
HAL Id: tel-01636791
https://theses.hal.science/tel-01636791

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensions of equilibrium logic by modal concepts
Ezgi Iraz Su

To cite this version:
Ezgi Iraz Su. Extensions of equilibrium logic by modal concepts. Computer Science [cs]. IRIT-Institut
de recherche en informatique de Toulouse, 2015. English. �NNT : �. �tel-01636791�

https://theses.hal.science/tel-01636791
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 20/03/2015 par :
Ezgi Iraz SU

Extensions of Equilibrium Logic by Modal Concepts

JURY
Philippe BALBIANI Directeur de Recherche - CNRS

Luis FARINAS del
CERRO

Directeur de Recherche - CNRS

Olivier GASQUET Professeur - Université Paul Sabatier

Andreas HERZIG Directeur de Recherche - CNRS

David PEARCE Professeur - Universidad Politécnica
de Madrid

Torsten SCHAUB Professeur - Universität Potsdam

Agustín VALVERDE Professeur - Universidad de Malaga

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
Luis FARINAS del CERRO, Andreas HERZIG et David PEARCE

Rapporteurs :
Torsten SCHAUB et Agustín VALVERDE RAMOS

Bir tanecik teyzem Sacit’ime
ve canım anneme...

Abstract

Here-and-there (HT) logic is a three-valued monotonic logic which is intermediate
between classical logic and intuitionistic logic. Equilibrium logic is a nonmonotonic
formalism whose semantics is given through a minimisation criterion over HT
models. It is closely aligned with answer set programming (ASP), which is a
relatively new paradigm for declarative programming. To spell it out, equilibrium
logic provides a logical foundation for ASP: it captures the answer set semantics
of logic programs and extends the syntax of answer set programs to more general
propositional theories, i.e., finite sets of propositional formulas. This dissertation
addresses modal logics underlying equilibrium logic as well as its modal extensions.
It allows us to provide a comprehensive framework for ASP and to reexamine its
logical foundations.

In this respect, we first introduce a monotonic modal logic called MEM that
is powerful enough to characterise the existence of an equilibrium model as well
as the consequence relation in equilibrium models. The logic MEM thus captures
the minimisation attitude that is central in the definition of equilibrium models.

Then we introduce a dynamic extension of equilibrium logic. We first extend
the language of HT logic by two kinds of atomic programs, allowing to update
the truth value of a propositional variable here or there, if possible. These atomic
programs are then combined by the usual dynamic logic connectives. The re-
sulting formalism is called dynamic here-and-there logic (D-HT), and it allows
for atomic change of equilibrium models. Moreover, we relate D-HT to dynamic
logic of propositional assignments (DL-PA): propositional assignments set the
truth values of propositional variables to either true or false and update the cur-
rent model in the style of dynamic epistemic logics. Eventually, DL-PA constitutes
an alternative monotonic modal logic underlying equilibrium logic.

In the beginning of the 90s, Gelfond has introduced epistemic specifications
(E-S) as an extension of disjunctive logic programming by epistemic notions. The
underlying idea of E-S is to correctly reason about incomplete information, espe-
cially in situations when there are multiple answer sets. Related to this aim, he
has proposed the world view semantics because the previous answer set seman-
tics was not powerful enough to deal with commonsense reasoning. We here add
epistemic operators to the original language of HT logic and define an epistemic
version of equilibrium logic. This provides a new semantics not only for Gelfond’s
epistemic specifications, but also for more general nested epistemic logic programs.
Finally, we compare our approach with the already existing semantics, and also
provide a strong equivalence result for EHT theories. This paves the way from
E-S to epistemic ASP, and can be regarded as a nice starting point for further
frameworks of extensions of ASP.

ii

Résumé

La logique Here-and-there (HT) est une logique monotone à trois valeurs, inter-
médiaire entre les logiques intuitionniste et classique. La logique de l’équilibre
est un formalisme non-monotone dont la sémantique est donnée par un critère de
minimalisation sur les modèles de la logique HT. Ce formalisme est fortement
lié à la programmation orientée ensemble réponse (ASP), un paradigme relative-
ment nouveau de programmation déclarative. La logique de l’équilibre constitue
la base logique de l’ASP: elle reproduit la sémantique par ensemble réponse des
programmes logiques et étend la syntaxe de l’ASP à des théories propositionnelles
plus générales, i.e., des ensembles finis de formules propositionnelles. Cette thèse
traite aussi bien des logiques modales sous-jacentes à la logique de l’équilibre que
de ses extensions modales. Ceci nous permet de produire un cadre complet pour
l’ASP et d’examiner de nouveau la base logique de l’ASP.

A cet égard, nous présentons d’abord une logique modale monotone appelée
MEM et capable de caractériser aussi bien l’existence d’un modèle de la logique
de l’équilibre que la relation de conséquence dans ces modèles. La logique MEM
reproduit donc la propriété de minimalisation qui est essentielle dans la définition
des modèles de la logique de l’équilibre.

Nous définissons ensuite une extension dynamique de la logique de l’équilibre.
Pour ce faire, nous étendons le langage de la logique HT par deux ensembles de
programmes atomiques qui permettent de mettre à jour, si possible, les valeurs
de vérité des variables propositionnelles. Ces programmes atomiques sont ensuite
combinés au moyen des connecteurs habituels de la logique dynamique. Le formal-
isme résultant est appelé logique Here-and-there dynamique (D-HT) et permet la
mise-à-jour des modèles de la logique de l’équilibre. Par ailleurs, nous établissons
un lien entre la logique D-HT et la logique dynamique des affectations proposi-
tionnelles (DL-PA): les affectations propositionnelles mettent à vrai ou à faux les
valeurs de vérité des variables propositionnelles et transforment le modèle courant
comme en logique dynamique propositionnelle. En conséquence, DL-PA constitue
également une logique modale sous-jacente à la logique de l’équilibre.

Au début des années 1990, Gelfond avait défini les spécifications épistémiques
(E-S) comme une extension de la programmation logique disjonctive par des no-
tions épistémiques. L’idée de base des E-S est de raisonner correctement à propos
d’une information incomplète au moyen de la notion de vue-monde dans des sit-
uations où la notion précédente d’ensemble réponse n’est pas assez précise pour
traiter le raisonnement de sens commun et où il y a une multitude d’ensembles
réponses. Nous ajoutons ici des opérateurs épistémiques au langage original de la
logique HT et nous définissons une version épistémique de la logique de l’équilibre.
Cette version épistémique constitue une nouvelle sémantique non seulement pour

iii

les spécifications épistémiques de Gelfond, mais aussi plus généralement pour les
programmes logiques épistémiques étendus. Enfin, nous comparons notre ap-
proche avec les sémantiques existantes et nous proposons une équivalence forte
pour les théories de l’E-HT. Ceci nous conduit naturellement des E-S aux ASP
épistémiques et peut être considéré comme point de départ pour les nouvelles
extensions du cadre ASP.

iv

Contents

Contents v

1 Introduction 1
1.1 What is Answer Set Programming (ASP) ? 6

1.1.1 Logic programs and answer sets: general definition 7
1.1.2 Specific classes of logic programs 15

1.1.2.1 Horn clause basis of LP 16
1.1.2.2 Logic programs with negation 17

1.1.3 Other language extensions: new constructs in ASP 29
1.1.3.1 Integrity constraints 29
1.1.3.2 Choice rules . 30
1.1.3.3 Cardinality rules 31
1.1.3.4 Weight rules . 33

1.1.4 Strong equivalence . 34
1.2 Here-and-there (HT) logic . 35

1.2.1 Language (LHT) . 36
1.2.2 HT models . 36
1.2.3 Capturing strong equivalence in HT logic 40
1.2.4 Least extension of HT logic: N5 42

1.3 Equilibrium logic . 44
1.3.1 Equilibrium logic based on HT logic 44
1.3.2 Equilibrium logic based on N5 logic 47
1.3.3 Relation to answer sets . 48

1.4 Modal extension of logic programs:
epistemic specifications (E-S) . 50
1.4.1 Language (LE-S) . 51
1.4.2 World view semantics . 52

1.5 Relating ASP to other nonmonotonic formalisms 60
1.5.1 Default logic and ASP . 61
1.5.2 Use of the CWA in ASP . 62

1.6 Structure of the dissertation: our work in a nutshell 63

v

2 Capturing Equilibrium Models in Modal Logic: MEM 65
2.1 The modal logic of equilibrium models: MEM 66

2.1.1 Language (L[T],[S]) . 66
2.1.2 MEM frames . 67
2.1.3 MEM models . 69
2.1.4 Truth conditions . 70
2.1.5 Axiomatics, provability, and completeness 71

2.2 Embedding HT logic and equilibrium logic into the modal logic MEM 73
2.2.1 Translating LHT into L[T] 73
2.2.2 Correspondence between HT logic and MEM 74
2.2.3 Correspondence between equilibrium logic and MEM 76

2.3 Conclusion and future work . 79

3 Combining Equilibrium Logic and Dynamic Logic 80
3.1 A dynamic extension of HT logic and of equilibrium logic 81

3.1.1 Language (LD-HT) . 81
3.1.2 Dynamic here-and-there logic: D-HT 83
3.1.3 Dynamic equilibrium logic 85

3.2 Dynamic logic of propositional assignments: DL-PA 86
3.2.1 Language (LDL-PA) . 86
3.2.2 Semantics . 87

3.3 Correspondence between D-HT and DL-PA 88
3.3.1 Copying propositional variables 88
3.3.2 Molecular DL-PA programs of embedding 89
3.3.3 Translating LD-HT to LDL-PA 90
3.3.4 From D-HT to DL-PA . 91
3.3.5 From dynamic equilibrium logic to DL-PA 92
3.3.6 From DL-PA to D-HT . 93

3.4 Conclusion and future work . 93

4 From Epistemic Specifications to Epistemic ASP 95
4.1 An epistemic extension of HT logic 95

4.1.1 Language (LE-HT) . 96
4.1.2 Epistemic here-and-there models 96
4.1.3 Truth conditions . 97
4.1.4 EHT validity . 98

4.2 Epistemic equilibrium logic . 100
4.2.1 Total models and their weakening 100
4.2.2 Epistemic equilibrium models 100

4.2.2.1 Consequence relation of epistemic equilibrium logic 101
4.2.3 Strong equivalence . 103

vi

4.3 Autoepistemic equilibrium logic . 104
4.3.1 Autoepistemic equilibrium models 104
4.3.2 Strong equivalence . 105

4.4 Related work . 105
4.4.1 AEEMs versus world views 106
4.4.2 AEEMs versus equilibrium views 109

4.5 Conclusion and future work . 110

5 Summary and Future Research 112

A All proofs 113
A.1 Proofs of Chapter 1 . 113
A.2 Proofs of Chapter 2 . 114
A.3 Proofs of Chapter 3 . 126
A.4 Proofs of Chapter 4 . 134

B Preliminary Instructions 140
B.1 Strong negation . 140

B.1.1 Representing the negative information using strong negation 141

C Some Forms of Nonmonotonic Reasoning 142
C.1 Default logic . 142
C.2 Minimal belief and negation as failure 142

D Propositional Dynamic Logic 144
D.1 Syntax . 144
D.2 A deductive system . 145

References 147

vii

Chapter 1

Introduction

This chapter is composed of two main parts: (1) the first part lays out the phi-
losophy of the main problem of this dissertation, explains the significance of the
problem and briefly introduces the approaches towards the solution. Having the
aim of the dissertation given, (2) the second part, step by step, establishes the
preliminary aspects: it contains a brief overview of ASP, giving specific classes of
logic programs in their historical progress, and defining important concepts such as
answer set and strong equivalence. Then comes the heart of this work—equilibrium
logic.

Computation is made up of largely disjoint areas: programming, databases
(DB) and artificial intelligence (AI). Traditional (imperative) programming deals
with expressing in code the algorithm you plan to use, i.e., posing the problem as a
program pattern and then executing it to create some output, if possible. In other
words, it is basically focused on describing how a program operates. Procedural
programming is kind of imperative programming in which the program is built
from one or more procedures. Database refers to an organised collection of data
which is created to operate large quantities of information by inputting, storing,
retrieving and managing it. Artificial intelligence, that was coined in 1955 by
John McCarthy, is the study and design of intelligent agents which are systems
that perceive their environment and take actions in order to maximise their chances
of success. AI was founded on the claim that a central property of humans, i.e.,
intelligence can be precisely described so that a machine can be made to simulate
it. The driving force behind logic programming (LP) is the idea that a single
formalism suffices for both logic and computation. So, LP unifies different areas
of computation by exploiting the greater generality of logic.

Declarative programming, in contrast to imperative and procedural program-
ming, specifies the problem having the program figure out itself a way to produce
a solution. Hence, programs themselves describe their desired results without
explicitly listing commands or steps that must be performed. For example, logi-

1

cal programming languages are characterized by a declarative programming style.
However, some logical programming languages, such as Prolog and database query
languages, like SQL, while declarative in principle, also support a procedural style
of programming. In logical programming languages, programs consist of logical
statements, and the program executes by searching for proofs of the statements.
To sum up, declarative problem solving thus focuses on what the program should
accomplish without prescribing how to do it in terms of sequences of actions to be
taken.

In a general aspect, answer set programming (or ASP, for short) as a recent
problem solving approach relates logic programming (LP) to declarative problem
solving through stable models, so ASP originates from the relation between two
questions: “what is the problem?” versus “how to solve a given problem?”.

A problem solving procedure in ASP operates as follows: a problem instance
I is first encoded as a (non-monotonic) logic program Π such that a solution of I
is represented by a distinguished model of Π, so the solving procedure is reflected
to a relation from a logic program to selecting these specified models which are
computed according to a minimisation principle. To express it more clearly, in
ASP paradigm solving a problem instance I is reduced to computing the stable
models of the corresponding logic program ΠI . As a result, the set of stable models
of a program ΠI is the set of all solutions to a problem instance I, and hence stable
model semantics provides a multiple model semantics (Eiter [2008]). There are two
programs called grounders and answer set solvers responsible for generating stable
models. The use of answer set solvers in search of stable models was identified in
1999 as a new programming paradigm by Marek and Truszczyński (Marek and
Truszczyński [1999]; Niemelä [1999]). The computational process employed in the
design of many answer set solvers is an enhancement of the DPLL algorithm.

ASP uses Prolog-style query evaluation for solving problems. However, in
ASP this evaluation always terminates, and never leads to an infinite loop. ASP
is oriented towards difficult combinatorial search problems in the realm of P, NP,
NPNP and Σ2

p. In particular, it allows for solving all search problems of NP (and,
NPNP) complexity in a uniform way. To sum up, ASP is an approach to declara-
tive problem solving that combines a rich, yet simple modeling language with high
performance solving capacities.

ASP is closely aligned with Knowledge Representation and Reasoning (KR&R),
and in particular, gets it roots from (Gebser et al. [2012]):

• (deductive) databases (DB)

• logic programming (with negation) (LP)

• (logic-based) knowledge representation (KR) and nonmonotonic reasonig

2

• constraint solving (in particular and at an abstract level, it relates to satis-
fiability (SAT) solving and CSP)

As a result of this, ASP benefits from the integration of DB, KR and SAT
techniques. It offers a concise problem representation, so provides rapid applica-
tion development tools. Moreover, it handles of knowledge intensive applications
including data, frame axioms, exceptions, defaults, closures, etc, and in dynamic
domains like Automated Planning. So, we could briefly display it as follows:

ASP = DB + LP + KR + SAT.

ASP has a two-sided language: viewed as a high-level language, it expresses
problem instances as sets of facts, encodes classes of problems as sets of rules, and
proposes the solutions through their stable models of facts and rules. On the other
hand, viewed a low-level language, it compiles a problem into a logic program, and
solves the original problem by solving its compilation.

ASP is a relatively new paradigm of declarative programming which has a
history of at most 40 years. Although the term was first coined by Lifschitz in
1999 (Lifschitz [1999a, 2002]), the same approach was simultaneously proposed
by some other researchers (Marek and Truszczyński [1999]; Niemelä [1999]), and
explained in full detail by Baral in Baral [2003]. The impact of the theory has been
immense. One reason is that it is hugely versatile since it embraces many emerging
application areas and theoretical aspects. Especially in nonmonotonic reasoning,
it has proved to be a successful approach. As an outgrowth of research on the use
of nonmonotonic reasoning in knowledge representation, it has been regarded as an
appropriate tool, particularly, in knowledge intensive applications. The efficient
implementations of ASP has become a key technology for declarative problem
solving in the AI community (Gebser et al. [2007, 2009]). In recent decades many
important results have been obtained from a theoretical point of view, such as
the definitions of new comprehensive semantics like equilibrium semantics (Pearce
[1996, 2006]) or the proof of important theorems like strong equivalence theorems
Lifschitz et al. [2001]. These theoretical and practical results show that ASP is
central to various approaches in non-monotonic reasoning.

Equilibrium logic was first introduced by Pearce (Pearce [1996]) in the Spring
of 1995, mainly as a new logical foundation for ASP, and since then it has been
widely investigated and further developed by several researchers. Equilibrium
logic gets this popularity, in particular, since it captures the answer set semantics
(Gelfond and Lifschitz [1988b, 1990]) of ASP and proposes an easier approach
of minimal model reasoning rather than fixed point approach followed by answer
set semantics. Moreover, equilibrium logic extends the restricted syntax character
of ASP programs that is based on rules. In general terms, a rule is a structure
of the form ‘head ← body’ in which head and body are supposed to be a list of

3

syntactically simple expressions, such as propositional variables or literals. The
backward arrow ‘←’ is read as “if”. However, a rule is able to express many kinds
of information. Initially, the language of ASP was that of general logic programs
whose rules have the form ‘p1 ← (p2 , . . . , pn) , (not pn+1 , . . . , not pk)’ where the
pi’s are propositional variables. Successively, the language was extended to handle
integrity constraints, epistemic disjunction, and a second negation operator called
strong negation. Equilibrium logic further enriches even these syntax extensions
to a general propositional language and provides a simple minimal model char-
acterisation of answer sets on the basis of a well-known nonclassical logic called
here-and-there (HT) logic. It therefore provides a natural generalisation of logical
consequence under answer set semantics as well as a mathematical foundation for
ASP.

To have extended the language of ASP was however not the only reason to
be interested in equilibrium logic. Beyond this feature, since equilibrium logic has
generalised reasoning with answer sets, a fortiori it is closely associated with more
general knowledge representation formalisms such as default logic, autoepistemic
logic or modal nonmonotonic systems. Equilibrium logic provides:

• a general methodology for building nonmonotonic logics (Pearce and Uridia
[2011]);

• a logical and mathematical foundation for ASP-type systems, enabling one
to prove useful metatheoretic properties such as strong equivalence;

• further means of comparing ASP with other approaches in nonmonotonic
reasoning.

So, it indeed deserves to be further developed to provide a general framework for
many forms of nonmonotonic reasoning.

In the last decades of the twentieth century, the language of ASP (LASP, for
short) has also been extended to even a much richer syntax by the representation of
epistemic modalities to the newest version of logic programs, resulting in Gelfond’s
epistemic extension of ASP called epistemic specifications (Gelfond [1991, 1994,
2011]). Afterwards, the language LASP has been further enriched by some new
concepts such as nested expressions (Lifschitz et al. [1999]), ordered disjunction
(Brewka et al. [2004b]), etc. Moreover, some additional features have been included
into LASP, which are mainly non-propositional constructions, such as choice rules
(Brewka et al. [2004a]), weight constraints and aggregates (Pearce [2006]). The
outgrowth in this field of research has forced equilibrium logic to get oriented
in different directions, mainly to problems arising in the foundations of LP under
answer set semantics. This driving force has recently caused a move in this research
area, for instance:

4

• Weight constraints can be represented as nested expressions (Ferraris and
Lifschitz [2005]).

• The semantics of aggregates represented by rules with embedded implications
in ASP has been captured (Ferraris [2005]).

• Logic programs with ordered disjunction (Brewka et al. [2004b]) have been
captured (Cabalar [2010]).

• Epistemic specifications (Gelfond [1994]) have been captured (Chen [1997];
Wang and Zhang [2005]).

However, there is still not an ultimate success that has catched up all current
progress in ASP. On a broad scale, our work is motivated out of such a reason.

As a consequence of what is mentioned above, many new applications in AI
drive us to extend the original language of equilibrium logic by some new concepts
such as the representations of modalities, actions, ontologies or updates so as to
obtain a more comprehensive framework. Based on a tradition that was started
by Alchourrón, Gärdenfors and Makinson (Alchourrón et al. [1985]) and also by
Katsuno and Mendelzon (Katsuno and Mendelzon [1992]), several researchers have
proposed to enrich ASP (and hence, equilibrium logic) by operations allowing
to update or revise a given ASP program through a new piece of information
(Eiter et al. [2002]; Slota and Leite [2012a,b]; Zhang and Foo [2005]). However,
the resulting formalisms have been quite complex so far, and we think that it is
fair to say that it is difficult to grasp what the intuitions should be like under
these approaches. Therefore, this work aimes at giving more modest and neat
extensions of ASP. Besides, concerning the extensions of equilibrium logic, only a
few approaches exist up to now. Among them there are essentially the investigation
of monotonic formalisms underlying equilibrium logic by means of the concepts of
contingency (Fariñas del Cerro and Herzig [2011b]), of modal operators quantifying
over here and there worlds in the definition of an equilibrium model (Fariñas del
Cerro and Herzig [2011a]), and of temporal extensions of equilibrium logic (Aguado
et al. [2008]; Cabalar and Demri [2011]). Hence, this work also tries to cover these
already existing formalisms.

This dissertation basically addresses the problem of logical foundations of
ASP. More specifically, we search for the monotonic formalisms underlying equi-
librium logic, and propose extensions of equilibrium logic by some modal concepts.
Throughout this line of work, we first approach the subject from a perspective of
capturing equilibrium logic in a modal logic framework. We have proposed a mono-
tonic modal logic called MEM that is able to capture equilibrium logic. Then,
we continue our work by extending the original language of equilibrium logic by
dynamic operators which provide updates of HT models because we believe that

5

the investigation of modal extensions of HT logic and equilibrium logic is a nec-
essary and natural starting point for characterising extensions of ASP with modal
operators. In that perspective, we also tackle the same problem with epistemic op-
erators and propose an an epistemic extension of equilibrium logic which is so able
to suggest a new logical semantics not only for Gelfond’s epistemic specifications,
but also for more general nested epistemic logic programs Wang and Zhang [2005].
However, we have no ultimate success with the latter work and it needs to be fur-
ther progressed. A parallel thorough work has been lately carried out by Cabalar
et al. (Aguado et al. [2008]; Cabalar and Demri [2011]; Diéguez Lodeiro [2015]),
so as future work we plan to compare the resulting formalisms with the already
existing temporal extensions of equilibrium logic. Although our work seems to be
specific and technical for the non-logician relying solely on the aim of extending
equilibrium logic, in future we will try to make our work exciting for researchers
who are less familiar with equilibrium logic by revealing the connections of our
work to ASP and some nonmonotonic formalisms such as autoepistemic logic,
default logic, S4F, etc.

In the following section we give a brief overview of ASP: we identify specific
classes of logic programs and some new constructs in ASP by recalling a historical
perspective of the stable model semantics as well as introducing the important
concept of strong equivalence.

1.1 What is Answer Set Programming (ASP) ?
The language of ASP is the same as the language of LP in essence, except that the
latter is a programming language, while the former is a logical (or, purely declar-
ative) language. The semantics of ASP is based on the stable model (currently,
answer set) semantics over LP (Gelfond and Lifschitz [1988a]). The new terminol-
ogy of answer set instead of stable model was first proposed by Lifschitz (Lifschitz
[1999b]) as a generalization of the latter for logic programs with strong negation.
The concept of stable model applies ideas of autoepistemic logic (Moore [1985a])
and default logic (Reiter [1980]), which are commonly accepted formalisms for
knowledge representation, to the analysis of negation as failure (NAF, for short).
As a result, ASP includes all applications of answer sets to knowledge represen-
tation (Baral [2003]; Gelfond [2008]).

In LP history, the 80s and the 90s have happened to be the scene of a war on
a suitable semantics allowing for an understanding of programs with NAF. Stable
model semantics appeared on this scene in the late 80s. It was first proposed
by Gelfond and Lifschitz (Gelfond and Lifschitz [1988b]), and since then during
a ten year period, the LP community approached the concept hesitantly mainly
because it seemed that the stable model semantics is peculiarly oriented towards

6

NAF, that is to say, it is particularly useful for just interpreting this operator.
Moreover, some researchers supported this intuition with some formal evidence.
At the same time, they thought that the stable model semantics did not fit into a
standard paradigm of LP languages. There was a great schism: single model versus
multiple model semantics. While standard approaches assign to a logic program
a single intended model, stable model semantics lacks of a single intended model,
assigning to a program a family (possibly empty) of intended models. Moreover,
the abstract properties satisfied by the consequence relation associated with stable
model semantics could not compete with its rivals since while it fails some desirable
properties like cumulativity and rationality, they hold for its rivals such as well
founded semantics. For a while, this was regarded by some critics as a negative
feature of the semantics. Later, with the rise of efficient answer set solvers and the
practical viability of ASP as a KR and programming paradigm, such criticisms
were no longer effective. Last but not least, they were recognised as inadequate in
resolution-based proof search. As a consequence of these difficulties in reconciling
the stable model semantics with a traditional paradigm of LP, in the 90s, the
stable model semantics received relatively less attention from the LP community
than other semantics proposed for programs with NAF such as perfect model
semantics for stratified programs (Bachmair and Ganzinger [1991]; Maher [1993];
Przymusinska and Przymusinski [1988]; Przymusinski [1988a]) and well founded
semantics for general logic programs (Van Gelder et al. [1991]).

The negative fame of stable models has turned into a reasonable, but very be-
lated fortune just in the beginning of 21th century. In time it has been understood
that instead of proofs, models in the form of stable models (more generally, answers
sets) provide informative interesting solutions, so it has been widely searched for
new techniques computing models from then on.

1.1.1 Logic programs and answer sets: general definition
Formulas in LP have been initially built from a set of propositional variables (or
atoms) P = {p, q, . . .} and the 0-place connectives > and ⊥ using negation as
failure (not) and conjunction (,). As mentioned in the following sections, later on
this language has been further extended by epistemic disjunction (or) and a second
kind of negation called strong negation (∼) which expresses the direct or explicit
falsity of a propositional variable. A detailed discussion about strong negation can
be found in Appendix B.

In general terms, a literal is referred to as a propositional variable or its nega-
tion, and a clause is a finite disjunction of literals. Particularly, in our context,
we mainly call a literal, a propositional variable or strongly negated propositional
variable, and a clause an (finite) epistemic disjunction of such literals. However,
as long as it is clear from the context, we continue using the same terms when

7

different kinds of negations and disjunctions are used, so the reader should not get
confused when we sometimes use the term ‘clause’ in the sense of ‘rule’ (of a logic
program). Literals can be divided into two parts: if a literal is simply a propo-
sitional variable then we call it a positive literal, otherwise a negative literal. We
will usually denote a literal by l and its complementary, i.e., the literal opposite
in sign to l by l. To express it more clearly, if l = p then l = ∼p and if l = ∼p
then l = p. Moreover, we denote by P+ the set of all positive literals which equals
at the same time the set of propositional variables P and by P− the set of all their
strong negations. Moreover, we call Lit the set of all ground (without variables)
literals. In other words, Lit is the union of P+ and P−, i.e., Lit = P+ ∪ P−. In this
dissertation, we mainly restrict ourselves to the propositional case, so we mostly
deal with ground literals, and omit quantifiers in the language of LP (LLP) except
some well-known examples by Gelfond, directly quoted in Section 1.4.

Throughout this work, we denote the set of propositional variables and the set
of literals occurring in a formula ϕ respectively by Pϕ and Litϕ This notation is
then generalised to theories. We will follow the same notation also for rules and
logic programs.

The negation as failure (alias, default negation) not has the following intuitive
meaning: not ϕ stands for “ϕ is false by default”. In a more precise explanation, it
means that when there is no evidence for adopting ϕ, or when we have no accept-
able support that provides a justification for ϕ, we accept ϕ to be false. Negation
as failure (NAF) has been an important feature of LP since the earliest days of
both Planner and Prolog. NAF is a non-monotonic inference rule in LP, used to
derive not ϕ (i.e., that ϕ is assumed not to hold) from failure to derive ϕ. Ray
Reiter investigated NAF in the context of a first order database D, interpreting it
as the closed world assumption (CWA) that the negation not p of a ground pred-
icate p holds in D if there is no proof of p from D (Reiter [1978]). However, the
semantics of NAF remained an open issue until Keith Clark (Clark [1978]) who
was the first to investigate this operator in the context of logic programs. Loosely
speaking, his solution was to interpret rules of a logic program P in ‘if-and-only-
if’ form called the completion (sometimes, the predicate completion or the Clark
completion) of P . More recently, Michael Gelfond showed that it is also possible
to interpret not p literally as “p can not be shown”, “p is not believed” or “p is
not known to be true” as in autoepistemic logic (Gelfond [1987]). The autoepis-
temic interpretation was developed further by Gelfond and Lifschitz (Gelfond and
Lifschitz [1988b]) and has become a starting point for ASP.

A rule r is an ordered pair (body(r), head(r)) which has an explicit representa-
tion of the form

r = head(r)← body(r)(1.1)

where head(r) and body(r) are respectively a (epistemic) disjunction and a conjunc-

8

tion of arbitrary formulas. We call head(r) and body(r) a set of possible conclusions
and a set of conditions separately in the given order. In particular, body(r)+, which
is the positive part of body(r), refers to conjuncts of body(r) not containing NAF.
We alternatively call body(r)+ the premises of r. Similarly, body(r)−, which is the
negative part of body(r), refers to conjuncts of body(r) preceded by NAF. We call
this part constraints of r. Particularly, when body(r) is free of conditions, i.e., con-
tains no conjuncts at all then we consider body(r) = > since ∧ ∅ = >. In this case,
we identify rule (see Definition 1.1) with head(r) ← (or simply with the formula
head(r)), and it refers to a true statement (regardless of a condition) or a fact.
On the other hand, if head(r) contains no disjuncts then we take head(r) = ⊥
since ∨ ∅ = ⊥, and identify the resulting structure with← body(r). This structure
is usually called a constraint (or sometimes a goal statement). Finally, we call a
trivial rule, which is in the form ‘> ← >’ or ‘⊥ ← ⊥’, an empty rule and denote
it by >. It is useful to name it just because we will implicitly come across it while
producing reducts (see, for example, definitions R2.1 and R3.1).

A rule r has the following explicit form:

head(r)← body(r)+ , body(r)−(1.2)

in which: for an arbitrary formula ϕi (1 ≤ i ≤ k) and for 0 ≤ m ≤ n ≤ k, we have

head(r) = ϕ1 or . . . or ϕm
body(r) = (ϕm+1 , . . . , ϕn) , (not ϕn+1 , . . . , not ϕk)
body(r)+ = ϕm+1 , . . . , ϕn
body(r)− = not ϕn+1 , . . . , not ϕk.

Some researchers in the field also use a set notation and represent head(r) and
body(r) simply as sets:

head(r) = {ϕ1, . . . , ϕm}
body(r) = {ϕm+1, . . . , ϕn, not ϕn+1, . . . , not ϕk}
body(r)+ = {ϕm+1, . . . , ϕn}
body(r)− = {not ϕn+1, . . . , not ϕk}

but since it is not very user-friendly, we prefer the former notation. However,
the reader should not get confused when we say, for example, “body(r) = ∅”
or “headr(r) = ∅” to refer to a fact (disjunctions of formulas) or a constraint
respectively. Similarly, we sometimes write “body(r) = head(r) = ∅” to refer to an
empty rule, and even “body(r)− = ∅” to refer to a positive program rule (see the
next paragraph).

A logic program is a finite set of rules. In particular, a program Π of rules r is
called positive if body(r)− = > (in other words, if body(r)− contains no conjuncts)

9

for all its rules r. For instance, every Horn program (see Subsection 1.1.2.1) is a
positive logic program.

The general representation (Definition 1.2) of rules comprises all forms of logic
program rules that will be discussed in the following subsection. For simplicity,
we sometimes prefer to indicate this general form of rules in compact terms by

m∨
1
ϕi ←

(n∧
m+1

ϕi
)
∧
(k∧
n+1

not ϕi
)
, for 0 ≤ m ≤ n ≤ k(1.3)

where ‘∧’ and ‘∨’ respectively refer to our formal (official) symbols ‘,’ and ‘or’ of
LASP. Except this compact representation where their differences from classical
‘∧’ and ‘∨’ are clear from the context, we will stay loyal to our notational conven-
tions. However, in the literature, such notations are used interchangeably in order
to stress the translation between program rules and corresponding propositional
formulas. In a broader sense, one can come across ‘←’, ‘or’ (;), ‘not’ and ‘,’ viewed
respectively as ‘→’, ‘∨’, ‘¬’ and ‘∧’. Moreover, some programs are defined in first-
order forms, including free variables, and even quantifiers. Programs including
rules seemingly with free variables are usually treated as shorthands for the set
of their ground instances. So, in one sense free variables in a logic program are
(usually universally) quantified bound variables given succinctly.

Given X ⊆ Lit, we write X |= ϕ if X satisfies ϕ and we write X =| ϕ if X
falsifies ϕ. The truth and the falsity conditions of the language LASP are defined
inductively by:

X |= l if l ∈ X, for l ∈ Lit
X |= >
X |= (ϕ , ψ) if X |= ϕ and X |= ψ
X |= (ϕ or ψ) if X |= ϕ or X |= ψ
X |= not ϕ if X 6|= ϕ

X =| p if ∼p ∈ X, for p ∈ P
X =| ∼p if p ∈ X, for p ∈ P
X =| ⊥
X =| (ϕ , ψ) if X =| ϕ or X =| ψ
X =| (ϕ or ψ) if X =| ϕ and X =| ψ
X =| not ϕ if X |= ϕ.

In fact, we could give the falsity definition concisely in terms of a truth condition:
‘X =| ϕ if X |= ∼ϕ’, but in LASP strong negation just precedes propositional
variables, resulting in a literal. So, we prefer staying loyal to the original language.
Satisfaction and falsification definitions are generalised to rules and programs as
follows: X satisfies (falsifies) a program rule r, written X |= r (X =| r), if X |=
head(r) (X =| head(r)) whenever X |= body(r) (X =| body(r)). Moreover, we

10

write X |= Π when X satisfies a program Π, i.e., X |= r for every r ∈ Π. Similarly,
we write X =| Π when X falsifies Π, i.e., X =| r for some r ∈ Π. One should note
that a set X ⊆ Lit does not necessarily falsify a rule (or a program) if it does not
satisfy it. An easy counterexample is given byX = ∅ and p: ∅ 6|= p since p < X, but
∅ =| p does not hold either since ∼p < X. A theory Γ is a finite set of propositional
formulas. The definitions given above can be adapted to propositional formulas
and theories straightforwardly.

After having received a wide acceptance by the LP community, the stable
model concept (Gelfond and Lifschitz [1988b]) has been followed as the seman-
tics of logic programs. However, shortly after the strong negation is added into
the language of logic programs, the semantics of logic programs is turned into a
more general concept called answer sets (Gelfond and Lifschitz [1990]). The main
difference between these two concepts are as follows: an answer set is basically
a set of ground literals, and it has been first defined for extended logic programs
(see Subsection 1.1.2.2), i.e., programs containing a second negation called strong
negation. However, a stable model has been defined for general logic programs (see
Subsection 1.1.2.2), i.e., the simplest logic programs containing just one negation
(NAF), and is simply a set of propositional variables. In other words, a stable
model is a valuation, that is, a classical model of a program viewed as a set of
propositional formulas with incomplete information of the world. In that respect,
a stable model is simply a minimal (in the sense of the smallest proper subset)
incomplete (3-valued) Herbrand model. However, the converse does not hold in
general: not every minimal Herbrand model is stable. This means that stable
model concept is defined according to a fixed point property that involves mini-
mality conditions, but is not a classical form of minimal model reasoning. On the
other hand, it does correspond, via a suitable translation, to default and autoepis-
temic reasoning. For simplicity we first limit our attention to programs without
strong negation, and introduce stable model concept . However, answer set con-
cept is defined in analogy to stable models, so it is easy to extend the definitions
given below to programs containing strong negation.

The stable model semantics below defines when a classical model of a proposi-
tional formula is considered ‘stable’. Two different definitions of stable models are
given and both definitions are equivalent, so they lead to exactly the same stable
models.

According to the first definition (Ferraris [2005]), we treat a ground rule as
a propositional formula and a ground program as a theory. The reduct ϕX of a
propositional formula ϕ relative to a set X ⊆ P is the formula obtained from ϕ
replacing each maximal subformula that is not satisfied by X by ⊥. In a formal
way, the reduct ϕX is defined recursively as follows:

R1.1 if X 6|= ϕ, then ϕX = ⊥,

11

R1.2 if X |= p (i.e., p ∈ X), for p ∈ P, then pX = p, and

R1.3 if X |= ϕ⊗ ψ, then (ϕ⊗ ψ)X = ϕX ⊗ ψX ,

where ⊗ refers to a binary connective. Then, we set ΓX = {ϕX : ϕ ∈ Γ} for a
theory Γ. Having the reduct definition given, we say that X is a stable model of
Γ if X is minimal among the sets satisfying ΓX . In this context, the minimality of
X is understood in the sense of set inclusion: no proper subset of X satisfies ΓX .
Clearly, every stable model of a theory Γ (in particular, of a formula ϕ) according
to this definition is a model of Γ: indeed if X does not satisfy Γ then ⊥ belongs
to ΓX . For instance, we can identify a program Π:

p ← q
q ← not r

s or r ← p

with the theory {q → p, ¬r → q, p→ s ∨ r} or even with the formula

ϕ = (q → p) ∧ (¬r → q) ∧ (p→ s ∨ r).

Then, to check that {p, q, s} is a stable model of ϕ, we take the reduct

ϕ{p,q,s} = (q → p) ∧ (¬⊥ → q) ∧ (p→ s ∨ ⊥),

or equivalently (q → p) ∧ q ∧ (p → s), and show that {p, q, s} is minimal among
its models.

While Ferraris’ definition aims at eliminating unsatisfied subformulas, in con-
trast, according to the second definition (Lifschitz et al. [2001]), the key point is
to eliminate the NAF operator occurring in a program. To this end, the reduct
ΠX of a program Π with respect to a set X ⊆ P is given through replacing every
maximal occurrence of a formula of the form not ϕ in Π (that is, every occurrence
of not ϕ that is not in the range of another not) with

R2.1 ⊥ if X |= ϕ,

R2.2 > if X 6|= ϕ.

The stable model definition is first given for positive programs, i.e., programs
containing no negation operator (neither NAF nor strong negation). A set X ⊆ P
is closed under a positive program Π if X |= head(r) whenever X |= body(r) for
every rule r (see Definition 1.1) in Π. Therefore, the closure concept refers to the
satisfaction concept. More generally, X being closed under Π amounts to X being
a classical model of ΓΠ where ΓΠ is the theory that corresponds to the program Π.
Then, we denote by Cn(Π) the ⊆-smallest (minimal) sets of propositional variables

12

that is closed under a positive program Π. Likewise, Cn(ΓΠ) corresponds to the
⊆-smallest classical models of ΓΠ when Π is transformed into a theory. However,
one should note that in principle there could be several such sets. For example,

for the positive program Π =

p ← q
q ←

s or r ← p
, Cn(Π) corresponds to two sets:

S1 = {p, q, s} and S2 = {p, q, r}. We define a stable model of a positive program
Π as a minimal set closed under Π, and this is nothing but Cn(Π) itself. Hence,
both S1 and S2 are the stable models of the program Π. At this point, it is useful
to notice that ΠS1 = ΠS2 = Π.

We call two positive programs Π and Π′ equivalent in the sense of their models
when ΓΠ and Γ′Π have exactly the same classical models and we call them equivalent
under the semantics of positive programs (i.e., in the sense of their stable models)
when Cn(Π) and Cn(Π′) both correspond to the same sets.

The restricted definition of a stable model for a positive program is then gen-
eralised to a program containing only NAF (but not strong negation) as follows:
given a program Π, we first eliminate all occurrences of not from Π relative to
X ⊆ P and form the reduct ΠX , then we say that X is a stable model for Π if X is
a stable model for the reduct ΠX , in other words, if Cn(ΠX) corresponds toX. The
latter is known as the fixed point property. Slightly changing the example above and

reexamining it as Π =

p ← q
q ← not r

s or r ← p
, we get Π{p,q,s} =

p ← q
q ← >

s or r ← p
.

Clearly, Π{p,q,s} has two minimal models: {p, q, s} and {p, q, r}. However, just the
former is stable since it satisfies the fixed point property, but not the latter. Indeed,

{p, q, r} is not a minimal model of Π{p,q,r} =

p ← q
q ← ⊥

s or r ← p
which is equivalent

to (Π{p,q,r})′ =
{

p ← q
s or r ← p

in the sense of its models. This is clearly because

some strict subsets of {p, q, r} such as {p, r}, {r} and ∅ are also closed under this
reduct.

As a next example, we claim that {p, q} is a stable model for the program Π1:

q ←
p← s , not q
p← q , not r.

Indeed, Π{p,q}1 =

q ←
p← s , ⊥
p← q ,>

which is equivalent to (Π{p,q}1)′ =

q ←
>
p← q

and

13

even, to (Π{p,q}1)′′ =
{
q ←
p← in the sense of its models. Thus, {p, q} is clearly the

minimal set closed under this reduct. As this example justifies, it is easy to see
that the reduct definition given above can be equivalently interpreted as follows:
given a logic program Π, the reduct ΠX relative to X ⊆ P is obtained from Π by
deleting

R2′.1 each rule having not p (for p ∈ P) in its body with p ∈ X, and

R2′.2 all occurrences of not p (for p ∈ P) in the bodies of the remaining rules.

Hence, the alternative definition of ΠX can be formulated as:

ΠX = {head(r)← body(r)+ : r ∈ Π and Pbody(r)− ∩X = ∅}.

If we, once again, work over the same example where Π =

p ← q
q ← not r

s or r ← p
, we

get Π{p,q,s} =

p ← q
q ←

s or r ← p
. Hence, the same result immediately follows this

time. We will follow mainly this alternative reduct definition, in which the results
are more explicitly given, for further examples on stable models. One should note
that the reduct definition only aims at eliminating the not operator, so it is directly
oriented to the propositional variables preceded by not in the body of rules.

Stable models of a traditional logic program (i.e., programs without NAF and
nested expressions in the head) have the following properties: a stable model of a
program Π should always be a subset of PΠ which means that it is finite. Moreover,
only the propositional variables occurring in the head of rules of Π can appear in a
stable model. Therefore, if a program consists of constraints only, then the unique
stable model of this program is the empty set in case there is one. For instance,

the empty set is the unique stable model of the program Π =
{
← p , not q
← q , not p

.

However, another program Π′ =
{
← not p
← not q

of this kind has no stable models. If

S1 and S2 are two stable models of the same logic program Π then S1 is not a
proper subset of S2 (i.e., neither S1 ⊂ S2 nor S2 ⊂ S1 holds) due to the minimality
condition in the definition of stable models: every stable model of a logic program
Π is minimal among the models of Π relative to set inclusion. This property is
known as the antichain property. So, the set of stable models of a program is an
antichain. Thus, if ‘∅’ is a stable model of a program then it must be unique.

Both of the above-mentioned definitions of a stable model can then be gener-
alised to the definition of an answer set in a natural way, but this time we consider

14

a set S ′ of literals (i.e., a subset of Lit) rather than a set S of propositional vari-
ables (i.e., a subset of P) and the rest is the same except one case where the former
contains a pair of complementary literals (i.e., p and ∼p together for p ∈ P): if S ′
contains a pair of complementary literals then S ′ = Lit. This is because p and ∼p
together lead to a contradiction (see Appendix B.1.1). An answer set of a program
meets its stable model when the program does not include strong negation: the
answer set notion is a conservative extension of the stable model notion. There-
fore, answer set semantics comprises the semantics of all forms of logic programs
although it is mainly defined for extended logic programs. However, in fact there
is an essential difference between these two concepts: the absence of p ∈ P in a
stable model of a general logic program Π refers to the fact that “p is false”, yet
the absence of p ∈ P (and expectedly of ∼p ∈ Lit) in an answer set of the same
program means that nothing is known about p. That is why we will mainly follow
the latter as the formal semantics of ASP henceforth.

An answer set X is said to be consistent (or coherent) if it does not contain a
pair of complementary literals, otherwise it is inconsistent and equals Lit. In other
words, the only acceptable inconsistent answer set is Lit itself. At the same time,
Lit is the only infinite answer set possible because all others are finite. Different
from answer sets, a stable model is always finite, and P can never be a stable model
of a program.

A program Π is said to be contradictory if it has a unique answer set and this set
equals Lit, otherwise it is noncontradictory. A program Π is said to be inconsistent
(or incoherent) if it is either contradictory or it does not have any answer sets at all,
otherwise it is consistent (or coherent). One should note that a program is regarded
as consistent when it has at least one consistent answer set. For instance, the

programs Π1 =
{
p← not p and Π2 =

{
p ←
∼p ← are inconsistent respectively

because the former has no answer sets (see Example G.3 for the verification) and
the latter is a self-evident contradictory program. However, the program Π3 ={

∼p ←
p or q ← is consistent: it has two answer sets, {q,∼p} and Lit, but the

former is consistent. Today’s version of the language (LASP) differs in this sense:
the set of all literals Lit is no longer considered the answer set of a program
containing contradictory rules. For instance the program Π2 is now said to have
no answer set, and Π3 is said to have a unique answer set {q,∼p}.

As with stable models, a program Π cannot have two answer sets such that one
is (strictly) included in another because answer sets of a program are also designed
according a minimisation criterion in the sense of set inclusion. To see this fact
formally, we assume for a contradiction that a program Π has two different answer
sets, say S and S ′, such that S ⊂ S ′. First we remember that S, S ′ ⊆ LitΠ, then

15

it is clear that ΠS′ ⊆ ΠS: while producing the reduct, S and S ′ both make the
same effect on Π related with not l appearing in Π such that l ∈ S ∪ (P \ S ′), and
related with the rest such that l ∈ S ′ \S, while S deletes the formula not l only, S ′
deletes the whole rule. Since S and S ′ are answers set of Π, we have Cn(ΠS′) = S ′

and Cn(ΠS) = S by definition. Hence, S ′ ⊆ S because ΠS \ ΠS′ may add new
variables into S. As a result, ‘∅’ and ‘Lit’ are unique when they are answer sets of
a program Π.

