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UNIVERSITÉ GRENOBLE ALPES

Abstract
Doctor of Philosophy

Tunnel Field Effect Transistors Based on Two-Dimensional Materials

by Jiang CAO

The successful isolation of graphene in 2004 has attracted great interest to search for
potential applications of this unique material and other newborn members of the
two-dimensional (2D) family in electronics, optoelectronics, spintronics and other
fields. Compared to graphene, the 2D transition metal dichalcogenides (TMDs)
have the advantage of being semiconductors, which would allow their use for logic
devices. In the past ten years, significant developments have been made in this area,
where opportunities and challenges co-exist.

This thesis presents the results of quantum transport simulations of novel 2D-material-
based tunnel field-effect transistors for ultra-low-power digital applications. Due to
their size, such devices are intrinsically dominated by quantum effects. This re-
quires the adoption of a fairly general theory of transport, such as the nonequilib-
rium Green’s functions (NEGF) formalism, which is a method extensively used for
the simulation of electron transport in nanostructures.

In the first part of this thesis, a brief introduction about the 2D materials, their
synthesis and applications is presented. Then, the NEGF formalism is concisely
reviewed. This approach is applied to the simulation of two different models of
vertical tunnel field-effect transistors based on 2D-TMD van der Waal heterojunc-
tions (MoS2 and WTe2). To properly describe the system, a coupled effective mass
Hamiltonian has been implemented and carefully calibrated to experimental mea-
surements and density functional theory to reproduce the band structure in the en-
ergy range of interest for the simulations.

This thesis not only demonstrates the ultra-steep subthreshold slope potentially ex-
pected for these devices, but also provides a physical insight into the impact of the
transistor geometry on its performances. In the last and more exploratory part of
the manuscript, the effect of rotational misalignment within the two layers of the
heterostructure is investigated. Experimentally, such a disorder is difficult to avoid,
and it can substantially affect the device performances.

Through accurate quantum simulations and deep physical analysis, this study sheds
light on the design challenges to be addressed for the development of efficient tun-
nel field-effect transistors based on 2D materials.

HTTP://WWW.UNIV-GRENOBLE-ALPES.FR
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Résumé

L’isolement du graphène a suscité un grand intérêt vers la recherche d’applications
potentielles de ce matériau unique et d’autres matériaux bidimensionnels (2D) pour
l’électronique, l’optoélectronique, la spintronique et de nombreux autres domaines.
Par rapport au graphène, les dichalcogenides de métaux de transition (TMD) 2D of-
frent l’avantage d’être des semi-conducteurs, ce qui permettrait de les utiliser pour
des circuits logiques. Au cours des dix dernières années, de nombreux développe-
ments ont déjà été réalisés dans ce domaine où les opportunités et les défis coexis-
tent.

Cette thèse présente les résultats de simulations de transport quantique d’une nou-
velle structure de dispositif logique à très faible consommation à base de matériaux
bidimensionnels : le transistor à effet tunnel à base d’hétérostructures verticales de
TMDs 2D. A cause de leur petite taille, ces dispositifs sont intrinsèquement dom-
inés par des effets quantiques. Par conséquent, l’adoption d’une théorie générale
du transport s’impose. Le choix se porte ici sur la méthode des fonctions de Green
hors équilibre (NEGF), une approche largement utilisée pour la simulation du trans-
port électronique dans les nanostructures.

Dans la première partie de cette thèse, les matériaux 2D, leur synthèse et leurs appli-
cations sont brièvement introduits. Ensuite, le formalisme NEGF est illustré. Cette
méthode est ensuite utilisée pour la simulation de deux structures de transistor à
effet tunnel vertical basées sur l’hétérojonction van der Waals de MoS2 et WTe2. La
description du système se base sur un modèle de masse effective calibré avec des ré-
sultats ab-initio (afin de reproduire la structure de bandes dans l’intervalle d’énergie
intéressé par les simulations de transport) et aux mesures expérimentales de mobil-
ité (pour le couplage électron-phonon). Les résultats non seulement démontrent
la possibilité d’obtenir une forte pente sous seuil avec ce type de transistors, mais
présentent une étude de la physique qui en détermine les performances en fonction
de leur géométrie et de l’interaction entre électrons et phonons. Dans la dernière
partie, les effets du malignement rotationnel entre les deux couches 2D sont inves-
tigués. Expérimentalement, ce type de désordre est difficile à éviter et peut consid-
érablement affecter les performances du transistor.

Par le moyen de simulations quantiques précises et d’analyses physiques, cette thèse
montre les défis à relever dans la conception des transistors à effet tunnel à base de
matériaux 2D performants.

Keywords
Quantum transport, non-equilibrium Green’s function formalism, electron-phonon
interactions, two-dimensional materials, tunnel field effect transistors, van der Waals
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Chapter 1

Introduction

1.1 Trends of micro/nanoelectronics

The invention of the transistor in 1948 is arguably the major technological break-
through of the 20th century. The transistors are the building blocks of today’s mi-
croprocessors and computers that are everywhere around us. Nowadays, billions
of transistors are integrated on a microchip of only a square centimeter. Since the
Nobel prize attributed to Shockley, Brattain and Bardeen in the 1956, and the inven-
tion of integrated circuits in the same decade, considerable efforts have been put
to keep miniaturizing the metal oxide semiconductor field effect transistors (MOS-
FETs). A conventional MOSFET structure with descriptions of its working prin-
ciple are shown in Fig.1.1. From one technology node to the other, MOSFETs are
conceived to be smaller (following Moore’s law), faster and less power consuming.
Thirty years of aggressive scaling have pushed the device dimensions close to the
atomic range. The downscaling of MOSFETs has slowed down since the 65 nm node
was reached. Issues related to the nanoscale dimensions of the devices started aris-
ing.

When the channel length is decreased below 1 µm, additional problems appear and
are commonly called short-channel effects (SCEs). The SCEs for the MOSFETs are
important when the channel length becomes comparable to the width of the deple-
tion region. When the gate length is scaled down, the gate starts to lose the electro-
static control over the channel, on the other hand the source-drain bias (VDS) gains a
larger influence on the barrier. Such an effect is named drain-induced barrier low-
ering (DIBL). This loss of electrostatic integrity leads to a continue increase of the
current and decrease of the off-state potential.

Moreover, the electron mobility is reduced due to collisions with the semiconduc-
tor/oxide interface. This surface scattering effect is enhanced by the increase of
electric field in the confined regions, which pushes the electrons toward the surface
of the device. The reduction of electron mobility is also caused by the necessity of
using high doping levels in such scaled MOSFET. Finally, the average velocity of
carriers does no longer linearly depend on the electric field in such small devices,
which is called the velocity saturation.
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FIGURE 1.1: Schematic cross-section of a N-channel MOSFET: (a) 0 V gate
bias, (b) positive gate bias that charges the gate. The P-type substrate below
the gate takes on a negative charge. An inversion region with an excess of
electrons forms below the gate oxide. This region connects the source and
drain N-type regions, forming a continuous N-region from source to drain.

The drawbacks of traditional bulk planar transistors have promoted the search for
new architectures alternative to MOSFETs. The International Technology Roadmap
for Semiconductors (ITRS) [1], which evaluates the technology requirements for the
next-generation semiconductor device technology, predicts that additional new ma-
terials and transistor geometries will be needed to successfully address the formidable
challenges of transistor scaling in the next 15 years. In Table 1.1, some main figures
of merit extracted from the ITRS for the short- (2018) and long-term (2026) technolo-
gies, both for high-performance and low-power applications. Since the late ’90s, it
has been suggested to replace single-gate transistors by multi-gate structures in or-
der to enhance the electrostatic control of the gate. Intel has already switched to the
TriGate FET, also known as the FinFET, technology since the 22 nm node. Silicon-
on-insulator has also been widely used to improve the performances of transistors,
especially decreasing leakage currents [2].

To meet the requirements set by the ITRS for future nodes, scaling down the gate
length is critical. The two-dimensional materials (2DMs) provide the ability to con-
trol the channel thickness at the atomic level, which will result in improved gate
control over the channel and in reduced SCEs. In next Chapter, I will discuss the
properties of 2DMs and their numerous possible applications in the electronic de-
vices.

1.2 Power consumption issues

Power consumption is a fundamental problem for nanoelectronic circuits. To give
some examples, all the smartphones need to be recharged everyday; the data cen-
ters in the US used 91 billion kilowatt-hours of electricity in 2013. The power con-
sumption in logic devices closely depends on the supply voltage (VDD) through the
following relation

P = αfcCLV
2

DD︸ ︷︷ ︸
operating

+ IOFFVDD︸ ︷︷ ︸
stand−by

, (1.1)
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TABLE 1.1: Figures of merit extracted from ITRS [1] for the short- (2018)
and long-term (2026) technologies, both for high-performance and low-
power applications. VDD is the supply voltage; IOFF and ION are the
drain currents per unit width in the off- and on-state; τ is the intrinsic

delay time.

HP2018 LP2018 HP2026 LP2026

Channel length (nm) 10.2 11.7 4.9 5.6
VDD (V) 0.78 0.78 0.66 0.66
IOFF (nA/µm) 100 0.01 100 0.04
ION (µA/µm) 1,610 556 1,030 337
τ (ps) 0.488 1.564 0.432 1.514

FIGURE 1.2: (a) Transfer characteristics (drain current ID vs. gate voltage VG)
of a MOSFET switch showing an exponential increase in IOFF because of the
thermionic limit of the subthreshold swing SS. Here the simultaneous scaling
down of the supply voltage VDD and the threshold voltage VT, keeping the
same ION by keeping the (VDD-VT) constant. (b) Qualitative comparison of the
MOSFET switch (red) with a TFET (green) which has a steep off-on transition
and a lower IOFF. At low VG, because of the subthermionic SS, the TFET offers
a better performance and power reduction. At high VG, the MOSFET switch
becomes a better solution for higher performance thanks to the higher ION.

where α is called the activity factor, fc denotes the clock frequency, CL is the load
capacitance (mostly gate and wire capacitance, but also drain and some source ca-
pacitances), and IOFF is the off-state current. In the formula above, we can identify
an operating and a stand-by power that both depend on VDD. Lowering VDD is thus
necessary to decrease the consumption. However, a strong VDD reduction signifi-
cantly affects the performances of MOSFETs, as illustrated in Fig.1.2(a). Indeed, the
problem resides in the speed at which the transistor passes from the off- to the on-
states as a function of the gate voltage. In the subthreshold regime of MOSFETs,
the thermionic effect entails that at least 60 mV are necessary to increase the current
by one order of magnitude at room temperature. In other words, the subthreshold
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swing (SS), i.e. the inverse of the derivative of the subthreshold slope

SS =

(
∂ log10 IDS

∂VG

)−1

, (1.2)

has a minimum value of

SSmin =
kBT

e
ln(10) = 60 mV/dec, (1.3)

where kB is the Boltzmann constant, T is the temperature taken at 300 K and e is
the absolute value of electron charge. If we keep the same on-current ION for the
transistor while reducing VDD, then IOFF increases exponentially, see Fig.1.2(a).

A possible way of reducing the voltage supply without performance loss is to in-
crease the turn-on steepness, which means decreasing the average SS below the
SSmin. Such devices, called steep-slope switches, are expected to effectively enable
power scaling. Because of these MOSFET limitations, other device architectures are
under active investigation, including the negative-capacitance FET (NC-FET) and
the Tunnel FETs (TFETs) [3].

1.3 Tunnel field-effect transistors

In this work, I focus on the TFETs [4–6]. In contrast to MOSFETs, where charges
are thermally injected over a potential barrier, the primary injection mechanism is
band-to-band tunneling (BTBT), i.e. charge carriers transfer from one energy band
into another. This tunneling mechanism was first identified by Zener in 1934 [7].

A typical TFET is composed of a p-i-n structure with a gated intrinsic region, see
Fig.1.3(a). Its working mechanism can be explained as follows. When a low voltage
is applied to the gate, electrons tunneling from the valence band of the source to the
conduction band of the drain is suppressed due to the gap in the intrinsic region,
see Fig.1.3(b). This is the off-state. When the potential applied to the gate brings the
conduction band of the intrinsic limit at the same level as the source valence band,
electrons can easily tunnel from source to drain, see Fig.1.3(b). This is the on-state.
In the ideal case, the transition from the off-state to the on-state is very fast, since
the thermal tail of the injected electrons is cut by the top of the valence band in the
source and the off-current is exponentially suppressed when the source Fermi level
is within the gap of the intrinsic region. This would allow, in principle, very low SS,
below SSmin, see Figure 1.2(b).

Here, I briefly summarize the history of TFETs. The gated p-i-n structure was pro-
posed in 1978 by Quinn et al. [8]. In 1992, Baba [9] fabricated TFETs called surface
tunnel transistors in group III-V materials. In 1995, Reddick and Amaratunga [10]
reported experiments on silicon surface tunnel transistors. In 2000, Hansch et al. [11]
published experimental results on a reverse-biased vertical silicon TFET fabricated
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FIGURE 1.3: (a) Schematic cross-section of n-type TFET with applied source
(VS), gate (VG) and drain (VD) voltages. (b) Schematic energy band profile for

the off-state (dashed lines) and the on-state (solid lines) in a n-type TFET.

by molecular beam epitaxy. Aydin et al. [12] fabricated lateral TFETs on silicon-on-
insulator in 2004. Recently, TFETs fabricated in various materials (carbon, silicon,
SiGe and group III-V materials) have emerged experimentally as the most promising
candidates for switches with ultralow standby power and sub-0.5 V supply voltage.

The goals for TFET optimization are to simultaneously achieve the highest possible
ION, the lowest average SS over many orders of magnitude of drain current, and the
lowest possible IOFF. For TFETs, SS decreases with the gate voltage, therefore they
are naturally optimized for low-voltage operation. To achieve a high tunneling cur-
rent and a steep slope, the transmission probability of the tunneling barrier should
pass from 0 to close to 1 for a small change in gate voltage around the threshold
potential. This requires a strong modulation of the channel bands by the gate and a
very thin channel barrier.

As mentioned above, there have already been many experimental attempts to build
TFET with bulk silicon and III-V group materials. Even though encouraging exper-
imental results have been reported for the on-current and SS in Si- and III–V-based
TFETs, these devices are very demanding in terms of gate control [13]. Moreover,
their transfer characteristics can be seriously degraded by the presence of interface
or bulk defects enabling inelastic trap-assisted tunneling in the OFF-state [14, 15].

The 2-D materials (2DMs) may overcome some of the above issues [16], and have
great potential for TFETs, due to their scalability and absence of dangling bonds at
interface. They can be stacked to form a new class of tunneling transistors based on
an interlayer tunneling occurring in the direction normal to the plane of the 2DMs
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[17]. In the next Chapter, I will review the properties of various different 2DMs and
their applications in the electronic devices.

1.4 Quantum transport simulations

The fabrication of novel devices is a long and expensive process. Theoretical in-
vestigations are then necessary to guide the semiconductor industry toward more
efficient architectures. In this work, simulation tools based on state-of-the-art semi-
conductor physics have been developed for studying and designing future TFETs,
with emphasis on 2DMs-based TFETs. To properly describe and model the tunnel-
ing current flow in TFETs, we need to develop a simulation approach able to take
into account quantum phenomena as well as non-ideality effects due to phonon as-
sisted tunneling. With appropriate simplifications to overcome the computational
difficulties, the Non-Equilibrium Green’s Function (NEGF) formalism provides a
suitable framework to simultaneously treat the quantum transport of coherent car-
riers and the impact of diffusive phenomena such as electron-phonon interaction.

In the literature, there exists some simulation works on the 2DMs-based TFETs
and MOSFETs [18–25]. However the design of the van der Waals TFET (vdW-
TFETs) is still largely unexplored [20], because of the complexity to model the in-
terlayer tunneling between the two 2D layers. The effects of electron-phonon scat-
tering on the device performance also need better understanding. My thesis work
trys to clarify these questions by implementing the NEGF formalism including the
electron-phonon self-energy within the self-consistent Born approximation for the
vdW-TFETs.

The theoretical elements of this approach will be reviewed and discussed in Chap-
ter 3, especially with external perturbations via the so-called self-energy. In Chapter
4 the numerical implementation of the NEGF formalism is provided. These two
Chapters build up the heart of all the calculations carried out in the rest of the the-
sis. The first application of the developed numerical code is reported and analyzed
in Chapter 5, and regards a 2-D TMD-based vertical TFET. In Chapter 6, electron
transport in van der Waals TFET (vdW-TFETs) based on MoS2 and WTe2 monolay-
ers is studied. In the last years, a special attention has been addressed on the van
der Waals tunneling and Esaki diodes [26, 27], and a first device with subthermionic
characteristics realized [28]. Then in Chapter 7, an exploratory investigation of the
effect of rotational misalignment within stack of 2-D materials will be presented.
Experimentally, such a disorder is difficult to avoid, thus the importance to evaluate
its influence on the device performance. Finally, Chapter 8 contains the conclusion
and outlook of my thesis work.
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Chapter 2

Brief Introduction to 2-D Materials

2.1 History of 2-D material research

For a long time, the 2-D materials were thought to be unstable [29]. In the first
half of the last century, the scientists predicted [30] that a 2DM would likely dis-
integrate at finite temperature under the displacement of lattice atoms caused by
thermal fluctuations. This theory was further supported by experiments observing
that the melting temperature of thin film materials rapidly reduce with decreasing
film thickness.

This belief remained unchanged until 2004, when Geim and Novoselov successully
isolated graphene by the mechanical exfoliation technique [31, 32]. Although there
have been other independent reports of monolayer carbon materials isolation [33,
34] , some even long before the reports from the Manchester group, the works in
2004 and 2005 unveiled the unusual electronic properties of graphene, thus gener-
ating an intensive research by physicists and chemists in the field of 2DMs and in-
spiring 2DMs-based nanoelectronics [35]. Since then, we have seen an exponential
increase in the research activity in graphene and other 2DMs (such as the transition
metal dichalcogenides, h-BN, black phosphorus, silicene and gemanene) [36–39].

