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Résumé

Cette thèse porte sur les statistiques bayésiennes non paramétriques, avec une attention
particulière pour les modèles de mélanges non paramétriques. La thèse est divisée en
une introduction générale et trois parties traitant des aspects relativement différents des
approches par mélanges (échantillonage, asymptotique, problème inverse). Un résumé
des différents chapitres est proposé ci-dessous.

Chapitre 1 (Introduction) Dans un premier temps, nous présentons les concepts clés
étudiés dans cette thèse. Particulièrement, nous discutons de l’analyse fréquentiste des
méthodes bayésiennes, un des thèmes récurrent au cours des chapitres qui suivent. Dans
un second temps, nous nous intéressons à une classe particulière de modèles, à savoir les
modèles de mélange non paramétriques, thème central de la thèse. Les bases des modèles
de mélange sont données, avec un intérêt particulier pour les mélanges par processus
Gamma symétriques. La troisème partie de ce chapitre est dédiée à l’échantillonage, un
concept clé dans le chapitre 2. Finalement, nous introduisons les connaissances nécessaires
à la bonne compréhension du chapitre 4, où les outils développés au long de cette thèse
sont utilisés pour résoudre le problème inverse mal posé de la Tomographie Quantique
Homodyne.

Chapitre 2 (co-écrit avec Éric Barat) Dans cet article, nous présentons quelques
aspects spécifiques aux mélanges par processus Gamma symétriques pour un usage en
régression. Nous proposons un nouvel échantilloneur de Gibbs pour simuler la distribution
a posteriori et nous établissons des vitesses de convergence adaptatives pour le modèle
de régression moyenne avec bruit Gaussien.

Chapitre 3 (co-écrit avec Judith Rousseau) De nos jours en estimation de densité, les
vitesses de contraction de la distribution a posteriori pour les mélanges en translation
et en moyenne et variance de Gaussiennes ne sont connus que sous des hypothèses de
queues légères; avec de meilleures vitesses obtenues pour les mélanges en translation. Il
a été conjecturé par Canale et DeBlasi, mais non prouvé, que la situation devrait être
inversée sous des hypothèses de queues lourdes. Cette conjecture est basée sur l’intuition
qu’il n’est pas nécessaire d’obtenir un bon ordre d’approximation dans les régions avec
peu d’observations (disons les queues), favorisant l’usage des mélanges en moyenne et
variance qui peuvent adapter l’ordre d’approximation spatialement. Ici, nous testons
l’argument précédent sur le problème de régression gaussienne avec covariables aléatoires.
Bien que nous ne puissions pas encore invalider la conjecture, nous trouvons que même
avec une hypothèse de queues lourdes, les mélanges en moyenne et variance semblent être
moins performants que les mélanges en translation. Cependant, les preuves suggèrent
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l’introduction d’un mélange hybride, qui semble être toujours plus performant que les
deux autres, qu’importe la nature des queues. Finalement, nous montrons que toutes les
hypothèses de queues peuvent être supprimées, au prix de rendre la distribution a priori
dépendente des covariables.

Chapitre 4 (co-écrit avec Éric Barat) Nous estimons l’état quantique d’un faisceau de
lumière à partir des résultats bruités de mesures de tomographie quantique homodyne,
réalisées sur des systèmes quantiques identiquement préparés. Nous proposons deux
approches Bayésiennes non paramétriques. La première approche est basée sur les modèles
de mélanges et est illustrée au travers d’exemples de simulation. La seconde approche est
basée sur une expansion sur une base. Nous étudions les performances théoriques de la
seconde approche en quantifiant la vitesse de contraction de la distribution a posteriori
autour du vrai état quantique dans la métrique L2.



Summary

This dissertation deals with Bayesian nonparametric statistics, in particular nonpara-
metric mixture models. The manuscript is divided into a general introduction and three
parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse
problem). A summary of each chapter is proposed below.

Chapter 1 (Introduction) In a first time, we present the core concepts studied
throughout this thesis. Particularly, we discuss frequentist analysis of Bayesian proce-
dures, which constitute one of the governing principle of the next chapters. In a second
time, we focus on a particular class of models, namely nonparametric mixture models,
which is central to the thesis. Basics of mixture models are given, with a stress on Sym-
metric Gamma Processes Mixtures. The third section of this chapter is dedicated to
posterior sampling, a key concept in chapter 2. Finally, we introduce the material required
for the proper understanding of chapter 4, where the tools developed along the thesis
are used to solve the ill-posed inverse problem of Quantum Homodyne Tomography.

Chapter 2 (joint work with Éric Barat) In this article, we present some specific aspects
of symmetric Gamma process mixtures for use in regression models. We propose a new
Gibbs sampler for simulating the posterior and we establish adaptive posterior rates of
convergence related to the Gaussian mean regression problem.

Chapter 3 (joint work with Judith Rousseau) Nowadays in density estimation, poste-
rior rates of convergence for location and location-scale mixtures of Gaussians are only
known under light-tail assumptions; with better rates achieved by location mixtures. It
has been conjectured by Canale and DeBlasi, but not proved, that the situation should
be reversed under heavy tails assumptions. The conjecture is based on the feeling that
there is no need to achieve a good order of approximation in regions with few data (say,
in the tails), favoring location-scale mixtures which allow for spatially varying order of
approximation. Here we test the previous argument on the Gaussian errors mean regres-
sion model with random design, for which the light tail assumption is not required for
proofs. Although we cannot invalidate the conjecture due to the lack of lower bound, we
find that even with heavy tails assumptions, location-scale mixtures apparently perform
in general worst than location mixtures. However, the proofs suggest to introduce hybrid
location-scale mixtures that are find to outperform both location and location-scale
mixtures, whatever the nature of the tails. Finally, we show that all tails assumptions
can be released at the price of making the prior distribution covariate dependent.
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Chapter 4 (joint work with Éric Barat) We estimate the quantum state of a light
beam from results of quantum homodyne tomography noisy measurements performed
on identically prepared quantum systems. We propose two Bayesian nonparametric
approaches. The first approach is based on mixture models and is illustrated through
simulation examples. The second approach is based on random basis expansions. We
study the theoretical performance of the second approach by quantifying the rate of
contraction of the posterior distribution around the true quantum state in the L2 metric.
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Introduction

Résumé

Dans un premier temps, nous présentons les concepts clés étudiés dans cette thèse. Particulière-
ment, nous discutons de l’analyse fréquentiste des méthodes bayésiennes, un des thèmes récurrent
au cours des chapitres qui suivent. Dans un second temps, nous nous intéressons à une classe par-
ticulière de modèles, à savoir les modèles de mélange non paramétriques, thème central de la thèse.
Les bases des modèles de mélange sont données, avec un intérêt particulier pour les mélanges par
processus Gamma symétriques. La troisème partie de ce chapitre est dédiée à l’échantillonage,
un concept clé dans le chapitre 2. Finalement, nous introduisons les connaissances nécessaires
à la bonne compréhension du chapitre 4, où les outils développés au long de cette thèse sont
utilisés pour résoudre le problème inverse mal posé de la Tomographie Quantique Homodyne.

Abstract

In a first time, we present the core concepts studied throughout this thesis. Particularly, we discuss
frequentist analysis of Bayesian procedures, which constitute one of the governing principle of the
next chapters. In a second time, we focus on a particular class of models, namely nonparametric
mixture models, which is central to the thesis. Basics of mixture models are given, with a stress
on Symmetric Gamma Processes Mixtures. The third section of this chapter is dedicated to
posterior sampling, a key concept in chapter 2. Finally, we introduce the material required for
the proper understanding of chapter 4, where the tools developed along the thesis are used to
solve the ill-posed inverse problem of Quantum Homodyne Tomography.

1.1. Bayesian statistics

In the Bayesian paradigm, both the parameter and observations are treated as random
variables; that is the parameter space Θ is seen as a measurable space (Θ,ΣΘ). Then we
make the following definition of a Bayesian statistical model.

Definition 1.1 – Let Πn be a probability distribution over (X n × Θ,Bn ⊗ ΣΘ). Then we
call the probability space (X n×Θ,Bn⊗ΣΘ,Πn) a Bayesian statistical model. The model
is called parametric when Θ is a finite dimensional real vector space, and nonparametric
when Θ has infinite dimension.

11
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The existence of regular conditional probability measures for Πn is not guaranteed
without further assumptions of X n×Θ. In the sequel, we shall always assume that both
X n and Θ are complete separable metric spaces, which ensure the existence of regular
conditional distributions for Πn (Dudley, 2002, theorem 10.2.2).

Given a model (X n×Θ,Bn⊗Σθ,Πn), we define P (n)
θ (·) := Πn(· | θ) as the conditional

distribution of the observations Xn ∈ X n given the parameter θ ∈ Θ. The marginal
distribution Πn,θ(·) on Θ of Πn is called the prior distribution, and reflects the prior
belief in θ in absence of any observation. The marginal distribution PΠ of X n is called
the prior predictive distribution.

The goal of the Bayesian inference is to characterize the posterior distribution, defined
as Πn,θ(· | Xn), the conditional distribution of θ given Xn ∈ X n. A common framework
is when the family {P (n)

θ : θ ∈ Θ} is dominated by a measure λn on (X n,Bn). Then a
regular version of the posterior distribution is given by the Bayes rule.

Theorem 1.1 — Bayes’ rule. – Assume that {P (n)
θ : θ ∈ Θ} is dominated by a measure λn.

Then a regular version of the posterior distribution Πn,θ(· | Xn) is given by the following
expression. For all A ∈ Σθ

Πn,θ(θ ∈ A | Xn) =
∫
A

dP
(n)
θ

dλn
(Xn) dΠn,θ(θ)

/∫
Θ

dP
(n)
θ

dλn
(Xn) dΠn,θ(θ).

The transition from prior distribution to posterior distribution represents the way
in which prior beliefs are turned onto posterior beliefs based on the data. Theorem 1.1
and definition 1.1 emphasize the fact that in the Bayesian paradigm, all values of θ in
the support of Πn,θ are possible with more or less likeliness, even in absence of data.

Finally, let mention that although the prior distribution Πn,θ is allowed to depend on
n, this will not be the case in this dissertation, except at the end of chapter 3. When the
prior distributions considered have some dependency on n, it will be mentioned explicitly;
otherwise it is assumed that priors have no dependency on n.

For further discussion on foundations of the Bayesian approach, we refer to Robert
(2007); Bernardo and Smith (2001); Berger (2013); Van der Vaart (2000); Le Cam and
Yang (2000); Le Cam (1986).

1.1.1. Frequentist validation of Bayes procedures

One of the most frequent criticisms about the Bayesian approach concerns the arbi-
trariness in the choice of the prior distribution. Of course, when there is concrete prior
knowledge about the parameter, the Bayesian paradigm provide a natural way to incor-
porate it into the model, and this must be done. However, in many cases, prior knowledge
is vague, or incomplete, which makes very difficult to specify a well justified prior distri-
bution. Different people, with different opinions, may specify different prior distributions
and arrive at different conclusions.

Frequentist study of the posterior distribution is a way to address the above concern.
Indeed, the goal is to find conditions on the model under which, with a sufficient amount
of data, the sequence of posterior distributions concentrates (in a sense to be clarified
below) around the true θ0 in the frequentist sense.
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We should note that the argument in the previous paragraph is not the only reason
why a Bayesian should take care about frequentist properties of the posterior distribution.
See Diaconis and Freedman (1986) for a discussion.

Now we clarify the frequentist properties that we consider here, from the weaker to
the stronger notion.

Definition 1.2 — Posterior consistency. – Let Θ be endowed with the topology TΘ. The
sequence of posterior distributions {Πn,θ(· | Xn) : n ≥ 1} is said to be consistent for TΘ

at θ0 if for any neighborhood U of θ0 we have P (n)
θ0

Πn,θ(U | Xn)→ 1.

Definition 1.3 — Rates of convergence. – Let Θ be endowed with the semimetric dn, and
let (εn)n≥0 be a sequence of positive real numbers such that εn → 0 with nε2n →∞. The
sequence of posterior distributions {Πn,θ(· | Xn) : n ≥ 1} is said to contracts around θ0

at rate εn if there is a constantM > 0 such that P (n)
θ0

Πn,θ(θ : dn(θ, θ0) ≥Mεn | Xn)→ 0.

Doob (1949) proposes a general theorem on posterior consistency, which holds under
very weak conditions. For a modern exposition of Doob’s theorem, we refer to Le Cam
and Yang (2000, section 8.2).

Theorem 1.2 — Doob’s theorem. – Let X be an euclidean space endowed with Borel σ-
algebra B. Assume that the observations X1, . . . , Xn ∈ X are identically and indepen-
dently distributed with distribution Pθ0 on (X ,B), and the map θ 7→ Pθ is injective. Also
assume that (Θ,ΣΘ) is a Borel set in a complete separable metric space with canonical
topology TΘ. Then the sequence of posterior distributions is consistent for TΘ at Πθ-almost
all θ0.

When the parameter space Θ is finite dimensional, there are finer results about the
behavior of {Πn,θ(· | Xn) : n ≥ 1}, such as Bernstein-von Mises theorem (Le Cam and
Yang, 2000) which provide sufficient conditions on the model to ensure the asymptotic
normality of the sequence of posterior distributions.

In nonparametric Bayes, even consistency can fails, despite theorem 1.2. In fact,
Doob’s theorem guarantees the posterior consistency up to null sets of the prior dis-
tribution. In infinite dimensional models, it is easy to find examples where null sets of
the prior distribution are large in some topological sense (see sections 2.4.2 and 2.4.3
in Hjort et al. (2010), and also Freedman (1963)). If the posterior distribution has an
explicit expression, it may be possible to prove consistency or rates of convergence by
simple Chebychev-type inequalities. However, examples with explicit expression of the
posterior distribution are very special and are not to be expected in all applications. The
Schwartz-Ghosal-van-der-Vaart theory proposes a general approach to consistency and
rates of convergence.

1.1.2. The Schwartz-Ghosal-van-der-Vaart theory

In nonparametric Bayes, sufficient conditions on the model and prior distribution for
posterior consistency have been stated by Schwartz (1965). Her approach has been
extended in the seminal papers of Ghosal et al. (2000); Ghosal and Van Der Vaart (2001,
2007a,b) and this to derive posterior concentration rates. Here we present the main ideas
behind their approach to posterior rates of convergence. It should be noticed, however,
that the conditions on the model and on the prior are less stringent if one seeks only a
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posterior consistency result (Ghosh and Ramamoorthi, 2003).
We consider the case of observations coming from a Bayesian model (X n ×Θ,Bn ⊗

ΣΘ,Πn), where Πn ≡ P (n)
θ ×Π; the observations need not to be identically distributed

nor independent. We assume that for all n ≥ 1, the set {P (n)
θ : θ ∈ Θ} is domi-

nated by a measure λn. We endow Θ with the semimetric dn. For two probability
measures P1, P2, K(P1, P2) :=

∫
log(dP1/dP2) dP1 stands for the Kullback-Leibler di-

vergence. Furthermore, we define the additional discrepancy measure V2,0(P1, P2) :=∫
| log(dP1/dP2)−K(P1, P2)|2 dP1, and

Bn(θ0, ε) :=
{
θ ∈ Θ : K(P (n)

θ0
, P

(n)
θ ) ≤ nε2, V2,0(P (n)

θ0
, P

(n)
θ ) ≤ nε2

}
.

We recall that a test function φn : X n → [0, 1] for testing the null hypothesis
H0 : θ = θ0 against the alternative H1 : θ ∈ Θ1 ⊂ Θ is a measurable mapping such that
we refuse H0 if φn(x) = 1 and we accept H0 if φn(x) = 0; otherwise if φn(x) ∈ (0, 1), we
reject H0 with probability φn(x). Then we state the following proposition.
Proposition 1.1 – Assume that there are universal constants C1, C2 > 0, and a sequence
(εn)n≥0 with εn → 0 and nε2n →∞, such that:
• there is a sequence of tests (φn)n≥1 for testing H0 : θ = θ0 against H1 : dn(θ, θ0) ≥
εn, with P (n)

θ0
φn → 0 and supθ : dn(θ,θ0)≥εn P

(n)
θ (1− φn) ≤ exp(−3C1nε

2
n), and

• Π(Bn(θ0, εn)) ≥ C2 exp(−C1nε
2
n).

Then P (n)
θ0

Π(dn(θ, θ0) ≥ εn | Xn)→ 0.
The proof of proposition 1.1 indeed rely on a very simple idea, which we sketch now.

We may rewrite the posterior as,

Π(dn(θ, θ0) ≥ εn | Xn)
= φn(Xn)Π(dn(θ, θ0) ≥ εn | Xn) + (1− φn(Xn))Π(dn(θ, θ0) ≥ εn | Xn). (1.1)

Clearly, Π(dn(θ, θ0) ≥ εn | Xn) ≤ 1, thus when taking the expectation with respect
to P (n)

θ0
, the first term of the rhs of equation (1.1) is bounded above by P (n)

θ0
φn → 0.

Regarding the second term of the rhs of equation (1.1), we can use theorem 1.1 to rewrite

Π(dn(θ, θ0) ≥ εn | Xn) =
∫
{θ:d(θ,θ0)≥εn}

dP
(n)
θ

dP
(n)
θ0

(Xn) dΠ(θ)
/∫

Θ

dP
(n)
θ

dP
(n)
θ0

(Xn) dΠ(θ).

Consider the event An on which the denominator in the last expression is greater than
exp(−2C1nε

2
n). Then the expectation of the second term in equation (1.1) is bounded by

P
(n)
θ0

[(1− φn(Xn))Π(dn(θ, θ0) ≥ εn | Xn)1An ] + P
(n)
θ0

(Acn)

≤ e2C1nε2nP
(n)
θ0

∫
{θ:d(θ,θ0)≥εn}

(1− φn(Xn))dP
(n)
θ

dP
(n)
θ0

(Xn) dΠ(θ) + P
(n)
θ0

(Acn).

By Fubini’s theorem, the first term in the rhs of the last equation is bounded above
by supθ∈{θ:d(θ,θ0)≥εn} P

(n)
θ (1− φn) exp(2C1nε

2
n). To finish the proof of proposition 1.1, it
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remains to show that Pθ0(Acn)→ 0, which is the case if Π(Bn(θ0, εn)) ≥ C2 exp(−C1nε
2
n)

as proved in Ghosal and Van Der Vaart (2007a, lemma 10).
A common approach to construct the tests φn is to find test functions ϕθ1

n for testing
balls, i.e. H0 : θ = θ0 against H1 : dn(θ, θ1) ≤ rεn for some 0 < r < 1 and dn(θ1, θ0) ≥ εn,
that satisfy

P
(n)
θ0
ϕθ1
n ≤ e−3C1nε2n , sup

θ : dn(θ,θ1)≤rεn
P

(n)
θ (1− ϕθ1

n ) ≤ e−3C1nε2n . (1.2)

For instance, in density estimation existence of such tests for the Hellinger distance and
L1 distance follows from Le Cam (1986, lemma 4, p. 478), whereas in Gaussian regression
(see also chapters 2 and 3) this follows from Birgé (2006, proposition 4) for the ‖ · ‖2,n
distance. If there exists a finite covering of Θ with N(rεn, dn,Θ) . exp(2C1nε

2
n) balls of

radius rεn and centers {θi : 1 ≤ i ≤ N(rεn, dn,Θ)}, then φn can be constructed as

φn = max
{
ϕθin : d(θ0, θi) ≥ εn and 1 ≤ i ≤ N(rεn, dn,Θ)

}
.

If Θ cannot be covered with N(rεn, dn,Θ) . exp(2C1nε
2
n) balls of radius rεn, it is enough

to find Θn ⊂ Θ such that N(rεn, dn,Θn) . exp(2C1nε
2
n) and P (n)

θ0
Π(Θ\Θn | Xn) → 0.

Then we have the following theorem.
Theorem 1.3 – Let C1, C2 > 0 as previously, 0 < r < 1, and εn → 0 with nε2n → ∞.
Suppose that Θn ⊂ Θ is such that Π(Θ\Θn) ≤ exp(−3C1nε

2
n) and logN(rεn, dn,Θn) ≤

2C1nε
2
n. Furthermore assume that there is a sequence of tests (ϕθ1

n )n≥1 satisfying equa-
tion (1.2), and assume that Π(Bn(θ0, εn)) ≥ C2 exp(−C1nε

2
n). Then P

(n)
θ0

Π(dn(θ, θ0) ≥
εn | Xn)→ 0.

The condition Π(Θ\Θn) ≤ exp(−3C1nε
2
n) is sufficient to ensure that P (n)

θ0
Π(Θ\Θn |

Xn)→ 0; this follows from a similar argument that we used in the sketch of the proof
of proposition 1.1.

1.1.3. Minimax theory

A classical way to assess the asymptotic performances of nonparametric frequentists
estimators is to compare the risk they achieve over a class Θ0 ⊂ Θ to the optimal risk,
the so-called minimax risk. Following Tsybakov (2009), given a semimetric dn, we let the
performance of an estimator θ̂n of θ0 be measured by the maximum risk of this estimator
on Θ0 : supθ∈Θ0 P

(n)
θ [dn(θ̂n, θ)2]. Then we have the following definition of the minimax

risk and the optimal rates of convergence over Θ0, respectively.
Definition 1.4 — Minimax risk. – The minimax risk over Θ0 ⊂ Θ associated with a model
{P (n)

θ : θ ∈ Θ} and with a semimetric dn is R∗n := inf
θ̂n

supθ∈Θ0 P
(n)
θ [dn(θ̂n, θ)2], where

the infinimum is taken over all the estimators.
Definition 1.5 — Optimal rate of convergence. – A positive sequence (εn)n≥1 is called an
optimal rate of convergence of estimators on (Θ0, dn) if there are constants C1, C2 > 0
such that lim supn ε−2

n R∗n ≤ C1 and lim infn ε−2
n R∗n ≥ C2. An estimator θ̂n satisfying

supθ∈Θ0 P
(n)
θ [dn(θ̂n, θ)2] ≤ C3ε

2
n, where (εn)n≥1 is the optimal rate of convergence on

(Θ0, dn) is called a rate optimal estimator on (Θ0, dn).
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Regarding Bayesian procedures, it is proved in Ghosal et al. (2000, theorem 2.5) that
if a sequence of posterior distributions {Π(· | Xn) : n ≥ 1} converges at rate εn at all
θ ∈ Θ0 for the semimetric dn — under weak conditions on dn — then there exists at
least one Bayesian point estimator based on Π(· | Xn) that achieve the maximum risk
εn (up to constants). In other words, the rate of contraction of {Π(· | Xn) : n ≥ 1} over
(Θ0, dn) cannot be faster than the frequentist optimal rate of convergence for (Θ0, dn),
otherwise it would imply the existence of a point estimator performing better than the
best possible estimator.

Often, the parameter is assumed to belong to a class Θ0 ≡ A(β, L) where β relates
to a notion of smoothness or sparsity and L controls the “size” of the class in a certain
sense. As we in general do not know in advance the value of β for θ0, we want procedures
that achieve optimal rates simultaneously for all value of β; such an estimator is called
adaptive over A(β, L).

1.2. Nonparametric mixtures

So far, we have introduced the Bayesian paradigm from a general angle. The object of
study of this thesis is essentially concerned with the case when the parameter of interest
to be estimated is a function from Rd to R (or C). Popular prior distributions over
function spaces are Gaussian processes (Rasmussen, 2004), and in the special situation
when θ is a probability density function, Dirichlet Process Mixtures (Antoniak, 1974;
Escobar and West, 1995).

The use of mixtures has received much less attention outside the density estimation
framework, apart from Abramovich et al. (2000); Wolpert et al. (2011); De Jonge and
Van Zanten (2010). Before clarifying the meaning of a mixture, we need the following def-
inition of a random measure. We will consider random probability measures and random
(positive) measures as particular cases of the more general random signed measures.

Definition 1.6 — Random signed measure. – Let (Ω, E ,P) be a probability space and (G,Σ)
be a measurable space. We call a mapping Q : Ω × Σ → R ∪ {±∞} a random signed
measure if ω 7→ Q(ω,A) is a random variable for each A ∈ Σ and if A 7→ Q(ω,A) is a
signed measure for each ω ∈ Ω.

From now, without explicit mention, measures refer to signed measures. Random
measures may be either viewed as stochastic processes indexed by a σ-algebra {Q(·, A) :
A ∈ Σ}, or as a probability distribution over the set of measures. The latter interpretation
is very popular in Bayesian nonparametrics, especially for random probability measures
(Ferguson, 1973; Lijoi and Prünster, 2010). From random measures, it is rather easy to
construct random functions, which we call mixtures.

Definition 1.7 – Given a jointly measurable kernel K : G×Rd → R and a random measure
Q : Ω × Σ → R ∪ {±∞}, we define the mixture of K by Q as the random function
θ : Ω× Rd → R such that θ(ω, y) =

∫
GK(x; y)Q(ω, dx) for all (ω, y) ∈ Ω× Rd.

It is unclear for which kernels K definition 1.7 is well-defined. Assume that the mean
measure µ(A) =

∫
ΩQ(ω,A)P(dω) exists and is bounded for all boundet set A ∈ Σ.

Consider simple functions f =
∑n
i=1 ci1Ai with n ∈ N, ci ∈ R and |µ|(Ai) < +∞. Then

ω 7→
∫
f(x)Q(ω, dx) =

∑n
i=1 ciQ(ω,Ai) =: Xf (ω) is measurable, with EXf =

∫
G f dµ
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and E|Xf | ≤
∫
G |f | d|µ|. Now for any f ∈ L1(|µ|) we can construct a sequence (fn) of

simple functions such that fn → f pointwise and in L1(|µ|) with |fn| ≤ |f |. It follows for
any n,m ∈ N that E|Xfn −Xfm | ≤

∫
G |fn − fm| d|µ|. Hence (Xfn) is Cauchy in L1(P),

by completeness the limit Xf exists and is measurable. Moreover, Xf does not depend
on the approximating sequence (fn), i.e. ω 7→

∫
f(x)Q(ω, dx) is measurable and belongs

to L1(P). Therefore, definition 1.7 is at least satisfactory if the mean measure µ of Q
exists and K(·; y) ∈ L1(|µ|) for all y ∈ Rd; otherwise we should pay attention to the
measurability of ω 7→ θ(ω, y).

1.2.1. Dirichlet Process Mixtures

Since Ferguson (1973), Dirichlet Processes are very popular in Bayesian nonparametrics,
with a use across a wide variety of a applications, such as model validation, clustering
or density estimation. The Dirichlet Process is a probability distribution over the set of
probability measures, defined as follows.

Definition 1.8 — Dirichlet Process. – Let α be a non null finite positive measure on (G,Σ).
We say that a random measure P : Ω× Σ→ [0, 1] follows a Dirichlet Process with base
measure α, abbreviated DP(α), if for all k ∈ N∗ and all measurable partition (B1, . . . , Bk)
of G

(P (B1), . . . , P (Bk)) ∼ Dirichlet(α(B1), . . . , α(Bk)).

Beside this formal definition, Dirichlet Processes can be characterized in a series of
different ways:
• Let X1 ∼ α(·)/α(G); and for any k = 1, . . . , n − 1 let Xk+1 ∼ αk(·)/αk(G), with
αk(·) = α(·) +

∑k
i=1 δXi . Then {Xi : i ≥ 1} is a Pólya urn sequence with base

distribution α. The sequence {Xi : i ≥ 1} is exchangeable. Therefore deFinetti’s
theorem (Kallenberg, 2006, theorem 9.6) implies that there is a random probability
distribution P such that conditionally on P , the random variable X1, X2, . . . are
independent. It can be shown that P follows a DP(α) (Blackwell and MacQueen,
1973).
• The stick-breaking construction, due to Sethuraman (1994) is the following. Let
α := α(G) and V1, V2, . . . be identically and independently distributed (iid) with
distribution Beta(1, α). Set W1 = V1, and for all k ≥ 2 set Wk = Vk

∏k−1
j=1(1− Vj).

Finally let X1, X2, . . . be iid with distribution α(·)/α, independently of the Vk’s.
Then P =

∑∞
k=1WkδXk converges almost-surely toward a DP(α) distributed ran-

dom measure. Note that this construction emphasize the almost-sure discreteness
character of the DP.
• IfQ : Ω×Σ→ R+ is a (nonsymmetric) Gamma random measure with base measure
α (see below), then P : Ω×Σ→ [0, 1] such that P (A) := Q(A)/Q(G) for all A ∈ Σ
follows a DP(α) (Ferguson, 1973).

Now let {K(x; ·) : x ∈ G} be a family of probability density functions indexed by
G. Then the mixture of K by a DP(α) (in the sense of definition 1.7) is almost-surely a
probability density function.

Finally, note that the conditions on K established after definition 1.7 to ensure that
(ω, y) 7→

∫
K(x; y)P (dx) is a well-defined random variable at all y ∈ Rd can be slightly
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weakened when P ∼ DP(α). Indeed, from Feigin and Tweedie (1989, theorem 4), it
suffices to have

∫
log(1 + |K(x; y)|)α(dx) < +∞ for all y ∈ Rd.

1.2.2. Symmetric Gamma Process Mixtures

A common theme of this dissertation is the use of mixture models outside the popular
framework of density estimation with Dirichlet Process Mixtures, in particular in direct
or inverse regression. In that case, Dirichlet Processes are no longer a natural choice of
random measures, and we shall in general need random signed measures. Lévy Random
Measures (LRM)1 (Wolpert et al., 2011), seem then to be an ideal choice for our purpose,
since they are easy to construct and amenable to posterior computations. However, the
study of posterior distributions for general LRM is still challenging, so that we restrict
ourselves to symmetric Gamma random measures, defined as follows.

Definition 1.9 — Symmetric Gamma random measure. – Let α be a non null finite positive
measure on (G,Σ) and η > 0. We say that a random signed measure Q : Ω × Σ → R
is a symmetric Gamma random measure with base measure α and scale parameter η
if, for all k ∈ N∗ and all disjoint measurable sets A1, . . . , Ak ∈ Σ the random variables
Q(A1), . . . , Q(Ak) are independent and distributed as the difference of two independent
Gamma(α(Ai), η) random variables for all i = 1, . . . , k.

Remark 1.1 – In some problems, it is not worth having recourse to symmetrized random
measure; for instance in chapter 4. Obviously, when we are in such situation, we should
rely on (nonsymmetric) Gamma random measures, with obvious definition. Moreover, all
the results of this section translates to the Gamma process in a straightforward fashion.

Now we devote the following sections to constructive definitions of symmetric Gamma
random measures and symmetric Gamma process mixtures in terms of the Poisson
Process.

Poisson random measures

For a general treatment of Poisson random measures, we refer to Çınlar (2011); Kingman
(1992). Let (E,U) be a measurable, locally compact and separable space. Let ν be a
σ-finite positive measure on (E,U). A random measure N : Ω × U → N∪{+∞} is a
Poisson random measure with mean ν if

(1) For each A ∈ U , N (·, A) ∼ Po(ν(A))
(2) If A1, . . . , An are pairwise disjoint sets in U then N (·, A1), . . . ,N (·, An) are inde-

pendent Poisson distributed random variables.

If ν is a σ-finite but not finite measure on (E,U) the above definition still makes sense
(because the definition below is consistent with the infinite limit of the Poisson law) if
we define,

(3) For all sets A ∈ U with ν(A) = +∞, then N (·, A) = +∞ almost surely.

1One find the name Infinitely divisible and independently scattered random measures in Rajput and
Rosinski (1989), or also Lévy bases in Barndorff-Nielsen and Schmiegel (2004).
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Let N be a PRM with mean ν and A ∈ U a Borel set, the characteristic function of the
random variable N (·, A) is,

E[eitN (·,A)] = exp
{
−ν(A)(1− eit)

}
. (1.3)

When ν(E) < +∞, there is a convenient way to construct and interpret PRM. Indeed,
start with the probability measure π(·) = ν(·)/ν(E) on (E,U) and let K ∼ Po(ν(E)),
Xk

iid∼ π(·) for 1 ≤ k ≤ K. From this sample form the following measure,

N (A) =
K∑
i=1

1A(Xk), A ∈ U . (1.4)

An easy computation shows that the characteristic function of equation (1.4) is nothing
else but equation (1.3) and thanks to the uniqueness of the Fourier transform, the random
measure defined in equation (1.4) is a PRM with mean ν. When ν(E) = +∞ we can
find a disjoint partition {Ei}∞i=1 of E such that ν(Ei) < +∞ for all i = 1, . . . ,∞. Now
define N i the PRM with mean ν(Ei) on the subset Ei. By the above discussion N i is
almost-surely purely atomic. Let N (A) =

∑∞
i=1N i(A∩Ei) for all A ∈ U . As N i(A∩Ei)

are independent Poisson random variables with means ν(Ei), it follows that N (A) is
a Poisson random variable with mean ν(E) = +∞ and hence N is a Poisson random
measure with mean ν. As a consequence we have the following proposition.
Proposition 1.2 – Let ν be a σ-finite measure on (E,U) and N a PRM with mean ν.
Then,
(1) N is almost surely purely atomic.
(2) If ν(E) < +∞, then N as almost-surely a finite number of atoms.
(3) If ν(E) = +∞, then N as almost-surely a countably infinite number of atoms, but

for all compact A ∈ U with ν(A) < +∞, N has almost-surely a finite number of
atoms in A.

Poisson representation of symmetric Gamma process mixtures

Let η > 0, Hη(du) := |u|−1e−|u|ηdu, α be a non null finite positive measure on (G,Σ) and
N be the PRM with mean Hη × α on (R× G,BR ⊗ G). Then (see for instance Wolpert
et al. (2011)) the random measure Q such that

Q(·, A) :=
∫
R×A

uN (·, dudx), A ∈ Σ

has the distribution of a symmetric Gamma random measure with base measure α and
scale parameter η. Moreover, given a jointly measurable kernel K : G × Rd → R, the
mixture of K by Q can be represented as

θ(·, y) =
∫
R×G

uK(x; y)N (·, dudx) ≡
∞∑
i=1

uiK(xi; y),

where (ui, xi)∞i=1 are the atoms of a Poisson random measure with mean Hη × α; the
series has almost-surely an infinite number of terms, and converges (pointwise) almost-
surely if

∫
R×G min(1, |uK(x; y)|)Hη(du)α(dx) < +∞ for all y ∈ Rd. For other modes of

convergence, see Wolpert et al. (2011, section 4).
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Other representations and connections

Just to mention a few, other representations of the symmetric Gamma random measures,
based on the Poisson process, may be found on Rosiński (2001).

Also, it is well known (see for instance Tsilevich et al., 2000, lemma 2) that if Q :
Ω × Σ → R+ is a (nonsymmetric) Gamma random measure with base measure α on
(G,Σ) and scale parameter η > 0, then the random variable ω 7→ Q(ω,G) and the random
variables ω 7→ Q(ω,A)/Q(ω,G) for all A ∈ Σ are independent. Hence, the construction
of the Dirichlet random measure from Gamma random measures can be easily inverted,
allowing to represent Gamma random measures in term of the Dirichlet Process.

The latter connection between Dirichlet Process and Gamma random measures is
exploited in section 1.3.2 below to design an algorithm for simulating the posterior of
Gamma process mixtures, and in a lesser extent has been one of the motivation of the
algorithm proposed in chapter 2.

1.2.3. Concrete examples of mixtures

So far we discussed nonparametric mixture models in all their generality. Here we present
some concrete examples with related existing asymptotic results.

In the sequel for any random measure Q : Ω× Σ→ R ∪ {±∞}, Q(A) is understood
as Q(·, A). Similarly, we make implicit the dependence on ω ∈ Ω of all functional of Q.

Location and Location-scale mixtures

Given a measurable mother function g : Rd → R, we define the location-scale kernel
K(A,µ; y) ≡ KA(x−µ) := det(A)−1/pg(A−1(x−µ)) for all x ∈ Rd and all A ∈ E , where
E is the set of all d× d positive define real matrices; it may be convenient to adapt the
power factor 1/p depending on the statistical model considered. In probability density
estimation, g is a probability density and p = 1, while this constraint is not necessary in
regression.

We recall the following definitions of a location mixture and, respectively, of a location-
scale mixture prior.

Definition 1.10 – Let E0 ⊂ E and Rd be endowed with Borel σ-algebra. Let ΠA be a
prior on E0, and Q : Ω × B(Rd) → R ∪ {±∞} be a random measure. Then θ(x) :=∫
KA(x − µ)Q(dµ), where A ∼ ΠA, is a location mixture of g by Q (provided it is a

well-defined random variable at all x ∈ Rd).

Definition 1.11 – Let E0 ⊂ E and let E0 × Rd be endowed with Borel σ-algebra. Let Q :
Ω×B(E0×Rd)→ R∪ {±∞} be a random measure. Then θ(x) :=

∫
KA(x−µ)Q(dAdµ)

is a location-scale mixture of g by Q (provided it is a well-defined random variable at all
x ∈ Rd).

Posterior asymptotics for location and location-scale mixtures is not fully understood
yet, but a lot of things — especially for density estimation — are known.

In Ghosal et al. (1999); weak and L1 consistency for Dirichlet process location and
location-scale mixtures of Gaussians — that is g(x) = exp(−x2/2) — is investigated in
univariate (d = 1) density estimation. They established conditions on the prior to give pos-
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terior consistency at θ0 when θ0(x) =
∫
Kσ0(x−µ) dP0(µ) with some compactly supported

probability measure P0, or θ0 is compactly supported and limσ→0
∫
θ0 log(θ0/Kσ ∗θ0) = 0.

In the meantime, still in univariate density estimation, Genovese and Wasserman
(2000) provided a first attempt to rates of convergence for location-scale mixtures of
Gaussians, although with a frequentist sieve estimator θ̂n. Under the assumption that
θ0(x) =

∫
Kσ(x − µ) dP0(µ), they found (tn)n≥1 such that Pnθ0

(d(θ0, θ̂n) > tn) = o(1),
where d is the Hellinger distance. The rates tn crucially depend on the tails of P0; the
best rate is achieved in the compactly-supported case with tn = (logn/n)1/4. Their rate
is clearly suboptimal, as we expect to achieve a nearly parametric rate of n−1/2 (up to a
power of logn) in this supersmooth situation.

Ghosal and Van Der Vaart (2001) improved the preceding result and recovered a
rate of (logn)κ/

√
n, where κ depends on the tails of P0. Also, assuming that P0 has

sub-Gaussian tails, and that the bandwidth σ0 is bounded from above and below, they
obtained sufficient conditions to achieve the posterior contraction rate of (logn)κ/

√
n

for the Hellinger distance with a Dirichlet process location mixture of Gaussians prior.
Tokdar (2006) established weak and L1 consistency for Dirichlet process location-scale

mixtures of Gaussians (again in univariate density estimation) under mild assumptions
on θ0. Particularly, θ0 is not assumed to be itself a mixture and can be heavy-tailed.

Considering univariate density estimation with Dirichlet process location mixtures,
assuming θ0 twice continuously differentiable with compact support, Ghosal and Van
Der Vaart (2007b) established a nearly minimax contraction rate of n−2/5 (up to a
power of logn) for the Hellinger distance. This is the first time that posterior rates
are established without assuming θ0 supersmooth. However, if θ0 is more than twice
continuously differentiable, their rate does not improve and becomes suboptimal.

The main difficulty in improving the previous rates rely on the ability of approxi-
mating a smooth density θ0 with a convex mixture of densities, when θ0 is not itself
a mixture2. With the assumption log θ0 ∈ Cβ, Kruijer et al. (2010) used an idea from
Rousseau (2010) to circumvent the issue, leading the way to rate adaptive posterior
contraction rates of n−2β/(2β+1) (up to a power of logn) over the whole classes of β-log-
Hölder densities with exponential tails, β > 0, using Dirichlet process location mixtures
of generalized Gaussians and either Hellinger or L1 distance.

The first asymptotic result for multivariate location mixtures in regression appeared in
De Jonge and Van Zanten (2010). The authors considered the Gaussian errors regression
with fixed design on [0, 1]d for a finite mixture model, although with a random number
of components. Their result is near optimal and rate adaptive over the Hölder classes Cβ ,
β > 0, for the ‖ · ‖2,n distance, and holds for a quite general family of mother functions.

Scricciolo (2011) investigated univariate density estimation with Dirichlet process
mixtures of exponential power densities, assuming that the true density is itself a mixture
with mixing measure having sub-exponential tails. She found nearly parametric posterior
rates of convergence when the mother function is differentiable at 0, and slower rates
otherwise.

Regarding multivariate density estimation with Dirichlet process location mixtures of
Gaussians, Shen et al. (2013) established near optimal and adaptive rates over anisotropic
Hölder classes for the Hellinger distance, provided exponential tails assumptions on θ0.

2Whereas approximating a smooth density with a non convex mixture is relatively easy, it is not as
simple to achieve a nice order of approximation with convex mixtures.
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Their approach allowed to release the assumption log θ0 ∈ Cβ used in Kruijer et al. (2010)
onto θ0 ∈ Cβ, provided supplementary conditions on ratio of the form Dkf/fp.

Canale and De Blasi (2017) extended the previous result to multivariate density
estation with Dirichlet process location-scale mixtures of Gaussians. They obtained
suboptimal rates for the Hellinger distance over the Hölder classes, assuming exponential
tails for the true density. Moreover, they conjectured that under weaker tail assumptions
their bound on the rate remains true and should be near optimal. We believe today that
this conjecture is wrong (see below).

Recently, Scricciolo (2014) investigated univariate density estimation with Pitman-
Yor process and normalized Inverse-Gamma process location mixtures. The novelty here
is that she looked at contraction rates under Lp metric, for 1 ≤ p ≤ ∞. For a class
of analytic functions, she found that the procedure is nearly optimal, provided θ0 has
exponential tails. However, regarding at β-Sobolev classes, β <∞, the rates are optimal
only when 1 ≤ p ≤ 2, and deteriorate by a genuine power of n otherwise.

Some questions remain open about location and location-scale mixtures. Why do
the rates found in Scricciolo (2014) for the Lp distance deteriorate when p ≥ 2 and the
true function is not analytic ? We even don’t know if there is a Bayesian procedure that
achieve the optimal rates in this situation (Giné and Nickl, 2011).

Another interesting issue concerns the exponential tail assumption on θ0. Currently
it appears difficult to get rates of contraction for density estimation with location or
location-scale mixture without light tail assumption on θ0. Under light-tail hypothesis,
everything happens as if θ0 is compactly supported, so that it is not surprising that
location mixtures perform better than location-scale mixtures (Shen et al., 2013; Canale
and De Blasi, 2017). It is known from the frequentist litterature (Juditsky and Lambert-
Lacroix, 2004; Reynaud-Bouret et al., 2011; Goldenshluger and Lepski, 2014) that without
tails assumptions, the optimal rates for β-Hölder classes, for the Lp distance, deteriorate
when 1 ≤ p ≤ 2 + 1/β in comparison to the optimal rates under tail condition. For p = 1,
and hence for the Hellinger distance, the rates deteriorate to ε2n = 1 if no tails assumptions
are made, and may take a bunch of values between 1 and n−2β/(2β+1) depending on the
heaviness of the tail. This explains why Canale and De Blasi (2017) conjectured that
the suboptimal rates they found with location-scale mixtures of Gaussians under light
tail assumptions may become optimal if they could release the tail condition. We do
not think that this conjecture is correct (see also chapter 3), and we present here an
argument to explain why we think the conjecture is false.

Assume d = 1 for simplicity. Define the pointwise Hölder regularity as follows. Let
θ : R→ R be a function, α > 0, α /∈ N and x0 ∈ R. Then θ ∈ Cα(x0) if and only if there
exists a real η > 0, a polynomial P with degree less than α and a constant C > 0 such
that |f(x)−P (x−x0)| ≤ C|x−x0|α for all |x−x0| ≤ η. The pointwise Hölder exponent
of θ at x0 is β(x0) = sup{α : θ ∈ Cα(x0)}. Returning to (global) Hölder spaces Cβ,
there are functions for which β(x) = β for all x ∈ R. This seemlingly innocuous fact is
indeed crucial, because for these functions, there is no reason for location-scale mixtures
to perform better order of approximation than location mixtures. One could argue that
there is no need to approximate θ0 with the same order of approximation in zones with
few data as in zone of dense data, encouraging location-scale mixtures. This argument is
hard to implement in density estimation, but could be rather easily applied in regression
with Gaussian errors (see chapter 3), still leading to suboptimal rates for location-scale
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mixtures.
In chapter 3 for random design regression, we obtain rates for both location and

location-scale mixtures under various tail constraints, which are always worst for location-
scale mixtures than for location mixtures. The novelty here is that, under heavy tail
assumptions, both location and location-scale appear to be suboptimal and we can find
hybrid procedure that performs always better than both types of mixtures. That said, to
be able to accept or reject definitively Canale and De Blasi’s conjecture, it is necessary
to establish lower bounds on the rate of contraction of the posterior (in the sense of
Castillo (2008)), which remains a challenge for mixture models.

Finally, we believe that although location-scale mixtures are suboptimal over Hölder
classes, they should outperform location mixtures if looking at classes of locally varying
smoothness, making them useful in practice.

Mixtures of Betas and Gammas

Another common examples are mixtures of Beta densities with respect to a random
probability measure. Although this prior makes sense only in density estimation over
[0, 1], we would like to mention a few asymptotic results, in particular because the tools
developed in the next references have been useful in the study of posterior distribution
for general mixtures.

Consistency for Dirichlet process mixtures of Bernstein polynomials goes back to
Petrone and Wasserman (2002) under very mild assumptions on the true density. For
some prior distributions, Ghosal (2001) established nearly parametric rates of convergence
for the Hellinger distance under the assumption that the true density is itself of mixture
of Bernstein polynomials, and provided suboptimal rates otherwise.

Regarding at Dirichlet process mixtures of Beta densities, Kruijer and van der Vaart
(2008) established posterior rates over β-Hölder classes for 0 < β ≤ 2, in Hellinger
distance, achieving optimal adaptive rate over 0 < β ≤ 1, and suboptimal otherwise. For
the L1 distance, Rousseau (2010) is the first article in which mixture priors are shown
to yield nearly optimal and adaptive rates over the whole β-Hölder classes for any β > 0,
paving the way for the results of De Jonge and Van Zanten (2010); Kruijer et al. (2010);
Shen et al. (2013) in location mixtures.

Recently, Bochkina and Rousseau (2016) investigated posterior contraction rates for
density estimation on the positive real line based on mixtures of Gamma distributions.
They required less stringent conditions on the tails of the true density than the usual
exponential tail condition required for location and location-scale mixtures. Together
with the result of Canale and De Blasi (2017), this paper was a supplementary motivation
for the work presented in chapter 3.

1.2.4. Contributions

This section presents the main contribution of this manuscript to theoretical results
about symmetric Gamma process mixtures.
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Fixed design regression with symmetric Gamma process mixtures

In chapter 2, we are concerned with the problem of a random response Y corresponding
to a deterministic covariate vector x taking values in [−S, S]d for some S > 0. We aim
at estimating the regression function f : [−S, S]d → R such that f(xi) = EYi, based on
independent observations of Y . More precisely, the nonparametric regression model we
consider is the following,

Yi|εi = f(xi) + εi, i = 1, . . . , n,

ε1, . . . , εn|σ2 i.i.d∼ N (0, σ2), independently of (f, σ),
(f, σ) ∼ Π,

with Π the distribution on an abstract space Θ, given by σ ∼ P σ independently of f
drawn from the distribution of a symmetric Gamma process mixture.

We consider two families of mixtures. First, the location-scale mixtures, as defined in
definition 1.11; and second we introduce a new type of mixtures, which we call location-
modulation mixtures, defined as follow.

For a measurable mother function g : Rd → R, we define the location-modulation
kernel Kξ,φ(x) := g(x) cos(

∑d
i=1 ξixi + φ), for all x ∈ Rd, all ξ ∈ Rd and all φ ∈ [0, π/2].

Then, a mixture of Kξ,φ by a symmetric Gamma random measure Q : Ω×B(Rd ×Rd ×
[0, π/2])→ [−∞,∞] is the distribution of the random function (for those g for which it
is well-defined)

f(·, x) :=
∫
Rd×Rd×[0,π/2]

Kξ,φ(x− µ)Q(·, dξdµdφ), ∀x ∈ Rd .

Our main result concerns the posterior rates of convergence for the two families of
prior distributions. Assuming that the true regression function f0 belongs to the Hölder
space Cβ [−S, S]d, we find that the parameters of the mixing symmetric Gamma random
measure and g can be chosen so that the following posterior rates of convergence hold
for these models, with the empirical metric dn((f1, σ1), (f2, σ2)) := (n−1∑n

i=1 |f1(xi)−
f2(xi)|2)1/2 + | log σ1 − log σ2|:
• Location-scale mixtures: there is t > 0 such that ε2n . n−β/(2β+d+κ/2)(logn)t, where
κ > 0 depends on the parameters of the prior.
• Location-modulation mixtures: there is t > 0 such that ε2n . n−β/(2β+d)(logn)t.
Regarding location-scale mixtures, the same phenomena as in density estimation

with DPM take place here (Canale and De Blasi, 2017), yielding to suboptimal rates.
However, it seems like location-modulation behave better over the β-Hölder classes as
they achieve the minimax rate of convergence (up to a power of logn factor).

