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I.  The Neural Crest 

I.1. Overview of the NC development 

The Neural Crest (NC) is an embryonic transitory structure derived from the ectoderm 

layer of the vertebrate embryo. The main steps and characteristics of NC development can be 

summarized as follows. 

During neurulation, the presumptive NC domain is specified at the ectodermal layer, in 

a boundary between the neural plate and the presumptive epidermis (Figure 1A). As the 

neural plate bends to form the neural tube (i.e. future central nervous system (CNS)), the NC 

domain is displaced at the leading edges of the closing neural tube, named the neural folds 

(Figure 1B). By undergoing an epithelial to mesenchymal transition (EMT), the NC cells (NCC) 

delaminate from the neuroectoderm and then migrate along defined routes until reaching 

their final locations and sites of differentiation in the embryo (Figure 1C). There, they will form 

very diverse structures, often by intermingling with surrounding tissues. As detailed in a next 

section (I.2), the NCC will produce nearly all the peripheral nervous system (PNS) and the 

melanocytes of the skin, inner ear and choroid, and several hormone-producing cell types. 

An important feature of NC function in vertebrates is that the anterior most cranial NC 

differentiates into mesenchymal cell types, contributing to the formation of most craniofacial 

cartilages and bones, dermis, fat cells and smooth muscle vascular cells. Interestingly, in 

amniotes, the ability of NCC to differentiate into mesenchymal cell types is restricted to the 

cephalic NCC, since in the trunk, mesenchymal structures (e.g. vertebral column, limb bones, 

muscles, blood vessels, adipocytes) are produced by the mesodermal germ layer (Le Douarin 

and Kalcheim, 1999). 

Another feature of the NC is that the NC “per se” is only transitory as this structure, 

soon after its individualization in the dorsal neural folds, is destined to disappear, through the 

dissemination of its component cells in the whole embryonic body. This unique property has 

long kept up the mystery regarding NC identity and fate and it explains the difficulty of 

studying this structure. 
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Figure 1: NC formation and migration. Schematic diagram of transverse sections through chick 
embryo during neurulation. (A) NC domain is specified in the neural plate border. (B) During 
invagination of the neural tube, the future NC is at the elevating edges of the neural tube (i.e. 
neural folds). (C) The NC delaminates from the neuroectoderm and extensively migrates to 
occupy distint territories in the embryo (Simões-Costa and Bronner, 2013). 

The NC was first visualized in the chick embryo by Wilhelm His in 1868 (His, 1868). In 

this work, the NC is described as a group of cells localized between the neural tube and the 

presumptive epidermis, which later migrate to form, laterally to neural tube, the dorsal root 

ganglia, the first NC structure described (His, 1868). Much of the initial NC studies were 

concentrated in anamniotes until late 60s (Raven, 1937; Horstadius, 1950), when Weston 

developed a technique to trace migratory NCC, by labeling dividing cells in the chick neural 

tube (and premigratory NCC) with tritiated-thymidine incorporation, before transplantation of 
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the labeled neural tube into a host embryo (Weston, 1963). In these experiments, the progeny 

of the labeled NCC could be traced until dilution of the radioisotopic marker along cell 

divisions. One outcome in this technical improvement was the discovery of NC contribution to 

the mandibular bones of the chick, confirming previous statements made by Platt in 

salamanders (Platt, 1893, 1897; Johnson, 1966). However, a strong limitation to this technique 

was the inability to identify NC derivatives at late stages of development, since the 

radioisotope incorporated into DNA become diluted after several cell divisions. As a 

consequence, a permanent and reliable labeling technique was needed in order to obtain a 

detailed and long-term fate map of NC derivatives. This goal was greatly achieved thanks to 

the use of quail-chick chimeras, developed by Le Douarin and colleagues (Le Douarin and 

Kalcheim, 1999). 

The use of quail-chick chimeras to address developmental issues such as cell migration 

and fate started from the observation made by Nicole Le Douarin that the cells of these two 

close-related avian species could be easily distinguished by their nuclear morphology (Le 

Douarin, 1969). After histological staining of nucleic acids and electron microscopy, it was 

evidenced that the nucleolus of quail (Coturnix coturnix japonica) cells was disproportionately 

large compared to the chicken one. In quail nuclei, part of deoxyribonucleic acid (DNA) is 

highly compacted in a huge heterochromatin state associated to the nucleolar ribonucleic acid 

(RNA), whereas chicken cellular heterochromatin is more dispersed in the cytoplasm. This 

nuclear characteristic is present in all quail cells and retained during the entire quail 

development until adulthood. Taking advantage of this new permanent marker, Le Douarin 

and her collaborators performed a series of “quail to chick” transplantation experiments and 

further identified quail cells within the host chick embryo, by using Feulgen-Rossenbeck 

staining and later on, QCPN (quail non-chicken perinuclear antigen) antibody. The position and 

phenotype of the quail cells recorded at different times after the graft provided a large body of 

novel and precise information about cell migration pathways and fate acquisition in the 

developing avian embryo (Le Douarin, 1982; Le Douarin and Kalcheim, 1999). Regarding the 

fate mapping of NC derivatives, a defined portion of the quail neural tube (or neural fold) was 

isotopically grafted into a chick embryo of the same developmental stage (Figure 2). Such graft 

experiments were performed in distinct restricted rostrocaudal domains of the NC as small as 

a single rhombomere (Le Douarin and Kalcheim, 1999), which led to virtually establish a full 

map of NC derivatives along the neural axis (see next section). 
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Figure 2: Scheme of isotopic and isochronic NC transplantations in quail-chick chimeras. The 
neural tube, containing premigratory NC, is removed from the donor quail embryo and 
transplanted, at the same level and developmental stage, into a host chicken embryo. Left: 
example of trunk neural tube graft. Right: (A) A chimeric chick after hatching. This embryo 
received a transplant of a quail neural tube at the presumptive level of the wings. (B) A two-
month-old chimera. Note the pigmented feathers, due to the presence of quail melanocytes 
derived from NCC. (C) The outcome of a cephalic neural tube/NC graft. The resulting chimeric 
chicks have pigmented feathers at the head level. Note two chimeric chicks and a non-grafted 
control one in the center (adapted from Le Douarin and Kalcheim, 1999). 

NCC fate and migratory pathways have been also investigated with other techniques in 

chick, zebrafish and amphibian embryos, such as vital dye injection in small populations of 

premigratory NCC and electroporation or viral transduction of fluorescent reporter-encoding 

constructs in ovo into the neural tube (Bronner-Fraser and Fraser, 1988; Collazo et al., 1993; 

Serbedzija et al., 1989; Schilling and Kimmel, 1994; Eisen and Weston, 1993; Kulesa et al., 

2013). In addition, genetic and mutational analyses in zebrafish complemented these studies 

and helped to identify new cell types originated from the NC (Kague et al., 2012; Carney et al., 

2006; Mongera et al., 2013; Hockman et al., 2017). 

NC fate mapping studies were recently developed in mice, by using Cre/loxP-mediated 

recombination, which allowed NCC to be investigated in a mammalian model, and also 

permitted the long-term tracing of NC derivatives in adult animals. Permanent labeling of the 

NCC in P0-Cre, Sox10-Cre and Wnt-1-Cre mice crossed with reporter lines, for example in the 

widely employed Wnt1-Cre:R26LacZ mouse line, confirmed most of the conclusions regarding 

NC derivatives discovered in the avian model (Chai et al., 2000; Danielian et al., 1998; 

Matsuoka et al., 2005; Yamauchi et al., 1999) and also helped to uncover novel NC derivatives, 

such as olfactory ensheating cells (Barraud et al., 2010; Forni et al., 2011). However, species-
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specific differences in NC fate were also described as, for instance, the mesodermal origin of 

parietal bones in mice (Jiang et al., 2002), compared to NC-derived parietal bones found in 

quail-chick chimeras (Couly et al., 1993). Finally, recent genetic studies using stochastic 

multicolor fluorescent reporters (Livet et al., 2007; Snippert et al., 2010) allows color-coding 

tracking of NCC, greatly contributing to the lineage tracing of clonal NC populations in vivo 

(Kaukua et al., 2014; Baggiolini et al., 2015; Kaucka et al., 2016) (see sections II.1, II.4 and II.5). 

Taken together, all these studies applied in birds, amphibians, fish and mice contributed to 

portray the diversity of NC derivatives. 

As a consequence of their contribution to a wide variety of vertebrate tissues and 

structures, any step of NCC development is susceptible to defects that can result in many 

syndromes and congenital anomalies, collectively known as neurocristopathies (Bolande, 1974, 

1997; Watt and Trainor, 2014; Etchevers et al., 2006). As neurocristopathies, we can include: 

cleft lip and palate defects (van Limborgh et al., 1983; Passos-Bueno et al., 2009); CHARGE and 

DiGeorge’s syndromes that are associated with deficiencies in the outflow tract septation and 

craniofacial development (Keyte and Hutson, 2012), Hirschprung’s disease caused by partial 

absence of enteric ganglia (Mundt and Bates, 2010), giant melanocytic nevi disease generated 

by an excessive proliferation of melanocytes precursors (Etchevers, 2014), among other 

diseases. 

 

I.2. The NC migratory routes and derivatives 

In avian embryos, quail-chick chimera experiments allowed the fate map construction 

of NC derivatives (Figure 3) and revealed the migratory routes of NCC (Figure 4). In sum, the 

NC can be divided in two main domains along the anterior-posterior neural axis: firstly, the 

cephalic NC, which comprises cells migrating from the level between the posterior 

diencephalon and the fourth somite included (Couly et al., 1996); and secondly, the trunk NC, 

which comprises NCC from the level of the fifth somite until the posterior end of the neural 

tube. These two NC domains can be distinguished by the migration pathways and the fate of 

their component cells.  

Notably, both avian cephalic and trunk NCC yield neurons and glia of the PNS and 

melanocytes of the skin; in contrast, mesenchymal cell types, such as chondrocytes, adipocytes 

and osteoblasts, are only derived from cephalic NCC. Of note, other NC subdivisions can be 

defined according to the NCC final location and function in the embryo. For example, the 

“cardiac” NC, corresponding to post-otic NCC, migrating from the first three somites, gives rise 
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to the smooth muscle cells of the cardiac septum separating aorta and pulmonary artery 

during heart development (Le Lièvre and Le Douarin, 1975; Kirby and Stewart, 1983; Kirby et 

al., 1983). The “vagal” and “sacral” NC (from somites 1-7 level and posterior to somite 28, 

respectively) generate the enteric nervous system (ENS) (Le Douarin and Teillet, 1973). In 

addition to this early regionalization depicted at about E2, the “caudal NC”, which develops at 

later stages (E4) during the secondary neurulation that occurs at the level of the last formed 

somites (somites 28-43), will yield pigment cells and glial cells of the caudal most part of the 

trunk (Osório et al., 2009). 

 
Figure 3: Fate map of NC derivatives in the avian embryo. The different cell types generated 
by NCC are color-coded as indicated in the box. Left, schematic of the cephalic NC domain 
(light blue) in a 7 somite-stage embryo. Right, trunk NC region (light blue) shown in a 28 
somite-stage embryo; S: somites. (Le Douarin et al., 2004). 

Cephalic NCC migration mainly occurs sub-ectodermally towards the frontonasal 

process and branchial arches. The nasal bud, the periocular mesenchyme and part of the first 

branchial arch (BA1) are populated by NCC migratory streams derived from the posterior 

diencephalic and mesencephalic neural folds, while the rest of BA1 is colonized by NCC from 

rhombomeres 1-2 (r1-r2) and a small subset of NCC originating from r3 (Figure 4A). The NCC 
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occupying the head down to BA1 differentiate mainly into mesenchymal structures, including 

the craniofacial and maxillary/mandibular skeleton, diverse ocular and periocular structures 

and connective tissue cells (Couly et al., 1993, 1996, 1998; Creuzet et al., 2005b); these 

mesenchymal NC derivatives will be detailed in section IV. In addition, meninges surrounding 

the future prosencephalon are derived from posterior diencephalic and mesencephalic NCC 

(Johnston, 1966; Le Lièvre and Le Douarin, 1975). More caudal branchial arches (BA2 to BA4) 

are invaded by a mixture of NCC coming from r3 to r8, which yields part of the hypobranchial 

skeleton (Couly et al., 1996; Köntges and Lumsden, 1996). Finally, the NCC invading the head 

will contribute to pigmentation of the skin and in the periocular choroid; they will also form 

the PNS cranial ganglia (sensory and parasympathetic) and will differente into pericytes lining 

cranial blood vessels (Ayer-Le Lievre and Le Douarin, 1982; Etchevers, 2011). 

In the trunk, two main migratory pathways are adopted by NCC: the ventral and the 

dorsolateral pathways (Figure 4B).  

In the ventral pathway, NCC migrate either along blood vessels in the intersomitic 

space, between the neural tube and the anterior half of developing somites, or through 

invasion of the anterior region of sclerotomes. The cells migrating ventrally will form the 

sympathetic ganglia, Schwann cells along the nerve fibers and the dorsal root ganglia, 

according to a ventral-to-dorsal order of colonization Bronner-Fraser, 1986; Teillet et al., 1987; 

Serbedzija et al., 1994). Notably, molecules secreted by the posterior part of sclerotomes block 

the invasion of NCC to this portion, helping the establishment of the typical metameric pattern 

of sympathetic and dorsal root ganglia (Rickmann et al., 1985; Guillory and Bronner-Fraser, 

1986; Loring and Erickson, 1987; Teillet et al., 1987; Krull et al., 1997; Gammill, 2006). 

Other NCC follow the dorsolateral pathway migrating superficially between the 

ectoderm and the dermomyotome. In chicken and mice, this route is used mainly by the NCC 

that will enter the epidermis and later on differentiate into melanocytes (Teillet and Le 

Douarin, 1970; Weston, 1970; Erickson et al., 1992; Serbedzija et al., 1990). However, both 

ventral and dorsolateral routes are undertaken simultaneously by murine trunk NCC while in 

chicken NCC will follow the dorsolateral pathway approximately 24 h after the beginning of 

NCC ventral migration (Kuo and Erickson, 2010). In zebrafish and Xenopus, pigment cell 

precursors were described as originating from NCC following both migratory pathways (Collazo 

et al., 1993; Kelsh et al., 2009). Nevertheless, it was recently shown that part of melanocytes is 

not specified from migratory NCC following a superficial route to the skin but arises later on 

from NC-derived Schwann cell precursors aligned along peripheral nerve fibers, subsequently 
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to their initial ventral migration from the neural primordium (Adameyko et al., 2009; Petersen 

and Adameyko, 2017). 

 

Figure 4: Migratory pathways of the cephalic and trunk NCC in avian embryo. (A) Cephalic 
NCC migration. The origin of the NCC homing to the frontonasal, periocular regions and in the 
BA are indicated by colors. The anterior midbrain contributes to the frontonasal and periocular 
regions. The NCC of the posterior midbrain also migrate to these structures and fill the 
anterodistal part of the BA1. The complementary part of BA1 is filled with NCC migrating from 
the level of r1/r), with a small contribution of r3. The largest contribution to BA2 comes from 
r4. NCC from r3 migrate to BA1/2 and r5-NCC migrate to BA2/3. (B) Ventral migration of trunk 
NCC (red lines 1, 2 and 3). Trunk NCC also undertake the dorsolateral pathway (red lines 4 and 
5). a, dorsal aorta; a-scl, anterior sclerotome; dm, dermomyotome; ect, ectoderm; nc, 
notochord; nt, neural tube; p-scl, posterior sclerotome; v, vein. (Vega-Lopez et al., 2017; Couly 
et al., 2002). 

 

I.3. Early steps in NC development: the gene regulatory 

network of NC induction and specification  

NC formation results from a complex interplay between intrinsic gene regulations and 

extrinsic influences from nearby cells. The molecular players at work during this dynamic 

process have begun to be understood recently. In the chick embryo, the gene regulatory 

network (GRN) of NC induction and specification was extensively studied by Marianne Bronner 
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and colleagues, who defined the genes and their interactions controlling distinct steps in NCC 

development (Meulemans and Bronner-Fraser, 2004; Sauka-Spengler and Bronner-Fraser, 

2008; Simões-Costa et al., 2014; Simoes-Costa and Bronner, 2015). Although the specific 

transcription factors involved in NC formation can slightly diverge in different vertebrate 

species, a simplified common mechanism will be summarized here (Prasad et al., 2012; 

Simoes-Costa and Bronner, 2015; for detailed references comparing vertebrate species, see 

Milet and Monsoro-Burq, 2012) (Figure 5). 

A

B

 

Figure 5: Induction and specification of NCC.(A) Induction of the NPB is mediated by the 
action of Wnts and BMPs secreted by adjacent tissues. The balance of these signals induces 
the expression of NPB specifier genes. (B). In the NC specification step, the NPB genes control 
the activation of NC specifier genes, such as Foxd3, Sox10 and Ets1; the lateral portion of the 
NPB is specified in the preplacodal domain and express genes such as Six1 and Eya1/2. NPB: 
neural plate border (Simoes-Costa and Bronner, 2015). 

The first notable step is the specification of the neural plate border (NPB), a territory at 

the lateral edges of the future neural plate and which is responsible for the onset of NCC, 

ectodermal placodes, epidermal cells, roof plate cells and sensory neurons of the CNS (Basch 

et al., 2006; Fernández-Garre et al., 2002; Streit, 2002; Groves and LaBonne, 2014, for a 

review). NPB induction occurs during gastrulation concomitantly with neural induction. Briefly, 

Wnt and bone morphogenetic protein (BMP) factors are secreted by the presumptive 

epidermis while the future neural plate produces Chordin and Noggin among other Wnt and 

BMP antagonists. As a result, a BMP/Wnt signaling gradient is generated and intermediate 

levels of these morphogens achieve an ectodermal territory between the presumptive 
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epidermis and the future neural plate where the NPB will be specified (Faure et al., 2000, 

2002; Nguyen et al., 1998; Garcia-Castro et al., 2002). In addition to ectodermal influences, 

fibroblast growth factors (FGF) secreted by the early mesoderm, such as FGF2 and FGF8 in 

Xenopus, are involved in NPB induction (Mayor et al., 1997; Monsoro-Burq, 2003). Notch 

signaling is also involved in this process as it activates and maintains BMP4 expression in the 

lateral non-neural ectoderm, therefore, avoiding NPB induction in this region (Endo et al., 

2002). Thus, an intricate regulatory network, generated by a combination of these signaling 

pathways, leads to the expression of specific transcription factors in the NPB domain, for 

instance Dlx5/6, Msx1/2, Pax3/7, Tfap2, Gbx2, Foxi1/3, Gata2/3 and Zic (for references Milet 

and Monsoro-Burq, 2012; Simoes-Costa and Bronner, 2015) (Figure 5A). 

Following NPB specification, the next step consists in NC specification. During this 

process, a subset of cells in the dorsal neural folds is specified into NCC. This specification 

mainly results from the combined action of NPB specifier genes (described above), which then 

trigger the expression of NC specifier genes such as Sox8/9/10, Snail1/2, c-Myc, Foxd3, AP2, 

Twist and Ets1 (this last one, only at the head NC level) (Monsoro-Burq, 2005; Sato, 2005; 

Werner et al., 2007; Sauka-Spengler and Barembaum, 2008; Bellmeyer et al., 2003) (Figure 

5B). Simultaneously, the pre-placodal domain is specified essentially by Foxi1/3, Gata2/3 and 

Dlx5/6, present in a lateral domain of the NPB territory (Kwon et al., 2010; Sato et al., 2010; 

Pieper et al., 2012). As a result, Six1 and Eya1/2 transcription factors start to be expressed in 

the pre-placodal domain at this developmental stage (Schlosser and Ahrens, 2004; Brugmann, 

2004). Interestingly, the fate of premigratory NCC and pre-placodal cells after NPB 

specification does not seem to be completely restricted at this stage. For instance, labeling of 

single cells of the NPB showed that a subset of them can still differentiate into both NC and 

placodal lineages (Selleck and Bronner-Fraser, 1995). More recently, it was shown that 

expression of specifier genes for the NC, placodes and neural tube, such as Msx1/2, Six1 and 

Sox2, respectively, overlap in a large set of cells in the NPB, neural plate and even migratory 

NC, suggesting that restriction to one of these ectodermal lineages is not completed at these 

early stages of development (Roellig et al., 2017). Nevertheless, although the segregation of 

cell fate at the NPB is apparently not as early as previously stated, the expression of NC 

specifier genes, e.g. Sox8/9/10, is required to switch on a molecular program that triggers NCC 

delamination from the ectodermal layer, by an EMT (Haldin and LaBonne, 2010). 
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I.4. Molecular regulation of the EMT and NCC migration 

The EMT is a complex phenomenon in which an epithelial cell loses the characteristic 

epithelial cell-cell adhesion and junction properties and acquires several features of a 

mesenchymal cell, such as high mobility and invasion behavior. Interestingly, similar EMT 

molecular mechanism events occur during development and tumor progression, which 

stimulated research on NC EMT as a model for understanding tumor cell dissemination and 

metastasis (Lim and Thiery, 2012; Kerosuo and Bronner-Fraser, 2012; Powell et al., 2013). After 

NC specification, the NCC of the dorsal neural folds go through EMT modifying their cell shape 

and polarity, intercellular adhesion and interactions with neighboring tissues. A remarkable 

feature of EMT is a global switch of cadherin expression: type 1-cadherins (E-cadherin and N-

cadherin) are replaced by type 2-cadherins (cadherins 7 and 11), which mediates weaker cell-

cell interactions. Moreover, delaminating NCC express diverse proteases to cleave these 

cadherins and other proteins from the basal lamina and extracellular matrix (Cheung et al., 

2005; Chalpe et al., 2010). Consequently, NCC exit from the dorsal neural tube and start their 

migration process (Figure 6). All these molecular changes are partially triggered by the 

previously mentioned NC specifier genes, with critical actions of Snail1/2 to promote EMT and 

cell delamination in the avian and Xenopus NCC (Nieto et al., 1994; Blanco et al., 2007): 

Snail1/2, which can be induced by Sox5, represses N-cadherin expression (Ferronha et al., 

2013), directly interacts with Sox9 (Liu et al., 2013), and it downregulates tight junction 

molecules such as claudins and occludins, and cell polarity proteins (Ikenouchi et al., 2003; 

Moreno-Bueno et al., 2008). Sox10 and Foxd3 upregulate Cadherin11 and Cadherin 7, acting 

together with Snail1/2 to drive EMT (Dottori et al., 2001; Cheung et al., 2005). In addition to 

Snail1/2, transcription factors of Twist and Zeb families are involved in regulating EMT in both 

development and cancer. In mouse NCC, Zeb2 and Twist1 (rather than Snail) have been shown 

to regulate cadherin expression and cell polarity in order to control NCC delamination. 
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Figure 6: The EMT and migration of NCC. (A). Several combined signals, including extracellular 
pathways and NC specifier transcription factors, induce the expression of Snail 1/2 (Snal1/2), 
Foxd3 and Sip1 and promote EMT. (B). Migratory NCC population, expressing typical NC 
markers, such as Lmo4, Snai1/2 and SoxE family of transcription factors (Simoes-Costa and 
Bronner, 2015). 

Besides NC specifier genes, several extracellular signaling pathways are involved in 

NCC EMT. On one hand, activated BMP and Wnt signalings were reported to control trunk NC 

delamination by promoting G1/S cell cycle phase transition, which has a permissive role for 

EMT (Burstyn-Cohen et al., 2004). Moreover, the paraxial mesoderm controls the levels of 

BMP ligands and antagonists in the dorsal neural tube to further provoke NC delamination, in a 

mechanism that is coordinated with somite formation (Sela-Donenfeld and Kalcheim, 1999, 

2000). On the other hand, EMT of the cranial NCC apparently does not rely upon BMP signaling 

and does not involve a G1/S cell cycle phase transition (Kalcheim and Burstyn-Cohen, 2005; 

Osório et al., 2009). These data suggest that distinct molecular mechanisms control cranial and 

trunk NCC EMT (reviewed by Duband, 2010). In this regard, Ets1, a NC specifier gene expressed 

only by the cephalic NCC, could have a secondary role in EMT, helping Snail1/2 action 

specifically in these cells. Interestingly, when Ets1 was ectopically expressed in the trunk 

premigratory NC, it triggered a massive NCC exit from the dorsal neural tube, resembling 

stereotyped collective cell migration typical of the cephalic NCC as described below 

(Theveneau et al., 2007). 



Introduction   

19 
 

After delamination, NCC extensively migrate to occupy diverse sites and reach distant 

regions in the embryo. The process of NCC migration involves a series of intercellular 

communications between themselves and with neighboring tissues. It has been described that 

they secrete chemoattractant molecules such as the complement system component C3a, 

which induces a brief cell-cell contact mediated by N-cadherin, helping to maintain cohesion 

inside the migrating NCC population (Carmona-Fontaine et al., 2011; Theveneau et al., 2010). 

This phenomenon is followed by contact inhibition of locomotion (CIL), where contacting cells 

rearrange their protrusions, repolarize and separate from each other (Carmona-Fontaine et al., 

2008; Teddy and Kulesa, 2004). The balance between co-attraction molecules and CIL favors 

NCC migration as a loose cell cluster. CIL has been mostly studied in cranial NCC, however it is 

argued that it could favor cell dispersion also in trunk NCC, since some molecular players 

controlling CIL are also found in migrating NCC (Moore et al., 2013). 

Regarding cephalic and trunk NCC, differential requirement of extrinsic and intrinsic 

signals can influence the trajectory and shape of the migratory streams specifically in each 

region. For instance, experiments in chick, mice and Xenopus demonstrated that 

mesencephalic NCC migrate in wider and larger streams, while postotic cranial NCC and trunk 

NCC move as single-cell wide chains (Kulesa and Fraser, 1998; Teddy and Kulesa, 2004; Wynn 

et al., 2013; Szabo and Mayor, 2016; Young et al., 2004). A recent work in chick and zebrafish 

embryos has shown that individual trunk NCC assume, at the onset of migration, a defined 

position in the cell chain, in which a specific cell will lead the migratory process permanently 

until NCC are settled in their final destination. This phenomenon is not observed in migrating 

cephalic NCC, where the relative position of a given cell changes constantly inside the stream 

(Richardson et al., 2016). 

Signaling molecules coming from surrounding tissues especially act in defining the 

direction of NC migratory streams. Accordingly, at the head level, the developing placodes 

secrete stromal-derived factor-1 (SDF-1/CXCL12), which will interact with CXCR4-expressing 

NCC. SDF-1 secretion then creates a chemotactic gradient, which helps NCC guiding toward the 

placodes (David et al., 2002; Theveneau et al., 2013, 2010). Furthermore, SDF-1/CXCR4 

signaling is also important for cardiac NC migration: CXCR4 is expressed by NCC migrating 

towards the BA3-BA4 whereas SDF-1 is expressed by the ectoderm (Escot et al., 2013). More 

recently, Tbx1, expressed in the pharyngeal endoderm and lateral ectoderm, was described as 

an upstream factor to SDF-1/CXCR4 signaling in NCC homing to pharyngeal arches (Escot et al., 

2016). Besides, at the trunk level, CXCR4-expressing migratory NCC are attracted by SDF-1 
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factors expressed along their ventral pathway in order to form dorsal root and sympathetic 

ganglia (Belmadani, 2005; Kasemeier-Kulesa et al., 2010). 

Repulsive signals promoted by ephrins/Eph, plexins/neuropilins and Slit/Robo 

interactions between NCC and the microenvironment are also important to avoid NCC invasion 

into non targeted tissues, helping to define the shape of migratory streams. For instance, in 

Xenopus, cranial NCC migrating into the BA3 and BA4 express EphA4/EphB1 receptors whereas 

adjacent NCC migrating to BA2, and mesodermal cells, express ephrinB2. This repulsive 

interaction avoids intermingle of NCC migratory streams (Smith et al., 1997). Moreover, during 

trunk NCC ventral migration, the caudal-half of sclerotomes expresses ephrinB1, which impairs 

NCC migration to this portion, since NCC express EphB3 (Krull et al., 1997). Similarly, 

plexin/neuropilin repulsive signals contribute to both cephalic and trunk NCC segregation and 

impairment in this signaling leads to the crossing of NCC intended to follow distinct migratory 

streams (Gammill et al., 2007; Gammill, 2006; Osborne et al., 2005). Finally, Slit/Robo repulsive 

signaling is important, for instance, to assure the homing of the vagal NCC to the developing 

gut, since Slit1/2/3 ligands in the mesentery repulse trunk NCC expressing Robo1/2 receptors 

to impair their entry in the gut (De Bellard et al., 2003; Zuhdi et al., 2015). Slit/Robo signaling is 

also involved in delimiting the ventral migration of early trunk NCC (Jia et al., 2005). 

Diverse ECM proteins possess important permissive roles in the NCC migration such as 

fibronectin, laminin and collagen IV, which are largely present along the pathways taken by 

migratory NCC, and generally improve, in vivo and in vitro, cell adhesion and dispersion 

(Newgreen and Thiery, 1980; Rovasio et al., 1983; Dubaud and Thiery, 1987; Perris and 

Perissinotto, 2000). Another example of ECM protein-related to permissive NC migration is 

tenascin-C, secreted by vagal NCC and important for NCC colonization of the gut (Akbareian et 

al., 2013). In contrast, other ECM molecules, such as chondroitin-6-sulfate, collagen IX and 

aggrecan are generally related to inhibitory or non-permissive effects on NCC migration (Perris 

and Perissinotto, 2000). In this regard, the proteoglycan versican was recently described as an 

inhibitory signal for cranial NC migration in Xenopus embryos. Versican is present in tissues 

adjacent to cranial NCC migratory streams and helps to create physical boundaries to limit the 

dispersion of migratory cells. Surprisingly, by associating computational modeling with 

experimental approaches, it has been shown that the apparent migration inhibition promoted 

by versican helped, in the end, to create a spatial confinement of migratory NCC, which later 

improves the directionally and collective migration of NCC (Szabo and Mayor, 2016). 
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II. The differentiation potentials of NCC 

II.1. Evidence for NCC multipotency in vivo 

The remarkable ability of NCC to give rise to a wide variety of cell types stands out 

from any other structure in the vertebrate embryo. Major questions in the understanding of 

NCC diversification are whether single NCC are endowed with multiple differentiation 

potentials in early stages and also to what extent this potentiality is maintained during and 

after NCC migration (Le Douarin and Kalcheim, 1999). Conversely, another scenario would 

argue for a heterogeneous NCC population composed of a mosaic of restricted progenitors, 

already determined towards specific cell types (Krispin et al., 2010). Nonetheless, a significant 

number of in vivo and in vitro studies tend to favor the NCC multipotency model (Figure 7). 

In heterotopic transplantation experiments in avian embryos, the replacement of the 

chick trunk NC, at the adrenomedullary level, by a quail vagal NC, promoted the differentiation 

of vagal NCC into the appropriate NC-derived cell types of the trunk, including the chromaffin 

cells of the host adrenal glands (Le Douarin and Teillet, 1974). On the other hand, when 

thoracic quail NCC were transplanted to the vagal level of the NC, thoracic NCC colonized the 

gut and differentiated there into enteric ganglia (Le Douarin and Teillet, 1974; Fontaine-Perus 

et al., 1982; Le Douarin et al., 1975). These experiments represented a strong evidence that 

some degree of plasticity exists in premigratory NCC, the fate of which could be 

reprogrammed by changing their embryonic environment. However, in some cases, the donor 

NCC were unable to produce all the cell types normally derived from the host NC. One 

remarkable example is the NC differential ability to yield mesenchymal derivatives observed 

along the rostrocaudal axis: the trunk NC transplanted into the cephalic NC domain failed to 

yield skeletal derivatives (Chibon, 1967; Nakamura and Ayer-le Lièvre, 1982). 

Fate plasticity in the avian NC was also identified by heterochronic, or back-

transplantation, experiments where postmigratory NCC, or fragments of tissues containing 

postmigratory NCC, were grafted into the NC migration pathway of younger host embryos. In 

these conditions, the non-neuronal NCC present in grafted PNS ganglia from E4-15 quail 

embryos were still able to generate PNS neurons and glia in a younger chick host embryo 

(Ayer-Le Lievre and Le Douarin, 1982; Dupin, 1984). Furthermore, the back-transplantation of 

E4 quail gut pieces, containing NCC, into the NCC migratory route at the trunk level, led to the 

differentiation of all thoracic NC cell types, except melanocytes, from the donor NC tissue 

(Rothman et al., 1990). These studies revealed that, at migratory and postmigratory stages, the 
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NCC population has broader differentiation potentials than those expressed in normal 

development; however, these studies also point out some gradual restrictions of NCC 

potentialities as, in many cases, the replacement of all NC derivatives by the donor tissue was 

not completely achieved (Le Douarin and Kalcheim, 1999). For a better understanding of the 

timing and mechanisms of segregation of different NC lineages, it is important to analyze the 

progeny of an individual NCC. Single-cell analyses, in vivo and in vitro, are ideal to solve issues 

regarding multipotentiality and heterogeneity of the NC population. 

The first experiments of NC lineage tracing in vivo were performed by intracellular 

injection of a fluorescent dextran into individual premigratory NCC in chicken embryos 

(Bronner-Fraser and Fraser, 1988). Two days after NCC injection, the progeny of individual 

labeled cells could be detected in different trunk NC-derived structures, such as the dorsal root 

and sympathetic ganglia, the adrenal medulla, and in Schwann cells lining spinal nerves, and 

migrating melanocytic cells (Bronner-Fraser and Fraser, 1988, 1989). 

