N
N

N

HAL

open science

Nanomateriaux hybrides poreux a base de silice et de
dioxyde de titane: de la synthése aux applications

Pengkun Chen

» To cite this version:

Pengkun Chen. Nanomateriaux hybrides poreux a base de silice et de dioxyde de titane: de la
syntheése aux applications. Other. Université de Strasbourg, 2017. English. NNT: 2017STRAF010 .

tel-01635731

HAL Id: tel-01635731
https://theses.hal.science/tel-01635731
Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01635731
https://hal.archives-ouvertes.fr

/" UNIVERSITE DE STRASBOURG EDSC

Sciences Chimiques

ECOLE DOCTORALE DES SCIENCES CHIMIQUES
Institut de Science et d’Ingénierie Supramoléculaires (ISIS)

TH ES E présentée par :
Pengkun CHEN

soutenue le : 10 février 2017

pour obtenir le grade de : Docteur de I'université de Strasbourg
Discipline/ Spécialité : CHIMIE

Titania and silica based hybrid porous
nanomaterials: from synthesis to
applications

THESE dirigée par :

Mme DE COLA Luisa Professeur, Université de Strasbourg
RAPPORTEURS :

Mme GIORDANO Cristina Professeur, Queen Mary University of London

M. MAGGINI Michele Professeur, Universita degli Studi di Padova

AUTRES MEMBRES DU JURY :
M. RABU Pierre Docteur, Université de Strasbourg






Table of contents

RESUME ...ieuiiiiiiiiiiiiiiiiiitiiniieiieiiiteaieteeineaaisteasirensssteasistensistasssnessesesssenenssssensssennsenes 1
Chapter 1 INtroduction.......ccciieiiieiiicieireireeeereereereeereeesessessseaseenseraseraserasesenssenssens 21
0 RN T g TN = Tol oY o] Lo -V AP P PRRPUR 22
1.2 Mesoporous and Microporous MaterialS .........ccveeiecieeiiiiiieeeercieee e e e e e eseeeeeeaes 24
1.2.1 MCropOroUS MQALEIIQIS ........ccc.vveeeeeeiieeeecieeeeseieeeestte e e e ettt e e e sttae e e e eetaeaeesttaaeessssaeesasenas 24
1.2.2 MESOPOIOUS MALEIIAIS .......cccceeveeeeeeeeeeeeeee ettt e et e e e e e e ste e e e s ta e e e s ranaeesaseeas 25
1.3 POrosity CharaCterization.........ccueeeieciiiee ittt e e et e e e e e bae e e e ebae e e e eneeeeeeaes 26
T 2T I 1 o T=To T PRSP 27
1.3.2 TRICKNESS @QUALION ....ocetieeeeiee ettt ettt e et e e s et a e e st e e s sbtea e s ssaaaeesaseeas 28
1.3.3 BIJH MELROM.......cooeeeeeeeeeeee ettt e et e e e te e et e e e st e e e st ta e e s sastaaessaseaaeesanes 29
YNGR 3 2 o) o) 1 =1 1 1 Lo Yo LSRR 30
1.3.5 Molecular simulation MEthodS.............c.eovueereeneiriieieeeseeee ettt 31

L. 3.6 DFT MELAOM ...ttt sttt e e eane s 32
1.4 Surface characterization ...........cocui i 33
O > To K foll 014 [ Lot o] (=X OO UUR 34
O O 10 (o 1oL 1] ole L1 o] £ DSOS USSR 38
1.4.3 UNWANTEA fEATUIES ..ottt ettt ettt e e ettt e e e e taa e e e atae e e e staaaeesssnaeeeasanas 39
1.4.4 Chemical State iNfOrMALION .............c..ueeeeceeeeeeeceeeeeeciee e e eeccte e e et te e e e sta e e e sreaa e e e 40
1.4.5 AQVENLILIOUS CATDON.......c..eeeeeieeeeeeeeee ettt 41
1.5 SCOPE OFf thE TNESIS ..eviiiiciiee e e ere e e e s bae e e e ebtae e s sbeeeeeenes 42
1.6 REFEIENCES ..coneeeiee ettt et ettt st sttt b e s reesaeesareereens 44

Chapter 2 Synthesis and characterization of the silica and titania based porous

LT 1 =T 4 T N 50
P20 R [ 014 e Yo [0 T 1 T o FU PO R PSPPI 51
P 4 =To ] 11 1= I T TR PRT PR 55

2.2.1 Synthesis and morphology control of Zeolite LTL ...........cccccvueeeeeevueeeeeciieeescieeeeecieeaanns 55

1



2.2.2 DiSC SNAPEA ZEOITE LTL ..ottt e st e sttt e e st e e e sstas e s ssaeaesssseaeeas 57

2.2.3 Barrel ShAPEd ZEOITE LTL........ccocvueeeeeiiieeeeiiiieeecieeeesstieeessiteeeessitea e s s svteaessssaeaesssssneasens 59
2.2.4 Hexagonal ShAPed ZEOIItE LTL .........cccuveeeeeeeiieeeeieeeeecieeeeeceee et e e e cteaeeeeaeaaessaeea e 62
2.3 Mesoporous Silica Material .......ccueeiieciiie e e e 64
2.3.1 Synthesis method and theory of mesoporous Silica ..............ccceceveeeeecvveeescieeeeeiiieeaann, 64
2.3.2 MCM-41 type MESOPOIOUS SiliCQ ....cccccvveeeeesiiieeeeiiiieeeesiieeessieeeesiieaeeesieaessssieaessssseeaenas 66
2.3.3 SBA-15 type MeSOPOIroUS SiliCO .........cccuueieeeiiieeeciiieeesiieeessieeescteaeeesieaeessieeessssineeenas 68
2.4 MESOPOIOUS TITANIA ..eveiiiiiieiiiiiiee ettt e e e e et e e e e e s s ebtree e e e e e s s saasnreeeeeeeeeas 71
2.4.1 Mesoporous titQnia PAITICIES............cccuueeeeceeeeeeciieeeeceee et ee et e e e tee e e e seaaeesaaea e 71
2.4.2 MesSopOorous titQnia filM ..............c..oeeeeuveiieecieee e et ee et e et e e st a e e s eanea e 74
2.5 Mesoporous silica/titania hybrid film ........ccooeiiiiiiiiec e 76
2.6 ConCluSioN @aNnd PEIrSPECLIVES ...cciviiii ittt e e s e e e saae e e s sabaeessnnsaeeeas 78
2.7 EXPErimental SECHION .....viiiiiiiie ittt e e e st e e st e e e a e e e e rreee s 79
2.8 REFEIBNCES ...ttt b e bt sttt et et e bt e she e st sab e e be e b e nreas 81

................................................................................................................................. 84
I [ o1 do o (¥ Lot oo F TP PUPOTOPRRPRPTOPR 85
3.2 Dye adsorption study over bulk powder of mesoporous silica........cccceccueeeeiireeeenciieeeenee, 87

3.2.1 Effect of the functionGliZAtion ...............ceeeeeeeeeesiieiieeiiiieeecieeesctee e e ciee e scteeeessaeea e 87
3.2.2 Effect of the material dosage and dye concentration ............cccccueeeecvveeeecvveeseiiinnnnnn, 90
I = j =Toy e ) il o) OSSN 93
I o =Toy e ) i 1 1T Y DS 96
3.2.4 Effect of the porosity of MeSOPOrouUs SiliCQ..............cceceueeeeeccuieeeeiiieeeeciieeeeciieeeeeiaeaen, 97
3.3 Dye adsorption over stationary phase of mesoporous silica materials ..........c.ccccvveennneee. 100
3.4 Dye adsorption over stationary powder of mesoporous silica materials with enhanced
[oT=Ta o] 00 F=1 g ol U PRSP 103
3.5 Conclusion and PErSPECLIVES .......uuiiieeei it e e e et e e e e e e e e e e e e b aae e e e e e e e e e nnreaaees 106
3.6 EXPErimental SECHION ......vvii i e rre e e e are e e e arees 107
3.7 RETEIBNCES ...ttt ettt e b e st st s b e st b e b e s re e saeesaneereen 110



Chapter 4 Highly selective artificial neurotransmitter receptors from zeolite based

NANOPOIroUS MAtErIAlS ...ccuuuiiiuiiiiiiiiiiiieiiic et rensesenesereneserenssssnnssssnns 112
/0 oY i oo [ ot o] T TSV PP PO PPRURRTOP 113
By o o To] i) il el ] g Tol= ) AR PRSPt 114
4.3 DEteCtiON IMIT...eiiiiiiieieeeeee ettt ettt st nneas 120
4.4 MOIECUIE SEIBCTIVILY ..veieieiiiee ittt e e et e e e et e e e e ate e e e ebteeeseneaeeeeans 125
4.5 SeNSING APPIICALIONS .eeiiiiiiieicieee e e e st e e s st e e s sbee e e e sbeeeessrraeeeeans 128

4.5.1 RALIOMELIIC SENSING ..vvveeeeeeeeeiieeeee ettt ettt e e e e e sttt e e e e e s e sssisbbaeneaeeesnas 128
4.5.2 Release indicator for 1abel-free Arugs ............cuuuvureeccieeeeeciieeeeciieeeeecieeeeeciea e 129
4.6 ConclusSion and PEISPECLIVES .....eiiiiciiieeeciieee ettt et e e et e e e ette e e e etae e e s eeateeesebeeeeeereneeeanes 130
oy A <Y T 0 g 1= 0] =1 Y=Yt o o [T PURRt 131
4.8 RETEIBINCES ..eeeiiieeette ettt ettt ettt ettt ettt et e st e s bt e e s bt e e bt e e s st e e sabeeesabeesabeeebeeesabeeeneean 139

Chapter 5 X-Ray induced luminescent Cu(0) clusters inside porous materials........... 141
DL INEFOUCTION ettt ettt et e st e s bt e e sab e e e bt e e sabeesbeeesabeesaneean 142
5.2 General approach for the synthesis of Cu(0) cluster inside porous materials.................. 143
5.3 Luminescence CU(0) ClUSEENS frOM CU . ......oueveeeeeeeeeeeeeeeeeeeeee e eeeeesese s eeeseseesese s eeeeesnans 146
5.4 Luminescence Cu(0) clusters from CUl ........ccueiiieiii e ittt 151
5.4 Conclusion and PEIrSPECLIVES .....cccviiii ettt e et e e eetee e e e ebee e e e bae e e eeataeeeenreas 160
5.5 EXPErimental SECHION .....uviii i e e e e e arees 162
5.6 REFEIENCES ...ttt sttt sttt sn e 165

Chapter 6 Multi-functionalized mesoporous titania for bio-application.................... 167
6.1 INErOAUCTION ..coniiiiiieieee ettt st st b e b e s e smeesaneereens 168
6.2 Functionalization and characterization ..........ccceeveieriiiien e 169
6.3 IN Vitro bio-apPliCatioN ..eeeeee i 172

6.3. 1 DrUQG AEIIVEIY.....ooeeeeeeeeeeeee ettt ettt ettt e ettt e e e et a e e s te e e e stte e s e sttaaeesraaaeenanes 172
6.3.2 ROS release under UV irfidiQtion ..............cccocueeeueeseeeseeneineiniieeeseeeeseesee s 175
6.4 Conclusion and PEIrSPECLIVES ...ccccciiieiiciiee ettt e ertre e e e rrre e e e bae e e e eabee e e enres 179
6.5 EXPerimental SECHION .....uiiii i e e e e e e e e e e nrarae s 180
5.6 RETEIENCES ...ttt ettt h e sttt bt be e be e sbe e satesateeteens 182



Chapter 7 Organotitania material for photocatalytic application(s).......cccceeeeervvennnnns 184

/8 (a1 oo [FTor i oY o VPSP ST USRTO PR 185
7.2 Synthesis and characterization.........ooocciieiieciiee e 188
7.2 D THi-BON ..ttt ettt ettt 188
7.2.2 TH-TRHO .ttt ettt ettt sat e sttt e e naee s 194

2 T Vo) oot | =1 Y2 -SSR 199
7.3.1 PROtOPRAYSICS PrOPEIEICS. ...cccceveveeeeiieeeieieeeeiee e ettt e sstee e esta e e s ssea e e ssseaaessaseeaessases 199
7.3.2 Photocatalysis UNAEI UV ...........oooecueeeeeiiiiieeeiiieeesieeeesiee e esita e esstta e e ssieaaessseea e s 202
7.3.3 Photocatalysis under visible light ..............ooeecuveeeeeiieieeiiiiieeeciee et eseaa e 204
7.3.4 Discussion of photocatalysis r@ACLION. .............cecccvereeecieeeeeiiieeeeciieeeecieeaeesieaaeeesveeas 205

7.4 Conclusion and PEIrSPECLIVES ....ccccuviiii ittt e ertee e e ree e e e rae e e e eabaee e enres 208
7.5 EXPerimental SECHION . ...uiiii et e e b ae e e e 209
7.6 REFEIENCES ..ttt ettt et s e st e e s bt e e bt e e sar e e sbeeesabeesneean 213
Chapter 8 INSTrUMENTS ......ccccuiiiiiiiiiiiiiiiieirre e reassersasessnsssssssesenssersnsssssnssssnnnns 216
T WAV AV L o1=Tol d o - olo ] « |V O PP PSPPI 217
8.2 Steady-state emisSiON SPECLIOSCOPY cooevviurriiiiieeei et e e e eecrrr e e e e e e erbeare e e e e e e e s anreaeeeas 218
8.3 Scanning electron MIicrosSCoOPY (SEM) .....oeiiiiiiiiiiee ettt et 219
8.4 Transmission electron Microscopy (TEM) .....oeeiiiiiiee it e 220
8.5 Laser scanning confocal MICrOSCOPE ......uviiiiiiiiiiciiie et 221
8.6 Dynamic light SCAttering (DLS)......cccueeecieeeiiee e ecitee et ettt e e rtre e st e e ar e s e e ere e e sabaeeanee s 222
8.7 Zeta-POLtENTLIAl .ccciceiiie e e bae e e e ebae e e e nrees 223
8.8 Thermogravimetric analysis (TGA) ..cccccuiii et eeree e e e eaaee e e e 224
8.9 Powder X-ray diffraction (PXRD) .......coccuuieiiiiriie ettt ettt e et vae e e e tee e e 225
8.10 REFEIENCES ...ttt ettt ettt e sb e sat e st e st et e e beesbe e s bt e satesabeeteans 227
SUMIMAIY ceiiiiiiiiiiieiiieireireireeiteeiteeteetrastrasstaestsestsestsesseassrassrassrssstosssenssensssnssrnssranss 228
AcKNOWIEdEemENtS ......cccuuiiiiiuniiiiiiiniiiiiiiiiirr e rrsas s sane s s s enassssnens 246
oW ol V| U] 4y Y - - 248



R&ume

Introduction

En 1992, I’entreprise péroliee Mobil a deécouvert une nouvelle classe de maté&iaux
poreux composés de silice et ayant des pores uniformes, nommé M41S.' Depuis, les
nanomaté&iaux poreux ont attis€1’int&& de beaucoup de chercheurs en raison de leur
capacité a encapsuler des molé&ules, leur grande surface ainsi que leur facilité de
fonctionnalisation.” De nombreux autres maté&iaux poreux ont &édéveloppé depuis,® et
certains d’entre eux, comme les zédlites, ont &éutilisé&s dans des applications autres que
la catalyse.* De nos jours, ces maté&iaux poreux trouvent des applications en
photovolta'fjue, pour des capteurs, en bio-imagerie, ou encore en libé&ation de

médicament. > ©

Dans notre groupe, des chercheurs ont déeloppédes nanoparticules méoporeuses de
silice pour la lib&ation de mélicaments,” ainsi que des zévlites de type LTU,
fonctionnalisées de diffé&entes maniées afin de transporter des mélicaments et pour la
thé&apie génique.® De plus, de tels systémes ont &éutilisés comme des substrats pour
I’adh&sion de cellules.” En me basant sur les réultats pré&eédents, le but de ma thése est
de développer de nouveaux matéiaux poreux hybrides abase de silice (SiO,) et de
dioxyde de titane (TiO,), ainsi que de contrder leur taille et leur porositéafin de les

utiliser pour diverses applications.
Réultats et Discussions
Synthése de maté&iaux poreux

Un effort consé&juent a éedéouéau contrde de la morphologie et des propriéé de

matériaux poreux. Ces systames sont déerits dans le tableau 1.



Tableau 1 Liste des synthéses de mat&iaux poreux et leurs propriéeés.

Maté&iau Description Taille de Pore
) Forme de disque, 1 |um de diaméire,
Zeévlite LTL ] ] 0.7 nm
200 nm d’épaisseur ou moins
) Forme de tonneau, 800 nm de
Zevlite LTL R o 0.7 nm
diameétre, 400 nm d’épaisseur
Forme Hexagonale, 2 de
Zelite LTL o ] HY 0.7 nm
diamékre, 5 pm de long
MCM-41 Sphére, 100 nm de diamétre 3nm
SBA-15 Forme Hexagonale 12 nm
Particules TiO, Sphée, 400 nm de diamétre 11 nm
P123-TiO, Film 7nm
P123-TiO,-silice Film 8nm

Dépendamment du matéiau, chaque s&ie de mat&iaux poreux a &€ synthéisé& via
diffé&entes approches. Pour les maté&iaux microporeux tels que les zélites, la
cristallisation de gel dans des conditions hydrothermales a é&&utilisé.'® Tout comme
pour les mat&iaux méoporeux, nous avons employédes méhodes de synthese sol-gel
ainsi que I’auto-assemblage induit par éaporation.**™ Dans tous ces cas, la modification
et ’optimisation de synthése ont é&éeffectuées. La caract&isation de ces mat&iaux a &éé&
effectué& a I’aide de microscopie @ectronique atransmission (TEM) et &balayage (SEM).
Les pores ont ééé&udiés avec le TEM mais éjalement par diffusion aux rayons-X apetit
angles (SAXS) et par mesure de sorption d’azote. La structure cristalline a &é&obtenue
par diffraction aux rayons X de poudre. Un exemple de caract&isation de maté&iau

poreux est donnéen Fig. 1.
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Fig. 1 Caracté&isation de maté&iaux poreux. a) image SEM de CTAB-silice; b) image
TEM de MCM-41; ¢) courbe de sorption d’azote isothermale de MCM-41; d) distribution
des pores de MCM-41; e) spectre UV-visible a I’&at solide de MCM-41; f)

diffractogramme SAXS de MCM-41.



Adsorption de colorants par des materiaux de silice fonctionalisé

Depuis des dé&ennies, le problene liéal'introduction des deéehets dans I'environnement
est mis en &idence comme une alarme a 1’é&helle mondiale. La nature de ces dé&hets
s’é@end des produits inorganiques aux produits organiques qui ont &ée utilisés pour
plusieurs applications.'* Parmi les polluants, les colorants repréentent une classe
importante de composé& dangereux. Il n'est pas surprenant que le rejet d'eaux usees
contenant des colorants dans les cours d’eau provenant des industries du textile, du papier,
des tapis, du cuir, de la distillerie et de I'impression induise des problé@mes pour la santé
humaine tels que la dermatite allergique, l'irritation cutané, le cancer et la mutation. Il en
est de mé@&ne pour les organismes aquatiques, ayant pour conseguence des problames
relatifs &la nature esthé&ique de I’environement.” Les déshets rejetés contenant des
colorants induisent la formation de sous-produits dangereux provenant de I'oxydation, de
I'hydrolyse ou d'autres réactions chimiques dans les eaux usées.'® Il est important de
mentionner que, comme l'indiquent Singh et al., Les eaux usees des industries textiles
sont considéées comme les plus polluées parmi tous les secteurs industriels.'” En effet,
les industries textiles emploient un volume important d'eau et de produits chimiques pour
le traitement de leurs produits. L'indice de couleur éaumee plus de 8 000 produits
chimiques associé au processus de teinture, y compris plusieurs variéé de colorants.™
Dans la plupart des cas, I'utilisation de diffé&entes mé&hodes de traitement est né&essaire
pour @iminer tous les contaminants préents dans les eaux usées. Parmi ces méhodes,
I'adsorption physique est I'une des méhodes les plus efficaces pour &iminer la couleur de
l'eau.’® R&emment, les mat&iaux abase de silice méoporeuse ont fait l'objet d'une
attention considé&able en raison de leur structure hautement ordonnée, de pores de taille
nanomérique et de leur surface importante.’® % Lors de ces travaux, l'adsorption de
colorants avec un groupe sulfonique par des silices fonctionnalisés a @éééudieé (Fig. 2a,
b). Les mé&hodes de sonication et d'agitation ayant leurs propres limites et ne pouvant pas
ére appliquéss pour le traitement de I'eau avec une grande quantit€ un dispositif a &é
développéen utilisant une méhode de filtrage (Fig. 2c). Alors que ce dispositif puisse
traiter une grande quantitéd'eau, une diminution des performances a &€& observeée en
raison du temps de contact entre lI'adsorbant et la solution de colorant inferieur. Pour

résoudre ce problame, un systame de polymere ré&iculéa éedéveloppépour ajouter plus



de groupements de type amine, efficaces pour l'adsorption de colorant. En comparaison
avec le filtrage simple, la capacitéd'adsorption a @€augmentée. Les préccupations en
matiére de santéet d'environnement ayant augmentéces derniées années,?* la crétion de
ce ré&seau de particules réiculé pourrait empécher les particules de s’é&happer du
dispositif et de diffuser dans un environnement susceptible de crér des problemes

environnementaux.

) (™o  Directblue b)
'(. 5 1.4 1 — Dye solution
R g WV NV, Ny Y 1.2 = = = After adsorption
‘\“} \"“.} L ) and
210 7 wmog 1.0 4
s
& 0.8 4
=] & N
Ny O Mg, 5 0.6 -
i 0.4
3 0.2+
03 OH 0.0 e ,_ _____ — —_——
0 300 400 500 600 700 800

=
B

' A
S

d) g/ ! , ]

Fig. 2 a) structures chimiques des colorants “direct blue” et “sulforhodamine” b)
comparaison entre le spectre d’absorption UV-visible et les images obtenues d’une
solution aqueuse de “direct blue” a 5%10° M (2 mL) en pré&ence de MCM-41 non
fonctionnalisees et fonctionnalisées par des groupements amines (12 mg) apres 5 minutes
de contact; c¢) images de solutions de “sulforhodamine B” sous lumi&e ambiante et
lumiée UV, de gauche adroite: solution initiale (5*107 M), solution filtré par du gel de
silice 60, solution filtré par du gel de silice 60 fonctionnalisee, solution filtré& avec des
particules de SBA-15 fonctionnaliseées, eau sans colorant ; d) images de solutions de
“sulforhodamine B” sous lumi&e ambiante et lumiée UV, de gauche adroite : solution

initiale (5*107 M), solution filtré par du gel de silice 60 fonctionnalisée et réiculé,



solution filtré par des particules de SBA-15 fonctionnalisés et ré&iculés, eau sans

colorant.

Maté&iaux nanoporeux abase de zédlites pour une déection trés hautement séective de
petites biomoleeules

Malgré des dé&ennies d'efforts concentrés, les ré&epteurs artificiels restent infé&ieurs
comparé& aleurs homologues naturels en ce qui concerne l'affinitéet la séectivité Les
réepteurs candidats dont la conception éait destiné & optimiser les interactions
réepteur-ligand (modde dit de serrure-cléd'Emil Fischer)® permettaient, &l'exception
notable des syst&mes multivalents,” des affinités de liaison modé&ées dans I'eau,
n'atteignant en aucun cas celle des ré&epteurs protéques.” La dé&ouverte réente de
I'importance de I'effet hydrophobe non classique dans les poches de liaison des proténes,
bien prot&és, et dans les cavité&s de I'hGe offre une autre straté&gie de conception de
réepteurs biomiméiques.>® Dans ce chapitre, nous suivons cette voie et signalons
plusieurs effets extr@nement sdectifs de reepteurs artificiels pour les
neurotransmetteurs d'amines aromatiques, par exemple la sé&otonine, la dopamine, la

(nor)éinéhrine et I’histamine (Fig. 3).

Le concept (illustré sur Fig. 3a) est basé€ sur le piégeage de colorants chargé&s
positivement al'int&ieur de zélithes chargés négativement, et l'interaction avec les
neurotransmetteurs, possélant également une structure chargé positivement (l'aminé
proton&), réultant ainsi en une extinction de I'@nission du colorant. Il est important de
noter que les ré&epteurs sont fonctionnels dans des tampons et des milieux biologiques
(par exemple le s&um sanguin) et peuvent &re utilisé& pour &udier la dégradation des
neurotransmetteurs ou leur déivrance dans des cellules vivantes en temps re&l. Il est
connu que les mat&iaux zeédlitiques peuvent &re chargés avec des colorants fluorescents,
ce qui est éendu ici ades colorants sensibles al'analyte indiquant ainsi la pré&ence d'un
neurotransmetteur de type amine aromatique. Nous remarquons que nos maté&iaux
réeepteurs peuvent atteindre des facteurs de séectivitéd'environ 10 000, alors qu'une

diffé&ence de séectivitésupe&ieure 100 est rarement observee pour la complexation de
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Fig. 3 a) repré&entation schématique du concept pour les déecteurs de
neurotransmetteurs. La fluorescence d’un colorant encapsul€ dans les canaux d’une
z&lite peut @re éeinte apr& [’encapsulation d’une biomolé&ule. b)-c) structures
chimiques de neurotransmetteurs/hormones contenant des amines aromatiques et pouvant
é@re déect& par les ANRs, et de colorants; d) spectres d’é@missions de ANR-L2 (25
o/mL) aprés addition de séotonine e) prise cellulaire des ANRs chargés par des
meélicaments et couverts ala surface, ré&ultant aprés relargage du mélicament d’une
augmentation de I’intensit€d’&@nission de I’ANR. f) Micrographes confocales aintensité
codé montrant une prise cellulaire de I’ARN charg€par la s&otonine et couverts ala
surface par des polylysines a differents temps d’incubation : 1h (gauche), 4h (centre) et
24h (droite), et leurs images achamp clair correspondantes. Aexe = 405 nm, €helle=
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molé&ules organiques par d'autres hées artificiels dans I'eau.? *°

Plusieurs applications ont &&développées sur cette base de neurotransmetteurs artificiels.
Des maté&iaux poreux capables de stocker des gaz®* ou de relarguer des mé&licaments®
ont trouvéde larges gammes d'applications industrielles et méalicales, mais 1’énergence
de stratégies de suivi pour des processus de chargement et dé&hargement de cargaison est
relativement ré&ente.®* 3* Souvent, des analogues de mélicament marqué par un
fluorophore® ont &&employé pour éudier la cinéique de relargage du dit mé&licament.
Cependant, les mé&licaments marqué pré&entent inévitablement un profil biologique
modifiépar rapport au meélicament parent. L'utilisation de maté&iaux poreux avec un
transducteur intégré émettant un signal fluorescent, est une donc alternative prometteuse,
permettant de surveiller le chargement et le relargage de produits sans marquage. Nous
avons chargéde I’ANR-L1 («Artificial neurotransmitter receptor >»avec des zélites L et
le colorant 1) avec de la sé&otonine (non @émissive) et recouvert d’une couche de
polylysine attirant les cellules (Fig. 3e). Ce transporteur de mé&licament a &é&facilement
pris en charge par des cellules vivantes de gliome C6 de Rattus norvegicus. Ensuite, la
libé&ation intracellulaire de la sé&otonine s’est dé&oulé& au cours de 24 heures, comme on

peut le déduire du ré&ablissement progressif de I'énission de I'ANR (Fig. 3f).

Formation de clusters luminescents de Cu (0) dans des maté&iaux poreux induits par
irradiation aux rayons X

En tirant profit de la difféente taille de pores, les clusters de Cu (0) ont &€synthé&isés
avec succes sous exposition de rayons X. Les clusters méalliques sont largement utilisés
dans des applications en catalyse, bio-imagerie, et optique.®® *" En comparaison avec les
clusters de mé&aux nobles, bien éudiés, le cuivre pourrait &re une bonne alternative dans
difféentes applications, car il n’est pas on&eux et est relativement &ologique. Au cours
des dernieres annees, seuls quelques articles ont rapportéla synthése reussie de clusters
luminescents de Cu (0).%* 3 Le principal probléme est que comparéal‘or ou l'argent, le
cuivre est relativement facile aoxyder, entramant la perte de ses propri&é optiques.

C’est pourquoi la plupart de la synth€se rapportee a &éérealisee en solution et les clusters



ont dOi&re prot&yé par des surfactants ou des ligands.®® *° Comparéala ré&luction par
d'autres agents reéducteurs, la ré&luction photo-assistée pré&ente l'avantage d’avoir un
certain contrde de la position de ré&luction et de purification, ce qui est trés approprié
pour la formation de clusters dans un espace confiné A. Katrib a dé&ouvert dans les
années 1980 que, par exposition aux rayons X, le Pt (IV) peut &re réluit en Pt (11).**
Depuis, plusieurs recherches ont montréla possibilitéde ré&luction du platine, de I'or ou
de l'argent sous irradiation aux rayons X.** En 2014, le groupe de recherche de J.
Hofkens a développéla méhode de formation de clusters d'argent al'int&ieur de zélites
par cette méhode.* L'avantage de I'utilisation des rayons X est que la réluction peut &re
contrdé in situ, ce qui n'est pas possible en utilisant I'hnydrogéne ou un autre agent
rélucteur chimique. En modulant la taille et la forme de la source de rayons X, diffé&ents
motifs de l'espéee ré&luite peuvent &re cré&s. Dans notre cas, nous utilisons la méhode de
réluction induite par les photons (rayons X) pour réuire les espeees de Cu (1) chargéss

en clusters de Cu (0) al'inté&ieur de nos maté&iaux poreux (zevlite et silice) (Fig. 4a).

Les clusters ont &éprotéé par leur encapsulation et restent stables dans I'air pendant
plusieurs mois. Les €&hantillons ont é&écaract&isés en tant que matéiaux et pour leurs
propriéés spectroscopiques. Par microscope afluorescence, on observe que les parties
ayant é€exposé& aux rayons X sont @nissives, ce qui n’est pas le cas des parties non
exposeéss (Fig. 4b). Selon des analyses en XPS, le cuivre obtenu est de type Cu (0). La
trés courte duré& de vie (nano secondes) de I’&at excitésuggere que le cuivre a une forme
de cluster. L’@nission du cluster de Cu (0) en fonction de la taille des pores a éeéudiee.
Il est clair qu’avec une plus grande taille des pores, 1'@nission de longueur d'onde
sup&ieure 2400 nm augmente (Fig. 4c). Nous avons donc développ€avec succes une
méhode pour former des clusters de Cu (0) in situ en utilisant les rayons X. Les
applications potentielles telles que la catalyse ou la crétion d’un dispositif optique

pourrait &re possible via nos clusters de Cu (0).
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Fig. 4 a) Approche synthé&ique des clusters de Cu (0) par é&hange ionique et insertion de
Cul; b) images au microscope a fluorescence d’&hantillons avant et aprés exposition aux
rayons X; c) spectres d’@mission (excitation: 270 nm) de clusters de Cu (0) dans
diffé&ents maté&iaux poreux; d) clusters de Cu (0) obtenus par exposition aux rayons X a
partir de Cul a I’int&ieur des zélites sous lumi&e ambiante et sous irradiation UV (bleu

brillant: clusters de Cu (0); rouge: clusters de Cul non ré&luits).

Titane mé&oporeux pour des applications biologiques.

Il est connu que la silice a &éutilisé& comme agent de lib&ation de drogue.** Né&nmoins,
I’utilisation de TiO, dans de telles applications est largement moins éudiee. Par exemple,
les mat&iaux hybrides poreux abase de TiO, ont &e test&s pour la lib&ation de
mélicaments. En raison de sa biocompatibilité sa facilité a&re fonctionnalis€ et ses
propriéés photo-actives, le TiO, pourrait &re un candidat idé&l pour des applications
biologiques. ***® Les nanoparticules de TiO, n’&ant pas énissives, la fluorescéne sera
encapsulee dans les pores afin de servir comme marqueur optique mais aussi pour mimer

I’encapsulation de m@&licaments que I’on pourra suivre a la trace. Afin de parvenir a cela,
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des nanoparticules mé&oporeuses de TiO, de 400 nm de diamékre, avec des pores de 11

nm ainsi qu’une surface fonctionnalisé ont &eutilisess.

——O0min
— 5min
~———10min

—20min
—— 30min

———35min
——40min

Intensity (a.u.)

0 ' 50 ' 160 ' 1&'30 ' 2(')0 ' 250

Pixel
Fig. 5 Expé&ience in vitro de nanoparticules méoporeuses de TiO; a) internalisation dans
les cellules et libé&ation de fluorescé@ne ; b) les cellules contenant les nanoparticules de
TiO, sont tuéess apres irradiation UV (vert : fluorescéne, bleu : DAPI, rouge : cell-ROX) ;
c) intensitéde fluorescence du luminophore cell-ROX sous irradiation UV, indiquant la

cinéique de libé&ation des mol&ules.
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Nous avons fonctionnalis€ la surface des nanoparticules a 1’aide d’aminoacides afin
d’avoir une meilleure biocompatibilit€ Les nanoparticules meésoporeuses de TiO,ont &&
dé&oré&s avec de ’alanine, en attachant des groupements —COOH & la surface des
particules, et en couplant ces derniers avec des groupements libres —NH, de 1’alanine de
la fluorescéne isocyanate. Enfin, nous avons couvert le tout avec de la polylysine afin de
proteger le mat&iau et d’augmenter la charge positive de la surface pour faciliter
I’internalisation des particules dans la cellule. A I’aide d’exp&iences in vitro, nous avons
confirmél’internalisation des nanoparticules mésoporeuses de TiO, dans les cellules en
observant 1’é@nission de la fluorescéne attachée covalemment aux particules. Parmi
toutes les cellules, la fluorescéne n’a &étrouvé que dans les cellules qui contenaient
des nanoparticules (Fig. 5a), cela suggé&ant que la libé&ation de fluorescéne a &é
effectuée apré& I’internalisation des particules. Des éudes de microscopie confocale par
co-localisation ont montré que ces particules n’ont pas d’affinit& particuliée pour un

organe speifique.

Les nanoparticules méoporeuses de TiO, sont connues pour leurs propriéés de lib&ation
d’espéees réactives oxydantes (ROS) par irradiation UV.*" La particule elle-méne
possexle donc la capacitéd’agir comme un agent pathogéne. Afin d’&udier la cinéique de
relargage de ROS sous lumiée UV, un pigment couramment utilis€ appelécell-ROX, a
ééemployé Le cell-ROX n’est pas @missif en temps normal mais une émission dans la
réion du rouge peut &re déecteée apres oxydation. Les déails cinéiques du relargage de

ROS par I’&ude de I’intensitéd’@nission du cell-ROX sont montrés dans la Fig. 5c.

Matériaux de type organotitane pour des applications en photocatalyse

Un grand d€éi dans la modification du dioxyde de titane est la possibilitéde modifier la
bande interdite (band gap) en introduisant des groupements chimiques dans la structure
du TiO,. En raison de la ré&ctivitédifféente du TiO, par rapport ala silice, la proc&lure
normale déerite pour la silice hybride ne peut pas &re appliquée pour le TiO,. Par
cons&juent, nous avons développé€ une stratégie pour la synthée d’un complexe

organotitane ayant une liaison Ti-C covalente en utilisant des moléules organiques
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comme agents de liaison (linkers). En tant que maté&iaux trés prometteur, le dioxyde de
titane est principalement utilisé pour des applications photochimiques telles que les
cellules solaires acolorants photosensibles et comme un photocatalyseur, en raison de
son excellente fonctionnalité sa stabilité &long terme, et sa non-toxitcit&é®® *° Afin
d'am@iorer la photoréctivitédu TiO; et d'&endre sa limite d'absorption dans la région de
la lumiée visible, le dopage par divers cations méalliques de transition a &é
intensivement éudi&™ >! Toutefois, en raison de l'instabilitéthermique du mat&iau dopé
la photoactivitédu TiO, adopage cationique se trouve diminué&, méne dans la ré&ion
UV.>2 C’est pourquoi les nanomatéiaux organotitane hybrides sont censé é&re plus
efficaces en raison de la combinaison des parties organiques-inorganiques par des

liaisons covalentes.