1.1.2 Specific classes of logic programs
LP unifies different areas of computing by exploiting the greater generality of
logic. It does so by building upon and extending one of the simplest, yet most
powerful logic imaginable, namely the logic of Horn clauses (Kowalski [2014]). Ex-
tending Horn clause programs with the NAF operator to reason about negative
conditions was recognised from the earliest days of LP, and in fact ASP was born
as a result of an effort in order to find a suitable semantics for such programs
containing NAF. Hence, ASP programs were first introduced in the form of gen-
eral logic programs which are extensions of Horn clause programs by NAF. Then,
in the beginning of 90’s, two important extensions of this standard form of logic
programs were proposed by Gelfond and Lifschitz (Gelfond and Lifschitz [1990]).
They redesigned logic programs allowing strong negation (yet, they used the term
‘classical negation’, and even some different authors called it ‘explicit negation’)
in which program rules were built of literals rather than propositional variables.
Similarly, the NAF operator was applied to some of the literals in the body. They
called this newly formed version of logic programs extended logic programs. More-
over, Gelfond and Lifschitz introduced a new notion called answer set semantics as
a generalisation of the stable model semantics in order to interpret programs with
strong negation. Then, Gelfond and Lifschitz proposed an additional extension
of the language by further allowing epistemic disjunction in the heads of program
rules (Gelfond and Lifschitz [1991]). They called the resulting class of programs
disjunctive logic programs. They also extended the notion of answer set from the
case of programs with strong negation to the case of disjunctive programs. Gelfond
and Lifschitz also proved that answer sets coincide with stable models in the case
of general logic programs, and that they are true generalisations of stable models.

The presentation below introduces the fundamental basis and the extensions of
(nonmonotonic) logic programs of increasing syntactic complexity with additional
connectives in a historical order.

16

1.1.2.1 Horn clause basis of LP

Horn rules constitute the underlying basis of LP and have the form
m∨
1
pi ←

n∧
m+1

pi

where 0 ≤ m ≤ 1 ≤ n and pi ∈ P (see Definition 1.3). Therefore, they have the
following explicit representation (see Definition 1.2):

p1 ← p2 , . . . , pn where pi ∈ P for 1 ≤ i ≤ n.(1.4)

However, one should keep in mind that a Horn rule, as well as the following ASP
program rules, can be in the shape of a fact or a constraint. To express it more
clearly, the body(r) or the head(r) of a Horn rule may contain no propositional
variables. A Horn program is a finite set of Horn rules.

In the literature, the well known name for Horn rules is Horn clauses and they
are named after the logician Alfred Horn, who studied some of their mathematical
properties. The name ‘clause’ emphasizes that it is more common to see this
rule-like form as a clause-like form with at most one positive (unnegated) literal:

p1 ∨ ¬p2 ∨ . . . ∨ ¬pn where pi ∈ P for 1 ≤ i ≤ n.

A Horn rule r with nonempty head(r) is a definite clause which means a disjunction
of literals with exactly one positive (unnegated) literal. As a result, every definite
clause is a Horn clause but not vice versa (Kowalski [2014]).

A set of definite clauses has a unique smallest model which is the intended
semantics for such set of clauses. However, a set of Horn clauses has either a
unique smallest model or none. For instance, while Π = {q ← p} has a unique

smallest model ∅, Π′ =
{
p ←
← p

has no model.

Horn clause programs were then extended to general logic programs letting
the NAF operator appear only in the body of rules. In fact, Horn clauses were
theoretically sufficient for all programming and database applications. However,
they were not adequate for AI, most importantly because they failed to capture
nonmonotonic reasoning due to lacking the NAF operator (Kowalski [2014]).

1.1.2.2 Logic programs with negation

The following programs constitute specifically the program classes of ASP, and
each is a generalisation of the previous one, so all program forms below allow for
the NAF operator.

General (Normal) logic programs

A program composed of a finite set of rules
m∨
1
ϕi ←

(n∧
m+1

ϕi
)
∧
(k∧
n+1

not ϕi
)
(see

17

Definition 1.3) is called a general (or normal) logic program for the case 0 ≤
m ≤ 1 ≤ n ≤ k, and when all ϕi’s are simply propositional variables. Therefore,
a general logic program (Gelfond and Lifschitz [1988a]; Lloyd [1987]) is a finite
collection of rules (see Definition 1.2) of the following explicit form

p1 ← (p2 , . . . , pn) , (not pn+1 , . . . , not pk)(1.5)

where pi ∈ P for every i = 1, . . . , k such that 1 ≤ n ≤ k. Such programs are the
very basic form of ASP programs.

The name ‘general’ refers to the fact that such rules are more general than
Horn clauses: indeed, a Horn clause can be seen as a positive general program
rule r in which body(r)− is reduced to empty set. Therefore, the stable model of
a positive general program Π is compatible with the smallest model of the set of
clauses corresponding to Π.

The semantics followed in general LP is precisely the stable model semantics,
but answer set concept also covers the semantics of this form of logic programs
since it is a generalised version of stable models. Here are some examples.
G.1 Consider the general logic program Π1:

p← p
q ← not p.

In order to find its stable models, we search for all potential stable model
candidates: ∅, {p}, {q} and {p, q}. The smallest models of the following
reducts Π∅1 = Π{q}1 = {p ← p, q ←}, and Π{p}1 = Π{p,q}1 = {p ← p} are
respectively Cn(Π∅1) = Cn(Π{q}1) = {q} and Cn(Π{p}1) = Cn(Π{p,q}1) = ∅.
However, just {q} satisfies the fixed point property, so we eliminate the rest.
Thus, the unique stable model for Π1 is {q}.

G.2 The sets {p} and {q} are the (only) stable models of the program Π2:

p← not q
q ← not p.

Indeed, Π{p}2 equals {p ←}, and {p} is clearly the minimal set closed under
this reduct. Moreover, it satisfies the fixed point property. Similarly, one
can show that {q} is also a stable model for Π2.

G.3 Finally, the program Π3 = {p← not p} has no stable models: indeed among
the possible candidates ∅ and {p}, none of them satisfies the fixed point
property since Cn(Π∅3) = Cn({p ←}) = {p} and Cn(Π{p}3) = Cn(∅) = ∅.

Moreover, Π4 =
{
← not p , Π5 =

{
p ←
← p

and Π6 =
{
← p
← not p

do

not have any stable models either.

18

As shown above, a general logic program Π may have one or multiple stable mod-
els, including none. However, a ‘well-behaved’ program should have exactly one
stable model. The existence of several stable models points out possible different
interpretations about the world which can be built by a rational reasoner on the
instructions from Π. Intuitively, this is why a stable model of Π cannot be strictly
included in another.

An important limitation of general logic programs as a knowledge representa-
tion tool is that they do not allow us to directly deal with incomplete information.
A consistent general logic program partitions the set of ground queries only into
two parts: a query is answered either yes or no, depending on whether the query
belongs to all its stable models or not. However, the semantics of general LP
does not allow for a third possibility: the unknown answer, which corresponds to
the inability to conclude yes or no (Gelfond [1989]; Gelfond and Lifschitz [1990]).
For example, in the examples above while the program Π1 (see Example G.1) is
well-behaved and consistent, and answers yes to the query “q ?” and no to the
query “p ?”, the program Π2 (see Example G.2) is not well-behaved, but still con-
sistent and answers no to both questions although these atoms appear separately
in different stable models of the latter program. However, Π3 as well as Π4, Π5
and Π6 (see Example G.3) are inconsistent and provide us no information related
to these questions, but the situation here has nothing to do with the unknown
answer. Finally, note that in general LP there is no inconsistent program in the
form of ‘contradictory’ since its language lacks strong negation.

General logic programs are so unable to represent the incompleteness of infor-
mation. This happens just because the query evaluation methods of general LP
give the answer no to every query that does not succeed, automatically applying
CWA to all variables. In other words, they generally provide negative information
implicitly through closed world reasoning. This serious limitation has been over-
come by adding another type of negation, so-called strong negation (∼), besides
the NAF operator (not) into the original language of general LP (Gelfond and
Lifschitz [1991]). The resulting formalism is called extended logic programming
and explained in detail in the following subsection.

To close with the complexity, testing whether a (ground) general logic program
has a stable model is NP -complete.

Extended logic programs
A program composed of a finite set of rules

m∨
1
ϕi ←

(n∧
m+1

ϕi
)
∧
(k∧
n+1

not ϕi
)
(see

Definition 1.3) is called an extended logic program for the case 0 ≤ m ≤ 1 ≤ n ≤ k,
and when all ϕi’s are literals. Hence, an extended logic program (Gelfond and
Lifschitz [1990, 1991]) is a finite collection of rules of the following explicit form

19

(see Definition 1.2)

l1 ← (l2 , . . . , ln) , (not ln+1 , . . . , not lk)(1.6)

where li ∈ Lit for every i = 1, . . . , k such that 1 ≤ n ≤ k.
The name ‘extended’ emphasises the fact that the building blocks of the former

language is upgraded from propositional variables to literals, having the former
language enriched by strong negation, and hence that the semantics of the resulting
program forms is transformed from ‘stable models’ to ‘answer sets’. Syntactically
general logic programs are a special case of extended logic programs in which
literals are restricted to atoms.

Expectedly, the semantics of extended logic programs is no more the stable
model semantics except that the program has no negative literals. It is now defined
in terms of ‘answer sets’: sets of literals intuitively corresponding to possible sets
of beliefs which can be built by a rational reasoner on the basis of a program Π.
Hence, since an answer set S is the set of literals the agent believes to be true,
any rule r with the subgoal (subformula of body(r)) not l where l ∈ S is of no use
to the agent, so we produce the reduct ΠS, replacing all the rules containing such
subgoals. When an answer set of ΠS coincides with S the choice of S is supposed
to be ‘rational’.

An extended logic program Π can be reduced to a general logic program Π̃ by
eliminating strong negation (Gelfond and Lifschitz [1991]): for every p ∈ P,

i. replace each occurrence of a negative literal ∼p by a fresh variable p̃, which
is the positive form in shape of the negative literal ∼p,

ii. keep remaining positive literals, which are already (syntactically) in positive
forms.

Then, we append to Π̃ a set of constraints called Cons to guarantee the coherence:
for every p ∈ PΠ,

iii. add the constraint ‘← p̃ , p’, which is also a general program rule, into Π̃.

Similarly, a set of literals S ⊆ Lit can be turned into a set of atoms S̃ ⊆ P by
following item (i). The following lemma describes this syntactic transformation.

Lemma 1.1 Given an extended logic program Π and a consistent set S ⊂ Lit,

S is an answer set of Π iff S̃ is a stable model of Π̃ ∪ Cons.

One can refer Gelfond and Lifschitz [1991] for the proof. This lemma is generalised
in Subsection 1.3.3 to arbitrary logic programs.

20

The answer set semantics is not contrapositive (with respect to ‘←’ and ‘∼’)
in the sense that it distinguishes, for example, between the rules ‘q ← p’ and
‘∼p← ∼q’. Thus, we see that we cannot interpret← as material implication. The
first example below discusses this fact.

E.1 While the answer set of the program Π1 =
{
q ←
p ← q

is {p, q}, the answer

sets of the programs Π2 =
{

q ←
∼q ← ∼p and Π3 =

{
∼p ←
∼q ← ∼p are re-

spectively {q} and {∼p,∼q}. Similarly, the programs Π4 =
{
∼p ←
p ← ∼q

and Π5 =
{
∼p ←
q ← ∼p have respectively the answer sets {∼p} and

{∼p, q}.

E.2 The closed world assumption (CWA) for p and ∼p can be formalised respec-
tively by the following extended logic program rules:

∼p← not p and p← not ∼p.

The program Π6 uniquely containing the former and the program Π7 con-
taining just the latter have exactly one answer set, i.e., respectively {∼p}
and {p}. Consider now another one-rule logic program Π8:

∼q ← not p.

The only answer set of Π8 is {∼q}. So, for rules of this kind we simply
obtain the answer set including only the literal in the head except for the
cases p← not p and ∼p← not∼p where the rules have no answer sets at all.

E.3 The program Π9 =

r ←
p ← not q
q ← not p
∼r ← not p

has exactly two answer sets: {p, r}

and {q, r,∼r}. However, the latter turns out to be Lit since it contains
two complementary literals. However, according to today’s widely accepted
semantics, the latter is not an answer set anymore, and so Π9 has just one
answer set {p, r}.

E.4 Finally, the extended program Π11 =

q ← p
∼q ← p
p ← not ∼p

has no answer sets.

Transforming Π11 into a corresponding general program Π̃11 =

q ← p
q̃ ← p
p ← not p̃

21

we see that the latter has the following stable model: {p, q, q̃}. This example
thus shows that the consistency constraint in Lemma 1.1 is indeed essential.

As in general LP, an extended logic program may also have finitely many answer
sets, including none. However, a ‘well-behaved’ extended program has exactly one
answer set, and this set should be consistent, i.e., different from Lit.

Extended logic programs are useful for representing incomplete information:
they can include explicit negative information via strongly negated propositional
variables (negative literals). In other words, in the language of extended LP, we
can distinguish between a query l which fails in the sense that it does not succeed
(i.e., not l holds) and a query which fails in the stronger sense that its negation
succeeds (i.e., l holds where l is the complementary literal of l, see Subsection 1.1.1,
second paragraph for a detailed explanation of l). A consistent extended program
Π is supposed to return an answer yes, no or unknown for a ground query “l
?”, depending on whether its answer sets contain l, l, or neither. To express it
more clearly, Π’s answer to a literal query “l?” is yes if l is contained in all its
answer sets, no if l is included in all its answer sets and unknown otherwise (Baral
and Gelfond [1994]). However, there is one exception: when Π is contradictory it
answers both yes and no to all literal queries because the unique answer set of a
contradictory program is Lit.

Although general logic programs are syntactically a special case of extended
logic programs, one should note that a general logic program has different semantic
interpretations in general LP and extended LP: while the absence of an atom p
in a stable model of a general program indicates that p is false, so the program
answers no to the query “p?”; the same program, when viewed as an extended
program, interprets the absence of the same atom in the corresponding answer set
as “p is unknown”. Expectedly, such semantic equivalence is just obtained when
an extended rule representing CWA is added into the program for every p ∈ PΠ.
In fact, such addition is sufficient for all atoms p ∈ Phead(r) and every r ∈ Π.

Note that we consider answer sets in this work both as ‘incomplete theories’
following Gelfond and Lifschitz’s approach and also as ‘3-valued models’ follow-
ing the approach described in, for instance, (Fitting [1985]; Przymusinski [1989];
Van Gelder et al. [1991]). In this sense, stable models are not incomplete, in other
words, they are two-valued. However, for a program having more than one answer
set (or stable model) points out incompleteness of the program in another sense:
several different interpretations of the world to which the program refers.

Reexamining the examples above, all programs in the first two examples (see
Example E.1 and Example E.2) behave well in the sense that they have just one
consistent answer set. The rule of Π8 intuitively means: “q is false if there is no
evidence that p is true”. The program Π8 respectively answers to the queries “p ?”
and “q?”, unknown and false since its answer set {∼q} does not include the former,

22

yet does include the strong negation of the latter. The program Π9 is consistent
since it has one consistent answer set, and responds yes the queries “p?” and “r?”,
but unknown to the rest of literal queries. Finally, the program Π11 is inconsistent
since it has no answer sets.

The following part discusses a further extension of extended LP by a new
operator called epistemic disjunction, which is necessary to represent disjunctive
information about the world.

Disjunctive logic programs
A program composed of a finite set of rules

m∨
1
ϕi ←

(n∧
m+1

ϕi
)
∧
(k∧
n+1

not ϕi
)
(see

Definition 1.3) is called a disjunctive logic program for 0 ≤ m ≤ n ≤ k and when
all ϕi’s are literals. Therefore, a disjunctive program (Gelfond and Lifschitz [1991])
is a finite collection of rules of the following explicit form (see Definition 1.2)

l1 or . . . or lm ← (lm+1 , . . . , ln) , (not ln+1 , . . . , not lk)(1.7)

where li ∈ Lit for every i = 1, . . . , k. Briefly, bodies are as before (see Definition
1.6), but heads allow for disjunctions of literals. The term disjunctive database is
sometimes used in the same meaning with a disjunctive logic program.

In our context, extended logic programs are a special case of disjunctive logic
programs. However, some authors prefer to make such a separation: they call gen-
eral logic programs enriched by the epistemic disjunction operator disjunctive logic
programs and programs that further contain strong negation extended disjunctive
programs.

Epistemic disjunction (or) is nonclassical, so it is different from both classical
disjunction (∨) and exclusive disjunction (⊕). The last is expressed by means of
classical disjunction as follows: ϕ ⊕ ψ = (ϕ ∨ ψ) ∧ −(ϕ ∧ ψ) where ‘−’ refers to
classical negation. As to epistemic disjunction, one can represent ‘ϕ or ψ ←’ in the
language of general LP by the following two rules: ‘ϕ← not ψ’ and ‘ψ ← not ϕ’.
At first sight the reader may feel a possible similarity between or and ⊕, but
we will soon show semantically that they are in fact different (see Example D.4).
One can also define the formula ‘ϕ or ψ’ as a shortcut for ‘∼(∼ϕ , ∼ψ)’, but
we have not discussed such a generalised language in this work in which strong
negation precedes an arbitrary formula. We have also preferred to denote epistemic
disjunction by ‘or’ except compact representations (see Definition 1.3). However,
in the literature, the more common notation for this connective is ‘;’, and even one
can come across ‘∨’. The latter notation stresses the fact that the rule ‘ϕ or ψ’
can be translated to a propositional formula ‘p ∨ q’, but certainly not in classical
logic (see Example D.3). We will return to this point in Section 3.1.2.

The meaning of ‘or’ is given by the semantics of disjunctive databases. A
formula ‘ϕ or ψ’ is interpreted epistemically and means “ϕ is believed to be true

23

or ψ is believed to be true”. This is why we call this disjunction specifically
epistemic. On the other hand, the formulas ‘ϕ ∨ ψ’ and ‘ϕ⊕ ψ’ respectively read
“ϕ is true or ψ is true” and “either ϕ or ψ is true, but not both”.

As to the semantics of disjunctive LP, we mainly follow the slight generalisation
of the answer set definition given in the previous section, but the reduct definition
is the same as before. However, when a program does not contain any negative
literals, we can also follow the stable model definition. In this case, note that a
reduct ΠS of a disjunctive program Π (w.r.t. S) does not have a least Herbrand
model anymore: it just has minimal ones, if any.

Given a disjunctive program Π and a set S ⊆ Lit, the rules of the reduct ΠS,
w.r.t. S, are in the following explicit form:

l1 or . . . or lm ← lm+1 , . . . , ln for 0 ≤ m ≤ n.

Then, minimal models of ΠS are the models X ⊆ Lit satisfying:

• for every r ∈ ΠS, if li ∈ X for every m + 1 ≤ i ≤ n, then lj ∈ X for some j
such that 1 ≤ j ≤ m, and

• if X contains a pair of complementary literals, then X = Lit (as before).

Finally, if S is one of such X’s then we say S is answer set of Π. Here are some
examples: The first example refers to the nonexistence of a least Herbrand model,
instead the existence of minimal models for the reduct.

D.1 The disjunctive program

Π1 =
{
p or q ← r , not s

r ← not q

has a unique stable model: {p, r}. (Note that this program does not contain
any negative literals.) To see this, we first take the reduct

Π{p,r}1 =
{
p or q ← r

r ← .

The minimal models of Π{p,r}1 are {p, r} and {q, r}. Hence, {p, r} is a stable
model of Π1 since it satisfies the fixed point property. On the other hand,
through a similar reduct discussion, we see that {q, r} is not a stable model
of this program.

D.2 The extended program Π2 =
{
p or∼p ← not p

← ∼p has no answer sets.

24

We have somewhat mentioned above the difference of or from classical disjunc-
tion ∨ and exclusive disjunction ⊕. The next example supports semantically the
difference between or and ∨.

D.3 We first consider a simple program Π3 =
{
q ← p which has a unique answer

set ∅. Appending the disjunctive rule

p or ∼p←(1.8)

to Π3, we get a new program Π4 =
{

q ← p
p or∼p ← whose answer sets are

exactly {p, q} and {∼p}. Thus, we see that the inclusion of rule (1.8) makes
a striking change, in contrast to classical logic, in which the law of excluded
middle is valid.

The following example specifies the difference between all three connectives: or, ∨
and ⊕.

D.4 The disjunctive program Π5 = {p or q ←} has exactly two answer sets: {p}
and {q} (see Example G.2 and note that the answer sets of these programs
are the same). However, adding the rule ‘p ←’ into Π5 slightly changes its

answer sets. To express it more clearly, Π6 =
{
p or q ←

p ← has a unique

answer set: {p}. Moreover, making one step forward, i.e., having ‘q ←’

added into Π6, Π7 =

p or q ←

p ←
q ←

has the following unique answer set:

{p, q}. As a result, in intuitive means, while Π6 is interpreted in the same
way for all three connectives, Π5 makes or differ from ∨, and Π7 makes it
differ from ⊕.

To close with the complexity, we say that finding a stable model of a disjunctive
logic program (but not extended) is slightly more complex than finding a stable
model of a general logic program: it is ΣP

2 -complete (Eiter and Gottlob [1993]).

Negation as failure in the head of logic programs
A disjunctive logic program that allows for the NAF operator in the head as a
negative conclusion is known as a generalised disjunctive program (GDP, for short)
and has the following form:

(l1 or . . . or lx) or (not lx+1 or . . . or not lm)← (lm+1 , . . . , ln) , (not ln+1 , . . . , not lk)

25

where 0 ≤ x ≤ m ≤ n ≤ k and li ∈ Lit for every i = 1, . . . , k (Inoue and Sakama
[1998]; Lifschitz [1996]). They were first introduced by Lifschitz and Woo (Lifschitz
and Woo [1992]) as a subset of the MB-NF logic (see Appendix C.2).

The answer set semantics we have followed so far satisfies the antichain prop-
erty: the answer set of a program cannot be a proper subset of another answer set
of the same program. The semantics proposed for GDPs is a slight generalisation
of the usual answer set semantics. The main difference of the latter is that the
principle of minimality (i.e., antichain property) does not necessarily hold since
NAF is now allowed to appear in the head. So, GDPs are useful for representing
knowledge in various domains, such as abductive logic programming, in which the
minimality condition is too strong.

We again follow a similar reduct definition as followed in the second convention
(see Definition R2.1 and Definition R2.2) to eliminate NAF, also for ones occurring
in the head. However, unlike the definitions given before, we do not allow here for
an inconsistent answer set Lit. For instance, a simple GDP Π1 = {not p ←} has

one answer set ∅, but Π2 =
{
p ←
← p

has no answer sets in the new context.

Note that Π2, when viewed as a disjunctive or an extended program, Lit appears
to be an answer set of this program. Another GDP Π3 = {p or not p ←} has
two nonminimal answer sets: ∅ and {p}. Finally, it is interesting to observe that
such rules make an incoherent (or inconsistent) program coherent: for instance,

as a GDP Π4 =
{

p ← not p
∼q ← has no answer sets. Note that as a disjunctive

program the unique answer set of Π4 is Lit. However, Π3 ∪ Π4 has a (unique)
consistent answer set {∼q, p}, so the resulting program turns out to be coherent.

In acyclic programs (Apt and Bezem [1991]), NAF in the head can be shifted to
the body without changing the answer sets of the program. For example, replacing
a rule r of the form

not l1 or . . . or not lk ← body(r)

in any program by the constraint

⊥ ← l1 , . . . , lk , body(r)(1.9)

does not affect the answer sets of the program since they are strongly equivalent
(Lifschitz et al. [2001]). This concept is discussed in Subsection 1.1.4 in detail.
This fact is further interesting because the role of constraints in a logic program is
well understood: adding a constraint to a program eliminates its answer sets that
violate the constraint (see Subsection 1.1.3.1 for part of the discussion). However,
it is not always possible to easily eliminate not in the head. Note that the program
Π3 above cannot be transformed to Π′3 = {p← p} which has a unique answer set,

26

i.e., ∅. We will return to this example in Subsection 1.2.3. However, Π1 and Π2

can be safely transformed to Π′1 = {← p} and Π′2 =
{

p ←
not p ← .

To close with the computational complexity, it remains the same as with the
complexity of nonextended disjunctive programs: deciding the existence of an
answer set of a GDP Π is ΣP

2 -complete (Inoue and Sakama [1998]).

Nested expressions in logic programs
Nested expressions are formed from literals using NAF, conjunction, epistemic
disjunction and even if-then-else constructs that can be nested arbitrarily. The
latter (conditional expressions) is given in the form of ‘ϕ → ψ or χ’ and is an
abbreviation for the formula ‘(ϕ , ψ) or (not ϕ , χ)’. For instance, the rule

s← (p→ q or r), t

declaratively has the same meaning as the set of rules

s ← p , q , t
s ← not p , r , t

yet, the former is preferable since it is more concise. We call rules with nested
expressions nested rules and finite sets of such rules nested programs.

The ASP programs we have discussed so far only allow a list of syntactically
simple expressions in its program rules, but the syntax of Prolog also permits more
complex nested expressions. So, nested programs help us catch a 1-1 correspon-
dence between them. However, the study of equivalence transformations of nested
programs shows that every nested rule is equivalent, in the stronger sense, to a
set of disjunctive rules, possibly with NAF in the heads. This equivalence means
more than just having the same answer sets and is formally defined as follows:
ϕ is equivalent to ψ (symbolically, ϕ ⇔ ψ) if for every consistent S1, S2 ⊂ Lit,
“S1 |= ϕS2 if and only if S2 |= ψS1”. We will see this equivalence as strong equiv-
alence in Subsection 1.1.4. As a result, nested programs allow us to express ASP
programs in a more compact way.

Here is a list of useful equivalences of formulas (Lifschitz et al. [1999]). Note
that we can consider any formula in LASP as a ‘nested fact’. For every formulas ϕ,
ψ and χ in LASP, we have:

i) commutativity and associativity hold for both , and or.

ii) ϕ , (ψ or χ)⇔ (ϕ , ψ) or (ϕ , χ) and vice versa.

iii) De Morgan’s laws hold for both , and or, i.e., not(ϕ , ψ) ⇔ not ϕ or not ψ
and not(ϕ or ψ)⇔ not ϕ , not ψ.

27

iv) not not not ϕ⇔ not ϕ

v) conjunction and disjunction with > or ⊥ are as usual.

vi) not> ⇔ ⊥ and not⊥ ⇔ >.

vii) p , ∼p⇔ ⊥ and hence by item (vi) not p or not∼p⇔ >.

The following collection describes further equivalence transformations of nested
rules.

I) ϕ , ψ ← χ is equivalent to
{
ϕ ← χ
ψ ← χ

.

II) ϕ← ψ or χ is equivalent to
{
ϕ ← ψ
ϕ ← χ

.

III) ϕ← ψ , not not χ is equivalent to ϕ or not χ← ψ.

IV) ϕ or not not ψ ← χ is equivalent to ϕ← not ψ , χ.

The semantics of nested programs, beside other approaches, is based on answer
set semantics which is similar to the one given in the previous subsection. We still
find it useful to include a generalised reduct definition. The reduct of a formula
and a rule relative to a consistent set X ⊂ Lit is recursively defined as follows
(Lifschitz et al. [1999]):

R3.1 for every literal l ∈ Lit, lX = l.

R3.2 (ϕ⊗ ψ)X = ϕX ⊗ ψX where ⊗ stands for , and or.

R3.3 (not ϕ)X =
{
⊥ if X |= ϕX

> otherwise.

R3.4 (ϕ← ψ)X = ϕX ← ψX .

Here are some examples.

N.1 Using item (v) above, we conclude that Π0 = {p or not p←} has two answer
sets ∅ and {p} (see previous subsection), and Π′0 = {p or not q ←} has just
one, namely ∅. However, adding the rule q or not p ← to both programs
results in the same answer sets of the resulting programs: ∅ and {p, q}.

28

N.2 The nested program Π1 = {q ← p or∼p} has a unique answer set ∅. Note

that Π1 is equivalent to the extended program Π′1 =
{
q ← p
q ← ∼p (by item

(II) above). It is now easier to also see that adding the rule p ← into Π1
results in the unique answer set {p, q} of the new program. As a result of
this example, we conclude that the formula p or∼p is not equivalent to >.

N.3 Another one-rule nested program Π2 = {p ← (q → r or not s)} has a
unique answer set {p}: to show this, we first turn Π2 into its explicit form
Π′2 = {p ← (q , r) or (not q , not s)}, then find the reduct Π′2

{p} = {p ←
(q , r) or (T , T)} and finally see that {p} satisfies the fixed point property.
To produce the reduct, we could alternatively work with the general program

Π′′2 =
{
p ← q , r
p ← not q , not s

which is equivalent to Π′2 (by item (II)), and

see Π′′2
{p} =

{
p ← q , r
p ← . The rest is obvious.

N.4 The nested program Π3 = {∼q , not p ← not r} has a unique answer set

{∼q}. Note that Π3 is equivalent to Π′3 =
{
∼q ← not r

not p ← not r
(by item

(I)), and even to the extended program Π′′3 =
{
∼q ← not r

← p , not r
. The rest

is obvious. At this point, it is useful to notice that not p ← not r is not
equivalent to r ← p (in the stronger sense). More generally, we say that the
answer set semantics is not contrapositive w.r.t. ← and not.

Finally, we discover an interesting fact by means of nested programs under answer
set semantics: double not does not cancel out in general. Here is an example.

N.5 The program Π4 = {p ← not not p} has two answer sets ∅ and {p}: Π4
is equivalent to Π′4 = {p ← > , not not p} (by item (v)) and then also to
Π′′4 = {p or not p← >} (by item (III)). However, Π5 = {p← p} has just one
answer set, i.e., ∅.

Note that when not is nested, i.e., applied to formulas containing not, we should
be further careful: we first apply the usual reduction procedure starting from the
innermost not, so we get (not p){p} = ⊥. Then, since {p} 6|= ⊥ (or, using not⊥ ⇔
> in item (vi)), we have (not not p){p} = > and hence (p ← not not p){p} = p ←.
The rest is obvious.

29

1.1.3 Other language extensions: new constructs in ASP
It has been observed in time that general LP with its stable model semantics is
not adequate for many interesting domains. They lack expressivity to represent,
for instance, choices over subsets as well as cardinality and weight constraints.
Therefore, some new types of rules (constructs) were introduced in order to further
enhance the expressivity of the ASP language. Such constructs also allow us to
write more concise ASP programs in the sense that they mostly abbreviate a set of
general rules in a very compact representation. They share the language of general
LP, and accordingly, their semantics extend the stable model semantics of general
logic programs. Such constructs can be embedded into general LP, but usually
with a cost of increase in the rule number.

1.1.3.1 Integrity constraints

An integrity constraint r is an expression of the form

← p1 , . . . , pm , not pm+1 , . . . , not pn(1.10)

where 1 ≤ m ≤ n and pi ∈ P for 1 ≤ i ≤ n. So, it is a special case of general logic
programs in which headr(r) = ⊥ (see Subsection 1.1.1). However, an integrity
constraint 1.10 can also be translated into a general program rule as follows:

q ← p1 , . . . , pm , not pm+1 , . . . , not pn , not q

where q ∈ P is an atom, not appearring in the constraint 1.10, i.e., q ∈ P \ Pbody(r).
An integrity constraint in the form of 1.10 can also appear in another disguise:

not p1 , . . . , not px ← px+1 , . . . , pm , not pm+1 , . . . , not pn.

This fact is clear by equivalence transformations of rules (see 1.9) and note that
we still do not infer a literal directly. In this sense, they are also a special case of
generalised disjunctive rules.

Using integrity constraints extended by strong negation, we can formalise the
coherence principle: ‘not p ← ∼p’ and ‘not∼p ← p’, which is nothing but ‘←
p , ∼p’. We have already mentioned such constraints implicitly as conjuncts of
Cons while eliminating strong negation in an extended logic program, resulting
in a general logic program. Coherence principle is an important property for
programs including both NAF and classical negation. Note that these schemas
for the coherence principle are converse to the rules for closed world assumption
(CWA) (see Example E.2).

The idea underlying this form of constructs is to eliminate unwanted solution
candidates. Here is a simple example: while the program Π1 = {p or q ←} has two

30

stable models {p} and {q}, the programs Π1 ∪ {← p} and Π1 ∪ {← not p} have
respectively the unique stable models {q} and {p}. The following example gives
the idea better. We have seen in Example E.3 that the ASP program

Π =

r ←

p or q ←
∼r ← not p

has two stable models {p, r} and Lit. Hence, adding the integrity constraint ‘← q’
into Π will simply eliminate the latter which is indeed an undesired solution.

1.1.3.2 Choice rules

A choice rule r is an expression of the form

{p1, . . . , pm} ← pm+1 , . . . , pn , not pn+1 , . . . , not pk(1.11)

where 1 ≤ m ≤ n ≤ k and pi ∈ P for 1 ≤ i ≤ k. Different from other program
rules we have seen so far, now the head of the rule is given as a set of propositional
variables, i.e., head(r) = {p1, . . . , pm} ⊂ P, and it says: “choose arbitrarily which
of the atoms p1, . . . , pm (including none) to add into the stable model”. Therefore,
in this form of constructs, a choice is made over 2head(r). For example, an ASP
program containing only the choice rule ‘{p, q, r} ←’ has 8 stable models: any
subset of {p, q, r} is a stable model. Note that we generalise the stable model
semantics for choice rule structures, and in contrast to stable model semantics
defined in general LP, the new semantics is not based on a minimality condition
relative to set inclusion.

Intuitively, choice rules work as follows: if body(r) of a choice rule r is satisfied
by a possible stable model X at hand, then the rule r motivates X to include any
number (including none) of atoms from the set head(r). Such rules are used when
one wants to implement optional choices. For instance, an ASP program

Π =
{

q ←
{r, s} ← not p

has four stable models: {q}, {q, s}, {q, r} and {q, r, s}. Further adding the integrity
constraint ‘← not r’ into Π eliminates the first two stable models, and the resulting
program Π′ has just two stable models: {q, r} and {q, r, s}.

Remember how we have translated program rules into propositional formulas.
Similarly, we can also treat, for example, a choice rule ‘{p, q, r} ←’ as a conjunction
of three excluded middle formulas:

(p ∨ ¬p) ∧ (q ∨ ¬q) ∧ (r ∨ ¬r).

We can easily generalise this transformation to an arbitrary choice rule structure.

31

1.1.3.3 Cardinality rules

A cardinality rule r an expression of the form

p0 ← l {p1, . . . , pm, not pm+1, . . . , not pn}(1.12)

where pi ∈ P for 0 ≤ i ≤ n such that 0 ≤ m ≤ n and l is a nonnegative integer. In
this form of constructs, the body formula

p1 , . . . , pm , not pm+1 , . . . , not pn

is given in a set notation in which any element is a conjunct of this formula. This
set, together with a further restrictive condition l, form body(r). So, the sign ‘,’
appearing in such rules is the usual comma, but not the conjunction in LASP . The
body of this construct is referred to as a cardinality constraint, and it allows us
to put a restriction on the body formula that allows for the cardinality increase
of already existing stable models (see Example C.1). This restriction is made by
a number l which acts as a lower bound on body(r). However, when l = 0 a
cardinality rule 1.12 behaves as a fact ‘p0 ←’.

Informally, such rules work as follows: if a stable model X ⊂ P satisfies at
least l elements of the conjuncts making up body(r), then p0 belongs to the stable
model. So, in this context, X does not necessarily satisfy body(r) as a whole for
head(r) to be included in the stable model, instead it should satisfy a subformula
of it containing at least l conjuncts (see Example C.1 and Example C.2). Formally,
this condition is given as:

l ≤ |({p1, . . . , pm} ∩X) ∪ ({pm+1, . . . , pn} \X)| .

The idea underlying such rules is to lower the cardinality increase of stable models
(see Example C.3).

General program rules (see Definition 1.7) are special forms of such constructs:
a rule ‘r = p0 ← p1 , . . . , pm , not pm+1 , . . . , not pn’ can be represented by the
cardinality rule ‘p0 ← l {p1, . . . , pm, not pm+1, . . . , not pn}’ where the lower bound
l =

∣∣∣Pbody(r)

∣∣∣ when pi’s are all different for every i = 1, . . . , n.
A cardinality rule with an upper bound has the following explicit form

p0 ← l {p1, . . . , pm, not pm+1, . . . , not pn} u(1.13)

where pi ∈ P for 0 ≤ i ≤ n such that 0 ≤ m ≤ n and 0 ≤ l ≤ u. The cardinality
constraint of such rules contains also an upper bound u in addition to a lower
bound l, and a stable model X ⊂ P satisfies it if X satisfies x number of conjuncts
of body(r) such that l ≤ x ≤ u. We can formalise this condition as follows:

l ≤ |({p1, . . . , pm} ∩X) ∪ ({pm+1, . . . , pn} \X)| ≤ u.

32

A cardinality constraint structure can also appear in the head of a rule in some
form of constructs, and it determines the range of the number of atoms to be or
not be added into X when body(r) is satisfied by a stable model X at hand. Now,
we see some examples.

C.1 Recall that the rule ‘q ←’ has a unique stable model {q}, but together with
the following cardinality rule

p← 1 {q, r}(1.14)

the resulting ASP program Π1 =
{
q ←
p ← 1 {q, r} has a unique stable

model {p, q}. However, when we replace the lower bound l = 1 by 2, the
resulting rule has no effect on the previous model {q}. Note that in this
example the lower bounds 1 and 0 makes the same effect on the stable model.
However, this is not a striking example and does not help any further than
introducing the structure.

C.2 Recall that q ← not p has exactly one stable model {q} (see Example G.1).
When we append the cardinality rule 1.14 of the previous example to this
rule, we see that the resulting ASP program

Π2 =
{
q ← not p
p ← 1 {q, r}

has a unique stable model {q, p}. Note that {q, p} is a model of the latter
rule although it is not minimal. On the other hand, the ASP program

Π3 =
{

← r , not p
r ← 1 {p, not q}

has no stable models. Note that the first rule in the program Π3 is an integrity
constraint, and has only one stable model, i.e., the empty set. Therefore,
our stable model at hand is ∅. When we consider the effect of the latter rule,
which is a cardinality constraint, to ∅, we should add by definition r into
this stable model, resulting in {r}. However, {r} violates the first rule, i.e.,
does not satisfy it anymore.

C.3 Recall that the ASP program

Π′ =

q ←
← not r

{r, s} ← not p

33

in Subsection 1.1.3.2 has two stable models: S1 = {q, r} and S2 = {q, r, s}.
The effect of the cardinality rule ‘p← 0 {q, s, not r} 1’ on these models will
be as follows: S ′1 = S1∪{p} = {q, r, p} and S ′2 = S2 = {q, r, s} which are the
stable models of the resulting program

Π′′ =

q ←
← not r

{r, s} ← not p
p ← 0 {q, s, not r} 1.

1.1.3.4 Weight rules

A weight rule is of the form

p0 ← l {p1 = w1 , . . . , pm = wm , not pm+1 = wm+1 , . . . , not pn = wn}

where 0 ≤ m ≤ n, pi ∈ P for 0 ≤ i ≤ n and wi’s are integers. A weighted form
pi = wi (or, not pi = wi) associates pi (or, not pi) with a weight wi. Note that a
cardinality rule is a weight rule where wi = 1 for 1 ≤ i ≤ n.

A weight constraint with an upper bound is of the form

l {p1 = w1 , . . . , pm = wm , not pm+1 = wm+1 , . . . , an = wn}u

where 1 ≤ m ≤ n, pi ∈ P, and l, u and wi are integers for 1 ≤ i ≤ n. A weight
constraint is satisfied by a stable model X, if

l ≤
(∑

1≤i≤m , pi∈X
wi + ∑

m<i≤n , pi<X

wi
)
≤ u.

Cardinality and weight constraints respectively amount to constraints on count
and sum aggregate functions.

1.1.4 Strong equivalence
A logic program Π1 is said to be equivalent to a logic program Π2 in the sense
of answer set semantics if Π1 and Π2 have the same answer sets. Moreover, Π1
is strongly equivalent to Π2 if Π1 ∪ Π has the same answer sets as Π2 ∪ Π (in
other words, Π1 ∪Π is equivalent to Π2 ∪Π), for every logic program Π (Lifschitz
et al. [2001]). The study of strong equivalence is important because it allows us
to simplify a part of a logic program without looking at the rest of it. Here are
some examples.

SE.1 The one-rule program Π1 =
{
p ← q , not q is strongly equivalent to the

empty set, so removing the rule p← q , not q from a program does not affect
the answer sets of the program.

34

SE.2 The program Π2 =
{
p ← q
q ← is strongly equivalent to Π3 =

{
p ←
q ← .

SE.3 The one-rule programs Π4 = {p ← not q} and Π5 = {p ←} have the same
answer set {p}, so they are equivalent. However, they are not strongly equiv-
alent. To see this, we take another one-rule program Π = {q ←}. Indeed,
while Π4 ∪ Π has the answer set {q}, the answer set of Π5 ∪ Π is {p, q}.

Moreover, Π′4 =
{
p ← q
p ← not q

and Π5 are not strongly equivalent either.

This fact can be seen by adding q ← p to each of the programs, and shows
that q or not q ← is not strongly equivalent to > (or the empty set).

SE.4 The programs Π6 = {p or not q ←} and Π7 = {p← q} have the same answer
set ∅, but they are not strongly equivalent. Using item (III) and item (v) in
the section of nested programs, we see that Π6 is strongly equivalent to {p←
not not q} and we know that double not does not cancel out at least when it is
preceded literals. Alternatively, when we add to each program the rule p←
not q, we see that the resulting programs Π′6 and Π′7 are strongly equivalent
respectively to Π′′6 =

{
p← not not q or not q and Π′′7 =

{
p← q or not q

(see item (II) in the section of nested programs). However, Π′′6 and Π′′7
are not strongly equivalent because while the former is strongly equivalent
to {p ←}, the later is not. Rest of the proof is included in the previous
example.

SE.5 We have mentioned before the disjunctive logic program Π8 = {p or q ←} and

the general logic program Π9 =
{
p ← not q
q ← not p

have the same answer sets

{p} and {q}. However, they are not strongly equivalent. To see this, consider

the program Π10 =
{
p ← q
q ← p

. While {p, q} is an answer set of Π8 ∪ Π10,

it is not an answer set of Π9 ∪ Π10. On the other hand, when we consider
another program Π11 = {⊥ ← p , q}, we notice that Π8 ∪ Π11 and Π9 ∪ Π11
are strongly equivalent. This fact illustrates the possibility of eliminating
‘exclusive disjunctions’ from a logic program (Lifschitz et al. [2001]). We
will apply the argument underlying the latter fact to programs containing
strong negation in Subsection 1.2.3, and exemplify it with replacing q by ∼p.

35

1.2 Here-and-there (HT) logic
Here-and-there (HT) logic is obtained from intuitionistic logic that is characterised
by the following axiom schemas

I1. ϕ→ (ψ → ϕ) I2. (ϕ ∧ ψ)→ ϕ
I3. (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) I4. (ϕ ∧ ψ)→ ψ
I5. (ϕ→ ψ)→ ((ϕ→ χ)→ (ϕ→ (ψ ∧ χ))) I6. ϕ→ (ϕ ∨ ψ)
I7. (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) I8. ψ → (ϕ ∨ ψ)
I9. (ϕ→ ¬ψ)→ (ψ → ¬ϕ) I10. ¬(ϕ→ ϕ)→ ψ

and the inference rule of modus ponens through adding the axiom schema

(1.15) (¬ϕ→ ψ)→ (((ψ → ϕ)→ ψ)→ ψ).

The latter characterises the 3-valued HT logic by Heyting (Heyting [1930]) and
Gödel (Gödel [1932]). So, it is also known as Gödel’s 3-valued logic, however it
was apparently first axiomatised by Łukasiewicz (Łukasiewicz [1941]). The other
well-known, but less used names for HT logic are the logic of present-and-future
and the Smetanich logic.

Some other axioms may substitute Schema 1.15 though. One example is the
Hosoi’s axiom (Hosoi [1966])

(1.16) ϕ ∨ (¬ψ ∨ (ϕ→ ψ)).

However, we mainly consider one of the consequences of Schema 1.16, i.e.,

(1.17) ¬ϕ ∨ ¬¬ϕ

in the proofs since it is more useful for our purposes. This schema is known as the
weak law of the excluded middle, and can be derived from Schema 1.16 by simply
taking ψ to be ¬ϕ. To sum up, HT logic is a non-classical monotonic logic, and it
is the strongest intermediate logic between classical logic and intuitionistic logic.
In other words, it strengths intuitionistic logic and is contained in classical logic.

HT models can be defined in terms of three truth values. These truth values
were originally introduced by Heyting (Heyting [1930]) as a technical device for
the purpose of demonstrating that intuitionistic logic is weaker than classical logic.
Heyting remarks that the truth values in these tables can be interpreted as follows:
0 denotes a correct proposition, 1 denotes a false proposition, and 2 denotes a
proposition that cannot be false, but whose correctness is not proved. On the other
hand, intuitionistic logic cannot be described by a finite set of truth values (Gödel
[1932]) and the proof of this fact uses an infinite monotonically decreasing sequence
of systems whose first member is classical logic, and whose second member happens

36

to be HT logic. Moreover, HT logic properly contains all other intermediate logics
in this infinite sequence.

Pearce was the first to realise that HT logic allows to characterise the answer
set semantics of logic programs (Pearce [1996, 2006]) through a minimisation cri-
terion over HT models. More recently, strong equivalence of logic programs was
also characterised by means of HT logic (Lifschitz et al. [2001]). One of the appli-
cations of this result is that since HT is a 3-valued logic, deciding HT satisfiability
is NP complete, and therefore not EXPTIME hard. Then, as a result of this, the
strong equivalence of logic programs can also be verified in exponential time.

1.2.1 Language (LHT)
The logical language to talk about HT logic as well as equilibrium logic, abbrevi-
ated by LHT, is defined by the following grammar:

ϕF p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ,

where p ranges over a countably infinite set P of propositional variables. The
last connective → has a strength between intuitionistic implication and material
implication (⊃) of classical propositional logic. The other Boolean connectives are
given in the usual manner: the negation ¬ϕ is defined as ϕ → ⊥, in particular,
¬⊥ is given as ⊥ → ⊥ and > abbreviates both.

As usual, Pϕ denotes the set of propositional variables occurring in an LHT

formula ϕ, and this notation is also generalised to (finite) sets of such formulas,
i.e., to HT theories.

1.2.2 HT models
We use the term valuation simply in the sense of a set of propositional variables.
For instance, according to the valuation V = {p, q}, p and q are true and all other
propositional variables are false.

