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Resumé

Dans cette thèse on étudie les effets de taille finie au-dessus de la dimension critique

supérieure dc. Les effets de taille finie y ont longtemps été incomplètement compris,

en particulier vis-à-vis de leur dépendance en fonction des conditions aux limites. La

violation de la relation d’échelle dite d’hyperscaling a été l’un des aspects les plus évidents

des difficultés rencontrées. Le désaccord avec le scaling usuel est dû au caractère de

variable non pertinente dangereuse du terme de self-interaction dans la théorie en φ4.

Celle-ci était considérée comme dangereuse pour la densité d’énergie libre et les fonctions

thermodynamiques associées, mais pas dans le secteur des corrélations. Récemment, un

schéma nouveau de scaling a été proposé dans lequel la longueur de corrélation joue

un rôle central et est également affectée par la variable non pertinente dangereuse. Ce

nouveau schéma, appelé QFSS, est basé sur le fait que la longueur de corrélation exhibe

au lieu du scaling usuel ξ ∼ L un comportement en puissance de la taille finie ξ ∼ Lϙ.

Ce pseudo-exposant critique ϙ est lié à la dimension critique supérieure et à la variable

dangereuse. Au-dessous de dc, cet exposant prend la valeur ϙ = 1, mais au-dessus, il

vaut ϙ = d/dc.

Le schéma QFSS est parvenu à réconcilier les exposants de champs moyen et le Finite-

Size-Scaling tel que dérivé du Groupe de Renormalisation pour les modèles avec interac-

tions à courte portée au-dessus de dc en conditions aux limites périodiques. Si ϙ est un

exposant universel, la validité de la théorie doit toutefois s’étendre également aux condi-

tions de bords libres. Des tests initiaux dans de telles conditions ont mis en évidence de

nouvelles difficultés : alors que le QFSS est valable au point pseudo-critique auquel les

grandeurs thermodynamiques telles que la susceptibilité manifestent un pic à taillle finie,

au point critique on a pensé que c’était le FSS standard qui prévalait avec les exposants

de champ moyen et ξ ∼ L. On montre dans ce travail qu’il en va différemment de la sit-

uation au point critique et qu’à la place ce sont les exposants gaussiens qui s’appliquent

en l’absence de variable non pertinente dangereuse. Pour mettre en évidence ce résultat,

nous avons mené des simulations de modèles avec interactions à longue portée, qui peu-

vent être à volonté étudiés au-dessus de leur dimension critique supérieure. Nous avons

aussi développé une étude des modes de Fourier qui permet de fournir des exemples de

quantités non affectées par la présence de la variable non pertinente dangereuse.



Abstract

In this project finite-size size scaling above the upper critical dimension dc is investigated.

Finite-size scaling there has long been poorly understood, especially its dependency on

boundary conditions. The violation of the hyperscaling relation above dc has also been

one of the most visible issues. The breakdown in standard scaling is due to the dangerous

irrelevant variables presented in the self-interacting term in the φ4 theory, which were

considered dangerous to the free energy density and associated thermodynamic func-

tions, but not to the correlation sector. Recently, a modified finite-size scaling scheme

has been proposed, which considers that the correlation length actually plays a pivotal

role and is affected by dangerous variables too. This new scheme, named QFSS, con-

siders that the correlation length, instead of having standard scaling behaviour ξ ∼ L,

scales as ξ ∼ Lϙ. This pseudocritical exponent is connected to the critical dimension

and dangerous variables. Below dc this exponent takes the value ϙ = 1, but above the

upper critical dimension it is ϙ = d/dc.

QFSS succeeded in reconciling the mean-field exponents and FSS derived from the

renormalisation-group for the models with short-range interactions above dc with pe-

riodic boundary conditions. If ϙ is an universal exponent, the validity of that theory

should also hold for the free boundary conditions. Initial tests for such systems faced

new problems. Whereas QFSS is valid at pseudocritical points where quantities such

as the magnetic susceptibility experience a peak for finite systems, at critical points

the standard FSS seemed to prevail, i.e., mean-field exponents with ξ ∼ L. Here, we

show that this last picture at critical point is not correct and instead the exponents that

applied there actually arise from the Gaussian fixed-point FSS where the dangerous

variables are suppressed. To achieve this aim, we study Ising models with long-range

interaction, which can be tuned above dc, with periodic and free boundary conditions.

We also include a study of the Fourier modes which can be used as an example of scaling

quantities without dangerous variables.
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Chapter 1

Introduction and outline

Phase transitions can be categorised in two types: first-order transition and con-

tinuous, depending on the behaviour of certain observables near to the transition

point. At a first-order phase transition, quantities such as the internal energy, the

first derivative of the free energy, experience a sudden change as a certain parame-

ter (e.g., temperature) is tuned. This occurs, for example when a solid is heated up

and melted to a liquid, or to a vapour as the system changes its internal structure

at a molecular level. By contrast, at continuous transitions the internal energy

is continuous across the transition. But its derivative, the specific heat, may ex-

perience a non-analyticity, such as a divergence, there. These are sometimes also

referred to as first- and second-order phase transition, respectively.

The macroscopic critical behaviour of such for many-body particles systems de-

pends only on a limited number of properties. These include the dimensionality of

the systems, any symmetries of its Hamiltonian and on the range of inter-molecular

forces. Critical behaviour is independent of many other system properties includ-

ing the geometry of the microscopic substrate (whether it is a square or triangular

lattice) and the boundary conditions.

1
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Systems which manifest such phase transitions contain huge (infinite) numbers of

degrees of freedom, and have to be examined from the statistical physics point

of view. Such complexity can be characterised through thermodynamic density

functions. Within these types of transitions one finds that physical systems of a

priori different natures can be described by the same scaling power-laws. In that

case we say that they belong to the same universality class. For example although

superfluity, superconductivity and ferromagnetism are very different physically,

such systems can belong to the same universality class provided they have the

same dimensionalities, symmetries and range of interactions.

After the invention of modern computers and their continuous development, com-

puter simulations rapidly spread in science and technology as an alternative to

experimental research as a means to verify (and falsify) theoretical work. Thanks

to their great versatility, computer simulations have become an essential tool for re-

search. Nowadays computational work is considered one of the pillars of research

together with the experimental and theoretical work. Specially for condensed

matter physics computer simulations are indispensable because of the enormous

numbers of constituent particles comprising such systems. As a result, many

new techniques have been developed and optimized. With such strong compu-

tational techniques, we can use stochastic techniques though Monte Carlo (MC)

algorithms, which allow us to simulate many-body spin systems, and so reproduce

its behaviour in order to study critical phenomena.

The motivation for this work is to achieve a better understanding of the critical

phenomena that happens at phase transitions above the upper critical dimension

where mean-field theories apply. Concretely we focus on ferromagnetic spin mod-

els which experience a continuous phase transition where quantities such as the

correlation length diverge at the critical point. This project aims to investigate a

new picture for the critical phenomena above the upper critical dimension, gath-

ering together theory and simulation work. It is divided into chapters are given
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by the following structure.

In Chapter 2 we revisit the finite-size scaling (FSS) above the upper critical dimen-

sion dc. There we shall show the breakdown of standard scaling behaviour is caused

by dangerous irrelevant variables (DIVs) which arise from the self-interaction term

in the φ4 theory. In fact, in the regime above dc, scaling should be compatible

with predictions coming from mean-field theory (MFT). Standard renormalisation-

group (RG) theory, which is strongly supported by many other studies and widely

used successfully in many different models, is not directly able to achieve this

without the introduction of DIVs. We will demonstrate that DIVs are essential to

derive both the scaling laws for the infinite-volume system in the thermodynamic

limit as well as the finite-size counterpart laws for systems of finite volume.

In Chapter 3 we introduce the numerical techniques used in this work and how they

apply to Ising models with long-range interactions (LRIM). As an introduction to

the MC simulations, we recall the Metropolis algorithm. This is followed with the

implementation of different cluster algorithms, such as the multicluster Swendsen-

Wang or the single-cluster variant named the Wolff algorithm, which is employed to

simulated the 5D Ising model with nearest-neighbours interactions, named in this

project as short-range Ising model (SRIM). Then, we proceed to describe a new

variant of the algorithm suitable to simulate systems with long-range interactions.

We also show how to implement the correct set up of periodic boundary condition

(PBCs) for LRI models, through the Ewald sum method. Some aspects about

the estimators, autocorrelation times, error treatment and reweighting method

are shown too in this chapter.

In Chapter 4 we analyse FSS for the LRIM above dc. We include the 5D SRIM

which can be understood as a particular case of LRIM. Different boundaries condi-

tions are analysed, namely periodic and free boundary conditions (written PBCs

and FBCs, respectively). Quantities such as magnetisation, susceptibility and
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correlation length, among others, are studied to determine their power-law scaling

behaviours in finite systems. In order to understand deeply the consequences of

DIVs we also focus on the study of the Fourier modes of the theory.

In Chapter 5 we study the zeros of the partition function. The zeros located in

the complex plane for the external magnetic field are named Lee-Yang zeros, and

the complex temperature plane are named Fisher zeros. The scaling of these zeros

follow the corresponding FSS, above dc these scaling are predicted to follow QFSS

in line with chapter 4.

In Chapter 6, the project finishes with the study of LRIM at the critical dimension

where multiplicative logarithmic corrections are expected to the leading power

laws. There the logarithmic counterpart for the ϙ exponent claimed in chapter 4,

appears as ϙ̂ giving a behaviour to the correlation length as ξ ∼ L(lnL)ϙ̂.

In Chapter 7, we discuss the conclusions.



Chapter 2

Revisiting the finite-size scaling

above the upper critical

dimension

2.1 Introduction

The renormalisation-group was invented over four decades ago [1, 2]. Since then, it

stands as one of the pillars of modern physics. Given its fundamental importance,

there should be no doubt about its correctness, completeness and validity. FSS

is derived from RG considerations [3–5], despite in fact that it was heuristically

introduced [6] before in terms of scaling hypothesis. Therefore, if the RG formalism

is correct and fully understood, FSS should be too. However, for a long time, FSS

had not been completely understood above the upper critical dimension dc.

In particular, it had been supposed that some important features of MFT prevail

above the upper critical dimension. However, these fail to deliver the correct scal-

ing predictions. This results in a mismatch of the scaling predicted by MFT and

the predictions by RG. The situation is especially puzzling in systems with open

5
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boundary conditions. The breakdown of the mean-field scaling is connected to the

violation of the hyperscaling relation, which in turn is attributed to the critical

role of dangerous irrelevant variables in the renormalisation-group approach [7].

In an early attempt to repair FSS above dc, Binder et al. introduced a new entity

called the ‘thermodynamic length’ which scales as the system extent L above dc

and as the usual correlation length below dc [8–10]. Although this new artefact

worked, in the sense that it delivered the correct scaling behaviour for finite-size

systems, it was phenomenological, rather than fundamental. Binder summarised

the situation as “a rather disappointing state of affairs - although for the φ4 theory

in d = 5 dimensions all exponents are known, including those of the corrections

to scaling, and in principle very complete analytical calculations are possible, the

existing theories clearly are not so good”.

Therefore a revisiting of the foundations of the theory was merited, in order to

reconcile, not only in a phenomenological way, the FSS associated the RG with

the MFT. This chapter follows the lines of the new theory and reports on the

introduction of a new universal pseudocritical exponent ϙ (‘koppa’) which modifies

the scaling of the correlation length as ξ ∼ Lϙ. This new idea, proposed by Berche

and Kenna [11], also modifies FSS to a new scheme called Q-finite-size scaling

(QFSS). It plays an essential role in restoring the compatibility of the MFT and

the RG.

The chapter is arranged as follows. In section 2, a brief introduction to second-

order phase transitions is given. Section 3 recalls the scaling hypothesis and the

main field theories. In section 4 a brief summary of the old scheme of FSS is given,

together with a discussion of its strengths and weaknesses. The QFSS theory is

introduced in section 5. To focus on the main, crucial points of the new scheme, we

restrict our presentation to the ferromagnetic short-range interaction Ising models.

The theory can easily be extended to other models. For example, to study critical
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phenomena above the upper critical dimension in a physically realisable setting

one can introduce the long-range interactions into the Ising model. These lead

to a reduction in the critical dimensionality so that even 1D, 2D and 3D can fall

above dc. Such systems are experimental accessible, introducing a new level of

importance to FSS theory in high dimensions. We present the full analysis of

QFSS in Chapter 4.

2.2 Scaling at continuous phase transitions

Here we focus on ferromagnetic systems which manifest second-order or continuous

phase transitions. The archetypal model for the study of such critical phenomena is

the Ising model. Such phase transitions are characterized by a loss of spontaneous

magnetisation at the critical point, while some other observables, such as magnetic

susceptibility, heat capacity and correlation length, experience a divergence. This

behaviour at the critical point occurs in the thermodynamic limit; in finite systems

these singularities are modified to finite peaks, the positions of which are shifted

away from the critical temperature.

2.2.1 Thermodynamic and correlation functions

In order to give a brief description in the simplest manner, we use a d-dimensional

SRIM, concretely the nearest-neighbour Ising model as example. In this study we

consider only simple structures for substrates on which the Ising spins reside. To

this end, the spins si are located at the sites i, of a lattice so that every site is

spaced a distance a from its 2d neighbours. That means a chain for 1D, a square

lattice for 2D, a cubic lattice for 3D and hypercubic lattices for 4D and so on.

The number of particles (Ising spins) is N = Ld and the volume for such systems

is V = Nad. We henceforth set a = 1 to avoid having to track the constant when
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it plays no role in our considerations. The partition function of a finite system is

given by

ZL =
∑
{si}

e−βH[si], (2.1)

where the Hamiltonian is the total energy of a given configuration {si} with β =

1/kBT , where kB is the Boltzmann constant. For the simplest Ising model,

H = −J
∑
〈i,j〉

sisj +
∑
i

Hisi (2.2)

where the sum 〈i, j〉 only extends to nearest neighbours, the coupling J is a con-

stant (in other models it can depend on some special features and then it could be

inside the sum), and Hi is the external magnetic field at site i. Then the Helmholtz

free energy is related to the partition function through

FL = −kBT lnZL. (2.3)

The internal energy UL is given by UL = FL + TSL, where SL = −∂FL/∂T is the

entropy. Thus

UL = FL − T
∂FL
∂T

. (2.4)

In statistical mechanics the expectation value of the total energy is 〈E〉 = UL, so

if the system does not have any external magnetic field Hi = H = 0,

〈E〉 = − ∂

∂β
lnZL. (2.5)

Intensive quantities are more useful to describe the thermodynamic systems, so

one defines

fL =
FL
N
, and eL =

UL
N
, (2.6)
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respectively. Then we can derive the specific heat capacity from uL:

c =
∂eL
∂T

=
kBβ

2

N

(
〈E2〉 − 〈E〉2

)
. (2.7)

This is a measure of the fluctuation in the configurational energy about the mean.

Another important observable is the total magnetisation given by

M =
∑
i

si. (2.8)

The definitions for the magnetisation and the susceptibility are, respectively,

mL = −∂fL
∂H

=
〈|M |〉
N

, (2.9)

χL =
∂mL

∂H
=

β

N

(
〈M2〉 − 〈|M |〉2

)
. (2.10)

The correlation function G(r) and the correlation length ξL are also crucial when

describing critical phenomena. They are usually expressed in the thermodynamic

limit, L→∞, as

G(r) ∼ r−pD

[
r

ξ∞

]
. (2.11)

Two regimes can be distinguished; when r � ξ∞ the function on the right-hand

side takes the form D [r/ξ∞] ∼ exp (−r/ξ∞). When r � ξ∞ the correlation decay

becomes G(r) ∼ rp instead. In the spin model the correlation function is given in

terms of connected and unconnected versions, and both definitions are respectively

Gc(ri, rj) = 〈sisj〉 − 〈si〉〈sj〉, (2.12)

Gu(ri, rj) = 〈sisj〉, (2.13)
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where ri is the position of the ith spin si in the lattice site. The connected function

can be obtained from the energy function as

Gc(ri, rj) = − 1

βN

∂2f

∂Hj∂Hi

. (2.14)

2.2.2 Scaling and critical exponents

Physical systems which exhibit different phases of state have a transition between

phases at the Curie or critical point. The critical point is not universal but scaling

behaviour near to these transition points allows one to define the universality class

that they belong to. In order to conveniently describe these features near to the

critical point we define the reduced temperature as a dimensionless parameter

which vanishes at the critical point. It is given by

t =
T − Tc
Tc

. (2.15)

The other variable that controls the scaling of the observables at a phase transition

is the reduced external magnetic field given by

h =
H

T
. (2.16)

Near the transition point there is a set of observables, that yields crucial informa-

tion about the system and the consequences of the phase transition. These include

the internal energy; specific heat capacity; magnetisation with h = 0; magneti-

sation at the critical point, which depends on the external magnetic field, and

the susceptibility. In an ideal case as the thermodynamic limit, when the size of

the system is infinite (as indicated by the subscript), those observables behave in
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terms of t and h

e∞(t, 0) ∼ |t|1−α (2.17)

c∞(t, 0) ∼ |t|−α (2.18)

m∞(t, 0) ∼ |t|β (2.19)

m∞(0, h) ∼ |h|1/δ (2.20)

χ∞(t, 0) ∼ |t|−γ. (2.21)

These five quantities give us information about the energy and magnetic sectors

and the parameters α, β, γ and δ are critical exponents. To probe the correlation

sector too we introduce two more critical exponents:

ξ∞(t, 0) ∼ |t|−ν , (2.22)

G∞(r) ∼ r−(d−2+η). (2.23)

2.2.3 Scaling relations

The six critical exponents defined here are related to each other in such a way that

only two are independent. The scaling relations which link the critical exponents

were discovered in the 1960s. These famous expression are:

νd = 2− α, (2.24)

2β + γ = 2− α, (2.25)

β(δ − 1) = γ, (2.26)

ν(2− η) = γ. (2.27)

The hyperscaling relation Eq.(2.24), developed by Widom, it is the only one that

contains the dimension of the system. Originally proposed by Essam and Fisher,
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Eq.(2.25) is also associated with Rushbrooke, who rigorously proved a related in-

equality. Eq.(2.26) put forward by Widom and proven by Griffiths, who gives it

its name. The last relation, Eq.(2.27), was derived by Fisher through the dissi-

pation and fluctuation theorem. Above the upper critical dimension, the Landau

mean-field exponents obey all these relations apart from hyperscaling.

2.2.4 Fundamental theory of phase transitions

If one considers the complex variables for β and h, one finds for finite-size systems

that the partition function vanishes at certain values. In the 1950’s, Lee and Yang

studied in detail the zeros for the Ising model in the complex-h plane. Published in

[12, 13] under the inspiration of the fundamental theorem of algebra, it conformed

a theory of complex zeros of the partition function may be called the fundamental

theory of phase transitions [14]. They found that as the system approaches the

thermodynamic limit, its zeros condense onto curves which may impinge onto the

real axis. For T > Tc, the closest part respect to the real axis of these curves

is denominated Lee-Yang edge hY L. For second-order phase transitions it scales

toward the critical point following this power law

hY L ∼ t∆, (2.28)

where ∆ is the gap exponent. Same idea was then used by Fisher later on in [15]

to perform the study for zeros in the complex-β plane, since then known as Fisher

zeros. These zeros pinch the real axis at Tc in the thermodynamic limit.

2.2.5 Finite-size scaling hypothesis

The description above only applies for infinite volume systems. The effects of finite

volume are to shift the critical point and to change divergences into peaks. The
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shifted point depends on the system size L and is called the pseudocritical point

TL. The FSS hypothesis resides in the relation between the scaling functions in

the thermodynamic limit with their finite-size counterparts, where long-distance

behaviour is controlled by the ratio of the two length of the system L and ξ∞.

Let P (t, h) describe a generic observable scaling, setting h = 0 for simplicity, the

relation is given by

PL(tL)

P∞(t)
= Fp

[
L

ξ∞(t)

]
, (2.29)

where tL = |TL/Tc − 1| is the reduced pseudocritical temperature. In the thermo-

dynamic limit the scaling P∞(t) ∼ |t|−ρ. One fixes the scaling ratio x = L/ξ∞(t).

Then from Eq.(2.22) one finds that |t| ∼ x1/νL−1/ν . Introducing this relation into

Eq.(2.29), thus

PL(tL) = P∞(x1/νL−1/ν)Fp(x) ∼ Lρ/ν . (2.30)

This scaling PL(t) ∼ Lρ/ν actually not only describes the critical phenomena at

the pseudocritical point, but also in a narrow neighbourhood [16]. This region is

called scaling window and it can also include the critical point, delivering then a

similar scaling for both critical and pseudocritical point. In conclusion, inside the

scaling window one is allowed to replace the ξ∞ by system size L. Therefore the

FSS of the different observables are given by

cL(tL) ∼ Lα/ν , (2.31)

mL(tL) ∼ L−β/ν , (2.32)

χL(tL) ∼ Lγ/ν , (2.33)

ξL(tL) ∼ L, (2.34)

h1
L(tL) ∼ L−∆/ν . (2.35)

Where h1
L corresponds to the first Lee-Yang zero. As the system get closer to the

infinite volume, the tL is driven to the critical point following a scaling power law
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which is characterised by the shift exponent λ

tL ∼ L−λ. (2.36)

The scaling window associated to PL is described by a rounding exponent θ. The

rounding may be defined in terms of the width between the half heights of the

finite peak in the susceptibility,

∆T ∼ L−θ. (2.37)

These two exponents are predicted from standard FSS to take

λ =
1

ν
and θ =

1

ν
, (2.38)

which makes automatically λ = θ. However, these relations are not always satisfied

and may depend on boundary conditions. Specially above dc, λ and θ do not

manifest such standard form.

2.3 Widom’s scaling and field theories

In order to describe critical phenomena for phase transitions, Widom, a pioneer of

the scaling theories, proposed that the observables should be described by homoge-

neous density functions. Another crucial step was the achievement of description

of critical phenomena which produce critical exponents and their relations through

simple theories, such as mean-field or Landau theory.
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2.3.1 Widom’s scaling ansatz

Widom’s scaling ansatz was applied for the first time to the magnetisation [17],

m∞(t, h) = |t|βM±

(
h

|t|∆

)
, (2.39)

for the regime t → 0± and h → 0. If its argument is set to a constant and so

|t| ∼ h1/∆, the magnetisation can be re-expressed as m∞(t, h) ∼ hβ/∆ = h1/δ

and so the gap exponent identified as ∆ = βδ. Since the magnetisation must be

derivable from the energy, Widom proposed that singular part of the free energy

density is

f∞(t, h) = |t|2−αF±
(

h

|t|∆

)
, (2.40)

with the assumption that free energy also scales as the inverse correlation volume

f∞(t, h) ∼ ξ−d∞ . (2.41)

To describe completely scaling behaviour of the system an analogous formalism is

used for the correlation function

G∞(r, t, h) ∼ 1

rd−2+η
G±
[
r

ξ

h

|t|∆

]
. (2.42)

With this set of thermodynamic functions, the scaling relations in the last section

can easily be found [18]. The hyperscaling relation is obtained setting h = 0 in

Eq.(2.40) and (2.41), and using ξ∞ ∼ |t|−ν , then νd = 2−α. The magnetisation is

derived differentiating once Eq.(2.40) respect to the h, comparing with Eq.(2.39),

one gets ∆ = β+ γ. The susceptibility, differentiating the energy twice. To derive

the Fisher’s relation one starts from the fluctuation-dissipation theorem

χ∞(t) =

∫ ξ∞

0

ddr G∞(r, t, 0), (2.43)
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where the integral is bounded by the correlation length. Introducing firstly the

correlation function by Eq.(2.42) and replacing secondly the argument by the ratio

x = r/ξ∞(t),

χ∞(t) =

∫ ξ∞

0

dr r1−ηG±
[
r

ξ

]
= ξ2−η

∞

∫ 1

0

dx x1−ηG±[x]. (2.44)

In this sense, as χ∞ ∼ ξ2−η
∞ , one only has to replace both observables by their

scaling relation to identify γ = ν(2− η) [19].

2.3.2 Mean-field theory

As the name implies, in MFT an average field mL replaces the various values of the

magnetisation, making the model solvable as we shall now show. The Hamiltonian

of the Ising model given by Eq.(2.2) is transformed by replacing si → mL + δsi,

where mL = 〈si〉 and δsi is the fluctuation term. The Hamiltonian is then

H = J
∑
〈i,j〉

(mL + δsi)(mL + δsj)−H
∑
i

si. (2.45)

This Hamiltonian can be partitioned in two pieces, H = HMF + ∆H. The leading

term up to first order corrections

HMF = Jm2
L

∑
〈i,j〉

1− 2JmL

∑
〈i,j〉

si −H
∑
i

si, (2.46)

is kept and the second order term of fluctuations,

∆H = −J
∑
〈i,j〉

δsiδsj, (2.47)
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is dropped. The number of interactions per particle in the nearest-neighbour

version is given by the coordination number q = 2d. One can simplify HMF to

HMF =
q

2
NJm2

L − (qJmL +H)
∑
i

si, (2.48)

where we have used
∑
〈i,j〉 1 = qN/2 and

∑
〈i,j〉 si = (q/2)

∑
si
si. This mean-field

Hamiltonian allows one to compute analytically the partition function since it

looks like a single-body interaction, and one finds

ZMF = e−
q
2
βJm2

L (2 cosh[βH + qβJmL])N . (2.49)

After computing the energy from Eq.(2.3)

fMF =
q

2
Jm2

L − kBT ln[2 cosh(βH + qβJmL)], (2.50)

and differentiation respect to h, the widely known expression for the MF magneti-

sation is recovered,

mL = tanh[βH + qβJmL]. (2.51)

To check that this model has a phase transition, one only has to make a Taylor

expansion of tanh−1[mL],

mL +
1

3
m3
L + . . . = βH + qβJmL, (2.52)

then set H = 0, and observe that the only solutions that are delivered, apart from

mL = 0, are

mL = ±
√

3(qβJ − 1). (2.53)

There are only real solutions when β ≥ 1/Jq. That means that MFT reproduces

a phase transition for a non-zero temperature and the critical point is given by

βc = 1/qJ . So even when H = 0, the system presents a magnetisation for T < Tc
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and zero-magnetisation for T > Tc.