On the tail conjecture

In chapter 3, we investigate the conjecture of Canale and De Blasi (2017) about the
robustness of location-scale mixtures to heavy tailed distributions. To better understand
the ability of mixture models to capture heavy tails we study their use in nonparametric
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univariate regression models:

Yi = f(Xi) + εi, εi
i.i.d∼ N(0, s2), i = 1, . . . , n,

X1, . . . , Xn
i.i.d∼ Q0, f ∈ L2(Q0).

We assume that s is known, which is just a matter of convenience for proofs, and we
wish to estimate the parameter f using location or location-scale mixtures of Gaussians
by symmetric Gamma random measures. Our aim is to study posterior concentration
rates around the true regression function f0 under the empirical `2 distance of the
covariates, defined as dn(f, f0)2 := n−1∑n

i=1 |f(xi)− f0(xi)|2. We assume that f0 ∈ L1

and belongs to a Hölder ball with smoothness β. The tail condition are then on the
design distribution and written as

∫
R |x|pdQ0(x) < +∞, p ≥ 0.

We show in chapter 3, that in most cases location mixtures have a better posterior
concentration rate than location-scale mixtures and unless p goes to infinity the posterior
concentration rates is not as good as the usual n−β/(2β+1). This rate is suboptimal for
light tail design points, since in this case the minimax posterior concentration rate is
given by n−β/(2β+1). To improve on this rate we propose a new version of location-scale
mixture models, which we call the hybrid location-scale mixture and we show that this
nonparametric mixture model leads to better posterior concentration rates than the
location mixture (and thus than the location-scale mixture). All these results are up to
logn terms. The results are summarized in table 1.1 which displays the value q defined
by ε2n = n−q.

Table 1.1: Summary of posterior rates of convergence for different types of mixtures. The
rates are understood to be in the form ε2n = n−q, up to powers of logn factors, where q
is given below.

0 < p < 2 p ≥ 2

0 < p ≤ 2β
β + 1

2β
β + 1 < p ≤ 2β p > 2β 0 < p ≤ 2β

β + 1
2β
β + 1 < p ≤ 2β p > 2β

Location 2β
3β + 1

2β
3β + 1

2β
3β + 1

2β
2β + 1 + 2β/p

2β
2β + 1 + 2β/p

2β
2β + 1 + 2β/p

Location-scale 2β
3β + 2

2β
2β + 1 + 2β/p

2β
2β + 2

2β
3β + 2

2β
2β + 1 + 2β/p

2β
2β + 2

Hybrid 2β
3β + 1

p

p+ 1
2β

2β + 1
2β

3β + 1
p

p+ 1
2β

2β + 1

Although the results are presented in the regression model, we believe that similar
phenomena should take place in the density estimation problem.

Finally, we also compute the rates for location mixtures when p = 0 and the parame-
ters of the mixing symmetric Gamma random measures are dependent of the covariates.
The strategy can be easily translated to location-scale and hybrid mixtures.

1.3. Posterior sampling

Quite generally, in Bayesian nonparametrics, the posterior distribution is either analyt-
ically intractable, or difficult to compute. A popular way to circumvent the issue is to
construct a Markov chain whose transition kernel admits the posterior distribution as
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invariant distribution; such algorithms are called Markov Chain Monte Carlo algorithms
(MCMC). Then from the samples of the Markov chain, one can (approximately) evaluate
all functionals of the posterior distribution.

Although Dirichlet Process Mixtures (DPM) is not the object of this dissertation
is, we first review an algorithm for sampling the posterior distribution of DPM (in
density estimation model); the interest is two fold. First, it will highlight the difficulties
encountered for sampling mixture models in general models. Second, the algorithm
presented in the next section has been a great source of inspiration for the design of
the algorithm proposed in chapter 2 (because of the close relationship between Dirichlet
Processes and Gamma Processes).

We will conclude this section with an overview of the problems encountered with
general mixture models, followed by a presentation of previsouly existing algorithm for
posterior simulation, which could be used as alternative to the algorithm of chapter 2.

1.3.1. Gibbs sampling Dirichlet Process Mixtures

Gibbs methods for sampling the posterior distribution of DPM go back to Escobar’s
unpublished thesis; published later in Escobar (1994). The emergence of these algorithms
signed the boom of Bayesian nonparametrics, which had a solid theoretical framework
for a while, but lacked to be used effectively in practice. Gibbs algorithms for sampling
the posterior of DPM may be classified in two categories.
• Conditional samplers. These algorithms use an explicit representation of the mea-
sure P ∼ DP(α), mainly the stick-breaking representation (Ishwaran and James,
2011; Papaspiliopoulos and Roberts, 2008; Walker, 2007; Kalli et al., 2011). We
will not review these methods here. For an exhaustive review (among other cool
Bayesian nonparametrics stuff) we recommend the unpublished thesis of Fall (2012).
• Collapsed samplers. These algorithms marginalize the distribution of P ∼ DP(α) in

the posterior distribution, and are the first techniques developed for DPM sampling.
Escobar’s algorithm falls into that category (Escobar, 1994; Escobar and West,
1995).

However, Escobar’s algorithm suffers from two shortcomings. First, the mixing time
of Escobar’s algorithm turns out to be rather huge and inefficient. Second, the algorithm
works only when the likelihood of the parameter is conjugate to the base distribution α
of the mixing Dirichlet Process. The first issue is addressed for instance in Neal (1992);
West and Escobar (1993); MacEachern (1994), while the second issue is addressed in
MacEachern and Müller (1998); Walker and Damien (1998); Neal (2000).

We now review briefly Neal (2000, algorithm 8), which is of particular interest for the
comprehension of chapter 2. We let α be a finite positive measure over (G,Σ), α = α(G),
and K : G × Rd → R+ be a jointly measurable kernel such that K(x; ·) is a probability
density function for all x ∈ G. Neal’s algorithm is based on the following hierarchical
representation of DPM.

yi|xi ∼ K(xi; ·) ∀i = 1, . . . , n
x1, . . . , xn|P

i.i.d∼ P
P ∼ DP(α).

(1.5)
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The samples y1, . . . , yn from the model of equation (1.5) are identically distributed with
distribution density y 7→

∫
K(x; y) dP (y), where P ∼ DP(α). If we marginalize P in the

equation (1.5), then x1, . . . , xn has the distribution of a Pólya urn sequence with base
measure α (see section 1.2.1); this fact is crucial and is one of the foundation of the
algorithm developed later in chapter 2.

Going back to Neal’s algorithm and equation (1.5), each sample yi is associated
with a component xi of the mixture. However, because of the almost-sure discreteness
of the Dirichlet Process, there might be some identical values of xi. We let x?1, x?2, . . .
denote the unique values of x1, . . . , xn, and we introduce the latent clustering variables
c1, . . . , cn such that ci = k if xi = x?ci = x?k. Observation yi with ci = k is said to belong
to cluster k. Neal’s algorithm produces a Markov chain whose invariant distribution
is the posterior distribution of (c1, . . . , cn, x

?
1, x

?
2, . . . ). The algorithm draws samples by

successively sampling from
• c1, . . . , cn|y1, . . . , yn, x

?
1, x

?
2, . . . using the auxiliary variables method, as described

below;
• x?1, x?2, . . . |y1, . . . , yn, c1, . . . , cn using the Metropolis-Hastings algorithm (Hastings,
1970), or any other method which allows to draw samples from this distribution.

We now briefly describe the auxiliary variables method. Assume that you want to
draw samples from a distribution πx. Then you can perform the following update scheme
for x. First choose a joint distribution πxy for (x, y) that admits πx as marginal. Then
draw a sample of y from the conditional distribution of y|x followed by a update of (x, y)
that leave πxy invariant. Finally discard y and keep only x. This update for x will keep
πx invariant.

Neal (2000) uses the auxiliary variable methods to update (ci)ni=1. He uses m ∈ N∗
auxiliary variables representing new potential clusters. The choice of m is governed by a
trade-off between computation cost and mixing efficiency.

Each ci is updated using Gibbs sampling. Since the observations (yi)ni=1 are exchange-
able, we can assume we are updating ci for the last observation. We let k− denote the
number of clusters that contain at least one observation yi for i = 1, . . . , n− 1, and we
label these clusters with distinct values in {1, . . . , k−}. The prior probability of ci to be
equal to 1 ≤ l ≤ k− is n−i,l/(n− 1 + α), where n−i,l denote the number of observations
yj with j 6= i in cluster l. The probability of ci having other value is α/(n−1 +α), which
is split among the m auxiliary clusters that are associated with parameters x1, . . . , xm
drawn independently from α(·)/α. As shown in Neal (2000), this representation of the
prior translates to the posterior distribution, yielding the algorithm 1.

1.3.2. Sampling symmetric Gamma process mixtures

When dealing with other statistical models than density estimation with DPM, in gen-
eral we cannot associate an observation to a unique component of the mixture, as in
equation (1.5). In chapter 2, we will introduce a representation of the symmetric Gamma
process which allows to adapt algorithm 1 to symmetric Gamma process mixtures. Mean-
while, we present here the two main existing alternatives to the algorithm we propose,
taken respectively from Wolpert et al. (2002, 2011) and Erhardsson (2008). The goal of
these algorithms is the use of mixtures outside the density estimation framework.
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Algorithm 1 Neal (2000, algorithm 8)
Let m ∈ N∗ and the state of the Markov Chain consist of (c1, . . . , cn) and (x?1, x?2, . . . ).
Repeatedly sample as follows.
• For all i = 1, . . . , n: Let k− denote the number of clusters that contain at least one

observation yj for j 6= i, and k denote the total number of clusters.
– If ci 6= cj for all j 6= i, then k− = k − 1 and do
∗ x? ← x?ci
∗ (x?1, x?2, . . . , x?ci−1, x

?
ci+1, . . . )← (x?1, x?2, . . . , x?ci−1, x

?
ci , x

?
ci+1, . . . )

∗ x?k ← x? and for all k with ck ≥ ci : ck ← ck − 1
∗ Draw values independently from α(·)/α(G) for those x?l for which k+ 1 ≤
l ≤ k +m− 1.

– Else if there is one j 6= i such that ci = cj , then k− = k and do
∗ Draw values independently from α(·)/α(G) for those x?l for which k+ 1 ≤
l ≤ k +m.

Draw a new value for ci from {1, . . . , k− +m} using the following probabilities

P(ci = l | c−i, yi, x?1, x?2, . . . ) ∝


n−i,l

n−1+α(G)K(x?l ; yi) 1 ≤ l ≤ k−
α/m

n−1+α(G)K(x?l ; yi) k− < l ≤ h.

Change the state to contain only those x?1, x?2, . . . that are associated to at least
one observation (relabel the clusters if necessary).
• Sample from (x?1, x?2, . . . )|c1, . . . , cn, y1, . . . , yn.

Note that Wolpert et al.’s algorithm serves as a reference to assess the performance
of our algorithm in chapter 2.

Wolpert’s Birth-Death algorithm

Wolpert et al.’s algorithm is based on a finite approximation of the Poisson representa-
tion of symmetric Gamma process mixtures (see section 1.2.2). Note that the Poisson
representation is not restricted to symmetric Gamma Process mixtures, and so is Wolpert
et al.’s algorithm.

Let α be a finite positive measure on (G,Σ), η > 0, ε > 0 and define Hη,ε(du) :=
1|uη|>ε(u)|u|−1e−|u|ηdu. Let K : G × Rd → R be a jointly measurable kernel such that∫

min(1, |uK(x; y)|)Hη,0(du)α(dx) < +∞, and Nε be the Poisson random measure with
mean Hη,ε×α. For all y ∈ Rd, the mixture θε(·, y) :=

∫
uK(x; y)Nε(·, dudx) converges in

probability to a mixture of K by a symmetric Gamma random measure with parameters
(α, η) as ε→ 0 (Wolpert et al., 2011).

Let E1 be the exponential integral E1 function defined by E1(x) :=
∫∞
x t−1e−t dt for

all x > 0 and let Pε,u be the distribution which has density 1|uη|>0(u)|u|−1e−|u|η/(2E1(ε))
with respect to the Lebesgue measure on R. By virtue of section 1.2.2, θε(y) has the almost-
sure representation θε(y) =

∑J
j=1 ujK(xj ; y), where J ∼ Po(2α(G)E1(ε))), uj

i.i.d∼ Pε,u for
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j = 1, . . . , J , and xj
i.i.d∼ α(·)/α(G) for all j = 1, . . . , J , independently of (uj)Jj=1.

Using the previous approximation of symmetric Gamma process mixtures, Wolpert
et al. (2002, 2011) implement a reversible jumps MCMC algorithm (Green, 1995) with
birth-and-death move proposals (Cappé et al., 2003), which we summarize in algorithm 2
(see also the manuscript thesis of Tu (2006) for complements).

Algorithm 2 Wolpert et al. (2011, Birth-Death algorithm)
Let pb, pd ∈ (0, 1) with pb + pd < 1 be parameters of the algorithm.
• At t = 0 initialize the Markov chain at S0.
• At iteration t ≥ 1:

– With probability pb: St ← BIRTH(St−1).
– With probability 1−pb: Select randomly an index j uniformly in {1, . . . , J t−1}.
∗ With probability 1 − pb − pd: Draw u∗j = ut−1

j + N(0, σ2
u). If |u∗jη| ≤ ε

then St ← DEATH(j, St−1). Otherwise St ← UPDATE(j, u∗j , St−1).
∗ With probability pd: St ← DEATH(j, St−1).

We now clarify the notations used in algorithm 2, as well as details of the three
BIRTH, DEATH and UPDATE moves involved in the algorithm. We use the vector notations
u := (u1, . . . , uJ) and x = (x1, . . . , xJ). The state of the Markov chain at iteration t is
St = (J t, ut, xt), corresponding to a function θt(y) =

∑Jt

j=1 u
t
jK(xti; y). We denote by

L(St | yn) the likelihood of St (equivalently θt) under the observations yn = (y1, . . . , yn).
We let pb, pd ∈ (0, 1) with pb + pd < 1, and pu = 1− pb − pd. The main steps involved in
the algorithm are the following.
• BIRTH step. Set J∗ = J t−1 + 1 and draw uniformly a index j in {1, . . . , J∗}.
Draw u∗j ∼ Pε,u and x∗j ∼ α(·)/α. It is possible to draw u∗j directly from Pε,u by
numerically inverting the CDF; otherwise draw from other distribution and adapt
the Metropolis-Hastings ratio below. Set u∗ = (ut−1

1 , . . . , ut−1
j−1, u

∗
j , u

t−1
j , . . . ) and

x∗ = (xt−1
1 , . . . , xt−1

j−1, x
∗
j , x

t−1
j , . . . ). With probability 1∧H accept the proposal and

set St = S∗; else reject the proposal and set St = St−1. The Metropolis Hastings
ratio H for this move is

H = L(S∗ | yn)
L(St−1 | yn)

2αE1(ε)
J∗

[
pd + pu

(
Φ
(
−u∗j+ε/η

σu

)
− Φ

(
−u∗j−ε/η

σu

))]
/J∗

pb/J∗
,

where Φ is the CDF of the N(0, 1) distribution.
• UPDATE step. When this step is implemented, we have at our disposal a random

index j and a candidate u∗j . We obtain St after the following sub-steps.
– First, we accept the proposal u∗j with probability 1∧H, whereH is the classical

Metropolis Hastings ratio for this move.
– Second, we update xt−1

j for xj using random-walk Metropolis-Hastings.

• DEATH step. Set u∗ = (ut−1
1 , . . . , ut−1

j−1, u
t−1
j+1, . . . ) and x∗ = (xt−1

1 , . . . , xt−1
j−1, x

t−1
j+1, . . . ).

Let J∗ = J t−1−1, S∗ = (J∗, u∗, x∗). With probability 1∧H we accept the proposal
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and set St = S∗, otherwise we reject the proposal and set St = St−1. The Metropolis
Hastings ratio H for this move is

H = L(S∗ | yn)
L(St−1 | yn)

J t−1

2αE1(ε)
pb/J

∗[
pd + pu

(
Φ
(
−ut−1

j +ε/η
σu

)
− Φ

(
−ut−1

j −ε/η
σu

))]
/J∗

.

Erhardsson’s importance sampling algorithm

Erhardsson (2008) proposed an importance sampling algorithm for simulation of Gamma
process mixtures. His algorithm should be rather straightforwardly symmetrized to handle
symmetric Gamma process mixtures.

Broadly, Erhardsson (2008) used the Markov Chain from Feigin and Tweedie (1989) —
whose invariant distribution is a Dirichlet Process — in combination with the discussion
of section 1.2.2 regarding the representation of Gamma random measures in term of
the Dirichlet Process. This yields the algorithm 3, where we use essentially the same
notations as in previous section. We should not insist more since the algorithm is relatively
inefficient, however, the idea is interesting and might be improved in the light of recent
progress made around importance sampling algorithms.

Algorithm 3 Erhardsson (2008) Importance sampling algorithm
• Initialize G0(y) = K(x0; y) for some arbitrary x0 ∈ G.
• Let {Ui : i ≥ 1} iid. with distribution Beta(α(G), 1), {xi : i ≥ 1} iid. and
independent of {Ui : i ≥ 1} with distribution α(·)/α(G), and independently of
everything else {Zi : i ≥ 1} be iid. with distribution Ga(α(G), η).
• For 1 ≤ i ≤ N , let Gi(y) = (1− Ui)K(xi; y) + UiGi−1(y), and G†i (y) = ZiGi(y).
• Compute the importance weights wi = L(G†i | yn).
• Define the mixture X̂n such that P(X̂N = G†i | G

†
1, . . . , G

†
N ) = wi/

∑N
i=1wi for all

i = 1, . . . , N . Then X̂n(y) converges in probability to a θ(y), where θ is a Gamma
process mixtures of K with base measure α and scale parameter η.

1.3.3. Contribution to posterior sampling of symmetric Gamma pro-
cess mixtures

Recall the definition of a Pólya urn sequence from section 1.2.1. We say that a random
variable J has a SGa(1, 1) distribution if it is distributed as the difference of two indepen-
dent Ga(1, 1) random variables. Then, inspired from a paper of Favaro et al. (2012), we
prove in chapter 2 the following representation of symmetric Gamma random measures.
The convergence of signed measures in the theorem is understood with respect to the
weak-* topology on the space of signed Radon measures, identified to the dual space of
the space of continuous functions with compact support.
Theorem 1.4 – Let X be a Polish space with Borel σ-algebra, p > 0 be integer, T ∼
Ga(α, η), independently, J1, . . . , Jp

i.i.d∼ SGa(1, 1), and {Xi ∈ X : 1 ≤ i ≤ p} a Pólya
urn sequence with base distribution αF (·), independent of T and of the Ji’s. Define the



31 Introduction

random measure, Qp :=
√
T/p

∑p
i=1 Ji δXi. Then Qp

d→ Q, where Q is a symmetric
Gamma random measure with base distribution αF (·) and scale parameter √η.

We use the previous representation of symmetric Gamma random measures to adapt
algorithm 1 for sampling posterior distribution of symmetric Gamma process mixtures,
as described in chapter 2.

1.4. Quantum Homodyne Tomography

This last section is devoted to the introduction of necessary material for proper under-
standing of chapter 4. When we studied mixtures as prior distribution in direct regression
problems (chapters 2 and 3) we never lost sight of our original belief that mixtures were
good priors for solving statistical inverse problems. Chapter 4 constitutes the achieve-
ment of our initial goal, we propose a mixture model for estimating the quantum state
of a light beam through Quantum Homodyne Tomography measurements. Quantum
Homodyne Tomography is a very challenging, nonlinear statistical inverse problem.

1.4.1. Physical background

Quantum mechanics studies the microworld, the physical laws taking place at the micro-
scopic level, that cannot be adequately described by classical mechanics. Unlike classical
mechanics, the predictions of quantum mechanics are probabilistic so that we cannot (in
general) infer the result of a single measurement, but only the distribution of possible
outcomes.

Here we formulate the basic principles of quantum mechanics using precise mathemat-
ical language. For more insights onto mathematical foundations of quantum mechanics
we recommend Takhtadzhian (2008); Hall (2013). For a more physical exposition, see
Cohen-Tannoudji et al. (2006). The following axioms constitute the basis of quantum
mechanics.
(A1) With every quantum system is associated an infinite-dimensional separable Hilbert

space H over C, with inner product 〈·, ·〉, the space of states.
(A2) The set of observables A of a quantum system consists of all self-adjoint operators

on H , i.e. A = {A : H →H : 〈Af1, f2〉 = 〈f1, Af2〉 ∀(f1, f2) ∈H ×H }.
(A3) The set of states S of a quantum system with a Hilbert space H consists of all

trace class operators ρ with Tr ρ = 1. Pure states are projection operators onto
one-dimensional subspaces of H . For ψ ∈ H with ‖ψ‖ = 1, the corresponding
projection is denoted ρψ. All other states are called mixed states.

(A4) Let P(R) denote the set of probability measures on R. Ameasurement is a mapping
A ×S 3 (A, ρ) 7→ µA ∈P(R), which to every observable A ∈ A and state ρ ∈ S
assigns a probability measure µA on R. For every Borel subset E ⊆ R, the quantity
µA(E) is the probability that for a quantum system in a state ρ the result of a
measurement of the observable A lies in E.

To explicit the expression of the measure µA in the last axiom, we need the following
definition of a projection-valued measure (PVM).
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Definition 1.12 – Let (X,X ) be a measured space, H a Hilbert space and B(H ) be the
Banach space of bounded operators on H . A map µ : X → B(H ) is called a projector-
valued measure if the following properties are satisfied.
(1) For each E ∈ X , µ(E) is an orthogonal projection.
(2) µ(∅) = 0 and µ(X) = Id.
(3) If E1, E2, E3, . . . in X are disjoint, then for all f ∈ H we have µ(∪∞j=1Ej)f =∑∞

j=1 µ(Ej)f , where the convergence of the series is in the norm topology of H .
(4) For all E1, E2 ∈ X , we have µ(E1 ∩ E2) = µ(E1)µ(E2).
Suppose now, that f : (X,X ) → C is an unbounded measurable function, and we

wish to define the integral of f with respect to the PVM µ : X → B(H ). First, note
that every function ψ ∈H describes a positive, real-valued measure µψ : X → [0,∞] by
setting

µψ(E) := 〈ψ, µ(E)ψ〉.

Then we have the following proposition, whose prove can be found in Hall (2013, sec-
tion 10.1).
Proposition 1.3 – Suppose µ : X → B(H ) is a PVM and f : X → C is measurable (not
necessarily bounded). Define a subspace Df of H by

Df :=
{
ψ ∈H :

∫
X
|f(λ)|2 dµψ(λ) < +∞

}
.

Then there exists a unique unbounded operator F : H → H with domain Df with the
property that

〈ψ, Fψ〉 =
∫
X
f(λ) dµψ(λ)

for all ψ ∈ Df . The operator F is called the integral of f with respect to the PVM µ,
which we also write as F =

∫
X f dµ.

With proposition 1.3 in mind, we can state Von Neumann’s spectral theorem for
unbounded self-adjoint operators, whose proof can be found in Hall (2013, section 10.1).
Theorem 1.5 – Suppose A is a self-adjoint operator on H , and let σ(A) denote the spec-
trum of A. Then there is a unique projection-valued measure PA on σ(A) with values in
B(H ) such that ∫

σ(A)
λ dPA(λ) = A.

Going back to axiom (A4), the probability measure µA is given by the Born-von
Neumann formula

µA(E) = Tr PA(E)ρ, ∀E ∈ B(R),

where PA is the unique PVM given by theorem 1.5.
We now state the last axiom of quantum mechanics that is of interest for us (as

a matter of completeness, other axioms deal with time evolution of quantum systems,
which is of no interest for quantum homodyne tomography).
(A5) ObservablesA,B ∈ A can be measured simultaneously if and only if the correspond-

ing PVM PA and PB satisfy PA(E1)PB(E2) = PB(E2)PA(E1) for all E1, E2 ∈ B(R);
in that case we say that observables A and B commute.
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We finish this section with probably the most striking result of quantum mechanics,
the so-calledHeisenberg uncertainty relation, stated here for pure states only. Heisenberg’s
relation bound the precision at which two observables can be measured simultaneously;
in particular, if the two observables are noncommuting, measuring one with precision is
always to the detriment of the precision for the other.

Theorem 1.6 – Let A,B ∈ A and ρψ be a pure state with ψ ∈ dom(A) ∩ dom(B) and
Aψ,Bψ ∈ dom(A)∩dom(B). Let σ2

ψ(A), σ2
ψ(B) denote respectively the variance of the ob-

servable A (respectively B) in the state ρψ. Then, σ2
ψ(A)σ2

ψ(B) ≥ 〈i(AB−BA)ψ, ψ〉2/4.

Finally, notice that the principles stated here cannot be verified directly. However,
whenever the quantum mechanics is applicable, it is continuously verified that the ex-
periments agree with the predicitions of the theory.

1.4.2. Statement of the problem

Here we make a brief statement of the problem of state estimation in Quantum Homodyne
Tomography. For more details and motivations, we advice reading Artiles et al. (2005);
Butucea et al. (2007).

We consider the quantum system of monochromatic light in a cavity, whose state is
described by self-adjoint operator acting on the space of complex-valued square integrable
functions on the real line L2(R).

The observables of interest for this quantum system are the electric and magnetic
fields, whose corresponding self-adjoint operators on L2(R) are given by Q and, re-
spectively P, with domains D(Q) := {ψ ∈ L2(R) : x 7→ xψ(x) ∈ L2(R)} and
D(P) := {ψ ∈ L2(R) : x 7→ ψ′(x) ∈ L2(R)}. The operarors Q and P act on D(Q),
respectively D(P), as

Qψ(x) = xψ(x), and Pψ(x) = −iψ′(x).

The derivative in the definitions of D(P) and P is understood in the distributional sense.
The observables P,Q are noncommuting, hence from theorem 1.6 we cannot expect

to have a joint distribution for the simultaneous measurement of P and Q on a system
in state ρ. But, the Wigner transform of ρ, Wρ : R2 → R, as defined below, is the closest
object of a joint probability density function for the simultaneous measurement of P
and Q (Folland, 1989). In particular, it is real valued and its marginals are probability
density functions, with respect to Lebesgue measure on R. However, Wρ may contains
patches of negative values, thus it cannot be a joint probability distribution in general.
The Wigner transform of state ρ is defined by the property that the Fourier transform
Ŵρ of Wρ with respect to both variables has the expression

Ŵρ(x, y) := Tr(ρ exp(ixQ + iyP)).

Although we cannot measure simultaneously the observables P and Q, it is possible
to measure the quadrature observables, defined as Xθ := Q cos θ+P sin θ for all θ ∈ [0, π].
We denote by Xρ

θ the random variable whose distribution is the measurement of Xθ on
the quantum system in state ρ. Assuming that θ is drawn uniformly from [0, π], the joint
probability density function (with respect to the Lebesgue measure on R × [0, π]) for
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(Xρ
θ , θ) is given by the Radon transform of the Wigner distribution Wρ, that is

pρ(x, θ) := 1
π

∫
R
Wρ(x cos θ − ξ sin θ, x sin θ + ξ cos θ) dξ.

Given n quantum systems prepared in the same state ρ, the aim of Quantum Homo-
dyne Tomography is to reconstruct ρ from n independent measurements of the quadrature
observables Xθ := Q cos θ + P sin θ, for some values of θ ∈ [0, π].

As mentioned in Butucea et al. (2007), the experimental setup for Quantum Homo-
dyne Tomography is far from perfect, and we have to consider some noise addition in
the statistical model to be realistic. In the same reference, authors justify that a good
model is to correct the density pψ by taking into account the efficiency η ∈ (0, 1) of the
detector. The efficiency-corrected probability density is then the convolution

pηρ(x, y) :=
√

2
1− η

∫
R
pρ(x, θ) exp

[
− 2πη

1− η (x− y)2
]
dx. (1.6)

From a statistical perspective, we have n observations (Y1, θ1), . . . , (Yn, θn) inde-
pendently and identically distributed with density pηρ(y, θ) (with respect to Lebesgue
measure), where η ∈ (0, 1) is assumed to be known. Then the aim is to estimate Wρ, or
better, to estimate ρ.

1.4.3. Frequentist results and minimax study

The problem of QHT is a statistical nonparametric ill-posed inverse problem that has
been relatively well studied from a frequentist point of view in the last few years, and
now quite well understood. We mention here only papers with theoretical analysis of the
performance of their estimation procedure, which we summarize; many other physical
papers references can be found therein.

We should classify frequentist methods in two categories, depending if they are based
on estimating the state ρ, or estimating Wρ (although ρ 7→ Wρ is one-to-one, methods
based on estimating Wρ don’t permit to do the reverse path from Wρ 7→ ρ).

State estimation

The estimation of the state ρ from QHT measurements has been considered in the ideal
situation (η = 1, no noise) by Artiles et al. (2005). To summarize their result, we need
to introduce the Fock basis (ϕj)j∈N for L2(R),

ϕj(x) := 1√√
π2jj!

Hj(x)e−x2/2,

where Hj are the Hermite polynomials. Artiles et al. (2005) used that the entries of the
state ρ, expressed in the Fock basis, can be rewritten as

ρj,k = 1
π

∫ +∞

−∞

∫ π

0
pρ(x, θ)fj,k(x)e−2πi(k−j)θ dθdx,
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where fj,k are known functions called pattern functions, which exact expressions can be
found in various papers of the quantum homodyne litterature. Then they proposed the
estimator ρ̃(N,n) of ρ, such that the entries of ρ̃(N,n) expressed in the Fock basis are

ρ̃
(N,n)
j,k =

{
n−1∑n

l=1 fj,k(Yl)e−2πi(k−j)θl if 0 ≤ j, k ≤ N − 1
0 if max(j, k) ≥ N.

The main result of Artiles et al. (2005) state that E[Tr |ρ̃(N,n) − ρ|2] → 0 as n → ∞,
provided that N →∞ with N = o(n3/7).

The case where η 6= 1 is investigated in Aubry et al. (2008) under Frobenius-norm
risk. They used a different estimation method depending on whether 0 < η ≤ 1/2 or
1/2 < η ≤ 1. We detail only the case 1/2 < η ≤ 1 here. They considered the estimator,

ρ̃N,ηj,k =
{
n−1∑n

l=1 f
η
j,k(Yl)e−2πi(k−j)θl if 0 ≤ j + k ≤ N − 1

0 otherwise.
(1.7)

where fηj,k have Fourier transform f̂ηj,k satisfying f̂ηj,k(x) = f̂j,k(x)e−γx2 , with γ := π(1−
η)/(2η) and fj,k the same pattern functions as previously. Then for the class of states

R(B, r, L) :=
{
ρ quantum state : |ρj,k| ≤ L exp

(
−B(j + k)r/2

)}
,

where the entries ρj,k are expressed in the Fock basis, they proved that for a constant
C0 > 0,

lim sup
n→∞

sup
ρ∈R(B,r,L)

ϕ−2
n E

∑
j,k

|ρ̃N,ηj,k − ρjk|
2

 ≤ C0 (1.8)

where
• ϕ2

n = (logn)(12γ+B)/(12γ+3B)n−B/(4γ+B), if r = 2 and N = logn
8γ+2B (1 + 2

3
log logn

logn ).

• ϕ2
n = (logn)2−r/3e−2BNr/2 , if 0 < r < 2 and N solution of 8γN + 2BN r/2 = logn.

Clearly the estimator in equation (1.7) is not rate adaptive over R(B, r, L). Alquier
et al. (2013) tackled the problem of adaptivity over R(B, r, L) using a soft-thresholded
version of equation (1.7). For a prescribed tolerance level ε ∈ (0, 1), they estimated the
state ρ by ρ̃ηthres, where the entries of ρ̃ηthres in the Fock basis are

ρ̃ηthres(j, k) =
ρ̃ηj,k
|ρ̃ηj,k|

(|ρ̃ηj,k − tj,k)+, tj,k = 2‖fηj,k‖∞

√√√√ log
(

2N(N+1)
ε

)
n

,

and ρ̃ηj,k are computed as in equation (1.7). They found that there estimator is rate-
adaptive over all parameters L ≥ 1, B ≥ B0, r ≥ r0, where B0, r0 can be chosen arbitrary
small. They obtained up to additional power of logn factors, the same upper bound on
the rates as in equation (1.8)

Finally, let mention the the problem of goodness-of-fit testing for quantum state
estimation is investigated in Méziani (2008).
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Wigner density estimation

Regarding frequentist methods for estimating Wρ, the first result goes back to Guţă and
Artiles (2007), where sharp minimax results for the pointwise risk are given over a class
of ultra-smooth Wigner functions

A(β, r, L) :=
{
Wρ :

∫
|Ŵρ(z)|2e2β‖z‖r dz ≤ L2

}
,

where Ŵρ is the Fourier transform of Wρ with respect to both variables. They proposed
a kernel-type estimator based on the following band-limiter filter

Kδ(x) := 1
2

∫ δ

−δ
re2πirx dr. (1.9)

Their kernel estimator of Wρ based on the observations (Y1, θn), . . . , (Yn, θn) is

W̃ρ(x, ω) := 1
n

n∑
l=1

Kδn(x cos θl + ω sin θl − Yl). (1.10)

Then they found that the pointwise risk over A(β, 1, L) when δn = 2β/ logn satisfy the
bound E[(W̃ρ(z)−Wρ(z))2] ≤ C(z)n−1(logn)3(1 + o(1)), where the constant C(z) > 0
is made precise in the original paper. More precisely, Guţă and Artiles (2007) provided
a lower bound for the pointwise risk over a large subset of A(β, 1, L) that matches the
previous upper bound, showing that the constant C(z) computed in their paper is sharp.
As far as we are not concerned with the case of ideal detection in this manuscript, we
will not detail more this result.

The noisy framework has been considered in Butucea et al. (2007); authors proposed
to modify the kernel of equation (1.9) to take into account the noise in the observations.
They introduced instead3

Kη
h(x) = 1

2

∫ 1/h

−1/h

exp(−2πixt)|t|
exp(−γt2) dt,

where γ := π(1− η)/(2η). Their estimator is very similar to equation (1.10),

W̃ η
ρ (x, ω) := 1

n

n∑
l=1

Kη
h(x cos θl + ω sin θl − Yl). (1.11)

They proved that if h is solution of 2β/hr + 2γ/h2 = logn, then

lim sup
n→∞

sup
z∈R2

sup
Wρ∈A(β,r,L)

E[|W̃ η
h (z)−Wρ(z)|2]ϕ−2

n ≤ C0,

where
• C0 = 1 and ϕ2

n =
√
Lhr−1

2βr exp
(
−2β
hr

)
if 0 < r < 2.

• C0 > 0 and ϕ2
n = n−β/(β+γ) if r = 2.

3In the original paper, authors consider that the observations are (√ηYi, θi) instead of (Yi, θi) in this
manuscript, leading to a slightly different definition for the kernel.
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Furthermore, they also proved that these rates are minimax efficient for 0 < r < 2 and
nearly minimax for r = 2, as they found the lower bounds

lim inf
n→∞

inf
W̃ρ

sup
Wρ∈A(β,r,L)

E[|W̃ρ(z)−Wρ(z)|2]ϕ−2
n ≥ 1, ∀z ∈ R2 if 0 < r < 2

lim inf
n→∞

inf
W̃ρ

sup
Wρ∈A(β,r,L)

E[|W̃ρ(z)−Wρ(z)|2](n logn)β/(β+γ) > 0, ∀z ∈ R2 if r = 2,

where the infinimum is taken over all possible estimators W̃ρ ofWρ. Finally, for 0 < r < 1,
Butucea et al. (2007) established a bandwith had for which the estimator (1.11) is adaptive
over all β > 0, 0 < r < 1 and L > 0.

In, Aubry et al. (2008), authors showed that the class R(B, r, L) defined in the
previous section relates to A(β, r, L) in the following way. If 0 < r < 2 and β < 2−rB,
then R(B, r, L) ⊂ A(β, r, L′) for a suitable constant L′ > 0. For r = 2, the result is a
little bit different, if 4β < B/(1 +

√
B)2, then R(B, r, L) ⊂ A(β, r, L′′) for a suitable

L′′ > 0. However, unlike Wigner functions in A(β, r, L), the Wigner functions for state
in R(B, r, L) have very fast decay, which allowed Aubry et al. (2008) to derive an upper
bound for the quadratic risk for estimating Wρ, ρ ∈ R(B, r, L), using a truncated version
of the estimator (1.11). For a sequence sn →∞, their estimator is

W̃ η,∗
h := W̃ η

h (z)1(‖z‖ ≤ sn).

Then they proved that for a constant C0 > 0,

lim sup
n→∞

sup
ρ∈R(B,r,L)

E

[
‖W̃ η,∗

h −Wρ‖22
]
ϕ−2
n ≤ C0,

where
• ϕ2

n = h3r−10 exp(−2β(2h)−r) if 0 < r < 2, β < B, sn = 1/h and h solution of the
equation 2β(2h)−r + 2γh−2 = logn− (log logn)2.
• ϕ2

n = (logn)(16γ+3β)/(8γ+2β)n−β/(4γ+β) if r = 2, β = B/(1 +
√
B)2, sn = 1/h and

h2 = 2
4γ+β logn+ 1

4γ+β log logn.
More recently, Lounici et al. (2015) established the first sup-norm risk upper bound

over A(β, r, L) with the estimator (1.11), as well as the first minimax lower bounds
for both sup-norm and L2-norm risk over A(β, 2, L); showing in particular that (1.11)
achieve optimal rates over A(β, 2, L) for both the sup-norm and L2-risk. Moreover, they
also made the estimator (1.11) adaptive over all β, L > 0, r ∈ (0, 2], using a Lepski type
procedure (Lepski and Spokoiny, 1997). As their paper is still under revision, we should
not detail more their results.

1.4.4. Bayesian nonparametric approach

To our knowledge, no Bayesian nonparametric method has been proposed to address
the problem of QHT with noisy data, a gap that we try to fill with in this thesis. In
particular, we propose two families of prior distributions over pure states that can be
useful in practice, namelymixtures of coherent-states and random Wilson series. Recalling
that pure states are projection operator onto one-dimensional subspaces of L2(R), the
problem of estimating a pure state reduce to estimating a function ψ ∈ L2(R) with
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‖ψ‖2 = 1, called the wave function, from noisy QHT measurements (Y1, θ1), . . . , (Yn, θn).
We will discuss in chapter 4 how the method can be extended to handle mixed-states
estimation.

The mixture of coherent states prior, as described in the next section, is motivated
by Wolpert et al. (2002), where authors proposed to use mixture priors to address
general inverse problems. Although we implement successfully mixtures of coherent
states in practice, the posterior asymptotic, however, is still challenging today (this will
be discussed more thoroughly at the end of chapter 4). Nevertheless, random Wilson
series (section 1.4.4) may also be useful priors in practice, and an asymptotic study of
this family of prior is made in chapter 4.

Coherent states mixtures

In quantum optics, a coherent state refers to a state of the quantized electromagnetic
field that describes a classical kind of behavior.

Let Txf(y) := f(y−x),Mωf(y) = e2πiωyf(y), denote the translation and modulation
operators, respectively, and g a window function with ‖g‖2 = 1; most of time g is chosen
as g(x) = 2−1/4 exp(−πx2). Mathematically speaking, coherent states are pure states ρψ,
that is projection operators onto ψ ∈ L2(R), described by a wave-function ψ belonging
to {

ψ ∈ L2(R) : ψ = TxMωg (x, ω) ∈ R2
}
.

We suggest a mixture of coherent states as prior distribution on the wave function ψ.
For a random measure Q on R2× [0, 2π], our model may be summarized by the following
hierarchical representation. P ηψ denote the probability distribution having the density of
equation (1.6), with ρ = ρψ.

(Y1, θ1), . . . , (Yn, θn) i.i.d∼ P ηψ , with ψ = ψ̃/‖ψ̃‖2

ψ̃(z) =
∫
R2×[0,2π]

eiφTxMωg(z)Q(dxdωdφ)

Q ∼ Π.

Although this prior is appealing, in particular because all the states prepared in the
lab have a very sparse representations in terms of coherent states, we are unable at this
time to derive posterior contraction rates. However, simulation results given in chapter 4
show that these priors work well in practice.

Random Wilson series

For a, b > 0, g ∈ L2(R), the set of time-frequency shifts G(g; a, b) = {MnTmg : (n,m) ∈
aZ × bZ} is a Gabor frame if there exist positive constants A,B > 0, called the frame
bounds, such that

A‖f‖22 ≤
∑
m,n

|〈f, TmMng〉|2 ≤ B‖f‖22, ∀f ∈ L2(R).

The frame operator Sgf :=
∑
m,n〈f, TmMng〉TmMng is a bounded, positive and invert-

ible mapping of L2(R) onto itself. Consequently, the canonical dual window h := S−1g
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is also in L2(R). Moreover, from Gröchenig (2001, proposition 5.2.1) the canonical dual
frame of G(g; a, b) is G(h; a, b) with frame bounds B−1, A−1, and for every f ∈ L2(R)

f =
∑
m,n

〈f, TmMng〉TmMnh =
∑
m,n

〈f, TmMnh〉TmMng,

with unconditional convergence of the series in L2(R). Gabor expansions are not unique,
which is appealing from a practical perspective, but appeared to be really annoying in
establishing theoretical result. However, based on an idea of Wilson (1987), Daubechies
et al. (1991) proposed a modification of Gabor systems for which the redundancy is
removed, but good time-frequency localization properties are preserved. More precisely,
they constructed a real-valued function ϕ such that for some a, b > 0,

|ϕ(x)| . e−a|x|, |ϕ̂(ω)| . e−b|ω|,

and such that the ϕlm, l ∈ N, m ∈ 1
2Z defined by

ϕlm(x) :=


ϕ(x− 2m) if l = 0,√

2ϕ(x−m) cos(2πlx) if l 6= 0 and 2m+ l is even,√
2ϕ(x−m) sin(2πlx) if l 6= 0 and 2m+ l is odd,

constitute an orthonormal base for L2(R), namely the Wilson bases of exponential decay.
Following Gröchenig (2001, section 8.5), we may rewrite ϕlm in a convenient form for
the sequel, emphasizing the relationship with coherent states and Gabor frames,

ϕlm = clTm(Ml + (−1)2m+lM−l)ϕ, (l,m) ∈ N× 1
2Z,

where c0 := 1/2 and cl := 1/
√

2 for l ≥ 1.
We then consider the following prior distribution Π on the wave function ψ. Let

(ϕlm) be the previously defined orthonormal Wilson base with exponential decay. For
any positive number Z, let ΛZ be the spherical array

ΛZ :=
{

(l,m) ∈ N× 1
2Z : l2 +m2 < Z2

}
.

Also define the simplex ∆Z in the `2 metric as

∆Z :=
{

p = (plm)(l,m)∈ΛZ :
∑

(l,m)∈ΛZ p
2
lm = 1, plm ≥ 0

}
.

Let PZ be a distribution over R+ and draw Z ∼ PZ . Given Z, draw p from a distribution
G(· | Z) over the simplex ∆Z . Independently of p, draw ζ = (ζlm)(l,m)∈ΛZ from a
distribution Pζ(· | Z) over [0, 2π]|ΛZ | and set

ψ :=
∑

(l,m)∈ΛZ

plme
iζlm ϕlm.

Note that (ϕlm) is orthonormal, thus ‖ψ‖22 =
∑

(l,m)∈ΛZ p
2
lm = 1 almost-surely.

This family of prior distribution may be seen as a discretized version of coherent states
mixtures. However, unlike coherent states, Wilson bases have nice analytic properties
that allow to challenge the posterior asymptotic in the model of QHT with noisy data.
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1.4.5. Contribution to QHT

In addition to introduce the two Bayesian nonparametric approaches to the QHT problem
described in the section 1.4.4, in chapter 4 we focus on evaluating posterior rates of
convergence for random Wilson series distribution as prior over the set of pure states —
equivalently the unit sphere of L2(R) — in the statistical model of equation (1.6).

To establish posterior rates of convergence, we need a suitable smoothness class.
We propose to use closed balls in ultra-modulation spaces; which we describe here. To
this aim, we need the following ingredients: the short-time Fourier transform, a class of
windows and a class of weights. For a non-zero window function g ∈ L2(R), the short-time
Fourier transform of a function f ∈ L2(R) with respect to the window g is given by

Vgf(x, ω) := 〈f, MωTxg〉 =
∫
R
f(t)g(t− x)e−2πiωt dt.

We also need a class of analyzing windows g with sufficiently good time-frequency
localization properties. We use the Gelfand-Shilov space S1

1 (R). A function f : Rd → C
belongs to the Gelfand-Shilov space S1

1 (Rd) if f ∈ C∞(Rd) and there exist real constants
h > 0 and k > 0 such that

sup
x∈Rd

|f(x)eh‖x‖| < +∞, sup
ω∈Rd

|f̂(ω)ek‖ω‖| < +∞.

Next, for β > 0, g ∈ S1
1 (R), and r ∈ [0, 1), we consider the exponential weights on

R2 defined by x 7→ exp(β‖x‖r), and we introduce the class of wave-functions

Cg(β, r, L) :=
{
ψ ∈ L2(R) :

∫
R2
|Vgψ(z)| exp(β‖z‖r)dz ≤ L, ‖ψ‖2 = 1

}
.

It is shown in chapter 4 that Cg(β, r, L) is independent of g in the sense that two functions
g1, g2 ∈ S1

1 (R) lead essentially to the same classes of functions.
Let Π denote the random Wilson series distribution over the unit sphere of L2(R).

Assuming ψ0 ∈ Cg(β, r, L), our main theorem state sufficient conditions on PZ , G(· | Z)
and Pζ(· | Z) in the definition of Π to have M > 0 such that

P η,nψ0
Π(‖ψ − ψ0‖2 ≥Mεn | (Y1, θ1), . . . , (Yn, θn))→ 0,

where, for a constant a ≥ 0 depending only on the prior and γ := π(1− η)/(2η),

ε2n = (logn)2a exp
{
−β

(
logn
2γ

)r/2
+O(1)

}
. (1.12)

It is not clear whether or not we can chose PZ , G(· | Z) and Pζ(· | Z) to make these rates
adaptive over (β, r, L) ∈ (0,∞)× [0, 1)× (0,∞). However, we construct in chapter 4 non
adaptive examples where equation (1.12) is achieved with a = 2.
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Some aspects of symmetric Gamma
process mixtures

Résumé

Dans cet article, nous présentons quelques aspects spécifiques aux mélanges par processus Gamma
symétriques pour un usage en régression. Nous proposons un nouvel échantilloneur de Gibbs pour
simuler la distribution a posteriori et nous établissons des vitesses de convergence adaptatives
pour le modèle de régression moyenne avec bruit Gaussien.

Abstract

In this article, we present some specific aspects of symmetric Gamma process mixtures for use in
regression models. We propose a new Gibbs sampler for simulating the posterior and we establish
adaptive posterior rates of convergence related to the Gaussian mean regression problem.

2.1. Introduction

Recently, interest in a Bayesian nonparametric approach to the sparse regression problem
based on mixtures emerged from works of Abramovich et al. (2000), de Jonge and van
Zanten (2010) and Wolpert et al. (2011). The idea is to model the regression function
as

f(·) =
∫
X
K(x; ·)Q(dx), Q ∼ Π∗, (2.1)

where K : X×Rd → R is a jointly measurable kernel function, and Π∗ a prior distribution
on the space of signed measure over the measurable space X . Although the model (2.1) is
popular in density estimation Escobar and West (1994); Müller et al. (1996); Ghosal and
van der Vaart (2007a); Shen et al. (2013); Canale and De Blasi (2017) and for modeling
hazard rates in Bayesian nonparametric survival analysis Lo and Weng (1989); Peccati
and Prünster (2008); De Blasi et al. (2009); Ishwaran and James (2012); Lijoi and Nipoti
(2014), it seems that much less interest has been shown in regression.

Perhaps the little interest for mixture models in regression is due to the lack of variety
in the choice of algorithms available, and in the insufficiency of theoretical posterior
contraction results. To our knowledge, the sole algorithm existing for posterior simulations
is to be found in Wolpert et al. (2011), when the mixing measure Q is a Lévy process.

47
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On the other hand, The only contraction result available is to be found in de Jonge and
van Zanten (2010) for a suitable semiparametric mixing measure.

Indeed, both designing an algorithm or establishing posterior contraction results
heavily depends on the choice of K and Π∗ in equation (2.1); but above all also on the
observation model we consider. This last point makes the study of mixtures in regression
nasty to handle because of the diversity of observation models possible. In this article,
we focus on the situation when Q is a symmetric Gamma process to propose both a new
algorithm for posterior simulations and posterior contraction rates results.