An HT model is an ordered pair (H,T) of valuations H and T such that
H ⊆ T ⊆ P. Intuitively, such a pair describes ‘two worlds’: the first component
here (H) is a set of true propositional variables and the second component there
(T) is a set of non-false propositional variables which includes both true variables
and variables whose truth cannot be proved. The latter are precisely contained
in T \H. Accordingly, in an HT model, ‘here’ is always included in ‘there’. This
inclusion is read as “H being weaker than T” (or alternatively, “T being stronger
than H”) and we call it the heredity property of HT models.

37

Given an HT model (H,T), the truth conditions are as follows:

H,T |=HT p if p ∈ H, for every p ∈ P;
H,T 6|=HT ⊥;
H,T |=HT ϕ ∧ ψ if H,T |=HT ϕ and H,T |=HT ψ;
H,T |=HT ϕ ∨ ψ if H,T |=HT ϕ or H,T |=HT ψ;
H,T |=HT ϕ→ ψ if (H,T 6|=HT ϕ or H,T |=HT ψ) and

(T, T 6|=HT ϕ or T, T |=HT ψ).

Therefore, we infer that for every p ∈ P:

H,T |=HT ¬p if p < T ;
H,T |=HT ¬¬p if p ∈ T.

Equivalently, in HT logic the value assigned to a propositional variable p is deter-
mined by a three valued mapping f : P→ {2 (true), 1 (undefined), 0 (false)} with
incomplete information of the world:

f(p) =

2 if p ∈ H
1 if p ∈ T \H
0 if p < T

The function f is generalised to complex formulas in a natural way: while ‘∧’ and
‘∨’ return respectively a maximum value and a minimum value, f(ϕ → ψ) = 2 if
f(ϕ) ≥ f(ψ) or returns f(ψ) otherwise.

An HT model is said to be total if H = T . Therefore, a total HT model turns
out to be classical. More explicitly, when H=T, the three valued interpretation is
isomorphic to a two valued classical interpretation, i.e., T, T |=HT ϕ in HT logic is
the same as T |= ϕ in classical logic. In particular, T, T |=HT ϕ→ ψ in HT logic
if and only if T |= ϕ ⊃ ψ in classical logic, where ⊃ refers to material implication.

When H,T |= ϕ we say that (H,T) is an HT model of ϕ. A formula ϕ is HT
valid if and only if every HT model is also an HT model of ϕ. For instance, while
¬ϕ ∨ ¬¬ϕ is valid in HT logic (see Schema 1.17), ϕ ∨ ¬ϕ is not valid, neither is
¬¬ϕ → ϕ nor is ((ϕ → ψ) → ϕ) → ϕ. A simple counterexample for the last two
formulas is the HT model (∅, {p}). Note that in fact (ϕ ∨ ¬ϕ) ↔ (¬¬ϕ → ϕ) is
HT valid (see Schema 1.20 below), which means that ϕ ∨ ¬ϕ and ¬¬ϕ → ϕ are
HT equivalent. Also, notice that adding any of these nonvalid schemas to HT
logic would give us a two valued classical logic.

HT models have been studied since Gödel in order to give semantics to an
implication with strength between intuitionistic and material implications. On one
hand, the implication in LHT is interpreted in a non-classical way and is therefore
different from material implication (⊃). Its truth condition is:

H,T |=HT ϕ→ ψ iff H,T |=HT ϕ ⊃ ψ and T, T |=HT ϕ ⊃ ψ,

38

where ⊃ is interpreted just as in classical propositional logic. To spell it out,
its truth condition is: “H,T |= ϕ ⊃ ψ” if and only if “H,T 6|= ϕ or H,T |=
ψ”. Hence, material implication (⊃) here is just a shorthand enabling a concise
formulation. On the other hand, HT logic also gives a slightly different semantics
to its implication from that of intuitionistic logic. We have a good reason justifying
this fact: it is easy to see that De Morgan’s laws

¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ(1.18)
¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ(1.19)

are valid in HT logic, whereas although the first equivalence and one half of
the second are intuitionistically provable, ¬(ϕ ∧ ψ) → ¬ϕ ∧ ¬ψ is not. Another
interesting equivalence that is also valid in HT logic is

(¬ϕ ∨ ψ)↔ (¬¬ϕ→ ψ).(1.20)

However, while one half of this equivalence can be proved intuitionistically, right-
to-left statement, i.e., (¬¬ϕ → ψ) → (¬ϕ → ψ) is not a provable statement of
intuitionistic logic. In each case, we consider two cases ¬ϕ and ¬¬ϕ in order to
prove, in HT logic, one half of the statements that are not proved intuitionistically.
Now, we list some other equivalences of HT logic (Pearce [2006]):

¬¬¬ϕ ↔ ¬ϕ
ϕ→ (¬¬ψ ∨ χ) ↔ (¬ψ ∧ ϕ)→ χ
(¬¬ϕ ∧ ψ)→ χ ↔ ψ → (¬ϕ ∨ χ)(

(ϕ ∨ ψ) ∧ χ
)
→ α ↔

{
(ϕ ∧ χ)→ α
(ψ ∧ χ)→ α

}

ϕ→
(
(ψ ∧ χ) ∨ α

)
↔

{
ϕ→ (ψ ∨ α)
ϕ→ (χ ∨ α)

}
¬(ϕ→ ψ) ↔ ¬¬ϕ ∧ ¬ψ(

(ϕ→ ψ) ∧ χ
)
→ α ↔

(¬ϕ ∧ χ) → α

(ψ ∧ χ) → α
χ → ϕ ∨ ¬ψ ∨ α

ϕ→

(
(ψ → χ) ∨ α

)
↔

{
(ψ ∧ ϕ) → (χ ∨ α)

(¬χ ∧ ϕ) → (¬ψ ∨ α)

}

We also give a bunch of results that will help us comment on the truth of complex
formulas.

Lemma 1.2 Given an HT model (H,T) and an LHT formula ϕ, we have:

1. H,T |=HT ϕ implies T |= ϕ;

39

2. H,T |=HT ¬ϕ iff T 6|= ϕ;

3. H,T |=HT ¬¬ϕ iff T |= ϕ.

To begin with, one should note that the statements on the right hand side (RHS) of
Lemma 1.2 refer to satisfaction in classical propositional logic. The first property
(Lemma 1.2.1) is the heredity property of intuitionistic logic, adapted to HT logic,
which says that if a formula has an HT model than it also has a total (or a classical)
model. Lemma 1.2.1 is also known as the monotonicity property of HT logic. The
intuition behind this property is obvious because it is guaranteed by the condition
H ⊆ T in any HT model (H,T), i.e., the heredity property of HT models.

An LHT formula ϕ is a consequence of a set Γ of formulas in HT logic (symbol-
ically, Γ |=HT ϕ) if every HT model of Γ also satisfies ϕ. For instance, p∨¬p is not
a theorem of HT logic. To spell it out, it is not a consequence of the emptyset.
Moreover, ¬q → p is not a consequence of ¬p→ q either. In each case, (∅, {p}) is
a simple counter-example. Finally, we say that Φ and Ψ are HT-equivalent if they
share exactly the same HT models.

We can claim as a consequence of the following lemma that the finite model
property (perhaps better called a finite valuation property) holds for HT logic: if
an LHT formula ϕ has an HT model then there also exists a pair of finite here and
there sets (and hence an HT model (H,T)) such that H,T |= ϕ.
Lemma 1.3 Given an LHT formula ϕ and a propositional variable q ∈ P such
that q < Pϕ, we have

H,T |=HT ϕ iff H,T ∪ {q} |=HT ϕ iff H ∪ {q}, T ∪ {q} |=HT ϕ.

Proof. See Lemma A.1 and its proof in Section A.1 of Appendix A. q.e.d.

We can always generalise the proposition above into a handier version: for an LHT

formula ϕ and P ⊆ P such that P ∩ Pϕ = ∅, we have H,T |= ϕ if and only if
H ∪Q, T ∪ P for every Q ⊆ P .

During the last decades, HT models have been further investigated by Pearce,
Valverde, Cabalar, Lifschitz, Ferraris, and others as the basis of equilibrium logic
which constitutes a semantical framework for ASP (Cabalar and Ferraris [2007];
Cabalar et al. [2007]; Ferraris et al. [2007]; Lifschitz [2010]; Lifschitz et al. [2001];
Pearce [1996]; Pearce et al. [2000]). We will deal with the subject in detail in the
next section, but before we would like to discuss a striking feature of HT logic: it
is able to capture the strong equivalence of logic programs.

1.2.3 Capturing strong equivalence in HT logic
We are interested in HT logic mostly because it provides a basis for the seman-
tics of equilibrium logic which proposes an underlying logical framework for ASP.

40

However, another interesting feature of HT logic is to capture the strong equiva-
lence concept of logic programming. As well as in LP, in nonmonotonic reasoning
we talk about strong equivalence of theories Γ1 and Γ2 when Γ1 ∪ Γ and Γ2 ∪ Γ
share the same models for any theory Γ. There is an exponential time algorithm
for verifying strong equivalence.

Strong equivalence of programs without strong negation in HT logic
It has been proved in Lifschitz et al. [2001] that two programs Π1 and Π2, not
including strong negation, are strongly equivalent if and only if they, viewed as
sets of propositional formulas, are equivalent in HT logic. To see this, we need to
translate a program containing rules that have the form of Definition 1.1 into HT
theories containing corresponding implications in LHT (see Subsection 1.1.1). We
denote an HT theory that corresponds to a program Π by ΓΠ. We first reexamine
the examples given in Subsection 1.1.4.

SE′.1 Π1 = {p ← q , not q} and ∅ are strongly equivalent: indeed, the formula
q ∧ ¬q → p is equivalent to > in HT logic.

SE′.2 Π2 =
{
p ← q
q ← and Π3 =

{
p ←
q ← are strongly equivalent because the

HT theories {q → p, q} and {p, q} are clearly equivalent.

SE′.3 Π4 = {p or not q ←} and Π5 = {p ← q} are not strongly equivalent: recall
that the HT formula p ∨ ¬q is equivalent to ¬¬q → p (see Schema 1.20
in Subsection 1.2.2), however it is easy to see that the latter is not HT
equivalent to q → p. To prove it formally, consider (∅, {p, q}) which is an
HT model of Π5, but not of Π4.

SE′.4 Π6 = {p ← not q} and Π7 = {p ←} are not strongly equivalent because
¬q → p and p are not HT equivalent. Note that (∅, {q}) is a model for

the former, but not for the latter. Moreover, Π′6 =
{
p ← q
p ← not q

and

Π7 are not strongly equivalent either. Notice that (∅, {p, q}) is a model of
(q → p) ∧ (¬q → p), but not of p. So, we see once again that HT logic
provides us a very easy check for strong equivalence.

SE′.5 Π8 = {p or q ←} and Π9 =
{
p ← not q
q ← not p

are not strongly equivalent

because the HT theories {p ∨ q} and {¬q → p,¬p → q} are not equivalent.
Note that (∅, {p, q}) is a model of the latter, but not for the former. Moreover,
it is now easier to see that given Π11 = {⊥ ← p , q}, Π8 ∪ Π11 and Π9 ∪ Π11
are strongly equivalent because the formulas (p ∨ q) ∧ (¬p ∨ ¬q) and (¬q →

41

p)∧ (¬p→ q)∧ (¬p∨¬q) are HT equivalent. Recall that De Morgan’s laws
are valid in HT logic, so ¬(p∧ q) is equivalent to ¬p∨¬q (see Schema 1.18).
Hence, for any model (H,T) of both formulas, when p < T then q ∈ H, and
vice versa.

SE′.6 Finally we verify, using HT models, that p or not p ← and p ← p are not
strongly equivalent. This fact has been partly discussed in Subsection 1.1.2.2
in the LP context. In HT logic, we simply support this fact saying that p∨¬p
and p← p are not HT equivalent: while (∅, {p}) is not a model of the former
which is so not HT valid, the latter is HT valid.

The following is an interesting example because we discuss the strong equivalence
of two programs in which they differ just by a single rule, but these distinguishing
rules are not strongly equivalent.

SE.7 In any program containing the rules

← p , q

p or q ←
p ← r

replacing the last

rule by the constraint ← not p , r does not affect the programs answer sets
because the corresponding sets of formulas are equivalent in HT logic. How-
ever, note that p← r and ← not p , r are not strongly equivalent when they
stand alone. Note that although they have the same answer set ∅, appending
the rule r ← to both rules results in the answer set {p, r} for the former, yet
the latter would not have an answer set anymore.

The last two examples use the HT equivalences described in Subsection 1.2.2 (see
the schemas given in Table 1.2.2).

SE.8 The generalised disjunctive program Π = {q or not p ← r} is not strongly
equivalent to Π′ = {q ← r , p}: the corresponding theories {r → (¬p ∨ q)}
and {(r ∧ p) → q} are not HT equivalent since ({r}, {p, q, r}) is an HT
model of the latter theory, but not for the former. Moreover, we know that
r → (¬p ∨ q) is HT equivalent to (r ∧ ¬¬p)→ q.

The other distinguishing feature of HT logic in search of strong equivalence is that
it allows us to find out when programs with embedded implications (i.e., programs
with conditional rules containing implication in the body) can be replaced by
ordinary nested programs we have seen before in this chapter.

SE.9 It is easy to see that a conditional rule r ← ((p→ q) , s) is not strongly equiv-
alent to the ordinary nested rule r ← ((not p or q) , s): the corresponding HT
implication ((p → q) ∧ s) → r is not HT equivalent to ((¬p ∨ q) ∧ s) → r.
Note that ({s}, {p, q, r, s}) is an HT model of the latter, but not of the for-
mer. Alternatively, recall that while the latter HT formula is HT equivalent

42

to the theory Γ = {(¬p∧ s)→ r, (q ∧ s)→ r}, the former HT formula is HT
equivalent to the theory Γ ∪ {s→ (p ∨ ¬q ∨ r)}.

Similarly, we can also discuss strong equivalence when implication is allowed in
the heads of rules. Note that the implication we mention here is different from the
implication we have seen as an abbreviation in the language of ordinary nested
programs.

Strong equivalence of arbitrary programs in HT logic
Questions concerning strong equivalence also arise for programs containing strong
negation. In the extended setting, any two programs Π1 and Π2 are strongly
equivalent if and only if Π̃1 ∪ Cons and Π̃2 ∪ Cons, when viewed as HT theories,
are equivalent in HT logic. In particular, when such programs do not include
strong negation Πi = Π̃i for i = 1, 2 and Cons reduces to ∅. For example, a
one-rule program Π = {p or∼p} is strongly equivalent to

Π′ =
{

p ← not∼p
∼p ← not p

(Erdem and Lifschitz [1999]). To see this, we first need to construct

Π̃ =
{
p or p̃← and Π̃′ =

{
p ← not p̃
p̃ ← not p

and Cons =
{
← p , p̃ .

Then, we follow the same procedure for Π̃ ∪ Cons and Π̃′ ∪ Cons as we followed
in the previous part. Hence, the rest is to show that (p ∨ p̃) ∧ (¬p ∨ ¬p̃) and
(¬p̃→ p)∧(¬p→ p̃)∧(¬p∨¬p̃) which is exactly the same work, with q substituted
for p̃, as the last example of SE′.5 in the previous section.

1.2.4 Least extension of HT logic: N5

In this subsection, we briefly discuss an extension of HT logic with strong negation
(∼). Adding ∼ to the language of HT logic, as well as the Vorob’ev axioms

N1. ∼(ϕ→ ψ)↔ ϕ ∧ ∼ψ N2. ∼(ϕ ∧ ψ)↔ ∼ϕ ∨ ∼ψ
N3. ∼(ϕ ∨ ψ)↔ ∼ϕ ∧ ∼ψ N4. ∼∼ϕ↔ ϕ
N5. ∼¬ϕ↔ ϕ N6. (for atomic ϕ) ∼ϕ→ ¬ϕ

(where ϕ ↔ ψ abbreviates (ϕ → ψ) ∧ (ψ → ϕ)) gives a 5-valued monotonic
formalism, called here-and-there logic with strong negation. In the literature, it is
mainly known as Nelson’s constructive logic N (see Appendix B.1.1). Following
Pearce’s notation, we denote it by N5 where “5” stresses the number of truth

43

values. Axioms N1-N5 allow the usual normal form transformation known from
classical logic, by elimination of double negation and De Morgan’s laws, in order
to move negations in front of atomic formulas only. By N6, we see why ∼ is called
strong negation: strong negation is indeed stronger than intuitionistic negation.

N5 is the least strong negation extension of HT logic and so it is a conservative
extension of HT logic. So, given an N5 formula ϕ without strong negation,

ϕ is a theorem of HT logic if and only if ϕ is a theorem of N5.

This extension also has many key metalogical properties of HT logic (see Kracht
[1998] for a detailed study).

Like HT models, N5 models are ordered pairs (H,T) such that H ⊆ T , except
that H and T are now sets of literals (H,T ⊆ Lit) which are consistent. One
exception is H = T = Lit. Given an N5 model (H,T), the truth conditions are
inductively extended using the following additional clauses:

H,T |=N5 ∼(ϕ ∧ ψ) if H,T |=N5 ∼ϕ or H,T |=N5 ∼ψ;
H,T |=N5 ∼(ϕ ∨ ψ) if H,T |=N5 ∼ϕ and H,T |=N5 ∼ψ;
H,T |=N5 ∼(ϕ→ ψ) if H,T |=N5 ϕ and H,T |=N5 ∼ψ;
H,T |=N5 ∼¬ϕ iff H,T |=N5 ∼∼ϕ iff H,T |=N5 ϕ.

From these primitives we infer some interesting results: (note that the model and
the validity concepts are defined as before)

1. A restricted form of contraposition holds for ¬ in the sense of logical equiv-
alence, but not for ∼: while (ϕ → ψ) → (¬ψ → ¬ϕ) is HT valid, it is
not valid anymore when implication turned backwards. A simple counter
example is the HT model ({p}, {p, q}) for the formulas p→ q and ¬q → ¬p.
However, (ϕ → ψ) → (∼ψ → ∼ϕ) is not N5 valid. For instance, {∼q} is a
model for p→ q, whereas it is not a model for ∼q → ∼p.

2. The law of double negation holds for ∼, but not for ¬: while ∼∼ϕ ↔ ϕ is
N5 valid, ¬¬ϕ↔ ϕ is not HT valid, accordingly not N5 valid either.

We also mention shortly here an extension of N5: adding the axiom schema

¬¬ϕ→ ϕ

to N5 yields a 3-valued extension of this logic, which is denoted by N3. It is also
called classical logic with strong negation since it is a conservative extension of
classical logic. This logic is important since it is precisely the logic where total N5
models appear. Note that the concept of an equilibrium model (see Section 1.3) in
N5 is defined analogously to the case of HT logic (see Pearce [2006] for a detailed
study), so N3 is used in the equilibrium model construction.

44

Lastly, strong equivalence of arbitrary logic programs can be alternatively stud-
ied in N5: two arbitrary programs Π1 and Π2 are strongly equivalent if and only
if they, when viewed as the theories of N5, are equivalent in N5.

1.3 Equilibrium logic
Equilibrium logic is a general purpose nonmonotonic reasoning closely associated
with ASP. In particular, equilibrium logic generalises all previous syntax exten-
sions of ASP except epistemic specifications by Gelfond (Gelfond [2011, April 28])
to full propositional logic and admits a natural extension to the first order case.
Moreover, it provides a new and natural logical characterisation of answer sets as
a form of minimal model reasoning built upon HT logic, and on its least extension
N5 which are maximal logics capturing strong equivalence. However, throughout
this work, we will mainly follow HT logic as the base logic.

The alternative characterisation of answer sets through equilibrium models is
much easier to work with because it has the advantage of being fully ‘declarative’,
or ‘logical’, and does not involve any procedural (or operational) fixed point con-
struction, and instead uses a simple definition of minimal model reasoning, more
in the style of circumscription. Moreover, equilibrium logic extends the concept
of an answer set from logic programs to arbitrary sets of formulas giving a logical
interpretation by means of a translation of rules like “p or∼q ← r , not s” into a
standard logical notation “r ∧ ¬s → p ∨ ∼q” where ∼ refers to strong negation.
As defined before, logic programs correspond to a special case of theories in which
every formula is an implication: the antecedent is the body and the consequent
is the head of the corresponding rule. The other advantage of equilibrium logic
beyond ASP is that it allows some logical techniques, for instance, methods from
many valued semantics such as tableaux, signed logics, etc. Briefly, equilibrium
logic captures and extends ASP in a full success.

1.3.1 Equilibrium logic based on HT logic
In this subsection, we introduce equilibrium logic without strong negation, i.e.,
when it is based on HT logic and call it simply equilibrium logic.

Expectedly, equilibrium logic shares the same language with HT logic, and
its semantics is given through equilibrium models that are defined in an indirect
way based on HT logic. Roughly speaking, an equilibrium model of a formula
is a classical model satisfying a minimality condition with respect to HT models.
However, the selection of such minimal models gives a nonmonotonic character to
equilibrium logic. Formally, an equilibrium model of ϕ is a set of propositional
variables T ⊆ P such that

45

1. T |= ϕ in classical propositional logic, and

2. there is no H ⊂ T such that H,T |=HT ϕ.

Observe that the first condition ‘T |= ϕ in classical propositional logic’ can be
replaced by ‘T, T |=HT ϕ in HT logic’, and the second condition is known as the
minimality condition with respect to HT models. It is easy to see that all HT
equivalent formulas have the same equilibrium models.

Here are some examples.

• First, T = ∅ is an equilibrium model of ¬p because

– (1) for the HT model (∅, ∅) we have ∅, ∅ |=HT ¬p, and
– (2) there is no set H that is strictly included in the empty set (i.e.,

when T = ∅ the second condition is trivially satisfied).

Moreover, T = ∅ is the only equilibrium model of ¬p. To see this, suppose T
is an equilibrium model of ¬p for some T , ∅. T cannot contain p, otherwise
condition (1) would be violated. Therefore T contains q for some q , p, but
then condition (2) is violated since ∅, T |=HT ¬p.

• The empty set is also the unique equilibrium model of all HT valid formulas
like >. Moreover, formulas such as p → q, p → ¬q and ¬p → ¬q have also
a unique equilibrium model, i.e., ∅.

• Then, for q , p, {q} is a unique equilibrium model of ¬p → q because
{q}, {q} |=HT ¬p → q and ∅, {q} 6|=HT ¬p → q. However, since both
{p}, {p} |=HT ¬p → q and ∅, {p} |=HT ¬p → q hold, the set {p} is not
an equilibrium model of this formula, and neither is the empty set because
∅, ∅ 6|=HT ¬p→ q. When q = p the formula has no equilibrium models.

It is interesting to observe that while ¬p → p has no equilibrium model, T = ∅
is the unique equilibrium model of p → ¬p. This is probably a special case of a
more general observation on equilibrium models: although p → q and ¬p ∨ q are
not HT-equivalent, they are equivalent in the sense of equilibrium models.

• Next, while the unique equilibrium models of p ∨ q are {p} and {q}, p ∧ q
has exactly one equilibrium model {p, q}.

• The HT formula ¬¬p → p has (only) two equilibrium models: ∅ and {p}.
Using Schema 1.20, we conclude that p∨¬p and ¬¬p→ p are HT equivalent.
Therefore, the former formula has also the same equilibrium models.

46

• Finally, ⊥ and ¬¬p, for every p ∈ P, have no equilibrium models. In fact,
⊥ has no HT model either. As for ¬¬p, it is HT equivalent to ¬¬p ∨ p (or
¬p → p) and we mention above that the last has no equilibrium models.
Alternatively, to prove this fact, we can also say that even if the first condition
is satisfied as in T = {p}, the minimality condition fails since ∅, {p} |=HT

¬¬p.

Remark 1.1 As an immediate outcome of Lemma 1.3, we now remark on equilib-
rium models of an LHT formula ϕ. One should note that an equilibrium model T
of ϕ should be a subset of Pϕ, if exists; otherwise T, T |= ϕ and T \ {q}, T |= ϕ for
some q ∈ T \Pϕ both hold by Lemma 1.3 and that would contradict the minimality
condition of equilibrium models. Consequently, an equilibrium model of a formula
is always finite, thus so is the number of its equilibrium models. Finally, ¬ϕ ∈ LHT

has either a unique equilibrium model ∅ (see Proposition) or none. As a result of
this fact, if T = ∅ is an equilibrium model for ϕ then ¬ϕ has no equilibrium model.

We now define the notion of equilibrium entailment, and denote it by |≈ . How-
ever, the widely accepted symbol for this notion is |∼ : given LHT formulas ϕ and
χ, we say that ϕ is a consequence of χ in equilibrium logic if for every equilibrium
model T of χ, (T, T) is an HT model of ϕ. However, there are exceptions. When
ϕ has no equilibrium models, we write ϕ |≈ ψ if ϕ |=HT ψ. Moreover, |≈ ψ if
|=HT ψ. Here are some examples.

• Relations here hold both way, so related formulas are equivalent in the sense
of equilibrium models: > |≈ ¬p, q |≈ ¬p → q, ¬q |≈ p → q and for p , q,
p ∨ q |≈ (p ∨ q) ∧ ¬(p ∧ q).

• ⊥ |≈ ϕ does not necessarily hold in the reverse order. In fact, the other way
around just holds when ϕ is HT equivalent to ⊥.

• ¬¬p |≈ ϕ, for every ϕ ∈ LHT such that ‖ϕ‖HT = {(H,T) : p ∈ T}.

• These relation can be given just in one way, the converses are certainly false:
p ∧ q |≈ p ∨ q, and for p , q, p |≈ ¬q, but ¬q |0 p and p ∨ q |0 p ∧ q.

• |≈ ϕ where ϕ is HT valid as in |≈ ¬¬p→ p.

We then generalise this definition to HT theories (Γ |≈ ϕ) in the same way.

1.3.2 Equilibrium logic based on N5 logic
In this subsection, we present a slight extension of equilibrium logic we have intro-
duced in Subsection 1.3.1. This extension includes strong negation and so is based

47

on N5. We continue calling this extension briefly equilibrium logic. The definition
of equilibrium model can be easily generalised to this version, so we just give some
examples to clarify it. However, one can refer to Pearce [2006] for a detailed study.
Here are some examples.

• The N5 theory Γ = {∼q,¬p→ q} has no equilibrium models: one should first
note that the candidate equilibrium models should certainly include ∼q, but
({∼q}, {∼q}) 6|=N5 ¬p → q since q is not included in the here world {∼q}.
We cannot add q into {∼q} because otherwise it would be inconsistent. So,
the last option is to put p into {∼q}. However, the second candidate model
{p,∼q} has a smaller model ({∼q}, {p,∼q}) satisfying Γ and this violates
the minimality condition.

• Recall that the HT formulas ¬p → q and ¬q → p both have a unique
equilibrium model, respectively {q} and {p}, but the N5 formulas ∼p → q
and ∼q → p have the same unique equilibrium model, i.e., ∅.

• Recall that the HT formula p ∨ ¬p has two equilibrium models: ∅ and {p}.
However, the N5 formula p ∨ ∼p behaves like p ∨ q and has two equilibrium
models, namely {p} and {∼p}.

The equilibrium consequence relation is defined as before. In this subsection,
we list some general properties of |≈ as a nonmonotonic inference relation (see
Pearce [2006] for the proofs).

• reflexivity: if ϕ ∈ Γ then Γ |≈ ϕ.

• cut: if for every i ∈ I, Γ |≈ ψi and Γ ∪ {ψ}i |≈ ϕ then Γ |≈ ϕ.

• if Γ |=N5 ϕ or Γ |=N5 ψ then Γ |≈ ϕ and Γ |≈ ψ implies Γ ∪ {ϕ} |≈ ψ.

• if Γ |≈ ¬ϕ and Γ |≈ ψ then Γ ∪ {¬ϕ} |≈ ψ.

• disjunction in the antecedent: if Γ ∪ {ϕ} |≈ χ and Γ ∪ {ψ} |≈ χ then
Γ ∪ {ϕ ∨ ψ} |≈ χ.

• conditionalisation: if Γ ∪ {ϕ} |≈ ψ then Γ |≈ ϕ→ ψ.

• weak rationality: if Γ |≈ ψ and Γ ∪ {ϕ} |≈ ¬ψ then Γ |≈ ¬ϕ.

• inverted form of weak rationality: if Γ ∪ {ϕ} |≈ ψ and Γ |≈ ¬ψ then
Γ |≈ ¬ϕ

• modus tollens (for ¬): if Γ |≈ ϕ→ ψ and Γ |≈ ¬ψ then Γ |≈ ¬ϕ.

48

However, the following properties fail as a result of the nonclassical nature of the
underlying logic N5 (or HT).

• cautious monotonity, i.e., the property of ‘if Γ |≈ ϕ and Γ |≈ ψ then
Γ ∪ {ϕ} |≈ ψ’ fails. So, |≈ is not a cumulative inference relation.

• proof by cases, i.e., the property of ‘if Γ∪{ϕ} |≈ ψ and Γ∪{∼ϕ} |≈ ψ then
Γ |≈ ψ’ fails. In fact it is not a valid principle of constructive reasoning and
fails also for N5. For a simple counter example, take Γ = ∅ and ψ = ϕ∨∼ϕ.

• rationality (or rational monotony), i.e., the property of ‘if Γ |≈ ψ and Γ ∪
{ϕ} |0 ψ then Γ |≈ ¬ϕ’, fails: give an example.

• strong rationality, i.e., the property of ‘if Γ |≈ ψ and Γ ∪ {ϕ} |0 ψ then
Γ |≈ ∼ϕ’, fails.

Since N5 is a conservative extension of HT logic, expectedly the above-mentioned
results, in which strong negation does not appear, also hold for equilibrium logic
based on HT logic.

1.3.3 Relation to answer sets
This subsection gives a relation between ASP and equilibrium logic based on HT
logic, but note that a similar relation can also be studied for equilibrium logic
based on N5. One can refer to Pearce [2006] to see the latter. Therefore, in this
work we will follow the previous approach and eliminate strong negation in logic
programs as we have done in Subsection 1.2.3 (see also Lemma 1.1 in 1.1.2.2) in
order to embed the answer set concept into equilibrium logic.

Answer sets are a special case of equilibrium models. Rules in ASP are similar
to propositional formulas of HT logic,← and not being the counterparts of impli-
cation and negation. Introducing ∼ in ASP is similar to adding strong negation
to HT logic. The following proposition illustrates this fact.

Proposition 1.1 For any program Π and consistent set S ⊂ Lit, the following
are equivalent:

i. S is an answer set of Π.

ii. S̃ is a stable model of Π̃ ∪ Cons.

iii. S̃ is an equilibrium model of ΓΠ̃∪Cons
.

49

Note that (i)-(ii) is given for extended programs in Subsection 1.1.2.2 (see Lemma
1.1). The following examples uses Proposition 1.1 above: given

Π =

p or∼p ←

q ← p
∼q ←

we have:

Π̃ =

p or p̃ ←

q ← p
q̃ ←

and Cons =
{
← p , p̃
← q , q̃

.

The unique answer set of Π is {∼p,∼q}, and accordingly the only stable model of
Π̃∪Cons is {p̃, q̃}. Hence, it turns out that the latter is also the unique equilibrium
model of

ΓΠ̃∪Cons
= {p ∨ p̃, p→ q, q̃,¬(p ∧ p̃),¬(q ∧ q̃)}.

Recall that the one-rule program p or not p ← has two nonminimal models:
∅ and {p}. On the other side of the discussion, the HT formula p ∨ ¬p has
the same equilibrium models. Notice that equilibrium models do not follow in
general a minimality condition according to set inclusion as it is in this example
because otherwise they would not capture the answer sets of a program with
not occurring in the head, i.e., generalised disjunctive programs, nor the answer
sets of nested programs. However, the minimality condition in the definition of
equilibrium models refer to the minimality according to a special partial ordering
as follows: for every HT models (H,T) and (H ′, T ′),

(H,T) E (H ′, T ′) if T = T ′ and H ⊆ H ′.(1.21)

In this respect, the equilibrium models of p ∨ ¬p, when viewed as total models
(∅, ∅) and ({p}, {p}), are minimal according to E since (∅, ∅) 5 ({p}, {p}). At this
point we find it useful to give an alternative equilibrium model definition (Pearce
[2006]): given T ⊆ P and ϕ ∈ LHT, T is an equilibrium model of ϕ if (T, T) is
minimal under E among all HT models of ϕ. It is easy to see that both definitions
overlap. This definition is then generalised to HT theories straightforwardly.

Before we pass to the next section, we summarise the main complexity results
related with HT logic and equilibrium logic: each row associates a complexity
class for a decision problem w.r.t. propositional HT theories.

50

Overall Complexity Results
HT Theories

HT model existence NP

Equilibrium model existence ΣP
2

Equilibrium consequence ΠP
2

HT equivalence ΠP
2

Uniform equivalence ΠP
2

Strong equivalence coNP

1.4 Modal extension of logic programs:
epistemic specifications (E-S)

In the beginning of the 90s, Gelfond has extended disjunctive logic programming
by epistemic notions such as knowledge and belief (Gelfond [1991, 1994, 2011]).
His epistemic specifications (E-S) allow to correctly reason about incomplete infor-
mation in situations when there are multiple answer sets, alias belief sets because
the notion of answer set was not powerful enough to deal with commonsense rea-
soning. The idea is to include a notion of introspection by means of two epistemic
operators K and M ranging over all possible answer sets of a program. So, their
meanings depend on not only the current answer set, but also on the collection of
all answer sets. In other words, the presentation of epistemic operators into the
language has made it possible to handle all belief sets determined by a program
altogether rather than separately. The semantics of an epistemic specification gen-
eralises the answer set semantics for disjunctive logic programs: it is collections of
all possible answer sets called world views. This operational semantics is defined
by means of a transformation that eliminates K and M operators in the body of
rules, resulting in a disjunctive logic program.

Since epistemic specifications were introduced, they have been refined once by
Gelfond (Gelfond [2011]), and more recently Kahl has proposed a further improve-
ment (Kahl [2014]). However, it seems that a fully satisfactory semantics has not
been given yet. Some authors have undertaken to generalise the semantics of E-S
(Chen [1997]; Truszczyński [2011]; Wang and Zhang [2005]). Moreover, none of
them considers Gelfond’s corrected version Gelfond [2011] of the formalism but
rather the first, somewhat outdated version of Gelfond [1991, 1994]. In this sec-
tion we recall the latest version of the language and the semantics of E-S proposed
by Gelfond in Gelfond [2011], and we mainly consider propositional case. We also
point out the differences with Kahl’s approach.

51

1.4.1 Language (LE-S)
The language of epistemic specifications (LE-S) is an extension of the language of
disjunctive logic programs (see Subsection 1.1.2.2) by the epistemic modal oper-
ators K and M (yet, just K is primitive) to respectively characterise knowledge
and belief. The intuitive meanings of these operators are as follows: Kϕ and Mϕ
respectively stand for “ϕ is known to be true” and “ϕ may be believed to be true”1.
The language LE-S also extends the literal concept. While we have used it so far in
the sense of a propositional variable and its strong negation, from now on literals
of this extended language are composed of two kinds (Gelfond [2011, April 28]):

• objective literals, abbreviated by l, are (non-modal) atomic formulas of the
form p(t̄)2 and ∼p(t̄) where ∼ refers to strong negation (see Appendix B.1.1).
O-Lit denotes the set of all objective literals in LE-S and it exactly corresponds
to the set Lit of the language of disjunctive logic programs.

• subjective literals, abbreviated by g, are (modal) atomic formulas that have
the form of K l, M l, ∼K l and ∼M l where l is an objective literal possibly
preceded by negation as failure (not). We denote the set of all subjective
literals of LE-S by S-Lit.

Formally, the literals of LE-S are defined by the following grammar:

lF p | ∼p
g F K l | ∼K l | Knot l | ∼Knot l |

(M l | ∼M l | Mnot l | ∼Mnot l)

where p ranges over a (fixed) countably infinite set of propositional variables P.
We have two kinds of negations: strong negation ∼ and default negation not. The
modal operators K and M are dual of each other: M can be expressed in terms of
K as follows3: for l ∈ O-Lit,

M l
def= ∼K not l (†),

M not l
def= ∼K l (††).

One should note that this restricted transformation is sufficient for our purposes,
and allows us to use both operators interchangeably. Therefore, we choose K as a
primitive in the above-mentioned grammar defining literals.

1 And not “ϕ is compatible with the agent’s belief”, which would be the more standard
reading of a modal operator that—as we will see below—is dual to the knowledge operator K .

2Objective literals with variables are just as shorthands for the collections of their ground
instances.

3Note that Mϕ is not equivalent to ∼K∼ϕ.

52

An E-S rule ρ is of the form

ρ = l1 or . . . or lk ← (gk+1 , . . . , gm) , (not lm+1 , . . . , not ln)

where li ∈ O-Lit for i=1, . . . , k and for i=m + 1, . . . , n and gj ∈ O-Lit ∪ S-Lit for
j=k + 1, . . . ,m. We note that Kahl’s E-S rules differ only in subjective literals,
which are in the form of K l and M l, possibly preceded by default negation not.
However, ∼K l and notK l have the same truth conditions in both approaches, so
do ∼M l and notM l. Finally, an epistemic specification T is a finite collection of
E-S rules.

We call an LE-S formula without modal operators objective (or non-modal), and
an LE-S formula in the form of Kϕ, ∼Kϕ, Mϕ or ∼Mϕ subjective.

Given a (epistemic) program Π = {Rk}k≤n, PΠ = ⋃
k≤n
PRk

denotes the set of

variables that occur in this program which is simply a union of sets (PRk
) of all

variables that exist in each rule Rk. On the other hand, LΠ = ⋃
k≤n
LRk

denotes the

set of all (objective) literals that appear in this program. For example, for the
epistemic specification Π:

p←
q or ∼r ←
s← K∼p
∼t← M q

we have PΠ =
{
p, q, r, s, t

}
and LΠ = {p, q,∼r, s,∼p,∼t}.

1.4.2 World view semantics
A simple theory is either a consistent subset of O-Lit or O-Lit itself, and an E-S
model is basically an ordered pair of the form (S,W) where W ⊆ O-Lit is a simple
theory and S ⊆ 2O-Lit is a collection of such theories. However,W is not necessarily
included in S. Intuitively, S can be thought of a collection of possible belief sets
of a reasoner while W represents his current (working) belief set.

The notions of truth (|=E-S) and falsity (E-S=|) are defined inductively over E-S
models. The boolean cases are as usual, so the only truth conditions worth to

53

displaying are:1 for l ∈ O-Lit, g ∈ S-Lit and ϕ ∈ LE-S,

(S,W) |=E-S l if l ∈ W ;
(S,W) |=E-S not l if l < W ;
(S,W) |=E-S K l if l ∈ S for every S ∈ S;
(S,W) |=E-S K not l if l < S for any S ∈ S;
(S,W) |=E-S ∼g if S,W 6|=E-S g;
(S,W)E-S=| l if ∼l ∈ W ;
(S,W)E-S=| not l if l ∈ W ;
(S,W)E-S=| K l if l < S for some S ∈ S;
(S,W)E-S=| K not l if l ∈ S for some S ∈ S;
(S,W)E-S=| ∼g if S,W |=E-S g;
(S,W) |=E-S ∼ϕ if (S,W)E-S=| ϕ.

From such primitives, we infer that: for l ∈ O-Lit,

(S,W) |=E-S M l if l ∈ S for some S ∈ S (see †);
(S,W) |=E-S M not l if l < S for some S ∈ S (see † †);
(S,W)E-S=| M l if l < S for any S ∈ S;
(S,W)E-S=| M not l if l ∈ S for every S ∈ S.

One crucial point to observe about the falsity notion is: (S,W)E-S =| ϕ is not
always equivalent to (S,W) 6|=E-S ϕ. One exception is when ϕ is an objective literal
because we allow not only propositional variables, but also their strong negations
into the valuations, and hence we present negations explicitly in the valuations. As
a result, when an objective literal is the case, the former expression, i.e., falsifying
an objective literal l amounts to including its negation ∼l in the related valuation.

Another important point is: given an E-S model (S,W), negation as failure
‘not’ works locally (on the second component) even if the second component
changes in situations like “K not l” while the epistemic operators ‘K ’ and ‘M ’
always work globally (over the collection S). Therefore, the truth (and the falsity)
of an objective formula ϕ depends just on W , and so we simply write W |=E-S ϕ.
On the other hand, the truth (and the falsity) of a subjective formula ψ depends
only on S, and in this case we write, for short, S |=E-S ψ. We have mentioned before
that M l is not equivalent to ∼K∼q. Indeed, for example, as S =

{
{p}, {p,∼q}

}
satisfies ∼K∼q, it does not satisfy M q.

From the discussion given above, we now obtain some equivalences: for every
1Since the double (strong) negation cancels out, expressions of the form ∼l (where l is an

objective literal) should not seem ambiguous to the reader.

54

collection S and l ∈ O-Lit:

(1.22)

S |=E-S M l iff S |=E-S ∼K not l
S |=E-S M not l iff S |=E-S ∼K l
S |=E-S K l iff S |=E-S ∼M not l
S |=E-S K not l iff S |=E-S ∼M l.

Observe that the last two equivalences of (1.22) are an outcome of the first two
using the fact that double ∼ cancels out. We note that Kahl’s truth conditions
are given as the same as above, except that ∼ is replaced by not wherever it
appears, but not for the objective literals. His language can then be extended
through the equivalence results (1.22) with ∼ replaced by not. We note that not
can also operate globally in Kahl’s approach. It is interesting to observe in general
that except the usages not l, not not l, etc. not pretends as if classical negation.
For instance, K and M are dual, i.e. K l is equivalent to notM notl. Moreover,
K not not l and K l are equivalent, so are not notK l and K l. We have the same
results when K and M are exchanged.

Finally, we denote by ‖ϕ‖E-S the set of all E-S models of an LE-S formula ϕ.

Remark 1.2 Starting with extended logic programming, in ASP (particularly,
in E-S) we use the term ‘valuation’ slightly different from its original definition
given in HT logic (see Subsection 1.2.2). The difference is mainly because in
such types of LP, having strong negation added into the language beside the ‘not’
operator we talk about literals as the principal building blocks (i.e., atoms) rather
than propositional variables. In particular, in E-S such atoms are further extended
and divided into two parts: objective literals and subjective literals. As a result,
in these classes of LP valuations are regarded as subsets of Lit (or O-Lit in E-S)
instead of simply subsets of P, so we prefer calling them ‘extended valuations’.
To express it more formally, an extended valuation is a consistent (or coherent)
subset V of Lit, except one case that equals Lit itself. Therefore, if a pair of
complementary literals appears in an extended valuation, in other words, if it is
inconsistent then it should coincide with Lit. Finally, a belief set, a simple theory
and an E-S valuation have exactly the same structure, and in one sense they are
all synonyms defining the answer set concept while original valuation concept is
just capable of defining stable models, but not answer sets. Here are some examples
particularly about E-S valuations.

• The E-S valuation V = {p, q} gives us that p and q are true, yet different from
its original counterpart, we have no idea about the truth of other variables.

• The E-S valuation V ′ = {p,∼q} allows us to interpret q as false, as well
as p as true. Now, it is clear that in E-S falsifying a variable is given
through explicitly presenting its strong negation in the valuation. However,

55

the truth values of the rest is again unknown. Hence, V ′ |=E-S not r, but also
V ′ |=E-S not ∼r. Moreover, V ′ |=E-S not ∼p and V ′ |=E-S not q.

To sum up, in an E-S valuation V , both truth and falsity values are determined
according to being an element of V , and O-Lit \ V helps us interpret unknown, in
other words, the ‘not’ operator.

The semantics of E-S is given by the notion of world view. Intuitively, it is
a collection of maximally-generated simple theories none of which is contained in
some other element, and each simple theory describes a possible world which can
be established through the instructions obtained from an epistemic specification.
The formal definition is given as follows: let T be a ground epistemic specification
and S be a non-empty collection of sets of ground objective literals that have
appeared in T . For each rule ρ ∈ T , the reduct of ρ with respect to S, noted ρS, is
obtained from ρ by eliminating K and M in the following steps:1

1. first, we transform all subjective literals containingM operator in ρ ∈ T into
the equivalent subjective literal forms containing K operator using † and ††;

2. then, we remove ρ if it contains a subjective literal g such that S 6|=E-S g;

3. else if ρ contains a subjective literal g such that S |=E-S g,

(a) we remove from ρ all occurrences of subjective literals of the form ∼K l
and ∼Knot l,

(b) and finally replace the remaining occurrences of subjective literals of
the form K l and Knot l respectively by l and not l.

The reasoning with item 2 is as follows: when ρ contains g ∈ S-Lit such that
S 6|=E-S g then S |=E-S ρ whatever the rest of the rule is because if S 6|=E-S g then
S 6|=E-S body(ρ) since g ∈ body(ρ) and body(ρ) is a conjunction of formulas, but
then S satisfies ρ trivially. The reasoning behind items 3 (a) and 3 (b) is given
respectively by > ∧ ϕ↔ ϕ and Kϕ→ ϕ.

Then the disjunctive logic program T S, which is called the reduct of T with
respect to S, is defined as follows:

T S = {ρS : ρ ∈ T}.

As a result, a world view of T is a collection S of simple theories such that S equals
the set of all answer sets of the reduct T S. When the corresponding reduct T S has
no answer sets then S fails to be a world view. For instance, {∅} is not a world

1 The first step is correct because we have seen above that M l and ∼Knot l are equal by
definition, so are Mnot l and ∼K l (see † and ††).

56

view of the one rule program T = {p← K not p} since T {∅} = {p← not p} has no
answer sets. Moreover T {{p}} = T {∅,{p}} = ∅, so they both have a unique answer set
∅. However, it neither matches with {p} nor could cover the set {∅, {p}}. Finally,
note that T S = T for every S when no epistemic operators occur in T . Then, the
world view of T is unique, if any and coincides to the collection of all answer sets
of T . Here are some examples.

• T1 =

p←
r ← p , q
s← p , not q

has one answer set {p, s}. Note that {p, q, r} is not

an answer set of T1. So, it has the unique world view
{
{p, s}

}
.

• T2 =
{
∼p or q ←
r ← not q

has one world view S =
{
{∼p, r}, {q}

}
which includes

all answer sets of T2.

• However, there is one exception: T3 =

r ←
p← not q
q ← not p
∼r ← not p

has two answer sets

{p, r} and {q, r,∼r}, yet the world view of T3 just includes {p, r}, i.e., it is{
{p, r}

}
due to the fact that when a world view includes an inconsistent set

it should only be in the form O-Lit, but a world view cannot include two
answer sets in which one is included in other. Therefore, the only acceptable
inconsistent world view is {O-Lit}, yet it is not the case in this example.