2.2 Basics of 2DMs

In this Section, I summarize the basic properties of 2DMs. Even though our focus
will be on TMDs, I start by the presenting the progenitor 2DM (graphene) and also
include other materials of technological interest.

2.2.1 Electronic properties of graphene

In 1946, Wallace first calculated the band structure of graphene and showed uncom-
mon semimetallic behavior in this, at that time imaginary, 2-D material [40]. Actu-
ally, Wallace’s studies of graphene served him as a starting point to study graphite.
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f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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FIGURE 2.1: (Color) Electronic dispersion in the graphene lattice. Left: en-
ergy spectrum. Right: zoom in of the energy bands close to one of the Dirac

points. Figure adapted from Ref.[35].

Between 1957 and 1958, other works by McClure [41] and Slonczewski and Weiss
[42] followed.

One of the most interesting aspects of the graphene is its low-energy band structure
[35, 43], which is linear around the K and K’ points of the Brillouin zone, see Fig.2.1.
In neutral graphene, the Fermi energy crosses exactly these points, which are also
called Dirac points, because there electrons can be described by a 2-D Dirac Hamilto-
nian for masseless fermions, except for the fact that in graphene the electrons move
with a speed vF , which is 300 times smaller than the speed of light, and that the
spin degree of freedom in replaced by the so-called pseudospin degree of freedom
corresponding to the two graphene sublattices. This determines the observation of
very unconventional properties with respect to the usual 2-D electron gases (2DEGs)
obtained in doped semiconductor heterostructures. For example, in the presence of
a strong magnetic field, Landau levels form at both positive and negative energies
(with respect to the Dirac points) at energies proportional to the square root of the
magnetic field and of the level index. This gives rise to the anomalous integer quan-
tum Hall effect [44, 45], which, compared to the case of 2DEGs, can be observed
at relatively low magnetic field and high temperature, with interesting perspective
applications in metrology [46]. The linear dispersion of the graphene energy bands
also entails a very high electron mobility, up to 200,000 cm2/(Vs) at low temperature
for suspended graphene [47].

Another interesting property of graphene is when laterally confined into nanorib-
bons, its electronic and transport properties are strongly affected by the geometry
of the edges (armchair, zigzag or mixed) and the nature of their passivation. For
example, under certain condition the ribbon can show a band gap, whose size is
proportional to the inverse of the ribbon width. Such a gap might be important for
applications in logic devices [48], which are however compromised by the huge mo-
bility degradation due to the increase of the effective mass from one side, and the
presence of edge roughness from the other.
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diverse electronic properties that can be achieved by choosing
the appropriate combinations of the M and X elements, different
phases in single layer TMDs can also be realized. A single layer of
TMDs can have a trigonal prismatic phase or an octahedral
phase. The trigonal prismatic phase is also referred to as the 2H
phase (or 1H in the case of a single layer) and can be described
by a hexagonal symmetry (the D3h group) and corresponds to a
trigonal prismatic coordination of the metal atoms. This geo-
metry means that in single layers, the sulfur atoms are vertically
aligned along the z-axis and the stacking sequence is then AbA
where A and b denote chalcogen and metal atoms, respectively
(Fig. 1a). The octahedral phase has a tetragonal symmetry (D3d)
and corresponds to an octahedral coordination of the metal
atoms. In the octahedral phase, conventionally referred to as
the 1T phase, one of the sulfur layers is shifted compared to
the others resulting in an AbC stacking sequence (Fig. 1b). The
filling of the d orbitals of the metal directly influences the atomic
structure of the TMD layers. For the 1H phase, the d orbital splits
into 3 degenerate states dz2, dx2!y2,xy and dxy,yz with an energy gap
of B1 eV between the dz2 and dx2!y2!xy orbitals. For the tetra-
gonal symmetry of the 1T phase, the d orbitals of the metal
degenerate into dxy,yz,zx (t2g) and dx2!y2,z2 (eg) orbitals. Up to 6
electrons can fill the e2g orbital. Since the p orbitals of chalco-
gens have been located at much lower energy than the Fermi
level, only the filling of the d orbitals determines the nature of
phases in MX2 compounds. Completely filled orbitals give rise to
semiconducting behavior while partial filling induces metallic
behavior. The type of symmetry of the single layer also strongly
depends on the filling of d orbitals. The group 4 (d0) TMDs and
most of the group 6 (d2) TMDs have trigonal prismatic phases.
Group 5 (d1) TMDs can have both trigonal prismatic or octa-
hedral phases whereas group 7 TMDs have a typically distorted
octahedral structure (Fig. 1c). Group 10 TMDs (d6) have an
octahedral phase.

Typically, in single layer TMDs, one of the two possible
polytypes is thermodynamically stable. Phase engineering can

be used to change the polytype as well as the electronic proper-
ties of the materials. In addition to the 1T and 1H phases,
2 different ways of stacking the 1H layers can be achieved,
imparting hexagonal symmetry (2H phase, symmetry D6

4h) with
a stacking sequence of AbA BaB or rhombohedral symmetry
(3R, symmetry C5

3v) with the stacking sequence of AbA CaC BcB
(Fig. 1d). Stacking in the 1T layer produces the AbC AbC
(Fig. 1e) sequence. These heterogeneities in stacking order
can not only introduce defects but also lead to interesting
new phenomena due to the breaking of symmetry.

B. TMD heterostructures

The phase of single-layer TMDs depends strongly on the d
orbital electron density of the transition metal. Tuning the
filling of the d orbital enables phase engineering in TMDs.
Several examples of phase modification via chemical reactions
have been reported for group 6 TMDs such as MoS2, MoSe2 and
WS2.5–9 Early experiments from Py et al. demonstrated the
formation of the metallic 1T phase of MoS2 upon lithium
intercalation,10 which induces reduction of MoS2 and increases
the electron density in the d orbital. As a consequence, group 6
TMDs with the 1T phase are typically negatively charged.11

Similarly the lithiation of TaS2 induces a phase change from
semiconducting 1T phase to metallic 2H phase.12 Generally,
phase transformation in exfoliated single-layer TMDs is not
complete and leads to layers containing fractions of both 2H
and 1T phases.13 Furthermore it has been observed in the case
of group 6 TMDs that the 1T phase does not correspond to the

Fig. 1 Different polymorphs or phases of single-layer and stacked single-
layer TMDs: (A) 1T phase, (B) ideal (a " a) 1T phase, (C) distorted (2a " a) 1T
phase, (D) 2H phase and (E) 3R phase. (F) Scanning transmission electron
microscopy (STEM) images of single-layer MoS2 showing a boundary
between the 1T and 2H phases. The arrow indicates the boundary between
the phases. Scale bar: 5 nm. Reproduced with permission from ref. 19.
Copyright 2014, Nature Publishing Group. (G) STEM image of a lithiated
single-layer ReS2. After lithiation, the Re atoms form rhombus clusters.
Reproduced from ref. 21 with permission from The Royal Society of
Chemistry. (H) STEM image of a grain boundary in CVD-grown single-
layer MoS2. The grain boundary is formed of five- and seven-fold rings (5|7)
and dislocations with six- and eight-fold rings (6|8). Reproduced with
permission from ref. 53. Copyright 2013, American Chemical Society.
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FIGURE 2.2: Different polymorphs or phases of single-layer and stacked
single-layer TMDs: (A) 1H phase, (B) ideal (a×a) 1T phase, (C) distorted
(2a×a) 1T phase, (D) 2H phase and (E) 3R phase. Figure adapted from Ref.[52].

2.2.2 Crystal structures of other 2DMs

There are more than 40 types [38] of 2-D non-graphene materials making a great
range of possible choices. On the basis of chemical composition, they can be divided
into the different categories as: TMDs in the form of MX2 (M stands for transition
metal, like Mo, W, Nb, Re, Ni and V, X stands for chalcogens, including S, Se and
Te); layered insulator as h-BN; single element materials like black phosphorus (BP),
silicene and gemanene; V–VI group of topological insulators (TIs) of Bi2Te3,Sb2Se3

and Bi2Se3; transition metal oxides/hydroxides, such as MoO3,V2O5, Ni(OH)2.

As shown in Fig.2.2, the TMDs has layered structures similar to graphite: covalently
bonded 2-D X-M-X layers loosely coupled by weak van der Waals forces [38, 49,
50]. Variation in the stacking sequence leads to five different polymorphs or phases
[51, 52]. Among them, 1T and 2H are usually the most stable states. In the 1T
phase, metal atoms are coordinated with six neighboring chalcogens, whereas the
coordination in 2H is trigonal prismatic [51, 52], see Fig.2.2. In general, the TMDs
formed from metals of the groups IVB and VIB show semi-conducting properties,
hence they are suitable materials for digital transistor applications.

TIs are materials with an insulating bulk state and a metallic state at the surface
or at the edges [53, 54]. TIs are expected to find application in novel spintronic
devices [55, 56]. Layered TIs are of great interest for their large surface-to-volume
ratio, which favors the manipulations of surface states [57, 58]. Each layer consists
of covalently bonded X (Se and Te)-M (Bi and Sb)-X-M-X sheets, and these quintuple
layers (with a thickness of about 1 nm) are stacked together by weak van der Waals
forces [59].

BP (phosphorene) is another single element layered material besides graphene [60,
61]. Its crystal structure is represented in Fig.2.3. In a layer, each phosphorous atom
is covalently bonded with three neighbors forming a zigzag configuration. Weak
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dielectrics for higher doping. Meanwhile, a subthreshold swing of
!5 V per decade is observed, which is much larger than the sub-
threshold swing in commercial silicon-based devices (!70 mV
per decade). We note that the subthreshold swing in our devices
varies from sample to sample (from !3.7 V per decade to
!13.3 V per decade) and is of the same order of magnitude as
reported in multilayer MoS2 devices with a similar backgate
configuration24,25. The rather big subthreshold swing is mainly
attributed to the large thickness of the SiO2 backgate dielectric
that we use, and multiple factors such as insulator layer thickness26,
the Schottky barrier at the subthreshold region25 and sample–
substrate interface state may also have an influence.

The switching off at the negative side of the Vg sweep is
accompanied by a slight turn-on at positive gate voltages, as
shown in Fig. 2b. To further explore this ambipolar behaviour, we
fabricated few-layer phosphorene devices with multiple electrical
contacts (Fig. 2c, inset) and performed Hall measurements using
two opposing contacts (V2 and V4, for example) perpendicular to
the drain–source current path to measure the transverse resistance
Rxy. The Hall coefficient RH, defined as the slope of Rxy as a function

of external magnetic field B, reflects both the sign and density of the
charge carriers in the sample. As shown in Fig. 2c, a carrier sign
inversion is clearly observed in the on states, with positive and
negative gate voltages corresponding to hole and electron conduc-
tion, respectively. This unambiguously shows that the ambipolar
switching of the devices is caused by Fermi level shifting from the
valence band into the conduction band.

The nature of the electrical conduction was probed further by
performing I–V measurements in a two-terminal configuration
(Fig. 2a). As shown in Fig. 2d, the source–drain current Ids varies
linearly with Vds in the on state of the hole side, indicating an
ohmic contact in this region. Meanwhile, Ids versus Vds is strongly
nonlinear on the electron side (Fig. 2d, inset), as is typical for semi-
conducting channels with Schottky barriers at the contacts. The
observed I–V characteristics can be readily explained by workfunc-
tion mismatch between the metal contacts and few-layer phosphor-
ene; the high workfunction of the metal electrodes causes hole
accumulation at the metal–semiconductor interface, which forms
a low-resistance ohmic contact for the p-doped sample, while for
the n-doped sample a depletion region is formed at the interface,
leading to Schottky barriers and thus nonlinear conduction. This
model also explains the observed disparity between conduction at
the electron and hole sides in all our samples (Fig. 2b) and is
widely accepted to describe the contact behaviour in MoS2 devices27.

For potential applications in digital and radiofrequency devices,
saturation of the drain current is crucial in order to reach maximum
possible operation speeds23. By carefully choosing the ratio between
channel length and SiO2 layer thickness, a well-defined current sat-
uration can be achieved in the high drain–source bias region
(Fig. 3a). Meanwhile, the electrical contacts remain ohmic in the
linear region at low drain–source biases. The results shown in
Fig. 3a were obtained in the on state of the hole side of the conduc-
tion in a 5 nm sample with a 4.5-mm-long channel on the 90 nm
SiO2 gate dielectric. Such a well-developed saturation behaviour,
which is absent in graphene-based FET devices23, is crucial for
achieving high power gains. Coupled with the fact that our
channel thickness is on the order of nanometres and thus robust
against short-channel effects when the channel length is shrunk
to the nanometre scale, our results suggest the high potential of
black phosphorus in high-speed field-effect device applications.
We note that the on state conductance of our device is relatively
low and the threshold source–drain bias is relatively high compared
to typical silicon-based devices. Both factors are attributed to the
long channel length in our current device. Better device perform-
ance, that is, larger saturation current and lower threshold bias, is
expected if the channel length and the gate oxide thickness are
reduced. Further investigations are needed to test the limit of the
device performances of black phosphorus FETs.

Charge transport mechanism in black phosphorus thin flake
We now turn to the characterization of field-effect mobility in few-
layer phosphorene devices. Conductance G was measured as a
function of Vg and we extracted the field-effect mobility mFE in
the linear region of the transfer characteristics28:

mFE = L
W

1
Cg

dG
d(Vg − Vth)

(1)

where L and W are the length and width of the channel, respectively,
Cg is the capacitance per unit area, and Vth is the threshold
gate voltage. A hole mobility as high as 984 cm2 V21 s21 is obtained
on a 10 nm sample, as shown in Fig. 3b, and is found to be strongly
thickness-dependent. Transfer characteristics of two other typical
samples of different thicknesses (8 nm and 5 nm, with the 5 nm
sample the same as measured in Fig. 3a) are also shown in
Fig. 3b. The conductance was measured in a four-terminal
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Figure 1 | Crystal and electronic structure of bulk black phosphorus.
a, Atomic structure of black phosphorus. b, Band structure of bulk black
phosphorus mapped out by ARPES measurements. A bandgap is clearly
observed. Superimposed on top are calculated bands of the bulk crystal.
Blue solid and red dashed lines denote empty and filled bands, respectively.
The directions of the ARPES mapping are along U (L–Z) and T′, as indicated
in the first Brillion zone shown in the inset. Ef is the Fermi energy.
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FIGURE 2.3: Atomic structure of monolayer black phosporus. Figure
adapted from Ref.[60].

van der Waals forces stack the layers together to form a puckered honeycomb struc-
ture. BP has sparkeled great interest [23, 62] for its relatively high charge carrier
mobility, tunable gap (depending on the number of layers) and mass anisotropy.
Unfortunately, it is not very stable when exposed at air [63].

2.2.3 Electronic properties of 2-D TMDs

Differently from the traditional bulk semiconductors, such as Si and III-V group
materials, 2-D TMDs have ultra thin thickness, no surface dangling bonds, and high
flexibility, which make them promising candidates [64] to solve the new challenges
the semiconductor industry is facing today, including short-channel effects, power
dissipation, integration and flexible applications. Recently, one of the large research
interests in the field of 2DMs is the understanding of the fundamental electronics
properties.

MoS2 is a typical and well-studied TMD material [49, 65]. Its layers consist of
hexagons with the Mo and S2 atoms located at alternating corners as shown in
Fig.2.2. The most striking feature of bulk MoS2 is that, compared to zero-bandgap
graphene and insulating h-BN, it is a semiconductor with an indirect band gap of
1.29 eV [66]. Several studies have confirmed a transition from an indirect band gap
to a direct band gap for MoS2 as the thickness of bulk MoS2 is decreased to that
of a monolayer. Such a similar transition is also demonstrated for other TMD ma-
terials. Kuc et al. [67] performed an extended study of the influence of quantum
confinement on the electronic structures of monolayer and few-layer MS2 (M = W,
Nb, Re) using first-principles calculations. They found that WS2, which is similar to
MoS2, exhibits an indirect (bulk, Eg=1.3 eV) to direct (monolayer, Eg=2.1 eV) band
gap transition. Figure.2.4 shows the band alignment of various monolayer semicon-
ducting TMDs and monolayer SnS2 obtained from first-principle calculations [68].

Electrical characterizations of single-layer MoS2 have shown n-type conductivity
with a room temperature mobility in the range of 0.5-3 cm2/(V s) [32, 69]. Compared
to the mobility 200-500 cm2/(V s) [70] of bulk MoS2, the mobility of the single-layer



2.3. Synthesis of 2DMs 23

have two electrons for filling the subband and stabilize the
trigonal prismatic coordination, but IVB-TM atoms do not
have the two electrons to fill the dz

2 subband so that an octa-
hedral coordination is preferred.

The band gaps calculated by PBE-SOC and corrected by
GW based on the band-gap-center approximation are plotted
in Fig. 2 and summarized in Table II. For the H-monolayer
VIB-TMDs, as the atomic indices of chalcogen species
increase from S to Te, the valence band edge undergoes a con-
spicuous energy increase, associated with a relatively smaller
energy increase of conduction band edge, resulting in a
decreasing energy gap. As the atomic indices of chalcogen
atoms increase, the larger atomic radius and decreased reactiv-
ity induce weakened inter-atomic interaction strength and a
larger lattice constant. Thus, a smaller band gap is produced.
For the same chalcogen species, Mo is more reactive than W
because of the intrinsic higher reactivity of 3d-electrons than
4d-electrons. Hence, the overall energy levels of Mo-
dichalcogenides are lower than that of W-dichalcogenides.