In the first part of the paper, we propose a Gibbs sampler to get samples from
the posterior distribution of symmetric Gamma process mixtures. The algorithm is
sufficiently general to be used in all observation models for which the likelihood function
is available. We begin with some preliminary theoretical result about approximating
symmetric Gamma process mixtures, before stating the general algorithm. Finally, we
make an empirical study of the algorithm, with comparison with the RJMCMC algorithm
of Wolpert et al. (2011).

The second part of the paper is devoted to posterior contraction rates results. We
consider the mean regression model with normal errors of unknown variance, and two
types of mixture priors: location-scale and location-modulation. The latter has never
been studied previously, mainly because it is irrelevant in density estimation models.
However, we show here that it allows to get better rates of convergence than location-scale
mixtures, and thus might be interesting to consider in regression.

2.2. Symmetric Gamma process mixtures

Let (Ω, E ,P) be a probability space and (X ,A) be a measurable space. We call a mapping
Q : Ω×A → R∪{±∞} a signed random measure if ω 7→ Q(ω,A) is a random variable
for each A ∈ A and if A 7→ Q(ω,A) is a signed measure for each ω ∈ Ω.

Symmetric Gamma random measures are infinitely divisible and independently scat-
tered random measures (the terminology Lévy base is also used in Barndorff-Nielsen and
Schmiegel (2004), and Lévy random measure in Wolpert et al. (2011)), that is, random
measures with the property that for each disjoint A1, . . . , Ak ∈ A, the random variables
Q(A1), . . . , Q(Ak) are independent with infinitely divisible distribution. More precisely,
given α, η > 0 and F a probability measure on X , a symmetric Gamma random measure
assigns to all measurable set A ∈ A random variables with distribution SGa(αF (A), η)
(see section 2.A). Existence and uniqueness of symmetric Gamma random measures is
stated in Rajput and Rosinski (1989).

In the sequel, we shall always denote by Π∗ the distribution of a symmetric Gamma
random measure with parameters α, η and F , and we refer αF as the base distribution
of Q ∼ Π∗, and η as the scale parameter.

2.2.1. Location-scale mixtures

Given a measurable mother function g : Rd → R, we define the location-scale kernel
KA(x) := g(A−1x), for all x ∈ Rd and allA ∈ E , where E denote the set of all d×d positive
definite real matrices. Then we consider symmetric Gamma location-scale mixtures of
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the type

f(x;ω) :=
∫
E×Rd

KA(x− µ)Q(dAdµ;ω), ∀x ∈ Rd, (2.2)

where Q : B(E ×Rd)×Ω→ [−∞,∞] is a symmetric Gamma random measure with base
measure αF on E × Rd, and scale parameter η > 0. The precise meaning of the integral
in equation (2.2) is made clear in Rajput and Rosinski (1989).

2.2.2. Location-modulation mixtures

As in the previous section, given a measurable mother function g : Rd → R, we define the
location-modulation kernel Kξ,φ(x) := g(x) cos(

∑d
i=1 ξixi + φ), for all x ∈ Rd, all ξ ∈ Rd

and all φ ∈ [0, π/2]. Then we consider symmetric Gamma location-modulation mixtures
of the type

f(x;ω) :=
∫
Rd×Rd×[0,π/2]

Kξ,φ(x− µ)Q(dξdµdφ;ω), ∀x ∈ Rd, (2.3)

where Q : B(Rd×Rd×[0, π/2])×Ω→ [−∞,∞] is a symmetric Gamma random measure
with base measure αF on Rd×Rd×[0, π/2], and scale parameter η > 0.

2.2.3. Convergence of mixtures

Given a kernel K : X × Rd → R and a symmetric Gamma random measure Q, it is not
clear a priori whether or not the mixture y 7→

∫
K(x; y)Q(dx) converges or not, and in

what sense. According to Rajput and Rosinski (1989) (see also Wolpert et al. (2011)),
y 7→

∫
K(x; y)Q(dx) converges almost-surely at all y for which∫

R×X
(1 ∧ |uK(x; y)|)|u|−1e−|u|ηF (dx) < +∞.

Moreover, from the same references (or also in Kingman (1992)), if M is a complete
normed space equipped with norm ‖·‖, then y 7→

∫
K(x; y)Q(dx) converges almost-surely

in M if ∫
R×X

(1 ∧ |u|‖K(x; ·)‖)|u|−1e−|u|ηF (dx) < +∞.

Since by definition F is a probability measure, we have for instance that the mixtures of
equations (2.2) and (2.3) converges almost surely in L∞ as soon as ‖KA‖∞ < +∞ for
F -almost every A ∈ E , or ‖Kξ,φ‖∞ < +∞ for F -almost every (ξ, φ) ∈ Rd×[0, π/2].

2.3. Simulating the posterior

In this section we propose a Gibbs sampler for exploration of the posterior distribution of a
mixture of kernels by a symmetric Gamma random measure. The sampler is based on the
series representation of the next theorem, inspired from a result about Dirichlet processes
from Favaro et al. (2012), adapted to symmetric Gamma processes. In theorem 2.1, we
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consider M(X ) the space of signed Radon measures on the measurable space (X ,A).
By the Riesz-Markov representation theorem (Rudin, 1974, Chapter 6),M(X ) can be
identified as the dual space of Cc(X ), the space continuous functions with compact support.
That said, we endow M(X ) with the topology Tv of weak-* convergence (sometimes
referred as the topology of vague convergence), that is, a sequence {µn ∈ M(X ) :
n ∈ N} converges to µ ∈M(X ) with respect to the topology Tv, if for all f ∈ Cc(X ),∫

X
f(x) dµn(x)→

∫
X
f(x) dµ(x).

Dealing with prior distributions onM(X ), we shall equipM(X ) with a σ-algebra. Here
it is always considered the Borel σ-algebra ofM(X ) generated by Tv.

Before stating the main theorem of this section, we recall that a sequence of random
variables {Xi ∈ X : 1 ≤ i ≤ n} is a Pólya urn sequence with base distribution αF (·),
where F is a probability distribution on (X ,A) and α > 0, if for all measurable set
A ∈ A,

P (X1 ∈ A) = F (A), P (Xk+1 ∈ A |X1, . . . , Xk) = Fk(A)/Fk(X ), k = 2, . . . , n− 1,

where Fk := αF +
∑k
i=1 δXi . We are now in position to state the main theorem of this

section, which proof is given in section 2.A.
Theorem 2.1 – Let X be a Polish space with Borel σ-algebra, p > 0 be integer, T ∼
Ga(α, η), independently, J1, . . . , Jp

i.i.d∼ SGa(1, 1), and {Xi ∈ X : 1 ≤ i ≤ p} a Pólya
urn sequence with base distribution αF (·), independent of T and of the Ji’s. Define the
random measure, Qp :=

√
T/p

∑p
i=1 Ji δXi. Then Qp

d→ Q, where Q is a symmetric
Gamma random measure with base distribution αF (·) and scale parameter √η.

2.3.1. Convergence of sequences of mixtures

In theorem 2.1, we proved weak convergence of the sequence of approximating measures
(Qp)p≥1 to the symmetric Gamma random measure, but it is not clear that mixtures
of kernels by Qp also converge. The next proposition establish convergence in Lq for
general kernels, with 1 ≤ q < +∞, the proof is similar to the proof of Favaro et al. (2012,
Theorem 2), thus we defer it into section 2.6.2. For any kernel K : X ×Rd → C, and any
(signed) measure Q on (X ,A), we write

f (Q)(y) :=
∫
X
K(x; y)Q(dx).

Proposition 2.1 – If x 7→ K(x; y) is continuous for all x ∈ X , vanishes outside a compact
set, and bounded by a Lebesgue integrable function h, then for any 1 ≤ q < +∞ we have
limp→∞ ‖f (Qp) − f (Q)‖q = 0 almost-surely.

Under supplementary assumptions on K, we can say a little-more about uniform
convergence of the approximating sequence of mixtures. Assuming that y 7→ K(x; y) is
in L1 for all x ∈ X , we denote by (x, u) 7→ K̂(x;u) the L1 Fourier transform on the
second argument of (x, y) 7→ K(x; y).
Proposition 2.2 – Let y 7→ K(x; y) be in L1 for all x ∈ X and K̂ satisfies the assumption
of proposition 2.1. Then limp→∞ ‖f (Qp) − f (Q)‖∞ = 0 almost-surely.
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Proof. We can assume without loss of generality that f (Qp) and f (Q) are defined on the
same probability space (Ω,F ,P). By duality, it is clear that ‖f (Qp)(·;ω)−f (Q)(·;ω)‖∞ ≤∫
Rd |f̂ (Qp)(u, ω) − f̂ (Q)(u;ω)| du, where f̂ denote the L1 Fourier transform of f . Notice
that by assumptions on K, f̂ (Qp) and f̂ (Q) are well-defined for almost all ω ∈ Ω (see
section 2.2.3). Then by Fubini’s theorem

f̂ (Qp)(u;ω) =
∫
Rd

∫
X
K(x; y)Q(dx;ω) e−iuy dy

=
∫
X

∫
Rd
K(x; y) e−iuy dy Q(dx;ω) =

∫
X
K̂(x;u)Q(dx;ω),

and the conclusion follows from proposition 2.1. �

2.3.2. General algorithm

From theorem 2.1, replacing Q by Qp for sufficiently large p, we propose a Pólya urn
Gibbs sampler adapted from algorithm 8 in Neal (2000). In the sequel, we refer to Qp
as the particle approximation of Q with p particles.

Let Y = (Yi)ni=1 be observations coming from a statistical model with likelihood
function L(f |Y ), where f : Rd → R is the regression function on which we put a
symmetric Gamma mixture prior distribution. Let X = (Xi)pi=1 be a Pólya urn sequence,
J := (J1, . . . , Jp) a sequence of i.i.d. SGa(1, 1) random variables, and T ∼ Ga(α, η)
independent of (Xi)pi=1 and J . We introduce the clustering variables C := (C1, . . . , Cp)
such that Ci = k if and only if Xi = X?

k where X? := X?
1 , . . . stands for unique values of

(Xi)pi=1. In the sequel, C−i stands for the vector obtained from removing the coordinate
i to C, and the same definition holds for J mutatis mutandis. Given J,C,X, T and a
measurable kernel K : X × R→ R we construct f as

f(x) =
√
T

p

p∑
i=1

JiK(Xi;x).

We propose the following algorithm. At each iteration, successively sample from :
(1) Ci|C−i, Y,X, J, T , for 1 ≤ i ≤ p. Let nk,i = #1≤l≤n

l 6=i
{Cl = k}, κ(p) the number of

distinct Xk values and κ0 a chosen natural,

Ci
ind∼

κ(p)∑
k=1

nk,i Lk,i(X, J, T |Y ) δk(·) + α

κ0

κ0∑
k=1
Lk+κ(p),i(X, J, T |Y ) δk+κ(p)(·),

where Lk,i(X, J, T |Y ) stands for the likelihood under hypothesis that particle i is al-
located to component k (note that the likelihood evaluation requires the knowledge
of whole distribution F under any allocation hypothesis).

(2) X|C, Y, J, T . Random Walk Metropolis Hastings on parameters.
(3) Ji|J−i,K, Y,X, T , for 1 ≤ i ≤ p. Independent Metropolis Hastings with prior

SGa(1, 1) taken as i.i.d. candidate distribution for Ji. Note that for n → ∞, the
posterior distribution of Ji|J−i, C, Y, Z should be SGa(1, 1), then the number of
particles p may be monitored using the acceptance ratio of the Ji’s.

(4) T |C, Y,X, J . Random Walk Metropolis Hastings on scale parameter.
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2.3.3. Assessing the convergence of the Markov Chain

The previous algorithm produces a Markov Chain whose invariant distribution is (an
approximation of) the posterior distribution of a symmetric Gamma process mixture.
However, if the Markov Chain is initialized in a region of low posterior probability mass,
we may over-sample this region. To avoid such over-sampling, we discard the first n0
samples of the chain using Geweke’s convergence diagnostic (Geweke, 1992).

More precisely, we monitor the convergence of the chain using the log-likelihood
function. We start the algorithm with Markov Chain initialized at random from prior
distribution. Then after n � n0 iterations we compute Geweke’s Z-statistic for the
log-likelihood using the whole chain; if the statistic is outside the 95% confidence interval
we continue to apply the diagnostic after discarding 10%, 20%, 30% and 40% of the chain.
If the Z-statistic is still outside 95% confidence interval, the chain is reported as failed
to converge, and we restart the algorithm from a different initialization point.

Once we have discarded the first n0 samples using Geweke’s test, we run the chain
sufficiently longer to get an Effective Sample Size (ESS) of at least 1000 samples, where
we measure the ESS through the value of the log-likelihood at each iteration of the
Markov Chain. A thinning of the chain is not required in general, however, we found in
practice that a slight thinning improves the efficiency of the sampling.

In fig. 2.1, we draw some examples of temporal evolution of the log-likelihood on a
simple univariate Gaussian mean regression problem. Here and after, we always choose
step sizes in RWMH steps to achieve approximately 30% acceptance rates for each class
of updates. Each subfigure represent 10 simulations with random starting point of the
Markov Chain, distributed according to the prior distribution. We draw each subfigure
varying the parameters liable to influence the mixing time of the chain, notablym and the
number of particles. We observe that the speed at which the chain reach equilibrium is
fast, especially when the number of particles is high. This last remark have to be balanced
with the complexity in time of the algorithm which is O(mnp) for a naive implementation,
and, depending on the nature of the likelihood, can be reduced to O(mp) or O(mp2).

2.4. Examples of simulations

We now turn our attention to simulated examples to illustrate the performance of mixture
models. First, we use mixtures as a prior distribution on the regression function in the
univariate mean regression problem with normal errors. Of course, the interest for mixture
comes when the statistical model is more involved. Hence, in a second time we present
simulation results for the multivariate inverse problem of CT imaging.

2.4.1. Mean regression with normal errors

We present results of our algorithm on several standard test functions from the wavelet re-
gression litterature (see Marron et al., 1998), following the methodology from Antoniadis
et al. (2001) (i.e. Gaussian mean regression with fixed design and unknown variance).
However, it should be noticed that mixtures are not a Bayesian new implementation of
wavelet regression, and are much more general (see for instance the next section). For
each test function, the noise variance is chosen so that the root signal-to-noise ratio is
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Figure 2.1: Time evolution of the log-likelihood for different starting point of the Markov
Chain, chosen according to the prior distribution, and various parameters of the algorithm.
The figure are taken from the test function blip of the section 2.4.1.

equal to 3 (a high noise level) and a simulation run was repeated 100 times with all
simulation parameters constant, excepting the noise which was regenerated. We ran the
algorithm for location-scale mixtures of Gaussians and Symmlet8, with normalN (0.5, 0.3)
distribution as prior distribution on translations, and a mixture of Gamma distributions
for scales (Ga(30, 0.06) and Ga(2, 0.04) with expectation 500 and 50 respectively). In
addition of the core algorithm of section 2.3.2, we also added

• a Gibbs step estimation of the noise variance, with Inverse-Gamma prior distribu-
ton,
• a Ga(2, 0.5) (with expectation 4) prior on α, with sampling of α done through a
Gibbs update according to the method proposed in West (1992),
• a Dirichlet prior on the weights of the mixture of Ga(20, 0.2) and Ga(2, 0.1), with
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sampling of the mixture weights done through Gibbs sampling in a standard way,
• a Ga(5, 10) (with expectation 0.5) prior on T , instead of normally Ga(α, η), which

add more flexibility.
The choice of the mixture distribution as prior on scales may appear surprising, but
we found in practice that using bimodal distribution on scales substantially improve
performance of the algorithm, especially when there are few data available and/or high
noise, because in general both large and small scales components are needed to estimate
the regression function.

We ran the algorithm for n = 128 and n = 1024 data, and the performance is
measured by its average root mean square error, defined as the average of the square
root of the mean squared error n−1∑n

i=1 |f̂(xi)− f0(xi)|2, with f̂ denoting the posterior
mean and f0 the true function. We ran on the same dataset the Translation-Invariant
with hard thresholding algorithm (TI-H) and Symmlet8 wavelets (see Antoniadis et al.
(2001)), which is one of the best performing algorithm on this collection of test functions.
We ran our algorithm with Symmlet8 kernels to make this comparison more relevant,
since the choice of the kernel has major impact on the performance of the algorithm (see
section 2.4.1 below).

Alternatives

In Wolpert et al. (2011), authors develop a reversible-jump MCMC scheme where the
random measure is thresholded, i.e. small jumps are removed, yielding to a compound
Poisson process approximation of the random measure, with almost-surely a finite num-
ber of jumps, allowing numerical computations. We also ran their algorithm with a
thresholding level of ε = 0.05 (which seems to give the best performance), a Ga(15, 1)
prior on η, and all other parameters being exactly the same as described in the previous
section. We use the criteria of section 2.3.3 to stop the running of the chain.

Choosing the number of particles

It is not clear how to choose the number of particles in the algorithm. In theory, the
higher is the better. In practice, however, we recommend choosing the number of particles
according to the acceptance rate of particles weights move in step 3 of the algorithm.
We found in practice that a level of acceptance between 20% and 30% is acceptable, as
illustrated in fig. 2.2.

Simulation results

In tables 2.1 and 2.2 we summarize the results for location-scale mixtures of Gaussians
and Symmlet8 produced by the algorithm of section 2.3.2 and by the RJMCMC algorithm
of Wolpert et al. (2011), with the TI-H method as reference. We used p = 150 particles
for both the datasets with n = 128 covariates and n = 1024 covariates, which is a nice
compromise in terms of performance and computational cost. Regarding our algorithm
and the RJMCMC algorithm, no particular effort was made to determine the value of
the fixed parameters.

Obviously the Gibbs algorithm allow for sampling the full posterior distribution,
pemitting estimation of posterior credible bands, as illustrated in figs. 2.3 and 2.4, where
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Figure 2.2: Mean over 100 runs of RMSE versus acceptance rate in step 3 of the algorithm
for some typical test functions. For each signal the number of covariates is set to 128
and the RNSR is equal to 3.

TI-H Gibbs RJMCMC

Function Symm8 Gauss Symm8 Gauss Symm8

step 0.0589 0.0517 0.0551 0.0550 0.0565
wave 0.0319 0.0323 0.0306 0.0342 0.0370
blip 0.0307 0.0301 0.0316 0.0323 0.0373
blocks 0.0464 0.0343 0.0374 0.0383 0.0418
bumps 0.0285 0.0162 0.0229 0.0224 0.0345
heavisine 0.0257 0.0267 0.0264 0.0280 0.0289
doppler 0.0443 0.0506 0.0418 0.0526 0.0493
angles 0.0293 0.0266 0.0282 0.0274 0.0305
parabolas 0.0344 0.0301 0.0307 0.0312 0.0396
tshsine 0.0255 0.0285 0.0277 0.0291 0.0339
spikes 0.0237 0.0178 0.0207 0.0199 0.0218
corner 0.0177 0.0171 0.0170 0.0182 0.0255

Table 2.1: Summary of root mean squared errors of different algorithms for n = 128
covariates and a root signal to noise ratio of 3.

the credible bands were drawn retaining the 95% samples with the smaller `2-distance
with respect to the posterior mean estimator. Although the algorithm samples an approx-
imated version of the model, it is found that the accuracy of credible bands is quite good
since the true regression function almost never comes outside the sampled 95% bands,
as it is visible in the example of figs. 2.3 and 2.4. Despite the algorithm efficiency, future
work should be done to develop new sampling techniques for regression with mixture
models, mainly to improve computation cost.

Discussion

Obviously, the computation cost for our algorithm is high compared to TI-H, or any
other classical wavelet thresholding method, even considering that it can intrinsically
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Figure 2.3: Example of simulation results using location-scale mixtures of Gaussians.
The root signal-to-noise ratio is equal to 3 for sample size of 1024 design points. The
true regression function is represented with dashes, the mean of the sampled posterior
distribution in blue and sampled 95% credible bands in pink.



57 Some aspects of symmetric Gamma process mixtures

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Step

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Wave

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Blip

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Blocks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Bumps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

HeaviSine

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Doppler

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Angles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Parabolas

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

TShSine

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Spikes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1

Corner

Figure 2.4: Example of simulation results using location-scale mixtures of Symmlet8.
The root signal-to-noise ratio is equal to 3 for sample size of 1024 design points. The
true regression function is represented with dashes, the mean of the sampled posterior
distribution in blue and sampled 95% credible bands in pink.
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TI-H Gibbs RJMCMC

Function Symm8 Gauss Symm8 Gauss Symm8

step 0.0276 0.0268 0.0289 0.0282 0.0300
wave 0.0088 0.0118 0.0108 0.0133 0.0117
blip 0.0148 0.0162 0.0172 0.0180 0.0183
blocks 0.0222 0.0230 0.0241 0.0247 0.0256
bumps 0.0122 0.0132 0.0182 0.0201 0.0232
heavisine 0.0154 0.0134 0.0139 0.0147 0.0147
doppler 0.0180 0.0207 0.0196 0.0261 0.0225
angles 0.0123 0.0120 0.0123 0.0125 0.0128
parabolas 0.0135 0.0124 0.0132 0.0147 0.0145
tshsine 0.0107 0.0109 0.0111 0.0131 0.0120
spikes 0.0110 0.0075 0.0095 0.0095 0.0103
corner 0.0077 0.0075 0.0081 0.0095 0.0085

Table 2.2: Summary of root mean squared errors of different algorithms for n = 1024
covariates and a root signal to noise ratio of 3.

compute credible bands. But, as mentioned in Antoniadis et al. (2001), the choice of the
kernel is crucial to the performance of estimators. The attractiveness of mixtures then
comes because we are not restricted to location-scale or location-modulation kernels, and
almost any function is acceptable as a kernel, which is not the case for most regression
methods. Moreover, there is no requirements on how the data are spread, which makes
the method interesting in inverse problems, such as in the next section.

2.4.2. Multivariate inverse problem example

Many medical imaging modalities, such as X-ray computed tomography imaging (CT),
can be described mathematically as collecting data in a Radon transform domain. The
process of inverting the Radon transform to form an image can be unstable when the
data collected contain noise, so that the inversion needs to be regularized in some way.
Here we model the image of interest as a measurable function f : R2 → R, and we
propose to use a location-scale mixtures of Gaussians to regularize the inversion of the
Radon transform.

More precisely, the Radon transform Rf : R+× [0, π]→ R of f is such that Rf (r, θ) =∫+∞
−∞ f(r cos θ−t sin θ, r sin θ+cos θ) dt. Then we consider the following model. Let n,m ≥

1. Assuming that the image is supported on [−1, 1]2 we let r1, . . . , rn equidistributed in
[−
√

2,
√

2] and θ1, . . . , θm equidistributed in [0, π]. Then,

Ynm ∼ N (Rf (rn, θm), σ2) ∀n,m
f ∼ Π,

where Π is a symmetric Gamma process location-scale mixture with base measure αFA×
Fµ on E×R2,α > 0, and scale parameter η > 0. In the sequel, we use a normal distribution
with mean zero and covariance matrix diag(τ, τ) as distribution for Fµ. Regarding FA,
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the choice is more delicate; we choose a prior distribution over the set of shearlet-type
matrices of the form (

1 s
0 1

)(
a 0
0
√
a

)
,

where we set a N (1, σ2
a) distribution over the coefficient a and N (0, σ2

s) over the coeffi-
cient s. This type of prior distribution for FA is particularly convenient for capturing
anisotropic features such as edges in images (Eas, 2009).

We ran our algorithm for n = 256 and m = 128 (32768 observations, a small amount),
using the Shepp and Logan phantom as original image (Shepp and Logan, 1974). The
variance of the noise is σ2 = 0.1, whereas the image take value between 0 and 2. Both the
original image and the reconstruction are visible in fig. 2.5. Finally, we should mention
that the choice of the Gaussian kernel for the mixture is convenient since it allows to
compute the likelihood analytically. However, from a practical side, a full implementation
of the algorithm with the intention of reconstructing CT images may benefit from using
a different kernel.

Figure 2.5: Simulation of X-ray computed tomography imaging using symmetric Gamma
process location-scale mixture of Gaussians. On the left: the original image. On the right:
the reconstructed image from 32768 observations of the Radon transform of the original
image in a Gaussian noise.

2.5. Rates of convergence

In this section, we investigate posterior convergence rates in fixed design Gaussian
regression for both symmetric Gamma location-scale mixtures and symmetric Gamma
location-modulation mixtures.

2.5.1. Notations

In the sequel we use repeatedly the following notations.

• The conventional multi-index notation, for all α = (α1, . . . , αd) ∈ Nd and all z =
(z1, . . . , zd) ∈ Rd we write |α| := α1+· · ·+αd, α! := α1! . . . αd!, and zα := zα1

1 . . . zαdd .
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Moreover, for all f : Rd → R with continuous k-th order partial derivatives at
x ∈ Rd we write

Dαf(x) := ∂|α|f

∂zα1
1 . . . ∂zαdn

(x), |α| ≤ k.

• Let Ω be an open subset of Rd and Ω be the closure of Ω. For any β > 0, we define
Cβ(Ω), the Hölder space on Ω, as the set of all functions on Ω such that ‖f‖Cβ :=
max|α|≤k supx∈Ω |Dαf(x)| + max|α|=k supx 6=y∈Ω |Dαf(x) − Dαf(y)|/|x − y|β−k is
finite, where k is the largest integer strictly smaller than β.
• We denote by | · |d the standard euclidean norm on Rd, and, for any x, y ∈ Rd, xy is

the standard inner product. For any d×d matrix A with real eigenvalues, we denote
λ1(A) ≥ · · · ≥ λd(A) its eigenvalues in decreasing order, ‖A‖ := supx 6=0 |Ax|d/|x|d
its spectral norm, and ‖A‖max := maxi,j |Aij |, where Aij are the entries of A.
• Given a signed measure µ on a measurable space (X ,A), we let µ+ and µ− denote

respectively the positive and negative part of the Jordan decomposition of µ. Also,
|µ| = µ+ + µ− denote the total variation measure of µ.
• Inequalities up to a generic constant are denoted by the symbols . and &.

2.5.2. The model

We consider the problem of a random response Y corresponding to a deterministic
covariate vector x taking values in [−S, S]d for some S > 0. We aim at estimating the
regression function f : [−S, S]d → R such that f(xi) = EYi, based on independent
observations of Y . More precisely, the nonparametric regression model we consider is the
following,

Yi|εi = f(xi) + εi, i = 1, . . . , n,

ε1, . . . , εn|σ2 i.i.d∼ N (0, σ2), independently of (f, σ),
(f, σ) ∼ Π,

with Π the distribution on an abstract space Θ, given by σ ∼ P σ independently of f
drawn from the distribution of a symmetric Gamma process mixture.

2.5.3. A general result

Let Pθ,i denote the distribution of of Yi under the parameter θ = (f, σ), Pnθ the joint
distribution of (Y1, . . . , Yn), P∞θ the distribution of the infinite sequence (Y1, . . . , Y∞), and
‖f‖22,n := n−1∑n

i=1 |f(xi)|2. Let define the distance ρn(θ0, θ1) := ‖f − f0‖2,n + | log σ0 −
log σ1|. For the regression method based on Π, we say that its posterior convergence rate
at θ0 in the metric ρn is εn if there is M < +∞ such that

lim
n→∞

Π ({θ ∈ Θ : ρn(θ, θ0) > Mεn}|Y1, . . . , Yn) = 0 P∞θ0 -a.s. (2.4)

Most of the approach to rates of convergence rely on idea coming from density
mixtures models (Ghosal et al., 2000; Shen et al., 2013; Canale and De Blasi, 2017). Indeed,
we prove that equation (2.4) hold by verifying a set of sufficient conditions established
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in theorem 2.2. For ε > 0 and any subset A of a metric space equipped with metric ρ, let
N(ε, A, ρ) denote the ε-covering number of A, i.e. the smallest number of balls of radius ε
needed to cover A. Also, for all i = 1, . . . , n, define Ki(θ0, θ) :=

∫
(log dPθ0,i/dPθ,i) dPθ0,i

and V2,i(θ0, θ) :=
∫

(log dPθ0,i/dPθ,i −Ki(θ0, θ))2 dPθ0,i, and let

Kn(θ0, ε) :=
{
θ : 1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1
n

n∑
i=1

V2,i(θ0, θ) ≤ ε2
}
,

be the Kullback-Leibler ball of size ε around θ0 := (f0, σ0). Theorem 2.2 is the analogue
of theorem 5 in Ghosal and van der Vaart (2007b) for the Gaussian mean regression with
fixed design ; the major difference reside on constructing suitable test functions, and
extra cares have to taken regarding the fact that observations are not i.i.d. The proof of
theorem 2.2 is given in section 2.7.

Theorem 2.2 – Let K := 3(32∨ 4σ2
0)−1, and εn → 0 with nε2n →∞. Suppose that Θn ⊂ Θ

is such that Π(Θc
n) . e−3nε2n for n large enough. Assume that Θn ⊆ ∪jΘn,j is such that

for some M > 0,

limn
∑
j

√
N(Mεn,Θn,j , ρn)

√
Π(Θn,j) e−(KM2−2)nε2n = 0,

Π(Kn(θ0, εn)) & e−nε2n .

Then Π(θ ∈ Θ : ρn(θ0, θ) > 12Mεn|Y1, . . . , Yn)→ 0 in Pnθ0
-probability.

2.5.4. Supplementary assumptions

In order to derive rates of convergence (and only for this) we make supplementary
assumptions on the choice of the mother function g and of the base measure αF .

Location-scale mixtures

We restrict our discussion to priors for which the following conditions are verified. We
assume that

• g : Rd → R is a non zero Schwartz function such that |g(x)| . exp(−C0|x|τd) for
some C0, τ > 0. We assume that there is 0 ≤ γ < 1 such that sup|α|=k |Dαg(0)| .
exp(γk log k) for all k large enough ; this last assumption is not obvious, it is for
example met with γ = 1/2 if g is a multivariate Gaussian (see proposition 2.14 in
appendix).
• αF := αFA×Fµ, where FA is a probability measure on Es, the space of symmetric

positive definite d× d reals matrices, and Fµ a probability measure on [−2S, 2S]d.
We also assume that there exist positive constants κ > 0, κ∗ > d(d− 1), a1, . . . , a5,
b1, . . . , b6, C1, . . . , C3 such that for any 0 < s1 ≤ · · · ≤ sd, any z0 ∈ [−2S, 2S]d, all
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t ∈ (0, 1) and all x > 0 sufficiently large

Fµ(z : |z − z0| ≤ t) ≥ b1ta1 , (2.5)
FA(A : λd(A−1) ≥ x) ≤ b2 exp(−C2x

a2), (2.6)
FA(A : λ1(A−1) < 1/x) ≤ b3x−a3 , (2.7)

FA
(
A : sj < λj(A−1) < sj(1 + t), 1 ≤ j ≤ d

)
≥ b4sa4

d t
a5 exp(−C3s

κ/2
d ), (2.8)

FA(A : λ1(A)/λd(A) > x) ≤ b6x−κ
∗
. (2.9)

Equations (2.6) to (2.8) are classical and are met for instance with κ = 2 if FA is the
inverse-Wishart distribution (Shen et al., 2013, lemma 1). For a thorough discussion
about equation (2.9) we refer to Canale and De Blasi (2017) and references therein.
• P σ is a probability distribution on (0,∞). We also assume that there are positive
constants a7, a8, a9, b7, b8, C8, and b9 eventually depending on σ0 > 0, such that
for all t ∈ (0, 1)

P σ(σ : σ > x) ≤ b7x−a7 , (2.10)
P σ(σ : σ ≤ 1/x) ≤ b8 exp(−C8x

a8), (2.11)
P σ (σ : σ0 ≤ σ ≤ σ0(1 + t)) ≥ b9ta9 . (2.12)

Location-modulation mixtures

We restrict our discussion to priors for which the following conditions are verified. We
assume that

• g : Rd → R is a non zero Schwartz function such that g(x) ≥ 0 for all x ∈ Rd
and |g(x)| . exp(−C0|x|τd) for some C0 > 0 and τ > 1. We assume that there is
a set E ⊆ [−π, π]d with strictly positive Lebesgue measure and a constant C > 0
such that g(x) ≥ C on E. We also assume that there is 0 ≤ γ < 1 such that
sup|α|=k |Dαg(0)| . exp(γk log k) for all k large enough. As in the previous section,
these assumptions are met for the multivariate Gaussian withE = [−π, π]d, γ = 1/2
and τ = 2 (see proposition 2.14 in appendix).
• αF := αFξ × Fµ × Fφ, where Fξ is a probability measure on Rd, Fµ a probability

measure on [−2S, 2S]d, and Fφ a probability measure on [0, π/2]. For all t ∈ (0, 1)
and all z0 ∈ [−2S, 2S]d we assume that Fµ satisfies equation (2.5). We assume that
there are positive constants a10, b10 such that for all t ∈ (0, 1) and all φ0 ∈ [0, π/2]
we have that Fφ(φ : |φ − φ0| ≤ t) ≥ b10t

a10 . We also assume that there exist
positive constants η > (d − 1)/2, a12, a13, b11, b12 such that for all t ∈ (0, 1), all
ξ0 ∈ Rd and for all x > 0

Fξ(ξ : |ξ|d ≥ x) ≤ b11(1 + x)−2(η+1) (2.13)
Fξ(ξ : |ξ − ξ0|d ≤ t) ≥ b12|ξ0|−a12

d ta13 . (2.14)

• P σ satisfies the same assumptions of equations (2.10) to (2.12).
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2.5.5. Results

Theorem 2.2 serves as a starting point for proving rates of contraction for symmetric
Gamma process location-scale and location-modulation mixtures in the model of sec-
tion 2.5.2. The proofs of the next theorems resemble to de Jonge and van Zanten (2010),
but, they consider only a location mixture with locations taken on a lattice, allowing for
a very specific construction of the sets Θn. Here, we do not assume that locations are
spread over a lattice, which makes the construction of Θn more involved. Our construc-
tion is inspired from Shen et al. (2013) for Dirichlet processes mixtures, but adapted
to symmetric Gamma processes (indeed, the same construction should work for many
Lévy processes). Also, theorem 2.2 allows for partitioning Θn onto slices Θn,j , a step
which is unnecessary for location mixtures (de Jonge and van Zanten, 2010; Shen et al.,
2013), but yields to better rates and weaker assumptions on the prior when dealing with
location-scale (Canale and De Blasi, 2017) and location-modulation mixtures.

Regarding the model of section 2.5.2, with deterministic covariates x1, . . . , xn arbi-
trary spread in [−S, S]d, we have the following theorem for location-scale mixtures. We
notice that unlike de Jonge and van Zanten (2010), we do not assume that the covariates
are spread on a strictly smaller set than [−S, S]d, i.e. the support of the covariates and
the domain of the regression function are the same.

Theorem 2.3 – Let ζ = 1 ∨ 2/(τ − γτ). Suppose that f0 ∈ Cβ[−S, S]d for some S > 0.
Under the assumptions of section 2.5.4, the equation (2.4) holds for the location-scale
prior with ε2n = n−2β/(2β+d+κ/2)(logn)2βd(ζ−1)/(2β+d+κ/2).

Theorem 2.3 gives a rate of contraction analogous to the rates found in Canale and
De Blasi (2017), that is to say, suboptimal with respect to the frequentist minimax rate
of convergence. Indeed, if one use an Inverse-Wishart distribution for FA, then κ = 2;
we can achieve κ = 1 with a distribution supported on diagonal matrices which assign
square of inverse gamma random variables to non-null element of the matrix. Obviously,
the choice of FA matters since it has a direct influence on the rates of contraction of the
posterior. Also notice that the rates depends on κ/2, which is slightly better than the
κ dependency found in Canale and De Blasi (2017). The reason is relatively artificial,
since this follows from the fact that we put a prior on dilation matrices of the mixture,
whereas they set a prior on square of dilation matrices (covariance matrices).

Location-modulation mixtures were never considered before, because they are not
satisfactory for estimating a density. In comparison with location-scale mixtures, the
major difference in proving contraction rates rely on approximating sufficiently well the
true regression function. We use a new approximating scheme, based on standard of
Fourier series analysis, yielding the following theorem.

Theorem 2.4 – Suppose that f0 ∈ Cβ[−S, S]d for some S > 0. Under the assumptions
of section 2.5.4, the equation (2.4) holds for the location-modulation prior with ε2n =
n−2β/(2β+d)(logn)2β(2d+1)/(2β+d).

Although it was not surprising that location-scale mixtures yield suboptimal rates
of convergence, we would have expected that location-modulation mixtures could be
suboptimal too, which is not the case (up to a power of logn factor). Moreover, location-
modulation mixtures seem less stiff than location mixtures (Shen et al., 2013), hence
they might be interesting to consider in regression.
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Finally, it should be mentioned that all the rates here are adaptive with respect
to β > 0; that is location-scale and location-modulation mixtures achieve these rates
simultaneously for all β > 0.

2.6. Proofs of section 2.3

2.6.1. Preliminaries on convergence of signed random measures

It is well known for random (non-negative) measures that it is enough to show weak
convergence of finite dimensional distributions on a semiring of bounded sets generating
A to prove vague convergence of the distribution, see for instance Kallenberg (1983,
Theorem 4.2) or Daley and Vere-Jones (2007, Theorem 11.1.VII). This fact remains true
for random signed measures, but not in an obvious way. Indeed, it is well known that
the vague topology is not metrizable on M(X ), even if X is Polish (for example, see
Remark 1.2 in Del Barrio et al. (2007)), making the vague topology nasty to handle on
M(X ). In particular, it is not as direct as in the case of non-negative measures to prove
that the σ-algebra generated by the sets {{µ ∈M(X ) : µ(B) ∈ A} : A ∈ B(R), B ∈ R},
where R is a ring of bounded sets generating A, coincides with the Borel σ-algebra of
M(X ), given the topology of vague convergence. However, once this last fact is proved,
everything in the proof of Kallenberg (1983, Theorem 4.2) remains valid for signed
random measures.

Surprisingly, there is not so much literature on vague convergence of signed random
measures, and as our knowledge, the only reference available on this subject is Jacob
and Oliveira (1995). We state here the result of interest for us, with only a sketch of the
proof, as the details can be found in the original article.
Lemma 2.1 – Let R ⊂ A denote the ring of bounded Borel sets of X . Then the Borel
σ-algebra ofM(X ) (given the weak-* topology) coincides with the σ-algebra generated by
the sets {{µ ∈M : µ(B) ∈ A} : A ∈ B(R), B ∈ R} and also {{µ ∈M : µ(f) ∈ A} :
A ∈ B(R), f ∈ Cc(X )}.

Sketch of proof. First, we shall prove that S := σ{{µ ∈ M : µ(B) ∈ A} : A ∈
B(R), B ∈ R} = σ{{µ ∈ M : µ(f) ∈ A} : A ∈ B(R), f ∈ Cc(X )}. Using the
Hahn-Jordan decomposition of signed measures, this is a straightforward adaptation of
Kallenberg (1983, Lemma 1.4).

Also, the argument of Kallenberg (1983, Lemma 4.1) for proving S ⊂ B(M) remains
valid here, but the converse inclusion is not as direct. LetM+ ⊂M denote the cone of
non-negative measures, and endowM+ with the topology T +

v of vague convergence (i.e.
µn converges to µ if µn(f)→ µ(f) for any f ∈ C+

c ) and corresponding Borel σ-algebra
B(M+). We denote S+ the trace of S overM+. Hence, it suffices to prove that
(1) S+ = B(M+),
(2) P : (M,S)→ (M+ ×M+,S+ × S+), such that P (µ) := (µ+, µ−), is measurable,
(3) R : (M+ ×M+,B(M+)× B(M+))→ (M,B(M)), such that R(µ, ν) := µ− ν, is

measurable.
These 3 conditions imply that R ◦ P : (M,S) → (M,B(M)) is S/B(M)-measurable,
and since R ◦ P is just the identity mapping, this implies B(M) ⊂ S, as required. �
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2.6.2. Proofs

Proof of theorem 2.1. In the whole proof, we use the Pochhammer symbols x(n) and (x)n
for respectively the nth power of the increasing factorial of x, and the nth power of the
decreasing factorial of x. Once we took care of subtlety coming with section 2.6.1, the
rest of the proof is identical to the proof of Proposition A.1 in Favaro et al. (2012), which
we resume here for the sake of completeness. According to section 2.6.1 it is enough to
check that

(Qp(A1), . . . , Qp(Ak))
d−→ (Q(A1), . . . , Q(Ak)), (2.15)

for any collection of disjoints bounded measurable sets A1, . . . , Ak ∈ A, where Q is a
symmetric Gamma random measure with parameters αF (·), η. Oviously, for any vector
(v1, . . . , vk) ∈ Rk the random variable v1Q(A1) + · · ·+ vkQ(Ak) has symmetric Gamma
distribution, and hence is determined by its moments (because of proposition 2.10), by
Billingsley (2008, Theorem 30.2) the equation (2.15) holds if

E [Qp(A1)r1 . . . Qp(Ak)rk ] −→ E [Q(A1)r1 . . . Q(Ak)rk ] (2.16)

holds for any disjoints bounded measurable sets A1, . . . , Ak ∈ A and any positive integers
r1, . . . , rk. From now, for all collection of measurable sets A1, . . . , Ak ∈ A, we set Ac :=
X\ ∪ki=1 Ai. We recall that if {Xi ∈ X : i ≤ 1 ≤ p} is a Pólya urn sequence with base
distribution αF (·), and A1, . . . , Ak ∈ A are disjoints, then

P (#{i : Xi ∈ A1} = j1, . . . ,#{i : Xi ∈ Ak} = jk)

=
(

p

j1 . . . jk

)
(αF (A1))(j1) . . . (αF (Ak))(jk)(αF (Ac))(p−

∑k

i=1 ji)

(p−
∑k
i=1 ji)!α(p)

,

where (j1, . . . , jk) ∈ Ek,p, with Ek,p := {(j1, . . . , jk) ∈ {0, . . . , p}k :
∑k
i=1 ji ≤ p}. It

is straightforward to show that both the lhs and the rhs of equation (2.16) are null
whenever one of the ri’s is odd. Therefore we shall only consider equation (2.16) for even
exponents. We deduce from proposition 2.10 that for any disjoints bounded measurable
sets A1, . . . , Ak ∈ A and any positive integers r1, . . . , rk,

E
[
Qp(A1)2r1 . . . Qp(Ak)2rk

]
= α(r1+···+rk)

(
k∏
i=1

(2ri)!/ri!
(√η)2ripri

)

×
∑

(j1,...,jk)∈Ek,p

(
p

j1 . . . jk

)
(αF (A1))(j1) . . . (αF (Ak))(jk)(αF (Ac))(p−

∑k

i=1 ji)

(p−
∑k
i=1 ji)!α(p)

× (j1)(r1) . . . (jk)(rk).
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Introducing s(·, ·) and S(·, ·) are the Stirling numbers of the first and second kind, we
can mimic Favaro et al. (2012, Appendix A.1) to find that

E
[
Qp(A1)2r1 . . . Qp(Ak)2rk

]
= α(r1+···+rk)

(
k∏
i=1

(2ri)!/ri!
(√η)2ripri

)

×
r1∑

m1=0
|s(r1,m1)|

m1∑
s1=0

S(m1, s1) · · ·
rk∑

mk=0
|s(rk,mk)|

mk∑
sk=0

S(mk, sk)

× (αF (A1))(s1) . . . (αF (Ak))sk
α(s1+···+sk) (p)s1+···+sk .

Therefore, we conclude that,

lim
p→∞

E
[
Qp(A1)2r1 . . . Qp(Ak)2rk

]
=

k∏
i=1

(
(2ri)!
ri!

(αF (Ai))(ri)

(√η)2ri

)
. �

Proof of proposition 2.1. We can assume that all the Qp and Q are defined on the same
probability space (Ω,F ,P). The proof is an adaption of Favaro et al. (2012, Theorem 2).
We just have to take care that here, we provedQp → Q vaguely in theorem 2.1, which does
not necessarily imply that f (Qp)(x)→ f (Q)(x) pointwise. But by assumption, x 7→ K(x; y)
is continuous and vanishes outside a compact set, and it is easily seen that the sequence of
total mass |Q|(·;ω) is almost-surely bounded, then by Bauer (2001, Theorem 30.6) (which
remains valid for signed measures), we have f (Qp)(x)→ f (Q)(x) pointwise, almost-surely.
The end of the proof is identical to Favaro et al. (2012, Theorem 2) for convergence in
L1, and extension to Lq with 1 ≤ q < +∞ is straightforward. �

2.7. Proofs of section 2.5.3

Proof of theorem 2.2. The proof is similar to Ghosal and van der Vaart (2007b, theo-
rem 5). The event An that

∫ ∏n
i=1

dPθ,i
dPθ0,i

(Yi) dΠ(θ) ≥ e−2nε2n/2 satisfies Pnθ0
(Acn) → 0 by

Lemma 10 in Ghosal and van der Vaart (2007a) and assumptions on Π. Therefore,

Pnθ0Π(Θc
n|Y1, . . . , Yn) ≤ Pnθ0 [Π(Θc

n|Y1, . . . , Yn)1An ] + Pnθ0(Acn)

≤ e2nε2nPnθ0

∫
Θcn

n∏
i=1

dPθ,i
dPθ0,i

(Yi) dΠ(θ) + Pnθ0(Acn)

≤ e2nε2nΠ(Θc
n) + Pnθ0(Acn)→ 0,

where the last lines follows by Fubini’s theorem. For 0 < αj ≤ 1, and n large enough,
the lemma 2.2 states the existence of tests functions ψn,j such that

Pnθ0ψn,j ≤ 2αjN(Mεn,Θn,j , ρn) e−KM2nε2n , Pnθ (1− ψn,j) ≤ α−1
j e−KM2nε2n ,
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for all θ ∈ Θn,j with ρn(θ, θ0) > 12Mεn. Letting Uε := {θ ∈ Θ : ρn(θ0, θ) > 12Mεn},

Pnθ0 [Π(Uε ∩Θn,j |Y1, . . . , Yn)1An ]

≤ Pnθ0ψn,j + Pnθ0

(
(1− ψn,j)

∫
Uε∩Θn,j

∏n
i=1

dPθ,i
dPθ0,i

(Yi) dΠ(θ)
)

e2nε2n

≤ Pnθ0ψn,j + sup
Uε∩Θn,j

Pnθ (1− ψn,j)Π(Θn,j) e2nε2n

≤ 2αjN(Mεn,Θn,j , ρn) e−KM2nε2n +α−1
j Π(Θn,j) e−(KM2−2)nε2n ,

where we used Fubini’s theorem again. Put αj =
√

Π(Θn,j)/N(Mεn,Θn,j , ρn) (notice
that αj ≤ 1) and sum over j to obtain the result in view of the last equation. �

2.7.1. Existence of tests

Here we construct the test functions required in the proof of theorem 2.2. We proceed
in two steps. First, we construct tests for testing the hypothesis that θ = θ0 against θ
belongs to a ball of radius ε/12 centered at θ1 with ρn(θ0, θ1) > ε ; then in lemma 2.2
we construct the tests used in the proof of theorem 2.2.

Let θ0 = (f0, σ0), θ1 = (f1, σ1), θ10 = (f1, σ0), δ =
√
ε2 + (108/n) log(1/α), and

define,

An :=
{
y ∈ Rn :

n∑
i=1

log dPθ0,i

dPθ10,i
(yi) < −

nε2

96σ2
0

+ 2 logα
}
,

Bc
n :=

{
y ∈ Rn : n(1− δ/3) ≤

n∑
i=1

(
yi − f0(xi)

σ0

)2
≤ n(1 + δ/3)

}
.

Then we construct the sequence (φn)n≥0 as

φn(Y1, . . . , Yn)
:= 1An(Y1, . . . , Yn) + 1Bn(Y1, . . . , Yn)− 1An(Y1, . . . , Yn)1Bn(Y1, . . . , Yn).

Proposition 2.3 – Let K = 3(32 ∨ 4σ2
0)−1. The tests φn defined above satisfy Pnθ0

φn ≤
e−Knε2/144 and supθ∈Θ : ρn(θ,θ1)<ε/12 P

n
θ (1 − φn) ≤ e−Knε2/144 for all θ1 ∈ Θ such that

ρn(θ0, θ1) > ε and all 0 < ε ≤ 1.