The value of the critical exponents can be identified as follow: from the solution

for the magnetisation in Eq.(2.53) one identifies β = 1/2; differentiating Eq.(2.52)

with respect to H, one finds χL(1 − β/βc) + m2
LχL + . . . = β and consequently

this leads to γ = 1; if one considers Eq.(2.52) at critical isotherm β = βc, the

magnetisation up O(m3) takes the form m3
L = 3βcH and leading δ = 3; finally

differentiating twice Eq.(2.50) respect to temperature leads to α = 0.

Another way to approach the solution is just make an expansion of the energy,

Eq.(2.50), so

fMF = −kBT ln 2−Hm+
kB
2

(T − Tc)m2 +
kBT

12
m4 + . . . . (2.54)

When the m vanishes zero above the critical point, the energy of the systems

is just fMF(T > Tc) = −kBT ln 2. Starting either from the energy or magnetic

expansion, when deriving the other observables such heat capacity, susceptibility,

etc., one finds same scaling expression and same mean-field exponent values.

2.3.2.1 Ginzburg criterion

In order to know how good was the mean-field approximation, one can analyse the

term of the Hamiltonian that was neglected, ∆H in Eq.(2.47). The fluctuation

can be rewritten as δsi = si −mL, so the product of the fluctuations is just the

correlation function, δsiδsi = (si −mL)(sj −mL) = GL(ri, rj). One can use the

fluctuation dissipation theorem Eq.(2.43) to compute the fluctuation term,

∆H = −J
∑
〈i,j〉

GL(ri, rj) = −qJ
2β
χL. (2.55)
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The Ginzburg criterion states that ∆H � HMF so χL/β � Ldm2
L. In the thermo-

dynamic limit where L is replaced by the ξ∞, this is

χ∞
β
� ξd∞m

2
∞. (2.56)

This inequality brings another for the exponents, namely νd > 2β + γ = 2 − α,

which implies that the mean-field approximation is good enough everywhere above

the upper critical dimension d > dc, dc = 4 for the Ising model.

2.3.3 Landau and Ginzburg-Landau-Wilson φ4 theory

To construct a field theory to describe the phase transition and to be able to

generate the symmetry breaking, Landau proposed to adapt Eq.(2.54). This is

written in terms of the order parameter φ, responsible for generating the spon-

taneous symmetry breaking and it can be cut off to order φ4 around the critical

point. The energy expression now is replaced by a functional action, which has

absorbed the β factor, so it is given by

f(t, h;φ0) = f0(t, h) +
r0(t, h)

2
φ2

0(t, h) +
u(t, h)

4
φ4

0(t, h)− hφ0(t, h). (2.57)

The action is imposed to be invariant to a spatial or space-time transformation of

the order parameter φ0 → −φ0. In order to minimize the action in terms of the

order parameter one imposes

δf

δφ0

= r0(t, h)φ0(t, h) + u(t, h)φ3
0(t, h)− h = 0 (2.58)

δ2f

δφ2
0

= r0(t, h) + 3u(t, h)φ2
0(t, h) > 0. (2.59)

Two main results can be found, firstly φ0 = 0 if r0 > 0 and the secondly φ0 =

±
√
−r0(t)/u(t) if r0 < 0. The second result generates the symmetry breaking
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and so can be associated with the phase transition. Both solutions satisfy the

minimum condition. For nonzero φ0 solutions the terms r0, which changes sign

when crossing the critical point, and u can be expanded in a Taylor series in terms

of t.

r0(t) = r01t+ r02t
2 + . . . , (2.60)

u(t) = u0 + u1t+ . . . , (2.61)

and so the first order expansion for the solution takes the form

φ0 = ±
√
r01

u0

|t|1/2 + . . . . (2.62)

One readily identifies the critical exponent β = 1/2. Using the thermodynamic

relations one can easily find all the rest of the critical exponent which take the

mean-field values.

A refined and general version of Landau theory, which also tracks the fluctuation

of the fields is the Ginzburg-Landau-Wilson φ4 theory. The Hamiltonian includes

now a kinetic term and a general external magnetic field,

S[φ] =

∫
ddx

(
r0

2
φ2(r) +

1

2
|∇φ(r)|2 +

u

4
φ4(r)− h(r)φ(r)

)
. (2.63)

For the continuous systems the partition function is given by a path integral

Z[H] =

∫
Dφ e−S[φ], (2.64)

where Dφ denotes all possibles states. To handle the fluctuations we are interested

explicitly in the external source h(r). The energy is given F [h] = − lnZ[h] and

so the magnetisation is nothing other than m(r) = 〈φ(r)〉 = −δF [h]/δh(r). Then
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the connected correlation function is given by

G(r, r′) =
δ2F [h]

δh(r)δh(r′)
=
δm(r)

δh(r′)
. (2.65)

On the other hand, if we consider the Gibbs free energy, given by the Legendre

transform

Γ[m] =

∫
ddr m(r)h(r) + F [h], (2.66)

one can find as δΓ[m]/δm(r) = h(r), so that

δ2Γ[h]

δm(r)δm(r′)
=

δh(r)

δm(r′)
= G−1(r, r′). (2.67)

Hence the fluctuation for m(r) and h(r) are reciprocally connected by the corre-

lation function.

2.4 Dangerous irrelevant variables

We have seen that theories above the upper critical dimension give critical be-

haviour which is dimension independent. In fact, the discrete Hamiltonian for the

d-dimensional SRIM Ising model in terms of spins si in Eq.(2.2) can written as a

field action via the Hubbard-Stratonovich transformation. We consider, the action

S[φ] =

∫
ddx

(
f0 +

r0

2
φ2 +

c

2
|∇φ|2 +

u

4
φ4 − hφ

)
, (2.68)

where the terms inside from left to right are the free energy f0, the term related to

the reduced temperature r0, the kinetic term with coefficient c, the self interaction

term in u, and the external magnetic field h.

In order to find the fixed-points and the FSS, Kadanoff implemented in the 1960’s
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a methodology called “Block-Spin” that was the base for RG theory. This tech-

nique reduces the large number of degrees of freedom due the huge number of

particles involved. To achieve such an aim, in consecutive steps, ones transforms

a group of spins into an effective one, so one reduces the number of particles from

N to N ′. The idea is about of rescaling the Hamiltonian HN(J, T )→ H′N ′(J ′, T ′)

and then following the fluxes of the variables to find the fixed points. The gener-

alization of this method became Wilson’s RG approach. The rescaling is given by

a rescaling factor b that transforms L to L′, where L′ = b−1L. One also rescales

the Hamiltonian keeping the partition function fixed Z ′L[H′] = Z[H]. Hence the

energy, for example, is found to scale as f ′L[H′]→ LdfL[H].

One can obtain the scaling dimensions at the Gaussian fixed point derived by

RG simply rescaling the Hamiltonian in Eq.(2.68) following from power counting.

For example, we consider the rescaling for the term ddx′|∇′φ′|2 → ddx|∇φ|2 with

x′ = x/b. This is visualised as

ddx′|∇′φ′|2 = b−d+2ddx|∇φ′|2 = ddx|∇φ|2, (2.69)

finding that the order parameter scales as φ′ = bdφφ with dφ = d/2 − 1. Di-

mensional analysis for all the other terms delivers: for the free energy f ′0 = bdf0;

the coefficient proportional the reduced temperature rescales following r′0 = bytr0;

the self interacting term follows u′ = byuu; and external source h′ = byhh. The

eigenvalues are

yt = 2, yh =
d+ 2

2
yu = 4− d. (2.70)

The ones that control the flow towards the fixed point are those yi > 0. One

clearly identifies yt > 0 and yh > 0 as relevant. The exponent yu is irrelevant in

the RG sense above the upper critical dimension d = 4. However, and as we shall

see, it is also dangerous to set the associated variable u to zero. We first explore

the case where u is zero.
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2.4.1 Finite-size scaling for Gaussian model

Considering yu < 0 as an irrelevant variable above the upper critical dimension

for the fixed points, one may expect one can drop the φ4 term in order to simplify

the model. In this way the action Eq.(2.68) becomes the so-called Gaussian or

free field theory model, given by

S[φ] =

∫
ddx

(
f0 +

r0

2
φ2 +

c

2
|∇φ|2 − hφ

)
, (2.71)

which is governed by a Gaussian fixed point. Its homogeneous thermodynamic

functions are found to be

fL(t, h) = b−dFL/b(b
ytt, byhh), (2.72)

ξL(t, h) = b ΞL/b(b
ytt, bhh), (2.73)

gL(t, h,x) = b−dφGL/b(b−1x, bytt, byhh), (2.74)

where they do not depend on u, and F , Ξ and G are universal functions. Us-

ing the thermodynamic relations for the magnetisation mL = −∂fL/∂h, for the

heat capacity cL = ∂2fL/∂t
2, etc., one obtains the critical exponents in terms of

eigenvalues, these relations are given by

α =
2yt − d
yt

, β =
d− yh
yt

, δ =
yh

d− yh
, (2.75)

γ =
2yh − d
yt

, ν =
1

yt
, η = d− 2yh + 2. (2.76)

At this points if one replaces the eigenvalues for those values found in Eq.(2.70),

one obtains

α† = 2− d

2
, β† =

1

4
(d− 2), γ† = 1 (2.77)

δ† =
d+ 2

d− 2
, ν† =

1

2
, and η† = 0, (2.78)
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where only γ† = γ, ν† = ν and η† = η, i.e., coincide with the Landau or MF values.

The rest do not match the MF values, and hence they do not describe correctly

critical phenomena above dc. For reasons discussed in Chapter 4, we label them

here with a † index to indicate that they come from the Gaussian model. That will

allow us to distinguish them from the MF exponents. To complete the Gaussian

model one can derive the scaling relations for magnetisation and susceptibility

m†L(t, h) = b−d+yhM†
L/b(b

ytt, byhh), (2.79)

χ†L(t, h) = b−d+2yhX †L/b(b
ytt, byhh). (2.80)

Setting b = L and h = 0 the FSS functions for such observables are given by

m†L(t) = L−d+yhM†
L/b(b

ytt) ∼ L−(d−2)/2, (2.81)

χ†L(t) = L−d+yhX †L/b(b
ytt) ∼ L2. (2.82)

As expected these results are inappropriate above dc, but in fact they will help us

to understand the scaling picture for system with open boundaries, so for these

reason we will call this scaling type as Gaussian finite-size scaling or GFSS, scaling

derived from the Gaussian fixed-point exponents.

2.4.2 Finite-size scaling for φ4 theory

As we have seen for the Gaussian model, in order to have a proper description of

the phenomena u has to be taken into account even under its condition of irrelevant

variable, that is why it is called dangerous irrelevant variable. Henceforth, one has
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to include the u dependence into the thermodynamic functions, so

fL(t, h, u) = b−dFL/b(b
ytt, byhh, byuu), (2.83)

ξL(t, h, u) = b ΞL/b(b
ytt, byhh, byuu), (2.84)

gL(t, h, u,x) = b−dφGL/b(b−1x, bytt, byhh, byuu). (2.85)

These expressions for the regime below dc present Wegner corrections due to the

deviation of the fixed point, which is named Wilson-Fisher fixed point and the

responsible of producing non-trivial critical behaviour [20]. To treat the DIV we

follow the methodology suggest by Binder et al . [21], based on Fisher’s formulation

of DIVs. We assume that FL/b(x1, x2, x3) = xp1

3 FL/b(x1x
p2

3 , x2x
p3

3 ). Applied to

Eq.(2.83), it transforms as

fL(t, h) = b−d
∗
FL/b(b

y∗t t, by
∗
hh), (2.86)

where d∗ is the effective dimension and y∗i ’s effective eigenvalues now related to

the originals through

d∗ = d− p1yu, (2.87)

y∗t = yt + p2yu, (2.88)

y∗h = yh + p3yu. (2.89)

We differentiate Eq.(2.86) to get the other thermodynamic functions, in order to

obtain the critical exponents in terms of the effective ones. That delivers

α = 2− d∗

y∗t
, β =

d∗ − y∗h
y∗t

, (2.90)

γ =
2y∗h − d∗

y∗t
,

1

δ
=
d∗

y∗h
− 1. (2.91)
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To render these compatible with the MF values α = 0, β = 1/2, γ = 1 and δ = 3,

we require that

y∗t =
d∗

2
and y∗h =

3d∗

4
. (2.92)

The RG results for such systems delivers d∗ = d [21], three arguments are given in

[21]. They have to be compared with the mean field exponent so p1 = 0 p2 = −1/2

and p3 = −1/4. So the transform end up in the following relation [22–24]

y∗t = yt −
yu
2

=
d

2
, y∗h = yh −

yu
4

=
3

4
d. (2.93)

A similar argument for the singular part of the correlation length gives

ξL(t, h) = b1+q1yuΞL/b(b
yt+q2yut, byh+q3yuh). (2.94)

The correlation sector was thought to not be affected by DIVs, since ξ was thought

to be always bounded by L and so one sets q1 = 0 [25]. The arguments in Ξ

should be coherent with those from the energy, then q2 = p2 and q3 = p3. After

the transformation the thermodynamic functions are given by

fL(t, h, ) = b−dFL/b(b
y∗t t, by

∗
hh), (2.95)

ξL(t, h) = b ΞL/b(b
y∗t t, by

∗
hh), (2.96)

gL(t, h,x) = b−dφGL/b(b−1x, by
∗
t t, by

∗
hh). (2.97)

We can now derive the thermodynamic functions for the magnetisation and sus-

ceptibility to see the effectiveness of this transformation,

mL(t, h) = b−d+y∗hML/b(b
y∗t t, by

∗
hh), (2.98)

χL(t, h) = b−d+2y∗hXL/b(by
∗
t t, by

∗
hh). (2.99)
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If one sets b = L and h = 0

mL(t) = L−d+y∗hML/b(b
y∗t t) ∼ L−d/4, (2.100)

χL(t) = L−d+y∗hXL/b(by
∗
t t) ∼ Ld/2. (2.101)

These expression are the FSS predictions from RG theory. The shift exponent

is also affected by DIVs, the pseudocritical point scales as tL ∼ L−y
∗
t = L−d/2,

leading a λ = d/2. This occurs since one expects a peak for the susceptibility

corresponding to
∂χL
∂t
|t=tL = 0, then XL/b has to vanish there. The only possibility

is that making its arguments to take constant value by
∗
t tL = c, then the relation

for the shifting is straightforwardly extracted. The shift exponent then does not

satisfy the standard prediction λ = 1/ν.

Despite the fact that the transformation incorporated DIVs, the FSS in the RG

scheme is still presenting a mismatch with the FSS hypothesis in the Landau or

MF scheme as we shall see next.

2.4.2.1 Breakdown of renormalisation group and mean-field theory

The mismatch of the current picture both for RG as for the MFT is manifest in

their FSS are not compatible each other, when in fact both scaling approaches

should describe the same critical phenomena. There are many studies that sup-

ported the RG predictions over those from MFT [24, 26]. However, one extraor-

dinary result that could not be explain by the current picture of standard FSS

or MFT was the scaling of the correlation length. Specially the widely stud-

ied 5D SRIM, was shown following a scaling ξL ∼ L5/4 [11]. Ising models with

higher dimensionalities with PBCs also present such particular scaling anomaly

with correlation lengths scaling in a power law higher than linear with the system

size [5, 27–33]. In Ref. [11] was shown that this picture is also true for FBCs at
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pseudocritical point. Then both are part of an unsatisfactory theory. To illus-

trate this issue we derived the prediction for the scaling of the magnetisation and

susceptibility as an example,

mL(t) ∼ |t|β[L/ξL(t)]−β/ν ∼ L−β/ν ∼ L−1, (2.102)

χL(t) ∼ |t|−γ[L/ξL(t)]γ/ν ∼ Lγ/ν ∼ L2. (2.103)

As we pointed out before these expressions are incompatible with those from RG

in Eq.(2.100) and (2.101). The shifts are also controversial, the FSS hypothesis

allows us to replace ξL by L and in that sense one obtains tL ∼ ξ
−1/ν
L = L−1/ν ,

leading λ = 1/ν. A phenomenological solution was given by Binder to correct this

mismatch with the introduction of the ‘thermodynamic length’ that is given in the

last subsection.

2.4.2.2 Breakdown of hyperscaling

The hyperscaling relation became one of the main representative issues above dc

together with the mismatch of scaling predictions. To derive the hyperscaling

relation one uses Eq.(2.41), and using Eq.(2.22) and then differentiate twice the

energy with respect to reduced temperature to get the heat capacity,

c∞ = |t|dν−2. (2.104)

Considering then the scaling Eq.(2.18), immediately the hyperscaling relation,

νd = 2 − α, is obtained. This expression seems to hold systematically for every

model below the critical dimension, and even at d = dc, but above the upper critical

dimension it breaks down. This is known as the violation of the hyperscaling

relation. Mean field exponents seem to not satisfy this expression because of the

variable of d. In fact, one could guess that actually the expression should be
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νdc = 2 − α, but there was no a clean method to extract it, rather one could

propose an inequality, νd ≥ 2− α.

2.4.2.3 Fisher’s scaling relation

The anomalies associated with the FSS do not only happen in the scaling of the

observables or the violation of hyperscaling: Fisher’s scaling relations also needs to

be revisited. A negative value for the anomalous dimension for the 5D SRIM was

reported by Baker and Golner [34] and also for the long-range models by Nagle

and Bonner [35]. This conflicts with the prediction η = 0 from Landau theory.

We consider, with external source h = 0, the fluctuation-dissipation theorem for

finite-size system:

χL(t) =

∫ L

a

dr rd−1GL(r, t). (2.105)

Here a is the lattice spacing. In principle, one can drop the lower limit of the

integral assuming that the a-dependence only delivers corrections to the scaling.

Introducing scaling relation for the correlation function from Eq.(2.42),

χL(t) =

∫ L

0

dr r1−ηG±
(
r

ξL

)
. (2.106)

We can transform this integral by considering the ratio x = r/ξL, so that

χL(t) = ξ2−η
L

∫ L/ξL

0

dx x1−ηG±(x). (2.107)

For d < dc one finds

γ

ν
= 2− η, (2.108)

which is the Fisher scaling relation. However for d > dc, as χL ∼ Ld/2 and ξL ∼ L,

one finds instead

η = 2− d

2
. (2.109)
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Indeed this relation has not completely been understood. Luijten and Blöte in

[36] called this η̃ to distinguish from η.

2.4.2.4 Thermodynamic length

In line with the belief that the correlation length is not affected by DIVs, Binder

proposed the concept of thermodynamic length in [8, 9] to repair FSS above dc.

This new entity `, whose name comes from the role it plays in thermodynamic

functions, is supposed to scale as

`∞ ∼ |t|−1/y∗t . (2.110)

Applying this new concept to repair the FSS for the observables above dc

PL(t)

P∞(t)
= FP

(
L

`∞

)
. (2.111)

For example the scaling for the magnetisation is clearly fixed

mL = m∞(t)Fm

(
L

`−2/d

)
= |t|β/νFm

(
L

`−2/d

)
∼ L−d/4. (2.112)

However, and despite the fact that the thermodynamic length successes to reconcile

the MF exponents with the RG, still just an phenomenological artefact, and it does

not arise from microscopic considerations.

2.5 Q-finite-size scaling

Now that we have presented the main issues of the standard FSS, it is the right

time to introduce modified or Q-finite-size scaling (QFSS). DIVs seem to take a

crucial part in the scaling above dc, this allow us to consider to extend the usage
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of DIVs to the correlation sector, in contrast with the standard belief [37–40]. We

may construct a natural description and development of QFSS if we suppose that

the correlation sector also is affected by DIVs. Revisiting Eq.(2.94), we write

ξL(t, h) = b1+q1yuΞb/L(byt+q2yut, byh+q3yuh), (2.113)

where these qi are related with the pi. Indeed q2 = p2 and q3 = p3, but concerning

p1 = 0, was also supposed q1 = 0. Here, where the ansatz takes place, instead we

suppose q1 6= 0. In fact, we supposed that 1 + q1yu = d/dc, given a q1 = −1/4.

These new entity that will be denoted as,

ϙ =
d

dc
, (2.114)

which is pronounced as ‘koppa’. This is a new pseudocritical exponent, which

governs the correlation length. In this manner, we propose a new ansatz for the

scaling of the correlation length,

ξL(t, h) = bϙΞb/L(by
∗
t t, by

∗
hh). (2.115)

The fact that we consider this exponent as a part of the correlation length will

derive a reconciliation for the FSS hypothesis and from the FSS derived from RG,

reuniting them with MF.

2.5.1 The pseudocritical exponent ϙ

All these manuscript is base on the base on the introduction of the DIV in

Eq.(2.113), a crucial point in the development of the QFSS theory. The pecu-

liarity of this exponent ϙ, the reason because it is called pseudocritical, is that it
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is only manifested above dc, in the MF regime. In fact

ϙ =


1 if d < dc

d

dc
if d ≥ dc.

(2.116)

A priori these two regimes of scaling can be seen as imposed, but in fact as a

natural entity it also can be seen as the ratio between the thermal exponents,

ϙ =
y∗t
yt

=
d

dc
. (2.117)

Then when the system is below the dc the DIV stops being dangerous, so y∗t → yt

and it leads ϙ = 1. So one does not have to imposed anything further than the

first consideration ξL ∼ Lϙ.

2.5.2 Mean field and hyperscaling reconciliation

The first results quickly start to show up. As ξL ∼ Lϙ, L ∼ ξ1/ϙ, and consequently

the energy (h = 0) scales as the inverse correlation critical volume

f∞(t) ∼ ξ−d/ϙ∞ = ξ−dc∞ . (2.118)

Again differentiating replacing ξ∞ ∼ |t|−νthe energy twice respect to the temper-

ature, the heat capacity c∞ ∼ tdν/ϙ−2, immediately we get the QFSS hyperscaling

relation

νd

ϙ
= 2− α, (2.119)

that incorporates the ϙ exponent, and now it holds at any dimension above the

upper critical dimension. Also as ϙ = d/dc we have the alternative hyperscaling

relation νdc = 2− α naturally. Furthermore the QFSS relations deliver a correct

expression for the observables when considering ξL(t) ∼ Lϙ. We show that the
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magnetisation and susceptibility now deliver RG scaling Eq.(2.100) and (2.101),

mL(t) ∼ |t|β[Lϙ/ξL(t)]−β/ν ∼ L−ϙβ/ν ∼ L−d/4, (2.120)

χL(t) ∼ |t|−γ[Lϙ/ξL(t)]γ/ν ∼ Lϙγ/ν ∼ Ld/2. (2.121)

Hence, in general the equation Eq.2.30 is modify as follow

PL(tL) = P∞(x1/νL−1/ν)Fp(x) ∼ L−ϙρ/ν . (2.122)

with x = Lϙ/ξL(t). The shift λ is also recovered from RG since t ∼ L−λ = L−d/2,

and λ = ϙ/ν = d/2.

2.5.3 A new Fisher scaling relation

Another piece of the puzzle that these new considerations can fix is the well known

problem about the negative value of the anomalous dimension in 5D and the η̃

exponent. In order to clarify that issue, we revisit the fluctuation-dissipation

theorem, but before we consider that the correlation length can also be written as

ξdcL = Ld. (2.123)

Hence, following our earlier hypothesis, the correlation function should also be

governed by DIV in the QFSS scheme. Under that consideration, it is given by

Gϙ(0, r) ∼ r−(d−2+ηϙ)Dϙ

( r
L

)
, (2.124)

where ηϙ and it is a relative of ϙ. Then integrating over the space, the susceptibility

is now given by

χL(0) ∼
∫ L

0

Dϙ

( r
L

)
= L2−ηϙ

∫ 1

0

Dϙ(y)y1−ηϙdy (2.125)
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from new expression for the Fisher’s relation can be extracted,

ηϙ = 2− ϙγ
ν
. (2.126)

This ηϙ is nothing other than η̃, since ηϙ = 2− d/2 for MF regime. In the QFSS

picture it is extracted from a natural way. This anomalous dimension can also be

related to η through

ηϙ = 2 + ϙ(η − 2). (2.127)

It automatically gives an explanation why the negative values for anomalous di-

mension appear above dc shown in [34–36].

2.6 Conclusion

FSS, which was poorly understood above dc for many years, can now be understood

in a simple and natural way through QFSS. This picture relies on the fact that the

correlation sector is also affected by DIVs, which give rise to the new exponent ϙ

through the scaling for the correlation length ξL ∼ Lϙ. This not only repairs the

scaling behaviour for the others observables reconciling the RG and the MFT, but

also it fixes the hyperscaling relation for any dimensionality above dc in a modified

relation νd/ϙ = 2 − α. It also resolve the nature of the η̃ and its negative values

for 5D SRIM, giving to it a new Fisher relation ηϙ = 2 − ϙγ/ν. State that these

results were published in Ref.[11, 41–44] and form the background to this thesis.



Chapter 3

Numerical techniques for

simulations

3.1 Introduction

The aim of this chapter is to give a description for the main numerical techniques

that have been used for the research reported in this thesis. These numerical tech-

niques not only include the algorithms that were used to simulate ferromagnetic

systems, but also the Ewald summation method for slowly convergent sums that

appear in the long-range interaction systems, the data processing together with

the error analysis and the reweighting methods.

The main most popular techniques widely used for classical particle systems are

the Monte Carlo (MC) method and the molecular dynamics method, many other

techniques are used for quantum systems, solids, etc. Each method has is own

motivation and target. MC uses a stochastic approach, thus exploring all the

configuration space of the systems. The molecular dynamics method is required

to explore the time evolution of many-body systems. So these methods are com-

plementary to each other. One wisely chooses the methodology more suitable to

35
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study a specific system, some complex problems could even require both meth-

ods. In this thesis we focus on ferromagnetic systems above the upper critical

dimension. The features of these systems depend on control parameters such as

temperature, and one can measure their properties through observables such as

the magnetisation. We are interested in generating different equilibrium config-

urations for these systems at specific temperatures to perform measurements of

these observables through statistical averages. This is implemented by MC, which

allows us to generate stochastic processes.

The ferromagnetic spin systems simulated in this project are the SRIM given by

the Hamiltonian in Eq.(2.2) and the Ising model with long-range interactions given

by

H = −
∑
i<j

Jijsisj +
∑
i

Hisi, with Jij = r
−(d+σ)
ij . (3.1)

where rij is the distance between two spins. The details of this model will be

discussed in chapter 4.