En utilisant des organolithiens réctifs synth&is€ des mat&iaux abase de liaisons Ti-C
ont éésynthéiseés. Les agents de liaison utilisé éaient le benzéne et le thiophene (Fig.
6a). Les produits ont &écaract&isés par diffé&entes mé&hodes. Gr&e ala spectroscopie
de photoéectrons induite par rayons X, XPS, nous pouvons voir clairement la diffé&ence
entre le TiO; et ’organotitane. En effet, concernant 1’@ément titane, nous remarquons
une diffé&ence d’énergie de liaison de Ti-C, comparé aTi-O (Fig. 6c). De plus,
I’&ément carbone de la liaison C-Ti aromatique a éé identifié (Fig. 6b). Par
spectroscopie UV-Visible, nous pouvons transformer les spectres en courbe de Tauc, et
la bande interdite a && déerminée. Le Ti-benzene et le Ti-thiophéne ont une bande
interdite respectivement de 2.43 et 2.05 eV, ce qui est plus faible que le TiO, pur qui est
de 3,03 eV (Fig. 6d). De plus, le monomé&e de l'organotitane que nous avons obtenu
peut-&re polymé&iséet un réseau abase de dioxyde de titane hybride avec des agents de

liaison de type benzéne ou thiophéne peut &re formé

Les propriéés photocatalytiques de des maté&iaux Ti-benzene et Ti-thiophene ont &é&
éudiess, et des mé&anges mat&iaux hybrides (masse fixee et constante) /rhodamine B en
solution (concentration fixée et constante) ont &€exposé& ade la lumiée UV ou visible.
Comme attendu, sous irradiation UV, le maté&iau de dioxyde de titane non-hybride a

montré&les meilleures performance photocatalytiques. (Fig. 6e). Mais sous irradiation &
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Fig. 6 a) Structure de 1,4-bis-triethoxytitanyl benzene and 2,5-bis-triethoxytitanyl

thiophene; b) de&onvolution du spectre de I’@ément de carbone de Ti-thiophéne; c)
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spectre XPS de I’&ément Ti; d) spectre UV-Vis du pure TiO, et des organotitane. e)
ré&ction photocatalyique de la dégradation de la rhodamine B par les maté&iaux de
dioxyde de titane sous irradiation UV ; f) réction photocatalyique de la dégradation de la
rhodamine B par les materiaux de dioxyde de titane sous irradiation &alumiere visible.

lumiere visible, notre Ti-benzene a montréla meilleure performance photocatalytique en
raison de sa bande interdite inf&ieure par rapport au matéiau de titane inorganique (Fig.
6f). D'autres applications basées sur la photoactivitésous lumiére visible pourraient &re

développéss en se basant notre déouverte.

Conclusion

Pour conclure, mon doctorat se focalise sur la synthese, la caracté&isation et les

applications de matéiaux poreux abase de silice, dioxyde de titane et zélite.

La silice poreuse, le dioxyde de titane et les zélites ont &ésynth&isé en utilisant des
mehodologies diffé&entes. Des maté&iaux de silice fonctionnalisés ont &éutilisé pour
des applications en adsorption de colorant, ce qui est utile pour le traitement de lI'eau. Un
nouveau systame ré&iculéet un nouveau dispositif ont &écrés pour am@iorer la capacité
d'adsorption et pour le traitement d’une grande quantité&d'eau. En tirant parti des pores,
une nouvelle mé&hode de formation de clusters de Cu (0) a &€& éablie. Les propriéés
photophysiques ont &é éudiés, en utilisant plusieurs sources de cuivre et diffé&ents
maté&iaux poreux. L'utilisation du confinement pour la déection de petites mole&sules
biologiques tels que les neurotransmetteurs a &&dénontré. Plusieurs applications ont
éé¢& développees sur la base de ces réeepteurs de neurotransmetteurs artificiels. Un
maté&iau de titane mé&oporeux multifonctionnaliséa éeutilisépour les applications en
biologie. En comparaison avec la silice, plus couramment utilisé, sa photoactivité
pourrait apporter des avantages supplémentaires. Finalement, de nouveaux types de

maté&iaux de type organotitanes hybrides ont &&développés, et leurs propriéé photo-
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catalytiques ont &é démontreées. Durant cette p&iode, de profondes connaissances et

compéences sur les instruments de caracté&isation ont &alement &é&acquis.

16



R&&ences

N o v o~ w N

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359,
710-712.

C. T. Kresge and W. J. Roth, Chem. Soc. Rev., 2013, 42, 3663-3670.

L. Han and S. Che, Chem. Soc. Rev., 2013, 42, 3740-3752.

I. I. Ivanova and E. E. Knyazeva, Chem. Soc. Rev., 2013, 42, 3671-3688.

R. Zhang, A. A. Elzatahry, S. S. Al-Deyab and D. Zhao, Nano Today, 2012, 7, 344-366.

P. Innocenzi and L. Malfatti, Chem. Soc. Rev., 2013, 42, 4198-4216.

A. Bertucci, E. A. Prasetyanto, D. Septiadi, A. Manicardi, E. Brognara, R. Gambari, R.
Corradini and L. De Cola, Small, 2015, 11, 5687-5695.

H. Ldlf, A. Bertucci, D. Septiadi, R. Corradini and L. De Cola, Chem. Eur. J., 2014, 20,
10900-10904.

N. S. Kehr, B. Erglin, H. Liilf and L. De Cola, Adv. Mater., 2014, 26, 3248-3252.

Z. A. Ruiz, D. Bruhwiler, T. Ban and G. Calzaferri, Monatsh. Chem., 2005, 136, 77-89.

Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen and F.-Z. Cui, Chem. Mater., 2001, 13,
258-263.

W. Dong, Y. Sun, C. W. Lee, W. Hua, X. Lu, Y. Shi, S. Zhang, J. Chen and D. Zhao, J. Am.
Chem. Soc., 2007, 129, 13894-13904.

D. Chen, L. Cao, F. Huang, P. Imperia, Y.-B. Cheng and R. A. Caruso, J. Am. Chem. Soc.,
2010, 132, 4438-4444.

S. P. Buthelezi, A. O. Olaniran and B. Pillay, Molecules, 2012, 17, 14260-14274.

M. Anbia and S. Salehi, Dyes Pigm., 2012, 94, 1-9.

C.-H. Huang, K.-P. Chang, H.-D. Ou, Y.-C. Chiang and C.-F. Wang, Microporous
Mesoporous Mater., 2011, 141, 102-109.

K. P. Singh, D. Mohan, S. Sinha, G. Tondon and D. Gosh, Ind. Eng. Chem. Res., 2003, 42,
1965-1976.

S. Sivamani and B. Leena Grace, IJBST, 2009, 2, 47-51.

A. R. Nesic, M. J. Kokunesoski, T. D. Volkov-Husovic and S. J. Velickovic, Environ. Monit.
Assess., 2016, 188, 1-12.

K. Y. Ho, G. McKay and K. L. Yeung, Langmuir, 2003, 19, 3019-3024.

17



21.

22.
23.
24.
25.

26.
27.
28.

29.
30.
31.
32.
33.

34.

35.

36.
37.
38.
39.

40.
41.
42.

M. Hassellov, J. W. Readman, J. F. Ranville and K. Tiede, Ecotoxicology, 2008, 17, 344-
361.

E. Fischer, Berichte der deutschen chemischen Gesellschaft, 1894, 27, 2985-2993.

J. Rao, J. Lahiri, L. Isaacs, R. M. Weis and G. M. Whitesides, Science, 1998, 280, 708-711.
H.-J. Schneider, P. Agrawal and A. K. Yatsimirsky, Chem. Soc. Rev., 2013, 42, 6777-6800.
P. Snyder, M. Lockett, D. Moustakas and G. Whitesides, Eur. Phys. J. Spec. Top., 2014,
223, 853-891.

E. Persch, O. Dumele and F. Diederich, Angew. Chem. Int. Ed., 2015, 54, 3290-3327.

D. Chandler, Nature, 2005, 437, 640-647.

F. Biedermann, W. M. Nau and H.-J. Schneider, Angew. Chem. Int. Ed., 2014, 53, 11158-
11171.

H.-J. Schneider, Angew. Chem. Int. Ed., 2009, 48, 3924-3977.

D. A. Dougherty, Acc. Chem. Res., 2012, 46, 885-893.

R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 2008, 47, 4966-4981.

M. Vallet-Regi, F. Balas and D. Arcos, Angew. Chem. Int. Ed., 2007, 46, 7548-7558.

J. Karger, T. Binder, C. Chmelik, F. Hibbe, H. Krautscheid, R. Krishna and J. Weitkamp, Nat
Mater, 2014, 13, 333-343.

N. Yanai, K. Kitayama, Y. Hijikata, H. Sato, R. Matsuda, Y. Kubota, M. Takata, M. Mizuno,
T. Uemura and S. Kitagawa, Nat Mater, 2011, 10, 787-793.

N. G. Gubernator, H. Zhang, R. G. W. Staal, E. V. Mosharov, D. B. Pereira, M. Yue, V.
Balsanek, P. A. Vadola, B. Mukherjee, R. H. Edwards, D. Sulzer and D. Sames, Science,
2009, 324, 1441-1444.

E. C. Tyo and S. Vajda, Nat Nano, 2015, 10, 577-588.

Y. Lu and W. Chen, Chem. Soc. Rev., 2012, 41, 3594-3623.

W. Weij, Y. Lu, W. Chen and S. Chen, J. Am. Chem. Soc., 2011, 133, 2060-2063.

C. Vazquez-Vazquez, M. Bafiobre-Lopez, A. Mitra, M. A. Lépez-Quintela and J. Rivas,
Langmuir, 2009, 25, 8208-8216.

C. Wang, Y. Yao and Q. Song, Colloids Surf., B, 2016, 140, 373-381.

A. Katrib, J. Electron. Spectrosc. Relat. Phenom., 1980, 18, 275-278.

M. Fujiwara, H. Fujii, K. Tainaka, T. Matsushita and S. lkeda, Analytical
Sciences/Supplements, 2002, 17icas, i1065-i1067.

18



43.

44.

45.

46.
47.

48.
49.
50.

51.
52.
53.

E. Coutino-Gonzalez, D. Grandjean, M. Roeffaers, K. Kvashnina, E. Fron, B. Dieu, G. De
Cremer, P. Lievens, B. Sels and J. Hofkens, Chem. Commun., 2014, 50, 1350-1352.

I. I. Slowing, B. G. Trewyn, S. Giri and V. S. Y. Lin, Adv. Funct. Mater., 2007, 17, 1225-
1236.

K. C. W. Wu, Y. Yamauchi, C.-Y. Hong, Y.-H. Yang, Y.-H. Liang, T. Funatsu and M. Tsunoda,
Chem. Commun., 2011, 47, 5232-5234.

Z. FeiYin, L. Wu, H. Gui Yang and Y. Hua Su, PCCP, 2013, 15, 4844-4858.

R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Free
Radical Biol. Med., 1999, 27, 294-300.

A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C., 2000, 1, 1-21.

A. Hagfeldt and M. Graetzel, Chem. Rev., 1995, 95, 49-68.

H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, J. Synchrotron
Radiat., 1999, 6, 451-452.

J.-M. Herrmann, J. Disdier and P. Pichat, Chem. Phys. Lett., 1984, 108, 618-622.

T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett., 2002, 81, 454-456.

J. Tauc, Mater. Res. Bull., 1968, 3, 37-46.

19



20



Chapter 1

Introduction

Abstract

As stated in the title, in my thesis I will discuss from the synthesis to application of the
titania and silica based hybrid porous nanomaterials. In this first chapter of my thesis, |
would like to first introduce briefly about the nanoscience and nanotechnology. Then
series of porous materials will be introduced. The porosity and surface characterization
which are critical for porous materials will be introduced. And finally there will be the

scope of this thesis.

21



1.1 Nanotechnology

Nanotechnology which means the technology to manipulate nanometer sized (normally
less than 100 nm) objects was firstly described as a concept in the year 1970s.* Since then,
it has become one of the fastest developed technologies which applied into physics,
chemistry and biology field.>” Nanomaterials are the materials which have the size in the
same division. Due to the small size, nanomaterials have its exceptional electrical, optical,

magnetic, mechanical etc. properties.®°

A lot of nanostructures already exist in nature. Just list few of them: the hydrophobic
lotus leaf, the "spatulae™ on the bottom of gecko feet and some butterfly wing scales.
These nanostructures give the unique property such as the self-cleaning ability of the
lotus leaf. For the artificial nanomaterials, in fact, human beings have used nanomaterials
without noticing in ancient time. A famous example would be the Lycurgus cup from 4™
century which made from glass contains gold and silver nanoparticles (Fig. 1.1a). The
boost of nanotechnology started in the 1980s with the invention of scanning tunneling
microscope (STM).* It provides the essential technique to do researches in the nanoscale.
Later on, the discovery of fullerenes (Fig. 1.1b) and carbon nanotubes brought the
promising applications in the field of nanoelectronics.? % In the meanwhile, due to their
unique optical and electrical properties, nanoparticles also attracted a lot of research
interest in the field such as catalysis, biomedical application and optical devices.**®
According to Scifinder, there were more than 200000 papers which contain the concept
of nanotechnology published in the year 2015. Without any doubt, nanotechnology is a

promising field.

To create nanomaterials, there are two general fabrication approaches: bottom up and top
down. From the bottom up approach, small components are used to build bigger complex
systems. More precisely, several different techniques have been used in this approach.
The first technique we can easily think about is the traditional organic and inorganic
synthesis. In fact, the Nobel Prize in chemistry 2016 has been awarded to Jean-Pierre

Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa "for the design and synthesis of
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molecular machines".!” They have developed several molecular machines via organic
synthesis.’®? Self-assembly of molecules is another widely used technique in the bottom
up approach.??® The driving forces for the molecular self-assembly are typically slack
interactions such as van der Waals force, n—= interaction, hydrogen bonds etc. which
differs from the covalent or ionic bonds.?*?® Another well-known technique for bottom
up approach would be using the microscopic method to manipulate single molecules.?’
From the top down approach, large objects are used to fabricate smaller structures. The
most common technique is lithography which is widely used in the semiconductor
industry.?® %° Without this, we will never have powerful smart phones in our everyday
life.

a)

Fig. 1.1 a) Lycurgus cup; b) structure of Cg.

Due to the small size, it is more complicated to characterize nanomaterials and
nanostructures. In the beginning of the nanotechnology development, STM and atomic
force microscope (AFM) was invented in the 1980s.% ! In fact, earlier techniques such as
scanning electron microscope (TEM) and transmission electron microscope (TEM) can
also be used for the characterization.>* 3! For the characterization of electrical and optical
properties, techniques such as optical spectroscopy and fluorometer can be used.

Molecular characterization method such as nuclear magnetic resonance spectroscopy and

23



mass spectroscopy which widely used in the organic chemistry field can be also used for

nanoscale objects such as structures and quantum dots.3* 3

However, since the beginning of the 21* century, there are more and more concerns about
the nanotechnology, especially for the toxicity and the impact to the environment.>*>¢ In
vivo study on mice showed that the exposure of carbon nanotubes could result in
pathogenic behavior.®” The transformation of the nanomaterials in both environmental
and biological systems has been studied.®® All these studies remind us that even through
this is a promising field, certain concerns and regulations should still be applied during

the research.

1.2 Mesoporous and microporous materials

Porous material is the material that contains pores. As we are discussing in the nanoscale,
mesoporous materials and microporous materials are the main candidates in our research.
According to the international union of pure and applied chemistry (IUPAC), the pore
size of mesoporous material is between 2-50 nm and the pore size of the microporous
material is between 0.2-2 nm.* Herein, we are going to introduce both of these two

categories of porous materials.

1.2.1 Microporous materials
Three major types of microporous materials have been intensively investigated through

the years: microporous carbon, zeolites and metal-organic frameworks (MOFs).* 4!

With its microporosity, high surface area and high degree of surface reacticity, activated
carbon has been widely used for adsorption of dyes, heavy metal ions, toxic gas etc.*>**
The surface area of activated carbon could reach as high as 3000 m?/g.*> Although the
adsorption property of activated carbon was well-investigated and we have already used
it widely in our daily life (such as the smell adsorption material in the refrigerator),*

people are still trying to find new applications for this material. Pure and metal doped
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activated carbon can be used in catalysis applications.”® *’ In recent years, as global
warming has become a problem around the world, researcher have explored the
possibility of carbon dioxide capture using activated carbon.*® Also, application such as
the hydrogen storage by activated carbon has been investigated.*® Graphite, carbon black
and carbon nanotubes are another type of microporous carbon which their pore is more
slit-like.** °* ! Single and multilayer graphene which have unique electrical properties
attracted the research interests in the past decade.”® A more recent example, modular
graphene-based 3D covalent networks with slit micropores in between layers of graphene

sheets have been developed for energy applications such as supercapacitors.>®

Zeolites are aluminosilicate minerals with microporosity. They exist in nature and have
been discovered by people in the 18" century.>* Up to now, more than 200 different types
of zeolite framework have been identified, and the porosity of zeolites is due to the
unique arrangement of the crystal structures.** Thus, zeolites are widely used as
adsorbents such as molecular sieves we use in almost every chemistry lab, and catalysts
that widely used in oil industry.”®’ Artificial zeolite synthesis was first attempted in the
1960s.%® Afterwards, a lot of artificial zeolites have been synthesized and used based on
different needs.>® ® More recently, researchers are trying to synthesize special designed

zeolite framework for certain catalysis applications.®*

MOFs are another typical microporous material which is relatively new if compared with
carbons and zeolites. It was first reported by Yaghi et al.%? Since then, a lot of research
has been applied on MOFs.%* % The straightforward synthesis, nanoscale process ability,
predictable structures, network geometry, possibility of post-synthetic modification, and
relatively tunable porosity makes it interesting for many fields of researches.®® The
applications of MOFs are including the fields such as catalysis,®® sensing,®” gas storage,®®

medicine® and optics.™

1.2.2 Mesoporous materials
Several patents of mesoporous silica have been recorded around 1970,” ’? based on the

Stéher process developed from 1968.”° The commonly used mesoporous silica synthesis
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based on surfactant formed liquid crystal template was reported in 1992.* Since then,
more types of mesoporous silica materials have been developed using the same
principle.” "® This synthetic method is not only applicable to mesoporous silica synthesis,
but also to other oxides such as titanium oxide,”” tin oxide’ and zirconium oxide.” Due
to the unique properties of each oxide, these mesoporous materials have been used in
catalysis, photovoltaics, biomedical application etc.2>®? It is worthy to mention here that
since the residual of nanoparticles remains in the cells after drug-delivery could bring
potential health problems, breakable mesoporous silica which is bio-degradable was
recently developed in Prof. De Cola’s group.®® As discussed from the risks of the
nanotechnology and the toxicity of nanomaterials, this type of research would be helpful

to solve the problem.

1.3 Porosity characterization

Since we synthesize porous materials and use them for various applications, the pore
characterization is a critical point in our research. According to IUPAC, the pores are
classified into three categories based on their size. Pores with pore width less than 2 nm
are defined as micropore. Pores with pore width between 2 nm to 50 nm are defined as
mesopore. And macropores are the pores with pore width bigger than 50 nm.*® With the
size difference, different techniques have been used to investigate the pores. The pore
characterization methods can be categorized into the direct methods and the
simulation/calculation methods. Among the direct methods, microscopy methods such as
scanning tunneling electron microscope (STEM) or transmission electron microscope
(TEM) can give us the image of pores directly, but it’s not statistical data since only a
small part of sample is observed. Also, worm-like complicated pore structures are
difficult to characterize with microscopes. X-ray scattering/diffraction methods such as
X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) would give statistical
information of the ordered pores, but the pore size measured is the distance between atom
cores which is bigger than the effective pore diameter. They also have difficulties to

characterize the irregular pores. Traditionally, the theoretical calculation method was
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attempted to describe the experimental data by fitting isothermal data with ideal
isothermal equation which contains limited parameters, such as the K constant in the
Langmuir adsorption model and the C constant in the Brunauer—Emmett—Teller (BET)
theory adsorption model.2**® In some equations, additional parameters which make the

calculation more complicated are added into account to optimize the model 2> 8" 88

1.3.1 BET theory
In 1916, I. Langmuir presented the Langmuir equation which explains the monolayer

adsorption on a solid surface.®* It

is the first adsorption theory proposed but with
limitations such as multilayer adsorption is not applicable. BET theory was developed
from Langmuir theory. With the development, it can explain the physical adsorption of
multilayer gas molecules on solid surface other than monolayer.®> There are three
assumptions to create the BET model: a, gas molecules adsorb infinitely on solid surface
in layers; b, layers don’t influence each other and ¢, Langmuir theory can be applied on
each layer. The linear form of BET equation can be expressed as following:
D 1 c-1p
v(Po=D)  VmC = VmCPo

(1)

where p and po is the equilibrium and saturation pressure of the gas adsorbed at the
measurement temperature, v and vy, are the total and monolayer adsorbed quantity, c is
the BET constant. By experimental data, it is confirmed that between the relative pressure
p/po 0.05 and 0.3, linear relationship have been found between p/[v(po-p)] and p/po (Fig.
1.2).% Thus we can obtain the value of v, and ¢ by knowing the p, po and v value from
the measurement. Since the monolayer quantity v, is known, by knowing the size of the

gas molecules, the surface area of the sample can be calculated.
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Fig. 1.2 Scheme of using linear form BET equation to determine the volume of adsorbed

monolayer. Based on adsorbed gas molecule, BET surface area can be calculated.

1.3.2 Thickness equation
Based on the BET multilayer adsorption theory, thickness equations were developed in
the 1940s and 1950s. It describes the relationship between the pressure and the thickness
of gas layer. W.D. Harkins and G. Jura developed the Harkins-Jura equation in 1944.%
They obtained the thickness curve data from the non-porous alumina material. Later,
from J. Frenkel in 1946, G. Halsey in 1948 and T.L. Hill in 1952, Frenkel-Halsey-Hill
equation was developed by these scientists independently.®*®* This equation can be
applied into various non-uniform surfaces. The equation is given as following:
1

In p,

1
t=a(—)m 2
where t is the thickness, p; is the relative pressure, a and m are empirical constants which
related gas molecule and the surface. In the situation we use nitrogen adsorption at under
the liquid nitrogen environment (at 77K), the constant a equals to 6.0533 and m equals to

3.
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1.3.3 BJH method

Thickness: t

Kelvin radius: r

Pore width

Fig. 1.3 Scheme of cross section of a pore. Using BJH method, at the pressure p when
capillary condensation happens, pore width equals to the combination of Kelvin radius r
and the thickness of gas adsorbed t.

Thickness equations are not suitable for the determination of mesopores because of the
capillary condensation. In this case, BJH method was developed in the 1950s to
determine of pore volume and area distributions in porous substances through nitrogen
adsorption isotherms, especially for mesopore and macropore.®® The theory is based on
the following assumptions: a, the pores are cylindrical shaped; b, the diameter of the pore
is the sum-up of the Kelvin radius of the capillary and the thickness of the gas adsorbed
on the wall of the pore. The Kelvin radius is the radius of a capillary which the
condensation of the gas happens at a given pressure and temperature. It’s given as
following:

P, _ 2HyV;
Psat RT

In (3)
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where P, is the equilibrium vapor pressure, Ps; is the saturation vapor pressure, H is
mean curvature of meniscus, vy is the liquid/vapor surface tension, V, is the liquid molar
volume, R is the ideal gas constant and T is the temperature. For cylindrical pores,
H=1/2r which r is the Kelvin radius. By combine the Kelvin equation and thickness
equation at different pressure, the volume, diameter and surface area distribution of pores

can be calculated based on the experimental isothermal curve (Fig. 1.3).

1.3.4 t-plot method

4 Q: quantity adsorbed

Microporous material

Non-porous material

Micropore
volume

>

t: thickness

Fig. 1.4 Scheme of the Q/t curve to determine the micropore volume.

Due to the fact that Kelvin equation is explaining the macroscopic phenomenon of
capillary condensation, while in micropores, there are strong interaction in-between gas
molecules and between the gas molecules and the surrounding walls, BJH method can
only applicable with meso or macroporous material where condensed gas can be
considered as liquid as the macroscopic phenomenon.?® It seems to be not possible to
quantify the micropores in a direct way. In the year 1966, J.H. de Boer proposed the t-
plot method based on the thickness equation which can calculate the volume of
micropore.®® It is assumed that from the microporous material, the external surface

without the pores have same adsorption behavior of gas compare to the non-porous
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material. For the non-porous material, quantity of adsorbed gas and thickness of gas layer
have a proportional linear relationship (Q/t curve) which starts from zero. For
microporous material, external surface behaves the same for the gas adsorption which
makes the Q/t curve still linear at higher thickness. But in the region of very low
thickness, there are gas condensed inside the micropores which cause a rise of the Q/t
curve thus a positive value of intercept (Fig. 1.4). By the obtained Q/t curve, we can
calculate that the intercept of Q from the microporous material is the pore volume of
micropores and the slope of the higher thickness region is the external surface area.

1.3.5 Molecular simulation methods

As we know, there are limitations of assumption and simplification of the adsorption
phenomenon. In this case, traditional models can give an approximate evaluation of the
surface and the pores but not really accurate. According to literatures and our experiences,
these methods are more accurate to characterize big pores which the phenomenon is more
similar with macro scale. For small mesopores such as MCM41 mesoporous silica, error
could be up to 30% by applying the traditional methods.** * In order to obtain accurate
data, reference measurements such as TEM or XRD have to be done for adjusting some
parameters of the traditional model.*® Instead of the classic kinetic or phenomenological
approach, models using molecular-based statistical thermodynamic theory can also be
applied. In this method, the adsorption isotherm can be correlated to the microscopic
properties of the system, such as the fluid-fluid and fluid-solid interaction energy
parameters, the pore size, the pore geometry, and the temperature. The equilibrium
distribution of the gas molecules then can be calculated through the fundamental
thermodynamic law which adopts a configuration of minimum energy at the equilibrium
state. The interaction energy between different atoms are also needed here, which

commonly given by Lennard-Jones potential.®’

Molecular dynamics method and Monte
Carlo method are the most common methods to determine the distribution of gas
molecules in a system in equilibrium which are widely applied into physics, chemistry
and biology field. %% The disadvantage of these simulations is that if the system
contains hundreds or thousands of particles, calculation ability of super computer is

needed which is not accessible by many researchers.
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1.3.6 DFT method

In this case, density functional theory (DFT) gives an alternative for the molecular
simulation methods. DFT was developed in the 1960s based on the Thomas-Fermi model
to describe a system with many electrons.'® Such density function can be also applied to
the gas adsorption model. Slit pores of carbon were explored through DFT model in the
early research.'® In 1995, J.P. Oliver developed a DFT model that can describe the
physical adsorption of gas on both porous and non-porous materials.’®* Later in the year
2000 this model have been modified and applied in the determination of MCMA41
mesoporous silica material with a significant improvement of accuracy compare to the
traditional method.'® The model describes the density of certain adsorbed gas as a
function of distance from the solid surface at each temperature and relative pressure. For
the cylindrical shaped pore gas adsorption model, temperature is fixed but the pore is a
confined space. In this case, each density function of gas molecules adsorbed is related to
the pressure and pore diameter. By experimental isothermal curve, the quantity of gas

adsorbed and the pressure are measured. The following equation can be expressed:

Q(p) = [ dH q(p, H)f (H) (4)
where Q(p) is the quantity adsorbed at p, q(p, H) is the quantity adsorbed per unit of H

sized pore at p which can be calculated from the density function of p and H, and f(H) is
the total area of H sized pores. To simplify the model, limited numbers of p and H was

selected. The equation can be rewrite as:

Q(p) = Xiq(p, H)f (H;) 5)
Through the fitting of equation 5, information such as pore diameter, surface area and
volume can be obtained. Compare to the molecular dynamic method, a large amount of
calculation is reduced. But still, the calculation of the density function for gas adsorption
is still quite complicated. Generally speaking, four key parameters are considered:
chemical potential of the gas molecules, repulsion between gas molecules, attraction
force between the gas molecules and the wall potential from the surface. At infinite far
away from the pore, the wall potential is not applicable so there are only three parameters
and the pressure is equal to the equilibrium pressure. For porous materials such as

mesoporous silica, cylindrical pore models are applied. The capillary condensation
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moment is defined as at the certain pressure in a pore with a certain diameter, two
different density functions can both be the solution for the system. And by combining a
matrix of density functions for each pore diameter at different pressure, pore distributions
can be calculate through fitting the density function with each point of the experimental
isothermal curve (Fig. 1.5). Among our materials, the pores are either formed from
surfactant or crystal structure which are all cylindrical, the DFT model of cylinder on

oxidized surface were used for all our materials.'®

4 Q: quantity adsorbed D
l©.
N e
A

p: pressure
>

Fig. 1.5 Scheme of the DFT method. Quantity adsorbed volume was calculated from the

density function of each pressure, and fitted with the experimental isothermal curve.

1.4 Surface characterization

A material with just porosity would limit its application. Surface functionalization could
make it possible for various applications. In this case, the characterization of
functionalized surface is also a critical point in our research. Many surface
characterization methods have been developed through the years. There are two major
categories of these techniques: mass based techniques such as secondary ion mass

spectroscopy (SIMS) and energy based techniques such as X-ray photoelectron
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spectroscopy (XPS). For our purpose, Energy based XPS is the best technique for us
because it’s nondestructive (compare with all the mass based techniques), quantitative
(compare with SIMS), detective for both elemental and chemical information (compare
with energy-dispersive X-ray spectroscopy: EDX) and suitable for both inorganic and

organic characterization (compare with electron energy loss spectroscopy: EELS).*%®

1.4.1 Basic principles

Ejected K electron
(1s electron)

Vacuum \

Fermi \
valence band 77 7 A/ S A 7S

L;;

Incident
X-ray
L'I _. \. { b V)
K

Fig. 1.6 Schematic diagram of the XPS process of a 1s electron. Adapt from J. F. Watts
and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley
& Sons Ltd, 2003, with permission from John Wiley & Sons.

XPS is a surface sensitive and quantitative spectroscopic technique. In the 1950s, Kai
Siegbahn and his research group first developed the knowledge of XPS as an analysis

tool,"*" and few years after, the first commercial XPS instrument was produced by HP.

The principle of XPS is shown in Fig.1.6. A 1s electron was ejected due to the absorption
of the energy from X-ray. The ejected electron has a certain kinetic energy. The
relationship of the binding energy, kinetic energy and the initial X-ray photon energy is

expressed as following:
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Eg=hv—-E,—W (6)
where Eg is the binding energy of the electron before ejected, hv is the photon energy of
the X-ray, Ex is the Kkinetic energy of the electron after ejection and W is the work
function of the instrument. In this way, a photoelectric spectrum will accurately represent
the electron structure (of the electrons which their binding energy is less than hv-W) of an
element. Fig. 1.7 shows the contribution of different electrons to a certain spectrum.
Ejected electrons without any energy loss contribute to the characteristic peaks of the
spectrum. The ejected electrons which have inelastic scattering and other energy loss
contribute to the background of the spectrum. And of course, the characteristic electrons

with less binding energy will have more kinetic energy.

Table 1.1 The relationship between quantum numbers, spectroscopists' notation and X-

ray notation.

Quantum numbers Spectroscopists’ X-ray
n I S j notation notation
1 0 +/2 1/2 1s1/ K
2 0 +/2 1/2 2512 L,
2 1 1/2 1/2 2p1/2 L,
2 1 -1/2 3/2 2p3/2 L3
3 0 +/2 1/2 3S1/ M;
3 1 1/2 1/2 3p12 M,
3 1 -1/2 3/2 3p3/2 M3
3 2 1/2 3/2 3d3p, M,
3 2 -1/2 5/2 3ds, Ms

Peak split is a common feature for electrons which their orbital angular momentum
guantum number (I) is not 0. This is because that the electron angular momentum is the
result of the interaction between its spin and its orbital angular momentum. Table 1.1
shows the relationship between quantum numbers, spectroscopists' notation and X-ray
notation. Each electron has a spin angular momentum which can be either 1/2 or -1/2.
The orbital angular momentum and the spin angular momentum adding together
vectorially to produce the quantity of the electron angular momentum j=|l+s|. Thus, the
electrons from the p orbital typically have j numbers of 1/2 and 1/3. Similarly, electrons
from d orbital would have j numbers of 3/2 and 5/2, and for f orbitals, 5/2 and 7/2.
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Fig. 1.7 Photoelectron spectrum of lead showing the manner in which electrons escaping
from the solid can contribute to discrete peaks or suffer energy loss and contribute to the
background; the spectrum is superimposed on a schematic of the electronic structure of
lead to illustrate how each orbital gives rise to photoelectron lines. Adapt from J. F. Watts
and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley
& Sons Ltd, 2003, with permission from John Wiley & Sons.

After one electron has been ejected, there has to be another electron to fill this whole.
This could be achieved by emission of a photon from a relaxed electron which called X-
ray fluorescence.’® But there’s also another possibility that an electron absorbed this
energy and get ejected. This ejected electron is called Auger electron and can contribute
to characterized peak in the final spectrum. Fig. 1.8 shows a the process of a KLy3L,3
Auger electron ejection. Due to the fact that Auger electrons are usually from the outer
orbitals, they contain more chemical state information than the core electrons.
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Fig. 1.8 Example of an Auger electron emission: relaxation of the ionized atom by the
emission of a KL, 3L, 3 Auger electron. Adapt from J. F. Watts and J. Wolstenholme, An
Introduction to Surface Analysis by XPS and AES, John Wiley & Sons Ltd, 2003, with

permission from John Wiley & Sons.
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Fig. 1.9 Representation of electron intensity as a function of depth. Adapt from J. F.
Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John
Wiley & Sons Ltd, 2003, with permission from John Wiley & Sons.

For a surface characterization technique, it is essential to know the depth limit of the
detection. Beer-Lambert law describes how far for photon with certain energy can travel

through a material. It was discovered in the 1700s and with development since.'®® **° The
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intensity of electrons (1) that emitted deeper than a thickness (d) can be explained by the

following equantion:
d
I = Iexp(—3) W
where |y is the intensity of an infinite uniformed material and A is the wavelength of the

X-ray. For example, an aluminum X-ray source has a K,; emission of 1486.6 eV. We can

know that the detection depth for an infinite uniformed surface is 4-5 nm.

1.4.2 Quantification

Quantification is also an important feature for XPS analysis. Two major aspects could
influence the quantification: from the instrument and from the material. For instrument
related factors, there are mainly three. The first one is the transmission function of the
spectrometer. This gives the proportion of the electrons that transmitted through the
spectrometer against the kinetic energy. This function mainly depends on how the lenses
are arranged and usually measured by the manufacturers. The second one is the efficiency
of the detector which means how many electrons of all the electrons hit the detector can
be detected. The third factor is the stray magnetic field. These magnetic fields would
affect more for the electrons with low kinetic energy than with high kinetic energy. Thus,
this factor also has to be considered for the quantification. From the material point of
view, there are two factors that influence the quantification. The first one is the cross-
section of the emission electrons. This means how many electrons can emit upon the
initial X-ray irradiation. It depends on various factors such as the property of targeted
element, property of the certain electron orbital and energy of the excitation radiation.
Second factor is the distance of depth that the electrons can get escaped which introduced

before.

Finally, to quantify an element from a material, the following simplified equation is used:
[ = ]JpoKA (8)
where | is the intensity of the photoelectron peak, J is the photo flux, p is the

concentration of the atom or ion in the detection area, ¢ is the cross-section of the
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photoelectron production, K is the instrument factor that consist of all the factors

described above and A is the wavelength of the X-ray.

1.4.3 Unwanted features

X-ray satellite is one of the unwanted features in the XPS spectrum. The reason for this is
that the X-ray source always has several emissions other than the K,; emission. Table 1.2
shows the emission peaks of aluminum and magnesium X-ray source.

Table 1.2 X-ray satellite emission peaks.™*

Peak 012 a3 oy
Mg emission (eV) 1253.6 1262.0 1263.9
Relative height 100 8.0 4.1
Al emission (eV) 1486.7 1496.5 1498.5
Relative height 100 6.4 3.2

From equation (6) we can know that if the energy of the excitation photon is higher, the
detected kinetic energy would be higher. Thus small satellite peaks with lower binding

energy could appear on the spectrum. These features are called X-ray satellites.

The second unwanted feature is called shake-up satellite which we can see from the Cu
2p spectrum from CuO in Fig. 1.10. The shake-up satellite appears when an outgoing
electron interacts with valence band electron and excites it to higher energy level (shake-
up). This interaction would cause the loss of kinetic energy of the outgoing electron.
From equation (6) it’s clear that the binding energy calculated would be higher. These
electrons contribute to the final spectrum as shake-up satellites. Shake-up satellites are
observed in transition metal complexes and aromatic compounds which has the m-7*
transition. All these unwanted features would make the quantification more complicated

and should always be aware from.
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Fig. 1.10 XPS Cu 2p spectrum for CuO.

1.4.4 Chemical state information

Apart from the quantification of elements, the other important information XPS provides
is the chemical state information. The chemical state information is obtained by
analyzing the XPS chemical shift of the binding energy from the spectrum. The chemical
shift can be up to several eVs which can be seen from the XPS spectrum. The shift of the
binding energy can be caused by initial state and final state effects. For initial state effect,
the initial charge on the target atom before the photoemission process plays the major
rule on the magnitude of chemical shift. For example, the nitrogen 1s binding energy for
amine group is around 399 eV but for protonated amine is around 402 eV.**! In essence,
for the targeted atom, the more bonds formed by electronegative atoms, the more
chemical shift there would be. An example is that for the C 1s electron, the binding
energy of C-C is 284.8 eV, C-O is 286 eV, C=0 is 288 eV, C-F is around 289 eV and
CFs is 293 eV.'! Thus, it is possible to deconvolute the XPS spectrum and get the
composition of each chemical state. Compare with the initial state effects, the final state
effects are less common. Final state effects happen following the photoelectron process.
In this case, the chemical shift is contributed by effect such as core hole screening,

relaxation of electron orbitals and the polarization of surrounding ions.*®
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1.4.5 Adventitious carbon

Adventitious carbon is a thin layer of carbonaceous material that usually found on the
surface of most samples which have been exposed with air even for a very short time.
Research suggested that the composition of adventitious carbon is variety of polymeric
hydrocarbon species (short chain) and not graphitic units.*? For the chemical bond point
of view, it is mostly C-C sp®, with 10%-30% C-O. The source of these carbons is
possibly due to the CO and CO, species.'*® Adventitious carbon is considered as
contamination and could influence the quantitative analysis. But on the other hand, as
most of the carbon component from adventitious carbon is the C-C sp®, it can be used as a

reference for the calibration of the system shift of XPS instrument.**?
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1.5 Scope of the thesis

The unique properties of porous material could bring a lot of applications in many
promising fields. In this thesis, the complete procedure from synthesis to application of
titania and silica based porous materials have been presented. Applications have been
applied in different fields including biomedical, photocatalysis, sensing and polluted
water treatment. As there are various applications presented in this thesis, the
introduction chapter is quite general. The introduction of each chapter describes the

related research progress in the specific field.