Similar experiments were also performed in other species, such as Xenopus (Collazo et 

al., 1993) and mouse (Serbedzija et al., 1994), which confirmed that at least a fraction of the 

premigratory NCC are multipotent. Nevertheless, in zebrafish embryos, the descendants of 

individually labeled NCC were detected in only one NC-derived structure, suggesting NC early 

fate restrictions in this particular model (Raible and Eisen, 1994; Schilling and Kimmel, 1994). 

Recently, the issue of NCC fate restriction was revisited in amniotes. By single-cell labeling in 

semi-open trunk neural tube preparations, Krispin and colleagues have shown that the initial 

ventrodorsal position of a premigratory NCC in the dorsal neural tube could predict its fate 

(Krispin et al., 2010). Moreover, they found that NCC progeny was restricted to a single rather 

than multiple NC derivatives, suggesting that the fate of NCC would be determined before cell 

delamination. These results contradict previous findings in cranial NCC: when grafted at the 

head level, late-migrating mesencephalic NCC generated the same cranial NC derivatives as 

early-migrating ones, and vice versa (Baker et al., 1997). In other words, cranial NCC in 

different migratory stages are not fate restricted. Recently, McKinney and colleagues 

challenged the results from Krispin and co-workers, by using time-lapse imaging of photo-

converted cells labeled in the intact chick trunk neural tube (McKinney et al., 2013). They 

observed that dynamic rearrangements occurred in the premigratory NC, and thus, their 

position within the dorsal neuroepithelium was not strictly related to their exit time from the 

neural tube. Furthermore, except for the first migrating NCC that form the sympathetic 

ganglia, most of the premigratory NCC, issued from different dorsoventral levels in the neural 

tube, yielded multiple NC derivatives (McKinney et al., 2013). In sum, albeit Krispin and 
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colleagues obtained discordant results, the latest findings greatly favor the hypothesis of NCC 

multipotency (Figure 7). 

 

 

Figure 7: Two hypotheses for the diversity of phenotypes in premigratory trunk NCC. Left: 
Individual premigratory NCC within the dorsal neural tube (NT) are multipotent, regardless its 
dorsoventral position in the NT. Right: Alternatively, the premigratory NCC is composed of a 
mix of restricted progenitors, destined to form a single cell type. Trunk NCC types depicted are 
neurons (blue) and glia (green) of the dorsal root ganglia (DRG) and sympathetic ganglia (SG); 
Schwann cells (yellow) of the ventral root nerves (VR); and melanocytes (red) along the 
dorsolateral pathway (DLP) (adapted from Bronner, 2015). 

 

The hypothesis that NCC are multipotent gained even stronger evidence from the 

recent single-cell tracing studies that used color-coding with “R26R-Confetti” mice technology. 

Crossing the R26R-Confetti reporter mice with NC conditional transgenic lines, such as Wnt1-

CreERT or Sox10-CreERT, allowed to track color-coded trunk NC-derived clones after permanent 

genetic labeling at premigratory or early migratory stages, respectively. As a result, Baggiolini 

and colleagues nicely showed that the descendants of single NCC localized in several NC 

derivatives, generating dorsal root and sympathetic ganglionic neurons and supportive cells, 

Schwann cell precursors and melanocytic precursors going along the dorsolateral pathway 

(Baggiolini et al., 2015). Furthermore, by a series of detailed quantifications, they showed that 

the vast majority of individual labeled NCC are multipotent, both at premigratory and 

migratory stages. In the cephalic NC, the R26R-Confetti strategy was also recently used, 

coupled to Sox10-CreERT2 and PLP-CreERT2 drivers, to investigate the growth, dispersion, and 

spatial overlapping of clonally-related migratory NCC (Kaucka et al., 2016). Regarding NCC 

fates, the authors found that different facial subregions at E17.5 contain clones with multiple 

mesenchymal cell phenotypes, such as bone, dental and peridental mesenchyme in the teeth, 
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and bone and cartilage cells in the lower jaw. Some other colonies, containing pericytes or glial 

cells were also described. However, there was no evidence of colonies with both neural and 

mesenchymal derivatives after analysis of more than one hundred PLP-CreERT2 labeled NCC 

(Kaucka et al., 2016). Therefore, these data do not confirm previous in vivo and in vitro lineage 

studies of the cranial NCC, which provided clear evidence of multipotent progenitors endowed 

with both neural and mesenchymal fates (Bronner-Fraser and Fraser, 1988; Baroffio et al., 

1991; Ito and Sieber-Blum, 1991; Calloni et al., 2007, 2009) (see also section II.2). This apparent 

discrepancy may arise from technical limitations and widespread dispersion of the NC progeny 

in the growing head, which restrict the in vivo analysis to clonal microdomains. Further in vivo 

studies using different NC-specific Cre-drivers would be needed to clarify these issues, for 

example a Wnt1-Cre driver, in order to target NCC at the premigratory stage, earlier than the 

time of recombination mediated by the PLP-Cre line. 

In summary, the analyses of NCC fate in vivo, in different vertebrate species and with a 

variety of experimental approaches, propose that the NC is a heterogeneous cell population 

containing multipotent cells. To understand the full potentiality of the NCC, and to uncover the 

whole repertoire of cell types generated by a given progenitor, in vitro analyses can be highly 

advantageous, as they offer the possibility to submit single cells to controlled and distinct 

environments, which can be more permissive compared with those encountered in the 

developing embryo. In this regard, the in vitro clonal analyses are of main importance to give 

further insights concerning the NCC multipotency and the role of environmental factors in NC 

lineage choices. 

 

II.2. The differentiation potentials of the NCC in vitro 

Cohen and Konigsberg were the pioneers to perform clonal assays in avian trunk NCC 

(Cohen and Konigsberg, 1975), inspired by previous in vitro single cell analysis developed to 

unveil the diversity of murine bone marrow progenitors (Bradley et al., 1967; for references, 

Metcalf et al., 2007). Firstly, they devised a technique to obtain isolated trunk NCC, which 

migrated in vitro from the neural primordium explanted at developmental time preceding NCC 

exit. With this methodology, they cultured NCC at low-density conditions (limit dilution 

method) and observed that single NCC expanded in vitro gave rise to clonal populations 

containing non-pigmented and pigmented cells, indicating a mixed fate adopted by a single NC 

progenitor (Cohen and Konigsberg, 1975; Sieber-Blum and Cohen, 1980). Afterward, part of 

the non-pigmented cells present in the NC colonies was defined as sensory and adrenergic 
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neuroblasts, showing that the clonogenic NCC were indeed multipotent in vitro (Sieber-Blum, 

1989).  

In vitro clonal assays were further improved with the identification of various 

phenotypic markers and the optimization of culture conditions. For instance, culturing avian 

NCC on 3T3 feeder-layers, according to a method adapted from single-cell cultures of human 

keratinocytes (Barrandon and Green, 1985), greatly improved NCC cloning efficiency, i.e. the 

percentage of single seeded cells that actually yields a clone. Moreover, the direct and 

microscopically controlled plating of single cells taken from NCC suspensions helped to ensure 

clonality of the NC cultures (Baroffio et al., 1988). As a consequence, clonal assays carried out 

by Dupin and colleagues using quail NCC isolated from the entire neural axis and at different 

developmental stages, confirmed the heterogeneity of NC progenitors in terms of 

proliferation, survival and differentiation capacities and further demonstrated the existence of 

highly multipotent NCC (Baroffio et al., 1988, 1991; Trentin et al., 2004; Calloni et al., 2009; 

Coelho-Aguiar et al., 2013; Lahav et al., 1998; Dupin et al., 1990). 

Among all the advances obtained by avian NC clonal assays, one of the most 

interesting discoveries was that some cephalic NC progenitors are endowed with both neural 

and mesenchymal potentialities (Baroffio et al., 1988, 1991; Ito and Sieber-Blum, 1991). For 

instance, Baroffio and collaborators have shown that neural (neuronal and glial) cells, 

melanocytes and cartilage nodules could originate from the same NC progenitor, therefore 

suggesting that neural and mesenchymal progenitors may not be segregated at early stages of 

NC development (Baroffio et al., 1988, 1991). Nevertheless, in these initial experiments, the 

neural-mesenchymal clones represented only a small fraction of the resulting clones. However, 

optimization of the cell culture conditions and isolation of mesencephalic NCC at earlier time 

points of in vitro migration (15 hours instead of 24 hours), later on led Calloni and colleagues 

to obtain a larger proportion of cephalic NC-derived clones containing both cartilage and 

neural/melanocytic cells (Calloni et al., 2007). Moreover, osteoblasts were also observed in 

these clonal cultures, in approximately 94% of the colonies (Calloni et al., 2009). Interestingly, 

the authors also showed that a highly multipotent progenitor was able to give rise to six 

different cell types, that is, glial, neuronal, melanocytic, myofibroblastic, chondrocytic and 

osteoblastic cells. In summary, these in vitro results revealed the high ability of single cephalic 

NCC to produce diverse cell types, as previously shown in vivo at the whole cell population 

level. Also, they evidenced that the cranial NC is composed of highly multipotent NC stem cells 

in early stages of development. 
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The trunk NCC of amniotes are devoid of mesenchymal fate (Le Douarin and Kalcheim, 

1999; Hall, 2009) with the exception of endoneurial fibroblasts identified in transgenic mice 

(Joseph et al., 2004). Nevertheless, compelling in vitro clonal assays in avian and mammalian 

species have shown that a considerable amount of trunk NC colonies contained 

myofibroblasts, as defined by expression of the alpha smooth muscle actin (αSMA) (Trentin et 

al., 2004; Calloni et al., 2007; Stemple and Anderson, 1992; Morrison et al., 1999; Shah et al., 

1996). Interestingly, after heterotopic transplantation to the cephalic NC domain, the trunk 

NCC did not produce head skeleton elements but could still differentiate into myofibroblasts 

and connective tissue cells in vivo (Nakamura and Ayer-le Lièvre, 1982). Taken together, these 

in vitro results raised the hypothesis that the trunk NC of amniotes may have broader 

mesenchymal cell potentials than previously thought. Indeed, it was later demonstrated that 

trunk NCC could differentiate into chondrocytes in long-term cultures (McGonnell and 

Graham, 2002; Abzhanov et al., 2003) and also into adipocytes when trunk quail NCC are 

cultured in pro-adipogenic medium conditions (Billon et al., 2007). In addition, Calloni and 

colleagues described a high rate of chondrocyte differentiation by quail trunk NCC grown in 

the presence of the morphogen Sonic hedgehog (Shh); moreover, in clonal cultures, they 

found a rare progenitor (1 out of 200) able to differentiate into chondrocytes, glial cells and 

myofibroblasts (Calloni et al., 2007). 

Taken together, these results reveal that trunk NCC are endowed with the ability of 

producing several mesenchymal cell types. Recent investigations further corroborated this 

finding. In culture, trunk NCC expressed early markers of osteogenesis, chondrogenesis and 

adipogenesis and, when grown in a permissive medium, they fully differentiated into all these 

mesenchymal phenotypes (Coelho-Aguiar et al., 2013). Additionally, when seeded as single 

cells, a high proportion of trunk NCC (78%) yielded colonies containing osteoblasts progenitors 

(runt-related transcription factor 2; Runx2+), as previously observed in cephalic NC colonies 

(Calloni et al., 2009). The vast majority of osteoblast-containing clones formed by trunk as well 

as cephalic NCC also comprised neural cells, indicating that progenitors endowed with neuro-

mesenchymal potentials are present in the early NC along the entire neural axis. 

In summary, all of these in vitro studies, mainly performed in quail cells, led to propose 

a hierarchical model of NC lineage diversification, in cephalic and trunk NCC, in which distinct 

restricted precursors are derived from a heterogeneous multipotent cell population (Figure 8). 

Furthermore, in vitro clonal investigations have also been undertaken in rat and mouse NCC, 

and in human NCC derived from embryonic stem cells (ESC), which showed similar results 
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regarding early NCC multipotency (Stemple and Anderson, 1992; Shah et al., 1994; Ito and 

Sieber-Blum, 1993; Lee et al., 2007; see Dupin and Coelho-Aguiar, 2013, for a review). 

 

Figure 8: NC progenitor hierarchy identified in clonal assays of quail cephalic and trunk NCC. 
Progenitors are organized according to the number of cell types in their progeny. (A) In 
cephalic NCC, a highly multipotent cell (GNMFCO) is upstream of a variety of more restricted 
progenitors, i.e. intermediate and unipotent progenitors. Most intermediate progenitors are 
endowed with neural-mesenchymal capacities (gray circles) (B) In the trunk NC, neural-
mesenchymal progenitors could also be identified, including GNMF and GMFA multipotent 
progenitors. Self-renewal (arrows) had been shown for GM and GF progenitors in trunk and 
cephalic NCC (Trentin et al., 2004; Calloni et al., 2009; Coelho-Aguiar et al., 2013). 

 

II.3. Stem cell properties of NCC 

Given the plasticity of NCC, associated with their multipotential feature, it is of great 

importance to assess whether NCC can be considered as true stem cells with self-renewal 

capacity, that is the capacity of a cell to generate, in addition to a differentiated progeny, 

daughter cells that remain undifferentiated and preserve its differentiation potentials (i.e. 
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stemness). The self-renewing ability of quail trunk and cephalic NCC was tested by successive 

subcloning experiments in vitro, which revealed that glial-melanocytic and glial-

myofibroblastic bipotent progenitors act as stem cells, and can be propagated in vitro upon 

the influence of endothelin-3 and FGF2, respectively (Trentin et al., 2004; Bittencourt et al., 

2013). In mammals, self-renewing trunk NCC, that yield autonomic neurons, glial cells and 

myofibroblasts, were first isolated by sorting a rat NC subpopulation expressing p75 receptor 

(Stemple and Anderson, 1992). The latter receptor, together with the HNK1 marker, also led to 

the isolation of multipotent human cranial NC-like stem cells from ESC cultures (Lee et al., 

2007). Recently, it was reported a new procedure to maintain NCC self-renewal for long 

periods in culture, inspired by sphere-forming assays classically used to identify stem cells in 

many tissues, such as brain-derived neurospheres (Reynolds and Weiss, 1992). Individual early 

NCC, derived from chick embryos or human ESC, were grown in low-attachment conditions, 

which favor the formation of free-floating spheres, herein named crestospheres (Kerosuo et 

al., 2015). With this methodology, cells inside the crestospheres could be maintained for 

several weeks in culture in a premigratory NC state expressing early NC markers such as Sox10, 

Foxd3, Snail, and AP2a. In pro-differentiation conditions, cells in the crestospheres gave rise to 

neural cells, melanocytes and mesenchymal cells (myofibroblasts and osteoblasts). 

Additionally, individual crestosphere clones could generate new crestospheres, showing that a 

subpopulation of NCC could maintain its stemness. The development of this technique will 

contribute to further investigations regarding NCC potency and self-renewal. For instance, by 

using this technique, it was recently described that c-myc, a “pluripotency gene” with an 

established role in embryonic and adult stem cell maintenance (Chappell and Dalton, 2013, for 

a review), regulates the size of the premigratory NCC pool in vivo and in vitro (Kerosuo and 

Bronner, 2016). 

In summary, these experiments show that NCC possess many features of true stem 

cells.  

 

II.4. Maintenance of NC stem cells in adult tissues 

Accumulating evidence shows that multipotent and self-renewing NCC, the so-called NC-

derived stem cells (NCSC), are present even in postmigratory embryonic and adult stages. 

Hence, many tissues containing NCSC have been described in rodents and human, by either 

culturing the adult tissue and further identification of NCSC, via NC-specific markers (e.g. p75, 

Sox10, Sox9, Nestin, among others) or by in vivo lineage tracing of NCC in adult murine tissues, 
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through the use of NC-specific conditional mice. In this way, NCSC were identified in the sciatic 

nerve (Morrison et al., 1999), intestine (Bixby et al., 2002), dorsal root ganglia (Li et al., 2007), 

skin (Fernandes et al., 2004; Sieber-Blum et al., 2004; Wong et al., 2006), heart (El-Helou et al., 

2008), bone marrow (Nagoshi et al., 2008), cornea (Yoshida et al., 2006; Brandl et al., 2009), 

teeth (Janebodin et al., 2011; Kaukua et al., 2014) and craniofacial tissues (Kaltschmidt et al., 

2012), among others (for further references, Dupin and Coelho-Aguiar, 2013; Dupin and 

Sommer, 2012). However, in most of these tissues and organs, the localization and marker 

identity of the NCSC remained rather obscure. Yet, in the carotid body, a small neuroendocrine 

organ involved in blood oxygen pressure regulation, genetic fate mapping of mouse NCC led to 

characterize multipotent NCSC in the adult organ as supportive cells expressing the glial 

marker GFAP, which can reversibly produce new neuron-like glomus cells in vivo for adaptation 

to hypoxia (Pardal et al., 2007). 

 

II.5. Glia-related postmigratory neural crest stem cells 

Recent studies have since put forwards the notion that NC-derived glial cells, 

particularly Schwann cell precursors, behave as NC-like stem cells in diverse tissues, largely 

contributing to development and regeneration of different cell types in the many niches they 

reside (Petersen and Adameyko, 2017, for a review). A striking discovery was that immature 

Schwann cell precursors in mammalian and avian PNS nerves give rise to a significant part of 

melanocytes in the body (Adameyko et al., 2009, 2012). Of note, the generation of pigment 

cells from Schwann cells was previously evidenced in vitro (Dupin et al., 2003; Real et al., 2005; 

Widera et al., 2011). Besides, the reverse in vitro phenotype conversion, from pigmented 

melanocytes to Schwann cells, has also been reported in the quail and occurred through a 

multipotent NC-like intermediate (Dupin et al., 2000; Real et al., 2006). Recently, interesting 

findings were obtained in zebrafish regarding establishment of the colored stripes of the adult 

fish: during metamorphosis, the adult pigment cells were generated from post-migratory NCC 

located along spinal nerve fibers and within the dorsal root ganglia, which also gave rise to PNS 

neurons and Schwann cells (Dooley et al., 2014; Singh et al., 2016). Other recent findings 

support a role for nerve-associated glial progenitors in the development of significant 

subpopulations of PNS neurons in the cranial parasympathetic ganglia (Espinosa-Medina et al., 

2014; Dyachuk et al., 2014) and the ENS of mammals (Uesaka et al., 2015). Furthermore, NCSC 

belonging to the NC glial lineage can adopt phenotypes that exceed neuroglial and melanocytic 

fates. As already mentioned, Schwann cell precursors in vivo are at the origin of endoneurial 
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fibroblasts along the sciatic nerve (Joseph et al., 2004). In addition, transdifferentiation of 

Schwann cells into myofibroblasts has been previously described in in vitro culture (Dupin et 

al., 2003; Real et al., 2005) and in response to infection of the adult nerve by leprosy bacilli 

(Masaki et al., 2013). Recent findings from long-term genetic tracing and clonal color-coding in 

mice have shown that, in the model of continuously renewing incisor tooth, PNS nerve-

associated glial cells are at the origin of mesenchymal stem cells involved in the renewal and 

repair of pulp cells, odontoblasts and osteoblasts during development and adult life (Kaukua et 

al., 2014). 

In conclusions, the above findings demonstrate the cell type diversity arising from early 

NCC and how a subset of these cells (NCSC) is maintained multipotent and capable to renew 

adult tissues throughout vertebrate life. 
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III. Mesenchymal cell types 

The term mesenchyme is used to describe tissues where the cells are loosely 

organized, surrounded by a vast quantity of ECM. In this context, cells are free to migrate as 

few cell-cell adhesion contacts and no basal membrane impair their movement. Therefore, 

mesenchymal cells are not polarized in an apical-basal orientation, as are epithelial cells. 

Among the mesenchymal tissues, we can cite dermis, tendon, muscle, skeletal elements with 

bones and cartilages, adipose and several others tissues (Le Douarin et al., 2004; Grenier et al., 

2009; Dupin et al., 2006). 

In amniote vertebrates, the mesenchymal cell types are derived from two main 

embryonic sources: the mesoderm and the cephalic NC. During development, the mesoderm 

germ layer is divided into four main regions: the axial (notochord and prechordal mesoderm), 

paraxial, intermediary and lateral mesoderm. The paraxial mesoderm can be subdivided into 

cephalic mesoderm and somitic mesoderm (Sambasivan et al., 2011; Gilbert, 2000; Couly et al., 

1992). The mesoderm germ layer forms almost all mesenchymal tissues in the vertebrate 

body. Nevertheless, the cephalic NC is also a significant source of mesenchymal cell types. As 

the NC comes from the ectoderm germ layer, NC-derived mesenchymal cells are collectively 

named “ectomesenchyme” or “mesectoderm,” a term designated by Platt (Platt, 1893). 

In this Chapter, we present an overview of skeletogenesis in vertebrates and the 

molecular aspects involved in the differentiation of osteoblasts, chondrocytes, and adipocytes, 

the main mesenchymal cell types derived from the NC, which we address in this Thesis. 

 

III.1. Endochondral and intramembranous ossification 

The process of bone formation occurs by two main mechanisms: the endochondral or 

the intramembranous ossifications. Endochondral ossification takes place in the majority of 

bones, particularly long bones in the vertebrate body, while the intramembranous ossification 

is restricted to dermal bones, such as the clavicle and the skull vault (Karsenty et al., 2009; 

Kozhemyakina et al., 2015). 

In the endochondral ossification, the process of bone formation starts with 

condensation of mesenchymal cells in a presumptive cartilage template. These mesenchymal 

progenitors come from either the cranial NC and mesoderm, the somites or the lateral plate 

mesoderm. They contribute to craniofacial, axial and limb skeletons, respectively. A balance of 
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extrinsic and intrinsic signals triggers the expression by mesenchymal progenitors of Sox9, a 

key regulator of chondrogenesis (Bi et al., 1999; Akiyama et al., 2002). As a result, 

mesenchymal progenitors differentiate into proliferating chondrocytes, which then express 

and secrete specific ECM proteins and glycoproteins such as type 2 collagen and aggrecan 

(Horton, 1993; Lefebvre et al., 1997). This cartilage structure will serve as a mold for the future 

bone. Additionally, cells in the periphery of the cartilage template do not differentiate into 

chondrocytes and form the perichondrium (Caplan and Pechak, 1987). As the cartilage 

develops, the proliferative chondrocytes, from the central region of the cartilage primordia, 

exit the cell cycle, increase greatly in volume and become hypertrophic. These hypertrophic 

chondrocytes start to produce osteopontin, bone sialoprotein II, matrix metalloproteinase 

(MMP) 13 and collagen 10, which trigger the mineralization of the ECM cartilage (Linsenmayer 

et al., 1991; Poole, 1991; Inada et al., 1999). As the cartilage primordium develops, 

proliferating chondrocytes continuously differentiate into hypertrophic chondrocytes along 

the template. The area in the forming bone containing chondrocytes in these progressive steps 

(i.e. proliferating and hypertrophic) is known as the growth plate (Karsenty et al., 2009; 

Kozhemyakina et al., 2015). Simultaneously, cells from a thin mesenchymal layer in the 

periphery (perichondrium/future periosteum) start to invade the hypertrophic cartilage zone, 

together with blood vessels and pre-osteoblasts (Nguyen et al., 1998; Kronenberg, 2003; Maes 

et al., 2010). These osteoprogenitors express Runx2, also known as core-binding factor subunit 

-1 (Cbfα-1), a key gene for osteoblast commitment and differentiation (further discussed in 

sections III.3 and IV.3). While the hypertrophic chondrocytes die by apoptosis, they are 

replaced by mesenchymal cells of the osteoblast lineage. The partially degraded cartilage 

matrix then forms a template for bone matrix deposition, which begins with accumulation of 

type 1 collagen, produced by the entering osteoblasts, on top of previous ECM-containing 

collagen 10. The region wherein this process starts is known as the primary ossification area. 

Soon after, a second ossification area arises within the epiphysis. The growth plate will 

eventually be restricted to a thin area between the primary and secondary ossification regions. 

Proliferating chondrocytes remaining in this area allow the longitudinal growth of the skeleton 

until early adult life (Karsenty and Wagner, 2002; Kronenberg, 2003) (Figure 9, right). 
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Figure 9: Intramembranous and endochondral ossification. (a-e) Intramembranous 
ossification. (a) Formation of frontal bones starts directly from mesenchymal condensations on 
the lateral side of the head. (b) This mesenchymal condensation spreads upward toward the 
top of the skull (arrows; osteogenic front). Osteoblasts differentiate and produce bone matrix. 
(c) The osteogenic fronts that originate on each side convene at the midline, where a suture is 
formed. (d) In the suture, cells differentiate into osteoprogenitors. Osteoprogenitors then 
differentiate into osteoblasts that produce bone ECM. Next, osteoblasts differentiate into 
osteocytes, which become embedded in the bone matrix. (e) Schematic of a murine skull (E 
18.5) stained with Alizarin Red and Alcian Blue. Asterisks: osteogenic fronts. (f-j) Endochondral 
ossification. (f) Mesenchymal condensations start in a long bone (e.g. humerus). (g) These cells 
differentiate in chondrocytes whereas cells in the periphery form the perichondrium. (h) 
Proliferative chondrocytes exit the cell cycle and become hypertrophic. (i) Hypertrophic 
chondrocytes further mineralize their cartilaginous matrix. Concomitantly, cells from the 
periosteum invade this region, together with blood vessels and osteoclasts. (j) A mouse 
humerus stained with Alizarin Red and Alcian Blue (Nakashima and De Crombrugghe, 2003). 

In the intramembranous ossification, bone cells are derived directly from 

mesenchymal cells without the need of an intermediary cartilage template. Mesenchymal 

condensation is followed by the differentiation of immature osteoblasts resulting in 
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production of a bone matrix containing collagen type 11 (Karsenty et al., 2009). As osteoblast 

differentiation gradually continues, these cells start to secrete other bone ECM proteins, such 

as osteopontin and osteonectin, followed by the secretion of alkaline phosphatase, osteocalcin 

and eventually leading to bone ECM mineralization (Nakashima and De Crombrugghe, 2003). 

Between the edges of developing dermal bones, in a limited non-mineralized mesenchymal 

region, pre-osteoblasts are continually proliferating and remain undifferentiated in early post-

natal life, composing the calvarial sutures in the skull (Figure 9, left). 

 

III.2. Bone matrix mineralization 

The overall mechanism of the primary mineralization is similar between mineralized 

tissues, such as bone, tooth and cartilage, although the inorganic materials and the protein 

composition vary in each tissue (Golub, 2011). Briefly, in bone formation, the osteoblasts are 

responsible for the production of organic and inorganic matrices. Firstly, they secrete mainly 

type 1 collagen, a structural protein crucial to forming a template for future mineral 

deposition; secondly, they secrete regulatory proteins, such as alkaline phosphatase and 

osteocalcin, among others, which will control the rate of mineralization. Thirdly, they produce 

bone apatite crystals, which are secreted via exosomes, thus forming matrix vesicles in the 

extracellular environment (Shapiro et al., 2015). The preformed hydroxyapatite crystals are 

deposited in an oriented fashion on a scaffold provided by collagens and regulated by 

noncollagenous proteins. Finally, due to the activity of osteoblasts and matrix vesicles, the 

mineralizing bone ECM is enriched in ions such as calcium and phosphate. The amount of 

these ions is controlled by phosphatases and calcium chelating-proteins, which trigger their 

incorporation into the hydroxyapatite crystals and the formation of new crystals (Glimcher, 

1981). When the bone matrix is completely mineralized, bone cells become osteocytes, which 

are interconnected via elongated channels called canaliculi (Boskey, 2007; Golub, 2011). 

The process of bone and cartilage matrix mineralization can be easily reproduced in 

vitro when supplementing the culture medium of immature osteoblasts with factors important 

for proper matrix production. This strategy has been widely used to promote full 

differentiation of bone and cartilage progenitors from different sources such as mesenchymal 

cell lines, bone marrow cells (Kamalia et al., 1992), induced-pluripotent stem cells (iPSC) and 

ESC (Csobonyeiova et al., 2017), as well as NCC (Calloni et al., 2009; Coelho-Aguiar et al., 2013). 

Among these factors, ascorbic acid, β-glycerolphosphate and dexamethasone are the main 

components to allow bone matrix formation in vitro. Dexamethasone, a synthetic 
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glucocorticoid, induces mineralization by several mechanisms as it increases transcriptional 

activity of various key bone regulators (Shalhoub et al., 1992). Acid ascorbic induces collagen 

matrix production and activation of osteocalcin (Xiao et al., 1997) while β-glycerolphosphate is 

the source of phosphate ions when hydrolyzed by alkaline phosphatase (Bellows et al., 1991). 

Of note, in this Thesis, we used a medium supplemented with these factors to induce terminal 

differentiation of osteoblasts and chondrocytes in trunk NCC cultures (see Results section; 

Article n°2). 

 

III.3. Molecular aspects of osteogenesis and 

chondrogenesis 

The major transcription factors that act in the commitment of chondrocytes and 

osteoblasts are Sox9 and Runx2, respectively. Sox9 (belonging to the SoxE subfamily of 

transcription factors) is a gene containing a high mobility group box-domain of DNA binding, 

expressed by premigratory and migratory NCC (Cheung et al., 2005; Cheung, 2003). In later 

stages, it is restricted to cells of chondrocytic lineage (Haldin and LaBonne, 2010, for a review). 

Sox9 activates many genes of the chondrogenic pathway as cited above, such as collagen type 

21, collagen type 112 and aggrecan (Bridgewater et al., 1998; Lefebvre et al., 1997) and 

induces Sox5 and Sox6 genes, encoding factors that are also involved in chondrogenesis 

(Akiyama et al., 2002; Mori-Akiyama et al., 2003). Sox9 appears to be necessary for 

chondrocyte development, as chondrogenesis is entirely blocked in the absence of this gene 

(Bi et al., 1999), and osteochondrogenic progenitors are all derived from Sox9-expressing cells 

during mouse embryogenesis (Akiyama et al., 2005). Moreover, mutations in SOX9 in human 

lead to a disease called campomelic dysplasia, a semi-lethal skeletal malformation syndrome 

(Wagner et al., 1994). As Sox9 is a major factor for cartilage formation in general, 

endochondral ossification is greatly impaired in the absence of this transcription factor. 

However, during cartilage maturation, Sox9 should be repressed in hypertrophic chondrocytes 

as it blocks the expression of genes involved in matrix deposition and blood vessels invasion 

such as collagen 10 and vascular endothelial growth factor (VEGF) (Hattori et al., 2010; Leung 

et al., 2011). 

Regarding the osteogenic lineage, Runx2 was the first specific transcription factor 

described (Ducy et al., 1997; Komori et al., 1997) and until now, the earliest known osteogenic-

specific marker during embryogenesis. Runx2 is part of the Runt family of transcription factors, 

which also comprises Runx1, essential for fetal liver-derived hematopoiesis (Wang et al., 1996) 
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and Runx3, critical for thymopoiesis and neurogenesis in the dorsal root ganglion (Inoue et al., 

2002; Levanon et al., 2002). During early skeletal development, Runx2 is expressed by cells of 

the osteoblast lineage but not in fully differentiated chondrocytes (Ducy et al., 1997; Ducy, 

2000). Thus, Runx2 expression is restricted to hypertrophic chondrocytes and the 

osteoprogenitors of the perichondrium region in endochondral bones (Inada et al., 1999; 

Karsenty et al., 2009). In contrast, in dermal bones, Runx2 is detected until the differentiation 

of osteoblasts. Particular aspects of the molecular control of Runx2 expression and craniofacial 

ossification by NCC will be further discussed in section IV.3. 

After targeted deletion of Runx2, heterozygous mice show skeletal abnormalities, 

resembling a human disease named cleidocranial dysplasia (Otto and Thornell, 1997). 

Homozygous mutation led to the total absence of osteoblasts and bone formation whereas 

development of cartilage was almost normal (Otto and Thornell, 1997; Komori et al., 1997). 

Therefore, Runx2 appears to be a key regulator for proper osteoblast differentiation. 

Mesenchymal cells expressing Runx2 are committed towards an osteoblastic lineage as Runx2 

regulates a set of bone marker genes, such as osteocalcin, collagen type 11, bone sialoprotein 

(BSP) and osteopontin (Ducy et al., 1997; Ducy and Karsenty, 1995; Sato et al., 1998). As 

discussed above (sections III.1 and III.2), these proteins are necessary for osteoblast and bone 

matrix maturation. Furthermore, Runx2 appears to act together with Runx3 to regulate the 

expression of collagen 10, osteopontin, BSP2 and MMP13 in hypertrophic chondrocytes 

(Komori, 2010). In addition, VEGF is upregulated by Runx2 in hypertrophic chondrocytes, thus 

helping to promote cartilage invasion by blood vessels during endochondral ossification (Zelzer 

et al., 2001). In summary, Runx2 possesses pleiotropic actions during different events of bone 

and cartilage formation.  

Additionally, a second bone-specific transcription factor, Osterix, reinforces osteoblast 

lineage commitment in all skeletal elements (Nakashima et al., 2002). It is expressed at later 

stages when compared with Runx2, mainly in mesenchymal condensations of membranous 

bones and the perichondrium surrounding the cartilage template during endochondral 

ossification (Nakashima and De Crombrugghe, 2003). Osteoblast differentiation is completely 

blocked in Osterix knockout mice, despite the presence of Runx2, showing that Osterix acts 

downstream of Runx2. Interestingly, in Osterix-null mice, even in membranous skeletal 

elements, skeletal progenitors express Sox9 and collagen type 21, suggesting a cell fate 

change towards the chondrocytic lineage (Nakashima et al., 2002). As a result, the combined 

action of Runx2 and Osterix leads to the specification of pre-osteoprogenitors towards 

immature osteoblasts. Interestingly, Runx2 dependence of bone differentiation is stage-
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dependent, as Runx2 must be downregulated for full differentiation of osteoblasts (Liu et al., 

2001; Geoffroy et al., 2002). Osterix, in turn, is necessary for immature and mature osteoblasts 

to maintain bone homeostasis (Baek et al., 2010) (Figure 10). 

