole drilling (DHD)?*??, or quantitative non-destructive analysis such as X-Ray Diffraction
(XRD)?®, or neutron diffraction’?*. However, these non-destructive techniques currently used
take plenty of time (from hours to days) and do not permits the characterization of all kind of
samples: a complex geometry and/or a not enough thick sample could be really problematic.
Generally, the measurements correspond to an average of the information obtained on a small
volume and correlated to the beam diameter (around 100 um or more for XRD).

The main advantage of the SMM techniques lies in its precision. By coupling the nanoscale
resolution of the AFM with the VNA analyzer, one can have access (as presented before) to the
local conductivity of materials. Here, we present an introduction to a new way to use Scanning
Microwave Microscopy (SMM) for the non-destructive, high resolution characterization of

residual stress in metals.
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4.3.1. Residual stress definition?2522
Residual stresses are present in almost all solids, including metals, glasses, ceramic, or

polymers. Mechanical and metallurgical events during the fabrication of the material can cause
residual stress. Almost every manufacturing process leads to a new state of the residual stress,
especially if the piece undergoes mechanical treatments. These residual stresses (or) can be
multi-axial, self-balanced, elastic static strains, existing in an isolated system of constant
temperature and with a stable environment.

Theses stresses exist at different level. Due to the polycrystalline, multi-phased, nature of the
majority of metallic materials, the deformations at the origin of residual stress can affect the
material at the macroscopic, microscopic, or submicroscopic scales. Depending on the scale,
one has to consider at least three different types of stress 2*’ (Figure 103):

First order: residual stress (also known as macroscopic) o'r: they are located at the scale of a
multiple number of grains or at the scale of the entire component. These stresses are
homogeneous (constant in intensity and direction on huge domains composed of a great number
of grains). They can be characterized using gauges, which measure the deformations generated
by the stress 2%,

Second order: residual stress (homogeneous microscopic residual stress) o'g: they are
homogeneous across domains corresponding to a grain or a part of a grain for mono-phased
materials. They come from the difference of crystalline orientation between neighboring grains.
During a mechanical solicitation of the material, some grains will reach the elasticity limit
which will lead to heterogeneity in the material behavior.

Third order: residual stress (heterogeneous microscopic residual stress) o'"'g: at this level, we
reach the limit of the stress definition. Stresses are heterogeneous across the crystal and even in

a few interatomic distances areas. These stresses are generated by all the kind of crystalline
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defects present in grains such as lack, interstitial defect, substitution of atoms, dislocations,
sacking defect, or crystal twinning >%°.

Second order residual stresses can be considered as fluctuations around an average value
formed by the first order stresses, as shown in Figure 103. Third order residual stresses can be
considered as fluctuations around an average value constituted of variations due to the second

order stresses.

©

Figure 103: Profile of the data corresponding to the different orders of residual stresses with
or', or' and or'" the residual stresses of first, second and third order.

Residual stresses have a great impact on the lifespan and quality of the materials and
components. Large residual stresses may cause a material or component to break or fail. The
defect inducing the rupture of the material often forms at the surface of the piece. Indeed, the
roughness of the surface and its direct contact with the surrounding media can generate stress
concentrations. As a result, surface treatments have emerged as an effective solution to improve
the performance of materials in industrial applications 23° 23!,

In some cases however, the presence of residual stresses may be beneficial 2*2. For instance,

compressive residual stresses can be introduced to increase the mechanical performance of the

material 233, Surfaces treatments have been shown to introduce compressive residual stresses in

165



the material and to generate a superficial hardening of the surface (from a few hundredths of
millimeter to some millimeters) 23, The impact of surface treatment with the case of shot-

peening 2** will be discussed in the next session of this chapter.

4.3.1. Residual stresses measurements

4.3.1.1. Destructive techniques (or semi-destructive techniques)
Mechanical destructive investigation techniques are called relaxation methods. They consist of

measuring the stress relaxation produced in a material when a portion of it is removed. By
measuring the deformation resulting from such relaxation, the macro-residual stresses are
determined by analyzing the successive equilibrium states. The most common techniques

) 235

include hole drilling (determination of residual stress gradient up to 1.5mm and deep hole

drilling (determination of residual stress gradient up to 750mm) ¢,

4.3.1.2. Non - destructive techniques
There are a few non-destructive characterization techniques to determine residual stress in

materials. The most common and accurate techniques are X-ray diffraction and neutrons
diffraction techniques 2*” 2%, The analysis of X-ray or neutron spectra allow the determination
of macro-residual stresses and also provides information on the micro-deformation.