Chapter 2 describes the synthesis of a series of materials (zeolite, silica and titania)
having porosity from micro to nanometer. Key factors in the synthesis and
characterization have been discussed in detail. The materials synthesized in this chapter

will be further used in the next chapters.

Chapter 3 presents a dye removal application based on functionalized mesoporous silica.
A device based on this system has been built for large quantity of water treatment.
Furthermore, to avoid the diffusion of the silica as a potential pollutant into the
environment, polymer based “glue” has been developed to hold the silica materials

together.

In chapter 4, artificial neurotransmitter receptors based on microporous zeolite material
have been developed. For specific neurotransmitter, the highest sensitivity among all the
artificial neurotransmitter receptors has been achieved. Several applications are also

presented by using this system.

In chapter 5, a novel way of luminescent Cu(0) cluster synthesis is presented. In situ
formation of Cu(0) clusters by X-ray irradiation inside porous materials has been
described. According to the cavities of different porous materials, the synthesized clusters

have different photophysical properties.
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In chapter 6, multi-functionalized mesoporous titania particle has been used in bio-
medical application. More specifically, a drug delivery system using the multi-
functionalized mesoporous titania particle as cargo has been developed. Moreover, due to
the photoactive property of titania, the release reactive oxygen spiecies (ROS) under UV

irradiation in vitro has been studied.

Chapter 7 describes the development of a new type of organotitania material with Ti-C
bond. The band gap is reduced compared to the inorganic titania material. This means
that the photoactivity of this organotitania can be extended to the region of visible light.

In particular, photocatalysis is discussed in this chapter.

In chapter 8, the principles of some commonly used techniques in this thesis are

described.
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Chapter 2:
Synthesis and characterization of the silica

and titania based porous materials

Abstract

A series of materials possessing different sizes and shapes and having porosity from
micro to nano meter have been synthesized. Most of the effort has been devoted to
control the morphology and properties of these silica/(alumina) and titania based
materials. Key factors to control the synthesis and characterization are discussed. The
materials made in this chapter have also been functionalized and used for different

purposes in the next chapters of this thesis.

50



2.1 Introduction

Nowadays porous materials are widely applied to many fields such as catalysis,
photovoltaics, sensing, bio imaging and drug delivery." 2 In 1992, the Mobil Oil
Corporation discovered a new class of mesoporous materials which were based on silica
and has uniform pores, named as the M41S family.® Since then, porous nanomaterials
have attracted lots of research interests due to their ability to entrap molecules, large
surface area, rater easy functionalization and other unique properties.* Different kinds of
mesoporous materials have been developed during these years.> ° In the last few decades,
microporous materials such as zeolite have also attracted a lot of research interests

especially in the catalysis field.”®

Natural zeolite was found and used as early as 18" century.® Following that, the
composition of zeolite which contains silica, alumina and counter ion such as sodium has
been discovered.”® Since then, more and more types of natural zeolites have been
discovered and numerous artificial zeolites have been synthesized.!* According to the
different crystal structures, zeolite can be categorized into around 200 different types.** 3
Zeolite LTL is one of them, processing a hexagonal symmetry. As for all the zeolites, it
shows an anionic framework completed by charge-compensating counter ions. The
crystals consist of so-called cancrinite cages (¢ cages), which are piled up and
interconnected to form a one-dimensional channel system running parallel to the cylinder
c-axis for the whole length. The smallest channel diameter is 0.71 nm, while the largest
channel diameter is 1.26 nm. The unit cell length is 0.75 nm. The channels are oriented in
a hexagonal manner and the center-to-center distance of two adjacent channels is 1.8 nm
(Fig. 2.1). Due to the presence of aluminum atoms in the zeolite framework (atomic
ratio Al:Si = 1:3), a net negative charge is presented and needs to be compensated by
counter ions, which are commonly observed such as sodium or potassium. Recent years,
scientists are still trying to produce new type of zeolites with different pores especially
for catalytic applications.’> ** As for zeolite LTL, because of its unique parallel pore

structures, the organization of molecules packed inside the channels have been
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investigated.>” Very recently has been demonstrated that zeolite can be used as template

to build three-dimensional porous grapheme-like structures.*®

Fig. 2.1 Zeolite LTL framework A) projected along the c-axis; B) side view of the main
channel; C) its dimensions. Adapted from Ruiz, A., Brihwiler, D., Ban, T. et al.
Monatshefte fir Chemie (2005) 136: 77, with permission from Springer Link.

After the discovery of M41S mesoporous silica, more and more sol-gel synthesis based
on self-assembly around the micelles have been developed, which result in mesoporous
silica families such as MCM, SBA and HMM.* **#! These silica materials have different
morphologies and pore size and shape. According to US food and drug administration -
FDA (21CFR172.480), silica is considered, since few years, to be relatively safe and
biocompatible and indeed in the last decades has been used for bio-medical applications.
For example mesoporous silica has been widely investigated for drug delivery
application.? The interest in these types of materials is clearly evidenced in the literature.
Since the year 2010, more than 1500 papers have been published which are related with
mesoporous silica each year. Just to cite few of the newest uses in different fields,
mesoporous silica have been used as host of dyes for long term bio-imaging in vivo.?®
Hollowed mesoporous silica particles have been developed for drug delivery

application.?* % Palladium nanoparticles loaded mesoporous silica are applied as
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catalysts in hydrogenation reactions.”® Other catalyst application such as hydrocarbon
oxidation by iron-porphyrin immobilized on SBA-15 has been developed.?” Mesoporous
silica has also been used in sensing applications such as surface-enhanced Raman
scattering, by coating it on gold nanorods.?

Other mesoporous material can be also synthesized in a similar way compare to
mesoporous silica. Titanium dioxide which is also called titania, due to its
semiconductive nature and photocatalytic ability, has attracted a lot of research
interests.® % Combining the unique property of titania and the advantage of porous
material together, this material can be applied to many promising applications. Shortly
after the announcement of mesoporous silica in 1994, synthesis of porous tungsten oxide
and titania contained mesoporous silica have been reported.®" * Finally, thermally stable
mesoporous titania synthesis was first reported by D.M. Antonelli and J.Y. Ying in
1995. In the synthesis procedure, titanium isopropoxide and tridecylphosphite have
been used as titanium source and surfactant respectively. After that, more synthesis
methods have been developed and mesoporous titania has been used for a wide range of
applications such as photocatalysis, photovoltaics, lithium battery and sensors.® % 3%
According to FDA (21CFR73.575), titania is also considered to be safe, thus, it can also
be used in bio applications.®’ In recent years, new type of mesoporous titania material
such as the one with inter-connected pores have been developed.®® Also, some new
development has been made in the solar cell field by combining mesoporous titania with
perovskite.>* “° Hybrid hydrophobic mesoporous titania has been developed for

photocatalytic application.*!

In the group of Prof. De Cola, previous researchers have developed functionalized
mesoporous silica particles for drug delivery,* and also, zeolites LTL functionalized in
different ways have been used in as carriers systems for imaging agents and for gene
therapy.*® In addition such materials have been used to create patterned substrates for cell
adhesion in bio-application.** The group is interested in developing new porous materials
based on hybrid silica and titania with the control of the morphology and the pore, which

can be used in bio- or electronic applications.
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The synthesis and characterization of the porous materials are described as following
(Table 2.1). It can be seen that depending on the materials, each series of porous
materials have been synthesized via a different approach. For microporous materials such
as zeolite, since the pore size is based on the crystal structure itself, gel crystallization
under hydrothermal condition has been used for the synthesis.** Instead of tailoring the
pore size, we will describe how we manage to obtain zeolite crystals of different
morphology. The mixing and aging time, as well as the crystallization condition, is
critical to get perfect crystal structure. As for mesoporous materials such as silica and
titania, we have employed surfactant template based sol-gel synthesis, and to certain
extend evaporation induced self-assembly (EISA) method.*™’ In all cases, modification
and optimization of described conditions have been applied to each synthesis route. The
morphology of the materials was characterized by scanning electron microscope (SEM)
and transmission electron microscope (TEM). The pores (size and shape) were
characterized by TEM, small angle X-ray scattering (SAXS) and nitrogen adsorption

measurements. The crystal structures were obtained by powder X-ray diffraction (PXRD).

Table 2.1 List of the synthesized porous materials and their properties.

Material Description Pore size

Zeolite LTL Dl_sc shaped, 1 pm diameter, 200 nm or less 0.7 nm
thickness

Zeolite LTL Bgrrel shaped, 800 nm diameter, 400 nm 0.7 nm
thickness

Zeolite LTL Eﬁ)g]?ﬁ;onal shaped, 2 pm diameter, 5 pm 0.7 nm

MCM-41 Sphere, 100 nm diameter 3nm

SBA-15 Hexagonal interconnected 12 nm

Titania particle Sphere, 400 nm diameter 11 nm

P123-titania Film 7nm

P123-silica/titania | Film 8 nm

In this chapter, big effort has been devoted to synthesize and to control the morphology

and properties of porous materials based on silica, titania and to a less extent on zeolites.
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2.2 Zeolite LTL

2.2.1 Synthesis and morphology control of zeolite LTL

The procedure of zeolite LTL synthesis is shown in Fig. 2.2. Zeolite LTL crystals are
synthesized using a hydrothermal condition from gels containing aluminum source,
silicon source, the necessary counter ions and alkalinity environment. Upon mixing of the
two solutions, the crystallization is carried out at relatively high pressure and temperature
in either static or dynamic conditions by using sealed vessels and an oven equipped with
a rotating unit. After that, the obtained crystals are washed with water to remove the base
in order to stop the crystal growth. Finally, the sample is changed with other counter ions
based on certain needs. Typically, the obtained zeolite LTL material was suspended into
certain amount (10 mL/g) of saturated water solution of the target ion (K" from KNOs for
example) for 5h at 50°C. The exchanged zeolite LTL was washed by water several times
and dried at 80°C for 16h.

As we have seen from the previous synthesis, the gel composition and the crystallization
condition play an important role on the final morphology of zeolite LTL. Even though the
first report of zeolite LTL synthesis was in the 1960s,*® the detailed mechanism of the
crystal growth is still unclear. Through years, people were trying to find out the

parameters that can affect the final morphology. !

S. Megelski and G. Calzaferri investigated the influence of the gel composition and the
crystallization conditions.* It was found that within a certain range, more water content
in the starting gel results in bigger crystals. Increasing the alkalinity would result in
shorter crystals with an almost constant diameter, but more intergrowth at the crystal ends.
The addition of Na™ instead of K* (up to 50%) would give increasingly larger and better
crystal quality with decreasing inter growths. By using dynamic condition for
crystallization, larger crystals with smoother surfaces can be obtained. Higher

crystallization temperature would shorten the crystallization time.
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Fig. 2.2 Schematic procedure of the zeolite LTL synthesis.

The effects of both the chemical and the physical parameters on the crystal size and
morphology of zeolite L synthesis were studied by O. Larlus and V.P. Valtchev.”® They
conclude that the water content and the concentration of the K,O in the initial gel showed
the most pronounced effects. Higher water content leads to longer crystals and higher
alkalinity leads to smaller crystals. Introduction of Ba*" in the starting gel would give
smaller crystals. Within one week, longer aging time leads to smaller crystals, while for
2-4 weeks, aging gives more uniform crystals but the size doesn’t decrease anymore.

Higher crystallization temperature would result in longer crystals.

The group of K.B. Yoon investigated the influence of the composition of the starting
gel.>* 1t is shown that higher SiO, content gives bigger crystals and a shape change from
cylinder to hexagon but with more structures with non-specific morphology. Higher K,O

content leads to smaller crystals and a change of crystals from hexagonal prism shape to
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the cylindrical shape. Higher water content results in bigger crystals with flatter surface.
By using Al,(SO4)3 as Al source, longer crystals with constant diameter are obtained with
higher Al content. If the Al source is changed to AI(OH)s, longer crystals with decreasing
diameter are obtained with higher Al content. Higher water content would give longer but
thinner crystals. Different additive ions (Na*, Li*, Mg?*, Ca®") gives different effects on
the final morphology. Specifically for NaOH, the increase of its content would result in

shorter crystals.

2.2.2 Disc shaped zeolite LTL

To obtained disc shaped zeolite L, solution A was made using 9.32 g KOH and 5.87 g
NaOH with 59.5 g MilliQ water, then 2.1 g AI(OH)3; was added and refluxed for 3 h to
make it full dissolve. The solution was cooled down to room temperature and the lost
volume of water during refluxing was re-added. Solution B was made of 58.9 g Ludox
HS-40 (silica suspension in water) with 4.8 g EtOH. The solution was kept under
sonication for 30 min. After these two solutions were ready, solution A was poured
quickly into solution B with vigorous stirring. The stirring was kept for 10 min. The
result milky steady liquid was split into 2 pressure vessels, put into a rotating oven at
160°C for 72 h with a rotating speed of 20 rpm. Afterwards, the vessels were cooled
down in ice bath for 1 h. The final product was neutralized by washing with MilliQ water
using centrifugation several times at 3100 rpm for 15 min until pH is 7.

Fig. 2.3 SEM images of the disc shaped zeolite LTL. Crystallization time 72h (left) and
48h (right).
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SEM was used for characterization of the morphology of our material. We can see that
the disc has a diameter of 1 um and a thickness around 200 nm (Fig. 2.3 left). If we
shorten the crystallization time to 48 h other than 72 h, the diameter of the disc did not
change but the thickness was thinner (Fig. 2.3 right). This indicates that during the
crystallization, the disc shape itself on the diameter direction was formed relatively fast.
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Fig. 2.4 Nitrogen adsorption isothermal curve and pore distribution of disc shaped zeolite
LTL.

From the nitrogen adsorption measurement we can see that the adsorption and desorption
gave us a very obvious type | isothermal curve (Fig. 2.4). The characteristic of this curve
is that the capacity condensation of the gas molecules inside the pores is overlapped with
the monolayer Langmuir adsorption. It is suggested that we have micro-pores in our
material which is exactly what zeolite LTL has. By DFT model the pore distribution was
calculated. We have obtained the typical pore size for zeolite LTL which is 0.71 nm.
Since the pores of the zeolite LTL was formed by the unique arrangement of the crystal,
another pore size around 1 nm has also been observed which represents the bigger part of
the crystal structure (see the crystal structure of zeolite LTL in Fig. 2.1). Due to the
unique shape of the zeolite (disc), large spaces (>50nm) in between the particles were
observed at high relative pressure in the right part of the isothermal curve. As we
introduced before in chapter 1, for microporous material, t-plot method have been
developed for the micropore analysis.>* The disc shaped zeolite LTL we synthesized is

pure microporous material without any presence of mesoporosity. This suits well with the
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t-plot method. All the pores are made from crystal structure so they have homogeneous
cylindrical shape. The DFT cylindrical mode is thus suitable for the calculation.
According to our analysis, by applying t-plot method and DFT method, 0.138 cm®/g and
0.135cm*/g of pore volume has been obtained respectively which show very small

difference.

The crystal structure of the disc shaped zeolite LTL has been obtained by PXRD (Fig.
2.5). The pattern was compared with the existing zeolite LTL PXRD pattern in the zeolite

database.>® It is confirmed that we have obtained the zeolite LTL crystals.
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Fig. 2.5 PXRD pattern of disc shaped zeolite LTL (up); simulated XRD pattern of zeolite
LTL.

2.2.3 Barrel shaped zeolite LTL

Solution A: Solution A: 8.1 g KOH was dissolved into 25.4 g milliQ water, then 3.5 g
AI(OH); was added into the solution. The final solution was refluxed for 16 h, then cool
down to room temperature. The water loss during the reflux has been re-added.

Solution B: 12.9 g Aerosil OX-50 (silica) was suspended into 30.2 g milliQ water. The

solution was kept static for 1 h, then mixed again with stirring.
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Solution A was poured into solution B with vigorous stirring. The mixture was stirred for
3 min, then transferred into pressure vessels, and kept at 160°C for 42h at 20rpm of
rotation. The vessel was taken out and cooled in ice bath for 1 h. The final product was
washed with milliQ water until the pH is 7.

Fig. 2.6 SEM image of the barrel shaped zeolite LTL.

SEM image shows that we have synthesized zeolite LTL crystal of around 800 nm in
diameter and 400 nm in thickness (Fig. 2.6). The crystals are big and not inter-connected
which shows clearly the orientation of the crystal.

From the nitrogen adsorption measurement we can see that the adsorption and desorption
gave us a similar curve with the disc shaped zeolite LTL introduced before (Fig. 2.7). It is
also a type | curve since the crystal structure is the same. The difference we observe with
the disc shaped zeolite LTL is that we didn’t see a significant large space in between the

particles due to the morphology difference of these two zeolites. The pore volume from t-
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plot and DFT is 0.138 cm®/g and 0.140cm®/g respectively. Since the barrel shaped zeolite

LTL is pure microporous material, it suits both t-plot and DFT model. Also, compare to

disc shaped zeolite LTL, they have the same pore volume because they have the same

crystal structure.

120

Quantity Adsorbed (cm®g)

204

0.05

1004

804

604

40

0.04 4

0.03 4
0.02 4

0.014

0.004 JLM

Incremental Volume (cm®g)

0.0

0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10
Relative Pressure (p/p°) Pore Width (nm)

Fig. 2.7 Nitrogen adsorption isothermal curve and pore distribution of barrel shaped

zeolite LTL.
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Fig. 2.8 PXRD pattern of barrel shaped zeolite LTL (up); simulated XRD pattern of

zeolite LTL.
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The crystal structure of the barrel shaped zeolite LTL have been characterized by PXRD
(Fig. 2.8) and compared with the existing zeolite LTL PXRD pattern in the zeolite
database.”® It is confirmed that we have obtained the zeolite LTL crystals.

2.2.4 Hexagonal shaped zeolite LTL

3.11 g KOH was dissolved into 22 g milliQ water and under stirring at 0°C for 5 min.
0.58 g Al powder was added into the previous solution in nitrogen atmosphere and stirred
at 0°C for 15 min, then at room temperature for 1.5 h. The solution was then taken out
from the nitrogen atmosphere and filtered with filter paper to make it clear (get rid of the
other X(OH) from the impurity from the Al powder). The filtered solution was stirred for
another 5-10 min, then 14.34g Ludox HS-40 was added under vigorous stirring. The
solution was continued stir for 5 more min. The result solution was transfer into pressure
vessel and put at 175°C for 72 h at static condition. The vessel was then taken out and
cooled in ice bath for 1 h. The product was washed by water using centrifugation several

times at 4000 rpm for 8 min until the pH is neutral.

SEM image shows us the morphology of this zeolite. Large hexagonal crystals with
around 5 um in length and 2 pm in diameter were successfully synthesized (Fig. 2.9).

The orientation of the crystals was also clearly seen by SEM.

From the nitrogen adsorption measurement we can see that the adsorption and desorption
also gave us a similar curve with the previous two zeolite LTL (Fig. 2.10). It is also a
type | curve since the crystal structure is the same. Since the crystal of this zeolite is
relatively very big, the space in between the particles also becomes very big and cannot
be considered as pores anymore. In this case the increase of the quantity adsorbed at high
relative pressure in the right part of the isothermal curve was not observed. The pore
volume from t-plot method and DFT calculation is 0.126 cm®g and 0.130 cm®/g

respectively, which are comparable with the previous zeolites.
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Fig. 2.9 SEM image of the big hexagonal shaped zeolite LTL.
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Fig. 2.10 Nitrogen adsorption isothermal curve and pore distribution of big hexagonal
shaped zeolite LTL.

The crystal structure of the disc shaped zeolite LTL have been characterized by PXRD
(Fig. 2.11) and compared with the existing zeolite LTL PXRD pattern in the zeolite

database.>® The zeolite LTL crystal was confirmed.
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Fig. 2.11 PXRD pattern of big hexagonal shaped zeolite LTL (up); simulated XRD
pattern of zeolite LTL.

Generally speaking, without the additives, the most important factors for gel composition
are the alkalinity and the Al content. From disc shaped to barrel shaped until hexagonal
shaped zeolite LTL, bigger and longer crystals were synthesized. Zeolite LTL crystallites
become larger when increasing the SiO,/Al,O3 or the H,O/Al,O3 ratio within a range of
the starting gel. More K,O (also higher alkalinity) in the starting gel would result in

smaller zeolite L crystals.

2.3 Mesoporous silica material

2.3.1 Synthesis method and theory of mesoporous silica

Scheme of mesoporous silica/titania synthesis can be found in Fig. 2.12. The basic
principle is that the self-assembly of surfactants form micelles in solution first, and then
the silica/titania precursor such as tetraethyl orthosilicate and titanium isopropoxide
polymerize outside the micelle template. The polymerized sample is then calcined in

order to remove the organic surfactant. Mesoporous material is thus obtained.
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Fig. 2.12 Schematic illustration of silica/titania sol-gel synthesis procedure.

As mentioned above in the synthesis of silica/titania material, the common principle is
that in solution, the self-assembly of amphiphilic molecules forming micelles, and the
silica/titania precursor polymerize outside the micelles to build the framework. It is
essential to know the self-assembly behavior of these molecules in solution. Thus, the
self-assembly of ionic surfactants have been studied by different groups in the 1970s.°* >°
For hexadecyltrimethylammonium bromide (CTAB), the self-assembly micelles
formation below and above critical micelle concentration (CMC) have been investigated.
Under certain temperature in solution, the self-assembly of CTAB molecule could be
formed as monolayer, sphere, rod, cylinder or bilayer structures. By using the self-
assembly structure of CTAB in solution as template, different materials could be
synthesized. The self-assembly of amphiphilic polymers in solution was studied in the
1990s.%® In this study, the detailed phase diagrams of several polymers have been shown.
The morphology varies from isotropic, cubic, hexagonal, lamellar and multi-phase which
depends on the concentration and the temperature of different polymer solutions. As we
can see, after the self-assembly of surfactant was studied, further investigation about the
interaction between the surfactant template and the material should be done. Indeed, the
molecular and mesoscopic organization in silicate-surfactant system in basic aqueous
solution has been studied.”” It is suggested that the governing interactions between the
silicate and the micelles are attractive inter-aggregate forces, which leads to the
separation of the silicate-surfactant system and aqueous system. Thus, the polymerization
of the silicate can be done surrounding the micelle template. All these theories and
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experimental discoveries give us the details of how we can use the self-assembly of

different micelle formation and sol-gel methods to synthesize mesoporous materials.

2.3.2 MCM-41 type mesoporous silica

CTAB 0.5 g was dissolved in a mixture of distilled water (240 mL) and 2M concentration
solution of sodium hydroxide (1.75 mL). The solution was heated to 80°C and stirred
vigorously. In another flask, tetraethyl orthosilicate (TEOS, 2.5 mL) was dissolved in
ethanol (3 mL) and 3-Aminopropyl triethoxysilane (APTES, 100 i) was added. Once
the temperature of the CTAB solution had stabilized, the ethanol solution containing
TEOS and APTES was added with vigorous stirring. After 2 h, the solution was cooled to
room temperature and the particles were centrifuged and washed with methanol several

times, dried in vacuum and calcined at 550°C for 6 h to remove the remaining surfactant.

The morphology and the pore orientation of the particles were characterized by SEM (Fig.
2.13 left) and HR-TEM (Fig. 2.13 right). From analysis of both the images we can see
that the homogeneous particles are sphere shaped and with a diameter of around 100 nm.
The pores are clearly seen under TEM. The pores are arranged parallel with each other
without any inter-connection in between. This means that all pores are accessible. The

pore arrangement in MCM-41 type mesoporous silica particles is similar with zeolite

LTL even though the pores are larger here.

Fig. 2.13 SEM and TEM images of the MCM-41 type mesoporous silica particles.
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From the nitrogen adsorption measurement we can see that the adsorption and desorption
gave us a not very typical 1V isothermal curve (Fig. 2.14). The capacity condensation of
the nitrogen gas molecules in small mesopores during the adsorption process is
overlapped with the region of the multiple-layer adsorption. It is suggested that we have
mesoporosity in MCM-41 type mesoporous silica. In the condensation process, no
adsorption hysteresis was observed suggest that the pore diameter is constant without
variation. By DFT model the pore distribution was calculated. The pores are mono-
dispersed and the diameter of the pore is 3.4 nm. Since the diameter of the particles is
only 100 nm, the aggregation of particles formed large spaces (>50nm) in between the
particles at high relative pressure in the right part of the isothermal curve. As it is shown
is chapter 1, traditionally BJH method has been applied for measuring the mesopororous
structure.”® By BJH and DFT method, the obtained pore diameter is 2.1 nm and 3.4 nm
respectively, the error of around 30% is comparable with the earlier discovery of some
researchers.” This would be another proof that for small sized mesopores, DFT method

should be used for the determination of pore size.
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Fig. 2.14 Nitrogen adsorption isothermal curve and pore distribution of MCM-41 type

mesoporous silica.

Solid-state UV-Vis spectrum (Fig. 2.15 left) suggested that there is no absorption for
MCM-41 type mesoporous silica in the visible and the near UV region which would
result in no photo reactivity under sun light. SAXS pattern (Fig. 2.18 right) shows typical
Bragg peaks of hexagonally arranged pores. Using Bragg’s law, the distance (d) is
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calculated as 4.2 nm. This is the distance between the phases of the pores. For a
hexagonal packed pores, a unit cell factor of 2/+/3 is applied. The distance between the
pore centers next to each other is thus 4.9 nm. The hexagonal lattice parameter is made
up of the pore diameter and the thickness of the adjoin silica wall. From TEM image we
can deduce a value for the silica wall thickness, namely about 1.4 nm. Subtracting this
from the lattice parameter determined by SAXS we obtain a pore size of around 3.5 nm.

Compare the result with nitrogen adsorption (3.4 nm), they show very small difference.
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Fig. 2.15 Solid state UV-Vis spectrum and SAXS pattern of MCM-41 type mesoporous

silica.

2.3.3 SBA-15 type mesoporous silica

1.5 g [Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)]
(Pluronic® P123) was dissolved into 42 mL water, then 4.36 g Na,SiO3 9H,0 and 0.292
mL APTES was added. The solution was then heated up to 40°C with vigorous stirring.
After the temperature was stable, 10.92 mL 37% HCI was added and the stirring was kept
at 40°C for 1 h. The solution was transferred into a sealed glass bottle and kept at 100°C
for 24 h. The final product was centrifuged and washed by water 3 times, then dried in

vacuum, and calcined at 550°C for 6h to remove the remaining surfactant.
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The SEM image shows us that the SBA-15 type mesoporous silica does not have certain
clear morphology but likely to be hexagonal (Fig. 2.16 left). The size of the bulk is in the
scale of micrometer. From the TEM image we see that the pores are packed together in a
hexagonal order and parallel with each other (Fig. 2.16 right). The pore diameter is

around 10 nm.

| —

z0nm

Fig. 2.16 SEM and TEM images of the SBA-15 type mesoporous silica.

From the nitrogen adsorption measurement, we can see that the adsorption and desorption
process gave us a typical 1V isothermal curve (Fig. 2.17). Compare to the MCM-41 type
mesoporous silica, the capacity condensation of the nitrogen gas molecules in big
mesopores during the adsorption process is not overlapped with the region of the
multiple-layer adsorption. We see the clear type IV curve with the steps of monolayer
adsorption, multi-layer adsorption and capacity condensation in order. It is suggested that
we have big mesopores in SBA-15 type mesoporous silica. During the pore condensation,
adsorption hysteresis is observed. This indicates that for each pore, the pore size is not
constant. By DFT model the pore distribution was calculated. The pores are mono-
dispersed but with a little bit of variation which is typical for co-block polymer based
surfactant and corresponded to the hysteresis we found in the isothermal curve. The
diameter of the pore is 12 nm. Since the structure of the SBA-15 type mesoporous silica
is quite big, only few large spaces (>50nm) in between the silica have been observed at

high relative pressure in the right part of the isothermal curve. For the pore determination
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methods, BJH method gave a pore size of 9.5 nm while for DFT method it was 12 nm.
The error here is 20% which is smaller than the MCM-41 silica but still considerably big.
As we see the hysteresis from the isothermal curve, we know the pore diameter is not
constant in each pore. Thus, the pore condensation would happen when the condition of
the condensation for the smallest diameter is fulfilled. In this case, DFT method provides

more reliable data.
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Fig. 2.17 Nitrogen adsorption isothermal curve and pore distribution of SBA-15 type

mesoporous silica.

Similar to MCM-41 type mesoporous silica, solid-state UV-Vis spectrum (Fig. 2.18 left)
suggested that there’s no absorption for SBA-15 type mesoporous silica in the visible and
the near UV region. By SAXS pattern (Fig. 2.18 right), typical Bragg peaks of
hexagonally arranged pores are shown. Using Bragg’s law, the distance (d) is calculated
as 11 nm. This is the distance between the phases of the pores. For a hexagonal packed
pores, a unit cell factor of 2/+/3 is applied. The distance between the pore centers next to
each other is thus 12.8 nm. The hexagonal lattice parameter is made up of the pore
diameter and the thickness of the adjoint silica wall. From TEM image we can deduce a
value for the silica wall thickness, namely about 1.6 nm. Subtracting this from the lattice
parameter determined by SAXS we obtain a pore size of around 11.2 nm. Compare the
result with nitrogen adsorption (12 nm), the value from SAXS is smaller. The reason is
that as we mentioned before, the pore diameter in SBA-15 silica is not constant which

leads to error to determine the wall thickness by TEM.
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Fig. 2.18 Solid state UV-Vis spectrum and SAXS pattern of SBA-15 type mesoporous

silica.

2.4 Mesoporous titania

2.4.1 Mesoporous titania particles

1.21 g hexadecylamine was dissolved into 69 mL EtOH. MilliQ water was added into
27.5 pL of KCI 1.0 M solution until 0.63mL. This solution was added into the first EtOH
solution. Then 1.52 mL titanium isopropoxide (TIPO) was added with vigorous stirring.
After the suspension was formed, it was kept static for 18 h at room temperature. The
precipitate was washed by centrifugation 3 times using EtOH. The obtained powder was
suspended into a mixture of 20 mL EtOH and 10 mL milliQ water. The suspension was
transferred into a pressure vessel and kept at 160°C for 16h. The particles were then
washed by EtOH and suspended into 28% ammonia solution (10 mL ammonia per 0.1g
titania). The mixture was refluxed for 1 day to obtain the anatase phase.® The final

product have been washed by EtOH several times and calcined at 350°C for 6 h.

Under the electron microscopes we see our particles are homogeneous and have a perfect

sphere shape. The diameter of the particle is around 400 nm confirmed by both SEM (Fig.
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2.19 left) and TEM (Fig. 2.19 right). The arrangement of the pore is random and worm

like. The accessibility and the diameter of the pore cannot be determined by the electron

microscope pictures.

Fig. 2.19 SEM and TEM image of the mesoporous titania particles.

The nitrogen adsorption measurement also gave us a type IV curve (Fig. 2.20). During
the adsorption process, the three steps of monolayer adsorption, multi-layer adsorption
and capacity condensation are clearly seen. Adsorption hysteresis suggested the variation
of pore diameter for each pore. This also means that the pores of the particle are
accessible from the environment outside. Due to the spherical shape, aggregation caused
large space in between the particles was also observed. From the calculated pore
distribution we see that the major pore size is around 11 nm but the distribution is quite
board which also corresponded to the hysteresis we found in the isothermal curve. The
most possible reason is that crystalline titania is not thermally stable. During heat
treatment or hydrothermal treatment, there is a possibility of having the rearrangement or
the change of the crystal structure. This results in the change of the surrounding wall of

the pores, leading to a loss in the regular shape and size.
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Fig. 2.20 Nitrogen adsorption isothermal curve and pore distribution of mesoporous

titania particle.
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Fig. 2.21 Solid state UV-Vis spectrum and PXRD pattern of mesoporous titania particle.

Solid-state UV-Vis spectrum (Fig. 2.21 left) showed a very typical absorption of titania
which starts around 400nm. It is essential to know the starting point of absorption in
order to estimate the band gap energy information. This discussion will be continued in
the organotitania chapter (Chapter 7). PXRD pattern (Fig.2.21 right) showed that the

crystal type of this material is anatase.
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2.4.2 Mesoporous titania film

1 g P123 was dissolved into 30 g EtOH. 1.8 g HCI (37%) was then added with vigorous
stirring for 3 h. After that 3 g TIPO was added drop wise with vigorous stirring. The
solution was then kept at 40°C for 20h with vigorous stirring. The result solution was
speared into a petri dish at 35°C with water environment for 4 days, transferred into an
oven at 80°C for another 6 days. The obtained bulk was then suspended into 28%
ammonia solution (10 mL ammonia per 0.1g titania). The mixture was refluxed for 1 day.

The final product was calcined at 300 °C (the temperature was increased slowly) for 6 h.

Similar to the silica/titania hybrid material, The SEM (Fig. 2.22 left) also shows no
particular morphology after we broke it from the original film form. The TEM image
shows us the same not well defined shape of bulk and some pore structures inside (Fig.
2.22 right).

Fig. 2.22 SEM and TEM images of the fragments of mesoporous titania film.

Like the other porous materials we have introduced before, we have also found a type 1V
curve from the nitrogen adsorption measurement (Fig. 2.23). Adsorption hysteresis
indicated that pore diameter is not constant for each pore. Through the calculated pore
distribution we can see the majority of pores have a diameter of 7 nm but in the meantime
pores from 2 nm till 20 nm are also found. Same titania crystal change during the heat

treatment can be applied here for the explanation of the pore distributions here.
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Fig. 2.23 Nitrogen adsorption isothermal curve and pore distribution of mesoporous

titania material.

Solid-state UV-Vis spectrum (Fig. 2.24 left) showed that the absorption is similar to
titania material. The slight absorption in the visible region suggested that there were other
species doped into the material. Most probably is that the film we have made is relatively
thick compare to the micro to nano sized particles, it is difficult to completely remove the
surfactant by calcine. Thus some carbon was doped into the material structure which
caused the absorption in the visible region. PXRD pattern (Fig. 2.24 right) showed that

the crystal type of this material is anatase.
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Fig. 2.24 Solid state UV-Vis spectrum and PXRD pattern of mesoporous titania material.
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In general, the quality of mesoporous material made from EISA method is not as good as
the normal sol-gel method. The advantage of making mesoporous film through EISA
method also gives the disadvantage of less thermal and mechanically stable structure. In
this case, based on the purpose of application, the synthesis method of material should be

carefully chosen.

2.5 Mesoporous silica/titania hybrid film

3 g P123 was dissolved into 90 g EtOH. 5.4 g HCI (37%) was then added with vigorous
stirring for 3 h. After that 7.02 g TIPO and 1.29 g TEOS was added drop wise with
vigorous stirring. The solution was then heated up and kept at 40°C for Sh with vigorous
stirring. The result solution was speared into a petri dish at 35°C with water environment

for 4 days, transferred into an oven at 75°C for another 6 days. The final product was

calcined at 350 °C (the temperature was increased slowly) for 6 h.

Fig. 2.25 SEM and TEM images of the fragments of mesoporous silica/titania hybrid film.

The SEM image shows that there is no particular morphology for our silica/titania
material after we break the initial film (Fig. 2.25 left). According to the TEM image there
are some irregular pores which distribute randomly (Fig. 2.25 right). There are two
possible reasons. First is that the material is made from both titania and silica which are
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different crystals. Combining the different crystals together gives a lot of structural
defects which leads to non-uniformed wall structure. Secondly, same as the titania
material, the reorganization of the titania during heat treatment also cause defects and

change of the structure.

The nitrogen adsorption measurement also gave us a type IV curve (Fig. 2.26). Unlike the
other porous materials we have described before, the capacity condensation process of
this silica/titania hybrid material lasts much longer. This is also the proof that in the
material the pore size varies a lot. Also, adsorption hysteresis indicated that pore diameter
is not constant for each pore. From the calculated pore distribution, we can see that the
main pore diameter is about 8 nm but there are pores distribute from 4 nm until more than

40nm which corresponded with what we see from the isothermal curve.
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Fig. 2.26 Nitrogen adsorption isothermal curve and pore distribution of mesoporous

silica/titania hybrid material.

Solid-state UV-Vis spectrum (Fig. 2.27 left) showed that the absorption is similar to
titania material since titania is one of the component and silica absorbs UV with smaller
wavelength. Same slight absorption in the visible region is comparable with the EISA
synthesized mesoporous titania. PXRD pattern (Fig. 2.27 right) showed that the major
crystal type of this material is anatase. The crystallinity of this silica/titania hybrid is not
as good as the other titania or zeolite material we have made. This is due to the fact that
most of the silica component is amorphous. Among the amorphous silica structure, only

small titania anatase crystals exist.

77



1.0

0.8

0.6

0.4

Normalized absorption
Counts

0.2

0.0 T T T T T 1‘1 ‘ H

200 300 400 500 600 700 800 10 20 30 40 50 60
Wavelength (nm) Degrees 26

Fig. 2.27 Solid state UV-Vis spectrum and PXRD pattern of mesoporous silica/titania
hybrid material.