In contrast, IVB-TM atoms have one less pair of valence
electrons. As a result, IVB-TMDs are also semiconducting
with a deeper band with respect to VIB-TMDs. Hence, the
work functions of IVB-TMDs are larger compared with those
of VIB-TMDs. The intralayer bonding in IVB-TMDs is more
ionic and weaker, exhibiting generally smaller band gaps.
The size of the gap is strongly dependent on the TM and
chalcogen species. The smaller band gaps are associated with
higher atomic indices of constituent chalcogen atoms, produc-
ing negative gaps in HfTe2 and ZrTe2, which are predicted to
be unsuitable for TFET applications. This trend is due to the
decreasing electron negativity of the higher-indexed chalco-
gen species. Semiconducting IVB-TMDs with non-trivial
band gaps are found in ZrS2, ZrSe2, HfS2, and HfSe2.

The presence of finite band gaps but distinctive positions
of band edges of VIB- and IVB-TMDs imply the potential
combination of these two groups of TMDs for TFET applica-
tions. As indicated by results of Fig. 2, electrons at the va-
lence band edges of WTe2 and MoTe2 would be able to
tunnel into the conduction bands of ZrS2, ZrSe2, HfS2, and
HfSe2 with ease. While replacing Te species by Se in VIB-
TMDs, the efficiency for electron injection from VIB-TMDs
to IVB-TMDs decreases due to the lower valence band edges
of VIB-selenides. The VBMs of MoS2 and WS2 are even
lower than the CBMs of IVB-TMDs, which is detrimental
for “broken-gap” alignment formation and not promising for
TFET applications. Considering the relative energy level
shift23 for TMDs in direct contact or in contact with dielec-
tric media, the final band alignment in such systems needs
further examination. The calculation herein provides useful
guidance for selecting the TMD material couples for TFETs.

It is interesting to note the intrinsic scattering in the sug-
gested TFETs integrating VIB-TMDs as the n-type source
and IVB-TMDs as the p-type drain. As shown in Fig. 3, H-
monolayer VIB-TMDs have direct band gaps at K point,
whereas indirect gaps are formed between C and M points
for T-monolayer IVB-TMDs. Correspondingly, the electron
tunneling from the VBM of the H-monolayer VIB-TMDs at
the K-point to the CBM of the T-monolayer IVB-TMDs at
the M-point is anticipated to experience inelastic scattering.
Engineering the position of band edges in reciprocal space is
a feasible scheme for addressing the issue of intervalley scat-
tering. To this end, we analyze the band edge properties of
monolayer VIB- and IVB-TMDs. Insights on how strain
affects the band properties of monolayer TMDs are obtained.

For H-monolayer VIB-TMDs, we choose to study MoS2

as a representative for a convenient comparison with other
published data. As shown in Fig. 3(a), the bonding states at
C(V) and K(V) are mainly composed of out-of-plane dz2-
orbitals and in-plane d(x2-y2)þ dxy orbitals, respectively.
Therefore, the in-plane tensile strain weakens the inter-
atomic dz2-dz2 bonding more than the d(x2-y2)-d(x2-y2) and
dxy-dxy bondings. The resulting energy level shifting up of
the dz2-dz2 bonding state C(V) is more than that of the bond-
ing state K(V). For the anti-bonding states, K(C) is com-
posed of a higher weight of out-of-plane oriented orbitals
than CK(C). Hence, the in-plane tensile strain shifts the
energy position of K(C) downward in a larger amount com-
pared with that of CK(C). The tensile strain is inferred to
produce a reduced indirect band gap between C(V) and

FIG. 2. Band alignment of monolayer semiconducting TMDs and monolayer
SnS2. CBM and VBM calculated by PBE-SOC are indicated by the filled grey
columns, with GW corrected band edges indicated by the narrower olive col-
umns. The Fermi level is indicated by the blue horizontal line and the vacuum
level is at 0 eV. SnS2, as a semiconducting 2D material, is also listed.

TABLE II. VBM (Ev), CBM (Ec), band gaps (Eg) and work functions (WF)
of TMDs calculated by PBE-SOC. “D” and “I” in the parenthesis after Eg

means “direct” and “indirect” band gaps. Due to the energy level splitting at

VBM caused by SOC, the calculated Eg by PBE-SOC is smaller than that by
PBE without SOC.

TMDs Ev Ec Eg(D/I) WF

MoS2 "5.86 "4.27 1.59 (D) "5.07

MoSe2 "5.23 "3.90 1.32 (D) "4.57

MoTe2 "4.76 "3.83 0.94 (D) "4.29

WS2 "5.50 "3.96 1.54 (D) "4.73

WSe2 "4.87 "3.54 1.32 (D) "4.21

WTe2 "4.44 "3.69 0.74 (D) "4.06

ZrS2 "6.79 "5.71 1.08 (I) "6.25

ZrSe2 "6.15 "5.86 0.29 (I) "6.00

ZrTe2 "4.97 "5.69 "0.72 (I) "4.85

HfS2 "6.83 "5.59 1.23 (I) "6.21

HfSe2 "6.17 "5.72 0.45 (I) "5.94

HfTe2 "4.91 "5.53 "0.62 (I) "4.70
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FIGURE 2.4: Band alignment of monolayer semiconducting TMDs and
monolayer SnS2. Conduction band minimum and valence band maximum
obtained by DFT calculations are indicated by the filled grey columns. The
band edges obtained with the GW correction are indicated by the narrower
olive columns. The Fermi level is indicated by the blue horizontal line and the

vacuum level is at 0 eV. Figure adapted from Ref.[68].

MoS2 sheets is rather low and comparable to that of graphene nanoribbons but still
much lower than that of either pristine graphene or Si transistors. Because of the
low mobility, MoS2 transistors are probably more suited for low-power applications
compared to Si transistors, rather than for high-performance applications.

2.3 Synthesis of 2DMs

The development of efficient synthesis techniques for 2DMs is a fundamental step
toward the realization of future applications, especially in the perspective of a large-
scale industrial production. The synthesis of 2DMs can follow the top-down ap-
proach, such as mechanical exfoliation or chemical exfoliation, or the bottom-up
approach, such as chemical vapor deposition (CVD) and, for graphene, vacuum
graphitization of SiC. In this section, three key methods for synthesizing single- and
few-layer 2DMs will be discussed.

2.3.1 Mechanical exfoliation

The mechanical exfoliation takes advantage of the weak van der Waals forces be-
tween layers that make possible individual 2-D layers to be separated. The famous
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“scotch tape” method is the first technique used to obtain monolayer graphene [31].
This method is highly flexible and permits the exfoliation of not just graphene, but
also other 2DMs such as h-BN, MoS2, etc [39, 49, 71]. The few-layer, even mono-
layer 2DMs produced by the mechanical exfoliation method exhibit high purity and
cleanliness, very suitable for building single devices and for fundamental research.
However, the size of the 2DM sheets that can be obtained is limited to only tens
of micrometers. Such a limitation, together with the high time cost of this pro-
cedure, makes this approach not suitable for large-scale production. This fabrica-
tion method is thus more indicated for preparing 2DMs for laboratory experiments,
studying theoretical behavior, or as a reference for benchmarking other synthesis
techniques.

2.3.2 Liquid-phase exfoliation

Liquid-phase exfoliation (LPE) is another popular method to obtain individual sheets
from bulk materials by breaking the weak van der Waals bonds between the lay-
ers. It consists in creating dispersions of 2DMs in diverse solvents with the assis-
tance of sonication [72]. Mixtures of single-layer and multilayered 2DMs are usu-
ally produced. Organic solvents [72, 73], such as N-methyl-pyrrolidinone (NMP),
isopropanol, low-boiling-point solvent mixture, and lithiumion intercalation are in-
volved in this process. Unfortunately, due to the slow evaporation, it is difficult to
remove the solvent from the 2DMs after exfoliation. As a consequence, the struc-
tural and electronic quality of LPE-prepared 2DM films is significantly lower than
that obtained by mechanical exfoliation or CVD. For MoS2, annealing at 300 °C can
cause a phase change from 1T-MoS2 to 2H-MoS2, restoring the Mo atom coordi-
nation, and restoring the semiconducting bandgap. The main advantage of LPE
approach is that it gives a high yield of monolayers [74]. For a number of applica-
tions, for example radio-frequency tags, energy applications, photonic devices, and
2DM-based inks, where large quantities are required, it is possible that LPE will be
preferred. Printable 2DM inks can open up new applications and markets, enabling
economically viable device manufacturing [75].

2.3.3 Chemical vapor deposition

CVD based techniques offers what is probably the most flexible and promising
method to grow large-scale 2DMs, with uniform thickness and high yield.

The successful synthesis of single layer graphene with high homogeneity and repro-
ducibility was achieved in 2009 by low-pressure CVD on copper foils with methane
as the carbon source [76]. The graphene growth on Cu is based on several reac-
tions: first dissociation of the hydrocarbon followed by carbon atoms diffusion on
the surface leads to nucleation, island growth, and finally completion of a mono-
layer [77]. This process is justified by the extremely low carbon solubility in Cu
even at the growth temperature of about 1040 °C that inhibits the diffusion of C into



2.4. Applications 25

the bulk Cu, thus making Cu foil an excellent substrate for the growth of large-area
graphene. The graphene grain size could be increased by raising the growth tem-
perature and reducing the partial pressure of methane. One of the main drawbacks
of CVD graphene is that it is intrinsically polycrystalline.

In contrast to graphene, other layered systems are composed of two or more ele-
ments, which makes the synthesis more complex. Mainly, there are two different
approaches to grow the 2DMs by CVD technique. One strategy is to use the 2DM
powders as the precursors directly, for example, a straight forward growth method
using WSe2 power as the evaporation source to synthesize monolayer WSe2 nano-
sheets [78]. Another strategy is utilizing reaction precursors to grow 2DM through
chemical reaction processes, such as sulfurization [79, 80].

2.3.4 Molecular beam epitaxy

Molecular beam epitaxy (MBE) has traditionally been used to grow multicompo-
nent heterostructures of II–VI, III–V and metal oxide materials. MBE can enable the
growth of van der Waals heterostructures by allowing the individual components
to be chosen on demand, thus achieving good-quality films on different substrates.
Results of growing 2DMs, such as graphene [81], HfSe2 [82], MoSe2 [83], WSe2 [84],
h-BN [82] etc by MBE have been reported in the very recent years. Heterostruc-
ture of graphene/h-BN on Co(0001) by MBE was demonstrated by Kelber et al. [81]
(2016), and has shown good azimuthal registry between each layer. Another hetero-
junction of MoTe2/MoS2 has been grown with MBE by Diaz et al. [85] (2016), though
with high density of line defects due to Te-deficiency during growth. The advantage
provided by MBE is the direct growth of different 2DMs layers on top of each other
with van der Waals interlayer couplings. This approach will create opportunities for
scalable production of the 2-D heterostructures with desirable band alignments that
can be useful in the fabrication of future nanoelectronic devices.

2.4 Applications

In recent years, various research teams have reported encouraging results about us-
ing the 2DMs to make actual electronic and optoelectronic devices [23, 64, 86, 87]. In
this Section, I list some examples of these possible applications and the existing ex-
perimental 2DM-based devices. By exploiting the unique properties of 2DMs, those
devices can provide interesting performance boosts comparing to the correspond-
ing bulk semiconductor devices. Some novel device structures are also discussed
briefly.
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2.4.1 Digital applications

Apart from the main technological challenges in geometric scaling, a bigger intrin-
sic challenge is represented by the material properties: carrier mobility in silicon
strongly decreases with body thickness reduction or increased doping, thus under-
mining possible improvements in the device switching speed. In this context, the
2DMs with their extreme thinness can serve as a convenient alternative. Consid-
ering digital electronic applications, graphene-based FETs cannot conform to the
ITRS requirements because of its zero band gap, which leads to at most a few tens
ION/IOFF ratio, and large IOFF. Many attempts have been made in order to open
an energy gap in graphene, for example by applying a strong electric field over bi-
layer graphene [88], by quantum confinement in graphene nanoribbons with well-
controlled width [89–91], by doping graphene with adatoms like boron atoms [91,
92].

The advantage of 2-D TMDs over graphene is the existence of an energy gap, which
is crucial for low IOFF and high ION/IOFF ratio. Comparing to bulk materials, semi-
conducting 2-D TMDs have unique features that make them attractive as a channel
material for FETs: their atomic thinness, the lack of dangling bonds, and a mobil-
ity comparable to Si [93]. One of the earliest uses of TMDs in FETs was reported
in 2004, where WSe2 crystals showed mobility comparable to the best single-crystal
Si FETs (up to 500 cm2/(Vs) for p-type conductivity at room temperature), and a
104 ION/IOFF ratio at a temperature of 60 K [94]. This result was soon followed by
devices based on thin films of MoS2 with a back-gated configuration, resulting in
mobility values in the range 0.1–10 cm2/(Vs) [32, 95].

The first implementation of a top-gated transistor based on monolayer MoS2 was re-
ported by Kis et al. [96], as shown in Fig.2.5. This device showed excellent ION/IOFF

ratio ( 108), n-type conduction, room-temperature mobility of >200 cm2/(Vs) and
SS of 74 mV/dec [96]. The top-gated geometry allowed a reduction in the voltage
necessary to switch the device and the integration of multiple devices on the same
substrate. The high-k dielectric used in this device, HfO2, also gave the additional
benefit of improving the mobility of monolayer MoS2. Top-gating with a high-k di-
electric was also used in a p-type FET with an active channel made of a monolayer
flake of WSe2, which showed room-temperature hole mobility of 250 cm2/(Vs), close
to 60 mV/dec SS and 106 ION/IOFF ratio [97].

Although 2-D TMDs may not compete with conventional III–V transistors on the
mobility values, for devices with very short channel length the transport becomes
nearly ballistic, thus mitigating this issue. The ultimate thin body of 2-D TMDs
provides high degree of electrostatic control that is important for device scaling and
for reducing the SCEs. Furthermore, the relatively large effective mass for electrons
and holes in TMDs represents an advantage, since a larger effective mass implies
a larger density of states and therefore a larger ballistic ION. Taking into account
the above facts, 2-D TMDs are promising candidates for future digital electronics.
Recently, a demonstration of extremely scaled transistor based on a MoS2 channel
and 1-nanometer carbon nanotube gate was successfully implemented by Desai et
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performance characteristics, relatively high Earth abundance and 
high degree of electrostatic control could make MoS2 a viable candi-
date for low-power electronics98.

Radisavljevic et al.35 recently demonstrated that they could build 
functional electronic circuits based on multiple 2D TMDC tran-
sistors capable of performing digital logic operations.  Up to six 

independently switchable transistors were fabricated on the same 
piece of monolayer MoS2 by lithographically patterning multiple 
sets of electrodes (Fig. 4c)35. An integrated circuit composed of two 
transistors fabricated on a single flake of MoS2 was operated as a log-
ical inverter, which converts a logical 0 into a logical 1, and as a logi-
cal NOR gate35, which is one of the universal gates that can be built 

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

−4 −2 0 2 4
Top gate voltage Vtg(V)

Vbg = 0 V

10 mV
 

100 mV

S = 74 mV dec−1

Vds = 500 mV

Cu
rre

nt
 I ds

 (A
)

Top gate

HfO2

Drain

Source

SiO2

Silicon MoS2

5 μm

VG

VDS

G

0 1 2 3−1−2−3

1

10−1

10−2

10−3

VG (V)

0

Bulk

Thin flake

Hole Electron

σ 2
D

 (m
S)

a b

c

d

e f

g

VD = 0.5 V

0.5 V

0.05 V

0.05 V

I D
 (μ

A
 μ

m
−1

) ID
 (m

A
 μm

−1)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

104

102

100

10−2

10−4

10−6

10−8

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

VG (V)

Back gate

Drain

SourceTop gate

Dielectric

Highly doped 
TMDC layer

Undoped 
TMDC layer

Figure 4 | Electronic devices from thin flakes of MoS2. a, Schematic illustration of HfO2-top-gated monolayer MoS2 FET device. b, Source–drain current 
(Ids) versus top gate voltage (Vtg) curve recorded from the top-gated device in a for a bias voltage ranging from 10 mV to 500 mV. Measurements are 
performed at room temperature with the back gate grounded. Top gate width, 4 mm; top gate length, 500 nm. The device can be completely turned off 
by changing the top gate bias from –2 to –4 V. For Vds = 10 mV, the Ion/Ioff ratio is >1 × 106. For Vds = 500 mV, the Ion/Ioff ratio is >1 × 108 in the measured 
range while the subthreshold swing S = 74 mV dec–1. c, Integrated circuit based on single-layer MoS2.  d, Simulated device characteristics for a monolayer 
MoS2 FET device with 2.8-nm-thick HfO2 top-gate oxide, 15-nm gate length, and power supply voltage 0.5 V. The source–drain current (ID) is plotted 
against gate voltage (VG) for 0.05 and 0.5 V drain voltage (VD) on linear (right axis) and logarithmic (left axis) scales. e, Schematic of electric double-layer 
transistor (EDLT, a FET gated by ionic liquids). VDS is the source–drain voltage and VG is the gate voltage. f, Conductivity as a function of top gate voltage 
for both bulk and thin-flake MoS2 EDLT devices. Thin-flake devices show on/off ratios >102 for both electron and hole transport. g, Proposed TMDC-based 
high-electron-mobility transistor (HEMT) device with top-gated Schottky contact and TMDC layers with different doping levels. Figure reproduced with 
permission from: a,b, ref. 34, © 2011 NPG; d, ref. 98, © 2011 ACS; e,f, ref. 41, © 2012 ACS.

REVIEW ARTICLENATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2012.193

© 2012 Macmillan Publishers Limited. All rights reserved

FIGURE 2.5: (left) Schematic illustration of HfO2-top-gated monolayer MoS2

FET device. (right) Optical image of a CMOS device based on the structure
shown in the left panel. The device consists of two FETs connected in series
and defined by three gold leads that serve as source and drain contacts for the

two transistors. Figures adapted from Ref.[96].

FIGURE 2.6: (A) Schematic and (B) Cross-sectional TEM image of a transistor
with a MoS2 channel and 1-nanometer carbon nanotube gate. (D) ID-VGS and
(E) ID-VDS characteristics of the device with back-gate bias VBS=5 V. (F) ID-VGS

characteristics at VDS=1 V and varying VBS . Figures adapted from Ref.[98].

al. [98], as shown in Fig.2.6. This device exhibited SS of 65 mV/dec (near ideal value
for MOSFET), and ION/IOFF ratio of 106.