This chapter is structured as follows: in section 2 there is a summary of basic

aspects of the MC method, and recent developments of cluster algorithms for

long-range interacting systems; section 3 contains the explanation for how to set

up properly the periodic boundary conditions for long-range systems; the method-

ology used for the data analysis is contained in section 4; finally in section 5 the

discussion is reported.

3.2 Monte Carlo algorithms

In a many-body spin system, in terms of a continuum model with fields φ, the

expectation value for an observable O is calculated through the path integral

〈O〉 =
1

Z

∫
Dφ O e−βH[φ], (3.2)
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where Dφ contains all the possible configurations and Z denotes the partition

function. For discrete spin variables {si}, the last equation is replaced by

〈O〉 =
1

Z

∑
{s}

O({s}) e−βH[s], (3.3)

where now the sum runs over all the possible discrete states. Calculating Z exactly

is usually not possible for many-body systems due the difficulty of an exponentially

growing number of states. Hence, the canonical probability of one state {s}, which

is given by,

ps =
1

Z
e−βE[s], (3.4)

can not be calculated either. Thus, one aims to find a computational method

that allows to sample the configuration space to perform correct average in a

simple way. MC simulation is based on the Markov chains, a stochastic process

which allows one to generate series of consecutive states in order to reproduce the

behaviour of a many-body system [45]. The generation of a new state is randomly

created only taking into account the previous state. One of the most widely MC

simulation method specially for many-body spin system, but not only applicable

in this field, is the algorithm developed by Metropolis et al . published in Ref. [46].

3.2.1 Estimators and autocorrelation times

As we are interested in the study of spin systems, the subsequent generated states,

i.e., successive spin configurations are generated following the Boltzmann distribu-

tion. This conforms the important sampling and it is fundamental in MC simula-

tions, because it allows one to estimate the expectation value 〈O〉 in a simple way.

This estimation is simply approximated given by the average over the Markov

chain

〈O〉 ≈ Ō =
1

N

N∑
n=1

On, (3.5)
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with N measurements. This expected value actually contains random statistical

fluctuations around its theoretical value. The fluctuations decreases with increas-

ing N . The associated variance is

σ2
Ō = 〈Ō2〉 − 〈Ō〉2. (3.6)

If one considers to measure the observables at every consecutive state, that prob-

ably leads an incorrectly estimation of the errors. This can be a consequence of

the statistical dependence between two consecutive states and/or a lack of ther-

malisation. One needs then to take into account these details.

Thus, there are two main time scales associated with a MC simulation to ex-

amine, the thermalisation and the autocorrelation time. The first one refers to

the numbers of MC sweeps that the system has to be updated until it reaches

equilibrium. That occurs when the energy oscillates around the expectation value

following a Gaussian distribution. Once the system is thermalised one can safely

proceed to sample and so the thermal average given by Eq.(3.5) will be a reli-

able approximation. Secondly, the autocorrelation time regards, once the systems

is in a stationary state, how many sweeps one has to wait until a uncorrelated

measurement can be sampled.

The definition of the correlation function, for a generic observable O sampled at

the times i < j, is given by

A(i, j) = 〈OiOj〉 − 〈Oi〉〈Oj〉. (3.7)

The sampling is considered to be performed in the equilibrium state. Hence, this

implies that 〈Oi〉 = 〈Oj〉 and moreover time translation invariance and so the

correlation only depend on the ‘distance’ of two samples. The last expression can
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then be normalised taking the form of

A(k) =
〈OiOi+k〉 − 〈Oi〉2

〈O2
i 〉 − 〈Oi〉2

, (3.8)

where k is the separation between two measurements and A(0) = 1. The autocor-

relation function is expected to decay exponentially as k grows. It approximately

can be written as

A(k) ' A0e
−k/τexp with lim

k→∞
A(k) = 0 (3.9)

This decay is driven by the elapse of measurements or ‘time’ called exponential

autocorrelation time τexp. Nevertheless, this picture is only true if A(k) is purely

exponential. Otherwise, in general it is used the ‘integrated’ autocorrelation time

τint [47] which is defined as

τint =
1

2
+

N∑
k=1

A(k)

(
1− k

N

)
. (3.10)

For enough measurements N , as A(k) rapidly decays, it makes in the decaying

regime k � N and so the factor k/N can be neglected. Thus,

τint '
1

2
+

N∑
k=1

A(k). (3.11)

Once τint is estimated, one should let the system update for 2τint, to make sure that

two subsequent measurements will be approximately uncorrelated [47]. Sampling

following this prescription one can easily estimate the number of effective samples

Neff given by a MC simulation with N sweeps, this is

Neff =
N

2τint

≤ N. (3.12)
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Therefore, the error associated with the thermal average in Eq.(3.5) depends on

the number of effective samples,

εŌ =
√
σ2
Ō
∼ 1√

Neff

. (3.13)

3.2.2 Metropolis algorithms

As an introduction to MC simulation we shall present the Metropolis algorithm.

In order to illustrate the bases of the MC algorithms we start from Markov chains

considerations. We restrict this presentation in many-body spin systems, but it

can be extrapolated to a widely range of complex systems out of physics that

presents critical phenomena. The phase space is the configuration space for spin

systems {si}. The Markov chain is implemented considering that the system

evolves from a state {s} to successive state {s′} through the transition operator

W (s′|s). In equilibrium the system must be time-invariant, so one demands that

the probability between the transition of two states follows this relation

psW (s′|s) = ps′W (s|s′). (3.14)

This is known as detailed balance. The equilibrium probability distribution for

the state s is given then by

ps′ =
∑
{s}

psW (s′|s), (3.15)

where
∑

iW (s′|s) = 1 must be satisfied. The transition matrix W (s′|s) is deter-

mined by

W (s′|s) = R(s′|s)A(s′|s), (3.16)

a composition between a proposal matrix R(s′|s) which designates the next state

with following a conditional probability, and an acceptance matrix A(s′|s) which
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decides if to accept the change. Here, we consider that successive states for our

many-body spin system follow a random conditional probability and so R(s′|s) is

symmetric, and applying Eq.(3.14) one obtains that the acceptance ratio given by

A(s′|s)
A(s|s′)

=
ps′

ps
= e−β(E′−E). (3.17)

Unfortunately this equation has multiple solutions. However, Metropolis et al .

proposed the following solution

A(s′|s) =


e−β(E′−E) if E ′ > E,

1 if E ′ ≤ E,

(3.18)

which can be summarised in a compact form

A(s′|s) = min [e−β∆, 1], (3.19)

where ∆ = E ′−E. The solution for such process conform the Metropolis algorithm

and can be summarised as follows: accept the proposal to move from the state

s→ s′ if the energy is minimised. Otherwise, accept with probability A = e−β∆.

The validty of the Metropolis algorithm is proven, nevertheless it experiences a

slowing down near to the critical point. The autocorrelation time can empirically

be related to the correlation length [48] by

τ ∼ ξz, (3.20)

where z is named dynamical exponent. Hence, and although the correlation length

does not diverge for finite systems, it does experience a peak that can directly lead

to a dramatical increment on τ . For the 2D SRIM or for the mean-field region

this dynamical exponent takes z ≈ 2, respectively in Ref. [4, 49].
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3.2.3 Cluster algorithms

The motivation to find new algorithms to reduce the slowing down that the

Metropolis suffers, lead to the implementation of a number of non-local new meth-

ods about thirty years later, by the late 80s. Then the first generation of cluster

algorithms were developed based on the Fortuin-Kasteleyn representation, and

this new method reduced drastically the slowing down by reducing the autocorre-

lation time, thus speeding up the collection of data near to transition points. In

these cases the dynamical exponent was reduced from z ≈ 2 to z ≈ 0.25 for the

2D SRIM [50] and to z = 0 for the mean-field models [51, 52].

The multicluster algorithm was the first to come out, developed by Swendsen and

Wang [53], based on the growing of several clusters in each MC sweep. Later

on, a faster variant was proposed by Wolff [54], using a single-cluster algorithm

version. Despite in fact the slowing down near the transition point is dramatically

reduced, the runtime of these algorithms still in order O(Nb). In the SRIM like

the classic Ising model with nearest-neighbour interaction with N particles, this

order of runtime is not very relevant, since Nb = 2N the algorithm becomes

O(N). However, for the long-range interaction models, the number of bonds is

given by Nb = N(N−1)/2 instead. This makes such algorithms very costly, O(N2)

runtime, and consequently, computationally very expensive and quite inaccessible.

Nevertheless, new branch of updates have been developed in the two last decades

to overcome such runtime problems.

3.2.3.1 Swendsen-Wang algorithm

The multicluster algorithm, also called Swendsen-Wang (SW) algorithm, is based

on the percolation bond representation for spin systems given by Fortuin and

Kasteleyn [55, 56]. The Fortuin-Kasteleyn (FK) representation works on the direct

product of spins {σ`} and graphs {g`} phase space, where l is the bond index,
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instead of the conventional phase space of spins {si} placed at site i. The discrete

version of the partition function can be rewritten as

Z =
∑
{si}

∏
i<j

eβJijsisj =
∑
{σ`}

Nb∏
`=1

eβJ`σ` , (3.21)

where σ` = sisj and the coupling J` = Jij. Here, we have considered a general

system where all bonds Jij might be present, reflected in the
∏

i<j term. The

further considerations do not depend on the nature of the interaction and is easily

adapted for systems with nearest-neighbour interactions. The partition function

under the FK representation is given by the following transformation

Z =
∑
{si}

eβ
∑
i<j Jijsisj =

∑
{σi}

∏
`

eβ[(1− p`) + p`δσ`,1] (3.22)

=
∑
{σi}

∑
g`

∏
`

eβ[(1− p`)δg`,0 + p`δg`,1δσ`,1], (3.23)

where the terms have been written in terms of the probability to activate a bond

p` = 1 − e−2J` and the
∑

g`
runs over all possible graph configurations. In a

compact form, the partition function for FK representation can be written by

Z =
∑
{σ`}

∑
g`

ω(σ`, g`) with ω(σ`, g) =

Nb∏
`=1

∆(σ`, g`)V`(g`), (3.24)

where two functions on the right side are

∆(σ`, g`) =


0 if σ` = −1 and g` = 1,

1 otherwise,

and V`(g`) = (e2βJ` − 1)g` . (3.25)

After a starting configuration of spins is set up, this algorithm works for one MC

seep following these steps:

1. Check all the bonds, one by one.
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2. If σ` = 1, activate the bond, i.e., g` = 1 with probability p` = 1− e−2βJ` .

3. Identify all clusters checking the activated bonds in step 2, but also

considering single spin clusters.

4. Flip each cluster with probability 1/2.

The cluster flips considered in this algorithm allows to reduce the correlation

between two consecutive sweeps. This is translated in a dramatical reduction of

slowing down. Moreover, this algorithm also guarantees the detailed balance and

ergodicity [53]. However, since we have to check all the bonds, this algorithm is

still having a O(Nb) runtime. Furthermore, building the cluster hierarchy may

cost another O(Nb) runtime process. For the SRIM models, that is actually not a

problem, but for the LRIM it is.

As a complement for the MC algorithm, we discuss how the cluster identification

in step 3. above is actually performed. The main algorithms to identify the cluster

structure are given by breadth-first search (BFS) and depth-first search (DFS), as

well as the commonly used Hoshen-Kopelman algorithm [57] which is, however,

not explained here. BFS and DFS are similar methods. Let us say that we have for

example a cluster graph as the one shown in Fig. 3.1. The BFS works as follows,

starting from node 1, we follow all the possible diversions, prioritizing the lower

labels, in each step and so on. That lead us to add the spins to the cluster in

this order {1}, {26}, {3457}, {8} and the final hierarchy is also given in Fig. 3.1.

The DFS works as follows, starting from one node it chooses one possible path in

every diversion that it finds until a death path is found; then it steps back to last

diversion and chooses another possible path that was not explored and so on until

all elements of the cluster are visited. In this case presented in the last figure,

it starts from the node 1 and follow the path 23654, once it returns to the last

diversion, and continues the new path, in this case 78. The hierarchy is plotted in

Fig. 3.1 too.



Chapter 3. Numerical techniques for simulations 45

cluster graph

1 2 3

4

567

8

BFS

1

2

3 4 5

6

7

8

DFS
1

2

3

4

5

6

7

8

Figure 3.1: The left image shows an example of cluster graph. The middle
image represents a tree structure of the last graph given by BFS, and the
right image shows a tree constructed using DFS.

3.2.3.2 Wolff algorithm

For the single-cluster variant, or Wolff algorithm, one expects an improvement of

runtime since longer cluster are flipped on average, but it still scales with O(Nb),

so similar to the SW. The MC Wolff sweep is given by these steps:

1. Choose randomly one spin si.

2. Check all its interacting neighbours sj’s and with probability p = 1 −

e−2βJij add them to the cluster stack if si = sj.

3. If new spins were added to the stack, repeat step 2 with those spins.

Continue this loop until all the spins in the stack check its neighbours.

4. Flip the cluster.

To make sure the first spin of the stack is not added again, at the moment that it

is chosen, flip it and just save the last value to compare the rest of the elements

of the lattice [58].
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3.2.4 Algorithms for long-range interactions

As we have seen, the Wolff and the SW algorithm are problematic for the LRIM,

since they perform sweeps in a very costly runtime of O(N2) operations. The

advantage of the cluster algorithms is given by the reduction of critical slowing

down caused by the divergence of the correlation length. For these reasons an

improved algorithms are needed in order to reduced their runtime.

The first efficient update, made for the Wolff version, came from Luijten and

Blöte [59]. The full configuration update can be performed in O(N logN). This

tremendous speed-up is achieved because this algorithm, instead of checking all

the N − 1 neighbours of a given spin when growing the cluster, directly samples

from the cumulative distribution of activating bonds. In this manner, it is decided

at which distance the next spin will be successfully added. This fast Wolff version

allows one to explore the nature of systems with long-range interactions. Some

recent studies using this method are from Parisi et al . [60] and Picco [61].

The second update, that was the main algorithm used in this thesis, is the mul-

ticluster update recently published by Fukui and Todo [62]. This new update is

also based on the FK representation and achieves a O(N) runtime per MC sweep,

improving the speed-up of the Wolff version. To conclude with the MC algorithms

we shall also present, a single cluster variant of this last algorithm.

3.2.4.1 Luijten-Blöte update: O(N logN)

Luijten and Blöte, in 1995, published a very fast method based on the Wolff algo-

rithm but using cumulative distribution. The main idea is to compute a cumulative

bond probability to estimate which neighbours will be chosen as candidates to be

added to the single cluster. In that manner, once the spin si is randomly chosen we

can calculate who will be the next candidate sj, jumping j − i spins. We consider
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the simplest case of a one-dimensional (1D) model with PBCs to simplify the idea

of the algorithm. The probability to be added to the cluster for two particles, with

same spin value, is then given by

pi = 1− e−2βJri , (3.26)

here ri denotes the distance between both spins and the coupling is consider to

take the form of a power-law decay Ji = r
−(d+σ)
i . The probability to chose the first

spin in the nth position after jumping n− 1 spins is

P (n) = pn

n−1∏
m=1

(1− pm). (3.27)

The cumulative bond probability is then just

C(j) =

j∑
n=1

P (n). (3.28)

In order to choose how many spins will be jumped, a uniform random number

x ∈ [0, 1) is thrown. So if C(j − 1) ≤ x < C(j), then j − 1 spins will be jumped.

For the distance of the successive candidates k, the probability of jumping other

k − j − 2 spins is,

Pj(k) = pk

k−1∏
m=j+1

(1− pm). (3.29)

The cumulative bond probability is then given by

Cj(k) =
k∑

n=j+1

Pj(n). (3.30)

For the 1D model, last expression can be computed, and takes a simple form of

Cj(k) = 1− exp

(
−2β

k∑
n=j+1

Jn

)
. (3.31)
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For this simple case, even Cj(k) functions for two different distance can be related

to each other in terms of Eq.(3.28). Thus

C(k) = C(j) + [1− C(j)]Cj(k). (3.32)

In this way, to pick next candidate only a slightly modification in the random

number has to be done. That is just shift the range of the random number x to

x′ ∈ [C(j), 1), the transformation is given by x′ = C(j) + [1−C(j)]x. To use this

method one has to create a lookup table containing all the possible cumulative

bond probabilities . Since the C(k) depend on β, it is required to set up a lookup

table for each different temperature. The MC sweep for this algorithm follows

these steps:

1. Chose randomly a spin.

2. Generate random number and choose a spin following the cumulative

distribution, if it has the same spin orientation add it to the cluster. Compute

then who will be the next to be checked. Continue until to the maximum

distance allowed is achieved

3. Check next spin that was added to the cluster, repeat 2 until no more

spins are added to the cluster and everyone is already checked.

2. Flip the cluster.

For models with d > 1 one can not longer apply the look up table method, but in

Ref. [58] a simple solution was proposed. Despite in fact that we do not use such

algorithm in this work and we shall not go further into details, we can illustrate

the idea to compare with the method proposed later in this manuscript.

To overcome this problem, Luijten and Blöte proposed a continue cumulative bond

probabilities replacing the complex sum for d > 1 in Eq.(3.31) by a d-dimensional
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integral in order to be able to give a close expression for the sum. They replaced

the coupling in Eq.(3.1) by an easily closed but similar decaying expression arguing

that it should only affect the non-universal quantities such as the critical points,

but should leave the critical exponents invariant. They then proposed an effective

continuous coupling given by an integral, that for the 2D model takes the form

Ĵij =

∫ rx+ 1
2

rx− 1
2

dx

∫ ry+ 1
2

ry− 1
2

dy (x2 + y2)−
d+σ

2 , (3.33)

where rx and ry are the distance between two particles in the axis x and y respec-

tively. This construction does not affect the behaviour of the scaling and so the

FSS derived from RG. This expression is easily generalizable to a d-dimensional

model.

3.2.4.2 Fukui-Todo update: O(N)

The simulations for the present project were implemented using on O(N) cluster

MC method specially developed in Ref. [62] for spin systems with long-range in-

teractions, we shall name it the Fukui-Todo (FT) update. Cluster identification is

performed by a special variant of tree-based union/find O(logN) algorithm. This

MC method chooses a concrete number of events to activate bonds according to a

Poisson distribution. This FT update also requires a lookup table, but in his case

it will be independent of β. In this manner only one lookup table is required in

the beginning of the simulation. Such lookup table is created with the Walker’s

method of alias [63], that samples from a discrete distribution of probabilities is

detailed in appendix A. The method is based on the FK representation, but re-

places the binary bond variables, corresponding to active and deactivate states,

by arbitrary positive integers according to a Poisson distribution. The argument
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starts considering the Poisson distribution itself,

f(k, λ) =
e−λλk

k!
, (3.34)

where k denotes an integer and λ, the mean. As the sum for all probabilities is

one, and f(0, λ) = e−λ, hence the sum for all positive k’s is exactly

∞∑
k=1

f(k, λ) = 1− e−λ. (3.35)

This expression can clearly be associate with the probability to add a bond, p` =

1−e−2J` given by the SW algorithm, so in this case one can set λ = λ` = 2βJ`. The

activation of the bonds is made, if σ` = 1, throwing a random integer number for

each bond from the Poisson distribution. This is an extended FK representation,

where the binary graph space {g`} is transformed into a integer Poisson numbers

space {k`}. At this point, it seems that one does not have any gain, but actually

the Poisson distribution have the following property: the product of different

Poisson distributions with mean λi conform a new Poisson distribution with mean

λ =
∑

i λi, i.e., given by the sum of the previous means. Hence, only one Poisson

distribution is necessary to create statistically uncorrelated events instead of using

each distribution separately. Thus, one can gather all the cumulative probabilities

summing all λ`’s in a single Poisson distribution with mean

λtot =
∑
`

λ` = 2β
∑
`

J` = 2βJtot. (3.36)

The essence of this extended FK representation is shown through the following,

the probability to assign a k` to a each bond is given by

Nb∏
`=1

f(k`, λ`) =
e−λtot

k1!k2! . . . kNb !

Nb∏
`=1

λk`` . (3.37)
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This probability is transformed to be given by only one Poisson number ktot =∑
` k`, introducing from Eq.(3.34) f(ktot, λtot),

Nb∏
`=1

f(k`, λ`) = f(ktot, λtot)
k tot!

k1!k2! . . . kNb !

Nb∏
`=1

( λ`
λtot

)k`
. (3.38)

The k` events are distributed following a weighting given by the ratio λ`/λtot =

J`/Jtot. This result, allow us to make a β independent lookup table using Walker’s

method of alias for the distribution J`/Jtot which can be constructed in O(N)

runtime. For such FK representation the partition function is described in terms

of σ` and k` as follow

Z =
∑
{σ`}

∑
k

Nb∏
`=1

∆(σ`, k`)V`(k`) =
∑
{σ`}

Nb∏
`=1

∞∑
k`=0

∆(σ`, k`)V`(k`), (3.39)

where

∆(σ`, k`) =


0 if σ` = −1 and k` ≥ 1,

1 otherwise,

and V`(k`) = e−βJ`
(2βJ`)

k`

k`!
. (3.40)

A sweep of the FT algorithm can hence be summarised as follows:

1. A random non-negative integer k is generated by Poisson distribution with

mean λtot.

2. Perform the following loop k times.

(a) In general case:

i. Choose a bond ` with probability proportional to J`/Jtot by using

Walker’s method of alias with an order of inputs Nb ∼ N2.

ii. If that bond was not chosen yet and both spin are in the same

direction, then activate bond `. Otherwise do nothing.

(b) If it is allowed to use symmetries, as translational invariance:
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i. First choose a site i with uniform random number from the interval

[1, N ], then choose another site j with probability Jij/
∑

j′ 6=i Jij′ .

In that case it is even possible to reduce the Walker’s method of

alias approximately to N inputs that critically reduces the storage.

3. Flip each cluster with probability 1/2.

Both FT and Luijten-Böte algorithms do not provide any expression to compute

the exactly value of the energy per MC sweep in the same order of performance

O(N). Nevertheless, this FT update can estimate the thermal average energy

with no extra time after all MC sweeps. In the FK representation every activation

of the bond is related to the energy. If one differentiate the partition function in

order to have an energy-like expression,

〈E〉MC = − ∂

∂β
ln

(∑
c

∑
k

W (c, k)

)
(3.41)

=

∑
c

∑
k

∑
`(J` − k`/β)W (c, k)∑
c

∑
kW (c, k)

(3.42)

= Jtot −
1

β
〈K〉MC. (3.43)

where Jtot =
∑

` J` and K =
∑

` k`. Furthermore, the heat capacity can also

be computed without any extra effort. The relation with the energy is given by

c = −(β2/N)∂E/∂β. Hence, in terms of thermal averages the heat capacity is

〈c〉MC = −β
2

N

(
1

β2
〈K〉MC −

〈(
Jtot −

1

β
K

)2
〉

MC

−
〈
Jtot −

K

β

〉
MC

)
.(3.44)

=
1

N

(
〈K2〉MC − 〈K〉2MC − 〈K〉MC

)
. (3.45)

One can observe that in this FK representation the capacity is not just the variance

of the energy, rather it comes up with an extra linear term 〈K〉MC.

To complete the algorithm will introduced an efficient tree-based union/find tech-

nique, which included the pass-compression, used for systems with long-range
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interactions. This given by Newman and Ziff [64] and it has a performance of

O(logN). The idea to develop such technique resides in the manner that the

spins and the clusters are labelled. Firstly one considers each spin as a single-

cluster which is labelled by 1, the initial size of the cluster, so each spin is initially

its own root. When a bond is activated, binding two spins, one searches the root

of both spins following an ascending path towards the root. Then, following the

inverse path one points each spin through such path to the root. One can face dif-

ferent situations for the bonds: if one finds that both spins, referred to the bond,

have the same root one does nothing; otherwise, if the root sites are different one

checks the cluster size stored in both the roots, and then one adds the smaller

cluster to the larger one. In case that the sizes of corresponding clusters are the

same, one can randomly attach one to the other. When attaching the cluster trees

one updates the survivor cluster summing the both cluster sizes given by the roots.

3.2.4.3 Fukui-Todo single-cluster update: O(N)

Here, we present what should be an even faster cluster algorithm, based on the

same idea as the FT update and working in the same extended FK representation,

but in this case applied for the single-cluster version. Two aspects are making this

cluster update more suitable and faster for the LRIM with PBCs. Firstly, it is more

efficient since the autocorrelation time is reduced, and consequently the slowing

down. This will be discussed further in the data analysis section 3.4. Secondly,

since it is a single cluster, a search algorithm for the identification of the cluster

is unnecessary. In the scheme we construct this single-cluster version as follows.

Instead of using a single Poisson distribution with mean λtot, we associate a Poisson

distribution of events per spin with mean λm = λtot/N = 2βJtot/N = 2βJm where

λm and Jm correspond to the average. We start picking one random spin, and

then applying the Wolff algorithm, in that sense we focus only in the construction

of one of all possible clusters that could be generated during the FT sweep. This
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actually delivers an underestimation of the associated events per spin, as it only

takes into account the probability of adding bond from the spins inside to the

cluster to those outside, and ignoring the probability to be added one of the inside

by those from outside. To correct this problem we consider the graph in Fig. 3.2,

where a simple cluster structure is given, divided into three clusters given by violet

and blue colours. The probability that one activated bond is added to the cluster is

pm = 1−e−2βJm , but this probability is from the spin that is already in the cluster

toward the one that is outside. This is shown through the orange arrow from

spin A to B or C. Hence, we also consider the probability from the spin outside

to add a spin of the cluster shown with the orange arrows from B or C towards

A. One then considers that probability for such technique has to be modified as

pm = 1 − e−4βJm , and then the Poisson distribution has to be generated with a

mean

λm = 4βJm (3.46)

The red arrows in Fig. 3.2 that link the spin A and D show the similar situation

but with spins that already belong to the cluster. The consideration of modifying

the mean λm does not alter the situation here because repeating the events for the

bonds already added is irrelevant for the extended FK representation.

The Wolff version as we mentioned has some advantages as the reduction of the

autocorrelation time, but unfortunately, the lack of translational invariance with

FBCs makes this algorithm inappropriate for such boundaries. The energy can not

easily be computed as in the FT multicluster update due to the modification of the

events per spin and consequently it needs further study. Its steps are summarised

following:

1. Choose randomly one spin si.

2. Throw a ki random integer numbers from a Poisson distribution with

mean λm = 4βJtot/N .