2.6 Conclusion and perspectives

In this chapter, several different zeolites, silica and titania materials have been
successfully synthesized and characterized. The key factors during the synthesis
procedure have been studied in detail. It is essential to know how to control the features
of these basic inorganic materials. Based on the productions of this chapter, porous
materials have been further functionalized and used for several applications in the

following chapters.
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2.7 Experimental section

Materials

KOH (1 kg) and NaOH (1 kg) were bought from VWR chemicals, Al(OH)3 (500 g, extra
pure) and Hexadecyltrimethylammonium bromide (500 g, >99%) was purchased from
Acros, Aluminum (100 g, grit for synthesis) was bought from Merck, Hexadecylamine
(500 g, 90%), Sodium metasilicate nonahydrate (1 kg, >98%), Titanium(IV) isopropoxide
(100 mL, >97%), Tetraethyl orthosilicate (1 L, 98%), (3-Aminopropyl) triethoxysilane
(100 mL, 99%), hydrochloric acid (1 L, >37%) and Pluronic P-123 were bought from
sigma-aldrich, Ludox HS-40 (1 L) was bought from Aldrich chemistry and Aerosil OX-
50 was from AEROSIL company.

Scanning electron microscope

Scanning Electron Microscope SEM images were recorded with a FEI Quanta FEG 250
instrument (FEI corporate, Hillsboro, Oregon, USA) with an acceleration voltage of
20kV. The sample is prepared by sputtering coated with Au (Emitech K575X peltier

cooled) for 45 s at 60 mA prior to fixation on an Al support.

Transmission electron microscope

TEM images were obtained on a Philips CM120 transmission electron microscope
operating at 100 kV with a LaB6 filament. Areas covered with molecules of interest were
recorded under low dose condition, on a Pelletier cooled CCD camera (Model 794, Gatan,
Pleasanton, CA).

Powder X-ray diffraction
Powder X-ray diffraction (PXRD) data were collected using a Bruker D2-PHASER
diffractometer using CuKo radiation (A = 1.5418 A). The compounds were manually

grounded in an agate mortar, then deposited in the hollow of a silicon sample holder.
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Nitrogen adsorption

Nitrogen adsorption analysis was performed using a Micromeritics porosimeter (model
ASAP-2020). The samples were degassed at 250°C under vacuum for 6h and N
adsorption/desorption measurement was done at -196<C. The surface areas were
calculated by BET method. The pore size distributions and pore volume were calculated
by DFT methods.

Solid-state UV-Vis spectrum
The UV-Vis absorption spectra were measured by Shimadzu UV-3600 UV-Vis-NIR
spectrophotometer. The samples were measured in solid state using integrating sphere

and barium sulphate (BaSO,) was used as background.
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Chapter 3
Functionalized mesoporous silica for the

adsorption of organic dye pollutant

Abstract

Pollutant of organic dye is harmful for our environment and becomes a highlighted world
alarm. Herein, the adsorption of an anionic dye onto different mesoporous silica
functionalized with amino groups was studied. UV-Visible analyses were used to
quantify the amount of adsorbed dye and thus to infer the adsorption capacity (g;) which
shows high adsorption performance. To treat a large amount of dye solution, a prototype
device has been designed. Moreover, to enhance the performance of the device, a
polymer cross-linked nanoparticle system has been successfully established.

84



3.1 Introduction

Since decades ago the problem related to the wastes introduction in the environment is
highlighted as a worldwide alarm. The nature of these wastes is ranging from inorganic to
organic products which were used for several applications.® Among pollutants, dyes
represent an important class of dangerous compounds. And not surprisingly, the
discharge of dye-bearing wastewater into natural streams and rivers from textile, paper,
carpet, leather, distillery, and printing industries induces problems for human health, such
as allergic dermatitis, skin irritation, cancer and mutation, and for aquatic life organisms,
inducing additional problems to the aesthetic nature of the environment.> More
specifically, the discharged wastes containing dyes induces the formation of dangerous
by-products from oxidation, hydrolysis, or other chemical reactions in the wastewater
phase.® It is worth mentioning that, as reported by Singh et al., the wastewater from
textile industries is rated as the most polluted among all industrial sectors.* In fact, textile
industries employ a significant volume of water and chemicals for wet-processing of
textiles. The color index listed more than 8,000 chemical products associated with the
dyeing process including several structural varieties of dyes." The chemical classes of
dyes employed more frequently on industrial scale are the azo, anthraquinone, sulfur,
indigoid, triphenylmethyl (trityl), and phthalocyanine derivatives.’> These considerations
rise the importance of the dyes removal from wastewater in which the color greatly
affects the water that is highly visible even with the presence of very small concentrations
of dyes. Thus, the treatment of wastewaters is considered as a major concern in the
environment field.® Overall, the removal of color from water is usually associated with

the purification process of colored effluents.’

In most situations, the use of different methods of treatment is necessary in order to
remove all the contaminants presented in the wastewater. However, the physical
adsorption is one of the most effective methods to remove color from water.® Recently,
Seow et al., in their review reported the removal of dye by adsorption processes,

empathized that, because of its low price, simple design, easy operation, less energy
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consuming, no effect by toxic substances and high quality of the treated effluents, the

physical adsorption method is preferred for the treatment of wasted water.® *°

Activated carbon is one of the most used commercial adsorbent materials for these
purposes.*"** However, the high cost of production and low level of regeneration tends
to replace this adsorbent on the market. It is shown that cyclodextrins and chitosan
biofilms have excellent ability for direct dye removal from wasted water.’* ** Recently,
sorbents based on mesoporous silica has attained considerable attention due to their
highly ordered structure, nanometer-sized pores, and their high surface area.” > More
specifically, the presence of an ordered porous structure induces the much easier
diffusion of several target molecules into the active sites than other class of adsorbent
materials. Therefore, they were extensively used with great performance.? Starting from
2006 Wang et al. reported the reversible adsorption of organic dye on mesoporous silica
in aqueous solution.'® In 2010, Anbia et al. studied the removal of methylene blue from
aqueous solution using nanoporous SBA-3.}" Once again, in 2012, Anbia et al.
highlighted the removal of acid dyes from aqueous media by adsorption onto amino-
functionalized nanoporous silica SBA-3.2 In 2014, Zarezadeh-Mehrizi et al. suggested
the use of highly efficient removal of basic blue 41 with porous silica.*® Last but not least,
a large usage of mesoporous silica for this concern appeared from the recent review in
2016 by Nesic et al.” However, it is worth to mention that the mesoporous silica based
adsorbents we discussed above are all nanomaterials. Since the beginning of the 21%
century, health and environmental risks have been arisen concerning the use of
nanoparticles.’® ?° In this case, it is essential to develop a system for this concern. One
possible solution is to transform the bulk particles into a stationary system. On the other
hand, the laboratory treatment from powders with stirring or sonication is good for small
quantity of dye solution. While for industry, the ability of large quantity treatment of dye

solution is needed. For this purpose, an engineer solution is needed.

In this chapter, we have studied the dye adsorption property by amine functionalized

mesoporous silica materials. Based on this study, a device has been made for treating
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large amount of dye polluted solution. In the end, polymer cross-linked nanoparticle have

been developed to enhance the adsorption performance and fix the particles.

3.2 Dye adsorption study over bulk powder of mesoporous silica

In order to mimic the real pollutant problem, direct blue 78 (DB) is chosen as the dye
candidate (Fig. 3.1). DB is a commonly used dye in the textile industry, thus, the problem

of this dye pollution exists in real world.

MOE.S ,.-‘ S0:Na

NHI:E.HE,
S03Na Na 048

Fig. 3.1 Chemical structure of the direct blue 78 (DB) dye.

3.2.1 Effect of the functionalization

For the study of the adsorption, MCM-41 mesoporous silica was employed first. This
material has been described in chapter 2. To perform the adsorption measurement, a DB
dye solution with a concentration of 5¥10° M has been used. A fixed amount of the
adsorbent material (12 mg) was dispersed into 2 mL aqueous dye solution. The mixture
was kept under sonication for 5 min and stirred for 24 hours. The absence of any
adsorption process for the silica materials without functionalization was observed. Zeta-
potential measurements showed the negatively charged surface of the MCM-41
mesoporous silica with a value of -38 mV. Results emphasized the negative repulsion
between negatively charged dye and the adsorbent materials. As we see from Fig. 3.1,
DB has different functional groups. Overall, the key role of negatively charged sulfonic

moieties appeared after these considerations.
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As a subsequent step of this study, experiments which introduce amine groups were
performed. 3-Aminopropyl triethoxysilane (APTES) was used to functionalize amine
group on the silica surface (see experimental section for details). In this case, the amine
groups were introduced both on the outer surface and the surface of the pore channels.
The extraordinary results for the adsorption of amine functionalized MCM-41
mesoporous silica after 5 minutes of sonication is shown in Fig. 3.2. In excellent
agreement with literature,® the typical absorption band at 600 nm, arising from the
characteristic chromospheres of DB was detected. This absorption band is from the
interaction between azo functionality (-N=N-) and attached aromatic moieties. By using
amine functionalized MCM-41, only few minutes were necessary to obtain clean water
(Fig. 3.2). Moreover, the picture shows clearly the load of DB on amine functionalized
MCM-41 inducing a change in color of from white to blue. Furthermore, the solid state
spectrum of amine functionalized MCM41 loaded with DB molecules was acquired

which evidencing the typical electronic transition of the dye (Fig. 3.3).2* %

el — Dye solution
1.2 - Before After = = = After adsorption

Wavelength (nm)

Fig. 3.2 Comparison between the UV-Vis absorption spectra and picture obtained from
5%10" M DB aqueous solutions in absence of amine functionalized MCM-41 and after 5

minutes of contact time with 6 mg of amine functionalized MCM-41 (2 mL solution).

It is worthy to mention that the introduction of amine groups increased the Zeta-Potential
value to +12 mV for MCM-41 mesoporous silica. As a results, the positively charge
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induced by the presence of amine groups was needed to ensure the uptake of the dye. Not
surprisingly, after the adsorption of dye the Z-potential values decreased from +12 mV to
7mV. Results showed the presence of electrostatic interactions between DB and amine
groups. Two factor contributed to these results: i) the neutralization of charged amine
groups by SOz  ones presents on DB chemical structure and ii) the presence of free
negative charges on DB that contributed overall to the global charge decrease on the
surface of amine functionalized MCM-41. In order to prove this type of interaction,
reference experiments were performed using the naked MCM-41 with only decreasing
the pH of dye solution. In this condition, a Zeta-Potential of +4 mV was achieved by
MCM-41 at pH of 2. Under this condition, the adsorption of DB did not occur. This
indicated and confirmed the main role of amine groups in the adsorption process of DB in

water.

After these assessments, nitrogen adsorption measurements were performed in order to
investigate the porosity after dye adsorption. From the pore size distribution we can see
that both the pore volume and the pore size decreased. This phenomena reflected the

occupation of dye molecules in mesopores structure filling the channels.??

0.10

0.05 4

Abs (a.u.)

0.00 v T v I ' r r r .
300 400 500 600 700 800
Wavelength / nm

Fig. 3.3 Solid-state UV-Vis spectrum of amine functionalized MCM-41 after DB dye

adsorption.
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Fig. 3.4 Pore size distribution of amine functionalized MCM-41 before and after DB dye

adsorption.

3.2.2 Effect of the material dosage and dye concentration
The influence of the amount of amine functionalized MCM-41 on DB adsorption is

shown in Fig. 3.5. The quantity of adsorption value g; at time t is expressed as:

= (CO—MC/t)*V 1)
where ¢q is the initial concentration of the dye, c; is the concentration of the dye in
solution at time t, V is the volume of the dye solution and W is the weight of the silica
material. The dye solutions were monitored until the complete uptake of dye which
indicated by end part of the adsorption process showed a plateau region (region in which
the Qmax Was obtained). The results indicated that at constant concentration of DB (5*107
M), by increasing the adsorbent amount of amine functionalized MCM-41 from 0.4 to 12
mg in 2 mL of dye solution, the adsorption of DB molecules increased but the adsorption
capacity decreased. From literature, Anbia et al suggested that the increase in adsorption
was attributed to the increased surface area and the availability of more free adsorption
sites.” On the other hand, the decrease in adsorption capacity can be explained

considering that some of the adsorption sites remained unsaturated during the adsorption
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process.” % Overall, the recorded trend indicates that the adsorbent dose affects both the

percentage of dye removed and the adsorption capacity.°
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Fig. 3.5 Adsorption capacity q: (mg/g) at t for different amount of amine functionalized
MCM-41 from the adsorption process of a 2 mL of 5*10° M DB dye solution.
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Fig. 3.6 Effect dye concentration on the adsorption capacity ¢ at time t of DB removal

from 2 mL neutral aqueous solutions onto 0.4 mg amine functionalized MCM-41.
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It is worth mentioning that the adsorption rate of amine functionalized MCM-41 from 12
to 2 mg into 2 mL DB solution appeared very fast (15 minutes were enough). But for the
0.4 mg of material into 2 mL dye solution, the rate of adsorption dramatically decreased.
Results were in excellent agreement with those obtained decreasing the DB concentration
reported in Fig. 3.6. In this case, the smallest amount of the adsorbent material (0.4 mg)
was used. The volume of the DB solution remained the same (2 mL) but the
concentration was decreased to 1*10™° M. Fig. 3.6 show that the maximum adsorption
were obtained quickly, just after few minutes, when a smaller amount of dye was
employed. This is not a surprise since by reducing the ratio dye/adsorbent material,
relatively more adsorption sites were available per dye molecule.® We can also see that
the adsorption capacity increased with a more concentrated dye solution (5*10™ M). This
behavior can be explained by the establishment of a higher concentration gradient at the
particle—solvent interface due to the higher DB concentration, which enhanced the DB

dye removal capacity.”®

H:l 260 b] &n T
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B % (12 mg)
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Fig. 3.7 a) Pseudo-second-order kinetics for the adsorption of DB onto different amount
of amine functionalized MCM-41 for 2 mL DB solution (5*10-5 M); b) Pseudo-second-

order kinetics for the adsorption of DB onto 0.4 mg amine functionalized MCM-41 for 2
mL DB solution with different concentrations.
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Interestingly, the dynamics of the adsorption process can be better understood by the
evaluation of kinetic analysis. From literature, both the pseudo first and second order
kinetic models could be adopted.? *3 %242 Ag shown in Fig. 3.7, the adsorption of DB
dye molecules followed the pseudo-second-order kinetic with excellent regression

coefficients. The linear form of the pseudo-second-order Kinetic equation is expressed as:
t 1 t

ac  k2q%  qe

)

where t is the time, q; is the adsorption capacity at time t, ge is the equilibrium adsorption

capacity and k; is the pseudo-second-order constant.

3.2.3 Effect of pH
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Fig. 3.8 Effect of pH on the adsorption capacity q; at time t of DB from aqueous solutions
(pH 2-12) onto amine functionalized MCM-41. Measurements were performed using 0.4

mg of mesoporous material for 2 mL of DB having a concentration of 5*10™ M.

As already known, the pH values affect the charge density both on the surface of the
adsorbent material and dye molecules.’® For studying the effect of the pH on the
adsorption capacity of amine functionalized MCM-41, the dye solutions were prepared in

the pH ranging from 2 to 12. Not surprisingly, as we can see from Fig. 3.8, the adsorption
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capacity increased with decreased pH value and the maximum adsorption capacity for
DB was observed at pH 2. Therefore, at lowest pH value, the surface of the material was
positively charged via protonation, which increased the electrostatic attractions between
negatively charged dye and amine functionalized surface.'

At higher pH values the number of positively charged sites were reduced (pK, of primary
amine groups is 9). Of course this reduced the electrostatic interaction between the
material surface and the anionic dyes molecules.?® Not surprisingly the adsorption at pH
12 didn’t occur. Results were well agreed with Zeta-potential measurements of the

material in different pH (see Fig. 3.9).
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Fig. 3.9 Zeta-potential value of the amine functionalized MCM-41 in different pH.

In order to better investigate the role of electrostatic interactions, experiments using the
phosphate buffer as electrolyte were performed.?” The amount of both DB solution and
the adsorbent were fixed at 5*10° M, 2 mL for the dye solution and 0.4 mg for the
material. VVariations were observed for the DB adsorption. Fig. 3.10 shows results related
to the effect of an electrolyte on the adsorption process. The obtained capacity values
show that when very high concentrations (>0.1 M) of phosphate were adopted, the

adsorption process was retarded which suggested, as reported in literature, the screen of
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opposite charges in adsorbents and the dye molecules.?® Indeed, the salts in solution are
small ions and thus was expected that they were able to compete efficiently with DB in

adsorption process by amine functionalized MCM-41.%°
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Fig. 3.10 Effect of phosphate buffer at different concentration on the adsorption capacity

g: at time t of DB from aqueous solutions onto amine functionalized MCM-41.

Interestingly, when diluted buffered solutions were adopted, an increase of the adsorption
rate of DB was observed. More specifically, when the concentration of the buffer was
settled at 10* M and 10 M, the adsorption was faster and accomplished in few hours.
Due to the amine group in the dye structure, it is suggested that the presence of the slight
interaction between protonated amine groups present both in DB structure and the
adsorbent was expected to be repulsive electrostatic force. As a result, in the presence of
diluted solution which there were just enough ions to eliminate the repulsive force, the
adsorption rate increased; on the other hand when the presence of these ions was

emphasized, the adsorption rate would reduce.®
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3.2.4 Effect of the dye

As we discussed before, main reason of the adsorption is due to the interaction between
amine and the sulfonic group. Here we propose another dye (sulforhodamine B) which
also has sulfonic group and can be possible for the adsorption over our amine
functionalized MCM-41. As we discussed before, variations such as the amount of dye,
the amount of material and the pH could affect the dye adsorption. The adsorption of the
dye in solution is an equilibrium process. This means that at a certain amount of material,
if more dye was added, more dye would get adsorbed but there would also be more dye
remained in the solution. To simplify this problem and to make the results comparable, a
term of q. is proposed here. The term q. means for per gram of material, the maximum
quantity of dye it can adsorb under the condition of complete adsorption of dye (no trace
of the dye from UV-Vis spectra). For the amine functionalized MCM-41 mesoporous
silica, the g value for DB adsorption is 0.88 mg/g (12 mg of functionalized MCM-41
complete adsorbed all the DB dye in 2 mL of 5¥10™ M solution).
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Fig. 3.11 UV-Vis spectra of sulfohodamine B solution with different concentrations (left).
Linear fitting curve shows the relationship between the concentration and the absorption
peak height at 564 nm (right).
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To investigate the relationship between the concentration of sulforhodamine B and its
highest absorption peak height (at 564 nm), several dye solutions with different
concentrations were measured by UV-Vis spectroscopy. A linear curve was then fitted to
the measured data (Fig. 3.11). With this curve, we can calculate the concentration of the

dye by knowing the absorption peak height at 564 nm.

By changing the dye, the adsorption of sulforhodamine B on amine functionalized MCM-
41 was also studied. For the complete adsorption of sulforhodamine B, 5 mg of material
was able to adsorb all the dye from a 5 mL dye solution of with 5%10”7 M concentration
(Fig. 3.12). This gave us the g, value of 0.28 mg/g. The value for sulforhodamine B is
lower compare with DB due to the different structures of the dye. With the structural
difference, the number and the position of the effective sulfonic group for adsorption are

different which can influence the adsorption process.
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Fig. 3.12 UV-Vis spectra of sulfohodamine B solution before and after the adsorption by
the functionalized MCM-41 (5 mL dye solution with 5107 M concentration).

3.2.4 Effect of the porosity of mesoporous silica
As the effective amine group for dye adsorption located both on the surface and in the

pores, it could be also interesting to investigate the adsorption with other silica materials
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with bigger pores thus bigger effective area. Two types of silica material have been
chosen: commercially available silica gel 60 and the SBA-15 we have described in
chapter 2. Compare to MCM-41, these two candidates has bigger pores which could give
more capacity. APTES was used for the functionalization of amine group (see

experimental section for details).

The porosity of these two materials have been investigated by nitrogen adsorption
measurement. From the pore distribution we can see that our SBA-15 has bigger pores
and larger pore volume (Fig. 3.13). Not surprisingly, our SBA-15 has the BET surface
area of 646.8 m?/g, bigger than 384.9 m?/g for silica gel 60.
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Fig. 3.13 Nitrogen adsorption isothermal curve and pore distribution of silica gel 60 and
SBA-15.

Table 3.1 Zeta-potential before and after amine functionalization.

. . Zeta-potential after amine
Material Zeta-potential (mV) functionalization (mV)
Silica gel 60 -14.45 +12.58
SBA-15 -23.05 +12.64

Zeta-potential measurement was used before and after the functionalization. We can see
from Table 3.1 that the surface charge of both silica gel 60 and SBA-15 turned from
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negative to positive, which means the successful functionalization of amine group on the

surface.

The dye adsorption experiment was done after the relationship between the dye
concentration and the UV-Vis spectra had been established. In this case, 5 mg of
functionalized silica gel 60 and SBA-15 was used respectively to determine the . value
by using 5*10” M sulforhodamine B solution. For complete adsorption of the dye, 5 mg
of functionalized silica gel 60 used 3 mL of dye solution and functionalized SBA-15 used
7mL. This gave the q. value of 0.17 mg/g for functionalized silica gel 60 and 0.39 mg/g
for functionalized SBA-15. This is due to the fact that SBA-15 silica has larger surface
area than the silica gel 60 (646.8 m?/g than 384.9 m?/g). If we include functionalized
MCM-41 into consideration, both our MCM-41 and SBA-15 have better performance

than the commercially available silica gel 60.
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Fig. 3.14 UV-Vis spectra of sulfohodamine B solution before and after the adsorption by
5 mg of functionalized silica gel 60 (left, 3 mL 5*107 M dye solution) and 5 mg of
functionalized SBA-15 (right, 7 mL 510" M dye solution).
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3.3 Dye adsorption over stationary phase of mesoporous silica materials

Sonication and centrifugation of the mixture of dye solution and the adsorbent is only
suitable in laboratory condition of dye removal. However, it's not applicable for a large
quantity of water treatment especially for industrial use. In this case, a device which
allows large quantity of dye removal has been designed. The device we’ve made is
shown in Fig. 3.15. The water pump would pump the solution up from the beaker. The
solution would then go through the syringe which is filled with our functionalized silica

material. The filtrated solution was collected from another beaker.

Amine functionalized
silica material

Pump

Dye solution Clean water

Fig. 3.15 The setup of dye removal device.

Table 3.2 Amount of the 510" M sulforhodamine B solution determined by the g

values.
Material g (mg/g) VVolume of dye solution (mL)
Functionalized MCM-41 0.28 500
Functionalized silica gel 60 0.17 300
Functionalized SBA-15 0.39 700
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To test the performance of our functionalized silica material, 500 mg of each material
was added into the filter syringe. Not functionalized silica 60 was used as reference. 1 L
of sulforhodamine B solution with 5*10” M concentration was added into the beaker. To
make our results comparable, the pump was turned on until different volumes of purified
solution was collected respectively for each material. The volumes were determined by
the gc value of each material which shows in Table 3.2. The materials we used are the
three functionalized silica described earlier, and not functionalized silica gel 60 as
reference. For the functionalized MCM-41, due to its morphology of small sphere, the
packing inside the filter syringe is too condensed that the dye solution cannot pass
through. Never the less, the filtered solutions from the rest of the materials are shown in
Fig. 3.16. We can see that by eye the color from the functionalized SBA-15 is slightly
more colorful than pure water, but less colorful than the rest.
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Fig. 3.16 Pictures of the solutions under ambient light and UV. a) initial dye solution
(5*107 M); b) dye solution filtered by silica gel 60; c) dye solution filtered by
functionalized silica gel 60; d) dye solution filtered by functionalized SBA-15; e) water

without dye.
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Fig. 3.17 UV-Vis spectra of the dye solution before and after filtered by different
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Fig. 3.18 Pore volume distributions for functionalized silica materials before and after

filtering.

To determine the adsorption efficiency, UV-Vis spectra has been used to determine the

concentration of the filtered solution (Fig. 3.17). In this case, none of the material shows
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complete adsorption. This means the device performance is not as good as the bulk
powder sonication system. The reason is that by sonication and stirring, the material and
the dye have a long time to interact with each other. But for filtering, the interaction time
between the material and the dye solution is much less.

Nitrogen adsorption measurement showed similar results from UV-Vis spectra. We can
see that for both materials, pore diameter and pore volume decrease after filtering of the
dye solution (Fig. 3.18). Also, it tells us that the dye solution can penetrate through the
pores. This feature means that the material surface including the pore surface is fully used,

which is the advantage compare to the non-porous materials.

3.4 Dye adsorption over stationary powder of mesoporous silica materials with

enhanced performance

By comparing the results from the powder sonication and the device filtering, it is clear
that the efficiency for the filtering is lower. To overcome this problem, a polymer cross-
linker with amine group is introduced here. The advantage of this system is that extra
amine groups from the polymer can alsocontribute to the adsorption which could enhance
the adsorption performance. In the meanwhile, it can also stop the particles from

diffusion into the enviroument which overcome the risk concern of nanomaterials.

The fabrication of the cross-linked silica material system is rather simple (Fig. 3.19).
N,N'-methylenebisacrylamide and branched polyethyleneimine (PEI) was mixed at 1:1
weight ratio in water. The functionalized silica material was then added and mixed with
the previous solution. The white gel-like product was poured into the filter syringe, and
put into oven for the formation of the cross-linked amine functionalized silica materials

(see experimental section for details).
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Fig. 3.19 Schematic representation of the polymer cross-linked amine functionalized

silica material.

Fig. 3.20 Silica gel 60 before (left) and after (right) cross-linked by polymer.

Fig. 3.20 shows the SEM image of amine functionalized silica gel 60 before and after put
the cross-linker. It is obvious that before cross-linking, the silica gel 60 was just random
flakes which distributed everywhere. After treated by the polymer cross-linker, we can
see that the silica pieces were hold together. Moreover, if we zoomed in, a clear organic
structure was established between the silica pieces. In the meanwhile, the space in

between the silica pieces still exists, which could allow water to pass through.
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After the crosslinked functionalized silica material was formed in the filtering syringe,

same filtering experimental process was done by using our device according to each

material. The result picture is shown in Fig. 3.21.

Fig. 3.21 Pictures of the solutions under ambient light and UV. a) initial dye solution
(5*10” M); b) dye solution filtered by cross-linked functionalized silica gel 60; c) dye
solution filtered by cross-linked functionalized SBA-15; d) water without dye.

The concentration of the filtered solutions was also investigated by UV-Vis spectra (Fig.
3.22). Since the PEI also has a lot of amine groups, we didn’t find any dye residuals
through UV-Vis spectra. The adsorption performances for both our cross-linked materials

were enhanced compare to the not cross-linked material.
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Fig. 3.22 UV-Vis spectra of the dye solution before and after filtered by different cross-

linked functionalized silica materials.

3.5 Conclusion and perspectives

By applying the ionic dye adsorption theory, an adsorption system for sulfonic dyes has
been established based on amine functionalized silica materials. Effects of
functionalization, concentration and pH have been studied in detail between the DB dye
and MCM-41 mesoporous silica. Same principle has been used for the study of the
adsorption of sulforhodamine B dye from amine functionalized silica gel 60 and SBA-15.
Due to the larger surface area, our SBA-15 performs better than the commercially
available silica gel 60. A device based on the adsorption system has been built for large
quantity of water purification. Moreover, to enhance our device performance and avoid
the silica material contaminating the environment, polymer based cross-linker has been
used to hold the material together. Further investigation could be focus on the

optimization of the system.
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3.6 Experimental section

Materials

Silica gel 60 (1 kg) was purchased from Merck, sulforhodamine B (acid form, laser grade,
5 g), polyethylenimine (average M,, ~25,000 by LS, average M, ~10,000 by GPC,
branched, 100 mL), N,N’-Methylenebis(acrylamide) (99%, 100 g), (3-Aminopropyl)
triethoxysilane (APTES) (99%, 100 mL) was purchased from Sigma-Aldrich. Direct Blue
78 (Color Index Number: 78, chemical formula: CsH2sN7NasO13S4, MW: 1055.1
g'mol ) was received by Colorprint Fashion. The materials above were used as received

without any further modification.

Synthesis of the MCM-41 mesoporous silica
Synthesis of the SBA-15

Described in chapter 2.

Amine functionalization of silica

Silica material was suspended in ethanol. With vigorous stirring, APTES was added into
the previous suspension with the quantity of 0.1 mL/g silica material. The suspension was
heated up to 50 °C and stirred overnight. The result product was washed by centrifugation
5 times with ethanol and dried in vacuum. The amine group of the silica materials was
activated by 1 M solution of acidic acid, then the material was washed by water 5 times

and dried in oven at 70 °C.

Cross-linked amine functionalized silica gel 60

30 mg polyethylenimine and 30 mg N,N'-Methylenebis(acrylamide) was dissolved into 1
mL of water. 500 mg of the amine functionalized silica gel 60 was then added and well-
mixed. The mixture was added into the filter syringe, and put into an oven at 70 °C

overnight.
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Cross-linked amine functionalized SBA-15

30 mg polyethylenimine and 30 mg N,N’-Methylenebis(acrylamide) was dissolved into 1
mL of water. 500 mg of the amine functionalized SBA-15 was then added and well-
mixed. The mixture was put into an oven at 70 °C overnight. The cross-linked silica was
taken out, break into small pieces (around 1 mm). Again, 30 mg polyethylenimine and 30
mg N,N’-Methylenebis(acrylamide) was dissolved into 1 mL of water. Small pieces of
pre-cross-linked amine functionalized SBA-15 were then added. This mixture was added
into the filter syringe, and put into an oven at 70 °C overnight.

Nitrogen adsorption

Nitrogen adsorption analysis was performed using a Micromeritics porosimeter (model
ASAP-2020). The samples were degassed at 250°C under vacuum for 6h and N2
adsorption/desorption measurement was done at -196<C. The surface areas were
calculated by BET method. The pore size distributions and pore volume were calculated
by DFT methods.

Scanning electron microscope

Scanning Electron Microscope SEM images were recorded with a FEI Quanta FEG 250
instrument (FEI corporate, Hillsboro, Oregon, USA) with an acceleration voltage of
20kV. The sample is prepared by sputtering coated with Au (Emitech K575X peltier

cooled) for 45 s at 60 mA prior to fixation on an Al support.

Dynamic light scattering and zeta-potential
DLS and zeta-potential analysis were performed on a Delsa Nano C Particle Analyzer
(Beckman Coulter, Brea, CA, USA); all DLS measurements were conducted in water,

while zeta-potential analysis in phosphate buffered saline (PBS), pH = 7.

UV-Vis spectrum
The UV-Vis absorption spectra were measured by Shimadzu UV-3600 UV-Vis-NIR
spectrophotometer. The spectra of liquid samples were recorded at a 1 nm/s scan rate in a

cuvette with a 1 cm path length.
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Thermogravimetric analysis

Thermogravimetric (TG) measurements were performed on a TGA instrument
NETZSCH STA 449 F3 Jupiter® — TGA. TGA scans were done with a heating rate of
10 <€ /min and hold at 1100 <C for 30 min under a synthetic air purge gas flow of 20
mL/min.
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Chapter 4
Highly selective artificial neurotransmitter
receptors from zeolite based nanoporous

materials

Abstract

Despite decades of concentrated efforts, artificial receptors remain inferior compared to
their natural counterparts with respect to affinity and selectivity. Receptor candidates
whose design was intended to optimize direct receptor-ligand interactions (Emil Fischer’s
lock and key model)* afforded, with the notable exception of multivalent systems,? only
moderate binding affinities in water, by no means reaching that of protein receptors.®
Recent (re)discovery of the importance of the non-classical hydrophobic effect in well
shielded protein binding pockets and host cavities offers an alternative, biomimetic
receptor design strategy.*’ Herein, we follow this path and report several extremely
selective and strongly binding artificial receptors for aromatic amine neurotransmitters,
e.g. serotonin, dopamine, (nor)epinephrine and histamine. Importantly, the receptors are
functional in buffers and biological media (e.g. blood serum) and can be used to study

neurotransmitter-degradation or their delivery into living cells in real time.
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4.1 Introduction

The selective, non-covalent complexation of small organic molecules in aqueous media
remains extremely challenging. In fact, it was recently argued that previous knowledge
derived for supramolecular complexes in organic solvents is largely irrelevant to
molecular interactions in water.* Unlike the unsuccessful attempts made by Chemists,
nature reaches a high binding-affinity in aqueous media through release of energetically
frustrated water molecules from hydrophobic and confined protein cavities. The
selectivity for a particular ligand is simultaneously defined through well positioned
ligand-binding units (Fig. 4.1a).*® Neurotransmitter binding to protein-receptors is
favoured by release of energetically frustrated cavity water and the formation of salt-
bridges between protein and ligand. The binding event is transcribed into a biological
signal through conformational changes of the receptor. For instance, the binding pocket
of the human D3-type dopamine-receptor is confined, hydrophobic and decorated with
negatively charged amino acid residues in order to form salt-bridges with the positively

charged ammonium moiety of dopamine.®

If the release of energetically frustrated cavity water molecules from protein binding
pockets is (one of) the main driving forces for protein-ligand complexations, then also
artificial receptor analogues should be constructed from synthetic hosts or materials that
possess similarly sized, hydrophobic cavities.*” To test this hypothesis, zeolite materials
were employed in this study as receptor scaffolds because of a) their porosity, shape-
stability and crystallinity allows for the creation of robust and molecularly defined
binding pockets, and b) their permanent negative framework charge mimics the
electrostatic-signature of D3-receptor cavity (Fig. 4.1b). Herein, a biomimetic approach is
introduced: inorganic nanoporous material contains high-energy water whose
displacement by an analyte can be energetically favourable. The negatively charged
channels of zeolite materials cause a charge-mediated binding preference for cationic

analytes, e.g. aromatic amine neurotransmitters. A sensitive signal transduction is
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accomplished through co-inclusion of an aryl-moiety-responsive, fluorescent reporter dye

into zeolite L or Y.

@ = high-energy H,0 conformation
@ =bulk H,O change
NH
) - X:)
™, XX
neuro-
transmitter

b 3 L;:r(Iie]r ( & : " o
.{:f '0

Q‘? @ 0\“: + dye Q\}é; @ \&{ ’

n S :5:‘ -9 ‘ : &-‘*

nanoporous, emissive, artificial non-emissive
inorganic framework neuroreceptor (ANR) bound receptor

Fig. 4.1 a) Schematic representation of how the natural neurotransmitters work; b)

Acrtificial neurotransmitter receptor approach via nanoporous zeolite material.

In this chapter, artificial neurotransmitter receptor based on nanoporous zeolite material
has been developed. Different molecules have been tested for both sensitivity and
selectivity for the receptors. Several sensing applications have been demonstrated based

on our system.

4.2 Proof of concept

It is known that zeolite materials can be loaded with fluorescent dyes,” *° which is
extended herein to analyte-responsive reporter dyes that indicate the presence of an

aromatic amine neurotransmitter. Specifically, the dicationic reporter dyes (D1-D5)
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shown in Fig. 4.2 are readily uptaken and strongly bound in the negatively charged
zeolite channels. The herein communicated zeolite L (LTL type) -based artificial
neuroreceptors (ANR-L1 — ANR-L5) and the zeolite Y (FAU type) -based counterparts
ANR-Y1 and ANR-Y2 were prepared by immersion of zeolite nanocrystals with a
solution of the corresponding dyes, followed by simple washing steps via centrifugation.
The uptake of dyes by zeolite materials can be readily witnessed by the vanishing of the
colour of the supernatant as well as by quantifiable changes of the physical properties of
the dye. The effect of solvent on the excitation and emission of the ANR-LX is shown in
Fig. 4.3. The excitation and emission spectra change of the dyes encapsulated in different

ANRs is shown in Fig. 4.4.
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Fig. 4.2 Chemical structures of the dicationic dyes.
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Fig. 4.3 Normalized emission and excitation spectra of a, dye D1 and b, dye D3 and of
their corresponding receptors ANR-L1 and ANR-L3 when dispersed in water or in

chloroform.
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Fig. 4.4 Normalized emission and excitation spectra of a, dye D1 and its corresponding
receptors ANR-L1 (based on zeolite LTL), and ANR-Y1 (based on zeolite Y), b, for dye
D2 and its corresponding receptors ANR-L2 (based on zeolite LTL), and ANR-Y2 (based
on zeolite Y), ¢, dye D4 and of its corresponding receptor ANR-L4 in water, and b, of

dye D5 and of its corresponding receptor ANR-L5 in aqueous HEPES buffer.

The reporter dyes are known to form stacking complexes with aromatic analytes,
accompanied by a strong reduction of the emission of the dye.'* 2 In fact, zeolite L (max.
accessible pore diameter 10.7 A) and zeolite Y (max. accessible pore diameter 11.9 A)
were chosen because their pores provide sufficient space to arrange a dye molecule and
an aromatic amine neurotransmitter in a tight face-to-face stacking arrangement. Table
4.1 show the change quantum yield of the pure dye and the dye loaded in the ANRs, as

well as after the addition of quencher.
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Table 4.1 Emission quantum yields (QY) for ANRs and corresponding dyes in water.