The world view definition can alternatively be given by the following fixed point
equation:

S = {W : W |=E-S T
S and W ′ 6|=E-S T

S for every W ′ ⊂ W} (?)

Note that the semantics definition of E-S is given by a fixed point operation rather
than declaratively and this operation is supervised by a minimisation procedure.
We call the elements of a world view belief set (or equivalently, the answer sets
of the corresponding reduct). Note that a belief set is always consistent, except
one case when the world view equals {O-Lit}. Here are some simple examples on
world views of some programs.

• An epistemic specification may have finitely many (including none) world
views.

– T1 = {p← ∼K p} and T ′1 = {p← ∼M p} have no world views.
– T2 = {p← ∼M q} and T ′2 = {p← ∼K q} have 1 world view: S = {{p}}.

57

– T3 =

p←
q or ∼r ←
s← K∼p
∼t← M q

has 1 world view: S = {{p, q,∼t}, {p,∼r,∼t}}.

– T4 =
{
p←
q or s← K p has 1 world view: S = {{p, q}, {p, s}}.

– T5 = {p← M p} has 2 world views: S1 = {∅} and S2 = {{p}}.

– T6 =
{
p← ∼M q
q ← ∼M p

and T7 =
{
p← ∼K q
q ← ∼K p both have 2 world views:

S1 = {{p}} and S2 = {{q}}.

Kahl’s reduct definition just differs in item 2 above: when S 6|=E-S g where
g = ∼K l or g = ∼K not l, he respectively replaces g by not l and not not l. Kahl
considers the following reasoning: for instance, when S 6|=E-S ∼K not l that further
means S |=E-S K not l, item 3 (b) forces to replace K not l by not l, so the original
literal∼K not l needs to be replaced by not not l (Lifschitz et al. [1999]). Remember
that the nested rules ϕ← ψ , not not χ and ϕ or not χ← ψ are strongly equivalent,
and it may facilitate finding the answer sets of the nested reduct. As a result of
the subtle difference, while Gelfond gets the world views {∅} and {{p}} for

(1.23) T1 =
{
p← M p

}
Kahl obtains just the latter. Similarly,

(1.24) T2 =
{
p or q ← , p← M q

}
has no world views according to Gelfond’s approach while Kahl’s semantics has a
unique world view {{p}}, which we find more intuitive.

Given an epistemic specification T , we call a world view of T consistent if
all its belief sets are consistent. Moreover, we call T itself consistent if it has at
least one consistent world view. Otherwise, it is inconsistent. Hence, all epistemic
specifications without a world view are regarded as inconsistent. For example,
the one rule program T1 = {p ← Mnot p} (or equivalently T ′1 = {p ← ∼K p})
is inconsistent since it has no world view. Specifications with a unique world
view {O-Lit}1 are another type of inconsistent epistemic specifications, and we
call them specifically contradictory. However, sometimes a consistent epistemic

program may also have {O-Lit} as a world view. For example, T2 =
{
p← M p
∼p← K p

1There is exactly one inconsistent world view and an inconsistent belief set. As expected, the
belief set is O-Lit, and the world view is the singleton of this set. This fact can be easily derived
from (?). Thus, if a world view contains O-Lit or ∅ then it cannot include any other belief sets.

58

is a consistent program because it has two world views, namely S1 = {∅} and
S2 = {O-Lit}, and the former is consistent. One should note that being non-
contradictory does not guarantee the existence of world views because the class
of noncontradictory programs also comprises the class of programs that do not
have world views. Finally, it is important to see that an epistemic specification
cannot have two world views such that one is (strictly) included in the other
because a world view is maximally generated by having contained all answer sets
of the corresponding reduct. Moreover, a world view cannot contain two different
belief sets S1 and S2 such that S1 ⊂ S2 because they are the answer sets of a reduct
which is basically a disjunctive logic program and we know that no disjunctive logic
program can have two such answer sets ([Gelfond and Lifschitz, 1991, Lemma 1]).
To sum up, a world view of a program, if it exists, is either consistent or equals
{O-Lit}.

Finally in this subsection, we list a bunch of fundamental examples by Gelfond
which shows at the same time the historical improvements of epistemic specifica-
tions. The first is a well-known motivating example by Gelfond (Gelfond [2011]):
we first consider a set of rules among which are used to award scholarships to the
students in a certain college:

1. eligible(X)← highGPA(X)

2. eligible(X)← fairGPA(X) , minority(X)

3. ∼eligible(X)← ∼fairGPA(X) , ∼highGPA(X)

4. interview(X)← not eligible(X) , not ∼eligible(X)

5. interview(X)← ∼K eligible(X) , ∼K∼eligible(X)

whereX ranges over a given set of students. The first three rules are self-contained.
However, the fourth and the fifth rules need information that is obtained from the
first three rules. On the other hand, although the last two rules seem to refer to
the same statement, in fact the fourth rule is not powerful enough to formalise the
intended statement, that is to say,
(∗) “The students whose eligibility is not determined by the college rules should be
interviewed by the scholarship committee”
The reason is because the not operator works (locally) in each belief set separately,
and does not concern with the global situation. However, the intuitive meaning
of the rule five has proved to naturally correspond to the statement (∗) because
K operates (globally) through the belief sets altogether, so is able to capture a
common knowledge in the existence of multiple belief sets. Now, let us justify
this fact through a specific example: in addition to the above-mentioned program

59

rules, for instance, if we regard a database (DB) consisting of the following three
facts

6. fairGPA(ann)←

7. ∼highGPA(ann)←

8. fairGPA(mike) or highGPA(mike)←

the program T1 = {1 − 4, 6, 7} consisting of the rules 1 - 4, 6 and 7 has exactly
one answer set, and so the unique world view:

S =
{
{fairGPA(ann),∼highGPA(ann), interview(ann)}

}
.

However, when we replace the rule 4 in T1 by the rule 5, the resulting theory T2
receives the same world view as T1 because T S

2 = {1− 3, interview(ann)←, 6, 7}
since S |=E-S ∼K eligible(ann) and S |=E-S ∼K∼eligible(ann), and T S

2 has the same
answer set as T1. One reason for this result is because we do not have a disjunctive
rule in the list of our database we considered for T1 and T2, so we get exactly one
belief set for both programs. Thus, we conclude that in the existence of a single
belief set, the epistemic operators K and M as well as the negation as failure
operator not coincide functionally. The diversity significantly appears when the
disjunctive rules like 8 are added into a program. For example, if we consider the
program T3 = {1− 4, 8} then the resulting answer sets are as follows:

S1 = {highGPA(mike), eligible(mike)}
S2 = {fairGPA(mike), interview(mike)}

Then, it is straightforward that T3 has exactly one world view, i.e., S′ = {S1, S2}.
Hence, the reasoner associated with T3 will answer unknown to the questions of
eligible(mike) and interview(mike) for the scholarship. To spell it out, although
Mike’s eligibility for the scholarship is not determined by the college rules, we
cannot say Mike should be sent to the interview. As a result, the rule 4 fails to
represent the statement (∗). However, when we replace the rule 4 in T3 by the
rule 5, we see that the intended behaviour of the new system T4 results in saying
again unknown to the query of Mike’s eligibility for the scholarship, but yes to
the question of interview(mike). So, now the functioning of the system exactly
suits (∗). Formally speaking, the resulting theory T4 has the following world view
S′′ = {S3, S4} where

S3 = {fairGPA(mike), interview(mike)} and
S4 = {highGPA(mike), eligible(mike), interview(mike)}.

60

Following the reduct definition, we get T S′′
4 = {1− 3, interview(mike)←, 8} since

S′′ |=E-S ∼K elligible(mike) and S′′ |=E-S ∼K∼elligible(mike) and the rest is rou-
tine. To sum up, this example justifies the need for epistemic operators in LE-S.

The following example points at the requirement of a slight improvement in
the old definition of world views because as it was first recognized by Teodor
Przimusinski, under the old definition the world views may sometimes reflect some
unintended behaviours for the system (Gelfond [2011]). In this work we do not
include the old definition of world views, but one can refer to Gelfond [1991, 1994,
2011] for a detailed information. Now we consider the epistemic specification
T = {p ← K p}. According to the new definition, T has the unique world view
S = {∅} which conforms with the intended behaviour of the system. However, the
old definition also produces an unsupported belief as contained in S′ =

{
{p}

}
and

it is clearly not expected by the rational agent. Therefore, Gelfond has to redesign
the language and the semantics of epistemic specifications. Even if there is no
ultimate success with all problems that have appeared under the old definition,
the new version attains successfully to eliminate, at least, some of the unintended
interpretations. Therefore, it seems that the new semantics substantially meets the
requirements of intelligent agents which are capable of introspective reasoning with
incomplete information. Moreover, it looks to better fit to the intuitive meanings
of the epistemic operators K and M as well.

Epistemic specifications can also be used as an alternative formalisation of the
closed world assumption (CWA) (Gelfond [2011]; Reiter [1978]). The CWA briefly
says that p(X) should be assumed to be false if there is no evidence to the contrary
and is normally expressed by an ASP rule: ∼p(X)← not p(X). However, it has
an alternative representation specifically as an E-S rule: ∼p(X) ← K not p(X)
(Gelfond [2011]).

Finally, we recall the computational property of epistemic specifications: de-
ciding whether an epistemic specification has a world view is PSPACE-complete
(Zhang [2006]).

1.5 Relating ASP to other nonmonotonic for-
malisms

The two research areas, LP and nonmonotonic reasoning, progressed largely in-
dependently of each other until a new declarative semantics is proposed for logic
programs. Since then people have discovered their close relationship, and logic
programs have been shown to be equivalent to suitable forms of four major non-
monotonic formalisms: McCarthy’s circumscription (McCarthy [1980, 1986]), Re-
iter’s closed world assumption (Reiter [1978]), Moore’s autoepistemic logic (Moore

61

[1985b, 1988]) and Reiter’s default logic (Reiter [1980]). The importance of these
results stems not only from the fact that they shed new light on the relation-
ship between logic programming and non-monotonic reasoning, but also from the
fact that they establish a close relationship between four major formalisations of
non-monotonic reasoning for an important class of theories.

The ASP programs have close relations with nonmonotonic formalisms (Przy-
musinski [1988b]) such as autoepistemic logic, default logic, etc. The stable model
definition can be equivalently given by means of reducing logic programs to a
fixed point nonmonotonic formalism such as autoepistemic logic, default logic or
introspective circumscription. For instance, extended logic programs can be seen
as autoepistemic theories (Lifschitz and Schwarz [1993]). Some other relations
between ASP and nonmonotonic formalisms are given below.

1.5.1 Default logic and ASP
General logic programs can be seen as default theories (see Appendix C.1) in the
sense of Reiter (Reiter [1980]). Similarly, the language of extended nondisjunctive
LP can be embedded into default logic: extended logic programs are identical to
a natural, easily identifiable subset of default logic. The backward arrow ← in
ASP is similar to the backward arrow in the default logic context. The role of
not in ASP is similar to the role of justifications in a default theory. Intuitively,
default logic can express facts “p is true by default” and not p means “p is false
by default”. An extension for a default theory is a theory in the sense of classical
logic. Accordingly, the symbol ∼ in ASP is classical negation in default logic.

The embedding from extended nondisjunctive LP to default logic is explained
in Gelfond et al. [1991] in detail. Below we just give its outline. We first transform
an extended logic program rule r (see Definition 1.6)

l1 ← (l2 , . . . , ln) , (not ln+1 , . . . , not lk)

into the corresponding default dr (see Definition C.1 in Appendix C.1)

l1 ← (l2 ∧ . . . ∧ ln) : Mln+1, . . . ,Mlk(1.25)

where li stands for the complementary literal of li for 1 ≤ i ≤ k (for the definition of
complementary, see Subsection 1.1.1, second paragraph). Hence, every extended
logic program Π can be transformed into the corresponding default theory DΠ
where

DΠ = {dr : r ∈ Π}.
To express it more clearly, every extended logic program rule r can be viewed as a
default dr ∈ DΠ, in which the consequent and the justifications are simply literals
and the prerequisite is a conjunction of literals.

62

We now define a function ΓD with respect to a default theory D:

ΓD : E 7→ ΓD(E)

mapping a set of sentences E to the smallest set of sentences ΓD(E) satisfying:

1. for any d ∈ D, if G ∈ ΓD(E) and ¬Hi < E for any i then F ∈ ΓD(E) and

2. ΓD(E) is deductively closed.

The latter means that this set contains all sentences that can be deduced from
itself. We call E an extension for D if ΓD(E) = E.

Then we capture the answer set semantics of extended LP as follows:

Proposition 1.2 For an extended program Π,

1. if S is an answer set of Π then the deductive closure of S is an extension of
Π, and

2. every extension of Π is the deductive closure of exactly one answer set of Π.

To sum up, the deductive closure operator is a 1-1 mapping between the answer
sets of Π and its extensions.

However, this embedding cannot be generalised easily to disjunctive programs.
The main difficulty is because there is a difference between epistemic disjunction
(or) and classical disjunction (∨) respectively used in extended LP and default
logic. The reader can refer Subsection 1.1.2.2 where a similar difference has already
been discussed. Following example illustrates this difference briefly.

• The disjunctive program Π =
{
p or q ← has two answer sets, namely {p}

and {q}. On the other hand, the default theory D =
{
p ∨ q ← : has one

extension, i.e., the deductive closure of p ∨ q.

1.5.2 Use of the CWA in ASP
The following extended program rules in the form of predicates represent the CWA

∼P (x)← not P (x)
P (x)← not ∼P (x)

and whenever an explicit declaration is required they can be added into any pro-
gram to make definitions of predicates complete. The example below can be found
in Gelfond and Lifschitz [1991]. We first consider a program Π containing the rule
which specifies “any employed person has an adequate income”:

63

1. Adequate−Income(x)← Employed(x, y)

and the database consisting of the employment of two people:

2. Employed(Jack, Stanford)←

3. Employed(Jane,Harvard)← .

The answer set of Π is:

{2, 3, Adequate−Income(Jack), Adequate−Income(Jane)}.

However, the employment status of both Jack and Jane is not complete because,
for instance, we do not know if Jack is also employed at Harvard or not. To make
it more precise we can allow for the CWA for Employed:

4. ∼Employed(x, y)← not Employed(x, y).

Having rule 4 added into Π, the resulting program Π′ allows us to append the
literals

∼Employed(Jack,Harvard) and ∼Employed(Jane, Stanford)

to the previous answer set. If we want to be strict just for the employment in the
Stanford University, then we can use:

5. ∼Employed(x, Standford)← not Employed(x, Stanford).

instead of rule 4, and in this case, the resulting program Π′′ will just add the literal

∼Employed(Jane, Standford)

into the former answer set.

1.6 Structure of the dissertation: our work in a
nutshell

The dissertation consists of six chapters. The present chapter, i.e., Introduction
constitutes a background for a further study about the foundations of ASP and
equilibrium logic. The rest of this dissertation is organised in a way that chapters
2, 3 and 4 constitute the backbone of our work. The remaining chapters conclude
the dissertation with some final remarks and research goals.

Chapter 2 begins with a brief recall of previously proposed modal formalisms
underlying equilibrium logic (Fariñas del Cerro and Herzig [2011a]) and explains

64

the drawbacks of those approaches. Then, it introduces a newly-designed mono-
tonic modal logic called MEM that is powerful enough to characterise the exis-
tence of an equilibrium model as well as the consequence relation in equilibrium
models. Moreover, MEM seems to overcome all syntactical deficiencies of the
previous approaches. It has two modal operators [T] and [S] that are interpreted
in a fairly standard class of Kripke models. We relate the language of equilibrium
logic to our bimodal language by means of the Gödel translation tr whose main
clause is:

tr(ϕ→ ψ) = [T](tr(ϕ) ⊃ tr(ψ)).

The logic MEM thus captures the minimisation attitude that is central in the
definition of equilibrium models and which is only formulated in the metalanguage.
Moreover, it encodes the existence of an equilibrium model of a formula, and of
equilibrium consequence problem in equilibrium logic.

Chapter 3 reports on a first approach on the extensions of equilibrium logic
with modal concepts. It adds an analysis of the dynamics by integrating operators
of upgrading and downgrading propositional variables. More explicitly, we extend
the language of HT logic by two kinds of atomic programs allowing to minimally
update the truth value of a propositional variable here or there, if possible. These
atomic programs are then combined by the usual dynamic logic program connec-
tives. Briefly, we define a simple logic called dynamic here-and-there logic (D-HT)
of atomic change of equilibrium models and discover that it is strongly related to
dynamic logic of propositional assignments (DL-PA): propositional assignments
set the truth values of propositional variables to either true or false and update
the current model in the style of dynamic epistemic logics. Eventually, we come
up with another monotonic modal logic underlying equilibrium logic.

Chapter 4 once again tackles the problem of trying to find out a more compre-
hensive framework of ASP and presents an alternative approach: it extends the
original language of HT logic by adding modal operators of knowledge, and the
resulting epistemic extension of equilibrium logic proposes a new logical semantics
to Gelfond’s epistemic specifications—the extensions of ASP by epistemic modal
operators in order to correctly represent incomplete information in situations when
there are multiple answer sets. As a result, this chapter paves the way from epis-
temic specifications to epistemic ASP, and can be regarded as a nice starting
point for further frameworks of extensions of ASP. Moreover, we also provide a
strong equivalence result for EHT theories (finite sets of EHT formulas).

Finally we conclude with Chapter 5 giving a brief summary of this dissertation
and pointing out number of directions for future research.

65

Chapter 2

Capturing Equilibrium Models in
Modal Logic: MEM

HT models and equilibrium models were investigated so as to characterise ASP.
The semantics of equilibrium logic is given in an indirect way: the notion of
equilibrium model is defined in terms of satisfiability in propositional logic and in
the logic of here-and-there (HT).

We here give a direct semantics of equilibrium logic in terms of a modal lan-
guage extending that of propositional logic by two unary modal operators, [T] and
[S]. Roughly speaking, [T] allows to talk about valuations that are at least as
strong as the actual valuation; and [S] allows to talk about valuations that are
weaker than the actual valuation. Our modal language can be interpreted on HT
models. However, we also give a semantics in terms of Kripke models. We call our
logic MEM: the modal logic of equilibrium models. Then, we also give a sound and
complete axiomatisation of our logic. Moreover, we show that it can be checked
whether χ |≈ ϕ, i.e., whether ϕ is a logical consequence of χ in equilibrium logic,
by checking if the modal formula(

tr(χ) ∧ [S]∼tr(χ)
)
⊃ tr(ϕ)

is valid in MEM or not, where tr is a polynomial translation from the language
of HT logic (LHT) into the language of MEM.

Capturing one formalism in terms of another is a natural issue for theoretical
discourse, however capturing equilibrium logic in a modal logic have not been
discussed in detail so far. A first attempt to relate equilibrium logic to modal
logic in the style of the present approach was presented in Fariñas del Cerro and
Herzig [2011a]. In this chapter, we extend and improve that work by simplifying
the translation. What we do for equilibrium logic in this chapter parallels what
Levesque did for autoepistemic logic. Likewise, he also designed a monotonic modal

66

logic that was able to capture nonmonotonic autoepistemic reasoning (Lakemeyer
and Levesque [2012]; Levesque [1990]).

The chapter is organised as follows. In Section 2.1 we introduce our modal logic
of equilibrium models MEM1 syntactically, semantically and also axiomatically.
In Section 2.2 we define the Gödel translation tr from the language of HT logic
to the language of MEM and prove its correctness: for every formula ϕ, ϕ is HT
valid if and only if tr(ϕ) is MEM valid. This theorem paves the way for the proof
of the grand finale given in the same section: ϕ is a logical consequence of χ in
equilibrium logic if and only if the modal formula(

tr(χ) ∧ [S]∼tr(χ)
)
⊃ tr(ϕ)

is valid in MEM. It follows that ϕ has an equilibrium model if and only if
tr(ϕ) ∧ [S]∼tr(ϕ) is satisfiable in the corresponding Kripke model. Section 2.3
mentions some further research avenues related with MEM.

2.1 The modal logic of equilibrium models: MEM
We introduce the modal logic of equilibrium models MEM in the classical way:
we start by defining its bimodal language and its semantics. Then we axiomatise
its validities.

2.1.1 Language (L[T],[S])
Throughout the chapter we suppose P is given a countably infinite set of propo-
sitional variables. The elements of P are noted p, q, etc. Our language L[T],[S]

is bimodal: it has two modal operators, namely [T] and [S]. Precisely, L[T],[S] is
defined by the following grammar:

ϕF p | ⊥ | ϕ ⊃ ϕ | [T]ϕ | [S]ϕ,

where p ranges over P. The formula [T]ϕ may be read “ϕ holds at every possible
there-world at least as strong as the current world”, and [S]ϕ may be read “ϕ holds
at every possible weaker or equal here-world”.

The set of propositional variables occurring in a formula ϕ is noted Pϕ.
The language L[T] is the set of L[T],[S]-formulas without the modal operator [S].

So the L[T]-formulas are built from [T] and the Boolean connectives only.
1To avoid confusion we could have used another name instead of MEM again. It should

however be clear to the reader that the modal logic we are talking about here is just slightly
different from the one that is introduced in Fariñas del Cerro and Herzig [2011a].

67

We use the following standard abbreviations: > def= ⊥ ⊃ ⊥, ∼ϕ def= ϕ ⊃ ⊥,
ϕ ∨ ψ def= ∼ϕ ⊃ ψ, ϕ ∧ ψ def= ∼(ϕ ⊃ ∼ψ), and ϕ ≡ ψ

def= (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
Moreover, 〈T〉ϕ and 〈S〉ϕ respectively abbreviate ∼[T]∼ϕ and ∼[S]∼ϕ.

2.1.2 MEM frames
We interpret the formulas of our language L[T],[S] in a class of Kripke models that
has to satisfy the below-mentioned particular constraints. In this subsection, we
first give these (first-order) constraints together with the special names attributed
to them. Then, we clarify their meaning with some comments. Finally, we come
up with an axiomatisation and also prove its completeness.

Consider the class of Kripke frames (W,T, S) such that

• W is a non-empty set of possible worlds;

• T, S ⊆ W ×W are (binary) relations on W such that:

refl(T) for every w,wTw;
alt2(T) for every w, u, u′, u′′, if wTu, wTu′ and wTu′′

then u = u′ or u = u′′ or u′ = u′′;
trans(T) for every w, u, v, if wTu and uTv then wTv;
refl2(S) for every w, u, if wSu then uSu;
wtriv2(S) for every w, u, v, if wSu and uSv then u = v;
wmconv(T, S) for every w, u, if wTu then w = u or uSw;
mconv(S,T) for every w, u, if wSu then uTw.

We call a frame (W,T, S) satisfying the above-mentioned constraints a MEM
frame. Let us explain these constraints informally.

To begin with, the first three constraints are about the relation T. The con-
straints refl(T) and alt2(T) say respectively that a world w is T-reflexive and has
at most two T-successors. To sum it up, a world w is either a single T-loop or has
an accompanying T-accessible world. Then the transitivity constraint, trans(T),
makes that the neighbouring T-accessible world is a single T-loop. Briefly, these
constraints together imply the following constraint about the relation T:

depth1(T): for every w, u, v, if wTu and uTv then w = u or u = v.

In words, every world can be reached in at most one T-step.
The next two constraints are about the relation S. Let S(u) = {v : uSv}. For

any w, u if wSu the constraint refl2(S) gives us u ∈ S(u). The constraint wtriv2(S)
tells us that when wSu then we must have S(u) = ∅ or S(u) = {u}. Together, they

68

Figure 2.1: Graphical representation of MEM-frames, for n ≥ 0. The two sin-
gleton graphs are for n = 0. The rightmost graph is for n ≥ 1, where f(n) = 2n
represents the number of S-arrows in the diagram.

say that if wSu then S(u) = {u}: any world we access by the relation S can see
itself through S, but none of the others. At this point, it is worth noting that S is
trivially transitive due to wtriv2(S). It then also follows from this constraint that
every world can be reached in at most one S-step. In other words, the relation S

is of depth 1.
The next two constraints involve both T and S. We obtain from the weak

mixed conversion constraint, wmconv(T, S), that T is contained in S−1 ∪ ∆W ,
where ∆W = {(w,w) : w ∈ W} is the diagonal of W ×W . Moreover, the mixed
conversion constraint, mconv(S,T), says that S is contained in T−1. As a result,
together with refl(T) these two constraints give us T = S−1 ∪∆W .

Let us sum up the constraints that we have introduced so far: the T relation
is a tree of height 0 or 1, and S is the converse of T, except for the root. In our
frames, any root w is characterized by the fact that T(w)\{w} is empty. Visually,
MEM frames are disjoint unions of the diagrams depicted by a representative in
Figure 2.1. The constraints wmconv(T, S), refl2(S), wtriv2(S), refl(T) and alt2(T)
imply that for every w, T(w)∩S(w) is equal to either the empty-set or the singleton
{w}1.

The following properties hold for every MEM frame (W,T, S). First, the
relation T is serial, i.e., for all w there is a u such that wTu. Formally, this
property is guaranteed by the constraint refl(T). Moreover, T is directed, i.e., for
every w, u, v, if wTu and wTv then there exists z such that uTz and vTz. This
follows from the constraints refl(T) and alt2(T). Besides, T is also anti-symmetric,
that is to say, for every w, u, if wTu and uTw then w = u. This follows from the
constraints wmconv(T, S) and wtriv2(S). Together with mconv(S,T), this implies
that S is anti-symmetric, too. However, T is not euclidean: we may have wTu and
wTw without uTw, and therefore the condition ‘for every w, u, v, if wTu and wTv

1correct the graph.

69

then uTv’ does not hold in general. Finally, the relations T and S are trivially
idempotent.2 We obtain the idempotence property of T from depth1(T), while we
get that of S through wtriv2(S). As a last word, all of the properties above can be
visualized from the diagram above; in addition, we can also see that the properties
of seriality, euclideanity, and directedness don’t hold for the relation S.

2.1.3 MEM models
We interpret the formulas of our language L[T],[S] in a class of Kripke models that
has to satisfy some particular constraints.

Consider the class of Kripke models M = (W,T, S, V) such that:

• (W,T, S) is a MEM frame;

• V is a valuation on W mapping all possible worlds w ∈ W to sets of propo-
sitional variables Vw ⊆ P such that:

heredity(S) for every w, u, if wSu then Vu ⊆ Vw;
neg(S,T) for every w, there exists u such that: wTu and for every

P ⊂ Vu, there is v satisfying uSv and Vv = P.

A quadrupleM = (W,T, S, V) satisfying all the conditions above is called a MEM
model.

Now let us comment a bit on the constraints heredity(S) and neg(S,T). They
involve not only the relations S and T, but also the valuation V . The constraint
heredity(S) is just as the heredity constraint of intuitionistic logic, except that S
is the inverse of the intuitionistic relation. The neg(S,T) constraint basically says
that the set of worlds that are accessible from a root u of a tree with non-empty
valuation via the relation S contains all those worlds v whose valuations Vv are
strictly included in Vu. In every MEM model, if singleton (isolated) points appear
(as in the leftmost two graphs in Figure 2.1) then they should certainly have an
empty valuation.

The following properties include the valuation as well.

Proposition 2.1 Let M = (W,T, S, V) be a MEM model.

1. For every w, u, if wTu then Vw ⊆ Vu.

2. For every w, if T(w) \ {w} is empty, then the set {Vu : wSu} equals either
{V : V ⊆ Vw} or {V : V ⊂ Vw}.

2 A relation r is idempotent if r ◦ r = r, where ◦ is a relational composition.

70

Proof. See Proposition A.1 and its proof in Section A.2 of Appendix A. q.e.d.

While the first property above gives the heredity property of intuitionistic logic
for T, the second says, in words: for a root point w,1 the set of valuations of the
worlds that are accessible from w via S is either the set of subsets of Vw (2Vw)
or the set of strict subsets of Vw (2Vw \ {Vw}). This property will be used later,
exactly in the proof of Theorem 3.4.

2.1.4 Truth conditions
The semantics of our bimodal logic is fairly standard, the relation T interpreting
the modal operator [T] and the relation S interpreting the modal operator [S]. The
truth conditions are:

M,w |= p iff p ∈ Vw;
M,w 6|= ⊥;
M,w |= ϕ ⊃ ψ iff M,w 6|= ϕ or M,w |= ψ;
M,w |= [T]ϕ iff M,u |= ϕ for every u such that wTu;
M,w |= [S]ϕ iff M,u |= ϕ for every u such that wSu.

We say that ϕ has a MEM model when M,w |= ϕ for some model M and
world w in M . We also say that ϕ is MEM satisfiable. Furthermore, ϕ is MEM
valid if and only if M,w |= ϕ for every model M and possible world w in M .

The next proposition says that to check satisfiability it suffices just to consider
models with finite valuations.
Proposition 2.2 Let M = (W,T, S, V) be a MEM model, and ϕ be an L[T],[S]-
formula. Let the valuation V ϕ be defined as follows:

V ϕ
w = Vw ∩ Pϕ, for every w ∈ W.

Then Mϕ = (W,T, S, V ϕ) is also a MEM model. Moreover, for every w ∈ W ,
M,w |= ϕ if and only if Mχ, w |= ϕ,

where ϕ is a subformula of χ.
Proof. See Proposition A.2 and its proof in Section A.2 of Appendix A. q.e.d.

Remark 2.1 Observe that Proposition 2.2 should not be confused with the finite
model property (f.m.p.) of modal logics: the f.m.p. is about finiteness of the set of
possible worlds, while Proposition 2.2 is about finiteness of valuations. We might
call the latter finite valuation property (f.v.p.).

1Remember that in a MEM frame, the property T(w) \ {w} = ∅ characterises that w is the
root of a tree. Moreover, when T(w) \ {w} , ∅ then the singleton T(w) \ {w} contains the root.

71

2.1.5 Axiomatics, provability, and completeness
The main purpose of this subsection is to give an axiomatisation of the MEM
validities and to prove its completeness.

To start with, we define the fragment of positive Boolean formulas of L[T],[S] by
the following grammar:

ϕ+ F p | ϕ+ ∧ ϕ+ | ϕ+ ∨ ϕ+.

We immediately observe that every positive Boolean formula is falsifiable. (Note
that this holds because > is not a positive Boolean formula.)

Now we are ready to give our axiomatisation of MEM. The axiom schemas
and the inference rules are listed in Table 2.1.

K([T]) the axioms and the inference rules of modal logic K for [T]
K([S]) the axioms and the inference rules of modal logic K for [S]

T([T]) [T]ϕ ⊃ ϕ
Alt2([T]) [T]ϕ ∨ [T](ϕ ⊃ ψ) ∨ [T](ϕ ∧ ψ ⊃ ⊥)
4([T]) [T]ϕ ⊃ [T][T]ϕ

T2([S]) [S]([S]ϕ ⊃ ϕ)
WTriv2([S]) [S](ϕ ⊃ [S]ϕ)

WMConv([T], [S]) ϕ ⊃ [T](ϕ ∨ 〈S〉ϕ)
MConv([S], [T]) ϕ ⊃ [S]〈T〉ϕ

Heredity([S]) 〈S〉ϕ+ ⊃ ϕ+ for ϕ+ a positive Boolean formula
Neg([S], [T]) 〈T〉(ϕ+ ∧ ψ) ⊃ 〈T〉〈S〉(∼ϕ+ ∧ ψ) for ϕ+ a positive Boolean

formula such that Pϕ+ ∩ Pψ = ∅

Table 2.1: Axiomatisation of MEM

The axiom schemas T([T]), Alt2([T]) and 4([T]) are well-known from modal
logic textbooks. We observe that Alt2([T]) could be replaced by the axiom schema
〈T〉(ϕ ∧ ψ) ∧ 〈T〉(ϕ ∧ ∼ψ) ⊃ [T]ϕ, or even (ϕ ∧ ψ) ∧ 〈T〉(ϕ ∧ ∼ψ) ⊃ [T]ϕ.

The axiom schema WTriv2([S]) is a weakening of the triviality axiom for [S],
i.e., [S]ϕ≡ϕ, yet the axiom schemas T2([S]) and WTriv2([S]) can be combined into
the single axiom, [S]([S]ϕ≡ϕ) that we call ‘triviality in the second step’ axiom,
and symbolise with Triv2([S]).

The weak mixed conversion axiom WMConv([T], [S]) and the mixed conversion
axiom MConv([S], [T]) are familiar from tense logics.

72

Finally, the schema Heredity([S]) captures the heredity constraint heredity(S).
Note that it could be replaced by the axiom 〈S〉p ⊃ p, where p is a propositional
variable. It could also be replaced by the axiom schema ∼ϕ+ ⊃ [S]∼ϕ+, for
ϕ+ a positive Boolean formula. The schema Neg([S], [T]) ensures that the modal
operator [S] quantifies over all strict subsets of the actual valuation under some
restrictions.

Remark 2.2 T([T]) and Alt2([T]) give us that for every w, T(w) contains w,
and has at least 1 and at most 2 elements. If T(w) contains two elements, say
T(w) = {w, u} where w,u, then 4([T]) implies that T(u) = {u}. Moreover,
WMConv([T], [S]) guarantees that u is always S-related to w when it exists.

Finally, the notions of proof and of provability of a formula are defined as it is
in any modal logic. For example, it is possible to prove the schema Depth1([T])
(corresponding to the constraint depth1(T)), i.e., ∼ϕ ⊃ [T](ϕ ⊃ [T]ϕ). The proof
uses the axiom schemas T([T]), Alt2([T]), and 4([T]).

As another example, we give the proof of the schema that corresponds to the
heredity condition for T, i.e., Heredity([T]): ϕ+ ⊃ [T]ϕ+, for ϕ+ a positive Boolean
formula. This will be helpful in the proof of the grand finale, Theorem 3.4.

Proposition 2.3 The schema Heredity([T]), i.e., ϕ+ ⊃ [T]ϕ+, for ϕ+ a positive
Boolean formula, is provable.

Proof. See Proposition A.3 and its proof in Section A.2 of Appendix A. q.e.d.

Heredity([T]) ensures that wTu implies Vw ⊆ Vu, i.e., the heredity condition for T.
Here is one more schema just concerning the T relation.

Proposition 2.4 The schema 2([T]), i.e., 〈T〉[T]ϕ ⊃ [T]〈T〉ϕ is provable.

Proof. See Proposition A.4 and its proof in Section A.2 of Appendix A. q.e.d.

Let us turn to schemas about [S]. For example, 4([S]): [S]ϕ ⊃ [S][S]ϕ is a direct
consequence of WTriv2([S]). The proof is in one step by the K([S]) axiom and
modus ponens (MP).

Finally, we state and prove a schema regarding both operators [T] and [S] that
will be useful in the completeness proof.

Lemma 2.1 The following formula schema is provable:

Neg′([S], [T]) 〈T〉
(
(∧p∈P p) ∧ (∧q∈Q q)) ⊃ 〈T〉〈S〉 ((∧p∈P ∼p) ∧ (∧q∈Q q))

for P,Q ⊆ P finite, P , ∅, and P ∩Q = ∅.

73

Proof. See Lemma A.2 and its proof in Section A.2 of Appendix A. q.e.d.

Our axiomatisation is sound and complete.

Theorem 2.1 Let ϕ be an L[T],[S]-formula. Then ϕ is MEM valid if and only if
ϕ is provable from the axioms and the inference rules of MEM.

Proof. See Theorem A.2 and its proof in Section A.2 of Appendix A. q.e.d.

2.2 Embedding HT logic and equilibrium logic
into the modal logic MEM

In this section we are going to translate HT logic and equilibrium logic into our
logic MEM.

2.2.1 Translating LHT into L[T]

To warm up, let us translate the language LHT of both HT logic and equilibrium
logic into the sub-language L[T] of MEM. We recursively define the mapping tr
as follows:

tr(p) = p for p ∈ P;
tr(⊥) = ⊥;
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ);
tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ);
tr(ϕ→ ψ) = [T](tr(ϕ) ⊃ tr(ψ)).

This translation is similar to the Gödel translation from intuitionistic logic to
modal logic S4 whose main clause is tr(ϕ → ψ) = �(tr(ϕ) ⊃ tr(ψ)), where � is
an S4 operator (just as the [T] operator of our bimodal logic). Here are some
examples.

tr(>) = tr(⊥ → ⊥) = [T](⊥ ⊃ ⊥).
This is equivalent to > in any normal modal logic.

tr(¬p) = tr(p→ ⊥) = [T](p ⊃ ⊥).
This is equivalent to [T]∼p in any normal modal logic.

tr(p ∨ ¬p) = tr(p) ∨ tr(p→ ⊥) = p ∨ [T](p ⊃ ⊥).
This is equivalent to p ∨ [T]∼p in any normal modal logic.

74

2.2.2 Correspondence between HT logic and MEM
In this subsection, we will see that the fragment L[T] of the language L[T],[S] is at
least as expressive as LHT on HT models, modulo the translation tr. First of all,
given a set of propositional variables T ⊆ P, we will construct a special MEM
model,MT , and will check the satisfiability in HT logic over satisfiability in MEM
via this special MEM model, MT . Briefly, using these kinds of models, we will
prove that our translation preserves the satisfiability.
Proposition 2.5 For T ⊆ P, let MT = (W,T, S, V) be a Kripke model such that:

W = 2T ;
VH = H, for every H ∈ W ;
T = ∆W ∪ (W × {T}) = {(x, y) ∈ W ×W : x = y or y = T};
S = ∆(W\{T}) ∪

(
{T} × (W \ {T})

)
= T−1 \ {(T, T)}.

Then MT is a MEM model. Furthermore, for every LHT-formula ϕ and H ⊆ T ,

H,T |= ϕ if and only if MT , H |= tr(ϕ).
Proof. See Theorem A.5 and its proof in Section A.2 of Appendix A. q.e.d.

In the proposition above, we define S as the relative complement of {(T, T)} in
T−1. To clarify the model, we give some examples: for T = ∅ we obtain M∅ =
(W,T, S, V) with W = {∅}, T = {(∅, ∅)}, and S = ∅; and for T = {p} we obtain
M{p} = (W,T, S, V) with W = {∅, {p}}, T = {(∅, ∅), (∅, {p}), ({p}, {p})}, and
S = {(∅, ∅), ({p}, ∅)}.

As a second step, we will see that our translation also reflects the satisfiability
the other way around.
Proposition 2.6 LetM = (W,T, S, V) be a MEM model. Then for every w ∈ W
and every LHT-formula ϕ we have:

1. If T(w) \ {w} = ∅ then M,w |= tr(ϕ) if and only if Vw, Vw |= ϕ;

2. If T(w) \ {w} , ∅ then M,w |= tr(ϕ) if and only if Vw, Vu |= ϕ for the
uniquely determined u ∈ T(w) \ {w} .

Proof. See Proposition A.6 and its proof in Section A.2 of Appendix A. q.e.d.

As a result, now we can say that the satisfiability is invariant under our translation
because by propositions 2.5 and 2.6, we have: for every ϕ ∈ LHT,

ϕ has an HT model if and only if tr(ϕ) is MEM satisfiable.
After we give the ultimate goal of this subsection, we will also prove the assertion
above as a corollary of it, but first we would like to remark upon an observation
about Proposition 2.6.

75

Remark 2.3 One should notice that Proposition 2.6 can actually be given as a
corollary of Proposition 2.5: to see this, we take an arbitrary MEM model, say
M = (W,T, S, V), and a point w ∈ W . Then, according to the type of w, that is,
according to w being the root of a tree in M or not (see Remark 2.2), we decide
the generator of our MEM model and construct it as it is described in Proposition
2.5. So, now let us go over two cases :
Case (i): let w be the root of a tree in M then T(w) = {w}, i.e., T(w) \ {w} = ∅.
Therefore, we take T = Vw, and constructMVw as it is described in Proposition 2.5.
Again by Proposition 2.5, we know that MVw is a MEM model, and furthermore,
that Vw, Vw |= tr(ϕ) if and only if MVw , Vw |= tr(ϕ), for every LHT-formula ϕ.
Since tr(ϕ) includes neither [S] nor 〈S〉, we assert that MVw , Vw |= tr(ϕ) if and
only if M∗, Vw |= tr(ϕ) (?) where M∗ is a weakly generated submodel of MVw , i.e.,
just w.r.t. T in which the domain is restricted to {Vw} (for generated submodel
definition, see Blackburn et al. [2001a]). In the meanwhile, we ignore S, that is to
say, we keep it as S = ∅. (the resulting model M∗ is not a MEM model anymore,
but since we use it to relate the main models it doesn’t violate the proof) The claim
(?) is proved by the well-known fact that modal satisfaction is invariant under
generated submodels. On the other hand, when we change the domain of M∗ with
{w} then we obtain a weakly generated submodel of M (again only w.r.t. T), and
without subtlety the resulting model is equivalent to M∗. Then, it clearly follows
that Vw, Vw |= tr(ϕ) if and only if MVw , Vw |= tr(ϕ) if and only if M∗, Vw |= tr(ϕ)
if and only if M,w |= tr(ϕ), for every LHT-formula ϕ.
Case (ii): let w be a leaf of a tree structure inM then T(w) = {w, u} for a uniquely
determined u , w. Thus, we get T(w) \ {w} , ∅. Here we take T = Vu, and form
the MEM model MVu again as in Proposition 2.5. Therefore, Proposition 2.5
gives us the following: Vw, Vu |= tr(ϕ) if and only if MVu , Vw |= tr(ϕ), for every
LHT-formula ϕ. The rest of the proof follows basically the same as case (i), so we
leave it to the reader.

Now we are about to prove the correctness of our translation. To spell it out, we
are ready to embed the notion of HT validity into MEM.

Theorem 2.2 Given an LHT-formula, ϕ,

ϕ is HT valid if and only if tr(ϕ) is MEM valid.

Proof. See Proposition A.2 and its proof in Section A.2 of Appendix A. q.e.d.

After we have seen that the validity is invariant under our translation tr now
the corollary below immediately follows.

76

Corollary 2.1 For every LHT-formula ϕ,

ϕ has an HT model if and only if tr(ϕ) is MEM satisfiable.

Proof. See Proposition A.1 and its proof in Section A.2 of Appendix A. q.e.d.

2.2.3 Correspondence between equilibrium logic and MEM
The same construction as for HT logic allows us to turn equilibrium models into
MEM models.

Proposition 2.7 Given T ⊆ P, let MT = (W,T, S, V) be a Kripke model such
that:

W = 2T ;
VH = H, for every H ∈ W ;
T = ∆W ∪ (W × {T});
S = ∆(W\{T}) ∪

(
{T} × (W \ {T})

)
.

Then MT is a MEM model, and T is an equilibrium model of ϕ if and only if
MT , T |= tr(ϕ) ∧ [S]∼tr(ϕ), for every LHT-formula ϕ.

Proof. See Proposition A.7 and its proof in Section A.2 of Appendix A. q.e.d.

To clarify the proposition, we consider an example: take T = ∅ and ϕ = >. We
have seen before that ∅ is the only equilibrium model of > (for verification, see the
second paragraph of Introduction). Let M∅ be the MEM model as constructed
in propositions 2.5 and 2.7 (for the description of the model, see the paragraph
just before the proof of Proposition 2.5). By the same propositions, we know that
M∅ is a legal MEM model. We also deduce M∅, ∅ |= tr(>) ∧ [S]∼tr(>) following
the conclusion of Proposition 2.7 and the structure of the model. This can also be
seen by simplifying the latter:

tr(>) ∧ [S]∼tr(>) iff > ∧ [S]∼>
iff [S]⊥.

Proposition 2.7 helps us give an alternative proof of the result mentioned in
Remark 1.1 in Chapter 1: to see this, let T ⊆ P be an equilibrium model of an
LHT-formula ϕ. Then, we construct the MEM model MT as in Proposition 2.7,
and we conclude that MT , T |= tr(ϕ) ∧ [S]∼tr(ϕ). Hence, we get MT , T |= tr(ϕ)
and MT , H 6|= tr(ϕ) for every H ⊂ T . From this observation we obtain that T \Pϕ

77

is empty; otherwise MT , (T ∩ Pϕ) ∪ Q |= tr(ϕ) for every Q ⊆ T \ Pϕ (note that
Pϕ = Ptr(ϕ)), and since (T ∩ Pϕ) ∪ Q ⊂ T for every Q ⊂ T \ Pϕ that would bring
about a contradiction. Consequently, if T is an equilibrium model of ϕ ∈ LHT

then T ⊆ Pϕ.

Proposition 2.8 Given a MEM model M = (W,T, S, V) and w ∈ W ,
if T(w) \ {w} , ∅ then let u ∈ T(w) \ {w}, or else let u = w. Then

1. if Vu = ∅ then M,u |= tr(ϕ) if and only if Vu is an equilibrium model for ϕ,

2. and if Vu , ∅ thenM,u |= tr(ϕ)∧[S]∼tr(ϕ) if and only if Vu is an equilibrium
model for ϕ, for every LHT-formula ϕ.

Proof. See Proposition A.8 and its proof in Section A.2 of Appendix A. q.e.d.

Given Remark 1.1 mentioned in Chapter 1, one can get confused of Proposition
2.8 since he/she can think that Vu is not necessarily a subset of Pϕ, and that it is
not finite either. However, one should keep in mind that the condition ‘M,u |=
tr(ϕ)∧[S]∼tr(ϕ)’ forces Vu to be equal to Vu∩Pϕ. We cannot use the same condition
‘M,u |= tr(ϕ) ∧ [S]∼tr(ϕ)’ for the first item in which Vu = ∅, and we don’t need
either because for T = ∅ the minimality condition in the definition of equilibrium
model trivially holds, and the condition ‘M,u |= tr(ϕ)’ guarantees the rest of the
definition. To see the claim, we give a simple counterexample: take a MEM model
M = (W,T, S, V) in which for u ∈ W such that T(u) = {u}, Vu is empty and an
LHT-formula ϕ = ¬p. We know that empty-set is the (only) equilibrium model for
¬p. However, ‘M,u |= tr(¬p) ∧ [S]∼tr(¬p)’ doesn’t hold in general (the only case
it trivially holds is the singleton point w with S(w) = ∅, and in all other cases it
fails).

We are now ready for the grand finale where we embed the notion of logical
consequence in equilibrium logic into our MEM logic, so we will end the line of
work that aims to capture equilibrium logic in our bimodal logic, MEM.

Theorem 2.3 Given LHT-formulas χ and ϕ,

χ |≈ ϕ if and only if
(
tr(χ) ∧ [S]∼tr(χ)

)
⊃ tr(ϕ) is MEM valid.

Proof. See Theorem A.5 and its proof in Section A.2 of Appendix A. q.e.d.