 

Figure 10: Regulation of osteoblast and chondrocyte differentiation. Runx2 is crucial for the 
specification of mesenchymal stem cells to the osteoblast lineage and positively influences 
early stages of osteoblast differentiation. Osterix (OSX) acts downstream of Runx2 to reinforce 
the commitment of preosteoblasts. Runx2 is also involved in the expression of bone matrix 
genes Collagen (Col) 1, osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN). For 
differentiation of mature osteoblasts, Runx2 needs to be downregulated. Chondrocyte 
differentiation is initiated by Sox 5/6 and Sox9-mediated mesenchymal condensation. Runx2 
induces expression of ColX during hypertrophic chondrocyte differentiation whereas it inhibits 
immature chondrocytes from adopting the phenotype of permanent cartilage (Bruderer et al., 
2014). 

 

III.4. Adipogenesis 

The adipose tissue has an important function for the storing and mobilization of fat 

energy in the form of triacylglycerols. Adipose tissues are classified into two types according to 

their function and the adipose cell types present (Sarjeant and Stephens, 2012, for a review). 

Firstly, the white adipose tissue (WAT), the predominant fatty tissue in avian and mammals, 

has essential role in energy homeostasis and production of hormones such as leptin and 

adiponectin (Zhang et al., 1994; Scherer et al., 1995). WAT is characterized by the presence of 
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white adipocyte cells, which are morphologically identified by the presence of a unilocular lipid 

droplet of fat occupying the majority of the cytosol, while the nucleus is usually compressed 

between the fat and the plasma membrane. Secondly, the brown adipose tissue (BAT), 

classically described in human neonates and rodents, is important for the thermogenesis 

mediated by combusting lipids and carbohydrates via uncoupling protein 1 (UCP1) action in 

the mitochondria. The adipocytes in BAT are morphologically characterized by multilocular 

lipid droplets (Cannon and Nedergaard, 2004). For many years, it was believed that brown 

adipocytes exist in human only in the early life; however, recent findings show that adult 

humans do have BAT, although restricted in some areas such as the neck and the 

supraclavicular area (Lidell et al., 2013; Cypess et al., 2013; Jespersen et al., 2013). Moreover, 

another interesting finding is that some brown-like adipocytes are found interspersed in WAT 

in both human and rodent adults. These cells are called “brite cells” or “beige cells” (Wu et al., 

2012; Bartelt and Heeren, 2014; Cereijo et al., 2015, for recent reviews) (Figure 11). Both beige 

and brown adipocytes have similar phenotypic and functional characteristics, expressing 

proteins controlling nonshivering thermogenesis, such as PRMD16 and UCP1. Nevertheless, 

the cellular origin of these adipocyte types (i.e. brown, white, and beige) is still poorly known. 

Brown adipocytic cells are usually associated with the myogenic lineage expressing Myf5 

transcription factor, while beige and white adipocytes are Myf5-negative. Beige and white 

adipocytes can originate from the same bipotent precursors or undergo transdifferentiation 

depending on the environment conditions (Lee et al., 2012; Rosenwald et al., 2013). 

Interestingly, in birds, although some avian adipocytes containing multilocular lipid droplets 

were found in subcutaneous adipose tissues and in vitro limb bud cultures, BAT has never been 

described in these species (Barré et al., 1986; Saarela et al., 1991; Mezentseva et al., 2008). 

Nevertheless, the existence of “beige” adipocytes in birds should be examined. Regarding 

embryonic tissue origin, it is assumed that fat tissues arise from the mesoderm in trunk and 

limbs, although trunk NCC in culture also can yield adipocytes (Billon et al., 2007; Coelho-

Aguiar et al., 2013). In the head, adipocytes can be derived from mesenchymal NCC, present in 

the face, neck, salivary glands, and ear regions in chick and mouse (Le Lièvre and Le Douarin, 

1975; Billon et al., 2007). 
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Figure 11: Adipocytic cell types. White and brown adipocytes are derived from distinct 
precursor cells and have distinct morphological characteristics. Brown adipocytes are derived 
from Myf5-expressing precursor cells whereas the early marker for white adipocytes is still 
unknown. Mature brown adipocytes contain multilocular lipid droplets and are mitochondria-
rich. PRDM16 is present in both brown and white adipocytes and is a major factor in 
transforming white adipocytes into beige adipocytes (adapted from Sarjeant and Stephens, 
2012). 

The early aspects of adipocyte specification from mesenchymal progenitors are still 

scarcely known. One main reason is the fact that most studies in adipogenesis are performed 

in vitro, using fibroblast-like preadipocyte cell lines, which are in an already advanced stage of 

commitment (Green and Meuth, 1974; Green and Kehinde, 1976). Nevertheless, early studies 

could successfully identify a specific transcription factor, peroxisome proliferator-activated 

receptor  (PPAR necessary and sufficient for adipogenesis in both brown and white 

adipocytes (Tontonoz and Spiegelman, 2008). In vivo, PPAR is required for survival and 

differentiation of all adipose tissues during development and adult life (Barak et al., 1999; 

Rosen et al., 1999; Imai et al., 2004; Wang et al., 2013). Therefore, PPAR is considered as a 

master gene for adipogenesis. Accordingly, a progression of the sequential activation of a set 

of transcription factors was later described resulting in PPAR expression followed by full 

adipocyte differentiation (Figure 12). Briefly, members of AP-1, KLFs and C/EBP families of 

transcription factors act to clonally expand the pre-adipocytes and induce activation of PPAR. 

Afterward, PPAR and co-activators, such as C/EBP, STAT5A, KLF and SREBP-1 trigger further 

steps in adipogenic differentiation, promoting the activity of genes involved in the metabolism 

of lipids and carbohydrates, like FAPBP4 (fatty acid binding protein 4), GLUT4 (responsive 
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glucose transporter insulin 4) and GPDH (glycerolphosphate dehydrogenase) (Sarjeant and 

Stephens, 2012; Lefterova and Lazar, 2009).  

 

Figure 12: Molecular players in the adipocytic differentiation cascade. Many transcription 
factors are induced during adipocyte differentiation. Some of these, like members of the AP-1, 
KLFs and C/EBP families, are induced during clonal expansion. Other transcription factors, like 
PPARg and its co-activators, promote adipocyte differentiation (adapted from Sarjeant and 
Stephens, 2012). 



Introduction   

41 
 

IV.  The NC and its mesenchymal derivatives 

The cephalic NC largely contributes to the head mesenchymal tissues. In avian species, 

nearly the whole head skeleton is of NC origin, except part of the otic vesicle and the occipital 

region, which are derived from the somitic and cranial paraxial mesoderm (Le Lièvre and Le 

Douarin, 1975; Johnston et al., 1973; Couly et al., 1993, 1996; Köntges and Lumsden, 1996) 

(Figure 13). In addition, ocular and periocular structures, such as corneal stroma and 

endothelium, sclerotic cartilage, choroid membrane and ciliary muscles are NC-derived (Couly 

et al., 1993, 1996, 1998; Creuzet et al., 2005b) The cephalic NC also yields the dermis of the 

face and ventral neck, the connective tissue associated with muscle fibers and tendons and the 

adipocytes (Le Lièvre and Le Douarin, 1975; Billon et al., 2007). It also contributes to the 

formation of forebrain meninges and many tissues of the cardiovascular system, such as the 

heart septum and valves, the muscle-connective wall of large arteries, and the pericytes and 

smooth muscle cells lining blood vessels of the head (Le Lièvre and Le Douarin, 1975; Kirby and 

Stewart, 1983; Kirby et al., 1983; Etchevers et al., 2001). Finally, the mesenchymal components 

of the salivary, thyroid and parathyroid glands are of NC origin (Bockman and Kirby, 1984). 

 

Figure 13: NC contribution to the craniofacial skeleton in avian species. (A) Right external 
view. (B) Right internal view. Red, skeleton of NC origin; blue, skeleton of cephalic mesoderm 
origin; green, skeleton of somitic origin (Couly et al., 1993). 

In this Chapter, we will briefly discuss the NC and mesoderm interactions during 

development of mesenchymal tissues in the head, since some of these aspects are discussed in 

part 1 of this Thesis. In addition, we address some evolutionary aspects related to the 
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mesenchymal fate of NCC and further discuss the regulatory mechanisms involved in 

skeletogenesis by NCC, the main topic of part 2 of this Thesis. 

 

IV.1. NC and mesoderm interactions in the cranial 

mesenchyme: role of Six1 

Craniofacial development relies on a coordinated growth and differentiation of many 

embryonic structures, such as the neuroepithelium, the ectodermal placodes, the foregut 

endoderm and the mesenchymal tissues, which can be either mesoderm- or NC-derived 

(ectomesenchyme). Since the earliest stages of head development, the cells of the cranial NC 

and cranial paraxial mesoderm are closely located and they later intermingle and cooperate to 

the proper differentiation and morphogenesis of many presumptive organs and tissues. How 

these mesenchymal cells orchestrate their communication, and which tissues depend on this 

interaction, is briefly debated in this chapter. 

According to the fate-mapping of the musculo-skeletal and vascular derivatives in the 

avian embryo, determined in quail-chick chimeras (Couly et al., 1992, 1993, 1995), the 

mesoderm contribution to the head tissues arise from three mesoderm subdivisions: first, the 

somitic mesoderm, which, forms only a part of the otic capsule and cranial base (the baso and 

exo-occipital bones) and tongue/pharyngeal muscles; second, the cephalic paraxial mesoderm, 

which also contributes to part of the otic capsule, in addition to the supraoccipital and 

sphenoid cartilaginous bones and to jaw, extraocular and facial muscles; third, the prechordal 

mesoderm, anteriorly, giving rise to the extraocular muscles. Moreover, these mesodermal 

components form additional mesenchymal tissues such as blood vessel endothelia, dermis and 

connective tissues, mainly in the posterior head and dorsal neck (Noden, 1983; Couly et al., 

1992, 1995). In contrast, the cranial NC is at the origin of the same types of tissues, except 

vascular endothelia, in most head regions, with a remarkable contribution to the skeleton of 

the entire face and to a large part of the skull. In addition, it provides many ocular (cornea) and 

periocular structures (Creuzet et al., 2005b). 

The development of head mesodermal cells and NCC is deeply connected. For 

instance, the paraxial mesoderm secretes signals necessary for NC induction and for trunk NCC 

migration through the rostral part of sclerotome (see section I.2). In the posterior head, both 

NCC and mesodermal cells home to the forming BAs, where they occupy two separate 

domains inside the BA mesenchyme: the mesodermal cells occupy the core of BAs, whereas 
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the NCC essentially surround them, resulting in a physical delimitation of the mesodermal 

domain (presumptive myoblasts) from the NC mesenchyme and surface ectoderm. This first 

regionalization is probably important for organizing, inside the BAs, the coordinated 

development of the presumptive skeletal elements and tendons, which are mainly NC-derived, 

with the muscular and endothelial mesodermal derivatives (Couly et al., 1992, 1993, 1995; 

Hacker and Guthrie, 1998; Noden and Trainor, 2005; Grenier et al., 2009; Trainor and Tam, 

1995). Nevertheless, a significant number of NCC can be found within the mesodermal core of 

BAs, which intermingle with myogenic precursors to give rise to connective cells, reinforcing 

the idea of a coordinated development to establish the future muscle and its connective 

tissues (Grenier et al., 2009). 

At later stages of development, NCC yield connective tissue and tendons, helping to 

assemble the head muscles and promoting adequate insertion of the skeletal elements (Couly 

et al., 1992; Noden and Trainor, 2005; Grenier et al., 2009). In addition, crosstalk between 

these cell types has been shown to influence further muscle development. Although NCC are 

not essential for myoblasts early differentiation, lack of NCC impairs the correct patterning of 

head muscles, in amphibian, mice and chick embryos (Rinon et al., 2007; Noden and Trainor, 

2005). In the absence of NCC, myoblasts are maintained in a proliferative state and failed to 

undergo full differentiation into myofibers, probably due to the lack of positional cues, which 

would control the rate of proliferation/differentiation of myoblasts (Rinon et al., 2007). 

Regarding the formation of the head skeleton, in bones with both NC and mesoderm 

origin, in the cranial base (basi-pre and basi-post sphenoid), it has been proposed that NCC and 

paraxial mesodermal cells not intermingle; instead, what occurs is the fusion of skeletal 

elements derived from these distinct mesenchymal cells (Noden and Trainor, 2005). 

Nevertheless, the accurate communication between both tissues is fundamental for the 

establishment of NC/mesoderm boundaries, such as in mammalian coronal suture, which is 

formed at the border between NC-derived frontal bone and mesoderm-derived parietal bone. 

If NC-mesoderm interactions are perturbed, precocious calcification of this suture can happen 

and generates a form of craniosynostosis, a human congenital disease exhibiting many 

craniofacial and brain deformities (Morriss-Kay and Wilkie, 2005). Interestingly, it has been 

shown that the paraxial mesoderm composes the main undifferentiated domain of the coronal 

suture in mice, and its proper development depends on Engrailed 1 expression, to avoid 

invasion by NCC from the frontal osteogenic zone (Deckelbaum et al., 2012). Engrailed 1 

transcription factor also controls the activity of Msx2 and Twist1, working jointly to maintain 
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NC/mesoderm boundary and coronal suture integrity in mammals (Merrill et al., 2006; Ting et 

al., 2009). 

Several molecular players are involved in the coordinated regulation of differentiation 

of NC- and mesoderm-derived tissues. Tzahor and colleagues (2003) have found that Wnt and 

BMP signals have repressive effects on myogenesis in the head paraxial mesoderm, while NCC 

produce their antagonists, such as Frzb and Noggin, thus helping to balance the consequences 

of these signals in the myogenic population (Tzahor et al., 2003). Moreover, in Xenopus 

embryos, inhibition of FoxN3 transcription factor generates defects in head NC-derived 

skeleton, with indirect effects on cranial muscle patterning, as shown after NC ablation in the 

chick embryo (Rinon et al., 2007; Schmidt et al., 2013). In summary, although some molecular 

players have been described to play a role in the interaction of mesodermal and NC 

mesenchymal tissues, how these tissues coordinate their development is still poorly known. 

In this regard, we aimed to investigate Six1, a gene expressed at head mesenchyme in 

early stages of chick and mice development (Laclef et al., 2003b; a; Sato et al., 2012; Garcez et 

al., 2014). Six1 belongs to the Six homeobox family of transcription factors, and it is one of the 

homologs of Sine Oculis, a gene required for eye development in Drosophila (Kawakami et al., 

2000). Six1 function usually involves the Pax-Six-Eya-Dach gene network to control many organ 

development (Kumar, 2009). In vertebrates, it has been shown that Six1 gene is important for 

the development of a variety of tissues and organs, including placodal derivatives, kidney, 

somitic muscles and several sensory systems (Sato et al., 2012; Kumar, 2009). Besides lack of 

kidney and thymus, Six1 null mice exhibit defects in the inner ear, nasal cavity and in various 

cranial NC and mesoderm derivatives. NC derived skeletal elements such as squamosal, 

mandibular and maxillary bones are shorter after Six1 knockout whereas Meckel’s cartilage 

and hyoid bone are disorganized. They also present hypoplasia of the somitic mesoderm-

derived tongue muscles (Laclef et al., 2003a; b). In human, SIX1 haploinsufficiency leads to the 

branchio-oto-renal syndrome, an autosomal dominant developmental disorder, characterized 

by hearing loss and branchial arch defects (Kochhar et al., 2008; Ruf et al., 2004). 

In chicken embryos, members of the Six family of transcription factors were recently 

described as playing a significant role in the development of craniofacial NC-derived structures 

(Garcez et al., 2014). Six1 depletion, by electroporation of dsRNA targeting Six1 in early NCC, 

resulted in smaller NC-derived skeletal elements (e.g. nasal, Meckel and hyoid cartilages), 

together with defects in pallial and subpallial brain structures. In addition, the combinatory 

inhibition of Six genes (Six1, Six2, and Six4) triggered a strong facial hypoplasia, partially due to 
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the truncation of craniofacial skeleton, and brain development was greatly impaired. 

Interestingly, the phenotype of global silencing of Six genes resembles the one obtained after 

Hoxa2 ectopic expression in premigratory NCC (Creuzet et al., 2002; Garcez et al., 2014). 

Moreover, electroporation of Hoxa2 construct in premigratory cephalic NCC led to inhibition of 

Six1, Six2 and Six4 expression, suggesting an interaction between these two families of 

transcription factors during head morphogenesis (Garcez et al., 2014). In this regard, it was 

previously reported that Hoxa2 interacts with Six2 promoter, directly inhibiting Six2 expression 

in the mouse BA2 (Kutejova et al., 2005, 2008). 

In summary, all these data show that Six1 is a gene expressed in tissues of varied 

embryonic origins, hence leading to pleiotropic defects when its expression is disrupted. 

Nevertheless, Six1 precise function is not completely understood, especially in head 

mesenchymal tissues. In this regard, since Six1 appears to be important for both NC- and 

mesoderm-derived mesenchymal cells, it should be interesting to investigate whether it can 

play a role in the crosstalk between these cell types during formation of head structures. As a 

first step in the understanding of this issue, we aimed at better defining the embryonic origin 

of the Six1-expressing cell populations that contribute to the head mesenchyme, to obtain 

further clues about the functions of Six1. In part 1 of this Thesis, we present a study of the 

spatio-temporal dynamics of Six1 expression, and the respective contribution of NC versus 

mesoderm to the generation of Six1-expressing territories in the head mesenchyme and its 

derivatives. 

 

IV.2. Evolutionary aspects 

The NC is a structure unique to vertebrates, and its evolution is closely related to the 

evolution of the vertebrate phylum. Because of this, many current studies focus on a better 

understanding of the NCC origin. There is a debate about the existence of an ancestral “pre-NC 

precursor” among chordates, represented by ectodermal cells expressing typical components 

of the gene regulatory network of the NCC (Delsuc et al., 2006; Jeffery et al., 2008; Abitua et 

al., 2012). This particular aspect of NC evolution has been reviewed recently by Green and 

collaborators and will not be further addressed in this Thesis (Green et al., 2015). 

The NC generates a remarkable array of cells and tissues overcoming its ectodermal 

origin and being thus considered as a “fourth germ layer”. The appearance of this structure is 

the basis for the evolution of critical features specific of vertebrates (Hall, 2000; Le Douarin 

and Dupin, 2014). Gans and Northcutt, in their seminal article, put forward a hypothesis for 
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the evolution of the “New Head” in vertebrates (Gans and Northcutt, 1983). They proposed 

that vertebrate innovations, raised from the rostral ectoderm (i.e anterior brain, NC and 

placodes), allow the development of a more complex brain associated with sense organs 

derived from placodes and, finally, the development of a complex masticatory apparatus 

formed by a NC-derived skeleton. Additionally, Gans and Northcutt suggested that the NC has 

a central role in this process, by originating novel structures and influencing the development 

of the forebrain and the placodes. For instance, the vertebrate skull, which is mainly derived 

from NCC, provided physical protection to encephalic vesicles and, as a consequence, allowed 

the increase of brain volume during evolution. Interestingly, recent findings show that during 

development, NCC crucially influence the morphogenesis of the telencephalon, thalamus and 

optic tectum by secreting factors involved in cell survival and patterning of the forebrain 

(Creuzet, 2009; Le Douarin et al., 2012; Aguiar et al., 2014). In addition, the proper 

development of cranial sensory ganglia depends on a close interaction between placodal 

neurons and NC-derived glia (Fleenor and Begbie, 2014, for a review). In sum, it has been 

proposed that the appearance of these structures would lead to a switch from the filter-

feeding lifestyle of the basal chordates to a predatory way of life, more adapted to the 

environment and successfully selected during the evolution of the vertebrate phylum 

(Northcutt and Gans, 1983). 

Regarding skeletal evolution, the first evidence of mesenchymal cells derived from the 

NC in vertebrates is given by the cranial and pharyngeal cartilages in lamprey and hagfish 

(McCauley and Bronner-Fraser, 2003; Langille and Hall, 1988). After agnathan phylogenetic 

divergence, mineralized tissues composed of dentin appeared in the odontodes of Conodonts 

fossils corresponding to the most basal stem of gnathostomes (Donoghue et al., 2006; Baker, 

2008, for a review). Dentin is a mineral only produced by NCC in extant vertebrates and, 

therefore, it is considered that the first mineralized tissues of vertebrates are of NC origin 

(Sansom et al., 1992). Later on, dentin was found composing the superficial dermal armor of 

fossilized primitive fish Ostracoderms (Sansom and Albanesi, 2005; Smith, 1991). This finding 

suggests that, in these animals, the whole exoskeleton was NC-derived, and that early in 

evolution, the mesenchymal fate was thus present along the entire axial level of the NC, i.e. in 

both cephalic and trunk NC. Nevertheless, during evolution, the NC-derived skeleton has 

become restricted to the craniofacial region in amniotes. 

In anamniotes, evidence of trunk NC contribution to mesenchymal derivatives has 

been demonstrated in some species, although some controversies exist. For instance, in 

zebrafish, some authors argue for a trunk NC origin of the caudal and dorsal fin bony rays 
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(Smith et al., 1994; Kague et al., 2012), while this ontogeny has been contested by others, 

defending a mesoderm origin instead (Lee et al., 2013; Kimmel et al., 2001; Mongera and 

Nüsslein-Volhard, 2013). Similarly, trunk NCC have been suggested to yield the median fin 

mesenchyme in classical Xenopus experiments (Collazo et al., 1993), which has been 

contradicted by recent findings (Taniguchi et al., 2015). Furthermore, trunk NC contribution to 

the bony plastron of turtles has been debated, some authors suggesting a NC origin (Clark et 

al., 2001; Cebra-Thomas et al., 2007, 2013), while others defend a mesoderm origin (Hirasawa 

et al., 2013). However, even if discordant data were observed regarding the remnant trunk NC 

contribution to the anamniote skeleton, trunk NCC skeletogenic ability has been clearly 

revealed by various in vitro assays in avian and mammalian NCC (discussed in section II.2), 

indicating a dormant mesenchymal ability of trunk NCC, which might represent an 

“evolutionary memory” of trunk NCC. 

 

IV.3. Regulation of the skeletogenesis of NCC 

In Chapter III.3, we discussed the key aspects of skeletogenesis and adipogenesis 

focusing on master genes that sign commitment towards these mesenchymal lineages (Sox9, 

Runx2, Osterix and PPAR among others). Nevertheless, the upstream factors involved in the 

molecular control of NCC mesenchymal fate are not completely understood, and some recent 

findings highlight this issue. In this Chapter, we will focus on the particular signaling pathways, 

transcription factors and epigenetic mechanisms, which play a role in the early steps of NC 

skeletogenesis by acting either on the premigratory and migratory NCC or on some NC-derived 

structures. Finally, we discuss some of the factors specifically involved in the regulation of 

Runx2 in NC osteoprogenitors. 

 

IV.3.1 Early signals involved in NC mesenchymal fate 

Upon delamination and migration, NCC express Sox10 and Foxd3, which are described 

as NC-specifier genes (see section I.3). Nevertheless, at later stages of development, their 

expression becomes restricted to the neuroglial lineage. In addition, Foxd3 is essential for self-

renewal, multipotency and melanogenesis repression in NCC (Kos et al., 2001; Mundell and 

Labosky, 2011; Nitzan et al., 2013). Regarding NC mesenchymal derivatives, Blentic and 

colleagues have shown that Sox10 and Foxd3 are downregulated in chicken and zebrafish NCC 

homing to BA, and thus, these cells eventually acquire an ectomesenchymal fate, identified by 



Introduction   

48 
 

expression of Dlx2 and Dlx5 genes (Blentic et al., 2008). Dlx2 and Dlx5 are responsible for 

initiating mesenchyme condensation in cartilage and bone in different species (Gordon et al., 

2010; McKeown et al., 2005). In addition, FGF signaling is also involved in Sox10 and Foxd3 

downregulation in NCC (Blentic et al., 2008). In cultures of mouse NC precursors within the 

BAs, the choice between neural and mesenchymal fate also involves Sox10 through a 

mechanism regulated by transforming growth factor (TGF) 1. In these cells, TGF1 triggers a 

switch between SoxE factors leading to Sox10 downregulation and Sox9 upregulation (John et 

al., 2011). Similarly, downregulation of Foxd3 guides NCC towards a mesenchymal fate in 

mouse embryos as shown by in vivo analysis and in vitro cloning of NCC (Mundell and Labosky, 

2011). Taken together, these findings show that Sox10 and Foxd3 reduction in NCC appear to 

be a common mechanism to specify the mesenchymal fate. Nevertheless, early post-migratory 

NCC in the BA still possess broad developmental potentials as shown by in vitro cloning 

experiments of NCC from the BA in the avian embryo (Sieber-Blum et al., 1993; Ito and Sieber-

Blum, 1993) and in Wnt1CreR26R mouse (Zhao et al., 2006). These results suggest that 

additional signals are essential for a complete commitment of NCC. 

Twist1 bHLH-containing transcription factor is expressed by migratory NCC and has 

also an important role in NC skeletogenesis. Twist1 conditional deletion in murine NCC impairs 

survival of NCC migrating to BA and frontonasal mesenchyme (Bildsoe et al., 2009). Patients 

with heterozygous TWIST1 null mutations present a craniosynostosis phenotype with 

increased bone formation in the cranial sutures (El Ghouzzi et al., 1997). In zebrafish embryos, 

it has been shown that Twist1 potentiates FGF signaling and directly activates fli1a, a gene only 

expressed by mesenchymal lineages. In contrast, Twist1 is inhibited by Id2a gene to induce a 

non-mesenchymal fate via BMP action (Das and Crump, 2012). Furthermore, Twist1 is 

important for Runx2 regulation at later stages of osteogenesis (see section III.3). 

As depicted above, FGF and TGF signaling regulate Sox10 and Foxd3 expression in 

NCC. Besides the regulation of these genes, TGF induces Sox9 expression in the mandibular 

arch. Moreover, conditional knockout of Tgfbr2 in NCC leads to delayed chondrogenesis and 

tendonogenesis (Oka et al., 2008). In avian cranial NC cultures, FGF2 promotes bone and 

cartilage differentiation (Sarkar et al., 2001; Abzhanov et al., 2003). Likewise, constitutively 

active FGFR1 and FGFR2 induce in vitro chondrogenesis in quail NCC (Petiot et al., 2002) and 

several craniosynostosis syndromes in human (reviewed by Twigg and Wilkie, 2015). FGF8 

increases Sox9 and Collagen 2 in vivo (Abzhanov and Tabin, 2004) and hypermorphic Fgfr1 

mutant mice display craniofacial defects (Partanen et al., 1998). Recent studies in mouse and 
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chick embryos have shown that a novel FGF8 co-receptor, named Cubilin, is involved in FGF8 

effect on the survival of mesencephalic premigratory NCC (Cases et al., 2013). 

Shh is one of the key factors implicated in NC skeletogenesis. Shh ligands are secreted 

from several head tissues such as the prechordal plate, the forebrain and the pharyngeal 

endoderm, and Shh signals in a paracrine way to the NC-derived mesenchyme. Consequently, 

blocking Shh signaling leads to severe head skeleton abnormalities related to NC survival, 

proliferation and patterning of skeletal elements in mice (Chiang et al., 1996; Jeong et al., 

2004; Billmyre and Klingensmith, 2015) and chick (Ahlgren and Bronner-Fraser, 1999; Brito et 

al., 2006). Recently, Shh binding to CDON dependence receptor appeared to be a mechanism 

whereby Shh promotes cell survival (Delloye-Bourgeois et al., 2014). In addition, Shh works 

synergically with FGF8 in promoting chondrogenesis (Abzhanov and Tabin, 2004). Finally, Shh 

greatly enhances in vitro chondrogenesis by cephalic and trunk NCC (Calloni et al., 2007, 2009). 

Another member of Hedgehog family, Indian Hedgehog has a strong osteogenic activity during 

calvarial development, since its loss leads to a reduction in bone size and a delay in matrix 

mineralization (Lenton et al., 2011). 

Members of Six family of transcription factors (Six1, Six2, and Six4) have also been 

described as important factors during development of craniofacial NC-derived structures 

(Garcez et al., 2014; Laclef et al., 2003b). This aspect is discussed in more details in section IV.1. 

 

IV.3.2 Overview of upstream regulators of Runx2 

Runx2 levels are tightly regulated in osteoprogenitors, directly or indirectly, by 

interactions with many transcription factors.  

As main positive regulators, we can cite Dlx factors, Foxo1, Msx1/2, and SATB2. Dlx is a 

family of homeobox genes with crucial roles in BA dorso-ventral patterning (Minoux and Rijli, 

2010). Dlx5 mutant mice exhibit multiple defects in craniofacial structures since Dlx5 activates 

the expression of a set of osteogenic genes including Runx2 (Depew et al., 1999; Lee et al., 

2005). Interestingly, in calvarial suture mesenchyme, Dlx5 is induced in osteoblast precursors 

by BMP2, and thus increases the expression of osteogenic genes in this tissue including Runx2 

(Holleville et al., 2003, 2007). Interestingly, Osterix can act as a co-factor of Dlx genes to 

promote osteogenesis by calvarial osteoblasts (Hojo et al., 2016). Another important factor in 

Runx2 regulation is Foxo1, which directly activates Runx2 expression (Teixeira et al., 2010). 

Likewise, Msx2 is an upstream factor of Runx2, as Msx2 downregulation leads to a strong 
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reduction in Runx2 expression (Aïoub et al., 2007). In vitro, Msx2 can bypass the action of 

Runx2 by inducing the expression of Osterix in mesenchymal cells deficient for Runx2 

(Matsubara et al., 2008). Also, Msx1 and Dlx5 exert a synergistic action in osteogenesis of the 

mouse frontal bone (Chung et al., 2010). In contrast, Msx2 inhibits chondrogenesis by 

repression of Sox9 in migrating NCC (Semba et al., 2000; Bhatt et al., 2013, for a review) 

Finally, SATB2 was found to directly interact with Runx2 to enhance its activity (Dobreva et al., 

2006). 

Some transcription factors are known to inhibit Runx2 expression like Twist1/2; Twist1 

being present in the skull while Twist2 is localized in the limb skeleton. Twist1/2 binds to the 

Runx2 protein preventing Runx2 access to its target gene promoters and thus inhibiting the 

early differentiation of osteoblasts (Bialek et al., 2004; Isenmann et al., 2009). Eph-ephrin 

signaling appears to be an effector of Twist1 to partition osteogenic and non-osteogenic 

territories in the coronal suture (Ting et al., 2009). Moreover, Sox9, the master gene for 

chondrogenesis, directly interacts with Runx2 to block its activity (Zhou et al., 2006). Although 

the mechanism of action is not completely understood, other factors such as Sox8, p53, PPAR 

and Hoxa2 were shown to reduce Runx2 expression (Schmidt et al., 2005; Lengner et al., 2006; 

Lecka-Czernik et al., 1999; Kanzler et al., 1998). In summary, the signaling cascade of the main 

regulators of NC differentiation into mesenchymal cells is briefly illustrated in Figure 14. 

Finally, Runx2 expression has been shown to be tightly regulated by epigenetic mechanisms 

(Vega et al., 2004; Jeon et al., 2006) but also by several microRNAs (reviewed by Lian et al., 

2012). 
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Figure 14: Signaling pathways and transcription factors regulating NC differentiation into 
osteoblasts and chondrocytes. Schematic representation of signals leading to neural crest cell 
specification from multipotent progenitors (pink) to neuroglial (brown) or ectomesenchymal 
(green) cells. This is then followed by differentiation of ectomesenchymal cells into an 
osteochondral progenitor cell (dark blue) and then bifurcation of potential into chondroblasts 
or osteoblasts (adapted from Bhatt et al., 2013). 

IV.3.3 Epigenetic mechanisms 

Emerging body of evidence has shown that post-translational modification and 

epigenetic mechanisms may play crucial roles in many NCC developmental aspects including 

mesenchymal fate determination. Recent findings indicate that chromatin modifiers, such as 

histone deacetylase (Hdac) 8, control accessibility to cis-regulatory sequences of genes such as 

Otx2 and Lhx1, which are not expressed by mesenchymal NCC (Schmidt et al., 2005): reduction 

of Hdac8 in murine NCC leads to abnormal expression of these genes resulting in the loss of 

cranial specific skeletal elements (Haberland et al., 2009). In addition, another epigenetic 

mechanism has been identified in zebrafish embryos, which involves the replacement of 

histone variant H3.3 specifically in the presumptive NCC. Indeed, deficiency in H3.3 

significantly reduced the number of mesenchymal NC derivatives. The main hypothesis of this 
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work is that H3.3-dependent chromatin remodeling triggers either the derepression of 

enhancers controlling mesenchymal specific genes or the maintenance of chromatin 

accessibility (“poised state”) at these enhancer sequences since the blastula stage. This 

epigenetic regulation would explain NC notable ability to differentiate into mesenchymal cells 

(Cox et al., 2012). 

Recently, Schwarz and colleagues described a novel role for Ezh2, a core component of 

polycomb repressive complex 2, which acts as a transcriptional repressor of various target 

genes by catalyzing the methylation of the lysine 27 of histone 3 (Schwarz et al., 2014). The 

conditional deletion of this factor in murine premigratory NCC caused many craniofacial 

defects without affecting NCC migration or homing into BA and nasal bud. Moreover, no 

defects were identified in neuroglial derivatives. Interestingly, Ezh2 inhibition led to a massive 

derepression of Hox genes in cephalic NCC supporting Hox gene involvement in this 

phenomenon (Schwarz et al., 2014). A recent paper by Filippo Rijli and colleagues (Minoux et 

al., 2017) demonstrates an additional role for Ezh2 chromatin modifier in cranial NC 

development. They discovered that premigratory cranial NCC, from different axial levels of the 

cephalic NC, for instance, homing to BA or to nasofrontal process, possess a similar state of 

poised chromatin in cis-regulatory sequences of many positional genes. These results show 

that the cranial NC is epigenetically equivalent at premigratory stages, which could explain the 

great NC plasticity. Strikingly, Ezh2 is necessary to maintain this chromatin organization 

(Minoux et al., 2017). 
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V. Hox genes 

V.1. Overview of Hox genes effects on development 

Hox genes encode a family of homeodomain transcription factors deeply conserved 

among bilaterians and considered to be fundamental for the evolution of bilaterian body plan. 