System hexc (NM) | QY
D1 336 0.43
ANR-L1 336 0.52
ANR-L1 + excess dopamine 336 <0.01
D1 336 0.43
ANR-Y1 336 0.53
ANR-Y1 + excess dopamine 336 <0.01
D2 420 0.37
ANR-L2 420 0.12
ANR-L2 + excess dopamine 420 <0.01
D2 420 0.37
ANR-L2 420 0.14
ANR-L2 + excess dopamine 420 <0.01
D3 440 0.04
ANR-L3 440 <0.01
ANR-L3 + excess dopamine 440 0.51
D4 300 0.67
ANR-L4 300 0.45
ANR-L4 + excess dopamine 300 <0.01

By entrapping the reporter dye in the negatively charged zeolites, the resulting artificial
receptors can be expected to respond selectively to positively charged species that carry
an aromatic moiety. In fact, out of the “zoo” of naturally occurring small molecules in
mammals, these features are simultaneously expressed only for aromatic amine
neurotransmitters, such as serotonin, dopamine and epinephrine, and some neuroactive
trace amines (Fig. 4.5). Indeed, the herein presented receptors are extremely selective for

those species.

Having verified the stability of the ANRs in saline buffers, we investigated into their
spectroscopic response upon addition of the representative aromatic amine
neurotransmitters: In agreement with the expectation from the design, the emission of
ANR1-L1 is nearly fully quenched by dopamine (Fig. 4.6). Emission quenching was
generally found for all ANRs in the presence of electron-rich aromatic neurotransmitters
such as serotonin, dopamine and norepinephrine (Fig. 4.7). A complementary detection
strategy for the electron-poor, non-emission quenching analytes was also developed,

which enabled the detection of histamine and phenethylamine through an increase in the
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emission of ANR-L3 and ANR-Y2, or through ratiometric changes in the emission
spectrum of ARN-L5 (Fig. 4.8).

D\Crg\NHa o :©)\,NH3
N I:l

serotenm (5HT) dopamme norepinephrine
OH
+
+ {:Ha, + '[:Ha
epmephrme phenylephrine histamine

Fig. 4.5 Selected chemical structures of aromatic amine neurotransmitters/drugs that can

be detected by the ANRs and representative dyes employed.

Fig. 4.6 Intensity coded-confocal micrographs of an aqueous suspension of ANR-L1
crystals, obtained by immersing dye D1 into zeolite L, prior (left) and after (right)

addition of excess dopamine. The scale bar is 5 pm.

118



G'Bj \

1425 nm)
o
&h
i 1

2 o
P
‘/ﬁ

|z
1 -
T T T v T T T v T T 1

2
(=]

420 460 500 540 i 2 4
A {nm) conc. (pM)

Fig. 4.7 Example of emission quenching for dye encapsulated ANRs in the presence of
electron-rich aromatic neurotransmitters. Emission spectra and binding curve for the
titration of ANR-Y1 (250 pg/mL) with serotonin in 10 mM HEPES buffer (pH 7.3). a,
Addition of a solution of serotonin to a suspension of ANR-Y1 results in a quenching of
the emission of ANR-Y1 (Aexc = 395 nm). b, Fit of the relative emission intensity with a

1:1 binding site model yields a single site dissociation constant K4 = 70snM.
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Fig. 4.8 Emission spectra for the titration of ANR-Y2 (250 pg/mL) with a,
phenethylamine and b, nicotine in 10 mM HEPES buffer (pH 7.3) (Aexc = 395 nm).
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4.3 Detection limit

Low concentration of the neurotransmitters can be readily detected by the ANRs owing
to the sensitivity of fluorescence emission, as is exemplified for the response to ultra-low
concentration (50 nM) of serotonin (Fig. 4.9). In order to quantify the binding strengths,
dissociation constants (Kq) were determined from fluorescence titration experiments for
various combinations of representative analytes (see Fig. 4.10 for their chemical
structures) and six ANRs. High affinities (K4 ranges from 100 nM to 100 M) were
observed for the interactions of the ANRs with the neurotransmitters and trace amines in
aqueous media (Table 4.2-4.5). All K4 values with a >> sign denote less than 10% change
in emission intensity at >50 molar excess of the analyte. Errors in Ky, determined by
repetitive experiments, are estimated less than #20%. Interestingly, a higher binding
strength (~10x) was found in aqueous than in ethanolic media, which indicates the
energetically favourable release of frustrated cavity water molecules from the ANR

channels upon neurotransmitter binding (see experimental section for more details).> " 3

a 7 ANR-L2 + serotonin b 1.0- *
. HO. NH;
conc.(serotonin) e
— 0nM . N
T — 200 nM % { H
= 600 nM 2]
— 1200 nM _E
1800 nM
— 2900 nM i
0.7
0.6 !
500 600 700 0 50 100 150
wavelength (nm) conc (nM)

Fig. 4.9 a, Emission spectra of ANR-L2 (25 pg/mL) upon addition of serotonin (Aexc =
475 nm). b, Emission response of ANR-L2 (2.5 pg/mL) upon addition of serotonin. Error
bars were calculated from 3 repetition experiments. The experiments were carried out in
aqueous HEPES buffer (10 mM, pH 7.3).
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Table 4.2 Fitted single site dissociation constants (Kg) for representative analytes. Zeolite
L-system, ANR-L1, and zeolite Y-assemblies, ANR-Y1 (each receptor 250 pg/mL in 10
mM HEPES buffer, pH 7.3).

Analyte biological function | charge | aryl-unit | Kg(ANR- | K4(ANR-
L1 (uM) | Y1) (UM)
serotonin (5- | neurotransmitter + 5HO- 3.3 0.07
HT) indole
tryptamine trace amine + indole 10 0.15
dopamine neurotransmitter + catechol 16 3.4
norepinephrine | neurotransmitter + catechol 31 11
tyramine trace amine + phenol 27 5.7
octopamine trace amine + phenol 40 11
TrpNH, - + indole 32 0.11
epinephrine neurotransmitter + catechol >100 26
phenylephrine drug (decongestant) | + phenol >100 55
phenethylamine | trace amine + benzene n.s. n.s.
histamine neurotransmitter + imidazole | n.s. n.s.
nicotine stimulant drug, toxin | + pyridine n.s. n.s.
propranolol drug (beta blocker) + 1-naphthol | >100 >100
L-DOPA drug (dopamine | +— catechol >>1000 >>1000
precursor)
phenylalanine amino acid +— benzene >>1000 >>1000
tyrosine amino acid +— phenol >>1000 >>1000
histidine amino acid +— imidazole | >>1000 >>1000
tryptophan amino acid +— indole >>1000 >>1000
(Trp)
5-HTP precursor to SHT +— 5HO- >>1000 >>1000
indole
TrpGly occurs in hypophysis | +— indole >>1000 >>1000
indole-3-acetic | plant hormone - indole >>1000 >>1000
acid
melatonin hormone no 5MeO- >>1000 >>1000
indole
adenosine neuromodulator no purine >>1000 >>1000
estradiol hormone no phenol >>1000 >>1000
propanil herbicide no benzamide | >>1000 >>1000
indole - no indole >>1000 >>1000
catechol - no catechol >>1000 >>1000
paracetamol drug (analgesic) no phenol >>1000 >>1000
raspberry natural aroma no phenol >>1000 >>1000
ketone
acetylcholin neurotransmitter + no >>1000 >>1000
glycine (Gly) neurotransmitter +— no >>1000 >>1000
D-serine neurotransmitter +— no >>1000 >>1000
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aspartate neurotransmitter +— no >>1000 >>1000
glutamate neurotransmitter +— no >>1000 >>1000
GABA neurotransmitter +— no >>1000 >>1000
cadaverine toxin ++ no >>1000 >>1000
ethanolamine - + no >>1000 >>1000
glucose sugar no no >>1000 >>1000

Table 4.3 Fitted single site dissociation constants (Kd) for the binding of zeolite L-based
ANR-L2 and zeolite Y-based ANR-Y2 (each at 250 pg/mL in 10 mM HEPES buffer, pH

7.3) with representative analytes.

Analyte biological function | charge | aryl-unit | Kg(ANR- | K4(ANR-
L2) (M) | Y2) (UM)
serotonin (5- | neurotransmitter + 5HO- 1.2 0.63
HT) indole
tryptamine trace amine + indole 1.6 0.99
dopamine neurotransmitter + catechol 4.5 9.5
TrpNH; - + indole 6.7 2.7
norepinephrine | neurotransmitter + catechol 13 26
tyramine trace amine + phenol 13 19
octopamine trace amine + phenol 68 58
epinephrine neurotransmitter + catechol >100 39
phenylephrine drug (decongestant) | + phenol >100 >100
phenethylamine | trace amine + benzene n.d.* >100*
histamine neurotransmitter + imidazole | n.d.* 56*
tryptophan amino acid +— indole >>1000 >1000
(Trp)
TrpGly occurs in hypophysis | +— indole >>1000 >1000
5-hydroxy precursor to SHT +— 5HO- >>1000 >1000
tryptophan indole

* The electron-poor analyte phenethylamine and histamine do not quench the emission of
ANR-L2 and ANR-Y2. Conversely, the addition of phenethylamine and histamine to
ANR-Y2, ANR-L3 and ANR-L5 causes an increase in the emission intensity through
dye-aggregation, while nicotine gave no appreciable effect at 100 M concentration. The
Kg values for ANR-L3 (250 pg/mL in 10 mM HEPES buffer, pH 7.3) with
phenethylamine and histamine are 190 M and 360 pAM, respectively. Furthermore,
phenethylamine partially quenches the emission of ANR-L4 (residual emission int. 75%
at 25 uM of analyte, K4 = 19 piM). All other herein shown aryl-moiety containing
analytes are known to quench the emission of D2 when held in close spatial proximity to

the dye.*?
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Table 4.4 Fitted single site dissociation constants (Kd) for the binding of zeolite LTL-
based ANR-L2 (250 pg/mL in 10 mM HEPES buffer, pH 7.3) with representative

analytes.
analyte biological function charg | aryl-unit | K4(ANR-
e L3) (V)
serotonin (5-HT) neurotransmitter + 5HO- 2.7
indole
tryptamine trace amine + indole 9.4
tyramine trace amine + phenol 6.9*
dopamine neurotransmitter + catechol 9.7
norepinephrine neurotransmitter + catechol 15
phenethylamine trace amine + benzene 190*
histamine neurotransmitter + imidazole | 360*
epinephrine neurotransmitter, hormone + catechol >100
L-DOPA drug (dopamine precursor) +— catechol >>1000
tryptophan (Trp) amino acid +— indole >>1000
nicotine stimulant drug, toxin + pyridine >>1000
indole - No indole >>1000
catechol - No catechol >>1000

* Tyramine quenches the emission of ANR-L3 by only 30%, but the titration curve

shows saturation behaviour.

** The electron-poor analytes phenethylamine and histamine cause an increase in the

emission intensity of ANR-L3 through dye-aggregation.

Table 4.5 Response of the emission ANR-L4 (250 pg/mL in 10 mM HEPES buffer, pH
7.3) to representative analytes

analyte biological function charge | aryl-unit | K4(ANR-
L4) (LM)
dopamine neurotransmitter + catechol 35
norepinephrine neurotransmitter + catechol 4.5
tyramine trace amine + phenol 5.7
octopamine trace amine + phenol 12
phenethylamine trace amine + benzene 19
epinephrine neurotransmitter, hormone + catechol 11
phenylephrine drug (decongestant) + phenol >100
histamine neurotransmitter + imidazole | n.d.*
L-DOPA drug (dopamine precursor) +— catechol >>1000
phenylalanine amino acid + — benzene >>1000
tyrosine amino acid +— phenol >>1000
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histidine amino acid +— imidazole | >>1000

adenosine neuromodulator No purine >>1000
catechol - No catechol >>1000

* The electron-poor analyte histamine cannot quench the emission of ANR-L4. All other

herein shown aryl-moieties are known to quench the emission of D4 when held in close
spatial proximity to the dye.™

The autofluorescence of serotonin and tryptamine in the spectral region of the emission
of ANR-L4 has prevented the investigation of their binding to ANR-L4.
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Fig. 4.10 Chemical structures of the analytes tested in this study.

While not yet achieving the record values of Nature, Kg ~ 1 nM, for serotonin binding to
the natural 5-HT7 receptor protein,* for serotonin binding to ANR-Y1 we observed an
impressive K4~ 70 nM. Our zeolite-based ANRs are already superior compared to any
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other artificial neurotransmitter receptor, e.g. K4(5-HT) ~ 15 M with the contemporary

“record-affinity” host cucurbit[7]uril.*®

Besides, unlike natural protein receptors or most
synthetic hosts, the zeolite-based ANRs have a built-in spectroscopic response upon

neurotransmitter binding.

4.4 Molecule selectivity

In order to investigate into the selectivity of the ANRs towards the neurotransmitters and
structural analogues, ANR-responses to 37 representative substances were determined
(Fig. 4.9 and Table 4.2-4.5). A very strong charge-mediated selectivity was generally
observed; For instance, the binding affinity of the net positively charged, unnatural,
amidated tryptophan (TrpNH;) with ANR-Y1 and ANR-Y2 is large, K4 ~ 110 nM and
2.7 UM, respectively, while its natural counterpart, the essentially isostrucural but
zwitterionic amino acid tryptophan (Trp) binds very weakly (Fig. 4.10). Notably, our
receptor materials can reach charge-selectivity factors in Ky of about 10,000, whereas
selectivity difference of >100 are rarely observed for the complexation of organic
molecules by other artificial hosts in water.*” *® To exemplify, 5 UM of serotonin could
be clearly detected by ARN-L1 in the presence of 50.000 pM Trp (Fig. 4.11). Moreover,
also non-charged species, such as catechol and indole, are only weakly bound by the
ANRs, which is in stark contrast to the findings for their derived catecholamine
neurotransmitters (dopamine, epinephrine and norepinephrine) and serotonin/tryptamine
(Fig. 4.10).
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Fig. 4.10 Binding isotherms for ANR-L2 (250 pg/mL) and a, indole-derivatives or b,
catechol amines. See Fig. 4.X for their chemical structures. All titration experiments were
carried out in aqueous HEPES buffer (10 mM, pH 7.3) and with an excitation wavelength
of Aexc = 475 nm.
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Fig. 4.11 Binding curves for the titration of ANR-L1 (250 pg/mL) with a, serotonin and
b, tryptmaine, each in 10 mM HEPES buffer (pH 7.3) to which were added 50 mM
tryptophan (Aexc = 400 nm). The solid lines represent the least-square fits to a single-site
1:1 binding site model. shows The binding strength (Kq = 14 M) of serotonin in the
presence of 50 mM Trp is only by a factor ~4 weaker than in the absence of the potential
competitor Trp. Similarly, the also the binding of tryptamine (K4 = 27 M) and dopamine
(Kgq = 48 M) is still very strong in the presence of 50 mM Trp, and only by a factor ~3
weaker than in the absence of the potential competitor Trp (See Table 4.X for

comparison).
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Equally striking is the much stronger response of ANR-L1 — ANR-L4 for dopamine and
norepinephrine than for the only slightly larger but otherwise very similar epinephrine
and phenylephrine (Table 4.6 and Fig. 4.10). Surprisingly, even the natural oga-
adrenergic receptor and the dopamine D4 receptor show a lower degree of selectivity
(Table 4.6). Expectedly, the larger-cavity zeolite-based receptors ANR-Y1 and ANR-Y2
are less size selective; with them epinephrine (26 M and 39 M, respectively) is
strongly bound (see Table 4.2-4.6).

Table 4.6 Relative binding selectivity for natural receptor proteins and the zeolite-based

artificial receptors for dopamine, norepinephrine and epinephrine.

Receptor system scaffold | Selectivity dopamine | Selectivity (R)-

vs. (R)-epinephrine norepinephrine  vs.
(R)-epinephrine

asa-adrenergic receptor™ | protein | 13 — 25* 3 4*

dopamine D4 receptor® | protein | 15 3—4*

ANR-L1 zeolite L | >50 >50

ANR-L2 zeolite L | 52 19

ANR-L3 zeolite L | >50 >50

ANR-L4 zeolite L | 32 25

ANR-Y1 zeoliteY |8 <3

ANR-Y2 zeoliteY |4 <2

The protein-based receptor studies were carried out in 50 mM K*-phosphate and in Tris-
buffer with added membrane components.*® ?° The binding assays with the ANRs were
performed in 10 mM HEPES buffer.

* range of selectivity values was reported by different assay types

In addition to charge- and size-mediated selectivity constraints, it should be noted that
only analytes that carry an aromatic recognition motif are expected to cause significant
changes in the emission intensity of the sensors. Thus, of all naturally occurring
substances tested, only the aromatic amine neurotransmitters and aromatic trace amines
gave rise to a strong spectroscopic response while other neurotransmitters, hormones,
drugs, amino acids, peptides and alkyl amines showed small effects. In fact, the
functionality of the ANRs is preserved in cell culture media or blood serum which
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verifies the high specificity of the ANRs. It arises as a conclusion that the entrapping of a

reporter dye in the negatively charged and confined nanopores of zeolites crystals,

guarantees for a very high selectivity for analytes that are small, positively charged and

simultaneously possess an aryl-ring as the recognition unit.

4.5 Sensing applications

4.5.1 Ratiometric sensing
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Fig. 4.12 Ratiometric sensing with ANR-L1 that contains a co-encapsulated, non-analyte

responsive reference dye DXP. a, Emission spectra of ANR-L1-DXP (=DXP loaded

Linde-type zeolite L that was subsequently loaded with D1) (250 g/mL) upon addition

of serotonin. b, Control: Emission spectra of DXP loaded Linde-type zeolite L

(250 pg/mL) upon addition of serotonin. ¢, Ratiometric plot for the titration experiment

shown in part b of this figure. d, Ratiometric plot for titration experiments at lower ANR-
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L1-DXP concentration ((25 pg/mL), allowing for detection of lower concentrations of

serotonin.

The modular design of the ANRs allows to address additional requirements for
practically applicable sensors. Firstly, co-inclusion of an analyte-responsive reporter dye
with a non-responsive reference dye provides a simple access to ratiometric sensing
schemes (Fig. 4.12). These experiments were carried out in triple-fold and the error bars
are given. All experiments were carried out in 10 mM HEPES buffer and the excitation

wavelength Aexc = 360 nm was used.

4.5.2 Release indicator for label-free drugs
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Fig. 4.13 Fluorescence-based monitoring of the intracellular release of label-free drugs. a)
Cellular uptake of drug-loaded and surface-coated ANRs results after release of the drug
in an increase in the fluorescence emission of the ANR. b) Intensity coded-confocal
micrographs showing cellular uptake experiment of the serotonin-loaded and
poly(lysine)-coated ANR-L1 at different incubation times 1h (left), 4h (center), and 24h
(right panel), and c) their corresponding brightfield images. Images were acquired at Aexc

= 405 nm. The scale bar is 20 pm.

Surface functionalization of the ANRs is possible, furbishing sensors that are readily

uptaken by cells (e.g. through coating with polylysine). Porous materials capable of
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storing gases™ or delivering drugs®® have found wide ranges of industrial and medical
applications, but monitoring strategies for cargo-loading and -deloading processes are
just emerging.”® 2* Oftentimes, fluorophore-labelled drug-analogues® were employed to
study drug-delivery kinetics, however, labelled drugs inevitably show an altered
biological profile compared to the parent drug. Employing a porous materials with a
built-in fluorescent signal transducer is a promising alternative, allowing for monitoring
of cargo-loading and -deloading of label-free drugs. We loaded ANR-L1 with serotonin
(switch off in emission) and surface-coated it with a cell-attracting polylysine layer (Fig.
4.13a). This drug-delivery vehicle was readily uptaken by living Rattus norvegicus C6
glioma cells. Then, intracellular-release of the cargo serotonin occurred in the course of
24h hours, as can be inferred from the gradual restoring of the emission of the ANR (Fig.
4.13Db, c).

4.6 Conclusion and perspectives

Applying the lessons learnt for synthetic hosts and natural proteins about the energetic
importance of the non-classical hydrophobic effect for binding of analytes/ligands in

aqueous media,*”’

it has been demonstrated that porous inorganic materials provide a
platform for high-affinity binding. The herein introduced strategy relies on the use of
nanoporous inorganic frameworks (pore size ~ 1 nm) as opposed to the frequently
employed mesoporous (pore size > 2 nm)®® or non-porous spherical nanoparticles.”’
Specifically, highly selective, artificial neurotransmitter receptors were furbished starting
from negatively-charged, nanoporous zeolite L and zeolite Y. We believe that this
concept is transferable to other nanoporous materials such as silicas, metal organic
frameworks (MOFs) or covalent organic frameworks (COFs), which, — depending on
their charge and atomic composition — will be high-affinity binders for different analyte
classes. Moreover, the herein demonstrated convenient signal transduction strategy,
through co-inclusion of an emissive reporter dye into the porous framework, can find

important applications because of its sensitivity and practical ease.
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4.7 Experimental section

Materials

The zeolite host (Lucidot® NZL 40) was provided by Clariant. Zeolite Y was purchased
as its sodium salt from Alfa Aesar. Analytes (e.g. neurotransmitters) were purchased
from Sigma Aldrich with the highest purity grade available, typically as analytical
standard grade, but in all cases at least 99%, and used as received. D1-D5 have been
provided by Dr. Frank Biedermann.

Preparation of large, barrel-shaped zeolite L crystals

Described in chapter 2.

Preparation of the ANRs

A dicationic dye (D1-D5) was solubilized in 10 mL deionized water to reach a
concentration of 5 mM. Then, commercial zeolite L powder (500 mg) was added to the
solution. After 5 min of sonication, the suspension was shacked overnight. Then, the
sample was centrifuged, decanted and washed several time with water to remove surface-
physisorbed dye. This sequence was repeated until the supernatant became colourless and
non-emissive. Finally, the solids were dried in vacuum to yield the corresponding ANR-
LX (X =1 ... 5). The same procedure was applied for the preparation of ANR-Y1 and
ANR-Y2 starting from zeolite Y. The included dye was on the order of 0.5% per weight,
see the section “Discussion of the number of binding sites (cg)”, below. Table SEM
measurements confirmed that no significant change in the morphology occurred upon dye

uptake, as was expected.

Preparation of ANR-L1-DXP

1. Insertion of reference dye DXP by sublimation

The DXP dye (0.1 mg) is mixed with commercial zeolite-L (100 mg) in a glass
ampoule.®® The amount of DXP loading is calculated by considering that one DXP

molecule occupies 3 unit cells and a loading of 20% corresponds to the highest loading
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possible. We aimed for a loading of 1%. The ampoule was dehydrated at about 4.0x10°®
mbar for 12 hours and sealed. The ampoule was then heated at 300 <C for 12 hours in the
rotating oven. Afterwards the zeolite-L crystals were washed with n-butanol until the
supernatant showed no absorbance anymore and the zeolites were finally dried in vacuum.
2. Loading of DXP-zeolite with D1

To a suspension of DXP-loaded zeolite L in water (200 mg in 10 mL) was added dye D1
to achieve a concentration of 1 mM. The suspension was shacked overnight at room
temperature, centrifuged and the solids where treated 4x with a washing-centrifugation-
decanting sequence. The so prepared ANR-L1-DXP, suitable for ratiometric sensing,

(Fig. S26), was then dried in vacuum.

Preparation of PEGylated ANR-L1-PEG

To a suspension of ANR-L1 (40 mg) in 1.5 mL of anhydrous chloroform and the
suspension was sonicated with a tip sonicator for 2 min. Then 40 mg of MeO-PEG-silane
(M, = 5 kDa) were added and the suspension was stirred with a magnetic stirrer bar at
40<C overnight and then centrifuged. The solids were washed 2x with chloroform and 2x
with ethanol (each 1.5 mL) and then dried under vacuum. The presence of surface-grafted
PEG on the ANR was confirmed by TGA (weight loss 6.8%) and SEM experiments,
showing substantially less particle agglomeration than for the parent ANR-L1.

Preparation of polylysine-coated ANR-L1

To a suspension of ANR-L1 (40 mg) in 1 mL of deionized water was added 500 pL of an
aqueous solution of polylysine (0.1% (w/v), Santa Cruz Biotechnology). The suspension
was sonicated in a sonication bath for 2 min and then shacked for 2 hours and centrifuged.
The solids were washed 3x with deionized water and then dried under vacuum. The
presence of a polylysine coating layer on the ANR was confirmed by the positive zeta
potential of the coated, and negative zeta potential of the parent ANR-L1.

The polylysine-coated ANR-L1 can be readily loaded with serotonin as a model drug by
suspending the material in a 1 mM serotonin solution in water, followed by a

centrifugation and washing step.
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Stability and Functionality of ANR-L1 particles in blood serum and culture media

50 M of dispersion of ANR-L1 particles in blood serum (at concentration 1 mg/ml) was
placed on glass cover slips and analyzed directly by confocal microscope. Next, 50 i of
serotonin solution in HEPES buffer (at concentration 1mM) was mixed to the droplet and
the confocal microscopy experiment was performed. Finally, 50 i of histamine solution
HEPES buffer (at concentration 10mM) was extra added to the sample and the sample
further analyzed by microscope. The same experiment was conducted for the same

system in the presence of culture media.

C6 Glioma cell culture

Rattus norvegicus brain glioma (C6 Glioma) cells were grown inside culture media
containing 88% Dulbecco's Modified Eagle Medium (DMEM), 10% Fetal Bovine Serum
(FBS), 1% Penicillin-Streptomycin, and 1% L-Glutamine 200mM (all materials were
purchased from Gibco), under 37°C and 5% CO, condition, until reaching 80 to 90% cell
confluency. The cells were washed twice with phosphate buffered saline (PBS, Gibco),
trypsinated, and 50,000 cells were seeded on the rectangular glass cover slip (VWR)
inside six-well plate culture dish and glass bottom dishes (MatTek). Fresh culture

medium (2 was added gently and cells were grown overnight.

Stability and Functionlaity of ANR-L1 in the presence of culture media and cells

Culture media were removed from glass bottom dish and 1 mL of nanoparticles
dispersion (ANR-L1-PEG at concentration 0.1 mg/ml) was gently added onto cells. Cells
were left at 37°C and 5% of CO, for 2 to 5 minutes to let the particles sediment on the
glass surface. The sample was imaged subsequently by confocal microscope. In addition,
the behavior of the system after addition of serotonin and histamine (at concentration

1mM and 10mM, respectively) were also analyzed.
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Cellular uptake experiments

Culture media were removed from the cell well plates and 1 mL of a serotonin loaded and
polylysine coated ANR-L1 dispersion was gently added onto cells (concentration 0.1
mg/ml). Cells were incubated at 37°C and 5% of CO, for 1, 4, and 24 hours and after
each of the incubation is finished, the media was removed and the cell layer on glass
cover slips was gently washed three times with fresh PBS. Cell layer was fixed with 4%
paraformaldehyde (PFA) solution for 10 minutes. The layer was rewashed with PBS and
rinsed in 0.1% Triton X-100 in PBS for 5 minutes, washed twice with PBS and followed
in 1% bovine serum albumin, BSA (Sigma Aldrich), in PBS solution for 20 minutes.
Cells were gently washed with PBS three times and the cell layer on glass cover slip was
directly stained with Phalloidin Alexa Fluor® 647 (Invitrogen), for f-actin/membrane
staining, for 20 minutes, in the dark at room temperature, and washed again twice with
PBS and once with water. The cover slips were mounted onto glass slides for microscopy

experiments.

Confocal microscopy

Fluorescence images were acquired using Zeiss LSM 710 confocal microscope system
with 63x magnification, numerical aperture 1.3 of Zeiss LCI Plan-NEOFLUAR water
immersion objective lens (Zeiss GmbH). The samples were excited by a continuous wave
(cw) laser operated at wavelength 405 nm and the emission of the system was collected
widely in the range 412 nm to 735 nm. The emission spectra were acquired using lambda

mode acquisition and the signal was reprocessed by Zen 2011 software (Zeiss GmbH).

Dynamic light scattering and zeta-potential
DLS and zeta-potential analysis were performed on a Delsa Nano C Particle Analyzer
(Beckman Coulter, Brea, CA, USA); all DLS measurements were conducted in water,

while zeta-potential analysis in phosphate buffered saline (PBS), pH = 7.
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Thermogravimetric analysis

Thermogravimetric (TG) measurements were performed on a TGA instrument
NETZSCH STA 449 F3 Jupiter® — Simultaneous TGA-DSC. TGA scans were done with
a heating rate of 10 <C /min and hold at 550 <C for 30 min under a synthetic air purge gas

flow of 20 mL/min.

UV-Vis spectrum
The UV-Vis absorption spectra were measured by Shimadzu UV-3600 UV-Vis-NIR
spectrophotometer. The spectra of liquid samples were recorded at a 1 nm/s scan rate in a

cuvette with a 1 cm path length.

Fluorescence steady state spectrofluorometer

Steady-state emission spectra were recorded on a Horiba Jobin—Yvon IBH FL-322
Fluorolog 3 spectrometer equipped with a 450 W xenon arc lamp, double-grating
excitation, and emission monochromators (2.1 nmmm™* of dispersion; 1200
grooves mm ') and a TBX-04 single photoncounting detector. Emission and excitation
spectra were corrected for source intensity (lamp and grating) and emission spectral

response (detector and grating) by standard correction curves.

Fluorescence lifetime spectrometer

Timeresolved measurements were performed using either the time-correlated single-
photon counting (TCSPC) electronics PicoHarp 300 or the Multi-Channel Scaling (MCS)
electronics NanoHarp 250 of the PicoQuant FluoTime 300 (PicoQuant GmbH, Germany),
equipped with a PDL 820 laser pulse driver. A pulsed laser diode LDH-P-C-375 (hexc =
375 nm, pulse FWHM <70 ps, repetition rate 40 kHz) was used to excite the sample and
mounted directly on the sample chamber at 90< The photons were collected by a PMA-
C-192 photomultiplier (PMT) single-photon-counting detector. The data were acquired
by using the commercially available software EasyTau (PicoQuant GmbH, Germany),
while data analysis was performed using the commercially available software FluoFit
(PicoQuant GmbH, Germany).
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Fluorescence Titration Experiments

Analyte-ANR response experiments were carried out in a fluorescence quartz cuvette (3.5
mL) by titrating a suspension of the ANR in buffer with a stock solution of the analyte.
The excitation and emission wavelengths were chosen outside the absorbance window of
the analyte while simultaneously avoiding the contribution of the Raman scattering peak
to spectral area of interest. It was found that repetitive measurements of the ANR
suspension gave essentially identical spectra and intensities, confirming that the ANR
suspensions are stable. It was also confirmed that repetitive addition of buffer to the ANR
suspension did not affect the measurable emission intensity beyond dilution effects. After
addition of aliquots of the stock solution of the analyte to the ANR suspension, the
cuvette was shaken for about 3 seconds and the emission spectra was recorded. By
comparison with longer waiting times (e.g. 10 s, 5 min, 30 min) it is clear that the binding
equilibrium was already established after 3 seconds (possibly faster), i.e. within manual
mixing time.

Stern-Volmer analysis of the emission data shows the expected linear behaviour between
the concentration of the quencher and the ratio of the emission intensities Fo/F.
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Fig. 4.15 Example of a Stern-Volmer plot for a, ANR-Y1 with dopamine and b, ANR-Y2
with dopamine. The approximated dissociation constants (Kq = 1/slope) of 4 M and 10
UM, respectively, are qualitatively in good agreement with the ones obtained by the

preferred non-linear least square fit.

136



The binding isothermes were obtained then by plotting relative emission intensity at a
suitable wavelength against the analyte concentration and were then fitted by equation (1),
see below.

This fitting procedure was used in favour of a Stern-Volmer analysis, because linearized

binding plots are known to produce errors in Kg.

Data analysis and extraction of the affinity constants Ky
The binding isotherms were fitted by a least square fit through a binding equation for a
single site 1:1 binding model (A+B->AB) under the assumption that only the components

B and AB are emissive.

Fa _ 4 n AF[(ca+cp+Kq)—/(ca+cp+Kg)%—4-c4cgl "

FO 2'CB

Herein, Fa is the intensity at a given analyte concentration and Fq is the emission
intensity before analyte addition. AF is a measure of the relative emission increase or
decrease caused by the analyte. For fully non emissive AB complexes, i.e. when the
analyte A is an efficient quencher, AF reaches —1. The quantity ca denotes the
concentration of the analyte A and cg denotes the concentration of the “binding stations”
in the ANR.

The values K4 and AF result from the non-least square fit given the input Fa, Fo, ca and
Ca.

The concentration ca of the analyte follows directly from the concentration of the stock
solution and the added volume to the cuvette with the suspension of the ANR. The
concentration cg of the single binding sites per ANR suspension is a priori not known.
However, cg is directly and unambiguously obtained from the fitting of the fluorescence
binding isotherms for the case of strongly binding analytes, e.g. serotonin and tryptamine.
This so obtained value cg was then used as a constant for the fitting of the binding
isotherms of the weaker binding analytes. Notably, in all cases were fits observed with an
adjusted R-square value > 0.98, which cooperates that all binding sites inside the zeolite

crystal can be treated as independent and equal. In addition, it is reassuring to note that
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the value of the affinity constant Ky is rather insensitive to the concentration cg. The so

determined cg values are tabulated below.

ANR suspension (250 pg/mL) cg from fitting / pM
ANR-L1 6.6
ANR-L1-DXP 4.0
ANR-L2 2.6
ANR-L3 3.2
ANR-L4 5.5
ANR-Y1 1.1
ANR-Y?2 1.0

Discussion of the number of binding sites (Cg)

Based on the simplified schematic description in Fig. 1b in the main text, one would
expect that the number of binding sites in the ANRs is closely related to the number of
included dye molecules. This assumption was tested for ANR-L1 and ANR-Y1 by
determining the dye concentration independently. In particular D1 shows similar
photophysical properties (e.g. emission quantum yield (Table S4), and emission and
excitation spectra (Fig. S2) as its aqueous solution and inside the zeolite L and Y crystal.
Thus, a stock solution of D1 in 10 mM HEPES buffer was diluted as such that the
recorded fluorescence emission intensity nearly equals that of an ANR-L1 suspension
(250 pg/mL) or that of an ANR-Y1 suspension (250 g/mL) in the same buffer. Because
the concentration of the stock of D1, the quantum vyields and the dilution factors are
known, we could arrive at an approximate concentration of the dye component in the
ANRs. For ANR-Y1 (250 pg/mL), the dye concentration was Caqpe = 1.1 M, which
coincides with the concentration of the binding sites, cg, see the table above. This
suggests that indeed every cavity-bound dye molecule can act as an independent binding
station within the zeolite Y crystals. For ANR-L1 (250 pg/mL), the dye concentration
was Cgye = 0.37 M, which is substantially lower than that of the binding stations, cg. In
this case, it is therefore plausible, that analytes can also bind in other parts of the zeolite

L channels and do not only form face-to-face stacking complexes with the dye.
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Chapter 5
X-Ray induced luminescent Cu(0) clusters

Inside porous materials

Abstract
Herein, we report the formation of air stable luminescent Cu(0) clusters by in situ X-ray
irradiation inside various porous materials. The photoluminescent properties were further

investigated by both steady state and time-resolved spectroscopic techniques.
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5.1 Introduction

Ultra small metal clusters are attracting more and more research interests because of their
unique size-dependence optical and electrical properties that differs them from the bulk
materials and metal complexes.” 2 This leads to the promising application of the metal

clusters on catalysis, bio-imaging, optical and electrical applications.®®

Among all the metals, the synthesis of the noble metal clusters have been well established
by various methods* which can be used in fluorescence based sensing,’ bio-imaging™® and
catalysis applications."* For example, red emissive silver clusters were used for
microRNA detection.*® The luminescent property of 28-atom gold clusters has been
investigated.*® Since we know that silver or gold is relatively expensive, copper which is
not a precious element could be an alternative to create luminescence metal cluster. It is
cheap and already widely used in our daily life. However, compared to the noble metals,
copper is known to be easily oxidized which results with non-emissive materials. This
makes it difficult to obtain the pure Cu(0) clusters. This is the main reason that up till
now, emissive copper materials are mainly Cu(l) complexes which can be useful in

OLED and other applications.***®

For emissive Cu(0) clusters, due to the ultra-small size and the high reactivity which
makes it easily oxidized, the synthesis cannot be easily done through a simple approach.’
It make the copper based emissive cluster not really well developed. In the past few years,
a few stable and small Cu(0) synthesis have been successfully produced. It is described
that by using the micro-emulsions method, the formation of Cu(0) clusters with
controlled size smaller than 3 nm could be achieved.’* Sub nanometer-sized copper
nanoclusters were prepared by a one-pot procedure based on wet chemical reduction.®
Via electrochemistry, it is reported that Cu(0) cluster which has less than 14 Cu atom
have been synthesized.”® More recently, Cu(0) 5 atom cluster has been successfully
synthesized in water also by using electrochemistry method.?* Usually within the liquid
phase synthesis, stabilizer is usually needed to prevent the aggregation of clusters.?? This

could eventually be the potential limitation on the application of the clusters.
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Compare to the other reducing agent, photo assisted reduction have the advantage on the
control of reduction position and purification, which is very suitable for the cluster
formation in a confined space or template. A. Katrib discovered in the 1980s that by
exposure to X-ray, Pt(IV) can be reduced to Pt(11).> Since then, several researches
showed the possibility the reduction of platinum, gold or silver under X-ray irradiation.**
In 2014, J. Hofkens and co-workers developed the method of silver cluster formation
inside zeolite material by X-ray irradiation.”® The advantage of using X-ray is that the
reduction can be controlled in situ, which is not possible for hydrogen or other chemical
reducing agent. With tunable size and shape of the X-ray source, different patterns of the
reduced species can be spatially created. This could end up with applications such as
encrypted message and anti-counterfeit. However, there is no report of forming Cu(0)

clusters inside porous materials by X-ray irradiation yet.