Corollary 2.2 For every LHT-formula χ,

χ has an equilibrium model iff tr(χ) ∧ [S]∼tr(χ) is MEM satisfiable.

78

Proof. See Corollary A.2 and its proof in Section A.2 of Appendix A. q.e.d.

Here is an example. We have seen before that > |≈ ¬p for every p, i.e., ¬p is
a consequence of > in equilibrium models. Hence Theorem 3.4 tells us that the
formula ξ = tr(>) ∧ [S]∼tr(>) ⊃ tr(¬p) must be provable from the axioms and
the inference rules of MEM. This can be established by the following sequence
of equivalent formulas. Before, we recall that in any normal modal logic, tr(>) is
equivalent to > and tr(¬p) is equivalent to [T]∼p (see Section 3.3.3).

1. tr(>) ∧ [S]∼tr(>) ⊃ tr(¬p)

2. > ∧ [S]∼> ⊃ [T]∼p (see above)

3. [S]⊥ ⊃ [T]∼p.

The last line is provable in our logic: indeed, we see below that [S]⊥ ⊃ [T]∼p
can be proved in our logic MEM by standard principles of modal logic.

1. 〈T〉(p ∧ >) ⊃ 〈T〉〈S〉(∼p ∧ >) (axiom Neg([S], [T]))

2. 〈T〉p ⊃ 〈T〉〈S〉∼p (from 1 by classical logic)

3. ∼p ⊃ > (tautology)

4. 〈T〉〈S〉∼p ⊃ 〈T〉〈S〉> (from 3 by K([T]) and K([S]))

5. 〈T〉p ⊃ 〈T〉〈S〉> (from 2 and 4)

6. p ⊃ 〈T〉p (axiom T ([T]))

7. p ⊃ 〈T〉〈S〉> (from 5 and 6)

8. 〈T〉p ⊃ 〈T〉〈T〉〈S〉> (from 7 by K([T]))

9. 〈T〉〈T〉〈S〉> ⊃ 〈T〉〈S〉> (axiom 4 ([T]))

10. 〈T〉p ⊃ 〈T〉〈S〉> (from 8 and 9)

11. 〈T〉(〈S〉> ∧ [S]〈S〉>) ⊃ 〈S〉> (axiom WMConv([T], [S]))

12. [S](> ⊃ 〈S〉>) (axiom T2([S]))

13. [S](〈S〉> ⊃ >) (axiom WTriv2([S]))

14. [S]〈S〉> ≡ [S]> (from 12 and 13 by K([S]))

15. [S]〈S〉> ≡ > (from 14 by K([S]))

79

16. 〈T〉〈S〉> ⊃ 〈S〉> (from 11 and 15 by K([T]) and K([S]))

17. 〈T〉p ⊃ 〈S〉> (from 10 and 16)

18. [S]⊥ ⊃ [T]∼p (from 17 by K([T]) and K([S])).

Therefore the original formula ξ is also provable in our logic.

2.3 Conclusion and future work
Besides embedding a nonmonotonic logic into a monotonic logic, our logic MEM
has a further interesting feature that may be exploited in a future work: we can
now apply well-known automated deduction methods for modal logics (Enjalbert
and Fariñas del Cerro [1989]; Fariñas del Cerro and Herzig [1995]; Hustadt and
Schmidt [2000]; Schmidt and Tishkovsky [2008]; Sebastiani and Tacchella [2009]) to
equilibrium logic. We may use in particular our LoTREC tableau proving platform
(Fariñas del Cerro et al. [2001]). The implementation of a tableau procedure for
MEM requires a specific tableau rule that does the following: for each subset of
the set of propositional variables appearing in some node, create an S-accessible
node where all these variables are false.

In the following chapter, we will see another monotonic modal logic DL-PA
that is able to embed equilibrium logic. This result was already published in
Fariñas del Cerro et al. [2013].

80

Chapter 3

Combining Equilibrium Logic and
Dynamic Logic

In this chapter, we present two approaches: (1) we introduce an alternative mono-
tonic modal logic underlying equilibrium logic, and also (2) we introduce an ex-
tension of equilibrium logic with dynamic modal operators.

In parallel to the extensions of the original language of ASP, we here propose
a different, but more modest approach, where the new piece of information is
restricted to be atomic. It is based on the update of HT models. We consider two
kinds of basic update operations: one sets a propositional variable true either here
or there according to its truth value in these sets; similarly the other sets it false
either here or there, again as far as its truth value is concerned. From these basic
update operations we allow to build update programs by means of the standard
dynamic logic program operators of sequential and nondeterministic composition,
iteration, and test. We call the resulting formalism dynamic here-and-there logic
(D-HT).

The notions of an equilibrium model and of logical consequence in equilibrium
models is defined exactly as before. We also recall dynamic logic of propositional
assignments (DL-PA) that was studied in Balbiani et al. [2013], and define a
translation tr from the language of D-HT into the language of DL-PA. Our main
result says that a formula ϕ is an equilibrium consequence of a formula χ if and
only if the DL-PA formula

〈π1〉
(

tr(χ) ∧ ∼〈π2〉tr(χ) ⊃ tr(ϕ)
)

is valid, where π1 and π2 are DL-PA programs whose length is polynomial in the
length of χ and ϕ.

The chapter is organised as follows. In Section 3.1 we introduce dynamic here-
and-there logic (D-HT) and define consequence in its equilibrium models. In

81

Section 3.2 we present dynamic logic of propositional assignments (DL-PA). In
Section 3.3 we define translations relating the language of D-HT to the language
of DL-PA and vice versa. Section 3.4 concludes the chapter giving our further
interests related with DL-PA.

3.1 A dynamic extension of HT logic and of equi-
librium logic

In this section we propose a dynamic extension of here-and-there (HT) logic,
named D-HT. By means of the standard definition of an equilibrium model, this
extension also provides a definition of a non-monotonic consequence relation which
is a conservative extension of the standard equilibrium consequence relation.

To begin with, we fix a countably infinite set of propositional variables (P)
whose elements are noted p, q, etc. The language is produced through adding
dynamic modalities to the language of HT logic. The semantics is based on HT
models.We write HT for the set of all HT models: HT = {(H,T) : H ⊆ T ⊆ P}.

3.1.1 Language (LD-HT)
The language LD-HT is defined by the following grammar:

ϕF p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | [π]ϕ | 〈π〉ϕ
π F +p | −p | π; π | π ∪ π | π∗ | ϕ?

where p ranges over P.
We have only two kinds of atomic programs in the language: +p and −p. Each

of them minimally updates an HT model, if this is possible: in a sense, the former
‘upgrades the truth of p’ while the latter ‘downgrades the truth of p’, again if it
is possible. More precisely, the program +p makes p true in there, but keeps its
truth value same in here if p is not included in there. However, if p exists in there,
but not in here then it makes p true in here while keeping its truth value same in
there; otherwise the program +p fails. On the other hand, the program −p sets
p false in here as it keeps it in there if p is contained in here. Nevertheless, if p
is only contained in there, but not in here then the program −p excludes p from
there keeping its truth value same in here; or else the program fails.

Using the atomic programs described above, we can define more specific, but
again primitive update operators which are symbolically expressed with +hp, +tp,
−tp, and −hp:

82

+hp = (〈+p〉[+p]⊥? ; +p) ∪ p?
+tp = (¬p? ; +p) ∪ ¬¬p?
−hp = (p? ;−p) ∪ 〈+p〉>?
−tp = (〈+p〉[+p]⊥? ;−p) ∪ ¬p?

As it is clearly seen from the statements above, the program +tp makes p true
only there, but keeps the truth value of p here. Similarly, the program −hp makes
p false just here without modifying it there. Moreover, the program +hp makes p
true here, under the condition that p is true there; else it is inexecutable. Similarly,
the program −tp sets p false there, under the condition that p is false here; else it
is inexecutable.

On the other hand, it is also possible to give these expressions the other way
around:

+p = (¬p? ; +tp) ∪ (〈+p〉[+p]⊥? ; +hp)
−p = (p? ;−hp) ∪ (〈+p〉[+p]⊥? ;−tp).

So, we see that in fact they can mutually defined in terms of each other.
The operators of sequential composition (“;”), nondeterministic composition

(“∪”), finite iteration (“(.)∗”, the so-called Kleene star), and test (“(.)?”) are fa-
miliar from propositional dynamic logic (PDL). We refer the reader to Appendix
D for a short introduction of PDL.

We will generally call formulas and programs as expressions, so in this paper
an expression is a formula or a program.

The length of a formula ϕ, noted |ϕ|, is the number of symbols used to write
down ϕ, with the exception of [,], 〈, 〉, +, −, and parentheses. For example,
|p ∧ (q ∨ r)| = 1 + 1 + 3 = 5. The length of a program π, noted |π|, is defined in
the same way. For example, |

(
[+p]⊥? ;−p

)
| = 3 + 1 + 1 = 5.

For a given formula ϕ, the set of variables occurring in ϕ is noted Pϕ. For
example, P[−p](q∨r) = {p, q, r}.

The static fragment of LD-HT is the fragment of LD-HT without dynamic oper-
ators [π] and 〈π〉 for every π, noted LHT. This is nothing but the language of HT
logic and of equilibrium logic.

Negation of a formula ϕ, noted ¬ϕ, is defined as the abbreviation of ϕ → ⊥.
We also use > as a shorthand for ⊥ → ⊥.

83

‖p‖D-HT =
{

(H,T) : p ∈ H
}

‖⊥‖D-HT = ∅
‖ϕ ∧ ψ‖D-HT = ‖ϕ‖D-HT ∩ ‖ψ‖D-HT

‖ϕ ∨ ψ‖D-HT = ‖ϕ‖D-HT ∪ ‖ψ‖D-HT

‖ϕ→ ψ‖D-HT =
{

(H,T) : (H,T), (T, T) ∈ (HT \ ‖ϕ‖D-HT) ∪ ‖ψ‖D-HT
}

‖[π]ϕ‖D-HT =
{

(H,T) : (H1, T1) ∈ ‖ϕ‖D-HT for every ((H,T), (H1, T1)) ∈ ‖π‖D-HT
}

‖〈π〉ϕ‖D-HT =
{

(H,T) : (H1, T1) ∈ ‖ϕ‖D-HT for some ((H,T), (H1, T1)) ∈ ‖π‖D-HT
}

‖+p‖D-HT =
{

((H1, T1), (H2, T2)) : H2 \H1 = {p} and T2 = T1, or T2 \ T1 = {p} and H2 = H1
}

‖−p‖D-HT =
{

((H1, T1), (H2, T2)) : H1 \H2 = {p} and T2 = T1, or T1 \ T2 = {p} and H2 = H1
}

‖π1;π2‖D-HT = ‖π1‖D-HT ◦ ‖π2‖D-HT

‖π1∪π2‖D-HT = ‖π1‖D-HT ∪ ‖π2‖D-HT

‖π∗‖D-HT = ‖π‖∗D-HT

‖ϕ?‖D-HT =
{

((H,T), (H,T)) : (H,T) ∈ ‖ϕ‖D-HT
}

Table 3.1: Interpretation of the D-HT connectives.

3.1.2 Dynamic here-and-there logic: D-HT
We display below the interpretation of formulas and programs together at a time:
the interpretation ‖ϕ‖D-HT of a formula ϕ is a set of HT models, while the inter-
pretation ‖π‖D-HT of a program π is a relation on the set of HT models, HT. Note
that the interpretation of the dynamic connectives differs from that of usual modal
logics because there is a single relation interpreting programs (that therefore does
not vary with the models). The definitions are in Table 3.1.

We find it useful to also employ the interpretations of primitive update opera-
tors we mention above.

‖+hp‖D-HT =
{

((H1, T1), (H2, T2)) : H2 \H1 = {p} and T2 = T1
}

‖+tp‖D-HT =
{

((H1, T1), (H2, T2)) : H2 = H1 and T2 \ T1 = {p}
}

‖−hp‖D-HT =
{

((H1, T1), (H2, T2)) : H1 \H2 = {p} and T2 = T1
}

‖−tp‖D-HT =
{

((H1, T1), (H2, T2)) : H2 = H1 and T1 \ T2 = {p}
}

For instance, ‖¬p‖D-HT is the set of HT models (H,T) such that p < T (and
therefore p < H by the heredity constraint). Hence, ‖p ∨ ¬p‖D-HT is the set of HT
models (H,T) such that p ∈ H or p < T . ‖¬¬p‖D-HT is the set of HT models
(H,T) such that p ∈ T . Moreover, ‖〈+p〉>‖D-HT is the set of HT models (H,T)
such that p < H: when p ∈ H then p cannot be upgraded and the +p program is
inexecutable. Finally, the models of the following formula are HT-models (H,T)

84

where T contains p and H does not.

‖〈+p〉> ∧ 〈−p〉>‖D-HT = ‖¬¬p‖D-HT ∩
(
HT \ ‖p‖D-HT

)
= ‖¬¬p‖D-HT ∩ ‖〈+p〉>‖D-HT

= {(H,T) : p < H and p ∈ T}

A formula ϕ is D-HT valid if and only if every HT model is also a model
of ϕ, i.e., ‖ϕ‖D-HT = HT. For example, neither 〈+p〉> nor 〈−p〉> is valid, but
〈+p ∪ −p〉> is. Moreover, [+p][+p]p, [−p][−p]¬p, and [p? ∪ ¬p?](p ∨ ¬p) are all
valid. Finally, the following equivalences are valid:

[−p]⊥ ↔ ¬p
〈−p〉> ↔ ¬¬p
[+p]⊥ ↔ p

Therefore [−p]⊥, 〈−p〉> and [+p]⊥ can all be expressed in LHT. In contrast,
〈+p〉> cannot because there is no formula in the static fragment LHT that conveys
the information such that p ∈ T \H: to see this, we first take an arbitrary p ∈ P,
and without loss of generality, consider P, restricted to P′ = {p}. Then, we assume
for a contradiction that there exists an LHT-formula, say ϕ (by the assumption
above, we have Pϕ ⊆ {p}), which characterizes the property of p being just in the
relative difference of there in here in a given HT model, i.e., for some LHT-formula
ϕ,

p ∈ T \H if and only if (H,T) ∈ ‖ϕ‖D-HT (?),

for every HT model (H,T). Now, let us see all possible HT models over P′,
namely (∅, ∅), (∅, {p}), and ({p}, {p}). Clearly, among all, only (∅, {p}) answers
the requirements of being an HT model of ϕ (see (?) above). In other words,
(∅, {p}) ∈ ‖ϕ‖D-HT. Moreover, it is easy to see that the simplest HT formulas over
P′ are p, ¬p, ¬¬p (at this point, it should be clear to the reader that ¬¬p is not
equivalent to p (see below)), ⊥ and T . All others are well-formed combinations of
these. On the other hand, as we have mentioned before, in HT logic, the semantics
of negation is different from the semantics of the classical one in general. More
explicitly, while ‖p‖D-HT = {(H,T) : p ∈ H}, we have ‖¬p‖D-HT = {(H,T) : p <
T}, ‖¬¬p‖D-HT = {(H,T) : p ∈ T}, ‖¬¬¬p‖D-HT = ‖¬p‖D-HT, and so on. Briefly,
the intuitionistic negation of HT logic doesn’t work minimally. In addition to all
above, although (∅, {p}) ∈ ‖¬¬p‖D-HT, its interpretation is not strong enough to
satisfy the property of p ∈ T \H. Therefore, (∅, {p}) cannot be an HT model of
ϕ. Thus, there cannot be a well-formed HT formula that characterises p ∈ T \H.
As a result, our extension of HT is more expressive than HT itself.

85

D-HT logic satisfies the heredity property of intuitionistic logic for atomic
formulas: if (H,T) is an HT model of p then (T, T) is also an HT model of p. It
is trivially satisfied because for every HT model (H,T), we have H ⊆ T . D-HT
logic however fails to satisfy this property for more complex formulas containing
dynamic operators. To see this, consider the HT model (∅, {p}) and the formula
〈+p〉>: (∅, {p}) is a model of 〈+p〉>, while ({p}, {p}) is not. However, our logic
D-HT looks like a particular intuitionistic modal logic. Such logics were studied in
the literature (Fischer-Servi [1976]). For such logics, duality of the modal operators
fails as it does in D-HT as well: while [π]ϕ → ¬〈π〉¬ϕ is valid, the converse is
invalid. For example, (∅, ∅) is an HT model of ¬〈+p〉¬p, but not of [+p]p.

It follows from the next proposition that we have a finite model property for
D-HT: if ϕ has an HT model then ϕ has an HT model (H,T) such that T is
finite.

Proposition 3.1 Given an LD-HT-formula ϕ, let P be a set of propositional vari-
ables such that P ∩ Pϕ = ∅. Then, for every Q ⊆ P ,

(H,T) ∈ ‖ϕ‖D-HT if and only if (H∪Q, T∪P) ∈ ‖ϕ‖D-HT.

Proof. See Proposition A.9 and its proof in Section A.3 of Appendix A. q.e.d.

3.1.3 Dynamic equilibrium logic
An equilibrium model of an LD-HT formula ϕ is a set of propositional variables
T ⊆ P such that:

1. (T, T) is an HT model of ϕ;

2. no (H,T) with H ⊂ T is an HT model of ϕ.

To begin with, note that (T, T) being a D-HT model of ϕ is not the same
as T being a classical model of ϕ (where → is viewed as material implication).
Therefore, we cannot replace the first condition of equilibrium model definition
above by “T is a classical model of ϕ”.

Here are some examples. The valid formulas of D-HT all have exactly one
equilibrium model, namely the empty set. There are some formulas that have even
no equilibrium model, such as 〈−q〉(p∧q). This D-HT formula has no equilibrium
model because 〈−q〉(p∧ q) does not even have a D-HT model either. The unique
equilibrium model of 〈+p〉(¬p→ q) is ∅ because it is D-HT valid. Moreover, {p}
is the only equilibrium model for both 〈−p〉(¬p→ q), and 〈+q; +q〉(p ∧ q).

86

Let χ and ϕ be LD-HT formulas. ϕ is a consequence of χ in equilibrium models,
written χ |≈ ϕ, if and only if for every equilibrium model T of χ, (T, T) is a
D-HT model of ϕ. We have discussed formulas without dynamic modalities in
Chapter 1, so here are some examples involving dynamic operators. For example,
p ∨ q |≈ [¬p?]q, and p ∨ q |≈ [¬p?]〈+p; +p〉(p ∧ q), but also vice versa. We also
have p ∨ q |≈ [¬p?; +p; +p](p ∧ q) and [[+p]⊥? ∪ [−p]⊥?](p ∨ ¬p) |≈ p ∨ ¬p.

As it is clear from the definition above, in our dynamic language we can check
not only problems of the form χ |≈ [π]ϕ, but also problems of the form 〈π〉χ |≈ ϕ.
The former expresses a hypothetical update of χ: if χ is updated by π then ϕ
follows. The latter may express an actual update of χ, where the program π
executes the update ‘the other way round’: it is the converse of the original update
program. For example, suppose we want to update χ = p∧q by ¬q. Updates by
the latter formula can be implemented by the program −q;−q. Now the converse
execution of −q;−q is nothing but the execution of the program π = +q; +q. So,
in order to know whether the update of p ∧ q by ¬q results in p ∧ ¬q we have
to check whether 〈+q; +q〉(p ∧ q) |≈ p ∧ ¬q. The latter is indeed the case: we
have seen above that the only equilibrium model of 〈+q; +q〉(p ∧ q) is {p}, and
({p}, {p}) is clearly a D-HT model of p ∧ ¬q. Note that the problems χ ` [π]ϕ
and 〈π〉χ ` ϕ are deductively equivalent in D-HT logic because ` is monotonic.
This is not the case here.

3.2 Dynamic logic of propositional assignments:
DL-PA

In this section we define syntax and semantics of dynamic logic of propositional as-
signments (DL-PA). The star-free fragment of DL-PA was introduced in Herzig
et al. [2011], where it was shown that it embeds Coalition Logic of Proposi-
tional Control (Hoek and Wooldridge [2005]; Hoek et al. [2010]; van der Hoek
and Wooldridge [2005]). The full logic with the Kleene star was further studied in
Balbiani et al. [2013]. In addition to assignments of propositional variables to true
or false, here we allow of assignments to arbitrary formulas as well. We need this
extension in order to copy the propositional variables of a valuation and similarly,
after some changes are done, to be able to retrieve the initial truth values of that
valuation. We will explain these notions later in full detail. However, we keep on
calling that logic DL-PA. This is in order because it has the same expressivity as
the logic DL-PA of Balbiani et al. [2013].

3.2.1 Language (LDL-PA)
The language of DL-PA is defined by the following grammar:

87

‖p:=ϕ‖DL-PA = {(V1, V2) : if V1 ∈ ‖ϕ‖DL-PA then V2 = V1∪{p} and if V1 < ‖ϕ‖DL-PA then V2 = V1\{p}}
‖π;π′‖DL-PA = ‖π‖DL-PA ◦ ‖π′‖DL-PA

‖π∪π′‖DL-PA = ‖π‖DL-PA ∪ ‖π′‖DL-PA

‖π∗‖DL-PA =
(
‖π‖DL-PA

)∗
‖ϕ?‖DL-PA = {(V, V) : V ∈ ‖ϕ‖DL-PA}

‖p‖DL-PA = {V : p ∈ V }
‖⊥‖DL-PA = ∅

‖ϕ∧ψ‖DL-PA = ‖ϕ‖DL-PA ∩ ‖ψ‖DL-PA

‖ϕ∨ψ‖DL-PA = ‖ϕ‖DL-PA ∪ ‖ψ‖DL-PA

‖ϕ⊃ψ‖DL-PA = (2P \ ‖ϕ‖DL-PA) ∪ ‖ψ‖DL-PA

‖〈π〉ϕ‖DL-PA =
{
V : there is V ′ such that (V, V ′) ∈ ‖π‖DL-PA and V ′ ∈ ‖ϕ‖DL-PA

}

Table 3.2: Interpretation of the DL-PA connectives.

π F p:=ϕ | π; π | π ∪ π | π∗ | ϕ?
ϕ F p | ⊥ | ϕ ⊃ ϕ | 〈π〉ϕ

where p ranges over a countably infinite set of propositional variables P. So, an
atomic program of the language of DL-PA is a program of the form p:=ϕ.

The star-free fragment of DL-PA is the subset of the language made up of
formulas without the Kleene star “(.)∗”.

We abbreviate the other logical connectives in the usual way: for example, ∼ϕ
is defined as ϕ ⊃ ⊥. In particular, > is defined as ∼⊥ def= ⊥⊃⊥. Moreover,
ϕ ∨ ψ def= ∼ϕ ⊃ ψ, ϕ ∧ ψ def= ∼(ϕ ⊃ ∼ψ), and ϕ ≡ ψ

def= (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
Finally, [π]ϕ abbreviates∼〈π〉∼ϕ, and the program skip abbreviates>? (“nothing
happens”). Note that skip could also be defined by p:=p, for arbitrary p. The
language of DL-PA allows to express the primitives of standard programming
languages. For example, the loop “while ϕ do π” can be expressed as the DL-PA
program (ϕ?; π)∗;∼ϕ?.

3.2.2 Semantics
DL-PA programs are interpreted by means of a (unique) relation between valua-
tions: atomic programs p:=ϕ update valuations in the obvious way, and complex
programs are interpreted just as in PDL by mutual recursion. Table 3.2 gives the
interpretation of the DL-PA connectives.

A formula ϕ is DL-PA valid if ‖ϕ‖DL-PA = 2P, and it is DL-PA satisfiable if
‖ϕ‖DL-PA , ∅. For example, the formulas 〈p:=>〉>, 〈p:=>〉p and 〈p:=⊥〉∼p are
all valid, as well as ψ ∧ [ψ?]ϕ ⊃ ϕ and [p:=>∪ q:=>](p∨ q). We continue with an

88

interesting example: (induction axiom) ϕ ∧ [π∗](ϕ ⊃ [π]ϕ) ⊃ [π∗]ϕ. Finally, if p
does not occur in ϕ then both ϕ ⊃ 〈p:=>〉ϕ and ϕ ⊃ 〈p:=⊥〉ϕ are valid. This is
due to the following property that we will use while relating dynamic equilibrium
logic into DL-PA.

Proposition 3.2 Suppose Pϕ ∩ P = ∅, i.e., none of the variables of P occurs in
ϕ. Then V ∪P ∈ ‖ϕ‖DL-PA iff V \P ∈ ‖ϕ‖DL-PA.

Contrarily to PDL, it is shown in Balbiani et al. [2013] that the Kleene star
operator can be eliminated in DL-PA: for every DL-PA program π, there is
an equivalent program π′ such that no Kleene star occurs in π′. However, the
elimination is not polynomial.

3.3 Correspondence between D-HT and DL-PA
In this section we are going to translate D-HT and dynamic equilibrium logic into
DL-PA, and vice versa. These translations are polynomial and the first allows us
to check D-HT validity and consequence in equilibrium models in DL-PA.

We start by defining some DL-PA programs that will be the building blocks in
embedding some notions of D-HT into DL-PA. Some of these programs require
to copy propositional variables. The key point of the translation is then to consider
programs allowing to characterise a given HT model. This is done by renaming or
copying the set of propositional variables appearing in the given state. Some of
these programs are used in the translation.

3.3.1 Copying propositional variables
The translation from D-HT into DL-PA introduces some ‘fresh’ propositional
variables that do not exist in the D-HT formula we translate. Precisely, this
requires to suppose a new set of propositional variables: it is the union of the
set of ‘original’ variables P = {p1, p2, . . .} and the set of ‘copies’ of these variables
P′ = {p′1, p′2, . . .}, where P and P′ are disjoint. The function (.)′ is a bijection
between the powerset of these two sets: for every subset Q ⊆ P of original variables,
the set Q′ = {p′ : p ∈ Q} ⊆ P′ is its image, and the other way around. We suppose
that (.)′ is an involution, i.e., it behaves as an identity when applied twice. Now,
a DL-PA valuation extends to the form of X ∪ Y ′, where X ⊆ P and Y ′ ⊆ P′. As
a result, the definition of DL-PA validity expands to the power set of P ∪ P′, i.e.,
2P∪P′ .

Remark 3.1 We embed the D-HT model (H,T) into DL-PA logic as a valuation
H ∪ T ′: H encodes the here-valuation while T ′ encodes the there-valuation. On

89

mkFalse≥0({p1, . . . , pn}) = (p1:=⊥ ∪ skip); · · · ; (pn:=⊥ ∪ skip)
mkFalse>0({p1, . . . , pn}) = (p1:=⊥ ∪ · · · ∪ pn:=⊥); mkFalse≥0(P ′)

cp({p1, . . . , pn}) = p′1:=p1; · · · ; p′n:=pn
cpBack({p1, . . . , pn}) = p1:=p′1; · · · ; pn:=p′n

Table 3.3: Fundamental units (DL-PA programs) of embedding.

the other hand, we can translate a DL-PA model X ∪ Y ′ into D-HT logic under
some constraints: note that in order to respect the heredity constraint hidden in
the structure of HT models, our translation has to guarantee that X is a subset of
Y . Therefore, we can just translate DL-PA models, X ∪Y ′ such that X ⊆ Y , and
we get a D-HT model (X, Y).

3.3.2 Molecular DL-PA programs of embedding
Table 3.3 collects some DL-PA programs that are going to be useful for our
enterprise. In that table, P = {p1, . . . , pn} is a finite (possibly empty) subset of P
and each p′i is a copy of pi as explained above. Also note that P ′ ⊂ P is some set
obtained from P removing exactly one propositional variable. However, we can
easily generalise the definitions given in Table 3.3 to ones where the domain P is
a countable subset of P. In both cases, when P is empty, we stipulate that all
these programs except mkFalse>0(∅) trivially equal skip. However, mkFalse>0(∅)
is inexecutable in this case.

Let P = {p1, . . . , pn}. The program mkFalse≥0(P) nondeterministically makes
some of the variables of P false, possibly none. The program mkFalse>0(P) non-
deterministically makes false at least one of the variables of P , and possibly more.
Its subprogram p1:=⊥ ∪ · · · ∪ pn:=⊥ makes exactly one of the variables in the
valuation P false. The program cp(P) assigns to each ‘fresh’ variable p′i the truth
value of pi, while the program cpBack(P) assigns to each variable pi the truth value
of p′i. More explicitly, for each i ∈ {1, . . . , n}, cp(P) produces the fresh variable, p′i
on the valuation V (where it is applied) if pi ∈ V ; otherwise removes p′i, and the
same procedure applies conversely for cpBack(P). For our purposes, we shall use
the former as a way of storing the truth value of each variable of P before they
undergo some changes. That will allow later on to retrieve the original values of
the variables in P by means of the cpBack(P) program. Therefore the sequence
cp(P); cpBack(P) leaves the truth values of the variables in P unchanged.

Observe that each program of Table 3.3 has length linear in the cardinality

90

of P . Observe also that the programs mkFalse≥0(P) and mkFalse>0(P) are non-
deterministic. Moreover, as mkFalse≥0(P) is always executable, mkFalse>0(P) is
not because the latter cannot be applied to empty valuations. In contrast, the
programs cp(P) and cpBack(P) are deterministic and always executable: [cp(P)]ϕ
and 〈cp(P)〉ϕ are equivalent, as well as [cpBack(P)]ϕ and 〈cpBack(P)〉ϕ.

Lemma 3.1 (Program Lemma) Let P ⊆ P be non-empty. Then

‖mkFalse≥0(P)‖DL-PA=
{
(X1∪Y ′1 , X2∪Y ′2) : X2=X1 \Q, for some Q ⊆ P and Y ′2=Y ′1

}
‖mkFalse>0(P)‖DL-PA=

{
(X1∪Y ′1 , X2∪Y ′2) : X2=X1 \Q, for some Q ⊆ P and Y ′2=Y ′1

}
‖cp(P)‖DL-PA=

{
(X1∪Y ′1 , X2∪Y ′2) : X2=X1 and Y ′2 = (X1 ∩ P)′ ∪ (Y ′1 \ P ′)′

}
‖cpBack(P)‖DL-PA=

{
(X1∪Y ′1 , X2∪Y ′2) : X2=(Y ′1 ∩ P ′)′ ∪ (X1 \ P) and Y ′2=Y ′1

}
.

It follows from the interpretations of cp(P) and mkFalse≥0(P) that

‖cp(P); mkFalse≥0(P)‖DL-PA ={
(X1∪Y ′1 , X2∪Y ′2) : X2=X1 \Q for some Q ⊆ P and Y ′2=(X1 ∩ P)′ ∪ (Y ′1 \ P ′)

}
.

Remark 3.2 One should note that when mkFalse≥0(P) and mkFalse>0(P) are
applied to a valuation V in which no variables of P exists, i.e., V ∩ P = ∅, these
programs always make a loop and we obtain the same valuation again. The same
may occur even when V ∩P is nonempty when one just makes false the propositional
variables of P \V which are already false in V. The interpretation of such programs
clearly differs when P ⊆ V because having mkFalse>0(P) applied to V while we
reach a state V ′ ⊂ V , we obtain a valuation V ′′ ⊆ V after mkFalse≥0(P) is applied
to V . As a result, for nonempty P ⊆ P,

mkFalse>0(P) = mkFalse≥0(P) \ {(V, V) : P ⊆ V ⊆ P}.

At this point, just before we pass to the next subsection, it is also useful to note
that:

‖skip‖DL-PA = ‖>?‖DL-PA = ‖p:=p‖DL-PA = {(V, V) : V ⊆ P}.

3.3.3 Translating LD-HT to LDL-PA

To start with we translate the formulas and the programs of the language LD-HT

into the language LDL-PA. The translation is given in Table 3.4 in terms of a
recursively defined mapping tr, where we have omitted the homomorphic cases such
as tr([π]ϕ) = [tr(π)]tr(ϕ) and tr(ϕ?) =

(
tr(ϕ)

)
?. Observe that tr is polynomial.

91

tr(p) = p, for p ∈ P
tr(⊥) = ⊥

tr(ϕ→ ψ) = [skip ∪ cpBack(Pϕ→ψ)]
(
tr(ϕ) ⊃ tr(ψ)

)
tr(+p) =

(
∼p′? ; p′:=>

)
∪
(
∼p∧p′? ; p:=>

)
tr(−p) =

(
p? ; p:=⊥

)
∪
(
∼p∧p′? ; p′:=⊥

)

Table 3.4: Translation from LD-HT into LDL-PA.

For example,

tr(>) = tr(⊥→⊥) = [skip ∪ skip]>
tr(p ∨ ¬p) = p ∨ [skip ∪ p:=p′]∼p
tr(p→ q) = [skip ∪ (p:=p′ ; q:=q′)](p ⊃ q).

The first formula is equivalent to >, and the second is equivalent to p∨ (∼p∧∼p′),
i.e., to p ∨ ∼p′. Finally, the third is equivalent to (p⊃q) ∧ (p′⊃q′).

Lemma 3.2 (Main Lemma) (H,T) ∈ ‖ϕ‖D-HT iff H ∪ T ′ ∈ ‖tr(ϕ)‖DL-PA.

Proof. See Lemma A.3 and its proof in Section A.3 of Appendix A. q.e.d.

3.3.4 From D-HT to DL-PA
We now establish how tr can be used to prove that a given formula ϕ is D-HT
satisfiable. To that end, we prefix the translation by the ‘cp(Pϕ)’ program that
is followed by the ‘mkFalse≥0(Pϕ)’ program. The ‘cp(Pϕ)’ program produces a
‘classical’ valuation T∪(T ∩ Pϕ)′, for some subset T of P (as far as the variables
of ϕ are concerned), and then ‘mkFalse≥0(Pϕ)’ program transforms the valuation
T∪(T ∩ Pϕ)′ into a valuation H∪(T ∩ Pϕ)′ for some H such that H⊆T .

Theorem 3.1 Let ϕ be an LD-HT formula. Then we have:

• ϕ is D-HT satisfiable if and only if
〈cp(Pϕ)〉〈mkFalse≥0(Pϕ)〉tr(ϕ) is DL-PA satisfiable.

• ϕ is D-HT valid if and only if
[cp(Pϕ)][mkFalse≥0(Pϕ)]tr(ϕ) is DL-PA valid.

92

The proof of this theorem is given by the Main Lemma and the Program Lemma.
As a result of Theorem 3.1, the formula [cp({p})][mkFalse≥0({p})]tr(p ∨ ¬p)

should not be DL-PA valid since we know that p ∨ ¬p is not D-HT valid. We
indeed have the following sequence of equivalent formulas:

1. [cp({p})][mkFalse≥0({p})]tr(p ∨ ¬p)

2. [p′:=p][p:=⊥ ∪ skip](p ∨ [skip ∪ p:=p′]∼p)

3. [p′:=p][p:=⊥ ∪ skip](p ∨ ∼p′)

4. [p′:=p]
(
[p:=⊥](p ∨ ∼p′) ∧ (p ∨ ∼p′)

)
5. [p′:=p]

(
∼p′ ∧ (p ∨ ∼p′)

)
6. ∼p ∧ (p ∨ ∼p)

7. ∼p

The last is obviously not DL-PA valid, so the first line is not DL-PA valid either.

Theorem 3.2 For an LD-HT formula ϕ,

|=D-HT ϕ if and only if |=DL-PA [cp(Pϕ); mkFalse≥0(Pϕ)]tr(ϕ).

3.3.5 From dynamic equilibrium logic to DL-PA
Having seen how D-HT can be embedded into DL-PA, we now turn to equilibrium
logic.

Theorem 3.3 For every LD-HT formula χ, T ⊆ P is an equilibrium model of χ if
and only if T∪T ′ is a DL-PA model of tr(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr(χ).

Proof. See Theorem A.4 and its proof in Section A.3 of Appendix A. q.e.d.

Theorem 3.4 Let χ and ϕ be LD-HT formulas. Then χ |≈ ϕ if and only if

〈cp(Pχ ∪ Pϕ)〉
((

tr(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr(χ)
)
⊃ tr(ϕ)

)
is DL-PA valid.

Proof. See Theorem A.5 and its proof in Section A.3 of Appendix A. q.e.d.

Theorem 3.4 provides a polynomial embedding of the consequence problem in our
dynamic equilibrium logic into DL-PA.

93

tr′(p) = p, for p ∈ P
tr′(ϕ ⊃ ψ) = tr′(ϕ)→ tr′(ψ)
tr′(p:=>) = p? ∪

(
+p ; +p

)
tr′(p:=⊥) = ¬p? ∪

(
−p ;−p

)

Table 3.5: Translation from DL-PA with assignments only to > and ⊥ into LD-HT

(main cases).

3.3.6 From DL-PA to D-HT
In this subsection we present a simple translation of the fragment of DL-PA
whose atomic assignment programs are restricted to p:=> and p:=⊥ and with the
conversion operator:

The translation is given in Table 3.5, where we have omitted the homomorphic
cases. In the last two lines, tr′(p:=>) makes p true both here and there, while
tr′(p:=⊥) makes p false both here and there. The translation is clearly polynomial.

So, the nondeterministic program +∀p ∪−∀p makes p behave classically: after
its execution, the truth value of p is the same here and there. Note that both +∀p
and −∀p are always executable.

The next lemma is the analog of the Main Lemma adapted to tr′, and is used
in the proof of Theorem 3.5.

Lemma 3.3 Let ϕ be a DL-PA formula. Then,

V ∈ ‖ϕ‖DL-PA if and only if (V, V) ∈ ‖tr′(ϕ)‖D-HT.

Now, we are ready to show how tr′ can be used to prove that a given formula
ϕ is DL-PA satisfiable.

Theorem 3.5 Let ϕ be a DL-PA formula. Then, ϕ is DL-PA satisfiable if and
only if tr′(ϕ) ∧ ∧p∈Pϕ

(p∨¬p) is satisfiable in D-HT.

3.4 Conclusion and future work
We have seen in this chapter to update an HT model by simple programs, but what
about updates by complex programs? Actually we may implement such updates
by means of complex D-HT programs. For example, the D-HT program

(¬p ∨ q)? ∪ (−p; +q)

94

makes the implication p→ q true, whatever the initial HT model is (although there
may be other minimal ways of achieving this). More generally, let us consider that
an abstract semantical update operation is a function f : HT −→ 2HT associating
to every HT model (H,T) the set of HT models f(H,T) resulting from the update.
If the language is finite then for every such f we can design a program πf such that
‖πf‖D-HT = f , viz. the graph of f . This makes use of the fact that in particular we
can uniquely (up to logical equivalence) characterise HT models by means of the
corresponding formulas. For example, the formula

(
〈+p〉> ∧ 〈−p〉>

)
∧
(∧

q,p ¬q
)

identifies the HT model (∅, {p}). Note finally that we cannot express the HT model
(∅, {p}) in the language LHT, where there is no formula distinguishing that model
from the model ({p}, {p}).

We plan as a future work to investigate the relation between MEM logic and
DL-PA, and how these logics can be combined.

95

Chapter 4

From Epistemic Specifications to
Epistemic ASP

As an alternative to the approach proposed in the previous chapter, this chapter
presents an epistemic extension of equilibrium logic. We also compare our ap-
proach with Gelfond’s epistemic specifications, mentioned in Section 1.4 of Chapter
1. Given that equilibrium logic is based on HT logic, the first step is to extend HT
logic by two epistemic operators K and K̂ allowing to talk about knowledge and
belief. The latter is slightly different from M . Equilibrium models and the equi-
librium consequence (entailment) relation are then defined in the standard way.
We respectively call the resulting formalisms epistemic here-and-there logic (ab-
breviated by E-HT), and epistemic equilibrium logic. Afterwards, we also define
another epistemic extension of equilibrium logic called autoepistemic equilibrium
logic which is based on the previous one. We finally give a strong equivalence
result for EHT theories.

The rest of the chapter is organised as follows. Section 4.1 introduces epistemic
here-and-there logic (E-HT): we give language, semantics and some semantical
properties. Section 4.2 defines epistemic equilibrium models and epistemic equi-
librium consequence, and also autoepistemic equilibrium models, and show that
the notion of strong equivalence can be captured in E-HT: the strong equivalence
of two EHT theories in the sense of epistemic equilibrium models can be verified
by checking their equivalence in E-HT logic. Finally, Section 4.5 concludes with
some final remarks and discussions about future work.

4.1 An epistemic extension of HT logic
In this section we introduce epistemic HT logic, abbreviated E-HT. Its language
extends that of HT logic by two epistemic modal operators K and K̂ . Its models

96

generalise HT models (H,T) to collections
{

(Hi, Ti)
}
i
of such models. An S5

model is a nonempty set of valuations, so an EHT model can also be viewed as a
refinement of S5 models where possible worlds are replaced by HT models.

4.1.1 Language (LE-HT)
The language LE-HT is given by the following grammar:

ϕF p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Kϕ | K̂ϕ

where p ranges over a countably infinite set P = {p, q, . . .} of propositional vari-
ables. A formula is said to be objective (or non-modal) if it does not contain modal
operators K or K̂ . As usual, >, ¬ϕ and ϕ ↔ ψ respectively abbreviate ⊥ → ⊥,
ϕ→ ⊥ and (ϕ→ ψ) ∧ (ψ → ϕ).

Given a formula ϕ, the set of variables that appear in ϕ is noted Pϕ. For
example, PK (p→¬q) = {p, q}. An EHT theory Φ is a finite set of formulas in the
language LE-HT of E-HT logic. The set of variables occurring in Φ is PΦ = ⋃

ϕ∈Φ
Pϕ.

4.1.2 Epistemic here-and-there models
An epistemic here-and-there (EHT) model is an ordered pair whose first component
is a nonempty collection of there-valuations, and the second component assigns a
here-valuation to each there-valuation in the first component. Formally, an EHT
model is an ordered pair (T, ~) in which

• T ⊆ 2P is a nonempty set of valuations;

• ~ is a function ~ : T → 2P such that ~(T) ⊆ T for every T ∈ T.

An EHT model can be viewed as a collection of HT models: the here-function
~ associates to each valuation T ∈ T the HT model (~(T), T). In particular,
a non-epistemic HT model can be identified with an EHT model where T is a
singleton. The inclusion constraint on the function ~ is the heredity constraint
of intuitionistic logic. A particular case is when ~ is the identity function, i.e.,
~ = id. Then ~(T) = T for every T ∈ T, which means that such EHT models
are nothing but S5 models. We write E-HT for the set of all EHT models, with
typical elements M, M′, etc.

A pointed EHT model is a pair
(
(T, ~), T

)
such that (T, ~) is an EHT model

and T ∈ T (the actual world). It will sometimes be useful to have the alterna-
tive notation {(~(T), T)}T∈T for EHT models and ({(~(T), T)}T∈T, (~(T), T)) for
pointed EHT models.

97

4.1.3 Truth conditions
Now, we define the EHT satisfaction relation.1

(T, ~), T |=E-HT p if p ∈ ~(T);
(T, ~), T 6|=E-HT ⊥;
(T, ~), T |=E-HT ϕ ∧ ψ if (T, ~), T |=E-HT ϕ and (T, ~), T |=E-HT ψ;
(T, ~), T |=E-HT ϕ ∨ ψ if (T, ~), T |=E-HT ϕ or (T, ~), T |=E-HT ψ;
(T, ~), T |=E-HT ϕ→ ψ if (T, ~), T |=E-HT ϕ ⊃ ψ and (T, id), T |=E-HT ϕ ⊃ ψ;
(T, ~), T |=E-HT Kϕ if (T, ~), T ′ |=E-HT ϕ for every T ′ ∈ T;
(T, ~), T |=E-HT K̂ϕ if (T, ~), T ′ |=E-HT ϕ for some T ′ ∈ T.

It follows that (T, ~), T |=E-HT ¬ϕ iff (T, ~), T 6|=E-HT ϕ and (T, id), T 6|=E-HT ϕ.
Due to the heredity property of intuitionistic logic this will be equivalent to
(T, id), T 6|=E-HT ϕ (to be shown later).

When a formula is satisfied in all there-valuations we write (T, ~) |=E-HT ϕ.
When the collection of possible HT models is represented explicitly then we

underline the actual world. When no HT model is underlined then the relation
holds for all HT models in the collection. Here are some examples.

1.
{

(∅, {p}), (∅, {q})
}
|=E-HT ¬p since

{
(∅, {p}), (∅, {q})

}
6|=E-HT p and{

({p}, {p}), ({q}, {q})
}
6|=E-HTp.

2.
{

(∅, {p}), (∅, {q})
}
|=E-HT ¬¬p.

3.
{

(∅, {p}), (∅, {q})
}
|=E-HT K¬r since

{
(∅, {p}), (∅, {q})

}
|=E-HT ¬r.

4.
{

(∅, {p}), (∅, {q})
}
|=E-HT ¬K¬p since

{
({p}, {p}), ({q}, {q})

}
6|=E-HT ¬p.

5.
{

(∅, {p}), (∅, {q})
}
|=E-HT ¬¬K (p∨q) as

{
({p}, {p}), ({q}, {q})

}
|=E-HTp ∨ q.

6.
{

(∅, {p}), (∅, {q})
}
|=E-HT K̂¬¬p since

{
(∅, {p}), (∅, {q})

}
|=E-HT ¬¬p.

An EHT model for ϕ is a pointed model
(
(T, ~), T

)
such that (T, ~), T |=E-HT ϕ.

When
(
(T, ~), T

)
is a model for ϕ for every T ∈ T then we say that it is valid in

(T, ~). If formulas of the form Kϕ, ¬Kϕ, ¬¬Kϕ, K̂ϕ, ¬K̂ϕ, and ¬¬K̂ϕ has a
pointed model then it is also valid in that model. The set of all EHT models
of an LE-HT formula ϕ is noted ‖ϕ‖E-HT. This extends to sets of formulas. For
example, ‖p ∨ ¬p‖E-HT is the collection of all EHT models

(
(T, ~), T

)
in which

1 The material implication ⊃ in the fifth clause is just a shorthand enabling a concise formu-
lation; its truth condition is: (T, ~), T |=E-HT ϕ ⊃ ψ iff (T, ~), T 6|=E-HT ϕ or (T, ~), T |=E-HT ψ.

98

p ∈ ~(T) or p < T . Raising the bar of our examples, ‖K (p ∨ ¬p)→ K̂¬¬p‖E-HT is
the collection of all EHT models (T, ~) such that p ∈ T for some T ∈ T. Finally,
‖¬K¬¬ϕ→ ¬Kϕ‖E-HT equals E-HT.

Proposition 4.1 Given an LE-HT formula ϕ and an E-HT model (T, ~), let PT ⊆
P be such that PT ∩ Pϕ = ∅ for every T ∈ T. Then, for every QT ⊆ PT (T ∈ T),(

(T, ~), T0

)
∈ ‖ϕ‖E-HT if and only if

(
(T′, ~′), T ′0

)
∈ ‖ϕ‖E-HT

where T′ = {T ∪ PT : T ∈ T} and ~′(T ′) = ~(T) ∪ QT for every T ′ ∈ T′ and
T ∈ T.