In addition to the conventional MOSFET structure, another promising research di-
rection is the stacking of different 2-D layered materials and/or 3-D bulk materials
for fabricating vertical heterostructures with novel operation principles [99, 100]. A
TFET was demonstrated to work by Britnell et al. [101] using two independently
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current. Third, the heterojunction is formed with van der Waals bonds
and thus has strain-free interfaces. Fourth, although methodologies for
obtaining stable (and high) doping in TMDs are very challenging and
still under investigation, 3D materials already enjoy well developed
doping technologies that have been used in this work to form a highly
doped source. This enables the creation of an ultra-sharp doping pro-
file and hence, a high electric field at the source–channel interface,
because there is a negligible chance of diffusion of dopant atoms across
the heterojunction owing to the presence of a van der Waals gap. Last,
because MoS2 is placed on top of Ge forming a vertical source–channel
junction, BTBT can take place across the entire area of MoS2-Ge
overlap, which leads to a higher current in the ON state than in the
case of line overlap obtained in lateral junctions.

Although we are using the term tunnel-FET in a general way, our
device is specifically a band-to-band tunnel-FET, involving transition
of carriers from the valence band (of Ge) to the conduction band (of
MoS2). Although ‘tunnelling-transistors’ using heterostructures of 2D
materials have been reported26,27, they did not involve BTBT and
hence, cannot lead to devices with SS below 60 mV per decade, because
of the fundamental inability of a single carrier tunnelling barrier to
provide this (Supplementary Information S3).

Our ATLAS-TFET provides several beneficial attributes relative to
other subthermionic transistors. The use of bilayer MoS2, which is only

1.3 nm thick, leads to a very thin channel transistor with subthermio-
nic SS, which can lead to opportunities for ultra-dense and low-power
electronic applications. We have achieved this on a planar platform,
which is easily manufacturable compared to 1D structures such as
nanowires and nanotubes. It is noteworthy that the International
Technology Roadmap for Semiconductors (ITRS) has prescribed the
attainment of average SS lower than 60 mV per decade over four
decades of current. The only experimental TFET so far reported in
the literature to have obtained this metric was produced by Tomioka
et al.28, who used a 1D (nanowire) based structure. The ATLAS-TFET is
the first TFET demonstrated in planar architecture to satisfy this ITRS
prescription, and is the only one to achieve it in any architecture at an
ultra-low drain–source voltage VDS of 0.1 V, which is highly desirable
for the lowering of supply voltage and hence, power dissipation.

Figure 1c and d demonstrates the operation of the ATLAS-TFET
using band diagrams obtained along the vertical dashed line in Fig. 1a,
in both the OFF (Fig. 1c) and the ON (Fig. 1d) state. Our device is an
n-type transistor, in which positive voltage is applied to the drain
electrode (with respect to the source electrode) contacting the MoS2
layers, which in turn contact the highly p-doped Ge source. Hence,
electrons tend to move from the Ge to the MoS2 and this electron
transport can be modulated by the gate to turn the device ON or
OFF. In the OFF state, only electrons above the conduction band of
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Figure 1 | Schematic and working principle of the ATLAS-TFET.
a, Schematic diagram illustrating the cross-sectional view of the ATLAS-TFET
with ultra-thin bilayer MoS2 (1.3 nm) as the channel and degenerately
doped p-type Ge as the source. Path for electron transport is shown by the red
arrows, which run vertically (indicating band-to-band-tunnelling, BTBT)
from the Ge source to the MoS2 and then laterally through the MoS2 layers (via
drift diffusion) to the drain. As the Ge is highly doped, the tunnelling barrier
height is mainly determined by the effective band overlap between Ge and
MoS2 while the tunnelling width is determined by the MoS2 thickness
(including the van der Waals gap). b, Band alignment of Ge and bilayer MoS2

showing their electron affinities (EA) and bandgaps (EG) and, thus, illustrating
the formation of a staggered vertical heterojunction. Insets in the middle show
the crystal structures of both materials, while the bandstructures are shown on
the left and right sides. c, d, Band diagrams along the vertical dashed line in a are
shown in both OFF (c) and ON (d) states. The white regions represent the
forbidden gaps (zero density of states, DOS). While the effective bandgap of
bilayer MoS2 is illustrated in b, here the bands for the two layers are shown

separately with the van der Waals (vdW) gap between them for better visual
interpretation of current flow. Note that the drain contact is located
perpendicular to the plane of the figure and is not shown. In the OFF state,
electrons from the valence band of Ge cannot transport to MoS2 owing to the
non-availability of DOS in MoS2 (horizontal black arrow and cross sign). At
higher energies, empty DOS is available in MoS2, but no DOS is available in Ge,
again forbidding electron flow (horizontal orange arrow and cross sign). With a
further increase in energy reaching above the conduction band of Ge, DOS is
available in both Ge and MoS2. However, the number of electrons available in
the conduction band of the Ge source is negligible owing to the exponential
decrease in electron concentration with increase in energy above the Fermi level
according to the Boltzmann distribution. Thus, very few electrons can flow
to the MoS2 (horizontal purple arrow), leading to a very low OFF-state current.
With an increase in gate voltage (d), the conduction band of MoS2 at the
dielectric interface is lowered below the valence band of the Ge source, and
electrons start to flow (horizontal green arrow), resulting in an abrupt
(subthermionic) increase in BTBT current.
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FIGURE 2.7: Schematic of the atomically thin and layered semiconducting-
channel TFET with bilayer MoS2 as the channel and degenerately doped p-

type Ge as the source. Figure adapted from Ref.[28].

controlled graphene layers separated by thin hexagonal boron nitride (h-BN) lay-
ers acting as tunneling barrier. Recently, a vertical TFET based on bilayer MoS2 as
the channel and degenerately doped p-type Ge as the source, as shown in Fig.2.7,
was fabricated by Sarkar et al. [28] and showed rather low SS of 31 mV/dec over 4
decades, and quite high on-current in TFETs, with VDD as low as 0.1 V. The van der
Waals gap between the 2-D MoS2 and Ge acts as an extremely thin tunneling barrier,
which enhances the tunneling and the on-current.

2.4.2 Analog and high-frequency applications

High-frequency (HF) electronics is currently dominated by III-V and SiGe-based
semiconductor transistors with the highest reported maximum oscillation frequency
fmax values in the range of 1-2 THz, enabling simple circuits to operate up to a few
hundred GHz. These technologies are very mature, and the margin left to increase
speed is becoming small. Nevertheless, the growing demand for larger bandwidth
in communication systems and new sensor applications will need devices to operate
in the THz regime.

Parasitic capacitance scaling, high electric mobility, and saturation velocity are the
keys to boost device speed. From this perspective, graphene can play a significant
role in the HF applications, having shown the highest mobility [102–104] and satu-
ration velocity [105, 106] among any other FET channel material so far. Further, the
limit of intrinsic cutoff frequency fT , well beyond 1 THz, has been predicted through
simulation. Tremendous efforts have been carried out to improve the quality of
graphene layer and remove possible contaminants during the fabrication process of
the devices. During the recent years, the reported fmax values of graphene transistors
are significantly improving. In a recent work by Wu et al. [107], a graphene transis-
tor with 60 nm gate length has experimentally exhibited a fmax of 106 and 200 GHz
before and after de-embedding respectively. This work shows potential for future
improvement in the graphene-based HF transistors. Currently, the fmax values of
graphene transistors still lie behind III-V and Si-based transistors. A reduction of
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the parasitic effects in graphene transistors is needed to increase fmax significantly.
The absence of a band gap in graphene may prevent proper current saturation and
thus limiting fmax in the end. Other 2DMs such as MoS2 show pronounced current
saturation and therefore could provide a good alternative to graphene. However,
the mobility and saturation velocity in MoS2 are significantly lower not only than in
graphene, but also than in Si and III–V materials [108, 109].

2.4.3 Optoelectronics

Optoelectronic devices (photodetectors, solar cells and LEDs etc.) are electric de-
vices that can generate, detect, interact with light. Due to a large area/volume ratio,
strong light–matter interaction and novel electrical properties, optoelectronic de-
vices based on 2DMs have attracted much interest since the beginning.

The direct band gaps of monolayer TMDs make them attractive as light-absorbing
materials in alternative thin-film solar cells, including flexible photovoltaics that
could coat buildings and curved structures. The first trial was on MoS2 [110]. This
was inspired by the finding that MoS2 has a direct band gap of about 1.8 eV when
its thickness is reduced to a single layer. Lopez-Sanchez et al. conducted a landmark
research in 2013 [111]. They reduced charged impurities scattering and contact resis-
tance by the careful treatment on a dielectric layer and an annealing process. After
these processes, an impressive high responsivity of 880 AW−1 was achieved. Stim-
ulated by the pioneering works on MoS2, photo-detectors based on other TMDs,
like MoSe2, WS2 and WSe2, have attracted growing attention in recent years [112–
114]. In addition, combining different 2-D materials together to form heterostruc-
tures may be a possible solution [115, 116].

2.4.4 Flexible electronics

Numerous applications demand the development of large-area, flexible and versa-
tile electronics. For example, wearable electronics requires flexible displays, the cost
of installing solar panels could be significantly reduced through the use of roll-to-
roll processes, and embedded electronic devices and sensors could start revolution
in the healthcare technologies.

2DMs, in general, could be an ideal choice for future flexible electronics. They have
excellent mechanical properties [117, 118], can be compatible with flexible device
fabrication, and unlike CNTs [119, 120] do not require any sorting process [121]. At
the same time, the mobility of 2DMs, when grown over large areas by CVD, can
be larger than some of the organic semiconductors [122], thus enabling higher fre-
quency at low power. For transparent conductors, graphene high conductivity and
low broadband absorption makes it a promising flexible replacement for the current
leading material, indium tin oxide, which is inflexible and increasingly expensive.
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The large variety of 2DMs provides a wide selection to choose for device optimiza-
tion.
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Chapter 3

Quantum Transport Model

The non-equilibrium Green’s function (NEGF) formalism is one of the most com-
mon approaches to describe transport in nanodevices. The concept and the first
applications of the NEGF were given by Schwinger [123], Kadanoff and Baym [124],
Fujita [125], and Keldysh [126] at the beginning of the 1960s. The main advantages
of NEGF are that is it full quantum, adaptable to different Hamiltonian types (effec-
tive mass, k ·p, tight-binding), and able to deal with many-body interactions through
the introduction of self-energy operators.

In Section 3.1, I review some of the basic concepts and theorems of quantum me-
chanics in the second quantization representation, including the evolution operator
and the contour ordering. Then in Section 3.2 the NEGF formalism is reviewed,
discussing its definition in the time domain, its equation of motion, its stationary
solution in the energy domain, the inclusion of scattering, the open boundary con-
ditions and the calculation of observables like charge and current densities. Finally,
in Section 3.4, the self-energies of electron-electron and electro-phonon interactions
are presented. Several assumptions are made in this work to obtain the final set of
equations. For example, I will only consider the steady-state condition and neglect
the transient effects. Also, I only include the electron-phonon interactions and ne-
glect other scattering mechanisms such as those due to impurities and surface/edge
roughness. For the electron-electron interactions, I use the Hartree approximation
that assumes that each electron moves independently and sees only the mean field
generated by all the other electrons. The average electrostatic field is obtained from
the self-consistent solution of the Poisson equation. Note that the exchange and
correlation energies are neglected.

3.1 A brief review of quantum mechanics

I will briefly revise some basics concepts of quantum mechanics that are useful for
the understainding of the Green’s function method.
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3.1.1 Second quantization

To deal with many arbitrary identical particles, such as electrons, we define a collec-
tion F of Hilbert spaces, also known as Fock space, according to

F = {H0,H1, ...,HN , ...}, (3.1)

with HN the Hilbert space for N identical particles. Since the probability of finding
M 6= N particles in a N -particle ket is zero, any two Hilbert spaces with different
numbers of particles are orthogonal between them. The Hilbert spaceH0 is the space
with zero particles. Since an empty system has zero degree of freedom, Hilbert space
H0 contains only one normalized ket, which we denote by |0〉,

〈0|0〉 = 1, (3.2)

which just means that the probability of finding nothing in an empty space is 1.

3.1.2 Field operators

Next, we define a field operator ψ̂†(x) = ψ̂†(rσ) that generates the position-spin kets
by repeated action on the empty ket, i.e.,

|x1〉 = ψ̂†(x1) |0〉
|x1x2〉 = ψ̂†(x2) |x1〉 = ψ̂†(x2)ψ̂†(x1) |0〉

|x1...xN〉 = ψ̂†(xN)...ψ̂†(x1) |0〉
(3.3)

The field operator ψ̂†(x) creates a particle in position-spin x. It is therefore called the
creation operator. Since the position-spin kets change a plus sign under interchange
of particles, the creation operator follows that

ψ̂†(xn)ψ̂†(xm) |x1...xN〉 = |x1...xNxmxn〉 = ± |x1...xNxnxm〉
= ±ψ̂†(xm)ψ̂†(xn) |x1...xN〉

(3.4)

where the upper sign in ± refers to bosons and the lower sign to fermions. This
identity is true for any ket |x1...xN〉, i.e. for all states in F , and hence

ψ̂†(xn)ψ̂†(xm) = ±ψ̂†(xm)ψ̂†(xn). (3.5)

By defining the (anti)commutator between two operator Â and B̂ according to[
Â, B̂

]
∓

= ÂB̂ ∓ B̂Â, (3.6)
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we can rewrite the above relation (3.5) as[
ψ̂†(xn), ψ̂†(xm)

]
∓

= 0. (3.7)

Corresponding to the operator ψ̂†(x) there is the adjoint operator ψ̂(x). The operator
ψ̂(x) removes a particle from the position-spin x. For this reason, it is called the
annihilation operator. Below are its properties and how it acts on the position-spin
kets. [

ψ̂(xn), ψ̂(xm)
]
∓

= 0 (3.8)

ψ̂(xn) |xm〉 = δ(xn − xm) |0〉 (3.9)[
ψ̂(xn), ψ̂†(xm)

]
∓

= δ(xn − xm) (3.10)

3.1.3 Basis transformation

The position–spin is just one possible choice of quantum observables to characterize
a particle. The field operator can be used to construct states of many identical par-
ticles in which every particle is labeled by general quantum numbers, such as mo-
mentum and energy. The one-particle ket |n〉 can be expanded in the position–spin
kets using the completeness relation

|n〉 =

∫
dx |x〉 〈x|n〉 =

∫
dxϕn(x) |x〉 =

∫
dxϕn(x)ψ̂†(x) |0〉 . (3.11)

The ket |n〉 is obtained by applying to the empty ket |0〉 the operator

ĉ†n ≡
∫

dxϕn(x)ψ̂†(x), (3.12)

i.e., ĉ†n |0〉 = |n〉. We may say that ĉ†n creates a particle with quantum number n.
Similarly, if we take the adjoint of (3.12)

ĉn ≡
∫

dxϕ∗n(x)ψ̂(x), (3.13)

we obtain an operator that destroys a particle with quantum number n. The operator
ĉn and ĉ†n can act on states with arbitrary number of particles. Below are some im-
portant relations when the set {|n〉} forms an orthonormal basis in the one-particle
Hilbert space [

ĉn, ĉ
†
m

]
∓ = 〈n|m〉 = δnm, (3.14)

[ĉn, ĉm]∓ =
[
ĉ†n, ĉ

†
m

]
∓ = 0. (3.15)
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3.1.4 The density operator

A quantum mechanical system is said to be in a pure state if it is in a given state |Ψi〉.
On the other hand, a mixed state is a statistical ensemble of pure states {|Ψi〉} with
probabilities {pi}, which have to add to unity∑

i

pi = 1. (3.16)

A mixed state is described by the density operator

ρ̂ =
∑
i

pi |Ψi〉〈Ψi| . (3.17)

The statistical average of the expectation values of an arbitrary observable Ô can be
calculated as 〈

Ô
〉

=
∑
i

pi 〈Ψi|Ô|Ψi〉 = Tr
[
ρ̂ Ô
]
. (3.18)

When the system is at thermodynamical equilibrium, we can make use of the statis-
tics of the grand-canonical ensamble, with given temperature T and chemical poten-
tial µ, to write the density operator as

ρ̂eq
G =

e−β(Ĥ−µN̂)

ZG

, (3.19)

where β = 1/kBT , ZG = Tr
[
e−β(Ĥ−µN̂)

]
is the grand-canonical partition function,

and N̂ is the number operator that counts the particles.

3.1.5 Hamiltonian operator

For our purposes, we consider systems of identical interacting electrons. The Hamil-
tonian operator can thus be split into two contributions as Ĥ = Ĥ0 + V̂ , where Ĥ0 is
a single-particle operator that includes the kinetic energy of the electrons and their
coupling with the (lattice and external) electrostatic potential

H0(r) = φ(r) +
p2

2m0

, (3.20)

while V̂ is the two-particle electron-electron (Coulomb) interaction. In the second
quantization notation, this Hamiltonian reads

Ĥ = Ĥ0 + V̂ =

∫
drψ̂†(r)H0(r)ψ̂(r)+

1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)V (r−r′)ψ̂(r′)ψ̂(r). (3.21)
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3.1.6 Schrödinger equation

The time evolution of a quantum system is governed by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (3.22)

with |Ψ(t)〉 the state of the system at time t. The Schrödinger equation is a first order
differential equation. The state of the system at any time is completely determined
once the initial state of the system |Ψ(t0)〉 is given. For a time independent Hamilto-
nian operator Ĥ , Eq.(3.22) is solved by

|Ψ(t)〉 = e−i~Ĥ(t−t0) |Ψ(t0)〉 . (3.23)

3.1.7 Evolution operator and time-ordering

To generalize Eq.(3.23) we look for an evolution operator Û(t, t0) that transforms |Ψ(t0)〉
to |Ψ(t)〉, i.e.