Hox genes were originally described in Drosophila by the seminal work of Edward Lewis, which 

described that loss of function mutations of Bithorax genes, typically expressed in the 

posterior segment of the fly embryo, lead to the transformation of the posterior body segment 

into the anterior one, a phenomenon designated as anterior homeotic transformation (Lewis, 

1978). Further studies have shown that Hox genes play critical roles in establishing segmental 

identity along the anteroposterior (AP) axis in vertebrate and invertebrate species (Kessel and 

Gruss, 1990; McGinnis and Krumlauf, 1992; Carroll, 1995; Duboule and Dollé, 1989; Hrycaj and 

Wellik, 2016, for a recent review). Hox genes are present in a single colinear cluster, 

designated Antennapedia and Bithorax complexes, in invertebrates, whereas vertebrates 

possess multiple Hox clusters along different chromosomal territories (Figure 15). In amniotes, 

gene and chromosomal duplications gave rise to 39 Hox genes split into four clusters (HoxA to 

HoxD). Based on gene sequence similarity and position within the cluster, these genes are 

subdivided into 13 paralog groups (Hox1 to Hox13) (Scott, 1992; Krumlauf, 1994; Liang et al., 

2011).  

The most striking characteristics of Hox genes, shared by bilaterians, are their spatial 

and temporal “colinearity”. The spatial colinearity is the correspondence between the ordering 

of a particular Hox gene in the chromosome and its regionalized expression pattern along the 

rostrocaudal axis of the embryo. In other words, the genes located at the 3’ extremity of a 

given Hox cluster, such as Hox genes from groups 1 and 2, are expressed in the most anterior 

regions of the embryo, i.e. the hindbrain. Conversely, genes located at the more 5’ position in 

the cluster are expressed in the more posterior regions of the body, such as the tail and the 

genitalia. The spatial colinearity of successive genes along the cluster thus sharply defines the 

anterior border of expression of a given Hox cluster member (Gaunt et al., 1986; Gaunt, 1988). 

Additionally, for each Hox gene, the timing of activation also follows a sequential order 

according to its 3’-5’position in the cluster, the Hox genes at the 3’ end of the cluster being 

activated first. This principle is called temporal colinearity (Dollé et al., 1989; Izpisúa-Belmonte 

et al., 1991). As a result of spatial and temporal colinearity, distinct rostrocaudal regions in the 
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embryo express timely controlled particular combinations of several Hox proteins, or “Hox 

code”, which give the positional identity of a tissue (Duboule, 1994; Hunt et al., 1991). 

  

 

Figure 15: Scheme of Hox gene clusters and regional expression in the embryo. Left: Color-
coding of Hox genes show the conserved relationships between Drosophila and mammalian 
Hox genes, and the paralogous relationships within the mammalian cluster. Right: Illustration 
of the mouse skeleton to evidence the patterning promoted by Hox genes at the anterior to 
posterior (AP) axis of the axial skeleton and the proximal to distal axis (PD) of the limb skeleton 
(Rux and Wellik, 2016). 

As a consequence, the positional information given by combinatorial Hox genes is 

crucial for the patterning of many vertebrate structures. As a well-studied example, in the 

hindbrain, a nested pattern of Hox gene expression is established in every rhombomere, which 

leads to the specification of unique structures related to each neural segment (Tümpel et al., 

2009). This particular Hox code further influences the identity of cranial neuronal 

subpopulations and nerves, leading to establishment of complex hindbrain neuronal circuits 

(Narita and Rijli, 2009). In the spinal cord, Hox genes are essential for defining motor neuron-

muscle specific connectivity (Dasen et al., 2003; Philippidou and Dasen, 2013) whereas, in the 

vertebral column, a Hox code establishes vertebral specific identities according to the future 

anatomic organization of the axial skeleton (Kessel and Gruss, 1991; Mallo et al., 2010). 

In addition to their highly conserved roles in AP patterning, numerous studies have 

indicated that Hox genes possess pleiotropic functions during development, which may not be 

associated with the positional information. They are engaged in several processes such as cell 

survival, autophagy, differentiation and tissue repair (Banreti et al., 2014; Seifert et al., 2015; 

Rux and Wellik, 2016; Rux et al., 2016). 
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V.2. Hox genes and the NC 

In the vertebrate head, the anteriormost limit of Hox expression starts at the level of 

the hindbrain, more specifically at the boundary of rhombomeres r1 and r2 (Prince and 

Lumsden, 1994). In other words, no Hox genes are expressed in the CNS at the levels of the 

forebrain and the midbrain during development, which are patterned by other homeobox-

containing genes such as Otx genes (Puelles and Rubenstein, 1993; Boyl et al., 2001). 

Regarding cephalic NCC, two main domains can be identified with respect to Hox genes: a Hox-

negative domain, which includes the anterior cephalic NCC from posterior diencephalon down 

to r2 included, homing to the frontonasal process, periocular mesenchyme and first BA; and a 

Hox-positive domain comprising the more caudal cephalic NC, reaching the level of somite 4 in 

the avian embryo, which includes the NCC homing to the remaining BA (Couly et al., 1996, 

2002) (Figure 16). Interestingly, the membranous bones in the head exclusively originate from 

the Hox-negative cephalic NCC while endochondral bones are derived from both Hox-positive 

and Hox-negative NCC. 

Evidence from quail-chick chimera experiments has demonstrated that these two 

domains of the cephalic NC are not interchangeable, as Hox-positive NCC transplanted into 

anterior Hox-negative domain are unable to differentiate into craniofacial skeletal structures 

such as neurocranium, the nasal capsule, the maxillary bone and the lower jaw, which are 

produced by Hox-negative NCC in normal development. Conversely, after the reverse 

transplantation, cells of the Hox-negative portion of the NC could replace the differentiated 

tissues of the Hox-positive domain. While they formed part of the hyoid cartilage, they kept 

their Hox-negative status (Couly et al., 1998). In addition, after surgical removal of the Hox-

negative premigratory NC, even a small portion, equivalent to one-third of this NC, could 

replace the resected NCC region and build a complete facial skeleton (Couly et al., 2002). Thus, 

these experiments argued for the plasticity of the NCC of the Hox-deprived domain and 

suggested that the cephalic NC mesenchyme potential is limited by their Hox gene profile. 

Indeed, in knockout mice for Hoxa2, the most anteriorly expressed Hox gene, NCC from the 

BA2 behave like NCC of the BA1, leading to duplication of a set of BA1 skeletal elements (Rijli 

et al., 1993; Gendron-Maguire et al., 1993). Further experiments have shown that Hoxa2 is 

normally expressed in the BA2 mesenchyme, except in the chondrogenic condensations. 

However, in Hoxa2 null embryos, Sox9 and Runx2 are upregulated in the entire BA2 (Kanzler et 

al., 1998). 
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Figure 16: Differential Hox gene expression in AP domains of the avian cephalic NC. (A) In a 
5ss chick embryo, the cephalic NC is divided into an anterior Hox-negative domain (in red) and 
a posterior, Hox-positive domain (in blue). The transition between these two domains 
corresponds to r3 (in orange). (B) Hox-negative NCC (in red) yield cartilages as well as 
endochondral and dermal bones of the entire upper face and jaws. By contrast, skeletogenic 
properties of Hox-positive NCC (in blue) are limited to chondrogenesis and endochondral 
ossification in the hyoid structure. (C) The particular contribution of Hox-negative and Hox-
positive NC domains to the craniofacial and hypobranchial skeleton. An, angular; Ar, articular; 
Bb, basibranchial; Bh, basihyal; C, columella; Cb, ceratobranchial; D, dentary; Eb, epibranchial; 
En, entoglossum; F, frontal; Io, interorbital septum; J, jugal; Mc, Meckel’s cartilage; Mx, 
maxillary; N, nasal; Nc, nasal capsule; O, opercular; P, parietal; Pl, palate; Pm, premaxilla; Pt, 
pterygoid; Q, quadrate; Qj, quadratojugal; Sa, supra-angular; So, sclerotic ossicles; Sq, 
squamosal (Creuzet et al., 2005b; Le Douarin et al., 2004). 

On the other hand, forced expression of Hoxa2 in the whole BA1 led to the reverse 

homeotic transformation, with BA1 skeletal elements developing into second arch bones in 

chick (Grammatopoulos et al., 2000) and Xenopus embryos (Pasqualetti et al., 2000). Further 

insights regarding the role of Hox genes in NCC came from gain of function studies in which 

only the NC was selectively targeted. In the chick embryo, ectopic expression of Hoxa2 in the 
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Hox-negative domain of cephalic NC resulted in complete loss of the facial skeleton together 

with severe defects in the brain. Milder effects were observed when Hoxa3 or and Hoxb4 were 

overexpressed in these NCC. Nevertheless, when Hoxa3 and Hoxb4 were co-electroporated, 

the phenotypes obtained were similar to Hoxa2 overexpression (Creuzet et al., 2002). 

Interestingly, the effect of ectopic expression of Hox genes in cephalic NC resembles the 

phenotypes obtained when the Hox-negative NC domain is surgically removed from the chick 

embryo (Creuzet et al., 2002, 2005b). A recent report further supports the hypothesis that Hox 

genes regulate the development of mesenchymal-derived NC structures. As cited in Chapter 

IV.3, conditional removal of Ezh2 in murine NCC resulted in many craniofacial defects, which is 

most probably due to the loss of a massive epigenetic repression of Hox genes (Schwarz et al., 

2014). Furthermore, when Hoxa2 and Hoxd10 were transduced in chick mesencephalic NCC 

cultured in vitro, collagen 2, a marker of chondrogenesis, was significantly reduced (Abzhanov 

et al., 2003). Similarly, collagen 2 was also diminished after Hoxd9 overexpression in cultured 

mouse mesencephalic NCC (Ishikawa and Ito, 2009). Taken together, these results show that 

Hox expression in the anteriormost region of cephalic NCC is incompatible with NCC 

differentiation into skeletal tissues. 

 

Bearing in consideration the Hox influence on the mesenchymal ability of cranial NCC, 

it has been hypothesized that Hox genes, being normally expressed by trunk NCC, could be 

responsible for the lack of mesenchymal derivatives at this level of NCC in vivo. As discussed in 

Chapter II.2, various experiments have clearly demonstrated that the trunk NCC can generate 

mesenchymal cell types in vitro indicating that mesenchymal potentiality is present in all NCC. 

In this regard, some authors have previously suggested that the trunk NC ability to yield 

chondrocytes in long-term cultures could be related to a reduction of Hox gene expression 

during in vitro culture (Abzhanov et al., 2003; Ido and Ito, 2006). However, Hox effects on 

other mesenchymal lineages, such as osteoblasts and adipocytes, have never been 

investigated so far. Therefore, a more detailed study regarding Hox gene influence on trunk NC 

mesenchymal capacity was greatly necessary. Thus, in part 2 of this Thesis, we aimed to 

investigate whether particular Hox genes would affect the production of mesenchymal 

derivatives by quail trunk NCC. 
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OBJECTIVES 
The NC is a crucial structure for the building of the vertebrate head, mainly due to its 

capacity to generate a variety of mesenchymal cell types, which provide the craniofacial 

skeletal, connective and fat tissues. In amniote embryos, this capacity is restricted to the 

cephalic NCC as opposed to the trunk NCC. Nevertheless, much of the mechanisms involved in 

the regulation of NCC mesenchymal fate are still poorly known. In this Thesis, we aimed to 

uncover some of the molecular players involved in the emergence of mesenchymal 

phenotypes in cephalic and trunk NCC, focusing on Six and Hox families of transcription 

factors. 

 

Part 1: 

 

Our first aim was to determine the spatio-temporal dynamics of Six1 transcription factor in 

head mesenchymal cell types, and the respective contribution of cranial NCC and mesoderm to 

Six1-expressing territories during head development in the avian embryo. 

 

Specific objectives: 

 

-To identify the expression profile of Six1 gene at distinct stages of avian development; by 

using in situ hybridization and immunostaining; 

 

-To idenfify differential expression of Six1 gene in the cephalic NC and mesoderm; by using 

quail-chick chimera experiments; 

 

-To determine which NC-derived differentiated cell types express Six1 gene in cephalic 

tissues. 

 

 

The results are described in chapter I of Results (Article 1, in preparation)  
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Part 2: 

 

In this part of the Thesis, our objective was to investigate the molecular mechanisms 

underlying the acquisition of mesenchymal fate by trunk and cephalic NCC, focusing on the 

Hox family of transcription factors. We aimed at testing the hypothesis that Hox gene 

inhibition could be part of a regulatory program for mesenchymal lineages differentiation, 

shared by cephalic and trunk NCC in culture. 

 

Specific objectives: 

 

-To determine the profile of Hox genes expressed in trunk premigratory and early migratory 

NCC, comparing with cephalic NCC as a negative control; 

 

-To evaluate the expression profile of Hox genes during time course of trunk NCC 

differentiation in vitro, in order to identify candidate Hox genes specifically downregulated 

during osteoblast formation in culture; 

 

-To investigate whether individual Hox genes are involved in controlling trunk NC 

mesenchymal potential in vitro using gain of function approaches; 

  

-To investigate whether selected Hox genes influence neural, melanocytic and 

myofibroblastic differentiation; 

 

-To compare the effects of selected Hox genes on cephalic NCC development in vitro; 

 

-To investigate the influence of Hox overexpression on the stemness properties of trunk 

NCC. 

 

Results are mainly described in chapter II of Results (Article 2, in preparation). Additional 

findings are described in chapter III of Results. 
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I. Article I 

 

Respective contribution of the cephalic neural crest and mesoderm to 

Six1-expressing head territories in the avian embryo 
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Abstract 

 

Vertebrate head development depends on a series of interactions between many cell 

populations of distinct embryological origins. Cranial mesenchymal tissues have a dual 

embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, 

dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood 

vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-

development of cephalic NC and mesodermal cells to properly construct the head of 

vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of 

Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and 

cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have 

remained unclear. In this work, we addressed these issues in the avian embryo model by using 

quail-chick chimeras, cephalic NC cultures and immunostaining for Six1. Our data show that, at 

early NC migration stages, Six1 is expressed by mesodermal cells but excluded from the NC 

cells. Then, Six1 becomes widely expressed in NC cells that colonize the pre-otic mesenchyme. 

In contrast, in the branchial arches, Six1 is present only in mesodermal cells that give rise to 

jaw muscles. At later developmental stages, the distribution of Six1-expressing cells in 

mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic 

program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In 

NC derivatives, Six1 is notably expressed in perichondrium and cartilage areas of the nasal 

septum, jaw, and sclera. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, 

not the neural and melanocytic cells express Six1. In sum, these results point to a dynamic 

tissue-specific expression of Six1 in a variety of cephalic NC- and mesoderm-derived cell types 

and tissues, opening the way for further analysis of Six1 function in the development of these 

two cellular populations during vertebrate head formation. 

 

 

 

 

 

 

Keywords : Six1; neural crest; mesoderm; quail-chick chimera; branchial arch 
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Introduction 

 

The head of vertebrates is built during development through the growth and 

differentiation of specialized structures and cell types which derive from distinct embryological 

primordia: the neural plate, yielding the brain while the ectodermal placodes are at the origin 

of most of the cephalic sense organs, in collaboration with the cells migrating from the neural 

crest (NC) to form cranial sensory ganglia. Besides the CNS and peripheral nervous system 

(PNS), most tissues in the head of amniote vertebrates develop from mesenchymal 

progenitors that ensure the production of the cranial dermis, bones, cartilages and blood 

vessels as well as tendons, muscles, fat and connective tissues. These mesenchymal cranial 

tissues are derived from two main embryological sources, the mesoderm and the NC, whereas, 

in the trunk, they have a unique mesodermal origin. It is well recognized that most of the 

cephalic mesenchyme arises from the NC. As theorized by Gans and Northcutt in a seminal 

article published in 1983, the “new head” that vertebrates acquired during evolution is mainly 

due to the production of NC derivatives rostral to the notochord (Gans and Northcutt, 1983). 

Thus, the NC cells (NCC) provided a skull and facial tissues to accompany the expansion of the 

prosencephalon and, in cooperation with ectodermal placodes, they participated in the 

addition of sophisticated sensory modalities, resulting in the complex head structures and 

brain, which allowed successful radiation of modern vertebrates.  

 Regarding head skeletogenesis, a triple origin of the craniofacial skeleton has been 

defined in the avian embryo thanks to quail-chick chimera experiments (Couly et al., 1993); 

thus, the head skeleton is formed by concerted development of the anteriormost NC mostly 

yielding facial structures, the cranial paraxial mesoderm and, for its caudalmost part, the 

somitic mesoderm (Creuzet et al., 2005a). How the various bone and cartilage rudiments 

arising from mesodermal and NC precursors develop in concert to form the head skeleton, and 

how they assemble with muscles and tendons for example, are main issues in craniofacial 

biology. The establishment of the vertebrate head vascularization represents another striking 

example of the cooperation between the developing NCC and mesodermal cells: the cephalic 

vascular system is established from both the mesoderm, - for the endothelia of blood vessels - 

and the NC, - for the smooth muscle cells and pericytes lining these endothelia (Couly et al., 

1995; Etchevers et al., 2001). It is therefore clear that the building of most of the distinct 

mesenchymal tissues of the head depends on tightly coordinated interactions between the 

cranial NC and mesoderm. 
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 Molecular regulation of commitment and differentiation of mesenchymal tissues is 

mediated in part, by the action of transcription factors that control the downstream activity of 

the genes encoding the specialized proteins needed for the generation of the distinct types of 

differentiated mesenchymal cells. Among these transcription factors, the Six homeobox family 

of transcription factor genes are homologs of genes required for eye development in 

Drosophila (Kawakami et al., 2000). Three subgroups of Six genes have been characterized in 

vertebrates, including Six1/Six2, homologs to Drosophila Sine Oculis, Six3/Six6 homologs to 

Optix and Six4/Six5 homologs of Dsix4 (for references, Kumar, 2009). While Six3 mainly 

functions in eye and rostral CNS development (Lagutin et al., 2003; Oliver et al., 1995a; Lavado 

et al., 2008; Jeong et al., 2008), differential expression and effects of the other Six genes have 

been described in a number of tissues distinct from the brain, such as muscles, kidney, the 

auditory system, genitalia, several sensory organs and craniofacial structures (Kumar, 2009). 

Six1 is well known as a pan-placodal marker, labeling the pre-placodal domain at presomitic 

stages and, later on, all the placodes (except the lens) and most of their derivatives (for 

references, Baker and Bronner-Fraser, 2001; Schlosser, 2010). With respect to the 

development of mesenchymal tissues, Six1 and Six2 are expressed in the developing limb and 

somitic mesenchyme (Oliver et al., 1995b; Laclef et al., 2003a; Bonnin et al., 2005), as well as in 

the head and branchial arch (BA) mesenchyme, and in kidney nephrogenic chords (Laclef et al., 

2003b). Six1 is required for early steps of myogenesis (Heanue et al., 1999; Laclef et al., 

2003a). Its inactivation in mice also causes defects in kidney, thymus, inner ear and craniofacial 

development (Laclef et al., 2003b). In human, Six1 gene haploinsufficiency results in the 

branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized 

by hearing loss and branchial defects (Ruf et al., 2004; Kochhar et al., 2008) while defects in 

human Six2 cause conductive hearing loss (Guan et al., 2016) and mild forms of frontal 

dysplasia (Hufnagel et al., 2016). 

 Several notable effects of the loss of Six gene function on cranial NC development have 

been reported. Six1 mutant fetuses in the mouse exhibit shorter squamosal, mandibular and 

maxillary bones, Meckel’s cartilage and hyoid bone, which are formed by NCC of BA1, BA2 and 

BA3 (Laclef et al., 2003b). In contrast, invalidation of Six2 in the mouse specifically affects the 

formation of the endochondral skeleton of the cranial base, including the basisphenoid bone 

(He et al., 2010), which has a dual origin, from the NC, anteriorly, and from the cranial 

mesoderm, in its posterior part (Couly et al., 1993; Chai et al., 2000; Jiang et al., 2002; 

Santagati and Rijli, 2003). Six2-null newborn mice display premature bone fusion due to 

abnormal chondrocyte differentiation, although initial migration and skeletogenic 

differentiation of NCC appeared unaffected (He et al., 2010). In mouse BA2 NCC, Six2 has been 
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shown to be a direct target of Hoxa2, the most anteriorly expressed Hox gene, which is present 

in BA2 and represses Six2 (Kutejova et al., 2005, 2008). The more rostral NC (from mid-

diencephalon to rhombomere-2 included), is endowed with a characteristic Hox-free status 

that is required for the formation of the NC-derived facial skeleton, and, indirectly, for anterior 

brain development (Couly et al., 1998, 2002; Creuzet et al., 2002; Creuzet, 2009). In the chick 

embryo, Garcez et al. (2014) have reported that the silencing of Six2, Six1 and Six4 genes in the 

early NC, by in ovo electroporation of double-strand RNAs, results in severe hypoplasia of the 

facial skeleton and atrophy of the anterior dorsal brain (Garcez et al., 2014). Moreover, when 

the three Six genes are silenced simultaneously, the skeletal and brain defects are exaggerated 

and phenocopy those obtained after ectopic expression of Hoxa2 in the premigratory cephalic 

NC (Creuzet et al., 2002). According to rescue experiments, these authors concluded that Six 

genes, expressed in the anterior cephalic NCC from the migratory stage, can be negatively 

regulated by Hoxa2 and likely function to control proliferation and cell death in the developing 

cranial NC mesenchyme (Garcez et al., 2014). 

 Taken together, the data described above, argue that, among pleiotropic expression 

and effects on the vertebrate embryo, Six1/Six2 genes are crucial for the development of head 

mesenchymal tissues, although their precise dynamics of expression and their respective role 

in the NC and mesodermal cells remains unclear. In order to address this issue, we have used 

the avian embryo model to investigate the detailed spatial-temporal pattern of expression of 

Six1 gene, particularly regarding the fate of mesoderm- and NC-derived cells in the developing 

head. By using in vivo quail-chick transplantations of the NC and mesoderm as well as in vitro 

cranial NC cell cultures, the present study highlights the respective contribution of NC and 

mesodermal cells to the deployment and differentiation of Six1-expressing cells in head 

mesenchymal tissues. 

 

Materials and Methods 

 
- Chicken embryos handling and cryosectioning  

Fertilized eggs of Gallus gallus chicken were obtained from a commercial source (EARL Les 

Bruyères, France) and incubated at 38.5 °C in humidified conditions. Embryos were collected at 

different developmental time points. Stage determination was done according to Hamburger 

and Hamilton (1951) (HH stage) and, in embryos until 2 days of incubation (E2), by counting 

the number of somite pairs, here referred to somite-stage (ss). Embryos were fixed in 4% 

formaldehyde for 2 hours at room temperature or overnight at 4 °C, washed in PBS 1X, 



Results   

66 
 

embedded in 30% sucrose overnight, and frozen in isopentane at -50°C (temperature stabilized 

with dry ice). Frozen sections were cut at 18µm with a cryostat (Leica). 

 

- Construction of quail-chick chimeras of the cranial neural crest and mesoderm 

Quail (Coturnix coturnix japonica) and chicken Gallus gallus fertilized eggs were obtained from 

commercial sources (Cailles de Chanteloup and EARL Les Bruyères, France) and incubated at 

38.5 °C in humidified conditions for about 30 hours in order to obtain embryos at stage 8 of 

Hamburger and Hamilton (HH8), with 5 somite-stage (5ss). The NC chimeras were constructed 

by isotopic and isochronic replacement of the chick cranial neural fold (i.e. the premigratory 

neural crest) by its quail counterpart, according to previous experiments of NCC fate mapping 

(Couly and Le Douarin, 1987; Couly et al., 1993). The graft of neural fold encompassed the 

rostrocaudal level from the midbrain to anterior rhombencephalon. Cranial mesoderm quail-

chick chimeras were prepared as previously described (Couly et al., 1992, 1995): a portion of 

the quail paraxial cephalic mesoderm was microsurgically isolated after opening of the 

superficial ectoderm lateral to the mesencephalon at stage HH8 (5ss); the excised cranial 

mesoderm was then grafted in an identical position in a stage-matched chick host embryo. All 

the quail to chicken grafts were performed unilaterally. Twenty-four hours after surgery, the 

host embryos (of stage HH15) were sacrificed and handled for cryosectioning as described 

above. 

 

 -In situ hybridization and immunohistochemistry on sections 

Chicken Six1 riboprobes were prepared from a cDNA plasmid encoding full-length coding 

sequence of chicken Six1 (GenBank AB199734.1), which was kindly provided by Dr. Atsushi 

Kuroiwa (Nagoya University). The cSix1 template was linearized with HindIII endonuclease and 

transcribed with a T3 polymerase in the presence of digoxigenin-11-D-UTP (Roche Diagnostics) 

to synthesize the antisense riboprobe. In situ hybridization on frozen sections was performed 

as previously described (Marillat et al., 2002). Briefly, after proteinase K treatment (10ug/ml, 

Invitrogen) and postfixation in 4% PFA, slides were pre-hybridized for 2 hours at room 

temperature in hybridization buffer (50% formamide, 5× SSC, 1× Denhardt's, 50 μg/ml yeast 

tRNA, and 500 μg/ml salmon testes ssDNA, pH7.4; all reagents from Sigma) Hybridization took 

place overnight at 72°C, in the same buffer, with Six1 riboprobe diluted at 1:200. Detection of 

the hybridization involved anti-DIG-AP antibody (1:5000, Roche Diagnostics) followed by color 

substrate reaction with nitroblue tetrazolium chloride (337.5 μg/ml) and 5-bromo-4-chloro-3-

indolyl phosphate (175 μg/ml) (Roche Diagnostics). Cryosections were mounted in Mowiol 

(Calbiochem Darmstadt, Germany). 
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For the immunostaining, tissue cryosections were permeabilized for 1h in PBS containing 5% 

fetal bovine serum, 1% bovine serum albumin and 0.1% Triton X-100, before overnight 

incubation with the following primary antibodies: anti-Six1 (1:200; Sigma, HPA001893), anti-

Sox10 (1:250; Santa Cruz, sc-17342), anti-Sox9 (1:500; Millipore, AB5535) anti-chondroitin 

sulfate (1:1600; Sigma, C8035), anti-βIII tubulin TUJ1 (1:500; Covance, MMS435P). 

Supernatants from mouse hybridoma against QCPN (quail, non chick perinuclear marker) and 

MF-20 (chicken myosin heavy chain) were purchased from DSHB (Developmental Studies 

Hybridoma Bank, University of Iowa, Iowa City, IA) and used undiluted. HNK1 antigen labeling 

was performed using 1:3 diluted supernatants from cultured hybridoma cells (HNK1, ATCC TIB-

200). All secondary antibodies used were Alexa Fluor 488, 546 and 647-conjugated antibodies 

(ThermoFisher Scientific). Cryosections were counterstained with 4′,6-diamidino-2-

phenylindole (DAPI) (10 mg/mL; Sigma) and mounted in Mowiol (Calbiochem Darmstadt, 

Germany). Analysis and imaging were performed with a fluorescence microscope (DM6000, 

Leica) coupled to a CoolSnapHQ camera (Roper Scientific) or whole section images were 

captured with a Nanozoomer 2.0 slide scanner (Hamamatsu). 

 

-Quail cephalic neural crest culture and immunostaining 

Quail cephalic NCC were obtained from 6-7 ss embryos (equivalent to stage HH9) and cultured 

essentially as previously described (Calloni et al., 2007, 2009). Briefly, the neural primordium 

at the level of midbrain-anterior rhombencephalon, which includes the premigratory NC at this 

early stage, was isolated and plated in explant culture for 15-18 hours; during this in vitro 

period, the NCC exit from the dorsal neural primordium and migrate on the substrate, similar 

to their behavior in vivo (Le Douarin and Kalcheim, 1999). Approximately one-to-two 

thousands of NCC per neural tube fragment thus can be harvested in such migratory cell 

outgrowth (after discarding the neural explant that remained epithelial) (Calloni et al., 2007, 

2009). Cranial NCC were then seeded on a 3T3 fibroblast feeder layer in 96-well plates (400 

NCC per well) in DMEM containing 10% FCS and 2% chicken embryo extract (80ng/ml). 

Cultures were maintained at 37°C in a humidified 5% CO2 incubator and the medium changed 

every 3 days. After 6 days of culture, the cells were fixed in 4% formaldehyde for 30 min and 

then immunolabeled with anti-Six1, anti-chondroitin sulfate and HNK1 antibodies, as detailed 

above for cryosections. Cultures were also analyzed using an antibody to α-smooth muscle 

actin (αSMA clone 1A4; 1:800 Sigma, A5228) and mouse anti-quail tyrosine hydroxylase 

hybridoma (undiluted supernatant) (Fauquet and Ziller, 1989). The cultures were 

counterstained with 4′,6-diamidino-2-phenylindole (DAPI) to mark cell nuclei, which led quail 

cephalic NCC to be easily distinguished from mouse 3T3 fibroblasts by their distinct nuclei size 
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(Baroffio et al., 1988). Imaging and automatic quantification of labeled fluorescent cells in the 

cultures was carried out with an Arrayscan High-Content system (Thermo Fisher Scientific). 

 

Results 

 
Expression pattern of Six1 gene and Six1 protein at early stages of avian cranial development 

 Six1 early expression pattern in the chick has been described by Mootoosamy and 

Dietrich (2002) and Sato et al. (2012): Six1 transcripts were detected as soon as stage 8 of 

Hamburger and Hamilton (1951) (stage HH8) in the cranial mesenchyme and otic vesicle, and 

later on, became widespread in the cranial mesenchyme. A recent report indicated that Six1, 

as well as Six2 and Six4 genes, are expressed in the craniofacial NCC population at 10 ss (HH10) 

in chicken embryos (Garcez et al., 2014). However, at similar NC early migratory stages, Sato et 

al. (2012) found no overlap between GFP reporter expression, driven by Six1 enhancers 

electroporated in the chick, and immunoreactivity to the NC marker HNK1, thus conflicting 

with the results from in situ hybridization in whole chicken embryos reported before (Garcez 

et al., 2014). The precise origin of Six1-positive mesenchymal cells, from the cranial NC or the 

mesoderm, therefore, remains unclear. 

In order to better define the tissue-specific expression of Six1 transcription factor in 

the developing embryonic head, we first analyzed the distribution of Six1 RNA and Six1 protein 

in sections of chicken embryos of stage HH11, when migration of cranial NCC takes place (Fig. 

1). Delamination of NCC from the dorsalmost region of the neural primordium begins at the 

level of posterior diencephalon-mesencephalon then progresses caudally (Couly and Le 

Douarin, 1987). In stage HH11 embryos, equivalent to the stage of 13 somites (13ss), (Fig. 1a), 

Six1 transcripts were detected in the mesenchyme ventral to the mesencephalon and in the 

anterior foregut endoderm while no transcripts were found more dorsally, near the neural 

primordium (Fig. 1b). A similar, ventral expression pattern was obtained after Six1 

immunostaining (Fig. 1d). Immunolabeling with Sox10, a recognized marker of NCC at this 

early developmental stage (Cheng et al., 2000), marked the NCC migrating under the ectoderm 

towards the pharyngeal regions and did not overlap with Six1 expression (Fig. 1d-f). At the 

rhombencephalic level, both Six1 transcripts (Fig. 1g) and Six1 immunoreactivity (Fig. 1i) were 

strongly expressed laterally and ventrally to the neural primordium, in the non-neural 

ectoderm, the mesenchyme and the foregut endoderm. As shown in Fig.1 j-k, Sox10-positive 

NCC that started to migrate from the dorsal rhombencephalon did not express Six1. 
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We further investigated Six1 expression at a later stage, when the NCC have spread 

into the growing head and the branchial arches (BAs) and become intermingled with paraxial 

mesodermal cells (Noden and Trainor, 2005). In the head of E2.5 chick embryos, at HH15 

stage, Six1-expressing cells were distributed under the ectoderm lateral to the mesencephalon 

(Fig.2a,b), where Six1-immunoreative cell nuclei were also detected, in the vicinity and within 

the forming trigeminal ganglion (Fig. 2c-d and c’-d’); the latter ganglion contained Sox10-

positive non-neuronal cells of NC origin and Tuj1-immunoreactive neurons (Fig. 2 e-f and e’-f’). 

We did not observe colocalization of Six1-positive and Sox10-positive nuclei, while Six1 was co-

expressed with Tuj1 in a subset of ganglion neurons (Fig. 2g and g’). This result is in agreement 

with recent findings showing that the Six1-positive sensory neurons in the trigeminal ganglia 

are mainly of placodal origin in the mouse and chick embryos (Sato et al., 2012; Karpinski et 

al., 2016). At the level of the anterior rhombencephalon, Six1 transcripts were highly 

expressed in otic vesicles, pharynx and the periocular and pharyngeal mesenchyme (Fig.2h). 

Interestingly, nuclei labeled with Six1 antibody occupied the core of BA2, a region that will 

later differentiate into jaw muscles (Fig. 2i and j). In a more posterior section of the same 

embryo, at the level of the first somites, Six1-positive nuclei were detected in the 

dermomyotome whereas Sox10 antibody stained the NCC migrating ventrally to the cardiac 

region (Fig. 2 l and m). 