X-Ray diffraction (XRD)

Elastic deformations resulting from stress in the material lead to modifications in the crystal
planes distances of the material. With XRD it is possible to determine the distance between
these planes and to determine the local elastic strain. Most of the metals are composed of grains,
with specific orientation depending on their crystallographic arrangement. Polycrystalline
metals that are submitted to a strain undergo a deformation in their crystal lattice. In the general
case, the analysis of stress by XRD is based on the measure of the interplanar spacing variation

of a crystal planes (Figure 104), also known as Bragg’s law.
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Figure 104: Bragg's law principle: in a material with crystal planes separated by d; d can be
determined using the relationship between the angle and wavelength of the incoming beam and
the n index of the refraction of the medium.

Any modification in the interplanar spacing leads to a modification of the X-Ray diffraction
spectrum in form of a shift of the diffraction peak®®. Thus, using Bragg’s law, the elastic
deformation can be linked to the peak displacement. In addition, the plastic deformation will be
detected by an enlargement of the diffraction peak®® . Consequently, the stress can be related
to the deformation measurements realized in XRD (the depth investigation can be adjust from
20A to 30um depending on the materials properties and on the incidence of the X-rays, with a
minimal spot size of S50um).

Neutrons diffraction

The neutron diffraction and the X-ray diffraction techniques are quite similar because they both
allow measuring the elastic deformations of a polycrystalline material whose interplanar
spacing is modified. However, the neutrons and the X-rays interact with the matter in very
different ways. While X-rays interact with the electronic cloud making them sensitive to high
atomic number atoms with their large electronic cloud, neutrons interact directly with the atom
nucleus. Neutrons penetration in metals is greater than X-rays. Neutrons allow measurements

of residual stress up to a few centimeters (30um for X-ray). A 3D cartography of the residual
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stresses inside the material can be achieved with a spot size of the neutron beam between 1mm
and Smm.

In Summary, techniques to study residual stresses at various scales, destructive or not, can range
from 10pum for XRD to centimeters for all other techniques, as shown in Figure 105. However,
a majority of these techniques remain destructive and do not provide direct measurement of
residual stress in a material. Therefore, a non-destructive high resolution, accurate, and fast
technique providing a direct measure of residual stress with simple of steps is still lacking. We

will now present our contribution to this limitation.
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Figure 105: Residual stress measurements techniques presented with respect to the
measurement depth they can probe and the amount of material removed>*’.

168



4.3.1. Study of shot-peening influence on stress profile
We decided to continue the studies on the same kind of material as the one used previously for

the study of the diffusion of light chemical element. Thus, we will focus on the characterization
of pure zirconium in order to investigate the influence of a shot-peening treatment on the stress
profile of this material. The stress profile obtained by SMM will then be compared to the one

realized by the incremental hole-drilling method?!”.

4.3.1.1. Shot-peening treatment>#!

Shot peening consist in a cold mechanical treatment used to produce a compressive residual
stress layer and modify mechanical properties of metals (Figure 106). The surface to be treated
is impacted with shot of metallic, glass or ceramic balls with a sufficient force to create a plastic
deformation (Figure 107). The main objective of shot peening, as any surface treatment is to
introduce compressive residual stresses’* to increase resistance to fatigue and corrosion in
order to improve the service performance of the mechanical components. However, its main
disadvantage is the generation of a surface roughness by the impact of particles, which has a

243 Optimization of treatment and compromise are

negative effect on the resistance to fatigue
needed for each type of materials to obtain high residual stresses over a large depth while

maintaining acceptable roughness.
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Figure 106: Illustration of shot-peening method used to prepare our samples®** High speed
impact between the small balls and the materials modifies the surface by generating residual
stresses in the material.

depth Mpth
> >

Figure 107: Characteristic profiles used in shot peening®: (a) plastic deformation profile, €,
and (b) residual stress ores variations as a function of depth.
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In order to optimize this process, several parameters can be changed and affect the residual
stress state introduced. The main shot-peening parameters which influence the residual stress
are: the shot peening time, the diameter, the nature and weight of shot and the projection speed.
For a given ball diameter and a given projection rate, the greater the peening time is plus the
higher the shot-peening influence depth and the compression stress are. The peak of the
maximum of the compression stress increases and shifts in the inside direction.
Similarly, the increase in projection speed has the same effect as increasing the duration of
treatment.

Increasing the diameter of the balls causes an increase in the depth affected by the compressive
residual stress, but does not alter notoriously the value of the compressive stress.

These parameters and their influences are summarized in Figure 108.

Material stiffness#--- ———— depth

- - -p-Balls diameter, pressure

- - -p Balls diameter, pressure

Shot peening time

Figure 108: Schematic of the effect of some parameters on the shot-peening stress profile>*’.