Proof. Type I error of φn. It is clear that Pnθ0
φn ≤ Pnθ0

(An) + Pnθ0
(Bn). Moreover, by

proposition 4 in Birgé (2006), we have Pnθ0
(An) ≤ α e−nε2/(192σ2

0), and regarding the proof
of lemma 7 in Choi and Schervish (2007), the bound Pnθ0

(Bn) ≤ 2 e−nδ2/108 = 2α e−nε2/108

holds for n sufficiently large.
Type II error of φn. Let θ = (f, σ) be such that ρn(θ, θ1) ≤ ε/12. Clearly, Pnθ (1−φn) =

Pnθ (1 − 1An)(1 − 1Bn) ≤ Pnθ (Acn) ∧ Pnθ (Bc
n). We should consider two situations, either

| log σ0 − log σ1| ≤ ε/2, or | log σ0 − log σ1| > ε/2.
• If | log σ0 − log σ1| ≤ ε/2, then ρn(θ0, θ1) > ε implies ‖f0 − f1‖2,n > ε/2, and for
all θ with ρn(θ, θ1) ≤ ε/12, it is clear that ‖f − f1‖2,n ≤ ε/12. It follows from
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proposition 4 in Birgé (2006) that

Pnθ (Acn) ≤ exp
[
−
n‖f0 − f1‖22,n − nε2/8 + 24σ2

0 logα
24σ2

0

]
≤ 1
α

exp
[
− nε2

64σ2
0

]
.

• If | log σ0 − log σ1| > ε/2, then ρn(θ, θ1) ≤ ε/12 implies | log σ − log σ0| > 5ε/12.
We should again subdivise this case, considering either σ/σ0 ≥ 1 or not. For both
cases we mimick and adapt the proof of lemma 7 in Choi and Schervish (2007).
– If σ/σ0 ≥ 1, because | log σ − log σ0| > ε/3 we have σ > σ0 eε/3, and thus
σ > (1 + ε/3)σ0 for any ε > 0. Let W ∼ χ2

n and let W ′ have a noncen-
tral χ2 distribution with n degrees of freedom and noncentrality parameter∑n
i=1(f(xi)− f0(xi))2. Then,

Pnθ (Bc
n) ≤ Pnθ

(
n∑
i=1

(
Yi − f0(xi)

σ0

)2
≤ n

(
1 + δ

3

))

= P
(
W ′ ≤ nσ

2
0
σ2

(
1 + δ

3

))
≤ P

(
W ≤ nσ

2
0
σ2

(
1 + δ

3

))
.

But whenever 0 < α ≤ 2, we have

σ2
0
σ2

(
1 + δ

3

)
≤ 1 + δ/3

(1 + ε/3)2 ≤
1

1 + ε/3 + (108/n) log(1/α)
6ε(1 + ε/3)2 .

Therefore, by Markov’s inequality we get for all t < 1/2

Pnθ (Bc
n) ≤ exp

{
−t108 log(1/α)

6ε(1 + ε/3)2

}
exp

{
− nt

1 + ε/3

}
(1− 2t)−n/2.

Choosing t = −ε/18 leads to

Pnθ (Bc
n) ≤ exp

{ log(1/α)
(1 + ε/3)2

}
exp

{
n

2

(
ε/9

1 + ε/3 − log(1 + ε/9)
)}

≤ 1
α

exp
{
−7nε2

648

}
≤ 1
α

exp
{
−nε

2

93

}
,

because we have 0 < ε ≤ 1. This concludes the proof when σ/σ0 ≥ 1.
– On the other direction, σ/σ0 < 1 and | log σ − log σ0| > 5ε/12 imply that
σ < (1 − ε/3)σ0 for any 0 < ε ≤ 1. Using the same strategy as in the
previous item it is possible to show that the bound Pnθ (Bc

n) ≤ (1/α) e−nε2/1536

holds. �

Lemma 2.2 – Let Θn ⊂ Θ and K := 3(32 ∨ 4σ2
0)−1. Then for any 0 < α ≤ 1 there exists

a collection of tests functions (ψn)n≥1 such that for any 0 < ε ≤ 1/12 and any n ≥ 1

Pnθ0ψn ≤ 2αN(ε,Θn, ρn) e−Knε2 , sup
θ∈Θn : ρn(θ,θ0)>12ε

Pnθ (1− ψn) ≤ α−1e−Knε
2
.
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Proof. Let N ≡ N(ε/12,Θn, ρn) denote the number of balls of radius ε/12 needed to
cover Θn. Let (B1, . . . , BN ) denote the corresponding covering and (ζ1, . . . , ζN ) denote
the centers of (B1, . . . , BN ). Now let J be the index set of balls Bj with ρn(θ0, ζj) > ε.
Using proposition 2.3 for 0 < ε ≤ 1 and for any ball Bj with j ∈ J , we can build a test
function φn,j satisfying

Pnθ0φn,j ≤ 2α e−Knε2/144, sup
θ∈Bj

Pnθ (1− φn,j) ≤ α−1 e−Knε2/144,

Let ψn := maxj∈J φn,j . Then Pnθ0
ψn ≤

∑
j∈J P

n
θ0
φn,j ≤ 2αN(ε/12,Θn, ρn) e−Knε2/144 and

also Pnθ (1 − ψn) ≤ minj∈J supθ′∈Bj P
n
θ′(1 − φn,j) ≤ α−1 e−Knε2/144 for any θ ∈ Θn with

ρn(θ, θ0) > ε. �

2.8. Proof of theorem 2.3

We prove theorem 2.3 by verifying the set of sufficient conditions established in theo-
rem 2.2.

2.8.1. Sieve construction

For constants H,M > 0 to be determined later, we define the sets

Dn :=
{
A ∈ Es : n−1/a2 ≤ λi(A) ≤ n−1/a2(1 +Mεn/n)n2

, i = 1, . . . , d
}
,

Θn :=

(f, σ) :

n−2/a8 < σ2 ≤ n−2/a8(1 +Mεn)n, f(x) =
∫
KA(x− µ)Q(dAdµ),

Q =
∑∞
i=1 uiδAi,µi , suppQ = Es × [−2S, 2S]d,

∑∞
i=1 |ui| ≤ n,

#{i : |ui| > n−1, Ai ∈ Dn} ≤ Hnε2n/ logn,∑∞
i=1 |ui|1{Ai /∈ Dn} ≤Mεn,

∑∞
i=1 |ui|1{|ui| ≤ n−1} ≤Mεn

.
In the sequel, we assume without loss of generality that the jumps of Q in the

definition of Θn are ordered so that there is no jump with |ui| > n−1 and Ai ∈ Dn when
i > Hnε2n/ logn. Moreover, we consider the following partition of Θn. Let Hn the largest
integer smaller than Hnε2n/ logn. Then for any j = (j1, . . . , jHn) ∈ {1, 2, . . .}Hn , inspired
by Canale and De Blasi (2017, theorem 2) we define the slices

Θn,j :=
{

(f, σ) ∈ Θn : n2ji−1
< λ1(Ai)/λd(Ai) ≤ n2ji ∀i ≤ Hn

}
.

Lemma 2.3 – Assume that there is 0 < γ1 < 1 such that ε2n ≥ n−γ1 for all n large enough.
Then for H = 6(1− γ1)−1 it holds Π(Θc

n) . exp(−3nε2n) as n→∞.

Proof. From the definition of Θn, it is clear that

Π(Θ\Θn) ≤ Π
(
#{i : |ui| > n−1} > Hnε2n/ logn

)
+ Π (

∑∞
i=1 |ui| > n)

+ Π
(∑∞

i=1 |ui|1{|ui| ≤ n−1} > Mεn
)

+ Π (
∑∞
i=1 |ui|1{(Ai, µi) /∈ Dn} > Mεn)

+ P σ(σ2 ≤ n−2/a8) + P σ(σ2 > n−2/a8(1 +Mεn)n). (2.17)

The bounds on the two last terms are obvious in view of equations (2.10) and (2.11).
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By the superposition theorem (Kingman, 1992, section 2), for any measurable set
A ⊆ E × Rd we have Q(A) := Q1(A) +Q2(A) where Q1 and Q2 are independent signed
random measures with total variation having Laplace transforms (for all measurable
A ⊆ E × Rd and all t ∈ R for which the integrals in the expression converge)

E et|Q1|(A) = exp
{

2αF (A)
∫ ∞
n−1

(etx−1)x−1 e−ηx dx
}
, (2.18)

E et|Q2|(A) = exp
{

2αF (A)
∫ n−1

0
(etx−1)x−1 e−ηx dx

}
. (2.19)

The random measures Q1 and Q2 are almost-surely purely atomic, the magnitudes of the
jumps of Q1 are all ≥ n−1, whereas Q2 has jumps magnitudes all < n−1 (almost-surely).
Also, the number of jumps of Q1 is distributed according to a Poisson law with intensity
αE1(n−1/η), where E1 is the exponential integral E1 function. Recalling that E1(x) �
γ+ log(1/x) for x small, it follows α(γ+ log η) ≤ αE1(n−1/η) ≤ 2α logn� Hnε2n/ logn
when n is large. Then using Chernoff’s bound on Poisson law, we get

Π
(
#{i : |ui| > n−1} > Hnε2n/ logn

)
≤ e−αE1(n−1/η) (eαE1(n−1/η)Hnε2n/ logn

(Hnε2n/ logn)Hnε2n/ logn

≤ (ηeγ)α exp
{
−Hnε

2
n

logn

(
log Hnε

2
n

logn − log(2eα logn)
)}

.

But,

log Hnε
2
n

logn − log(2eα logn) ≥ (1− γ1) logn− 2 log logn+ log H

2eα,

which is in turn greater than (1/2)(1− γ1) logn when n becomes large. This gives the
proof for the first term of the rhs of equation (2.17).

Regarding the second term of the rhs of equation (2.17), it suffices to remark that
the random variable

∑n
i=1 |ui| has Gamma distribution with parameters (2α, η). Then

the upper bound on Π(
∑n
i=1 |ui| > n) follows from Markov’s inequality. With the same

argument, we have that the random variable
∑∞
i=1 |ui|1{|ui| ≤ n−1} is equal in distri-

bution to |Q2|(E ×Rd), thus the bound for the fourth term of the rhs of equation (2.17)
follows from Markov’s inequality and equation (2.19), because

Π
(
e3nεn|Q2| > e3nε2n

)
≤ e−3nε2n exp

{
2α
∫ n−1

0
(enεnx − 1)x−1 e−ηx dx

}
. e−3nε2n .

The fifth term of the rhs of equation (2.17) is bounded using Chebychev’s inequality.
Indeed, with the same argument as before, the random variable X :=

∑n
i=1 |ui|1{Ai /∈

Dn} has Gamma distribution with parameters (2αFA(Dcn), η). Hence for n sufficiently
large we have EX = 2αFA(Dcn)/η ≤ εn/2, and

Π(X > εn) ≤ Π(X − EX > εn/2) ≤ 8αFA(Dcn)
η2ε2n

.

Then the result follows from equations (2.6) and (2.7). �
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Lemma 2.4 – Let εn → 0 with nε2n →∞ and K = 3(32 ∨ 4σ2
0). Then there exists M > 0

such that it holds
∑
j

√
N(Mεn,Θn,j , ρn)

√
Π(Θn,j) e−(KM2−2)nε2n → 0.

Proof. Define the random measures Q1 and Q2 as in the proof of lemma 2.3. Then using
the Poisson construction of Q1 (see for instance Wolpert et al. (2011, section 2.3.1)), it
follows from equation (2.9) that for any j ∈ {1, 2, . . .}Hn

Π(Θn,j) ≤
∏
i≤Hn FA(A : λ1(A)/λd(A) ≥ n2ji−1) ≤ bHn6

∏
i≤Hn n

−κ∗2ji−1
.

Moreover, using proposition 2.4 we can find a constant C > 0 independent of M such
that N(Mεn,Θn,j , ρn) ≤ e−2CHnε2n n

d(d−1)/2
∑

i≤Hn
2ji when n is large. Therefore,√

N(Mεn,Θn,j , ρn)
√

Π(Θn,j) ≤ exp
{
Hnε2n

(
C + log b6

2 logn

)}∏
i≤Hn n

1
2 [d(d−1)−κ∗]2ji−1

.

For n large enough we have log b6 ≤ 2C logn ; then provided κ∗ > d(d− 1), we can sum
over j ∈ {1, 2, . . .}Hn the last expression to get

∑
j

√
N(Mεn,Θn,j , ρn)

√
Π(Θn,j) ≤ exp

{
2CHnε2n

}(∑
k≥1 n

1
2 [d(d−1)−κ∗]2k−1

)Hn
≤ exp

{
H(2C + κ∗/2)nε2n

}
.

Now choose M > 0 satisfying KM2 > 2 +H(2C + κ∗/2) to obtain the conclusion of the
lemma. �

Proposition 2.4 – For n large enough there is a constant C > 0 independent of M such
that for any sequence εn → 0 with nε2n →∞, the following holds for any j ∈ {1, 2, . . .}Hn .

logN(Mεn,Θn,j , ρn) ≤ CHnε2n + d(d− 1)
2 logn

∑
i≤Hn

2ji .

Proof. The proof is based on arguments from Shen et al. (2013), it uses the fact that the
covering number N(Mεn,Θn, ρn) is the minimal cardinality of anMεn-net over Θn in the
distance ρn. Let δn := Mεnn

−(1+1/a2), R̂n be a δn-net of [−2S, 2S]d, ∆̂n be a Mεn-net
of {(u1, . . . , uHn) ∈ RHn :

∑Hn
i=1 |ui| ≤ n} in the `1-distance, and Ŝn := {σ > 0 :

σ2 = n−2/a8(1+Mεn)k, k ∈ N, k ≤ n}. Also, for any k ≥ 1 let Ôk be a n−(2k+1)Mεn-net
of the group of d× d orthogonal matrices equipped with spectral norm ‖ · ‖, and define

D̂n,k :=
{
A ∈ Dn : A = PΛP>, P ∈ Ôk, Λ = diag(λ1, . . . , λd),

λj = n−1/a2(1 +Mεn/n)k, k ∈ N, k ≤ n2, j = 1, . . . , d

}
.

Pick (f, σ) ∈ Θn,j with f(x) =
∑∞
i=1 uiKAi(x−µi). Clearly we can find û ∈ ∆̂ such that∑

i≤Hn |ui − ûi| ≤ Mεn, µ̂ ∈ R̂Hnn such that |µi − µ̂i|d ≤ δn for all i = 1, . . . ,Hn, and
σ̂ ∈ Ŝn such that | log σ − log σ̂| ≤Mεn. We also claim that we can find Âi ∈ D̂n,ji such
that ‖I −A−1

i Â−1
i ‖ ≤ 3dMεn/n for all i ≤ Hn. We defer the proof of the claim to later.

Let f̂(x) =
∑
i≤Hn ûiKÂi

(x− µ̂i) denote the function built from the parameters chosen
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as above ; it follows

‖f − f̂‖2,n ≤
∑
i>Hn

|ui|+
∑
i≤Hn

|ui − ûi|+
∑
i≤Hn

|ui|‖KAi(· − µi)−KÂi
(· − µ̂i)‖2,n

≤ 2Mεn + C ′
∑
i≤Hn

|ui|‖I −A−1
i Âi‖+ C ′

∑
i≤Hn

|ui|‖A−1
i ‖|µi − µ̂i|d

≤M(2 + C ′ + 3C ′d)εn,

where the two last inequalities hold by proposition 2.12 for a constant C ′ > 0 depending
only on g, and because ‖A−1

i ‖ ≤ n1/a2 for all i ≤ Hn. Thus a (2 + C ′ + 3C ′d)Mεn-
net of Θn,j in the distance ρn can be constructed with (f̂ , σ̂) as above. Recall that
#R̂n ≤ (4S/δn)d, #∆̂n ≤ (n/(Mεn))Hn , #Ŝn = n and #Ôk ≤ (n−(2k+1)Mεn)−d(d−1)/2.
It turns out that #D̂n,k ≤ n2d ×#Ôk. Then the total number of (f̂ , σ̂) is bounded by a
multiple constant of

n×
(4S
δn

)Hn
×
(

n

Mεn

)Hn ∏
i≤Hn

n2d ×
(
n2ji+1

Mεn

)d(d−1)/2 .
Finally, Hn| logM | � Hn logn when n is large proving that the constant C > 0 can be
chosen independent of M , and the constant factor 2 + C ′ + 3C ′d can be absorbed into
the bound.

It remains to prove that for anyA ∈ Dn with λ1(A)/λd(A) ≤ n2k we can find Â ∈ D̂n,k
such that ‖I −A−1Â‖ ≤ 3dMεn/n. Let A =: PΛP> denote the spectral decomposition
of A (recall that A is symmetric). Clearly, we can find a matrix Â := P̂ Λ̂P̂> in D̂n,k
with ‖P − P̂‖ ≤ n−(2k+1)Mεn and 1 ≤ λj(Λ)/λj(Λ̂) ≤ 1 + Mεn/n for all j = 1, . . . , d.
Let Ã := P̂ΛP̂> and remark that

‖I −A−1Â‖ ≤ ‖I −A−1Ã‖+ ‖A−1Ã‖‖I − Ã−1Â‖
≤ ‖I −A−1Ã‖+ ‖I − Ã−1Â‖(1 + ‖I −A−1Ã‖). (2.20)

Let B := P>P̂ − I, so that ‖B‖max ≤ ‖B‖ ≤ ‖P>P̂ − I‖ ≤ ‖P − P̂‖ ≤ n−(2k+1)Mεn,
and I −A−1Ã = P (B − Λ−1BΛ)P̂>. It follows,

‖I −A−1Ã‖ ≤ ‖B − Λ−1BΛ‖ ≤ d‖B‖max
λ1(Λ)
λd(Λ) ≤ dMεn/n,

because the entries of B − Λ−1BΛ are equal to Bij(1 − Λj/Λi) and ‖ · ‖ ≤ d‖ · ‖max.
Moreover, I − Ã−1Â = P̂ (I − Λ−1Λ̂)P̂> implies ‖I − Λ−1Λ̂‖ ≤ dMεn/n. Then the
conclusion follows from equation (2.20). �

2.8.2. Approximation of functions

In order to prove the prior positivity of Kullback-Leibler balls around θ0, we need to
approximate f0 ∈ Cβ[−S, S]d by finite location-scale mixtures of kernels. We mostly
follow the approach of de Jonge and van Zanten (2010, lemma 3.4).

Nevertheless, as mentioned in de Jonge and van Zanten (2010), we shall extend f0
defined on [−S, S]d onto a (smooth) function defined on Rd to be able to approximate
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properly f0; otherwise we could have troubles at the boundaries of [−S, S]d. Clearly,
without any precaution, h−dKhI ∗ f0(x) → f0(x)/2 as h → 0 when x belongs to the
boundary of [−S, S]d. De Jonge and van Zanten (2010) assume that the covariates are
spread onto [a, b]d with a > −S and b < S and extend f0 by multiplying it by a smooth
function that equal 1 on [a, b]d and 0 outside [−S, S]d. Here we assume that the covariates
are spread onto [−S, S]d and we use Whitney’s extension theorem (Whitney, 1934) to
find a function f̃0 : Rd → R such that f̃0 ∈ Cβ(Rd) and Dαf̃0(x) = Dαf0(x) for all
x ∈ [−S, S]d and all |α| ≤ β. Then we apply the method of de Jonge and van Zanten
(2010, lemma 3.4) to f̃0. We find this approach more elegant since we do not have to
assume that f0 is defined on a larger set than the support of the covariates.

For each α ∈ Nd, let mh
α := h−d

∫
xαKhI(x) dx. For α ∈ Nd with |α| ≥ 1, define two

sequences of numbers by the following recursion. If |α| = 1 set cα = 0 and dα = −1/α!,
and for |α| ≥ 2 define

cα :=
∑

l+k=α
|l|≥1, |k|≥1

(−1)|α|

α!

(
mh
l m

h
k

mh
α

)
dk, dα := (−1)|α|

α! − cα. (2.21)

Given β > 0, h > 0 and p the largest integer strictly smaller than β, define

fβ := f̃0 −
∑

1≤|α|≤p
dαm

h
αD

αf̃0.

Proposition 2.5 – Let h > 0. For any β > 0 and any function f0 ∈ Cβ[−S, S]d there is a
positive constant Mβ such that |h−dKhI ∗ fβ(x)− f0(x)| ≤Mβh

β for all x ∈ [− S, S]d.

Proof. Noticing that mh
α . h|α|, the proof follows from the same argument as in (Shen

et al., 2013, lemma 2), because f̃0(x) = f0(x) for all x ∈ [−S, S]d. �

The proposition 2.5 shows that any sufficiently regular function can be approximated
by continuous location mixtures of KhI , provided h is chosen small enough and g has
enough finite moments. In the sequel, we will need slightly more, that is approximating
any β-Hölder continuous function by discrete mixtures ofKhI ; this is done by discretizing
the convolution operator in the next proposition. Compared to Ghosal and van der Vaart
(2001, lemma 3.1), we need to take extra cares regarding the fact that f0 can take negative
values, and also to control the “total mass” of the mixing measure.
Proposition 2.6 – Let h > 0 be small enough and ζ = 1∨2/(τ−γτ). There exists a discrete
mixture f(x) =

∑N
i=1 αiKhI(x − µi) with N . h−d(log h−1)d(ζ−1), µi ∈ [−2S, 2S]d

for all i = 1, . . . , N ; such that |f(x) − f0(x)| . hβ for all x ∈ [−S, S]d. Moreover∑N
i=1 |αi| . h−d, and |µi − µj |d ≥ hβ+1 for any i 6= j.

Proof. Let Q be the signed measure defined by A 7→
∫
A fβ(y)dy for any measurable

set A ⊆ Rd. Let Mh := (C−1
0 (β + d) log h−1)1/τ . To any j ∈ Zd we associate the cube

Bj := hMh(j + [0, 1]d) and the signed measure Qj such that Qj(A) := Q(A ∩Bj) for all
measurable A ⊆ Rd. Let Q+

j , Q
−
j denote respectively the positive and negative part of

the Jordan decomposition of Qj . It is a classical result from Tchakaloff (1957) that we
can construct discrete (positive) measures P+

j,k, P
−
j,k each having at most (k + d)!/(k!d!)

atoms and satisfying
∫
R(x)Q±j (dx) =

∫
R(x)P±j (dx) for any polynomial R(x) of degree
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|α| ≤ k. Let Λh := {j ∈ Zd : |j| ≤ 1+S/(hMh)} and for any x ∈ Rd let Nx := {j ∈ Λh :
inf{|x − y|d : y ∈ Bj} ≤ hMh}. For the signed measure Pk :=

∑
j∈Λh(P+

j,k − P
−
j,k) the

total variation of Pk satisfy the bound

|Pk| ≤
∑
j∈Λh

P+
j,k +

∑
j∈Λh

P−j,k ≤
∑
j∈Zd

(P+
j,k + P−j,k) = |Q|.

Notice that |Q| < +∞ since we have fβ ∈ L1(Rd). Moreover, letting Pj,k = P+
j,k − P

−
j,k∫

KhI(x− y)(Q− Pk)(dy) =
∑
j /∈Λh

∫
Bj

g

(
x− y
h

)
Qj(dy)

+
∑

j∈Λh\Nx

∫
Bj

g

(
x− y
h

)
(Qj − Pj,k)(dy)

+
∑
j∈Nx

∫
Bj

g

(
x− y
h

)
(Qj − Pj,k)(dy). (2.22)

By assumptions on g, for any x ∈ [−S, S]d the first term of the rhs of equation (2.22) is
bounded by |Q|hβ+d. With the same argument, using the definition of Nx, the second
term of the rhs of equation (2.22) is bounded by 2|Q|hβ+d. Regarding the last term,
using multivariate Taylor’s formula we write∫

Bj

g

(
x− y
h

)
(Qj − Pj,k)(dy) =

∑
|α|≤k

Dαg(0)
α!

∫
Bj

(
x− y
h

)α
(Qj − Pj,k)(dy)

+
∫
Bj

Rk

(
x− y
h

)
(Qj − Pj,k)(dy), (2.23)

where |Rk(x)| ≤ sup|α|=k |Dαg(0)||x|kd/k!. The first term of the rhs of equation (2.23)
vanishes by construction of Pj,k. For any j ∈ Nx and any y ∈ Bj it holds |x−y|d ≤ 2hMh ;
then using Stirling’s formula and assumptions on Dαg the second term of the rhs of
equation (2.23) is bounded by

sup
|α|=k

|Dαg(0)|(2eMh)k√
2πkkk

∫
Bj

|Qj − Pj,k|(dy) ≤ K1 exp {−k(1− γ) log k + k log(2eMh)} ,

whenever j ∈ Nx, for a constant K1 depending only on f0, β and g. Therefore, choosing
k ≥ (2eMh)2/(1−γ), we deduce from equations (2.22) and (2.23) that∣∣∣∣∫ KhI(x− y)(Q− Pk)(dy)

∣∣∣∣ ≤ 3|Q|hβ+d +K1 exp
{
−1− γ

2 k log k
}
. (2.24)

Now if (2eMh)2/(1−γ) ≥ 2(β+d)/(1−γ) log h−1 set k to be the smaller integer larger than
(2eMh)2/(1−γ) ; otherwise set k to be the larger integer greater than 2(β+d)/(1−γ) log h−1.
This yields the first part of the proposition with f(x) = h−d

∫
KhI(x− y)Pk(dy) because

of equation (2.24), of proposition 2.5 and because each of the Pj,k has a number of atoms
proportional to (log h−1)dζ by Tchakaloff’s theorem, all in [−2S, 2S]d if h is small enough.

It remains to prove the separation between the atoms of Q′k. But the cost to the
supremum norm of moving one µi of hβ+1 is proportional to hβ by proposition 2.12.
Hence we can assume that the support point of Q′k are chosen on a regular grid with
hβ+1 separation within nodes (see also Shen et al. (2013, corollary B1)). �
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2.8.3. Kullback-Leibler property

A simple computation shows that (see for instance Choi and Schervish (2007)) for
θ0 = (f0, σ0) and θ = (f, σ),

Ki(θ0, θ) = log σ

σ0
− 1

2

(
1− σ2

0
σ2

)
+ 1

2
|f0(xi)− f(xi)|2

σ2 ,

V2;i(θ0, θ) = 1
2

(
1− σ2

0
σ2

)2

+ σ4
0
σ4 |f0(xi)− f(xi)|2.

Therefore, for all 0 < ε ≤ 1/2, there exists a constant C0 > 0 (depending only on θ0)
such that one has the inclusions

Kn(θ0, ε) ⊇
{

(f, σ) : ‖f − f0‖2∞ ≤ C0ε
2, σ0 ≤ σ ≤ σ0(1 + C0ε

2)
}
, (2.25)

hence probabilities of Kullback-Leibler balls around θ0 are lower bounded by the proba-
bility of the sets defined in the rhs of equation (2.25). Now we state and prove the main
result of this section.

Lemma 2.5 – Let f0 ∈ Cβ[−S, S]d, and ζ > 1 as in proposition 2.6. Then there exists
a constant C > 0, not depending on n, such that Π(Kn(θ0, εn)) & exp(−nε2n) for ε2n =
Cn−2β/(2β+d+κ/2)(logn)2βd(ζ−1)/(2β+d+κ/2).

Proof. By proposition 2.6 for any h > 0 sufficiently small, there is N . h−d(log h−1)d(ζ−1)

and a function fh(x) =
∑N
j=1 αjKhI(x − µj) such that |fh(x) − f0(x)| . hβ for all

x ∈ [−S, S]d, with αj ∈ R for all j = 1, . . . N , µi ∈ [−2S, 2S]d for all i = 1, . . . , N , and
|µi − µj |d ≥ hβ+1 whenever i 6= j. Let define

Es,h :=
{
A ∈ Es : h−1 ≤ λi(A−1) ≤ h−1(1 + hβ+d), i = 1, . . . , d

}
.

We construct a partition of Es × [−2S, 2S]d in the following way : for all j = 1, . . . , N ,
let Uj be the closed ball of radius hβ+d+1 centered at µj (observe that these balls are
disjoint), and set Vj := Es,h × Uj , V c := Es × [−2S, 2S]d\UNj=1Vj . Let Q denote the set
of signed measures on Es × [−2S, 2S]d satisfying Q ∈ Q ⇒ |Q(Vj) − αh,j | ≤ hβN−1

for all j = 1, . . . , N , and |Q|(V c) ≤ hβ. Notice that for any Q ∈ Q we have |Q| ≤∑N
j=1 |Q(Vj) − αh,j | +

∑N
j=1 |αh,j | . hβ + h−d . h−d because of proposition 2.6. Then

for any Q ∈ Q and all x ∈ [−S, S]d, using proposition 2.12,

∣∣∣∣∣
∫
Es×[−2S,2S]d

KA(x− µ)Q(dAdµ)− fh(x)
∣∣∣∣∣ .

N∑
j=1
|Q(Vj)− αh,j |+ |Q|(V c)

+
N∑
j=1

∫
Vj

|KA(x− µ)−KhI(x− µj)| |Q|(dAdµ) . hβ.

Thus for all Q ∈ Q and all x ∈ [−S, S]d, we have |
∫
KA(x − µ)Q(dAdµ) − f0(x)| ≤

|
∫
KA(x − µ)Q(dAdµ) − fh(x)| + |fh(x) − f0(x)| ≤ K1h

β for a constant K1 > 0 not
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depending on h. By the assumptions of equations (2.5) and (2.8) we have for any
j = 1, . . . , N

αFA(Es,h)Fµ(Uj) ≥ αb1b4ha1(β+d+1)−a4+a5(β+d) exp(−C3h
−κ/2)

=: K2h
q exp(−C3h

−κ/2),

where q := a1(β + d+ 1)− a4 + a5(β + d) and the constant K2 > 0 not depending on h.
For h > 0 sufficiently small, it is clear that K2h

q exp(−C3h
−κ/2) < F (Vj) ≤ 1 for

all j = 1, . . . , N . We also assume without loss of generality that K2h
q exp(−C3h

−κ/2) ≤
F (V c) ≤ 1 and we set VN+1 := V c, αh,N+1 := 0 ; otherwise we subdivide V c onto smaller
subsets for which the relation is verified. Because F is a probability measure, this can
be done with a finite number of subsets not depending on h. Now let W := {σ > 0 :
σ0 ≤ σ ≤ σ0(1 + C0ε

2
n)} and εn = C−1

0 K1h
β. Notice that P σ(W ) ≥ K3ε

2a9
n with a

constant K3 > 0 eventually depending on θ0. The sets Es,h × Uj are disjoint, hence by
equation (2.12) and proposition 2.11 we deduce that there is a constant K4 > 0 such
that

Π(Kn(θ0, εn)) ≥ P σ(W )Π∗(Q) & ε2a9
n

N+1∏
i=1

(
hβN−1 e−(3+η)|αj |

Γ(α(FA(Eh)Fµ(Uj))

)
≥ exp

{
−K4h

−(d+κ/2)(log h−1)d(ζ−1)
}
,

where we used that N . h−d(log h−1)d(η−1),
∑N
j=1 |αh,j | . h−d and Γ(x) . x−1 for x > 0

sufficiently small. This concludes the proof. �

2.9. Proof of theorem 2.4

As in section 2.5, the proof of theorem 2.4 consists on verifying the condition established
in theorem 2.3.

2.9.1. Sieve construction

For constants H,M > 0 to be determined later, we define

Θn :=

(f, σ) :

f(x) =
∫
Kξ,φ(x− µ)Q(dξdµdφ), suppQ = Rd × [−2S, 2S]d × [0, π/2],

Q =
∑∞
i=1 uiδξi,µi,φi

, n−2/a8 < σ2 ≤ n−2/a8(1 +Mεn)n∑∞
i=1 |ui| ≤ n, #{i : |ui| > n−1, |ξi|d ≤ e2nε2

n} ≤ Hnε2n/ logn,∑∞
i=1 |ui|1{|ξi|d > e2nε2

n} ≤Mεn,
∑∞
i=1 |ui|1{|ui| ≤ n−1} ≤Mεn

.
In the sequel, we assume without loss of generality that the jumps of Q in the

definition of Θn are ordered so that there is no jump with |ui| > n−1 and |ξi|d ≤ e2nε2n

when i > Hnε2n/ logn. Moreover, we consider the following partition of Θn. LetHn be the
largest integer smaller than Hnε2n/ logn. Then for any j = (j1, . . . , jHn) ∈ {1, 2, . . .}Hn
we define the slices

Θn,j :=
{
(f, σ) ∈ Θn :

√
n(ji − 1) ≤ |ξ|d <

√
nji, ∀i ≤ Hn

}
.

Lemma 2.6 – Assume that there is 0 < γ1 < 1 such that ε2n ≥ n−γ1 for all n large enough.
Then for H = 6(1− γ1)−1 it holds Π(Θc

n) . exp(−3nε2n) as n→∞.
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Proof. According to the proof of lemma 2.3, the result holds if Fξ(ξ : |ξd| ≥ e2nε2n) .
ε2n exp(−3nε2n) for n sufficiently large. Then the conclusion follows from equation (2.13)
because η > 0. �

Lemma 2.7 – Let εn → 0 with nε2n →∞ and K = 3(32 ∨ 4σ2
0). Then there exists M > 0

such that it holds
∑
j

√
N(Mεn,Θn,j , ρn)

√
Π(Θn,j) e−(KM2−2)nε2n → 0.

Proof. With the same argument as in lemma 2.4, it follows from equation (2.13) that
for any j ∈ {1, 2, . . .}Hn

Π(Θn,j) ≤
∏
i≤Hn Fξ(ξ : |ξ|d ≥

√
n(ji − 1)) ≤ bHn11

∏
i≤Hn(1 +

√
n(ji − 1))−2(η+1).

Moreover, using proposition 2.7 we can find a constant C > 0 independent of M such
that N(Mεn,Θn,j , ρn) ≤ exp(2CHnε2n)

∏
i≤Hn j

d−1
i when n is large. Therefore, for those

n √
N(Mεn,Θn,j , ρn)

√
Π(Θn,j)

≤ exp
{
Hnε2n

(
C + log b11

2 logn

)} ∏
i≤Hn

j
(d−1)/2
i [1 +

√
n(ji − 1)]−(η+1).

For n large enough we have log b11 ≤ 2C logn ; then provided η > (d− 1)/2, we can sum
over j ∈ {1, 2, . . .}Hn the last expression to get

∑
j

√
N(Mεn,Θn,j , ρn)

√
Π(Θn,j)

≤ exp
{

2CHnε2n
}(∑

k≥1 k
(d−1)/2[1 +

√
n(k − 1)]−(η+1)

)Hn
≤ exp

{
2CHnε2n

}(
1 + n−(η+1)/2∑

k≥1 k
(d−1)/2−(η+1)

)Hn
. exp{3CHnε2n},

where the last inequality holds for n sufficiently large. Now choose M > 0 satisfying
KM2 > 2 + 3CH to obtain the conclusion of the lemma. �

Proposition 2.7 – For n large enough there is a constant C > 0 independent of M such
that for any sequence εn → 0 with nε2n →∞, the following holds for any j ∈ {1, 2, . . .}Hn .

logN(Mεn,Θn,j , ρn) ≤ CHnε2n + (d− 1)
∑
i≤Hn

log ji.

Proof. The proof is similar to proposition 2.4. Let R̂n be a (Mεn/n)-net of [−2S, 2S]d,
∆̂n be a Mεn-net of {(u1, . . . , uHn) ∈ RHn :

∑Hn
i=1 |ui| ≤ n} in the `1-distance, Ŝn :=

{σ > 0 : σ2 = n−2/a8(1 +Mεn)k, k ∈ N, k ≤ n}, Ûn be a (Mεn/n)-net of [0, π/2], and
for all k = 1, . . . ,Hn, let V̂n,k a (Mεn/n)-net of {ξ ∈ Rd :

√
n(k − 1) ≤ |ξ|d <

√
nk}.

Pick (f, σ) ∈ Θn,j with f(x) =
∑∞
i=1 uiKξi,φi(x − µi). Clearly we can find û ∈ ∆̂ such

that
∑
i≤Hn |ui− ûi| ≤Mεn, µ̂ ∈ R̂Hnn such that |µi− µ̂i|d ≤Mεn/n for all i = 1, . . . ,Hn,

φ̂ ∈ ÛHnn such that |φi − φ̂i| ≤ Mεn/n for all i = 1, . . . ,Hn, ξ̂i ∈ V̂n,ji such that
|ξi− ξ̂i|d ≤Mεn/n for all i = 1, . . . ,Hn, and σ̂ ∈ Ŝn such that | log σ− log σ̂| ≤Mεn. Let
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f̂(x) =
∑
i≤Hn ûiKξ̂i,φ̂i

(x− µ̂i) denote the function built from the parameters chosen as
above ; it follows

‖f − f̂‖2,n ≤
∑
i>Hn

|ui|+
∑
i≤Hn

|ui − ûi|+
∑
i≤Hn

|ui|‖Kξi,φi(· − µi)−Kξ̂i,φ̂i
(· − µ̂i)‖2,n

≤ 2Mεn + C ′
∑
i≤Hn

|ui||ξi − ξ̂i|d + C ′
∑
i≤Hn

|ui||µi − µ̂i|d + C ′
∑
i≤Hn

|ui||φi − φ̂i|

≤ 2M(1 + 3C)εn,

for a constant C ′ > 0 depending only on g, because of proposition 2.12. Thus a 2(1 +
3C ′)Mεn-net of Θn,j in the distance ρn can be constructed with (f̂ , σ̂) as above. Recall
that #R̂n ≤ (4Sn/(Mεn)d, #∆̂n ≤ (n/(Mεn))Hn , #Ŝn = n, #Ûn ≤ πn/(2Mεn) and
#V̂k ≤ (n3/2k/(Mεn) + 1)d − (n3/2(k − 1)/(Mεn) − 1)d . (n3/2/(Mεn))dkd−1, where
we used ud − vd ≤ d(u − v)u−1 for v > u. Then the end of the proof is identical to
proposition 2.4. �

2.9.2. Approximation of functions

Let ξ > 0 and m, r ≥ 1 be two positive integers. Let define the approximating kernel
Lm,ξ : Rd → R by the expression Lξm,r(x) := λξm,rg(x)

∏d
i=1 sin2r(mξxi)/ sin2r(ξxi),

where λξm,r > 0 is chosen so that
∫
Rd L

ξ
m,r(x) dx = 1. Also let f̃0 denote a suitable

Whitney extension of f0 from [−S, S]d to Rd (see the proof of proposition 2.5). We may
assume that f̃0 and all its derivatives (up to order β) are zero outside [−2S, 2S]d. If it
is not the case, it suffices to multiply f̃0 by a smooth function that equal 1 on [−S, S]d
and 0 outside [−2S, 2S]d (for instance, think about the convolution of a bump function
with a proper indicator set function).

In order to achieve good order of approximation of f0 when β is large, we construct
a transformation of f̃0 as follows. In the sequel we let p be the largest integer strictly
smaller than β. For all multi-index α ∈ Nd, we define mm,r,ξ

α :=
∫
Rd x

αLξm,r(x) dx. By
definition of Lξm,r, the mm,r,ξ

α ’s are always finite. Then we define

fβ ≡ fm,r,ξβ := f̃0 −
∑

1≤|α|≤p
dαm

m,r,ξ
α Dαf̃0,

where the coefficients (dα) are defined in the same fashion as equation (2.21), with
obvious modifications.
Proposition 2.8 – Let m, r ≥ 1 be integers. For any β > 0 and any function f0 ∈
Cβ [−S, S]d there is a constant Mβ > 0 such that |Lrm,ξ ∗ fβ(x)− f0(x)| ≤Mβ(logm/m)β

for all x ∈ [−S, S]d if 2r ≥ p+ 1 and ξ = K0(logm)−1 for a constant K0 depending only
on g, β and r.

Proof. First assume 0 < β ≤ 1. By assumptions on f0, there is M > 0 such that for all
x, y ∈ Rd we have |f̃0(x)− f̃0(y)| ≤M |x− y|βd . Then,∣∣∣f̃0(x)− Lξm,r ∗ f̃0(x)

∣∣∣ ≤ ∫
Rd

∣∣∣f̃0(x)− f̃0(y)
∣∣∣ |Lξm,r(x− y)| dy

≤M
∫
Rd
|x− y|βd |L

ξ
m,r(x− y)| dy.
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Remark that for any τ > 0 and all u ∈ Rd we have
∑d
i=1 |ui|τ ≤ dmaxi=1,...,d |ui|τ ≤

d(
∑d
i=1 |ui|2)τ/2 and |x − y|βd = (

∑d
i=1 |xi − yi|2)β/2 ≤ dβ/2 maxi=1,...,d |xi − yi|β ≤

dβ/2
∑d
i=1 |xi − yi|β. Then, because |g(x)| . exp(−C0|x|τd),∣∣∣f̃0(x)− Lξm,r ∗ f̃0(x)

∣∣∣
. λξm,r

d∑
i=1

∫
Rd
|ui|β exp

(
−C0d

−1∑d
j=1 |uj |τ

) d∏
j=1

sin2r(mξuj)
sin2r(ξuj)

du

. λξm,r

(∫
R
|u|β e−C0|u|τ/d sin2r(mξu)

sin2r(ξu)
du

)(∫
R

e−C0|u|τ/d sin2r(mξu)
sin2r(ξu)

du

)d−1

. (2.26)

We now bound the first integral of the rhs of equation (2.26). Let split the domain into
three parts : D1 := (−1/(ξm), 1/(ξm)), D2 := [−1/(ξm),−π/ξ] ∪ [1/(ξm), π/ξ] and
D3 := R\(D1 ∪D2). On D1 and D3 we always have sin2(mξu)/ sin2(ξu) . m2, whereas
on D2 it holds sin2(mξu)/ sin2(ξu) . 1/(ξx)2. Therefore,∫

R
|u|β e−|u|τ/d sin2(mξu)

sin2(ξu)
du

. m2r
∫
D1
|u|β du+ ξ−2r

∫
D2
|u|β−2r du+m2r

∫
D3
|u|β e−C0|u|τ/d du =: I1 + I2 + I3.

The bounds I1 . m−β+(2r−1)ξ−(β+1) and I2 . ξ−(β+1)(1+m−β+(2r−1)) are obvious. Now
we bound I3. By Markov’s inequality, for any t < C0/d, we have∫ ∞

π/ξ
uβ exp(−C0u

τ/d) ≤ e−π/ξ
∫ ∞

0
uβ exp(−C0u

τ/d+ ut) du.

Now it is clear that I3 . m2r exp(−π/ξ) since by assumption τ > 1 and we can choose
t < C0/d. It follows I3 . ξ−(β+1) if ξ = K0(logm)−1 for a suitable constant K0 > 0
depending only on g, β and r. The same reasoning applies to the second integral of the
rhs of equation (2.26), yielding the bound∣∣∣f̃0(x)− Lm,ξ ∗ f̃0(x)

∣∣∣ . λξm,rm−β+d(2r−1)(logm)β+d, (2.27)

whenever ξ = K0(logm)−1. Hence, it remains to bound λξm,r. By assumption, we have
g(x) ≥ 0 for all x ∈ Rd and a constant C > 0 such that g(x) > C on a set E ⊆ [−π, π]d ;
thus

1
λξm,r

≥
∫
E
g(x)

d∏
i=1

sin2r(mξxi)
sin2r(ξxi)

dx & Cm2dr
∫
E

d∏
i=1

sin2r(mξxi)
(mξxi)2r dx

&
md(2r−1)

ξd

∫
E′

d∏
i=1

sin2(ui)
u2
i

du &
md(2r−1)

ξd
,

where E′ := {mξx : x ∈ E} has non-null Lebesgue measure by assumption. Combin-
ing the last result with equation (2.27), we get the estimate |f̃0(x) − Lm,ξ ∗ f̃0(x)| .
m−β(logm)β for all x ∈ Rd provided ξ ≤ K0(logm)−1.

Now assume that β > 1. Acting as in the previous paragraph, we can have mm,r,ξ
α ≤

m−|α|(logm)|α| for all |α| ≤ p, provided 2r > p+ 1 and ξ = K ′0(logm)−1 for a suitable
constant K ′0 > 0. Then the proof is identical to Shen et al. (2013, lemma 2). �
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Proposition 2.9 – Let m ≥ 1, r ≥ (β + 1)/2 be integers and ξ = K0(logm)−1, with K0 as
in proposition 2.8. There exists a discrete mixture f(x) =

∑N
i=1 αiKξi,φi(x − µi) with

N . (m logm)d and for all i = 1, . . . , N : µi ∈ [−2S, 2S]d, ξi ∈ [0, 2rK0m/ logm]d, φi ∈
[0, π/2] ; such that |f(x)−f0(x)| . (logm/m)β for all x ∈ [−S, S]d. Moreover

∑N
i=1 |αi| .

1, and for any i 6= j it holds |ξi − ξj |d ≥ 2(logm/m)β, |µi − µj |d ≥ 2(logm/m)β and
|φi − φj | ≥ 2(logm/m)β.

Proof. We rewrite Lξm,r in a more convenient form for the sequel. Let a0 := 1 and
ak = 2(1− k/m) for all k = 1, . . . ,m− 1. Then first step is to notice that

Lξm,r(x) = mdrλξm,r g(x)
d∏
i=1

[
m−1∑
k=0

ak cos(2ξkxi)
]r
.

From here, letting Ir := {0, . . . ,m− 1}r and S = {−1, 1},

Lξm,r(x) = mdrλξm,r g(x)
d∏
i=1

∑
k∈Ir

a′k2−r
∑
e∈Sr

cos
(
2ξxi

∑r
j=1 ejkj

) ,
where a′k := ak1 . . . akr , and because

∏r
j=1 cos(2ξkjxi) = 2−r

∑
e∈Sr cos(2ξ

∑r
j=1 ejkjxi).

Notice that |a′k|2−r ≤ 1 for all k ∈ Ir, and that 2|
∑r
j=1 ejkj | can take at most 1+r(m−1)

values ; we denote these unique values ωj with j ∈ J := {0, . . . , r(m− 1)}. Then we can
rewrite,

Lξm,r(x) = mdrλξm,r g(x)
d∏
i=1

∑
k∈J

a′′k cos(ξωjxi)

 ,
where the coefficients a′′k satisfy |a′′k| ≤ 2#(Ir × Sr) ≤ 2(2m)r. Finally, for all k ∈ J d
letting bk := 2−da′′k1

. . . a′′kd and ωk,i := ωki , with the same arguments as previously,

Lξm,r(x) = mdrλξm,r g(x)
∑
k∈J d

∑
e∈Sd

bk cos
(
ξ
∑d
i=1 ωk,ieixi

)
,

where |bk| ≤ (2m)dr for all k ∈ J d. Therefore,

(mdrλξm,r)−1Lξm,r ∗ fβ(x)

=
∑
k∈J d

∑
e∈Sd

bk

∫
Rd
fβ(y)g(x− y) cos

(
ξ
∑d
i=1 ωk,iei(xi − yi)

)
dy

=
∑
k∈J d

∑
e∈Sd

bk cos
(
ξ
∑d
i=1 ωk,ieixi

) ∫
Rd
fβ(y)g(x− y) cos

(
ξ
∑d
i=1 ωk,ieiyi

)
dy

+
∑
k∈J d

∑
e∈Sd

bk sin
(
ξ
∑d
i=1 ωk,ieixi

) ∫
Rd
fβ(y)g(x− y) sin

(
ξ
∑d
i=1 ωk,ieiyi

)
dy.

We finish the proof by discretizing the integrals in the last equation. Obviously the proof
are identical for both integrals, hence we only consider the first one. To ease notations,
we set hk(x) := fβ(x)

∏d
i=1 cos(ξ

∑d
i=1 ωk,ieixi). For any integer q ≥ 1, proceed as in

the proof of proposition 2.6 to find a signed measure Pk,q =:
∑
l∈L pk,lδxk,l such that
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∫
[−2S,2S]d R(x) dPk,q(x) =

∫
[−2S,2S]d R(x)hk(x)dx for all polynomials R(x) of degree ≤ q,

with #L ≤ (q + d)!/(q!d!) and
∑
l∈L |pk,l| =

∫
[−2S,2S]d |hk(x)| dx ≤ M for a positive

constant M (recall that by construction of fβ, we have ‖fβ‖∞ < +∞, and supp fβ ⊆
[−2S, 2S]d). Then for any x ∈ Rd,∣∣∣∣∣
∫
Rd
hk(y)g(x− y) dy −

∫
[−2S,2S]d

g(x− y) dPk,q(y)
∣∣∣∣∣

≤
∑
|α|≤r

|Dαg(0)|
α!

∣∣∣∣∣
∫

[−2S,2S]d
(x− y)α hk(y)dy −

∫
[−2S,2S]d

(x− y)α dPk,q(y)
∣∣∣∣∣

+
∫

[−2S,2S]d
|Rq(y)| |hk(y)|dy +

∫
[−2S,2S]d

|Rq(y)| d|Pk,q|(y), (2.28)

where |Rq(y)| ≤ sup|α|=q |Dαg(0)||y|qd/q!. The first term of the rhs of equation (2.28) is
null by construction of Pk,q. As in the proof of proposition 2.6, the two last terms of
equation (2.28) are bounded by a constant multiple of

exp
{
−(1− γ)q log q + q(1 + log(2

√
dS))

}
.