Taken together, these results indicate that the early expression pattern of Six1 in the 

chick embryonic head varies with time and is not restricted to only one developmental source 

(NC, placode or mesoderm), neither to a unique fate (mesenchymal or neural). Of note, 

however, at early NC migratory stages (HH11), Six1 expression appears excluded from the 

cranial NCC while broadly distributed in non-neural tissues, particularly the cranial 

mesenchyme. 

 

Cephalic NC and mesoderm origins of Six1 expression domains analyzed in avian quail-chick 

chimeras  

 Our data (Fig.1) suggested a complex and dynamic expression of Six1 during early 

cranial development in the chick embryo, when NCC migration and deployment of 

mesodermal cells led to their mixing and co-organization in the forming head. In an attempt to 

clarify the distribution of Six1 transcription factor in cells derived from the cephalic NC and 

paraxial mesoderm in the early head mesenchymal tissues, we have performed quail-chick 

transplantations in ovo, of either the cephalic NC or the cranial paraxial mesoderm. According 

to previous work by Couly and collaborators (for references, Le Douarin and Kalcheim, 1999; 
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Creuzet et al., 2005a), such transplantations allowed to establish the precise fate map of these 

two cell populations in the avian model. 

 The first type of transplantation involved the isotopic grafting of the premigratory 

cephalic NC, taken from a quail embryo at the 5 somite-stage (stage HH8), into a chick host 

embryo of the same stage (Fig. 3 a), as published previously (Couly and Le Douarin, 1988; 

Couly et al., 1993). Analysis of quail-chick chimeras was performed approximately 24-30 hr 

after the graft at stage HH15 (25ss), using both the QCPN antibody to identify the grafted quail 

cells and immunostaining for Six1. Sections of the anterior head of the host embryo showed 

the presence of numerous Six1-positive cells in the presumptive nasal region (Fig. 3c), both in 

the olfactory placode and in the underlying mesenchyme near the prosencephalon; the 

grafted quail cells from the rostral cranial NC populated this mesenchymal area (Fig. 3 d) and, 

in many cases, they coexpressed Six1 (Fig. 3 e, e’). In addition, the periocular mesenchyme (Fig. 

3 f-i) comprised a high density of Six1- and QCPN-immunoreactive cells; colocalization of these 

markers revealed that a subset of the engrafted NCC, homing towards the eye, expressed Six1 

transcription factor (Fig. 3g’-i’). More caudally (Fig. 3j-m), Six1 labeling was found in the BAs, as 

already described (Fig. 2 I,j), in the pharyngeal endoderm and mesenchyme, where Six1-

positive nuclei were clustered in the center of the BA2 (Fig. 3k). In contrast, the QCPN-positive 

NCC settled in the periphery of the BA mesenchyme and were distinct from Six1-expressing 

chicken cells in the arch core (Fig. 3l, m). These data, therefore, showed at least a 

subpopulation of the grafted cranial NCC, which populated the nasal and periocular 

mesenchyme, expressed Six1, while Six1 appeared excluded from the mesenchymal NCC in the 

BAs. 

 The cranial mesoderm, located lateral to the mes-metencephalon, is known to yield 

various mesenchymal derivatives, including part of the chondrocranium and otic capsule, 

mandibular and dorsolateral extraocular muscles, meninges and blood vessel endothelium, 

which have been precisely mapped by quail-chick transplantations (Couly et al., 1992, 1993, 

1995). By performing the same type of cranial paraxial mesoderm transplantation, from quail 

to chicken embryos at stage HH8 (5ss) (Fig. 4a), we have explored the extent of Six1 expression 

in the grafted mesodermal cells that developed in the chick host (stage HH15; 25ss) 24-30h 

after the transplantation. In cryosections at the level of the mesencephalon (Fig. 4 b-f), Six1-

immunoreactive cell nuclei were widely distributed in the region of the forming trigeminal 

sensory ganglia and nerves, detected by expression of the NC marker HNK1 (Fig.4 e, e’). 

Ventrally to the ganglion, a subset of engrafted quail mesodermal cells (QCPN+; Fig. 4 d, d’) 

coexpressed Six1 (Fig. 4 f’). More caudally, Six1-positive cells occupied the core of BA2, where 
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myogenic precursors will differentiate (Fig. 4 h); on the same section, the engrafted quail 

mesodermal cells were located in a similar central position in the arch, and most of them 

exhibited Six1-labeled nuclei (Fig. 4 j, j’). 

 From these quail-chick grafting experiments we can conclude that, in the BA, the 

central location of Six1+ mesodermal cells is complementary to the peripheral distribution 

displayed by Six1-negative NCC (see Fig. 3 m). In more rostral head mesenchyme, deployment 

of Six1 expression targeted mesenchymal cells derived either from the mesoderm, such as in 

the vicinity of the trigeminal ganglion or from the NC, e.g., in the nasal and periocular regions.  

 

Six1 expression in differentiated cephalic neurosensory and mesenchymal structures  

 We further studied the distribution of Six1-expressing cells in the developing neural, 

sensory and mesenchymal structures of the head of chicken embryos of 3 days of incubation 

(E3) and E7. Fig.5 (a-j) shows a vertical section of an E3 (stage HH19) chicken head, where the 

otic vesicle exhibited strong Six1 immunoreactivity (Fig.5 c), except in its dorsal part close to 

the rhombencephalon, which was labeled with Sox10 antibody (Fig.5 d), in agreement with the 

previously reported activity of a chicken Sox10 enhancer in early otic development (Betancur 

et al., 2010). In the mesencephalic region at the same stage (E3), Six1 was abundantly 

expressed in the trigeminal ganglion (Fig.5 g), which was positive for Sox10 and Tuj1, markers 

of the non-neuronal and neuronal cells of the ganglion, respectively (Fig.5h and i). In the core 

of the trigeminal ganglion, we did not observe a colocalization of Six1 and Sox10 labeling in the 

cell nuclei (Fig.5 j, j’), while Six1 appeared to be expressed in the sensory neurons (Fig.5 j’’), in 

agreement with previous data showing that Six1 is present in the sensory neurons of cranial 

ganglia and dorsal root ganglia (Laclef et al., 2003b; Sato et al., 2012; Karpinski et al., 2016). 

 At a later stage of development, in the E7 chicken head (Fig. 5 k-o), Six1 was detected 

in placodal derivatives, such as the olfactory epithelium (Fig. 5 m) and the adenohypophysis 

(Fig. 5 n). In the region dorsal to the mesencephalon, dispersed Six1-positive cell nuclei were 

identified in the mesenchyme between the neuroepithelium and the epidermis (Fig. 5 l, l’), 

where meninges and skull bones later develop. In addition, the Six1 protein was widely 

expressed in the forming ear, both in the epithelium of the inner ear (Fig. 5 o) and in the 

ventral part of the otic capsule, which contained differentiating chondrocytes (that expressed 

chondroitin sulfate) (Fig. 5 o, o’). These results are consistent with the well-documented role 

of Six1 gene in the induction and maintenance of the ectodermal placodes, including its 
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requirement for the formation of the middle and inner ear (Laclef et al., 2003b; Zheng et al., 

2003; Schlosser, 2010; Grocott et al., 2012). 

 We then focused on differentiated cephalic muscles and facial skeletal elements in the 

E7 chicken embryo and we examined the distribution of Six1-positive cells in these tissues. 

Coronal section at the ocular level presented numerous cell nuclei labeled with Six1 antibody 

in the nasal, maxillary and periocular mesenchyme (Fig. 6 a-c), and in the region of the 

extraocular muscles (labeled with MF20 antibody; Fig. 6 d,e). Detailed views of the same 

section showed that Six1 is expressed in dispersed cells, close to outer eye surface (Fig. 6f, g), 

in the region wherein the scleral cartilage is forming (Fig. 6g’, g’’) as well as in numerous cells 

within the extraocular muscles (medial rectus and inferior oblique muscles, Fig. 6g’, g’’). The 

nasal cartilage, which expressed Sox9 transcription factor and synthesized chondroitin sulfate 

(Fig. 6n and l), comprised sparse Six1-immunoreactive cells; in contrast, these cells were highly 

enriched in the surrounding perichondrium and in the nasofrontal mesenchyme (Fig. 6k, m). 

More posteriorly, Six1 expression was found in tongue muscles (Fig. 6 o, p-p’’) and lining 

Meckel’s cartilage in the lower jaw (Fig. 6 q-q’’). In the throat, Six1 labeling was recorded 

within laryngeal muscles (Fig. 6 r-u), at the periphery of the trachea (Fig. 6 t) and surrounding 

laryngeal cartilages (Fig. 6v-w). These data show that head muscles, including extraocular 

muscles, pharyngeal and laryngeal muscles, and tongue muscles, exhibit strong expression of 

Six1, indicating that this factor could be a crucial regulator of cranial myogenesis in the avian 

embryo, as described in zebrafish (Lin et al., 2009) and in the limb and trunk skeletal muscles 

of the chick and mouse (Heanue et al., 1999; Laclef et al., 2003a; Grifone et al., 2005, 2007). 

 

Differentiation of Six1-expressing cells in cranial NCC cultures 

To gain further insights on the pattern of expression of Six1 in the cephalic NCC, we have 

investigated whether the Six1 protein is present in the distinct cell types that these NCC can 

produce, when cultured in vitro in conditions previously shown to be appropriate for the 

development of multipotent NC progenitors (Calloni et al., 2007, 2009; Coelho-Aguiar et al., 

2013). For this purpose, early cephalic NCC were obtained after their emigration from mes-

metencephalon explanted from quail embryos at the stage of 6-7 somites and cultured for 18 

hr; isolated NCC were thereafter subcultured and maintained for six days in vitro, according to 

our previously published protocol (Calloni et al., 2007). Phenotype analysis with cell type-

specific antibodies indicated the differentiation of neurons and glial cells, melanoblasts, 

myofibroblasts and chondrocytes, as expected. Simultaneous detection of Six1-
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immunoreactivity in the cephalic NCC cultures revealed that two differentiated NC-derived cell 

types expressed Six1: myofibroblasts positive for the smooth muscle marker αSMA (Fig. 7 a-d) 

and chondrocytes, within cartilage nodules that synthesized chondroitin sulfate (Fig. 7 e-h). 

The other, neural and melanocytic, cells derived from the NCC, were negative for Six1 (not 

shown). In addition to labeling mesenchymal cells (myofibroblasts and chondrocytes), Six1 was 

also expressed in the nuclei of a subset of NCC with an undefined phenotype (since these cells 

were also negative for markers of the neuronal, glial and melanocytic lineages). Cell 

quantification indicated that the majority of Six1-positive cells were myofibroblasts (Fig. 7 i). In 

fact, we found that Six1-expressing cells represented a very small subpopulation of the NCC 

(approximately 1%) in these 6 day-cultures, while Six1 was not detected at the earlier time of 

culture. Therefore, at least in these in vitro conditions, expression of Six1 was acquired during 

the differentiation of myofibroblasts and chondrocytes. The latter result is in agreement with 

the expression of Six1 in vivo at E7 in several cartilages of NC origin (Fig. 6). The in vitro 

expression of Six1 in αSMA+ cells is rather puzzling since we did not observe Six1-

immunoreactivity in blood vessels and in the NC-derived pericytes and smooth muscle cells 

lining cephalic vascular endothelia in E7 chicken head (Fig. Supplem. 1). However, αSMA is 

rather a versatile marker in vitro, marking a population  of fibroblastic-like cells that develop in 

cultures of avian and mouse NCC, particularly under stimulation by TGFβ (for references, 

Dupin and Coelho-Aguiar, 2013). Further analyses are required to assign a definitive identity, 

of connective or smooth muscle cells, to this particular subset of Six1-positive cells 

differentiating in cephalic NCC cultures. 

 

Discussion 

The development of the head of vertebrates relies upon a series of morphogenetic 

movements, which trigger coordinated interactions of cell populations of distinct embryonic 

origins. It is particularly evidenced in the mesenchymal tissues of the head, which are 

composed of cells from a dual embryonic source: mesoderm and NC. Some examples of the 

importance of coordinated communication between mesenchymal tissues are: the definition 

of mesoderm/NC boundary in cranial bone sutures, particularly the coronal suture of 

mammals (Merrill et al., 2006; Ting et al., 2009; Deckelbaum et al., 2012); the recruitment of 

NC-derived pericytes and vascular smooth muscle cells to the endothelium in the forming 

blood vessels (of mesoderm origin) (Etchevers et al., 2001); the coordination between 

mesoderm and NC-derived cartilage precursors for the correct development of otic capsule, 
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and the patterning of head muscles, due to interactions between mesodermal myogenic cells 

and connective cells/tenocytes of NC origin (Couly et al., 1992; Noden and Trainor, 2005; 

Grenier et al., 2009). 

 Here we have considered the respective contribution of cranial NC and mesoderm to 

the territories that express Six1 gene in the developing avian head. We first observe Six1 

expression in many ectodermal derivatives, such as the olfactory, otic and epibranchial 

placodes. This corroborates current literature, which classifies Six1 gene as a pan-placodal 

marker (Baker and Bronner-Fraser, 2001; Schlosser, 2010). Six1 is also broadly expressed in 

head mesenchymal tissues (Laclef et al., 2003b; Garcez et al., 2014; Sato et al., 2012). In early 

avian developmental stages (HH11), during NCC migration, we found that Six1 is mainly 

present in the cranial mesenchyme, of non-NC origin. This is attested by the lack of 

colocalization with Sox10, a NC specifier gene expressed in these NCC migratory stages. This 

result contradicts a previous report of Six1 mRNA expression in premigratory and migratory 

cranial NCC in whole-mount preparations of the chick embryo (Garcez et al., 2014). However, a 

recent detailed study of gene expression during formation of the neural fold shows that only a 

subtle set of early cranial NCC express Six1 transiently at this stage, when Six1 expression is 

mainly observed in the future placodal region (Roellig et al., 2017). 

At late migratory NC stages, in E2.5 chicken embryos, Six1 has a broad expression in 

the head mesenchyme, especially in the periocular mass and surrounding the developing 

forebrain. By fate analyses performed in quail-chick chimeras, we can definitely distinguish 

between NC and mesoderm mesenchymal populations. After quail neural fold transplantation 

into the chick embryo, we could identify that Six1-expressing NCC populate the periocular, 

perinasal and periotic mesenchyme. After the transplantation of quail cranial paraxial 

mesoderm into the chick embryo of the same stage, we observed that a subset of mesodermal 

cells in the preotic mesenchyme, closely located to the developing trigeminal ganglion, is also 

Six1+. Therefore, Six1 is expressed in cells originating from both the NC and mesoderm, at this 

stage of development, and does not represent a reliable marker of the origin of cranial 

mesenchymal cells. Intriguingly, in the BAs, Six1 is mostly expressed in the core of the 

mesenchyme, known to be mesoderm-derived (Couly et al., 1992, 1993; Grenier et al., 2009), 

which suggests that Six1 is an early marker of jaw muscles. Our grafting experiments clearly 

show that Six1-expressing cells, in the center of BAs, are derived from the mesoderm and 

clearly distinct from the NC-derived cells in the arch periphery. Nevertheless, it is rather 

puzzling that we did not identify Six1-expressing cells in the pharyngeal NC-mesenchyme since 

Six1 null mice exhibit some craniofacial anomalies related with NC-derived skeletal elements of 
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the BAs. Whether this could be due to an indirect effect of Six1 loss in the presumptive 

muscles, or from loss of Six1 expression in these skeletal tissues at later stages remains to be 

investigated. Nevertheless, our data show that Six1 expression in NC-derived tissues, at these 

early stages, appears to be restricted to the preotic mesenchyme. 

 We also described Six1 expression at later stages, in E3 and E7 chicken. At E3, Six1 is 

expressed in the ventral otic placode, where it is essential for cochlear and vestibular 

development (Ozaki et al., 2004). Moreover, Six1 is present in neurons of the trigeminal 

ganglion, but not in Sox10+ glial progenitors. Similar results have been described in mouse 

embryos (Karpinski et al., 2016). Regarding mesenchymal cell types, at E7, Six1 is present in 

the nasal and periocular mesenchyme and in cartilage components of the developing eye, such 

as the scleral cartilage, which are of NC origin, (Creuzet et al., 2005b). Interestingly, Six1 is 

expressed both in chondrocytes and perichondrium, although its expression is stronger in the 

perichondrium, such as in the nasal septum. Of note, no expression of Six1 was detected in eye 

structures such as the retina, lens, cornea and optic nerve. These results corroborate previous 

findings showing that Six1, and the closely-related gene Six2, are not involved in the 

development of eye neuroepithelium in vertebrates, although they have an evolutionary 

homology with Sine oculis of Drosophila (Kawakami et al., 2000). Furthermore, Six1 expression 

by the chondrocytes derived from NCC was found in cultures of cephalic NCC, albeit the total 

number of Six1-positive cells in these cultures was rather limited (about 1%). Finally, we 

observed Six1-expressing cells dispersed in the mesenchyme adjacent to the dorsal surface of 

the mesencephalon, which suggests Six1 expression in precursors of the meninges, which are 

mesodermal-derived in this brain region (Couly et al., 1992). 

 Regarding mesodermal derivatives, Six1 is mainly expressed in several head muscles, 

for instance in the extraocular muscles, in the branchiomeric muscles of the pharyngeal and 

laryngeal regions, and in tongue muscles. Indeed, in Six1 null mice, these muscles are greatly 

impaired, together with an extensive hypoplasia of the trunk and limb muscles, which require 

Six1 function at several steps of myogenesis (Laclef et al., 2003a; b). These findings suggest a 

common dependence on Six1 gene for a general skeletal muscle developmental program. The 

exact role of Six1 gene in head muscles should be further investigated, since genetic networks 

regulating patterning and differentiation are distinct between developing head and trunk 

muscles (Sambasivan et al., 2011). Finally, at least in the head, Six1 appears to be deprived of 

any contribution to the vascular system: we did not observe Six1 expression in head blood 

vessels at all stages analyzed neither in NC-derived vascular smooth muscle cells and pericytes 

at E7. 
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 In summary, the careful examination of Six1 expression in mesenchymal tissues of the 

developing avian embryo from stage HH11 to E7 shows that this gene is expressed in cells 

derived from both cranial NC and mesoderm, in a tissue- and stage- dependent manner. These 

results open the way to investigate Six1 downstream targets and further decipher Six1 gene 

function in the establishment of the diverse mesenchymal cranial tissues. Future experiments 

in which one could selectively knockdown Six1, in a temporal and tissue-specific way, would be 

beneficial for a further understanding of its role in mesoderm and NC patterning and 

differentiation, and to investigate whether this gene acts in the coordinated development of 

these two cellular populations during vertebrate head morphogenesis. 
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Fig. 1 Six1 expression pattern in the head of HH11 (13ss) chicken embryo. a Schematic representation of a HH11 

(13ss) chicken embryonic head; red dotted lines indicate the position and orientation of the sections shown in 

b-f (mesencephalic level) and g-k (rhombencephalic level). b and g Six1 gene transcripts are detected in the 

foregut endoderm and in the cranial mesenchyme, located ventral to the mesencephalon (in b) and more 

laterally, at the rhombencephalic level (in g). c-f Transversal section, showing immunoreactivity to Six1 (d) and 

Sox10 (e), with no apparent overlap (See merge stainings in f). d and i Adjacent sections to b and g, respectively, 

after Six1 immunostaining show an expression pattern of Six1 similar to that observed after in situ hybridization. 

e and j Co-immunostaining with Sox10 antibody labels the NCC, which migrate from the mesencephalon 

dorsolaterally under the ectoderm in e and are starting to migrate from the rhombencephalon in j . f and k 

Merge of Six1 and Sox10 stainings (arrows: migratory neural crest cells; arrowheads: cranial paraxial 

mesodermal cells). D-V, dorso-ventral orientation; f, foregut; nt, neural tube; h, heart. Scale bars: 100µm. 
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Fig. 2 Six1 expression pattern in the head of HH15 (25ss) chicken embryo. a Schematic representation of a 

HH15 chicken embryo; red dotted lines indicate the position and orientation of sections shown in b-g, h-j and 

k-m images. b and h Six1 transcripts expression in the lateral mesenchyme of the anterior head (hm in b), and, 

in a more caudal section (h), in the periocular mesenchyme, foregut (f), branchial arch (ba) mesenchyme and 

superficial ectoderm and otic vesicles (ov) (e, eye). c-g Horizontal section (D-V dorso-ventral orientation), Six1, 

Sox10 and Tuj1 immunostainings (the box area is magnified in c’-g’): Six1 is expressed in the mesenchyme 

surrounding the trigeminal ganglion (tg) and in the trigeminal ganglion and nerves, where it labels a subset of 

Tuj1-positive neurons, not Sox10-positive non-neuronal cells (c’-g’); arrow in g’ indicates a Six1-positive 

neuron. i, j section at the level of the eye, showing Six1 expression in the periocular cranial mesenchyme, the 

branchial arch mesenchyme and the endoderm lining the pouch, k-m Section at the anterior somitic level, Six1 

is strongly expressed in the dermomyotome (l) while Sox10 labels the migratory NCC, indicated by an 

arrowhead (m). Scale bars: 100µm. 
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Fig. 3 Six1 expression in quail-chick chimeras of the cephalic NC. a Schematic representation of the cranial NC 

grafting procedure. The chick neural fold/premigratory NC from midbrain to anterior rhombencephalic level 

was unilaterally replaced by its quail counterpart (in red) at HH8 (5ss) stage; the resulting chimeras were 

analyzed at HH15 (25ss) for Six1 immunoreactivity, nuclear staining (DAPI) and the presence of QCPN+ quail 

cells (red dotted lines indicate orientation and position of the sections shown in b-i and j-m). b-e In the 

prosencephalic region, 9Six1 (c) is expressed in the olfactory placode (op) and the adjacent cranial 

mesenchyme surrounding the prosencephalon, in which quail NCC positive for QCPN are located (d); b’-e’ 

Highlighting of the area boxed in b-e, showing engrafted quail cells that are either positive (arrows) or 

negative (arrowhead) for Six1. f-i Six1 and QCPN are both expressed in the head mesenchyme around the 

eye. f’-i’ (magnified region indicated by a boxed area in f-i) Some NCC engrafted in the periocular 

mesenchyme co-stain with Six1 and QCPN (arrow), while others do not express Six1 protein (arrowhead). j-m 

In the maxillary region, Six1 expression (k) is present in the mesenchyme dorsal to the foregut, in the foregut 

endoderm and the core region of the first BA (ba in j) whereas the grafted QCPN+ cells (l) are located in the 

peripheral mesenchyme of the BA and do not express Six1 (m Merge of Six1 and QCPN). Scale bars 25µm (b-

i) and (b’-i’); scale bars 50µm (j-m). 
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Fig. 4 Six1 expression in quail-chick chimeras of the cephalic mesoderm. a Schematic representation of the 

grafting procedure. Part of the chick lateral paraxial mesoderm was unilaterally replaced by its quail 

counterpart (in red) at HH8 stage, and the chimeras were analyzed at HH15 (red dotted lines: position and 

orientation of the sections shown in b-f and g-j). b-f and b’-f’ At the level of the trigeminal ganglion (tg) and 

nerves, detected by HNK1 staining (e-e’), engrafted quail mesodermal cells, co-stained with Six1 and QCPN, 

are found in the host lateral mesoderm near the trigeminal ganglion (arrows in b’-f’). g-j In the region of BA2, 

quail cells from the grafted mesoderm are present in the core mesenchyme of the BA, which strongly 

expresses Six1. j’ Magnification of the boxed area indicated in j, showing grafted mesodermal cells that 

express both Six1 and QCPN (arrows). D-V, dorso-ventral orientation. Scale bars 50µm. 
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Fig. 5 Six1 expression in head neural structures of E3 and E7 chicken embryos. a DAPI staining of E3 (HH19) 

chicken head longitudinal section (A and D, anterior and dorsal orientations). Boxed areas indicate regions of 

the otic vesicle and trigeminal ganglion magnified in b-e and f-j, respectively. c-e Six1 immunoreactivity (c) is 

located in the ventrolateral region of the E3 otic vesicle, whereas Sox10 antibody labels its dorsal region (d and 

e). f-j More rostrally in the same section, Six1-immunoreactive nuclei (g) exhibit a dense pattern in the 

trigeminal ganglion and surrounding mesenchyme; the trigeminal ganglion is positive for Sox10 (h) and Tuj1 (i) 

markers; j Merge of Six1 and Sox10; j’-j” (magnifications of the boxed area indicated in j) Six1-positive nuclei 

mostly correspond to Sox10-negative, Tuj1-positive neuronal cells in the trigeminal ganglion. k Schematic 

representation of a chick embryonic head at E7 (HH30); red lines indicate position and orientation of the 

sections shown in l-n and o. l In midbrain, Six1-expressing cells are found lining the dorsal mesencephalon and 

more ventrally, adjacent to the retina. l’ highlights the dorsal region boxed in l, showing Six1-positive cells 

scattered in the mesenchyme between the surface ectoderm (arrows) and the neuroepithelium in the 

mesencephalon (arrowheads). m and n More ventrally in the same section, Six1 is expressed in the olfactory 

epithelium (oe, in m), and adenohypophysis (ad, in n) whereas the neurohypophysis is Six1-negative (arrow in 

n). o Six1 and CS immunostaining in the otocyst region: Six1 is expressed in the ventrolateral otic epithelium and 

adjacent cartilages, detected with antibody against chondroitin sulfate (CS). o’ (magnification of the region 

boxed in o) highlights partial overlap of Six1 and CS markers in the cartilage adjacent to the otic vesicle. (D and V 

indicate dorsal and ventral orientations). Scale bars: 100µm, except for a and l, 200µm.  
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Fig. 6. Six1 expression in mesenchymal cephalic structures in E7 chicken. a Schematic representation of an E7 

(HH30) chick embryo; red lines indicate cryosections shown in b-n, o-q and r-w. b-e At the level of the eyes (e), 

Six1 immunoreactivity (c) is widely detected in the periocular mesenchyme, nasal septum (* in b), maxillary 

bud (ma), and in the extraocular muscles, positive for anti-myosin MF20 (d, e) f (Magnification of the area 

boxed in b) Six1 expression pattern is dense in the periocular mesenchyme and scattered in the adjacent nasal 

septum, stained with the chondrocytic marker CS. g-g” Highlights of the region boxed in f, showing Six1 

expression in the CS-positive scleral cartilage. h and i Magnifications of the areas boxed in e, showing Six1 

expression in medial rectus (h-h’’) and inferior oblique (i-i'’) extraocular muscles. j-n Six1 labeling is strong in 

the perinasal mesenchyme and more scattered in the nasal septum (*), which is immunoreactive to CS (l-m) 

and Sox9 (n). m Note dense Six1 expression in the nasal perichondrium. o-q (boxed areas in o indicate regions 

magnified in p and q) At BA1 level, Six1 and MF20 (p-p’) are co-expressed in tongue muscles (magnified in p”). 

q-q” In jaw rudiment, both Six1 and CS label Meckel’s cartilage, while Six1 also marks the perichondrium 

(arrow in q”). r-w Six1, MF20 and CS stainings in BA2: Six1 in expressed in laryngeal muscles (r-u), including 

ceratoglossus (t; arrow) and constrictor and dilatator glottidis (u; arrow) (t and u, magnifications of regions 

boxed in r). v CS-labeled ceratobranchial and basibranchial cartilages, the latter magnified in w, showing Six1-

expressing perichondrium (arrow in w). D-V, dorso-ventral orientation; optic nerve (op). Scale bars: 100µm, 

except for b-e and o, 300µm. 
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Fig. 7. Six1 expression in cephalic NCC differentiating in culture. After 6 days of culture, cephalic quail NCC 

were assayed for expression of Six1 and various NC-derived phenotypic markers (see Methods section). Six1-

positive nuclei were recorded in approximately 1% of the NCC population. a-d Co-staining of nuclear Six1 and 

cytoplasmic αSMA shows expression of Six1 in myofibroblastic cells (arrows in d). e-h DAPI, Six1 and CS 

stainings identify Six1-expressing chondrocytes, positive for CS and forming a tridimensional nodule; Six1-

immunoreactive cells are also present in the perichondrial region (arrowhead in h). i Quantification of cell 

phenotypes in the Six1-positive cell subpopulation identified in 6 day-NCC cultures. Approximately 55% of 

Six1-labeled NCC are of myofibroblastic (αSMA+) and 13% of chondrocytic (CS+), phenotypes. The remaining 

Six1-expressing cells (i.e., negative for CS and αSMA) were not labeled with HNK1 and tyrosine hydroxylase 

(markers of PNS precursor cells and adrenergic neurons, respectively); these cells are thus designated of 

undefined phenotype. Scale bars: 50µm. 
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Supplementary Fig. 1: Absence of Six1-immunoreactive cells in head blood vessels at E7. (a,d,g) Six1 

immunostaining in sections of the E7 chicken head, counterstained with DAPI. (b,e,h) αSMA 

immunostaining and DAPI. (c,f,i) Merge of Six1 and αSMA labeling. (d-f) Magnification of the area 

depicted in (a-c) Note Six1 expression in head mesenchyme (hm) but not in the wall of blood vessels 

adjacent to the neuroepithelium (np) (arrowhead in f), neither in αSMA+ pericytes within the brain 

epithelium (arrows in f) (d-f). (g-i) Magnification of the area depicted in (a-c): Observe Six1 staining (g), 

in the inner ear epithelium and associated vestibulo-acoustic (gVIII) ganglion whereas αSMA+ smooth 

muscle cells lining blood vessels lack Six1 expression (arrow in i). Scale bar: 100µm; except in a-c 

(300µm). 
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Abstract 

 

The Neural Crest (NC) is a unique stem cell population that contributes to the formation of 

the main craniofacial skeletal structures of vertebrates. In amniotes, the NC ability to yield 

mesenchymal cell types (e.g. chondrocytes, adipocytes and osteocytes) is restricted to the cranial 

level, since the trunk NC does not generate these mesenchymal derivatives in vivo. However, 

recent findings have shown that mesenchymal cell differentiation by trunk NCC can be disclosed 

by in vitro permissive environments, suggesting that the trunk NC is not completely devoid of 

mesenchymal potentiality. The molecular mechanisms, involved in trunk NCC mesenchymal fate 

inhibition in vivo, are currently unknown. Here, we investigated whether Hox genes, which can 

prevent the formation of head NC skeletal structures, could also impair trunk NC differentiation 

into bone, cartilage, and adipocytes. We observed that trunk NCC maintained in culture in pro-

mesenchyme conditions, downregulated a set of Hox genes, concomitantly with the onset of 

Runx2, an early marker of osteogenesis. Moreover, overexpression of Hoxa2, not of more 

posteriorly expressed Hox genes, like Hoxc10, reduced the number of Runx2 osteoprogenitors in 

trunk NC culture, without affecting the differentiation into other NC derivatives, such as neurons, 

melanocytes, glia and myofibroblasts. The loss of osteoprogenitors in early trunk NC cultures led 

to a significant reduction in the full differentiation of osteoprogenitors, since smaller mineralized 

bone regions were later on, identified after Hoxa2 overexpression. Interestingly, Hoxa2 forced 

expression concomitantly impaired in vitro adipogenesis and chondrogenesis. In cephalic NCC 

cultured in vitro, the number of Runx2 osteoprogenitors was also diminished after forced 

expression of Hoxa2. In conclusion, inhibition of Hoxa2 appears to be a common mechanism 

shared by both cephalic and trunk NCC, in order to promote the differentiation of mesenchymal 

cell types. 

 

 

Keywords: neural crest; avian embryo; Hox; mesenchymal fate; Runx2; skeletogenesis; 

adipogenesis; chondrogenesis 
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Introduction 

The Neural Crest (NC) formed in the dorsal aspect of the neural primordium in vertebrate 

embryos. Concomitantly with neural tube closure, the NC cells (NCC) start to migrate, to later 

occupy distant regions in the embryo where they differentiate into diverse cell types such as 

melanocytes, neurons/glia and various types of mesenchymal cells (cartilage, bone and fat cells) 

(Le Douarin and Kalcheim, 1999). However, despite a broad array of derivatives, NCC 

mesenchymal fate differs between the rostrocaudal levels of the neural tube from which they 

emigrate. For instance, the NCC from the trunk region (caudal to somite 4) of amniote vertebrates 

do not have a skeletogenic or adipocytic fate and thus mainly produce neural cells of the 

peripheral nervous system (PNS) and melanocytes, together with endocrine adrenomedullary cells 

(Billon et al., 2007; Couly and Le Douarin, 1988; Couly et al., 1993; Le Douarin et al., 2004). 

Moreover, in quail-chick chimeras, when the cephalic pre-migratory NC was replaced by its trunk 

counterpart, the formation of the NC-derived head skeleton was impaired: the implanted quail 

trunk NCC produced only a small population of fibroblasts and pericytes covering blood vessels in 

the host cranial tissues (Nakamura and Ayer-le Lièvre, 1982). Similar observations of the 

differential NCC contributions to mesenchymal tissues along the neural axis were raised in 

mammals, by fate analyses of NCC in transgenic mice (Yamauchi et al., 1999; Chai et al., 2000; 

Jiang et al., 2002; Matsuoka et al., 2005; Danielian et al., 1998; Jiang et al., 2000). Together, these 

results show that the mesenchymal fate is absent in the trunk NC of amniote vertebrates. 