Chapter 3. Numerical techniques for simulations 55

A

B C

D

Figure 3.2: A simplified sketch of typical cluster distribution is shown.
There are represented three cluster given by violet and blue colours, which
represent the different spin orientation. The orange and red arrows rep-
resent the duplicity of the interaction between spins inside (A and D) or
outside of the cluster (B and C) respectively.

3. Try ki times to recruit elements for the cluster, and add them if they have

same orientation.

4. Repeat step 3 with all the new members of the cluster until everyone is

checked

5. Flip the cluster

3.2.5 Introducing an external magnetic field

In this subsection we present the generalisation of the cluster algorithm for sys-

tem in an external magnetic field, it can be found in Ref. [65]. In this project

we only consider systems with constant external magnetic field. The inclusion of

such field for the Metropolis update is straightforward, but in the long-range in-

teractions scheme it is more difficult, specially in terms of runtime efficiency. Here

we show how to perform the modification of the SW and Wolff algorithm within

the FT update. One can naively think to modify the probability to activate a

bond following pij = (1− e−2βJij+hsi), but unfortunately this fails. For the cluster

algorithms we can not just apply this probability of activation because then the
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detailed balance will not be satisfied, that can be seen once the cluster is flipped

and then the external field term is changed. Instead, the Hamiltonian is written

as the sum of two parts as H = E +F where E = −
∑

i,j Jijsisj and F = h
∑

i si,

and the canonical probability for one state {si} is written as

ps =
1

Z
e−β(E−F ), (3.47)

Then, the acceptance ratio is constructed using the transition matrix W (s′|s),

W (s′|s)
W (s|s′)

=
ps
ps

= e−β∆E−β∆F . (3.48)

Here ∆E = E ′ − E and ∆F = F ′ − F . In that sense, W (s′|s) can be factorised in

the product of the corresponding internal energy, related to E, and energy given

by the inclusion of the external magnetic field F,

W (s′|s) = WE(s′|s)WF (s′|s) (3.49)

and then the acceptance ratio can be split in two process

AE(s′|s)
AE(s|s′)

= e−β∆E and
AF (s′|s)
AF (s|s′)

= e−β∆F . (3.50)

This gives us the advantage to split the MC sweep in two steps. This is that

one can still using cluster algorithms, in terms of bond activation and cluster

identification, for the internal energy E avoiding so the slowing down. However,

the F term energy has to be implemented as Metropolis algorithm reducing the

efficiency of the runtime. Despite in the fact that detailed balance is satisfied, as

one can not control the cluster size, one can not control the rejection ratio. That

makes this algorithm very inefficient if one introduces a strong external magnetic

field. The modified algorithm sweep follow the next steps
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1. Follow the sweep steps for the SW or Wolff algorithm, updated with

the FT variant if we are working with long-range systems, but stop before

flipping the clusters.

2. Select each cluster according to the field energy with pF = e−β∆F , where

∆F correspond to the change of the energy for each cluster. Those selected

are flipped with probability 1/2.

Regarding the step 2, the energy associated with the external field is very simple,

one just has to multiply the magnetic field h by the size of the respective cluster.

3.3 Periodic boundaries for long-range interac-

tions

Although setting up PBCs for SRIM can be done in a simple way, we can imagine

a circle for 1D system or a a torus for a 2D model, for the LRIM this consideration

is not enough to approach the thermodynamic limit. In such circumstances the

FSS derived from that might not correspond to the ideal case. Indeed, for LRIM

one demands that the interaction has to be extended to an infinity distance. The

proper implementation for PBCs in systems with such long interactions is carried

out with the introduction of extra lattices, called replicas. We shall show the

difference between considering replicas or not for PBCs.

If one does not consider replicas, i.e., a naive approach of PBCs setup is straight-

forward. One simply uses the shortest possible distance within the lattice. For

the 1D systems this result in

rij = min(|i− j|, L− |i− j|). (3.51)
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For d > 1 it is easily generalizable. This set up is problematic since the long-range

interactions are restricted by a finite system. Considering systems with extent L

we only allow the interactions to go distances of up to L/2, so the interaction is

strongly dependent on the system size. For slowly decaying interactions, corre-

sponding to values of σ < 2, this consideration might lead to a model far away

from the thermodynamic limit. In that sense, these considerations make this naive

approach PBCs very close to the FBCs case. There, the interactions only go to

a maximum distance of L. In Fig. 3.3 one can observe that the pseudocritical

points occur far away from the critical point for the naive approach with PBCs

as well as with FBCs. In the lower panel, we show that they follow same FSS at

Tc. When one use replicas on the other hand, the system is driven near to the

thermodynamic limit and experiences an expected FSS at Tc.

In Fig. 3.4 we show FSS at the critical point for susceptibility and magnetisation

for some few system sizes. One sees that if one increases the number of replicas n,

the system gradually crosses over from FBCs to the PBCs scaling. The number of

replicas considered go from n = 102 to 1040. We can observe that from 1020 replicas

the QFSS is recovered. It might then give us an estimate the required system

size that one should consider to have QFSS for FBCs at Tc, that is presumably

unachievable to simulate nowadays.

Now we will show how to set up PBCs for systems with such interactions in-

troducing an infinite number of replicas. This technique is based on computing

an effective coupling that is extended to infinite range. When introducing the

replicas, the raw interaction coupling Jij in Eq.(3.1), is transformed to

Jij =
∞∑

n=−∞

|ri − rj + nL|−(d+σ), (3.52)

where n is the d-dimensional vector label for the nth lattice replica considered.

For σ < d/2 last expression for the effective coupling is a very slowly convergence
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Figure 3.3: The top panel shows the susceptibility as a function of tem-
perature, for a system with L = 210 spins with three types of boundary
conditions. The bottom panel shows FSS of the susceptibility at Tc. The
naive approach with PBCs gives a similar behaviour that FBCs. FSS
for the system with PBCs with replicas, ‘PBCs + replicas’, follows the
expected scaling above dc which is χL ∼ Ld/2.

sum. Then, in general it can not be computed or properly approximated using a

cut off.

The only case that the effective coupling Jij can analytically be summed in an

exact way is in 1D. This involves the Hurwitz zeta function [66]

ζ(s, q) :=
∞∑
k=0

(q + k)−s. (3.53)

A closed expression for the 1D effective coupling is hence given by

Jij =
1

L1+σ

(
ζ
[
1 + σ,

rij
L

]
+ ζ

[
1 + σ, 1− rij

L

])
, (3.54)
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Figure 3.4: FSS of magnetization and susceptibility in terms of number
of replicas. For low number of replicas a GFSS is obtained, but as the
number of replicas increases QFSS is approached.

where we have been included the condition of minimal distance from Eq.(3.51).

Unfortunately for d > 1 is not possible to achieve such a closed expression, and

hence requires the introduction of a complex summation method with is discussed

below.

In this project, as we are also interested in the d-dimensional systems with PBCs

and their comparison with the corresponding FBCs systems, we use a summation

technique in order to compute Eq.(3.52). The complete description of method,

the Ewald summation, is given in appendix B. Applying the Ewald method the
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effective coupling is transformed into a sum of three parts,

Jij(r,k) =
1

Γ[d+σ
2

]

(∑
n

Γ
[
d+σ

2
, α2|r + nL|2

]
|r + nL|d+σ

+
π
d
2

2σLd

∑
k∈R

eik·rkσΓ

[
−σ

2
,
k2

4α2

]
+

2

σ

π
d
2

Ld
ασ
)
, (3.55)

Where Γ[a, b] is the incomplete gamma function. The first sum resides the real

space, the second term lies on the reciprocal space. The sum is completed with a

third independent term. Hence, the sum has been converted in a fast convergence

sum. The Ewald method performs the transformation using an incomplete gamma

function which when the sum is split in two parts, brings an auxiliary parameter α,

which has to maximise Jij(r,k). This α parameter takes different value for every

different distance, so one must compute it for all possibles distances. Regarding

the cutoffs that appear in the last equation, they are reduced to a couple of tens,

and specially the sum in the reciprocal space can completely be neglected.

3.4 Data analysis

An accurate and reliable data analysis is essential to give strong support to our

theories, so here we present the data analysis techniques carried out for this work.

We describe the main issues about the data correlation and error estimation and

the tools for a correct set up of the simulations and data collection. We follow,

as a guide, the notes of Janke in [47] and then we will introduce the reweighting

method developed by Ferrenberg and Swendsen [67].

3.4.1 Thermalisation and autocorrelation times

The thermalisation process of a given spin system depends on the starting spin

configuration. In Fig. 3.5 we illustrate the thermalisation process for a 5D SRIM



Chapter 3. Numerical techniques for simulations 62

1×10
4

2×10
4

MC sweep

-1.0

-0.5

0.0

E
/N

from low T
from high T

5D SRIM PBC L=12 at T
c

0 1×10
4

2×10
4

MC sweep

0.0

0.2

|M
|/
N

from low T
from high T

5D SRIM PBC L=12 at T
c

Figure 3.5: Thermalisation process of the 5D SRIM, simulated using the
Wolff algorithm, is shown. The upper and lower images show the equili-
bration of the energy and magnetisation respectively. Both plots show the
repercussion of choosing different starting spin configuration, where the
blue and red lines refer to low and high temperatures respectively.

simulated using the Wolff algorithm. There, we plot the energy and the magneti-

sation in terms of MC sweeps. If the starting spin configuration has been chosen

completely at random ±1, the system will start from high temperatures, T > Tc.

In such case, the quantity of sweeps needed to equilibrate the system is a bit less

than the total number of spins. The thermalisation process can actually be sped

up if one starts the system at low temperatures T < Tc, i.e., from a completely

ordered spin configurations starting.

The LRIM presents a special behaviour, the fluctuations suffered in the energy,

and also in the magnetisation, are quite important. A very few sweeps seem to be

needed to achieve a stationary state. In every MC sweep, due the nature of the

long range interaction each particle can access immediately each other member of
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Figure 3.6: Thermalisation process of the 1D LRIM, simulated using the
FT algorithm, is shown. The upper and lower images show the equilibra-
tion of the energy and magnetisation respectively. Both observables show
that the equilibration time is barely perceptible. Indeed there it is, but
the nature of the long-range interactions plus the cluster update method
allow the system to experience a very fast equilibration. The blue and red
lines refer to different starting spin configuration given by low and high
temperatures respectively.

the system, achieving thermalisation very quickly. It is visible from the plot in

Fig. 3.6, it is indeed practically impossible to distinguish a distinct thermalisation

phase.

Another important feature of simulations is the cluster dynamics since the dy-

namical exponent z drives τ through the correlation length. So, we have also

investigated the FSS for τint for three kinds of cluster algorithm updates for 1D

LRIM with PBCs for two values of σ = 0.1, 0.2 above dc. These three updates

are Luijten-Böte (LB), Fukui-Todo (FT) and FT single-cluster or Wolff version

(FW). The dynamical exponents were analysed for the Potts model by Baillie and
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Coddington in [50]. Persky et al . in [52] looked to the complete graph model,

i.e., the MF region, and they found τ = 1 for the SW algorithm and τ = 0 for

the Wolff algorithm. In this project we have analysed the τ for the LB, FT and

FW algorithm at Tc. The results plotted in Fig. 3.7 show that τ ≈ 0.2 for the FT

variant, and corresponding values are τ ≈ 0 for LB and FW variants. They seem

to be independent of the strength of the interaction given by σ in the MF regime.
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Figure 3.7: The scaling of the integrated autocorrelation time is plotted
of the 1D LRIM with PBCs for two σ values, 0.1 and 0.2. For the three
cluster updates: The Wolff versions have a dynamical exponent close to
zero, however the SW Fukui-Todo shows a z ≈ 0.2.

Finally, in order to see the difference among the runtime given by different algo-

rithm, we plot in Fig. 3.8 the performance of the Metropolis (MT), Wolff (WO),

Luijten-Böte (LB), Fukui-Todo(FT) and FT Wolff version (FW) for 1D LRIM

with PBCs with σ = 0.1. One can observe the performance in terms of time per

sweep and time per sweep and spin versus the system extent. We can observe the

three regims of runtime O(L2), O(L lnL) and O(L) respectively in MT, LB and

FT. Specially we can notice the fast behaviour of the FW.

3.4.2 Error analysis

Despite in fact that sampling data is performed according to an accurate estima-

tion of autocorrelation time, some minor correlations are always presented in the



Chapter 3. Numerical techniques for simulations 65

10
2

10
4

10
6

L

10
-4

10
0

ti
m

e 
p
er

 s
w

ee
p
 [

se
c]

MT
WO
LB
FT
FW

L
d

L
2d

1D PBC σ=0.1 at T
c

10
2

10
4

10
6

L

10
-8

10
-6

10
-4

ti
m

e/
(s

w
ee

p
&

p
ar

t 
)[

se
c]

MT
WO
LB
FT
FW

1D PBC σ=0.1 at T
c

Figure 3.8: These two figures show the runtime for different algorithms.
In the top image the time per sweep is plotted versus the system size, and
in lower image contains the time per sweep and particle.

measurements. The binning analysis is simple but is not very accurate to esti-

mate the errors, specially for such observables that are not a linear combination

of directly measured quantities. Thus, the error analysis carried out in this work

is based on the jackknife analysis, a refined method based on the binning analysis.

The jackknife analysis is capable of taking into account the possible correlations

that could remain between two samples.
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3.4.2.1 Binning analysis

The binning analysis consists in dividing all the N measurements into small blocks

NB of length k. One makes the average according to

OB,n =
1

k

k∑
i=1

O(n−1)k+i, with n = 1, . . . , NB. (3.56)

To make sure the data within the blocks are uncorrelated one has to require k � τ .

The error for the binning analysis is given by

ε2B =
1

NB(NB − 1)

NB∑
n=1

(OB,n − ŌB)2 (3.57)

3.4.2.2 Jackknife analysis

The jackknife method uses the binning analysis, but considering a larger number

of samples k for the blocks NB. Those blocks are used to compute the jackknife

blocks Oj,n which contain N − k measurements,

Oj,n =
NŌ − kOB,n

N − k
. (3.58)

One considers larger Nb blocks to reduce the error in the binning blocks, this

together with the jackknife blocks overestimates its error, and so it has to be

corrected by (NB − 1)2 factor. The error is finally given by

ε2J =
NB − 1

NB

NB∑
n=1

(
OJ,n − Ōj

)2
. (3.59)

3.4.3 Reweighting method

In order to save computational resources and time, the reweighting method is a

very useful tool to reuse the amount of information saved inside the measurements
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in a MC simulation. This technique uses the properties of the canonical ensemble

that allows us to extrapolate numerical results at a new temperature near to the

previous temperature simulated. This method is specially useful to find the finite-

size transition points.

In the canonical ensemble, the probability to stay in a certain state {s} with energy

E at β is given by pβ ∼ e−βE. Following that consideration, one can find that the

probability of a state at the same E at another inverse temperature β′ is given by

pβ′ = Ae−(β′−β)Epβ, (3.60)

where A is a constant given by both inverse temperatures. In that sense, we can

compute the partition function as

Zβ′ =

∫
ds pβ′ =

∫
dsAe−(β′−β)Epβ = AZβ〈e−(β′−β)E〉β. (3.61)

The value for the constant A is obtained as

A =
Zβ′

Zβ

1

〈e−(β′−β)E〉β
. (3.62)

as a result, the expectation value for an observable at another temperature β′ is

given by,

〈O〉β′ =
1

Zβ′

∫
ds O(s) pβ′ =

〈Oe−(β′−β)E〉β
〈e−(β′−β)E〉β

. (3.63)

Despite in fact that the above equation considers any β′ and this expression go

along all the configuration space, one can not apply such expression to MC sim-

ulations. This is because one can not generate all possible states in a reasonable

computational time. For example for our case, there are 2N possible states. Rather

we use the MC measurement space

〈O〉β′ =

∑
iOie

−(β′−β)Ei∑
i e
−(β′−β)Ei

, (3.64)
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where i is the state sampled in the MC simulation. However, it has a limitation

due to the computational method, and it is impossible to access all possible states,

consequently it reduces the extrapolation function Eq.(3.64) to be only suitable in

inverse temperatures β′ close to β, where the spin configuration are similar.

To compute the associated error one can use the jackknife method, keeping in mind

that the error will increase as we move away from the computed temperature. One

can use this method to find effectively the pseudocritical point recursively together

with MC simulations. We can conclude th reweighting method is ideal and handy

to save simulation effort, but weak comparing with proper simulated results.

3.4.3.1 Histogram reweighting method

To use a smaller storage requirement and to low the time spent in the reweighting

method, one can use histograms based on energy levels instead. If this energy

levels still requiring a considerable amount of storage, one can divide the energy

in certain numbers of bins, despite in fact it will deliver binning errors. In that

case the formula follows

〈O〉β′ =

∑
E O(E)hβ′(E)e−(β′−β)E∑

E hβ′(E)e−(β′−β)E
, (3.65)

where hβ′(E) is the density of states for a given energy. One also in interested in

including external magnetic field, then one rather has to consider magnetisation

dependence for the density states hβ′(E,M).

3.4.3.2 Reweighting method for Fukui-Todo update

For the FT update it is not able to have a direct measurement of the energy in a

MC steps if we want to keep the computational effort per update of order O(N).

However, the energy is actually given in terms of bond activation g` and positive
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Poisson integers given by k` for the extended FK representation that is used by the

FT algorithm. Then, we can luckily write down a reweighting equation specially

for such technique. From its partition function, written in Eq.(3.39) and (3.40),

one extracts that the canonical probability is

pβ =
∑
k

Nb∏
`=1

∆(σ`, k`)V`(k`) =
∑
k

Nb∏
`=1

∆(σ`, k`)e
−βJ` (2βJ`)

k`

k`!
. (3.66)

Then, the probability of a state at another inverse temperature β′ at the same

energy, for such representation is simplify to

pβ′ = Ae−(β′−β)Jtot

(
β′

β

)k`
pβ, (3.67)

where now the term e−(β′−β)Jtot does not depend on the configuration and can be

absorbed by the constant. Following the same argument as before we arrive that

the reweighting formula looks like

〈O〉β′ =

∑
iOi(β

′/β)Ki∑
i(β
′/β)Ki

(3.68)

where Ki =
∑

` k
i
`, i.e., sum for all active bonds for a given MC sweep and i

refers to the such sweep. If we want to extrapolate the energy we only have to

set Oi = Ki, and then to apply the formula E = Jtot − 〈K〉/β′ given in Eq.(3.41).

In Fig. 3.9 we can observe how is the performance of this reweighting method

compared with the standard one. We can notice that because of similarity of the

spin configuration for high energies the energies fit further for high energies.

3.5 Conclusion

In this chapter we have shown the methods and techniques that were applied in

order to produce reliable data through the simulations that this work contains. We
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Figure 3.9: The reweighting method result is shown in this plot. We
chose the Tc point to perform one run and extrapolate the rest. The
black squares represent the results from simulation, and the blue line the
reweighting method for using the energy rew., and the red line using the
k’s rew. from modified FK representation.

have also given the details of a very important update for the cluster algorithm

for systems with long-range interactions showing that the speed of computation

can be lowered even more from the algorithm developed by Luijten O(N lnN) to

O(N) thanks to the update proposed by Fukui and Todo. Furthermore we have

proposed a single-cluster variant for the FT algorithm. As well we have shown how

to perform a proper summation for slow-convergence sums, applying the Ewald

sum method, to allow us to compare in a proper way the system with FBCs and

PBCs. Finally we also gave a reweighting method tailored to the FT update and

showed that for a very close temperature using the active bond number K is as

accurate as using the energy per sweep.



Chapter 4

Analysis of Q-finite-size scaling

for Ising models

4.1 Introduction

In Chapter 2 we revisited critical phenomena above the upper critical dimension,

comparing the FSS derived by the RG and by MFT. We have seen that incorpo-

rating DIVs into the correlation sector is crucial to develop a new scheme, namely

QFSS, and so reconcile the RG and MF. The aim of this chapter is then to check

our scheme in ferromagnetic systems above dc. To achieve our objective we have

simulated the LRIM for several dimensionalities and studied the well-known 5D

SRIM, which has been the focus of a long-lasting debate about the nature of FSS

above dc. These two kinds of ferromagnetic systems belong to the same univer-

sality class and so they should experience similar scaling behaviours. Indeed, the

universality class can also include other type of systems such as fluids [68].

Our contribution [43] sparked a recent debate about the nature of non-zero Fourier

modes [44, 69]. It was believed that the non-zero modes, which should not contain

DIVs, must follow the Landau MF theory with standard FSS and ξ ∼ L. We show

71
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that this picture is still incompatible with both numerical simulations and with

RG theory. Instead, when the DIVs are suppressed what one expects is Gaussian-

fixed point exponents. The FSS associated with those exponent is named here as

Gaussian FSS (GFSS). The confusion arose because some exponents take same

values e.g. γ† = γ. We shall illustrate the actual picture for non-zero modes, the

GFSS as a complement of QFSS, and its limitations. So in that sense we replace

the standard FSS and it breakdowns by the combination of QFSS and GFSS.

The d-dimensional LRIM, with N = Ld, considered in this project are described

by the Hamiltonian,

H = −
∑
i<j

Jijsisj +
∑
i

Hisi, with Jij =
J

|ri − rj|d+σ
. (4.1)

The coupling Jij is an algebraically decaying function; it depends on the distance

between two spins located at lattice positions i and j. The system has to satisfy the

non-divergence of the energy, so that it is required that σ > 0. In the ferromagnetic

case, here considered, the spins can only take values ±1 and the coupling J > 0.

The term Hi is the external magnetic field. The first sum in Eq.(4.1) runs over

all the possible interactions, or bonds of the system of which there are Nb =

N(N − 1)/2.

The richness of the physics of this kind of LRIM gives us an important tool for

the study of critical phenomena for continuous phase transitions, and specially in

the regime above dc. The strength of the interaction can be regulated through

the σ parameter, and if one properly tunes the strength, one can drive the system

to different scenarios where different approximations are taken to describe the

system.
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The discrete Hamiltonian for the LRIM in Eq.(4.1), expressed as φ4 theory, is

given by corresponding Ginzburg-Landau-Wilson action

S[φ] =

∫
ddx

(
f0 +

r0

2
φ2 +

c

2
|∇φ|2 +

u

4
φ4 − hφ+ cσ

∫
ddx′

φ φ′

|x− x′|d+σ

)
. (4.2)

Here, φ = φ(x) is the order parameter and the last term contains the long-range

interactions. The factors c and cσ are constants. The Hamiltonian for the 5D

Ising model with nearest-neighbour interactions is easily recovered setting cσ = 0.

The physics of the long-range interactions model was firstly studied by Fisher,

Ma and Nickel in [70]. They applied a treatment of RG theory finding that the

critical dimension depends on the control parameter, dc = 2σ. In other words, for

a dimension d, there is a critical σU = d/2. That allowed them to find the fixed

points, identifying three different regimes that are mapped in Fig. 4.1:

I for 0 < σ < σU = d/2, the system is above dc. One finds a stable

Gaussian fixed-point, where critical phenomena are described by MFT. The

MF critical exponents are found to be

α = 0, β =
1

2
, γ = 1, (4.3)

δ = 3, ν =
1

σ
, η = 2− σ. (4.4)

Besides one can add the complementary QFSS exponents

ϙ =
d

2σ
, λ =

ϙ

ν
, ηϙ = 2− d

2
, (4.5)

I for d/2 < σ < σL = 2 the critical exponents depend on σ, so non-MF

exponents are expected.

I for σ > 2, the interaction is so strong that the systems behaves as SRIM.

Despite the fact that in this work we do not consider the regime below dc and

so we do not discuss the scaling details there, it is worth briefly mentioning some



Chapter 4. Analysis of QFSS for Ising models 74

0 0.5 1 1.5 2 2.5 3
interaction strength σ

0

1

2

3

4

5

sy
st

em
 d

im
en

si
o
n
 d

LSRI

SRILRI

Mean field
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due to the non-triviality of the fixed point there. For σ > 2 the short-
range interaction (SRI) is recovered. Finally the squares denote the critical
dimension regime which manifests logarithmic corrections.

important issues about the various regimes discussed above. A long-lasting debate

for the description of critical phenomena at the lower critical σL has been continued

lately. The question is where, in fact, is the precise value at which one recovers

the SRI behaviour. This was recently discussed and summarised by Parisi et al .

in [60]. It is claimed that the lower critical range is rather σL = 2− ηSR [71, 72],

where the corresponding d-dimensional SRI universality class is the correlation

function exponent ηSR. In particular, for d = 1 this implies σL = 1, in agreement

with exact results for this specific case [73]. Recent discussion have focused on the

location of, and behaviour at, the lower critical σL [60, 61, 74, 75].

In line with the regimes given by the LRIM, this can actually be seen as a general

formalism that also includes the SRIM. To recover scaling behaviour for the SRI

systems one only has to replace σ by σL = 2 in the critical exponents. In this way

dc = 2σL = 4 and the MF exponents are easily recovered for the SRIM above dc.

The algebraically decaying interaction for long-range interactions systems allow

us to consider them above dc, i.e., in the MF regime. We focus then on the

study of the 5D SRIM, and the 1D, 2D and 3D LRIMs for such regimes. To
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give a complete investigation we have studied systems with both periodic and

free boundary conditions (FBCs and PBCs). In this manner, we can investigate

the universality of the pseudocritical exponent ϙ and the fundamental role of the

correlation length as influenced by DIVs.