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 . (3.24)

In order to find Û(t, t0), we divide the time interval [t0, t] into equispaced points
{tp}, with small spacing ∆t. By approximating the Hamiltonian operator Ĥ(t) as
constant inside each short time interval (tp, tp + ∆t), we can use Eq.(3.23) repeatedly

|Ψ(tn+1)〉 = e−i~Ĥ(tn)∆te−i~Ĥ(tn−1)∆t...e−i~Ĥ(t0)∆t |Ψ(t0)〉 . (3.25)

Because the Hamiltonian operators do not generally commute at different times, the
ordering in Eq.(3.25) is important. The chronological ordering operator T rearranges
the Hamiltonians according to the rule: later times go to the left. We can thus rewrite
Eq.(3.25) as

|Ψ(tn+1)〉 = T
{
e−i~∆t

∑n
p=0 Ĥ(tp)

}
|Ψ(t0)〉 . (3.26)

Increasing n and reducing ∆t, the approximated ket |Ψ(tn+1)〉 approaches the exact
one |Ψ(t)〉 and eventually coincides with it when we replace the summation by the
integral

|Ψ(t)〉 = T
{
e
−i~

∫ t
t0

dτĤ(τ)
}
|Ψ(t0)〉 . (3.27)

The evolution operator in (3.24) is then

Û(t, t0) = T
{
e
−i~

∫ t
t0

dτĤ(τ)
}
. (3.28)

Now we consider the evolution operator Û(t0, t) for t > t0. By definition,

Û(t0, t)Û(t, t0) = 1. (3.29)
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Taking into account (3.27) we have

Û(t0, t) = T a
{
e

i~
∫ t
t0

dτĤ(τ)
}
, (3.30)

with the anti-chronological ordering operator T a whose action is to move the operators
with later times to the right. The operator Û(t0, t) can be interpreted as the operator
that evolves a ket backward in time from t to t0.

3.1.8 Heisenberg picture

In the Heisenberg picture, the states, denoted as |ΨH〉, do not depend on time

|ΨH〉 ≡ Û(t0, t) |Ψ(t)〉 = |Ψ(t0)〉 . (3.31)

The dependence on time is shifted on operators, which are denoted by ÔH and de-
fined as

ÔH(t) = Û(t0, t)Ô(t)Û(t, t0) (3.32)

and obey the equation of motion

i~
d

dt
ÔH(t) =

[
Ô, ĤH(t)

]
−

+ i~
∂

∂t
ÔH(t). (3.33)

The last term is the derivative with respect to the explicit time dependence of Ô(t).

3.1.9 Contour ordering

In the Heisenberg picture, the expectation value O(t) ≡
〈
Ô(t)

〉
of an operator Ô(t)

over a system prepared in the state |ΨH〉 is given by

O(t) = 〈ΨH |Û(t0, t)Ô(t)Û(t, t0)|ΨH〉 . (3.34)

Equation (3.34) can be interpreted as the evolution of the system from the initial time
t0 until the time t, when the operator Ô acts. Then the evolution is backward from
time t to time t0. The expectation value of a given observable can thus be seen as
the result of the system evolution on a contour, as represented in Fig.3.1. The upper
branch C1 corresponds to the chronological ordering, while the lower branch C2

is the anti-chronological ordering. It is now possible to define the contour ordering
operator Tc that orders the operators along the contour C in Fig.3.1. The equation
(3.34) can be rewritten as

O(t) = 〈ΨH |Tc
{
ei~

∫
C dτĤ(τ)Ô(t)

}
|ΨH〉 . (3.35)
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t0

t

C1

C2

FIGURE 3.1: Time contour used to evaluate the
expectation value of a given operator at time t.
The system evolves from an initial time t0 to the
time t, after which it returns to the initial time
again. The coutour C has thus two branches
labeled C1 and C2, which run on the axis but

for clarity are shown slightly away.

3.2 Non-equilibrium Green’s function formalism

At this point, we have all the “ingredients” to define the non-equilibrium Green’s
function of a quantum mechanical system. Here, I only outline the main results
without providing a detailed demonstration. For a more detailed derivation, I refer
the reader to dedicated textbooks [127–130]

3.2.1 Definition of Green’s function

The one-particle non-equilibrium Green’s function, denoted by G(r, t; r′, t′), is de-
fined as

G(r, t; r′, t′) = − i

~

〈
Tc
{
ψ̂H(r, t)ψ̂†H(r′, t′)

}〉
(3.36)

where ψ̂H is the field operator in the Heisenberg picture evolving with the Hamil-
tonian, and Tc is the contour ordering operator defined in Sec.3.1.9. The Green’s
function describes the correlation between two points in the space-time r, t and r′, t′.
For t later than t′ on C, G(r, t; r′, t′) describes the propagation of a particle created
at position r′ and time t′ to position r and time t. Similarly, for t′ later on C than t,
G(r, t; r′, t′) describes the propagation of a hole at position r and time t to position r′

and time t′.

3.2.2 Equation of motion

To calculate the time evolution of the Green’s function in the Heisenberg picture, we
derive G(r, t; r′, t′) with respect to time t.

d

dt
Tc
{
ψ̂H(r, t)ψ̂†H(r′, t′)

}
= Tc

{
d

dt
ψ̂H(r, t)ψ̂†H(r′, t′)

}
+ δ(t− t′)

[
ψ̂H(r, t), ψ̂†H(r′, t′)

]
+

= Tc
{

d

dt
ψ̂H(r, t)ψ̂†H(r′, t′)

}
+ δ(t− t′)δ(r− r′).

(3.37)
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Let us consider the Hamiltonian operator Ĥ = Ĥ0 + V̂ defined in (3.21). To evaluate
(3.37), it is necessary to express the derivative of the field operator ψ̂H(r, t) with
respect to time t

i~
d

dt
ψ̂H(r, t) =

[
ψ̂H(r, t), ĤH(t)

]
−

= H0(r)ψ̂H(r, t)+

∫
dr1V (r−r1)ψ̂†H(r1, t)ψ̂H(r1, t)ψ̂H(r, t).

(3.38)
By means of Eq.(3.38), the time derivative of the non-equilibrium Green’s function
can be obtained. The result yields the equation of motion for G(r, t; r′, t′)(

i~
d

dt
−H0(r)

)
G(r, t; r′, t′) = δ(t− t′)δ(r− r′)

− i

∫
dr1

∫
C

dt1V (r− r1)δ(t1 − t)G(2)(r1, t1, r, t; r1, t1, r
′, t′),

(3.39)

where G(2) is the two-particle Green’s function

G(2)(r1, t1, r, t; r1, t1, r
′, t′) = −1

~

〈
Tc
{
ψ̂H(r1, t1)ψ̂H(r, t)ψ̂†H(r1, t1)ψ̂†H(r′, t′)

}〉
. (3.40)

By differentiating the two-particle Green’s function (3.40), we get an equation of
motion containing the three-particle Green’s function, whose equation of motion
depends on the four-particle Green’s function, and so on.

Equation (3.39) gives us a clear view of why G is called the Green’s function, since G
describes the impulse response, of both time and space, for the given Schrödinger
equation.

3.2.3 Self-energy

Instead of solving the infinite hierarchy of the Green’s functions, the irreducible
self-energy is introduced, which is represented with the symbol Σ, and which is a
functional of the single-particle Green’s function G. We can replace

− iV (r− r1)δ(t1 − t)G(2)(r1, t, r, t; r1, t, r
′, t′)⇒ Σ(r, t, r1, t1)G(r1, t1; r′, t′) (3.41)

into (3.39) to get(
i~

d

dt
−H0(r)

)
G(r, t; r′, t′) = δ(t− t′)δ(r− r′)

−
∫

dr1

∫
C

dt1Σ(r, t, r1, t1)G(r1, t1; r′, t′).

(3.42)
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3.2.4 Other Green’s functions

The Green’s function G is defined by the contour ordering along the contour C
shown in Fig.3.1. Since it is not obvious to keep track of the time-branch in the
evaluation of the integral, four new Green’s functions are defined

G(r, t; r′, t′) =


Gc(r, t; r

′, t′) t, t′ on C1,

Ga(r, t; r
′, t′) t, t′ on C2,

G<(r, t; r′, t′) t on C1, t′ on C2,

G>(r, t; r′, t′) t on C2, t′ on C1,

(3.43)

withGc the chronologically time-ordered Green’s function,Ga the anti-chronologically
time-ordered Green’s function, G< the lesser Green’s function and G> the greater
Green’s function. These four functions are not independent sinceGc+Ga = G>+G<.
As we will see, the greater and lesser Green’s functions are directly related to the
hole density and electron density in the system. We also define the advanced and
retarded Green’s functions

GA = Gc −G>,

GR = Gc −G<,
(3.44)

with
GR −GA = G> −G<. (3.45)

We can define the same quantities for the Σ self-energy leading to the lesser Σ<, the
greater Σ>, the advanced ΣA and the retarded ΣR self-energies. We also have the
relation

ΣR − ΣA = Σ> − Σ<. (3.46)

In the equation of motion (3.42), we need to deal with terms of the form

D(t, t′) =

∫
C

dt1A(t, t1)B(t1, t
′), (3.47)

where C is the contour of Fig.3.1. The lesser D< and retarded DR quantities of the
D function is provided by the Langreth’s rules [131]

D<(t, t′) =

∫ t′

t

dt1[AR(t, t1)B<(t1, t
′) + A<(t, t1)BA(t1, t

′)],

DR(t, t′) =

∫ t′

t

dt1A
R(t, t1)BR(t1, t

′).

(3.48)
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Therefore the equation of motion for the other Green’s functions with respect to time
t become(

i~
d

dt
−H0(r)

)
GR(r, t; r′, t′) = δ(t− t′)δ(r− r′)

−
∫

dr1

∫ ∞
t0

dt1ΣR(r, t, r1, t1)GR(r1, t1; r′, t′),

(3.49)

(
i~

d

dt
−H0(r)

)
GA(r, t; r′, t′) = δ(t− t′)δ(r− r′)

−
∫

dr1

∫ ∞
t0

dt1ΣA(r, t, r1, t1)GA(r1, t1; r′, t′),

(3.50)

(
i~

d

dt
−H0(r)

)
G<(r, t; r′, t′) =

∫
dr1

∫ ∞
t0

dt1ΣR(r, t, r1, t1)G<(r1, t1; r′, t′)

+ Σ<(r, t, r1, t1)GA(r1, t1; r′, t′),

(3.51)

(
i~

d

dt
−H0(r)

)
G>(r, t; r′, t′) =

∫
dr1

∫ ∞
t0

dt1ΣA(r, t, r1, t1)G>(r1, t1; r′, t′)

+ Σ>(r, t, r1, t1)GR(r1, t1; r′, t′).

(3.52)

3.2.5 Steady-state condition

Under steady-state condition, the Green’s functions depend on time difference τ =
t− t′. We can Fourier transform the time difference coordinate τ to energy

GR,A,<,>(r, r′;E) ≡
∫

dτ

~
eiEτ/~GR,A,<,>(r, r′; τ), (3.53)

and also for the self-energies

ΣR,A,<,>(r, r′;E) ≡
∫

dτ

~
eiEτ/~ΣR,A,<,>(r, r′; τ). (3.54)

The equations (3.49-3.52) then becomes

(E −H0(r))GR(r, r′;E) = δ(r− r′)−
∫

dr1ΣR(r, r1;E)GR(r1, r
′;E), (3.55)

(E −H0(r))GA(r, r′;E) = δ(r− r′)−
∫

dr1ΣA(r, r1;E)GA(r1, r
′;E), (3.56)

(E −H0(r))G<(r, r′;E) =

∫
dr1ΣR(r, r1;E)G<(r1, r

′;E)

+ Σ<(r, r1;E)GA(r1, r
′;E),

(3.57)
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(E −H0(r))G>(r, r′;E) =

∫
dr1ΣA(r, r1;E)G>(r1, r

′;E)

+ Σ>(r, r1;E)GR(r1, r
′;E).

(3.58)

3.3 Observables

The Green’s functions allows us to obtain the average value of important observable
quantities, as the charge and the current.

3.3.1 Charge

The lesser G< and greater G> Green’s functions are related directly to the observ-
ables. The electron and hole concentration are respectively given by

n(r, t) =
〈
ψ̂†(r, t)ψ̂(r, t)

〉
= −i~G<(r, t; r, t), (3.59)

p(r, t) =
〈
ψ̂(r, t)ψ̂†(r, t)

〉
= +i~G>(r, t; r, t). (3.60)

Under the steady-state condition, the relations can be expressed in the energy do-
main

n(r) = −i

∫
dE

2π
G<(r, r;E), (3.61)

p(r) = +i

∫
dE

2π
G>(r, r;E). (3.62)

The total space charge density is therefore given by

ρ(r) = e[p(r)− n(r) +ND(r)−NA(r)] (3.63)

where e is the absolute value of the electron charge, ND and NA are the donors and
acceptors concentrations.

3.3.2 Local density of states

The retarded GR and advanced GA Green’s functions define the spectral function as

A(r, r′;E) = i[GR(r, r′;E)−GA(r, r′;E)]. (3.64)

The spectral function provides information about the nature of the allowed elec-
tronic states, regardless of whether they are occupied or not, and can be considered
as a generalized density of states. The diagonal elements of the spectral function
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give the local density of states (LDOS)

D(r, E) =
1

2π
A(r, r;E). (3.65)

Therefore the trace of the spectral function gives the density of states

N(E) = Tr[A(E)] =

∫
drA(r, r;E). (3.66)

3.3.3 Current

To determine the current density, we use the continuity equation to build a relation-
ship between the current density ~J and the charge density ρ

d

dt
ρ(r) +∇r · ~J = 0. (3.67)

To obtain the time derivative of the charge density, we can proceed by deriving the
lesser Green’s function G< with respect to t and t′. Using the Eq.(3.51), we obtain

i~(
d

dt
+

d

dt′
)G<(r, t; r′, t′) = [H0(r)−H0(r′)]G<(r, t; r′, t′), (3.68)

by assuming that the terms containing self-energies must vanish so that the momen-
tum and the energy are also conserved [124]. Using such a relation one can write

d

dt
ρ(r, t) = lim

r′→r,t′→t
(−i~e)(

d

dt
+

d

dt′
)G<(r, t; r′, t′)

=− e lim
r′→r

[H0(r)−H0(r′)]G<(r, t; r′, t) = ∇r · ~J.
(3.69)

Recalling the definition of the single particle Hamiltonian H0(r)

H0(r) = φ(r) +
p2

2m0

= φ(r) +
~

2m0

∇2
r, (3.70)

Eq.(3.69) can be written as

∇r · ~J =
e~

2m0

lim
r′→r

(∇2
r′ −∇2

r)G
<(r, t; r′, t)

=
e~

2m0

lim
r′→r

(∇r′ +∇r) · (∇r′ −∇r)G
<(r, t; r′, t)

=
e~

2m0

∇r · lim
r′→r

(∇r′ −∇r)G
<(r, t; r′, t).

(3.71)
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By identification, we can define the current density vector as

~J =
e~

2m0

lim
r′→r

(∇r′ −∇r)G
<(r, t; r′, t). (3.72)

In practice, to evaluate ~J the lesser Green’s function is expanded in a local basis,
and the∇-operator and m0 are replaced by appropriate matrix elements hm,n. In the
next Chapter, the current density is given in a finite difference discretized grid with
effective mass Hamiltonian, see Sec.4.1.2.

Noticing that at steady-state the time derivative of the charge density is zero. This
implies that the ∇r · ~J = 0 and the stationary current should be conserved in the
device. In the presence of elastic scattering alone, the current density is conserved
for electron at any given energy. With the inelastic scattering, the total current (inte-
grated over energy) should be conserved.

3.4 Self-energies

The self-energies allow us to easily account for the effects of many-body interac-
tion and perturbation. In this Section, the Hamiltonian operators and then the self-
energies are given for different interactions [132].

3.4.1 Electron-electron interaction

We recall the Hamiltonian operator for electron-electron interaction

V̂ =
1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r). (3.73)

This Hamiltonian operator leads to an infinite hierarchy of self-energies. The first
order approximation contains Hartree and Fock contributions. The Hartree self-
energy is expressed as

Σ Hartree(r1, t1) = −i~
∫

dt3

∫
dr3δ(t1 − t3)V (r1 − r3)G(r3, t3; r3, t3). (3.74)

with only one time variable t1, because the Hartree self-energy is instantaneous. It
can be proven that the Hartree self-energy is nothing else than the solution of the
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Poisson’s equation

Σ Hartree(r1, t1) =

∫
dr3V (r1 − r3)n(r3, t1)

=

∫
dr3

e2

4πε|r1 − r3|
ρ(r3, t1)

−e
= −eϕ(r1).

(3.75)

The potential ϕ is the solution of the Poisson’s equation, as

∇r · [ε(r)∇rϕ(r)] + ρ(r) = 0, (3.76)

with the charge density ρ, and the dielectric constant ε. Since the potential depends
on the charge density, which is given by the lesser G< Green’s function, the ex-
act Green’s function G both determines and is determined by the self-energy. The
coupling between Green’s function and the Poisson’s equation needs to be solved
self-consistently.

3.4.2 Electron-phonon interactions

We start from the unperturbed Hamiltonian of phonons, which is equivalent to a
collection of quantum harmonic oscillators

H0
q =

∑
q

ωq(âq
†âq + 1/2), (3.77)

where âq
† and âq are respectively the boson creation and annihilation operators,

and q is the phonon momentum for a given branch index. The electron-phonon
interaction Hamiltonian V e−ph

q is expressed as

V e−ph
q =

∑
k

Mqĉ
†
k+qĉk(âq + â†−q), (3.78)

where ĉ and ĉ† are the usual annihilation and creation operators for fermions with
given momentum, and Mq is the deformation matrix element that accounts for the
strength of the interaction between electrons and phonons The values ofMq are usu-
ally taken from first-principle calculations. Using Wick’s theorem and the Feynman
diagrams, the first order self-energy for electron-phonon interactions is obtained as

Σe−ph(r1, t1; r2, t2) = i
∑

q

eiq·(r1−r2)|Mq|2D0
q(t1, t2)G0(r1, t1; r2, t2), (3.79)

with D0
q the unperturbed phonon Green’s function [132]. Electron-phonon self-

energy is usually evaluated within the self-consistent Born approximation (SCBA),
which replaces the unperturbed Green’s functionG0 of the first order approximation
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by the full Green’s function G. We thus obtain a self-consistent relation between the
Green’s function and the self-energy that must be accurately solved to ensure cur-
rent conservation.