Then the error of approximating the integrals is o(m−β) if q = K1 logm for a suitable
constant K1 > 0 depending only on β and γ. Since for ξ = K ′0(logm)−1 we have,

mdrλξm,r
∑
k∈J d

∑
e∈Sd
|bk| . mdr ×m−d(2r−1) × (logm)−d ×#J d ×mdr . (logm)−d,

the error of approximating Lξm,r ∗ fβ by the discretized version does not exceed o(m−β)
when q = K1 logm. The conclusion of the proposition follows from elementary manipu-
lation of trigonometric functions and because #L . qd . (logm)d.

It remains to prove the separation between the atoms of the mixing measure, but
this follows from proposition 2.13 with the same argument as in proposition 2.6. �

2.9.3. Kullback-Leibler property

Lemma 2.8 – Let f0 ∈ Cβ [−S, S]d. Then there exists a constant C > 0, not depending on
n, such that Π(Kn(θ0, εn)) & exp(−nε2n) for ε2n = Cn−2β/(2β+d)(logn)2β(2d+1)/(2β+d).

Proof. Let fm(x) =
∑N
i=1 αiKξi,φi(x−µi) be as in proposition 2.9. For any i = 1, . . . , N

define the sets Ui := {ξ ∈ Rd : |ξ − ξi|d ≤ (logm/m)β}, Vi := {µ ∈ [−2S, 2S]d :
|µ− µi|d ≤ (logm/m)β} and Wi := {φ ∈ [0, π/2] : |φ− φi| ≤ (logm/m)β}. Notice that
these sets are disjoint, and for any i = 1, . . . , N we have

αF (Ui × Vi ×Wi) & |ξi|−a12
d (logm/m)β(a1+a10+a13) & (logm/m)q,

where q := da12 + β(a1 + a10 + a13). Then proceed as in lemma 2.5, to find constants
K1,K4 > 0 such that with εn = C−1

0 K1(logm/m)β,

Π(Kn(θ0, εn)) ≥ exp
{
−K4m

d(logm)d+1
}
. �



Appendix

2.A. Symmetric Gamma distribution

The symmetric Gamma distribution SGa(a, b), with a, b > 0 is the distribution having
Fourier transform t 7→ (1 + t2/b2)−a. It is easily seen that if X ∼ Ga(a, b) and Y ∼
Ga(a, b), with X and Y independent, then X − Y has SGa(a, b) distribution.
Proposition 2.10 – Let Z ∼ SGa(a, b). Then for any positive integer n,

EZ2n = (2n)!
n!

(a)(n)

b2n
, EZ2n+1 = 0.

Moreover, the distribution SGa(a, b) is determined by its moments (in the sense that
SGa(a, b) is the only distribution with this sequence of moments).

Proof. From definition of SGa(a, b), the random variable Z is distributed as X−Y , where
X,Y ∼ Ga(a, b) and X,Y are independent. Then it is obvious that all odd moments
must vanish. For the even moments, we write,

E(X − Y )2n =
2n∑
k=0

(
2n
k

)
(−1)k EX2n−k EY k

= 1
b2n

2n∑
k=0

(
2n
k

)
(−1)k(a)(2n−k)(a)(k) = (2n)!

n!
(a)(n)

b2n
,

where the last equality can be obtained after some algebra. To see that SGa(a, b) is
determined by its moments, we check that Carleman’s criteria applies (Gut, 2006), which
is straightforward. �

Proposition 2.11 – Let X ∼ SGa(α, η), with 0 < α ≤ 1 and η > 0. Then there is a
constant C > 0 such that for any x ∈ R and any 0 < δ ≤ (3 + η)−1 we have P(|X − x| ≤
δ) ≥ Cδ e−(3+η)|x| Γ(α)−1.

Proof. Assume for instance that x ≥ 0. Recalling that X is distributed as the difference
of two independent Ga(α, η) distributed random variables, it follows

P(|X − x| ≤ δ) ≥ 1
Γ(α)

∫ ∞
0

yα−1 e−ηy 1
Γ(α)

∫ x+y+δ

x+y
zα−1 e−ηz dz dy.

Because α ≤ 1, the mapping z 7→ zα−1e−ηz is monotonically decreasing on R+, then
the last integral in the rhs of the previous equation is lower bounded by δ(x + y +
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δ)α−1 e−η(x+y+δ) ≥ δ e−(3+η)(x+y+δ). Then

P(|X − x| ≤ δ) ≥ δ e−(3+η)(x+δ)

Γ(α)2

∫ ∞
0

yα−1 e−(3+2η)y dy

= δ e−(3+η)(x+δ)

(3 + 2η)αΓ(α) ≥
δ e−(3+η)|x|

e(3 + 2η)αΓ(α) .

The proof when x < 0 is obvious. �

2.B. Auxiliary results

Proposition 2.12 – Let KA(x) = g(A−1x), and assume that for all multi-index k ∈ Nd
with |k| = 0, 1, 2 the mapping x 7→ xkg(x) belongs to L1(Rd). Let ‖·‖ be the spectral norm
on E. Then there is a constant C > 0 such that for all x, µ1, µ2 ∈ Rd and all A1, A2 ∈ E
arbitrary with ‖I −A−1

1 A2‖ ∧ ‖I −A−1
2 A1‖ small enough,

|KA1(x− µ1)−KA2(x− µ2)| ≤ C‖I −A−1
1 A2‖ ∧ C‖I −A−1

2 A1‖

+ C
(
‖A−1

1 ‖ ∧ ‖A
−1
2 ‖

)
|µ1 − µ2|d.

Proof. Starting from the triangle inequality, we have

|KA1(x− µ1)−KA2(x− µ2)| ≤ |KA1(x− µ2)−KA2(x− µ2)|
+ |KA1(x− µ1)−KA1(x− µ2)| (2.29)

We recall that KA(x) := g(A−1x). To bound the first term, it is enough to bound
g(x)− g(A−1

1 A2x) for all x ∈ Rd. Let (Bn)n∈N and (Cn)n∈N be two arbitrary sequences
in E such that ‖I −B−1

n Cn‖ ≤ 1/n, and let ĝ denote the Fourier transform of g. Then,

sup
x∈Rd

∣∣∣g(x)− g(B−1
n Cnx)

∣∣∣ ≤ ∫
Rd

∣∣∣ĝ(ξ)− | det(B−1
n Cn)| ĝ(B−1

n Cnξ)
∣∣∣ dξ.

Remark that | detB−1
n Cn| ≤ 1 + |det(I−B−1

n Cn)|, and ‖I−B−1
n Cn‖ ≤ 1/n implies that

|det(I −B−1
n Cn)| ≤

√
d/nd. Also, |B−1

n Cnξ|d ≤ ‖I −B−1
n Cn‖|ξ|d + |ξ|d ≤ (1 + 1/n)|ξ|d.

It turns out that,

lim
n→∞

|detB−1
n Cn| ĝ(B−1

n Cnξ) = ĝ(ξ).

We now prove that {|detB−1
n Cn| ĝ(B−1

n Cnξ) : n ≥ 2} is dominated. By assumption,
g ∈ L1(Rd), as well as x 7→ xkg(x) with |k| = 1, 2. This implies that |ĝ(ξ)| ≤ C(1+|ξ|d)−2

for some C > 0. We already saw that |detB−1
n Cn| ≤ 1 + 1/nd, and |ξ|d ≤ |B−1

n Cnξ|d +
|(I −B−1

n Cn)ξ|d implies |B−1
n Cnξ|d ≥ (1− 1/n)|ξ|d. Therefore, for any n ≥ 2,

| detB−1
n Cn| ĝ(B−1

n Cnξ) ≤
C|detB−1

n Cn|
(1 + |B−1

n Cnξ|d)2 ≤
C(1 + 2−d)

(1 + |ξ|d/2)2 .

Then the dominated convergence applies, and

lim
n→∞

sup
x∈Rd

|g(x)− g(B−1
n Cnx)| = 0.
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The second term of the rhs of equation (2.29) is bounded above by |A−1
1 (µ1 − µ2)|d ≤

‖A−1
1 ‖ |µ1 − µ2|d, using Lipshitz continuity of g. Using a symmetry argument, the con-

clusion of the proposition follows. �

Proposition 2.13 – Let Kξ,φ(x) = g(x) cos(
∑d
i=1 ξixi + φ), and assume that for all multi-

index k ∈ Nd with |k| ≤ 1 we have supx∈Rd |xkg(x)| < +∞ and supx∈Rd |Dkg(x)|. Then
there is a constant C > 0 such that for all x, µ1, µ2, ξ1, ξ2 ∈ Rd and all φ1, φ2 ∈ [0, π/2]

|Kξ1(x− µ1)−Kξ2(x− µ2)| ≤ C|ξ1 − ξ2|d + C|µ1 − µ2|d + C|φ1 − φ2|.

Proof. We write,

|Kξ1,φ1(x− µ1)−Kξ2,φ2(x− µ2)| ≤ |Kξ1,φ1(x− µ1)−Kξ1,φ1(x− µ2)|
+ |Kξ1,φ1(x− µ2)−Kξ1,φ2(x− µ2)|+ |Kξ1,φ2(x− µ2)−Kξ2,φ2(x− µ2)|.

Because g has bounded first derivatives, it is Lipschitz continuous for some Lipschitz
contant K > 0, then the first term of the rhs is bounded above by K|µ1 − µ2|d. With
the same argument, the second term is bounded by a constant multiple of ‖g‖∞|φ1−φ2|.
The last term of the rhs is easily bounded, because for all x ∈ Rd:

|Kξ1,φ2(x)−Kξ2,φ2(x)| ≤ | cos(
∑d
i=1 ξ1,ixi + φ2)− cos(

∑d
i=1 ξ2,ixi + φ2)||g(x)|

≤
d∑
i=1
|ξ1,ixi − ξ2,ixi||g(x)|

≤
(

d∑
i=1
|ξ1i − ξ2i|2

)1/2( d∑
i=1
|xig(x)|2

)1/2

,

where the last line holds by Hölder’s inequality. Then the conclusion follows x 7→ xkg(x)
is bounded for all |k| = 1. �

Proposition 2.14 – Let g(x) = exp(−|x|2d/2). Then supx∈Rd |Dαg(x)| . exp(1
2 |α| log |α|)

for all α ∈ Nd.

Proof. For any α ∈ Nd, let k = |α| =
∑d
i=1 αi. When k < 2, the result is obvious. Now

assume that k ≥ 2. By Fourier duality, we have for all x ∈ Rd

|Dαg(x)| ≤
∫
|uαg(u)| du . 2k/2

d∏
i=1

Γ
(
αi + 1

2

)
. 2k/2

d∏
i=1

( 2
αi + 1

)(
αi + 1

2e

)αi+1
2
,

where the last inequality follows from Stirling formula. Then it is clear that,

|Dαg(0)| . exp
{
−k2 −

1
2

d∑
i=1

log(1 + αi) + 1
2

d∑
i=1

αi log(1 + αi)
}
.

The result follows because for all k ≥ 2 we have
∑d
i=1 αi log(1+αi) ≤

∑d
i=1 αi log(1+k) ≤

(1/2 + log k)
∑d
i=1 αi ≤ k/2 + k log k. �
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Tails assumptions and posterior
concentration rates for mixtures of
Gaussians

Résumé

De nos jours en estimation de densité, les vitesses de contraction de la distribution a posteriori
pour les mélanges en translation et en moyenne et variance de Gaussiennes ne sont connus que
sous des hypothèses de queues légères; avec de meilleures vitesses obtenues pour les mélanges en
translation. Il a été conjecturé par Canale et DeBlasi, mais non prouvé, que la situation devrait
être inversée sous des hypothèses de queues lourdes. Cette conjecture est basée sur l’intuition
qu’il n’est pas nécessaire d’obtenir un bon ordre d’approximation dans les régions avec peu
d’observations (disons les queues), favorisant l’usage des mélanges en moyenne et variance qui
peuvent adapter l’ordre d’approximation spatialement. Ici, nous testons l’argument précédent sur
le problème de régression gaussienne avec covariables aléatoires. Bien que nous ne puissions pas
encore invalider la conjecture, nous trouvons que même avec une hypothèse de queues lourdes, les
mélanges en moyenne et variance semblent être moins performants que les mélanges en translation.
Cependant, les preuves suggèrent l’introduction d’un mélange hybride, qui semble être toujours
plus performant que les deux autres, qu’importe la nature des queues. Finalement, nous montrons
que toutes les hypothèses de queues peuvent être supprimées, au prix de rendre la distribution a
priori dépendente des covariables.

Abstract

Nowadays in density estimation, posterior rates of convergence for location and location-scale
mixtures of Gaussians are only known under light-tail assumptions; with better rates achieved
by location mixtures. It has been conjectured by Canale and DeBlasi, but not proved, that
the situation should be reversed under heavy tails assumptions. The conjecture is based on
the feeling that there is no need to achieve a good order of approximation in regions with few
data (say, in the tails), favoring location-scale mixtures which allow for spatially varying order
of approximation. Here we test the previous argument on the Gaussian errors mean regression
model with random design, for which the light tail assumption is not required for proofs. Although
we cannot invalidate the conjecture due to the lack of lower bound, we find that even with heavy
tails assumptions, location-scale mixtures apparently perform in general worst than location
mixtures. However, the proofs suggest to introduce hybrid location-scale mixtures that are find
to outperform both location and location-scale mixtures, whatever the nature of the tails. Finally,
we show that all tails assumptions can be released at the price of making the prior distribution
covariate dependent.

89
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3.1. Introduction

Nonparametric mixture models are highly popular in the Bayesian nonparametric litera-
ture, due to both their reknown flexibility and relative easiness of implementation, see
Hjort et al. (2010) for a review. They have been used in particular for density estimation,
clustering and classification and recently nonparametric mixture models have also been
proposed in nonlinear regression models, see for instance de Jonge and van Zanten (2010);
Wolpert et al. (2011); Naulet and Barat (2015).

There is now a large literature on posterior concentration rates for nonparametric
mixture models, initiated by Ghosal and Van Der Vaart (2001); Ghosal et al. (2007a)
and improved by Kruijer et al. (2010); Shen et al. (2013); Scricciolo (2014) in the context
of location mixtures of Gaussian distributions and studied by Canale and De Blasi (2017)
in the context of location-scale Gaussian distributions and de Jonge and van Zanten
(2010) in the case of location mixture models for nonlinear regression.

Location mixture of Gaussian densities can be writen as

fσ,G(x) =
∫
R
ϕσ(x− µ)dG(µ), (3.1)

while location-scale mixtures have the form

fG(x) =
∫
R×R+

ϕσ(x− µ)dG(µ, σ). (3.2)

These models are used in the Bayesian nonparametric literature to model smooth
curves, typically probability densities, by putting a prior on the mixing distribution G
(and on σ for location mixtures (3.1)). The most popular prior distributions on G are
either finite with unknown number of components, as in Kruijer et al. (2010) and the
reknown Dirichlet Process (Ferguson (1973)) or some of its extensions. In both cases G
is discrete almost surely.

In Kruijer et al. (2010) and later on in Shen et al. (2013); Scricciolo (2014) it was
proved that location mixture of Gaussian distributions lead to adaptive (nearly) optimal
posterior concentration rates (for L1 metrics) over collections of Hölder types functional
classes, in the context of density estimation for independently and identically distributed
random variables. Contrarywise, in Canale and De Blasi (2017), suboptimal posterior
concentration rates are derived and the authors obtain rates that are at best n−β/(2β+2)

up to a logn term in place of n−β/(2β+1). These results are obtained under strong
assumptions on the tail of the true density f0, since it is assumed that f0(x) . e−c|x|

τ

when x goes to infinity, for some positive c, τ .
In Canale and De Blasi (2017), the authors suggest that location-scale mixtures might

lead to suboptimal posterior concentration rates, for light tail distributions but might
be more robust to tails, since the rate n−β/(2β+2) is the minimax estimation rate for
density estimation with regularity β, under the L2 loss, see Reynaud-Bouret et al. (2011);
Goldenshluger and Lepski (2014).

The question thus remains open as to how robust to tails mixtures of Gaussian
distributions (either location or location-scale) are.

Interestingly in Bochkina and Rousseau (2016), much weaker tail constraints are
necessary to achieve the minimax rate n−β/(2β+1), for estimating densities on R+ using
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mixtures of Gamma distributions. The authors merely require that F0 allows for a
moment of order striclty greater than 2. However in Bochkina and Rousseau (2016) as
well as in Kruijer et al. (2010); Shen et al. (2013); Scricciolo (2014), the smoothness
functional classes are non standard and roughly correspond to requiring that the log-
density is locally Hölder, which blurs the understanding of the robustness of Gaussian
mixtures to tails. These smoothness conditions are required to ensure that the density
f0 can be approximated by a mixture fσ,G where G is a probability measure in terms
of Kullback-divergence. Hence to better understand the ability of mixture models to
capture heavy tails we study their use in nonparametric regression models:

Yi = f(Xi) + εi, εi
i.i.d∼ N(0, s2), i = 1, . . . , n,

X1, . . . , Xn
i.i.d∼ Q0, f ∈ L2(Q0).

(3.3)

The parameter is f with prior distribution denoted by Π. We assume that s is known,
which is just a matter of convenience for proofs. All the results of the paper can be
translated to the case s unknown using the same methodology as Salomond (2013) or
Naulet and Barat (2015). Our aim is to study posterior concentration rates around the
true regression function f0 defined by sequences εn converging to zero with n and such
that

Π
(
n−1∑n

i=1 |f(xi)− f0(xi)|2 ≤ ε2n | yn,xn
)

= 1 + op(1), (3.4)

under the model f0. By analogy to the case of density estimation of Reynaud-Bouret et al.
(2011) and Goldenshluger and Lepski (2014) we assume that f0 ∈ L1 and belongs to a
Hölder ball with smoothness β. The tail condition are then on the design distribution
and written as

∫
R |x|pdQ0(x) < +∞, p ≥ 0, and our aim is to study the posterior

concentration rate (3.4) for both location and location-scale mixtures.
We show in section 3.2, that in most cases location mixtures have a better posterior

concentration rate than location-scale mixtures and unless p goes to infinity the posterior
concentration rates is not as good as the usual n−β/(2β+1). This rate is suboptimal for
light tail design points, since in this case the minimax posterior concentration rate is
given by n−β/(2β+1). To improve on this rate we propose a new version of location-scale
mixture models, which we call the hybrid location-scale mixture and we show that this
nonparametric mixture model leads to better posterior concentration rates than the
location mixture (and thus than the location-scale mixture). All these results are up to
logn terms. The results are summarized in table 3.1 which displays the value q defined
by ε2n = n−q.

Although the results are presented in the regression model, we believe that similar
phenomena should take place in the density estimation problem.

The main results with the description of the three types of prior models and the
associated posterior concentration rates are presented in section 3.2. Proofs are presented
in section 3.3 and some technical lemmas are proved in the appendix.

3.1.1. Notations

We call Pf (· | X) the distribution of the random variable Y | X under the model (3.3),
associated with the regression function f . Given (X1, . . . , Xn), Pnf (· | X1, . . . , Xn) stands
for the distribution of the random vector (Y1, . . . , Yn) of independent random variables
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Table 3.1: Summary of posterior rates of convergence for different types of mixtures. The
rates are understood to be in the form ε2n = n−q, up to powers of logn factors, where q
is given below.

0 < p < 2 p ≥ 2

0 < p ≤ 2β
β + 1

2β
β + 1 < p ≤ 2β p > 2β 0 < p ≤ 2β

β + 1
2β
β + 1 < p ≤ 2β p > 2β

Location 2β
3β + 1

2β
3β + 1

2β
3β + 1

2β
2β + 1 + 2β/p

2β
2β + 1 + 2β/p

2β
2β + 1 + 2β/p

Location-scale 2β
3β + 2

2β
2β + 1 + 2β/p

2β
2β + 2

2β
3β + 2

2β
2β + 1 + 2β/p

2β
2β + 2

Hybrid 2β
3β + 1

p

p+ 1
2β

2β + 1
2β

3β + 1
p

p+ 1
2β

2β + 1

Yj ∼ Pf (· | Xj). Also, for any random variable X with distribution P , and any function
g, Pg(X) denote the expectation of g(X).

For any α > 0, we let SGa(α) denote the symmetric Gamma distribution with
parameter α; that isX ∼ SGa(α) has the distribution of the difference of two independent
Gamma random variables with parameters (α, 1).

For any finite positive measure α on the measurable space (X,X ), let Πα denote the
symmetric Gamma process distribution with parameter α (Wolpert et al., 2011; Naulet
and Barat, 2015); that is, anM ∼ Πα is a random signed measure on (X,X ) such that far
any disjoints B1, . . . , Bk ∈ X the random variables M(B1), . . . ,M(Bk) are independent
with distributions SGa(α(Bi)), i = 1, . . . , k.

For any β > 0, we let Cβ denote the Hölder space of order β; that is the set of
all functions f : R → R that have bounded derivatives up to order m, the largest
integer smaller than β, and such that the norm ‖f‖Cβ := supk≤m supx∈R |f (k)(x)| +
supx 6=y |f (m)(x)− f (m)(y)|/|x− y|β−m is finite.

For 1 ≤ p < ∞ we let Lp be the space of function for which the norm ‖f‖pp :=∫
|f(x)|p dx is finite; and by L∞ we mean the space of functions for which ‖f‖∞ :=

supx∈R |f(x)| is finite. For 0 ≤ p, q ≤ ∞ and functions f ∈ Lp, g ∈ Lq, we write f ∗ g
the convolution of f and g, that is f ∗ g(x) :=

∫
f(x− y)g(y) dy for all x ∈ R. Moreover,

we’ll use repeatedly Young’s inequality which state that ‖f ∗ g‖r ≤ ‖f‖p‖g‖q, with
1/p+ 1/q = 1/r + 1.

If f ∈ L1, then we define f̂ as the (L1) Fourier transform of f ; that is f̂(ξ) :=∫
f(x)e−iξx dx for all ξ ∈ R. Moreover, if f̂ ∈ L1, then the inverse Fourier transform

is well-defined and f(x) = (2π)−1 ∫ f̂(ξ)eixξ dξ. Also, we denote by S the Schwartz
space; that is the space of infinitely differentiable functions f : R → R for which
|xrf (k)(x)| < +∞ for all r > 0 and all k ∈ N. Then S ⊂ L1, and it is well known that
the Fourier transform maps S onto itself, thus the Fourier transform is always invertible
on S. We note ‖f‖r,k = sup{|x|r|f (k)(x)|, x ∈ R} for any f ∈ S.

For two real numbers a, b, the notation a∧b stand for the minimum of a and b whereas
a∨ b stand for the maximum. Similarly, given two real valued functions f, g the function
f ∧ g is the function which at x assigns the minimum of f(x) and g(x) and f ∨ g has
obvious definition. Throughout the paper C denotes a generic constant.

Inequalities up to a generic constant are denoted by . and &.
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3.2. Posterior convergence rates for Symmetric Gamma
mixtures

In this section we present the main results of the paper. We first present the three types
of priors that are studied; i.e. location mixtures, location-scale mixtures and hybrid
location-scale mixtures and for each of these families of priors we provide the associated
posterior concentration rates.

Recall that we consider observations (Yi, Xi)ni=1 independent and identically dis-
tributed according to model (3.3) and we note yn = (Y1, · · · , Yn) and xn = (X1, · · · , Xn).
We denote the prior and the posterior distribution on f by Π(·) and Π(· | yn,xn) respec-
tively.

3.2.1. Family of priors

Location mixtures of Gaussians

A symmetric Gamma process location mixture of Gaussians prior Π is the distribution
of the random function f(x) :=

∫
ϕ((x−µ)/σ) dM(µ) where σ ∼ Gσ and M ∼ Πα, with

α a finite positive measure on R, Gσ a probability measure on (0,∞) and ϕ(x) := e−x
2/2

for all x ∈ R.
We restrict our discussion to priors for which the following conditions are verified. We

assume that there are positive constants a1, a2, a3 and b1, b2, b3, b4 such that Gσ satisfies
for x ≥ 1

Gσ (σ > x) . exp(−a1x
b1) (3.5)

Gσ (σ ≤ 1/x) . exp(−a2x
b2) (3.6)

Gσ
(
x−1 ≤ σ ≤ x−1(1 + t)

)
& xb3tb4 exp(−a3x), ∀t ∈ (0, 1). (3.7)

We let α := αGµ for a positive constant α > 0 and Gµ a probability distribution on R.
We assume that there are positive constants b5, b6 such that Gµ satisfies for all x ∈ R

Gµ (|µ− x| ≤ t) & tb5(1 + |x|)−b6 , ∀t ∈ (0, 1). (3.8)

The heavy tail condition on Gµ is required to not deteriorate the rate of convergence
when Q0 is heavy tailed.

Notice that equation (3.5) forbids the use of the classical inverse-Gamma distribution
as prior distribution on σ because of its heavy tail. In fact, it is always possible to
weaken equation (3.5) to allow for Inverse-Gamma distribution (see Canale and De Blasi
(2017); Naulet and Barat (2015)) but it complicates the proofs with no contribution
to the subject of the paper. We found that among the usual distributions the inverse-
Gaussian is more suitable for our purpose since it fulfills all the equations (3.5) to (3.7),
as shown in proposition 3.1. We recall that the inverse-Gaussian distribution on (0,∞)
with parameters a > 0, b > 0 has density with respect to Lebesgue measure

f(x; a, b) :=
(

b

2πx3

)1/2
exp

(
−b(x− a)2

2a2x

)
, ∀x > 0,

and f(x; a, b) = 0 elsewhere.
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Proposition 3.1 – The inverse-Gaussian distribution with parameters b, a > 0 satisfies
equations (3.5) to (3.7) with a1 = b/(2a2), b1 = 1, a2 = b/4, b2 = 1, b3 = 1, b4 = 1 and
a3 = b/2.

Proof. It suffices to write, for any x ≥ 1

Gσ (σ > x) ≤
(

b

2πx3

)1/2 ∫ ∞
x

exp
(
−b(t− a)2

2a2t

)
dt

≤
(
b

2π

)1/2
exp

(
b

a
− b

2

)∫ ∞
x

exp
(
− bt

2a2

)
dt.

Also, for any x ≥ 1

Gσ (σ ≤ 1/x) ≤
(
b

2π

)1/2 ∫ 1/x

0
t−3/2 exp

(
−b(t− a)2

2a2t

)
dt

≤
(
b

2π

)1/2
eb/a

∫ 1/x

0
t−3/2e−b/(2t) dt

≤ 216(b
√
e)−3

(
b

2π

)1/2
eb/a

∫ 1/x

0
e−b/(4t) dt.

Finally, for any x ≥ 1 and 0 < t < 1,

Gσ
(
x−1 ≤ σ ≤ x−1(1 + t)

)
≥
(
b

2π

)1/2
eb/a−b/a

2
∫ x−1(1+t)

x−1
e−b/(2t) dt. �

Location-scale mixtures of Gaussians

A symmetric Gamma process location-scale mixture of Gaussians prior Π is the distri-
bution of the random function f(x) :=

∫
ϕ((x − µ)/σ) dM(σ, µ) where M ∼ Πα, with

α a finite positive measure on (0,∞) × R and ϕ(x) := e−x
2/2 for all x ∈ R. We focus

the attention of the reader on the fact that althought we use the same notations (i.e.
Π, α) as the previous section, these are different distributions and in the sequel we pay
attention as making the context clear enough to avoid confusions.

We restrict our discussion to priors for which α := αGσ × Gµ, with α > 0 and Gσ,
Gµ satisfying the same assumptions as in section 3.2.1.

Hybrid location-scale mixtures of Gaussians

The proof of the results given in the two preceeding sections suggests that neither location
or location-scale mixtures can achieve the optimal rates, whatever the nature of the tails
of Q0. We show that we can get better upper bounds by introducing hybrid mixtures.

By a hybrid location-scale mixtures of Gaussians, we mean the distribution Π of the
random function f(x) :=

∫
ϕ((x− µ)/σ) dM(σ, µ), where M ∼ Πα, with α = αPσ ×Gµ,

α > 0, Pσ ∼ Πσ and Gµ a probability measure satisfying equation (3.8). Here Πσ is a
prior distribution on the space of probability measures (endowed with Borel σ-algebra).
We now formulate conditions on Πσ that are the random analoguous to equations (3.5)
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and (3.6). For the same constants a1, a2, b1, b2 as in section 3.2.1, we consider the existence
of positive constants a4, a5 such that Πσ satisfies for x > 0 large enough

Πσ

(
Pσ : Pσ(σ > x) ≥ exp(−a1x

b1/2)
)
. exp(−a4x

b1), (3.9)

Πσ

(
Pσ : Pσ(σ < 1/x) ≥ exp(−a2x

b2/2)
)
. exp(−a5x

b2). (3.10)

As a replacement of equation (3.7), we assume that for all r ≥ 1 there are constants
a6, b7 such that for any positive integer J large enough

Πσ

(
∩Jj=0{Pσ : Pσ[2−j , 2−j(1 + 2−Jr)] ≥ 2−J}

)
& exp(−a6J

b72J). (3.11)

Equations (3.9) to (3.11) are rather restrictive and it is not clear a priori whether or
not such distribution exists. For example, if Pσ is chosen to be almost-surely an Inverse-
Gaussian distribution with parameters b, µ then equation (3.11) is not satisfied. However,
we now show that under conditions on the base measure, Πσ can be chosen as a Dirichlet
Process, hereafter referred to as DP.

We recall that if Πσ is a Dirichlet Process distribution with base measure ασG(·)
on (0,∞) (Ferguson, 1973), then Pσ ∼ Πσ is a random probability measure on (0,∞)
such that for any Borel measurable partition A1, . . . , Ak of (0,∞), the joint distribution
of the random variables Pσ(A1), . . . , Pσ(Ak) is the k-variate Dirichlet distribution with
parameters ασG(A1), . . . , ασG(Ak).

Proposition 3.2 – Let ασ > 0, Gσ a probability measure on (0,∞) satisfying the same
assumptions as in equations (3.5) to (3.7), and Πσ be a Dirichlet Process with base
measure ασGσ(·). Then Πσ satisfies equations (3.9) to (3.11) with constants a4 = a1,
a5 = a2, a constant a6 > 0 eventually depending on r, and b7 = 0.

Proof. We first prove equation (3.9). It follows from the definition of the DP that
Pσ(x,∞) has Beta distribution with parameters ασGσ(x,∞) and ασ(1 − Gσ(x,∞)),
then by Markov’s inequality

Πσ

(
Pσ : Pσ(x,∞) ≥ t

)
≤ Gσ(x,∞)

t
.

Likewise, if t = exp(−a1x
b1/2) and Gσ satisfies equations (3.5) to (3.7), the conclusion

follows. The same steps with Gσ(0, 1/x) give the proof of equation (3.10). It remains
to prove equation (3.11). Let r ≥ 1 and define Vj,r := {σ : 2−j ≤ σ ≤ 2−j(1 + 2−Jr)}
for any integer 0 ≤ j ≤ J . For all r ≥ 1 the Vj,r’s are disjoint. Set V c

r := ∪Jj=0V
c
j,r. If

ασGσ(V c
r ) ≤ 1 let VJ+1,r = V c

r and M = 1 ; otherwise split V c
r into M > 1 disjoint

subsets V c
1,r, . . . V

c
M,r such that exp(−2J) ≤ ασGσ(V c

k,r) ≤ 1 for all k = 1, . . . ,M and set
VJ+1,r = V c

1,r, VJ+2,r = V c
2,r, . . . , VJ+M,r = V c

M,r (since Gσ(0,∞) = 1 this can be done
with a number M independent of J). For J large enough (so that (J +M)2−J+1 < 1),
acting as in Ghosal et al. (2000, lemma 6.1), it follows

Πσ

(
Pσ : Pσ[2−j , 2−j(1 + 2−Jr] ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(ασ)2−J(J+M)∏J+M

j=0 Γ(ασGσ(Vj,r))
,
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Also, ασGσ(Vj,r) ≤ 1 implies Γ(ασGσ(Vj,r)) ≤ 1/(ασGσ(Vj,r)), hence

Πσ

(
Pσ : Pσ[2−j , 2−j(1 + 2−Jr] ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(ασ)αJ+M+1

σ 2−J(J+M)
J+M∏
j=0

Gσ(Vj,r).

Since M does not depend on J , one can find a constant C > 0 such that

Πσ

(
Pσ : Pσ[2−j , 2−j(1 + 2−Jr] ≥ 2−J ∀ 0 ≤ j ≤ J

)
≥ Γ(ασ) exp

−CJ2 +
J∑
j=0

logGσ(Vj,r) +
J+M∑
j=J+1

logGσ(Vj,r)

 .
By construction, the second sum in the rhs of the last equation is lower bounded by
−M2J , whereas if Gσ satisfies equations (3.5) to (3.7), the first sum is lower bounded
by −C ′2J for a constant C ′ > 0 eventually depending on r. Then the proposition is
proved. �

3.2.2. Posterior concentration rates under the mixture priors

We let Π(· | yn,xn) denote the posterior distribution of f ∼ Π based on n observations
(X1, Y1), . . . , (Xn, Yn) modelled as in section 3.1. Let (εn)n≥1 be a sequence of positive
numbers with limn εn = 0, and dn denote the empirical L2 distance, that is ndn(f, g)2 =∑n
i=1 |f(Xi)− g(Xi)|2.
The following theorem is proved in Section section 3.3 .

Theorem 3.1 – Consider the model (3.3), and assume that f0 ∈ L1∩Cβ and Q0|X|p < +∞.
Then there exist a constant C > 0 and t > 0 depending only on f0 and Q0 such that
• If the prior Π is the symmetric Gamma location mixture of Gaussians as defined
in section 3.2.1

Π
(
dn(f, f0)2 > Cn−2β/(3β+1)(logn)t | yn,xn

)
= op(1)

when 0 < p ≤ 2, and

Π
(
dn(f, f0)2 > Cn−2β/(2β+1+2β/p)(logn)t | yn,xn

)
= op(1)

when p > 2.
• If the prior Π is the symmetric Gamma location-scale mixture of Gaussians defined
in section 3.2.1

Π
(
dn(f, f0)2 > C[n−2β/(3β+2) ∧ n−2β/(2β+1+2β/p)](logn)t | yn,xn

)
= op(1)

when 0 < p ≤ 2β, and

Π
(
dn(f, f0)2 > Cn−β/(β+1)(logn)t | yn,xn

)
= op(1),

when p > 2β.
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• If the prior Π is the hybrid symmetric Gamma location-scale mixture of Gaussians
defined in section 3.2.1

Π
(
dn(f, f0)2 > C[n−2β/(3β+1) ∧ n−p/(p+1)](logn)t | yn,xn

)
= op(1),

when 0 < p ≤ 2β or

Π
(
dn(f, f0)2 > Cn−2β/(2β+1)(logn)t | yn,xn

)
= op(1),

when p > 2β .
The upper bounds on the rates in the previous paragraph are no longer valid when

p = 0. Indeed the constant C > 0 depends on p and might not be definite if p = 0 ;
the reason is to be found in the fact that C heavily depends on the ability of the prior
to draw mixture component in regions of observed data, which remains concentrated
near the origin when p > 0. In section 3.2.3, we overcome this issue by making the prior
covariate dependent ; this allows to derive rates under the assumption p = 0 (no tail
assumption).

3.2.3. Relaxing the tail assumption : covariate dependent prior for
location mixtures

Although the rates derived in section 3.3 do not depend on p > 0 when p is small, the
assumption Q0|X|p < +∞ is crucial in proving the Kullback-Leibler condition. Indeed,
this condition ensures that the covariates belong to a set Xn which is not too large, which
allows us to bound from below the prior mass of Kullback-Leibler neighbourhoods of
the true distribution. Surprisingly, it seems very difficult to get rid of this assumption
under a fully Bayesian framework without fancy assumptions, while making the prior
covariates dependent allows to drop all tail conditions on Q0. Doing so, we can adapt to
the tail behaviour of Q0, as shown in the following theorem, which is an adaptation of
the general theorems of Ghosal et al. (2007b). For convenience, in the sequel we drop out
the superscript n and we write x, y for xn, yn, respectively. For ε > 0 and any subset A
of a metric space equipped with metric d, we let N(ε, A, d) denote the ε-covering number
of A, i.e. N(ε, A, d) is the smallest number of balls of radius ε needed to cover A.
Theorem 3.2 – Let Πx be a prior distribution that depends on the covariate vector x,
0 < c2 < 1/4 and εn → 0 with nε2n →∞. Suppose that Fn ⊆ F is such that Qn0 Πx(Fcn) .
exp(−1

2(1 + 2c2)nε2n) and logN(εn/18,Fn, dn) ≤ nε2n/4 for n large enough. If for any
x ∈ Rn it holds Πx(f : dn(f, f0) ≤ sεn) & exp(−c2nε

2
n), then for all M > 0 we have

Πx(f : dn(f, f0) > Mεn | y,x) = op(1).
We apply theorem 3.2 to symmetric Gamma process location mixtures of Gaussians

in the following way. Let Qn
x denote the empirical measure of the covariate vector x.

Given a probability density function g, we let Gx the probability measure which density
is z 7→

∫
g(z − xi) dQn

x(x).
Corollary 3.1 – Then we let Πx be the distribution of the random function f(x) :=

∫
ϕ((x−

µ)/σ) dM(µ), where σ ∼ Gσ and M ∼ Πα with α = αGx for some α > 0. Assume that
Gσ satisfies equations (3.5) to (3.7) and that there exists a constant b8 > 0 such that
supx∈Rn Gx(µ : |µ− s| ≤ t) . tb8 for all 0 < t, s ≤ 1. Then Πx(f : dn(f, f0) > Mεn |
y,x) = op(1) with ε2n . n−2β/(3β+1)(logn)2−2β/(3β+1).
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To prove corollary 3.1, note that neither the proof of lemma 3.4 or lemma 3.5 involve
the base measure α (indeed, it only involves α); thus we can use the sieve Fn constructed
in section 3.4.1. To apply theorem 3.2 it is then sufficient to prove that for all x ∈ Rn

Πx(f : dn(f, f0) ≤ sεn) & exp(−c2nε
2
n). (3.12)

This is done in lemma 3.1.

Lemma 3.1 – Assume that there is a constant b8 > 0 such that supx∈Rn Gx(µ : |µ− s| ≤
t) . tb8 for all 0 < t, s ≤ 1. Also assume that Gσ satifies equations (3.5) to (3.7). Then
equation (3.12) holds for the symmetric Gamma location mixture of Gaussians with base
measure αGx if ε2n ≤ Cn−2β/(3β+1)(logn)2−2β/(3β+1) for an appropriate constant C > 0.

The proof of lemma 3.1 is given in section 3.B.

3.3. Proofs

To prove theorem 3.1 we follow the lines of Ghosal et al. (2000); Ghosal and Van Der Vaart
(2001); Ghosal et al. (2007a). Namely we need to verify the following three conditions
• Kullback-Leibler condition : For a constant 0 < c2 < 1/4,

Π(KL(f0, εn)) ≥ e−c2nε2n , (3.13)

where
KL(f0, εn) :=

{
f : 1

2s2

∫
|f0(x)− f(x)|2 dQ0(x) ≤ ε2n

}
.

• Sieve condition : There exists Fn ⊂ F such that

Π(Fcn) ≤ e−
1
2 (1+2c2)nε2n (3.14)

• Tests : Let N(εn/18,Fn, dn) be the logarithm of the covering number of Fn with
radius εn/18 in the dn(·, ·) metric.

N(εn/18,Fn, dn) ≤ nε2n
4 . (3.15)

The Kullback-Leibler condition is proved by defining an approximation of f by a
discrete mixture under weak tail conditions. Although the general idea is close to Kruijer
et al. (2010) or Scricciolo (2014), the construction remains quite different to be able to
handle various tail behaviours. This is detailed in the following section.

3.3.1. Approximation theory

To describe the approximation of f0 by a finite mixture, we first define a few notations.
Let χ̂ be a C∞ function that equals 1 on [−1, 1] and 0 outside [−2, 2]c (think for

instance as the convolution of 1[−1,1] with x 7→ exp(−1/(1 − x2))1[−1,1](x)). For any
σ > 0 we use the shortened notation χ̂σ(ξ) := χ̂(2σξ). Define η as the function which L1
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Fourier transform satisfies η̂(ξ) = χ̂(ξ)/ϕ̂(ξ) for all ξ ∈ [−2, 2] and η̂(ξ) = 0 elsewhere.
For two positive real numbers h and σ, we define the kernel Kh,σ : R×R→ R such that

Kh,σ(x, y) := h

σ

∑
k∈Z

ϕ

(
x− hσk

σ

)
η

(
y − hσk

σ

)
, ∀(x, y) ∈ R× R.

For a measurable function f we introduce the operator associated with the kernel :
Kh,σf(x) =

∫
Kh,σ(x, y)f(y) dy. The function Kh,σf will play the role of an approxima-

tion for the function f , and we will evaluate how this approximation becomes close to f
given h and σ sufficiently close to zero.

More precisely, we will prove that, when choosing h appropriately, f can be approx-
imated by Kh,σ(χσ ∗ f0) to the order σβ. Moreover Kh,σ(χσ ∗ f0) can be written as∑
k∈Z ukϕ((x− µk)/σ)). In a second step we approximate Kh,σ(χσ ∗ f0) by a truncated

version of it, retaining only the k’s such that |uk| is large enough and |µk| not too large. In
the case of location-scale and hybrid location-scale mixtures we consider a modification
of this approximation to control better the number of components for which σ needs to
be small. We believe that these constructions have interest in themselves. In particular
they shed light on the relations between Gaussian mixtures and wavelet approximations.

These approximation properties are presented in the following two Lemmas which
are proved in section 3.A:
Lemma 3.2 – There is C > 0 depending only on β such that for any f0 ∈ L1 ∩ Cβ and
any σ > 0 we have |χσ ∗ f0(x)− f0(x)| ≤ C‖f‖Cβσβ for all x ∈ R.
Lemma 3.3 – Let fσ := χσ ∗ f0 and h ≤ 1. Then there is a universal constant C > 0 such
that |Kh,σfσ(x)− fσ(x)| ≤ C‖f0‖1σ−1e−4π2/h2 for all x ∈ R.

We now present the approximation schemes in the context of location mixtures.

3.3.2. Construction of the approximation under location mixtures

Let 0 < σ ≤ 1 and hσ
√

log σ−1 := 2π
√
β + 1. Then combining the results of lemma 3.2

and lemma 3.3 we can conclude that |Khσ ,σ(χσ ∗ f0)(x) − f0(x)| . σβ. Now we define
the coefficients uk, k ∈ Z so that

Khσ ,σ(χσ ∗ f0)(x) =:
∑
k∈Z

uk ϕ

(
x− µk
σ

)
, ∀k ∈ Z,

where µk := hσσk for all k ∈ Z. Let define

Λ :=
{
k ∈ Z : |uk| > σβ, |µk| ≤ σ−2β/p + σ

√
2(β + 1) log σ−1

}
,

Uσ := {σ′ : σ ≤ σ′ ≤ σ(1+σβ)}, and for all k ∈ Λ we define Vk := {µ : |µ−µk| ≤ σβ+1}
and V = ∪k∈ΛVk. We also denote

Mσ :=
{
M signed measure on R : |M(Vk)− uk| ≤ σβ,

∀k ∈ Λ : |M |(V c) ≤ σβ

}
,

and for any M ∈Mσ, we write fM,σ(x) :=
∫
ϕ((x− µ)/σ) dM(µ).
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Proposition 3.3 – For σ > 0 small enough, it holds |Λ| . σ−(β+1) ∧ h−1
σ σ−(2β/p+1).

Proof. Because there is a separation of hσσ between two consecutive µk, it is clear that
|Λ| ≤ 2h−1

σ σ−(2β/p+1). Moreover, from proposition 3.9 we have the following estimate.

‖f0‖1σ−1 &
∑
k∈Z
|uk| ≥

∑
k∈Λ
|uk| ≥ σβ|Λ|. �

Proposition 3.4 – For all x ∈ R, all σ > 0 small enough and all M ∈ Mσ it holds
|fM,σ(x)− f0(x)| . h−1

σ .

Proof. For any M ∈Mσ, we have that |fM,σ(x)− f0(x)| ≤ |fM,σ(x)|+ ‖f0‖∞. But, with
I ≡ I(x) := {k ∈ Z : |x− µk| ≤ 2σ},

fM,σ(x) =
∑

k∈Λ∩I

∫
Vk

ϕ

(
x− µ
σ

)
dM(µ)

+
∑

k∈Λ∩Ic

∫
Vk

ϕ

(
x− µ
σ

)
dM(µ) +

∫
V c
ϕ

(
x− µ
σ

)
dM(µ). (3.16)

Clearly the last term of this last expression is bounded above by ‖ϕ‖∞σβ . For the second
term, we have for any µ ∈ Vk with k ∈ Ic that |x−µ| ≥ |x−µk| − |µ−µk| ≥ |x−µk|/2.
Then the second term of the rhs of equation (3.16) is bounded above by

sup
k∈Λ∩Ic

|M |(Vk)
∑
k∈Z

ϕ

(
x− hσσk

σ

)
.

Proceeding as in the proof of lemma 3.9, we deduce that the series in the last expression is
bounded above by a constant times 1/hσ, whereas proposition 3.9 and Young’s inequality
yields |M |(Vk) ≤ |M(Vk)− uk|+ |uk| . σβ + ‖χσ ∗ f0‖∞ ≤ σβ + ‖χ‖1‖f0‖∞. Therefore
the second term of the rhs in equation (3.16) is bounded by a constant multiple of h−1

σ .
Regarding the first term in equation (3.16), it is bounded by ‖ϕ‖∞|I| supk∈Λ |M |(Vk),
which is in turn bounded by h−1

σ times a constant. �

Proposition 3.5 – For all σ > 0 small enough, all x ∈ R with |x| ≤ σ−2β/p and all
M ∈Mσ it holds |fM,σ(x)− f0(x)| . h−2

σ σβ.

Proof. We define Aσ(β) :=
√

2 log |Λ|+ 2(β + 1) log σ−1. Then for any M ∈Mσ, letting
J ≡ J (x) := {k ∈ Z : |x− µk| ≤ 2σAσ(β)}, we may write

fM,σ(x)−Khσ ,σ(χσ ∗ f0)(x) =
∑

k∈Λ∩J

∫
Vk

[
ϕ

(
x− µ
σ

)
− ϕ

(
x− µk
σ

)]
dM(µ)

+
∑

k∈Λ∩J
[M(Vk)− uk]ϕ

(
x− µk
σ

)
+

∑
k∈Λ∩J c

∫
Vk

ϕ

(
x− µ
σ

)
dM(µ)

−
∑

k∈Λ∩J c
uk ϕ

(
x− µk
σ

)
−
∑
k∈Λc

uk ϕ

(
x− µk
σ

)
+
∫
V c
ϕ

(
x− µ
σ

)
dM(µ)

:= r1(x) + r2(x) + r3(x) + r4(x) + r5(x) + r6(x). (3.17)
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With the same argument as in proposition 3.3, we deduce that |J | ≤ 2h−1
σ Aσ(β). The

same proposition implies Aσ(β) .
√

log σ−1. Recalling that |M |(Vk) . 1+‖χ‖1‖f0‖∞ for
all k ∈ Λ and all M ∈Mσ, it follows from proposition 3.11 that |r1(x)| . Aσ(β)h−1

σ σβ.
From the definition ofMσ, it comes |r2(x)| ≤ ‖ϕ‖∞|J |σβ ≤ 2‖ϕ‖∞Aσ(β)h−1

σ σβ . When-
ever k ∈ Λ ∩ J c and µ ∈ Vk, it holds |x− µ| ≥ |x− µk| − |µ− µk| ≥ σAσ(β). Therefore,
|r3(x)| . ϕ(Aσ(β))|Λ| . σβ+1. With the same argument, proposition 3.9 and Young’s
inequality we get |r4(x)| . ‖χσ ∗ f0‖∞ϕ(2Aσ(β))|Λ| ≤ ‖χ‖1‖f0‖∞σβ. Regarding r5,
we rewrite Λc = Λc1 ∪ Λc2, with Λc1 := {k ∈ Z : |uk| ≤ σβ} and Λc2 := {k ∈ Z :
|µk| > σ−2β/p + σ

√
2(β + 1) log σ−1}. Then,

|r5(x)| ≤
∑
k∈Λc1

|uk|ϕ
(
x− µk
σ

)
+
∑
k∈Λc2

|uk|ϕ
(
x− µk
σ

)

≤ σβ sup
x∈R

∑
k∈Z

ϕ

(
x− µk
σ

)
+
∑
k∈Λc2

|uk|ϕ
(
x− µk
σ

)
. (3.18)

The first term of the rhs of equation (3.18) is bounded by a multiple constant of
h−1
σ σβ, with the same argument as in the proof of lemma 3.9. By definition of Λc2,
|x−µk| ≥ σ

√
2(β + 1) log σ−1 when k ∈ Λc2 and |x| ≤ σ−2β/p. This implies, together with

proposition 3.9 and Young’s inequality, that the second term of the rhs of equation (3.18)
is bounded by a constant multiple of σβ+1∑

k∈Z |uk| . ‖χσ∗f0‖1σβ ≤ ‖χ‖1‖f0‖1σβ for all
|x| ≤ σ−2β/p. Finally, we have the trivial bound |r6(x)| ≤ ‖ϕ‖∞|M |(V c) ≤ ‖ϕ‖∞σβ . �

3.3.3. Construction of the approximation under location-scale and
hybrid location-scale mixtures

Let σ0 := 1 and define recursively σj+1 := σj/2 for any j ≥ 0. Let ∆0 := f0 − χσ0 ∗ f0,
and define recursively ∆j+1 := ∆j − χσj+1 ∗∆j , for any j ≥ 0.