This project involves computational work, so we have performed simulations of

the 1D, 2D and 3D LRIMs using the Fukui-Todo Swendsen-Wang algorithm. For

systems with PBCs we have simulated systems sizes from approximately N = 128

to 262144, using the effective summed coupling in Eq.(3.55) extracted from the

Ewald method. Simulating systems with FBCs requires more memory due the

lack of symmetries for the speed-up long-range interactions algorithms presented

in chapter 3. Hence, we have simulated smaller system sizes with FBCs, approxi-

mately from N = 128 to 32768. The σ values considered here are σ = 0.1 and 0.2

for one, and two dimensional cases and σ = 0.1 and 0.3 for the three dimensional

case, very deep in the mean-field region σ < d/2. We have also simulated the 5D

model with nearest-neighbour interactions, which corresponds to the SRIM, with

PBCs and FBCs. The simulations were carried out using the Wolff cluster algo-

rithm, considering system sizes from L = 20 up to 48 for both kinds of boundaries

applied. Equilibrium times and measurement frequencies were set according to an

analysis of integrated autocorrelation times and the jackknife method to take into

account the correlation in the data following the description of data analysis in

Chapter 3. The resulting set up, was around 105 Monte Carlo steps for thermal-

isation, followed by 3× 105 measurements. In order to find the critical point, we

use the scaling through the pseudocritical temperatures which are defined when

χL has its maxima,

TL = argT maxχL(T ). (4.6)

We have run several times each simulation for each system size, using the reweight-

ing methods to identify the peak of χL.
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This chapter is mainly divided into two major parts. Firstly, in section 2 we

analyse the LRIM and 5D SRIM with PBCs and secondly with FBCs in section 3.

section 4 contains the scaling analysis when an external magnetic field is included

to the model. Finally section 5 contains the conclusion.

4.2 Periodic boundary conditions

We start our analysis with PBC systems. In order to give a complete description

we present the forms of the thermodynamic homogeneous functions from the RG

equations. If one imposes PBCs, one can easily transform the Hamiltonian in

Eq.(4.2) to its Fourier counterpart. This takes the form

S[φ] =
1

2

∑
k

(
r0 + ck2 + cσk

σ
)
φ2
k +

u

4Ld

∑
k1,k2,k3

φk1φk2φk3φk4 + hLd/2φ0, (4.7)

where k4 = −k1 − k2 − k3. Choosing the rescaling factor as b, if we rescale

all the terms inside the Hamiltonian above, one can notice that the term which

leads the behaviour in the LRIM is now the kσ over the kinetic term k2. In that

sense, rescaling the momentum k′ = kb and apply it to the long-range interactions

term kσ give us a rescaling relation for the field that is φ′k′ = b−σ/2φk. Then,

the other terms rescale as k′ = bσ−2k for the kinetic term, as r′0 = bσr0 for the

reduced temperature term, as h′ = b(d+σ)/2h for the external magnetic source, and

u′ = b2σ−du for the self interaction term. The eigenvalues associated with their

rescaling are

yt = σ, yu = 2σ − d, yh =
d+ σ

2
. (4.8)

As we have seen in Chapter 2 for the SRIM, yu is still behaving as dangerous

irrelevant variable for the LRIM above dc when σ < d/2.
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4.2.1 The zero mode φ0

The Fourier modes are the components fields φk of the action in the reciprocal

space in Eq.(4.7). For systems with PBCs the zero mode φ0 has a very important

role since it is straightforwardly related to the DIV sector above dc. The action in

the Fourier space can also be rewritten as

S[φ] ' 1

2

(
r0 +

3u

2Ld

∑
k6=0

|φk|2
)
φ2

0 +
u

4Ld
φ4

0

+
1

2

∑
k6=0

(r0 + c|k|2) + cσ|k|σ)|φk|2 − hLd/2φ0, (4.9)

where the φ0 mode has been formally separated out. In this form, one can notice

the nature of the particular scaling that is characterized by DIVs through the

connection with the zero mode. Keeping aside the external-field term, φ0 and u

always appear together. To show the special behaviour for the zero mode, one can

compute its expected value 〈φ2
0〉, noticing that 〈φ0〉 = 0 by symmetry. Noticing the

partition function Z given in Eq.(2.64), the square expectation value is computed

through

〈φ2
k〉 = Z−1

∫
Dφk φ2

k exp
(
−S[φk]

)
. (4.10)

Setting k = 0 in for the average and neglecting other terms with k 6= 0, the zero

mode takes the form

〈φ2
0〉 =

r0L
d

2u

K 3
4

[
Ldr2

0

8u

]
K 1

4

[
Ldr2

0

8u

] − 1

 , (4.11)

where K3/4 and K1/4 are the modified Bessel functions. One can then state that

the leading scaling behaviour is given by

〈φ2
0〉 ∼

r0L
d

2u
∼ Ld/2. (4.12)
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There, we have replaced r0 by t, then used the scaling power law for the correlation

length ξ ∼ t−ν and we have finally introduced the QFSS ansatz ξ ∼ Lϙ.

However, if one considers that u → 0, the last φ4 action transforms into the

Gaussian action, simpler model, given by

S[φ] =
1

2

∑
k

(r0 + c|k|2) + cσ|k|σ)φ2
k. (4.13)

Either computing Eq.(4.10) for this Gaussian model or taking the limit for Eq.(4.11)

when u→ 0, one gets this scaling behaviour for the zero mode

〈φ2
0〉† = lim

u→0
〈φ2

0〉 =
1

r0

∼ Lσ. (4.14)

We applied the same relations than we used to obtain Eq.(4.12), but in this case

the scaling for the correlation length follows ξ ∼ L. DIVs always need to be

taken into account in order to describe properly the critical phenomena above dc,

nevertheless we will see some regimes where u is suppressed as the at the critical

point for systems with FBCs, or in the scaling of the non-zero modes.

4.2.2 RG equations and free energy density

If one applies the RG theory, one gets the direction of the fluxes and so the fixed

points for the model as shown in Ref.[4, 70] by Fisher, Ma and Nickel. Here, we use

as a guide the work done by Luijten and Blöte in [36, 58]. The RG method for the

LRIM with PBCs leads the following system of first-order differential equations

for the r0 and u variables, with l = ln b,

dr0

dl
= σr0 + 3au(c− r0), (4.15)

du

dl
= εu− 9au2. (4.16)
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Here we denote ε = 2σ− d, and a and c are constants. Above dc, one then applies

ε < 0. The solution for the second equation is

u(l) =
ūeεl

1 + 9aūε−1 (eεl − 1)
, (4.17)

where ū = u(l = 0). The solution for the other equation, in terms of leading order

u(l) and in a compact form, is

r0(l) = eσl
(
r̄0 +

3acū

d− σ

)(
u(l)

eεlū

) 1
3

− 3acu(l)

d− σ
,

= eσl (r̄0 + ãū)

(
u(l)

eεlū

) 1
3

+ ãu(l) (4.18)

with r̄0 = r0(l = 0) and ã = −3ac/(d−σ). These two functions u(l) and r0(l) con-

trol the flow towards the fixed point. Above dc these variables flow to a Gaussian

fixed point which is stable. The RG exponents yt = σ and yu = ε = 2σ − d are

immediately identified in Eq.(4.18). The scaling of the free energy of the system

is constructed through the variables r0(l) and u(l) and its derivatives. Hence, the

free energy density function, up to leading order, is given by

fL(t, h, u) = b−df̃L/b
(
byt [t+ ãubyu−yt ], byhh, byuu

)
+ g̃L. (4.19)

The functions f̃L/b and g̃L respectively are the singular and analytical part of the

free energy. For temperatures below the critical point the free energy becomes

singular at u = 0, leading to the breakdown of FSS. To overcome this problem one

has to rescale the singular part of the free energy in terms of DIVs [58] to take

them into account. One considers this approximation

f̃L/b(t, h, u) ' ln

∫ ∞
−∞

dφ exp
[
r0φ

2 − uφ4 + hφ
]
. (4.20)
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Then one rescales the field absorbing DIVs, φ′4 = uφ4. The free energy is now

given by

FL/b(t
′, h′) ' ln

∫ ∞
−∞

dφ′ exp
[
r′0φ

′2 − φ′4 + h′φ′
]
. (4.21)

Where the reduced temperature term and the external magnetic field have respec-

tively been rescaled as t′ = tu−1/2 and h′ = hu−1/4. In this manner, the singular

part of the energy takes the full dependence of DIVs in a implicit manner. Hence,

FL/b(t
′, h′) + g0 = f̃L/b(t, h, u) + g̃L, (4.22)

where g0 does not contain any further relevant information about the scaling or

DIVs, and so it can be omitted [4, 76]. Then the free energy density is given by

the rescaled version, with the information implicitly in t and h,

fL(t, h) = b−dFL/b
(
by
∗
t u−1/2[t+ ãubyu−yt ], by

∗
hu−1/4h

)
, (4.23)

with the rescaled exponents y∗t = d/2 and y∗h = 3d/4. Indeed, this energy function

is similar to Eq.(2.95), but is a more complete version due the consideration of

first-order corrections.

4.2.3 Shifting, rounding and heat capacity scaling

The first results, presented here, are those from the energy sector involving the shift

and rounding exponents and the scaling for heat capacity. The scaling relation

for the pseudocritical temperature, approaching the critical point, is extracted

by the first argument of density energy function in Eq.(4.23). The subsequent

derivatives from the free energy, as the heat capacity or the susceptibility depend

on the same arguments too. Hence, the universal function for the susceptibility

XL/b(by
∗
t u−1/2[t + ãubyu−yt ], by

∗
hu−1/4h), has to satisfy

∂

∂t
XL/b = 0 at TL where the

peak is manifested. The solution is that the first argument takes a constant value
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Figure 4.2: FSS for the shift and rounding exponents above dc for the 1D
LRIM with PBCs for two σ values 0.1 and 0.2. Top figure shows that the
pseudocritical points scale as tL ∼ L−1/2 following the dashed line. The
bottom figure shows the scaling for the rounding, following ∆TL ∼ L−1/2

denoted by the dashed line. QFSS predictions match perfectly such scaling
behaviours.

z. Then by
∗
t u−1/2[t+ ãubyu−yt ] = c with b = L. Hence, for the LRIM above dc the

scaling up to the first-order is given by an expression as

tL = c0L
−λ (1− c1L

−ω) (4.24)

where λ = y∗t = d/2 is the shift exponent and ω = −y∗t − yu + yt = d/2− σ is the

shift first-order correction.

After the TL points for different system sizes are found, we proceed to find the

critical point Tc, recalling tL = TL/Tc − 1. We have fitted these points to the

scaling expression

TL = Tc − z0L
−λ (1− z1L

−ω) , (4.25)
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Figure 4.3: FSS first-order correction for the shift in 1D LRIM with PBCs
for two σ values. In the top image the tL has been normalised by the
predicted scaling tL ∼ L−1/2, and the y-axis have also been rescaled by its
corresponding ω = 0.4 and 0.3 for σ = 0.1 and 0.2 respectively. The points
follow the straight lines denoted by dashed lines. The image below shows
the first correction to scaling with another kind of scaling correction ω = 1.
This correspond to the typical scaling correction tL ∼ L−d/2(1 + AL−1 +
O(L−2)), in order to emphasise the validity of the theoretic corrections in
the top image.

but firstly neglecting the corrections corresponding to z1 and ω = 0 (the constant

z0 is already multiplied by Tc). Using Tc, z0 and λ as free parameters, we have

checked that the results are in the proper range of values. Then we have imposed

λ to its theoretic value and we have estimated Tc. Then we have imposed Tc

and estimated λ. As well, in every fit we have removed the small system sizes

to avoid an excess of corrections, until the fit satisfied a minimum fit quality

given by the χ2 test. We have fitted the rounding only to the leading scaling

∆TL ∼ L−θ = L−d/2. Those results are contained in Table 4.1 and they can

be seen in Fig. 4.2. We have also estimated the first-order corrections fitting
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Figure 4.4: Normalised scaling for the heat capacity in 1D LRIM with
PBCs for σ = 0.1. The image are in favour of the MF value α = 0 with
the QFSS prediction for λ = d/2, as the lines clearly collapse.

Eq.(4.24) following the similar procedure as before but with more parameters. The

results containing the corrections are gathered in Table 4.2. In Fig. 4.3 we can

observed that the corrections are correctly described by the theoretic prediction

from Eq.(4.24).

Table 4.1: Results corresponding to the temperature sector for LRIM. For
different dimension d and σ values. We have estimated the critical points
and the exponents for shift λ and the rounding θ.

d σ Tc λ = d/2 θ = d/2

1
0.1 21.0013(3) 0.499(1) 0.503(5)
0.2 10.8421(2) 0.501(1) 0.488(9)

2
0.1 65.3381(6) 0.993(5) 1.001(8)
0.2 33.8384(5) 0.993(4) 0.995(6)

3
0.1 129.415(1) 1.493(6) 1.484(9)
0.3 45.5543(6) 1.487(7) 1.491(8)

5 2.0 8.77847(1) 2.437(8) 2.481(7)

To conclude the energy sector analysis, we investigate the heat capacity too. For

the 1D LRIM with σ = 0.1 in PBCs we can observe in Fig. 4.4 how the lines

collapse under a scaling using QFSS predictions. Up to leading order, the heat

capacity scale approaching a constant behaviour since α = 0,

cL(t) ∼ z0L
ϙα/ν = z0. (4.26)
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Table 4.2: Results corresponding to the temperature sector for LRIM.
Different dimension d and σ values where analysed. We have estimated Tc
and the exponents for shift λ and its first-order correction ω.

d σ Tc λ = d/2 ω = d/2− σ

1
0.1 21.0000(3) 0.500(2) 0.41(3)
0.2 10.8419(5) 0.503(4) 0.32(4)

2
0.1 65.3376(9) 0.998(3) 0.86(9)
0.2 33.8397(5) 1.000(3) 0.82(9)

3
0.1 129.431(2) 1.500(5) 1.51(20)
0.3 45.5541(8) 1.500(6) 1.20(20)

5 2.0 8.77846(2) 2.502(1) 0.491(1)

4.2.4 Magnetization and susceptibility
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Figure 4.5: Normalised scaling for magnetisation and susceptibility for
the 1D LRIM with PBCs. In both images the two observables have been
normalised following QFSS, the lines visibly collapse.
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The magnetisation and susceptibility are respectively given in terms of energy

density Eq.(4.23) with b = L by

mL(t) = −∂fL
∂h

= Ld−y
∗
hM

(
Ly
∗
t u−1/2t̃, Ly

∗
hu−1/4h

)
, (4.27)

χL(t) =
∂2fL
∂h2

= Ld−2y∗hX
(
Ly
∗
t u−1/2t̃, Ly

∗
hu−1/4h

)
, (4.28)

where t̃ = t + ãuLyu−yt . Expanding both universal functions M and X up to

first-order corrections and expressing the scaling dimensions in terms of critical

exponents, they take the form

mL(t) = z0L
−ϙβ/ν(1 + z1L

−ω), (4.29)

χL(t) = z̃0L
ϙγ/ν(1 + z̃1L

−ω). (4.30)

The validity of QFSS can be seen in the normalised plots for the mL and χL in

Fig. 4.5. The complete results for PBCs are gathered in Table 4.3. For this case

we have only estimated the corrections for the 1D model. These corrections are

extracted for the mL at TL points, where the corrections are stronger than at Tc.

We have found ω(σ = 0.1) = 0.43(4) and ω(0.2) = 0.36(4). For χL at TL, these

corrections are ω(σ = 0.1) = 0.41(3) and ω(0.2) = 0.36(6). These results are

plotted in Fig. 4.6 and 4.7, where the validity of the theoretical corrections are

visible. The scaling for the magnetization of the 5D SRIM with PBCs was already

verified in favour of QFSS [77–79].

4.2.5 Correlation function and correlation length

The most relevant new features of QFSS are related to the correlation sector, due

to the crucial role that the correlation length plays and the anomalies with the

correlation function scaling with ηϙ. A modified Ornstein-Zernicke form of the
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Figure 4.6: FSS for magnetisation for the 1D LRIM with PBCs. In the
top image the magnetisation clearly scales as mL ∼ L−1/4 following the
dashed line. The bottom image shows the normalised magnetisation versus
the expected scaling for the first-order corrections. Through this rescaling
one expects a linear behaviour which is manifestly visible for the dashed
lines. The respectively ω values for σ = 0.1 and 0.2 are ω = 0.4 and 0.3.

propagator [80],

Ĝ(k) ∼ 1

m2 + k2 + kσ
, (4.31)

where for σ < 2 shows that the kσ is the dominant long wavelength contribution.

Hence, the correlation length can be estimated from [81]

ξL(t, h) =
1

2 sin(kmin/2)

[
G̃(0)

G̃(kmin)
− 1

] 1
σ

. (4.32)

Here, kmin = 2π/L is chosen to be the smallest wave vector for the periodic lattice.

The scaling of the correlation length ξ for the LRIM, can be derived from the last
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Figure 4.7: FSS for susceptibility for the 1D LRIM with PBCs. In the top
image the susceptibility clearly scales as χL ∼ L1/2 following the dashed
line. The bottom image shows the normalised susceptibility versus the
expected scaling for the first-order corrections. Through this rescaling one
expects a linear behaviour which is manifestly visible for the dashed lines.
The respectively ω values for σ = 0.1 and 0.2 are ω = 0.4 and 0.3.

expression with G̃(0) = 〈φ0〉 ∼ Ld/2, one finds

ξL(t, h) ∼ L

[
G0L

d/2

GminLσ
− 1

] 1
σ

∼
(
Ld/2 − Lσ

)1/σ ∼ Ld/2σ. (4.33)

For universal functions one expects a crossing point near to the critical point.

In the upper plot in Fig. 4.8, one can observe that if the universal function

ΞL ∼ ξL/L
ϙ, up to minor corrections, is plotted as a function of temperature,

a crossing point near Tc is shown. In the lower picture one observes the QFSS

for the correlation function at x = L/2 is collapsed. In Fig. 4.9 we have also

plotted ξL and G(L/2) in terms of system size. One can observe in both plots

strongly support QFSS, specially for the correlation length where the slope show
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Table 4.3: This table gathers some of the simulation results with PBCs
for the scaling exponents and compare them with QFSS predictions. The
observables analysed are mL ∼ L−ϙβ/ν , χL ∼ Lϙγ/ν , ξL ∼ Lϙ and
GL(L/2) ∼ L−(d−2+ηϙ).

d σ T ϙβ/ν = d/4 ϙγ/ν = d/2 ϙ = d/dc d− 2 + ηϙ = d/2

1
0.1

Tc 0.248(1) 0.503(2) 5.03(2) 0.498(3)
TL 0.248(1) 0.504(2) 4.96(3) 0.496(1)

0.2
Tc 0.249(1) 0.504(2) 2.49(2) 0.490(2)
TL 0.246(1) 0.508(2) 2.50(2) 0.491(4)

2
0.1

Tc 0.502(1) 1.000(5) 9.96(3) 0.997(8)
TL 0.496(1) 1.007(5) 9.95(4) 0.984(8)

0.2
Tc 0.496(1) 1.004(5) 5.04(4) 0.984(8)
TL 0.492(1) 1.008(5) 4.99(4) 0.978(9)

3
0.1

Tc 0.749(2) 1.512(8) 15.07(5) 1.484(12)
TL 0.743(3) 1.513(9) 15.04(6) 1.489(11)

0.3
Tc 0.752(4) 1.504(7) 4.98(5) 1.495(9)
TL 0.744(4) 1.511(9) 4.96(4) 1.486(12)

5 2.0
Tc 1.25(1) 2.49(3) 1.25(1) 2.49(2)
TL 1.22(1) 2.43(8) 1.23(1) 2.46(3)

straightforward the value of ϙ for two values of σ, ϙ = 5 and ϙ = 2.5 respectively

for σ = 0.1 and 0.2.

The scaling behaviour for the correlation function was also an open debate, but

the predictions by QFSS prevails with G(L/2)−d/2, with d − 2 + η 6= d/2 and

indeed d−2+ηϙ = d/2 [11, 43]. The decaying of G(x), in terms of lattice position

x is still unclear, hence it is also investigated here. We have plotted in Fig. 4.10

the unconnected and the connected correlation function, G and Gc respectively,

for 1D LRIM with PBCs σ = 0.1 for L = 220. One can argue that the behaviour

associated with QFSS appears in G due the zero mode, otherwise for Gc which the

zero mode is suppressed should not contain such QFSS behaviour. One actually

can observe a crossover between the QFSS and the FSS for both G(x). It seems

that for short distances FSS is leading the behaviour but in a middle region QFSS

appears to prevail there.
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Figure 4.8: Normalised scaling for the correlation length and correlation
function for the 1D LRIM with PBCs. In the both images these two ob-
servables have been normalised following QFSS. For the correlation length
a plot of the universal function ΞL ∼ ξLL

−ϙ clearly exhibit a crossing point
at Tc ≈ 21, the corresponding critical temperature for σ = 0.1. Under this
rescaling the correlation function collapses into a single curve.

4.2.6 Non-zero modes

For systems with PBCs the other Fourier modes, apart from the zero mode, φk6=0

are not projected to the real magnetisation and a priori less interesting, but these

modes can actually become a tool to test the theory, if one wants to see the con-

sequences of DIVs being suppressed. To simplify the notation we label the modes

regarding if they are influenced or not by DIVs. In this manner, the Q-modes will

be those modes that follow QFSS and so are affected, the modes following GFSS

will be labelled as G-modes. For PBCs the magnetisation modes are given by

mk = 〈φk〉 =

〈∫
ddx φ(x)ψk(x)

〉
, (4.34)
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Figure 4.9: FSS for the correlation sector for the 1D LRIM. In the upper
image the correlation length clearly scales as ξL ∼ Lϙ with ϙ = 5 for
the system with σ = 0.1 denoted by the short dashed line and ϙ = 2.5
for σ = 0.2, denoted the long dashed line. The lower image shows the
correlation function scaling as GL(L/2) ∼ L−1/2 for the dashed line. Both
are manifestly in favour of QFSS.

where ψk(x) = eik·x is standing wave in the periodic case, but it depends on the

nature of the boundaries. The brackets indicate the thermal average with the

Boltzmann weight corresponding to the action. The equilibrium magnetisation is

then

m =

〈∫
ddx

∑
k

φkψk(x)

〉
. (4.35)

The Q-modes acquire nonvanishing expectation values and have projections onto

the equilibrium magnetisation as discussed by Rudnick, Gaspari and Privman in

[82] and lately by Wittmann and Young in [69]. Going to the detail now, one

has to be careful when measuring the magnetisation modes during the simulation.
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susceptibility for 1D LRIM with PBCs. In both image these two observ-
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Firstly, one considers the transformation of the spins

S̃k =
L−1∑
n=0

eik·nSn, (4.36)

where n is the position of the spin over the lattice and k = 2π/Lk̂ with k̂ =

0, . . . , L− 1. Its inverse transformation is

Sn =
1

Ld

L−1∑
k=0

e−ik·nS̃k. (4.37)

The magnetisation mode is,

mk =
1

Ld
〈S̃k〉. (4.38)

The nature of the mode can easily be observed. The only contribution to the real

magnetisation is given by the S̃0 mode, all the rest do not contribute. Exactly the

same happens to the susceptibility modes, which are defined as

χk = Ld〈|mk|2〉, (4.39)

where the brackets are the thermal average. This χk modes are related with the

correlation functions in the following manner: the connected one can be written

as Gc(si, sj) = 〈sisj〉 −m2, and then its Fourier transform is

G̃c(k) = L−d〈|S̃ ′k|2〉 (4.40)

with S ′i = Si −m. The transform of the unconnected one is given by

G̃(k) = L−d〈|S̃k|2〉. (4.41)

These two functions G̃c(k) and G̃(k), in Fourier space, are exactly the same if

k 6= 0. The difference resides in the zero mode, that makes G̃c(0) 6= G̃(0). In fact
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G̃c(k) = 0 and G̃(k) = Ld〈m2〉. Hence

G̃u(k) = χk. (4.42)

Going back to the magnetisation, Eq.(4.34) is not a good definition for MC sim-

ulation since its thermal average vanishes, 〈m〉 = 0. Instead, one has artificially

break the symmetry and to consider 〈|m|〉, and

|mk| = L−d〈|S̃k|〉 = L−d〈|
∑
x

µ(x)ψk(x)|〉, (4.43)

where µ(x) is the local oriented spin per site, so the average magnetisation per

spin along the lattice size position, and it is defined by

µ(x) = 〈Sx(sign[M ] + δM,0)〉, (4.44)

where M =
∑

x Sx. The magnetisation then is easily recovered as m = L−d
∑

x µx.

This µ(x) variable it is not very useful for PBCs because in such conditions the

average per spin just take the average of the system and so µ(x) = 〈|m|〉. However

for FBCs it will be very useful to see the profile distribution.

Having clarified how to manage the various Fourier modes mk and χk in the com-

putational scheme, we next give the FSS for each observable. The standard picture

for G-modes, where MF prevails above dc even though DIVs are suppressed, is in-

correct. In particular, Wittmann and Young in [69] claimed that the susceptibility

exponent, γ, maintains the mean field value γ = 1. We claim here that the picture

is incomplete. Indeed when no DIVs are involved one expects a Gaussian fixed-

point, delivering a Gaussian exponent. Analysing the susceptibility is not enough

since γ† = 1 has the same value as mean field. Hence, in order to validate our

claim we look at the magnetisation since β 6= β†. In fact, the prediction for such

observables for the G-modes with Gaussian fixed point exponent are found to be
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for the LRIM.

Hence one can state that the Q and G modes follow different thermodynamic

functions. To distinguish these two behaviours for the moments, once can refer

k ∈ G. So

fL(t, h, u) = b−dFL/b
(
by
∗
t t, by

∗
hh
)
, (4.45)

f †L(t, h, u) = b−dF †L/b (bytt, byhh) . (4.46)

For the magnetisation and susceptibility, the G-modes scale respectively

m†L(t) = −∂f
†
L

∂h
= L−d+yhM† (bytt, byhh) ∼ L−(d−σ)/2, (4.47)

χ†L(t) =
∂2f †L
∂h2

= L−d+2yhX † (bytt, byhh) ∼ Lσ (4.48)

The considered modes analysed here, for systems with PBCs, are defined by the

shortest reciprocal vector. The first component takes 1, and the rest zero. For 1D

this is k̂1 = 1, for 2D k̂1 = [1, 0], for 3D k̂1 = [1, 0, 0] and for 5D k̂1 = [1, 0, 0, 0, 0]

respectively. In Fig. 4.11 we plotted the renormalised scaling for the first non-zero

modes of the magnetization and the susceptibility in terms of closeness to the

critical point for 1D LRIM. The FSS for such modes are plotted in Fig. 4.12 and

the values for their slopes are written down in Table 4.4. One can observe that the

results clearly follow the scaling predictions presented in Eqs.(4.47) and (4.48).