In this chapter, we explored the formation of luminescence Cu(0) cluster via different
loading methods and reducing in different porous materials via X-ray irridiation.

5.2 General approach for the synthesis of Cu(0) cluster inside porous materials

The synthesis of emissive Cu(0) cluster, initially, can be done by loading potentially
emissive source (Cu ions or salts) into the porous materials. There are several advantages
of forming the emissive part inside the porous material. First, the clusters will be
stabilized and protected inside the channels to avoid the extra oxygen and water from air.
This is one of the major reason why Cu(0) clusters are not stable in air thus most of the
synthesis was done in solution and surfactant or ligand is needed for protection. Secondly,
each of the porous material we use has a unique pore size. This means that we can tune
the size of the cluster and the formation of the cluster formation cannot exceed a certain
scale. Big aggregation which is common for small particles can be avoided. This is a
good aspect on the cluster formation because with larger size there is less quantum

confinement effect which leads to poorer performance of the clusters.’® Moreover, for
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certain applications such as catalysis for oil industry, porous material can provide the
space which gives the full contact between the reactant and the catalyst. Especially for
zeolite material, product can escape from smaller pore in the framework.?® This improves

the reaction efficiency and leads to higher yield.

Fig. 5.1 Zeolite LTL (left) and zeolite FAU (right) framework and their dimensions.
Adapted from Ruiz, A., Brthwiler, D., Ban, T. et al. Monatshefte fir Chemie (2005) 136:

77, with permission from Springer Link.
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Fig. 5.2 Schematic synthetic procedure of the reduced Cu(0) cluster by ion exchange and

Cul loading.
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To load other ions/molecules into the porous material, several methods have been
developed. lon exchange for zeolite material have been established in the 1940s,%
followed by lots of examples.?® 2° For the gas phase loading, sublimation is usually used
to disperse the guest molecules into the host material.*®*! In our case, both methods are

used for loading copper source.

To investigate different copper species by different loading methods, both ion exchange
and sublimation were applied. The counter ions which exist in zeolite framework make it
possible for ion exchange. As for mesoporous silica, there is no counter ion in the
framework. Sublimation which requires no counter ion was applied for both silica and
zeolite material. For zeolite material, we use zeolite LTL (Si/Al=3:1) and zeolite FAU
(Si/Al=5.1:2) (Fig. 5.1) which have pore size of 0.7 nm and 1.2 nm respectively.
Mesoporous silica materials we employed have the average pore size of 3 nm and 12 nm.
This could help us to understand the size dependence of the cluster formation. To load the
copper source, we used two methods which we can see from Fig. 5.2. For zeolite

materials, the natural AI**

ion site in the zeolite crystals gives itself a negative charge
with the presence of the O%. In this case, charge-balance ions are needed to compensate
the negative charge. Since the counter-balancing ions (in our case Na* or K*) are already
presented in the zeolite materials, ion exchange method with Cu®* contained solution was
used. Two original counter ions (Na* or K*) can be replaced by Cu®". Since it is not
possible to load copper into mesoporous silica by ion exchange, gas phase loading by
sublimation method was used to load the copper source into both zeolite and silica
materials. The salt we chose to sublime was Cul, there are several reasons for that. Firstly,
among all the Cu(l) halogen salts such as CuBr or CuCl, Cul has the lowest boiling point
which means we can use the lowest temperature for sublimation. The loading can be
beneficial from minimum decomposition of Cu(l) salt. Secondly, we have discovered that
the Cul cluster inside the zeolite framework gives a red emission which is different from
the Cu(0) clusters that usually emits in the UV/blue/green area.*® This makes it easier for
us to distinguish the reduced and the not reduced part in the following experiments.
Thirdly, compare to Cu(ll), Cu(l) is easier to reduce. After the loading of Cul, the

reduction happened while the samples were exposed by X-ray in XPS. For each point

145



reduced, 2 times if survey scan and 10 times of Cu 3p elemental scan were applied. The
final sample was taken out from the XPS chamber without any modification and used for
further characterizations. The characterization was done by using SEM, XPS and
nitrogen adsorption from the material point of view, and fluorescence microscope,
fluorescence steady state spectrofluorometer and fluorescence lifetime spectrometer for

the photophysics point of view.

5.3 Luminescence Cu(0) clusters from Cu®*

Zeolite samples were ion exchanged by Cu®" and reduced by X-ray. The elemental
composition of the materials has been studied by X-ray photoelectron spectroscopy. The
elemental composition of the ion exchanged samples can be found in Table 5.1. From
there we see all the elements inside our system which are the zeolite itself (Al, Si, O, K
and Na), the exchanged and reduced Cu and the adventitious carbon from air. Due to the
crystal structure difference of the two zeolites and the two plus charge Cu ion other than
the original one plus charged counter ion, we had higher ion exchange rate for the zeolite
FAU (68.4%) than zeolite LTL (27.4%). This is due to the zeolite FAU has bigger pores

which can be accessible more easily.

To study the chemical state of the copper, elemental scan of the X-ray photoelectron
spectroscopy measurement was carried out. The spectra revealed the reduction of Cu(ll)
in the ion exchanged samples, see (Fig. 5.3). From the Cu 2ps/, scan, the small satellite
peaks and the peak shoulder which are very common for Cu®* were decreasing during
the X-ray exposure, and completely disappeared in the end. This indicates the reduction
of Cu(ll) to Cu(0).
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Table 5.1 Elemental composition of the Cu(0) clusters contained porous materials by X-

ray reduction of the Cu®** counter-ion.

Material Element Atomic % Material Element Atomic %

0] 57.37 0 57.27

Si 21.02 Si 17.67

Al 7.74 Al 9.23
Zeolite LTL | C 6.68 Zeolite FAU | C 9.07

K 5.20 Na 2.50

N 1.01 N 2.71

Cu 0.98 Cu 1.55

Normalized Counts

v 1 v 1 v 1
950 945 940 935
Binding Energy (eV)

Fig. 5.3 The change of XPS spectra of the ion exchanged zeolite LTL sample by 10 scans.

Metal clusters due to its small size have their unique size-dependence optical properties.
Among developed metal clusters, different emission wavelengths have been discovered.

Usually the emission can be tuned by adjust the size of the metal clusters.*

The picture of the X-ray reduced emissive Cu(0) clusters inside zeolite samples can be

seen as following. The ion exchanged sample showed green emission under fluorescence
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microscope with 475 nm filter. For comparison, the samples without any X-ray exposure

didn’t show any emission at all (Fig. 5.4).

Zeolite LTL Cu?* Zeolite LTL Cu?*: X-ray

Microscope
light source
without filter
Microscope
light source
with 475 nm
filter

Fig. 5.4 Comparison of fluorescence microscope image of ion exchanged samples before
and after X-ray exposure with/without 475 nm filter (scale bar 50 pm).

Zeolite itself could be emissive if electrical hole is created inside the material. To make
sure that the emission is really coming from the copper source, reference experiments
with X-ray exposure were also carried out. We have tried to expose the zeolite LTL with
K" as counter ion under X-ray using the same condition as the zeolite LTL with copper
source. From fluorescence microscope we can see that there was no green emission
observed with the 475 nm filter (Fig. 5.5a). From the emission spectrum, there was no
emission until 470 nm by applying the 270 nm wavelength of excitation (Fig. 5.5b). This

indicates that the reduced copper source was the reason for the green emission.

Because of the existence of the ion gun in the XPS instrument which is used for
compensate the plus charge on the measuring surface caused by the loss of electrons, Ar’
ion could also be a source to give electrons to copper ions for the reduction. To
investigate which is the real source for the reduction, we have deployed the X-ray beam
size of 400 pm and the Ar” ion gun beam of 2nm. By combining several fluorescence
microscope picture we obtained the image in Fig. 5.6. The size of the reduced area which
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was correlated with the X-ray beam size (400 pm) gave us the solid proof that the

reduction process was done by X-ray.

a) Zeolite LTL K*: X-ray b)

o

Ermimion exe@IT0w
Microscope
light source
without filter

31 4

au

3333 4

20 4

Ervanion Infermity

Microscope
light source
with 475 nm
filter

"wn 4

M’W‘M-MMWN*

FH] FH] wd @wo 1ee

Wavelength (am )

Fig. 5.5 a) Zeolite LTL with K+ as counter ion after X-ray exposure; b) emission spectra
of the K+ zeolite LTL (excitation at 270 nm).

Fig. 5.6 Fluorescence microscope image of the reduced spot of the ion exchanged zeolite
LTL. (Scale bar: 50 jum)
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Fig. 5.7 Excitation/emission spectra of the reduced ion exchanged zeolite LTL from a) X-

ray; b) hydrogen.

The excitation and emission spectra of the ion exchanged sample is shown in Fig. 5.7.
The ion exchanged sample has emission at 410 nm. This is comparable to our previous
result of the hydrogen reduced ion exchanged sample which has the emission at around
420 nm. The sample we synthesized has low quantum yield which the emission is not
really visible by naked eye but only by fluorescence microscope which is also similar

with the hydrogen reduced sample.

The relationship of the emission energy and the number of atoms in the cluster was

investigated by Zheng and co-workers.®® The relationship is shown as following:

Eem = 725 (1)
Where Eenm is the emission energy, E: is the Fermi energy of the metal and N is the
number of atom in the cluster. In this case, our ion exchanged zeolite LTL should have 12
atoms (410 nm emission). One unit cell of zeolite LTL contains 9 Al atoms thus there are
9 counter ions if the ion is 1+ chanrged.** There could only be 4.5 Cu atoms per unit cell
which is less than the copper cluster estimated. The XPS survey showed that there was
around 1% of nitrogen remained in the material, indicated that the Cu(NOg3), was not

completely removed which is the possible source of the exceeded Cu atoms.
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5.4 Luminescence Cu(0) clusters from Cul

Cul was sublimed into both zeolite and silica materials. The Cul inside the loaded porous
materials were reduced by X-ray. Through the SEM images we can see that the
morphology of the zeolite or silica material didn’t change before and after the loading
and reduction of the copper source (Fig. 5.8), indicates that the loading of Cul didn’t
destroy the porous structure of our materials. Meanwhile we have obtained red emission
from the loaded Cul which indicated that our copper source was successfully loaded
inside the porous material which we will discuss in the photophysical characterization

part later.

The elemental composition of the Cul reduced samples can be found in Table 5.2. There
we observed the elements from the material themselves (Al, Si, O, K and Na for zeolites,
Si, O for silica), the loaded Cu and I, and of course the adventitious carbon from air.
From the zeolite materials, the atomic ratio of the original counter ion shows that they are
still occupying the counter ion site in the zeolite framework. This indicates that the Cul

are loaded in the pores.

Table 5.2 Elemental composition of the Cu(0) clusters contained porous materials by X-
ray reduction of the loaded Cul.

Material Element Atomic % Material Element Atomic %
@) 45.03 0] 46.72
C 22.15 C 21.37
Si 18.77 Si 17.91
Zeolite LTL Al 6.69 Zeolite FAU Al 6.69
K 5.18 Na 6.51
Cu 0.61 Cu 0.51
I 0.58 I 0.28
@) 57.85 @) 59.31
MCM-41 Si 28.51 SBA-15 Si 29.13
silica c 12.56 silica ¢ 9.34
Cu 0.61 Cu 1.23
I 0.47 I 0.99
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Fig. 5.8 SEM images of a) zeolite LTL; b) zeolite FAU; ¢) MCM-41 silica; d) SBA-15
silica before (left) and after (right) the loading of Cul.
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Compared to the ion exchanged samples, no satellite peak was observed before or after
the X-ray exposure from the Cul loaded samples. As we can see from Fig. 5.9, there is
also no significant change of the Cu 2p spectra since it is well-known that the binding
energy of Cu(l) and Cu(0) is very similar (only 0.1 eV difference).® In this case, the

reduction cannot be seen by XPS in an obvious way. Further characterization is needed.

1.0

——Scan 1
—— Scan 2
—— Scan 3
0.8 4 —— Scan 4
——Scan 5
—— Scan 6
——Scan 7
0.6 1 Scan 8
| —— Scan 9

Normalized Counts

OO 1 v 1 v 1 v 1 v 1 v 1 v 1 v
965 960 955 950 945 940 935

——r
930 925
Binding Energy (eV)

Fig. 5.9 The change of the XPS spectra of the Cul loaded zeolite LTL sample by 10 scans.

N, adsorption measurement showed the loading of the Cul inside the pores of the porous
material. The isothermal curve and pore distribution can be found in Fig. 5.10, the type of
the curve didn’t change before and after the loading suggesting that the sublimation of
Cul didn’t change the porosity and it was partially loaded into the porous structure. The
decrease of the pore volume before and after loading also indicated that pores were
partially loaded (Table 5.3).
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Fig. 5.10 N, adsorption isothermal and pore distributions of different porous materials.
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Table 5.3 Pore volume of the porous material before and after loading of Cul

Sample Pore Volume (cm®g of material) | Loading rate
Zeolite LTL 0.13125 44%
Zeolite LTL loaded with Cul 0.07350
Zeolite FAU 0.31803 70%
Zeolite FAU loaded with Cul 0.09552
MCM-41 silica 0.42002 65%
MCM-41 silica loaded with Cul 0.14682
SBA-15 silica 0.65027 70%
SBA-15 silica loaded with Cul 0.19310

To investigate if we can see anything inside the material, focused ion beam have been

used for etching on the reduced Cul loaded zeolite LTL sample. And we can see that

there is no significant difference between the etched (down) and the not etched part (up)

(see Fig. 5.11). Thus the Cul is homogeneously loaded inside the porous material.

— 200 nm ———

ISIS

Fig. 5.11 SEM image of the FIB etched sample of the reduced Cul loaded zeolite LTL.

The Cul reduced sample show bright blue/green emission under UV (Fig. 5.12). Even

though based on the XPS spectrum we were not sure if Cul samples were reduced or not.
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The bright blue emission on the spot where there was X-ray exposure shows us the
existence of the reduction. Outside the reduced Cul spot we can see the original red

emission of the unreduced Cul cluster.

Compare to the reduced Cu(0) cluster from the ion exchanged zeolite, the emission of the
Cul reduced Cu(0) clusters is much more complicated. From the excitation and emission
spectra of the reduced Cul in zeolite LTL (Fig. 5.13), it is shown that there are at least
two emissions separately at around 355 nm and 425 nm which have been excited from
two different bands according to the excitation spectra. This gave us an idea that inside
our system, at least two kinds of Cu(0) clusters with different sizes were formed. As a
reference, originally there is the unreduced Cul emission which can be found from Fig.
5.14. 1t doesn’t overlap with our reduced cluster emission.

Normal light

Fig. 5.12 X-ray exposed Cul loaded zeolite LTL under normal light and UV. Bright blue
spots are the reduced part and the red emission comes from the not reduced Cul cluster.

To investigate the effect of the pore size on the formation of the Cu(0) clusters, Cul has
been loaded into the porous material with 0.7 nm (zeolite LTL), 1.2 nm (zeolite FAU), 3
nm (MCM-41 mesoporous silica, CTAB as surfactant) and 12 nm (SBA-15 mesoporous
silica, P123 as surfactant) pore sizes. To make sure the Cul can be loaded into the zeolite
and to exclude the possibility of cluster forming outside the pores, relatively low weight
ratio between porous material and Cul (1:1) has been used. The emission spectra of these
samples are shown in Fig. 5.15. From the spectra we can see that the emission between

400 nm to 440 nm increases while the pore size increases. This indicates that with bigger
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pore size, we form more clusters with larger size which emit between 400 nm to 440 nm.
But in this case, the reduced Cul inside zeolite LTL has an unusual shoulder at these
wavelengths which could most probably due to the space in between the zeolite discs
according to N, adsorption measurement (Fig. 5.10). These bigger spaces make the
bigger clusters formed at the space in between the zeolite LTL discs which can be similar
with the silica material with bigger pores. Above all, we always obtain the small clusters
which emit at 355 nm no matter what is the pore size of the material. The number of
atoms of each cluster species is also estimated from equation 1. The emission from 330
nm to 355 nm corresponds to Cug, Cuz and Cug. The emission from 410 nm and 425 nm
corresponds to Cuy, and Cuys. This result is supported by literature which suggested that
Cu(0) clusters which has more than 13 atoms are not emissive.'® In our case, Cu(0)

clusters more than 13 atoms could also be formed in the meantime.
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Fig. 5.13 Excitation/emission spectra of the reduced Cul loaded zeolite LTL.
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Fig. 5.14 Excitation/emission spectra of the unreduced Cul clusters inside zeolite LTL.
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Fig. 5.15 Emission spectra of Cu(0) clusters in different porous materials (excitation at

270nm).

Time-resolved luminescence measurements of the X-ray activated samples were

performed by FluoTime 300. By the emission spectra we knew that despite the pore size

difference for the porous materials, we always obtain the small Cu(0) species. Regardless
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the size, all the clusters we obtained have a major lifetime component of less than 1 ns

which is common for metal clusters (Table 5.4).

Table 5.4 Lifetime of different Cu(0) clusters in different porous materials.

Emission Lifetime (ns)
T1 T2 13

Zeolite LTL 355nm 0.7 (66.9%) 9.0(24.0%) 24.4 (9.1%)

Zeolite FAU 355nm 0.8 (65.3%) 8.3 (22.4%) 22.8 (12.3%)
MCM-41 silica 355nm 0.6 (93.2%) 7.7 (5.2%) 33.0 (1.6%)
SBA-15 silica 355nm 0.6 (92.2%) 6.3 (5.5%) 27.6 (2.3%)

Zeolite LTL 425nm 0.8 (73.7%) 4.3 (20.8%) 18.2 (5.5%)
MCM-41 silica 425nm 0.6 (79.0%) 3.0 (17.7%) 15.5 (3.3%)
SBA-15 silica 425nm 0.5 (563.2%) 1.2 (44.5%) 8.2 (2.3%)

For the clusters that emit at 355 nm, there are more components of longer lifetime from
the zeolites than from the silica. This tells us that in the zeolite material, there is higher
chance for the clusters to have interaction with the environment because of the ultra-
small pore size which result with longer lifetime components. In the case of the clusters
that emit between 400 nm to 440 nm, clusters inside the zeolite LTL and the MCM-41
silica were similar while there appeared to be more interaction between the cluster and
the material environment in the SBA-15 silica. This could be due to the large variety
distribution of the pores in the SBA-15 silica material.

To prove that the Cu(0) clusters are stable, we left them under air for more than 1 month.
From Fig. 5.16 we can see that under UV there are still visible blue emission coming
from the reduced Cu(0) clusters while the red emission coming from the Cul clusters are
almost gone compare to the fresh prepared sample in Fig. 5.12. This gives us the solid
proof that our Cu(0) clusters are stable through a relatively long period of time under

room temperature and exposed with normal air.
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Zeolite LTL Zeolite FAU MCM-41silica  SBA-1Ssilica

Normal light

Fig. 5.16 Image taken one month after the reduction process, Cu(0) clusters inside

different materials under normal light and UV.

5.4 Conclusion and perspectives

In summary, we report for the first time the in situ formation of luminescent Cu(0) cluster
inside porous materials by X-ray irradiation. The clusters are stable in air. Furthermore,
photophysics properties of the Cu(0) clusters have been measured. Also we investigate

the size dependence of the porous materials on the different cluster formation.

As we have described, this Cu(0) cluster can be fabricated in situ and the emission can be
tuned by using different porous materials. These unique properties could lead us to
further application such as specific lighting devices or creating certain emissive patent
such as anti-counterfeit application. Also, if we mix our blue/green emissive Cu(0)
clusters with other yellow/orange emissive species, white emitter could be created. As the
metal clusters are inside the porous framework, it could also be used in certain Cu(0)

based catalysis applications.®® Last but not least, more metal compound could be reduced
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by the X-ray assisted reduction. The size of the cluster could also be controlled by the
size of the porous space. In this way, more metal clusters could be in situ fabricated under

size control. More applications could be developed based on different metal.
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5.5 Experimental section

Materials

KOH (1 kg) and NaOH (1 kg) were bought from VWR chemicals, Al(OH)3 (500 g, extra
pure) and Hexadecyltrimethylammonium bromide (500 g, 99+%) was purchased from
Acros, Cul(100 g, 99%), Cu(NOs3),3H,O (100 g, 99%), Sodium metasilicate
nonahydrate (1 kg, >98%), Tetraecthyl orthosilicate (1 L, 98%), (3-
Aminopropyl)triethoxysilane (100 mL, 99%), hydrochloric acid (1 L, >37%) and
Pluronic P-123 were bought from sigma-aldrich, Cu(Ac), H,O (500 g, 99%) was
purchased from merck, and Ludox HS-40 (1 L) was bought from Aldrich chemistry.
Zeolite Y (FAU) was from Alfa Aesar GmbH & Co KG. All the products above were

used as bought without any modification.

Synthesis of disc shaped zeolite L
Synthesis of the MCM-41 silica
Synthesis of the SBA-15 silica
lon exchange

These contents have been described in chapter 2.

Synthesis of Cul cluster contained material

Porous material (zeolite LTL, zeolite FAU, MCM-41 silica and SBA-15 silica) was
mixed with Cul powder with 1:1 weight ratio. The mixture was degased under a high
vacuum until the pressure is lower than 1*10 mbar. The mixture was then sealed at high
vacuum and transferred into a rotating oven for sublimation at 200°C for 2 hours. The

final product was then taken out from the vacuum after cooled down.

X-ray photoelectron spectroscopy

All the X—ray Photoelectron Spectroscopic (XPS) measurements were done by a Thermo
Scientific K-Alpha X-ray Photoelectron Spectrometer using a monochromatic AlKa
radiation (hv= 1486.6 eV). Survey measurements were performed with 200 eV analyser

pass energy and a 1 eV energy step size to calculate the atomic concentrations. Element
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scans were performed with 50 eV analyser pass energy and a 0.1 eV energy step size to
obtain the chemical state information. X-ray beam size was 400m. All the obtained

binding energies were referenced to sp® carbon 1s peak at 284.8 eV.

Scanning electron microscope

Scanning Electron Microscope SEM images were recorded with a FEI Quanta FEG 250
instrument (FEI corporate, Hillsboro, Oregon, USA) with an acceleration voltage of
20kV. The sample is prepared by sputtering coated with Au (Emitech K575X peltier

cooled) for 45 s at 60 mA prior to fixation on an Al support.

Fluorescence microscope

Fluorescence microscopy images were taken using an Olympus inverted research
microscope BX51M with a digital Olympus XC10 camera for image acquisition. All the
fluorescence microscopy images were acquired in air. The filter we use was the build-in
WB filter which has the excitation wavelength at the range of 460-490 nm and emission
cut-off at 520 nm.

Fluorescence steady state spectrofluorometer

Steady-state emission spectra were recorded on a Horiba Jobin—Yvon IBH FL-322
Fluorolog 3 spectrometer equipped with a 450 W xenon arc lamp, double-grating
excitation, and emission monochromators (2.1 nm-mm™ of dispersion; 1200
grooves mm ) and a TBX-04 single photoncounting detector. Emission and excitation
spectra were corrected for source intensity (lamp and grating) and emission spectral
response (detector and grating) by standard correction curves.

Fluorescence lifetime spectrometer

Timeresolved measurements were performed using either the time-correlated single-
photon counting (TCSPC) electronics PicoHarp 300 or the Multi-Channel Scaling (MCS)
electronics NanoHarp 250 of the PicoQuant FluoTime 300 (PicoQuant GmbH, Germany),
equipped with a PDL 820 laser pulse driver. A pulsed laser diode LDH-P-C-375 (Aexc =
375 nm, pulse FWHM <70 ps, repetition rate 40 kHz) was used to excite the sample and

163



mounted directly on the sample chamber at 90< The photons were collected by a PMA-
C-192 photomultiplier (PMT) single-photon-counting detector. The data were acquired
by using the commercially available software EasyTau (PicoQuant GmbH, Germany),
while data analysis was performed using the commercially available software FluoFit
(PicoQuant GmbH, Germany).

Nitrogen adsorption

Nitrogen adsorption analysis was performed using a Micromeritics porosimeter (model
ASAP-2020). The samples were degassed at 250°C under vacuum for 6h and N
adsorption/desorption measurement was done at -196<C. The surface areas were
calculated by BET method. The pore size distributions and pore volume were calculated
by DFT methods.

164



5.6 References

A A

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

Y. Lu and W. Chen, Chem. Soc. Rev., 2012, 41, 3594-3623.

G. Schmid, Chem. Rev., 1992, 92, 1709-1727.

S. Choi, R. M. Dickson and J. Yu, Chem. Soc. Rev., 2012, 41, 1867-1891.

E. C. Tyo and S. Vajda, Nat Nano, 2015, 10, 577-588.

K. Bourhis, A. Royon, G. Papon, M. Bellec, Y. Petit, L. Canioni, M. Dussauze, V. Rodriguez,
L. Binet, D. Caurant, M. Treguer, J.-J. Videau and T. Cardinal, Mater. Res. Bull., 2013, 48,
1637-1644.

E. Maik, R. Klaus, H. Armin, M. T. Dragomir, W. Wilfried, S. Reinhard and P. Gianfranco,
Nanotechnology, 2008, 19, 135701.

T. P. Bigioni, R. L. Whetten and O. Dag, J. Phys. Chem. B, 2000, 104, 6983-6986.

J. D. Aiken lii and R. G. Finke, J. Mol. Catal. A: Chem., 1999, 145, 1-44.

E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443-3480.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M.
Wu, S. S. Gambhir and S. Weiss, Science, 2005, 307, 538-544.

T. Sun and K. Seff, Chem. Rev., 1994, 94, 857-870.

P. Shah, A. Rgrvig-Lund, S. B. Chaabane, P. W. Thulstrup, H. G. Kjaergaard, E. Fron, J.
Hofkens, S. W. Yang and T. Vosch, ACS Nano, 2012, 6, 8803-8814.

S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff and R. L. Whetten, J. Phys.
Chem. B., 2002, 106, 3410-3415.

P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999, 99, 3625-3648.

K. Tsuge, Chem. Lett., 2013, 42, 204-208.

M. Wallesch, D. Volz, D. M. Zink, U. Schepers, M. Nieger, T. Baumann and S. Brase, Chem.
Eur. J., 2014, 20, 6578-6590.

D.-W. Shin, S. X. Wang, A. F. Marshall, W. Kimura, C. Dong, A. Augustsson and J. Guo,
Thin Solid Films, 2005, 473, 267-271.

C. Vazquez-Vazquez, M. Bafiobre-Lopez, A. Mitra, M. A. Loépez-Quintela and J. Rivas,
Langmuir, 2009, 25, 8208-8216.

W. Wej, Y. Lu, W. Chen and S. Chen, J. Am. Chem. Soc., 2011, 133, 2060-2063.

N. Vilar-Vidal, M. C. Blanco, M. A. Lépez-Quintela, J. Rivas and C. Serra, J. Phys. Chem. A,
2010, 114, 15924-15930.

165



21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

S. Huseyinova, J. Blanco, F. G. Requejo, J. M. Ramallo-Lépez, M. C. Blanco, D. Buceta and
M. A. Lépez-Quintela, J. Phys. Chem. A, 2016, DOI: 10.1021/acs.jpcc.5b12227.

C. Wang, Y. Yao and Q. Song, Colloids Surf., B, 2016, 140, 373-381.

A. Katrib, J. Electron. Spectrosc. Relat. Phenom., 1980, 18, 275-278.

M. Fujiwara, H. Fujii, K. Tainaka, T. Matsushita and S. lkeda, Analytical
Sciences/Supplements, 2002, 17icas, i1065-i1067.

E. Coutino-Gonzalez, D. Grandjean, M. Roeffaers, K. Kvashnina, E. Fron, B. Dieu, G. De
Cremer, P. Lievens, B. Sels and J. Hofkens, Chem. Commun., 2014, 50, 1350-1352.

M. Guisnet and P. Magnoux, Applied Catalysis, 1989, 54, 1-27.

H. C. Thomas, J. Am. Chem. Soc., 1944, 66, 1664-1666.

B. Schulte, M. Tsotsalas, M. Becker, A. Studer and L. De Cola, Angew. Chem. Int. Ed.,
2010, 49, 6881-6884.

M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S.-i. Mikuriya and S. Kagawa, J. Chem.
Soc., Chem. Commun., 1986, DOI: 10.1039/C39860001272, 1272-1273.

K. i. Kuge and G. Calzaferri, Microporous Mesoporous Mater., 2003, 66, 15-20.

E.-M. EI-Malki, R. A. van Santen and W. M. H. Sachtler, J. Phys. Chem. B., 1999, 103,
4611-4622.

E. A. Prasetyanto, L. Donato, C. Hsu, P. Chen and L. D. Cola, manuscript in preparation.

J. Zheng, P. R. Nicovich and R. M. Dickson, Annu. Rev. Phys. Chem., 2007, 58, 409-431.
M. M. J. Treacy and J. B. Higgins, in Collection of Simulated XRD Powder Patterns for
Zeolites (Fifth Edition), Elsevier Science B.V., Amsterdam, 2007, pp. 256-257.

J. Chastain, R. C. King and J. Moulder, Handbook of X-ray photoelectron spectroscopy: a
reference book of standard spectra for identification and interpretation of XPS data,
Physical Electronics Eden Prairie, MN, 1995.

P. Maity, S. Yamazoe and T. Tsukuda, ACS Catalysis, 2013, 3, 182-185.

166



Chapter 6
Multi-functionalized mesoporous titania for

bio-application

Abstract

Mesoporous material due to its large surface area, biocompatibility and possibility of
functionalization, makes it a good candidate for bio-application. Herein, multi-
functionalized mesoporous titania particle has been developed for drug delivery
application. Compare with the widely used mesoporous silica, titania which is
photoactive could provide extra advantages in bio-application. On the other hand, the
widely used titania material e.g. in sunscreen also bring health concerns. In this case, the
release of the reactive oxygen species (ROS) by titania material under UV irradiation has
been studied in vitro. These results could be further applied for intercellular reaction,

inhibition of drug resistance and so on.
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6.1 Introduction

Mesoporous titania materials find different applications in various photo induced
functions such as dye sensitized solar cells,” ? water splitting® * and degradation of
organic pollutions™ ® due to its unique semiconducting properties. According to FDA
(21CFR73.575), titania is also considered to be safe and indeed has been used in tooth
paste and cosmetic products. However so far very little has been explored related to the
possibility of functionalization and the use of photo-active properties, applied in
biomedical applications.” ® Compared to the semiconductor field, there are fewer
examples for mesoporous titania used in bio-applications. Compare to the semiconductor
field, in the bio-area mesoporous titania have been used only as a matrix for sustained
drug delivery® or in antibacterial usse™ in the form of membranes or films. On the other
hand porous silica has been widely used as drug delivery agent in the form of
nanoparticles.*’ However, since silica materials are electrically “dead” and not
photoactive, the employment of the titania in this field could bring new aspects to the
drug delivery system. Thus, mesoporous particles of titania could represent an interesting
material to compare with similar size silica systems. In chapter 2 we have introduced the
mesoporous titania particles which could be ideal for this purpose. In fact, the hybrid
porous titania particles can be used as drug delivery material,** but more interestingly as
killing agents in bio-applications. This unique property is demonstrated to be useful to
solve the problem of multidrug resistance developed by cells or bacteria.** Compared
with titania particles which have no porous structure, spatial functionalization of the
pores and the possibility to entrap molecules such as drugs in the channels makes these
particles quite attractive.’

To use the titania material as killing agent, it is essential to know the release of the ROS
under UV irradiation inside the cells. The production of ROS by titania material under
UV irradiation have been discovered in the 1970s.** The photo induced process of the
creation of electron/hole pairs by titania material was studied later.™ It was suggested that
both HO -and HOO -were produced in the aqueous suspension of anatase titania after UV

exposure.’® Through the years, the different ROS production by titania under UV
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exposure was studied by many researchers in different solvents such as water,'” '8

ethanol*® and DMSO.% Of all these studies, electron spin resonance (ESR) spectroscopy
was used as the detection technique for the different ROS which is suitable in pure
solvents. However, as titania material has already been used widely in bio-medical
field,*" ?* the release of ROS bring both challenges (e.g. cytotoxicity) and opportunities
(e.g. killing agent). In this case, it is necessary to study the release of ROS in cells. As
intracellular environment is much more complicated than pure solvent, ESR is not
applicable for our purpose. Studies from biologists proposed that ROS which the
mitochondrial produced can be detected by fluoresce probe.?® Same principle could be
applied into our system. To our knowledge, up till now, there is no kinetic study reported
on the ROS release by titania under UV exposure in vitro. Also, as the toxicity of titania
in sunscreen has been debated for many years,?* this study can therefore bring some

useful information.

In this chapter, a drug delivery system based on multi-functionalized mesoporous titania
is described. Moreover, due to the unique photocatalytic property of the titania material,

the kinetic of ROS release in vitro under UV was also investigated.

6.2 Functionalization and characterization

As we mentioned in chapter 2 we have synthesized and characterized mesoporous titania
particle 400 nm in diameter and with pores of 11 nm. The surface of the particles has
been functionalized and the schematic procedure is shown in Fig. 6.1. The mesoporous
titania particle was first covered with alanine by the interaction between the carboxylic
acid and titania surface.® The fluorescein isothiocyanate isomer was then reacted with
the -NH; group of alanine and covalently attached. In the end, the whole system was
covered with a biocompatible polymer (polylysine) which could hold the whole system
together. Polylysine also gave a positively charged surface which makes the particle
easier to be internalized in the cells. The concept is that alanine and the mesoporous

titania particles were not covalently attached. After the degradation of polylysine inside
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the cells, alanine and its attachment would be released from the mesoporous titania
particle which could potentially act as drug. The fluorescein molecule attached with

alanine would make the release visible by microscopic methods.

TiO, TiO,-Ala TiO,-Ala-Fluo TiO,-Ala-Fluo-PLL

Fluorescein

Mesoporous titania particle

isothiocyanate A
isomer | N NP
:
i - . 't H
t Alanlne HN \ Poly'yS"‘e \_\/.\\/,\/N:‘
OH | |
NH,

“n

Fig. 6.1 Schematic procedure of the functionalization of mesoporous titania particle.
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Fig. 6.2 DLS number distribution of the original and functionalized mesoporous titania.

To determine size change of the functionalization of each step, dynamic light scattering
(DLS) was employed. We can see that as expected, with further functionalization the
particles get bigger (Fig. 6.2). The hydrodynamic diameter of starting mesoporous titania
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was around 400 nm. The alanine attached particle was around 600 nm and the final
polylysine covered particle was around 800 nm. The “tail” we have seen on the

distribution was due to the bigger aggregates.

The surface charge of the particles was characterized by zeta-potential measurement
(Table 6.1). The naked mesoporous titania particles showed negatively charged surface.
After the alanine and fluorescein functionalization, the fluorescein molecules on the
particle surface still showed negative charge. In the end, positive charge was obtained

due to the amine groups from the surrounded polylysine.

Table 6.1 Zeta-potential of the original and functionalized mesoporous titania.

Name Zeta-potential (mV)
TiO, -65.73
TiO,-Ala-Fluo -34.5
TiO,-Ala-Fluo-PLL +13.26
160000
—— Original spectra
—Ti 2p,,
@ 1200001 —Ti 2p,,
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Fig. 6.3 XPS titanium 2p spectra of TiO,-Ala.

To prove that the alanine was not covalently attached onto the titania surface which could
make the release possible, X-ray photoelectron spectroscopy (XPS) measurement was

used to measure the alanine functionalized titania. We can see that from the Ti 2p scan,
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the spectra can be fitted with one Gaussian peak (Fig. 6.3). This gave us the idea that
there was only one kind of titanium species which clearly only from titania. The
interaction of the alanine and titania was most likely electrostatic interaction between the
Ti(IV) ion with positive charge and the -COOH group which show negative charge in

water after the loss of H™.

6.3 In vitro bio-application

6.3.1 Drug delivery

Even through titania material is FDA approved, cytotoxicity of our functionalized titania
particle was unknown. In this case, cytotoxicity study was done in the first place. The
cells we have chosen were HelLa cells. The functionalized particles have been dispersed

in PBS solution with two different concentrations: 0.01 mg/mL and 0.05 mg/mL. The

Fig. 6.4 Confocal microscopic image of the functionalized mesoporous titania particle

cytotoxicity study. HeLa cells were incubated for 24 hours with 0.01 mg/mL and 0.05
mg/mL concentration. 0.1 pg/mL of DAPI was added as staining agent.
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Z-stack ER(Endoplasmic reticulum)

Lysosome Mitochondria

Fig. 6.5 Confocal microscopic image of the functionalized mesoporous titania particle

co-localization study with different cell organs.

particles were incubated with cells for 24 hours. Afterwards, DNA staining agent DAPI
(4',6-diamidino-2-phenylindole) was added to see the cell viability. It is known that very
high concentration (>25 pg/mL) of DAPI is needed to stain living cells due to its low
membrane permeability.?® In our experiments, 0.1 pg/mL was used that would be able to

label only dead cells. From the confocal microscope image Fig. 6.4 we can see clearly
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that after 24 hours of incubation, no blue emission from the cell nucleus was observed
which means that cells under both particle concentrations were not stained. This indicated
that our functionalized mesoporous titania was not toxic to HeLa celles with 0.05 mg/mL

concentration or lower.