The proof is by induction on ϕ.

4.1.4 EHT validity
A formula ϕ is EHT satisfiable if ‖ϕ‖E-HT , ∅. It is EHT valid if ‖ϕ‖D-HT = E-HT.

All the principles of the intuitionistic modal logics that were studied in the
literature (Bierman and de Paiva [2000]; Fariñas del Cerro and Raggio [1983];
Fischer-Servi [1976]; Simpson [1994]) are EHT valid. The axiom schemas for in-
tuitionistic S5 of Simpson [1994] are listed in Table 4.1. The inference rules are
modus ponens and necessitation.

0. All substitution instances of theorems of intuitionistic propositional logic
1. �(ϕ→ ψ)→ (�ϕ→ �ψ)
2. �(ϕ→ ψ)→ (^ϕ→ ^ψ)
3. ¬^⊥
4. ^(ϕ ∨ ψ)→ (^ϕ ∨ ^ψ)
5. (^ϕ→ �ψ)→ �(ϕ→ ψ)
6. ^>
7. (�ϕ→ ϕ) ∧ (ϕ→ ^ϕ)
8. (^�ϕ→ ϕ) ∧ (ϕ→ �^ϕ)
9. (�ϕ→ ��ϕ) ∧ (^^ϕ→ ^ϕ)
10. (^�ϕ→ �ϕ) ∧ (^ϕ→ �^ϕ)

Table 4.1: Axiom schemas of intuitionistic S5 (Simpson [1994]).

As always in intuitionistic modal logics, K and K̂ are not dual: while K̂ϕ →
¬K¬ϕ is valid, the other direction is not. Here are some other invalid schemas.

99

First, both ¬¬Kϕ → Kϕ and K¬¬ϕ → Kϕ are E-HT invalid. The same holds
if we replace K by K̂ . (The EHT model (T, ~) with T =

{
{p}

}
and ~({p}) = ∅

provides a countermodel for all of them.) Second, ¬K¬ϕ→ ¬¬Kϕ is invalid, too.
The opposite direction is valid.

The following lemma says that if a formula has an EHT model then it also has
a total EHT model (in other words, an S5 model). This is the heredity (mono-
tonicity) property of intuitionistic logic.

Proposition 4.2 Let
(
(T, ~), T

)
be an EHT model of ϕ. Then

(
(T, id), T

)
is also

an EHT model of ϕ.

We now list some useful equivalences.

Proposition 4.3 Let
(
(T, ~), T

)
be an EHT model. Let ϕ be an LE-HT formula.

1. (T, ~), T |=E-HT ¬ϕ iff (T, id), T 6|=E-HT ϕ;

2. (T, ~), T |=E-HT ¬¬ϕ iff (T, id), T |=E-HT ϕ;

3. (T, ~), T |=E-HT ¬Kϕ iff (T, id), T ′ 6|=E-HT ϕ, for some T ′ ∈ T;

4. (T, ~), T |=E-HT ¬K̂ϕ iff (T, id), T ′ 6|=E-HT ϕ, for any T ′ ∈ T.

Proof. See Proposition A.10 and its proof in Section A.4 of Appendix A. q.e.d.

Now, we are ready to make a short list of theorems of our logic E-HT that will
come in handy for further discussions.

Proposition 4.4 For each line below, the three formulas are EHT equivalent.

K̂¬¬ϕ ¬K¬ϕ ¬¬K̂ϕ
K¬¬ϕ ¬K̂¬ϕ ¬¬Kϕ
¬K̂ϕ K¬ϕ ¬K̂¬¬ϕ
¬Kϕ K̂¬ϕ ¬K¬¬ϕ

Corollary 4.1 The following are EHT valid while their converses are not.

1. Kϕ→ ¬K̂¬ϕ

2. K̂ϕ→ ¬K¬ϕ

3. ¬K̂¬ϕ→ ¬¬K̂ϕ

4. ¬¬Kϕ→ ¬K¬ϕ

100

4.2 Epistemic equilibrium logic
An equilibrium model (EM) of a formula is a classical model satisfying a minimality
condition when viewed as a total HT model. We here generalise such models from
classical to S5 models and define epistemic equilibrium models (EEMs). The
corresponding non-monotonic consequence relation is a conservative extension of
the standard equilibrium consequence relation.

4.2.1 Total models and their weakening
An EHT model (T, ~) is called total if ~ = id, where id refers to the identity
function. A total EHT model corresponds to a classical S5 model, so validity in
classical S5 is the same as validity in total EHT models. We may therefore identify
(T, id), T |=E-HT ϕ with T, T |=S5 ϕ.

Given two EHT models (T1, ~1) and (T2, ~2), we write

(T1, ~1) E (T2, ~2)

if T1 = T2 and ~1(T) ⊆ ~2(T), for every T ∈ T. We say that (T1, ~1) is weaker
than (T2, ~2). This is a non-strict partial order. The corresponding strict partial
order is defined in the standard way:

(T1, ~1) C (T2, ~2) if (T1, ~1) E (T2, ~2) and (T2, ~2) 6E (T1, ~1).

4.2.2 Epistemic equilibrium models
An epistemic equilibrium model (EEM) of ϕ ∈ LE-HT is a pointed set

(
T, T

)
where

T ⊆ 2P is a nonempty set of valuations (i.e., a classical S5 model) and T ∈ T is a
distinguished element such that:

• T, T |=S5 ϕ, and

• for any function ~ : T → 2P with (T, ~) C (T, id), (T, ~), T 6|=E-HT ϕ.

The first condition requires the total E-HT model
(
(T, id), T

)
to be a model of ϕ.

The second minimality condition requires that there is no E-HT model
(
(T, ~), T

)
of ϕ that is strictly weaker than

(
(T, id), T

)
. As before, when (T, T) |=S5 ϕ for

every T ∈ T then we just write T |=S5 ϕ and say that T is an epistemic equilibrium
model of ϕ. These definitions are generalised to EHT theories in the standard way.

Proposition 4.5 The following properties hold for ϕ ∈ LE-HT.

101

1. All EHT valid formulas have exactly one EEM, namely {∅}.

2. ¬ϕ has either a unique EEM {∅} or none: if {∅} |=S5 ϕ then {∅} is the
unique EEM of ¬¬ϕ and ¬ϕ has none, otherwise vice versa.

3. If ϕ has no EEM then neither do K̂ϕ and Kϕ.

4. Let T ⊆ P be a valuation. For an objective (nonmodal) ϕ (i.e., ϕ ∈ LHT),
{T} and {∅, T} are EEMs of ϕ if and only if T is an EM of ϕ.

5. For an objective ϕ, any arbitrary collection of EMs of ϕ is an EEM of Kϕ.

6. For a nonmodal LE-HT formula ϕ, T is an EM of ϕ iff:

(a) {T} is an EEM of K̂ϕ when ∅ |= ϕ.
(b) {T} and {∅, T} are the EEMs of K̂ϕ when ∅ 6|= ϕ.

Proof. See Proposition A.11 and its proof in Section A.4 of Appendix A. q.e.d.

The atomic p has a unique EM, namely {p}, so by the item 4 it has exactly two
EEMs: {{p}} and

{
∅, {p}

}
. Note that p ∨ ¬p has two EMs: ∅ and {p}, which

means that ∅ |= p ∨ ¬p. So, {∅} and {{p}} are the only EEMs of K̂ (p ∨ ¬p),
whereas p∨¬p and K (p∨¬p) has one more: {∅, {p}} (see items 4 and 6a above).
Remember that ¬¬p has no EMs, and as expected has no EEMs either because
{∅} 6|=S5 p. Then, ¬¬p, K̂¬¬p and K¬¬p have no EEMs (see items 2 and 3 above),
neither do ¬¬K̂ p, ¬K¬p, ¬¬K p and ¬K̂¬p (see Proposition 4.4). According to
the item 5, the EEMs of K (p ∨ q) are:

{
{p}

}
,
{
{q}

}
, and

{
{p}, {q}

}
. Indeed,

p ∨ q has just two EMs, namely {p} and {q}. According to item 6b, the EEMs of
K̂ (p ∨ q) are:

{
{p}

}
,
{
{q}

}
,
{
∅, {p}

}
, and

{
∅, {q}

}
. Finally, while the EEMs of

ϕ ∈ LHT and K̂ϕ in general differ (see item 4 and item 6a), those of ¬p, K̂¬p and
even K¬p coincide since it is just the empty set. To illustrate item 2, ¬K p and
¬K¬¬p both have exactly one EEM, viz. {∅}.

4.2.2.1 Consequence relation of epistemic equilibrium logic

For two LE-HT formulas ψ and ϕ, we say that ϕ is a consequence of ψ in epistemic
equilibrium models, written ψ |≈ ϕ, if and only if for every epistemic equilibrium
model

(
T, T0

)
of ψ,

(
(T, id), T0

)
is an E-HT model of ϕ.

Proposition 4.6 The following properties hold: for ϕ, ψ ∈ LHT,

1. if ϕ |≈ ψ then Kϕ |≈ Kψ and Kϕ |≈ ψ.

102

2. if ϕ |≈ ψ then K̂ϕ |≈ K̂ψ and ϕ |≈ K̂ψ.

Proof. See Proposition A.12 and its proof in Section A.4 of Appendix A. q.e.d.

Here are some examples:

• K (¬p→ q) |≈ K q and K (¬p→ q) |≈ q because {q} is the only equilibrium
model of K (¬p→ q) and ({q}, {q}) satisfies both K q and q: indeed we have
seen before that ¬p → q |≈ q, and hence by Lemma 4.6.1 we get the same
result.

• ¬p→ q |0 K q because
{
∅, {q}

}
is an epistemic equilibrium model of ¬p→ q,

yet
{

(∅, ∅), {q}, {q}
}
6|=E-HT K q.

• We have K̂ p |≈ K̂¬q, K̂ p |≈ ¬q and p |≈ K̂¬q, and a similar result also
applies for K operator: the first two relations hold because T1 =

{
{p}

}
and

T2 =
{
∅, {p}

}
are the only epistemic equilibrium models of K̂ p. Moreover,

(T1, id) and (T2, id) both satisfy K̂¬q and ¬q. As for the last relation, the
epistemic equilibrium models of p are: {p} and

{
∅, {p}

}
. Moreover, T1 |=S5

K̂¬q and T2, {p} |=S5 K̂¬q both hold. On the other hand, we have seen
above that p |≈ ¬q holds. Hence, Lemma 4.6.2 confirms the first and the
last results. The verification of K operator is similar.

• While K̂ (p∧q) |≈ K̂ (p∨q) and p∧q |≈ K̂ (p∨q), we have K̂ (p∧q) |0 p∨q:
the latter doesn’t hold because

{
{p, q}, ∅

}
is an epistemic equilibrium model

of K̂ (p ∧ q), yet
{

({p, q}, {p, q}), (∅, ∅)
}
is not an E-HT model of p ∨ q.

Given ϕ |≈ ψ for ϕ, ψ ∈ LHT, we always have Kϕ |≈ K̂ψ, but not necessarily the
converse. The proof of the first claim is similar to the previous proofs, so we leave
it to the reader. Now, let us see some counterexamples for the latter.

• We have seen before that ¬q |≈ p → q. Moreover, we also have K¬q |≈
K̂ (p→ q) and K̂¬q |≈ K (p→ q).

• However, while p |≈ p and K p |≈ K̂ p, K̂ p |0 K p since
{
∅, {p}

}
6|=S5 K p.

• Moreover, K (p ∨ q) |≈ K̂
(
(p ∨ q) ∧ ¬(p ∧ q)

)
, but not when K and K̂ are

reversed.

Finally, we give two more examples: > |≈ K¬p which can be interpreted “in the
absence of information, it is known that there is no evidence about p”. This con-
sequence is equivalent to > |≈ ¬K̂ p and it also confirms the former interpretation

103

since it says “in the absence of information, p cannot be believed”. One other
example is: ¬p |≈ ¬K p which can be further interpreted as: “in lack of evidence
for p, p cannot be known”.

4.2.3 Strong equivalence
We now show that the equivalence of two EHT theories Φ and Ψ captures that the
extensions of Φ and Ψ by an EHT theory Θ have the same EEMs, in other words,
Φ and Ψ are strongly equivalent in the sense of epistemic equilibrium models. Our
proof is a non-trivial generalisation of that of Lifschitz et al. [2001] from HT models
to EHT models, which requires the characterisation of HT models.

Using Proposition 4.1, we may suppose without loss of generality that P is
finite: this will allow us to describe HT models by formulas.

For an EHT model (T, ~) and T ∈ T, we first define

χT =
(∧
p∈T

p

)
∧
(∧
p<T

¬p
)

and

ηT,~ =
(∧
p∈~(T)

p

)
∧
(∧
p<T

¬p
)
∧
(∧
p∈T\~(T)

¬¬p
)
∧
((∨

p∈T\~(T)
p
)
→

∧
T∈T

K̂χT
)
.

Then we have: when χT is true at a pointed model
(
(T, ~′), T ′

)
then ~′(T ′) = T ′ =

T . When ηT,~ is true at
(
(T, ~′), T ′

)
due to the first two conjuncts, ~(T) ⊆ ~′(T ′) ⊆

T ′ ⊆ T and then the third conjunct gives T ′ = T . Finally, the last conjunct adds
that if ~′(T ′) , ~(T) then ~′ = id, otherwise ~′(T ′) = ~(T), which futher implies
(~′(T), T ′) = (~(T), T).

Lemma 4.1 Let (T, ~) be an EHT model.

1. If (T, ~′), T ′ |=E-HT {K̂χT : T ∈ T} then ~′ = id.

2. If (T, ~′), T ′ |=E-HT {K̂ ηT,~ : T ∈ T} then ~′ = id or ~′ = ~.

We now give the main result.

Theorem 4.1 The following conditions are equivalent:

1. ‖Φ‖E-HT = ‖Ψ‖E-HT.

2. Φ ∪Θ and Ψ ∪Θ have the same EEMs, for every Θ.

Proof. See Theorem A.6 and its proof in Section A.4 of Appendix A. q.e.d.

104

4.3 Autoepistemic equilibrium logic
Based on epistemic equilibrium models of a formula, we first define autoepistemic
equilibrium models by maximising the set of possible worlds and then prove a
strong equivalence result for them.

4.3.1 Autoepistemic equilibrium models
Let (T, T) be an epistemic equilibrium model of ϕ. (T, T) is an autoepistemic
equilibrium model of ϕ if there is no T′ with T ⊂ T′ such that (T′, T) is an epistemic
equilibrium model of ϕ. We call the second condition the maximality condition:
there is no bigger epistemic equilibrium model of ϕ.

(
T, T

)
is said to be an

autoepistemic equilibrium model of an EHT theory Φ if it is an autoepistemic
equilibrium model of all formulas in Φ.

The AEEM notion enables us to capture the full information obtained from
an EHT theory, whereas the EEM concept is not strong enough to reveal the
differences between EHT theories. Intuitively, the EHT formulas K p, K̂ p and
p respectively mean that p is true everywhere, somewhere and in the specified
actual world of the collection. The AEEMs of K p, K̂ p and p are respectively
{{p}}, {∅, {p}} and {∅, {p}}. Note that {{p}} is an EEM of all three, but is not
able to distinguish p and K̂ p and K p. Therefore, although they are minimal, they
do not include much information. One reason for this is because it is a singleton
model. However, {∅, {p}} explicitly shows that we work with S5 models, and in
this collection, p is true indeed in the actual world. Similarly, {∅, {p}} is strong
enough to specify that M p describes a collection of worlds in which p is true in at
least one. Here is another example. The EHT theory Φ = {p,K p → (q ∨ r)} has
four EEMs:

{
{p, q}

}
,
{
{p, r}

}
,
{
{p, q}, {p, r}

}
and

{
∅, {p}

}
, but we choose last

two as its AEEMs.

Proposition 4.7 Let ϕ be an objective LHT formula. Then there is at most one
autoepistemic equilibrium model of Kϕ, viz. the collection of all equilibrium models
of ϕ.

Here are some more examples.

• The unique autoepistemic equilibrium model of K (p ∨ q) is
{
{p}, {q}

}
.

• The autoepistemic equilibrium models of K̂ (p∨q) are
{
∅, {p}

}
and

{
∅, {q}

}
.

• The formula K p∨K q has the same epistemic and autoepistemic equilibrium
models:

{
{p}

}
and

{
{q}

}
.

105

4.3.2 Strong equivalence
Beyond the characterisation of here-there pairs as in the proof for epistemic equi-
librium models it requires the characterisation of all there-worlds by means of
Jankov-Fine like formulas (Blackburn et al. [2001a]).

Theorem 4.2 Let Φ and Ψ be two E-HT theories. The following are equivalent:

1. ‖Φ‖E-HT = ‖Ψ‖E-HT;

2. Φ∪Θ and Ψ∪Θ have the same autoepistemic equilibrium models, for all Θ.

Proof. See Proposition A.7 and its proof in Section A.4 of Appendix A. q.e.d.

4.4 Related work
At this point, just before we conclude the section, we would like to wander around
literature to see some other works that tries to embed Gelfond’s epistemic specifi-
cations (Chen [1997]; Truszczyński [2011]; Wang and Zhang [2005]. Through this
aim, we discuss the relations between AEEMs, Gelfond’s world views (Subsection
4.4.1) and Wang and Zhang’s equilibrium views (Subsection 4.4.2)), as well as with
previous approaches that have tried to generalise or to refine E-S and compare
them all with our approach.

To the best of our knowledge, it was Chen who achieved to embed E-S into
an epistemic modal logic with a kind of minimal model reasoning about epistemic
concepts knowledge and belief Chen [1997]. Therefore, his approach significantly
differs from ours because our approach may be viewed a kind of intuitionistic
modal logic with the nonduality of our epistemic operators. Chen has recognised
the close resemblance between the notion of only knowing in the logic of only
knowing (OK) (Levesque [1990]) and the notion of world views of E-S. However,
OK is not strong enough to cover the notion of world views. Therefore, he has
improved its syntax and semantics, and paved the way for the generalised logic of
only knowing (G-OK) (Chen [1997]) which also contains OK as a subset. As a
result, he has also kept the important features of OK. What are these exactly?
OK is a modal logic that helps us formalise an agent’s introspective reasoning and
answer epistemic questions concerning databases. It has been shown in time that
OK has some relations with the logic of minimal belief and negation as failure
(MB-NF) (Lifschitz [1994]) by Lifshitz and extended logic programs (Chen [1993,
1994]), so has been proved that OK provides a general logical framework for non-
monotoning reasoning. G-OK further enhances the expressive power of OK with

106

more desirable qualities so as to include epistemic specifications. It is worth to
mentioning that different from standard propositional modal logic, for instance S5
(see Blackburn et al. [2001a]; Hughes and Cresswell [2012]), G-OK succeeds in cre-
ating a kind of minimal model reasoning about epistemic concepts (i.e, knowledge
and belief). In this respect, its semantics shares a similar spirit of Gelfond’s world
view semantics. Eventually, Chen has materialised this embedding. However, it
would be fair to say that his logic has syntactically and semantically a complex
nature due to the display of four different modal operators. As a result, it is a bit
difficult to observe the intuition that lays behind.

Wang and Zhang generalised E-S into an epistemic extension of equilibrium
logic (Wang and Zhang [2005]). that precisely captures reasoning with epistemic
specifications. Moreover, this extension also allows for generalisations to arbitrary
programs with nested epistemic rules. However, although the general structures
meet, our approaches have serious differences in essence which are discussed in
Subsection 4.4.2 in detail.

More recently, Truszczyński has generalised a refinement of E-S (Truszczyński
[2011]), but his formalism does not deal with HT and equilibrium logic, and so it
is not directly relevant for our work. Moreover, having proposed a model

{
∅
}
for

the formula (p ∨ ¬p) → p, he leaves apart from the main approach because this
formula has no equilibrium models.

All these approaches deal with the former version of E-S discussed in Baral and
Gelfond [1994]; Gelfond [1991, 1994]. A well-known distinctive example between
Gelfond’s former and recent versions of E-S is T = {p ← K p}: while the first
version gives two world views {∅} and {{p}}, the second eliminates the unintended
world view {{p}}.

4.4.1 AEEMs versus world views
We first translate LE-S to LE-HT via a mapping tr, which introduces a fresh variable
p̃ for each p ∈ P. We call p̃ the ‘opposite’ of p. The translation of an epistemic
specification T involves an EHT theory that we call constraints of T , Cons(T),
ensuring that when p̃ occurs in tr(T) then p and p̃ cannot be true at the same
time. It is defined as:

Cons(T) =
(∧
p∈PT

(p∧p̃)→ ⊥
)
.

The rest is straightforward: we replace ‘←’, ‘or’, ‘,’ and ‘not’ respectively by
‘→’, ‘∨’, ‘∧’ and ‘¬’. So, an ES rule like ‘p or∼q ← r , not s’ is translated into
‘r ∧ ¬s → p ∨ q̃ ’ accompanied by q ∧ q̃ → ⊥. Note that the other conjuncts of
Cons are redundant here.

107

We now give the formal translation, and start by translating literals.
For an objective literal in O-Lit we define:

tr(p) = p;
tr(∼p) = p̃.

This allows us to translate Gelfond’s simple theories S: we define tr(S) = {tr(l) :
l ∈ S}.

We suppose that the M operator has been replaced as described in Section
1.4.2, so for a subjective literal in S-Lit it suffices to define:

tr(K l) = K tr(l);
tr(Knot l) = K¬tr(l);
tr(∼K l) = ¬K tr(l);
tr(∼Knot l) = ¬K¬tr(l).

for l ∈ O-Lit. However, given the equivalences in (1.22) of Section 1.4 in Introduc-
tion, subjective literals can also be translated in a slightly different way:

tr(∼M not l) = tr(K l) = K tr(l);
tr(∼M l) = tr(K not l) = K¬tr(l);
tr(M not l) = tr(∼K l) = ¬K tr(l);
tr(M l) = tr(∼K not l) = K̂ tr(l).

The subtlety of the translation are those of K l and M l because we have two al-
ternatives in each case since K and K̂ are not dual. However, while ¬K̂¬p and
¬K¬p have no EEM (see Subsection 4.2), K p and K̂ p have EEMs (and therefore
also AEEMs) (see Subsection 4.3.1). Note that we generalise E-S to nested epis-
temic logic programs (NELPs), and this translation gives more intuitive results in
general. ¬K¬p has some further strange behaviours: while {∅, {p}} is an AEEM
of p ∧ ¬K¬p and ¬p ∧ ¬K¬p has none, the AEEMs of p ∧ K̂ p and ¬p ∧ K̂ p are
respectively {∅, {p}} and {∅, {p}} which are more intuitive. Finally, also note that
Kϕ→ ¬K̂¬ϕ and K̂ϕ→ ¬K¬ϕ are EHT valid (see Subsection 4.1.4). The rest is
safe: ¬K̂ϕ and K¬ϕ are EHT equivalent, so are K̂¬ϕ and ¬Kϕ (see Proposition
4.4). Hence we could as well write K̂¬ instead of ¬K in line 3 above.

After the translation of the primitives are given, we now translate epistemic
rules:

tr
(
l1 or . . . or lk ← gk+1, . . . , gm, not lm+1, . . . , not ln

)
=(

tr(gk+1) ∧ . . . ∧ tr(gm) ∧ ¬tr(lm+1) ∧ . . . ∧ ¬tr(ln)
)
→
(
tr(l1) ∨ . . . ∨ tr(lk)

)
.

It will be useful to consider a typical rule of the form

ρ = α← K l1,∼K l2,Knot l3,∼Knot l4, β

108

where α and β are boolean formulas. Its translation is given as:

tr(ρ) =
(
K tr(l1) ∧ ¬K tr(l2) ∧ K¬tr(l3) ∧ ¬K¬tr(l4) ∧ tr(β)

)
→ tr(α).

Finally, we translate an epistemic specification T by tr(T) = K
(∧

ρ∈T tr(ρ)
)
. Here

are some very basic examples:
tr(← p) = tr(p)→ tr(⊥) = p→ ⊥ = ¬p
tr(← ∼p) = tr(∼p)→ tr(⊥) = p̃→ ⊥ = ¬p̃
tr(p or ∼p←) = tr(>)→

(
tr(p) ∨ tr(∼p)

)
= > → (p ∨ p̃)

tr(← p,∼p) =
(
tr(p) ∧ tr(∼p)

)
→ tr(⊥) = (p ∧ p̃)→ ⊥ = ¬(p ∧ p̃).

In the third example, > → (p ∨ p̃) is equivalent to p ∨ p̃.
One of the main differences between AEEMs and world views is that the latter

handle each ES rule ρ like K ρ: it does not require pointed S5 models. As a result
of this, non-pointed world view has a very special character: any belief set of the
collection describes a possible world obtained from an epistemic specification T
that stands alone, so it in a way ignores a collection accompanying these possible
worlds in general, and may lose some information. In contrast, in our approach we
consider some identified belief set (aka actual world) together with a collection.
This failure may not appear as a serious problem with E-S since K and M can
only appear in the body of its rules. It can still be discussed if p← M not p should
have a world view. According to Gelfond and Kahl’s approaches, it does not have
any, whereas this rule when viewed an EHT formula has an epistemic equilibrium
model, namely {∅, {p}}. Moreover, in a possible generalisation to NELPs, for
instance, it seems there would be no world view candidate to not p ,M p← whereas
¬p ∧ K̂ p has an AEEM {∅, {p}} which is intuitive.

The examples (1.23) and (1.24) of Section 1.4.2 in Introduction show that
the approaches by Gelfond, Kahl and us are all different in the case of cyclic
dependences: the AEEMs of K̂ p→ p and (p ∨ q) ∧ (K̂ q → p) are respectively {∅}
and {{p}}. Another example is the epistemic specification

T =
{
p or q , q ← ∼K p

}
.

Gelfond’s world views of T are {{p}} and {{q}}, which matches the unique AEEM
of (¬q → p) ∧ (¬Kp → q) is {{p}}. In contrast, Kahl only obtains the second
world view. Finally, we consider an epistemic specification

T ′ =
{
p ← q , q ← ∼M p

}
.

According to Kahl’s semantics, while T ′ has a unique world view {{p, q}}, it has
two world views according to Gelfond’s semantics, namely {∅} and {{p, q}}. We
get the epistemic equilibrium model {∅} when we translate M p as K̂ p, and we get
{∅} and {{p, q}} when we translate it by ¬K¬p.

109

4.4.2 AEEMs versus equilibrium views
In 2005, Wang and Zhang described an epistemic extension of equilibrium logic into
which they were able to embed Gelfond’s first version of E-S (Wang and Zhang
[2005]). This extension also gives semantics to nested epistemic logic programs
(NELPs). The underlying language is that of HT with an additional formation
rule:

• if ϕ is a formula then so are Kϕ and Mϕ.

Then, they also add strong negation into the language and discuss the resulting
formalism briefly.

The semantics is given by WZ-EHT models (A, H, T) in which

• A ⊆ 2P is a nonempty collection of valuations;

• (H,T) is an HT model.

Note that H and T are not necessarily contained in A. Given A ⊆ 2P, they define
the collection

coll(A) = {(H,T) : H,T ∈ A such that H ⊆ T}.

Then the additional truth conditions can be defined as follows:

(A, H, T) |=E-HT Kϕ if coll(A), A |=E-HT ϕ for all A ∈ coll(A);
(A, H, T) |=E-HT Mϕ if coll(A), A |=E-HT ϕ for some A ∈ coll(A).

WZ-EEMs for an EHT theory Φ are total EHT models (A, T, T) of Φ such that
there is no EHT model (A, H, T) of Φ with H ⊂ T . Finally, Wang and Zhang
capture the world views of an epistemic specification T by equilibrium views of ΦT

(where ΦT is the epistemic HT theory corresponding to T), which are defined to
be the maximal collections A ⊂ 2P satisfying the following fixed point equation:

A = {T : (A, T, T) is an equilibrium model of ΦT}.

At first sight, their unifying framework for both nested logic programs and
epistemic specifications looks fairly strong, and we accept that what we have sug-
gested in this chapter is slightly similar to their work. However, we also dare to
say that the epistemic HT logic they have proposed can just be considered a start-
ing point of our work because the approach in Wang and Zhang [2005] requires a
better-designed syntax character, and has several drawbacks that are due to the
design of the semantics. Basically, it has much less epistemic HT models than
in our approach: only the actual world is an HT pair, while the set of accessible

110

worlds is a set of valuations as in classical S5. Sets of HT pairs are generated from
that set by taking all possible pairs satisfying the heredity. It is much less obvious
to extend the semantics of Wang and Zhang [2005] beyond single-agent epistemic
logic, as compared to our semantics. Moreover, the resulting epistemic HT logic
of Wang and Zhang [2005] has some strange properties:

1. M p↔ ¬K¬p is valid, i.e., K and M are dual.

2. M¬¬p→ M p is valid while K¬¬p→ K p is not.

3. M p∧M¬p has an epistemic equilibrium model in our semantics, viz. {∅, {p}},
which is also the unique autoepistemic model; in contrast, according to Wang
and Zhang [2005] it has no equilibrium view.

(1) and (2) disqualify the epistemic HT logic of Wang and Zhang [2005] as an
intuitionistic modal logic. Due to (3), the extension of epistemic specifications
beyond Gelfond has unintuitive properties. On the other hand, we combine both
S5 logic and HT logic into the resulting logic E-HT, revealing their natures
apparently. To sum up, E-HT unveils the modal logic perspective, yet keeping the
HT logic character. Obviously, with the syntactical power to express the notions
of both epistemic specification and nested logic program, as well as a simple and
a neat semantics, epistemic equilibrium logic is a fairly attractive candidate to
provide a general framework for various forms of non-monotonic reasoning.

Finally, we summarise the concise relationship between our approaches:

1. Inclusion of satisfiability: each satisfiable ϕ ∈ LE-HT has also a WZ-EHT
model; the other way round, for instance K p∧¬p has a WZ-EHT model but
no EHT model.

2. The minimality is totally different: both K p∧¬p and K¬¬p have WZ-EEMs
but no EEMs in our sense; the other way round, K p ∧ ¬¬p has an EEM in
our sense, but no WZ-EEM.

3. Maximal ignorance is different as well: K p has an AEEM, but no WZ-
equilibrium view. K̂ p, K̂ p ∧ ¬p, (p ∨ q) ∧ (K̂ q → p) and p ∨ K (p ∨ ¬p) are
other examples. (K̂¬p ∨ K̂¬¬p) ∧ (K̂ p → (p ∨ ¬p)) has a WZ-equilibrium
view, but no AEEM.

4.5 Conclusion and future work
In this chapter, we have designed a simple, neat and monotonic intuitionistic modal
logic E-HT: we have added two modal operators K and K̂ to the original language
of HT that are interpreted in a straightforward combination of S5 and HT. Based

111

on this logic we have defined first epistemic equilibrium models and then autoepis-
temic equilibrium models. The latter are powerful enough to provide a new logical
semantics not only for E-S, but also for programs with nested expressions contain-
ing belief operators. We have provided strong equivalence characterisations and
have compared our semantics with the existing semantics for E-S. Our semantics
performs more or less like Gelfond’s if there are cyclic dependences, such as in
p ← M p. It seems to us that is not clear which semantics better matches our
intuitions in such cases and that the question of a fully satisfactory semantics of
E-S is therefore still open. However, we believe that E-HT and the EMs built on
it provide a good starting point for further extensions of ASP by modal concepts.

Given this first step in an epistemic equilibrium logic, in future work we plan
to extend our approach in four steps: (1) the first step is further to base our
approach on N5 and investigate how the underlying epistemic version of N5 can be
axiomatised, and how appropriate proof systems can be built. (2) Then we can
generalise the single-agent epistemic equilibrium logic to a multi-agent version. (3)
We also plan to capture kind of world view notion in a dynamic extension of HT
logic that is able to cover the single-agent epistemic equilibrium logic as well. This
dynamic extension should let us update a collection of HT models, different from
an update of a single HT model that has been already proposed in Chapter 3. (4)
Finally, we would like to propose a dynamic epistemic extension of HT logic in
order to talk about belief change. We plan to do so by combining our approach
with the approach of Fariñas del Cerro et al. [2013]. As mentioned also in Chapter
3, Fariñas del Cerro et al. [2013] shows that equilibrium models and their updates
can be analysed in terms of D-HT of atomic change of equilibrium models which
is strongly related to DL-PA. The resulting extension also allows us to capture
all previous approaches that are introduced up to now.

112

Chapter 5

Summary and Future Research

ASP has emerged as a viable tool for Knowledge Representation and Reasoning.
It offers efficient and versatile off-the-shelf solving technology, and provides an
expanding functionality and ease of use as a rapid application development tool.
Moreover, ASP has a continuously growing range of applications:

ASP = DB + LP + KR + SAT

We plan to extend our approach in two ways: (1) first, we plan to continue
extensions of the original language of HT logic with modal operators allowing to
talk about action providing thus a more comprehensive framework for extensions
of answer set programming. Another natural continuation of our work would be
to compare existing temporal extensions of equilibrium logic by Cabalar et al.
(Aguado et al. [2008]; Cabalar and Demri [2011]) with our modal extensions of
equilibrium logic. The very next step is to seek for what further can be done
to materialize an update of a collection of HT models with dynamic operators.
(2)Our second research avenue is to capture other nonmonotonic logics such as the
nonmonotonic extension of S4F Pearce and Uridia [2011] as well as default logic.

113

Appendix A

All proofs

Proofs of theorems, propositions and lemmas that appear in this thesis work are
included below.

A.1 Proofs of Chapter 1
Lemma A.1 Given an LHT formula ϕ and a propositional variable q ∈ P such
that q < Pϕ, we have

H,T |=HT ϕ iff H,T ∪ {q} |=HT ϕ iff H ∪ {q}, T ∪ {q} |=HT ϕ.

Proof. The proof is by structural induction (i.e., on the form of ϕ): the case
where ϕ is a propositional variable is easy, and the case where ϕ equals ⊥ is
immediate. As for the first two Boolean cases, they are straightforward, so we just
give the proof of the implication case. Let ϕ = ψ1 → ψ2 for some ψ1, ψ2 ∈ LHT

and let q ∈ P \ Pϕ. Then q < Pψi
for i = 1, 2. We get the result through the

following sequence of equivalent steps:
1. H,T |=HT ψ1 → ψ2

2. H,T |=HT ψ1 ⊃ ψ2 and T, T |=HT ψ1 ⊃ ψ2

3. H,T ∪{q} |=HT ψ1 ⊃ ψ2 and T ∪{q}, T ∪{q} |=HT ψ1 ⊃ ψ2 (from 2 by I.H.)

4. H,T ∪ {q} |=HT ψ1 → ψ2

5. H∪{q}, T∪{q} |=HT ψ1⊃ψ2 and T∪{q}, T∪{q} |=HT ψ1⊃ψ2 (from 2 by I.H.)

6. H ∪ {q}, T ∪ {q} |=HT ψ1 → ψ2.
Hence, the result follows from the equivalence of (1), (4) and (6). q.e.d.

114

A.2 Proofs of Chapter 2
Proposition A.1 Let M = (W,T, S, V) be a MEM model.

1. For every w, u, if wTu then Vw ⊆ Vu.

2. For every w, if T(w) \ {w} is empty, then the set {Vu : wSu} equals either
{V : V ⊆ Vw} or {V : V ⊂ Vw}.

Proof. The first property can be proved from wmconv(T, S) and heredity(S). As
for the second property, it is due to neg(S,T), refl(T) and again heredity(S).

1. For w, u ∈ W , let wTu. If w = u then the result trivially follows. Suppose
w , u. Hence, by wmconv(T, S) we have uSw as well. Finally, heredity(S)
guarantees Vw ⊆ Vu.

2. We first assume that T(w) \ w = ∅. Then using also refl(T), we get T(w) =
{w}. Now, we consider two cases.
Case 1: let Vw , ∅. Then, by neg(S,T) we have: for every P ⊆ Vw
such that P , ∅, there is v ∈ W with wSv and Vv = Vw \ P . Thus,
{Vu : wSu} = P(Vw) \ {Vw} which equals nothing, but {V : V ⊂ Vw}.
Case 2: now let Vw = ∅, so here we cannot use neg(S,T) anymore, and no
other constraint of MEM frames says something whether or not S(w) is
empty. Therefore, we need to go over both cases:

• Let S(w) = ∅. Then {Vu : wSu} = ∅ = {V : V ⊂ Vw}.
• Let S(w) , ∅. Then there is at least one u such that wSu. Moreover, by

heredity(S), for every v such that wSv, we have Vv = ∅. Hence, Vu = ∅.
Thus, {Vu : wSu} = {∅} = {V : V ⊆ Vw}.

q.e.d.

Proposition A.2 Let M = (W,T, S, V) be a MEM model, and ϕ be an L[T],[S]-
formula. Let the valuation V ϕ be defined as follows:

V ϕ
w = Vw ∩ Pϕ, for every w ∈ W.

Then Mϕ = (W,T, S, V ϕ) is also a MEM model. Moreover, for every w ∈ W ,

M,w |= ϕ if and only if Mχ, w |= ϕ,

where ϕ is a subformula of χ.

115

Proof. First, let us show that Mϕ is a MEM model for a L[T],[S]-formula ϕ,
so we need to check that all constraints hold in Mϕ. The frame constraints are
only about the accessibility relations and are clearly preserved because we just
modify the valuation. As for the constraints involving the valuation, the model
Mϕ satisfies heredity(S) constraint: suppose wSu; as M satisfies heredity(S) we
have Vu ⊆ Vw; hence V ϕ

u ⊆ V ϕ
w as well. Finally, the model Mϕ also satisfies the

constraint neg(S,T): for every w ∈ W , by the constraints refl(T) and alt2(T) there
exists either one or two u such that wTu; in the former case, u = w whereas
in the latter, we choose u different from w; for such u’s, let V ϕ

u = Vu ∩ Pϕ and
P ⊆ V ϕ

u be non-empty; then since M satisfies the neg(S,T) constraint there is v
with uSv satisfying Vv = Vu \P ; clearly, for that v we also have V ϕ

v = V ϕ
u \P since

V ϕ
v = Vv ∩ Pϕ = (Vu \ P) ∩ Pϕ = (Vu ∩ Pϕ) \ P = V ϕ

u \ P .
Second, we prove that if ϕ is a subformula of χ then M,w |= ϕ if and only if
Mχ, w |= ϕ, by induction on the form of ϕ. The base cases are routine. The
Boolean case is easy, yet we give the proof. Let γ = ϕ ⊃ ψ.

M,w |= ϕ ⊃ ψ iff M,w 6|= ϕ or M,w |= ψ
iff Mχ, w 6|= ϕ or Mχ, w |= ψ for ϕ and ψ, subformulas of χ

(by I.H.)
iff M ξ, w |= ϕ ⊃ ψ where γ is a subformula of ξ.

As for the modalities, we only give the proof for the case where ϕ is of the form
[T]ψ, yet the case [S]ψ is similar. We have:

M,w |= [T]ψ iff M,u |= ψ for every u such that wTu
iff M [T]ψ, u |= ψ for every u such that wTu (by I.H.)
iff Mϕ, w |= [T]ψ.

q.e.d.

Proposition A.3 The schema Heredity([T]), i.e., ϕ+ ⊃ [T]ϕ+, for ϕ+ a positive
Boolean formula, is provable.

Proof.

1. 〈S〉ϕ+ ⊃ ϕ+ (Heredity([S]))

2. ϕ+ ⊃ [T](ϕ+ ∨ 〈S〉ϕ+) (WMConv([T], [S]))

3. ϕ+ ⊃ [T]ϕ+ (from 1 and 2 by K[S]).

q.e.d.

116

Proposition A.4 The schema 2([T]), i.e., 〈T〉[T]ϕ ⊃ [T]〈T〉ϕ is provable.

Proof.

1. 〈T〉[T]∼ϕ ⊃ 〈T〉∼ϕ (from T([T]) by K([T]))

2. 〈T〉[T]ϕ ⊃ 〈T〉
(
[T]ϕ ∧ ϕ

)
(from T([T]) by K([T]))

3. [T]ϕ ∨ [T]
(
ϕ ⊃ 〈T〉∼ϕ

)
∨ [T]

(
(ϕ ∧ 〈T〉∼ϕ) ⊃ ⊥

)
(Alt2([T]))

4.
(
〈T〉∼ϕ ∧ 〈T〉(ϕ ∧ [T]ϕ)

)
⊃ [T]

(
ϕ ⊃ [T]ϕ

)
(from 3 by K([T]))

5.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃ [T]

(
ϕ ⊃ [T]ϕ

)
(from 1, 2 and 4 by K([T]))

6.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃ [T]

(
∼ϕ ⊃ [T]∼ϕ

)
(from 5 by K([T]))

7.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃ [T]

(
[T]ϕ ∨ [T]∼ϕ

)
(from 5 and 6 by K([T]))

8.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃
(
[T][T]ϕ ∨ [T][T]∼ϕ

)
(from 7 by T([T]) & 4([T]))

9.
(
〈T〉[T]∼ϕ ∧ [T][T]ϕ

)
⊃ 〈T〉[T]⊥ (by K([T]))

10.
(
〈T〉[T]∼ϕ ∧ [T][T]∼ϕ

)
⊃ [T][T]∼ϕ (by K([T]))

11.
(
〈T〉[T]∼ϕ ∧ ([T][T]ϕ ∨ [T][T]∼ϕ)

)
⊃
(
〈T〉[T]⊥ ∨ [T][T]∼ϕ

)
(from 9 & 10)

12.
(
〈T〉[T]ϕ∧ ([T][T]ϕ∨ [T][T]∼ϕ)

)
⊃
(
〈T〉[T]⊥∨ [T][T]ϕ

)
(from 11 - K([T]))

13.
(
〈T〉[T]∼ϕ∧〈T〉[T]ϕ∧([T][T]ϕ∨[T][T]∼ϕ)

)
⊃
(
〈T〉[T]⊥∨([T][T]ϕ∧[T][T]∼ϕ)

)
(from 11 and 12 by K([T]))

14.
(
〈T〉[T]∼ϕ∧ 〈T〉[T]ϕ

)
⊃
(
〈T〉[T]⊥∨ ([T][T]ϕ∧ [T][T]∼ϕ)

)
(from 8 and 13)

15.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃
(
〈T〉[T]⊥ ∨⊥

)
(from 14 by K([T]) and T([T]))

16.
(
〈T〉[T]∼ϕ ∧ 〈T〉[T]ϕ

)
⊃ 〈T〉⊥ (from 15 by T([T]) and K([T]))

17.
(
〈T〉[T]ϕ ∧ 〈T〉[T]∼ϕ

)
⊃ ⊥ (from 16 by K([T]))

18. 〈T〉[T]ϕ ⊃ [T]〈T〉ϕ (from 17 by K([T])).

117

q.e.d.

Lemma A.2 The following formula schema is provable:

Neg′([S], [T]) 〈T〉
(
(∧p∈P p) ∧ (∧q∈Q q)) ⊃ 〈T〉〈S〉 ((∧p∈P ∼p) ∧ (∧q∈Q q))

for P,Q ⊆ P finite, P , ∅, and P ∩Q = ∅.

Proof. Neg′([S], [T]) can be proved using the axiom schema Neg([S], [T]) by
standard modal logic principles, i.e., by K([T]). Suppose P and Q are finite
subsets of P such that P , ∅ and P ∩Q = ∅. The implication(

(∧p∈P p) ∧ (∧q∈Q q)) ⊃ ((∨p∈P p) ∧ (∧q∈Q q))
is valid in classical propositional logic. Then Neg′([S], [T]) follows through the
argument below:

1. (∧p∈P p) ∧ (∧q∈Q q) ⊃ (∨p∈P p) ∧ (∧q∈Q q) (tautology)

2. 〈T〉
(

(∧p∈P p) ∧ (∧q∈Q q)) ⊃ 〈T〉((∨p∈P p) ∧ (∧q∈Q q)) (from 1 by K[T])

3. 〈T〉
(

(∨p∈P p) ∧ (∧q∈Q q)) ⊃ 〈T〉〈S〉((∼∨p∈P p) ∧ (∧q∈Q q)) (Neg([S], [T]))

4. 〈T〉
(

(∧p∈P p) ∧ (∧q∈Q q)) ⊃ 〈T〉〈S〉((∧p∈P ∼p) ∧ (∧q∈Q q)) (2 & 3 - K[T]).

q.e.d.

Theorem A.1 Let ϕ be an L[T],[S]-formula. Then ϕ is MEM valid if and only if
ϕ is provable from the axioms and the inference rules of MEM.

Proof. Soundness is proved as usual. We just consider the proof of axiom schema
Neg([S], [T]). Let ϕ+ be a positive Boolean formula such that Pϕ+ ∩ Pψ = ∅.
Suppose

M,w |= 〈T〉(ϕ+ ∧ ψ) (∗).
Put ϕ+ in conjunctive normal form (CNF), and let κ = (∨P) be a clause of this
CNF, for some P ⊆ Pϕ+ . Observe that P , ∅ by the definition of positive Boolean
formulas and CNF. Now, we need to consider two cases (according to Remark 2.2).
Case (1): let T(w) \ {w} = ∅. Hence T(w) = {w} by the reflexivity of T. Then

118

from (∗) we obtain that M,w |= ϕ+ ∧ ψ (∗∗). Moreover, M,w |= ϕ+ implies that
Vw , ∅. In addition, non-emptiness of Vw yields that w is not a singleton point
(because singleton points always have an empty valuation; otherwise that would
contradict neg(S,T)). Now, take Pw = P ∩Vw. We have Pw , ∅ becauseM,w |= κ
(since we have M,w |= ϕ+). As M satisfies the constraint neg(S,T), there exists
u with wTu, but since T(w) = {w} we have u = w. Since Vw , ∅, according to
the negatable constraint, for non-empty Pw ⊆ Vw, there is v such that wSv and
Vv = Vw \ Pw. Since Pw ∩ Vv = ∅, we also have P ∩ Vv = ∅ (because Vv ⊆ Vw, but
P \ Pw * Vw). Hence, M, v 6|= κ. As a result, M, v 6|= ϕ+ either. So M, v |= ∼ϕ+.
In addition, M, v |= ψ because M,w |= ψ by (∗∗) and Vw ∩ Pψ = Vv ∩ Pψ (since
Pϕ+ ∩ Pψ = ∅, and Vv = Vw \ Pw). Hence, we deduce that M, v |= ∼ϕ+ ∧ ψ, but
wSv, so we also have M,w |= 〈S〉(∼ϕ+ ∧ ψ). Finally, it is trivial to conclude that
M,w |= 〈T〉〈S〉(∼ϕ+ ∧ ψ) since T(w) = {w}.
Case (2): let T(w) \ {w} , ∅. So there exists u with u , w and wTu. Moreover,
u is uniquely determined (see Remark 2.2). Then we choose u, but not w, as a
candidate to satisfy the formula ϕ+∧ψ (see (∗) above). Hence, we obtain from (∗)
that M,u |= ϕ+ ∧ ψ. The proof follows almost through the same reasoning as in
the previous case, so we leave it to the reader. Following the same steps (above)
for u here, we obtainM,u |= 〈S〉(∼ϕ+∧ψ). ThenM,w |= 〈T〉〈S〉(∼ϕ+∧ψ) results
automatically.