3.5 Summary

This Chapter contains a theoretical framework of the present thesis. We reviewed
the NEGF formalism and derived the quantum kinetic equations starting from a
general Hamiltonian in the second quantization presentation. The equations of mo-
tion for the contour-ordered Green’s function was presented, then the retarded, the
advanced, and the lesser Green’s functions were obtained. Since the full Green’s
function in the time domain is extremely time consuming to compute, we simulate
a stationary system and thus transform the Green’s function into the energy domain.
The relation between the Green’s function and the self-energy is given through the
Dyson equation. We also derived the self-energy for the electron-phonon interac-
tions. The procedure to calculate observables from the Green’s function were intro-
duced.
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Chapter 4

Implementation of Quantum
Transport Model

In the previous Chapter, I introduced the quantum kinetic equations and the NEGF
formalism for a general quantum system is described. Solving the Green’s func-
tions (3.55-3.58) is computationally very expensive due to the required inversion
and multiplication of matrices as large as the Hamiltonian operator of the whole
system. In addition, the SCBA cycle, which is important for the current conserva-
tion, needs many iterations before reaching the convergence. The complexity of the
NEGF formalism increases rapidly with the size of simulated system.

In this Chapter, first a layered structure representation is introduced for the system
under study, which transforms the original 3-D quantum kinetic equations to cou-
pled quasi-1D equations. Then, I include the effects of the semi-infinite source and
drain leads by introducing self-energy functions, which enables us to consider only
the device region with the open-boundary condition. Then I present an adaptive
algorithm to integrate the Green’s functions to calculate the observables such as the
charge and the current distributions. Finally, I explain the iteration between the
Poisson and the transport equations to obtain the self-consistent solution and give
an outline of the main code structure used in the simulations.

The implementation of optimized numerical codes needed for simulations is a con-
siderable and important part of the present thesis. The programs are written in For-
tran90 language and run on a multi-processor server with Linux. The Intel Fortran
compiler and the MKL libraries for linear algebra have been adopted. The graphic
visualization of the results has been obtained with the Gnuplot, with the scripts both
for the homogeneity of the figures and for efficiency purpose. From the output of
the code for the evaluation of space and energy-resolved currents and other physical
quantities, it is possible to obtain colormaps of their distributions.
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FIGURE 4.1: Schematic cross-section of a system in the simulation, which has
a layered structure. Layer i only interacts with its left and right neighbors i-1

and i+1.

4.1 NEGF for layered structures

The typical devices that we simulate extend between source and drain contacts at
the extremities of the channel. By using a finite difference discretization, the sys-
tem can be divided into consecutive layers that are coupled to the nearest neighbor
sections only. As shown in Fig.4.1, each layer with index i interacts only with itself
and its nearest neighbor layers with indices i − 1 and i + 1. The idea is to express
the Hamiltonian in a basis of states localized in each layer. The Hamiltonian in this
basis turns out to be a block tridiagonal matrix, where the diagonal blocks Hi rep-
resent the Hamiltonian of the layer i and off-diagonal blocks Ti represent coupling
between neighbor layers i and i+ 1:

H =



H1 T1

T1
† H2 T2

T2
† H3 T3

· · ·
· · ·
· · Ti−1

Ti−1
† Hi · · ·
· · · · · ·


. (4.1)

As we reviewed in the previous Chapter, in general, the retarded Green’s function
equation for the whole system in the presence of electron-phonon scattering, under
the steady-state, represented in the matrix form is

[EI−H−ΣR
ph]GR = I, (4.2)



4.1. NEGF for layered structures 49

where, ΣR
ph is the retarded self-energy due to electron-phonon scattering, which is

discussed in Sec.3.4.2. The lesser Green’s function equation in the matrix form is

G< = GRΣ<
phG

R†, (4.3)

where, Σ<
ph is the lesser self-energy matrix due to electron-phonon scattering, which

is defined using the relation (3.46).

4.1.1 Semi-infinite leads

We partition the layered structure into left contact, device and right contact as shown
in Fig.4.1. We do not need to solve the Green’s function for the entire structure be-
cause of the macroscopic size of the contacts and the outside circuit. Moreover, once
an electron is collected at the outside circuit, its subsequent dynamics is practically
impossible to follow, and this electron is “lost” into the outside circuit, most likely
without changing the internal state of the latter. The outside circuit contacts effec-
tively act as electron reservoirs with a stable Fermi energy. For these reasons, we are
dealing with open boundary condition on the left and right contacts.

The device corresponds to the region of interest where we solve for the NEGF equa-
tions. However, this partition is, to some extent, arbitrary. For instance, it could
be advantageous to include part of the contacts into the central device region, or to
include only a limited portion of the device into the central region.

The Green’s function of the device region is determined by the Dyson equation

GR,A = gR,A + gR,ATGR,A, (4.4)

with GR,A the retarded/advanced Green’s function for the full system, the gR,A the
retarded/advanced Green’s function for the disconnected system and T the cou-
pling matrix.

Then we introduce some useful quantities. The retarded and the advanced self-
energy of the left(right) contact ΣR,A

L,R , the lesser and the greater self-energy of the
contacts Σ≶

L,R, and the rate operator ΓL,R. Here we are interested in the central
device region, therefore these operators are projected onto the Hilbert subspace cor-
responding to the central part. Because of the layered structure, only the interface
layers are connected together. We have the following equations

ΣR,A
L,R = TL,R gR,A

L,R T†L,R; (4.5)

Σ≶
L,R = TL,R g≶

L,R T†L,R; (4.6)

ΓL,R = i(ΣR
L,R −ΣA

L,R), (4.7)

where TL,R is the coupling matrix between the surface layer of the left(right) contact
with the device, gR,A,≶

L,R is the surface Green’s functions of the left(right) contact.
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FIGURE 4.2: Illustration of the recursive algorithm for the Green’s function
in the device region. (a) Starting from the left, we couple layer by layer with
the perturbation from the left neighbor layer and compute the left-connected
Green’s functions. (b) When arriving at the right end of the device region, we
couple the right lead onto the last layer. Then we couple layer by layer with
the perturbation from the right neighbor layer until arriving at the left end of

the device region and obtain the full Green’s function on each slice.

We can rewrite Eq.(4.2) as

[EID −HD −ΣR,A
D,ph −ΣR,A

L −ΣR,A
R ] GR,A

D = ID, (4.8)

where ΣR
L and ΣR

R are the retarded self-energies of the left and the right contact
given by the previous equation, the subscript D shows that the equation is projected
onto the device region. For the lesser and the greater Green’s function, the NEGF
formalism gives the following equations

G≶
D = GR

D [Σ≶
D,ph + Σ≶

L + Σ≶
R] GA

D, (4.9)

where Σ≶
D,ph are the lesser and the greater self-energy of electron-phonon scatter-

ing, Σ≶
L and Σ≶

R are the lesser and the greater self-energies of the contacts defined
previously.

4.1.2 Recursive algorithm for device region

In order to properly describe the system electrostatics, we make use of the Poisson
equation (Eq.3.76), whose input is the spatial charge density. This last is obtained
by integrating over energy the diagonal elements G<

i,i(E) of the lesser Green’s func-
tion, where the index i runs over the points of the device. For the current density,
one requires the diagonal and the off-diagonal blocks of the lesser Green’s function.
Therefore, we do not require to calculate the Green functions on the whole space in
order to obtain the quantities that we need for transport simulations. Indeed, we
only need the Green’s function on the diagonal and off-diagonal blocks. Therefore,
it is desirable to reduce the numerical burden by exploiting the layered structure of
the device and to only compute the diagonal and off-diagonal blocks of the retarded
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and lesser Green’s function. In this section, an algorithm that is valid for the block
tridiagonal form of matrices is presented [133, 134].

To start, we first compute the left-connected Green’s functions for each layers in the
device region, which is noted by lowercase gR

i and g<i , where the index i refers to
the layer index. This step is shown in Fig.4.2(a). By using the Dyson equation again,
we obtain

[EIi −Hi −ΣR
i,ph − σR

i ] gR
i = Ii, (4.10)

where σR
i = Tig

R
i−1T†i is the retarded self-energy from the left-connected part. Simi-

larly, for the lesser Green’s function, we can obtain

g<i = gR
i [Σ<

i,ph + σ<i ] gR
i

†
, (4.11)

with σ<i = Ti g<i−1 T†i the lesser self-energy from the left-connected part. By succes-
sively applying the above two equations, the central device region is connected onto
the left contact layer by layer. For the right-most layer with index N , it is connected
at the same time to the rest of the device and the right contact, therefore we obtain
its full Green’s functions

[EIN −HN −ΣR
N,ph −TN g<N−1 T†N −ΣR

R] GR
N = IN, (4.12)

G<
N = GR

N [Σ<
N,ph + TN g<N−1 T†N + Σ<

R] GR
N

†
, (4.13)

where Σ<
R and ΣR

R are the lesser and the retarded self-energies of the right contact.

At this stage, we can compute the full Green’s functions, as shown in Fig.4.2(b).
In order to do this, we apply again the Dyson equation and obtain the following
relations

GR
i = gR

i + gR
i Ti+1

† GR
i+1 Ti+1 gR

i , (4.14)

G<
i =g<i + g<i Ti+1

† GR
i+1

†
Ti+1 gR

i

†
+ gR

i Ti+1
† G<

i+1 Ti+1 gR
i

†
+

gR
i Ti+1

† GR
i+1 Ti+1 g<i ,

(4.15)

and
G<

i+1,i = GR
i+1 Ti+1 g<i + G<

i+1 Ti+1 gR
i

†
, (4.16)

where G<
i denotes a diagonal block and G<

i+1,i denotes an off-diagonal block of the
full lesser Green’s function of the device region, which is useful for calculating the
current density Ji,i+1 between the neighbor layers with indexes i and i+ 1 using the
following formula [134]

Ji,i+1 =
e

h

∫
dE Tr

[
T†i+1 G<

i+1,i(E)−Ti+1G<
i,i+1(E)

]
. (4.17)
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4.1.3 Phonon self-energies

In Eq.(4.10) and (4.11) the phonon self-energies are required. We compute them
within the SCBA as described in Sec.3.4.2. To investigate realistic nanodevice struc-
tures, some simplifications and approximations have to be considered in the calcu-
lation of the phonon self-energies. We use the deformation potential interaction to
describe how electrons interact with the local changes in the crystal potential asso-
ciated with a lattice vibration. Within the deformation potential approximation, the
electron-phonon coupling is local in space. For scattering on acoustic phonons, the
coupling matrix element is linear in q in the long-wavelength limit,

Mq = Dacq, (4.18)

where Dac is the acoustic deformation potential. The acoustic phonon lesser and
greater self-energy at the layer i of the device along the transport direction is ex-
pressed as

Σ≶
i,ac(n, n;E) =

D2
ackBT

ρv2
s

G≶
i (n, n;E), (4.19)

where G≶
i (n, n;E) is the nth diagonal entry of the ith diagonal block of lesser or

greater Green’s function, ρ is the mass density, and vs is the sound velocity [135].

In the case of optical phonon scattering, the interaction via the constant zero-order
optical deformation potential Dop is given by

Mq = Dop. (4.20)

The optical phonon lesser and greater self-energies read

Σ≶
i,op(n, n;E) =

~D2
op

2ρω
[NG≶

i (n, n;E ∓ ~ω) + (N + 1)G≶
i (n, n;E ± ~ω)], (4.21)

where ω is the frequency of the optical branch considered in the simulation, and N
is the equilibrium phonon density according to the Bose statistics.

The total phonon self-energy is the sum of that of the acoustic and optical phonon
branches

Σ≶
i,ph = Σ≶

i,ac + Σ≶
i,op. (4.22)

The retarded self-energy ΣR
i,ph is composed of two parts,

ΣR
i,ph(E) =

1

2
[Σ>

i,ph(E)−Σ<
i,ph(E)] + iP

∫
dE ′

2π

Σ>
i,ph(E ′)−Σ<

i,ph(E ′)

E − E ′︸ ︷︷ ︸
neglected

. (4.23)

The second term requires the evaluation of a Cauchy principal integral coupling all
the energies together. For computational reasons, this integral term is neglected in
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this thesis. Previous studies have shown that this simplification does not introduce
significant errors in the calculation of the device current [136, 137].

4.2 Adaptive energy integration

In order to obtain the physical quantities of interest, such as the charge and the cur-
rent, numerical integration over energy is required. Proper numerical integration
methods are essential for the stability and accuracy of the NEGF calculations. The
numerical evaluation of these integrals requires a discretization of the energy do-
main. One approach is using a fixed energy grid that can be either equidistant or
based on Gauss–Legendre quadrature. The Gaussian quadrature is typically more
accurate if the integrand is smooth. If some narrow resonances are present in the
nano-device density of states, a small number of energy grid points will not correctly
resolve the Green’s function, whereas a vast number can lead to intractable memory
and time requirements. These effects can yield instability or poor convergence of
the self-consistent Schrödinger-Poisson iteration loop. Therefore, an adaptive en-
ergy integration on a non-equidistant energy mesh is useful to increase accuracy,
numerical stability, and memory efficiency. In this section, I outline the adaptive
energy integration that was implemented and tested within the NEGF formalism.
For the electron-phonon interactions, only the elastic scattering is included into this
adaptive method, because the inelastic phonon can scatter the electrons from energy
E1 into E2, thus making the adaptive integration extremely problematic.

This method based on the adaptive Simpson’s rule was first proposed by G.F. Kun-
cir in 1962 [138]. The algorithm uses an estimate of the error we get from calculating
the integral. If the error exceeds a predefined tolerance, the algorithm calls for sub-
dividing the interval of integration in two and applying the same method to each
subinterval in a recursive manner.

The integral of a function f(x) over an interval [a, b] is given by

S(a, b) =
b− a

6
[f(a) + 4f(c) + f(b)] , (4.24)

where [a, b] is the interval to integrate, S(a, b) is the estimates given by Simpson’s
rule on the corresponding intervals, and c is the midpoint of [a, b]. One strategy to
decrease the interpolation error is to subdivide the interval into two equal parts and
to apply Simpson’s rule on each subinterval. This leads to the composite Simpson
rule which, for five grid points, writes as

S(a, c) + S(c, b) =
b− a

12

[
f(a) + 4f

(
a+ c

2

)
+ 2f(c) + 4f

(
c+ b

2

)
+ f(b)

]
, (4.25)

where S(a, c) and S(c, b) are the estimates given by Simpson’s rule on the corre-
sponding subintervals.
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A criterion for determining when to stop subdividing an interval, suggested by J.N.
Lyness [139] is

|S(a, c) + S(c, b)− S(a, b)|/15 ≤ ε, (4.26)

where ε is the desired tolerance for the interval. If this condition is satisfied, the
integral is considered accurate enough and the energy mesh in the given interval is
not further refined.

Using Richardson extrapolation [140], the more accurate Simpson estimate [S(a, c)+
S(c, b)] is combined with the less accurate estimate S(a, b) by the formula

[16× S(a, c) + 16× S(c, b)− S(a, b)]/15. (4.27)

The obtained estimate is exact for polynomials of degree five or less, which is more
accurate than the simple and composite Simpson’s rule.

Now we will look more into detail to obtain the criterion (4.26) and to justify the
the statement about exactness for the polynomials of degree less than 5. Indeed,
since the Simpson’s rule is actually obtained from the trapezoidal rule by one step
of Richardson extrapolation, it has error expansion of the form

S(a, b) =

∫ b

a

dxf(x) + α4h
4 + α6h

6 + ... (4.28)

where h = |b− a| is the size of interval. This shows that Simpson’s rule provides
exact results for any polynomial f of degree three or less. Making the step twice as
small we get

S(a, c) + S(c, b) =

∫ b

a

dxf(x) + α4h
4/16 + α6h

6/64 + ... (4.29)

Multiplying Eq. (4.29) by 16 and subtracting Eq. (4.29) from it we obtain

16× S(a, c) + 16× S(c, b)− S(a, b) = 15

∫ b

a

dxf(x) + α′6h
6 + ... (4.30)

Therefore

S(a, c) + S(c, b) + [S(a, c) + S(c, b)− S(a, b)]/15 =

∫ b

a

dxf(x) + β6h
6 + ... (4.31)

Comparing Eqs.(4.29) and (4.31), we see that the error in Eq.(4.29) is dominated by
[S(a, c) + S(c, b) − S(a, b)]/15. Therefore, the stopping criterion Eq.(4.26) and the
combining formula Eq.(4.27) are justified.

The implemented energy integration algorithm was applied to a van der Waals
TFET structure based on MoS2 and WTe2 monolayers. The device structure is de-
scribed in Chapter 6 with a sketch of the device in Fig.6.1. The colormap in Fig.4.3
shows a large concentration of the density-of-occupied-states in the overlap region
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Step size(meV)

FIGURE 4.3: Example of adaptive Simpson’s rule for energy integral. (col-
ormap) Local density-of-occupied-states on the top MoS2 monolayer (see
Fig.6.1) for VTG=0.1 V and VDS=0.3 V. (bar chart) Energy step size vesus en-
ergy corresponding to the left colormap. The lowest energy step corresponds

to a resonance.

on the top MoS2 monolayer. The histogram on the right shows the distribution of
the step size between two grid points versus energy. The decrease of step size at the
maximum of density and the contact chemical potential can be well distinguished.
At these energies, more grid points are placed by the algorithm.