To make sure that the particles were inside the cells, z-stack pictures using the confocal
microscope were taken. We can see clearly that our particles were inside the cells (Fig.
6.5). To investigate which cell organ was favorable for the functionalized mesoporous
titania particles, co-localization study by confocal microscope was applied. It was shown
that the particles were not co-localized with ER (endoplasmic reticulum), lysosome and
mitochondria. This indicated that the titania particle and the functionalized molecules
don’t have specific interactions with the cell organs.

50 um

Fig. 6.6 Confocal microscopic image of the HelLa celled incubated with 0.01 mg/mL

functionalized mesoporous titania particles for 24 hours.

As we have discussed before, alanine was not covalently attached with titania particle. It

could be released after the surrounded polymer (polylysine) has been degraded. In this
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experiment, HeLa cells were incubated with 0.1 mg/mL functionalized mesoporous
titania particles for 24 hours. Fig. 6.6 shows the confocal microscopic image of the HeLa
cells with particles inside. The fluorescein color was only found in some cells. If we
zoom in one of the cells with green color, particles can be found inside the cells. This
gave us the clear clue that the fluorescein was released after the cell uptake of particles.
This means that our multi-functionalized mesoporous titania could be used for drug

delivery applications.

6.3.2 ROS release under UV irridiation

It is well known that under UV irradiation, titania could produce reactive oxygen species
(ROS).*® Compare with silica material which is usually just a host of drugs in the drug
delivery system,'? the property of releasing ROS could make titania also act as a killing

agent.

To investigate the killing of cells by titania under UV irradiation, a HQRP 12 LED
flashlight which emits 365 nm wavelength light was employed. Reference experiment
was firstly carried out to prove that the cells were not killed by the UV. The cells were
exposed for 2 hours under UV irrdiation. DAPI was also added. No DAPI signal was
observed indicated that the cells were still alive under our conditions (Fig. 6.7). For the
cells with titania particles, after 2 hours of UV exposure, blue emissive DAPI was

staining the cell nucleus which indicated that most of the cells were killed (Fig. 6.8).

Without TiO,NPs
DAPI
2h

Fig. 6.7 HeLa cell without titania particle exposed under UV light for 2 hours, stained
with DAPI.
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20 pm ; J ,‘_a
Fig. 6.8 Confocal microscopic images of the HeLa cells incubated with functionalized

mesoporous titania particles after 2 hours of UV exposure, stained with DAPI.

The kinetic of the ROS release through titania under UV irridiation was studied by an
oxidation sensitive dye which is called Cell-ROX. Cell-ROX is not emissive initially, but
emits red light after oxidation. Fig. 6.9 shows the red emission which means cell-ROX
has been oxidized. This indicated that under UV exposure, ROS had been produced
which kill the cells.
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Fig. 6.9 Functionalized mesoporous titania particles contained Hela cells treated with

Cell-ROX after UV exposure. Red emission indicates the production of ROS.

Before UV 30min after UV

Fig. 6.10 Confocal microscopic image of the ROS release indicated by cell-ROX (red).

To investigate the kinetics of the ROS release in vitro, cell-ROX has been used as an
indicator of the ROS. HelLa cells were incubated by 0.05 mg/mL functionalized

mesoporous titania particles for 24 hours. The cells were then exposed with an 8 mW UV
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with 355 nm wavelength mounted with the confocal microscope. The picture was taken
every 5 minutes. The red component of the picture was taken out for further analysis (Fig.
6.10).

To determine the ROS release kinetic in vitro, several cells have been picked up and the
emission intensity of the cell-ROX has been analyzed. A typical red signal from one cell
is shown in Fig. 6.11. As the particles never enter the nucleus, we only pick up the
strongest signal from the cytoplasm. The initial value of the Cell-ROX can be explained
by the ROS produced by mitochondria which was first discovered in the 1960s.2” First
order reaction rate was applied to determine the ROS releasing rate which was suggested

by several literatures.'® %% %

80
70 4 — O0min
1 ——5min
—~ 60 - —— 10min
3 ] —— 15min
8 50-_ —— 20min
2 40- —— 25min
2 1 —— 30min
< 30 - —— 35min
c 1 —— 40min
20'_ —— 45min
10 4
v v T T T v
0 50 100 150 200 250

Pixel

Fig. 6.11 An example of the intensity of Cell-ROX dye increasing with UV exposure.

The kinetic of the ROS release in vitro is shown in Fig. 6.12. We have similar shape of
curve compare with the previous researchers which have investigate the release of ROS
from titania by UV irradiation in ethanol or in water.***° Previous studies suggested that
in aqueous solution, both hydrogen peroxide and singlet oxygen were produced by titania
under UV exposure.'® The production of ROS has been fitted with first-order reaction

rate.’® As we used the same fitting to our curve, a rate of 15.25 min™ was obtained.
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Compare to literature for ROS release, which reparted that 15000 s™ reaction rate was
achieved in DMSO at 0.1 mg/mL of titania,?® our reaction rate in vitro is much slower.
This could be explained mainly by two reasons. First, much more oxygen which is the
reactant to create the ROS, can be dissolved DMSO than in water (e.g. 9.2 mg O, dm > at
20 <T in water,”® 67 mg O, dm > at 25 <T in DMSO®). Also, a much less powerful light

source was used in our experiments than the literature (8 mW compare to 300 mW).
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Fig. 6.12 Experimental and the fitting data of the ROS release (fitted by first-order

reaction rate).

6.4 Conclusion and perspectives

In this chapter, multi-functionalized mesoporous titania have been successfully made.
The application of drug delivery has been demonstrated. Furthermore, compared with the
widely used silica material, the ability of being “killing agent” has been proved. Finally,
the in vitro kinetic of the ROS release by titania under UV exposure has been
investigated. This multi-functionalized mesoporous titania can be potentially used for

intercellular reaction, inhibition of drug resistance and so on.
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6.5 Experimental section

Materials

L-Alanine (>98%, 1g), Fluorescein isothiocyanate isomer | (90%), Poly-L-lysine was
purchased from Sigma-Aldrich without further modification.

Cell media is made of 88% Dulbecco's Modified Eagle Medium (DMCM), 10% of fetal

bovine serum (FBS), 1% of L-glutamine and 1% of penicillin.

Synthesis of the mesoporous titania particle

Described in chapter 2.

Functionalization of mesoporous titania particle

100 mg particles were suspended into 1 mL of EtOH, 5 mg of alanine was then added.
The mixture was stirred in the dark for 2 hours. The product was washed by
centrifugation 3 times with ethanol to remove the free alanine. The obtained TiO,-Ala
was suspended into ethanol, 0.1 mg of fluorescein isothiocyanate isomer | was added.
The mixture was stirred in the dark overnight. The free fluorescein was removed by
centrifugation 3 times with ethanol. TiO2-Ala-Fluo was then suspended into 10 mL
solution of polylysine water solution (1 mg/mL) and stirred overnight. Final product
TiO2-Ala-Fluo-PLL was washed with water by centrifugation 3 times. The
functionalized particles were suspended into PBS solution at certain concentration for the

in vitro experiments.

X-ray photoelectron spectroscopy

All the X—ray Photoelectron Spectroscopic (XPS) measurements were done by a Thermo
Scientific K-Alpha X-ray Photoelectron Spectrometer using a monochromatic AlKa
radiation (hv= 1486.6 ¢V). Survey measurements were performed with 200 eV analyser
pass energy and a 1 eV energy step size to calculate the atomic concentrations. Element
scans were performed with 50 eV analyser pass energy and a 0.1 eV energy step size to

obtain the chemical state information. VValence band spectra were performed with 50 eV
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analyser pass energy and 0.2 eV step size. X-ray beam size was 400m. All the obtained

binding energies were referenced to sp® carbon 1s peak at 284.8 eV.

Confocal microscopy

Fluorescence images were acquired using Zeiss LSM 710 confocal microscope system
with 63x magnification, numerical aperture 1.3 of Zeiss LCI Plan-NEOFLUAR water
immersion objective lens (Zeiss GmbH). The samples were excited by a continuous wave
(cw) laser operated at wavelength 405 nm and the emission of the system was collected
widely in the range 412 nm to 735 nm. The emission spectra were acquired using lambda

mode acquisition and the signal was reprocessed by Zen 2011 software (Zeiss GmbH).

Dynamic light scattering and zeta-potential
DLS and zeta-potential analysis were performed on a Delsa Nano C Particle Analyzer
(Beckman Coulter, Brea, CA, USA); all DLS measurements were conducted in water,

while zeta-potential analysis in phosphate buffered saline (PBS), pH = 7.
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Chapter 7
Organotitania material for photocatalytic

application(s)

Abstract

The reduction of the band gap of titania material is important to fully utilize its
photocatalytic properties especially under visible light. Herein, we report the synthesis
which introduces organic compounds to the organotitania precursor. The polymerization
of the organotitania precursor would end up with the titania framework which has organic
linkers. In the end, oganotitania with benzene and/or thiophene linker have been

produced. Photocatalytic activities under both UV and visible-light have been tested.
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7.1 Introduction

Titanium dioxide (TiO,) is a strategic material for many conventional usage (plastics,
paintings, paper, cosmetics, medical products etc.) and advanced applications such as

L2 water photo-splitting,® dye-sensitized solar cells* (DSSC) and

photocatalysis,
superhydrophilic coatings.® This metal dioxide is known in its three different polymorphs
(rutile, anatase and brookite).! Anatase and rutile are the most interesting TiO, phases
under the point of view of the photochemical applications. In addition, the most stable
thermodynamic phase: rutile, has been much more investigated by surface scientists due
to the fact that growing single crystals and/or single crystalline layers of this polymorph

is significantly easier.

Titania as highly promising material is mainly used for photochemical applications and as
a photocatalyst because of its excellent functionality, long term stability, and
nontoxicity.® ” Nevertheless, TiO, becomes active only under UV light, whose energy is
greater than the band gap of TiO, (around 3.0 eV).® The effective utilization of visible
light occupying the main part of the solar beams is one of the important subjects for the
increased utility of TiO,. In many previous studies, in order to improve the
photoreactivity of TiO, and to extend its absorption edge into the visible-light region,
doping of various transition metal cations has been intensively attempted.® *** For a few
cases, the photoactivity of the cation-doped TiO. decreased even in the UV region. &%
This is because the doped materials suffer from a thermal instability.® Solution of these
problems could be found in the hybrid organotitania nanomaterials, which expect to be
more effective due to the combination of organic - inorganic bonded parts through
covalent bonds or coordination-covalent bonds. Hybrid nanomaterials based on titanium

dioxide containing incorporated organic molecules are well known in different forms and

12,13 12-14 12, 15

structures (nanolayers, nanoparticles-NPs, nanofibers and nanocomposites'*

13y started to be promising for different types of applications not only in chemistry, but

6, 7, 16, 17

also in physics and in medicine.'® *® Many successful strategies have been

developed to modify titania by the incorporation of other functional metal ions,
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molecules and components with TiO, frameworks, which allow in many cases a priori

design of better photocatalysts.'® %%

From the structure point of view, titanium is a transition element with its valence
electrons divided between the Il1. and IV. principal quantum group, it cannot be expected
to bear more than a superficial resemblance to other group IV elements such as silicon,
germanium and tin which readily form stable covalent bonds with carbon. The
consequent lack of stability and difficulty to form the titanium-carbon bond is the crucial
reason for the repeated failures reported in the literature since the first attempt by
Cahours in 1861.* Study of the organic compounds of titanium has been carried out
resulting in isolation of a compound containing the covalent titanium-carbon bond. A
series of exploratory reactions between butyl titanate with various organomagnesium and
organolithium reagents in 1:1 to 4:1 molar ratios substantiated this assumption and
showed that the most stable carbon to metal bonds were formed with aromatic R
groups.”* However due to complicated synthesis route of organotitanium compounds,
repeated failures have been reported in the literature until 60 years ago when Herman and
Nelson (1953) isolated the first organometallic titanium compounds incorporating a Ti-C
o-bond by reacting titanium tetraisopropoxide with phenyllithium.?? Furthermore, more
general study has been done to investigate the stability of the Ti-C o-bond in the class of
compounds represented by the general formula R,TiXs, The stability of the
organotitania compounds is attributed to the initial formation of a stable lithium-
monophenyltitanium complex which apparently has no magnesium counterpart. The
reduction of titanium to the titanous state is considered to parallel the decomposition of
the R-Ti o-bond. Herman and Nelson? also confirmed that, R-Ti compounds formed
from 1:1 molar ratios of Grignard reagent to butyl titanate increase in stability in the
following order: butyl < methyl < acetylenyl < p-anisyl < phenyl < a-naphthyl < indenyl
compounds, the increasing stability parallels the increasing electronegativity of the R
groups as given by Kharasch.?* The order of increasing stability is in general agreement
with the published results on organogold® and organosilver®® compounds. In a general
way the stability is decreased with increasing electronegativity of the X group. However,

additional information is required to fully substantiate this observation. A sufficiently
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high electronegative field is required surrounding the titanium to stabilize it in the
tetravalent state. The R groups in themselves are not sufficiently electronegative to
supply this field and accordingly, a compound such as R4Ti is unstable. Increasing
electronegativity of the R group is paralleled by the increasing stability of the
organometallic bond. Thus aryl compounds are more stable than alkyl compounds. A
delicate balance of the electronegativity of the R and X group appears to be necessary in
order to stabilize RTiXs. It is suggested that although the electronegativity of an -OR
group such as —OC4Hg is necessary for the stabilization of the R-Ti bond, a second
mechanism plays tending to weaken the bond when groups of greater electronegativity
such as -OCHgs, -Cl and -F are used. The strong electron attraction of three F atoms, for
example, should cause a decrease of the screening effect of the three binding electron
pairs. As a result, the electron pair forming the R-Ti o-bond should move closer to the
titanium, the net effect being to weaken the organotitanium bond. While the structure
which contains more than one R group causes marked instability in a tetravalent titanium
compound, there are indications that compounds of the type R,Ti or R3Ti are relatively
stable.

Band gap of titania materials can be tuned by the insertion of different types of metals
and/ or organic molecules.® " !® The reduction of the band gap of titanium is critically
important to fully utilize its photocatalytic properties.> ** The search for titania based
materials with a smaller band gap, enabling absorption in the 400-900 (visible and near-
IR) spectral range, is of prime importance for improving their efficiency.*? One of the
real examples recently published also by George S. et al.® They reduced band gap of
TiO, with aim to use it for a macrophage cell line evaluation of cytotoxic and ROS
production, that showed increase oxidant injury and cell death in parallel with. Mentioned
findings demonstrate the importance of band gap energy in the phototoxic response of the
cell to TiO, nanoparticles and reflect potential of this material to generate adverse effects
in humans and the environment during high-intensity light exposure. A wide range of
nanocomposites based on titania are used in photovoltaic applications. Santos J.-M. et
al.?” describe donor—acceptor composites based on the combination of a thiophene system

and TiO, anatase nanostructure. Thiophene systems absorb light in the visible region *" %
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and can attain high hole mobilities, whereas TiO; nanoparticles or nanosystems —

nanocomposites are a common choice for bulk heterojunction solar cells.?”3** It is a
kind of hybrid combinations of organic—inorganic interfaces relevant for photovoltaic
applications.?” Compounds containing thiophene are in high interest due to their
possibility to make electron-transport layers and/or blue light emitters. They possess
relatively low LUMO energy levels while maintaining high HOMO-LUMO gaps. In
recent years, the use of organic semiconducting materials for applications in “plastic
electronics”, such as field effect transistors (FETs), organic light emitting diodes
(OLEDs), and photovoltaics (PVs), has gained increasing interest.** * Organic and/ or
hybrid systems offer the possibility for cheap raw materials and processing costs and are
readily tailored to access a wide range of physical, optical, and electrical properties in the

final device.3* %638

In this chapter, we would like to present completely new class of nanostructured
organotitania materials with narrower band gap compare to the inorganic titania. We
have successfully designed new hybrid organotitania nanomaterials namely 1,4-bis-
triethoxytitanyl benzene and 2,5-bis-triethoxytitanyl thiophene which have exceptional
properties beyond classical TiO, broadening application possibility of titanium based

materials in different fields. In particular, photocatalytic activity will be discussed.

7.2 Synthesis and characterization

7.2.1 Ti-Ben

The synthesis of 1,4-bis-triethoxytitanyl benzene is shown as following (Fig. 7.1). The
synthesis was done by exchange the iodide from 1,4-diiodobenzene with lithium by
lithiation reaction.®® The 1,4-dilithiobenzene thus obtained was subsequently used for the
reaction with Ti(OEt), to get our final organotitania precursor 1,4-bis-triethoxytitanyl
benzene.” Detailed synthetic procedure can be found in the experimental section. By
exposure with air, the water from the air could hydrolyse the —OEt group, and a hybrid

titania framework with both Ti-O-Ti and Ti-Benzene-Ti (Ti-Ben) can be obtained.
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Fig. 7.1 Scheme of the 1,4-bis-triethoxytitanyl benzene synthesis.

For our organotitania material, the critical characterization is the Ti-C bond. X-ray
Photoelectron Spectroscopy (XPS) was used to see if we obtained the Ti-C bond. Since
we are analysing carbon, 1,4-bis-triethoxytitanyl benzene was transferred in sealed bottle
from the synthetic glove box to the glove box mounted with XPS in order to avoid the
adventitious carbon from air.* From the titanium point of view, several very early
literature at 1980s suggested that for the pure TiO,, the Ti 2ps-, peak located around
458.5 eV, if we use the sp> C 1s peak reference at 284.8eV.**** If we change Ti-O to Ti-
C, compare to oxygen, carbon has less electronegativity which means the binding energy
of electrons from titanium in Ti-C would be lower than Ti-O. Here we found out exactly
that the binding energy of Ti 2ps;, electrons was lower than 458.5 eV (Fig. 7.2 left),
which indicates the existence of Ti-C bond. From the carbon point of view, by analysing
the C 1s spectra, we can see the composition of different carbon bonds. In our 1,4-bis-
triethoxytitanyl benzene sample, four different types of carbon bond can be identified
from the C 1s spectra, which are the aromatic C-C (2) in the benzene ring, aromatic Ti-C,
aliphatic C-O and aliphatic C-C in the —OEt group (Fig. 7.2 right). The composition can
be found in Table 7.1. For pure 1,4-bis-triethoxytitanyl benzene, the ratio between
aromatic Ti-C and C-O should be 1:3 but what we obtained is around 1:5, which means

that the obtain material is a mixture of 1,4-bis-triethoxytitanyl benzene and Ti(OEt),.
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Fig. 7.2 Comparison of XPS spectra of Ti 2p scan between inorganic TiO, and 1,4-bis-
triethoxytitanyl benzene (left); C 1s scan deconvolution of 1,4-bis-triethoxytitanyl

benzene (right).

Table 7.1 Composition of carbon species from 1,4-bis-triethoxytitanyl benzene.

C 1s scan Aromatic C-Ti AromaticC | C-C C-C-O
Binding energy (eV) 283.38 284.06 284.88 | 286.00
Atomic ratio (%) 7.11 14.78 39.52 38.59

Fig. 7.3 shows the thermal analysis data of 1,4-bis-triethoxytitanyl benzene, with
Ti(OEt), as reference. From the curve of Ti(OEt),, we can see that the organic part (-OEt
group) of the material was fully decomposed before 300 <C. There was no weight loss
observed in higher temperature which means that only pure titania remained. For 1,4-bis-
triethoxytitanyl benzene, when the temperature is lower than 300 <C, we have observed
the degradation of aliphatic carbon groups (-OEt). Between 450 <C and 550 <C, another
decomposition step was observed, which indicates the presence of Ti-C bond. Afterwards,
no weight loss was observed in the end of the procedure which indicates us the formation
of pure TiO,.
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Fig. 7.3 Comparison of TGA curves between Ti(OEt), and 1,4-bis-triethoxytitanyl

benzene.

As proved by XPS, our 1,4-bis-triethoxytitanyl benzene was not pure, nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS) have been done as
supporting information for our material characterization. From the aromatic region of
NMR spectra, the peaks are really complicated, but we can see that the signal was shifted
and different than both benzene and 1,4-diiodobenzene which indicates the formation of
aromatic Ti-C (Fig. 7.4). The spectra for 1,4-bis-triethoxytitanyl benzene didn’t change
after 24 hours in THF which indicates that it’s stable in THF. In Fig. 7.5, the mass signals
at m/z 443.3 and m/z 480.9 correspond to [1,4-bis-triethoxytitanyl benzene H]" and [1,4-
bis-triethoxytitanyl benzene K]*, respectively. For direct analysis of 1.4-bis-

triethoxytitanyl benzene spray ambient ionization mass technique was performed with 50%
acetonitrile as ionizing solvent. The results clearly show the molecule of 1.4-bis-

triethoxytitanyl benzene divided into many clusters, containing at least two different

types of cations (H" and K™).
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Fig. 7.4 "H NMR spectra comparison in the aromatic region from Ti-Ben synthesis.
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Fig. 7.5 ESI-MS spectrum of 1.4-bis-triethoxytitanyl benzene created in positive-ion
mode.
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After dispersion in water with sonication, the —OEt groups from 1,4-bis-triethoxytitanyl
benzene were hydrolyzed and a network of TiO, and Ti-Benzene organic linker was then
formed. This material has been named as Ti-Ben. To make sure that the Ti-C bond is still
there after water treatment, XPS was carried out again. From the Ti 2p scan it is shown
that the binding energy is still lower than TiO, (Fig. 7.6). This gives the proof that there
are still Ti-C bonds in Ti-Ben. C 1s scan analysis was not performed because of the
adventitious carbon contamination from air exposure which has both C-C and C-O
bonds.*

1.04—TiO,
T— 1,4-bis-triethoxytitanyl benzeng
0.8 +—Ti-Ben

0.6 -

0.4 -

Normalized counts

0.2 -

0.0 r T r T r T r e
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Binding Energy (eV)
Fig. 7.6 XPS Ti 2p spectra of TiO,, 1,4-bis-triethoxytitanyl benzene and Ti-Ben.

From SEM image (Fig. 7.7), we can see a mixed crystal system which is not well defined.
This also suggested presence of our organic linker.
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Fig. 7.7 SEM image of Ti-Ben.

7.2.2 Ti-Thio

Synthesis of the 2,5-bis-triethoxytitanyl thiophene can be found from Fig. 7.8. It is
similar with the synthesis of 1,4-bis-triethoxytitanyl benzene. Firstly, 2,5-
dilithiothiophene was obtained by lithiation of thiophene.** Then lithium have been
exchanged with titanium from Ti(OEt),. Detailed procedure can be found in the
experimental section. Similarly, a hybrid titania framework with both Ti-O-Ti and Ti-

Thiophene-Ti (Ti-Thio) can be obtained by air exposure.

OEt EtO
S n-Buli S . Ti(OEt), EtO—-/ S HTi"'DEt

Fig. 7.8 Scheme of the 2,5-bis-triethoxytitanyl thiophene synthesis.

XPS has been use for Ti-C bond characterization. From the titanium point of view, we
have found out that the binding energy of Ti 2p3/, electrons was lower than 458.5 eV (Fig.
7.9 left), which indicates the existence of Ti-C bond. From the carbon point of view, we
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analysed the C 1s spectra of 2,5-bis-triethoxytitanyl thiophene sample. Four different
types of carbon bond were identified from the C 1s spectra, which are the aromatic C-C
in the thiophene ring, aromatic Ti-C, aliphatic C-O and aliphatic C-C in the -OEt group
(Fig. 7.9 right). The composition can be found in Table 7.2. For pure 2,5-bis-
triethoxytitanyl thiophene, the ratio between aromatic Ti-C and C-O should be 1:3 but
what we obtained was around 1:6, which means that the obtained material is a mixture of
2,5-bis-triethoxytitanyl thiophene and Ti(OEt)a.
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Fig. 7.9 Comparison of XPS spectra of Ti 2p scan between inorganic TiO, and 2,5-bis-
triethoxytitanyl thiophene (left); C 1s scan deconvolution of 2,5-bis-triethoxytitanyl
thiophene (right).

Table 7.2 Composition of carbon species from 2,5-bis-triethoxytitanyl thiophene.

Clsscan Aromatic C-Ti Aromatic C C-C C-C-0
Binding energy (eV) | 283.52 284.18 284.81 | 286.01
Atomic ratio (%) 6.71 7.16 43.41 42.73

Fig. 7.10 shows the thermal analysis data of 2,5-bis-triethoxytitanyl thiophene, with
Ti(OEt), as reference. As we discussed before, the —OEt group from Ti(OEt), was fully
decomposed before 300 <C. As for our 2,5-bis-triethoxytitanyl thiophene, we have found
the aliphatic carbon groups (-OEt) also decomposed before 300 <C. Between 450 <C and

500 T, similarly with 1,4-bis-triethoxytitanyl benzene, another decomposition step was
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found, which indicates the Ti-C bond. No weight loss was observed in the end of the

procedure. This indicates us the formation of pure TiO, after 500 <C.
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Fig. 7.10 Comparison of TGA curves between Ti(OEt), and 2,5-bis-triethoxytitanyl
thiophene.

As proved by XPS, our 2,5-bis-triethoxytitanyl thiophene was not pure, nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS) have been done as
supporting information for our material characterization. From the *H NMR spectra (Fig.
7.11), the 2,5-bis-triethoxytitanyl thiophene sample has a very weak original thiophene
signal. There are significant changes in the '"H NMR spectra before and after 24h in
THFdg in nitrogen environment. Sample of 2,5-bis-triethoxytitanyl thiophene (two dark-
blue spectra) has peaks in the region between 6.80-7.05 ppm. Difference between the as
made and 24 h THF aged spectra indicates us reversibility of the reaction in the solution
in time. In case of 2.5-bis-triethoxytitanyl thiophene, the situation was more difficult (Fig.
7.12). In many cases, we got spectra of partly polymerized samples. The targeted

molecule was not clearly observed in this case.

196



2,5-bis-triethoxytitanyl thisphene THFd, in 24 h

2,5-bis-triethoxytitanyl thiophene THFd, in 0 h

Thiophene in THFd,

— — — T — T T |
B.O 7.9 7.8 7.7 76 75 T4 7.3 7.2 74 7.0 B9 ] 6.7 6.5 6.5 6.4
1 {ppm)

Fig. 7.11 *H NMR spectra comparison in the aromatic region from Ti-Thio synthesis.
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Fig. 7.12 ESI-MS spectrum of 2.5-bis-triethoxytitanyl thiophene measured in positive-ion

mode.

A network of TiO, and Ti-Thiophene organic linker was formed similarly as Ti-Ben. This

material has been named as Ti-Thio. To make sure that the Ti-C bond is still there after

197



water treatment, XPS is carried out again. From the Ti 2p scan we see that the binding
energy didn’t change between 2.5-bis-triethoxytitanyl thiophene and Ti-Thio (Fig. 7.13).
This gives the proof that there were still Ti-C bonds in Ti-Thio. C 1s scan analysis was
not performed because of the adventitious carbon contamination from air exposure which
contains both C-C and C-O bonds.*
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Fig. 7.13 XPS Ti 2p spectra of TiO,, 2.5-bis-triethoxytitanyl thiophene and Ti-Thio.

Fig. 7.14 SEM image of Ti-Thio.
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From SEM image (Fig. 7.14), we can see a smooth structure resembling cracked
nanolayer which indicated that this material is more hydrophilic. Well defined crystal
structure was not seen. This could be also a proof of the presence organic linker in the

structure.

7.3 Photocatalysis

7.3.1 Photophysics properties

The term “band gap” refers to the energy difference between the top of the valence band
to the bottom of the conduction band; electrons are able to jump from one band to another.
In order for an electron to jump from a valence band to a conduction band, it requires a
specific minimum amount of energy for the transition, which is called the band gap
energy®. Measurement of the band gap is important in the semiconductor and
nanomaterial industries. The UV-Vis spectra of different TiO, and organotitania
compounds are shown in Fig. 7.15. According to UV-Vis measurement, all our
organotitania powders have significantly higher photo activity in region 400 - 600 nm
due to the Ti-C bonds of organic linkers (benzene and thiophene) into the titania
framework. The organotitania samples were compared with two types of inorganic TiO;
material: 100 nm particles which are commercially available from Sigma-Aldrich and the
400 nm mesoporous titania particles, which we produced and are described in chapter 2.
From the UV-Vis spectra we can see that the inorganic titania material didn’t show photo
activity in the region of visible light. On the other hand, our organotitania samples have
absorption in the visible light region. To determine the band gap, the UV-Vis spectra
have been transformed into Tauc plot (Fig. 7.15 right).“® We can see that the inorganic
titania particles from Sigma-Aldrich and our inorganic mesoporous titania show similar
band gap energy (2.96 and 3.03 eV respectively). The band gap energies of our
organotitania materials are significantly reduced compare to inorganic titania. The band
gap of the direct transition was observed at 2.43 eV for Ti-Ben and 2.05 eV for Ti-Thio,
which give them significantly enhanced reactivity under the visible light region than the

inorganic titania material.
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All our titania VB XPS spectra (Fig. 7.16) which can be used for determine the highest

occupied molecular orbital (HOMO) show the edge of the maximum energy at about 2.5

eV, similar to that found for other titania materials."® The titania from Sigma-Aldrich

show the energy around 1 eV which is comparable with other doped titania materials.*’
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Fig. 7.15 Solid state UV-Vis spectra of different titania materials (left); band gap energy

is determined by Tauc plot transferred from the UV-Vis spectrum (right).
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Fig. 7.16 Valence band XPS spectra of different titania materials.
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Confocal microscopy was used to see the real colour and emission spectra of our
organotitania compounds (Fig. 7.17). Ti-Ben showed blue emission and Ti-Thio showed
more greenish emission. The co-localization of the emitted light and the sample indicated

that the emission was coming from the sample.
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Fig. 7.17 Confocal microscope image of Ti-Ben and Ti-Thio powder (up); emission

spectra (350 nm excitation) of Ti-Ben and Ti-Thio (down).
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7.3.2 Photocatalysis under UV

Photocatalytic activity of the materials was evaluated by photocatalytic degradation of
Rhodamine B molecules in aqueous solution under an Olympus high pressure mercury
lamp (100 W). For a typical test, the mixed solution contains 10° M concentration of
Rhodamine B and 0.15 g/L of material. The mixed solution was stirred in the dark for 3
hours to reach the adsorption/desorption equilibrium of the dye and the material. After
the process was finished, the final solution was centrifuged to remove the material. The
concentration of the remaining dye was determined via UV-Vis spectroscopy by using
the obtained supernatant. To investigate the relationship between the concentration of
Rhodamine B and its highest absorption peak height (at 554 nm), several dye solutions
with different concentrations were measured by UV-Vis spectroscopy. A linear curve was
then fitted to the measured data (Fig. 7.18). With this curve, we can calculate the

concentration of the dye by knowing the absorption peak height at 554 nm.
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Fig. 7.18 UV-Vis spectra of Rhodamine B solution with different concentrations (left).
Linear fitting curve shows the relationship between the concentration and the absorption
peak height at 554 nm (right).

The change of concentration of Rhodamine B with the photocatalyst under UV exposure

is shown in Fig. 7.19. The photodegradation process of Rhodamine B was well
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investigated by literature, and the pseudo-first-order reaction rate should be applied for
the process.* The photocatalytic constant k> was thus calculated by linear fitting of
In(co/c) versus time (Fig. 7.19 right). Table 7.3 shows the photocatalytic constant of each
material calculated from the fitted curves. Surprisingly, the TiO, from Sigma-Aldrich
showed very low photocatalytic performance. The reason was unclear but we suppose
that it was because of the doped manganese. Due to its porosity and large surface area,
the mesoporous titania showed the best performance as expected, which is more than 30
times faster compare to the TiO, from Sigma-Aldrich. Our Ti-Ben showed reasonable
performance which is about half of the mesoporous titania. Ti-Thio showed relatively
low photocatalytic activity but still more than 3 times better compare to the commercial
titania. As we discussed earlier, our titania materials are emissive under UV. The loss of
energy by emission could be one of the reason that the organotitanias were less active

than the mesoporous titania.
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Fig. 7.19 Photocatalytic reaction of titania materials under UV irradiation with the pure
Rhodamine B solution as reference (left); fitted pseudophotocatalytic constant (k’) of

titania materials under UV (right).
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Table 7.3 Photocatalytic constant k” for different titania materials under UV.

Material Band gap (eV) UV photocatalytic constant k’ (min™)
TiO, sigma 2.96 0.0016
Mesoporous TiO, 3.03 0.0569
Ti-Ben 2.43 0.0282
Ti-Thio 2.05 0.0061

7.3.3 Photocatalysis under visible light

The photocatalysis under visible light was done similar with the experiments under UV.
The same concentration of material and dye was used (0.15 g/L and 10 M respectively).
The suspension was also stirred in the dark for 3 hours. Same light source of the Olympus
high pressure mercury lamp was used but added with a 450 nm longpass optical filter to
get rid of the UV. Fig. 7.20 shows the experimental data and the fitting of the
photocatalytic constant k’. Table 7.4 show the calculated k’ values. In this condition, our
Ti-Ben showed good performance under visible light which is two times faster than the
mesoporous titania. Ti-Thio was not really comparable with the other two even though it
has the lowest band gap. The reason is discussed later with the UV spectra. Nevertheless,
with the reduction of the band gap from Ti-C, our Ti-Ben showed better photocatalytic

performance than inorganic titania under visible light exposure.
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Fig. 7.20 Photocatalytic reaction of titania materials under visible light irradiation (left);

fitted pseudophotocatalytic constant (k”) of titania materials under visible light (right).

204




Table 7.4 Photocatalytic constant k” for different titania materials under Visible light.

Material Band gap (eV) | Visible light photocatalytic constant k> (min™)
Mesoporous TiO, | 3.03 0.0031
Ti-Ben 2.43 0.0074
Ti-Thio 2.05 0.0005
1.0
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Fig. 7.21 Reference UV-Vis absorption spectra of the mixed dye and photocatalysts

solution stirred in the dark before and after the photocatalytic reaction.

To prove that the dye was degraded because of the photocatalyst but not the adsorption, a
reference experiment was carried out. While the photo degradation was going on, a part
of the starting solution which contained the material and the dye was continued stirring in
the dark until the end of the whole process (180 min). As we can see from Fig. 7.21, the
dye concentration from the final solution shows no significant difference compare to the
starting solution. This indicates that the dye was degraded by our photocatalysts, not

escaped from the solution by physical adsorption.

7.3.4 Discussion of photocatalysis reaction

The final product of dye degradation during the photocatalysis was investigated by many
researchers.***° In general, the complete disappearance of the adsorption peak means the
full degradation of the dye.!? The detailed UV-Vis spectra of each photodegradation
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process are shown in Fig. 7.22. For mesoporous titania, due to its large surface area and
strong photocatalytic property, the Rhodamine B molecule is considered to be fully
degraded into small molecules under UV irradiation (Fig. 7.22a). While under visible
light irradiation, we can see a blue shift of the peak. Several literatures suggested that this
is due to the photodegradation from Rhodamine B to Rhodamine which has the
absorption peak at 499 nm.**>! Same but more obvious phenomenon has been observed
from Ti-Ben both under UV and visible light exposure (Fig. 7.22b). This means that the
photodegradation process done by Ti-Ben was not all the way to small molecules. And
finally for Ti-Thio, we have observed a decrease of the absorption band between 400 nm
and 450 nm (Fig. 7.22c). If we re-look at the solid state UV-Vis speatra (Fig. 7.15), this
band clearly belongs to Ti-Thio itself. We suggest that, the Ti-Thio was not stable at all
under light irradiation, it decomposes itself. It also explained why we have observed poor

photocatalytic ability in case of Ti-Thio.
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7.4 Conclusion and perspectives

Herein we report the synthesis of two new types of organotitania material: 1,4-bis-
triethoxytitanyl benzene and 2,5-bis-triethoxytitanyl thiophene. In both cases we
observed the reduction of the band gap compare to inorganic titania. Photocatalysis of the
materials were tested both under UV and visible light. Under UV, our inorganic
mesoporous titania showed the better photocatalytic ability compare to our organotitania
and commercially available titania nanoparticles from Sigma-Aldrich. Under visible light,
our Ti-Ben performed the better than our inorganic mesoporous titania. The fact is that,
our organotitania, which has high reactivity under visible light, would bring promising

applications compare to the traditional inorganic titania.
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7.5 Experimental section

Materials

n-Butyllithium — n-BuLi, (Sigma-Aldrich, 1.6 M solution in hexane), diethylether - Et,O
(Sigma-Aldrich, 1 ppm BHT as inhibitor, anhydrous, >99.7%), 1,4-diiodobenzene
(ABCR, 98%), nhexane (Roth, 99,99%, <30ppm of H,0), titanium(lV) ethoxide —
Ti(OEt), (Sigma-Aldrich, >97%), cyclohexane (Sigma-Aldrich, anhydrous, 99.5%),
dibutylether (Sigma-Aldrich, anhydrous, 99.3%), toluene (Sigma-Aldrich, anhydrous,
99.8%), tetrahydrofuran - THF (Sigma-Aldrich, anhydrous, >99.9%), 2,5-
dibromothiophene (Sigma-Aldrich, 95%), thiophene (Sigma-Aldrich, > 99%), pentane
(Sigma-Aldrich, anhydrous, >99%), 1,2-dichloroethane (Sigma-Aldrich, anhydrous,
>99.8%), Petroleum ether (Sigma-Aldrich, anhydrous), 1,4-dioxane (Sigma-Aldrich,
anhydrous, >99,8%). All the products above were used as bought without any
purification.