The general idea of the construction is that |∆j | . σβj , as shown in proposition 3.10
in appendix, and that similarly to wavelet decomposition, we approximate a function f0
Hölder β by

f1 := K0(χσ0 ∗ f0) +
J∑
j=1

Kj(χσj ∗∆j−1).

where J ≥ 1 is a large enough integer, hJ
√
J := 2π/

√
β log 2, and Kj := KhJ ,σj . By

induction, we get that ∆j = ∆0 −
∑j−1
l=0 χσl+1 ∗∆l. It follows,

f1 − f0 = K0(χσ0 ∗ f0)− f0 +
J∑
j=1

Kj(χσj ∗∆j−1)

= ∆J +K0(χσ0 ∗ f0)− χσ0 ∗ f0 +
J∑
j=1

[
Kj(χσj ∗∆j−1)− χσj ∗∆j−1

]
.

Therefore, from lemma 3.3 and proposition 3.10 and Young’s inequality, the error of
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approximating f0 by f1 is

|f1(x)− f0(x)|

≤ |∆J |+ |K0(χσ0 ∗ f0)− χσ0 ∗ f0|+
J∑
j=1
|Kj(χσj ∗∆j−1)− χσj ∗∆j−1|

. ‖f0‖Cβσ
β
J + ‖χσ0 ∗ f0‖1σ−1

0 e−4π2/h2
J + e−4π2/h2

J

J∑
j=1
‖χσj ∗∆j−1‖σ−1

j

. ‖f0‖Cβσ
β
J + ‖f‖1e−4π2/h2

J + ‖f0‖1e−4π2/h2
J

J∑
j=1

2j

. ‖f0‖Cβσ
β
J + ‖f0‖1(1 + 2J)e−4π2/h2

J . σβJ .

The reason for considering different scale parameters in the construction, is to deal
with fat tail, the heuristic being that in the tail we do not require as precise an approxima-
tion as in the center. In particular small values of j will be used to estimate the function
far off in the tails. To formalize this, we define ζj := 2(J−j)(2β/p), and Aj := [−ζj , ζj ],
for all j = 0, . . . J . We also define IJ = [−1, 1], and for all j = 0, . . . , J − 1 we set
Ij := Aj\Aj+1. Notice that by definition of Kj , we can write,

K0(χσ0 ∗ f0)(x) =:
∑
k∈Z

u0k ϕ((x− hJσ0k)/σ0)

Kj(χσj ∗∆j−1)(x) =:
∑
k∈Z

ujk ϕ((x− hJσjk)/σj), ∀j ≥ 1.

To ease notation, we define µjk := hJσjk for all j ≥ 0 and all k ∈ Z. In the sequel we
shall need the following subset of indexes,

Λ :=
{

(j, k) ∈ {0, . . . , J} × Z : |ujk| > σβJ , |µjk| ≤ ζj +
√

2(β + 1) log σ−1
J

}
.

We prove below that we can approximate f1 by a finite mixture corresponding to
retaining only the components associated to indices in Λ and that we can bound the
cardinality of Λ by O(J log Jσ−2β/p

J )
To any (j, k) ∈ Λ we associate Uj := {σ : σj ≤ σ ≤ σj(1 + σβJ )}, Vjk := {µ :

|µ − µjk| ≤ σjσ
β
J} and Wjk := Uj × Vjk. We denote by M the set of signed measures

M on (0,∞)× R such that |M(Wjk)− ujk| ≤ σβJ for all (j, k) ∈ Λ, and |M |(W c) ≤ σβJ ,
where W c is the relative complement of the union of all Wjk for (j, k) ∈ Λ. For any
M ∈M, we write

fM (x) :=
∫
ϕ((x− µ)/σ) dM(σ, µ).

In proposition 3.6 we control the cardinality of Λ while in proposition 3.8 we control
the error between fM and f1 on the decreasing sequence of intervals [−ζj , ζj ]. Proposi-
tion 3.7 provides a crude uniform upper bound on fM and f0.
Proposition 3.6 – There is a constant C > 0 depending only on f0 and Q0 such that
|Λ| ≤ C[σ−(β+1)

J ∧ (J log J)σ−2β/p
J ] if p ≤ 2β, and |Λ| ≤ C(J log J)σ−1

J if p > 2β.
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Proof. First notice that because of propositions 3.9 and 3.10, we always have the bound

4‖f0‖1σ−1
J ≥ 2‖f0‖1

J∑
j=0

σ−1
j ≥

J∑
j=0

∑
k∈Z
|ujk| ≥

∑
(j,k)∈Λ

|ujk| ≥ σβJ |Λ|. (3.19)

If p ≤ 2β, we define B :=
√

2(β + 1) log 2, so that
√

2(β + 1) log σ−1
J = B

√
J . Now

consider those indexes j with ζj ≤ B
√
J . An elementary computation shows that there

are at most . log J such indexes. Therefore, recalling that there is a separation of hJσj
between two consecutive µjk and that there are at most J indexes j with ζj > B

√
J

|Λ| .
J∑
j=0

4ζj
hJσj

+ log J × 2B
√
J

hJσJ

≤ 4h−1
J σ

−2β/p
J

J∑
j=0

2−j(
2β
p
−1) + 2B(

√
J log J)h−1

J σ−1
J . (3.20)

Because hJ
√
J . 1 by definition, and because p ≤ 2β, the result follows from the last

equation and equation (3.19). If p > 2β, the reasoning is the same as in the first part,
but we can rewrite in this situation the equation (3.20) as

|Λ| ≤ 4h−1
J σ−1

J

J∑
j=0

2(j−J)(1− 2β
p

) + 2B(
√
J log J)h−1

J σ−1
J .

Since p > 2β, the conclusion is immediate. �

Proposition 3.7 – For all x ∈ R, all J > 0 large enough and all M ∈ M, it holds
|fM (x)− f0(x)| . J3/2.

Proof. Let I ≡ I(x) := {(j, k) ∈ {0, . . . , J} × Z : |x − µjk| ≤ 2σj}. Then the proof is
almost identical to proposition 3.4. It suffices to notice that
• |M |(Wjk) ≤ |M(Wjk)−ujk|+ |ujk| is always bounded above by a constant, because
of the definition ofM, of propositions 3.9 and 3.10.
• |x− µ|/σ ≥ (1/4)|x− µjk|/σj whenever (σ, µ) ∈ Wjk and (j, k) ∈ Λ ∩ Ic, as soon
as J is large enough.
• |I| ≤ 5Jh−1

J for J ≥ 1. �

Proposition 3.8 – If f0 ∈ Cβ, for all J > 0 large enough, all 0 ≤ j ≤ J , all x ∈ [−ζj , ζj ]
and all M ∈M, it holds |fM (x)− f0(x)| . J3/2σβj .

The proof of proposition 3.8 is given in section 3.C.

3.4. Proof of theorem 3.1

As mentioned earlier, the proof of theorem 3.1 boils down to verifying conditions (3.13),
(3.14) and (3.15) for the three types of priors.
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3.4.1. Case of the location mixture

Kullback-Leibler condition for location mixtures

In this Section we verify condition (3.13) in the case of the location mixture prior, using
the results of section 3.3.2

By Chebychev inequality, we have Q0[−σ−2β/p, σ2β/p]c ≤ σ2βQ0|X|p. Then by bring-
ing together results from propositions 3.4 and 3.5, we can find a constant C > 0 such
that for all M ∈Mσ∫

|fM,σ(x)− f0(x)|2 dQ0(x) ≤ sup
|x|>σ−2β/p

|fM,σ(x)− f0(x)|2Q0[−σ−2β/p, σ−2β/p]c

+ sup
|x|≤σ−2β/p

|fM,σ(x)− f0(x)|2

≤ Cσ2β(log σ−1)2.

By equation (3.7), we have Gσ(Uσ) & σ−b3σb4β exp(−a3/σ). Moreover, there is a
separation of hσσ between two consecutive µk and hσσ � σ, thus all the Vk with
k ∈ Λ are disjoint. By assumptions on Gµ (see equation (3.8)), αk := αGµ(Vk) &
σb5(β+1)(1 + |µk|)−b6 for all k ∈ Λ. We also define αc := α(V c). For σ small enough,
there is a constant C ′ > 0 not depending on σ such that αc > C ′. Moreover, since α has
finite variation we can assume without loss of generality that C ′ ≤ αc ≤ 1, otherwise
we split V c into disjoint parts, each of them having α-measure smaller than one. With
ε2n := Cσ2β(log σ−1)2, using that Γ(α) ≤ 2αα−1 for α ≤ 1, it follows the lower bound

Π(KL(f0, εn)) ≥ Gσ(Uσ)Πα(Mσ) & σ−b3+b4βe−a3σ−1 σβ

3eΓ(αc)
∏
k∈Λ

(
σβe−2|uk|

3eΓ(αk)

)

& exp

−K|Λ| log σ−1 − a3σ
−1 − 2

∑
k∈Λ
|uk| −

∑
k∈Λ

log 1
αk


& exp

−K|Λ| log σ−1 −Kσ−1 −
∑
k∈Λ

log 1
αk

 ,
for a generic constant K > 0. From the definition of αk, it holds∑

k∈Λ
log 1

αk
. |Λ| log σ−1 +

∑
k∈Λ

log (1 + |µk|) ,

when σ is small enough. Also,∑
k∈Λ

log (1 + |µk|) =
∑
k∈Λ

log (1 + |µk|)1{|µk| ≤ 1}+
∑
k∈Λ

log (1 + |µk|)1{|µk| > 1}

≤ |{k ∈ Λ : |µk| ≤ 1}|+ |Λ| log 2 +
∑
k∈Λ

log |µk|

≤ 2h−1
σ σ−1 + 4|Λ|2β

p
log σ−1 . |Λ| log σ−1 + σ−1
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Because |Λ| > σ−1 for σ small enough, it follows from all of the above the existence of a
constant K ′ > 0, depending only on f , ϕ and Π, such that

Π(KL(f0, εn)) ≥ exp
{
−K ′|Λ| log σ−1

}
.

Then for an appropriate constant C ′′′ > 0, as a consequence of proposition 3.3, we can
have Π(KL(f0, εn)) ≥ e−c2nε2n if

ε2n =
{
C ′′′n−2β/(3β+1)(logn)2−2β/(3β+1) 0 < p ≤ 2,
C ′′′n−2β/(2β+1+2β/p)(logn)2−3β/(2β+1+2β/p) p > 2.

Sieve construction for location mixtures

We construct the following sequence of subsets of F , also called a sieve. With the notation
fM,σ(x) :=

∫
ϕ((x− µ)/σ) dM(µ),

Fn(H, ε) :=

f = fM,σ :
M =

∑∞
i=1 uiδµi , n−1/b2 < σ ≤ n1/b1∑∞

i=1 |ui| ≤ n,
∑∞
i=1 |ui|1{|ui| ≤ n−1} ≤ ε

|{i : |ui| > n−1}| ≤ Hnε2/ logn

.
The next two lemmas show that Fn(H, ε) defined as above satisfies all the condition
stated in equations (3.14) and (3.15) if H and δ are chosen small enough.
Lemma 3.4 – Let x = (x1, . . . , xn) ∈ Rn be arbitrary and dn be the empirical L2-distance
associated with x. Then for any n−1/2 < εn ≤ 1, 0 < H ≤ 1 and n sufficiently large there
is a constant C > 0 not depending on n such that logN(εn,Fn(H, εn), dn) ≤ CHnε2n.

Proof. We write Fn ≡ Fn(H, εn) to ease notations. The proof is based on arguments
from Shen et al. (2013), it uses the fact that the covering number N(εn,Fn, dn) is the
minimal cardinality of an εn-net over (Fn, dn). We recall that (Fn, dn) has εn-net Fn,ε,
if for any f ∈ Fn we have m ∈ Fn,ε such that dn(f,m) < εn. Let Sn := ∪ni=1{x :
|x− xi| ≤ n1/b1

√
6 logn}, Rn := {µ ∈ R : µ = k/n3/2+1/b2 , k ∈ Z, µ ∈ Sn} and,

Fn,ε :=

f =
∑
i∈I ui ϕ

(
·−µi
σ

)
:

|I| ≤ Hnε2n/ logn, n−1/b2 ≤ σ ≤ n1/b1

∀i ∈ I : |ui| ≤ n, µi ∈ Rn
ui = kn−3/2H−1, k ∈ Z,
σ = k/n3/2+1/b2 , k ∈ N,

.
We claim that there is a constant δ > 0 such that Fn,ε is a δε-net over (Fn, dn). Indeed,
let f ∈ Fn be arbitrary, so that f =

∑∞
i=1 ui ϕ((· − µi)/σ). We define J := N ∪ {∞},

K := {i : |ui| > n−1}, and L := {i : µi ∈ Sn}. Now choose I = J ∩ K ∩ L, and
notice that |I| ≤ |K| ≤ Hnε2n/ logn. Hence we can pick a m ∈ Fn,ε with m(x) =∑
i∈I u

′
i ϕ((x− µ′i)/σ′). Moreover, for any j = 1, . . . , n

|f(xj)−m(xj)| ≤
∑

J∩K∩Lc
|ui|ϕ((xj − µi)/σ) +

∑
J∩Kc

|ui|ϕ((xj − µi)/σ)

+
∑
i∈I
|ui||ϕ((xj − µi)/σ)− ϕ((xj − µ′i)/σ′)|

+
∑
i∈I
|ui − u′i|ϕ((xj − µ′i)/σ′).
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The fourth term in the rhs of the last equation is bounded above by εn. Regarding the
third term, for any i ∈ Lc we have |xj − µi|/σ >

√
6 logn for all j = 1, . . . , n. Then the

third term is bounded by |K|nϕ(
√

6 logn) ≤ Hnε2nn−2/ logn ≤ εn. Since we can always
choose m ∈ Fn,ε with |ui − u′i| ≤ n−3/2H−1 for all i ∈ I, |µi − µ′i| ≤ n−3/2−1/b2 for all
i ∈ I, and |σ − σ′| ≤ n−3/2−1/b2 , it follows from proposition 3.11

|f(xj)−m(xj)| ≤ 2εn +
∑
i∈I
|ui − u′i|+

∑
i∈I
|ui||ϕ((xj − µi)/σ)− ϕ((xj − µ′i)/σ′)|

≤ 2εn +
∑
i∈I
|ui − u′i|+ 4

∑
i∈I
|ui|
|σi − σ′i|
σi ∨ σ′i

+
∑
i∈I
|ui|
|µi − µ′i|
σi ∨ σ′i

≤ 8εn,

for all j = 1, . . . , n. Therefore dn(f,m) ≤ 8εn, and the claim is proved with δ := 8.
To finish the proof, it suffices to compute the cardinality of Fn,ε. A straightforward
computation shows that |Rn| ≤ n5/2+1/b1+1/b2

√
6 logn ≤ n4+1/b1+1/b2 for all n ≥ 1, then

logN(c3εn,Fn, dn) ≤ |I| log
(

n

n−3/2 × n
4+1/b1+1/b2

)
+ log

(
n1/b1

n−3/2−1/b2

)

≤ H
(11

2 + 2
b1

+ 2
b2

)
nε2n,

where the last line holds when n becomes large enough. Then the lemma is proved with
C := (11/2 + 2/b1 + 2/b2)/64. �

Lemma 3.5 – Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that n−γ2/2 ≤ εn ≤
n−γ1/2 for all n ≥ n0. Then Π(Fn(H, εn)c) . exp(−H

4 (1− γ2)nε2n) for all n ≥ n0.

Proof. We use the fact that M ∼ Πα is almost surely purely-atomic (Kingman, 1992)).
Then from the definition of Fn it follows

Π(Fcn) ≤ Gσ(σ ≤ n−1/b2) +Gσ(σ > n1/b1) + Πα

(∑∞
i=1 |ui| > n

)
+ Πα

(∑∞
i=1 |ui|1{|ui| ≤ n−1} > εn

)
+

Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
.

We bound each of the term as follows. By assumption Gσ(σ ≤ n−1/b2) . e−a2n and
Gσ(σ > n1/b1) . e−a1n. Notice that

∑∞
i=1 |ui| = |M |, where |M | denote the total

variation of the measure M . Since by definition we have M d= M1 −M2, with M1,M2
independent Gamma random measures with same base measure α(·), it follows that |Q|
has the distribution of a Gamma random variable with shape parameter 2α. Then by
Markov’s inequality,

Πα

(∑∞
i=1 |ui| > n

)
= Πα

(
e

1
2 |M | > e

1
2n
)
≤ 22αe−

1
2n.

Also, by the superposition theorem (Kingman, 1992, section 2), for any M ∼ Πα we
have M d= M3 + M4, where M3 and M4 are independent random measures with total
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variation |M3| and |M4| having Laplace transforms (for all t ∈ R for which the integrals
in the expressions converge)

Eet|M3| := exp
{

2α
∫ ∞

1/n
(etx − 1)x−1e−x dx

}
,

Eet|M4| := exp
{

2α
∫ 1/n

0
(etx − 1)x−1e−x dx

}
.

M3 andM4 are almost-surely purely atomic,M3 has only jumps greater than 1/n (almost
surely) which number is distributed according to a Poisson distribution with intensity
2αE1(n−1), where E1 denotes the exponential integral E1 function: E1(x) =

∫∞
x

e−t

t dt.
Likewise, M4 has only jumps smaller or equal to 1/n (almost-surely) which number is
almost-surely infinite. Recalling that E1(x) = γ + log(1/x) + o(1) for x small, it holds
2αγ ≤ 2αE1(1/n) ≤ 6α logn ≤ xn for n sufficiently large, with xn := Hnε2n/ logn. Thus
using Chernoff’s bound on Poisson distribution, we get

Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
≤ e−2αE1(1/n) (e2αE1(1/n))xn

xxnn

≤ exp
{
−1

2xn log xn
}
.

But, log xn = logn + logH − 2 log ε−1
n − log logn ≥ (1 − γ2) logn + logH − log logn ≥

1
2(1− γ2) logn for large n. Therefore, as n→∞

Πα

(
|{i : |ui| > n−1}| > Hnε2n/ logn

)
≤ exp

{
−H4 (1− γ2)nε2n

}
.

Finally, we use again Markov’s inequality to get

Πα

(∑∞
i=1 |ui|1{|ui| ≤ n−1} > εn

)
= Πα

(
enεn|M4| > enε

2
n

)
≤ e−nε2n exp

{
2α
∫ 1/n

0
(enεnx − 1)x−1e−x dx

}
.

But for x ∈ (0, 1/n), we have enεnx−1 ≤ n(enεnδn−1)x, thus the integral in the previous
expression is bounded by 2α(eεn − 1), which is in turn bounded by 2α(e − 1) because
εn ≤ 1 if n ≥ n0. �

3.4.2. Case of the location-scale mixture
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Kullback-Leibler condition

By Chebychev inequality, we haveQ0[−ζj , ζj ]c ≤ ζ−pj Q0|X|p. Therefore, bringing together
results from propositions 3.7 and 3.8,∫

|fM (x)− f0(x)|2 dQ0(x)

=
J∑
j=0

∫
Ij

|fM (x)− f0(x)|2 dQ0(x) +
∫
Ac0

|fM (x)− f(x)|2 dQ0(x)

. J3
J∑
j=0

σ2β
j Q0(Ij) + J3Q0(Ac0).

Then we can find a constant C > 0 such that
∫
|fM (x) − f0(x)|2 dQ0(x) ≤ CJ4σ2β

J for
all M ∈M and J large enough.

By equation (3.7), we have Gσ(Uj) & σ−b3
j σb4β

J exp(−a3/σj) for all j = 0, . . . J . More-
over, there is a separation of hJσj between two consecutive µjk and hJσj � σj , thus all the
Wjk with (j, k) ∈ Λ are disjoint. By equation (3.8), we have αjk := αGσ(Uj)Gµ(Vjk) &
σ
b5(β+1)+b4β
j exp(−a3/σj)(1+ |µjk|)−b6 for all (j, k) ∈ Λ. We also define αc := α(W c). For
J large enough, there is a constant C ′ > 0 not depending on J such that αc > C ′. More-
over, since α has finite variation we can assume without loss of generality thatC ′ ≤ αc ≤ 1,
otherwise we split W c into disjoint parts, each of them having α-measure smaller than
one. With ε2n := CJ4σ2β

J , using that Γ(α) ≤ 2αα−1 for α ≤ 1 and M ⊂ KL(f0, εn), it
follows the lower bound

Π(KL(f0, εn)) ≥ σβJ
3eΓ(αc)

∏
(j,k)∈Λ

(
σβJe

−2|ujk|

3eΓ(αjk)

)

≥ σβJ
3eΓ(αc)

∏
(j,k)∈Λ

exp
{
−2|ujk| − β log σ−1

J + log 1
6e + (αjk − 1) logαjk

}
≥ exp

{
−KJ |Λ| − 2

∑
(j,k)∈Λ |ujk| −

∑
(j,k)∈Λ logα−1

jk

}
,

(3.21)

for a constant K > 0 depending only on C and β. We now evaluate the sums involved
in the rhs of equation (3.21). As before, be have that

∑
(j,k)∈Λ |ujk| ≤ 4‖f0‖1σ−1

J (see for
instance the proof of proposition 3.8). Act as in section 3.4.1 to find that∑

(j,k)∈Λ
logα−1

jk . J |Λ|+ J3/2σ−1
J + |Λ|σ−1

J .

The term proportional to |Λ|σ−1
J is entirely responsible for the bad rates in location-scale

mixtures, and the aim of the hybridation of next section is to get rid of it. For a constant
K ′ > 0,

Π(KL(f0, εn)) ≥ exp
{
−K ′|Λ|σ−1

J

}
.

Then for an appropriate constant C ′ > 0 we can have Π(KL(f0, εn)) ≥ e−c2nε2n if

ε2n =
{
C ′[n−2β/(3β+2)(logn)t1 ∧ n−2β/(2β+1+2β/p)(logn)t2 ], p ≤ 2β,
C ′n−β/(β+1)(logn)t3 , p > 2β,
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where t1 := 4− 8β/(3β + 2) , t2 := 4− 4β/(2β + 1 + 2β/p) and t3 := 4− 2β/(β + 1).

Sieve construction

Using the notation fM (x) :=
∫
ϕ((x− µ)/σ) dM(σ, µ), we construct the following sieve.

Fn(H, ε) :=

f = fM

M =
∑∞
i=1 uiδσi,µi ,

∑∞
i=1 |ui| ≤ n,

|{i : |ui| > n−1, n−1/b2 < σi ≤ n1/b1}| ≤ Hnε2/ logn,∑∞
i=1 |ui|1{|ui| ≤ n−1} ≤ ε,∑∞
i=1 |ui|1{σi ≤ n−1/b2} ≤ ε,

∑∞
i=1 |ui|1{σi > n1/b1} ≤ ε

. (3.22)

Lemma 3.6 – Let x = (x1, . . . , xn) ∈ Rn be arbitrary and dn be the empirical L2-distance
associated with x. Then for any n−1/2 < εn ≤ 1, 0 < H ≤ 1 and n sufficiently large there
is a constant C > 0 not depending on n such that logN(εn,Fn(H, εn), dn) ≤ CHnε2n.

The proof is almost identical to lemma 3.4, with the same constant C > 0.

Lemma 3.7 – Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that n−γ2/2 ≤ εn ≤
n−γ1/2 for all n ≥ n0. Then Π(Fn(H, εn)c) . exp(−H

4 (1− γ2)nε2n) for all n ≥ n0.

Proof. We first write the estimate

Π(Fcn) ≤ Πα

(∑∞
i=1 |ui| > n

)
+ Πα

(∑∞
i=1 |ui|1{|ui| ≤ δ} > εn

)
+ Πα

(∑∞
i=1 |ui|1{σi ≤ n−1/b2} > εn

)
+ Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

)
+ Πα

(
|{i : |ui| > δ, n−1/b2 < σi ≤ n1/b1}| > Hnε2n/ logn

)
.

The first three terms in the rhs above obeys the same bounds as in the proof of lemma 3.5,
using the same arguments. The last two term are bounded using the same trick, thus we
simply bound the last term and left the other to the reader. Notice that the random vari-
able U :=

∑∞
i=1 |ui|1{σi > n1/b1} has Gamma distribution with parameters 2α(An), 1,

with An := {(σ, µ) : σ > n1/b1}. For n large, by assumptions on Pσ, it holds α(An)� εn.
Then by Chebychev inequality, for n large enough

Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

)
≤ P(U − EU > εn − EU)

≤ P(U − EU > εn/2) ≤ 16ε−2
n α(An)2. (3.23)

The conclusion follows from the assumptions on Gσ which imply α(An) = αGσ(σ >
n1/b1) . exp(−a1n). �

3.4.3. Hybrid location-scale mixtures

Obviously, given the definition of hybrid mixtures (see section 3.4.3), most of the proof
is redundant with the location-scale case, and in the sequel we deal only with the parts
that differ.
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Kullback-leibler condition

LetM ≡M(β, J, f,Λ) be the set of signed measures constructed in section 3.3.3. For
any integer J > 0 let ΩJ be the event

ΩJ :=
{
Pσ : Pσ[2−j , 2−j(1 + 2−Jβ)] ≥ 2−J ∀ 0 ≤ j ≤ J

}
.

Then with arguments and constant C > 0 from section 3.4.2, letting ε2n := CJ4σ2β
J , we

have
Π(KL(f0, εn)) ≥ Π(M) ≥ Π(M | ΩJ)Πσ(ΩJ).

But by equation (3.11) we have Πσ(ΩJ) & exp(−a6J
b72J) and on ΩJ it holds α(Wjk) =

αPσ(Uj)Gµ(Vjk) ≥ α2−JGµ(Vjk) for all (j, k) ∈ Λ. Then act as in equation (3.21) to find
a constant K > 0 such that (recalling that σJ = 2−J)

Π(KL(f0, εn)) & exp
{
−K(Jb7 ∨ J1/2)σ−1

J −KJ |Λ|
}
.

Because of proposition 3.6 we can have Π(KL(f0, εn)) ≥ e−c2nε2n if for an appropriate
constant C ′ > 0

ε2n =
{
C ′[n−2β/(3β+1)(logn)4−6β/(3β+1) ∧ n−p/(p+1)(logn)4−p/(p+1)] p ≤ 2β,
C ′n−2β/(2β+1)(logn)4−2β(4−b7∨3)/(2β+1) p > 2β.

Sieve construction

We use the same sieve Fn(H, ε) as in equation (3.22). The definition of Fn(j, ε) is inde-
pendent of Π thus the conclusion of lemma 3.4 holds for hybrid location-scale mixtures.
It remains to show that Π(Fn(H, ε)c) ≤ exp(−2c2nε

2
n), which is the object of the next

lemma.

Lemma 3.8 – Assume that there is n0 ∈ N, and 0 < γ1 ≤ γ2 < 1 such that n−γ2/2 ≤
εn ≤ n−γ1/2 for all n ≥ n0. Then there is a constant a constant γ2 < γ < 1 such that
Π(Fn(H, εn)c) . exp(−H

4 (1− γ)nε2n) for all n ≥ n0.

Proof. We proceed as in the proof of lemma 3.7. Following the same steps, we deduce
that it is sufficient to prove that

Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

)
. e−2c2n,

Πα

(∑∞
i=1 |ui|1{σi ≤ n−1/b2} > εn

)
. e−2c2n.

Since the proofs are almost identical for the two previous conditions, we only prove the
first and left the second to the reader. Notice that by equation (3.23) we have

Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

∣∣∣ Pσ) ≤ 16αε−2
n Pσ(σ > n1/b1)2.
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Letting Ω := {Pσ : Pσ(σ > n1/b1) < exp(−a1n/2)}, with a slight abuse of notation, it
follows from equation (3.9)

Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

)
≤ Πα

(∑∞
i=1 |ui|1{σi > n1/b1} > εn

∣∣∣ Ω
)

+ Πσ(Ωc)

. ε−2
n exp(−a1n) + exp(−a4n). �

3.5. Proof of theorem 3.2

The proof follows the same lines as Ghosal et al. (2007b) with additional cares. The
first step consists on rewriting expectation of the posterior distribution as follows. Let
(φn(· | ·))n≥0 be a sequence of test functions such that for n large enough

Qn0 [Pn0 [φn(y | x) | x]] . N(ε/18,Fn, dn) exp
(
−nε

2
n

2

)
,

sup
{f :dn(f,f0)≥17εn/18}∩Fn

Qn0

[
Pnf [1− φn(y | x)] | x

]
. exp

(
−nε

2
n

2

)
.

The existence of such test functions is standard and follows for instance from Birgé (2006,
proposition 4), or Ghosal and van der Vaart (2007, section 7.7). From here, we bound
the posterior distribution in a standard fashion,

Qn0 [Pn0 [Πx({f : dn(f, f0) > εn} | y,x) | x]] ≤ Qn0 [Pn0 [Πx(Fcn | y,x) | x]]
+Qn0 [Pn0 [Π({f : dn(f, f0) > εn} ∩ Fn | y,x) | x]].

So that,

Qn0 [Pn0 [Πx({f : dn(f, f0) > εn} | y,x) | x]] ≤ Qn0 [Pn0 [Πx(Fcn | y,x) | x]]
+Qn0 [Pn0 [φn(y | x)Πx({f : dn(f, f0) > εn} ∩ Fn | y,x) | x]]
+Qn0

[
Pn0

[(
1− φn(y | x)

)
Πx({f : dn(f, f0) > εn} ∩ Fn | y,x) | x

]]
.

(3.24)

Now, to any x ∈ Rn, we associate the event

En(x) :=
{
y ∈ Rn :

∫
F

n∏
i=1

pf (xi, yi)
pf0(xi, yi)

dΠx(f) ≥ exp
(
−(1 + 4c2)nε

2
n

4

)}
. (3.25)
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Consider the first term of the rhs of equation (3.24). We can rewrite,

Qn0 [Pn0 [Πx(Fcn | y,x) | x]]

≤ e
1
4 (4c2+1)nε2n

∫
Rn

∫
En(x)

∫
Fcn

n∏
i=1

pf (xi, yi)
pf0(xi, yi)

dΠx(f)dPn0 (y | x)dQn0 (x)

+
∫
Rn

∫
En(x)c

dPn0 (y | x)dQn0 (x)

= e
1
4 (4c2+1)nε2n

∫
Rn

∫
Fcn

∫
En(x)

dPn(y | x)dΠx(f)dQn0 (x)

+
∫
Rn

∫
En(x)c

dPn0 (y | x)dQn0 (x)

≤ e
1
4 (4c2+1)nε2n

∫
Rn

Πx(Fcn) dQn0 (x) +
∫
Rn

∫
En(x)c

dPn0 (y | x)dQn0 (x),

where the third line follows from Fubini’s theorem. The same reasoning applies to the
other terms of equation (3.24), using the test functions introduced above and 0 < c2 < 1/4.
Hence the theorem is proved if we show that

∫
Rn
∫
En(x)c dP

n
0 (y | x)dQn0 (x) = o(1). But

under the condition of the theorem, Ghosal et al. (2007b, Lemma 10) implies that

Pn0

(∫
F

n∏
i=1

pf (xi, Yi)
pf0(xi, Yi)

dΠx(f) < exp
(
−1

4(1 + 4c2)ε2n
) ∣∣∣∣∣ x

)
= o(1).



Appendix

3.A. Proofs of lemmas 3.2 and 3.3 and some technical
results on the kernels

3.A.1. Proof of lemma 3.2

Clearly, ‖χσ ∗ f‖1 ≤ ‖χσ‖1‖f‖1 by Young’s inequality, so that χσ ∗ f ∈ L1 and (χσ ∗
f)∧(ξ) = χ̂σ(ξ)f̂(ξ), showing that the support of the Fourier transform of χσ ∗ f is
included in [−1/σ, 1/σ]. Moreover, using again Young’s inequality we get that ‖χσ∗f‖∞ ≤
‖χσ‖1‖f‖∞, thus χσ ∗ f ∈ L∞.

Because χ̂ is C∞ and compactly supported, for any integer q ≥ 0 we have (iu)qχ(u) =
(2π)−1 ∫ χ̂(q)(ξ)eiξudξ. Clearly χ̂ is Schwartz, hence by Fourier inversion we have that

∫
uqχ(u)e−iξudu = (−i)qχ̂(q)(ξ), ∀ξ ∈ R.

But, by construction χ̂(0) = 1, and for any q ≥ 1 we have χ̂(q)(0) = 0. It follows that∫
χ(u)du = 1, and

∫
uqχ(u)du = 0 for any q ≥ 1. Whence, letting m be the largest

integer smaller than β, and using Taylor’s formula with exact remainder term

χσ ∗ f(x)− f(x) =
∫
χσ(y) [f(x− y)− f(x)] dy =

∫
χ(y) [f(x− σy)− f(x)] dy

=
m∑
k=1

(−1)kσk

k!

∫
ukχ(u) du

+
∫
χ(y)

∫ 1

0
(−σy)m (1− u)m−1

(m− 1)!
[
f (m)(x− uσy)− f (m)(x)

]
dudy

=
∫
χ(y)

∫ 1

0
(−σy)m (1− u)m−1

(m− 1)!
[
f (m)(x− uσy)− f (m)(x)

]
dudy.

Therefore, because f ∈ Cβ,

|χσ ∗ f(x)− f(x)| ≤ σm
∫
|ymχ(y)|

∫ 1

0

(1− u)m−1

(m− 1)! |f
(m)(x− uσy)− f (m)(x)| dudy

≤ ‖f‖Cβσβ
∫
|yβχ(y)| dy

∫ 1

0

(1− u)m−1

(m− 1)! uβ−m du.

113
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3.A.2. Proof of lemma 3.3

We mostly follow the proof of Hangelbroek and Ron (2010, proposition 1). Writing,

Kh,σfσ(x) =
∫
h

σ

∑
k∈Z

ϕ

(
x− hσk

σ

)
η

(
y − hσk

σ

)
fσ(y) dy

= h

σ

∑
k∈Z

ϕ

(
x− hσk

σ

)∫
η

(
y − hσk

σ

)
fσ(y) dy

= h

2π
∑
k∈Z

ϕ

(
x− hσk

σ

)∫
η̂(σξ)f̂σ(ξ)eiξhσk dξ

=
∫
η̂(σξ)f̂σ(ξ) h2π

∑
k∈Z

ϕ

(
x− hσk

σ

)
eiξhσk dξ.

Then we can invoke the Poisson summation formula (Härdle et al., 1998, theorem 4.1),
which is obviously valid for ϕ, and

∑
k∈Z

ϕ

(
x− hσk

σ

)
eiξhσk = 1

h

∑
m∈Z

ϕ̂

(
σξ + 2πm

h

)
ei(σξ+

2πm
h

)x/σ.

Therefore, recalling that f̂σ is supported on [−1/σ, 1/σ] and χ̂ equals 1 on [−1, 1],

Kh,σfσ(x) = 1
2π

∫
χ̂(σξ)f̂σ(ξ)

∑
m∈Z

ϕ̂(σξ + 2πm/h)
ϕ̂(σξ) ei(σξ+

2πm
h

)x/σ dξ

= fσ(x) + 1
2π

∑
m∈Z\{0}

∫
f̂σ(ξ) ϕ̂(σξ + 2πm/h)

ϕ̂(σξ) ei(σξ+
2πm
h

)x/σ dξ.

It follows that,

|Kh,σfσ(x)− fσ(x)| ≤ 1
2π‖f̂σ‖1 sup

ξ∈[−1,1]

∑
m∈Z\{0}

∣∣∣∣ ϕ̂(ξ + 2πm/h)
ϕ̂(ξ)

∣∣∣∣ .
Now, ‖f̂σ‖1 ≤ 2σ−1‖f̂σ‖∞ ≤ 2σ−1‖fσ‖1 ≤ 2σ−1‖f‖1, which is finite because of lemma 3.2.
Recalling that by assumption ϕ̂ is Gaussian, it follows for all ξ ∈ [−1, 1] and all h ≤ 1,

∑
m∈Z\{0}

∣∣∣∣ ϕ̂(ξ + 2πm/h)
ϕ̂(ξ)

∣∣∣∣ ≤ exp
{
−1

2(ξ + 2πm/h)2 + 1
2ξ

2
}

≤ e−1/2 ∑
m∈Z\{0}

e−4π2m2/h2 ≤ 4e−1/2e−4π2/h2
.

Then the lemma is proved with C := 8e−1/2.

3.A.3. Some other technical results on Kh,σ

Lemma 3.9 – There is a universal constant C > 0 such that for all x ∈ R, all 0 < h ≤ 1
and all σ > 0,

∑
k∈Z |η((x− hσk)/σ)| ≤ Ch−1. Moreover, η ∈ S.
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Proof. We first prove that η ∈ S. Obviously ϕ̂ ∈ S, and therefore so is η̂. Since the
Fourier transform and the inverse Fourier transform are continuous mapping of S onto
itself, it is immediate that η ∈ S.

We finish the proof by remarking that x 7→
∑
k∈Z |η((x− hσk)/σ)| is periodic with

period hσ, hence it suffices to check that it is bounded for x ∈ [0, hσ]. If x ∈ [0, hσ], then
|x− hσk| ≥ |hσk|/2 for any |k| ≥ 2, so that∑

k∈Z
|η((x− hσk)/σ)| ≤ 3 sup

u∈R
|η(u)|+

∑
|k|≥2

|η((x− hσk)/σ)|

≤ 3‖η‖0,0 + ‖η‖2,0
∑
|k|≥2

(1 + |hk|/2)−2

≤ 3‖η‖0,0 + 4‖η‖2,0/h,

which concludes the proof of the first assertion with C := 3‖η‖0,0 + 4‖η‖2,0, because of
the assumption h ≤ 1. �

The following Lemma gives some control on the coefficients of f on η.
Proposition 3.9 – Let 0 < h ≤ 1 and ak(f) := (h/σ)

∫
η((y − hσk)/σ)f(y) dyx. Then

there are universal constants C,C ′ > 0, depending only on ϕ, such that
∑
k∈Z |ak(f)| ≤

C‖f‖1σ−1, and for all k ∈ Z, |ak(f)| ≤ C ′‖f‖∞.

Proof. For the first assertion of the proposition, we write,
∑
k∈Z
|ak(f)| ≤ h

σ

∑
k∈Z

∫
|f(y)||η((y − hσk)/σ)| dy

≤ σ−1‖f‖1 sup
y∈R

h
∑
k∈Z
|η((y − hσk)/σ)|,

and the conclusion follows from lemma 3.9. The proof of the second assertion is simpler.
Indeed,

|ak(f)| ≤ h

σ

∫
|f(y)||η((y − hσk)/σ)| dy ≤ h‖f‖∞

∫
|η(u)| du,

where the last integral is bounded because η ∈ S by lemma 3.9. �

3.B. Proof of lemma 3.1

Let x ∈ Rn arbitrary, σ > 0 and hσ
√

log σ−1 := 2π
√
β + 1. Recall that from lemmas 3.2

and 3.3 we have ‖Khσ ,σ(χσ ∗f0)−f0‖∞ . σβ , where Khσ ,σ(χσ ∗f0)(z) :=
∑
k∈Z uk ϕ((z−

hσσk)/σ). Define Sn(x) := ∪ni=1{z ∈ R : |z − xi| ≤ σ
√

2(β + 1) log σ−1} and

Λ(x) := {k ∈ Z : |uk| > σβ, hσσk ∈ Sn(x)}.

Also define Uσ := {σ′ : σ ≤ σ′ ≤ σ(1 + σβ)}, and for all k ∈ Λ(x) define Vk := {µ :
|µ − hσσk| ≤ σβ+1}. We denote by Mσ the set of signed measures M on R such
that |M(Vk) − uk| ≤ σβ for all k ∈ Λ(x) and |M |(V c) ≤ σβ, where V c is the relative
complement of the union of all Vk for k ∈ Λ(x). For any M ∈Mσ, we write fM,σ(z) :=
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∫
ϕ((z−µ)/σ) dM(µ). Act as in proposition 3.5 to find that dn(f, f0) ≤ Ch−2

σ σβ for any
M ∈Mσ, with a constant C > 0 not depending on x. By construction of Sn(x), for all
k ∈ Λ(x) there is at least one xi such that |hσσk − xi| ≤ σ

√
2(β + 1) log σ−1. Then for

any k ∈ Λ(x), by definition of Gx

αGx(Vk) ≥ n−1
∫ hσσk+σβ+1

hσσk−σβ+1
g(z − xi) dz ≥ a21n

−1σa22(β+1).

Remarking that |Λ(x)| . σ−(β+1) independently of x (see proposition 3.3) and letting
εn = C ′h−2

σ σβ we can mimic the steps of section 3.4.1 to find that

Πx(f : dn(f, f0) ≤ sε) & exp
{
−C ′′|Λ(x)| log σ−1 − C ′′|Λ(x)| logn

}
& exp(−c2nε

2
n),

for a constant C ′′ > 0 not depending on x and ε2n defined in the lemma.

3.C. Some technical results on the construction of the
approximation in the case of location-scale mixtures

Proposition 3.10 – Let f0 ∈ Cβ. For any j ≥ 0, we have |∆j(x)| ≤ C‖f0‖Cβσ
β
j , with the

same constant C > 0 as in lemma 3.2. Moreover, ‖∆j‖1 ≤ 2‖f0‖1 for all j ≥ 0.

Proof. Notice that ‖∆j+1‖1 ≤ ‖∆j‖1 + ‖χσj+1 ∗ ∆j‖ ≤ (1 + ‖χ‖1)‖∆j‖1, by Young’s
inequality. Since f0 ∈ L1, this implies ∆j ∈ L1 for all j ≥ 0. Since ∆̂j+1(ξ) = ∆̂j(ξ) −
χ̂σj+1(ξ)∆̂j(ξ), we get ∆̂j(ξ) = f̂0(ξ)

∏j
l=1 (1− χσl(ξ)), by induction. Because σj+1 =

σj/2, and by construction of χσl we have χ̂σm(ξ)χ̂σl(ξ) = χ̂σm(ξ) for any m > l, hence
the last equation can be rewritten as ∆̂j(ξ) = f̂0(ξ)(1− χ̂σj (ξ)). Then we deduce that
∆j = f0−χσj ∗f0. By lemma 3.2, this implies that |∆j(x)| ≤ C‖f0‖Cβσ

β
j . From the same

estimate, it is clear that ‖∆j‖ ≤ ‖f0|1 + ‖χσj ∗ f0‖ ≤ 2‖f0‖1. �

3.C.1. Proof of proposition 3.8

Let define A(β, J) := (2 log |Λ|+2β log σ−1
J )1/2 and J ≡ J (x) := {(j, k) ∈ {0, . . . , J}×Z :

|x− µjk| ≤ 4A(β, J)σj}. For any M ∈M we can write

fM (x)− f0(x) =
∑

(j,k)∈Λ∩J

∫
Wjk

[
ϕ

(
x− µ
σ

)
− ϕ

(
x− µjk
σj

)]
dM(σ, µ)

+
∑

(j,k)∈Λ∩J
[M(Wjk)− ujk]ϕ

(
x− µjk
σj

)
+

∑
(j,k)∈Λ∩J c

∫
Wjk

ϕ

(
x− µ
σ

)
dM(σ, µ)

−
∑

(j,k)∈Λ∩J c
ujk ϕ

(
x− µjk
σj

)
−

∑
(j,k)/∈Λ

ujk ϕ

(
x− µjk
σj

)

+
∫
W c

ϕ

(
x− µ
σ

)
dM(σ, µ)

:= r1(x) + r2(x) + r3(x) + r4(x) + r5(x) + r6(x).
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The proof follows similar steps as the proof of proposition 3.5. From the definition of
A(β, J) and proposition 3.6, we deduce that A(β, J) .

√
J for J large enough. Also,

there is a separation of hJσj between two consecutive µjk. Then there are no more
than 2A(β, J)σj/(hJσj) = 2A(β, J)h−1

J distinct values of µjk in an interval of length
2A(β, J)σj . Thus the bound |Λ ∩ J | ≤ 2(J + 1)A(β, J) . J3/2 holds. It follows from
proposition 3.11 that |r1(x)| . |Λ ∩ J |σβJ . J3/2σβJ . Obviously, |r2(x)| ≤ ‖ϕ‖∞|Λ ∩
J |σβJ . J3/2σβJ . Whenever (j, k) ∈ Λ∩J c and (σ, µ) ∈Wjk, choosing J large enough so
that 1/2 ≤ σj/σ ≤ 2 and |µ−µjk| ≤ σjA(β, J)/2, it holds |x−µ| ≥ A(β, J)σ. Therefore,
|r3(x)| . ϕ(A(β, J))|Λ| ≤ σβJ . With the same reasoning we get |r4(x)| . ‖f‖∞σβJ .
Regarding r6, we have the obvious bound |r6(x)| ≤ ‖ϕ‖∞σβJ . The r5 term is more subtle
and constitutes the remainder of the proof.

Let Λc1 := {(j, k) ∈ {0, . . . , J} × Z : |ujk| ≤ σβJ} and Kj := {k ∈ Z : |µjk| >
ζj +

√
2(β + 1) log σ−1

J }. Assuming that x ∈ [−ζq, ζq] for some 0 ≤ q ≤ J , we can bound
r5(x) as follows,

|r5(x)| ≤
∑

(j,k)∈Λc1

|ujk|ϕ
(
x− µjk
σj

)

+
∑
j≤q

∑
k∈Kj

ujk ϕ

(
x− µjk
σj

)
+
∑
j>q

∑
k∈Kj

ujk ϕ

(
x− µjk
σj

)
, (3.26)

where the third term of the rhs does not exist if q = J . The first term of the rhs of
equation (3.26) is bounded by σβJ supx∈R

∑J
j=0

∑
k∈Z ϕ((x − µjk)/σ), which is in turn

bounded by a constant multiple of J3/2σβJ (see for instance the proof of lemma 3.9).
Because of propositions 3.9 and 3.10, when x ∈ [−ζq, ζq] we always have

∑
j≤q

∑
k∈Kj

|ujk|ϕ
(
x− µjk
σj

)
≤ sup

j≤q
k∈Kj

ϕ

(
x− µjk
σj

)∑
j≤J

∑
k∈Z
|ujk|

≤ σβ+1
J

∑
j≤J

2‖f0‖1σ−1
j ≤ 4‖f0‖1σβJ .

Regarding the second term of the rhs of equation (3.26), we introduce the sets of indexes
Lj ≡ Lj(x) := {k ∈ Kj : |x−µjk| ≤ σj

√
2(β + 1) log σ−1

J }. Then, we can split again the
sum as

∑
j>q

∑
k∈Kj

ujk ϕ

(
x− µjk
σj

)
=

∑
j>q

∑
k/∈Lj

ujk ϕ

(
x− µjk
σj

)
+
∑
j>q

∑
k∈Lj

ujk ϕ

(
x− µjk
σj

)
.

With exactly the same reasoning as before, we get that the first sum of the rhs of
the last expression is bounded above by 4‖f‖1σβJ . Concerning the second term, for any
j ≥ 1 we get from propositions 3.9 and 3.10, together with the definition of ujk, that
|ujk| . ‖f‖Cβσ

β
j . Since there is hJσj separation between two consecutive µjk, we deduce
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that |Lj | ≤ 2h−1
J

√
2(β + 1) log σ−1

J . Therefore, for J large enough and x ∈ [−ζq, ζq] with
0 ≤ q ≤ J ,

|r5(x)| . ‖f0‖1σβJ + ‖f0‖Cβ
√

2(β + 1) log σ−1
J

∑
j>q

σβj .
√
Jσβq .

The conclusion of the proposition follows by combining all the preceding points.

3.D. Elementary results

Proposition 3.11 – Let ϕ(x) = exp(−x2/2). Then, for all µ1, µ2 ∈ R, and all σ1, σ2 > 0
with 1/2 ≤ σ1/σ2 ≤ 2,

sup
x∈R

∣∣∣∣ϕ(x− µ1
σ1

)
− ϕ

(
x− µ2
σ2

)∣∣∣∣ ≤ 4 |σ1 − σ2|
σ1 ∨ σ2

+ |µ1 − µ2|
σ1 ∨ σ2

.