Nonetheless, a possible mesenchyme production by trunk NCC earlier in vertebrate 

evolution is currently being discussed. As some evidence in the fossils of early primitive 

vertebrates (Ostracoderms) has suggested, the trunk and cephalic NCC in these animals would 

have yielded the primitive exoskeleton that covered their whole body length. This hypothesis was 

put forward because the skeletal armor of these primitive fish contained dentine, a mineral 

produced only by NC-derived tissues (Smith and Hall, 1990; Smith, 1991). Moreover, although still 

debated (Mongera and Nüsslein-Volhard, 2013; Lee et al., 2013), some contributions of the trunk 

NC to mesenchymal derivatives in vivo can be found in extant anamniote vertebrate species, 

particularly in distal bony rays of the caudal and dorsal fins of teleost fish (Smith et al., 1994; 

Kague et al., 2012). Moreover, in the mouse, Joseph and colleagues have shown that the 

endoneurial fibroblasts in the sciatic nerve are also trunk NC-derived (Joseph et al., 2004). Thus, 

apart from these few studies, the trunk NC mesenchymal derivatives in extant vertebrates are 
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quite restricted in vivo, when compared to the variety of mesenchymal tissues produced by the 

cephalic NC. However, when avian trunk NCC were cultured in vitro, they could yield 

mesenchymal/skeletal cell types, as reported in several studies (McGonnell and Graham, 2002; 

Abzhanov et al., 2003; Billon et al., 2007; Calloni et al., 2007). Recently, our group has shown that 

trunk NCC under specific culture conditions give rise to fully differentiated cartilage, bone, and fat 

cells. Moreover, in single NCC cultures, it was found that the vast majority of trunk NCC are neural-

mesenchymal progenitors, which suggested that most of the trunk NCC would be able to generate 

mesenchymal derivatives (Coelho-Aguiar et al., 2013). Therefore, as do cephalic NCC, trunk NCC 

possess a noteworthy mesenchymal lineage potential, although it is almost completely silenced in 

vivo. 

The molecular mechanisms underlying the expression, or silencing, of mesenchymal 

potential in trunk NCC is still unknown. Recent findings from Simões-Costa and Bronner (2016) 

helped to shed light on this issue. They have shown that, in early stages of development, the 

cephalic, not the trunk, NC, expresses a specific combination of transcription factors, which is 

essential for cranial NCC differentiation into mesenchymal lineages. Moreover, after ectopic 

expression of these genes and thereafter grafting the “reprogrammed” trunk NCC into the 

developing head, an cranial-like differentiation of trunk NCC into skeletal elements could be 

elicited in vivo in the host branchial arch (Simoes-Costa and Bronner, 2016). These results suggest 

that a small set of three transcription factors enables to confer mesenchymal fate in both trunk 

and cephalic NCC, reinforcing the possibility that similar molecular programs could regulate NC 

mesenchymal potentiality along the entire neural axis. 

Regarding these molecular pathways, the Hox family of transcription factors has been 

shown to dramatically influence the formation of mesenchymal derivatives by the cephalic NC. 

None of the Hox genes are expressed by the anterior cephalic NCC (down to rhombomere-2 

included); strikingy, ectopic Hox expression resulted in lack of bone and cartilage derivatives from 

cephalic NCC in vivo and in a reduction of their differentiation into collagen-2-expressing 

chondrocytes in vitro (Couly et al., 2002; Creuzet et al., 2002; Abzhanov et al., 2003). Moreover, 

Ezh2, a known epigenetic repressor of Hox gene expression, was recently described as crucial for 

the skeletogenic program of the cephalic NCC in the mouse (Schwarz et al., 2014). 

In the present work, we investigated the role of Hox genes regarding the ability of avian 

trunk NCC to generate mesenchymal cell types, using the in vitro culture system previously 
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devised by our group to study osteogenic and adipogenic NC progenitors (Coelho-Aguiar et al., 

2013). We first showed that a particular subset of Hox genes, including Hoxa2, is downregulated in 

cultured trunk NCC, concurrently with the emergence of Runx2-positive skeletal progenitors. Then, 

by performing gain of function experiments in early NCC in vitro, we found that Hoxa2 

overexpression reduced the number of Runx2+ osteoprogenitors, produced by both cephalic and 

trunk NCC. Hoxa2 also impaired the terminal differentiation into main mesenchymal cell types. 

These results, therefore, suggest that the expression of mesenchymal potentialities by trunk NCC 

in vitro could, at least partially, rely upon downregulation of Hoxa2, which thus could help to 

disclose trunk NC dormant mesenchymal fate. 

 

Materials and Methods 

 

NC cultures and transfection procedure 

 Quail (Coturnix coturnix japonica) fertilized eggs were obtained from a commercial source 

(Cailles de Chanteloup, France) and incubated at 38.5 °C. For trunk NC cultures, thoracic neural 

tubes from embryos of 2 days of incubation, 20-25 somite-stage (20-25ss), were dissected and 

cultured as described (Calloni et al., 2007; Coelho-Aguiar et al., 2013). After for 15-18 hours (h) of 

culture, explanted neural tubes were detached and discarded. Isolated NCC, which had migrated 

from these explanted tubes, were detached, centrifuged and counted before transfection. About 

80,000 trunk NCC were transfected with 100ng DNA plasmid using Lipofectamine 2000 

(ThermoFisher Scientific) at a 1:2 DNA-reagent ratio. Immediately after DNA delivery, NCC were 

seeded as 12 µl-droplets per well (5,000 cells per drop) in collagen-1 coated wells (4-well and 24-

well culture plates; Nunc). Three hours after plating, the wells were filled with culture medium 

containing DMEM (Sigma), 10% FBS (Invitrogen) and 2% chicken embryo extract (80ng/ml). 

 For cephalic NC cultures, mesencephalic neural primordia, including the pre-migratory 

neural crest, were isolated from 6-7ss embryos and cultured essentially as previously described 

(Calloni et al., 2007, 2009). Briefly, approximately 25 neural primordia were isolated and cultured 

in collagen-1 coated 35-mm dishes. After 15 h, the cultures were transfected with 1.5 µg of DNA 

constructs using Lipofectamine 2000 (ThermoFisher Scientific). Three hours later, the migratory 

NCC were isolated from the explants of mesencephalon, then seeded on a 3T3 fibroblast feeder-

layer (Calloni et al., 2007). About 200 NCC were plated per well in 96-well plates (TPP) in DMEM 
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containing 10% FCS and 2% chicken embryo extract (80ng/ml). Cephalic and trunk NCC cultures 

were maintained at 37°C in a humidified 5% CO2 incubator and the medium was changed every 

three days. 

Expression plasmids 

 We isolated chicken Hoxa2 and Hoxc10 DNA constructs by PCR amplification of cDNA 

sequences, followed by subcloning into the EcoRI-NotI site of pCX expression plasmid (Niwa et al., 

1991). In-Fusion HD Cloning Kit (Clontech) was used for PCR amplification and thermocycling 

conditions were set up according to the manufacturer's instructions. All constructs were 

sequenced for accuracy. The pCX-EGFP plasmid (Okabe et al., 1997) was used in all experiments as 

a control. All constructs were amplified in endotoxin-free condition (MaxiPrep kit, Qiagen). 

Quantitative RT-PCR 

 Total RNA was isolated using a RNeasy Micro kit with a DNase digestion step (Qiagen). 

cDNA was synthesized with a reverse transcription kit (iScript; Bio-Rad Laboratories) in a PTX-100 

thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). For real-time quantitative PCR (RT-

qPCR), cDNA, Power SYBR Green PCR master mix and 0.6µM/well of specific primers were mixed in 

a 96-well optical reaction plate (all from Applied Biosystems; see TableS1 for primer sequences). 

Cycling conditions included an initial denaturation step at 95°C for 10 min, followed by 40 cycles 

consisting of 15 sec denaturation at 95°C and 1 min at 60°C for annealing and primer extension. 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as a housekeeping gene for 

normalization, and amplification of its cDNA was done in parallel with the genes of interest. PCR 

products were subjected to melting curve analysis, and threshold cycle (Ct) values were 

determined using the Applied Biosystems software. Relative fold changes were calculated using 

the ΔΔCt method. 

In situ hybridization and immunostaining 

 Riboprobes were prepared from a cDNA plasmid encoding the chicken Runx2 coding 

sequence (GenBank NM_204128.1), according to an already described procedure (Calloni et al., 

2007). Digoxygenin-labeled antisense RNA probes were used to perform in situ hybridization on 

trunk NC cultures, according to a detailed protocol described elsewhere (Calloni et al., 2007, 

2009). 
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For immunostaining, 6-day cultures of trunk and cephalic NCC were fixed in 4% formaldehyde for 

30 min and immunolabeled with anti-Runx2 (1:100, Sigma, HPA022040), antibody to α-smooth 

muscle actin (αSMA, clone 1A4; 1:800, Sigma, A5228), and the following hybridoma supernatants 

(used undiluted): mouse anti-quail tyrosine hydroxylase (Fauquet and Ziller, 1989), 

melanoblast/melanocyte early marker (MelEM) (Nataf et al., 1993) and HNK1 (ATCC TIB-200). All 

secondary antibodies used were Alexa Fluor 488-, 546- and 647-conjugated antibodies 

(ThermoFisher Scientific), except for Runx2 immunostaining, which was detected using HRP-

labeled goat anti-rabbit and signal amplification with Cy3-tyramide (Tyramide System 

Amplification, Perkin-Elmer). Cultures were counterstained with 4′,6-diamidino-2-phenylindole 

(DAPI) to mark cell nuclei, which enables quail cephalic NCC to be easily distinguished from mouse 

3T3 fibroblasts by their distinct nuclear sizes (Baroffio et al., 1988). 

 Imaging and quantifications were carried out automatically with an Arrayscan High-

Content system (Thermo Fisher Scientific), in which at least 49 fields of each replicate culture were 

analyzed. In cephalic NC cultures, specific protocols were designed to exclude the 3T3 cell nuclei 

from nuclei quantification. Representative pictures were obtained in every experiment with an 

inverted fluorescence microscope (Nikon-Eclipse Ti-E). 

Terminal differentiation in NCC cultures and histological staining 

 To promote full differentiation of NCC into mesenchymal lineages, long-term culture of 

trunk NCC was performed essentially as previously described (Coelho-Aguiar et al., 2013). After 7 

days of culture in DMEM, 2%FBS and 2% chicken embryo extract, the medium was supplemented 

with 85nM insulin, 1 nM tri-iodo-thyronine (T3), 0.5 μM rosiglitazone, 0.05 μM dexamethasone, 25 

μg/ml ascorbic acid and 5 mM β-glycerol phosphate (all from Sigma). This specific medium 

composition promoted terminal differentiation of skeletogenic and adipogenic cells derived from 

trunk NCC in vitro (Coelho-Aguiar et al., 2013). To assess for mineralized bone areas, cartilage 

nodules and lipid-storing adipocytes, 25-day-cultures were fixed with 4% formaldehyde for 1h at 

room temperature, and sequential histological staining was performed as follows. First, the 

cultures were stained for 5 min with 2% Alizarin Red S (Sigma), washed with H2O and the stained 

mineralized bone matrix was imaged. Next, to detect cartilaginous matrix, Alcian Blue (Sigma) 

solution (1% in 0.1M HCl pH 1.0) was applied overnight, washed and then imaged. Finally, 

triglyceride lipid accumulation in adipocytes was identified by Oil Red O staining (0.5% in 

isopropanol, Sigma). Image acquisition was performed with an inverted microscope (Nikon-Eclipse 
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Ti-E) and the total area of stained regions was quantified using Fiji software (Schindelin et al., 

2012). 

Statistical Analyses 

 All data are presented as mean values ± SEM of at least three independent experiments 

and analyzed with GraphPad Prism 5.03 (GraphPad Software Inc.). Statistical significance was 

tested by a one-way ANOVA with Dunnett’s correction for multiple comparisons (for data from 

RT-qPCR, in situ hybridization and immunostaining; Figure 2 and 4), Mann-Whitney test (for 

areas of stained regions, Figure 3) and Unpaired t-test (for analyses of cephalic NCC, Figure 5). 

Significance was set as follows: P < 0.05 (*), P < 0.01 (**), or P < 0.001 (***).  

 

Results 

 

A defined set of Hox genes are downregulated in trunk NC cultures maintained in pro-

mesenchyme culture conditions 

 Given that trunk multipotent NCC display mesenchymal potentials in vitro as do cephalic 

NCC in vivo and in vitro (Le Douarin and Kalcheim, 1999; Calloni et al., 2007; Billon et al., 2007; 

Coelho-Aguiar et al., 2013), we aimed to investigate if the onset of mesenchymal progenitors in 

trunk NCC in vitro cultures could, to some extent, operate according to a similar mechanism as in 

the cephalic NCC. We thus hypothesized that Hox gene inhibition could play a role in the 

expression of these mesenchymal capacities. As a first step to investigate this possibility, we aimed 

at identifying the Hox genes expressed by the trunk NC before and during in vitro differentiation. 

For this purpose, we evaluated the repertoire of Hox genes expressed in the quail neural tube, at 

the level and stage of development used in prepare NC cultures (Figure 1A), corresponding to the 

thoracic neural tube of E2 quail embryos (22-25 ss stage), wherein the Hox paralog groups 6 to 9 

are expected to be expressed (Burke et al., 1995; Nolte and Krumlauf, 2007, for a review). As the 

neural tube explants also comprised portions of the most posterior cervical domain (between 18 

to 19 ss) and of the most anterior lumbar domain (pre-somitic mesoderm, 26 ss), we included Hox 

genes from paralog groups 5 and 10 in the analyses. In addition, Hoxa2 gene expression was also 

investigated, due to previous findings showing its inhibitory effect on the formation of NC-derived 

craniofacial structures in vivo (Creuzet et al., 2002; Kanzler et al., 1998). By RT-qPCR, we found 
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that, from the Hox genes mentioned above, 10 defined Hox members were highly expressed in 

isolated trunk NCC cultures at day 0 (Table S1 and Figure S1): Hoxa2, Hoxb5, Hoxc6, Hoxa7, Hoxb8, 

Hoxc8, Hoxb9, Hoxc9, Hoxc10 and Hoxd10) showed at least 50-fold higher mRNA expression levels 

compared with mesencephalic NCC, which represented a negative control for Hox gene 

expression. 

 We then investigated the time-course of the expression profile of these selected Hox 

genes during in vitro culture of trunk NCC, isolated from trunk neural tube explants as illustrated 

in Figure 1A, and maintained for 8 days in culture conditions wherein NCC differentiate into a large 

array of NC derivatives, including several mesenchymal cell types (Coelho-Aguiar et al., 2013). In 

this regard, Runx2, a transcription factor gene necessary for bone cell specification, was 

significantly detected by RT-qPCR as soon as 2 days of culture and thereafter was continuously 

present, with a peak of increased transcription levels at 4 days of culture (Figure 1B). These results 

suggest that the onset of bone specification in trunk NCC occurs during the early culture period. As 

a consequence, we analyzed the dynamics of the expression of the selected set of Hox genes 

during the first week of culture. A first subset of these Hox genes, namely Hoxa2, Hoxc9 and 

Hoxc10 was significantly downregulated at day-2, (by approximately 5.7, 5.5 and 9.7-fold, 

respectively), compared with day-0 cultures (Figure 1C). These three Hox genes then were 

continuously downregulated (up to 20.3, 28.4 and 42.2 fold at day-8, respectively, compared with 

day-0 cultures). Two other genes, Hoxc6 and Hoxc8, showed only moderate reduction of mRNA 

levels at day-8 and day-6, respectively (Figure 1C). In contrast, the remaining five other tested Hox 

genes (Hoxb5, Hoxa7, Hoxb8, Hoxb9 and Hoxd10) did not significantly change in this temporal 

analysis, although Hoxb9 exhibited a modest upregulation at day-2 (Figure 1D). Together, these 

results show that the onset of Runx2-expressing osteoblasts in trunk NCC cultures (between day-2 

and day-4 of culture) is temporally linked with a downregulation of a specific set (Hoxa2, Hoxc9 

and Hoxc10) of the Hox gene repertoire initially expressed in the trunk NC. 

Hoxa2 forced expression reduces the number of osteoprogenitors and terminal differentiation 

of trunk NCC into bone, cartilage and fat cells 

 The results shown in Figure 1 pointed out that Hoxa2, Hoxc9 and Hoxc10 were significantly 

downregulated concomitantly with in vitro differentiation of osteoblasts by trunk NCC. To 

investigate if this change in Hox gene activity could be functionally related to the mesenchymal 

differentiation of NCC, we aimed to evaluate the consequences of forced expression of these 
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genes on the development of Runx2+ cells in trunk NC cultures. Firstly, we decided to investigate 

Hoxa2, due to its established negative effect on the formation of the NC craniofacial mesenchyme 

in vivo and in vitro (Creuzet et al., 2002; Kanzler et al., 1998; Abzhanov et al., 2003). Additionally, 

we forced the expression of Hoxc10, the most posterior Hox gene expressed by the cultured trunk 

NCC, which was, similarly to Hoxa2, significantly downregulated during in vitro progression 

towards mesenchymal differentiation. As shown in Figure 2A, after isolation of NCC from NT 

explants, we transfected the NCC suspension (day-0 of culture) with pCX plasmids, which resulted 

in approximately 45-70% of the NCC successfully expressing Hox or GFP reporter (Figure Suppl 2). 

When we examined the amount of Runx2+ cells in day-6 culture, identified by in situ hybridization 

and immunostaining, we observed that forced expression of Hoxa2, but not Hoxc10, reduced the 

number of Runx2-expressing cells (Figure 2 B-M): Runx2 transcripts were present in 12.5% of the 

cells in control GFP plasmid condition, while this percentage decreased to 5% after Hoxa2 

overexpression, indicating a 60% reduction (Figure 2N). At the protein level, 11% of trunk NCC 

expressed Runx2 in control GFP cultures versus 4% in Hoxa2-transfected cultures, showing, again, 

a 60% decrease of the number of Runx2-expressing cells (Figure 2O). 

 We next asked whether Hoxa2 forced expression could impair the progression towards 

terminal differentiation of bone progenitors, due to its influence on the number of Runx2+ cells. 

Trunk NCC cultures were transfected as described previously and further grown in the presence of 

“mesenchymal differentiation factors” (MDF) (see Materials and Methods; Figure 3A), which 

enhanced terminal differentiation of cultured NCC into bone, cartilage and fat cells (Coelho-Aguiar 

et al., 2013). This experimental procedure allowed analyses of Hoxa2 effects on additional 

mesenchymal lineages, such as chondrocytes and adipocytes. As shown in Figure 3, MDF 

treatment promoted mineral deposition in the matrix surrounding osteoblasts in culture, easily 

observed after Alizarin Red staining in 25-day cultures (Figure 3 B,E). Cartilaginous matrix 

deposition and lipid-storing adipocytes could be detected with Alcian Blue and Oil Red O 

histological staining, respectively (Figure 3C,F and 3D,G). We noted that the transfection 

procedure at day-0 did not interfere with terminal differentiation of these mesenchymal 

derivatives, which were present in 25-day cultures transfected with control GFP plasmid (Figure 3 

B-D). However, after Hoxa2 overexpression, the regions stained with Alizarin Red, Alcian Blue and 

Oil Red O were much smaller and less frequent (Figure 3 E-G), suggesting an impairment of the 

terminal differentiation process. The number of cultures containing mineralized bone areas drops 

down after Hoxa2 overexpression (11 in 61) when compared to GFP-transfected NC cultures (25 in 
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61). Regarding cartilage differentiation, 28 cultures in 46 and only 16 cultures in a total of 46 

contained cartilage nodules in control and Hoxa2 conditions, respectively. Similarly, 34 in 46 

cultures had differentiated adipocytes versus 29 in 46 after Hoxa2 gain of function. A 

quantification of the total area of the cultures occupied by the differentiated mesenchymal cells 

was also performed to better evaluate the effect of Hoxa2 (Figure 3H-J). The total surface area in 

each culture was normalized by the total cell number in the cultures, detected after DAPI nuclei 

staining. We could then observe that, compared to GFP, Hoxa2 gain of function decreased 

approximately by 85% the total area occupied by mineralized ossified regions, by 70% the area of 

cartilaginous matrix and by 70% the total surface of adipocytes (Figure 3H-J). 

 Taken together, these results show that Hoxa2 strongly reduces the number of Runx2+ 

osteoblastic cells, further preventing terminal differentiation of bone cells in trunk NCC cultures. 

Moreover, Hoxa2 gain of function also impaired the production of differentiated chondrogenic 

and adipogenic cells, indicating that Hoxa2 exerts inhibitory effects on the in vitro differentiation 

of mesenchymal lineages in trunk NCC. 

Hoxa2 and Hoxc10 did not influence trunk NCC differentiation into myofibroblasts and non-

mesenchymal cell types  

 We also investigated whether Hoxa2 and Hoxc10 overexpression in day-0 cultures could 

influence the differentiation of NCC into other cell types, such as neural and melanocytic cells.  

Figure 4 shows the distinct cell phenotypes analyzed at day-6 in the transfected cultures: 

catecholaminergic neurons (TH+), melanocytes (MelEM+), myofibroblasts (αSMA+) and 

undifferentiated cells/neural progenitors (HNK1+). We found that the trunk NCC population in 

control cultures that overexpressed GFP was composed of about 40% HNK1+ cells, 22% αSMA+, 

3,5% MelEM+ and a small population of TH+ neurons (0.4%) (Figure 4M). The percentages of these 

cell phenotypes did not change significantly after Hoxa2 and Hoxc10 overexpression (Figure 4M).  

In cephalic NCC cultures, Hoxa2 ectopic expression reduced Runx2 osteoprogenitors, without 

effect on other NC derivatives 

 Taken into account the above results of Hoxa2 gain of function in trunk NCC cultures, we 

next investigated whether similar events could be observed in cephalic NCC. In vitro, Hoxa2 viral 

transduction decreased the production of chondrocytes expressing collagen-2 in avian 

mesencephalic neural fold cultures (Abzhanov et al., 2003). However, a possible action of Hoxa2 
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on Runx2-positive progenitors has not been examined, especially in an isolated NCC culture 

environment. Therefore, we carried out pCX plasmids deliveries to mesencephalic NT explants 

containing the premigratory NCC, followed by culturing these cells until differentiation in vitro (see 

Materials and Methods). With this transfection strategy, approximately 40-50% of NCC 

successfully expressed GFP driven by the pCX-GFP construct (data not shown). As shown in Figure 

5A-H, in day-6 cultures, Runx2 labeled cells accounted for approximately 22% of the cranial NCC 

transfected with control pCX-GFP. This percentage was remarkably decreased after Hoxa2 ectopic 

expression in cranial NCC: about 10% expressed Runx2, resulting in a reduction of 55% compared 

to GFP control condition (Figure 5G). Interestingly, Hoxa2 ectopic expression was also associated 

with a 40% decrease of the total cell number per culture, as depicted by DAPI cell nuclei 

quantification (Figure 5H). Moreover, similarly to trunk NCC experiments, we investigated if Hoxa2 

could alter differentiation into multiple NC derivatives, including catecholaminergic neurons (TH+), 

melanocytes (MelEM+), myofibroblasts (αSMA+) and undifferentiated cells/neural progenitors 

(HNK1+). In control GFP-transfected cells, the cephalic NCC population comprised about 60% 

HNK1+ cells, 7% αSMA+, 3% MelEM+ and 0.3% TH+ neurons (Figure 5I-P). No differences were 

observed in the relative amount of these NC derivatives after Hoxa2 gain of function. Therefore, 

these results point toward an effect of ectopic Hoxa2 in cephalic NCC, specifically on the 

development of Runx2-expressing osteoprogenitors. 

  

Discussion 

In vertebrates, mesenchymal cell types (e.g., chondrocytes, bone cells and adipocytes) 

originate from two embryonic tissues: the mesoderm and the NC. In the latter, mesenchymal fate 

is essentially restricted to the NC cephalic domain. Apart from a modest contribution of trunk NCC 

to endoneurial fibroblasts in the sciatic nerve of mammals and, although controversial, to the 

caudal and dorsal fin bony rays of teleost fish (Joseph et al., 2004; Smith et al., 1994; Mongera and 

Nüsslein-Volhard, 2013; Lee et al., 2013), the trunk NC does not produce other mesenchymal 

derivatives. Nevertheless, when challenged by a permissive in vitro environment, avian trunk NCC 

can differentiate into skeletogenic and adipogenic cell types, showing that the trunk NC of 

amniotes is not devoid of mesenchymal differentiation potential (Baroffio et al., 1988, 1991, 

Calloni et al., 2007, 2009; Billon et al., 2007; Coelho-Aguiar et al., 2013). 
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Hox proteins might be candidate factors underlying the differential regulation of 

mesenchymal fate between trunk and cephalic NCC. Hox genes are expressed by the trunk NCC 

whereas the skeletogenic cephalic NCC belong to the Hox-negative anteriormost domain of the 

vertebrate body. Furthermore, the expression of Hox genes ectopically induced in the cranial NCC, 

severely impairs the generation of NC facial mesenchyme (Couly et al., 1996, 1998, 2002; Creuzet 

et al., 2002; Kanzler et al., 1998; Kitazawa et al., 2015). It is therefore plausible that Hox genes in 

the trunk NC may have a role in the inability of these cells to execute a mesenchymal 

developmental program in vivo. Along this line, we have here investigated the possible influence 

of Hox genes on NC mesenchymal fate, using in vitro culture models that allow to monitor 

differentiation of avian cephalic and trunk NCC . 

Selected Hox genes are downregulated concomitantly with trunk NCC osteoblast differentiation 

in vitro 

 Given that trunk NCC display mesenchymal potentials in vitro as do cephalic NCC in vivo 

and in vitro, we hypothesized that the capacity of trunk NCC to differentiate into mesenchymal 

derivatives in vitro could involve a downregulation of Hox genes during the culture, when trunk 

NCC are maintained in pro-mesenchymal conditions. By RT-qPCR analyses at different culture time 

points, we found that a particular subset of Hox genes, (namely, Hoxa2, Hoxc6, Hoxc8, Hoxc9, and 

Hoxc10), were negatively regulated by trunk NCC, concomitantly with the onset and upregulation 

of the bone specification gene, Runx2, the earliest mesenchymal lineage marker gene expressed in 

these cultures. Interestingly, it has been previously demonstrated that expression of Hoxb4 and 

genes of the Hox9 paralog group was downregulated in long-term trunk NC cultures giving rise to 

chondrocytes (Abzhanov et al., 2003; Ido and Ito, 2006). Nonetheless, whether Hox genes could 

act on other NC-derived mesenchymal cell lineages, such as osteoblasts and adipocytes, has not 

been studied. To address these issues, we investigated whether particular Hox genes have the 

capacity of inhibiting mesenchymal cell fate in trunk NCC cultured in vitro. We focused in this work 

on two Hox genes: Hoxa2, due to the deleterious effects on cephalic development observed when 

this gene is expressed ectopically in the cranial NC (Creuzet et al., 2005, for a review) and Hoxc10, 

since we found that, similarly to Hoxa2, this gene was strongly downregulated during in vitro bone 

differentiation of trunk NCC. 
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Hoxa2, not Hoxc10 gain of function in trunk NCC exerts negative effects on early skeletogenic 

cells 

 With the aim to investigate whether Hoxa2 and Hoxc10 can inhibit mesenchymal 

differentiation of trunk NCC in vitro, we forced the expression of these genes at the beginning of 

the culture period, before the onset of Runx2 expression. Following Hoxa2 overexpression, we 

detected a drastic reduction in the number of Runx2-labeled osteoprogenitors, suggesting that 

Hoxa2 influences the emergence of bone progenitors in the NC cultures. Indeed, in murine 

embryos, Hoxa2 gene inactivation led to increase of Runx2 expression by postmigratory NCC in the 

branchial arches (Kanzler et al., 1998). Conversely, ectopic expression of Hoxa2 resulted in 

downregulation of Runx2 and Sox9 in cephalic NC-derived skeletal elements (Grammatopoulos et 

al., 2000; Garcez et al., 2014; Kitazawa et al., 2015). These results suggest that Hoxa2 causes 

alterations of Runx2 activity in cephalic NCC in vivo, and in trunk NCC in vitro. Interestingly, our 

data also showed that forced expression of Hoxc10 did not significantly reduce Runx2 expression 

by trunk NCC, suggesting that not all the Hox genes could account for the same effects as Hoxa2; 

hence, a specific downregulation of Hoxa2, instead of a global Hox gene reduction, might play a 

role in NCC differentiation. 

The molecular mechanism by which Hoxa2 could influence Runx2 expression in NCC is not 

yet understood. A direct action of Hoxa2 transcription factor on Runx2 transcriptional activity may 

be a possible mechanism, since putative Hox-binding consensus sequences have been 

characterized in the Runx2 gene promoter (Hassan et al., 2007). Nevertheless, a specific binding of 

Hoxa2 protein to the Runx2 promoter has never been described. Alternatively, Hoxa2 could 

downregulate other genes, which mediate induction of main molecular players in bone 

differentiation by NCC, including Runx2. In this regard, the Six2 gene could be involved, since it has 

been described as a direct downstream factor of Hoxa2 in the NC-derived mesenchyme of BA2 in 

the mouse (Kutejova et al., 2005, 2008). In addition, Six2 gene inhibition in the anterior cranial 

NCC resulted in hypoplasia of the craniofacial skeleton in mouse and chick embryos, a phenotype 

opposite to Hoxa2 overexpression (He et al., 2010; Garcez et al., 2014). However, at least in our 

culture system, an involvement of Six2 during in vitro mesenchymal differentiation of avian trunk 

NCC seems unlikely, since we did not detect expression of Six2 and closely related Six1 genes, in 

untransfected and transfected cultures (data not shown). 
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Notably, activation of Runx2 gene by individual Hox genes, instead of its repression, has 

been previously reported. In mesoderm-derived tissues, some of the posteriorly expressed Hox 

genes can activate Runx2, Sox9, and other bone master genes, thus allowing the progression of 

endochondral ossification (Hassan et al., 2007, 2009; Gross et al., 2012; Neufeld et al., 2014). In 

this line, it should be interesting to understand which are the factors involved in impairment of 

skeletogenesis by Hox, specifically in the NCC. 

Hoxa2 gain of function influences the terminal differentiation of trunk NC-derived bone, 

cartilage and fat cells  

By using a culture protocol previously devised by our group to assess the mesenchymal 

differentiation capacities of trunk NCC in vitro (Coelho-Aguiar et al., 2013), we investigated if 

Hoxa2 forced expression in early trunk NCC could affect the formation of mature differentiated 

bone, cartilage and adipose tissue cells in long-term cultures. For this purpose, trunk NCC were 

transfected on the first day of culture with Hoxa2 plasmid and further analyzed after 25 days in 

culture, when differentiated bone and cartilage matrices, and lipid-storing adipocytes were 

identified. We observed a significant reduction in the surface area occupied by mineralized bone 

after Hoxa2 forced expression, thus suggesting that early effects of Hoxa2 on Runx2-positive 

osteoprogenitors could have prevented, later on, the maturation of bone cells derived from trunk 

NC progenitors. 

Furthermore, Hoxa2 gain of function significantly decreased chondrocyte mineralization 

by approximately 70% as compared with the GFP-control plasmid. Previous reports have shown 

that avian trunk NCC in long-term cultures can produce cartilage (McGonnell and Graham, 2002), 

and the onset of collagen-2 expression by chondrocytes was correlated with downregulation of 

Hoxb4 and Hox9 in avian and murine trunk NCC (Abzhanov et al., 2003; Ido and Ito, 2006). Our 

present data provide a first evidence that Hoxa2 overexpression affects cartilage full 

differentiation by trunk NCC in vitro. Interestingly, in vivo Hoxa2 gain of function in immature 

chondrocytes expressing collagen 2a1 gene, resulted in overall chondrodysplasia and delayed 

endochondral ossification in transgenic mouse embryos (Massip et al., 2007). Taken together, 

these results suggest a robust negative effect of Hoxa2 on trunk NC skeletogenic potential and 

differentiation. 

Our protocol to obtain fully differentiated mesenchymal cells derived from quail trunk NCC 

in culture also permited the study of the differentiation of adipocytes (Coelho-Aguiar et al., 2013). 
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In this way, we could address, for the first time, whether Hoxa2 could influence adipogenesis by 

trunk NCC. Notably, Hoxa2 gain of function significantly reduced the surface area containing lipid-

storing adipocytes, suggesting that, not only bone and cartilage, but also adipocytic cell 

differentiation in vitro is impaired following Hoxa2 overexpression in trunk NCC. Regarding 

adipose tissue formation, particular Hox genes are involved in mesoderm-derived adipocyte 

differentiation (Seifert et al., 2015). For instance, Hoxa4, Hoxa7, and Hoxd4 were upregulated 

during in vitro adipogenesis of 3T3-L1 pre-adipocytic cells, although a specific function of these 

genes was not studied (Cowherd et al., 1997). Furthermore, Pbx1, which acts as cofactor of several 

Hox genes (Mann et al., 2009; Capellini et al., 2011), was recently described as required for early 

steps of adipogenesis in neuralized mouse ES cells, a model of NC-derived adipogenesis (Billon et 

al., 2007) and in human multipotent adipose-derived stem cells (Monteiro et al., 2011). Whether, 

in trunk NC cultures, Hoxa2 negative regulation of the adipogenic fate could have a relationship 

with Hoxa2 binding to Pbx1, remains to be investigated. 