For our study, shot-peening was realized during 10 minutes on rectangular 80 x 40 x 2mm
zirconium plates. The parameters were chosen to introduce residual stresses in a stratum of
about 300 um thick under the metal surface. The process uses tungsten carbide balls of 2 mm

of diameter and a sonotrode vibrating at 20 kHz with an amplitude of 24 um?'".
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4.3.1.2. Obtaining of the stress profile by incremental hole-drilling method
The incremental hole-drilling method is a quite simple technique to measure residual stress in

materials. Considered as a semi-destructive, indirect method, the residual stress distribution is
measured following one direction, a sense and a magnitude depending on the depth of the hole.
It consists in a hole drilled in the material at the location where one want to measure the residual
stresses. Due to the drilling of the hole the locked up residual stresses are relieved and the
corresponding strains on the surface are measured using suitable strain gauges bonded around
the hole on the surface. From the strains measured around the hole, the residual stresses are
calculated using appropriate calibration constants>*S,

Figure 109 presents the residual stress profile for 10 min shot-peened sample. The
measurements show a particular shape of the stress distribution: the most superficial layers are
slightly compressed then deeper the negative stress gradient leads to a minimum algebraic value

located at circa 100 um of depth followed by in inversion of the gradient sign leading to positive

values (tensile stress). This kind a profile is well known in literature®!”.
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Figure 109: Residual stress profile of shot-peened Zr obtained by incremental hole-drilling
method?!”.
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4.3.1.3. Scanning Microwave Microscopy for residual stress measurements
The shot-peened Zr sample was then analyzed by SMM at a given frequency of 8 GHz.

As the imaging mode of the SMM is limited of 80 x 80 um area scan, several images were
realized and superimposed to reconstruct the complete zone of interest (Figure 110). The shot

peening surface is represented by the number 5 on Figure 110.

o l _

400 pm

Figure 110: SMM amplitude images realized on the shot peened Zr sample (image full size: 80
x 400 um). Repions (1) to (5) represent successive images obtained across the region of interest.

One notice that there is no major contrast changes between the images 1,2,3,4 and 5 as we
observed in the case of the oxygen diffusion. However, small contrast variation are observed
between images. To compare these images, we extracted for each image the most prevalent
value of the phase shift (Figure 111b). Then, we plotted this value as a function of the distance
for each image. The residual phase profile obtained by SMM measurement is given in Figure

111a.
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Figure 111: Phase profile on a shot-peening sample realized by SMM. a) Phase profile obtained
by measuring the amplitude of the largest peak for each one of the zones. b) Spectrum obtained
by averaging the collection of spectra obtained for each image in Figure 110.

The profile obtained by SMM is completely similar to the one realized with the incremental
hole-drilling method. The curve show perfectly the compression and the traction areas, a
contrary to the hole-drilling the SMM results are obtained in a direct way.

Imaging being not a necessary condition in that kind of study and taking into account the spatial
distribution of the residual stress effect (macroscopic effect), we modified the analyze method
to make it faster and easier.

Instead of realizing a set of picture, for each point of measure (every 50 um in that case) we
realized an amplitude spectrum (Figure 112) in using the displacement of the motorized stage
allowing a measure step from 5 um to a few millimeters. Then, for a fixed frequency
(represented by the black line on Figure 112), we plot the amplitude variation as a function of

the distance. This method will be from now used for the determination of stress profile shape.
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Figure 112: Representation of the SMM amplitude peaks versus frequency. Each peak provide

from a different area of the shot peened sample to analyze.

Consequently, the measurement of the shot-peened Zr sample were realized with the procedure

previously described. The shot-peening profile can be observed in Figure 113. One can notice

again the excellent correlation between the profile obtained by SMM and the one obtained by

indentation measurement 2!7. The interesting point to notice is that the SMM gives directly the

profile of the residual stress without any intermediate calculations.
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Figure 113: SMM measurements compared to the indentation profile
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4.3.2. Study of shot-peening treatment on a brass sample
Now that the first evidence of the sensitivity of SMM to stress inside a material have been

highlighted, it is necessary to confirm these results by the study of another kind of material.
That’s why we focused on a brass sample presenting different shot-peening times.

SMM measurement were realized as previously described.

Previously, we showed that a shot-peening treatment leads to an increase of the compression
stress peak as well as its shift to the inside of the sample (Figure 108). The phenomena is
checked here and presented in Figure 114 which perfectly highlights the shot-peening treatment
time impact. Indeed, the shot-peening treatment impact distance previously estimated at 950pum

for a 20 minutes shot-peened sample rises until 1150um for a 40 minutes shot-peened sample.

shot-peening 40 mn
shot-peening 20 mn

Amplitude (dB)

I g I ¥ I . I . I . I »
3000 2500 2000 1500 1000 500 0
Distance (um)

Figure 114: Influence of the shot-peening time - Comparison between 20min and 40min shot
peened samples (the shot-peened surface is located on the left part of the graphic representation)
showing a shift in frequency and a change in amplitude that may be used for quantitative
analysis.
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4.3.2.4. Conclusion
In the case of the study of different materials, we highlighted the potential of the SMM

technique for non-destructive and direct stress profile measurement. The shot-peening surface
studied presents a stress profile comparable to the one we expected.