To prove completeness w.r.t. MEM models we use canonical models (Black-
burn et al. [2001a]; Carnielli et al. [2009]). Let ϕ be a consistent L[T],[S] formula. We
define the canonical model Mϕ = (W,T, S, V) as follows. W is the set of maximal
consistent sets of MEM. The accessibility relations T and S are such that:

wTu iff {ψ : [T]ψ ∈ w} ⊆ u
wSu iff {ψ : [S]ψ ∈ w} ⊆ u

The valuation V is defined by Vw = w ∩ Pϕ, for every w ∈ W . Let us prove
that the canonical model Mϕ = (W,T, S, V) is a legal MEM model. As they are
straightforward, we leave some parts of the proof to the reader, more explicitly,
to prove that Mϕ satisfies the constraints associated to the axioms T([T]), 4([T]),
T2([S]), and WTriv2([S]).
• Axiom schema Alt2([T]) assures that the constraint alt2(T) holds in the

canonical model described above: let wTu (1), wTu′ (2), and wTu′′ (3).
Then we assume for a contradiction that u , u′ (4), u , u′′ (5), and u′ , u′′
(6). First, by (4), there is an L[T],[S]-formula ϕ such that ϕ ∈ u′ (7) and
∼ϕ ∈ u (8). Second, (6) implies that there is an L[T],[S]-formula ψ such that
ψ ∈ u′ (9) and ∼ψ ∈ u′′ . Finally, (5) guarantees the existence of χ ∈ u (10)
with ∼χ ∈ u′′, but u′′ is maximal consistent, therefore, so is ∼(ψ ∨ χ) ∈ u′′ .
Moreover, from (3) we obtain 〈T〉∼(ψ∨χ) ∈ w (11). As u is maximal consis-
tent, and also using (10), we get ψ∨χ ∈ u and then also (ψ∨χ)∧∼ϕ ∈ u (12)

119

by the help of (8). (1) and (12) gives us 〈T〉
(
(ψ∨χ)∧∼ϕ

)
∈ w (13). Now we

get 〈T〉∼(ψ∨χ)∧〈T〉
(
(ψ∨χ)∧∼ϕ

)
∈ w using maximal consistency of w, (11)

and (13). Moreover,
(
〈T〉∼(ψ∨χ)∧〈T〉

(
(ψ∨χ)∧∼ϕ

))
⊃ [T]∼

(
(ψ∨χ)∧ϕ

)
,

which is nothing but a variation of Alt2([T]), is also in w since w is maximal
consistent. Through the same reasoning, we also get [T]∼

(
(ψ ∨ χ)∧ϕ

)
∈ w

by modus ponens (MP), but then 〈T〉
(
(ψ ∨ χ) ∧ ϕ

)
is not in w (∗) since w

is maximal consistent. On the other hand, from (7), (9) and the maximal
consistency of u′ we obtain (ψ ∨ χ) ∧ ϕ ∈ u′. Furthermore, (2) gives us
〈T〉

(
(ψ ∨ χ) ∧ ϕ

)
∈ w, but the latter contradicts (∗), so we are done.

• The weak mixed conversion axiom WMConv([T], [S]) implies that the con-
straint wmconv(T, S) is satisfied in the canonical model: suppose that wTu
and w , u; we want to show uSw; assume for a contradiction that u isn’t S-
related to w; then there exists ϕ such that [S]ϕ ∈ u and ∼ϕ ∈ w; next,
since w , u, there exists ψ with ψ ∈ w and ∼ψ ∈ u; as w is maxi-
mal consistent ∼ϕ ∧ ψ ∈ w, but so is any instance of WMConv([T], [S])
as well; hence

(
∼ϕ ∧ ψ

)
⊃ [T]

(
(∼ϕ ∧ ψ) ∨ 〈S〉(∼ϕ ∧ ψ)

)
∈ w, and then

(∼ϕ∧ψ)∨〈S〉(∼ϕ∧ψ) ∈ u first through (MP) and then using our initial as-
sumption wTu; ∼ψ ∈ u implies ∼ψ∨ϕ ∈ u, but then so must 〈S〉(∼ϕ∧ψ) ∈
u; using maximal consistency of u we assert 〈S〉(∼ϕ∧ψ) ⊃ (〈S〉∼ϕ∧〈S〉ψ) ∈ u
as well, but then so is 〈S〉∼ϕ ∧ 〈S〉ψ ∈ u, which gives us the desired con-
tradiction because [S]ϕ ∈ u implies [S]ϕ ∨ [S]∼ψ ∈ u since u is maximal
consistent; eventually uSw.

• The mixed conversion axiom MConv([S], [T])1 guarantees that the constraint
mconv(S,T) holds in the canonical model: let wSu and assume ϕ is such that
[T]ϕ ∈ u; then by the definition of S, 〈S〉[T]ϕ ∈ w; since w is maximal con-
sistent, any instance of MConv([S], [T]) is in w, so is 〈S〉[T]ϕ ⊃ ϕ; therefore
through (MP) we get ϕ ∈ w and this completes the proof.

• The axiom schema Heredity([S]) ensures that the canonical model satisfies
the constraint heredity(S), viz. that for every w, u, wSu implies Vu ⊆ Vw:
indeed, suppose wSu and p ∈ Vu = u ∩ Pϕ; as w is a maximal consistent
set, it contains all instances of Heredity([S]), in particular, 〈S〉p ⊃ p; since
wSu we also obtain 〈S〉p ∈ w from p ∈ u. (Otherwise, w being maximal
consistent, it includes ∼〈S〉p = [S]∼p; since wSu by assumption, we get

1It is handier to work with the contrapositive of the axiom schema MConv([S], [T]) here, i.e.,
with 〈S〉[T]ϕ ⊃ ϕ.

120

∼p ∈ u, contradicting the fact that u is consistent since p ∈ u as well.)
Hence, by (MP), p ∈ w, and so p ∈ w ∩ Pϕ = Vw.

• The negatable axiom Neg([S], [T]) guarantees that neg(S,T) holds in the
canonical model: to see this take an arbitrary w ∈ W ; since the canonical
model satisfies the constraints refl(T) and alt2(T) (the reader can easily check
that Mϕ satisfies refl(T) and as for alt2(T) see above), we go through the
following two cases:
Case (i): let T(w) \ {w} = ∅. Hence T(w) = {w} by the reflexivity of
T. (Then it is trivial to conclude that there exists u such that wTu, and
moreover u = w.) If Vw = w∩Pϕ = ∅ (i.e., if w contains the negations of the
propositional variables of ϕ) then the constraint trivially holds. Let Vw , ∅.
Suppose P ⊆ Vw = w ∩ Pϕ is such that P , ∅. Then we choose Q = Vw \ P .
Since P,Q ⊆ P are finite with P , ∅ and P ∩Q = ∅, now we can use Lemma
2.1. As w is a maximal consistent set it includes (∧p∈P p) ∧ (∧q∈Q q), but
then also 〈T〉

(
(∧p∈P p) ∧ (∧q∈Q q)) since T(w) = {w}. Next, again since w is

maximal consistent, by Lemma 2.1 it also has every instance of Neg′([S], [T]),
so it must contain 〈T〉〈S〉

(
(∧p∈P ∼p) ∧ (∧q∈Q q)) as well. By our initial

assumption, 〈S〉
(
(∧p∈P ∼p) ∧ (∧q∈Q q)) ∈ w. Thus we can conclude that

there is v ∈ W such that wSv. Furthermore v contains (∧p∈P ∼p)∧ (∧q∈Q q).
Therefore, P ∩ v = ∅ and Q ⊆ v, but the canonical model satisfies the
heredity(S) constraint (see above), so Vv ⊆ Vw. We know that P,Q ⊆ Pϕ
are mutually exclusive and cover Vw. Also, Q ⊆ v and Q ⊆ Pϕ implies
Q ⊆ v∩Pϕ = Vv. On the other hand, Vv ∩P = (v∩Pϕ)∩P = v∩ (Pϕ∩P) =
v ∩ P = ∅. (Alternatively, note that Vv = v ∩ Pϕ = Q, so apparently,
Vv ∩ P = Q ∩ P = ∅.) It follows that Vv = Q = Vw \ P and we are done.
Case (ii): now we suppose T(w) \ {w} , ∅. Hence, T(w) = {w, u} for a
uniquely defined u such that u , w since the canonical model Mϕ satisfies
the constraints refl(T) and alt2(T) (see above). Then it is obvious that there
exists v such that wTv. Choose v = u. Additionally, trans(T) also holds
in the canonical model (as the reader can easily verify), so we further have
T(u) = {u}. Therefore the rest of the proof can basically be done in the
same way as before.

To sum it up, the canonical modelMϕ satisfies all constraints of the class of MEM
models, so is indeed a legal MEM model. Moreover, as ϕ is a consistent MEM
formula, there must exist a maximal MEM consistent set w ∈ W containing ϕ.
Then It can be proved in the standard way that Mϕ, w |= ϕ. q.e.d.

121

Proposition A.5 For T ⊆ P, let MT = (W,T, S, V) be a Kripke model such that:

W = 2T ;
VH = H, for every H ∈ W ;
T = ∆W ∪ (W × {T}) = {(x, y) ∈ W ×W : x = y or y = T};
S = ∆(W\{T}) ∪

(
{T} × (W \ {T})

)
= T−1 \ {(T, T)}.

Then MT is a MEM model. Furthermore, for every L→-formula ϕ and H ⊆ T ,

H,T |= ϕ if and only if MT , H |= tr(ϕ).

Proof. First,MT is a legal MEM model: MT satisfies all constraints, i.e., refl(T),
alt2(T), trans(T), refl2(S), wtriv2(S), wmconv(T, S), mconv (S,T), heredity(S), and
neg(S,T) by construction. Second, one can prove by a straightforward induction
on the form of ϕ that H,T |= ϕ iff MT , H |= tr(ϕ), for every H ⊆ T . q.e.d.

Proposition A.6 Let M = (W,T, S, V) be a MEM model. Then for every w ∈
W and every L→-formula ϕ we have:

1. If T(w) \ {w} = ∅ then M,w |= tr(ϕ) if and only if Vw, Vw |= ϕ;

2. If T(w) \ {w} , ∅ then M,w |= tr(ϕ) if and only if Vw, Vu |= ϕ for the
uniquely determined u ∈ T(w) \ {w} .

Proof. As expected we give the proof by induction on ϕ through the case analysis.
Let w ∈ W then by Remark 2.2 we have two cases:
Case 1: let T(w) = {w} (∗) then T(w) \ {w} = ∅, i.e., w is the root point of
a tree structure (see Footnote 2.1.3). Now, to be able to give the result, we use
induction on the form of ϕ. The base cases are immediate from the definition
of truth conditions. The first two Boolean cases easily follow from the induction
hypothesis (see the first item above), and the intuitionistic implication step is also
obtained from the induction hypothesis (see the first item above) using (∗).
Case 2: as to the second part, let T(w) = {w, u} (∗∗). Hence, T(w) \ {w} = {u},
i.e., in words, T(w) \ {w} contains exactly one element, u which is the root of
a tree structure containing w (see Footnote 2.1.3), and as a consequence T(w) \
{w} , ∅. Then by Remark 2.2, we also have T(u) = {u} (?). Moreover, since
wTu from Proposition 2.1.1, we obtain Vw ⊆ Vu (??). Now, we verify the claim
again by induction on ϕ. The base and the first two Boolean cases are still easy,
and basically follow the same way as above. However, the case of intuitionistic
implication is worth analyzing. We here sketch out the argument and leave the
gaps to the reader. Nevertheless, one should note that in this step, our induction

122

hypothesis is made up of both items above. To spell it out, we use item 2 for u
while we use item 1 for w as our induction hypotheses. So, we have:

M,w |= tr(ψ1 → ψ2) iff M,w |= [T]
(
tr(ψ1) ⊃ tr(ψ2)

)
iff M,w |= tr(ψ1) ⊃ tr(ψ2) and M,u |= tr(ψ1) ⊃ tr(ψ2)

(by (∗∗))
iff Vw, Vu |= ψ1 ⊃ ψ2 and Vu, Vu |= ψ1 ⊃ ψ2

(by I.H., (?) and (??))
iff Vw, Vu |= ψ1 → ψ2.

q.e.d.

Theorem A.2 Given an L→-formula, ϕ,

ϕ is HT valid if and only if tr(ϕ) is MEM valid.

Proof. It follows from Proposition 2.5 and Proposition 2.6 in the way given
below:
(⇐=):
Let (H,T) be an HT model, then H ⊆ T ⊆ P. Now, construct a Kripke model
MT = (W,T, S, V) as in Proposition 2.5. By that proposition, MT is a MEM
model, and since tr(ϕ) is MEM valid by assumption, we have MT , H |= tr(ϕ).
Finally, again by Proposition 2.5, H,T |= ϕ, i.e., (H,T) is an HT model of ϕ.
(=⇒):
Let M = (W,T, S, V) be a MEM model and let w ∈ W . We give the proof
through a case study.
Case 1. Assume that T(w) \ {w} = ∅. By assumption, we know that (Vw, Vw) is
an HT model of ϕ. Therefore, by Proposition 2.6 we have M,w |= tr(ϕ).
Case 2. Suppose that T(w) \ {w} , ∅. Then there exists a unique u such that
T(w) = {w, u} is of cardinality 2 (see Remark 2.2). Hence, Proposition 2.1.1 gives
us Vw ⊆ Vu. Next, by hypothesis (Vw, Vu) is an HT model of ϕ. Therefore, by
Proposition 2.6, M,w |= tr(ϕ). q.e.d.

Corollary A.1 For every L→-formula ϕ,

ϕ has an HT model if and only if tr(ϕ) is MEM satisfiable.

123

Proof. It is a direct consequence of Theorem 2.2, and the result follows through
the argument given below:

tr(ϕ) is MEM satisfiable
iff ∼tr(ϕ) is not MEM valid
iff ∼〈T〉tr(ϕ) is not MEM valid (by refl(T))
iff tr(¬ϕ) is not MEM valid (see Subsection 3.3.3 for tr(¬ϕ))
iff ¬ϕ is not HT valid (by Theorem 2.2)
iff there is an HT model (H,T) s.t. H,T 6|= ¬ϕ
iff there is an HT model (H,T) s.t. H,T |= ϕ or T, T |= ϕ
iff ϕ has an HT model.

q.e.d.

Proposition A.7 Given T ⊆ P, let MT = (W,T, S, V) be a Kripke model such
that:

W = 2T ;
VH = H, for every H ∈ W ;
T = ∆W ∪ (W × {T});
S = ∆(W\{T}) ∪

(
{T} × (W \ {T})

)
.

Then MT is a MEM model, and T is an equilibrium model of ϕ if and only if
MT , T |= tr(ϕ) ∧ [S]∼tr(ϕ), for every L→-formula ϕ.

Proof. As we have already checked in Proposition 2.5, MT is a legal MEM
model. So it remains to prove that T is an equilibrium model of ϕ iff MT , T |=
tr(ϕ) ∧ [S]∼tr(ϕ) for every L→-formula ϕ. We indeed have:

T is an equilibrium model of ϕ
iff T, T |= ϕ and H,T 6|= ϕ for every H ⊂ T
iff MT , T |= tr(ϕ) and MT , H 6|= tr(ϕ) for every H ⊂ T (by Proposition 2.5)
iff MT , T |= tr(ϕ) and MT , H |= ∼tr(ϕ) for every H such that TSH

(because TSH iff H ⊂ T by construction)
iff MT , T |= tr(ϕ) and MT , T |= [S]∼tr(ϕ)
iff MT , T |= tr(ϕ) ∧ [S]∼tr(ϕ).

q.e.d.

Proposition A.8 Given a MEM model M = (W,T, S, V) and w ∈ W ,
if T(w) \ {w} , ∅ then let u ∈ T(w) \ {w}, or else let u = w. Then

124

1. if Vu = ∅ then M,u |= tr(ϕ) if and only if Vu is an equilibrium model for ϕ,

2. and if Vu , ∅ thenM,u |= tr(ϕ)∧[S]∼tr(ϕ) if and only if Vu is an equilibrium
model for ϕ, for every L→-formula ϕ.

Proof. Let M = (M,T, S, V) be a MEM model, and w ∈ W .
Case 1: let T(w)\{w} , ∅ then by Remark 2.2, there exists a uniquely determined
u ∈ T(w)\{w} such that T(w) = {w, u}, and T(u) = {u} (?). Moreover, for every
v such that uSv, by wmcon(T, S), refl2(S), wtriv2(S), mconv(S,T), alt2(T), we have
T(v) = {v, u} (??). Hence, the result follows through the following argument:

• let Vu , ∅ (∗) then we have:

M,u |= tr(ϕ) ∧ [S]∼tr(ϕ)
iff M,u |= tr(ϕ) and M, v 6|= tr(ϕ) for every v such that uSv
iff Vu, Vu |= ϕ and Vv, Vu 6|= tr(ϕ) for every v such that uSv

(by Proposition 2.6, (?) and (??))
iff Vu, Vu |= ϕ and H,Vu 6|= tr(ϕ) for every H such that H ⊂ Vu

(by (∗), negatable(S,T) and wtriv2(S))
iff Vu is an equilibrium model for ϕ.

• let Vu = ∅ then we have:

M,u |= tr(ϕ) iff Vu, Vu |= ϕ (by Proposition 2.6 and (?))
iff Vu is an equilibrium model for ϕ.

Case 2: let T(w) \ {w} = ∅ then by Remark 2.2, T(w) = {w} Moreover, for
every v such that wSv, T(v) = {v, w} (note that if w is a singleton point in which
S(w) , ∅ then T(v) = {w} for every v with wSv because for that case S(w) = {w},
so v = w). The rest of the proof follows basically the same way, so we leave it to
the reader. q.e.d.

Theorem A.3 Given L→-formulas χ and ϕ,

χ |≈ ϕ if and only if
(
tr(χ) ∧ [S]∼tr(χ)

)
⊃ tr(ϕ) is MEM valid.

Proof. We use propositions 2.6, 2.7 and 2.8. First of all, let us abbreviate(
tr(χ) ∧ [S]∼tr(χ)

)
⊃ tr(ϕ) by ξ.

(=⇒):
Assume ξ isn’t MEM valid. Hence there exists a MEM model M and a world w
in M such that:

M,w |= tr(χ) ∧ [S]∼tr(χ) ∧ ∼tr(ϕ) (∗).

125

If w were such a point satisfying T(w) \ {w} , ∅, then from (∗) we would immedi-
ately obtain a contradiction, namely thatM,w |= tr(χ) and alsoM,w 6|= tr(χ) (by
Remark 2.2 and the constraints wmconv(T, S) and refl2(S)). Hence we conclude
that T(w) \ {w} = ∅ (?), i.e., by Remark 2.2, T(w) = {w}. Now, we need to go
over two cases:
Case 1: let Vw be empty then we again have two alternatives. One is where w is a
singleton point. However, w cannot be a singleton point where S(w) is nonempty
otherwise we would again get the same contradiction as before. Therefore, if w
is a singleton point then it should satisfy S(w) = ∅. Now, using (∗), it turns
out that M,w |= tr(χ) and M,w 6|= tr(ϕ). Then by Proposition 2.6 and (?), we
get Vw, Vw |= χ and Vw, Vw 6|= ϕ. We know that for the empty-set, the mini-
mality condition in the definition of equilibrium model is trivially satisfied, and
‘Vw, Vw |= χ’ guarantees the first condition. Therefore we conclude that Vw is an
equilibrium model for χ. However, Vw, Vw 6|= ϕ helps us deduce that ϕ is not a
logical consequence of χ, which is nothing but the result we are looking for. The
second instance is where w is not a singleton point. In this part of the proof,
we first use (∗) and get M,w |= [S]∼tr(χ) which further gives us that for every
u such that wSu, M,u 6|= tr(χ). Next, using the constraints refl2(S), mconv(S),
alt2(T), wtriv2(S), from w being not a singleton point with T(w) = {w} we obtain
T(u) = {u,w} for every u such that wSu (one should note that wSw is not possible
when w is the root of a tree, but is not a singleton point). Then since T(u)\{u} , ∅
for every u such that wSu, by Proposition 2.6, we have Vu, Vw 6|= χ. On the other
hand, by heredity(S), we get Vu ⊆ Vw for every u such that wSu. Thus, Vu = ∅
for every u with wSu. Hence, ‘Vw, Vw |= χ’ and ‘Vu, Vw 6|= χ, for every u such that
wSu’ contradict each other. As a result, using the discussion above, we conclude
that if Vw = ∅ then (∗) gives us that w is a singleton point in which S(w) = ∅ and
for that case we easily get the result we are searching for (see above).
Case 2: let Vw be different from empty-set. First of all, we recall M,w |=
tr(χ) ∧ [S]∼tr(χ) (∗∗), which is an immediate consequence of (∗). Then, Propo-
sition 2.8 and (∗∗) immediately yield us that Vw is an equilibrium model of χ.
However, we also know that Vw, Vw 6|= ϕ (see above). Thus, we conclude that
χ |0 ϕ. So, we are done.
(⇐=):
Let ξ be MEM valid, and let T ⊆ P be an equilibrium model of χ. Now we con-
struct the MEM model, MT , as it is done in Proposition 2.7. Then we conclude
that MT is a legal MEM model and that MT , T |= tr(χ) ∧ [S]∼tr(χ) again by
Proposition 2.7. Since ξ is MEM valid, MT , T |= ξ, but as MT is a MEM model,
we also have MT , T |= tr(ϕ). Finally, since T(T) = {T} by construction, then
T, T |= ϕ immediately follows by Proposition 2.6. Thus we conclude that χ |≈ ϕ,
and this ends the proof. q.e.d.

126

Corollary A.2 For every L→-formula χ,

χ has an equilibrium model iff tr(χ) ∧ [S]∼tr(χ) is MEM satisfiable.

Proof. It is an immediate consequence of Theorem 3.4 as it is shown below:

χ has an equilibrium model, say T
iff T is an equilibrium model of χ and T, T 6|= ⊥
iff χ |0 ⊥
iff tr(χ) ∧ [S]∼tr(χ) ⊃ tr(⊥) is not MEM valid (by Theorem 3.4)
iff M,w |= tr(χ) ∧ [S]∼tr(χ) ∧ > for some MEM model M and a world w
iff tr(χ) ∧ [S]∼tr(χ) is MEM satisfiable.

q.e.d.

A.3 Proofs of Chapter 3
Proposition A.9 Given an LD-HT-formula ϕ, let P be a set of propositional vari-
ables such that P ∩ Pϕ = ∅. Then, for every Q ⊆ P ,

(H,T) ∈ ‖ϕ‖D-HT if and only if (H∪Q, T∪P) ∈ ‖ϕ‖D-HT.

Proof. As expected, the proof is given by strong induction on the length of D-HT
expressions (D-HT formulas and D-HT programs). Let Σ(ζ) be the property (?)
defined over all D-HT expressions as in: given P ⊆ P such that P ∩ Pϕ = ∅, for
every Q ⊆ P ,

• if ζ is a formula then (H,T) ∈ ‖ζ‖D-HT iff (H ∪Q, T ∪ P) ∈ ‖ζ‖D-HT, and

• if ζ is a program then(
(H1, T1), (H2, T2)

)
∈‖ζ‖D-HT iff

(
(H1∪Q, T1∪P), (H2∪Q, T2∪P)

)
∈‖ζ‖D-HT.

Now, we are going to show by induction that Σ(ζ) is true for all D-HT expressions.
Base case: here, we will verify the claim for all D-HT expressions of length 1.

• Let ζ = p for an arbitrary p ∈ P. Then given P ⊆ P such that p < P , for
every Q ⊆ P

(
so, p < Q either (4)

)
, we have (H,T) ∈ ‖p‖D-HT if and only if

p ∈ H (by (4)) if and only if p ∈ H∪Q if and only if (H∪Q, T∪P) ∈ ‖p‖D-HT

(see Table 3.1 for the interpretation of p ∈ P).

127

• for ζ = ⊥, the result immediately follows through the semantics of ⊥ (see
Table 3.1).

• Let ζ = +p. Then, given P ⊆ P such that p < P , we assume
(

(H1 ∪

Q, T1 ∪ P), (H2 ∪ Q, T2 ∪ P)
)
∈ ‖+p‖DL-PA, for every Q ⊆ P (since p < P ,

p < Q either (∇)). Taking P = Q = ∅ immediately gives the result, i.e.,(
(H1, T1), (H2, T2)

)
∈ ‖+p‖D-HT. For the reverse direction, we first suppose(

(H1, T1), (H2, T2)
)
∈ ‖+p‖D-HT. Then, by the help Table 3.1, we get the

following: “if p < T1 then T2 = T1 ∪ {p} and H2 = H1”, and “if p ∈ T1, but
p < H1 then H2 = H1 ∪ {p} and T2 = T1”. Moreover, using (∇) we also get:
“if p < T1 ∪ P then T2 ∪ P = (T1 ∪ P) ∪ {p} and H2 ∪Q = H1 ∪Q”, and “if
p ∈ T1∪P , but p < H1∪Q then H2∪Q = (H1∪Q)∪{p} and T2∪P = T1∪P”.
Hence, Table 3.1 gives us

(
(H1 ∪Q, T1 ∪P), (H2 ∪Q, T2 ∪P)

)
∈ ‖+p‖DL-PA.

• For ζ = −p, the proof follows basically the same as above , so we leave it to
the reader.

Inductive step: we assume that Σ(ζ) holds for every D-HT expression, ζ, of length
l such that 1 ≤ l < n (induction hypothesis (I.H.)). We want to prove that the
property (?) holds for all D-HT expressions of length n.
Case 1: let ζ be a formula of length n.

• For ζ = ψ1 ∧ψ2 and ζ = ψ1 ∨ψ2 where ψ1, ψ2 ∈ LD-HT, the proof is straight-
forward, so we leave it to the reader.

• However, the instance of (intuitionistic) implication is worth analyzing. Let
ζ = ψ1 → ψ2 for some LD-HT formulas ψ1 and ψ2. To show one side of
the equivalence, we first assume (H,T) ∈ ‖ζ‖D-HT, then from Table 3.1, we
immediately obtain (H,T), (T, T) ∈ (HT\‖ψ1‖D-HT)∪‖ψ2‖D-HT. We next use
induction hypothesis and get the following: given P1 ⊆ P such that P1∩Pψ1 =
∅, for any Q1 ⊆ P1, (H ∪Q1, T ∪P1) and (T ∪Q1, T ∪P1) are not contained
in ‖ψ1‖D-HT (hence, they are in HT \ ‖ψ1‖D-HT). Similarly, given P2 ⊆ P such
that P2∩Pψ2 = ∅, for every Q2 ⊆ P2, (H∪Q2, T ∪P2) and (T ∪Q2, T ∪P2) are
both included in ‖ψ2‖D-HT. Hence, we deduce that for every P ⊆ P such that
P ∩Pζ = ∅, and every Q ⊆ P , (H∪Q, T ∪P) (•) and (T ∪Q, T ∪P) are both
in (HT\‖ψ1‖D-HT)∪‖ψ2‖D-HT. However, among the latter HT models, we just
consider the total (in which here and there are equal to each other) models.
Such restriction gives us the following: for every P such that P ∩ Pζ = ∅,
(T ∪P, T ∪P) ∈ (HT\‖ψ1‖D-HT)∪‖ψ2‖D-HT (••). As a result, what we obtain

128

from (•) and (••) is the following: for every P ⊆ P such that P ∩Pζ = ∅ and
every Q ⊆ P , (H ∪Q, T ∪ P), (T ∪ P, T ∪ P) ∈ (HT \ ‖ψ1‖D-HT) ∪ ‖ψ2‖D-HT.
Finally, using Table 3.1, we get (H ∪Q, T ∪P) ∈ ‖ψ1 → ψ2‖D-HT. The other
side is trivial. Setting P = Q = ∅, immediately gives the result (as the
reader can easily check).

• As to the formulas preceded by dynamic modal operators, we just give the
proof for [π], and leave the rest to the reader; yet the proof of 〈π〉 is given
basically the same as below. Let ζ = [π]ψ for some π, ψ ∈ LD-HT. Then
we have: (H,T) ∈ ‖[π]ψ‖D-HT if and only if for every

(
(H,T), (H1, T1)

)
∈

‖π‖D-HT, (H1, T1) ∈ ‖ϕ‖D-HT (see Table 3.1 for semantics) if and only if (by
(I.H.)) for every P such that P ∩ Pζ = ∅, and every Q ⊆ P , for every
(H1∪Q, T1∪P) with

(
(H ∪Q, T ∪P), (H1∪Q, T1∪P)

)
∈ ‖π‖D-HT, we have

(H1 ∪Q, T1 ∪ P) ∈ ‖ψ‖D-HT if and only if for every P such that P ∩ Pζ = ∅,
and every Q ⊆ P , (H ∪Q, T ∪ P) ∈ ‖[π]ψ‖D-HT.

Case 2: let ζ be a program of length n.

• Both sides of the proof for ζ = π1; π2 are easy; one side is even trivial (just
take P = Q = ∅), and the other side is given simply using Table 3.1 and
(I.H.). As for ζ = π1 ∪ π2, its proof follows basically the same as the proof
of π1; π2. So, we leave them all to the reader.

• Now, let ζ = π∗ for some LD-HT program π. We just give one side of the proof
because the other side is trivial (exactly the same as in item 1). So, we start
by assuming that

(
(Hi, Ti), (Hj, Tj)

)
∈ ‖π∗‖D-HT

1. Then using Table 3.1
and Footnote 1, we get ‖π∗‖D-HT = ‖π‖∗D-HT = ‖π‖+

D-HT ∪ ι (•) where ι is the
identity relation. Hence, we have: ‘Hi = Hj and Ti = Tj’ or ‘there exists a se-
quence (Hi, Ti) = (H0, T0), (H1, T1), . . . , (Hn, Tn) = (Hj, Tj) (for some n > 0)
of D-HT models such that for each k, 0 ≤ k < n,

(
(Hk, Tk), (Hk+1, Tk+1)

)
∈

‖π‖D-HT’. Then using (I.H.), the latter implies that for every P ⊆ P such that
P ∩ Pπ = ∅, and every Q ⊆ P , there is a sequence of D-HT models, namely
(Hi ∪Q, Ti ∪P) = (H0 ∪Q, T0 ∪P), . . . , (Hn ∪Q, Tn ∪P) = (Hj ∪Q, Tj ∪P)
(n > 0), satisfying

(
(Hk ∪ Q, Tk ∪ P), (Hk+1 ∪ Q, Tk+1 ∪ P)

)
∈ ‖π‖D-HT

1We abbreviate the n-fold composition of a binary relation R by Rn. Formally, R0 def=
{(x, x) : x ∈ dom(R)}. The transitive and the reflexive transitive closures of R are respectively
defined by R∗ def=

⋃
n≥0

Rn and R+ def=
⋃

n>0
Rn. Hence, R∗ = R+∪ι where ι is the identity relation.

Moreover, note that R+uv means that there is a sequence of elements u = w0, w1, . . . , wn =
v (n > 0) such that for each i < n we have (wi, wi+1) ∈ R.

129

for all k, 0 ≤ k < n. Moreover, it is obvious that for every P such that
P ∩ Pπ = ∅, and every Q ⊆ P , Hi ∪ Q = Hj ∪ Q and Ti ∪ Q = Tj ∪ P .
Finally, we get for every P such that P ∩ Pπ = ∅, and every Q ⊆ P ,(

(Hi ∪ Q, Ti ∪ P), (Hj ∪ Q, Tj ∪ P)
)
∈ ‖π‖+

D-HT ∪ ι where ι is the iden-
tity relation. By (•), we also know that ‖π‖+

D-HT ∪ ι = ‖π∗‖D-HT, so we are
done.

• Finally, let ζ = ψ? for some D-HT formula ψ. One part of the proof is
again trivial (exactly the same as all above). To show the other part, we
first assume

(
(Hi, Ti), (Hj, Tj)

)
∈ ‖ψ?‖D-HT, and this means that Hi = Hj,

Ti = Tj and (Hi, Ti) ∈ ‖ψ‖D-HT (see Table 3.1). Then, by (I.H.) and the first
two equality, we get for every P ⊆ P such that P ∩Pψ = ∅, and every Q ⊆ P ,
Hi ∪ Q = Hj ∪ Q, Ti ∪ P = Tj ∪ P and (Hi ∪ Q, Ti ∪ P) ∈ ‖ψ‖D-HT. Using
Table 3.1 once again (and also regarding that Pζ = Pψ) we get the result,
i.e.,

(
(Hi ∪ Q, Ti ∪ P), (Hj ∪ Q, Tj ∪ P)

)
∈ ‖ζ‖D-HT for every P ⊆ P such

that P ∩ Pζ = ∅, and every Q ⊆ P .
q.e.d.

Lemma A.3 (Main Lemma) (H,T) ∈ ‖ϕ‖D-HT iff H ∪ T ′ ∈ ‖tr(ϕ)‖DL-PA.

Proof. Proof is given by strong induction on the length of D-HT expressions
(D-HT formulas and D-HT programs). Let Π(ξ) be the property (?) defined over
all D-HT expressions as follows:
• if ξ is a formula then (H,T) ∈ ‖ξ‖D-HT if and only if H∪T ′ ∈ ‖tr(ξ)‖DL-PA,

and

• if ξ is a program then

((H1, T1), (H2, T2)) ∈ ‖ξ‖D-HT if and only if ((H1∪T ′1), (H2∪T ′2)) ∈ ‖tr(ξ)‖DL-PA.
We are going to demonstrate by induction that Π(ξ) holds for all D-HT expres-
sions, ξ.
Base case: in this step, we need to prove that the property Π holds for all D-HT
expressions of length 1. To begin with, for all p ∈ P, Π(p) is clearly satisfied: for
every p ∈ P,

(H,T) ∈ ‖p‖D-HT iff p ∈ H (see Table 3.1)
iff p ∈ H ∪ T ′

iff H ∪ T ′ ∈ ‖tr(p)‖DL-PA (see Table 3.2 and Table 3.4) .

130

It is also obvious that Π(⊥) trivially holds. As for the atomic programs, we just
give the proof for +p because the proof for −p is similar:(

(H1, T1), (H2, T2)
)
∈ ‖+p‖D-HT iff

(see Table 3.1)
“if p < T1 then T2 = T1 ∪ {p} and H2 = H1”, and
“if p ∈ T1, but p < H1 then H2 = H1 ∪ {p} and T2 = T1” iff
(see Remark 3.1)
“if p′ < T ′1 then T ′2 = T ′1 ∪ {p′} and H2 = H1”, and
“if p′ ∈ T ′1, but p < H1 then H2 = H1 ∪ {p} and T ′2 = T ′1” iff
(Prop. 3.2 and Table 3.2)
“if H1 ∪ T ′1 ∈ ‖∼p′‖DL-PA then H2 ∪ T ′2 = H1 ∪ (T ′1 ∪ {p′})”, and
“if H1 ∪ T ′1 ∈ ‖p′ ∧ ∼p‖DL-PA then H2 ∪ T2 = (H1 ∪ {p}) ∪ T ′2” iff
(see Table 3.2)
(H1 ∪ T ′1, H2 ∪ T ′2) ∈ ‖

(
∼p′?; p′:=>

)
∪
(
(p′ ∧ ∼p)?; p:=>

)
‖DL-PA iff

(see Table 3.4)
(H1 ∪ T ′1, H2 ∪ T ′2) ∈ ‖tr(+p)‖DL-PA.

As a result, Π(+p) holds as well.
Inductive step: we suppose that Π(ξ) is true for every D-HT expression, ξ of
length l such that 1 ≤ l < n (induction hypothesis (I.H.)). We want to prove
that the property (?) holds for all D-HT expressions of length n.
Case 1: let ξ be a formula of length n.
Let ξ = α ∧ β for some D-HT formulas α and β then clearly, |α|, |β| < n. Hence,
(I.H.) gives us “(H,T) ∈ ‖θ‖D-HT if and only if H ∪T ′ ∈ ‖tr(θ)‖DL-PA” for θ = α, β
(??). Then, the result follows as in:

(H,T) ∈ ‖ξ‖D-HT iff (H,T) ∈ ‖α‖D-HT ∩ ‖β‖D-HT (see Table 3.1)
iff H ∪ T ′ ∈ ‖tr(α)‖DL-PA ∩ ‖tr(β)‖DL-PA (by ??)
iff H ∪ T ′ ∈ ‖tr(α) ∧ tr(β)‖DL-PA

iff H ∪ T ′ ∈ ‖tr(ξ)‖DL-PA.

For ξ = α ∨ β such that α, β ∈ LD-HT, the proof follows similarly as above, so we
leave it to the reader.

131

Let ξ = α→ β where α and β are D-HT formulas satisfying induction hypothesis.

H ∪ T ′ ∈ ‖tr(α→ β)‖DL-PA iff (see Table 3.4)
H ∪ T ′ ∈ ‖[skip ∪ cpBack(Pα→β)]

(
tr(α) ⊃ tr(β)

)
‖DL-PA iff

H ∪ T ′ ∈ ‖tr(α) ⊃ tr(β)‖DL-PA and
H ∪ T ′ ∈ ‖[cpBack(Pα→β)]

(
tr(α) ⊃ tr(β)

)
‖DL-PA iff (see Lemma 3.1)

H ∪ T ′ ∈ ‖tr(α) ⊃ tr(β)‖DL-PA and(
H ∪ (T ∩ Pα→β)

)
∪ T ′ ∈ ‖tr(α) ⊃ tr(β)‖DL-PA iff (Proposition 3.2)

H ∪ T ′ ∈ ‖tr(α) ⊃ tr(β)‖DL-PA and
T ∪ T ′ ∈ ‖tr(α) ⊃ tr(β)‖DL-PA iff (by I.H.)
(H,T), (T, T) ∈

(
HT \ ‖α‖D-HT

)
∪ ‖β‖D-HT iff (see Table 3.1)

(H,T) ∈ ‖α→ β‖D-HT.

Let ξ = [π]ϕ for some π, ϕ ∈ LD-HT. Then we have:

(H,T) ∈ ‖[π]ϕ‖D-HT iff (see Table 3.1)
for every (H1, T1) such that

(
(H,T), (H1, T1)

)
∈ ‖π‖D-HT,

(H1, T1) ∈ ‖ϕ‖D-HT iff (by I.H.)
for every H1 ⊆ T1 ⊆ P such that(
H ∪ T ′, H1 ∪ T ′1

)
∈ ‖tr(π)‖DL-PA, H1 ∪ T ′1 ∈ ‖tr(ϕ)‖DL-PA iff

H ∪ T ′ ∈ ‖[tr(π)]tr(ϕ)‖DL-PA iff
H ∪ T ′ ∈ ‖tr([π]ϕ)‖DL-PA

The proof of ξ = 〈π〉ϕ for some π, ϕ ∈ LD-HT is given through a similar argument,
so we leave it to the reader.
Case 2: let ξ be a program of length n.
Let ξ = π1; π2 for some π1, π2 ∈ LD-HT. Then we get the result as follows:(

(H1, T1), (H2, T2)
)
∈ ‖π1; π2‖D-HT iff (see Table 3.1)(

(H1, T1), (H2, T2)
)
∈ ‖π1‖D-HT ◦ ‖π2‖D-HT iff

there is a D-HT model (H0, T0) such that(
(H1, T1), (H0, T0)

)
∈ ‖π1‖D-HT and(

(H0, T0), (H2, T2)
)
∈ ‖π2‖D-HT iff (by I.H.)

there is a valuation H0 ∪ T ′0 such that(
H1 ∪ T ′1, H0 ∪ T ′0

)
∈ ‖tr(π1)‖DL-PA and(

H0 ∪ T ′0, H2 ∪ T ′2
)
∈ ‖tr(π2)‖DL-PA iff(

H1 ∪ T ′1, H2 ∪ T ′2
)
∈ ‖tr(π1)‖DL-PA ◦ ‖tr(π2)‖DL-PA iff (see Table 3.2)(

H1 ∪ T ′1, H2 ∪ T ′2
)
∈ ‖tr(π1); tr(π2)‖DL-PA iff(

H1 ∪ T ′1, H2 ∪ T ′2
)
∪ ∈ ‖tr(π1; π2)‖DL-PA.

132

Let ξ = π1 ∪ π2 for some D-HT programs π1 and π2. Then we have:(
(H1, T1), (H2, T2)

)
∈ ‖π1 ∪ π2‖D-HT iff (Table 3.1)(

(H1, T1), (H2, T2)
)
∈ ‖π1‖D-HT ∪ ‖π2‖D-HT iff (by I.H.)(

H1 ∪ T ′1, H2 ∪ T ′2
)
‖tr(π1)‖DL-PA ∪ ‖tr(π2)‖DL-PA iff (Table 3.2)(

H1 ∪ T ′1, H2 ∪ T ′2
)
∈ ‖tr(π1) ∪ tr(π2)‖DL-PA iff(

H1 ∪ T1, H2 ∪ T ′2
)
∈ ‖tr(π1 ∪ π2)‖DL-PA.

Let ξ = π∗ where π is a D-HT program of length |π| = n − 1, so π satisfies
induction hypothesis. Then, we have the following:(

(Hi, Ti), (Hj, Tj)
)
∈ ‖π∗‖D-HT iff (Table 3.1)(

(Hi, Ti), (Hj, Tj)
)
∈ ‖π‖∗D-HT iff (Footnote 1)(

(Hi, Ti), (Hj, Tj)
)
∈
(⋃
n>0
‖π‖nD-HT

)
∪ ‖π‖0

D-HT iff (Footnote 1)
there is a sequence (Hi, Ti) = (H0, T0), . . . , (Hn, Tn) = (Hj, Tj)
of D-HT models (n > 0) such that for each k, 0 ≤ k < n(
(Hk, Tk), (Hk+1, Tk+1)

)
∈ ‖π‖D-HT or (Hi, Ti) = (Hj, Tj) iff (by I.H.)

there is a sequence Hi ∪ T ′i = H0 ∪ T ′0, . . . , Hn ∪ T ′n = Hj ∪ T ′j
of valuations (n > 0) such that for each k, 0 ≤ k < n(
Hk ∪ T ′k, Hk+1 ∪ T ′k+1

)
∈ ‖tr(π)‖DL-PA or Hi ∪ T ′i = Hj ∪ T ′j iff (Footnote 1)(

Hi ∪ T ′i , Hj ∪ T ′j
)
∈ ‖tr(π)‖+

DL-PA ∪ ‖tr(π)‖0
DL-PA iff (Footnote 1)(

Hi ∪ T ′i , Hj ∪ T ′j
)
∈ ‖tr(π)‖∗DL-PA iff (Table 3.2)(

Hi ∪ T ′i , Hj ∪ T ′j
)
∈ ‖

(
tr(π)

)∗
‖DL-PA iff(

Hi ∪ T ′i , Hj ∪ T ′j
)
∈ ‖tr(π∗)‖DL-PA.

Let ξ = ϕ? for a D-HT formula ϕ with |ϕ| = n− 1. Then, we have:(
(Hi, Ti), (Hj, Tj)

)
∈ ‖ϕ?‖D-HT iff (see Table 3.1)

(Hi, Ti) = (Hj, Tj) and (Hi, Ti) ∈ ‖ϕ‖D-HT iff (by I.H.)
Hi ∪ T ′i = Hj ∪ T ′j and Hi ∪ T ′i ∈ ‖tr(ϕ)‖DL-PA iff (see Table 3.2)(
(Hi, Ti), (Hj, Tj)

)
∈ ‖tr(ϕ)?‖DL-PA iff(

(Hi, Ti), (Hj, Tj)
)
∈ ‖tr(ϕ?)‖DL-PA.

Hence, Π(ξ) holds also for D-HT expressions of length n. As a result, Π(ξ) is true
for all D-HT expressions, so we are done. q.e.d.

133

Theorem A.4 For every LD-HT formula χ, T ⊆ P is an equilibrium model of χ if
and only if T∪T ′ is a DL-PA model of tr(χ) ∧ ∼〈mkFalse>0(Pχ)〉trPχ(χ).

Proof. T∪T ′ is a DL-PA model of tr(χ)∧∼〈mkFalse>0(Pχ)〉trPχ(χ) if and only
if

(A.1) T∪T ′ is a DL-PA model of tr(χ)

and

(A.2) T∪T ′ is a DL-PA model of ∼〈mkFalse>0(Pχ)〉trPχ(χ)

By the Main Lemma, (A.1) is the case if and only if (T, T) is a HT model of χ in
D-HT. It remains to prove that (A.2) is the case if and only if (H,T) is not a HT
model of χ, for any set H ⊂ T . We establish this by proving that the following
statements are equivalent.

1. T ∪ T ′ is a DL-PA model of ∼〈mkFalse>0(Pχ)〉trPχ(χ)

2. (T ∩ Pχ) ∪ T ′ is not a DL-PA model of 〈mkFalse>0(Pχ)〉trPχ(χ)
(Proposition 3.2)

3. H ∪ T ′ is not a DL-PA model of trPχ(χ), for any H ⊂ T ∩ Pχ
(Program Lemma 3.1)

4. H,T is not a HT model of χ, for any set H ⊂ T ∩ Pχ (Main Lemma 3.2)

5. H,T is not a HT model of χ, for any set H ⊂ T (Proposition 3.1).

q.e.d.

Theorem A.5 Let χ and ϕ be LD-HT formulas. Then χ |≈ ϕ if and only if

〈cp(Pχ ∪ Pϕ)〉
((

tr(χ) ∧ ∼〈mkFalse>0(Pχ)〉tr(χ)
)
⊃ tr(ϕ)

)
is DL-PA valid.

Proof. As the program cp(Pχ) is both deterministic and always executable, T is
a DL-PA model of 〈cp(Pχ)〉 (tr(χ) ∧ ∼〈mkFalse>0(Pχ)〉trPχ(χ)) if and only if xxx

(A.3) T is a DL-PA model of 〈cp(Pχ)〉∼〈mkFalse>0(Pχ)〉trPχ(χ)

134

(Remember that we consider that T = T ∪ ∅′, i.e., the set of copied variables is
empty.)