Ectopic expression of Hoxa2 in cephalic NCC reduces in vitro development of Runx2 progenitors  

Hoxa2 effects on cranial NCC development have been extensively described in avian and 

murine models (Couly et al., 1996, 1998, 2002; Creuzet et al., 2002; Kanzler et al., 1998; Kitazawa 

et al., 2015). Nonetheless, a direct effect of Hoxa2 forced expression on osteoblasts has never 

been described in isolated cephalic NCC. Thus, in order to be able to compare Hoxa2 effects 

between cranial and trunk NCC, we performed quail cephalic NC cultures on 3T3 feeder layers, 

using a protocol previously established by our group (Calloni et al., 2007, 2009), and we 

transfected these cells with the same Hox and GFP constructs used for trunk NC cultures. In the 

Hoxa2-overexpressing cultures, we found a significant reduction of the number of Runx2+ 

osteoprogenitors, in comparison with the GFP control condition. We also noticed a decrease in the 

total cell number per culture, indicating that Hoxa2 could act on the survival or the proliferation 

rates of the whole NCC population, possibly also including progenitors for chondrocytes and 

adipocytes, which differentiated in cephalic NC in vitro cultures (Calloni et al., 2007, 2009; Billon et 

al., 2007). In vivo, ectopic expression of Hoxa2 in chicken cranial NCC leads to a reduction in cell 

proliferation and increase in cell death at early postmigratory NC stages, later on resulting in 

hypoplasia of nasal and mandibular buds (Creuzet et al., 2002; Garcez et al., 2014). However, in a 

genetic mouse model wherein Hox genes were globally upregulated in the whole NC after targeted 

deletion of the epigenetic repressor Ezh2, Schwarz et al. (2014) did not find differences in cranial 
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NCC proliferation and apoptosis; yet, these Ezh2 mutant mice exhibited severe defects in the NC-

derived craniofacial mesenchyme (Schwarz et al., 2014). As of note, in the present trunk NC in 

vitro experiments, the reduction of the total NCC number after Hoxa2 gene transfection was 

highly variable (ranging from 5 to 20%) compared with the GFP control condition (data not 

shown). Therefore, Hoxa2 may have an additional role in cephalic NCC, probably controlling cell 

death and/or cell division. Interestingly, Hox genes have been associated with autophagy control 

in Drosophila and vertebrate cells (Banreti et al., 2014; Yang et al., 2016). Moreover, recent 

findings suggest that integrity of the autophagy process is required during induction and 

delamination of chick NCC (Wang et al., 2015, 2017). Nevertheless, whether the action of Hox 

genes on NC mesenchymal progenitor development could involve regulation of autophagy is 

currently unknown. 

Myofibroblasts and neural cell types are not affected by Hoxa2 gain of function in cephalic and 

trunk NCC 

Besides mesenchymal derivatives, the NCC give rise to a broad array of cell types in vivo 

and in vitro, including melanocytes, myofibroblasts, and PNS neural (glial and neuronal) cells. 

Moreover, cephalic and trunk NCC comprise similar multipotent precursors endowed with neuro-

mesenchymal fate, that is, precursors capable of yielding both neural and mesenchymal cell types 

in vitro (Dupin et al., 2010; Dupin and Le Douarin, 2014). Considering the presence of multipotent 

cells in early NCC, we examined the influence of Hoxa2 on the differentiation of main NC-derived 

cell types, i.e., myofibroblasts, TH+ neurons, melanocytes and HNK1+ neuroglial precursors. 

Strikingly, Hoxa2 overexpression did not significantly alter the percentage of myofibroblasts and 

neural cells obtained in cephalic NC cultures. These results corroborate previous in vivo findings, 

which showed that Hox-positive rhombencephalic NCC, if grafted into a more anterior Hox-

negative domain of the NC, were still able to yield neural derivatives and vascular smooth muscle 

cells, not skeletal cells, in the host cranial territories, while maintaining their Hox status (Couly et 

al., 1998; Creuzet et al., 2002; Couly et al., 2002). Similar conclusions regarding neuronal and glial 

differentiation ability were obtained in Ezh2 mutant mouse embryos, wherein multiple Hox genes 

are derepressed in the cephalic NCC (Schwarz et al., 2014). In summary, our results support the 

hypothesis that Hoxa2 exerts a negative, lineage-specific effect on cephalic and trunk NCC 

mesenchymal fate in vitro. In contrast, as already observed for Runx2+ osteoprogenitors, the 
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production of myofibroblasts and neural cell types by cultured trunk NCC was not significantly 

modified after Hoxc10 gain of function. 

Concluding remarks 

In this work, we have shown that the in vitro mesenchymal differentiation capacity of 

trunk NCC is partially impaired by Hoxa2, not by Hoxc10, after overexpression of these genes in 

early trunk NCC. In addition, Hoxa2 decreased terminal differentiation of bone cells, chondrocytes 

and adipocytes in long-term trunk NC cultures. In cephalic NCC, Hoxa2 gain of function also 

reduced the number of NC-derived bone progenitors in vitro. Altogether, these data suggest a 

similar dependence of trunk and cephalic NCC on a Hoxa2-negative status in order to allow the 

outcome of Runx2-expressing osteoblasts.  

It has been proposed that, in primitive vertebrates, both cephalic and trunk NC may have 

been at the origin of skeletal cells that formed the superficial dermal bone covering the whole 

body of these extinct animals (Smith, 1991; Smith and Hall, 1990; Le Douarin and Dupin, 2012). 

From our data, which reveal that Hoxa2 acts on both cephalic and trunk NC to prevent their 

mesenchymal outcome, we hypothesize that this regulation by Hoxa2 may represent a common 

mechanism to restrict NC mesenchymal fate, shared by NCC along the entire neural axis. 

Nonetheless, recent findings suggested that the mesenchymal molecular program of avian 

cephalic NCC relies upon the expression of a defined set of three cranial-specific transcription 

factors (Simoes-Costa and Bronner, 2016). Strikingly, Simoes-Costa and Bronner (2016) could 

reprogram the fate of trunk NCC in an in vivo context, when, after ectopic expression of the 

selected set of genes, the trunk NCC were grafted in the cephalic NC migratory stream of a host 

embryo (Simoes-Costa and Bronner, 2016). Therefore, these and our present data illustrate that 

multiple regulatory pathways might be necessary to control the expression of the diverse 

mesenchymal fates in the NCC: potentially inhibitory factors include Hox genes, particularly Hoxa2, 

while cranial NC-specific positive regulators would reinforce mesenchymal fate in the cephalic 

NCC. Whether Hox genes could act upstream of these cranial NC-specific regulatory genes, to 

prevent their expression in trunk NCC, is an interesting issue for future investigation. 
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Figure 1: Temporal expression pattern of Runx2 and Hox genes in trunk NCC cultures. (A) 

Schematic representation of NC isolation and culture procedure. Briefly, trunk neural tubes (from 

the level corresponding to 20-25 somites) were cultured for 18h (primary culture) after isolation 

from quail embryos of 2 days of incubation. Then, the NCC that had migrated from the explanted 

neural primordia were detached and sub-cultured (secondary culture) in specific medium 

conditions as described in Materials and Methods. The same procedure was applied to prepare 

cephalic NCC cultures from mesencephalon-anterior rhombencephalon isolated from 6-7ss quail 

embryos. (B, C and D). Data from RT-qPCR analysis of trunk NCC between day-0 and day-8 of 

secondary culture are shown as fold change of gene expression at different time-points relative to 
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day-0 (corresponding to the initial plating of the NCC). (B) An upregulation of Runx2 gene 

expression was concomitant with downregulation of particular Hox genes, namely Hoxa2, Hoxc6, 

Hoxc8, Hoxc9 and Hoxc10 (C). (D) Expression of another set of Hox genes (Hoxb5, Hoxa7, Hoxb8, 

and Hoxd10) remains unchanged during the culture period, while Hoxb9 expression slightly 

increased at d day-2. Values were normalized in all samples with GAPDH control gene. *p<0.05; 

**p<0.01, ***p<0,001. 
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Figure 2: Forced expression of Hoxa2 in early trunk NCC decreases the number of Runx2-positive 

osteoprogenitors.  At day-0, trunk NCC were transfected at time of plating in secondary culture 

with either pCX-Hoxa2, pCX-Hoxc10 or control pCX-GFP plasmids. After 6 days in culture, Runx2-

positive cells were detected by in situ hybridization (A, E, I) or immunostaining (C, G, K). (B, F, J) 

DAPI nuclear staining; (D, H, L) Merge of Runx2 and DAPI. As compared with control cultures (pCX-

GFP) (A-D), fewer NCC expressing Runx2 transcripts and Runx2 protein were detected after gain of 

function of Hoxa2 (E-H), not Hoxc10 (I-L). Quantification of cells expressing Runx2 transcripts (M) 

and protein (N) (percentage of DAPI positive cells) in day-6-cultures showed that Hoxa2 decreased 

the total number of osteoprogenitors by approximately 60%. Scale bar: 100µm 

(immunofluorescence images); 200µm (in situ hybridization). ns= not significant, *p<0.05; 

**p<0.01, ***p<0,001. 
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Figure 3: Osteoblastic, chondrocytic and adipocytic terminal differentiation of trunk NCC in vitro 

is reduced after gain of function of Hoxa2. Trunk NCC were transfected with pCX-GFP or pCX-

Hoxa2 at day-0 and further maintained until day-25 of culture before staining with Alizarin Red (A, 

D), Alcian Blue (B, E) and Oil Red O (C, F) to identify bone calcified matrix, cartilaginous matrix and 

lipid-storing adipocytes, respectively. Compared with GFP control plasmid (A-C), Hoxa2 forced 

expression (D-F) resulted in smaller regions of NC cultures containing differentiated bone, cartilage 

and fat cells. (G-I) Quantification of the total area of staining for Alizarin Red (G), Alcian Blue (H) 

and Oil Red O (I) after transfection with Hoxa2 or GFP plasmids; data are expressed as the mean 

area of staining normalized by the total cell number per culture (Alizarin red: n= 61 cultures in 4 

independent experiments; Alcian Blue and Oil Red O: n=46 cultures in 3 independent 

experiments). Scale bar: 500µm, ***p<0,001. 
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Figure 4: Myofibroblasts and neural-melanocytic cells are not affected by Hoxa2 and Hoxc10 

forced expression in trunk NCC. Immunolabeling of TH+ neurons (A-I), MelEM+ melanocytes (B-J), 

SMA+ myofibroblasts (C-K) and HNK1+ neural progenitors (D-L) in day-6 trunk NCC cultures after 

overexpression of Hoxa2, Hoxc10 or GFP at day-0. (M-P) For each phenotypic marker, the total 

number of immunoreactive cells is expressed as the percentage of total cell nuclei per culture; no 

significant differences are observed between Hoxa2, Hoxc10 and GFP transfected cultures (n=6 

cultures in 3 independent experiments; for all markers). (M-P). Scale bar: 100µm. ns= not 

significant, *p<0.05; **p<0.01, ***p<0,001. 
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Figure 5: Forced expression of Hoxa2 in cephalic NCC reduced the differentiation of 

osteoprogenitors, but not the other differentiated cell types. 

Mesencephalic NCC isolated as described in Materials and Methods were transfected at day-0 of 

culture with either pCX-Hoxa2 or control pCX-GFP plasmids. DAPI nuclear staining and expression 

of differentiation markers were analyzed after 6 days of culture on a 3T3 feeder-layer as described 

previously (Calloni et al., 2009). DAPI staining (A, B) shows the presence of small nuclei of quail 
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NCC surrounding the large nuclei of mouse 3T3 cells; Runx2 immunoreactivity (B, F) and merge of 

Runx2 and DAPI (C, G); Hoxa2 forced expression led to 55% reduction of the percentage of Runx2+ 

cells per culture (D) and to 40% reduction of the total number of nuclei per culture (H), as 

compared with control GFP (n=15 cultures analyzed for both GFP and Hoxa2). No differences were 

observed in the relative cell number of other NC derivatives, including TH+ neurons (I, M, Q), 

MelEM+ melanocytes (J, N, R), αSMA+ myofibroblasts (K, O, S) and HNK1+ neural progenitors (L, P, 

T); quantifications are expressed as a percentage of DAPI positive nuclei in each condition (n=17, 

6, 10, and 11 cultures in 3 independent experiments, for analysis of TH, MelEM, αSMA and HNK1, 

respectively). Scale bar: 100µm. ns= not significant, ***p<0,001. 
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Supplementary Figure 1: Repertoire of Hox genes expressed in early trunk NCC cultures. RT-qPCR 

analysis of Hox gene expression was performed on trunk NCC after 18h of in vitro migration from 

explanted neural tubes (day-0). Data are shown as fold-change relative to Hox expression in 

cephalic migratory NCC (isolated at midbrain level from 10ss quail embryos). Ten Hox genes (i.e., 

Hoxa2, Hoxb5, Hoxc6, Hoxa7, Hoxb8, Hoxc8, Hoxb9, Hoxc9, Hoxc10 and Hoxd10) were highly 

amplified in trunk NCC, as compared to mesencephalic NCC. Values were normalized in all samples 

with GAPDH control gene. *p<0.05; **p<0.01, ***p<0,001.  
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Supplementary Figure 2: Expression of GFP, Hoxa2 and Hoxc10 after transfection in trunk NCC. 

(A-C) Trunk NCC transfected at day-0 with pCX-GFP plasmid (A) Phase contrast; (B) GFP 

fluorescence (C) Merge of GFP and phase contrast. Note that the majority of trunk NCC express 

GFP. (D) Hoxa2 mRNA expression 24h after pCX-Hoxa2 transfection at day-0. (E) Hoxc10 mRNA 

expression 24h after pCX-Hoxc10 transfection at day-0. Transfected trunk NCC strongly expressed 

these Hox genes (purple cells). Scale bar: 200µm. 
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Table S1: RT-qPCR primer sequences 

 

 

 

Gene Forward Primer Reverse Primer Insert (bp) Accession Number

Hoxa2 CCACAAAGACCCCCTTGAAATC CAAGAGCTGCGTGTTGGTGTA 85 NM_205150.2

Hoxb5 GGACCTTAGCATCAACCGCT ACGCCTGTCTAAACCTGCTC 107 AY875647.1

Hoxc6 TGCAGCGTATGAACTCCCAC TCCAACGTTTGGTAACGGGA 88 XM_003643454.2

Hoxa7 GCTCCTTTGCAAGCAACTCC CGGAAGAGAACGGGCTTTGA 120 NM_204595.1

Hoxb8 ACCCGAGCAACTTCTATGGC GTGTACTGCACCAAGTCCGA 82 NM_204911.1

Hoxc8 CCATCACACCACGTCCAAGA GCACGGGTTTTGCTGGTATC 78 NM_204893.1

Hoxb9 TCCAATCAAAGGCCCAGCTT GCTGGGTTGGTTTGATCTGTTC 83 XM_001233690.3

Hoxc9 CAGAGCAGCGCAGACAATTC TTCGCGACGGGATTGTTAGG 102 NM_001277282.1

Hoxc10 ACCCAAGGAACGAGCATCTG AACTCACTTTAGCCACCGGG 81 XM_001233805.3

Hoxd10 GAGGCATCCGCAATTACACG GCAGGAGAGCTGTTGGGAAA 113 XM_001234538.3

Runx2 ACAGGACTTCCAGCCATCAC GCTTGTGAACTGCCTGGGAT 90 NM_204128.1
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III. Additional results 

 

Clonal analyses of trunk NC progenitors after Hoxa2 ectopic expression 

 

 In a previous study of the in vitro developmental potentials of quail trunk NCC, it was 

shown that multipotent neural-mesenchymal progenitors are at the origin of osteoblasts and 

adipocytes (Coelho-Aguiar et al., 2013). In order to understand further the influence of Hoxa2 

on NCC mesenchymal fate and multipotency, we have investigated this issue at single-cell 

resolution, by in vitro cloning analyses of trunk NCC that overexpressed Hoxa2. For this 

purpose, we constructed a plasmid in which the chicken Hoxa2 gene is expressed together 

with a GFP reporter (“Hoxa2-GFP”). This plasmid also contains transposon-responsive 

elements, to stably introduce this exogenous construct in NCC by Tol2-mediated gene transfer 

(see below) (Sato et al., 2007). Moreover, we tested different cloning strategies aiming to 

achieve the best cloning efficiencies to permit the analyses of the variety of trunk NC 

derivatives.  

In this Chapter, we present these additional results, which complement our analyses of 

Hoxa2 effects on trunk NCC, described in Article n°2. 

 

Materials and Methods 

 

Expression plasmids 

We isolated full-length chicken Hoxa2 by PCR amplification of cDNA sequence, 

followed by subcloning into the XbaI-MfeI site of pT2K-CAGGS-H2B-EGFP expression plasmid (a 

gift from X. Morin) (Sato et al., 2007). This new plasmid (pT2K-CAGGS-Hoxa2-H2B-EGFP) is 

hereafter named “Hoxa2-GFP”. Clontech's In-Fusion HD Cloning Kit (Clontech) was used for 

PCR amplification and thermocycling conditions were programmed according to the 

manufacturer's instructions. All constructs were further sequenced for accuracy. The pT2K-

CAGGS-H2B-EGFP was utilized in all experiments as a control plasmid, hereafter named 

“control-GFP”. All constructs were amplified in endotoxin-free condition (MaxiPrep kit, 

Qiagen). For genome integration, we used a pCAGGS-T2TP plasmid, which encodes a 

transposase sequence, under control of a CAGGS promoter (a gift from J. Livet). The 
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transposase is responsible for the excision of the construct flanked by Tol2 sequences in the 

“control-GFP” and “Hoxa2-GFP” plasmids, and then subsequently integrate these constructs 

into the host genome (Figure 17). 

 

            

Figure 17: Scheme of Hoxa2-GFP and Transposase vectors used to mediate permanent 
transfection of Hoxa2-GFP in trunk NCC  

 

Trunk NCC culture, transfection procedure and clonal analyses 

For trunk NC cultures, we obtained thoracic neural tubes, dissected and cultured as 

previously described by Calloni et al. (2007), Coelho-Aguiar et al. (2013) and described in 

details in the Materials and Methods section of Article 2. To obtain GFP-expressing cells before 

cloning, NCC were co-transfected with a pCAGGS-T2TP plasmid (0.35 µg) together with 

“control-GFP” or “Hoxa2-GFP” plasmids (0.65 µg), during NCC primary culture, that is, in 

cultures containing NCC undergoing delamination and migration from the trunk neural 

primordia. After 18 hours of culture, explanted neural tubes were detached and discarded. The 

outgrowth NCC were then trypsinized, centrifuged and the percentage of GFP+ cells was 

quantified with an inverted fluorescence microscope (Nikon-Eclipse Ti-E). The mixed cell 

suspension (containing 5-10% of GFP+ cells) was used for the cloning experiments. We 

attempted three different cloning methods, briefly described below (for more details, see next 

sections): 

The first strategy consisted in manually selecting single GFP+ NCC, under the control of 

an inverted fluorescence microscope, and plating them individually using a glass micropipette 

as previously described (Baroffio et al., 1988, 1991; Real et al., 2006). Second, we attempted to 

automatically clone GFP+ cells, by fluorescence activated cell sorting (FACS). NCC were 

resuspended in DMEM without FCS, filtered through a 30µm nylon membrane (MACS, Miltenyl 
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Biotec) and kept on ice before sorting using a MoFlo Astrios sorter (Beckman-Counter). The 

gates for GFP+ and GFP- cells were determined using an equivalent non-transfected trunk NCC 

suspension. Finally, we performed GFP+ NCC cloning by limiting dilution as follows: we 

quantified the proportion of GFP+ per total cell number in the NCC suspension (transfection 

efficiency), followed by appropriate dilution of this initial cell suspension in order to obtain 0.5 

GFP+ cells per well. For instance, in the experiments with 10% transfection efficiency, we 

plated 5 NCC per well (for expected 0.5 GFP+ and 4.5 GFP-cells). 

 In all in vitro cloning experiments, further culturing and phenotypic analyses were 

performed with a similar protocol. Briefly, trunk NCC were seeded on a growth-arrested 3T3 

feeder-layer in 96-well plates (TPP) and cultured with DMEM medium containing 10% FCS and 

2% chicken embryo extract (80ng/ml). Clonal cultures were maintained at 37°C in a humidified 

5% CO2 incubator and the medium was changed every three days. To identify the different 

cell types in individual clones, cells were fixed with 4% formaldehyde for 30min at day-10 and 

immunostained with lineage-specific markers (Runx2, TH, SMA and HNK1 antibodies, as 

previously described in Materials and Methods section of Article 2). Melanocytes were 

identified in the colonies by the presence of melanin. 

 

Results 

 

- Forced expression of Hoxa2-GFP plasmid reduces the number of Runx2+ progenitors in 

trunk NC cultures 

 Before starting the clonal analyses, we tested whether the overexpression of “Hoxa2-

GFP” plasmid enabled to trigger the same effects on Runx2-expressing cells in mass cultures of 

trunk NCC, as we observed previously with the pCX-Hoxa2 construct (see Results Article 2). We 

found a reduced number of Runx2-positive cells, also stained with GFP, in NCC transfected 

with Hoxa2-GFP, in comparison with control cultures (control-GFP) (Figure X). The 

quantification allowed us to detect a similar level of Runx2 inhibition, as recorded with the 

pCX-Hoxa2 construct. These results allowed us to proceed to clonal analyses. 
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Figure 18: Runx2 expression after NCC transfection with integrative plasmids. Trunk NCC 
cultures after overexpression of either Hoxa2-GFP or control-GFP (Ctrl-GFP) integrative 
plasmids. (A,E) DAPI nuclear staining; (B,F) GFP expression driven by Hox or ctrl plasmids. (C,G) 
Runx2 immunostaining; (D,H) Merge GFP and Runx2. Arrows indicate Runx2+ GFP+ cells. (I) 
Quantification of double-stained NCC is given by the ratio of Runx2+GFP+ cells per total 
number of GFP+ cells. Bar:50µm; Unpaired t-test, **p<0.01; n=3. 

 

- Set up of an ideal protocol for individually plating GFP+ trunk NCC 

 We tried three different strategies in order to get clonal seeding of GFP+ cells. The first 

one consisted in manually cloning GFP+ cells, with a similar protocol used by our group 

(Baroffio et al., 1988, 1991, Calloni et al., 2007, 2009; Trentin et al., 2004; Coelho-Aguiar et al., 

2013; Real et al., 2006). For this purpose, we manually picked GFP+ cells from a trunk NCC 

suspension 24h after transfection, by using a thin glass micropipette. However, since the 

transfection efficiency with integrative plasmids was very low (below 10%), it became 

challenging and time-consuming to manually select fluorescent these cells in order to get 

clonal cultures in a proper amount to allow further investigations. 

I 



Results   

126 
 

Secondly, we decided to use FACS to purify GFP+ NCC and immediately clone them by 

automatic single-cell plating, which ensured that only one GFP+ cell was plated. This strategy 

led to a high efficiency of clone formation, since at least 30% of the wells contained GFP+ 

colonies on the day of analysis (day 10). Nevertheless, almost none of the clones contained 

Runx2+ osteoblasts in these conditions, assessed in three independent experiments. In fact, in 

these clones, even those transfected with the control plasmid, the NCC differentiated mainly 

into melanocytes and HNK1+ cells. Such unexpected results indicate that, after FACS sorting 

and cloning, the NCC population does not behave as unsorted NCC in terms of differentiation. 

One possible explanation is that multipotent NC progenitors either do not survive or “lose” 

their multipotency when submitted to an automatic sorting technique. Indeed, only the most 

frequent NC derivatives (HNK1+ neuroglial progenitors and melanocytes), which are known as 

a resistant cell population in culture, originated from clones plated using this technique. 

To overcome these technical difficulties, we finally decided to clone these cells by a 

limiting dilution method, adapted from NCC cloning protocols published by Sieber-Blum and 

colleagues (Sieber-Blum and Cohen, 1980; Ito and Sieber-Blum, 1991). Briefly, we manually 

plated a mixed cell suspension (GFP+/GFP- NCC) at a dilution in order to obtain 0.5 GFP+ cell 

per well in average. Albeit the probability to get wells without GFP+ cells increased with this 

method, this procedure helped to ensure that GFP+ colonies detected on day-10 originated 

from a single GFP+ cell. However, we obtained a rather limited number of GFP+ colonies at 

day-10, in four different experiments, since the cloning efficiency was really low (about 3%). 

This is strikingly different compared to the clonal efficiency obtained by manual or automatic 

single-cell plating, which was of at least 30% (Trentin et al., 2004; Calloni et al., 2007, 2009; 

Coelho-Aguiar et al., 2013; and our data). Nevertheless, the limiting dilution strategy allowed 

us to analyze, at least in a preliminary way, the effects of Hoxa2 on trunk NCC differentiation 

at the single-cell level. 

 

- Single cell analyses of Hoxa2 effects on trunk NCC multipotency (preliminary results) 

The results obtained in four independent experiments of NCC cloning in vitro by 

limiting dilution are depicted in Table 1. In addition, some examples of transfected colonies 

observed at day-10 are shown in Figures 19 and 20. 

The first notable result obtained in these experiments was the difference in the total 

number of cells per clone between control-GFP and Hoxa2-GFP NCC colonies. This number 
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reduced approximately by 65% in Hoxa2-GFP condition, in comparison with GFP control 

plasmid (Table 1). This finding indicates that Hoxa2 impairs the overall survival and/or 

proliferation of cloned NCC. Secondly, the analysis of cell phenotypes revealed several 

differences between the two NCC population: unipotent clones (colonies with only one cell 

type) represented approximately 11.5% of the clones in the GFP-control condition, whereas 

this number reaches 35.3% of those expressing Hoxa2-GFP plasmid, suggesting that Hoxa2 

overexpression increased the generation of clones with a restricted progeny. In addition, we 

could observe a slight reduction in the number of colonies with mesenchymal derivatives in 

Hoxa2 condition: the number of colonies with Runx2+ cells and αSMA+ myofibroblasts 

decreased by 25% and 48%, respectively, compared to control colonies. In contrast, Hoxa2 

forced expression promoted the formation of a higher number of clones containing 

melanocytes (Table 1).  

In summary, these data, although preliminary, have shown that Hoxa2 forced 

expression reduced the size of the progeny and the production of mesenchymal derivatives by 

single NCC while increasing the clones containing melanocytes. Although these results confirm 

the negative influence of Hoxa2 on osteoblasts, they also slightly contrast with our previous 

data obtained in mass cultures with pCX-plasmids, where no effects on the differentiation of 

neural-melanocytic cell types were observed after transient Hoxa2 overexpression. 

Nevertheless, these clonal experiments shall be interpreted carefully. Albeit the 

significant reduction in the Hoxa2 colony size was highly reproducible between four 

independent experiments, the limited total number of colonies analyzed (26 in control and 34 

in Hoxa2), precluded an analysis representative of the diversity of trunk NCC multipotent 

progenitors, which was previously described by our group (Coelho-Aguiar et al., 2013). Further 

experiments and analysis of a larger number of clones are needed to allow us to assess all the 

possible effects of Hoxa2 on the in vitro development of single trunk NCC. 
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Trunk NC Clones Control-GFP Hoxa2-GFP

Number of clones 26 34

Cloning efficiency (%) 2.7 3.4

Number of cells per clone 941.2 ± 279.7 331.3 ± 136.3  p<0.01

HNK1+ clones 24 28

HNK1+ clones (%) 92.3 82.4

Runx2+ clones 16 16

Runx2+ clones (%) 61.5 47.1  #

TH+ clones 9 12

TH+ clones (%) 34.6 35.3

αSMA+ clones 15 10

αSMA+ clones (%) 57.7 29.4  #

Melanocytes+ clones 2 6

Melanocytes+ clones (%) 7.7 17.7  #

Unipotent clones 3 12

Unipotent clones (%) 11.5 35.3  #

Bipotent clones 8 9

Bipotent clones (%) 30.8 26.5

Tripotent clones 12 10

Tripotent clones (%) 46.2 29.4

Quadripotent clones 3 3

Quadripotent clones (%) 11.5 8.8

 

Table 1: Quantification of clonal efficiency, number of cells per clone and clone phenotypes 

derived from trunk NCC after control-GFP and Hoxa2-GFP overexpression. 
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Figure 19: Examples of GFP+ bipotent clones obtained in limiting dilution clonal analyses. (A-
F) Same region of a glial-fibroblast (GF) bipotent colony showing fluorescent labelings as 
indicated. Observe co-localization of nuclear GFP in HNK1+ and SMA+ cells (arrows in E and F, 
respectively). (G-L) Views of the same region of a bipotent GFP+ clone containing both HNK1+ 
glial/neuroglial progenitors and pigmented melanocytes (GP colony). Observe co-localization 
of nuclear GFP with HNK1 and with melanin (arrows in K and L, respectively). Bar 100µm. 
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Figure 20: Example of a tripotent clone obtained in limiting dilution clonal analyses. Same 
region of a tripotent colony derived from transfected NCC, showing distinct fluorescent 
labelings as indicated. Note the presence of neuroglial progenitors (HNK1+), adrenergic 
neurons (TH+) and osteoblasts (Runx2+), and co-localization of nuclear GFP+ with each lineage 
specific marker (arrows in F, G, H). Bar 100µm. 
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I. Six1 expression in NC and mesoderm-derived 

craniofacial territories of the avian embryo 

The development of the head of vertebrates involves morphogenetic movements, 

differentiation and growth of mesenchyme-derived tissues and organs, which result from 

coordinated interactions between two main cellular populations of distinct embryonic sources: 

the mesoderm and the NC. On one hand, the contribution of the cephalic NC to a large part of 

head mesenchymal tissues, including bones, cartilage, dermis and adipose deposits in the 

entire face and the ventral neck, is a unique characteristic of vertebrates. On the other hand, 

the cranial mesoderm is responsible for the development and organization of the head 

muscles and blood vessel endothelia; it also yields bones of the posterior head and 

participates, with the NCC, to the genesis of the otic capsule and to the formation of the 

basisphenoid bone of cranial base. It is thus crucial to understand the regulatory cellular and 

molecular mechanisms whereby these two cell populations develop in concert and properly 

assemble in order to produce the diverse mesenchymal tissues that construct the complex 

head of the vertebrates.  

Much remains to be known regarding the regulatory genes that control orchestrated 

co-development of cells derived from the NC and mesoderm in the forming head. In this line, 

we have investigated, in this Thesis, the germ-layer origin and differential fate of the cranial 

cells that express the transcription factor Six1 during head formation in the avian embryo. Six1 

belongs to the Six homeobox family of transcription factors (Kawakami et al., 2000), known to 

control many organ development in vertebrates (Kumar, 2009), including craniofacial bones, 

the ear and tongue muscles (Laclef et al., 2003b; a). In human branchio-oto-renal syndrome, 

hearing loss and branchial defects result from Six1 haploinsufficiency (Kochhar et al., 2008; Ruf 

et al., 2004). During mammalian and avian development, Six1 exhibits broad expression in 

cranial mesenchymal tissues and ectodermal placode derivatives (Laclef et al., 2003b; Garcez 

et al., 2014; Sato et al., 2012). Nevertheless, in head development, the precise distribution of 

Six1-expressing cells, and Six1 function in the NC and mesoderm, are still unclear. 

In this work (see Article 1), we have presented the spatial-temporal expression of Six1 

protein in the head of the chick embryo in vivo; in addition, by using quail-chick 

transplantations in ovo, we have determined the respective contribution of cephalic NC and 

paraxial mesoderm to Six1-expressing cell populations in early head development. We 

observed Six1 expression in many ectodermal derivatives, such as the olfactory, otic and 
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epibranchial placodes. These findings corroborate current literature regarding Six1 gene as a 

general placodal marker (Schlosser, 2010; Baker and Bronner-Fraser, 2001). Here we will focus 

on the main results concerning the differential expression of Six1 in mesenchymal tissues of 

NC and mesoderm origin. 

 Our analysis of Six1 mRNA and Six1 protein expression at early stages of chick 

embryo development (E1.5 to E3), and in quail-chick chimeras, first provides new information 

on the initial distribution of Six1-positive NCC and mesodermal cells. At early migratory stages, 

mesencephalic and rhombencephalic NCC did not express Six1 while this factor was widely 

expressed in the early cephalic mesoderm. Thus, Six1 did not colocalize with Sox10, a NC 

“specifier” expressed during NCC migration. When we examined cephalic NCC cultured in vitro 

after 17hours of migration from explanted mesencephalon, we similarly did not detect Six1-

immunoreactive cells (data not shown). These results contradict a previous report describing 

Six1 mRNA expression at early cranial NC migration stages in whole-mount preparations of the 

chick embryo (Garcez et al., 2014). Nevertheless, our data are in agreement with the analysis 

of Six1 expression in embryonic sections by Sato and colleagues (2012); moreover, these 

authors did not find any activity of Six1 enhancers in the HNK1+ cranial NCC, after 

electroporation of genomic constructs in the chick embryo. Furthermore, during formation of 

the neural fold in the chick, Six1 expression was mainly observed in the lateral neural plate 

border, i.e. the future placodal region, and only transiently in a subtle set of early cranial NCC 

close to this region (Roellig et al., 2017). 

 Despite apparent absence of significant expression of Six1 at early migatory stages, 

we found that, when NCC deploy in the cephalic mesenchyme of E2 and E3 chick embryo, they 

start to broadly express Six1, particularly in the periocular, perinasal and periotic regions, as 

illustrated by the presence of numerous Six1-immunoreactive quail cells after cranial NC 

transplantation. In contrast, in the pre-otic regions, a modest contribution of mesodermal cells 

to the mesenchyme located in the vicinity of the trigeminal ganglion was observed after cranial 

mesoderm transplantations. Whether these Six1-expressing cells correspond to future muscle 

precursors or presumptive skeletogenic mesodermal cells remains to be investigated. A quite 

different distribution of Six1 was found in the cells engrafted into the BA mesenchyme of the 

host embryos: only mesodermal cells populating the core of the arch were positive for Six1 

whereas the NCC that settled in the BA periphery were negative. Since mesodermal cells 

located in the core of BAs are known to comprise myogenic precursors (Grenier et al., 2009; 

Couly et al., 1993), it is quite plausible that Six1 is involved in myogenesis in the jaw, similarly 

to its action on somitic-derived muscle precursors in the trunk (Laclef et al., 2003a). 
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 At later stages, in E7 chicken, Six1 expression was detected in several tissues and cell 

populations derived from the cranial NC. PNS neural derivatives expressing Six1 appeared 

limited to a subset of neurons in the trigeminal ganglion while NC-derived Sox10+ glial 

progenitors did not express Six1. The possibility that Six1-positive trigeminal neurons belong to 

the placodal-derived neuronal populations of the ganglion is supported by previous work in 

the chick and mouse that have identified Six1 as an important factor in development of PNS 

sensory neurons (Karpinski et al., 2016; Sato et al., 2012). 