Titania nanoparticle (Sigma-Aldrich, Mn doped, 100 nm size) was calcined at 350 °C for

3 hours to remove the organic residuals.

Synthesis of 1,4-bis-triethoxytitanyl benzene

n-BuLi 1.6 M solution in n-hexane (10 ml, 16 mmol) was added in one portion into the
Schlenk flask (100 ml) filled with Ar (5.0 purity). The hexane from n-BuLi was
evaporated through vacuum, thus the yellow, oily n-BuLi was obtained at r.t. Then Et,O
(12 ml, 115.4 mmol) was added to n-BuL.i. The solution was cooled in acetone bath to -
20 <C. 1,4-diiodobenzene (2.66 g, 8 mmol) was evacuated for 20 min in the second
Schlenk flask, then refilled with Ar. 1,4-diiodobenzene was added in one portion into the
cooled reaction kept under Ar,. The reaction was stirred for 1h/ 450 rpm at -20 <C. After
the cool bath was removed, precipitation of 1,4-dilithiobenzene has immediately started.
Y Et,0 was evaporated through vacuum and hexane (2x 20 ml, 304 mmol) was added
into the mixture kept under the Ar. The second part of Schlenk apparatus with frita S4
filled with Ar, was quickly connected to the Schlenk flask, the apparatus was turned over,
1,4-dilithiobenzene was collected on the frita, then was washed carefully with hexane (3

x 6 ml, 136.7 mmol) and dried overnight in the vacuum®. 1,4-dilithiobenzene (10 mg,
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110 pmol) was dissolved in the mixture of cyclohexane and diethylether with a 7:3 ratio
(3.5 mL and 1.5 mL) stirred at 300 rpm for 24 h in glove box, filtrated and subsequently
dropped into Ti(OEt), (0.17 mL, 230 pmol). The reaction was stirred for additional 24h/
300 rpm in the glove box at r. t., yellow solution was obtained. Glass substrates were
dipped into the solution, left there 30 s and removed, carefully dipped into the same
solvents as were used in the reaction, and washed 1x. Rest of the solution was
recrystallized. Yellow crystals were formed in the vacuum in the pre-cooled flask, when
2/3 of the solvents were evaporated. Yellow crystals were dried in the vacuum and stored

in glove box for further use.

Synthesis of 2,5-bis-triethoxytitanyl thiophene

Thiophene (0.4 ml, 5 mmol) was added into the round bottom flask (50 ml) placed in the
glove box, subsequently diethylether (10 ml, 96.2 mmol) was added. The mixture was
stirred at 450 rpm/30 min/18<C. n-BuLi 1.6M solution in hexane (0.9 ml, 9.54 mmol)
was dropped into reaction mixture at r.t., the colour has immediately changed into yellow.
Lithiated thiophene was subsequently dropped within 5 minutes into the 2M solution of
Ti(OEt), in hexane, (0.2 ml solution of Ti(OEt), with diethylether (4 ml, 38.5 mmol)/ 450
rpm. Whole reaction mixture was covered with aluminium foil and reacted for 2 h, the
colour has changed into yellow-green. Recrystallization was done from anhydrous
Petroleum ether (5 ml). Petroleum ether was added under Ar 5.0, when the 2/3 of
diethylether was evaporated through vacuum. Yellow crystals were dried overnight in the

vacuum and stored in the glove box.

X-ray photoelectron spectroscopy

All the X—ray Photoelectron Spectroscopic (XPS) measurements were done by a Thermo
Scientific K-Alpha X-ray Photoelectron Spectrometer using a monochromatic AlKa
radiation (hv= 1486.6 eV). Survey measurements were performed with 200 eV analyser
pass energy and a 1 eV energy step size to calculate the atomic concentrations. Element
scans were performed with 50 eV analyser pass energy and a 0.1 eV energy step size to

obtain the chemical state information. Valence band spectra were performed with 50 eV
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analyser pass energy and 0.2 eV step size. X-ray beam size was 400m. All the obtained

binding energies were referenced to sp® carbon 1s peak at 284.8 eV.

Nuclear magnetic resonance spectroscopy
'H Nuclear Magnetic Resonance (NMR) spectra were acquired on a Bruker Advance 400
spectrometer, the NMR chemical shifts were given in ppm, using the residual proton of

the solvent as internal standard (2.31 ppm for tetrahydrofuran ds).

UV-Vis spectrum

The UV-Vis absorption spectra were measured by Shimadzu UV-3600 UV-Vis-NIR
spectrophotometer. The spectra of liquid samples were recorded at a 1 nm/s scan rate in a
cuvette with a 1 cm path length. The solid samples were measured in solid state using

integrating sphere and barium sulphate (BaSO,4) was used as background.

Thermogravimetric analysis

Thermogravimetric (TG) measurements were performed on a TGA instrument
NETZSCH STA 449 F3 Jupiter® — Simultaneous TGA-DSC. TGA scans were done with
a heating rate of 10 <C /min and hold at 550 <T for 30 min under a synthetic air purge gas
flow of 20 mL/min.

Confocal microscopy

Fluorescence images were acquired using Zeiss LSM 710 confocal microscope system
with 63x magnification, numerical aperture 1.3 of Zeiss LCI Plan-NEOFLUAR water
immersion objective lens (Zeiss GmbH). The samples were excited by a continuous wave
(cw) laser operated at wavelength 405 nm and the emission of the system was collected
widely in the range 412 nm to 735 nm. The emission spectra were acquired using lambda

mode acquisition and the signal was reprocessed by Zen 2011 software (Zeiss GmbH).

Mass spectrometry
Experiments were performed on a Bruker Daltonics microTOF spectrometer (Bruker

Daltonik GmgH, Bremen, Germany) equipped with an orthogonal electrospray (ESI)
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interface. Calibration was performed using a solution of 10 mM sodium formiate.
Sample solutions were introduced into the spectrometer source with a syringe pump
(Harvard type 55 1111: Harvard Apparatus Inc., South Natick, MA, USA) with a flow
rate of 5 pl_.min™.
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Chapter 8

Instruments

Abstract
In this thesis, many experimental techniques were used in order to characterize the
properties of materials. Here we explain the most important instrumental methods and

their principles.
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8.1 UV-Vis spectroscopy

When a light with a given wavelength pass through a solution, the absorbance can be

expressed as:
Abs()) = lg% 1)

where |y is the intensity of light measured without the sample and I; is the intensity of

light measured with sample.

The relationship between the sample concentration (C) and the absorbance can be

expressed by Beer-Lambert law™:
Abs = eCL (2)
where ¢ is the sample’s absorption coefficient and L is the length of the cell’s optical path.

This is an idea equation which assumes that there’s no intensity of the light loss due to

other phenomenon such as scattering.

Moasurement
light beam

lo

| / Cell containing solvent Light detector
N2

=

Light source Monochrometer\ Measurement I
light beam

Cell containing sample solution Light detector

Fig. 9.1 Configuration and the measurement of UV-Vis spectroscopy. Copyright:

shimadzu.com.

The configuration of a UV-Vis spectroscopy is shown in Fig. 9.1. The wavelength of the

light is adjusted by the monochrometer and then divided into two equal parts which go
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through the reference and the sample respectively. The lights are then detected by the

light detectors and used for further analysis.

8.2 Steady-state emission spectroscopy

S0 CE Fluo rr::l-:-g -3
model FL3-12

single-qgrating
excitation monochromator

double-grating
ernizsion monochromator

Fig. 8.2 Configuration of Fluorolog-3 steady-state emission spectroscopy. Copyright:

horiba.com.

An emission spectrum describes the wavelength distribution of emission under a constant
excitation wavelength. Conversely, an excitation spectrum is measured by scanning the
excitation wavelength at a constant emission wavelength. In the system, the spectral
output of the light source, the wavelength dependent efficiency of the monochromators
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and the detector tubes are not uniformed. In this case, the instrument doesn’t show the
real excitation or emission spectra. The polarization of the emitted light can affect the
detection of the fluorescence due to the polarization dependence of the grating efficiency.
Also, the emission spectra from different instrument could be different because of the
sensitivity of the detector on different wavelength is different. Since the sensitivity of the
detector on different wavelength is different, depends on the region of the light spectrum,
different detectors are used. In our Fluorolog 3 equipment, for UV-Vis range, a TBX-04
single photon-counting detector is used and for the NIR, a Hamamatsu R2658P
photomultiplier is used. The configuration of the instrument is shown in Fig. 8.2. During

the measurement, different optical filters are also used to remove the unwanted lights.

8.3 Scanning electron microscopy (SEM)

SEM is a microscopic method used to investigate the surface microstructure of various
types of materials.? A typical configuration of SEM is shown in Fig. 8.3. Generally, the
main components of SEM are source of electrons, electromagnetic lenses, sample
chamber and holder, electron detector, and computer for control. Electrons are produced
by the electron gun. Then the electrons are accelerated down and passed through a
combination of lenses and coils to form a focused beam. The focused electron beam
(typically with 100 - 30000 eV energy) hits the surface of the sample. In this process,
electrons from the sample such as secondary electrons and backscattered electrons are
produced. These electrons can be detected by the electron detector. With the beam

moving, a full image of the sample structure in a certain area would be displayed.

219



Emitter/ SEM layout and function
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on the scresn

Fig. 8.3 Configuration of SEM. Copyright: ammrf.org.au.

8.4 Transmission electron microscopy (TEM)

TEM is a microscopic technique to investigate the microstructure of materials. The
energy of the beam is typically very high (100000 - 400000 eV) compare to SEM.> TEM
uses the same principle of normal optical microscope but use electron beam instead of
visible light. The configuration of TEM is shown in Fig.8.4. Similar with SEM, the
electrons produced by the electron gun are accelerated through a complicated lens system
to form a focused beam. When the electron beam transmits a small specimen of the
sample, some electrons are scattered. These transmitted electrons are again treated by a

lens system to give an image of the sample on the image plate.
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Fig. 8.4 Configuration of TEM. Copyright: hk-phy.org.

8.5 Laser scanning confocal microscope

Compare with the conventional fluorescence microscope, laser scanning confocal
microscope gives several advantages such as controllable depth of field, the elimination
of the image degrading ou-of-focus information and the ability to collect serial optical
sections from thick specimens. The confocal approach makes it possible to use a spatial
filtering system to eliminate out-of-focus light by illuminating the objective through a
pinhole (Fig. 8.5). From the pinhole, only the reflection from the focused spot can get

through. Other light from the out-of-focus spot are blocked. In this way, the final picture
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is only made of the light coming from the focused spots. By adjusting the focus point,

information of the specimen from different planes can be collected.

- Photomultiplier
Detector

Detector Laser Scanning
Pinhole Confocal Microscope
Out-of-Focus
Fluorescence - Light Rays OGO,
Barrier
Filter Excitation

Dichromatic
Mirror

Objective - Light Source

Fig. 8.5 Configuration of laser scanning confocal microscope. Copyright: zeiss.com.

8.6 Dynamic light scattering (DLS)

Small particulates dispersed in a solution are normally subject to Brownian motion. In
solution, the diffusion coefficient (D) can be expressed as a function of the hydrodynamic

particle size (d), known as Stokes-Einstein equation:

kT

D= 3mnd )
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where D is the diffusion coefficient, k is the Boltzmann’s constant, T is the temperature
of the medium, 7 is the viscosity of the medium and d the hydrodynamic diameter of the
particle. From this equation, it’s clear that in the same solution, for smaller particles the
diffusion is faster and for bigger particles the diffusion is slower. When a laser beam
passes through the particle suspension under the influence of the Brownian motion, the
light will get scattered by the particles (Fig. 8.6). Each scattered light is corresponded to
individual particles that move through the initial light path. In this way, the fluctuation of
the scattered light corresponds with the size of the particles. The fluctuation of scattered

light can be detected by detector and the size distribution of particles can be calculated.

Difference of scattering intensity and autocorrelation
function[ACF) between various sized particles

Intensity and ACF of small particles

Fluctuation of scattering light ACF
Measurement cell >
- —s A
; @ AonA
Incident bean SN () AT
8 v AL A WA
AYAVa VAW, E '”/ " '.\ v " ‘ | ‘\" The s r;.Il.; (-:.'-' L‘:'.
\ ": the Quicker ALF 15 dacay
G
4 - .
Scattaring bght Correlation time 2 (T)
4 \ 4 Pinhole 1 fluctuates dramatically
0 8
/\._V,N Pinhole 2 Intensity and ACF of larpe particles
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A /" APD(Avalanche Photo Diode) | =<
..\ " ./. E | A A\ \
Y : Se : c | /
7 (Colloid particle in Brown motion) g/ \ |
c | ] o
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| Gec | G
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Fig. 8.6 Principle of DLS measurement. Copyright: particulatesystems.com.

8.7 Zeta-potential

Colloidal particles usually process a positive or negative electrostatic charge on its

surface. When an electrical field is applied to the particle suspension, the particles will
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migrate to the opposite charged direction (Fig. 8.7). At this point, a laser is shining
through the system. The light is scattered by the particles in the solution. Due to the
mobility of particles, Doppler effect is created on the scattered light. The shift of light
frequency (Av) is measured by the detector, and the velocity of the particle (V) can be

calculated as:
Av = 2Vnsin (g) /A (4)

where n is the refractive index, O is the detect angle and A is the wavelength of the initial
light. The electrophoresis mobility U equals to V/E (E is the electrical field). Finally,
zeta-potential (¢) is expressed as Smoluchowski equation:*

(=nU/e (5)

where 1 is the viscosity of the solution and ¢ is the permittivity of the solution.

Slipping Ie/v-e_l__:\ —l— Major part of medium
;E+ - : _ |on diffuse layer
e\ %11 Fixed layer
e AR
[ Electrophoresis'f’-ﬁ—t"ij
7+ Colloidal
particle g

Fig. 8.7 Principle of zeta-potential measurement. Copyright: particulatesystems.com.

8.8 Thermogravimetric analysis (TGA)

TGA measures mass changes of a material as a function of temperature (sometimes also
of time) under a controlled atmosphere. Information of both physical and chemical, such
as adsorption/desorption, vaporization, decomposition and solid-gas reactions can be
provided by TGA measurement. The configuration of TGA is shown in Fig. 8.8. In this

specific instrument, the gas atmosphere can be also chosen by purging different gases
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into the chamber. In a typical measurement, a crucible without anything inside is
measured through the whole procedure of the temperature change. This result is used as
background. Then the crucible filled with sample is measured through the same

procedure. Final result is corrected from the reference background.
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Fig. 8.8 Configuration of TGA. Copyright: netzsch-thermal-analysis.com.

8.9 Powder X-ray diffraction (PXRD)

PXRD is a useful tool to determine the crystal structure of the material. Crystal structures
are regular arrays of atoms/ions. X-ray is one kind of electromagnetic radiation. In this
case the electrons from the atoms or ions which form the crystal structure can scatter X-
ray. Through this procedure, scattered X-ray emanates from the material. This
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phenomenon is known as elastic scattering, and the electron which scatters the X-ray is
known as the scatterer. Through a regular array of scatterer, a regular pattern of scattered
X-ray can be obtained. The relationship between the X-ray and the arrays of scatterer can
be expressed by Bragg's law (Fig. 8.9):°

2d sin® = nA (6)
where d is the spacing between diffracting arrays, 0 is the incident angle, n is any integer,

and A is the wavelength of the initial X-ray. For a certain crystal, distances (d) between
different diffraction planes are different. This will result for a unique PXRD pattern. Thus,

PXRD pattern can give the crystal lattice information.

) ) ) [ ) [ ) o [ ) )
Fig. 8.9 Principle of the X-ray diffraction.
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Summary

Introduction

In 1992, the oil company Mobil discovered a new class of porous materials which were
based on silica and has uniform pores, named as the M41S family. Since then, porous
nanomaterials have attracted a lot of research interests due to their ability to entrap
molecules, large surface area, rater easy functionalization and other unique properties.?
Afterwards, several other porous materials have been developed,® as well as, microporous
materials such as zeolite have been employed for other type of research than catalysis, in
the last few decades.” Nowadays porous materials are widely applied to many fields such
as catalysis, photovoltaics, sensing, bio imaging and drug delivery, just to cite few of

them.>®

In our group, previous researchers have developed functionalized mesoporous silica
particles for drug delivery,” and also, zeolites LTL functionalized in different ways have
been used in as carriers system for imaging agents and for gene therapy.? In addition such
systems have been developed as substrates for cell adhesion in bio-application.’ Based on
the existing results, my PhD thesis aims to develop new porous materials based on
hybrid silica and titania, control their shape and porosity, use them in various

applications.

Result and discussions

Synthesis of porous materials
A big effort has been devoted to control the morphology and properties of porous
materials based on silica, titania and to a less extent on zeolites. All the systems prepared

and characterized are summarized in Table 1.
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As can be seen, depending on the materials, each series of porous materials have been
synthesized via a different approach. For microporous materials such as zeolite, since the
pore size is based on the crystal structure itself, gel crystallization under hydrothermal
condition has been used for the synthesis.’® As for mesoporous materials such as silica
and titania, we have employed surfactant template based sol-gel synthesis and
evaporation induced self-assembly (EISA) methods.**™*? In all cases, modification and
optimization have been applied to each synthesis route. The morphology of the materials
was characterized by scanning electron microscope (SEM) and transmission electron
microscope (TEM). The pores (size and shape) were characterized by TEM, Small Angle
X-ray Scattering (SAXS) and nitrogen adsorption measurements. The crystal structure
was obtained by powder X-ray diffraction (PXRD). As an example of a characterization
of a mesoporous silica material, Fig. 1 shows the different information obtained with our

techniques.

Table 1 List of the synthesized porous materials and their properties.

Material Description Pore size | Synthesis method

_ Disc shaped, 1 pm diameter, 200
Zeolite LTL ] 0.7 nm Hydrothermal
nm or less thickness

_ Barrel shaped, 800 nm diameter,
Zeolite LTL ) 0.7 nm Hydrothermal
400 nm thickness

Hexagonal shaped, 2 pm

Zeolite LTL ) 0.7 nm Hydrothermal
diameter, 5 pm length

MCM-41 silica Sphere, 100 nm diameter 3nm Sol-gel

SBA-15 silica Hexagonal interconnected 12 nm Sol-gel

Titania particle Sphere, 400 nm diameter 11 nm Sol-gel

P123-titania Film 7nm EISA

P123-silica/titania | Film 8 nm EISA
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Fig. 1 Typical characterizations for a porous material. a) SEM image of MCM-41 silica;
b) TEM image of MCM-41 silica; c) Nitrogen adsorption isothermal curve of MCM-41
silica; d) Pore distribution of MCM-41 silica; ) solid-state UV-Vis spectra of MCM-41
silica; f) SAXS pattern of MCM-41 silica.
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Dye adsorption based on functionalized silica materials

Since decades ago the problem related to the wastes introduction in the environment is
highlighted as a worldwide alarm. The nature of these wastes is ranging from inorganic to
organic products which were used for several applications.** Among pollutants, dyes
represent an important class of dangerous compounds. And not surprisingly, the
discharge of dye-bearing wastewater into natural streams and rivers from textile, paper,
carpet, leather, distillery, and printing industries induces problems for human health, such
as allergic dermatitis, skin irritation, cancer and mutation, and for aquatic life organisms,
inducing additional problems to the aesthetic nature of the environment.® More
specifically, the discharged wastes containing dyes induces the formation of dangerous
by-products from oxidation, hydrolysis, or other chemical reactions in the wastewater
phase.’® It is worth mentioning that, as reported by Singh et al., the wastewater from
textile industries is rated as the most polluted among all industrial sectors.'” In fact,
textile industries employ a significant volume of water and chemicals for wet-processing
of textiles. The color index listed more than 8,000 chemical products associated with the
dyeing process including several structural varieties of dyes.™ In most situations, the use
of different methods of treatment is necessary in order to remove all the contaminants
presented in the wastewater. However, the physical adsorption is one of the most
effective methods to remove color from water.'® Recently, sorbents based on mesoporous
silica has attained considerable attention due to their highly ordered structure, nanometer-
sized pores, and their high surface area.’® ?° The adsorption of dyes with sulfonic group
by functionalized silica materials has been studied (Fig. 2a, b). The sonication and
stirring methods have their own limitations and cannot be applied for water treatment
with large quantity. A device was developed by using filtering method (Fig. 2c). While
this device can treat a large amount of water, a decrease of performance was seen due to
the less contacting time between the adsorbent and the dye solution. To solve this
problem, a cross-linked polymer system was developed to add more amine site which is
the effective group for the dye adsorption. Compare to the simply filtering, the adsorption
capacity was enhanced. In the meanwhile, since the health and environment concern is

rising up in the recent years,?! the creation of this cross-linked particle network could
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prevent the particles from escaping the device and diffusing into environment which

might create environmental issues.
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Fig. 2 a) Chemical structures of direct blue dye and the sulforhodamine dye; b)
comparison between the UV-Vis absorption spectra and picture obtained from 5*10° M
DB aqueous solutions in absence of amine functionalized MCM-41 and after 5 minutes
of contact time with 12 mg of amine functionalized MCM-41 (2 mL solution); c) pictures
of the sulforhodamine B solutions under ambient light and UV, from left to right: initial
dye solution (5*107 M), dye solution filtered by silica gel 60, dye solution filtered by
functionalized silica gel 60, dye solution filtered by functionalized SBA-15, water
without dye; d) pictures of the solutions under ambient light and UV, from left to right:
initial dye solution (5%10” M), dye solution filtered by cross-linked functionalized silica
gel 60, dye solution filtered by cross-linked functionalized SBA-15 mesoporous silica,

water without dye.
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Highly selective sensing for small biomolecules by zeolite based nanoporous materials

Despite decades of concentrated efforts, artificial receptors remain inferior compared to
their natural counterparts with respect to affinity and selectivity. Receptor candidates
whose design was intended to optimize direct receptor-ligand interactions (Emil Fischer’s
lock and key model)? afforded, with the notable exception of multivalent systems,? only
moderate binding affinities in water, by no means reaching that of protein receptors.**
Recent (re)discovery of the importance of the non-classical hydrophobic effect in well
shielded protein binding pockets and host cavities offers an alternative, biomimetic
receptor design strategy.”>® Herein, we follow this path and report several extremely
selective and strongly binding artificial receptors for aromatic amine neurotransmitters,

e.g. serotonin, dopamine, (nor)epinephrine and histamine (Fig. 3).

The concept (shown in Fig. 3a) is based on the entrapment of positively charged dyes
inside the zeolites, which are negatively charged, and the interaction with the
neurotransmitters, possessing also a positively charged structure (the protonated amine),
and result in a quenching of the emission of the dye. Importantly, the receptors are
functional in buffers and biological media (e.g. blood serum) and can be used to study
neurotransmitter-degradation or their delivery into living cells in real time. It is known
that zeolite materials can be loaded with fluorescent dyes, which is extended herein to
analyte-responsive reporter dyes that indicate the presence of an aromatic amine
neurotransmitter. Notably, our receptor materials can reach charge-selectivity factors in
Kq of about 10,000, whereas selectivity difference of >100 are rarely observed for the

complexation of organic molecules by other artificial hosts in water.?® %

Several applications have been developed based on this artificial neurotransmitter
receptors. Porous materials capable of storing gases®' or delivering drugs®* have found
wide ranges of industrial and medical applications, but monitoring strategies for cargo-
loading and -deloading processes are just emerging.®* ** Oftentimes, fluorophore-labelled
drug-analogues™ were employed to study drug-delivery kinetics, however, labelled drugs
inevitably show an altered biological profile compared to the parent drug. Employing a

porous material with a built-in fluorescent signal transducer is a promising alternative,
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allowing for monitoring of cargo-loading and -deloading of label-free drugs. We loaded
ANR-L1 with serotonin (switch off in emission) and surface-coated it with a cell-
attracting polylysine layer (Fig. 3e). This drug-delivery vehicle was readily uptaken by
living Rattus norvegicus C6 glioma cells. Then, intracellular-release of the cargo
serotonin occurred in the course of 24h hours, as can be inferred from the gradual
restoring of the emission of the ANR (Fig. 3f).

[NO,) b) dye;

h cemey
" A B T {8183*
o1 02: R = CHPA
D3R = CH,

inorganic framework neuroreceptor (ANR) bound receptor ] ANR-L2 + serotonin
<) .

neurotransmitier:

HO. éu, i NHy M ;m,
Oé o 0
serotonin (SHT) dopamine norepinephrine

Fig. 3 a) Schematic representation of the concept for neurotransmitters sensor. A dye
encapsulated in the channels of a zeolite can be quenched upon insertion of the
biomolecule. b)-c) chemical structures of aromatic amine neurotransmitters/hormones
that can be detected by the ANRs, and representative dyes; d) emission spectra of ANR-

L2 (25 pg/mL) upon addition of serotonin; e) cellular uptake of drug-loaded and surface-
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coated ANRSs results after release of the drug in an increase in the fluorescence emission
of the ANR. e) Intensity coded-confocal micrographs showing cellular uptake experiment
of the serotonin-loaded and poly(lysine)-coated ANR-L1 at different incubation times 1h
(left), 4h (center), and 24h (right panel), and their corresponding brightfield images.

Images were acquired at Aexc = 405 nm. The scale bar is 20 pm.

Formation of luminescence Cu(0) clusters in porous materials induced by irradiation of
X-Ray

By taking the advantage of different pore size, Cu(0) clusters have been successfully
synthesized under exposure of X-ray. Metal clusters have been widely used in catalysis,
bio-imaging, optical and electrical applications.*® 3" Compare to the well-established
noble metal clusters, Cu could be a good alternative in different applications because it is
cheap and environmentally friendly. In the past years, only a few papers reported the
successful synthesis of luminescent Cu(0) clusters.*® *® The main problem is that compare
to gold or silver, copper is relatively easy to oxidize resulting in the loss of its optical and
electrical properties. Most of the reported synthesis was done in solution by reduction
agent and the clusters were protected by surfactant or ligand molecules.®® *° Compare to
the other reducing agent, photo assisted reduction have the advantage on the control of
reduction position and purification, which is very suitable for the cluster formation in a
confined space or template. A. Katrib discovered in the 1980s that by exposure to X-ray,
Pt(1V) can be reduced to Pt(11).*" Since then, several researches showed the possibility
the reduction of platinum, gold or silver under X-ray irradiation.*? In 2014, J. Hofkens
and co-workers developed the method of silver cluster formation inside zeolite material
by X-ray irradiation.*® The advantage of using X-ray is that the reduction can be
controlled in situ, which is not possible for hydrogen or other chemical reducing agent.
With tunable size and shape of the X-ray source, different patterns of the reduced species
can be spatially created. In our case, we use the photo induced reduction method (X-ray)
to reduce the loaded Cu(l) species to Cu(0) clusters inside our porous materials (zeolite

and silica) (Fig. 4a).
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The clusters were protected by their encapsulation and remain stable in air for months.
The samples were characterized as materials and for their spectroscopic properties. From
the fluorescence microscope, we observed that the parts which there are X-ray exposure
showed the emission but not the unexposed part (Fig. 4b). From the Cul reduced sample,
the reduced part was clearly visible under UV by naked eye (Fig. 4d). According to XPS,
the copper we obtained was Cu(0). Very short life time (nano-seconds) of the emission
suggested that the copper has a cluster form. The Cu(0) cluster emission according to the
pore size have been studied. It is clear that with bigger pore size, the emission of
wavelength longer than 400 nm increases (Fig. 4c). In this case, we have successfully
developed the method to form Cu(0) clusters in situ by using X-ray. The color of the
clusters changed according to different pore size. Potential applications such as catalysis
or anti-counterfeit could be possible via our Cu(0) clusters.

b) Zeolite L Cu** Zeolite L Cu®*: X-ray
Normal light Normal light

) 4o
eolite LTL Normal light
= —— zeolite FAU
g 08 —— MCM-41silica
£ — SBA-18 silica
< 06
§ \_,/\/\ \
T 04 b Y
H
% %2
0.0 ——t

320 360 400 440 480 520
Wavelength (nm)

Fig. 4 a) Synthetic procedure of the reduced Cu(0) cluster by ion exchange and Cul
loading; b) Fluorescence microscope image of Cu(ll) ion exchanged samples before and
after X-ray exposure; ¢) Emission spectra (excitation @ 270 nm) of Cu(0) clusters in
different porous materials from the reduction of Cu(l); d) Cu(0) cluster by X-ray
exposure from Cu(l) loaded zeolite LTL under normal light and UV (bright blue: copper

clusters; red: not reduced Cul clusters).

236



Multifunctional mesoporous titania for bio-application

It is well-known that silica has been widely used as drug delivery agent.** However, since
silica material are electrically “dead”, the employment of the titania in this field could
bring new aspects to the drug delivery system. In fact, the hybrid porous titania particles
have been tested as drug delivery materials, but more interestingly as killing agents in
bio-applications. Titania due to its biocompatibility, possibility of functionalization and
photo-active properties, could become an interesting candidate for bio-applications.** %
Compared with titania particles which have no porous structure, spatial functionalization
of the pores and the possibility to entrap molecules in the channels makes these particles
quite attractive. Since titania particles are not emissive, fluorescein was used as both
optical marker of the particle and to simulate a drug encapsulation of which we can trace
the fate. To obtain this goal, the 400 nm mesoporous titania sphere (pore size of 11 nm)
with further surface functionalization of organic molecules have been used for this

purpose.

We functionalized the surface by an amino acid in order to have a better biocompatibility.
The mesoporous titania particle was therefore decorated with alanine anchoring the —
COOH group to the titania surface, and coupling the free -NH, group of alanine with
fluorescein isothiocyanate isomer. At last the whole functionalized particle was covered
by polylysine for protection and to impart a positive charge to the surface in order to
facilitate cell internalization. From in vitro experiments, we confirmed that the particles
are uptaken inside the cells, as can be seen by the emission of the bounded fluorescein.
Among all the cells, fluorescein (green) was found only inside the cells which contain
titania particles (Fig. 5a). This suggests that the fluorescein was released after cell uptake.
The confocal microscopy co-localization studies showed that the particle did not have a

preference for any specific cell organ.

Since titania has a well-known property of releasing reactive oxygen species (ROS) by
UV irradiation,*” the particle itself could be the killing agent. We can see that the cells
were killed after UV irradiation. To study the kinetics of ROS release in vitro under UV,

a special type of dye called cell-ROX was employed. The cell-ROX is not emissive
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normally but becomes red emissive after oxidation (Fig. 5b). The detailed Kinetics of
ROS release under UV irradiation has been studied by measuring the emission intensity
of cell-ROX through time (Fig. 5c).

—0min

——5min

—10min
——15min
——20min
—25min
———30min
———35min
———40min
B, —— 45min

Intensity (a.u.)

0 ' 50 ' 160 ' 150 ' 260 ' 250

Pixel
Fig. 5 In vitro experiments of the multifunctionalized mesoporous titania particle, a) cell
uptake and release of fluorescein inside Hela cells; b) the cells contained titania particles
were killed after UV irradiation (green: fluorescein, blue: DAPI, red: cell-ROX); c)
Intensity of cell-ROX dye through time under UV exposure indicates the kinetics of ROS

formation.
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Organotitania for photocatalysis application
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Fig. 6 a) Structure of 1,4-bis-triethoxytitanyl benzene and 2,5-bis-triethoxytitanyl
thiophene; b) deconvolution of XPS carbon elemental scan of 1,4-bis-triethoxytitanyl
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benzene; c) XPS Ti elemental scan for titania and 1,4-bis-triethoxytitanyl benzene; d)
band gap energy is determined by Tauc plot transferred from the UV-Vis spectrum; e)
photocatalytic reaction of degradation of rhodamine B by titania materials under UV
irradiation; f) photocatalytic reaction of degradation of rhodamine B by titania materials

under visible light irradiation.

A big challenge in the modification of titania is the possibility to tune the band gap by
introducing some chemical groups in the TiO; structure. Due to the different reactivity of
titania vs silica, the normal procedure described for the hybrid silica cannot be applied
and therefore we have developed a strategy to achieve organotitania complex which has
Ti-C covalent bond using organic molecules as linkers. Titania as highly promising
material is mainly used for photochemical applications such as dye-sensitized solar cells
and as a photocatalyst because of its excellent functionality, long term stability, and
nontoxity.*® *° In order to improve the photoreactivity of TiO, and to extend its
absorption edge into the visible-light region, doping of various transition metal cations
has been intensively attempted.*® ** However, due to the thermal instability of the doped
material, the photoactivity of the cation-doped TiO, decreased even in the UV region.>®
Therefore hybrid organotitania nanomaterials, are expected to be more effective due to

the combination of organic - inorganic parts through covalent bonds.

By using synthesized organolithium reagents, organotitania which contains Ti-C bond
have been synthesized. The linker molecules we used were benzene and thiophene (Fig.
6a). The products have been characterized by several methods. Through X-ray
photoelectron spectroscopy, XPS, we can clearly see the difference between titania and
organotitania. From the titanium side we can monitor the lower binding of Ti-C compare
to Ti-O (Fig. 6¢). From the carbon point of view the component of the aromatic C-Ti
bond was found (Fig. 6b). From UV-Vis measurement, we can transfer the spectra into
Tauc plot.>® The band gap was calculated. The Ti-benzene has a band gap of 2.43 eV and
Ti-thiophene has a band gap of 2.05 eV which are significantly lower than pure titania

which is 3.03 eV (Fig. 6d). Furthermore, the monomer of the organotitanium we obtained

240



can be polymerized and a hybrid titania network with benzene or thiophene linker can be
established.

The photocatalytic properties of the Ti-Ben and Ti-Thio material have been investigated.
In our case, mixtures of rhodamine B dye solution with fixed concentration and our
titania based materials with fixed weight were exposed under UV or visible light
respectively. Not surprisingly, we found out that under UV irradiation, the inorganic
titania material showed the best photocatalytic property (Fig. 6e). But under visible light
irradiation, our Ti-Ben showed the best photocatalytic performance because of its lower
band gap compared with the inorganic titania material (Fig. 6f). Other applications based

on the photoactivity under visible light could be developed according to our discovery.

Conclusion

To conclude, my PhD research focus on the synthesis, characterization and applications

of silica, titania and zeolite based porous materials.

Porous silica, titania and zeolite have been synthesized using different methodologies.
Functionalized silica materials have been used for dye adsorption application which is
useful for water treatment. A new cross-linked system and device have been created to
enhance the adsorption ability and for large quantity of water treatment. By taking
advantage of the pores, new method for Cu(0) cluster formation have been established.
The photophysics of the Cu(0) clusters reduced from different copper source in different
porous materials has been investigated. The use of the confinement for sensing has been
demonstrated for small bio molecules, such as neurotransmitters. Several applications
have been developed based on this artificial neurotransmitter receptors. Multi-
functionalized mesoporous titania material has been used for bio-applications. Compare
to the widely used silica material, its photoactivity could bring extra advantages. Finally,

new types of hybrid organotitanium materials have been developed and their
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photocatalytic properties have been investigated. In the meantime, deeper knowledge and

skills on characterization instruments have also been obtained.
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Titania and silica based hybrid
porous nanomaterials: from
synthesis to applications

Résumé

Mon doctorat se focalise sur la synthese, la caractérisation et les applications de matériaux poreux a
base de silice, dioxyde de titane et zéolite. La silice poreuse, le dioxyde de titane et les zéolites ont
été synthétisés en utilisant des méthodologies différentes. Des matériaux de silice fonctionnalisés ont
été utilisés pour des applications en adsorption de colorant, ce qui est utile pour le traitement de
I'eau. Un nouveau systéme réticulé et un nouveau dispositif ont été créés pour améliorer la capacité
d'adsorption et pour le traitement d’'une grande quantité d'eau. En tirant parti des pores, une nouvelle
méthode de formation de clusters de Cu (0) a été établie. Les propriétés photophysigues ont été
étudiées, en utilisant plusieurs sources de cuivre et différents matériaux poreux. L'utilisation du
confinement pour la détection de petites molécules biologiques tels que les neurotransmetteurs a été
démontrée. Plusieurs applications ont été développées sur la base de ces récepteurs de
neurotransmetteurs artificiels. Un matériau de titane mésoporeux multifonctionnalisé a été utilisé pour
les applications en biologie. En comparaison avec la silice, plus couramment utilisée, sa photoactivité
pourrait apporter des avantages supplémentaires. Finalement, de nouveaux types de matériaux de
type organotitanes hybrides ont été développés, et leurs propriétés photo-catalytigues ont été
démontrées.

Résumeé en anglais

My PhD research focus on the synthesis, characterization and applications of silica, titania and zeolite
based porous materials. Porous silica, titania and zeolite have been synthesized using different
methodologies. Functionalized silica materials have been used for dye adsorption application which is
useful for water treatment. A new cross-linked system and device have been created to enhance the
adsorption ability and for large quantity of water treatment. By taking advantage of the pores, new
method for Cu(0) cluster formation have been established. The photophysics of the Cu(0) clusters
reduced from different copper source in different porous materials has been investigated. The use of
the confinement for sensing has been demonstrated for small bio molecules, such as
neurotransmitters. Several applications have been developed based on this artificial neurotransmitter
receptors. Multi-functionalized mesoporous titania material has been used for bio-applications.
Compare to the widely used silica material, its photoactivity could bring extra advantages. Finally,
new types of hybrid organotitanium materials have been developed and their photocatalytic properties
have been investigated.