This shows that the correct picture there is the GFSS instead of the standard FSS

when DIVs are suppressed. The distinguishing was possible for the magnetisation

due the difference in the value held for the β† which is σ dependent.
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Figure 4.12: FSS in the magnetisation sector for non-zero modes for the
1D LRIM with PBCs. In the top image the first magnetisation mode
clearly scales as m†L ∼ L−(d−σ)/2. In the bottom image the first suscepti-
bility mode clearly scales as χ†L ∼ Lσ. Both manifestly in favour of GFSS
instead of the standard FSS.

4.3 Free boundary conditions

The Ising model with free boundaries above dc is a widely studied problem, spe-

cially for the SRIM [11, 69] but it is not completely understood there.

One of the main issues with such boundaries is how to track the influence of the

edges on the scaling of whole system. For the SRIM the particles in the edges have

fewer interactions than those in the bulk. But for LRIM imposing FBCs does not

affect the number of bonds, since all particles interact with all other.
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Table 4.4: This table gathers the simulation results with PBCs for the
magnetisation and susceptibility scaling exponents for the first non-zero
mode. They should be compared GFSS predictions. The observables
should follow: m†L ∼ L−β

†/ν and χ†L ∼ Lγ/ν

d σ T β†/ν = (d− σ)/2 γ/ν = σ

1
0.1

Tc 0.448(2) 0.104(1)
TL 0.446(1) 0.108(1)

0.2
Tc 0.396(1) 0.209(2)
TL 0.393(1) 0.213(1)

2
0.1

Tc 0.943(1) 0.113(2)
TL 0.940(2) 0.120(2)

0.2
Tc 0.891(3) 0.216(2)
TL 0.889(1) 0.222(2)

3
0.1

Tc 1.438(5) 0.126(6)
TL 1.432(5) 0.140(6)

0.3
Tc 1.333(6) 0.328(6)
TL 1.330(6) 0.347(6)

5 2.0
Tc 1.50(2) 2.01(5)
TL 1.50(2) 2.02(6)

The LRIM action for open boundaries is transformed to Fourier space through the

sine transformation given by

F (k) =
L∑
i=1

f(ri)
d∏

µ=1

sin (kµri,µ) (4.49)

where kµ = π/(L+ 1)nµ with nµ = 1, . . . , L. Its inverse transform is given by

f(r) =
L∑
n=1

F (kn)
d∏

µ=1

√
2

L
sin (rµkn,µ) . (4.50)

With this transformation the boundaries are successfully implemented because

F (0) = F (L + 1) = 0. In this context there are no zero mode, nevertheless we

shall see then that the connection with DIVs will be through the parity of the

modes.

With the sine transform, one can perform a perturbation expansion for the FBCs

following the Rudnick-Gaspari-Privman steps in Ref. [82], and then the action
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takes the form

S[φ] =
1

2

∑
k

(
r0 + c|k|2 + cσ|k|σ

)
φ2
k −

(
8

L

) d
2

h
∑
k∈Q

φk

d∏
j=1

1

kj

+
u

Ld

∑
k1,k2,k3,k4

∆k1,k2,k3,k4φk1φk2φk3φk4 , (4.51)

where the ∆’s are momentum conserving factors. In this case the DIVs for the self

interaction term will affect the modes which couple to h, driven them by QFSS.

The others, out of the influence for DIVs will follow GFSS. One can deliver the

susceptibility from the integration of Gaussian model, after setting h = 0. There

|k|σ term dominates over k2, that allows us to neglect the term k2, set c = 0 and

to simplify cσ = 1. In that sense

χ = L−d
∂2

∂h2
ln

(∫
Dφ e−S[φ]

)
(4.52)

=

(
8

L2

)d∑
k∈Q

1

r0 + |k|σ
d∏
j=1

1

k2
j

. (4.53)

Taking the limit at Tc, r0 vanishes and then χ ∼ Lσ independent of the parity of k

and so not affected by DIVs. However, at pseudocritical point where the finite-size

counterparts of phase transitions occur, for FBCs that happen faraway from Tc,

all the rest of the scaling observables drive to the QFSS were DIVs prevail. The

FSS for Tc does not match since it is out of the scaling window. One can observe

that in the upper image of Fig. 3.3.

4.3.1 Bulk definition for the SRIM and LRIM

For the 5D SRIM the nature of the interactions allow us to define a core. For 1D

SRIM system with extent L, only the particles in the tip suffer the edge effect, and

so the bulk contain Lb = L− 2 particles. So for the 5D SRIM Nb = L5
b = (L− 2)5

that in terms of proportion in (1 − 2/L)5. Here we have simulated lattices from
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L = 8 to L = 48, hence the proportion goes from 24% to 80% in the best case.

That means that strong correction may come in the FSS. To reduce the problem

we define the core has the Lc = L/2 that goes from the L/4 to 3L/4 of the sites

lattice. According to the core statistics one will also have mLc and χLc . In the

tables the will be denoted by C, and A when all the spins are taking into account.

The FBCs can lead to very strong corrections to the expected scaling behaviour.

This feature is because the whole system is a mixture between the bulk scaling

and the surface scaling. The SRIM specially suffers this behaviour and one need to

separate and treat differently the scaling for the bulk and for the surface. However,

the nature of the long-range interactions gives rise to a complex relation between

the boundary terms and the bulk. In Fig. 4.13 we have plotted the magnetisation

distribution µ(x) for 1D LRIM with PBCs and FBCs and at both TL and Tc.

There we can observe that for PBCs the behaviour is clear, up to fluctuation, all

the spins take a thermal average of the thermal magnetisation. For FBCs the

magnetisation depends on the lattice position but only at TL, however at Tc the

magnetisation take a very low value and the dependence seems to disappear. Since

one can not determine a distance where the surface vanishes and when the bulk

start we can reinforced from Fig. 4.14, where µx has been plotted along x axis.
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Figure 4.13: Comparison of the magnetisation profiles for the 1D LRIM
with FBCs and PBCs at both TL and Tc.
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Figure 4.14: The bulk profile is plotted for 1D LRIM with FBCs at TL.
The top figure shows the magnetisation profile per spin µL(x). The bottom
figure the rescaled profile over the total magnetisation µL(x)/mL has been
depicted showing the impossibility to define a bulk.

4.3.2 Shifting, rounding and heat capacity scaling

We perform a similar analysis to that carried out for systems with PBCs. We fit

the shifting to the following function for the models with FBCs

Tc − TL = z0L
−λ(1 + z1L

−ω). (4.54)

This expression is given in terms of the difference between the pseudocritical point

for system with FBCs and the critical point computing from the PBCs analysis.

For such boundaries we found that λ = 1/ν = σ, and the first-order correction

can not be consider as such since the fitting gives us the value ω ≈ 0. In Fig. 4.15

we plotted the shifting and the rounding for the 1D LRIM. Table 4.5 contains all



Chapter 4. Analysis of QFSS for Ising models 100

the numerical results for the critical point, shifting and rounding for several low-

dimensionality LRIM and the 5D SRIM. The scaling relations at the pseudocritical

point, as we see, are not influenced by DIVs. On the other hand the rounding is

still controlled by them and so following QFSS, in contradiction with the standard

FSS. In that sense, the rounding, or in other words, the scaling window converges

to zero faster than the approach the critical point. We concluded that indeed the

scaling relations are not given by the Landau mean-field exponents rather, they

are given by the Gaussian FSS which implies λ† = 1/ν = σ, both have the same

prediction for the shift exponent though.
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Figure 4.15: FSS for the shift and rounding exponents above dc for the
1D LRIM with FBCs for two σ values 0.1 and 0.2. Top figure shows that
the pseudocritical points TL scale as Tc − TL ∼ L−σ following the dashed
lines. The bottom figure shows the scaling for the rounding, both scaling
approaching ∆TL ∼ L−1/2 denoted by the dashed line. GFSS takes over
pseudocritical points and QFSS fits for the rounding.

Here, in the energy sector the things are not very clear because the singular part



Chapter 4. Analysis of QFSS for Ising models 101

Table 4.5: Results corresponding to the temperature sector for the LRIM.
For different dimensions d and σ values. We have computed for the FBCs
the shift and rounding exponent.

d σ Tc λ† = σ θ = d/2

1
0.1 21.0013(3) 0.106(1) 0.43(1)
0.2 10.8421(2) 0.209(2) 0.48(2)

2
0.1 65.3381(1) 0.107(1) 0.81(5)
0.2 33.8384(1) 0.211(2) 0.83(4)

3
0.1 129.415(1) 0.102(1) 1.38(6)
0.3 45.5543(1) 0.304(1) 1.40(7)

5 2.0 8.77847(1) 2.008(7) 2.38(6)

of the energy density is not properly fitting the predictions for such phenomena

correctly. On one hand at TL, the energy scaling should show a difference of scaling

in the slopes given by the consideration of different σ values in the upper image

of Fig. 4.16. However, in the lower plot corresponding to the heat capacity at TL,

the slopes go flat following the expected α = 0. In contrast, the internal energy

at Tc for the LRIM with PBCs is just flat as it is shown in Fig. 4.16. With this

argumentation one can state that the flat slope shown by the capacity at Tc does

not really show α = 0, since scaling for the internal energy eL ∼ L(1−α)/ν is not

satisfied.

4.3.3 Magnetization and susceptibility

The analysis of the magnetisation sector for systems with FBCs allows us to dis-

tinguish among QFSS, the Landau mean-field exponents with its derived FSS and

Gaussian fixed-point exponents with GFSS at the critical point. For the magneti-

sation these three scaling manners are respectively given by mL ∼ L−ϙβ/ν = L−d/4,

mL ∼ L−β/ν = L−σ/2 and m†L ∼ L−β
†/ν = L−(d−σ)/2. For the susceptibility they

follow χL ∼ Lϙγ/ν = Ld/2, χL ∼ Lγ/ν = Lσ and χ†L ∼ L−γ
†/ν = Lσ. In Fig. 4.17

we plotted the magnetisation and the susceptibility scaling behaviour for the 1D

LRIM with FBCs with two values of σ = 0.1 and 0.2. The conclusion extracted

for such figure is clear, QFSS predictions are valid at the pseudocritical point, i.e.,
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Figure 4.16: FSS for the internal energy and heat capacity in 1D LRIM
with FBCs with two σ values 0.1 and 0.2. In the top image the energy
scales close to eL ∼ L−σ for TL and it clearly does not have any L depen-
dence. Hence, the slopes for the heat capacity, in the bottom image, show
no scaling dependence with L and deliver α = 0.

inside of the scaling window. At the critical point, which is outside of the scaling

windows, as γ = γ† one can’t distinguish which FSS is taking over, however the

magnetisation is in favour of the GFSS. The estimation of the slopes for the other

models such 2D and 3D LRIM and the 5D SRIM are written down in table 4.6.

Despite in fact that Landau exponents were obtained for the susceptibility at the

critical point for 5D SRIM with FBCs in Ref. [83–85], the conclusion delivered

here is clear. The coincidence of the value γ† = γ makes the susceptibility a bad

quantity to distinguish standard FSS from GFSS. However, the magnetization

scaling with β† 6= β follows GFSS at the critical point as is shown in the tables

and figures. Inside of the scaling window QFSS is the correct scheme, but outside,

the influence of DIVs disappears invalidating the mean-field exponents in favour
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Figure 4.17: FSS for the magnetisation sector for the 1D LRIM with
FBCs. In the top image the magnetisation clearly scales as mL ∼ L−d/4

at TL and m†L ∼ L−(d−σ)/2 at Tc. In the bottom image the susceptibility
clearly scales as χL ∼ Ld/2 at TL and χ†L ∼ Lσ at Tc. These results in
favour of QFSS at TL, and GFSS at Tc.

of GFSS.

4.3.4 Correlation function and correlation length

Here we use the Fourier transform for free boundary conditions in order to compute

the correlation function and the correlation length Hence, the correlation length

can be estimated from [81]

ξL(t, h) =
1

2 sin(kmin/2)

[
G̃(k1)

G̃(k2)
− 1

] 1
σ

. (4.55)

Here, kmin = π/(L+1) is chosen to be the smallest wave vector for the open lattice.
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Table 4.6: This table gathers some of the simulation results with FBCs
for the scaling exponents and compared with QFSS and GFSS predictions.
The observables should follow QFSS: mL ∼ L−ϙβ/ν , χL ∼ Lϙγ/ν , ξL ∼ Lϙ

and GL(L/2) ∼ L−(d−2+ηϙ); or GFSS: m†L ∼ L−β
†/ν , χ†L ∼ Lγ/ν , ξ†L ∼ L

and G†L(L/2) ∼ L−(d−2+η)

d σ T
β†/ν = (d− σ)/2 γ/ν = σ ϙ

† = 1 d− 2 + η = d− σ
ϙβ/ν = d/4 ϙγ/ν = d/2 ϙ = d/2σ d− 2 + ηϙ = d/2

1
0.1

Tc 0.450(4) 0.099(1) 1.01(3) 0.86(6)
TL 0.233(4) 0.522(3) 4.03(7) 0.487(5)

0.2
Tc 0.401(3) 0.200(1) 1.03(2) 0.83(6)
TL 0.230(4) 0.225(5) 2.21(4) 0.483(6)

2
0.1

Tc 0.949(1) 0.094(2) 1.07(7) 2.07(9)
TL 0.501(1) 0.985(2) 7.48(4) 0.954(3)

0.2
Tc 0.897(1) 0.198(2) 0.95(6) 1.70(9)
TL 0.494(1) 0.994(2) 3.97(4) 0.974(3)

3
0.1

Tc 1.446(2) 0.102(1) 0.92(6) 3.2(4)
TL 0.778(1) 1.408(2) 13.94(6) 1.55(2)

0.3
Tc 1.371(2) 0.267(2) 0.94(6) 3.1(4)
TL 0.791(7) 1.388(2) 4.66(8) 1.54(3)

5
2.0

Tc 1.70(3) 1.67(6) 0.98(3) 3.3(1)
TL 1.65(6) 2.03(6) 1.19(6) 2.43(2)

2.0*
Tc 1.57(3) 2.06(8) - -
TL 1.36(8) 2.51(2) - -

The analysis of the correlation sector for systems with FBCs does not allow us

to distinguish between standard FSS and GFSS. Nevertheless, QFSS takes over

the scaling window here too as expected. The overlap standard FSS and GFSS

can be shown as follows. For the correlation length both scaling are given by

ξL ∼ L, in the same line as η = η† the correlation function at r = L/2 scales

as G(L/2) ∼ L−(d−σ). In Fig. 4.18 we plotted for both quantities their scaling

behaviour for the 1D LRIM with FBCs with two values of σ = 0.1 and 0.2. The

estimation of the slopes for the other models such 2D and 3D LRIM and the 5D

SRIM are written down in table 4.6. Hence, These observables can’t be used to

observed the subtle scaling. On the other hand, the validity of QFSS at TL is

proven.

As we discuss in the PBCs, one observes different regimes between GFSS (we

already discarded standard FSS) and QFSS independent if considering connected



Chapter 4. Analysis of QFSS for Ising models 105

10
0

10
2

10
4

10
6

L

10
0

10
16

10
32

ξ
L

σ = 0.1 at T
c

σ = 0.1 at T
L

σ = 0.2 at  T
c

σ = 0.2 at  T
L

L
5

L
2.5

L

1D LRIM FBC

10
0

10
2

10
4

10
6

L

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
L
(L

/2
)

σ = 0.1 at T
c

σ = 0.1 at T
L

σ = 0.2  at T
c

σ = 0.2 at T
L

L
σ−1

L
-0.5

1D LRIM FBC

Figure 4.18: FSS for correlation sector for the 1D LRIM with FBCs. In
the top image the correlation length scales close to ξL ∼ Lϙ at TL and
ξ†L ∼ L at Tc. In the bottom image the susceptibility clearly scales as
GL(L/2) ∼ L−d/2 at TL and roughly G†L(L/2) ∼ Lσ−d at Tc. Manifestly in
favour of QFSS at TL, and roughly GFSS at Tc.

10
−4

10
−3

10
−2

r/L

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

G
L
(r

)

G  at T
c

G
c

 at T
c

G  at T
L

G
c

 at T
L

L
-0.5

L
-0.9

1D LRIM FBC σ=0.1 L=2
13

Figure 4.19: Correlation function in terms of distance for the 1D LRIM
with FBCs. The dashed lines shows the QFSS and the GFSS. For such
small system with FBCs, one can observe a a QFSS at TL rather than
GFSS. For the scaling at Tc GFSS seems to dominate in all the regime.



Chapter 4. Analysis of QFSS for Ising models 106

or unconnected correlation functions. For the FBCs one observes more subtle

aspects. In fact, after the scaling at Tc is suspected as GFSS, one can speculate

howGc orG will look in such special boundaries. The answer is plotted in Fig. 4.19,

at pseudocritical point some crossover with GFSS and QFSS is expected, but at

Tc, out of the scaling windows the influence of DIVs disappears and one then

expects a pure GSS behaviour that is shown such figure. This result should be

clearly seen in systems with larger sizes than those simulated here, L = 215, where

the crossover is not specially clear. However, QFSS is not definitely expected at

the critical point.

4.3.4.1 Fourier modes

The Fourier modes for the systems with FBCs are slightly more complicated than

with PBCs. That is given by the sine transform, that couple the modes with DIVs

in terms of the parity. The magnetisation modes are given for such boundaries by

m(k) =
1

Ld

〈∑
i

∏
ν

Si sin(kνri,ν)

〉
. (4.56)

The zero modes simply vanish for FBCs. Moreover, those modes with odd parity

have a projection onto the real magnetisation and consequently follow QFSS. By

contrast the even modes do not experience such a projection and the DIV depen-

dence vanishes giving GFSS. Actually this is only true at TL because for FBCs Tc

is out of the scaling window and then does not depend on the parity for the modes

that they will follow GFSS.

The modes analysed here correspond to the two first modes, first odd modes

allowed in the Fourier space with FBCs is which contain al the elements of the

vectors equal to 1. They take k̂1 = 1 for the 1D system, and [1, 1], [1, 1, 1] and

[1, 1, 1, 1, 1] for 2D, 3D and 5D systems respectively. The first even mode consider

here is the one that takes a 2 in the first element of the vector. They are k̂2 = 2
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for 1D system, and [2, 1], [2, 1, 1] and [2, 1, 1, 1, 1] for the 2D, 3D and 5D systems

respectively. The numerical results extracted from the simulations are gathered

in Table 4.7. The plot in Fig. 4.20 shows the magnetization and susceptibility

modes.

Again to get a non vanishing mk for MC simulation, the thermal average is over

|m(k)| = 1

Ld

〈∣∣∣∣∣∑
i

∏
ν

Si sin(kνri,ν)

∣∣∣∣∣
〉
. (4.57)

The susceptibility definition is not affected by that since χk = Ld〈|mk|2〉. Re-

garding to the local spin magnetisation µ(x), one can also extract their related

modes. In that particular case, the nonvanishing modes are only those that have

the projection onto real magnetisation, the rest are just fluctuations around zero.

This transformation is given by

µ(k) =
1

Ld

∑
i

∏
ν

µ(ri) sin(kνri,ν). (4.58)

The comparison between the odd and even modes, for 1D LRIM with FBCs at TL

for systems size L = 512, are plotted in Fig. 4.21. One can observe there that only

the odd modes have a projection to the real magnetisation, and the even modes.

4.4 The LRIM with external magnetic field

To give more support to this project statement, the new scaling ansatz for the

correlation length and its related ϙ exponent, we study the critical phenomena in

terms of the external magnetic field scaling. The aim is to show that the correct

picture above dc compatible with RG is only QFSS in all the schemes. We also

shows that the special case for FBCs at the critical point where DIVs are not

expected, the FSS there is predicted by GFSS, in concordance with the result
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Figure 4.20: FSS for the magnetisation sector for two first modes for
the 1D LRIM with FBCs. In the top image first magnetisation mode
clearly scales as m†L ∼ L−(d−σ)/2 and at TL following mL ∼ L−d/4 and
the second modes scales at Tc and at TL as GFSS. In the bottom image
first susceptibility mode clearly scales as χ†L ∼ Lσ and at TL following
χL ∼ Ld/2 and the second modes scales at Tc and at TL as GFSS too.

showed in Chapter 4 regarding to the non-zero modes. In this sense, one should

able to distinguish, for example, the MF scaling for the magnetisation with δ = 3

from the Gaussian with δ† = (d+ σ)/(d− σ).

To simulate the LRIM with external megntic field h, we have used the update of

the cluster-algorithm for the Fukui-Todo version that is explained in Chapter 3.

4.4.1 Scaling

In Chapter 3, we had ignored the scaling of the observables in terms of external

magnetic field h, since we had focused on FSS without external field. However,
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we now consider the critical phenomena in terms of h 6= 0 at the critical point

t = 0. In the thermodynamic limit, the observables are given by the following

scaling relations. For the energy sector the energy density and the heat capacity

scale as

e∞(0, h) ∼ hε, c∞(0, h) ∼ h−αc . (4.59)
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Table 4.7: FSS for the first two modes for LRIM with FBCs for magneti-
sation and susceptibility. Odd modes k1 follow QFSS and the even modes,
GFSS.

k1 k2

d σ T ϙβ/ν = d/4 ϙγ/ν = d/2 β†/ν = (d− σ)/2 γ/ν = σ

1
0.1

Tc 0.453(2) 0.093(3) 0.449(4) 0.100(3)
TL 0.249(1) 0.501(7) 0.396(4) 0.206(4)

0.2
Tc 0.401(3) 0.197(4) 0.403(4) 0.200(4)
TL 0.255(4) 0.491(5) 0.360(4) 0.273(4)

2
0.1

Tc 0.945(2) 0.08(1) 0.968(4) 0.06(1)
TL 0.547(2) 0.96(2) 0.809(4) 0.34(4)

0.2
Tc 0.921(3) 0.17(2) 0.911(4) 0.17(2)
TL 0.525(1) 0.97(1) 0.953(4) 0.42(2)

3
0.1

Tc 1.446(2) 0.102(1) 1.51(4) 0.05(4)
TL 0.778(1) 1.408(2) 1.28(6) 1.40(5)

0.3
Tc 1.371(2) 0.267(2) 1.45(5) 0.05(4)
TL 0.791(7) 1.388(2) 1.27(5) 1.45(5)

5 2.0
Tc 1.66(6) 1.67(6) 1.53(1) 2.00(3)
TL 1.64(6) 2.03(5) 1.60(5) 1.77(5)

The magnetic sector is given by

m∞(0, h) ∼ h1/δ, χ∞(0, h) ∼ h1/δ−1. (4.60)

Finally, the correlation length scales as

ξ∞(0, h) ∼ h−νc . (4.61)

These exponents are related with the others [86] by

ε = 2− (γ + 1)

∆
, αc = −2 +

(γ + 2)

∆
, νc =

ν

∆
, (4.62)

with the gap exponent ∆ = β + γ. These exponents can be found in Abe’s

publication in [87] (carefully noting the Abe’s exponents ∆Abe = 2∆), in Suzuki’s

[80] or in the paper by Domb and Gaunt in [88].

In the MF regime for the LRIM one recalls the values of the exponents, γ = 1,
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β = 1/2, δ = 3 and ν = 1/σ. So the gap exponent ∆ = 3/2. Hence, the last

exponents related to the critical phenomena for external field take the following

values

ε =
2

3
, αc = 0, νc =

2

3σ
. (4.63)

For the special case which is given by the Gaussian fixed point so that the scaling

belongs to GFSS, the critical exponents are γ = 1, β† = (d − σ)/2σ, δ† = (d +

σ)/(d − σ) and ν = 1/σ. The corresponding gap exponent is ∆† = (d + σ)/2σ.

The exponents in Eq.(4.62) take the following values

ε† = 2
d− σ
d+ σ

, α†c = 2
d− 2σ

d+ σ
, ν†c =

2

d+ σ
. (4.64)

4.4.2 QFSS for PBCs and FBCs

To show all the possible scaling schemes, QFSS with DIVs and GFSS with non-

DIVs, we recall the free energy densities. In terms of DIVs we write

fL(t, h) = b−dFL/b
(
by
∗
t t, by

∗
hh
)
, (4.65)

with y∗t = d/2 and y∗h = 3d/4. The corresponding free energy in terms of non-DIVs

for Gaussian scaling is

f †L(t, h) = b−dF †L/b (bytt, byhh) , (4.66)

with yt = 1/σ and yh = (d+ σ)/2. We will follow this notation along this section

to distinguish both type of scaling. we will see the finite-size effects are quite

considerable in the behaviour of the observables in terms of h.
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4.4.3 Energy and heat capacity

We are interested in the scaling of the internal energy that is obtained by differ-

entiating the free energy with respect to t, and then setting t = 0 and replacing

b = h−1/y∗h ,

eL(0, h) = h(d−y∗t )/y∗hUL/b
(
by
∗
hh
)
, (4.67)

or with b = h−1/yh for the Gaussian case

e†L(0, h) = h(d−yt)/yhU †L/b (byhh) . (4.68)

One finds respectively the scaling for both schemes in terms of h

eL(0, h) ∼ h(d−y∗t )/y∗h = h2/3, (4.69)

e†L(0, h) ∼ h(d−yt)/yh = h2(d−σ)/(d+σ). (4.70)

in the sense that b = L. The internal energy scaling is plotted in Fig. 4.22 for the

1D LRIM with σ = 0.1 and L = 8192. The validity of QFSS at TL and at Tc for

systems with PBCs is clearly shown. This scheme is also contrasted with FBCs

at TL in concordance with the conclusions in the Chapter 4. The expected GFSS

at Tc for those systems with FBCs is also corroborated. Similar analysis is done

for the heat capacity

cL(0, h) = h(d−2y∗t )/y∗hCL/b
(
by
∗
hh
)
, (4.71)

c†L(0, h) = h(d−2yt)/yhC†L/b (byhh) . (4.72)

One finds respectively setting b = L,

cL(0, h) ∼ h(d−2y∗t )/y∗h = h0, (4.73)

c†L(0, h) ∼ h(d−2yt)/yh = h2(d−2σ)/(d+σ). (4.74)
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Figure 4.22: Internal energy scaling in terms of h for the 1D LRIM with
σ = 0.1 for L = 512. With PBCs at TL and Tc and also with FBCs at TL
the scaling observed e ∼ h2/3 is compatible with the QFSS. With FBCs at
Tc the scaling observed is given by GFSS where e† ∼ h2(d−σ)/(d+σ).