Proof. Without loss of generality we can assume that σ1 ≤ σ2. Using the triangle
inequality, we first write∣∣∣∣ϕ(x− µ1

σ1

)
− ϕ

(
x− µ2
σ2

)∣∣∣∣
≤
∣∣∣∣ϕ(x− µ1

σ1

)
− ϕ

(
x− µ2
σ1

)∣∣∣∣+ ∣∣∣∣ϕ(x− µ2
σ1

)
− ϕ

(
x− µ2
σ2

)∣∣∣∣
≤ sup

u∈R

∣∣∣∣ϕ(u+ µ1 − µ2
σ1

)
− ϕ(u)

∣∣∣∣+ sup
u∈R

∣∣∣∣ϕ(σ1
σ2
u

)
− ϕ(u)

∣∣∣∣ . (3.27)

The first term of the rhs of equation (3.27) is obviously bounded by |µ1 − µ2|/σ1. Re-
garding the second term of the rhs of equation (3.27),∣∣∣∣ϕ(σ1

σ2
u

)
− ϕ(u)

∣∣∣∣ ≤ |σ1/σ2 − 1|
(
σ1
σ2
∨ 1
)2

sup
x
x2ϕ(x),

which terminates the proof. �

Proposition 3.12 – Let X ∼ SGa(α, 1), with 0 < α ≤ 1. Then for any x ∈ R and any
0 < δ ≤ 1/2 we have P{|X − x| ≤ δ} ≥ δe−2|x|

3eΓ(α) .

Proof. Assume for instance that x ≥ 0. Recalling that X is distributed as the difference
of two independent Ga(α, 1) distributed random variables, it follows

P{|X − x| ≤ δ} ≥ 1
Γ(α)

∫ ∞
0

yα−1e−y
1

Γ(α)

∫ x+y+δ

x+y
zα−1e−z dz dy.

Because α ≤ 1, the mapping z 7→ zα−1e−z is monotonically decreasing on R+, then
the last integral in the rhs of the previous equation is lower bounded by δ(x + y +
δ)α−1e−(x+y+δ) ≥ δe−2(x+y+δ). Then

P{|X − x| ≤ δ} ≥ δe−2(x+δ)

Γ(α)2

∫ ∞
0

yα−1e−3y dy ≥ 3−αe−2(x+δ)

Γ(α) δ ≥ δe−2|x|

3eΓ(α) .

The proof when x < 0 is obvious. �
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Bayesian nonparametric estimation for
Quantum Homodyne Tomography

Résumé
Nous estimons l’état quantique d’un faisceau de lumière à partir des résultats bruités de mesures de
tomographie quantique homodyne, réalisées sur des systèmes quantiques identiquement préparés.
Nous proposons deux approches Bayésiennes non paramétriques. La première approche est basée
sur les modèles de mélanges et est illustrée au travers d’exemples de simulation. La seconde
approche est basée sur une expansion sur une base. Nous étudions les performances théoriques
de la seconde approche en quantifiant la vitesse de contraction de la distribution a posteriori
autour du vrai état quantique dans la métrique L2.

Abstract
We estimate the quantum state of a light beam from results of quantum homodyne tomog-
raphy noisy measurements performed on identically prepared quantum systems. We propose
two Bayesian nonparametric approaches. The first approach is based on mixture models and is
illustrated through simulation examples. The second approach is based on random basis expan-
sions. We study the theoretical performance of the second approach by quantifying the rate of
contraction of the posterior distribution around the true quantum state in the L2 metric.

4.1. Introduction

Quantum Homodyne Tomography (QHT), is a technique for reconstructing the quantum
state of a monochromatic light beam in cavity (Artiles et al., 2005). Unlike classical
optics, the predictions of quantum optics are probabilistic so that we cannot in general
infer the result of a single measurement, but only the distribution of possible outcomes.
The quantum state of a monochromatic light beam in cavity is a positive, self-adjoint
and trace-class operator ρ acting on the Hilbert space L2(R). We should here distinguish
the pure states which are projection operators onto one-dimensional subspaces of L2(R),
and mixed-states which are all the other possible states.

Having prepared a quantum system in state ρ, the aim of the physicist is to perform
measurement of certain observables. Mathematically speaking, an observable A is a self-
adjoint operator on L2(R). A measurement is a mapping which assigns to an observable
A and a state ρ a probability measure µA on R; this mapping is given by the so-called
Born-von Neumann formula (Hall, 2013).

121
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Two observables of interest in quantum optics correspond to the measurements of
the electric field and the magnetic field of a light beam, and are given respectively by
the operator Q and P with domains D(Q) := {ψ ∈ L2(R) : x 7→ xψ(x) ∈ L2(R)} and
D(P) := {ψ ∈ L2(R) : x 7→ ψ′(x) ∈ L2(R)}. The operarors Q and P act on D(Q),
respectively D(P), as

Qψ(x) = xψ(x), and Pψ(x) = −iψ′(x).

The derivative in the definitions of D(P) and P is understood in the distributional sense.
By virtue of the Heisenberg uncertainty principle (Hall, 2013), the observables P and

Q cannot be measured simultaneously; that is there is no joint probability distribution
associated to the simultaneous measurement of P and Q. Nevertheless, theWigner density
Wρ : R2 → R, with respect to the Lebesgue measure on R2, as defined below, is the closest
object to a joint probability density function associated to the joint measurement of P and
Q on a system in state ρ. The Wigner distribution satisfies

∫
R2 Wρ = 1, and its marginals

on any direction are bona-fide probability density functions. In general, however,Wρ fails
to be a proper joint probability density function, as it can take negative values, reflecting
the non classicality of the quantum state ρ. For a pure state ρψ, ψ ∈ L2(R), the Wigner
quasi-probability density of ρψ is defined as

Wψ(x, ω) :=
∫
R
ψ(x+ t/2)ψ(x− t/2)e−2πiωtdt, (x, ω) ∈ R2. (4.1)

We delay to later the definition of the Wigner distribution for mixed states, which will
follow from the definition for pure states in a relatively straightforward fashion. Here we
take the opportunity to say that whenever we will be concerned with pure states, we will
identify the state ρψ to the function ψ ∈ L2(R), and talk abusively about the state ψ.

Although we cannot measure simultaneously the observables P and Q, it is possible
to measure the quadrature observables, defined as Xθ := Q cos θ+P sin θ for all θ ∈ [0, π].
We denote by Xρ

θ the random variable whose distribution is the measurement of Xθ on
the quantum system in state ρ. Assuming that θ is drawn uniformly from [0, π], the joint
probability density function (with respect to the Lebesgue measure on R × [0, π]) for
(Xρ

θ , θ) is given by the Radon transform of the Wigner distribution Wρ, that is

pρ(x, θ) := 1
π

∫
R
Wρ(x cos θ − ξ sin θ, x sin θ + ξ cos θ) dξ, (x, θ) ∈ R× [0, π]. (4.2)

For a pure state ψ ∈ L2(R), there is a convenient way of rewriting the previous equation,
as stated for example in (Markus et al., 2010, equation 4.14),

pψ(x, θ) =


1

2π| sin θ|

∣∣∣∫R ψ(z) exp
(
πi cot θ

2 z2 − πi xzsin θ

)
dz
∣∣∣2 θ 6= 0, θ 6= π/2,

|ψ(x)|2/π θ = 0,
|ψ̂(x)|2/π θ = π/2,

(4.3)

where ψ̂ is the Fourier transform of ψ (according to the convention defined in the next
section of the paper). Equation (4.3) emphasizes that for any (x, θ) we indeed have
pψ(x, θ) ≥ 0, a fact that remains true for mixed states, but which is not so clear from
the definition of equation (4.2).
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Quantum homodyne tomography is an experiment that allow for measuring the
quadrature observables Xθ for a monochromatic light beam in cavity in state ρ. Here we
consider the situation when we perform identical and independent measurements of Xθ

on n quantum systems in the same state ρ, with θ spread uniformly over [0, π]. Following
Butucea et al. (2007), it turns out that a good model for a realistic quantum homodyne
tomography must take into account noise on observations.

In practice, the noise is mostly due to the fact that a number of photons fails to
be detected. The ability of the detector to detect photons is quantified by a parameter
η ∈ [0, 1], called the efficiency of the detector. When η = 0, then the detector fails to
detect all photons, whereas η = 1 corresponds to the ideal case where all the photons are
detected. In general, it is assumed that η is known ahead of the measurement process,
and η is relatively close to one, according to the physicists. Then, from Butucea et al.
(2007, section 2.4), a more realistic model for quantum homodyne tomography is to
consider that we observe the random variables (given θ)

Y ρ
θ = Xρ

θ +
√

1− η
η

Xvac
θ ,

where Xθ ∼ pρ(· | θ), and Xvac
θ is the random variable whose distribution is the measure-

ment of Xθ on the vacuum state and is assumed independent of Xρ
θ . Here we adopt the

convention that the vacuum state is the projection operator onto x 7→ 2−1/4 exp(−πx2).
It turns out from equations (4.1) and (4.4) thatXvac

θ has a normal distribution with mean
zero and variance1 1/(4π). This leads to the following efficiency corrected probability
density function of observations,

pηψ(y, θ) :=
√

2
1− η

∫
R
pψ(x, θ) exp

[
− 2πη

1− η (x− y)2
]
dx. (4.4)

To shorten notations, we define

γ := π(1− η)
2η , and Gγ(x) :=

√
π/γ exp

[
−π2x2/γ

]
, (4.5)

so that we have pηψ(y, θ) = [pψ(·, θ) ∗Gγ ](y), where ∗ denote the convolution product.
To summarize the statistical model we are considering in this paper, we aim at

estimating the Wigner density function Wρ, or better directly the state ρ, from n inde-
pendent and indentically distributed noisy observations (Y1, θ1), . . . , (Yn, θn) distributed
according to the distribution that has the density function of equation (4.4) with respect
to the Lebesgue measure on R× [0, π].

The problem of QHT is a statistical nonparametric ill-posed inverse problem that
has been relatively well studied from a frequentist point of view in the last few years,
and now quite well understood. We mention here only papers with theoretical analysis of
the performance of their estimation procedure. We should classify frequentist methods
in two categories, depending on whether they are based on estimating the state ρ, or
estimating Wρ (although ρ 7→Wρ is one-to-one, methods based on estimating Wρ don’t
permit to do the reverse path from Wρ 7→ ρ).

1Some readers may have noticed that the variance here is different that in Butucea et al. (2007). This
comes from a different convention for defining the vacuum state.
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The estimation of the state ρ from QHT measurements has been considered in the
ideal situation (η = 1, no noise) by Artiles et al. (2005), while the noisy setting is
investigated in Aubry et al. (2008) under Frobenius-norm risk. For smoothness class
of realistic states R(C,B, r), an adaptive estimation procedure has been proposed by
Alquier et al. (2013) and an upper bound for the Frobenius-norm risk is given. Goodness-
of-fit testing is investigated in Méziani (2008).

Regarding frequentist methods for estimating Wρ, the first result goes back to Guţă
and Artiles (2007), where sharp minimax results are given over a class of smooth Wigner
functions A(β, r = 1, L), under the pointwise risk. The noisy framework has been con-
sidered in Butucea et al. (2007); authors obtain the minimax rates of convergence under
the pointwise risk and propose an adaptive estimator over the set of parameters β > 0,
r ∈ (0, 1) that achieve nearly minimax rates. In the same time Méziani (2007) explored
the estimation of a quadratic functional of the Wigner function, as an estimator of the
purity of the state. In, Aubry et al. (2008) an upper bound for the L2-norm risk over
the class R(C,B, r) is given. More recently, Lounici et al. (2015) established the first
sup-norm risk upper bound over A(β, r, L), as well as the first minimax lower bounds for
both sup-norm and L2-norm risk; they also provide an adaptive estimator that achieve
nearly minimax rates for both sup-norm and L2-norm risk over A(β, r, L) for all β > 0
and r ∈ (0, 2).

To our knowledge, no Bayesian nonparametric method has been proposed to address
the problem of QHT with noisy data, a gap that we try to fill with this paper. In
particular, after having introduced preliminary notions in the next section, we propose
two families of prior distributions over pure states that can be useful in practice, namely
mixtures of coherent-states and random Wilson series. Regarding mixed-states, we will
discuss how we can straightforwardly extend the prior distributions over pure states
onto prior distributions over mixed states. After presenting simulation results, we will
investigate posterior rates of contraction for random Wilson series in the main section
of the paper. Rates of contraction, or even consistency, is still challenging for coherent
states mixtures, a fact that will be discussed more thoroughly in section 4.5.2.

4.2. Preliminaries

4.2.1. Notations

For x, y ∈ Rd, xy denote the euclidean inner product of x and y, and ‖x‖ is the euclidean
norm of a vector x ∈ Rd. For any function f , we denote by f̆ the involution f̆(x) = f(−x).
We use the notation ‖ · ‖p for the norm of the spaces Lp(Rd).

We use the following convention for the Fourier transform of a function f ∈ L1(Rd).

Ff(ω) := f̂(ω) :=
∫
Rd
f(x)e−2πixω dx, ∀ω ∈ Rd.

Then, whenever f ∈ L1(Rd) and Ff ∈ L1(Rd), the inverse Fourier transform F−1Ff =
f is well defined and given by

f(x) =
∫
Rd
f̂(ω)e2πiωx dω, ∀x ∈ Rd.
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Regarding the space L2(Rd), we use the convention that the inner product 〈·, ·〉 :
L2(Rd)×L2(Rd)→ C is linear in the first argument and antilinear in the second argument,
that is for two functions f, g ∈ L2(Rd) we define 〈f, g〉 :=

∫
Rd f(x)g(x) dx, where z is

the complex conjugate of z ∈ C. The unit circle of L2(Rd) will be denoted by S2(Rd);
that is S2(Rd) := {f ∈ L2(Rd) : ‖f‖2 = 1}.

We shall sometimes encounter the Schwartz space S(Rd); that is the space of all
infinitely differentiable functions f : Rd → R for which |xαDβf(x)| < +∞ for all
α, β ∈ Nd, with the convention xα = xα1

1 . . . xαdd and Dβf = ∂β1+···+βdf/(∂xβ1
1 . . . ∂xβdd ).

Dealing with probability distributions, we consider the Hellinger distanceH2(P,Q) :=
1
2
∫

(
√
dP/dλ−

√
dQ/dλ)2 dλ, for any probability measures P,Q absolutely continuous

with respect to a common measure λ.
We denote by Pρ, respectively P ηρ , the distributions that admit equation (4.2), re-

spectively equation (4.4), as density with respect to the Lebesgue measure on R× [0, π].
When ρ ≡ ρψ denote a pure state, we denote the previous distribution by Pψ and P ηψ ,
respectively.

Finally, inequalities up to a generic constant are denoted by the symbols . and &,
where a . b means a ≤ Cb for a constant C > 0 with no consequence on the result of
the proof.

4.2.2. Coherent states

In quantum optics, a coherent state refers to a state of the quantized electromagnetic
field that describes a classical kind of behavior.

Let Txf(y) := f(y−x),Mωf(y) = e2πiωyf(y), denote the translation and modulation
operators, respectively, and g a window function with ‖g‖2 = 1; most of time g is chosen
as g(x) = 2−1/4 exp(−πx2). Mathematically speaking, coherent states are pure states ρψ,
that is projection operators, described by a wave-function ψ belonging to{

ψ ∈ L2(R) : ψ = TxMωg (x, ω) ∈ R2
}
.

Note that the operators Tx and Mω are isometric on Lp(Rd) and ‖f‖p = ‖TxMωf‖p
for any 1 ≤ p ≤ ∞, all f ∈ Lp(Rd) and all x, ω ∈ R.

4.2.3. Wilson bases

Daubechies et al. (1991) proposed simple Wilson bases of exponential decay. They con-
structed a real-valued function ϕ such that for some a, b > 0,

|ϕ(x)| . e−a|x|, |ϕ̂(ω)| . e−b|ω|,

and such that the ϕlm, l ∈ N, m ∈ 1
2Z defined by

ϕlm(x) :=


ϕ(x− 2m) if l = 0,√

2ϕ(x−m) cos(2πlx) if l 6= 0 and 2m+ l is even,√
2ϕ(x−m) sin(2πlx) if l 6= 0 and 2m+ l is odd,
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constitute an orthonormal base for L2(R). Following Gröchenig (2001, section 8.5), we
may rewrite ϕlm in a convenient form for the sequel, emphasizing the relationship with
coherent states,

ϕlm = clTm(Ml + (−1)2m+lM−l)ϕ, (l,m) ∈ N× 1
2Z, (4.6)

where c0 := 1/2 and cl := 1/
√

2 for l ≥ 1.

4.3. Prior distributions

We recall that a pure state ρψ is a projection operator onto a one-dimensional subspace
of L2(R). Before giving the methodology for estimating general states, we introduce two
types of prior distribution over pure-states. More precisely, we first define two probability
distributions over S2(R), that can be trivially identified with the set of pure-state through
the mapping S2(R) 3 ψ 7→ ρψ; then we will show how to enlarge these prior distributions
to handle mixed states.

The first prior model is based on Gamma mixtures, whereas the second is based on
the Wilson base of exponential decay.

4.3.1. Gamma Process mixtures of coherent states

For any finite positive measure α on the measurable space (X,X ), let Πα denote the
Gamma process distribution with parameter α; that is, a Q ∼ Πα is a measure on (X,X )
such that for any disjoints B1, . . . , Bk ∈ X the random variables Q(B1), . . . , Q(Bk) are
independent random variables with distributions Ga(α(Bi), 1), i = 1, . . . , k.

We suggest a mixture of coherent states as prior distribution on the wave function ψ.
For a Gamma random measure Q on R2× [0, 2π], our model may be summarized by the
following hierarchical representation. Recall that P ηψ denote the probability distribution
having the density of equation (4.4), with ρ = ρψ the projection operator onto ψ.

(Y1, θ1), . . . , (Yn, θn) i.i.d∼ P ηψ , with ψ = ψ̃/‖ψ̃‖2

ψ̃(z) =
∫
R2×[0,2π]

eiφTxMωg(z)Q(dxdωdφ)

Q ∼ Πα.

4.3.2. Random Wilson series

Let (ϕlm) be the orthonormal Wilson base with exponential decay of section 4.2.3. For
any positive number Z, let ΛZ be the spherical array

ΛZ :=
{

(l,m) ∈ N× 1
2Z : l2 +m2 < Z2

}
.

Also define the simplex ∆Z in the `2 metric as

∆Z :=
{

p = (plm)(l,m)∈ΛZ :
∑

(l,m)∈ΛZ p
2
lm = 1, plm ≥ 0

}
.

We consider the following prior distribution Π on S2(R). Let PZ be a distribution over
R+ and draw Z ∼ PZ . Given Z, draw p from a distribution G(· | Z) over the simplex ∆Z .
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Independently of p, draw ζ = (ζlm)(l,m)∈ΛZ from a distribution Pζ(· | Z) over [0, 2π]|ΛZ |
and set

ψ :=
∑

(l,m)∈ΛZ

plme
iζlm ϕlm.

Note that (ϕlm) is orthonormal, thus ‖ψ‖22 =
∑

(l,m)∈ΛZ p
2
lm = 1 almost-surely, that is

ψ ∈ S2(R) almost-surely.

4.3.3. Estimation of mixed states

The set of quantum states is a convex set. According to the Hilbert-Schmidt theorem on
the canonical decomposition for compact self-adjoint operators, for every quantum state
ρ there exists an orthonormal set (ψn)Nn=1 in L2(R) (finite or infinite, in the latter case
N =∞), and αn > 0 such that

ρ =
N∑
n=1

αnρψn , and Trρ =
N∑
n=1

αn = 1.

The (αn)Nn=1 are the non-zero eigenvalues of ρ and (ρψn)Nn=1 projection operators onto
(ψn)Nn=1. Thus every mixed state is a convex linear combination of pure states. In partic-
ular, for any state ρ we have

Wρ(x, ω) =
N∑
n=1

αnWψn(x, ω),

making relatively straightforward the extension of priors over pure states onto priors over
general states. In other words, a prior distribution over general states can be constructed
as a mixture of pure states by a random probability measure.

4.4. Simulations examples

4.4.1. Simulation procedure

We test the Gamma process mixtures of coherent states on two examples of quantum
states, corresponding to the Schrödinger cat and 2-photons states, that are respectively
described by the wave functions

ψx0
cat(x) := exp(−π(x− x0)2) + exp(−π(x+ x0)2)

21/4
√

1 + exp(−2πx2
0)

,

ψ2(x) := 2−1/4(4πx2 − 1) exp(−πx2).

Using equations (4.1) and (4.2), it is seen that the conditional density on θ ∈ [0, π]
corresponding to the measurement of Xθ on the systems in states ψx0

cat and ψ2 are
respectively given by

px0
cat(x | θ) ∝

√
2e−2π(x−x0 cos θ)2

+
√

2e−2π(x+x0 cos θ)2 + 2e−2πx2
0

√
2e−2πx2 cos(4πxx0 sin θ)

e−2πx2
0 sin2 θ

,
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and,
p2(x | θ) = 2−1/2(4πx2 − 1)2e−2πx2

.

Note that px0
cat(· | θ) is not a mixture density, since one term can take negative values.

Conditionally on θ drawn uniformly on [0, π], we simulate n = 2000 observations from the
Schrödinger cat state with x0 = 2 using px0

cat(· | θ) and the rejection sampling algorithm
with candidate distribution 1

2N (−x0 cos θ, 1/(4π)) + 1
2N (x0 cos θ, 1/(4π)). Similarly, we

simulate n = 2000 observations from the 2-photons state using the rejection sampling
algorithm with a Laplace candidate distribution. A Gaussian noise is added to observa-
tions according to equation (4.4), where we choose η = 0.95, a reasonable efficiency the
physicists say.

4.4.2. Simulation results

We use the algorithm of Naulet and Barat (2015) for simulating samples from posterior
distributions of Gamma process mixtures. The base measure α on R2 × [0, 2π] of the
mixing Gamma process is taken as the independent product of a normal distribution on
R2 with covariance matrix diag(1/2, 1/2) and the uniform distribution on [0, 2π].

We ran 3000 iterations of the algorithm with p = 50 particles, leading to an ac-
ceptance ratio of approximately 60% for the particle moves and the both datasets. All
random-walk Metropolis-Hastings steps are Gaussians, with amplitudes chosen to achieve
approximately 25% acceptance rates. All the statistics were computed using only the
2000 last samples provided by the algorithm.
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Figure 4.1: Left: Average of Wigner distribution samples from the posterior distribution
of the mixture of coherent states prior given 2000 quantum homodyne tomography
observations simulated from a Schrödinger cat state. Right: View map of the absolute
value of the difference between the posterior mean estimate of the Wigner distribution
and the true Wigner distribution.
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Figure 4.2: Marginals of the Wigner distribution samples from the posterior distribution
of the mixture of coherent states prior given 2000 quantum homodyne tomography
observations simulated from a Schrödinger cat state. In straight line the posterior mean
estimate, whereas the dashed lines corresponds to the true marginals. The 95% credible
intervals for the sup-norm distance are drawn in shading.
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Figure 4.3: Left: Average of Wigner distribution samples from the posterior distribution
of the mixture of coherent states prior given 2000 quantum homodyne tomography
observations simulated from a 2-photons state. Right: View map of the absolute value of
the difference between the posterior mean estimate of the Wigner distribution and the
true Wigner distribution.
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Figure 4.4: Marginals of the Wigner distribution samples from the posterior distribution
of the mixture of coherent states prior given 2000 quantum homodyne tomography ob-
servations simulated from a 2-photons state. In straight line the posterior mean estimate,
whereas the dashed lines corresponds to the true marginals. The 95% credible intervals
for the sup-norm distance are drawn in shading.

Figures 4.1 and 4.3 represent the average of posterior samples of the Wigner dis-
tribution for the Schrödinger cat state, and the 2-photons state, respectively. Because
it is hard to distinguish between the posterior mean estimator and the true Wigner
distribution, we added to the figures a view map of the absolute value of the difference
between the evaluated posterior mean and the true Wigner distribution.

Figures 4.2 and 4.4 show the marginals of the posterior mean estimates of Wigner
distributions for our two examples. We represented the true marginals in dashed lines,
as well as the posterior credible bands provided by the algorithm, which we computed by
retaining the 95% samples with the smaller sup-norm distance from the posterior mean
estimator of the marginals.

Compared to other classical methods in this area, our estimate is non linear, preventing
easy computations. To our knowledge, however, none of the current approaches can
preserve the physical properties of the true Wigner function (non negativity of marginal
distributions, bounds) whereas our approach does guarantee preservation of all physical
properties.

4.5. Rates of contraction for random series priors

In this section, we establish posterior convergence rates in the quantum homodyne
tomography problem, for estimating pure states. Unfortunately, to get such result we need
a fine control of the L2(R) norm of random functions drawn from the prior distribution,
which remains challenging for mixtures of coherent states. However, dealing with Wilson
bases, the control of the L2(R) norm is straightforward and we are able to obtain posterior
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concentration rates.

4.5.1. Preliminaries on function spaces

To establish posterior concentration rates, we describe suitable classes of functions that
can be well approximated by partial sums of Wilson bases elements; these functional
classes are called ultra-modulation spaces. To this aim, we need the following ingredients:
the short-time Fourier transform (STFT), a class of windows and a class of weights. For
a non-zero window function g ∈ L2(R), the short-time Fourier transform of a function
f ∈ L2(R) with respect to the window g is given by

Vgf(x, ω) := 〈f, MωTxg〉 =
∫
R
f(t)g(t− x)e−2πiωt dt, (x, ω) ∈ R2. (4.7)

We also need a class of analyzing windows g with sufficiently good time-frequency
localization properties. Following, Cordero (2007); Cordero et al. (2005); Gröchenig and
Zimmermann (2004), we use the Gelfand-Shilov space S1

1 (R). For any d ≥ 1, a function
f : Rd → C belongs to the Gelfand-Shilov space S1

1 (Rd) if f ∈ C∞(Rd) and there exist
real constants h > 0 and k > 0 such that

sup
x∈Rd

|f(x)eh‖x‖| < +∞, sup
ω∈Rd

|f̂(ω)ek‖ω‖| < +∞.

Next, for β > 0, g ∈ S1
1 (R), and r ∈ [0, 1), we consider the exponential weights on

R2 defined by x 7→ exp(β‖x‖r), and we introduce the class of wave-functions

Cg(β, r, L) :=
{
ψ ∈ S2(R) :

∫
R2
|Vgψ(z)| exp(β‖z‖r)dz ≤ L

}
. (4.8)

The class Cg(β, r, L) is reminiscent to modulation spaces (Gröchenig, 2001, 2006). Note
that it would be interesting to consider Cg(β, r, L) for r ≥ 1, since most quantum states
should fall in these classes. There is, however, at least two limitations for considering
r ≥ 1. First, we use repeatedly in the proofs that exp(β‖x+y‖r) ≤ exp(β‖x‖r) exp(β‖y‖r)
for r ≤ 1, which is no longer true when r > 1. The previous limitation is indeed
not the more serious concerns, since for r > 1 we could use that exp(β‖x + y‖r) ≤
exp(2r−1β‖x‖r) exp(2r−1β‖y‖r). The more serious problem is that, to our knowledge,
there is no Wilson base for L2(R) whose elements fall into Cg(β, r, L) for r > 1 and β > 0,
L > 0. The case r = 1 is more delicate since it depends on the value of β. For sufficiently
small β > 0, the results proved in this paper for r < 1 should also hold for r = 1.

Let also notice that, there is a fundamental limit on the growth of the weights in
the definition of Cg(β, r, L), imposed by Hardy’s theorem. If r = 2 and β > π/2, the the
corresponding classes of smoothness Cg(β, r, L) are trivial for any L > 0 (Gröchenig and
Zimmermann, 2001).

A critical point regarding the class Cg(β, r, L) is the dependence on g in the definition.
We truly want that for two different windows g0 and g1 the corresponding smoothness
are the same. Fortunately, we have the following theorem, proved in section 4.A.
Theorem 4.1 – Let g, g0 ∈ S1

1 (R). For all β, L > 0 and all 0 ≤ r < 1 there is a constant
C > 0, depending only on g, g0, such that embedding Cg(β, r, L) ⊆ Cg0(β, r, CL) holds.
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The STFT and the Wigner transform both aim at having a time-frequency represen-
tation of functions in L2(R), and are deeply linked to each other. However, contrarily to
the Wigner transform, the STFT has the advantage of being a linear operator, which is
one reason why we prefer to state the class Cg(β, r, L) in term of the STFT instead of
the Wigner transform.

4.5.2. Assumptions and results

Before stating the main result of this paper, we need some further assumptions on the
random Wilson base series prior, which we state now. To this aim, we need the following
definition of the weighted simplex ∆w

Z(β, r,M). For a constantM > 0, β > 0 and r ∈ [0, 1)
let

∆w
Z(β, r,M) :=

{
p ∈ ∆Z :

∑
(l,m)∈ΛZ plm exp

(
β(l2 +m2)r/2

)
< M

}
.

Then, in the sequel, we assume that
• There is a constant a0 > 0 such that for any sequence (xlm)(l,m)∈ΛZ ∈ [0, 2π]|ΛZ |,

Pζ
(∑

(l,m)∈ΛZ |ζlm − xlm|
2 ≤ t | Z

)
& exp

(
−a0Z

2 log t−1
)
, ∀t ∈ (0, 1).

• PZ(Z < +∞) = 1 and there are constants a1, a2 > 0 and b1 > 2 + r, such that for
all k positive integer large enough

PZ(Z = k) & exp(−a1k
b1), PZ(Z > k) . exp(−a2k

b1).

• For any constant C > 0 and any sequence q ∈ ∆w
Z(β, r, C), there is a constant

a3 > 0 such that the distribution G(· | Z) satisfy,

G
(∑

(l,m)∈ΛZ |plm − qlm|
2 ≤ t | Z

)
& exp

(
−a3Z

b1−r log t−1
)
, ∀t ∈ (0, 1).

We further assume that there exist constants a4 ≥ 0, a5, c0 > 0, and b5 > b1/r such
that for x > 0 large enough

G
(
p /∈ ∆w

Z(β, r, c0x
a4) | Z ≤ x1/r

)
. exp

(
−a5x

b5
)
.

It is not clear whether or not we can find a distribution G for which the above condi-
tions are satisfied simultaneously for all (β, r, L), eventually with constants a3, a4, a5, b5
depending on (β, r, L). If such distribution exists, then the rates stated below are easily
seen to be adaptive on (β, r, L). In section 4.6, we show that for a given (β, r, L) it is
easy to construct a distribution G that satisfies the above conditions, with a4 = 2/r.
However, we believe that the proof for adaptive rates must follow a different path, still
to be found.

Under the hypothesis above, we will dedicate the rest of the paper to prove the
following theorem.

Theorem 4.2 – Let β, L > 0 and r ∈ (0, 1). Let Π be the random Wilson series prior
satisfying the assumptions above, and (Y1, θ1), . . . , (Yn, θn) be observations coming from
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the statistical model described by equation (4.4), with 0 < η < 1 and γ > 0 defined in
equation (4.5). Then for any ψ0 ∈ Cg(β, r, L), there is M > 0 such that

P η,nψ0
Π(‖ψ − ψ0‖2 ≥Mεn | (Y1, θ1), . . . , (Yn, θn))→ 0,

ε2n = (logn)2a4 exp
{
−β

( logn
2γ

)r/2
+O(1)

}
.

Note that the same result holds with ‖ψ−ψ0‖2 replaced with ‖Wψ−Wψ0‖2, because
the Wigner transform is isometric from L2(R) onto L2(R2); see for instance Gröchenig
(2001, proposition 4.3.2).

The rates of contraction are relatively slow, a fact that is also pointed out in Butucea
et al. (2007). Indeed, the rates are faster than (logn)−a but slower than n−a, for all
a > 0. The reason for such bad rates of convergence is to be found in the deconvolution
of the Gaussian noise. If one does not carry about deconvoluting the noise, then all the
steps in the proof of theorem 4.2 can be mimicked to get weaker a result. In particular,
we infer from the results of the paper that the posterior distribution should contracts at
nearly parametric rates, i.e. at rate εn ≈ n−1/2(logn)t for some t > 0, around balls of
the form {

ψ ∈ S2(R) :
∫
R2
|Ŵψ(z)− Ŵψ0(z)|2 Ĝγ(‖z‖)2dz ≤ ε2n

}
, (4.9)

whenever ψ0 ∈ Cg(β, r, L) for some β, L > 0 and r ∈ (0, 1). Moreover, we’ve made many
restrictive assumptions on the prior distribution that can be easily released for those
interested only in posterior contraction around balls of the form (4.9).

A natural question regarding the rates found in theorem 4.2 concerns optimality. We
do not know yet the minimax lower bounds over the class Cg(β, r, L) for the L2 risk.
However, Butucea et al. (2007); Aubry et al. (2008); Lounici et al. (2015) consider a
class A(α, r, L) that resembles to Cg(β, r, L). More precisely, they define

A(α, r, L) :=
{
Wρ :

∫
|Ŵρ(z)|2 exp(2α‖z‖r)dz ≤ L2

}
.

Identifying ρψ with ψ, our proposition 4.7 state the embedding Cg(β, r, L) ⊆ A(β/2, r, L).
Hence Cg(β, r, L) is certainly contained in the intersection of a class A(β/2, r, L) with
the set of pure states, and it makes sense to compare the rates. To our knowledge, the
only minimax lower bound for the quadratic risk known is for the estimation of a state in
A(α, r = 2, L), stated in Lounici et al. (2015). For r ∈ (0, 1), however, upper bounds for
the quadratic risk over A(β/2, r, L) are established in Aubry et al. (2008), and coincide
with the rates found here. Therefore, we believe that the rates we found in this paper
are optimal.

Let conclude with a few points that are still challenging at this time. First, the rates
(or even consistency) for the coherent states mixtures priors appears difficult to establish
with the method employed here; the reason comes from the difficulty to control the norm
‖ψ̃‖2 when ψ̃ is a coherent states mixture. Regarding Wilson based priors, we already
discussed the lack of adaptivity, which clearly deserved to be dug in a near future. Finally,
it would be interesting to consider priors based on Gabor frames expansions, as they
are more flexible than Wilson bases, and should be computationally more efficient than
coherent states mixtures. However, Gabor frames suffer from the same evil that coherent
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states, namely the expansions are not unique and it is hard to control from below the
L2 norm of random Gabor expansions.

4.6. Example of priors on the simplex

In this section, we construct a prior on the simplex ∆Z that satisfy the assumptions of
section 4.5.2 for a given (β, r). For all k ≥ 1, and a constant M > 0 to be defined later,
we define the sets

Ik :=
{

(l,m) ∈ N× 1
2Z : (k − 1)M ≤

√
l2 +m2 < kM

}
.

We assume without loss of generality that Z = KM for an integer K > 0; then ΛZ =
∪Kk=1Ik. We then construct the distribution G(· | Z) over the simplex ∆Z as follows.
For k = 2, . . . ,K, let Hk be the uniform distribution over [0,

√
2L exp(−β(kr − 1)M r)].

Let θ1 := 1 and for k = 2, . . . ,K draw θk from Hk independently. The next step is to
introduce distributions Fk over the Ik-simplex

Sk :=
{

(ηlm)(l,m)∈Ik :
∑

(l,m)∈Ik η
2
lm = 1, ηlm ≥ 0

}
,

and draw independently sequences (ηlm)(l,m)∈I1 , (ηlm)(l,m)∈I2 , . . . , (ηlm)(l,m)∈IK , accord-
ing to distributions F1, F2, . . . , FK . Finally, the sequence p = (plm)(l,m)∈ΛZ drawn from
G(· | Z) is defined to be such that

plm := ηlmθk1 ((l,m) ∈ Ik) .∑K
k=1 θ

2
k

.

Now we prove that we can chose reasonably M > 0 and the distributions F1, F2 . . . to
met the assumptions of section 4.5.2. The proofs of the next two propositions are to be
found in section 4.D.
Proposition 4.1 – There is a constant c0 > 0 such that for any Z ≥ 0 the sequence
(plm)(l,m)∈ΛZ belongs to ∆w

Z(β, r, c0Z
2) with G(· | Z) probability one.

Proposition 4.2 – Let M > 0 be large enough, K ≥ 0 integer, and Z = KM . Assume that
there is a constant c0 > 0 and a sequence (dk)Kk=1 such that

∑K
k=1 dk ≤ c0K, and for any

sequence (elm)(l,m)∈Sk it holds Fk(
∑

(l,m)∈Ik |ηlm−elm|
2 ≤ t) & exp(−dkKb1−r−1 log t−1).

Then there is a constant a3 > 0 such that G(
∑

(l,m)∈ΛZ |plm − qlm|2 ≤ 12t | Z) &
exp(−a3Z

b1−r log t−1).
In the previous proposition, some conditions are required on F1, F2, . . . ; these condi-

tions are indeed really mild. For instance, it follows from Ghosal et al. (2000, lemma 6.1)
that the conclusion of proposition 4.2 is valid if ηlm := √ulm where (ulm)(l,m)∈Ik are
drawn from Dirichlet distributions with suitable parameters.

4.7. Proof of theorem 4.2

The proof of theorem 4.2 follows the classical approach of Ghosal et al. (2000); Ghosal and
van der Vaart (2007) for which the prior mass of Kullback-Leibler type neighborhoods
need to be bounded from below and tests constructed. See details in section 4.E.
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Throughout the document, we let Dβ,r
n := (log(n)/β)1/r. Then we introduce the

following events, which we’ll use several times in the proof of posterior contraction rates.

En :=
{

(y, θ) ∈ R× [0, 2π] : |y| ≤ Dβ,r
n

}
, (4.10)

Ωn := {((y1, θ1), . . . , (yn, θn)) : (yi, θi) ∈ En ∀i = 1, . . . , n}. (4.11)

4.7.1. Prior mass of Kullback-Leibler neighborhoods

We introduce a new variation around the basic lines of Ghosal et al. (2000); Ghosal and
van der Vaart (2007), permitting to slightly weaken the so-called Kullback-Leibler (KL)
condition. We show that we can trade the KL condition for a restricted KL condition;
that is prior positivity of the sets

Bn(δn) :=

ψ :
∫
En
pηψ0

log
pηψ0

pηψ
≤ δ2

n,

∫
En
pηψ0

(
log

pηψ0

pηψ

)2

≤ δ2
n

. (4.12)

Although looking trivial, this will ease the proof of our main theorem, since the prior
positivity of Bn(δn) is simpler to prove than the classical positivity of KL balls of Ghosal
et al. (2000); Ghosal and van der Vaart (2007).

Decay estimates of the true density

It is a classical fact that in Bayesian nonparametrics we often require tails assumptions
on the density of observations to be able to state rates of convergence. Here, the density
of observations is quite complicated, as being the convolution of a Gaussian noise with
the Radon-Wigner transform of ψ. Since the Wigner transform of ψ interpolates ψ and
its Fourier transform, we definitively have to take care about fancy tails assumptions on
the density that could be non compatible with the requirements of a Wigner transform.
Instead, we show that the decay assumptions on the STFT stated in the definition of
Cg(β, r, L) directly translate onto the tails of the joint density of observations. We have
the following theorem, whose proof is given in section 4.B.1.

Lemma 4.1 – For all β, L > 0 and all r ∈ (0, 1) there is a constant C(β, r, η) > 0
such such that P ηψ(Ecn) ≤ 2πC(β, r, η)L2n−2 and P η,nψ (Ωc

n) ≤ 2πC(β, r, η)L2n−1 for all
ψ ∈ Cg(β, r, L).

Approximation theory

In order to prove the prior positivity of the sets Bn(δn), we need to construct a family
Mn of functions in S2(R) that approximate well ψ0 in the L2(R) distance. We will show
later that the sets Bn(δn) contains suitable closed balls around ψ0 in the norm of L2(R).

In the sequel, we need to relate the parameters β, r, L to the decay of the coefficients
〈ψ0, ϕlm〉 of ψ0 ∈ Cg(β, r, L) expressed in the Wilson base. Fortunately, Wilson bases are
unconditional bases for the ultra-modulation spaces, and Cg(β, r, L) is a subset of the ultra-
modulation spaceM1

β,r. It follows the following lemma (Gröchenig, 2001, theorem 12.3.1).
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Lemma 4.2 – Let ψ ∈ Cg(β, r, L) for some β, L > 0 and 0 ≤ r < 1. Then there is a
constant 0 < C(β, r) < +∞ such that∑

(l,m)∈Λ∞

|〈ψ, ϕlm〉| exp
(
β(l2 +m2)r/2

)
≤ C(β, r)L.

Having characterized the decay of Gabor coefficients for those ψ ∈ Cg(β, r, L), we
are now in position to construct functions ψZ which degree of approximation to ψ0 ∈
Cg(β, r, L) is indexed by the value of Z. In view of section 4.2.3, ψ0 has the formal
decomposition ψ0 =

∑
l,m〈ψ0, ϕlm〉ϕlm, with unconditional convergence of the series in

L2(R). We define ψ̃Z such that

ψ̃Z :=
∑

(l,m)∈ΛZ

〈ψ0, ϕlm〉ϕlm.

Since (ϕlm) constitutes an orthonormal base for L2(R), lemma 4.2 implies that for any
β > 0 and r ∈ (0, 1),

‖ψ0 − ψ̃Z‖22 =
∑

(l,m)/∈ΛZ

|〈ψ0, ϕlm〉|2

≤ exp(−βZr)
∑
l,m

|〈ψ0, ϕlm〉| exp
(
β(l2 +m2)r/2

)
≤ C(β, r)L exp (−βZr) ,

because on ΛcZ we have l2 + m2 ≥ Z2 and |〈ψ0, ϕlm〉| ≤ ‖ψ0‖2‖ϕlm‖2 = 1. Note that
ψ̃Z is not necessarily in S2(R), that is in general ‖ψ̃Z‖2 6= 1, whence it is not a proper
wave-function. We now trade ψ̃Z for a version ψZ with ‖ψZ‖2 = 1, keeping the same
order of approximation. Indeed, let ψZ := ψ̃Z/‖ψ̃Z‖2, then since ‖ψ0‖2 = 1,

‖ψZ − ψ0‖2 ≤ ‖ψZ − ψ̃Z‖2 + ‖ψ̃Z − ψ0‖2

≤ ‖ψ̃Z‖
∣∣∣∣∣1− 1

‖ψ̃Z‖2

∣∣∣∣∣+ ‖ψ̃Z − ψ0‖2 ≤ 2‖ψ̃Z − ψ0‖2

≤ 2
√
C(β, r)L exp

(
−βZ

r

2

)
. (4.13)

A lower bound on Π(Bn(δn))

The proof of the lemmas and theorem of this section are to be found in sections 4.B.2
and 4.B.3. To prove the Kullback-Leibler condition, we first construct a suitable set
Mn ⊂ Bn(δn), and we’ll lower bound Π(Bn(δn)) ≥ Π(Mn). Let ψZ be the function
constructed in section 4.7.1 and clm := 〈ψZ , ϕlm〉, so that ψZ =

∑
(l,m)∈ΛZ clmϕlm. Then,

we define the setMn ≡Mn(Z,U) as follows, and we’ll prove that Z,U can be chosen
so thatMn(Z,U) ⊂ Bn(δn).

Mn(Z,U) :=

ψ ∈ S2(R) :
ψ =

∑
(l,m)∈ΛZ plme

iζlm ϕlm,∑
(l,m)∈ΛZ |plm − |clm||

2 ≤ U2∑
(l,m)∈ΛZ |ζlm − arg clm|2 ≤ U2

. (4.14)
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Lemma 4.3 – For all ψ ∈Mn(Z,U), it holds with the constant C(β, r) of lemma 4.2,

‖ψ − ψ0‖2 ≤ 2U + 2
√
C(β, r, g)L exp

(
−βZ

r

2

)
.

The fact that Mn(Z,U) is included into a suitable L2(R) ball around ψ0 is not
enough to prove the inclusion Mn(Z,U) ⊂ Bn(δn). The next lemma states sufficient
conditions for which the inclusionMn(Z,U) ⊂ Bn(δn) actually holds true.
Lemma 4.4 – There are constants 0 < C1, C2 <∞ depending only on γ, β, r, A,B, L such
that if U ≤ C1(logn)−4/rδ2

n and Z ≥ C2(log δ−1
n )1/r, then for n large enoughMn(Z,U) ⊂

Bn(δn) for every δ2
n ≥ 4

√
2πC(β, r, η)Ln−1, where C(β, r, η) is the constant of lemma 4.1.

Now that we have shown thatMn(Z,U) ⊆ Bn(δn) for suitable choice of Z and U , it
is clear that the prior mass of Bn(δn) is lower bounded by the prior mass ofMn(Z,U),
the one is relatively easy to compute. This statement is made formal in the next theorem.
Theorem 4.3 – Let ψ0 ∈ Cg(β, r, L), and b1 > 2 + r. Then there is a constant C > 0 such
that for nδ2

n = C(logn)b1/r it holds Π(Bn(δn)) & exp(−nδ2
n) for n large enough.

4.7.2. Construction of tests

The approach for constructing tests is reminiscent to Knapik and Salomond (2014), where
authors provide a general setup to establish posterior contraction rates in nonparamet-
ric inverse problems. We define the following sieve. For positive constants c, h to be
determined later, and the constant a4 > 0 of the assumptions

Fn :=
{
ψ ∈ S2(R) : ψ =

∑
(l,m)∈ΛZ plme

iζlm ϕlm, 0 ≤ Z ≤ h(logn)1/r,

p ∈ ∆w
Z(β, r, c(logn)a4)

}
.

Then, we construct test functions with rapidly decreasing type I and type II errors,
for testing the hypothesis H0 : ψ = ψ0 against the alternative H1 : ψ ∈ Un ∩ Fn, with
Un := {ψ ∈ S2(R) : ‖ψ − ψ0‖2 ≥ εn}, for a sequence (εn)n≥0 to be determined later.
To this aim, we need the following series of propositions about Fn, which are proved in
section 4.C.1.
Proposition 4.3 – Let nδ2

n = C(logn)b1/r for some constant C > 0. Then Π(Fcn) .
exp(−6nδ2

n) whenever h > (6C/a2)1/b1 and c > 0 large enough.
Proposition 4.4 – Let b1 > 2 + r and assume that nδ2

n = C(logn)b1/r for some constant
C > 0. Then N(

√
2δ2
n,Fn, ‖ · ‖2) exp(−6nδ2

n) = o(1).
Proposition 4.5 – There is a constant M > 0, depending only on ϕ and η, such that for
all ψ ∈ Fn it holds ‖pηψ‖∞ ≤Mh2(logn)2/r.
Proposition 4.6 – For all β > 0 and r ∈ (0, 1) there is a constant R > 0 such that for any
u > 0 it holds supψ∈Fn

∫
{‖z‖>u} |Ŵψ(z)|2 dz ≤ R(logn)2a4 exp(−βur).

The first step in the tests construction consists on bounding, both from below and
from above, the Hellinger distance H2(P ηψ , P

η
ψ0

) by a multiple constant of ‖ψ − ψ0‖2, at
least for those ψ0 ∈ Cg(β, r, L) and those ψ ∈ Fn. To this aim, we need to estimate the
decay of Ŵψ0 , stated in the next proposition. The remaining proofs for this section can
be found in sections 4.C.2 and 4.C.3.
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Proposition 4.7 – Let ψ ∈ Cg(β, r, L) for some β, L > 0 and r ∈ (0, 1). Then
∫
R2
|Ŵψ(z)|2 exp(β‖z‖r) dz ≤ L2.

The practical proposition 4.7 allows to upper bound ‖ψ − ψ0‖2 by H(P ηψ , P
η
ψ0

), pro-
vided ψ and ψ0 are sufficiently separated from each other.

Lemma 4.5 – Let β, L > 0, r ∈ (0, 1), C0 := ‖pηψ0
‖∞, M,R > 0 be the constants of

propositions 4.5 and 4.6, and assume n large enough. Then for all u > 0, all ψ ∈ Fn
and all ψ0 ∈ Cg(β, r, L) such that ‖ψ − ψ0‖22 ≥ 8R(logn)2a4 exp(−βur), it holds

√
2H2(P ηψ , P

η
ψ0

) ≤ ‖ψ − ψ0‖2 ≤ 2
√
C0 +Mh2(logn)2/reγu

2
H(P ηψ , P

η
ψ0

).

From the last lemma, we are in position to construct test functions with rapidly
decreasing type I and type II error for testing H0 : ψ = ψ0 ∈ Cg(β, r, L) against H1 :
‖ψ − ψ1‖2 ≤

√
2δ2
n for any ψ1 ∈ Fn such that ‖ψ1 − ψ0‖2 ≥ ε2n, with

δ2
n := ε2n exp(−2γu2

n)
48[C0 +Mh2(logn)2/r)]

, ε2n := 8R(logn)2a4 exp(−βurn), (4.15)

where (un)n≥0 is an increasing sequence of positive numbers to be determined later and
M,R > 0 the constants of propositions 4.5 and 4.6.