This first attempt with adaptive Simpson’s rule is functional and significantly in-
creases the stability of the transport simulations. A more general approach with
non-equidistant grid points and polynomials of arbitrary degree can be considered.
Other more modern adaptive methods based on Gauss–Kronrod quadrature [141]
and Clenshaw–Curtis quadrature [142] can also be considered to further increase
the numerical accuracy of the simulator.

4.3 Structure of the codes

Since object-oriented programming is not directly supported by Fortran90, we need
to carefully organize the codes into separate modules in order to ensure their read-
ability and reusability. The programs developed are divided into modules, each
with a specific well-defined task to accomplish. The source codes of each module
are contained in an individual file. Each module contains both the data structure
definitions and the subroutines to achieve its task. For instance, the “Green” mod-
ule that solves the NEGF equations, contains the definition of the data structure
for storing the retarded, the lesser and the greater Green’s functions, together with
the subroutines to solve the equation and the subroutines to extract observables, as
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charge and current densities. A clear definition of the interfaces and the boundaries
of the modules are important to create independent and interchangeable codes.

The algorithmic flow in modeling nanodevices using the NEGF consists of the fol-
lowing steps (Fig.4.4). We first find a guess for the electrostatic potential φ(r) and
calculate the self-energies due to the contacts. The self-energies due to electron-
phonon scattering are set to zero. The NEGF equations for GR and G≶ (Section
4.1.2) are then solved. Following this, the self-energies due to electron-phonon scat-
tering and contacts are calculated. As the equations governing the Green’s functions
depend on the self-energies, we iteratively solve for the Green’s function and self-
energies, as indicated by the inner loop of Fig.4.4. Then, the electron density calcu-
lated from G< is used in Poisson’s equation to obtain a new potential profile φ(r).
We use this updated electrostatic potential profile as an input to solve for updated
NEGF, and continue the above process iteratively until convergence is achieved.
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FIGURE 4.4: Flowchart of a typical simulation involved in modeling elec-
tronic transport of a nano-device.
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Chapter 5

Vertical Tunnel-FETs based on 2-D
materials

The TFET may enable a more aggressive VDD scaling than the MOSFETs and allow
for ultra-low-power applications, by lowering the sub-threshold swing (SS) under
the thermionic limit of 60mV/dec at room temperature. As shown in Chapter 2, the
use of monolayers of Transition Metal Dichalcogenides (TMDs), such as MoS2 and
WTe2, may represent an extremely advantageous alternative for their intrinsic 2-D
nature and sub 1 nm thinness, the absence of dangling bonds, as well as the variety
of available materials, which results in a large range of energy band gaps and band
alignments. Some vertical TFETs based on 2-D TMDs have been recently proposed
in [17, 20, 26, 28, 143].

In this Chapter, the IV-characteristics at room temperature of a 2-D TMD-based ver-
tical TFET are simulated based on an Effective Mass Approximation (EMA) Hamil-
tonian and the NEGF formalism presented in Chapter 3 and 4. The model self-
consistently accounts for the device electrostatics and the electron-phonon scatter-
ing. In particular, Sec.5.1 defines the device geometry under this study. In Sec.5.2,
the electronic intra- and inter-layer transport is calibrated to be coherent to the avail-
able experimental data [96, 101]. Section 5.3 addresses several aspects related to the
device design, including (a) chemical doping and back-gate potential; (b) top gate
geometrical alignment; (c) current scaling with channel length. The influence of
each of these parameters on the device performance is illustrated by plotting sys-
tematically the IV-characteristics and providing some physical interpretations by
calculating the representative physical quantities such as the LDOS and the carrier
density. Finally, two metrics are calculated for the delay and energy corresponding
to the switching of a digital inverter based on this TFET. The results in this Chapter
have been published in [144, 145].

5.1 Device description

The MoS2/h-BN/WTe2 vertical TFET studied in this work is sketched in Fig.5.1 and
consists of a WTe2 mono-layer on the bottom as the source, a MoS2 mono-layer on
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FIGURE 5.1: 3-D sketch of the MoS2-WTe2 TFET under study.

FIGURE 5.2: Sketch of the 2-D structure in our simulations, where x2D corre-
sponds to the y direction in MoS2 and to x in WTe2 layer, as defined in Fig.5.1.
The top and back gate oxides have an EOT of 1 nm. No interlayer tunneling
is possible outside the overlap region. The shadowed green region indicates
the h-BN interlayer where the two layers are electrostatically coupled, which

is larger than the overlap region LTG>LOV).

the top as the drain, and a 1 nm thick h-BN interlayer, which acts as a tunnel barrier.
The channel is defined by the overlap region between the WTe2 and MoS2 layers.
A bottom gate, with voltage VBG, electrostatically controls the charge density in the
WTe2 layer. The top MoS2 layer is chemically doped with a donor concentration ND.
The top gate, with voltage VTG, exceeds the overlap region by an extension length
Lext on each side to suppress the leakage current in the off-state.

To simulate this device, the equivalent 2-D model sketched in Fig.5.2 is considered
in order to decrease the computational burden. This model is obtained by virtually
rotating the top layer by π/2 and by considering an inter-layer coupling only over an
overlap length LOV corresponding to the square overlap region. The new coordinate
x2D indicated in Fig.5.2 corresponds to x for the WTe2 layer and to y for the MoS2

layer. We consider the lateral extension of the layers is infinite, thus taking advan-
tage of the simplified planar symmetry. The top gate length LTG exceeds the overlap
length LOV by the extension length Lext. The MoS2 and the WTe2 monolayers are
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TABLE 5.1: Parameters used to simulate the 2-D layers.

Parameters units MoS2 WTe2

me/m0 0.378 -
mh/m0 - 0.319
Egap eV 1.8 0.9
χ eV 4.3 3.65

described by an effective mass Hamiltonian obtained by fitting the band structure
calculated in Ref. [68] with the Density Functional Theory (DFT):

H(x) =

(
Ht(x) Htb(x)
Hbt(x) Hb(x)

)
, (5.1)

where x stands for x2D and the top and bottom intra-layer Hamiltonian elements Ht

and Hb are given by


Ht(x) = −~2∂2

x

2mt
− eUt(x)− χt

Hb(x) =
~2∂2

x

2mb
− eUb(x)− χb − Egap

(5.2)

with mt the effective mass of the MoS2 conduction band in the top layer, mb the
effective mass of the WTe2 valence band in the bottom layer, Ut and Ub the electro-
static potentials on the two layers, which are obtained by self-consistently coupling
the quantum transport equations with the Poisson equation, χt and χb the electron
affinities, and Egap the WTe2 band gap. The corresponding parameters are reported
in Tab.5.1.

The electronic inter-layer transport is an out-of-plane vertical tunneling process,
which is quite weak and is expected to have modest influence on the electrostat-
ics of this device. The coupling energy, Htb=Hbt, is constant and equal to Htunn in the
overlap region, and zero elsewhere. Section 5.2 determines this parameterHtunn and
its influence on the simulation results.

An important remark here is that the equivalent 2-D model of Fig.5.2 is expected to
be able to properly capture the physics of the actual 3-D device of Fig.5.1. While the
electrostatics could differ in the two cases, all the other key features play exactly the
same role. In particular, this is true for the length Lext of the top gate exceeding the
overlap region, which determines the exponential suppression of the current in the
off-state, as it will be clear from the numerical simulations in the Sec.5.3.

The Keldysh-Green’s function formalism presented previously in Chapter 3 is adopted
to compute the electron transport in this device, with the inclusion of the scattering
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with acoustic phonons by means of local self-energies. The charge density is injected
into the non-linear Poisson solver to take into account the device electrostatics self-
consistently.

5.2 Calibration of the model

Up to the present, few experimental data about electronic intra- and inter-layer
transport are available for MoS2 and WTe2 monolayers. In this work, we have cal-
ibrated the phonon and interlayer coupling parameters of our model to make the
simulations consistent with these experiments.

First, in order to calibrate the deformation potential of elastic acoustic phonons, we
have simulated a monolayer MoS2 MOSFET structure with the same geometry as in
the experiments at room-temperature presented in [96]. The simulated effective mo-
bility is extracted in the linear transport regime and given by the following equation

µeff =
GLch

qN2D
(5.3)

where the G is the conductance, Lch is the channel length, and N2D is the channel
electron density per unit surface. As discussed in [146], we restricted the density
N2D evaluation over a section characterized by an almost uniform electron distribu-
tion, which gives a more accurate evaluation of the effective mobility. Fig.5.3 shows
the simulated phonon-limited mobility versus electron density, and compared to
the experimental mobility from [96]. Assuming that the experimental mobility is
dominated by acoustic phonons, with a deformation potential of acoustic phonon
Dac=15eV, the simulated mobility can track fairly well the experimental data. We
adopted thus this value of Dac throughout this chapter.

The inter-layer coupling energy Htunn, see Fig.5.2, determines the probability for
the electrons with energy inside the tunneling window to tunnel through the h-BN
barrier. Here Htunn is calibrated on the ION of the device. Fig.5.4 reports the source-
drain current IDS versus VTG for the TFET with LOV=20nm and different values of
inter-layer coupling. For Htunn=1meV, we obtain an IDS/LOV in the same order of
magnitude reported for the graphene/h-BN/graphene system in [101], which can
be considered as a reasonable reference with a tunneling barrier height close to the
MoS2/h-BN/WTe2 system considered in this work. In the rest of this chapter, Htunn

is always set to 1 meV. Figure 5.4 also verifies that the current IDS in both on- and
off-state is modulated by Htunn and the SS is almost insensitive to this parameter,
confirming the fact that the weak tunneling considered has indeed a modest influ-
ence on the electrostatics in the off-state.
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FIGURE 5.3: Simulated acoustic phonon limited mobility versus electron
density in the MoS2 MOSFET compared to experiments from [96] at room
temperature. Results are shown for different values of the deformation poten-

tial Dac.
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FIGURE 5.4: IDS vs. VTG curves at VDS=0.3 V for the TFET sketched in Fig 5.2
with different values of the band-to-band tunneling coupling Htunn.

5.3 Results and discussion

The working mechanism of the device is illustrated by Fig.5.5, which shows the
inter-layer tunneling spectral current distribution along the x2D direction in the off-
and on-state, together with the profiles of the conduction band edge of the top MoS2

layer (ECT) and valence band edge of the bottom WTe2 layer (EVB). Note that out-
side the overlap region the states of the valence band are completely located in the
bottom layer, and those of the conduction band in the top layer. In the overlap re-
gion, on the contrary, the states on the two layers are mixed due to the inter-layer
coupling Htunn, thus allowing electrons to pass from one layer to the other.

At low VTG, the ECT is higher than the EVB in the region under the top gate, thus
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FIGURE 5.5: Energy spectrum of the current density with the top layer con-
duction band edge ECT and the bottom layer valence band edge EVB vs. x2D
(see Fig 5.2) for: (a) VTG= −0.2 V and (b) VTG= 0.2 V. Other parameters:

Lext=5 nm, VBG= −0.5 V and ND=4×1012 cm−2.

suppressing the tunneling current between them. This corresponds to the off-state
represented in Fig.5.5(a). Note that the tunneling current is so small here that can-
not be observed with the color scale used in the figure. By increasing the top gate
voltage VTG, the potential in the top layer increases, thus lowering ECT. When ECT

is moved below EVB in the overlap region, the inter-layer tunneling is strongly en-
hanced. This is the on-state reported in Fig.5.5(b). The current is non-null inside the
energy window [ECT, EVB], with a maximum at the middle energy (ECT+EVB)/2,
which is consistent with the previous analysis reported in Ref.[17]. Being based
on quantum tunneling and not suffering from the thermionic limit, this switching
mechanism can enable very small SS values. In what follows, we analyze some key
design elements that determine the SS and that can be optimized to improve the
TFET performances.

While the MOSFETs show a fairly constant SS, in TFETs the SS changes with the gate
voltage. Therefore, in order to compare the SS of different device configurations, the
average SS is calculated from the IDS-VTG characteristics by the following formula

SS =
VTG,TH − VTG,OFF

log10(ITH/IOFF)
(5.4)

where VTG,TH and VTG,OFF correspond to the top gate voltage VTG at IDS=ITH=10 pA/ µm
and IDS=IOFF=1 µA/ µm respectively, which is the requirement for low-power tran-
sistors defined by the ITRS [1].

In the IDS-VTG characteristics throughout this chapter, the curves with filled triangle
symbols refer to the results obtained for the reference device configuration with the
parameters indicated in Tab.5.2.
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TABLE 5.2: Reference device configuration

Lext(nm) LOV(nm) ND(cm−2) VBG(V)

5 20 4×1012 -0.5
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FIGURE 5.6: IDS vs. VTG for different doner concentration ND in the MoS2

top layer with VBG = −0.5 V. Other parameters: Lext = 5 nm and VDS = 0.3 V.

5.3.1 Role of doping and back-gate potential

Figure 5.6 reports the transfer characteristics IDS-VTG of the device for different chem-
ical donor concentrations ND in the MoS2 top layer. The threshold (top gate) voltage
decreases asND increases. However, the SS turns out to remain fairly constant, since
the IDS-VTG curve just shifts along VTG. The increase of n-doping in MoS2 induces a
lowering of the ECT, thus decreasing the gap between ECT and EVB in the off-state.
Subsequently, a smaller VTG can inverse the ECT and EVB in the overlap region and
turn the TFET on. A similar behavior is observed when decreasing the back-gate
voltage VBG, which corresponds to increasing the electrostatic p-doping in the WTe2

bottom layer. Fig.5.7 reports the IDS-VTG curves for VBG varying from−1 V to−0.5 V.

These results, obtained for VDS= 0.3 V, indicate that the transistor performances
should not be much affected by chemical/electrostatic doping, which simply results
in a shift of the transfer characteristic.

However, this is no more the case when VDS is very small. Fig.5.8 illustrates the out-
put characteristics IDS vs. VDS of the device in the on-state, at VTG = VTG,TH + 0.3 V,
for two different dopant concentrations and back gate voltages. When ND = 4 ×
1012 cm−2 and VBG = −0.5 V, we observe that the supposedly linear Ohmic region at
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FIGURE 5.7: IDS vs. VTG for different back gate voltage VBG with ND = 4 ×
1012 cm−2. Other parameters: Lext = 5 nm and VDS = 0.3 V.
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FIGURE 5.8: Output characteristics IDS-VDS of the TFET at VDS = 0.06 V for
ND = 4×1012 cm−2 and VBG = −0.5 V, and forND = 8×1012 cm−2 and VBG =
−1 V, and with the source/drain Fermi level µS = 0 eV and µD = −0.06 eV.

small VDS is deteriorated. This effect is due to non-degenerate condition in the drain
region of the top MoS2 layer, as shown in Fig.5.9. In fact, with lower chemical dop-
ing concentration in the MoS2 layer, the ECT (the solid lines) near the drain moves
up to an energy above the drain Fermi level µD = −0.06 eV. The electrons have then
fewer states available to pass from the channel region to the drain region, which
entails the observed current suppression. Similarly, the back gate voltage affects the
electrostatic doping in the source region of the bottom WTe2 layer. Consequently, a
low |VBG| value decreases the carrier density in the WTe2 layer and therefore the cur-
rent IDS. In order to avoid this problem, the chemical doping ND and the back gate
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FIGURE 5.10: Transfer characteristics IDS vs. VTG for different values of the
top gate extension length Lext. The SS values are 42, 15, and 7 mV/dec for Lext

of 5, 10 and 20 nm, respectively.

potential |VBG| need to be increased. As shown in Fig.5.8, with ND = 8 × 1012 cm−2

and VBG = −1 V, the low VDS part of the output characteristics IDS-VDS becomes more
linear.
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5.3.2 Role of top gate extension region

In the simulations discussed so far, the top gate extends for a length Lext = 5 nm be-
yond each side of the overlap region. In this Section, the influence of Lext is studied.
As we will see, Lext plays an important role for assuring the off-state performance of
this TFET, i.e. to assure a low SS. Fig.5.10 shows the transfer characteristic IDS-VTG

of the TFET obtained with different values of Lext.

For the configuration with no extension region (Lext = 0), the SS rapidly degrades
and the current in the off-regime of the TFET increases significantly. In order to un-
derstand this behavior, Fig.5.11 shows the energy-resolved tunneling current den-
sity spectra of the device in the off-state, for two different values of Lext. All the
other parameters, as LOV and VBG, are exactly the same as in the previous simula-
tions. The effect of a non-zero Lext is to push the crossing between EVB of WTe2 and
the ECT of MoS2 far from the overlap region, where the tunneling between the 2D
layers is possible. This suppresses the edge tunneling current when the device is in
off-state.

By increasing the Lext we can significantly further decrease the SS of this TFET. With
Lext = 20 nm, the device can even attain SS = 7 mV/dec. To explain such a result, we
can consider the case of Fig.5.11(a) and follow the path of electrons with a fixed en-
ergy. In fact, since in this simulation only elastic phonon scattering is included, this
energy is preserved by the electrons throughout their travel from source to drain. In
Fig.5.12, two sketches are drawn to illustrate this process. When the electrons are
injected from the source, they need to have energy close or below the valence band
EVB in the overlap region in order to find available states. As mentioned before, in
this region the states are given by a superposition of the top layer and the bottom
layer states. The degree of mixing is very small in the off-state, and it depends on
the inter-layer coupling and potential difference. By virtue of this coupling, elec-
trons can marginally pass to the top layer. At this point, they need to evacuate the
overlap region to end in the conduction band in the drain top layer. To do this,
they have to pass through the extension region. As shown in Fig.5.12(b), the ECT in
the extension region is much higher than in the drain region, thus representing an
intra-layer potential barrier for electrons, which have to tunnel through evanescent
states. Such a tunneling process is exponentially suppressed when increasing Lext.
This determines the reduction of the current with the length of the gate extension
region. Moreover, the spectral tunneling current is maximum at energies close to the
top of the WTe2 valence band, because the intralayer tunneling distance increases at
smaller energy values, together with the reduced mixing of states belonging to the
two layers in the overlap region. Incidentally, for a given VTG in the off-state, the
current is verified to decrease exponentially with Lext, as expected on the basis of our
explanation. In conclusion, the top gate extension length Lext plays a central role in
the suppression of the off-state current and it is thus a very important design param-
eter for the optimization of the sub-threshold performance of this kind of devices.