4.4.4 Magnetization and susceptibility

The scaling of the magnetisation and the susceptibility in terms of h also follows

different scaling depending on the influence of DIVs. Their sets for both kind of

scaling, with the same setting up as the internal energy, are given by

mL(0, h) = h(d−y∗h)/y∗hML/b

(
by
∗
hh
)
, (4.75)

m†L(0, h) = h(d−yh)/yhM†
L/b (byhh) , (4.76)

χL(0, h) = h(d−2y∗h)/y∗hXL/b
(
by
∗
hh
)
, (4.77)

χ†L(0, h) = h(d−2yh)/yhX †L/b (byhh) . (4.78)
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One respectively finds setting b = L,

mL(0, h) ∼ h(d−y∗h)/y∗h = h1/3, (4.79)

m†L(0, h) ∼ h(d−yh)/yh = h(d−σ)/(d+σ), (4.80)

χL(0, h) ∼ h(d−2y∗h)/y∗h = h−2/3, (4.81)

χ†L(0, h) ∼ h(d−2yh)/yh = h−2σ/(d+σ). (4.82)

These scaling predictions are supported by the plots in Fig. 4.23.
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Figure 4.23: Magnetization ans susceptibility scaling in terms of h for
the 1D LRIM with σ = 0.1 for L = 512. With PBCs at TL and Tc and
also with FBCs at TL the scaling observed mL ∼ h1/3 and χL ∼ h−2/3 are
compatible with the QFSS. With FBCs at Tc the scaling observed is given
by GFSS where m†L ∼ h(d−σ)/(d+σ) and χ†L ∼ h−2σ/(d+σ).
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4.5 Conclusion

As a core of this thesis, this chapter contains the more relevant results from the

study of the finite-size scaling above dc. We have analysed in detail the long-range

interacting ferromagnetic Ising model for the one, two and three dimensional sys-

tems with σ < d/2, and together with the 5 dimensional Ising model with nearest-

neighbour interactions denoted as SRIM with σ = 2. Both of this system were

also analysed with two kind the boundary conditions, PBC and FBCs. Thereby

for the PBCs, where the system is very close to same conditions like the ther-

modynamic limit, every scaling law is rather clear and undoubtedly in favour of

the modified finite-size scaling. Instead, when the FBCs were imposed, far away

from the thermodynamic limit not everything seems to satisfy the finite-size scal-

ing theory or either the normalisation group theory. In fact along this chapter

we have shown how the non-zero modes, in principle they were very relevant, can

explain the finite-size scaling for the critical point at FBCs and so they reconcile

the Gaussian scaling laws. So that supports the QFSS where above upper the

critical dimension there are no ambiguity since when QFSS is absent we can not

recover FSS with Landau exponent. We recover Gaussian scaling instead. Clearly

supporting the modified finite-size scaling, where the fundamental new features

arising from the fact that the dangerous irrelevant variable affects with no doubts

the correlation sector. Hence, the pseudocritical exponent ϙ = d/dc for the scaling

behaviour of the correlation length, ξ ∼ Lϙ, claimed as universal and together with

the new companion for the anomalous dimension exponent, ηϙ, which solves the

puzzle around the negative anomalous dimension for the 5D Ising model, should

contribute to understanding such phenomena in a simple and clear way by replac-

ing the standard finite-size scaling. The resultant picture for the modes is gather

in table 4.8, which divided the Fourier modes into dangerous and non-dangerous

sectors.
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Table 4.8: The partitioning of Fourier modes into dangerous (Q) and
non-dangerous (G) sectors of the model.

PBCs FBCs

k =
2π

L
(n1, . . . , nd) k =

π

L+ 1
(n1, . . . , nd)

Q (DIVs): G (Non-DIVs): Q (DIVs): G (Non-DIVs):
All nα = 0 Any nα 6= 0 All nα odd Any nα even

FSS m ∼ L−
d
4 m ∼ L−

d−σ
2 m ∼ L−

d
4 m ∼ L−

d−σ
2

at TL χ ∼ L
d
2 χ ∼ Lσ χ ∼ L

d
2 χ ∼ Lσ

FSS m ∼ L−
d
4 m ∼ L−

d−σ
2 m ∼ L−

d−σ
2 m ∼ L−

d−σ
2

at Tc χ ∼ L
d
2 χ ∼ Lσ χ ∼ Lσ χ ∼ Lσ

Finally, the inclusion of the external magnetic field in the analysis of the LRIM

allowed us to restate the validity of the QFSS for systems with PBCs and the

description at pseudocritical points for those with FBCs above the dc. On the

other hand, the expected GFSS predictions for system with FBCs at critical point

is also contrasted. This illustrated the replacement of the standard FSS by the

combination of QFSS and GFSS.



Chapter 5

Partition function zeros of the

LRIM

5.1 Introduction

This chapter complements the analysis for the LRIM above dc carried out in

Chapter 4, by studying FSS of the partition function zeros in order to give stronger

support to QFSS. An alternative approach the study of critical phenomena is to

perform an analysis of the zeros of the partition function. As mentioned in Chapter

2, the ‘fundamental theory of phase transitions’ is the basis for the description of

the scaling behaviour of the zeros which approach the real axis at the critical point

in the thermodynamic limit.

The main idea behind this approach is that the zeros of the partition function lie in

the complex plane of a parameter entering the partition function (i.e., temperature

or external field). The first to develop this theory were Lee and Yang [12, 13], who

studied the ferromagnetic case by looking at the partition function as a polynomial

in terms the of external magnetic field. Following a similar idea, Fisher focused

on the study of the zeros for the temperature complex plane [15]. Many studies

117
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have since been carried out in this topic. For example, an investigation for Fisher

zeros in the mean-field region can be found in Ref. [89] and for gauge models in

Ref. [90].

The partition function ZL =
∑
{si} e

−βH[si] is defined in real space. It can be

re-expressed in terms of energy and total magnetisation

ZL =
∑
E,M

p(E,M)e−βE+hM , (5.1)

where p(E,M) is the density of states. If one relaxes the demand that β, h ∈ R

by extending them to the complex plane, i.e. β, h ∈ C, for finite-size systems

the partition function vanishes for specific values of β and h. These vanishings

represent the roots of the partition function and are called zeros. Hence one can

express the partition function in terms of the set of Fisher or Lee-Yang zeros,

respectively {zj} and {hj},

ZL(z) = Az(Z)
∏
j

(z − zj(L)), ZL(z) = Ah(Z)
∏
j

(h− hj(L)), (5.2)

where Az(z) and Ah(z) denote non vanishing smooth functions. From the first

factorised representation for complex variables the free energy in terms of Fisher

zeros is given by

fL(z) = L−d lnAz(z) + L−d
∑
j

ln(z − zj(L)). (5.3)

Analogously the expression in terms of Lee-Yang zeros is obtained replacing zj

by hj. The first term of the last equation contributes to the non-singular part of

the energy. Singular behaviour is associated with the second term. The zeros zj

approach the critical point in the real axis with a angle φ. In principle, one expects

that the number of zeros depends on the system size. Differentiating twice the
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singular part of the free energy with respect to t one obtains the heat capacity,

cL = L−d
∑
j

(z − zj(L))−2. (5.4)

On the other and, differentiating the free energy twice with respect to h one obtains

the expression for the susceptibility,

χL = L−d
∑
j

(h− hj(L))−2. (5.5)

This chapter is divided in two main sections and the conclusion. The Section 2

contains the QFSS analysis of the Fisher zeros. In section 3 we analyse the QFSS

of the Lee-Yang zeros. Finally, section 4 contains the conclusion.

5.2 Fisher zeros

To derive QFSS for Fisher zeros we use Abe’s prescription presented in Ref. [87].

Let

zj = zc + rje
iφj , (5.6)

where zc is the critical point, rj is the distance to the jth zero and φj the angle

between them. If this notation is introduced in Eq.(5.4), the heat capacity is

expressed as

cL = L−d
∑
j

(rje
iφj)−2. (5.7)

Assuming that the main contribution is given by the lowest zeros, one obtains

[91] cL ' L−dr−2
1 . Isolating r1, and introducing QFSS for the heat capacity cL ∼

L−ϙα/ν ,

r2
1(L) ∼ Lϙα/ν−d. (5.8)
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From the hyperscaling relation νd/ϙ = 2−α, one then finds that the QFSS for r1

is given by

r1(L) ∼ L−ϙ/ν . (5.9)

The prediction of the scaling for Fisher zeros in terms of GFSS is

r1(L) ∼ L−1/ν . (5.10)

5.2.1 Numerical determination of Fisher zeros

The numerical determination of the positions of the Fisher zeros is carried out using

a reweighting technique. The data for this method is given by a MC simulation.

In this case, one can’t efficiently use the Fukui-Todo update because the exact

energy per sample is required. One can’t use the activated bonds to extrapolate

the energy and rather as one needs to compute the exact value of the energy

that has a O(N) runtime. Consequently it reduces the maximum system sizes

achievable to L = 214.

The methodology, following the guides from Ref. [92], is as follows: one considers

the partition function in Eq.(5.1) with H = 0, and extends the inverse temperature

in the complex plane, β = η + iξ. The partition function takes the form of

Z(β) =
∑
E

p(E, β)e−(η+iξ)E =
∑
E

p(E, β)e−ηE (cos[ξE]− i sin[ξE]) , (5.11)

where p(E, β) is the density of states. One defines a normalised version for last

equation by R(η, ξ) = Z(β)/Z[Re(β)]. Explicitly this is

R(η, ξ) =

∑
E p(E, β)e−ηE(cos[ξE]− i sin[ξE])∑

E p(E, β)e−ηE

= 〈cos[ξE]〉η − i〈sin[ξE]〉η. (5.12)
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where 〈. . .〉η is the thermal average given by η. The first Fisher zero, for example,

is expected to appear close to the pseudocritical point and one then has to perform

MC simulation at βL = 1/TL, constructing its related p(E, βL). For this zero or

in general, to locate the zeros, one considers the points that make 〈cos[ξE]〉η and

〈sin[ξE]〉η vanish, their overlap satisfies R(η, ξ) = 0 delivering the estimation of the

position of the zero. There are two ways to extract the zeros, one is identifying then

graphically. In Fig. 5.1 and 5.1 we can observe the vanishing point for both cosine

and sine parts depicted by red and green points respectively. This methodology

depends on size of the grid considered; big grid sizes deliver large errors and small

grid sizes deliver, on the other hand, a costly runtime. The precision also is

related in the manner that one constructs the density of states, that works with

finite precision depending on the MC samples taken or adding a binning error if

one decides to use histograms. Despite these sources of errors, the graphical search

of zeros is a very useful technique as a first approach. To get better precision, the

second methodology employed the AMOEBA search algorithm [93], a searching

technique to find zeros in a 2D plane.

The typical picture for the zeros is given by the upper plot in Fig. 5.1, where MC

simulations were used to identify the first zeros of the 5D SRIM. Here, we also use

the same procedure to find the zeros for the LRIM. The results of the plots for

LRIM surprisingly look slightly different above the critical temperature from those

from the SRIM. To show that indeed this different form is also correct, we have

computed all the possible states for very small system size, the usual picture then

takes the form of the lower plot in Fig. 5.1 above dc for LRIM. This difference is

due to the large amount of the energy configuration that a LRIM can take for the

similar spin configuration, even manifesting the possibility to take positive values

of the energy in some spin configurations.

We are interested in the scaling of those zeros. There are two ways to represent

the Fisher zeros, implicitly in the β-complex plane referenced in plots as Fig. 5.1
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Figure 5.1: The upper image shows the graphical scan of Fisher zeros for
5D SRIM from a MC simulation. The lower image shows the graphical
scan for 1D LRIM from an exact small system size

or explicitly in terms of partition-function zeros z (see Eq.(5.2)). We consider

zj = exp(−βj), where the j is the position of the Fisher zero. In this manner, to

find the FSS for the zeros one is interested in the scaling of the real and imaginary

parts, respectively

Re(zj) = exp(−τj) cos(ωj) (5.13)

Im(zj) = exp(−τj) sin(ωj). (5.14)

The modulus is of these variables is zj = exp(−τj) and the critical value is given

by zc = exp(−βc). The interested FSS is exactly through the scaling behaviour

of |Re(zj) − zc| and Im(zj). They are plotted for 1D LRIM for σ = 0.1 for
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PBCs and FBCs in Fig. 5.2. The upper image can be related to the shift since

|Re(zj) − zc| ∼ L−d/2 for PBCs and |Re(zj) − zc| ∼ L−σ for FBCs. On the other

hand, the imaginary part scales as Im(zj) ∼ L−d/2, independently of the boundary

conditions.
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Figure 5.2: FSS for the first and second Fisher zeros for 1D LRIM with
PBCs and FBCs for σ = 0.1 in terms of |Re(zj)− zc| and Im(zj).

5.2.2 Impact angles

The impact angles can be given either in terms of z or β. Here we shall follow the

notation given from Gordillo et al in [92]. For those in the β-plane:

I φj,c(z): angle between zc-jth zero line and the z-axis.

I φ1,2(z): angle between z1-z2 line, and the z-axis.

I φj,c(β): angle between line βc-jth zero and the β-axis.
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I φ1,2(β): angle between β1-β2 line and the β-axis.

The results for the 1D LRIM for σ = 0.1 with PBCs and FBCs are plotted in

Fig. 5.3. There, one can observe the scaling of the angles defined before such φ1,c,

φ2,c and φ1,2 for z and β variables. Meanwhile the impact angle for the system

with PBCs approaches angles close to 45◦, for FBCs the angles converge to zero.
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Figure 5.3: The plot in panel a) and b) show the impact angle in terms
of system size for the first and second zeros respectively. The plot in panel
c) shows the angle between the first and second zeros. For the system
with PBCs the set of the first zeros appears to approach an angle of 45◦.
For systems with FBCs, the impact angle for the first and second zeros
appears to vanish. The impact angle between the first and second zeros
is more unstable, but the tendency is clear, for PBCs the angles seem to
converge to some value around 45◦ and for FBCs the angles tends to zero.

There is not a complete FSS theory for the impact angles of Fisher zeros. Nev-

ertheless, they can be linked with the shift, ν and ϙ exponents above dc. The

angle is expected to scale following the ratio of the imaginary and real part of the
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lowest-laying zero [92],

tanφ ≈ Imz1

|Re(z1)− zc|
∝ L−ϙ/ν

L−λ
∼ CLλ−ϙ/ν + . . . . (5.15)

With this prescription and comparing Fig. 5.2 with those results in Fig. 5.3 we

concluded that the impact angles, similarly to the shifting exponent, depend on

boundary conditions. Whereas Imz1 is located very close to TL, i.e., inside the

QFSS window, the term Re(z1) is far away from Tc for systems with FBCs and

consequently, outside of the scaling window and the influence of DIVS. The impact

angles for PBCs should approach π/4 since λ = ϙ/ν leading tanφ ∼ C, whereas

for the systems with FBCs λ† = 1/ν < ϙ/ν and its impact angles should converge

to zero since tanφ ∼ 0. These results are compatible with the simulation results

plotted in Fig. 5.3.

5.3 Lee-Yang zeros

We now proceed to study the complex h-plane zeros corresponding to the external

magnetic field, changing consequently the notation from z to h in Eq.(5.2). In the

thermodynamic limit close to the critical point these Lee-Yang zeros terminate at

the so-called Lee-Yang edge, which scales as hedge(t) ∼ t∆, where the gap exponent

∆ = βδ = 3/2 in mean-field regime. For finite systems the zeros form a discrete

set distributed on the imaginary-h axis. They are labelled as hj(L, t) where j is

an integer that records the closeness to the real-h axis so that.

To obtain the FSS for the Lee-Yang zeros one recalls Eq.(5.5) and follows the same

argumentation made for the Fisher zeros. The susceptibility is given by the scaling

of the first zero [91]

χL ' L−dh−2
1 . (5.16)
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We isolate h1, and introducing the QFSS for the susceptibility χL ∼ L−ϙα/ν

h2
1(L) ∼ L−(ϙγ/ν+d). (5.17)

Using the hyperscaling and Rushbrooke relation together νd/ϙ = 2β + γ and the

relation for the gap ∆ = β + γ , one finds that the QFSS for h1 is given by

r1(L) ∼ L−ϙ∆/ν = L−3d/4. (5.18)

Otherwise, considering the GFSS picture, the zeros behaves as

r1(L) ∼ L−∆/ν = L−3σ/2. (5.19)

We have seen that the inclusion of DIVs breakdown of the standard FSS. This

also includes the scaling of the Lee-Yang zeros. This was also shown for the 5D

SRIM in [11].

5.3.1 Numerical determination of Lee-Yang zeros

With these considerations, the interest here is to see how the Lee-Yang zeros

scale when approaching the real axis in terms of system size. To achieve that,

we use reweighting method in the Eq.(5.1) using the complex external magnetic

field as h = hr + ihi. In that sense, the normalized partition function is given by

R(β, h) = ZL(β, h)/ZL(β, hr). All the cases considered here obey the Lee-Yang

theorem and hence the zeros in h-plane are pure imaginary. This is translated

to an impact angle of π/2. In conclusion, one can set hr = 0 and only consider

variation in hi. then

R(β, hi) =

∑
E,M p(E,M)e−βE(cos(hiM) + i sin(hiM))

ZL(β, 0)

= 〈cos(hiM)〉+ i〈sin(hiM)〉 (5.20)
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where the sine term can be neglected because of parity 〈sin(hiM)〉 = 0. Hence,

one just finds the Lee-Yang zeros when the cosine terms vanishes. In Fig. 5.4 one

observes the FSS at TL and Tc for the first two zeros h1 and h2 for the 1D and 2D

LRIM with PBCs and FBCs, with σ = 0.1 for both systems. The scaling showed

is clearly in favour of QFSS, where the predicted scaling is h1,2 ∼ L−3d/4, over of

the standard Landau which predicts h1,2 ∼ L−3σ/2.
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Figure 5.4: FSS of the first two Lee-Yang zeros for LRIM at TL with
PBCs and FBCs and at Tc with PBCs. The upper image shows 1D model
and the bottom image the 2D model, both with σ = 0.1. These results are
clearly in favour of QFSS, which predicts hj ∼ L−3d/4.

5.4 Conclusion

In this chapter we have seen that FSS for the Fisher and Lee-Yang zeros are fully

compatible with QFSS, and indeed they also required the introduction of ϙ in the
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correlation length in order to reconcile RG with the MF exponents. The impact

angle for the Fisher zeros, as it was shown, depend on the boundary conditions.

For systems with PBCs the impact angle approximates to π/4, a earlier estimate

for such angle in the MF regime. However the impact angle for systems with FBCs

converge to zero due to the difference of the scaling between the imaginary and

the real part of such zeros.



Chapter 6

Logarithmic corrections for QFSS

at the upper critical dimension

for the Ising model with

long-range interactions

6.1 Introduction

In this chapter we consider critical phenomena at the upper critical. The Gaus-

sian fixed point there becomes marginally stable and this introduces multiplicative

logarithmic corrections to the power laws. The correlation length, in such scheme,

experiences a logarithmic counterpart ϙ̂, in line with ϙ in the QFSS. This consider-

ation already was presented in Ref. [94–96] (through the symbols q and counterpart

q̂), and lately in terms of QFSS, where ϙ̂ formally appeared in [41]. The counter-

part related to ηϙ for the Fisher scaling, named η̂ϙ was numerically corroborated

for the 4D SRIM in [42]. Herein, we aim to numerically test the prediction given

129



Chapter 6. Logarithmic corrections for QFSS at dc for LRIM 130

by the last references and so we focus on the main logarithmic counterparts for

the LRIM with PBCs and FBCs.

This chapter is divided as follow. Section 2 contains the logarithmic scaling cor-

rections. In section 3 QFSS at dc is presented. Section 4 contains the relations for

the logarithmic counterpart for the exponents. In section 5 the solutions for the

RG equation for the marginal case are derived. In section 6 the main numerical

results are shown. Finally in section 7 the conclusion is given.

6.2 Logarithmic scaling corrections

The multiplicative logarithmic corrections, that appears at dc, modify the power-

law scaling for the observables, in terms of t and h, as follows. The internal energy

and the heat capacity are affected as

e∞(t, 0) ∼ t1−α| ln t|α̂, e∞(0, h) ∼ hε| lnh|ε̂, (6.1)

c∞(t, 0) ∼ t−α| ln t|α̂, c∞(0, h) ∼ h−αc| lnh|α̂c . (6.2)

The magnetisation and the susceptibility are given by

m∞(t, 0) ∼ tβ| ln t|β̂, m∞(0, h) ∼ h1/δ| lnh|δ̂, (6.3)

χ∞(t, 0) ∼ t−γ| ln t|γ̂, χ∞(0, h) ∼ h1/δ−1| lnh|δ̂. (6.4)

The correlation length and the correlation function follow

ξ∞(t, 0) ∼ t−ν | ln t|ν̂ , ξ∞(0, h) ∼ h−νc | lnh|ν̂c , (6.5)

G∞(r, t, 0) ∼ r−(d−2+η)| ln r|η̂. (6.6)
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Finally, the Lee-Yang edge, and so the scaling for the zeros, is affected

rYL(t) ∼ t∆| ln t|∆̂. (6.7)

6.3 Q-finite-size scaling

Here, the correlation length still plays a crucial role because at d = dc it takes

logarithmic corrections given by the marginal value of the self-interaction term.

Meanwhile ϙ = 1, the counterpart ϙ̂ is controlling the behaviour of the correlation

length following

ξL ∼ L| lnL|ϙ̂. (6.8)

Either using RG or FSS hypotheses in terms of QFSS, i.e. where ξ can be replaced

by L| lnL|ϙ̂ in the scaling window regime one can obtain the scaling for the other

observables, as is shown in Ref. [94, 96] by Kenna, Jhonston and Janke. For the

magnetisation, susceptibility and Lee-Yang edge the associated QFSS takes the

form of

mL ∼ L−
β
ν | lnL|β̂+β ν̂−

ˆϙ
ν , (6.9)

χL ∼ L
γ
ν | lnL|γ̂−γ

ν̂−ˆϙ
ν , (6.10)

rLY (t) ∼ L−
∆
ν | lnL|∆̂+∆ ν̂−ˆϙ

ν . (6.11)

Other quantities such as the scaling of the pseudocritical point are also affected

by logarithmic corrections. The shifting is now given by

tL ∼ L−λ| lnL|λ̂ ∼ L−
1
ν | lnL|

ν̂−
ˆ
ϙ
ν , (6.12)
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where the hatted shift exponent is

λ̂ =
ν̂ − ϙ̂
ν

. (6.13)

6.4 Relations for hatted critical exponents

The hatted exponents presented before are also related to each other. These rela-

tions can be found differentiating the subsequent observables from the thermody-

namic functions as it has been doing along this manuscript. They are contained

in [94, 97]. The relations are the following

α̂ =


1 + d(ϙ̂− ν̂) if α = 0 and φ 6= π/4

d(ϙ̂− ν̂) otherwise .

, (6.14)

2β̂ − γ̂ = d(ϙ̂− ν̂), (6.15)

β̂(δ − 1) = δδ̂ − γ̂, (6.16)

η̂ = γ̂ − ν̂(2− η). (6.17)

In the QFSS scheme there are also the corresponding counterpart η̂ϙ, derived

from the fluctuation-dissipation at dc in [42]. The added relations for the hatted

exponents in QFSS are

γ̂ = (2− η)ν̂ + η̂, (6.18)

γ̂ = (2− ηϙ)(ν̂ − ϙ̂) + η̂ϙ, (6.19)

η̂ϙ = η̂ + (2− η)ϙ̂. (6.20)
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For those exponents identified for the scaling associated with systems with external

magnetic field, that have not been included above, the relations are given by

ε̂ =
(γ + 1)(β̂ − γ̂)

β + γ
+ γ̂, (6.21)

α̂c =
(γ + 2)(β̂ − γ̂)

β + γ
+ γ̂, (6.22)

δ̂ = d(ϙ̂− ν̂), (6.23)

∆̂ = β̂ − γ̂. (6.24)

The values for these hatted exponents for the LRIM are found to be

α̂ =
1

3
, β̂ =

1

3
, γ̂ =

1

3
, δ̂ =

1

3
, (6.25)

ε̂ =
1

3
, α̂c =

1

3
, ν̂ =

1

3σ
, ν̂c =

6− σ
12σ

, (6.26)

∆̂ = 0, ϙ̂ =
1

2σ
, η̂ = 0 η̂ϙ =

1

2
. (6.27)

All these results are, together with other models at dc, in Ref.[86].

6.5 Solution for the RG equations

We proceed to construct the thermodynamic functions for the marginal case σU =

d/2, i.e., at d = dc. We follow the steps given by Luijten in [58] as was presented

in chapter 4 for the case above dc. The RG equations, given in Eq.(4.15) now take

ε = 2σ − d = 0. Hence,

dr0

dl
= σr0 + 3au(c− r0)

du

dl
= εu− 9au2 = −9au2. (6.1)

One solves first the equation related to u. Then one introduces u(l) in the differ-

ential equation of r0. Solving this system of first order differential equations, the
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corresponding solutions, up to order u(l), are

u(l) =
ū

1 + β̃ūl
, (6.2)

r0(l) = [r̄0 − α̃ū] eσl[1 + β̃ū ln b]−
1
3 +

α̃ū

1 + β̃ū ln b
, (6.3)

denoting ū = ul=0 and r̄ = rl=0. The tilde variables follows the notation in chapter

4, they are β̃ = 9a and α̃ = −3ac/(d−σ) respectively. The logarithmic correction

can clearly be identified in the last equation. For set of variables u(l) and r0(l)

one constructs the free energy density up to leading order [58],

fL(t, h, u) = b−dfL/b

(
byt
t+ α̃ū[1 + β̃ū ln b]−2

[1 + β̃ū ln b]
1
3

, byhh,
u

1 + β̃ū ln b

)
+ gL(t, h, u), (6.4)

where fL/b(t, h, u) is the singular part and gL(t, h, u) is the analytic part. To treat

correctly and take into account the u variables to obtain the correct FSS, one has

to rescale the free energy density as was done in chapter 4 through Eq.(4.20) and

(4.21). In that sense, one obtains a rescaled version of Eq.(6.4)

f(t, h, u, 1/L) = b−dFL/b

(
byt
t+ α̃ū[1 + β̃ū ln b]−2

[1 + β̃ū ln b]−
1
6

, byhh
[1 + β̃ū ln b]

1
4

u1/4

)
. (6.5)

The shifting can be extracted setting the first argument to a constant value c

since the first derivative of susceptibility or the heat capacity should vanish at the

pseudocritical point where it experiences a maximum. In that sense, and setting

b = L, the shifting is given by

tL = c
√
uL−d/2[1 + β̃ū lnL]−

1
6

(
1− α̃

c
[1 + β̃ū lnL]−

1
2

)
. (6.6)
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6.6 Results for PBCs and FBCs

In this section we show the numerical results for the LRIM system at dc with PBCs

and FBCs. We have used the same simulation method and the same configuration

for the set up of the PBCs as was done for those results presented chapter 4 and

5. The critical points were also found using the FSS for pseudocritical points.

6.6.1 Magnetization and susceptibility

Here, we show the logarithmic corrections for the scaling of the magnetisation and

the susceptibility. The expected behaviour for such observables are respectively

mL ∼ L−d/4(lnL)β̂+β(ν̂−ϙ̂)/ν ∼ L−d/4(lnL)1/4, (6.7)

χL ∼ Ld/2(lnL)γ̂−γ(ν̂−ϙ̂)/ν ∼ Ld/2(lnL)1/2. (6.8)

Where (ν̂ − ϙ̂)/ν = −1/6. In Fig. 6.1 we can observed the validity of these

predictions for those systems with PBCs at TL and Tc and also with FBCs at TL

the prediction. For systems with FBCs at Tc DIVs are not affecting its behaviour

and then they do not have logarithmic corrections as can be seen in that figure.