 Regarding mesenchymal cell types of NC origin, at E7, Six1 was present in cells of the 

nasal septum and mesenchyme, and in periocular mesenchymal tissues. In the eye proper, Six1 

was not detected in the retina, lens, cornea and optic nerve. These results support previous 

findings showing that Six1, and the closely-related gene Six2, are not involved in the 

development of the eye in vertebrates, despite evolutionary homology of Six1 with Drosophila 

Sine oculis (Kawakami et al., 2000; Laclef and Maire, 2004). However, Six1-positive cells were 

clearly detected in differentiating periocular structures, such as the scleral cartilage and the 

presumptive choroid, which both are of NC origin in the chick (Creuzet et al., 2005a). 

Interestingly, in the nasal septum, Six1 was expressed both in chondrocytes and in 

perichondrium, although its expression was stronger in the perichondrium. Furthermore, Six1 

expression by chondrocytes derived from the cephalic NC was further verified in cultures of 

cephalic NCC, albeit the total number of Six1-positive cells in these cultures was rather limited 

(about 1%). Finally, we observed Six1-expressing cells dispersed in the mesenchyme adjacent 

to the dorsal mesencephalon, which suggests Six1 expression in precursors of the meninges, 

which are mesodermal-derived in this brain region (Couly et al., 1992). 

 Concerning mesodermal derivatives, our data reveal that Six1 is mainly expressed in 

the head skeletal muscles, which are formed by distinct components of the mesoderm (i.e., 

prechordal and cranial paraxial mesoderm for extraocular muscles, cranial paraxial mesoderm 

for BA muscles and somitic mesoderm for laryngeal and tongue muscles). These different types 

of muscles depend upon distinct regulatory gene networks for their specification (Sambasivan 

et al., 2011). Therefore, a common dependence on Six1 gene activity is likely a feature of the 

molecular program controlling myogenesis both in trunk and head. 

 In the auditory system, Six1 plays multiple roles and its deletion in mice severely 

affects the outer, middle and inner ear structures (Laclef et al., 2003b; Ozaki et al., 2004). Our 

data showing Six1-expressing cells in the chick ventral otic placode at E3 and the inner ear 

epithelium at E7, are consistent with its known essential action in cochlear and vestibular 
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development. We also found a contribution of Six1-positive cells to the formation of ventral 

cartilage of the otic capsule. Due to the triple origin of the otic capsule in the avian embryo, 

from the NC, the cranial and somitic mesoderm (Couly et al., 1993), further experiments are 

needed to delineate the tissular origin and the fate of this subset of Six1-expressing 

mesenchymal cells. 

 Finally, at least in the head, Six1 seems to be deprived of any contribution to 

mesodermal and NC-derived components of the vascular system: we did not observe Six1 

expression in blood vessel endothelia at all stages analyzed, and the NC-derived vascular 

smooth muscle cells and pericytes did not express Six1 in E7 chicken embryo. However, in 

cultures of isolated quail cephalic NCC, we identified the presence of a small subset of NCC 

that expressed both Six1 and αSMA, an early marker of myofibroblasts and smooth muscle 

cells, which develop in mouse and avian NC cultures (Shah et al., 1996; Trentin et al., 2004; 

Calloni et al., 2007, 2009). 

 In sum, the careful examination of Six1 expression and the use of fate mapping of Six1-

expressing cells in quail-chick chimeras have shown that, in mesenchymal tissues, this gene 

exhibits a complex and dynamic expression pattern in cells derived from both the cranial NC 

and mesoderm. In particular Six1-expressing cells of NC origin contribute to the formation of 

periocular structures and facial cartilages, whereas Six1 in mesodermal cells has an important 

distribution in skeletal myogenic cells of the head. Our results therefore open the way to 

further improve the understanding of Six1 function in head tissue morphogenesis. In contrast 

to placodal development regulation by Six1 gene (Neilson et al., 2010; Yan et al., 2015), Six1 

downstream targets in mesenchymal tissues are still poorly known. Further experiments 

involving the selective knockdown of Six1 gene, in a temporal and NC- or mesoderm-specific 

manner, would be beneficial for a further understanding of the roles of Six1 in the 

differentiation, patterning and assembly of mesenchymal cell subpopulations from the NC and 

mesoderm, during development of the vertebrate head. 
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II. Regulation of NC mesenchymal differentiation 

potentials by Hox genes 

The capacity to differentiate into mesenchymal cell types is a remarkable feature of 

the cephalic NCC, which contribute to the formation of the main mesenchymal-derived 

structures in the head of vertebrates (for references, Dupin and Le Douarin, 2014). 

Mesenchymal fate appears to be restricted to this anterior axial level of the NC, since the trunk 

NC contribution to mesenchymal tissues is limited to a few particular examples in the mouse 

and zebrafish, far from representing the same variety of mesenchymal cell types as those 

generated by cephalic NCC (Joseph et al., 2004; Kague et al., 2012). Nevertheless, the 

mesenchymal potentiality of trunk NCC might be actually not so much restricted, since recent 

findings from our laboratory have shown that quail trunk NCC comprise multipotent 

progenitors that are able, under permissive environmental conditions, to generating a vast 

array of mesenchymal cell types in vitro, including osteoblasts, chondrocytes, and adipocytes 

(Calloni et al., 2007; Coelho-Aguiar et al., 2013). The in vitro clonal analysis performed in these 

studies also revealed that the trunk NC stem cell population is mainly composed of progenitors 

with a dual neural-mesenchymal differentiation capacity, similarly to the cephalic NCC (Calloni 

et al., 2007, 2009). These findings suggest that the differentiation of mesenchymal multipotent 

NC progenitors could probably rely on similar molecular mechanisms, along the whole neural 

axis. In this aspect, Hox genes, particularly Hoxa2, have been described as transcription factors 

that can prevent head mesenchyme formation if ectopically expressed in the Hox-free domain 

of the cranial NC (Couly et al., 2002; Creuzet et al., 2002, 2004). 

In part 2 of this Thesis manuscript, we have presented experiments aimed at 

investigating how and to which extent Hox genes can affect the production of mesenchymal 

derivatives by the cephalic and trunk NCC, using in vitro culture systems that proved to be 

appropriate for the characterization of avian NC mesenchymal progenitors. 

 

II.1 Selected Hox genes are downregulated concomitantly with 
trunk NCC differentiation in vitro 

 
Previous work by our group has shown that trunk NCC display mesenchymal potentials 

in vitro as do cephalic NCC in vivo and in vitro (Le Douarin and Kalcheim, 1999; Calloni et al., 

2007; Billon et al., 2007; Coelho-Aguiar et al., 2013). In this Thesis work, we hypothesized that 

the ability of trunk NCC to differentiate into mesenchymal derivatives in vitro could involve a 
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downregulation of Hox genes when cultured trunk NCC are maintained in pro-mesenchymal 

conditions. A first strategy was to detect, by RT-qPCR, which members of the Hox genes were 

modulated in culture. It has been shown that expression of Hoxb4 and genes of the Hox9 

paralog group decreases in long-term NC cultures giving rise to cartilage (Abzhanov et al., 

2003; Ido and Ito, 2006). Nevertheless, other mesenchymal cell lineages, such as osteoblasts 

and adipocytes, have not yet been investigated. In the present work, we investigated Hox 

genes from paralog groups 5 to 10, which are expressed at the level of the neural tube used in 

our experiments to perform NC cultures (Burke et al., 1995 and our data). We additionally 

investigated the expression of Hoxa2, the first Hox gene to be described as involved in 

mesenchymal differentiation of the cephalic NCC in vivo in chick and mouse embryos (Creuzet 

et al., 2002; Kanzler et al., 1998). By RT-qPCR, we thus identified a particular subset of Hox 

genes, i.e., Hoxa2, Hoxc6, Hoxc8, Hoxc9 and Hoxc10, significantly downregulated during the 

progression of trunk NCC development in vitro. Interestingly, their downregulation occurred 

with the same time-course as the onset of expression of Runx2, the earliest mesenchymal 

lineage marker gene expressed in these cultures. This result supports our hypothesis that a 

downregulation of a subset of Hox genes could be involved in the regulation of mesenchymal 

potentialities of trunk NCC. Of note, not all the different Hox genes analyzed were 

downregulated in trunk NCC in vitro, most of them maintaining a rather constant expression 

level at all times analyzed (between day-0 and day-8 of culture). Our results thus argue that 

individual Hox genes, rather than global Hox gene reduction, might play a role in NCC 

differentiation. However, whether the expression profile of Hox genes can change at later 

times of culture, such as the case of Hoxb4 in Abzhanov and colleagues work (Abzhanov et al., 

2003), remains to be further investigated. 

 

II.2 Hoxa2 and Hoxc10 gain of function in cultured trunk NCC: 
effects on early skeletogenesis  

 
To investigate whether Hox genes are capable of affecting mesenchymal 

differentiation of trunk NCC in vitro, we focused on two Hox genes that we found to be 

downregulated in PCR analyses: Hoxa2 and Hoxc10. We performed gain of function 

experiments, using transfections of early NCC with pCX plasmids, before the onset of Runx2 

expression. After six days in culture, we observed a drastic reduction in the number of Runx2-

expressing osteoprogenitors formed after Hoxa2 overexpression in the NCC, suggesting that 

Hoxa2 negatively influences the onset of bone progenitors in the cultures. Indeed, when 

Hoxa2 was depleted in murine embryos, Runx2 expression was increased in the BAs (Kanzler et 
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al., 1998). On the other hand, ectopic expression of Hoxa2 specifically in cephalic NCC resulted 

in downregulation of Runx2 and Sox9 (Kitazawa et al., 2015; Garcez et al., 2014; 

Grammatopoulos et al., 2000). These results suggest that Hoxa2 alters Runx2 regulation in 

both cephalic and trunk NCC. Interestingly, our data also showed that forced expression of 

Hoxc10 did not significantly reduce Runx2 expression by trunk NCC, suggesting that not all the 

Hox genes could account for the same effects of Hoxa2. 

The molecular mechanism by which Hoxa2 could influence Runx2 expression in NCC 

remains somewhat elusive. One possibility is that Hoxa2 directly modulates Runx2 

transcription, as putative Hox consensus sequences have been already characterized in mouse 

Runx2 promoter (Hassan et al., 2007). Nevertheless, one of these Hox-binding sequences was 

related to activation by Hoxa10 of Runx2 transcriptional activity in mammalian long bones and 

vertebra, and not with Runx2 repression, as it seems to be the case in mesenchymal 

progenitors derived from the avian NCC. Interestingly, this putative sequence displayed a 

strong affinity with Hoxa10, not with other Hox factors, such as Hoxa9, Hoxa11, and Hoxa13 

(Hassan et al., 2007).  

These results allow us to address some considerations about the specificity of Hox and 

Runx2 interactions: 

Firstly, although Hox transcription factors have similar homeodomains and apparently 

low DNA-binding specificity (Hrycaj and Wellik, 2016), in the case of Runx2 regulation, it 

appears that distinct Hox genes possess different binding affinities to the Runx2 promoter. In 

fact, the presence of specific Hox co-factors, also expressed in Hox-positive tissues, help in 

DNA-binding site selection and in conferring functional specificity to individual Hox genes 

(Mann et al., 2009). 

Secondly, besides their crucial role in vertebral and limb bone identity and patterning 

(Kessel and Gruss, 1991; Mallo et al., 2010), particular Hox genes are necessary for activation 

of Runx2 gene, instead of a repression of this gene. Indeed, in mesoderm-derived tissues, 

some of the posterior Hox genes can activate Runx2, Sox9, and other bone master genes, 

allowing the progression of endochondral ossification (Hassan et al., 2007, 2009; Gross et al., 

2012; Neufeld et al., 2014). In this line, it should be interesting to understand which are the 

factors involved in Hox inhibition during bone formation, specifically in the NCC. 

Alternatively to a possible direct action on Runx2 transcription, Hoxa2 could 

downregulate other genes, which mediate induction of Runx2 and/or other molecular effector 

genes in bone differentiation by NCC. In this regard, Six2 gene was recently described as 
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encoding a direct downstream factor of Hoxa2 in the NC-derived BA2 mesenchyme in the 

mouse (Kutejova et al., 2008, 2005). Moreover, Six2 inhibition in the head mesenchyme led to 

hypoplasia of the craniofacial skeleton in mouse and chick embryos, opposite to the 

phenotype resulting from Hoxa2 overexpression (He et al., 2010; Garcez et al., 2014). 

Nevertheless, Six2 downstream factors involved in bone differentiation are currently unknown. 

Importantly, in avian trunk NCC, our preliminary data argue against the possibility that Hoxa2 

effects could be mediated by an inhibition of Six2, since this latter gene, and its closely related 

Six1, were not found to be expressed during trunk NC mesenchymal differentiation in our in 

vitro model (data not shown). In summary, the genetic regulatory cascade involving Hoxa2 and 

Runx2 in cephalic and trunk NCC needs to be further investigated. 

 

II.3 Hoxa2 gain of function influences the terminal 
differentiation of trunk NC mesenchymal cells 

 
By using a culture protocol previously devised by our group to assess the mesenchymal 

differentiation capacities of trunk NCC (Coelho-Aguiar et al., 2013), we aimed to investigate if 

Hoxa2 forced expression could affect, after Runx2 reduction, the formation of mature 

differentiated bone cells in trunk NC long-term cultures. In addition, this culture protocol, 

which is permissive for osteogenic, chondrogenic and adipogenic full differentiation, allowed 

us to investigate Hoxa2 effects on the main mesenchymal lineages derived from trunk NCC in 

vitro. After trunk NCC transfection on the first day of culture with Hoxa2 plasmid, the analysis 

of bone and cartilage mineralized regions, and lipid storing adipocytes identified in 25 day- 

cultures showed that overexpression of Hoxa2 led to several alterations in the late 

development of NC mesenchymal cells, as discussed below. 

First, we observed a significant reduction in the number and the area occupied by 

mineralized bone regions after Hoxa2 forced expression, in comparison with the control 

condition transfected with a GFP plasmid. These results suggest that early effects of Hoxa2 on 

Runx2-positive osteoprogenitors could have prevented, later on, the formation of bone matrix 

structures derived from these trunk NC progenitors. It would be interesting to overexpress 

Hoxa2 at later stages and to examine its influence on bone matrix formation, for instance, 

after the appearance of Runx2 osteoprogenitors; nevertheless, transfection of trunk NCC at 

late stages of culture turned out to be inefficient to target a considerable number of cells, at 

least with the expression plasmids used in these experiments (data not shown). The high 

heterogeneity of the differentiated NC cell types that develop in late cultures, also probably 
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precluded efficient targeting of bone progenitors by Hoxa2 plasmids. To overcome this issue, 

one strategy would be to isolate Runx2-positive cells by FACS and overexpress Hoxa2 in a 

purified Runx2-positive population in culture. Another possibility would be to induce Hoxa2 

expression under the control of Runx2 promoter sequences, as done by Massip and colleagues 

to investigate Hoxa2 effects in committed chondrocytes in vivo (Massip et al., 2007). These 

strategies would allow us to further address the downstream effects of Hoxa2 on Runx2 

specified progenitors. 

Furthermore, we observed that Hoxa2 gain of function significantly decreased cartilage 

mineralization by approximately 70% as compared with the GFP-control plasmid. The onset of 

cartilage ECM in long-term avian trunk NC cultures has been previously reported (McGonnell 

and Graham, 2002), and induction of cartilage-specific collagen 2 was associated with Hoxb4 

and Hox9 downregulation in chick and mouse long-term trunk NC cultures (Abzhanov et al., 

2003; Ido and Ito, 2006). However, our data revealed, for the first time, a direct effect of 

Hoxa2 on the production of fully differentiated cartilage by trunk NCC in vitro. In vivo, 

endochondral ossification and cartilage formation in the whole body were greatly impaired in 

mouse embryos where Hoxa2 was ectopically expressed in immature chondrocytes expressing 

collagen 2a1. In these mice, Hoxa2 overexpression resulted in overall chondrodysplasia and 

delayed cartilage hypertrophy and mineralization (Massip et al., 2007). As of note, in trunk 

quail NC cultures, the majority of cartilage regions (Alcian Blue-positive) were likewise labeled 

with Alizarin Red, suggesting an endochondral-like ossification process in vitro, as previously 

described (Coelho-Aguiar et al., 2013). 

In long-term cultures of quail trunk NCC, we could also observe an effect of Hoxa2 on 

adipogenesis. Hoxa2 gain of function notably reduced the surface area containing lipid-storing 

adipocytes (OilRed O positive). To our knowledge, it is the first time that Hoxa2 forced 

expression is associated with impairment of adipogenesis, especially in trunk NCC. Other Hox 

genes, however, have been previously related to adipogenesis regulation, and it is known that 

the particular Hox genes involved in this process depend on the anteroposterior position of fat 

deposits in the body (Seifert et al., 2015). Some reports suggested that Hoxa4, Hoxa7, and 

Hoxd4 were upregulated during in vitro adipogenesis of 3T3-L1 pre-adipocytic cells, although a 

specific function of these genes was not described (Cowherd et al., 1997). Regarding adipocytic 

cell types, the expression of Hox from paralogous group 4 appears to be associated with a fate 

decision between white and brown adipose tissues (Cantile et al., 2003). Moreover, Hoxc8 

inhibition, via miR-196a action, is very likely required for the specification of beige adipocytes, 

which are induced upon cold exposure in mouse white adipose tissue (Trajkovski and Lodish, 
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2013). Finally, the transcription factor Pbx1 was recently described as a required factor for 

early steps of adipogenesis in neuralized mouse ESC and human multipotent adipose-derived 

stem cells (Monteiro et al., 2011). Notably, Pbx1 is a member of TALE family of transcription 

factors, which acts as co-factor of several Hox genes, helping to activate or repress many Hox 

target genes, in multiple contexts (Mann et al., 2009; Capellini et al., 2011). Whether Hoxa2 

regulation of the adipogenic fate could have a relationship with its binding to Pbx1, in trunk 

NCC cultures, is not known. 

 

II.4 Ectopic expression of Hoxa2 reduces the number of Runx2 
progenitors in cephalic NCC 

 
Since we showed that Hoxa2 overexpression significantly reduces Runx2+ cells and 

impairs terminal differentiation of mesenchymal derivatives in trunk NC cultures, we decided 

to evaluated the effect of Hoxa2 ectopic expression on cephalic NCC in culture. To our 

knowledge, Hoxa2 effects on Runx2 expression have never been investigated in isolated 

cephalic NCC. With this objective, we performed cephalic NC cultures with a specific protocol 

previously established by our laboratory (Calloni et al., 2009). In this experimental approach, 

cephalic NCC were cultured on 3T3 feeder layers, which allows the differentiation of numerous 

Runx2-expressing cells in the culture. Moreover, this procedure permits the initial plating of a 

small number of cephalic NCC, which represents a significant advantage, due to the difficulty 

to obtain a high amount of cephalic NCC in primary cultures (around 10,000 cells per 

experiment). With the aim to target only the NCC, but not the feeder-layer cells, we carried 

out the transfections in primary cultures (i.e. containing explanted neural tubes and migratory 

NCC), three hours before harvesting and replating the NCC. Although the amount of cephalic 

NCC expressing these plasmids barely exceeded 50% of the total cell population, we still 

observed a significant reduction of Runx2 osteoprogenitors, in comparison with GFP control 

condition. Interestingly, we also noticed a decrease in the total cell number, indicating that we 

cannot exclude an effect of Hoxa2 on the whole NCC population, possibly including other 

mesenchymal progenitors, for chondrocytes and adipocytes, obtained from cephalic NCC in 

vitro (Calloni et al., 2007, 2009; Billon et al., 2007). Notably, when Hoxa2 was ectopically 

expressed in the cephalic NC of chicken embryos, nasal and mandibular buds failed to develop, 

and this was partially associated with a reduction of cell proliferation and an increase of 

apoptosis in early NCC (Creuzet et al., 2002; Garcez et al., 2014). Conversely, when Hox genes 

were upregulated in mouse cephalic NCC, due to the loss of Ezh2, no clear differences in NCC 

proliferation and cell death rates were observed (Schwarz et al., 2014). In trunk NC 
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experiments, we also observed a reduction in the total cell number after Hoxa2 transfection. 

However, this was highly variable between different experiments, ranging from 5 to 20% of 

reduction compared with the control condition (data not shown). Therefore, the effects on 

NCC death and proliferation after Hoxa2 overexpression remain to be clarified. 

 

II.5 Myofibroblasts and neural cell types are not affected by 
Hoxa2 gain of function in cephalic and trunk NCC 

 
As previously shown by our group, avian cephalic and trunk NCC comprise multipotent 

precursors, generating a similar vast array of NC-derived cell types in vitro (Dupin et al., 2010; 

Dupin and Le Douarin, 2014). Taking this into consideration, we aimed to evaluate Hoxa2 

effects on NC derivatives other than bone cells, such as SMA+ myofibroblasts, TH+ neurons, 

Melem+ melanocytes and HNK1+ neuroglial precursors. In this regard, the phenotypic analysis 

of cephalic NC 6 day-cultures following Hoxa2 gain of function, did not show any significant 

differences in the percentage of these cell types. In vivo, avian Hox-positive NCC transplanted 

anteriorly into a Hox-negative environment, although they cannot yield skeleton, are still able 

to generate neural derivatives and musculo-connective cells in the wall of head blood vessels 

(Couly et al., 1998, 2002; Nakamura and Ayer-le Lièvre, 1982). Interestingly, in the recent 

paper by Schwarz and colleagues (Schwarz et al., 2014), where a wide range of Hox genes have 

been derepressed by Ezh2 deletion in murine NCC, glial and neuronal differentiation were not 

affected. These results indicate that Hox genes predominantly act on cranial NC-derived 

mesenchymal cell types. Similarly, in quail trunk NCC, gain of function of Hoxa2 did not modify 

the generation of these cell types in vitro. Taken together, these results reinforce the 

hypothesis that Hoxa2 has a more pronounced, if not exclusive, effect on cephalic and trunk 

NCC mesenchymal derivatives in vitro. In contrast, it is noteworthy that Hoxc10 gain of 

function did not significantly affect the production of Runx2-positive osteoprogenitors, 

myofibroblasts and neural cell types derived from trunk NCC, therefore emphasizing the 

differential action of individual Hox genes in NCC fate. 

 

II.6 Single cell analyses of Hoxa2 effects on trunk NCC 
multipotency (preliminary results) 

 
Previous experiments have shown that osteoblasts derive from several types of 

multipotent trunk NCC in vitro (Coelho-Aguiar et al., 2013). How Hoxa2 regulates 
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mesenchymal potentials in these progenitors is currently unknown. To be able to analyze 

Hoxa2 influence on trunk NC multipotent progenitors at single cell resolution, we performed 

NCC clonal analysis in vitro. As described in Additional Results Chapter (Results, section III), we 

generated a genetic construct to be able to permanently express chicken Hoxa2 gene together 

with a GFP reporter (“Hoxa2-GFP”). In this way, we could identify Hoxa2-expressing cells using 

GFP expression. 

Among different tested methods for preparing single GFP+ NCC cultures, we obtained 

highest clonal efficiency with a protocol based on the limiting dilution technique. However, 

after analysis at 10 days of culture, only approximately 3% of single plated GFP+ cells 

generated a colony. This efficiency is really low, compared with previous in vitro clonal 

analyses from our group, in which NCC exhibited a clonal efficiency of at least 30% (Trentin et 

al., 2004; Calloni et al., 2007, 2009; Coelho-Aguiar et al., 2013). Although the basic culture 

conditions were similar, some particularities of the present experiments might have 

contributed to this weak outcome: - the low transfection efficiency with “ctrl-GFP” and 

“Hoxa2-GFP” plasmids, which was below 10%, - the initial plating of 0.5% GFP+ cells per well, 

which helped to ensure clonality, but increased the probability to yield wells without GFP+ 

cells, and finally, - the intrinsic characteristics of the transposon vector system, in which we 

can not guarantee that all transfected cells will, later on, integrate the insert and produce a 

progeny with a stable expression of the construct. As a consequence, the total number of 

clones we have obtained, in four independent experiments, is not large enough to enable us to 

draw firm conclusions about the cellular mechanisms whereby Hoxa2 influences trunk NC 

multipotency. Nonetheless, these preliminary results allow us to prepare some hypotheses, as 

discussed below. 

Firstly, although the cloning efficiency was similar between “Hoxa2-GFP” and “GFP-

control” conditions, the number of cells per clone was significantly reduced after Hoxa2 forced 

expression, suggesting an effect of this gene on single NCC survival or proliferation. Secondly, 

we detected more clones yielding only a single cell type in Hoxa2-GFP compared with control 

condition. This result indicates that Hoxa2 could trigger a restriction of fate diversification in 

trunk NC progenitors. The reduction in the variety of cell types in NCC progeny could also be a 

secondary effect, resulting from Hoxa2 influence on the total cell number of NCC progeny. In 

that case, all progenitor types would be equally reduced. In contrast, we observed that clones 

containing TH+ neurons, for instance, accounted for 30% of clones in both Hoxa2-treated and 

GFP-control colonies. Thus, it is likely that the decrease in the diversity of cell types results 

from the regulation of NCC fate by Hoxa2, independently of its effects on total cell number. 
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Moreover, a clear correlation between colony size and diversity of cell types within a colony 

has never been recorded in previous in vitro NCC clonal analyses performed by our group 

(Calloni et al., 2007 and unpublished data), meaning that highly multipotent cells can yield 

colonies of variable sizes. Finally, we could also observe that the number of clones containing 

pigment cells were over-represented whereas clones containing mesenchymal NC derivatives, 

such as osteoblasts and myofibroblasts, were mildly reduced in Hoxa2-expressing clones. 

These preliminary results suggest that Hoxa2 could negatively regulate the commitment of 

trunk NC multipotent progenitors towards a mesenchymal fate. 

 

II.7 Concluding remarks 

In the present work, we first determined that a set of Hox genes, including Hoxa2 and 

Hoxc10, is downregulated in trunk NCC, when grown in culture conditions appropriate to 

disclose their differentiation into mesenchymal cell types. Next, we showed that the 

mesenchymal differentiation capacity of trunk NCC is partially inhibited following 

overexpression of Hoxa2, but not Hoxc10, at early stages of culture. This effect was associated 

later on with impairment of terminal differentiation of bone cells, chondrocytes, and 

adipocytes in long-term trunk NC cultures. Moreover, in cephalic NCC, Hoxa2 reduced the 

number of bone progenitors formed in vitro. Our data therefore suggest a similar dependence 

on a Hoxa2-negative status for the outcome of Runx2-positive osteoblasts in both trunk and 

cephalic NCC. 

The precise role of Hoxa2 gene on NC mesenchymal progenitors remains to be 

elucidated. One possibility is that Hoxa2 acts on cell survival or proliferation, which is 

supported by our preliminary data from single NCC cultures (see Results, section III), and by in 

vivo experiments of Hoxa2 gain of function in the chicken NCC (Creuzet et al., 2002; Garcez et 

al., 2014). Recently, Hox gene regulation has been associated with autophagy control in 

Drosophila and vertebrate cells (Banreti et al., 2014; Yang et al., 2016). Interestingly, some 

reports have suggested that a tight regulation of autophagy may be crucial during early steps 

of chick NC development, by playing a dual role in early NCC proliferation and death (Wang et 

al., 2015, 2017). Thus, it should be interesting to investigate whether Hox effects on NC 

mesenchymal progenitors involve a possible regulation of autophagy. 

Nevertheless, other possibilities cannot be excluded, since no clear effect on cell 

division and apoptosis was reported in early murine ectomesenchymal NCC that failed to 

generate proper skeletal structures when overexpressing Hox genes (Schwarz et al., 2014). We 
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cannot rule out the possibility that Hox genes could also have an impact on NCC fate decision, 

since ectopic expression of Hoxa2 in BA1 reduced Sox9 and Runx2 expression in transgenic 

mice (Kanzler et al., 1998; Kitazawa et al., 2015). In our preliminary in vitro clonal analyses, we 

observed an increase of fate-restricted clones after Hoxa2 forced expression in trunk NCC. A 

possible role of Hox genes in NC stem cell fate decision has to be further clarified in cephalic 

and trunk NCC. 

Finally, since Hoxa2 produces similar effects on cephalic and trunk NC mesenchymal 

derivatives in vitro, we can speculate about the possibility that this regulation could represent 

an ancient mechanism shared by NCC all along the neural axis, since it is argued that, in 

primitive vertebrates, both cephalic and trunk NCC have played a role in the ontogeny of 

skeletal cells (Smith, 1991; Smith and Hall, 1990; Le Douarin and Dupin, 2012 for a review). 

Nonetheless, a recent study has shown that, as opposed to trunk NCC, cephalic NCC express 

specific transcription factors, which act to promote their mesenchymal fate (Simoes-Costa and 

Bronner, 2016). These findings suggest that, during evolution, either cephalic NCC have 

acquired new factors that were necessary to reinforce and regulate their mesenchymal fate, or 

the trunk NCC may have lost these factors, which could explain why the trunk NC of amniotes 

is virtually devoid of mesenchymal derivatives in vivo. Strikingly, avian trunk NCC can be 

partially reprogrammed in vivo to a cephalic NC-like identity by ectopic expression of these 

factors, followed by grafting into a permissive environment, that is, in cephalic NC migratory 

stream (Simoes-Costa and Bronner, 2016). It should be interesting to investigate whether Hox 

genes could act upstream of these transcription factors, for example by preventing their 

expression in trunk NCC. Taken together, in view of the remarkable multipotency of NCC and 

their astonishing role in skeletogenesis of the “New Head” of vertebrates (Gans and Northcutt, 

1983), multiple regulatory networks might be necessary to endow NCC with their various 

mesenchymal fate. 
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RESUME 
 

 

La crête neurale (CN) est une structure multipotente transitoire de l’embryon de 

vertébrés. La CN céphalique (CNC), mais pas la CN troncale (CNT), fournit des tissus 

mésenchymateux (squelette, derme et tissus adipeux de la face). Cette capacité de la 

CNC est liée à l’absence d’expression des gènes de type Hox. Cependant, les cellules de 

la CNT possèdent des potentialités mésenchymateuses à l’état dormant, qui peuvent 

s’exprimer en culture. Les mécanismes moléculaires qui régulent les potentialités 

mésenchymateuses de la CN le long de l’axe antéro-postérieur restent incompris. Chez 

l’embryon d’oiseau, nous avons étudié l’influence des gènes des facteurs de 

transcription Hox et Six sur la formation du mésenchyme par la CN. D’une part, nos 

analyses in vivo et in vitro montrent que Six1 est présent dans des cellules 

mésenchymateuses de la CN et du mésoderme, suggérant un rôle dans le 

développement musculo-squelettique de la tête. D’autre part, nous avons testé 

l’hypothèse d’un rôle inhibiteur des facteurs Hox. Nos résultats montrent que 

l’expression ectopique de Hoxa2 dans les cellules de CNC en culture inhibe la 

production d’ostéoblastes, sans affecter celle des cellules nerveuses et mélanocytaires. 

Dans la CNT, nous avons trouvé que la différentiation osseuse, cartilagineuse et 

adipocytaire, est fortement réduite après la surexpression de Hoxa2, sans effet sur les 

autres phénotypes dérivés de la CN. Ces résultats suggèrent que les potentialités 

mésenchymateuses de la CN sont régulées, au moins en partie, par un mécanisme 

commun aux cellules de CNC et CNT, mettant en jeu une inhibition de l’activité du 

gène Hoxa2. 



 

 

 

ABSTRACT 
 

 

 

The neural crest (NC) is a transitory multipotent structure of the vertebrate embryo. 

The cephalic NC (CNC), not the trunk NC (TNC), gives rise to mesenchymal cell types 

(contributing to craniofacial skeleton, dermis and adipose tissue). This capacity of the 

CNC has been linked to the absence of Hox gene expression in the most rostral region 

of the embryo. However, TNC cells do have mesenchymal potentialities, although in a 

dormant state in vivo, but which can be disclosed after NC in vitro culture. The 

molecular mechanisms that regulate mesenchymal potentials of the NC cells along the 

rostral-caudal axis are still elusive. Here, we have used the avian embryo model to 

investigate the possible influence on NC mesenchymal fate, of Hox and Six 

transcription factor genes. On the one hand, in vivo and in vitro culture analyses show 

that Six1 gene is expressed in mesenchymal cell populations derived from both cranial 

NC and mesoderm, suggesting a role for Six1 in muscle-skeletal development in the 

head. On the other hand, we have tested the hypothesis of an inhibitory action of Hox 

genes on NC cell mesenchymal differentiation using NC in vitro cultures. In CNC cells, 

we found that ectopic expression of Hoxa2 strongly reduces the production of 

osteoblasts, while neural and melanocytic phenotypes are unaffected. In the cultured 

CNT cells, overexpression of Hoxa2 results in largely impaired differentiation into bone 

cells, chondrocytes and adipocytes, whereas other NC derivatives are unchanged. 

These results suggest that mesenchymal potentials of the CNC and TNC are controlled, 

at least in part, via a common mechanism that involves inhibition of Hoxa2 gene 

activity. 