Proposition 4.8 – Let δn, εn be as in equation (4.15). Then there exist test functions
(φn)n≥0 for testing H0 : ψ = ψ0 ∈ Cg(β, r, L) against H1 : ‖ψ − ψ1‖2 ≤

√
2δ2
n for any

ψ1 ∈ Fn such that ‖ψ1 − ψ0‖2 ≥ εn, with type I and type II errors satisfying

P η,nψ0
φn ≤ exp(−6nδ2

n), sup
ψ∈S2 : ‖ψ−ψ1‖2≤

√
2δ2
n

P η,nψ (1− φn) ≤ exp(−6nδ2
n).

Proof. By lemma 4.5, we deduce that H(P ηψ1
, P ηψ0

) ≥
√

12δn. From lemma 4.11, for any
ψ ∈ S2(R) with ‖ψ − ψ1‖2 ≤

√
2δ2
n (ψ not necessarily in Fn), we have the estimate

H(P ηψ , P
η
ψ1

) ≤ δn ≤ H(P ηψ1
, P ηψ0

)/2. Then the conclusion follows from Ghosal et al. (2000,
section 7). �

The small balls estimate of proposition 4.8 allows to build the desired test functions,
using the classical approach of the covering of Fn with balls of radius

√
2δ2
n in the L2(R)

norm (Ghosal et al., 2000).

Theorem 4.4 – Assume that ψ0 ∈ Cg(β, r, L) for β, L > 0 and r ∈ (0, 1), and let εn, δn
be as in equation (4.15). Let N(

√
2δ2
n,Fn, ‖ · ‖2) be the number of L2(R) balls of radius√

2δ2
n needed to cover Fn. Then there exist test functions (φn)n≥0 such that

P η,nψ0
φn ≤ N(

√
2δ2
n,Fn, ‖ · ‖2) exp(−6nδ2

n), and
sup

ψ∈Fn : ‖ψ−ψ0‖2≥εn
P η,nψ (1− φn) ≤ exp(−6nδ2

n).
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4.7.3. Conclusion of the proof

Let summarize what we’ve done so far, and finalize the proof of theorem 4.2. In lemma 4.10
in appendix, we state sufficient conditions to finish the proof of our main theorem; these
conditions involve two parts. First, proving that for a suitable sequence δn → 0 with
nδ2

n → our prior puts enough probability mass on the balls Bn(δn) and; the construction
of tests functions with sufficiently rapidly decreasing type I and type II errors for testing
H0 : ψ = ψ0 against H1 : ‖ψ − ψ0‖2 ≥ εn, for those ψ in a set Fn of prior probability
1− exp(−6nδ2

n).
For the prior considered here, we found in theorem 4.3 that δn must satisfy nδ2

n ≥
C(logn)b1/r for some C > 0, otherwise the so-called Kullback-Leilbler condition is not
met. Regarding the construction of tests, this involved to build explicitly the sets Fn in
section 4.7.2. From that construction and equation (4.15), we deduce that the required
test functions exist, if for some constants K1,K2 > 0 and a sequence un →∞

δ2
n ≤

K1 exp(−2γu2
n)ε2n

(logn)2/r , ε2n ≥ K2(logn)2a4 exp(−βurn). (4.16)

Since we must also have nδ2
n ≥ C(logn)b1/r, we deduce that the sequence (un)n≥1 should

satisfy, for a suitable constant C ′ > 0,

βurn + 2γu2
n − 2a5(logn)s/2 ≤ logC ′ + logn− r−1(2 + b1 − 2ra4) log logn.

Finally, we can take,
u2
n = logn

2γ −O((logn)r/2)

and the conclusion of the proof follows by equation (4.16).



Appendix

4.A. Proof of theorem 4.1

We need some subsidiaries results to prove the theorem 4.1.

Proposition 4.9 – For all β > 0, all 0 ≤ r ≤ 1 and all x, y ∈ R2, it holds exp(β‖x+y‖r) ≤
exp(β‖x‖r) exp(β‖y‖r).

Proof. This follows from the trivial estimate

‖x+ y‖r ≤ (‖x‖+ ‖y‖)r = ‖x‖(‖x‖+ ‖y‖)r−1 + ‖y‖(‖x‖+ ‖y‖)r−1

≤ ‖x‖‖x‖r−1 + ‖y‖‖y‖r−1 = ‖x‖r + ‖y‖r. �

The next lemma is about the change of window in the STFT; its proof is given
for arbitrary g ∈ S(R) and ψ ∈ S ′(R) in Gröchenig (2001, lemma 11.3.3). The proof
is identical when g, ψ ∈ L2(R), since it essentially rely on a duality argument. Note,
however, that the class of windows and functions that we are considering are subset of
S(R).

Lemma 4.6 – Let g0, g, h ∈ L2(R) such that 〈h, g〉 6= 0 and let ψ ∈ L2(R). Then
|Vg0ψ(x, ω)| ≤ |〈h, g〉|−1(|Vgψ| ∗ |Vg0h|)(x, ω) for all (x, ω) ∈ Rd.

Proof. From Gröchenig (2001, corollary 3.2.3), for those g, h ∈ L2(R) with 〈h, g〉 6= 0,
we have the inversion formula ψ = 〈h, g〉−1 ∫ Vgψ(x, ω)MωTxh dωdx for all ψ ∈ L2.
Applying Vg0 both sides

Vg0ψ(x′, ω′) = 1
〈h, g〉

∫
R2
Vgψ(x, ω)Vg0(MωTxh)(x′, ω′) dωdx.

The conclusion follows because |Vg0(MωTxh)(x′, ω′)| = |Vg0h(x′ − x, ω′ − ω)|. �

Finally, we have the sufficient material to establish the independence of the class
Cg(β, r, L) with respect to the choice of the window function g, as soon as g is suitably
well behaved.

Proof of theorem 4.1. Using lemma 4.6, we have that |Vg0ψ| ≤ ‖g‖−2
2 |Vgψ| ∗ |Vg0g|. Then,

140
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because r < 1 by assumption,∫
R2
|Vg0ψ(z)| exp(β‖z‖r) dz

≤
∫
R2

(|Vgψ(z)| ∗ |Vg0g(z)| exp(β‖z‖r) dz

≤
∫∫

R2

∫
R2
|Vgψ(u) exp(β‖u‖r)|Vg0g(z − u)| exp(β‖z − u‖r) dudz

≤
∫
R2
|Vgψ(u)| exp(β‖u‖r) du

∫
R2
|Vg0g(u)| exp(β‖u‖r) du,

where we’ve used Young’s inequality and the first estimate of proposition 4.9. We have by
Gröchenig and Zimmermann (2004, corollary 3.10) that Vg0g ∈ S1

1 (R2), thus the second
integral in the rhs of the last equation is bounded. �

4.B. Proofs of Kullback-Leibler neighborhoods prior mass

4.B.1. Proof of lemma 4.1

To prove lemma 4.1, we need the following intermediate lemmas, relating the smoothness
of ψ to the tails of the Wigner density of ψ.
Lemma 4.7 – Let ψ ∈ Cg(β, r, L) with β, L > 0 and r ∈ (0, 1). Then,∫

R2
|Wψ(z)| exp(β‖2z‖r)dz ≤ L2.

Proof. Let ψ̆(x) = ψ(−x). Then from the definition of Vgψ and Wψ we have that
Wψ(x, ω) = 2e4πiωxVψ̆ψ(2x, 2ω). By lemma 4.6 (with |〈g, g〉| = ‖g‖22 = 1), proposi-
tion 4.9, and Young’s inequality,∫

|Wψ(z/2)| exp(β‖z‖r)dz

≤ 2
∫

(|Vgψ| ∗ |Vψ̆g|)(z) exp(β‖z‖r)dz

≤ 2
∫∫
|Vgψ(u)| exp(β‖u‖r)|Vψ̆g(z − u)| exp(β‖z − u‖r) dudz

≤ 2
∫
|Vgψ(z)| exp(β‖z‖r)dz ×

∫
|Vψ̆g(z)| exp(β‖z‖r)dz.

Moreover, a straightforward computation shows that

Vψ̆g(x, ω) = e−2πiωxVgψ(x,−ω),

which concludes the proof. �

Lemma 4.8 – Let ψ ∈ Cg(β, r, L), with β, L > 0 and r ∈ (0, 1). Then,

sup
θ

∫
R
pψ(x, θ) exp(2β|x|r)dx ≤ L2.
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Proof. From the definition of pψ,∫
R
pψ(x, θ) e2β|x|rdx =

∫
R2
Wψ(x cos θ − ξ sin θ, x sin θ + ξ cos θ) e2β|x|rdξdx.

Performing the change of variable (x, ξ) 7→ (x cos θ+ ξ sin θ,−x sin θ+ ξ cos θ), we arrive
at ∫

R
pψ(x, θ) e2β|x|rdx =

∫
R2
Wψ(x, ξ) e2β|x cos θ+ξ sin θ|rdξdx.

But for all r ∈ (0, 1), by the triangle inequality and Hölder’s inequality

|x cos θ + ξ sin θ|r ≤ (|x cos θ|+ |ξ sin θ|)r ≤ (|x|+ |ξ|)r ≤ 2r/2(x2 + ξ2)r/2.

Then ∫
R
pψ(x, θ) e2β|x|rdx ≤

∫
R2
|Wψ(z)| exp (β‖2z‖r) dz,

and the conclusion follows from lemma 4.7. �

Lemma 4.9 – For all β, L > 0 and r ∈ (0, 1) there is a constant C(β, r, η) > 0 such that
if ψ ∈ Cg(β, r, L) we have supθ

∫
R p

η
ψ(y, θ) exp(2β|y|r)dy ≤ C(β, r, η)L2.

Proof. Using Fubini’s theorem twice and the estimate |u+ x|r ≤ |u|r + |x|r,

∫
pηψ(y, θ) e2β|y|rdy =

√
π

γ

∫∫
pψ(x, θ) exp

{
−π

2(x− y)2

γ

}
dx e2β|y|rdy

=
√
π

γ

∫∫
pψ(x, θ) exp

{
−π

2u2

γ

}
exp (2β|u+ x|r) dudx

≤
√
π

γ

∫
pψ(x, θ) e2β|x|rdx

∫
exp

{
−π

2u2

γ
+ 2β|u|r

}
du.

The conclusion follows from lemma 4.8. �

From the lemmas above the proof of lemma 4.1 is relatively straightforward, we give
it here for the sake of completeness.

Proof of lemma 4.1. We begin with the obvious estimate P η,nψ (Ωc
n) ≤ nP ηψ(Ecn). The

proof is finished by noticing that

P ηψ(Ecn) =
∫
Ecn

pηψ(y, θ) e2β|y|re−2β|y|rdydθ

≤ n−2
∫
pηψ(y, θ) e2β|y|rdydθ

≤ 2πC(β, r, η)L2n−2,

because of lemma 4.9. �
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4.B.2. Proofs regarding approximation theory

Proof of lemma 4.3. For all ψ ∈Mn(Z,U) we have the following estimate. Because (ϕlm)
is an orthonormal base of L2(R),

‖ψ − ψZ‖22 =
∑

(l,m)∈ΛZ

|plmeiζlm − clm|2

≤ 2
∑

(l,m)∈ΛZ

|plm − |clm||2 + 2
∑

(l,m)∈ΛZ

|ζlm − arg clm|2 ≤ 4U2.

Then the conclusion follows using ‖ψ−ψ0‖2 ≤ ‖ψ−ψZ‖2+‖ψZ−ψ0‖2 and equation (4.13).
�

Proof of lemma 4.4. Recall that pηψ(y, θ) = [pψ(·, θ)∗Gγ ](y). We have the obvious bound

pηψ(y, θ) =
∫ +∞

−∞
pψ(x, θ)Gγ(y − x) dx ≥

∫ +Dβ,rn

−Dβ,rn
pψ(x, θ)Gγ(y − x) dx.

Then for all (y, θ) ∈ En (i.e. |y| ≤ Dβ,r
n ) it follows from the definition of Gγ that

pηψ(y, θ) ≥ Gγ(2Dβ,r
n )Pψ(|X| ≤ Dβ,r

n | θ)/(2π). From proposition 4.10 in appendix, the
latter implies for n large enough that for all ψ ∈Mn it holds pηψ(y, θ) ≥ Gγ(2Dβ,r

n )/(4π)
whenever (y, θ) ∈ En. Since ψ0 ∈ Cg(β, r, L), which is a subset of the Schwartz space
S(R), and since the Radon transform maps S(R) onto a subset of S(R × [0, 2π]) by
Helgason (2011, theorem 2.4), we deduce that there is a constant C = C(ψ0, η) > 0 such
that for all ψ ∈Mn(Z,U),

pηψ0
(y, θ)

pηψ(y, θ) ≤ C exp
{

4π2

γ

( logn
β

)2/r
}

=: λ−1
n , ∀(y, θ) ∈ En.

The proof now follows similar lines as Shen et al. (2013, lemma B2). The function
r : (0,∞)→ R defined implicitly by log x = 2(x1/2 − 1)− r(x)(x1/2 − 1)2 is nonnegative
and decreasing. Thus we obtain,∫

En
pηψ0

log
pηψ0

pηψ

= −2
∫
En
pηψ0


√√√√ pηψ
pηψ0

− 1

+
∫
En
pηψ0

r

(
pηψ
pηψ0

)
√√√√ pηψ
pηψ0

− 1

2

≤ 2
(

1−
∫ √

pηψ0
pηψ

)
− 2P ηψ0

(Ecn)

+ 2
∫
Ecn

√
pηψ0

pηψ + r(λn)
∫
En

(√
pηψ −

√
pηψ0

)2

≤ 2H2(P ηψ , P
η
ψ0

) (1 + r(λn)) + 2P ηψ0
(Ecn)1/2P ηψ(Ecn)1/2,

(4.17)

where the last line follows from Hölder’s inequality. Also, proceeding as in the proof of
Shen et al. (2013, lemma B2) we find that∫

En
pηψ0

(
log

pηψ0

pηψ

)2

≤ H2(P ηψ , P
η
ψ0

)
(
12 + 2r(λn)2

)
. (4.18)
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Note that r(x) ≤ log x−1 for x small enough, and by lemma 4.1,

P ηψ0
(Ecn)1/2P ηψ(Ecn)1/2 ≤ P ηψ0

(Ecn)1/2 ≤
√

2πC(β, r, η)Ln−1. (4.19)

Then we deduce from equations (4.17) to (4.19) and lemma 4.11 that for n large enough,
provided δ2

n ≥ 4
√

2πC(β, r, η)Ln−1,

Bn(δn) ⊃
{
P ηψ : ψ ∈ S2, ‖ψ − ψ0‖2 ≤

γ2

48
√

2π4

(
β

logn

)4/r
δ2
n

}
.

Then the conclusion follows from lemma 4.3. �

4.B.3. Proof of the lower bound

Proof of theorem 4.3. Let C1, C2 > 0 be the constants of lemma 4.4, and let Un =
C1(logn)−4/rδ2

n and Zn be the smaller integer larger than C2(log δ−1
n )1/r. Then by

lemma 4.4 Π(Bn(δn)) ≥ Π(Mn(Zn, Un)), and

Π(Mn(Zn, Un)) ≥ PZ(Z = Zn)G
(∑

(l,m)∈ΛZ |plm − |clm||
2 ≤ U2

n | Z
)

× Pζ
(∑

(l,m)∈ΛZ |ζlm − arg clm|2 ≤ U2 | Z
)
.

Note that by lemma 4.2 the sequence (|clm|)(l,m)∈λZ is in ∆w
Z(β, r, C(β, r)L). Hence,

using the assumptions of section 4.5.2, we have for n large enough

Π(Mn(Zn, Un)) & exp
{
−a1Z

b1
n − (a0 + a3)Zb1−r

n logU−2
n

}
.

We deduce from the above the existence of a constant K > 0 not depending on n, such
that for n large enough,

Π(Bn(δn)) & exp
{
−K(log δ−1

n )b1/r −K(log δ−1
n )b1/r−1

(
log δ−1

n + log logn
)}

& exp(−nδ2
n).

Then the conclusion of the theorem follows since we assume nδ2
n = C(logn)b1/r for a

suitable constant C > 0. �

4.C. Proofs of tests construction

4.C.1. Proofs regarding the sieve

Proof of proposition 4.3. Let Zn be the smaller integer larger than h(logn)1/r. Clearly
ψ ∼ Π is almost-surely in S2(R). Then if c > 0 is large enough we have the bound

Π(Fcn) ≤ PZ
(
Z > h(logn)1/r

)
+G (p /∈ ∆w

Z(β, r, c(logn)a4) | Z ≤ Zn)

. exp
(
−a2h

b1(logn)b1/r
)

+ exp
(
−a5(logn)b5

)
which is trivially smaller than a multiple constant of exp(−6nδ2

n) when h is as large as
in the proposition, and because b5 > b1/r by assumption. �
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Proof of proposition 4.4. We use the argument that N(
√

2δ2
n,Fn, ‖·‖2) is bounded by the

cardinality of a
√

2δ2
n-net over Fn is the ‖ · ‖2 distance (Shen et al., 2013). We compute

the cardinality of such
√

2δ2
n-net as follows. Let Zn := h(logn)1/r, P̂ be a δ2

n-net over
the simplex ∆Zn in the `2 distance, and let Ô be a δ2

n-net over [0, 2π] in the euclidean
distance. Then define

Nn :=
{
ψ ∈ S2(R) : ψ̃ =

∑
(l,m)∈ΛZn vlme

iζlm ϕlm,

(vlm)(l,m)∈ΛZn ∈ P̂, ∀(l,m) ∈ ΛZn : ζlm ∈ Ô

}
.

For all ψ ∈ Fn we have ψ =
∑

(l,m)∈ΛZn qlme
iζlm ϕlm, with qlm = plm for those (l,m) ∈ ΛZ ,

Z ≤ Zn, and qlm = 0 otherwise. Since (ϕlm) is an orthonormal base of L2(R), we have∑
(l,m)∈ΛZn q

2
lm = 1, and we can find a function Nn 3 ψ′ =

∑
(l,m)∈ΛZn q

′
lme

iζ′lm ϕlm such
that

∑
(l,m)∈ΛZn |q

′
lm − qlm|2 ≤ δ4

n, and |ζ ′lm − ζlm| ≤ δ2
n for all (l,m) ∈ ΛZn . Using

standard arguments, we have

‖ψ′ − ψ‖22 =
∑

(l,m)∈ΛZ

∣∣∣q′lmeiζ′lm − qlmeiζlm ∣∣∣2
≤ 2

∑
(l,m)∈ΛZ

∣∣q′lm − qlm∣∣2 + 2
∑

(l,m)∈ΛZ

q2
lm

∣∣∣eiζ′lm − eiζlm ∣∣∣2 ≤ 4δ4
n.

Thus Nn is a 2δ2
n over Fn in the ‖ · ‖2 norm. Moreover, the cardinality of Nn is upper

bounded by |P̂| × |Ô||ΛZn |, which is in turn bounded by

C

( 1
δ4
n

)|ΛZn | (2π
δ2
n

)|ΛZn |
,

for a constant C > 0. Clearly, the cardinality of a
√

2δ2
n-net over Fn in the ‖ · ‖2 distance

satisfy the same bound, eventually for a different constant C. Therefore, for a suitable
constant K > 0, when n is large enough.

N(
√

2δ2
n,Fn, ‖ · ‖2) . exp

{
K|ΛZn | log 1

δn

}
. exp

{
Kh2(logn)1+2/r

}
.

The conclusion follows because b1 > 2 + r. �

Proof of proposition 4.5. The bound is obvious for those ψ ∈ Fn with Z = 0. For Z ≥ 1,
we have from the definition of the Wigner transform (equation (4.1)), for an arbitrary
ψ ∈ Fn,

Wψ(x, ω) =
∑

(l,m)∈ΛZ

∑
(j,k)∈ΛZ

plmpjke
i(ζlm−ζjk)

∫
R
ϕlm(x+ t/2)ϕjk(x− t/2)e−2πiωt dt.

Using the expression of ϕlm from equation (4.6), it follows

ϕlm(x+ t/2)ϕjk(x− t/2) = clcjTmMlϕ(x+ t/2)TkMjϕ(x− t/2)
+ (−1)2k+jclcjTmMlϕ(x+ t/2)TkM−jϕ(x− t/2)
+ (−1)2m+lclcjTmM−lϕ(x+ t/2)TkMjϕ(x− t/2)
+ (−1)2m+l(−1)2k+jclcjTmM−lϕ(x+ t/2)TkM−jϕ(x− t/2).
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Recalling that Txϕ(y) = ϕ(y − x) and Mωϕ(y) = e2πiωyϕ(y), it follows∫
R
TmMlϕ(x+ t/2)TkMjϕ(x− t/2)e−2πiωt dt

=
∫
R
e2πil(x+t/2−m)ϕ(x+ t/2−m)e−2πij(x−t/2−k)ϕ(x− t/2− k)e−2πiωt dt

= 2e4πiω(x−m)−2πij(2x−m−k)
∫
R
ϕ(u)ϕ(−u+ 2x−m− k)e−2πiu(2ω−l−j) du

= 2e4πiω(x−m)−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j).

Thus, we deduce the following expression for the Wigner transform of an arbitrary
function ψ ∈ Fn.

Wψ(x, ω) =
∑

(l,m)∈ΛZ

∑
(j,k)∈ΛZ

plmpjke
i(ζlm−ζjk) × 2clcje4πiω(x−m)

[
e−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j)

+ (−1)2k+je2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l + j)
+ (−1)2m+le−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω + l − j)

+ (−1)2m+l(−1)2k+je2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω + l + j)
]
.

To ease notations, let

f(x, ω; l,m, j, k) := e4πiω(x−m)−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j).

Let Rf(z, θ) denote the Radon transform of f . A straightforward calculus show that
F [Rf(·, θ)](u) = f̂(u cos θ, u sin θ), where f̂ is the Fourier transform with respect to
both variables of f , and F the L1 Fourier operator. Note that,∫

Vϕ̆ϕ(x, y)eπixye−2πi(xξ1+yξ2) dxdy

=
∫
R2

∫
R
ϕ(u)ϕ(x− u)e−2πiuy du eπixye−2πi(xξ1+yξ2)dxdy

=
∫∫

ϕ(u)e−πiuy
∫
ϕ(t)e2πit(ξ1−y/2)dt e−2πiuξ1−2πiyξ2dy du

= 2e4πiξ1ξ2

∫
ϕ̂(t)ϕ̂(t− 2ξ1)e−4πitξ2 dt

= 2e4πiξ1ξ2Vϕ̂ϕ̂(2ξ1, 2ξ2).

Hence,

|f̂(u cos θ, u sin θ; l,m, j, k)| = 1
2 |Vϕ̂ϕ̂(u cos θ + j − l, u sin θ +m− k)|

By Fourier duality, this implies that

sup
x
|Rf(·; l,m, j, k)(x, θ)| ≤ 1

2

∫
|Vϕ̂ϕ̂(u cos θ + j − l, u sin θ +m− k)| du
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The function ϕ is in S1
1 (R) by construction. From Gröchenig and Zimmermann (2004,

corollary 3.10) we can then find a constant a > 0 such that it holds |Vϕ̂ϕ̂(x, ω)| .
exp(−a

√
x2 + ω2). Moreover,

(u cos θ + j − l)2 + (u sin θ +m− k)2

= (u+ (j − l) cos θ + (m− k) sin θ)2 + ((m− k) cos θ − (j − l) sin θ)2

≥ (u+ (j − l) cos θ + (m− k) sin θ)2 .

Therefore,
sup
x,θ
|Rf(·; l,m, j, k)(x, θ)| .

∫
exp(−a|u|) du = 2a−1.

Since the Radon transform is a linear map, we deduce that

|pψ(x, θ)| . 8a−1
(∑

(l,m)∈ΛZ plm
)2
≤ 8a−1|λZ | ≤ 8a−1h2(logn)2/r.

Now pηψ(y, θ) = [pψ(·, θ) ∗ Gγ ](y), so that conclusion of the proposition follows from
Young’s inequality. �

Proof of proposition 4.6. Using the expression of ϕlm of equation (4.6), we have

Vgϕlm = clVg(TmMlϕ) + (−1)2m+lclVg(TmM−lϕ).

Since |Vg(TmMlϕ)(x, ω)| = |Vg(x−m,ω −m)|, it follows

|Vgϕlm(x, ω)| ≤ cl|Vgϕ(x−m,ω − l)|+ cl|Vgϕ(x−m,ω + l)|.

Now pick an arbitrary ψ ∈ Fn. We have∫
R2
|Vgψ(z)| exp(β‖z‖r) dz

≤
∑

(l,m)∈ΛZ

plm

∫
R2
|Vgϕlm(z)| exp(β‖z‖r) dz

≤
∑

(l,m)∈ΛZ

plmcl

∫
R2
|Vgϕ(x−m,ω − l)| exp

(
β(x2 + ω2)r/2

)
dxdω

+
∑

(l,m)∈ΛZ

plmcl

∫
R2
|Vgϕ(x−m,ω + l)| exp

(
β(x2 + ω2)r/2

)
dxdω

≤ 2
∑

(l,m)∈ΛZ

plm exp
(
β(l2 +m2)r/2

) ∫
R2
|Vgϕ(z)| exp(β‖z‖r) dz

.
∑

(l,m)∈ΛZ

plm exp
(
β(l2 +m2)r/2

)
. (logn)a4 ,

where the last line follows from Gröchenig and Zimmermann (2004, corollary 3.10),
since both g and ϕ are in S1

1 (R) and r < 1 by assumption. The previous estimate
show that Fn ⊂ Cg(β, r, Ln) with Ln . (logn)a4 . Hence the conclusion follows from
proposition 4.7. �
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4.C.2. Proofs of norm equivalence

Proof of proposition 4.7. Recall that F denote the L1 Fourier transfom operator. By
definition of Wψ, it holds Wψ(u1, u2) = F [ψ(u1 + ·/2)ψ(u1 − ·/2)](u2). Clearly if ψ ∈
Cg(β, r, L) then Wψ ∈ L1(R2) by lemma 4.7. Moreover, for all u1 ∈ R the mapping
t 7→ ψ(u1 + t/2)ψ(u1 − t/2) is in L1(R) because of Cauchy-Schwarz inequality and
ψ ∈ L2(R). Then by Fourier inversion, we get∫

Wψ(u1, u2)e−2πiu2(−ξ2) du2 = ψ(u1 + ξ2/2)ψ(u1 − ξ2/2).

Taking the Fourier transform with respect to u1 yields∫∫
Wψ(u1, u2)e−2πi(u1ξ1+u2ξ2) du1du2 =

∫
ψ(u1 − ξ2/2)ψ(u1 + ξ2/2)e−2πiu1ξ1 du1

= e−πiξ1ξ2

∫
ψ(t)ψ(t+ ξ2)e−2πiξ1t dt.

Hence we proved that Ŵψ(ξ1, ξ2) = e−πiξ1ξ2Vψψ(−ξ2, ξ1), at least when ψ ∈ Cg(β, r, L).
By lemma 4.6, |Vψψ(−ξ2, ξ1)| ≤ (|Vgψ| ∗ |Vψg|)(−ξ2, ξ1) since ‖g‖2 = 1. Note that, by
proposition 4.9 we have

exp(β(ξ2
1 + ξ2

2)r/2) ≤ exp(β((−ξ2 − u1)2 + (ξ1 − u2)2)r/2) exp(β(u2
1 + u2

2)r/2).

Also, by Cauchy-Schwarz inequality |Ŵψ(ξ1, ξ2)| ≤ ‖ψ‖22 = 1. Therefore, by Young’s
inequality, and because |Vψg| = |Vgψ|,∫∫

|Ŵψ(ξ1, ξ2)|2 exp(β(ξ2
1 + ξ2

2)r/2) dξ1dξ2

≤
∫∫
|Ŵψ(ξ1, ξ2)| exp(β(ξ2

1 + ξ2
2)r/2) dξ1dξ2

≤
(∫∫

|Vgψ(ξ1, ξ2)| exp(β(ξ2
1 + ξ2

2)r/2) dξ1dξ2

)2
,

which concludes the proof. �

Proof of lemma 4.5. The lower bound follows from lemma 4.11 in section 4.F. In the
sequel we let Mn := Mh2(logn)2/r and Rn := R(logn)2a4 exp(−βur). To establish the
upper bound, we first bound the L2 distance between densities by the Hellinger distance.
By triangular inequality and Young’s inequality,

|pηψ(y, θ)− pηψ0
(y, θ)|2 ≤ 2

∣∣∣√pηψ(y, θ)
√
pηψ0

(y, θ)−
√
pηψ(y, θ)

√
pηψ(y, θ)

∣∣∣2
+ 2

∣∣∣√pηψ(y, θ)
√
pηψ0

(y, θ)−
√
pηψ0

(y, θ)
√
pηψ0

(y, θ)
∣∣∣2 .

Taking the integral both sides, under the assumptions of the lemma it comes∫∫
|pηψ(y, θ)− pηψ0

(y, θ)|2 dydθ ≤ 2(C0 +Mn)H2(P ηψ , P
η
ψ0

).
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Recall that F denote the L1-Fourier transform operator. Then by Parseval-Plancherel
formula we can rewrite∫∫

|F [pηψ(·, θ)](ξ)−F [pηψ0
(·, θ)](ξ)|2 dξdθ ≤ 2(C0 +Mn)H2(P ηψ , P

η
ψ0

).

Recalling that pηψ(y, θ) = [pψ(·, θ)∗Gγ ](y), where F [Gγ ] = Ĝγ , it follows F [pηψ(·, θ)](ξ) =
F [pψ(·, θ)](ξ)Ĝγ(ξ). Therefore,∫∫

|F [pψ(·, θ)](ξ)−F [pψ0(·, θ)](ξ)|2|Ĝγ(ξ)|2 dξdθ ≤ 2(C0 +Mn)H2(P ηψ , P
η
ψ0

).

Using that F [pψ(·, θ)](ξ) = Ŵψ(ξ cos θ, ξ sin θ), and performing the suitable change of
variables, we arrive at∫

R2
|Ŵψ(z)− Ŵψ0(z)|2|Ĝγ(‖z‖)|2 dz ≤ 2(C0 +Mn)H2(P ηψ , P

η
ψ0

).

Now, using that the Fourier transform is isometric from L2(R) onto itself, and that the
Wigner transform is isometric from L2(R) onto L2(R2), by Gröchenig (2001, proposi-
tion 4.3.2), we write

‖ψ − ψ0‖22 =
∫
R2
|Ŵψ(z)− Ŵψ0(z)|2 dz

=
∫
{‖z‖≤u}

|Ŵψ(z)− Ŵψ0(z)|2 dz +
∫
{‖z‖>u}

|Ŵψ(z)− Ŵψ0(z)|2 dz

≤ 1
|Ĝγ(u)|2

∫
R2
|Ŵψ(z)− Ŵψ0(z)|2|Ĝγ(‖z‖)|2 dz

+
∫
{‖z‖>u}

|Ŵψ(z)− Ŵψ0(z)|2 dz.

Under the hypothesis of the lemma, the second term in the rhs of the last equation is
bounded by 4Rn when n is large, because by proposition 4.7 we have∫

{‖z‖>u}
|Ŵψ0(z)|2 dz =

∫
{‖z‖>u}

|Ŵψ0(z)|2 eβ‖z‖re−ν‖z‖rdz

≤ e−βur
∫
R2
|Ŵψ0(z)|2 eβ‖z‖rdz ≤ L2e−βu

r
.

Since Ĝγ(ξ) = exp(−γξ2), it follows,

‖ψ − ψ0‖22 ≤
1

|Ĝγ(u)|2

∫
R2
|Ŵψ(z)− Ŵψ0(z)|2|Ĝγ(‖z‖)|2 dz + 4Rn

≤ 2(C0 +Mn)e2γu2
H2(P ηψ , P

η
ψ0

) + 4Rn.

Consequently, when ‖ψ − ψ0‖22 ≥ 8Rn we have

‖ψ − ψ0‖22 ≤ 4(C0 +Mn)e2γu2
H2(P ηψ , P

η
ψ0

). �
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4.C.3. Construction of global test functions

Proof of theorem 4.4. Let N ≡ N(
√

2δ2
n,Fn, ‖ · ‖2) denote the number of balls of radius√

2δ2
n and centers in Fn, needed to cover Fn. Let (B1, . . . , BN ) denote the corresponding

covering with centers (ψ1, . . . , ψN ). Now let J be the index set of balls Bj with ‖ψj −
ψ0‖2 ≥ εn. Using proposition 4.8, for each of these balls Bj with j ∈ J , we can build a
test function φn,j satisfying

P η,nψ0
φn,j ≤ exp(−6nδ2

n), sup
ψ∈Bj

P η,nψ (1− φn,j) ≤ exp(−6nδ2
n).

Define the test function φn := maxj∈J φn,j . Then it holds P η,nψ0
φn ≤

∑
j∈J P

η,n
ψ0
φn,j ≤

N exp(−6nδ2
n) and P η,nψ (1−φn) ≤ minj∈J supψ′∈Bj P

η,n
ψ′ (1−φn,j) ≤ exp(−6nδ2

n) for any
ψ ∈ Fn with ‖ψ − ψ0‖2 ≥ εn −

√
2δ2
n (recall that δn � εn), and hence for any ψ ∈ Fn

with ‖ψ − ψ0‖2 ≥ εn. �

4.D. Proofs for uniform series prior on simplex

Proof of proposition 4.1. From the definition of of G and Hölder’s inequality, for K ≥ 0
integer, Z = KM and (plm)(l,m)∈ΛZ in the support of G(· | Z), we get estimate

∑
(l,m)∈ΛZ

plm exp(β(l2 +m2)r/2) ≤
K∑
k=1

θk
∑

(l,m)∈Ik

ηlm exp(β(l2 +m2)r/2)

≤
K∑
k=1

θk

√
|Ik| exp(βkrM r),

because
∑K
k=1 θ

2
k ≥ θ2

1 = 1. The conclusion is direct because θ1 = 1 and θk is upper
bounded by

√
2L exp(−β(kr − 1)M r) for any k = 2, . . . ,K. �

Proof of proposition 4.2. Let Z = KM forK > 0 integer, and (qlm)(l,m)∈ΛZ ∈ ∆w
Z(β, r, L)

be arbitrary. For any (l,m) ∈ ΛZ , and any sequence (plm)(l,m)∈ΛZ ∈ ∆Z , let define the
unnormalized coefficients

q̃lm := qlm√∑
(n,p)∈I1 q

2
np

, p̃lm := plm√∑
(n,p)∈I1 p

2
np

,

Note that
∑

(l,m)∈I1 q̃
2
lm =

∑
(l,m)∈I1 p̃

2
lm = 1. Moreover, we also have

∑
(l,m)∈ΛZ

p2
lm =

∑
(l,m)∈ΛZ

q2
lm = 1;

it turns out that

qlm = q̃lm√∑
(n,p)∈ΛZ q̃

2
np

, plm = p̃lm√∑
(n,p)∈ΛZ p̃

2
np

.
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By the triangle inequality, the two previous expressions of qlm, plm yield the bound,√ ∑
(l,m)∈ΛZ

|qlm − plm|2 ≤
2
√∑

(l,m)∈ΛZ |q̃lm − p̃lm|2√∑
(l,m)∈ΛZ q̃

2
lm

≤ 2
√ ∑

(l,m)∈ΛZ

|q̃lm − p̃lm|2.

For any k = 1, . . . ,K, define tk :=
∑

(l,m)∈Ik q̃
2
lm and elm := q̃lmt

−1
k 1((l,m) ∈ Ik). Note

that by construction we have t1 = 1. With obvious definition for θk and ηlm, we have∑
(l,m)∈ΛZ

|plm − qlm|2 ≤ 2
K∑
k=1

∑
(l,m)∈Ik

|θkηlm − tkelm|2

≤ 4
K∑
k=1

t2k
∑

(l,m)∈Ik

|ηlm − elm|2 + 4
Z∑
k=2
|θk − tk|2.

We can choose M > 0 large enough to have
∑

(l,m)∈I1 q
2
lm ≥ 1/2; it turns out that∑K

k=1 t
2
k ≤ 2. Moreover, with M > 0 chosen as previously we have

tk exp(βkrM r) =
√

2eβMr ∑
(l,m)∈Ik

qlm exp(β(k − 1)rM r)

≤
√

2eβMr ∑
(l,m)∈Ik

qlm exp(β(l2 +m2)r/2) ≤
√

2LeβMr
,

thus the coefficients (tk)Kk=1 are in the support of G(· | Z). By independence structure
of the prior, and since

∑K
k=1 t

2
k ≤ 2, it suffices to prove that for any t > 0,∏K

k=1 Fk
(∑

(l,m)∈Ik |ηlm − elm|
2 ≤ t

)
& exp(−cKb1−r log t−1), (4.20)

P
(∑K

k=2 |θk − tk|2 ≤ t
)
& exp(−c′Kb1−r log t−1), (4.21)

for some constants c, c′ > 0. Equation (4.20) is automatically satisfied by the assumptions
on F1, F2, . . . in the proposition. Equation (4.21) is straightforward from the definition
of G(· | Z). �

4.E. Bounding the posterior distribution

We bound the posterior distribution as follows. Let Ωn be the event of equation (4.11).
Then, with the notation Zi := (Yi, θi) and Zn = (Z1, . . . , Zn), for any measurable set Un,

P η,nψ0
Π(Un | Zn) = P η,nψ0

(Ωn) [In1 + In2 + In3 ] + P η,nψ0
(Ωc

n)In4 , (4.22)
where

In1 :=
∫

Ωn
Π(Un ∩ Fcn | zn) dP η,nψ0

(zn | Ωn),

In2 :=
∫

Ωn
φn(zn)Π(Un ∩ Fn | zn) dP η,nψ0

(zn | Ωn),

In3 :=
∫

Ωn
(1− φn(zn))Π(Un ∩ Fn | zn) dP η,nψ0

(zn | Ωn),

In4 :=
∫

Ωcn
Π(Un | zn) dP η,nψ0

(zn | Ωc
n).
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This decomposition of the expectation for the posterior distribution serves as a basis for
the proof of the next lemma.

Lemma 4.10 – Let δn → 0 with nδ2
n → ∞. Assume that there are sets Fn ⊂ F with

Π(Fcn) ≤ e−6nδ2
n and a sequence of test functions (φn)n≥1, φn : (R+ × [0, 2π])n →

[0, 1], such that P η,nψ0
φn → 0 and supψ∈Un∩Fn P

η,n
ψ (1 − φn) ≤ e−6nδ2

n. Also assume
that Π(Bn(δn)) & e−nδ

2
n, where Bn(δn) are the sets defined in equation (4.12). Then

P η,nψ0
Π(Un | Zn)→ 0 as n→∞.

Proof. The proof looks like Ghosal et al. (2000), with careful adaptions. It is obvious that
In4 ≤ 1 so that P η,nψ0

(Ωc
n)In4 → 0 by lemma 4.1. With the same argument we have that

In2 ≤ P η,nψ0
(Ωn)−1P η,nψ0

φn. Now we bound In3 . As usual, recalling that the observations
are i.i.d we rewrite

Π(Un ∩ Fn | zn) =
∫
Un∩Fn

∏n
i=1 p

η
ψ(yi, θi)/pηψ0

(yi, θi) dΠ(ψ)∫ ∏n
i=1 p

η
ψ(yi, θi)/pηψ0

(yi, θi) dΠ(ψ) . (4.23)

We lower bound the integral in the denominator of equation (4.23) by integrating on the
smaller set Bn. Consider the events

An :=
{

((y1, θ1), . . . , (yn, θn)) :
∫
Bn

n∏
i=1

pηψ(yi, θi)
pηψ0

(yi, θi)
dΠ(ψ)
Π(Bn) ≤ exp(−4nδ2

n)
}

Cn :=
{

((y1, θ1), . . . , (yn, θn)) :
n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)
pηψ(yi, θi)

dΠ(ψ)
Π(Bn) ≥ 4nδ2

n

}
.

By Jensen’s inequality, we have the inclusion Cn ⊆ An, thus P η,nψ0
(An | Ωn) ≤ P η,nψ0

(Cn |
Ωn). Moreover, using that the observations are independent, and Fubini’s theorem, we
have

P η,nψ0

[
n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)
pηψ(yi, θi)

dΠ(ψ)
Π(Bn) | Ωn

]

= 1
P η,nψ0

(Ωn)

∫
Ωn

n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)
pηψ(yi, θi)

dΠ(ψ)
Π(Bn) dP

η,n
ψ0

(
∏n
j=1 dyjdθj ∩ Ωn)

=
nP ηψ0

(En)n−1

P η,nψ0
(Ωn)

∫
Bn

[∫
En

log pψ0(y, θ)
pψ(y, θ) dP

η
ψ0

(dydθ)
]
dΠ(ψ)
Π(Bn)

= n

P ηψ0
(En)

∫
Bn

[∫
En

log pψ0(y, θ)
pψ(y, θ) dP

η
ψ0

(dydθ)
]
dΠ(ψ)
Π(Bn) .

Likewise, we can bound the variance with respect to P η,nψ0
(· | Ωn), denoted var for the
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sake of simplicity; with the same arguments as previously,

var
[
n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)
pηψ(yi, θi)

dΠ(ψ)
Π(Bn)

]

≤ n

P ηψ0
(En)

∫
En

(∫
Bn

log
pηψ0

(y, θ)
pηψ(y, θ)

dΠ(ψ)
Π(Bn)

)2

dP ηψ0
(y, θ)

≤ n

P ηψ0
(En)

∫
Bn

∫
En

(
log

pηψ0
(y, θ)

pηψ(y, θ)

)2

dP ηψ0
(y, θ)

 dΠ(ψ)
Π(Bn) ,

From the definition of Bn and because P ηψ0
(En) ≥ 1/2 for n large enough, we get from

Chebychev inequality that for those n,

P η,nψ0
(An | Ωn) ≤ P η,nψ0

(Cn | Ωn) ≤ 1
8nδ2

n

.

Hence,∫
Ωn∩An

(1− φn(zn))Π(Un ∩ Fn | zn) dP η,nψ0
(zn | Ωn) .

P η,nψ0
(An)

P η,nψ0
(Ωn) ≤

(nδ2
n)−1

P η,nψ0
(Ωn) ,

and,∫
Ωn∩Acn

(1− φn(zn))Π(Un ∩ Fn | zn) dP η,nψ0
(zn | Ωn)

≤ e4nδ2
n

Π(Bn)

∫
Ωn∩Acn

(1− φn(zn))
∫
Un∩Fn

n∏
i=1

pηψ(yi, θi)
pηψ0

(yi, θi)
dΠ(ψ)dP η,nψ0

(zn | Ωn)

= e4nδ2
n

Π(Bn)

∫
Un∩Fn

∫
Ωn∩Acn

(1− φn(zn))
n∏
i=1

pηψ(yi, θi)
pηψ0

(yi, θi)
dP η,nψ0

(zn | Ωn)dΠ(ψ)

≤ e4nδ2
nΠ(Un ∩ Fn)

Π(Bn)
supψ∈Un∩Fn P

η,n
ψ (1− φn)

P η,nψ0
(Ωn) .

where the third line follows from Fubini’s theorem. Combining the last two results yields
P η,nψ0

(Ωn)In3 → 0. The bound on In1 follows exactly the same lines as the bound on In3
(see also Ghosal et al., 2000). �

4.F. Remaining proofs and auxiliary results

Lemma 4.11 – Let ψ,ψ0 ∈ S2(R). Then, H2(P ηψ , P
η
ψ0

) ≤
√

2H(Pψ, Pψ0) ≤
√

2‖ψ − ψ0‖2.
Moreover, we also have that H(Pψ(· | θ), Pψ0(· | θ)) ≤ ‖ψ − ψ0‖2 for all θ ∈ [0, π].

Proof. First, we recall that pηψ(y, θ) = [pψ(·, θ) ∗Gγ ](y). The same holds for pηψ0
. Then

using that the square Hellinger distance is bounded by the total variation distance, which
is in turn bounded by the Hellinger distance,

H2(P ηψ , P
η
ψ0

) ≤
∫∫
|[pψ(·, θ) ∗Gγ ](y)− [pψ0(·, θ) ∗Gγ ](y)| dydθ

≤ ‖Gγ‖1
∫∫
|pψ(x, θ)− pψ0(x, θ)| dxdθ ≤

√
2H(Pψ, Pψ0),
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where the second line follows from Young’s inequality. Now let θ 6= 0 and θ 6= π/2. Using
that |x| − |y| = |x − y + y| − |y| ≤ |x − y| for all x, y ∈ C, it holds from equation (4.3)
that,√

pψ(x, θ)−
√
pψ0(x, θ)

≤ 1
2π
√
| sin θ|

∣∣∣∣∫ +∞

−∞
(ψ(z)− ψ0(z)) exp

(
i
cot θ

2 z2 − i x

sin θz
)
dz

∣∣∣∣ .
On almost recognize the expression of the square-root of a density in the rhs of the
last equation. Indeed, it is not because ψ − ψ0 is not normalized in L2. But, letting
ψv := (ψ − ψ0)/‖ψ − ψ0‖2,(√

pψ(x, θ)−
√
pψ0(x, θ)

)2
≤ pv(x, θ)‖ψ − ψ0‖22. (4.24)

One can show easily that the same bound holds when θ = 0 or θ = π/2 (although it
is even not necessary). The conclusion of the lemma then follows from the definition
of the Hellinger distance and the fact that pv is a probability density. The results for
conditional densities is immediate from equation (4.24) since pψ(x | θ) = πpψ(x, θ) for
any ψ ∈ S2(R). �

Proposition 4.10 – There exists n0 such that for all n ≥ n0 and all ψ ∈Mn(Z,U) it holds
Pψ(|X| ≤ Dβ,r

n | θ) ≥ 1/2 for all θ ∈ [0, π].

Proof. It suffices to write that,

Pψ0(|X| ≤ Dβ,r
n | θ) ≤

∫
[−Dβ,rn ,+Dβ,rn ]

pψ(x | θ) dx+
∫
R
|pψ(x | θ)− pψ0(x | θ)| dx

≤ Pψ(|X| ≤ Dβ,r
n | θ) +

√
2H(Pψ(· | θ), Pψ0(· | θ)).

By lemma 4.11,
√

2H(Pψ(· | θ), Pψ0(· | θ)) ≤ 1/4 for all ψ ∈ Mn if n is large enough.
Moreover, is n is sufficiently large, we also have Pψ0(|X| ≤ Dβ,r

n | θ) ≥ 3/4, concluding
the proof. �
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Résumé

Mots Clés

Abstract

Keywords

Cette thèse porte sur les statistiques
bayésiennes non paramétriques. La thèse est
divisée en une introduction générale et trois
parties traitant des aspects relativement
différents des approches par mélanges
(échantillonage, asymptotique, problème
inverse).

Dans les modèles de mélanges, le paramètre à
inférer depuis les données est une fonction. On
définit une distribution a priori sur un espace
fonctionnel abstrait au travers d'une intégrale
stochastique d'un noyau par rapport à une
mesure aléatoire.

Habituellement, les modèles de mélanges sont
surtout utilisés dans les problèmes d'estimation
de densités de probabilité. Une des contributions
de ce manuscrit est d'élargir leur usage aux
problèmes de régressions.

Dans ce contexte, on est essentiellement
concernés par les problèmes suivants:
- Echantillonage de la distribution a posteriori
- Propriétés asymptotiques de la distribution a
posteriori
- Problèmes inverses, et particulièrement
l'estimation de la distribution de Wigner à partir
de mesurements de Tomographie Quantique
Homodyne.

This dissertation deals with Bayesian
nonparametric statistics, in particular
nonparametric mixture models. The manuscript
is divided into a general introduction and three
parts on rather different aspects of mixtures
approaches (sampling, asymptotic, inverse
problem).

In mixture models, the parameter to infer from
the data is a function. We set a prior distribution
on an abstract space of functions through a
stochastic integral of a kernel with respect to a
random measure.

Usually, mixture models were used primilary in
probability density function estimation problems.
One of the contributions of the present
manuscript is to use them in regression
problems.

In this context, we are essentially concerned
with the following problems :
- Sampling of the posterior distribution
- Asymptotic properties of the posterior
distribution
- Inverse problems, in particular the estimation
of the Wigner distribution from Quantum
Homodyne Tomography measurements.

Statistiques bayésiennes non paramétriques,
mélanges, vitesses de convergence,
échantillonnage, tomographie quantique
homodyne

Bayesian nonparametric statistics, mixtures,
rates of convergence, sampling, quantum
homodyne tomography
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