6.6.2 Correlation function and correlation length

We have also analysed the logarithmic corrections for the correlation length and

the correlation function. Both are given by

ξL ∼ L(lnL)ϙ̂ = L(lnL)1/2σ, (6.9)

GL(L/2) ∼ L−d/2(lnL)η̂ϙ = L−d/2(lnL)1/2. (6.10)
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Figure 6.1: FSS for the magnetisation and susceptibility for the 1D LRIM
at dc with PBCs and FBCs. The upper image shows that the scaling with
PBCs at TL and Tc together with FBCs at TL, up to corrections, follow the
expected scaling mL ∼ (logL)1/4 marked as dashed line. The lower image
shows that the scaling with PBCs at TL and Tc together with FBCs at
TL, up to corrections, follow the expected scaling χL ∼ (logL)1/2 marked
as dashed line. Logarithmic corrections are not observed for systems with
FBCs at Tc.

The simulation results for the 1D LRIM at dc with PBCs and FBCs are plotted in

Fig. 6.2. There we can observe that those results with FBCs at TL, do not show

logarithmic correction as expected. For the other set up as PBCs or FBCs at TL,

the scaling approaches slopes compatible with ϙ̂ and η̂ϙ.

6.6.3 Lee-Yang zeros

Finally, we analysed the Lee-Yang zeros scaling which are expected to follow

hj(L) ∼ L−3d/4(logL)∆̂ ∼ L−3d/4, (6.11)
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Figure 6.2: FSS for the correlation length and correlation function for the
1D LRIM at dc with PBCs and FBCs. The upper image shows that the
scaling for PBCs at TL and Tc together with FBCs at TL, up to corrections,
follow the expected scaling ξL ∼ (logL) marked as dashed line. The
lower image shows that the scaling with PBCs at TL and Tc together with
FBCs at TL, up to corrections, follow the expected scaling GL(L/2) ∼
(logL)1/2 marked as dashed line. Logarithmic corrections are not observed
for systems with FBCs at Tc.

because ∆̂ = 0. In Fig. 6.3 we observed that the logarithmic corrections for the

two first Lee-Yang zeros approach zero, up to other corrections given by TL regime.

This shows the validity of the QFSS predictions at dc.

6.7 Conclusion

We have analysed the FSS for the logarithmic corrections for LRIM at dc for

PBCs and FBCs. There the values for the leading exponents such γ, β, etc.

converge either for QFSS or GFSS since ϙ = 1. The predictions given by the
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Figure 6.3: FSS for the two first Lee-Yang zeros for the 1D LRIM at dc
with PBCs and FBCs at TL. One can observe that the expected scaling
hj(L) ∼ L−3d/4(logL)0 is fitted, approaching the dashed line with no slope.

theory for the hatted exponents mainly fit the estimations carried out in this

project. The prediction for the counterpart ϙ̂, fit suitably the estimations made

here. In concordance with FSS for systems with FBCs at Tc where DIVs do no take

place, i.e, the regime out of the scaling window, there are not sign of logarithmic

corrections.



Chapter 7

Discussion

In chapter 2 we revisited the long-standing problem of FSS. Considering the corre-

lation sector also to be affected by DIVs, as is the free energy, allows one to relax

the standard scaling relation for the correlation length in terms of system size,

namely ξL ∼ L. This new scheme replaces standard FSS and is called QFSS. In

such a scheme the correlation length is dangerously affected by the self-interaction

term in the φ4 theory leading to a new scaling behaviour namely ξL ∼ Lϙ, with a

pseudocritical exponent that takes the value ϙ = 1 below dc, but ϙ = d/dc above

dc. The non-trivial relation of the two lengths reconciles the FSS hypothesis and

RG. Besides, it gives a repaired formula for hyperscaling namely νd/ϙ = 2 − α,

which now is satisfied for any arbitrary dimension. Analogously, the inclusion of

such new scaling in the fluctuation-dissipation theorem delivers a complementary

anomalous dimension ηϙ = 2 − d/2 which resolves the puzzle about the negative

anomalous dimension. Heuristically, the relation between the correlation and sys-

tem length may be understand demanding that the volume of the system is similar

to the volume of the correlation length restricted by the critical dimension, i.e.,

ξdc = Ld.
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In chapter 4, we tested QFSS theory for the LRIM above dc with different boundary

configuration, namely PBCs and FBCs. These systems with long-range interac-

tions can be tuned to the MF regime because one can control the strength of the

interaction given by the coupling r−(d+σ). In chapter 3 we presented the numerical

work to study such systems, specially for the LRIM that approximately contain

N2 interaction. We simulated spin systems for several dimensionalities using a

suitable techniques like the Fukui-Todo algorithm. This method is based on ex-

tended Fortuin-Kasteleyn representation and it experiences a runtime of O(N)

instead of the typical runtime of the Swendsen-Wang algorithm which is O(N2).

The FT algorithm also allows one to simulated systems with FBCs where spacial

symmetries are not presents. We have also develop a single-cluster variant for the

FT algorithm which reduces the autocorrelation time.

In this way, we have measured quantities such as the magnetization, susceptibility,

correlation function and correlation length and their FSS. The validity of QFSS

is clear through the tables and plots presented in this manuscript, specially for

the estimation of the slope of the correlation length that gives straightforwardly

that ϙ = d/2σ (for the LRIM). QFSS prevails for systems with PBCs and with

FBCs, but only at pseudocritical point. We have shown that the correct picture

to describe the FSS at the critical point for systems with FBCs is GFSS. This

is the FSS derived for the Gaussian Fixed Point which prevails when DIVs are

suppressed. It is not the same as the predictions from Landau Theory. This

occurs when the critical point is located outside of the scaling windows which is in

a narrow regime around the pseudocritical point. Although this effect is manifest

for the total magnetization at the critical point for systems with FBCs where

β† 6= β, the exponent related to the susceptibility coincides for both standard FSS

and GFSS γ† = γ. Hence, the final differentiation between the standard FSS and

the GFSS was made possible by analysing the non-zero modes which decouple

with DIVs.
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As complement to QFSS, we have measured the Lee-Yang and Fisher zeros and

the impact angle for the 1D LRIM above dc. There we have shown that the impact

angle depends on the boundary conditions finding that for PBCs it approaches to

π/4. Instead for FBCs the angles seem to approach zero. To finish this project

we have also checked the logarithmic corrections for the ϙ̂ counterpart, when the

variables of the self-interaction terms become marginal. We have shown that

QFSS at dc is coherent with the ansatz of a relaxed scaling for the correlation

length as is also shown for the logarithmic corrections the scaling, indeed, is given

by ξL ∼ L(lnL)ϙ̂.

Some of the results presented here are published in Ref. [43, 44].



Appendix A

Walker’s method of Alias

The alias method allow us to generate a probability distribution from a discrete

sampling. Here we present Walker’s algorithm together with an optimization given

by Fukui and Todo in the appendix of [62]. We shall illustrate the alias method

using one example related to our simulation, the 1D LRIM with PBCs and σ = 0.1

for L = 12. In this example one uses the invariance symmetry given by PBC and

then, instead of J` couplings with ` = 1, . . . , Nb, one has that Ji = 1, . . . , L − 1.

Hence one can assign a pi = Ji/Jtot to each coupling, or rough speaking to each

distance since Ji = r
−(d+σ)
i , satisfying

∑
i pi = 1. Walker’s method uses two tables

0 < Pi < 1, which is a modified probability distribution and alias numbers Ai’s

that associates two couplings. The modified distribution probability determined

by Pi = Npi, where N = Ld. The algorithm for choosing an i bond, or distance

following the example, is

1. Chose randomly a k spin in the lattice, 1 ≤ k ≤ Ld.

2. Throw a random number 0 ≤ g < 1.

3. If g ≤ Pk continue with i = k, otherwise i = Ak.
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Summarizing, if we look the table [A.1], the probability to choose i = 2, in this

case, is with a g < P2 plus another g ≥ P8. This is expressed in general by

pi =
1

N

[
Pi +

N∑
j=i

(1− Pj)δi,Aj

]
. (A.1)

Table A.1: This table contains all the needed data for Walker’s method
in terms of pi = Ji/Jtot for 1D LRIM with PBC and σ = 0.1 for L = 12

i 1 2 3 4 5 6 7 8 9 10 11
pi 0.120 0.093 0.085 0.082 0.080 0.079 0.080 0.082 0.085 0.093 0.120
Pi 1.000 0.925 0.937 0.898 0.880 0.874 0.880 0.898 0.937 0.907 0.910
Ai - 1 11 11 11 11 10 2 1 1 1

In order to assign the Ai properly one has to divide the pi in two blocks, those

Pi ≥ 1 and those Pi < 1. The ◦ denotes the last i with Pi ≥ 1 and • the last with

Pi < 1.

◦ •
i 1 2 10 11 9 8 7 6 5 4 3
Pi 1.321 1.027 1.027 1.321 0.937 0.898 0.880 0.874 0.880 0.898 0.937

The assignation of Ai’s starts consecutively from the • following this step until the

• and ◦ take the same place. The step is, giving a new Pi to the element marked

with ◦, in our case i = 11, following P ′◦ = P◦− (1−P•), then A• = ◦. And the • is

passed to the next left element. One performs this iteration until P ′◦ < 1, then ◦

goes to the next left element and so on. Here we have iterated until ◦ was moved

to the i = 10, giving for the four first Pk < 1 elements the Ak = 11.

◦ •
i 1 2 10 11 9 8 7 6 5 4 3
Pi 1.321 1.027 1.027 0.910 0.937 0.898 0.880 0.874 0.880 0.898 0.937
Ai 11 11 11 11
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◦•
i 1 2 10 11 9 8 7 6 5 4 3
Pi 1.000 0.925 0.907 0.910 0.937 0.898 0.880 0.874 0.880 0.898 0.937
Ai - 1 1 1 1 2 10 11 11 11 11

Following that criteria one finishes the alias table when the two dots coincide. As

optional once can set all the rest Pi ≥ 1 to 1. Indeed this tables is the same as

table[A.1]



Appendix B

Ewald sum method

Here, the Ewald sum method is explain in detail follow Ref. [98]. This methodology

to manage slow convergent sum has been used in this project in order to set up in

a proper way the PBCs for systems with LRIs. As we have seen, we had to modify

the coupling in Eq.(3.1) to Eq.(3.52). In this set up the LRIM Hamiltonian takes

the form of

H = − lim
k→∞

k∑
n=−k

∑
i<j

sisj
|rij + nL|d+σ

, (B.1)

where rij = ri−rj and the replicas were introduced through the terms nnn =
∑

i niêeei

with ni ∈ Z. They refer to the positions that the replicas take over along an infinite

space. In order to sum last expression, we use the properties of the complete and

incomplete gamma functions given respectively by

Γ(x) =

∫ ∞
0

tx−1e−tdt = λz
∫ ∞

0

tx−1e−λtdt, (B.2)

Γ(x, y) =

∫ ∞
y

tx−1e−tdt. (B.3)

We also consider the result for this exponential integral

e−a
2w2

=

√
π

a

∫ ∞
0

e−
π2u2

a2 e−2πiwudu. (B.4)
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The Ewald method is implemented as follows. One identifies the and λ = |rij+nL|2

and x = (d+ σ)/2 in Eq.(B.2). The isolating λ one gets

1

|rij + nL|d+σ
=

1

Γ(d+σ
2

)

∫ ∞
0

t
d+σ

2
−1e−|rij+nL|2tdt. (B.5)

In that sense the decaying interaction coupling including infinite number of replicas

looks like

Jij =
∑
n

1

|rij + nL|d+σ
=
∑
n

1

Γ(d+σ
2

)

∫ ∞
0

t
d+σ

2
−1e−|rij+nL|2tdt, (B.6)

=
∑
n

1

Γ(d+σ
2

)

∫ α2

0

t
d+σ

2
−1e−|rij+nL|2tdt (B.7)

+
∑
n

1

Γ(d+σ
2

)

∫ ∞
α2

t
d+σ

2
−1e−|rij+nL|2tdt, (B.8)

where the integral has been divided into two part of intervals [0, α2] and [α2,∞).

One focuses on the second term given in Eq.(B.8), renaming rij + nL|t = s. Thus

∫ ∞
α2

t
d+σ

2
−1e−|rij+nL|2tdt =

1

|rij + nL|d+σ

∫ ∞
α2|rij+nL|2

s
d+σ

2
−1e−sds,

=
Γ(d+σ

2
, α2|rij + nL|2)

|rij + nL|d+σ
. (B.9)

In this manner the second term can be written in a compact form in terns of an

incomplete gamma function. The first term given in Eq.(B.7), is summed using

the Poisson-Jacobi formula [99]

∑
n

e−|rij+nL|2t =
1

Ld

(π
t

) d
2
∑
k∈R

eik·re−
k2

4t , (B.10)

with k = 2π/Ln′ with n′ ∈ N . Incorporating last result in Eq.(B.7)

1

Γ(d+σ
2

)

∫ α2

0

t
d+σ

2
−1
∑
n

e−|rij+nL|2tdt =
1

Ld
1

Γ(d+σ
2

)

∑
k∈R

∫ α2

0

t
d+σ

2
−1
(π
t

) d
2
eik·re−

k2

4t dt.

(B.11)
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Simplifying this expression and if one applies the following change of variables

k2

4
= ts, one then writes

=
1

Ld
π
d
2

Γ(d+σ
2

)

∑
k∈R

eik·r
∫ α2

0

t
σ
2
−1e−

k2

4t dt =
1

2σLd
π
d
2

Γ(d+σ
2

)

∑
k∈R

eik·rkσΓ

(
−σ

2
,
k2

4α2

)
,

(B.12)

The terms has also been compacted in terms of incomplete gamma function, but

in the reciprocal space. The limit for k = 0 generates a independent factor that

will be included in the final result.

Merging all the computed integrals, the coupling finally is written as

Jij =
1

Γ(d+σ
2

)

[∑
n

Γ(d+σ
2
, α2|rij + nL|2)

|rij + nL|d+σ
(B.13)

+
π
d
2

2σLd

∑
k∈R

eik·rkσΓ(−σ
2
,
k2

4α2
) +

2

σ

π
d
2

Ld
ασ
]
. (B.14)

The sum now is perform in the real and Fourier space with and extra does not

depend on σ and it rapidly converges. The distance α that splits the sum in order

to be able to perform this calculation has to be set according to the quantities d,

σ, k and n. To estimate α one has to maximise the coupling. This is perform by

d

dα
Jij = 0. (B.15)

The coupling can be written as

Jij =
1

Γ(d+σ
2

)

[∑
n

ΦI +
∑
k∈R

ΦII + ΦIII

]
(B.16)
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For each member one calculates its differentiate with respect to α. respectively

these are

d

dα
ΦI = −2e−α

2|rij+nL|2αd+σ−1, (B.17)

d

dα
ΦII =

2π
d
2

Ld
e−

k2

4α2 eik·rασ−1, (B.18)

d

dα
ΦIII = 2

π
d
2

Ld
ασ−1. (B.19)

Hence, the equation for whom root has to be found is

−
∑
n

e−α
2|rij+nL|2αd +

∑
k

π
d
2

Ld
e−

k2

4α2 eik·r +
π
d
2

Ld
= 0. (B.20)

During this search, one can realise that, indeed, the sum in the Fourier space for

the systems consider here can be neglected since by the fast decay suffered. The

n variable also decays very fast and only dozens of terms have to be take into

account.



Appendix C

Supplementary material

In this appendix and for the future reference, we present plots corresponding to

the 2D and 3D LRIM above dc for system with PBCc and FBCs. FSS is shown

for the following quantities: the shift, rounding, magnetization, susceptibility,

correlation length, correlation function, and non-zero modes. These quantities for

both, 2D and 3D LRIM, with PBCs are respectively illustrated from Fig. C.1 to

Fig. C.8. The same quantities for systems with FBCs are respectively plotted from

Fig. C.9 to Fig. C.16. We have also included the FSS of the non-zero modes of

the magnetization and the susceptibility for the 5D SRIM with PBCs and FBCs,

which are plotted in Fig. C.17.
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Figure C.1: FSS for the shift and rounding exponents above dc for the
2D LRIM with PBCs for two σ values 0.1 and 0.2. The top figure shows
that the pseudocritical points scale as tL ∼ L−1 following the dashed
line. The bottom figure shows the scaling for the rounding, following
∆TL ∼ L−1 denoted by the dashed line. QFSS predictions match perfectly
such scaling behaviours. In the middle panel the tL has been normalised
by the predicted scaling tL ∼ L−1, and the y-axis have also been rescaled
by its corresponding ω = 0.9 and 0.8 for σ = 0.1 and 0.2 respectively. The
points follow the straight lines denoted by dashed lines.
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Figure C.2: FSS for the shift and rounding exponents above dc for the 3D
LRIM with PBCs for two σ values 0.1 and 0.3. The top figure shows that
the pseudocritical points scale as tL ∼ L−3/2 following the dashed line.
The bottom figure shows the scaling for the rounding, following ∆TL ∼
L−3/2 denoted by the dashed line. QFSS predictions match perfectly such
scaling behaviours. In the middle panel the tL has been normalised by the
predicted scaling tL ∼ L−3/2, and the y-axis have also been rescaled by
its corresponding ω = 1.4 and 1.2 for σ = 0.1 and 0.3 respectively. The
points follow the straight lines denoted by dashed lines.
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Figure C.3: FSS for the magnetisation and susceptibility for the 2D LRIM
with PBCs for σ = 0.1 and 0.2. In the top image the magnetisation clearly
scales as mL ∼ L−1/2 following the dashed line. The bottom image shows
the susceptibility clearly scaling as χL ∼ L1 following the dashed line.
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Figure C.4: FSS for the magnetisation and susceptibility for the 3D LRIM
with PBCs for σ = 0.1 and 0.3. In the top image the magnetisation clearly
scales as mL ∼ L−3/4 following the dashed line. The bottom image shows
the susceptibility clearly scaling as χL ∼ L3/2 following the dashed line.
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Figure C.5: FSS for the correlation sector for the 1D LRIM. In the upper
image the correlation length clearly scales as ξL ∼ Lϙ with ϙ = 10 for
the system with σ = 0.1 denoted by the short dashed line and ϙ = 5
for σ = 0.2, denoted the long dashed line. The lower image shows the
correlation function scaling as GL(L/2) ∼ L−1 for the dashed line. Both
are manifestly favour QFSS.
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Figure C.6: FSS for the correlation sector for the 1D LRIM. In the upper
image the correlation length clearly scales as ξL ∼ Lϙ with ϙ = 15 for
the system with σ = 0.1 denoted by the short dashed line and ϙ = 5
for σ = 0.3, denoted the long dashed line. The lower image shows the
correlation function scaling as GL(L/2) ∼ L−3/2 for the dashed line. Both
are manifestly favour QFSS.
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Figure C.7: FSS in the magnetisation sector for non-zero modes for the 2D
LRIM with PBCs. In the top image the first magnetisation mode clearly
scales as m†L ∼ L−(2−σ)/2. In the bottom image the first susceptibility mode
clearly scales as χ†L ∼ Lσ. Both manifestly in favour of GFSS instead of
the standard FSS.
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Figure C.8: FSS in the magnetisation sector for non-zero modes for the 3D
LRIM with PBCs. In the top image the first magnetisation mode clearly
scales as m†L ∼ L−(3−σ)/2. In the bottom image the first susceptibility mode
clearly scales as χ†L ∼ Lσ. Both manifestly in favour of GFSS instead of
the standard FSS.
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Figure C.9: FSS for the shift and rounding exponents above dc for the
2D LRIM with FBCs for two σ values 0.1 and 0.2. Top figure shows that
the pseudocritical points TL scale as Tc − TL ∼ L−σ following the dashed
lines. The bottom figure shows the scaling for the rounding, both scaling
approaching ∆TL ∼ L−1 denoted by the dashed line. GFSS takes over
pseudocritical points and QFSS fits for the rounding.
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Figure C.10: FSS for the shift exponent above dc for the 3D LRIM with
FBCs for two σ values 0.1 and 0.3. The figure shows that the pseudocritical
points TL scale as Tc − TL ∼ L−σ following the dashed lines.
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Figure C.11: FSS for the magnetisation sector for the 2D LRIM with
FBCs. In the top image the magnetisation clearly scales as mL ∼ L−1/2

at TL and m†L ∼ L−(2−σ)/2 at Tc. In the bottom image the susceptibility
clearly scales as χL ∼ L at TL and χ†L ∼ Lσ at Tc. These results are in
favour of QFSS at TL, and GFSS at Tc.
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Figure C.12: FSS for the magnetisation sector for the 3D LRIM with
FBCs. In the top image the magnetisation clearly scales as mL ∼ L−3/4

at TL and m†L ∼ L−(3−σ)/2 at Tc. In the bottom image the susceptibility
clearly scales as χL ∼ L3/2 at TL and χ†L ∼ Lσ at Tc. These results in
favour of QFSS at TL, and GFSS at Tc.



Appendix C. Supplementary material 161

10
1

10
2

L

10
-9

10
0

10
9

10
18

10
27

10
36

ξ
L

σ = 0.1 at T
c

σ = 0.1 at T
L

σ = 0.2 at T
c

σ = 0.2 at T
L

L
10

L
5

2D LRIM FBC

10
1

10
2

L

10
-5

10
-4

10
-3

10
-2

10
-1

G
L
(L

/2
) σ = 0.1 at T

c 

σ = 0.1 at T
L

σ = 0.2 at T
c

σ = 0.2 at T
L

L
-1

L
-1.9

L
-1.8

2D LRIM FBC

Figure C.13: FSS for the correlation sector for the 1D LRIM. In the
upper image the correlation length clearly scales as ξL ∼ Lϙ with ϙ = 15
for the system with σ = 0.1 denoted by the short dashed line and ϙ = 5
for σ = 0.3, denoted the long dashed line. The lower image shows the
correlation function scaling as GL(L/2) ∼ L−3/2 for the dashed line. Both
are manifestly favour QFSS.
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Figure C.14: FSS for the correlation sector for the 1D LRIM. In the
upper image the correlation length clearly scales as ξL ∼ Lϙ with ϙ = 15
for the system with σ = 0.1 denoted by the short dashed line and ϙ = 5
for σ = 0.3, denoted the long dashed line. The lower image shows the
correlation function scaling as GL(L/2) ∼ L−3/2 for the dashed line. Both
are manifestly favour QFSS.
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Figure C.15: FSS in the magnetisation sector for non-zero modes for the
2D LRIM with FBCs. In the top image the first magnetisation mode
clearly scales as m†L ∼ L−(2−σ)/2. In the bottom image the first suscepti-
bility mode clearly scales as χ†L ∼ Lσ. Both manifestly in favour of GFSS
instead of the standard FSS.
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Figure C.16: FSS in the magnetisation sector for non-zero modes for the
3D LRIM with FBCs. In the top image the first magnetisation mode
clearly scales as m†L ∼ L−(3−σ)/2. In the bottom image the first suscepti-
bility mode clearly scales as χ†L ∼ Lσ. Both manifestly in favour of GFSS
instead of the standard FSS.
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[39] P. Kopietz, L. Bartosch, and F. Schütz. Introduction to the Functional Renor-

malization Group. Lecture notes. Lecture notes in Physics Vol. 798, Springer-

Verlag, Berlin, (2010).



Bibliography 170

[40] H. Nishimori. Elements of Phase Transitions and Critical Phenomena. .

Oxford Univ. Press, Oxford, (2011).

[41] R. Kenna and B. Berche. A new Critical Exponent ϙ and its Logarithmic

counterpart ϙ̂. Cond. Matter Phys., 16, 23601, (2013).

[42] R. Kenna and B. Berche. Fisher’s Scaling Relation above the Upper Critical

dimension. Europhys. Lett., 105, 26005, (2014).

[43] E. J. Flores-Sola, B. Berche, R. Kenna, and M. Weigel. Finite-Size Scaling

above the Upper Critical Dimension in Ising Models with Long-range Inter-

actions. Eur. Phys. J. B , 88, 28, (2015).

[44] E. J. Flores-Sola, B. Berche, R. Kenna, and M. Weigel. Role of Fourier Modes

in Finite-Size Scaling above the Upper Critical Dimension. Phys. Rev. Lett.,

116, 115701, (2016).

[45] D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statisticl

Physics . Cambridge University Press, Cambridge, third edition, (2009).

[46] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equations of state calculations by fast computing machines. Journal of Chem-

ical Physics , 21, 1087, (1953).

[47] W. Janke. Statistical Analysis of Simulations: Data Correlations and Error

Estimation. Quantum Simulations of Complex Many-Body Systems: From

Theory to Algorithms , 10, 423, (2002).

[48] W. Janke. Nonlocal Monte Carlo algorithms for statistical physics appli-

cations. Mathematics and Computers in Simulation (MATCOM), 47, 329,

(1998).

[49] M. P. Nightingale and H. W. J. Blöte. Dynamic Exponent of the Two-
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