By the Program Lemma 3.1, T is a DL-PA model of 〈cp(Pχ)〉tr(χ) if and only
if T ∪(T ∩Pχ)′ is a DL-PA model of tr(χ), and by Proposition 3.1, the latter is the
case if and only if T ∪ T ′ is a DL-PA model of tr(χ); finally, by the Main Lemma
3.2, the latter is the case if and only if (T, T) is a HT model of χ in D-HT.

It remains to prove that (A.3) is the case if and only if (H,T) is not a HT
model of χ, for any set H ⊂ T . We establish this by proving that the following
statements are equivalent.

1. T is a DL-PA model of 〈cp(Pχ)〉∼〈mkFalse>0(Pχ)〉trPχ(χ)

2. T ∪ (T ∩ Pχ)′ is a DL-PA model of ∼〈mkFalse>0(Pχ)〉trPχ(χ) (Program
Lemma 3.1)

3. (T ∩ Pχ) ∪ T ′ is not a DL-PA model of 〈mkFalse>0(Pχ)〉trPχ(χ)
(Proposition 3.2, twice)

4. H ∪ T ′ is not a DL-PA model of trPχ(χ), for any H ⊂ T ∩ Pχ (Program
Lemma 3.1)

5. H,T is not a HT model of χ, for any set H ⊂ T ∩ Pχ (Main Lemma 3.2)

6. H,T is not a HT model of χ, for any set H ⊂ T (Proposition 3.1).

q.e.d.

A.4 Proofs of Chapter 4
Proposition A.10 Let

(
(T, ~), T

)
be an EHT model. Let ϕ be an LE-HT formula.

Then:

1. (T, ~), T |=E-HT ¬ϕ if (T, id), T 6|=E-HT ϕ;

2. (T, ~), T |=E-HT ¬¬ϕ ff (T, id), T |=E-HT ϕ;

3. (T, ~), T |=E-HT ¬Kϕ if (T, id), T ′ 6|=E-HT ϕ, for some T ′ ∈ T;

4. (T, ~), T |=E-HT ¬K̂ϕ if (T, id), T ′ 6|=E-HT ϕ, for any T ′ ∈ T.

Proof.

135

• The proof of item 1 is given by using Lemma 4.2. One side of the proof is
trivial, so we leave it to the reader. The other side immediately follows from
the heredity property of E-HT logic (see Lemma 4.2) as in:

(T, id), T0 6|=E-HT ϕ =⇒ (T, id), T0 6|=E-HT ϕ and (T, ~), T0 6|=E-HT ϕ

=⇒ (T, ~), T0 |=E-HT ¬ϕ.

• Item 2 is an easy consequence of Lemma 1.2.1 (item 1). So, we have:

(T, ~), T0 |=E-HT ¬¬ϕ iff (T, id), T0 6|=E-HT ¬ϕ (replace ϕ by ¬ϕ in item 1)
iff (T, id), T0 |=E-HT ϕ.

• The proof of item 3 also follows from Lemma 1.2.1 (item 1) through the
interpretation of K operator (see “Truth conditions” in Subsection 4.1.2)
described below:

(T, ~), T0 |=E-HT ¬Kϕ iff (T, id), T0 6|=E-HT Kϕ (update ϕ by Kϕ in item 1)
iff (T, id), T ′ 6|=E-HT ϕ for some T ′ ∈ T.

• We prove item 4 again by means of Lemma 1.2.1 (item 1), using the in-
terpretation of K̂ operator (see “Truth conditions” in Subsection 4.1.2) as
follows:

(T, ~), T0 |=E-HT ¬K̂ϕ iff (T, id), T0 6|=E-HT K̂ϕ (use ϕ:=K̂ϕ in item 1)
iff (T, id), T ′ 6|=E-HT ϕ for any T ′ ∈ T.

q.e.d.

Proposition A.11 The following properties hold for ϕ ∈ LE-HT.

1. All EHT valid formulas have exactly one EEM, namely {∅}.

2. ¬ϕ has either a unique EEM {∅} or none: if {∅} |=S5 ϕ then {∅} is the
unique EEM of ¬¬ϕ and ¬ϕ has none, otherwise vice versa.

3. If ϕ has no EEM then neither do K̂ϕ and Kϕ.

4. Let T ⊆ P be a valuation. For an objective (nonmodal) ϕ (i.e., ϕ ∈ LHT),
{T} and {∅, T} are EEMs of ϕ if and only if T is an EM of ϕ.

5. For an objective ϕ, any arbitrary collection of EMs of ϕ is an EEM of Kϕ.

136

6. For a nonmodal LE-HT formula ϕ, T is an EM of ϕ iff:

(a) {T} is an EEM of K̂ϕ when ∅ |= ϕ.
(b) {T} and {∅, T} are the EEMs of K̂ϕ when ∅ 6|= ϕ.

Proof.

• the proof of item 2: remember that (T, ~), T |=E-HT ¬ϕ if and only if
(T, id), T 6|=E-HT ϕ (see Proposition A.10). This means that the two con-
ditions of epistemic equilibrium model of ¬ϕ in fact amount to the same
condition. Then, it follows immediately that the only epistemic equilibrium
model candidate for ¬ϕ is {∅} where the second minimality condition is triv-
ially satisfied. However, when {∅} |=S5 ϕ then {∅} 6|=S5 ¬ϕ, so {∅} is not an
epistemic equilibrium model of ¬ϕ. On the other hand, when {∅} 6|=S5 ϕ then
it follows that {∅} |=S5 ϕ, so {∅} happens to be an epistemic equilibrium
model of ¬ϕ.

• the proof of item 3: assume that ϕ doesn’t have an epistemic equilibrium
model (∗).

– Assume for a contradiction that the LE-HT formula K̂ϕ has an epistemic
equilibrium model, say

(
T, T0

)
(∗∗). Hence, by definition of epistemic

equilibrium model (item 1), we have (T, id), T0 |=E-HT K̂ϕ. Then, by
“Truth conditions” in Subsection 4.1.2, we get (T, id), T ′ |=E-HT ϕ for
some T ′ ∈ T, but then using the assumption (∗), we conclude that
there is a strictly weaker model

(
(T, ~), T ′

)
of
(
(T, id), T ′

)
such that

(T, ~), T ′ |=E-HT ϕ (•); otherwise that would be an epistemic equilibrium
model of ϕ. However, from (∗∗) using the minimality condition, we ob-
tain that (T, ~), T0 6|=E-HT K̂ϕ for any strictly weaker model

(
(T, ~), T0

)
of
(
(T, id), T0

)
which further gives us (T, ~), T 6|=E-HT ϕ for any T ∈ T.

Since the latter result contradicts (•), we conclude that K̂ϕ has no
epistemic equilibrium model either.

– The proof for Kϕ follows more or less the same, so we leave it to the
reader.

q.e.d.

Proposition A.12 The following properties hold: for ϕ, ψ ∈ LHT,

1. if ϕ |≈ ψ then Kϕ |≈ Kψ and Kϕ |≈ ψ.

137

2. if ϕ |≈ ψ then K̂ϕ |≈ K̂ψ and ϕ |≈ K̂ψ.

Proof.

1. Assume that ϕ |≈ ψ holds in equilibrium logic (∗). Let T be an epistemic
equilibrium model of Kϕ. Then, by Lemma ??.??, T is an equilibrium model
of ϕ for every T ∈ T. Hence, from (∗) we obtain that (T, T) |=HT ψ for every
T ∈ T. As a result, (T, id) |=E-HT Kψ. As to the second part the proof, we
suppose

(
T, T0

)
is an epistemic equilibrium model of Kϕ. Then, by the same

reasoning, we get (T, T) |=HT ψ for every T ∈ T. Hence, so does (T0, T0).
Therefore, (T, id), T0 |=E-HT ψ.

2. Assume ϕ |≈ ψ in equilibrium logic (∗). Let T be an epistemic equilibrium
model of K̂ϕ. Then, by Lemma ??.??, T is either in the form of {T} or in
the form of

{
∅, T

}
where T is an equilibrium model of ϕ. Hence, from (∗) we

obtain that (T, T) |=HT ψ, but then (T, id) |=E-HT K̂ψ immediately follows.
As for the verification of ϕ |≈ K̂ψ, we first take an arbitrary epistemic
equilibrium model of ϕ, say

(
T, T0

)
. Then, by Lemma ??,

(
T, T0

)
is either

in the form T or in the form
{
∅, T

}
where T is an equilibrium model of ϕ.

The rest follows by the same reasoning as the first part.

q.e.d.

Theorem A.6 Let Φ and Ψ be two E-HT theories. The following are equivalent:

1. ‖Φ‖E-HT = ‖Ψ‖E-HT;

2. Φ ∪Θ and Ψ ∪Θ have the same epistemic equilibrium models, for every Θ.

Proof. The left-to-right (1⇒2) direction is straightforward: if no EHT model
allows to distinguish Φ and Ψ then there is no EHT model distinguishing Φ ∪ Θ
and Ψ ∪Θ, whatever Θ is, and a fortiori there is no such S5 model.

The rest of the proof is devoted to the right-to-left (2⇒1) direction. Assume
that ‖Φ‖E-HT , ‖Ψ‖E-HT. Then there is an (pointed) EHT model, say

(
(T, ~), T0

)
,

which is a model of Φ but not of Ψ or vice versa. Without loss of generality, let
(T, ~), T0 |=E-HT Φ and (T, ~), T0 6|=E-HT Ψ. We now consider two cases in which
we construct a set of formulas Θ such that (T, T0) is an EEM of one of Φ∪Θ and
Ψ ∪ Θ, but not the other. This establishes that the EEMs of Φ ∪ Θ and Ψ ∪ Θ
differ for some Θ.

138

1. Let T, T0 6|=S5 Ψ. We here construct an EHT theory

Θ =
{

K̂χT : T ∈ T

}
.

Clearly, T, T0 6|=S5 Ψ∪Θ, which further means that (T, T0) is not an EEM of
Ψ ∪Θ. The rest is to prove that (T, T0) is an EEM of Φ ∪Θ.
The first step is easy: since (T, ~), T0 |=E-HT Φ by hypothesis, (T, id), T0 |=E-HT

Φ by heredity (see Proposition 4.2). This further means that T, T0 |=S5 Φ.
Moreover, thanks to the construction of Θ, we also have T, T0 |=S5 Φ ∪Θ.
It remains to examine the minimality condition: let ~′ : T→2P be such that
(T, ~′) C (T, id). Then ~′ , id, and so Lemma 4.1 implies (T, ~′), T ′ 6|=E-HT Θ
for any T ′ ∈ T. In particular, (T, ~′), T0 6|=E-HT Θ Hence, we conclude that
(T, ~′), T0 6|=E-HT Φ ∪Θ. Therefore, (T, T0) is an EEM of Φ ∪Θ.

2. Let T, T0 |=S5 Ψ. We then construct an EHT theory

Θ =
{

K̂ ηT,~ : T ∈ T

}
.

To begin with, by Lemma 4.1 we have: (T, ~), T0 |=E-HT Θ if and only if
~ = ~ or ~ = id. Therefore, it immediately follows that (T, ~), T0 |=E-HT

Θ. However, ~ cannot be id because we have supposed in this case that
T, T0 |=S5 Ψ which means that (T, id), T0 |=E-HT Ψ, and by hypothesis we also
have (T, ~), T0 6|=E-HT Ψ. Again by hypothesis we also have (T, ~), T0 |=E-HT Φ
which further gives us (T, ~), T0 |=E-HT Φ ∪Θ for ~ , id. As a result, (T, T0)
cannot be an EEM of Φ ∪Θ.
The rest is to show that (T, T0) is an EEM of Ψ ∪Θ. Using Lemma 4.1, we
also have: (T, id), T0 |=E-HT Θ if and only if id = ~ or id = id. Hence, it is
clear that (T, id), T0 |=E-HT Θ, which is the same as T, T0 |=S5 Θ. Then, we
have by our initial assumption that T, T0 |=S5 Ψ∪Θ. We now need to prove
the minimality condition: (T, ~′), T0 6|=E-HT Ψ∪Θ for any ~′ such that (T, ~′)E
(T, id). It is enough to show that (T, ~′), T0 6|=E-HT Ψ or (T, ~′), T0 6|=E-HT Θ
for any such ~′. When (T, ~′), T0 6|=E-HT Θ the result trivially follows, so
assume that (T, ~′), T0 |=E-HT Θ. Since (T, ~′) E (T, id) we know that ~′ , id.
Then by Lemma 4.1, ~′ = ~. However, by hypothesis, (T, ~), T0 6|=E-HT Ψ
which further implies that (T, ~), T0 6|=E-HT Ψ ∪ Θ. As a result, (T, T0) is an
EEM of Ψ ∪Θ.

This ends the proof of right-to-left direction. q.e.d.

Theorem A.7 Let Φ and Ψ be two E-HT theories. The following are equivalent:

139

1. ‖Φ‖E-HT = ‖Ψ‖E-HT;

2. Φ∪Θ and Ψ∪Θ have the same autoepistemic equilibrium models, for all Θ.

Proof. The proof follows the lines of that of Theorem 4.2 and only the construc-
tion of the set Θ has to be adapted in both cases.

For the case where T, T0 |=S5 Ψ we define

Θ =
{

K̂χT : T ∈ T

}
∪
{

K
∨
T∈T

χT

}
.

This guarantees that no model strictly including T is an epistemic equilibrium
model of Φ ∪Θ.

Similarly, for the case where T, T0 6|=S5 Ψ we define

Θ =
{

K̂ ηT,~ : T ∈ T

}
∪
{

K
∨
T∈T

χT

}
.

This guarantees that no model strictly including T is an epistemic equilibrium
model of Ψ ∪Θ. q.e.d.

140

Appendix B

Preliminary Instructions

B.1 Strong negation
Strong negation was first introduced by Nelson (Nelson [1949]) in order to model a
logical concept of constructible falsity, so it is also known as constructive negation.
He originally presented it as an alternative to intuitionistic negation (¬) which is
also in a sense “constructive” since (only) entailed formulas can be constructively
proved. Strong negation (due to Nelson in Nelson [1949]) adds to intuitionistic logic
the insight that primitive propositions may be not only constructively verified but
also constructively falsified.

Strong negation is sometimes called ‘explicit’ negation or even ‘classical’ nega-
tion in the ASP literature. We denote it by ∼ in this paper, and name this concept
only as strong negation. On the other hand, weak negation corresponds to NAF
in the ASP literature, and is often denoted by the symbol not.

Two essential features characterise the concept of strong negation:

• one can characterise atomic negative information by strong negation.

• there exists an effective procedure to reduce falsification of complex state-
ments to verification or falsification of its parts by a normal form transfor-
mation.

The concept of strong negation was first axiomatised by Vorob’ev (Vorob’ev
[1952]). Nelson’s constructive logic N with its additional axioms is a conservative
extension of Heyting’s intuitionistic logic in the sense that any formula of con-
structive logic without strong negation in constructive logic is a theorem if and
only if it is a theorem in intuitionistic logic. In constructive logic, intuitionistic
negation is definable in terms of strong negation by (due to Vorob’ev):

¬ϕ def= ϕ→ ∼ϕ.

141

Vorob’ev also showed an interesting property of strong negation (Vorob’ev
[1952]): any arbitrary formula including strong negation is equivalent to a for-
mula in reduced form, that is, the strong negation is just allowed to appear in
front of propositional variables in the form of a negative literal.

Strong negation under Vorob’ev axioms (N1-N6) (see Subsection 1.2.4) has the
following interesting property: when (only) these axioms are added to a superin-
tuitionistic logic, one obtains a conservative extension of the system axioms. To
express it more clearly, this least extension by strong negation does not change the
theorems of the original system, and instead it only adds new theorems involving
strong negation. So, strong negation is highly strong.

B.1.1 Representing the negative information using strong
negation

Strong negation helps us represent the negative information explicitly in a logic
program. In general LP negative information is represented implicitly using CWA,
but there are cases this implicit representation does not work and the difference
between not p and ∼p should essentially be specified. A well-known example is
given by John McCarthy: a school bus can cross railway tracks unless there is an
approaching train which can be expressed by the following ASP rule:

Cross ← not Train .

In general LP, the unique stable model of the program containing only this rule is
{Cross}. So, the program is supposed to return an answer yes for a query ‘Cross?’
and an answer no for a query ‘Train?’. However, this knowledge representation
is not acceptable due to the fact that the information about the presence or the
absence of an approaching train is not available, and hence CWA is actually is
not applicable to Train. On the other hand, in extended LP the same program
answers both questions respectively yes and unknown which reveals the failure
more apparently. This failure is just eliminated having not being replaced by
strong negation in this rule:

Cross ← ∼ Train .

In extended LP, the only answer set of the program uniquely containing this rule
is ∅. So, the program returns both queries above unknown, and the answer set will
never include Cross unless ∼Train is included in the database.

142

Appendix C

Some Forms of Nonmonotonic
Reasoning

C.1 Default logic
Default logic is a non-monotonic logic proposed by Raymond Reiter to formalise
reasoning with default assumptions. It can express facts like “by default, p is
true”, in contrast to classical logic, which can only express facts like “p is true” or
“p is false”. However reasoning often involves facts that are true in the majority
of cases but not always. The review of default logic below is restricted to the case
of ground defaults which is sufficient for our purposes.

Following Gelfond and Lifschitz’s notation, we identify a default d an expression
of the form

F ← G : MH1, . . . ,MHk(C.1)
where F,G,Hi are propositional formulas for 1 ≤ i ≤ k such that k ≥ 0. We call
F and G respectively the consequent and the prerequisite (or precondition) of the
default, and the Hi’s are its justifications. However, according to Reiter’s notation
(Reiter [1980]), Definition C.1 can be equivalently represented by

G : MH1, . . . ,MHk

F
or G : MH1, . . . ,MHk / F.

So, an axiom F can be identified with the default ‘F ← true : ’. Defaults are
generalisations of inference rules. A default theory D is a finite set of defaults.

C.2 Minimal belief and negation as failure
The logic of minimal belief and negation as failure (MB-NF) was proposed by
Lifschitz as a general nonmonotonic logic (Lifschitz [1994]). It has two modal

143

operators: the NAF operator not and the B operator characterising minimal belief.
It comprises the class of logic programs that allows for both the NAF operator and
strong negation. It is one of the most expressive logics and can serve as a common
framework unifying several nonmonotonic formalisms. However, MB-NF is purely
semantical and too intractable to be used directly for representing knowledge.

144

Appendix D

Propositional Dynamic Logic

D.1 Syntax
The language of PDL has expressions of two sorts: formulas ϕ, ψ . . . and programs
π1, π2, They are built inductively from the atomic ones using the propositional
operators ⊃ and ⊥, the program operators ∪, ()∗, ; and the mixed operators
()? and []. Compound programs and propositions of PDL have the following
intuitive meanings:

• Atomic programs are basic, and they execute in a single step. They are
called atomic because they are indivisible, i.e., they cannot be decomposed
any further.

• The operator ‘(.)?’ is the test operator, so the program ‘ϕ?’ checks whether
the property ϕ holds in the current state. If it holds, it proceeds without
changing the current state. If not, it blocks without halting (fails).

• The operator ‘;’ is the sequential composition operator. The program ‘π1; π2’
means: “first execute π1, and then execute π2”.

• The operator ‘∪’ is the nondeterministic composition (choice) operator. The
program ‘π1 ∪ π2’ means: “nondeterministically choose one of π1 or π2 and
execute it”.

• The operator ‘(.)∗’ is the (finite) iteration operator. It may also be called
Kleene star. The program ‘(π)∗’ means: “execute π some nondeterministi-
cally chosen finite number of times (zero or more)”.

• ‘[π]ϕ’ means: “it is necessary that after executing π, ϕ is true”.

145

The possibility operator 〈 〉 is the modal dual of the necessity operator [], so it
is defined by

〈π〉ϕ def= ∼[π]∼ϕ.
〈π〉ϕ has the following intuitive meaning: “there is a computation of π that ter-
minates in a state satisfying ϕ”. One important difference between 〈 〉 and [] is
that while the former terminates, the latter does not. Indeed, the formula [π]⊥
asserts that no computation of π terminates, and the formula [π]> is always true,
regardless of π.

The operators of deterministic while programs can be defined in terms of the
atomic operators:

if ϕ then π1 else π2
def= (ϕ?; π1) ∪ (∼ϕ?; π2)

while ϕ do ψ def= (ϕ?; π)∗;∼ϕ?

The latter has the following explicit form

(ϕ?; π) ; . . . ; (ϕ?; π)︸ ︷︷ ︸
n

; ∼ϕ

where π0 def= skip and πn+1 = πn; π for 0 ≤ n <∞. The programs skip and fail
do nothing. They are respectively the no-operation and the failing programs. In
addition to the previous definition of skip as π0 def= skip, these trivial programs
can be defined from the atomic programs as follows: skip def= >? and fail def= ⊥?

The semantics of PDL is given in a similar manner as with DL-PA, so we do
not include it here. However, for a detailed overview, one can refer Harel et al.
[2000]. In the following section, we give the axiomatisation of PDL.

D.2 A deductive system
The axiom schemas and the inference rules are listed in Table D.1. They consti-
tutes a sound and complete Hilbert-style deductive system for PDL.

The second and third axiom schemas as well as the inference rules in Table
D.1 are not particular to PDL. They come from modal logic (see Blackburn et al.
[2001b]; Chellas [1980]; Hughes and Cresswell [2012]). The latter inference rule
is also known as necessitation. The axiom schema ϕ ∧ [π∗](ϕ ⊃ [π]ϕ) ⊃ [π∗]ϕ is
called the PDL induction axiom . Intuitively, it says: “suppose ϕ is true in the
current state, and also suppose that after any number of iterations of π if ϕ is still
true, then it will be true after one more iteration of π. Then ϕ will be true after
any number of iterations of π”. In other words, “if ϕ is true initially, and if the
truth of ϕ is preserved by the program π, then ϕ will be true after any number of
iterations of π”.

146

Axioms for propositional logic
[π](ϕ ⊃ ψ) ⊃ ([π]ϕ ⊃ [π]ψ)
[π](ϕ ∧ ψ) ≡ ([π]ϕ ∧ [π]ψ)
[π1 ∪ π2]ϕ ≡ [π1]ϕ ∧ [π2]ϕ
[π1; π2]ϕ ≡ [π1][π2]ϕ
[ϕ?]ψ ≡ ϕ ⊃ ψ1

ϕ ∧ [π][π∗]ϕ ≡ [π∗]ϕ
ϕ ∧ [π∗](ϕ ⊃ [π]ϕ) ⊃ [π∗]ϕ (induction axiom)

(Modus ponens) ϕ, ϕ ⊃ ψ
ψ

(Generalisation) ϕ
[π]ϕ

Table D.1: Axiomatisation of PDL

147

References

Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vidal. Strongly
equivalent temporal logic programs. In Steffen Hölldobler, Carsten Lutz, and
Heinrich Wansing, editors, JELIA, volume 5293 of Lecture Notes in Computer
Science, pages 8–20. Springer, 2008. ISBN 978-3-540-87802-5.

Carlos Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: partial meet contraction and revision functions. Journal of Symbolic
Logic, 50:510–530, 1985.

Krzysztof R. Apt and Marc Bezem. Acyclic programs. New generation computing,
9(3-4):335–363, 1991.

Leo Bachmair and Harald Ganzinger. Perfect model semantics for logic programs
with equality. In ICLP, pages 645–659, 1991.

Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Dynamic logic of propo-
sitional assignments: a well-behaved variant of PDL. In Orna Kupferman, editor,
Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, pages 143–152, http://www.ieee.org/, Juin 2013. IEEE Computer
Society, IEEE.

Chitta Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

Chitta Baral and Michael Gelfond. Logic programming and knowledge represen-
tation. The Journal of Logic Programming, 19:73–148, 1994.

Gavin M. Bierman and Valeria de Paiva. On an intuitionistic modal logic. Studia
Logica, 65(3):383–416, 2000.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001a.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science. University Press, 2001b.

148

Gerhard Brewka, Salem Benferhat, and Daniel Le Berre. Qualitative choice logic.
Artificial Intelligence, 157(1):203–237, 2004a.

Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic programs with or-
dered disjunction. Computational Intelligence, 20(2):335–357, 2004b.

Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors. Principles of
Knowledge Representation and Reasoning: Proceedings of the Thirteenth Inter-
national Conference, KR 2012, Rome, Italy, June 10-14, 2012, 2012. AAAI
Press. ISBN 978-1-57735-560-1.

Pedro Cabalar. A logical charaterisation of ordered disjunction. CoRR,
abs/1011.4833, 2010.

Pedro Cabalar and Stéphane Demri. Automata-based computation of temporal
equilibrium models. In Germán Vidal, editor, LOPSTR, volume 7225 of Lecture
Notes in Computer Science, pages 57–72. Springer, 2011. ISBN 978-3-642-32210-
5.

Pedro Cabalar and Paolo Ferraris. Propositional theories are strongly equivalent
to logic programs. Theory and Practice of Logic Programming (TPLP), 7(6):
745–759, 2007.

Pedro Cabalar, David Pearce, and Agustín Valverde. Minimal logic programs. In
Verónica Dahl and Ilkka Niemelä, editors, Proc. ICLP, volume 4670 of LNCS,
pages 104–118. Springer Verlag, 2007. ISBN 978-3-540-74608-9.

Walter A. Carnielli, Claudio Pizzi, and Juliana Bueno-Soler. Modalities and mul-
timodalities. Logic, Epistemology, and the Unity of Science. Springer Verlag,
2009.

Brian F. Chellas. Modal logic: an introduction. Cambridge University Press, 1980.

Jianhua Chen. Minimal knowledge + negation as failure = only knowing (some-
times). In LPNMR, pages 132–150, 1993.

Jianhua Chen. The logic of only knowing as a unified framework for non-monotonic
reasoning. Fundamenta Informaticae, 21(3):205–220, 1994.

Jianhua Chen. The generalized logic of only knowing (gol) that covers the notion
of epistemic specifications. Journal of Logic and Computation, 7(2):159–174,
1997.

Keith L. Clark. Negation as failure. In Logic and Databases, pages 293–322.
Springer, 1978.

149

Martin Diéguez Lodeiro. Temporal answer set programming. Phd thesis, University
of Corunna, Computer Science Department, Facultade de Informática, February
2015.

Thomas Eiter. Answer set programming in a nutshell. In Workshop Freiburg,
volume 2, page 50. Citeseer, 2008.

Thomas Eiter and Georg Gottlob. Complexity results for disjunctive logic pro-
gramming and application to nonmonotonic logics. In ILPS, pages 266–278.
Citeseer, 1993.

Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. Using meth-
ods of declarative logic programming for intelligent information agents. TPLP,
2(6):645–709, 2002.

Patrice Enjalbert and Luis Fariñas del Cerro. Modal resolution in clausal form.
Theoretical Computer Science, 65(1):1–33, 1989.

Esra Erdem and Vladimir Lifschitz. Transformations of logic programs related to
causality and planning. In Logic Programming and Nonmonotonic Reasoning,
pages 107–116. Springer, 1999.

Luis Fariñas del Cerro and Andreas. Herzig. Modal deduction with applications
in epistemic and temporal logic. In Dov Gabbay, J. Chris, and J. A. Robinson,
editors, Handbook of Logic and Artificial Intelligence, volume 4, pages 499–594.
Oxford, 1995. (Epistemic and Temporal Reasoning).

Luis Fariñas del Cerro and Andreas Herzig. The modal logic of equilib-
rium models. In Frontiers of Combining Systems (FroCoS), pages 135–146,
http://www.springerlink.com, 2011a. Springer Verlag. URL http://www.irit.
fr/~Andreas.Herzig/P/Frocos11.html.

Luis Fariñas del Cerro and Andreas Herzig. Contingency-based equilibrium
logic. In Logic Programming and Nonmonotonic Reasoning, pages 223–228,
http://www.springerlink.com, 2011b. Springer Verlag. URL http://www.irit.
fr/~Andreas.Herzig/P/lpnmr2011.html.

Luis Fariñas del Cerro and Andrés R. Raggio. Some results in intuitionistic modal
logic. Logique et Analyse Louvain, 26(102):219–224, 1983.

Luis Fariñas del Cerro, David Fauthoux, Olivier Gasquet, Andreas Herzig, Do-
minique Longin, and Fabio. Massacci. Lotrec : The generic tableau prover for
modal and description logics. In Rajeev Goré, Alexander Leitsch, and Tobias
Nipkow, editors, First International Joint Conference on Automated Reasoning

150

http://www.irit.fr/~Andreas.Herzig/P/Frocos11.html
http://www.irit.fr/~Andreas.Herzig/P/Frocos11.html
http://www.irit.fr/~Andreas.Herzig/P/lpnmr2011.html
http://www.irit.fr/~Andreas.Herzig/P/lpnmr2011.html

(IJCAR 2001), Siena, Italy, June 18-23, 2001, Proceedings, volume 2083 of Lec-
ture Notes in Computer Science (LNCS), pages 453–458. Springer-Verlag, 2001.
ISBN 3-540-42254-4.

Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su. Combining equilib-
rium logic and dynamic logic. In Pedro Cabalar and Tran Cao Son, editors,
Logic Programming and Nonmonotonic Reasoning, 12th International Confer-
ence, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings, vol-
ume 8148 of Lecture Notes in Computer Science, pages 304–316. Springer, 2013.
ISBN 978-3-642-40563-1, 978-3-642-40564-8.

Paolo Ferraris. Answer sets for propositional theories. In Logic Programming and
Nonmonotonic Reasoning, pages 119–131. Springer, 2005.

Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions.
Theory and Practice of Logic Programming, 5(1-2):45–74, 2005.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new perspective on stable
models. In Veloso [2007], pages 372–379.

Gisèle Fischer-Servi. On modal logic with an intuitionistic base. Studia Logica, 36
(4):141–149, 1976.

Melvin Fitting. A kripke-kleene semantics for logic programs. The Journal of
Logic Programming, 2(4):295–312, 1985.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
Conflict-driven answer set solving. In Veloso [2007], pages 386–392.

Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer set solv-
ing. In Patricia M. Hill and David Scott Warren, editors, ICLP, volume 5649
of Lecture Notes in Computer Science, pages 235–249. Springer, 2009. ISBN
978-3-642-02845-8.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer set solving in practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 6(3):1–238, 2012.

Michael Gelfond. On stratified autoepistemic theories. In AAAI, volume 87, pages
207–211, 1987.

Michael Gelfond. Autoepistemic logic and formalization of commonsense reasoning
(preliminary report). In Non-Monotonic Reasoning, pages 176–186. Springer,
1989.

151

Michael Gelfond. Strong introspection. In Thomas L. Dean and Kathleen McKe-
own, editors, AAAI, pages 386–391. AAAI Press / The MIT Press, 1991. ISBN
0-262-51059-6.

Michael Gelfond. Logic programming and reasoning with incomplete information.
Annals of Mathematics and Artificial Intelligence, 12(1-2):89–116, 1994.

Michael Gelfond. Answer sets. Handbook of knowledge representation, 1:285, 2008.

Michael Gelfond. New semantics for epistemic specifications. In James P. Del-
grande and Wolfgang Faber, editors, Logic Programming and Nonmonotonic
Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada,
May 16-19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer Sci-
ence, pages 260–265. Springer, 2011. ISBN 978-3-642-20894-2.

Michael Gelfond. New definition of epistemic specifications. In KR Seminar, 2011,
April 28. (talk).

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programming, Proceedings of the Fifth International Conference and Sympo-
sium, Seattle, Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080.
MIT Press, 1988a. ISBN 0-262-61056-6.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In ICLP/SLP, volume 88, pages 1070–1080, 1988b.

Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation,
1990.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New generation computing, 9(3-4):365–385, 1991.

Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov. What are the limita-
tions of the situation calculus. In R. Boyer, editor, Papers in Honor of Woody
Bledsoe, pages 167–179. Kluwer Academic Publishers, 1991.

Kurt Gödel. Zum intuitionistischen aussagenkalkül. Anz. Akad. Wiss. Wien, 69:
65–66, 1932.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.

Andreas Herzig, Emiliano Lorini, Frédéric Moisan, and Nicolas Troquard. A
dynamic logic of normative systems. In Toby Walsh, editor, Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 228–233,

152

Barcelona, 2011. IJCAI/AAAI. URL http://www.irit.fr/~Andreas.Herzig/
P/Ijcai11.html. Erratum at http://www.irit.fr/~Andreas.Herzig/P/
Ijcai11.html.

Arend Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsber.
preuss. Akad. Wiss., 42-71:158–169, 1930.

Wiebe van der Hoek and Michael Wooldridge. On the dynamics of delegation,
cooperation and control: a logical account. In Proc. AAMAS’05, 2005.

Wiebe van der Hoek, Dirk Walther, and Michael Wooldridge. On the logic of
cooperation and the transfer of control. JAIR, 37:437–477, 2010.

Tsutomu Hosoi. The axiomatization of the intermediate propositional systems S2
of Gödel. 1966.

George Edward Hughes and Maxwell John Cresswell. A new introduction to modal
logic. Routledge, 2012.

Ulrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by trans-
lation and first-order resolution. In R. Dyckhoff, editor, Automated Rea-
soning with Analytic Tableaux and Related Methods, International Conference
(TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelligence,
pages 67–71. Springer, 2000. ISBN 3-540-67697-X. URL http://www.cs.man.
ac.uk/~schmidt/publications/HustadtSchmidt00b.html.

Katsumi Inoue and Chiaki Sakama. Negation as failure in the head. The Journal
of Logic Programming, 35(1):39–78, 1998.

Patrick Thor Kahl. Refining the semantics for epistemic logic programs. Phd
thesis, Texas Tech University, Department of Computer Science, Lubblock, TX,
USA, May 2014.

Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between updating
a knowledge base and revising it. In Peter Gärdenfors, editor, Belief revision,
pages 183–203. Cambridge University Press, 1992. (preliminary version in Allen,
J.A., Fikes, R., and Sandewall, E., eds., Principles of Knowledge Representa-
tion and Reasoning: Proc. 2nd Int. Conf., pages 387–394. Morgan Kaufmann
Publishers, 1991).

Robert Kowalski. History of logic programming. Logic and Computation, In the
History of Logic Series, 9, 2014. to appear.

Marcus Kracht. On extensions of intermediate logics by strong negation. Journal
of Philosophical Logic, 27(1):49–73, 1998.

153

http://www.irit.fr/~Andreas.Herzig/P/Ijcai11.html
http://www.irit.fr/~Andreas.Herzig/P/Ijcai11.html
http://www.irit.fr/~Andreas.Herzig/P/Ijcai11.html
http://www.irit.fr/~Andreas.Herzig/P/Ijcai11.html
http://www.cs.man.ac.uk/~schmidt/publications/HustadtSchmidt00b.html
http://www.cs.man.ac.uk/~schmidt/publications/HustadtSchmidt00b.html

Gerhard Lakemeyer and Hector J. Levesque. Only-knowing meets nonmonotonic
modal logic. In Brewka et al. [2012]. ISBN 978-1-57735-560-1.

Hector J. Levesque. All I know: a study in autoepistemic logic. Artificial intelli-
gence, 42(2-3):263–309, 1990.

Vladimir Lifschitz. Minimal belief and negation as failure. Artificial Intelligence,
70(1-2):53–72, 1994.

Vladimir Lifschitz. Foundations of logic programming. Principles of Knowledge
Representation, 3:69–127, 1996.

Vladimir Lifschitz. Answer set planning. pages 23–37. MIT Press, 1999a. ISBN
0-262-54104-1.

Vladimir Lifschitz. Action languages, answer sets, and planning. In The Logic
Programming Paradigm, pages 357–373. Springer, 1999b.

Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intel-
ligence, 138(1-2):39–54, 2002.

Vladimir Lifschitz. Thirteen definitions of a stable model. In Andreas Blass,
Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and Com-
putation, volume 6300 of Lecture Notes in Computer Science, pages 488–503.
Springer Verlag, 2010. ISBN 978-3-642-15024-1.

Vladimir Lifschitz and Grigori Schwarz. Extended logic programs as autoepistemic
theories. In LPNMR, pages 101–114, 1993.

Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmono-
tonic reasoning (preliminary report). In Bernhard Nebel, Charles Rich, and
William R. Swartout, editors, Proceedings of the 3rd International Conference
on Principles of Knowledge Representation and Reasoning (KR’92). Cambridge,
MA, October 25-29, 1992., pages 603–614. Morgan Kaufmann, 1992. ISBN 1-
55860-262-3.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions
in logic programs. Annals of Mathematics and Artificial Intelligence, 25(3-4):
369–389, 1999.

Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent logic
programs. ACM Transactions on Computational Logic (TOCL), 2(4):526–541,
2001.

J. W. Lloyd. Foundations of Logic Programming. Berlin: Springer-Verlag, 1987.

154

J. Łukasiewicz. Die logik und das grundlagenproblem. In Les Entretiens de Zurich
sur les fondements et la méthode des sciences mathématiques, 6–9 decembre 1938
Zurich, pages 82–100. 1941.

Michael J. Maher. A transformation system for deductive database modules with
perfect model semantics. Theoretical Computer Science, 110(2):377–403, 1993.

Victor W. Marek and Miroslaw Truszczyński. Stable models and an alternative
logic programming paradigm. In The Logic Programming Paradigm, pages 375–
398. Springer, 1999.

John McCarthy. Circumscription, a form of nonmonotonic reasoning. Artificial
Intelligence Journal, 13(1):27–39, 1980.

John McCarthy. Applications of circumscription to formalizing commonsense
knowledge. Artificial Intelligence Journal, 28(1):1038–1044, 1986.

Robert C. Moore. A formal theory of knowledge and action. In J.R. Hobbs and
R.C. Moore, editors, Formal Theories of the Commonsense World, pages 319–
358. Ablex, Norwood, NJ, 1985a.

Robert C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1), 1985b.

Robert C. Moore. Autoepistemic logic. 1988.

David Nelson. Constructible falsity. The Journal of Symbolic Logic, 14(01):16–26,
1949.

Ilkka Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):
241–273, 1999.

David Pearce. A new logical characterisation of stable models and answer sets.
In Jürgen Dix, Luís Moniz Pereira, and Teodor C. Przymusinski, editors, Non-
monotonic Extensions of Logic Programming, Proc. NMELP 96, volume 1216 of
Lecture Notes in Computer Science, pages 57–70. Springer Verlag, 1996. ISBN
3-540-62843-6.

David Pearce. Equilibrium logic. Annals of Mathematics and Artificial Intelligence,
47(1-2):3–41, 2006.

David Pearce and Levan Uridia. An approach to minimal belief via objective
belief. In Toby Walsh, editor, IJCAI, pages 1045–1050. IJCAI/AAAI, 2011.
ISBN 978-1-57735-516-8.

155

David Pearce, Inman P. de Guzmán, and Agustín Valverde. A tableau calculus
for equilibrium entailment. In Roy Dyckhoff, editor, TABLEAUX, volume 1847
of LNCS, pages 352–367. Springer Verlag, 2000. ISBN 3-540-67697-X.

Halina Przymusinska and Teodor C. Przymusinski. Weakly perfect model seman-
tics for logic programs. In ICLP/SLP, pages 1106–1120, 1988.

Teodor C. Przymusinski. Perfect model semantics. In ICLP/SLP, pages 1081–
1096, 1988a.

Teodor C. Przymusinski. On the relationship between logic programming and
nonmonotonic reasoning. In AAAI, pages 444–448, 1988b.

Teodor C Przymusinski. Three-valued formalizations of non-monotonic reasoning
and logic programming. In Proceedings of the first international conference on
principles of knowledge representation and reasoning, pages 341–348. Morgan
Kaufmann Publishers Inc., 1989.

Raymond Reiter. On closed world databases. Springer, 1978.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence Journal, 13
(1):81–132, 1980.

Renate A. Schmidt and Dmitry Tishkovsky. A general tableau method for de-
ciding description logics, modal logics and related first-order fragments. In
A. Armando, P. Baumgartner, and G. Dowek, editors, Automated Reason-
ing (IJCAR 2008), volume 5195 of Lecture Notes in Computer Science, pages
194–209. Springer, 2008. ISBN 978-3-540-71069-1. doi: http://dx.doi.org/
10.1007/978-3-540-71070-7_17. URL http://www.cs.man.ac.uk/~schmidt/
publications/SchmidtTishkovsky08b.html.

Roberto Sebastiani and Armando Tacchella. Sat techniques for modal and de-
scription logics. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 781–824. IOS Press, 2009. ISBN 978-1-
58603-929-5.

Alex K. Simpson. The proof theory and semantics of intuitionistic modal logic. Phd
thesis, University of Edinburgh, University of Edinburgh, College of Science and
Engineering, School of Informatics, November 1994.

Martin Slota and João Leite. Robust equivalence models for semantic updates of
answer-set programs. In Brewka et al. [2012]. ISBN 978-1-57735-560-1.

156

http://www.cs.man.ac.uk/~schmidt/publications/SchmidtTishkovsky08b.html
http://www.cs.man.ac.uk/~schmidt/publications/SchmidtTishkovsky08b.html

Martin Slota and João Leite. A unifying perspective on knowledge updates. In
Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin, editors, JELIA,
volume 7519 of Lecture Notes in Computer Science, pages 372–384. Springer,
2012b. ISBN 978-3-642-33352-1.

Mirosław Truszczyński. Revisiting epistemic specifications. In Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning, pages 315–333.
Springer, 2011.

Wiebe van der Hoek and Michael Wooldridge. On the logic of cooperation and
propositional control. Artificial Intelligence, 164(1-2):81–119, 2005.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM (JACM), 38(3):619–649,
1991.

Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, 2007.

N. N. Vorob’ev. A constructive propositional calculus with strong negation. In
Doklady Akademii Nauk SSR, volume 85, pages 465–468, 1952.

Kewen Wang and Yan Zhang. Nested epistemic logic programs. In Chitta Baral,
Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors, Logic Program-
ming and Nonmonotonic Reasoning, 8th International Conference, LPNMR
2005, Diamante, Italy, September 5-8, 2005, Proceedings, volume 3662 of Lecture
Notes in Computer Science, pages 279–290. Springer, 2005. ISBN 3-540-28538-
5.

Yan Zhang. Computational properties of epistemic logic programs. In Patrick Do-
herty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings, Tenth
International Conference on Principles of Knowledge Representation and Rea-
soning, Lake District of the United Kingdom, June 2-5, 2006, pages 308–317.
AAAI Press, 2006. ISBN 978-1-57735-271-6.

Yan Zhang and Norman Y. Foo. A unified framework for representing logic pro-
gram updates. In Manuela M. Veloso and Subbarao Kambhampati, editors,
AAAI, pages 707–713. AAAI Press / The MIT Press, 2005. ISBN 1-57735-236-
X.

157

	Résumé
	1 Introduction
	1.1 What is Answer Set Programming (ASP) ?
	1.1.1 Logic programs and answer sets: general definition
	1.1.2 Specific classes of logic programs
	1.1.3 Other language extensions: new constructs in ASP
	1.1.3.1 Integrity constraints
	1.1.3.2 Choice rules
	1.1.3.3 Cardinality rules
	1.1.3.4 Weight rules

	1.1.4 Strong equivalence

	1.2 Here-and-there (HT) logic
	1.2.1 Language (LHT)
	1.2.2 HT models
	1.2.3 Capturing strong equivalence in HT logic
	1.2.4 Least extension of HT logic: N5

	1.3 Equilibrium logic
	1.3.1 Equilibrium logic based on HT logic
	1.3.2 Equilibrium logic based on N5 logic
	1.3.3 Relation to answer sets

	1.4 Modal extension of logic programs: epistemic specifications (E-S)
	1.4.1 Language (LE-S)
	1.4.2 World view semantics

	1.5 Relating ASP to other nonmonotonic formalisms
	1.5.1 Default logic and ASP
	1.5.2 Use of the CWA in ASP

	1.6 Structure of the dissertation: our work in a nutshell

	2 Capturing Equilibrium Models in Modal Logic: MEM
	2.1 The modal logic of equilibrium models: MEM
	2.1.1 Language (L[T],[S])
	2.1.2 MEM frames
	2.1.3 MEM models
	2.1.4 Truth conditions
	2.1.5 Axiomatics, provability, and completeness

	2.2 Embedding HT logic and equilibrium logic into the modal logic MEM
	2.2.1 Translating LHT into L[T]
	2.2.2 Correspondence between HT logic and MEM
	2.2.3 Correspondence between equilibrium logic and MEM

	2.3 Conclusion and future work

	3 Combining Equilibrium Logic and Dynamic Logic
	3.1 A dynamic extension of HT logic and of equilibrium logic
	3.1.1 Language (LD-HT)
	3.1.2 Dynamic here-and-there logic: D-HT
	3.1.3 Dynamic equilibrium logic

	3.2 Dynamic logic of propositional assignments: DL-PA
	3.2.1 Language (LDL-PA)
	3.2.2 Semantics

	3.3 Correspondence between D-HT and DL-PA
	3.3.1 Copying propositional variables
	3.3.2 Molecular DL-PA programs of embedding
	3.3.3 Translating LD-HT to LDL-PA
	3.3.4 From D-HT to DL-PA
	3.3.5 From dynamic equilibrium logic to DL-PA
	3.3.6 From DL-PA to D-HT

	3.4 Conclusion and future work

	4 From Epistemic Specifications to Epistemic ASP
	4.1 An epistemic extension of HT logic
	4.1.1 Language (LE-HT)
	4.1.2 Epistemic here-and-there models
	4.1.3 Truth conditions
	4.1.4 EHT validity

	4.2 Epistemic equilibrium logic
	4.2.1 Total models and their weakening
	4.2.2 Epistemic equilibrium models
	4.2.3 Strong equivalence

	4.3 Autoepistemic equilibrium logic
	4.3.1 Autoepistemic equilibrium models
	4.3.2 Strong equivalence

	4.4 Related work
	4.4.1 AEEMs versus world views
	4.4.2 AEEMs versus equilibrium views

	4.5 Conclusion and future work

	5 Summary and Future Research
	Appendix A All proofs
	A.1 Proofs of Chapter 1
	A.2 Proofs of Chapter 2
	A.3 Proofs of Chapter 3
	A.4 Proofs of Chapter 4

	Appendix B Preliminary Instructions
	B.1 Strong negation
	B.1.1 Representing the negative information using strong negation

	Appendix C Some Forms of Nonmonotonic Reasoning
	C.1 Default logic
	C.2 Minimal belief and negation as failure

	Appendix D Propositional Dynamic Logic
	D.1 Syntax
	D.2 A deductive system

	References