Namely, we assume that SMM technique could provide a direct access to the residual stress
profile with a sensitivity to the compression and tensile stress. The next step would be to realize

a calibration that directly links the amplitude variation (in dB) with the MPa variation.
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4.4. Conclusion

In this chapter we highlighted the high potential of SMM for tomographic investigation of
metallic samples. Due to the high sensitivity of the technique to local changes in the
conductivity of materials, the diffusion of light chemical element inside zirconium was
observed. Moreover, we assume that the technique could allow to measure a stress profile in
material in a direct and easy way with high reproducibility. This advance in characterization
could lead to a great advance in qualification and quantification of stress in materials. The
preliminary results obtained lead to the creation of a laboratory in collaboration with ARDPI
Company. We focus now on the optimization of this technique for the industry through the

realization of a portative prototype to realize in situ analyses.
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Conclusion
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This thesis reports my PhD work carried out during the years of 2013 to 2016 at the Optique
Submicronique et Nano Capteurs team of the Institut Carnot de Bourgogne (ICB), under the
supervision of Pr. Eric Lesniewska and Dr. Eric Bourillot.

The work was realized in collaboration with Dr. Lauréne Tétard from the University of Central
Florida, Pr. Alexandre Dazzi from Universit¢ Paris Sud (and Marie-Joelle Virolle from

Université Paris Sud 11.

The main objectives if this thesis were to exploit and develop the subsurface nanoscale imaging
by the use of Atomic Force Microscopy.

For the first time, the study of the influence of frequency parameters on the volume
investigation by acoustic microscopy (MSAFM) was performed. Moreover, through the
fabrication on nano-calibrated samples realized at the technological platform ARCEN
(Applications, Recherches et Caractérisation a 1’Echelle Nanométrique) of our laboratory, a
numerical model, aimed at the understanding of the role of frequencies applied for the
subsurface characterization, was developed and experimentally validated.

Next, MSAFM was applied to the characterization of dielectric and biological samples.
Furthermore, the sensitivity of the technique to low density structures was revealed through the
analysis of polymer samples and the tomographic reconstruction of the insulation profile of the
polymer by electron beam lithography. Additionally, in order to achieve the complete
understanding of biological samples, the AFM-IR — which provided chemical information -
were combined to MSAFM to the study of the distribution of lipid vesicles inside Streptomyces
bacteria. This allowed the study of the complex biological processes, such as biofuel
production. A prototype of AFM-IR/MSAFM is being prepared, a disclosure invention was

realized and the corresponding patent is currently in preparation.
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However, the theoretical model developed for metal samples cannot be applied anymore on
dielectric ones and a further study to have access to a perfect correlation between frequency

and depth investigation in soft matter is being developed.

On the other hand, although the power of MSAFM technique combined to AFM-IR for in-
volume and chemical characterization of biological samples was explored, the full
characterization of metal samples still remains rather obscure. In this respect, the second part
of the thesis focuses on the SMM, which possess a great sensitivity to local changes in material
conductivity. This was demonstrated through the analyses of calibrated samples and applied to
the study of diffusion of light chemical element (oxygen) in metal (zirconium). The promising
results obtained by this techniques interested the industrial sector, and a research laboratory
was developed with ARDPI industrial company.

Moreover, the thesis addresses the perspectives of the SMM technique for the determination of
residual stress in materials. Interestingly, this technique turns out to offer great and promising
characterization possibilities for the industry. Specifically, the ICB laboratory is involved in the

development of an SMM portative version for in-situ measurements.

The next studies to realize consist in developing a data bank to calibrate the SMM on different
materials and thus being able to link with high accuracy the amplitude and phase variations to
the electric conductivity of the materials and to the stress value in MPa.

Actually, a study on metal alloys made of silver and gold is conducted to link the amplitude
variations to the exact percentage of elements in the sample.

Moreover, it could be interesting to focus on the study of biological samples by SMM technique

and to develop a liquid cell to be able to realize in-situ measurements.
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As a conclusion, MSAFM and SMM techniques offer a whole set of thorough subsurface
characterization methods, ranging from biological to metallic samples in a frequency range
from MHz to GHz. The coupling of these two complementary techniques would allow a full,
in situ characterization of many different materials.

As the continuation of my scientific research, I start a postdoctoral fellowship at the Institute of
life science at the Universit¢ Catholique de Louvain (UCL, Belgium) in August under the
direction of Pr. Yves Dufréne. This new research topic focus on the interaction of bacteria with

surfaces explored by AFM and force spectroscopy analysis.
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