The values of SS predicted in our simulations are very competitive with respect
to experiments. However, it is important to remark that in the present simulation
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FIGURE 5.11: Tunneling current spectra in off-state at VTG=-0.2 V for two
different Lext values: (top) Lext=5 nm and (bottom) Lext=0.
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FIGURE 5.12: Sketches of the conduction band and valence band edge pro-
files in the off state with the path of electrons (A) from source to overlap re-
gion (B) and then to drain. The shadowed areas indicate the possible states

for electrons.

approach we have not considered the presence of defects and traps, which could
deteriorate the SS by activating possible paths for trap-assisted, inelastic tunneling
in the off-state of the TFET [14, 15]. Our results thus represent an upper limit for
the real transistor performances. Nevertheless, the influence of design parameters
on the device performance should still have the same trend, thus unchanging our
conclusions.
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FIGURE 5.13: IDS vs. VTG for different values of the effective mass in the
top layer (mt) and in the bottom layer (mb). Other parameters: ND = 4 ×

1012 cm−2, Lext = 5 nm, LOV = 20 nm, VBG = −0.5 V and VDS = 0.3 V.

5.3.3 Effective mass

The previous discussion in Sec.5.3.2 shows that the intra-layer tunneling in the gate
extension region affects the off-state current and thus SS considerablely. This sug-
gests another possible optimization of the TFET performance by choosing the 2D
materials with larger effective masses. In the gate extension region, the electron
states decay more rapidly for larger in-plane effective masses, thus determining a
further suppression of the off-state current and therefore a smaller SS. Fig.5.13 illus-
trates the IDSvs. VTG characteristics of the TFET for different sets of effective masses
in the top and bottom layers with the same gate extension length Lext. As expected,
the off-state tunneling current is reduced by increasing the effective mass in the top
layer mt, whereas it is almost unchanged by doubling the effective mass in the bot-
tom layer mb. This is further evidence that the off-current is determined by evanes-
cent states in the top layer tunneling from the channel to the drain region. In addi-
tion to this, an increase of on-current is obtained by doubling the effective masses
(see Fig.5.13), because electrons can have more available states in MoS2 and/or WTe2

to move from source to drain. In conclusion, using materials with larger effective
mass for the drain layer is an optimization option to improve both the on and the
off-state device performance.

5.3.4 Scalability of device

This Section investigates the scalability of this TFET. DifferentLOV values are consid-
ered while keeping the other parameters unchanged. Fig.5.14 shows the computed
IDS vs. VTG characteristics and Fig.5.15 summarizes the extracted values of the ION

at VTG = 0.3 V and the SS calculated by using the Eq.5.4. The SS remains around
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FIGURE 5.14: IDS vs. VTG for different values of the overlap length LOV.
Other parameters: ND = 4 × 1012 cm−2, Lext = 5 nm, VBG = −0.5 V and

VDS = 0.3 V.

40 mV/dec for different LOV values. As we discussed previously in Sec.5.3.2, due to
the intra-layer tunneling from overlap region to drain, the off-current is dominated
by edge tunneling, as shown in Fig.5.11. Consequently, the SS is unaffected by the
scaling of LOV, which is a favorable behavior for ultra-scaled switches.

Figure 5.15(b) shows that the on-current increases proportionally with LOV up to
about LOV = 30 nm. For larger LOV, ION increases sublinearly with LOV. This can
be understood by looking at the spatial distribution of the current density tunnel-
ing from bottom layer to top layer JB→T(integrated along transverse direction) in
Fig.5.16 for VTG = 0.3 V, in the on-state. The JB→T is zero outside of the overlap
region, where the two layers are not coupled, and has larger values on the edges of
the overlap region than on its center. For large LOV, for example 100 nm, the JB→T

gradually decreases from the edges to the center of the overlap region. A possible
explanation is that the in-plane current in the bottom source layer decreases to the
center since part of it tunnels into the top drain layer, thus decreasing the tunneling
current density JB→T. Because the tunneling probability related to Htunn is consid-
ered constant inside the overlap region, we can easily deduce that JB→T follows the
exponential decrease from the edges to the center as

JB→T(x2D) = J0

(
e−(x2D−x1)/d + e−(x2−x2D)/d

)
(5.5)

where J0 is the JB→T value at the edges of the overlap region, x1 and x2 are the x2D

coordinates of the edges and d is related to the tunneling probability from bottom
layer to top layer. This function with d = 62 nm fits quite well the simulation results
for LOV = 100 nm, as shown in Fig.5.16.
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5.3.5 Delay and energy metrics

In order to estimate the dynamic performance of this TFET and compare to some
other recent TFETs and MOSFETs in the experiments, we evaluated some simple
metrics for the delay and energy corresponding to the switching of a digital in-
verter with the same definition in [147]. In particular, the first-order estimation of
the switching time Tsw is defined as

Tsw =
QON −QOFF

ION
, (5.6)

where QON and QOFF are the sum of the mobile charge in the two 2D layers for
VTG=VTG,OFF+VDD, VDS=VDD, and for VTG=VTG,OFF; VDS=VDD, respectively. A similar
simple metric for the switching energy Esw can be defined as

Esw = VDD(QON −QOFF). (5.7)

In Fig.5.17, I plot Esw vs. Tsw for different operating voltage VDD. As expected, for
increasing VDD Esw increases and Tsw decreases. We observe a larger decrease of Tsw

when increasing VDD from 0.2 V to 0.3 V than observed at larger VDD values. This is
a consequence of the current saturation that this device exhibits at VDS > 0.3 V (see
Fig.5.8). In Fig.5.17 we also compare this device to high-power (HP) and low-power
(LP) CMOS and to TFETs as reported in Refs. [148, 149]. As can be seen, the TFET
simulated in this work can be quite competitive for low-power applications.
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5.4 Summary

This Chapter presented the results of a self-consistent quantum transport simula-
tion study of vertical TFETs based on WTe2 and MoS2 monolayers with an h-BN
interlayer, in terms of performance and the possible optimization. In particular,
in Sec.5.3.1, I have shown that a larger chemical doping in the top-layer and a
more negative VBG can result in a well-behaved IDS vs. VDS output characteristics
at small VDS. In Sec.5.3.2 it was predicted that the device can reach an extremely
steep sub-threshold slope SS. It was shown that the top gate extension Lext is ex-
tremely important for a good SS and to limit the off-state current by suppressing the
intra-layer tunneling in the off-state. In Sec.5.3.4, a fairly good scalability of the de-
vice has also been proven. Finally, in Sec.5.3.5 the dynamic switching performance
of this TFET was shown to be theoretically very attractive comparing to the other
state-of-the-art logical transistors. In summary, this Chapter suggested that care-
fully designed MoS2/h-BN/WTe2 vertical TFETs can offer excellent and stable SS
values (< 45 mV/dec) and therefore represent a promising technology for future
low-power nanoelectronics.
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Chapter 6

Van der Waals Tunnel-FETs: 3-D
quantum-transport simulations

Recently, van der Waals tunneling and Esaki diodes have been experimentally demon-
strated [26, 27], and a first device with sub-thermionic characteristics realized [28],
but the design of van der Waals tunnel transistors (vdW-TFETs) is still largely unex-
plored [20].

This Chapter presents a self-consistent three-dimensional quantum transport sim-
ulation for electron transport in vdW-TFETs based on MoS2 and WTe2 monolayers.
The results in this Chapter have been published in [150, 151]. In order to describe the
van der Waals coupling between the 2-D gapped crystals, we propose in Sec.6.2 a
model Hamiltonian relying on few physical parameters, which we calibrate against
DFT band structure calculations. This Chapter addresses several fundamental as
well as design aspects related to vdW-TFETs, including the current scaling with the
device area in Sec.6.3.2, the impact of the top gate geometrical alignment in Sec.6.3.1
and the back-oxide thickness on the device performance in Sec.6.3.3. As an impor-
tant innovative contribution, the simulations in Sec.6.3.4 take into account the influ-
ence of inelastic phonon scattering on the device operation and on the sub-threshold
swing.

6.1 Device description

The simulated vdW-TFET is sketched in Fig.6.1. This vdW-TFET combines a WTe2

bottom layer acting as the source and an MoS2 top layer acting as the drain. The
lattice parameters for unstrained WTe2 and MoS2 monolayers are 3.55 Å and 3.19 Å,
respectively. In these simulations, however, we followed [19] and introduced a com-
pressive strain on WTe2 and tensile strain on MoS2 layer to obtain a commensurate
lattice parameter of 3.411 Å in the two materials. With such a strain, WTe2 is ex-
pected to be more stable in its H-phase, as suggested by DFT calculations [152], so
that the simulations actually refer to an H-phase WTe2. The corresponding energy
gaps for the strained WTe2 and MoS2 monolayers are 1.77 eV and 0.321 eV, respec-
tively. The van der Waals gap between the two 2-D layers acts as the tunneling
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FIGURE 6.1: Sketch of the vdW-TFET structure considered in the simula-
tions. LOV denotes the length of the overlap region between the MoS2 top and
the WTe2 bottom layer. Lext is the top gate extension beyond the LOV region.

LTG = LOV + 2LOV is the length of the top gate.

barrier, which is assumed 0.35 nm thick and with the same dielectric constant as air
(κ = 1.0). The two 2-D layers are assumed to have a thickness of 0.6 nm [96, 153],
and relative dielectric permittivity of κ=5.7 for the WTe2 and κ=4.8 for the MoS2

[154]. The length of the overlap region between the two 2-D layer is denoted by
LOV, while Lext indicates the top gate extension length. The SiO2 layers (κ=3.9), act-
ing as top-gate and back-gate oxide, are assumed 1 nm thick, except in the Sec.6.3.3.
We consider a chemically n-doped MoS2 layer with ND = 4 × 1012 cm−2, while the
WTe2 layer is electrostatically doped by the back-gate with VBG = −0.5 V.

Figure 6.2(a) shows a sketch of the band diagram that corresponds to a cross-section
of the overlap region along the vertical z direction in the device off- and on-state, in
order to illustrate the working principle. At low VTG the conduction band minimum
(ECT) of the top MoS2 layer is higher than the valence band maximum (EVB) of the
bottom WTe2 layer, thus suppressing the tunneling current and resulting in very low
off-current. By increasing VTG, ECT of MoS2 is lowered so as to cross and then move
below EVB of WTe2, hence enabling the vertical band-to-band tunneling.

6.2 Simulation model

6.2.1 Model Hamiltonian

In order to describe this system, the following effective mass model Hamiltonian is
adopted

H(k) =

[
E0 + ~2k2

2mc
t⊥

t⊥ −~2k2
2mv

]
(6.1)

where t⊥ is the coupling energy between the WTe2 valence and the MoS2 conduction
band. The parameters E0, mc and mv refer to the system of uncoupled layers, and
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FIGURE 6.2: (a) Sketch of the conduction and the valence band edges in the
center of the overlap region along the z direction. (b) DFT band structure of
the coupled WTe2-MoS2 system reported in the inset. (c) Band-structure close
to the K point for the coupled WTe2-MoS2 system. The parameters of the
model Hamiltonian are calibrated so as to obtain a close agreement with DFT

calculations.

denote the energy gap between the WTe2 valence band and the MoS2 conduction
band, and the effective mass in MoS2 and in WTe2, respectively.

6.2.2 Calibration of tunneling coefficient

For the WTe2-MoS2 coupled system, the energy bands, the gap and the effective
masses can be analytically expressed as

E±(k) =
E0

2
+

~2

2

mc −mv

2mcmv
k2 ±

√
t2⊥ +

[
E0

2
+

~2

2

mc +mv

2mcmv
k2

]2

(6.2)

Eg = E+(0)− E−(0) =
√

4t2⊥ + E2
0 (6.3)

m± =
∂2E±
∂k2

(0) =
2mcmv

√
1 + 4t2⊥/E

2
0

(mv −mc)
√

1 + 4t2⊥/E
2
0 ± (mv +mc)

. (6.4)

Hence, as it can be seen in Eq.(6.3) and (6.4), the coupling between the two ma-
terials enforced by t⊥ modifies both the energy gap and the effective masses of
the coupled system compared to the two isolated materials. It is thus possible to
estimate the parameters t⊥ and E0 in the Hamiltonian by comparing the energy
band structures of coupled and uncoupled 2-D layers. In order to obtain the energy
bands, we used plane wave DFT simulations based on the VASP code [155] with
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a cut-off energy of 33Ry, electron–ion interactions described by the projector aug-
mented wave method [156], and generalized gradient approximation of Perdew-
Burke-Ernzerhof functional [157]. Self-consistent solutions were obtained by em-
ploying the (24×24×1) Monkhorst-Pack grid of k-points and a vacuum region of
28 Å. As shown in Fig.6.2(b), from the simulation of coupled and uncoupled lay-
ers, we extracted the parameters of the model Hamiltonian as E0 = 134 meV, t⊥ ≈
6 meV, mc = 0.391 m0 and mv = 0.543 m0, corresponding to Eg = 135 meV, m+ =
0.392 m0, m- = 0.548 m0 for the WTe2-MoS2 coupled system. The small changes
from E0 to Eg and from mc, mv to m± are consistent with the weak van der Waals
coupling. Figure 6.2(c) shows that the band structure in the coupled WTe2−MoS2

system obtained by (6.2) and with the calibrated E0, t⊥, mc, mv parameters is in
good agreement with DFT calculations close to the K point.

6.2.3 Transport model

The wave-function is defined as Φ(r) = (ψ(r), φ(r))T, where ψ(r) and φ(r) are the
wave-functions in the WTe2 and MoS2 layers, respectively, and r is the coordinate in
the (x,y) plane. Hence, the real-space Hamiltonian Ĥ(∂x, ∂y) derived from H(k) in
(6.1) reads

Ĥ(∂x, ∂y)Φ(r) =

[
E0 − ~2

2mc
(∂2
x + ∂2

y) t⊥
t⊥

~2
2mv

(∂2
x + ∂2

y)

][
ψ(r)
φ(r)

]
. (6.5)

By using a five-point stencil finite difference discretization, the Hamiltonian is mapped
into a block tridiagonal matrix with non-zero submatrices H(i, j), where i identifies
the transverse section of the 2-D layers at position x = xi and j=i− 1, i or i+ 1. Each
H(i, j) is a square matrix with rank 2Ny with Ny being the number of discretization
points along the y direction (see Fig.6.1).

The NEGF formalism, which is used to solve the transport problem, was discussed
previously in Chapter 3. In these simulations, both elastic acoustic and inelastic
optical phonon scatterings are considered in the SCBA.

The results of NEGF simulations allow us to obtain charge density and current den-
sity in the 2-D layers. Subsequently, the 2-D charge density is converted to a 3-D
charge density by distributing it over the layer thickness zth = 0.6 nm according to
a normalized envelope function a(z) = a0 cos(z/zthπ)2 for z ∈ [−zth/2, zth/2] and
a0 = 2/zth. This volumetric charge density is used in the non-linear Poisson equa-
tion, which is solved in entire 3-D domain of the device for the electrical potential
field. The simulation repeats this Schrödinger-Poisson self-consistent cycle until the
potential converges (see Fig.4.4 for the simulation flowchart).
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the top gate extension (see Fig.6.1). Other parameters: LOV = W = 20 nm,

TBOX = 1 nm. Inset: SS versus Lext.

6.3 Results and discussions

In this Section, I examine several design options and relate them to the physical
mechanisms involved in the operation of vdW-TFETs. I present the role of top gate
extension in Sec.6.3.1, of the overlap length in Sec.6.3.2, and of the back-oxide thick-
ness in Sec.6.3.3. The simulations in these Sections only include the coupling of
electrons with acoustic phonon modes (Dac=3 eV [158]). In Sec.6.3.4, I add scattering
with inelastic optical phonons and discuss their impact on the SS of the vdW-TFETs.
In the reality these diffusive phenomena cannot be eliminated, and substantially
affect the device performance. In Sec.6.3.5, I study the large overdrive regime.

6.3.1 Effect of the top gate extension

Figure 6.3 illustrates the transfer characteristic IDS-VTG for Lext=5, 10 and 20 nm. The
inset in this figure highlights the substantial subthreshold swing (SS) improvement
at large Lext. In particular, for Lext = 20 nm the device can attain a SS as low as
11 mV/dec. In this work, all the SS values correspond to average values for IDS

between 10 pA/ µm and 1 µA/ µm as defined previously in (5.4). In order to explain
this feature, Fig.6.4 shows the LDOS versus the transport direction in the off-state for
Lext = 10 nm and 5 nm. The reference energy is the source Fermi level EF,S = 0 eV.

Electrons are injected from the left source contact into the valence band of WTe2.
When reaching the overlap region, they can tunnel into the top MoS2 layer, where,
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FIGURE 6.4: Energy spectra of LDOS integrated over the transverse direc-
tion y (see Fig.6.1) for Lext = 10 nm (top) and Lext = 5 nm (bottom) in the
sub-threshold regime (VTG = −0.2 V). Arrows indicate the electron tunneling

path. The reference energy is the source Fermi level EF,S = 0 eV.

however, their energy corresponds to states deep in the energy band gap. Electrons
have to continue their tunneling path in the band gap of MoS2 through the top gate
extension region to finally reach the conduction band in the drain region. By in-
creasing the length Lext, we increase the length of the intralayer tunneling region,
thus exponentially suppressing the off-state current. This explains the large sensi-
tivity of IDS to Lext in Fig.6.3. For the same reason, the interlayer tunneling in the
off-state occurs essentially at the edge of the overlap region closer to the drain. The
subthreshold current can be written as

I = I0Te
βLext(VTG−VT), (6.6)

where T is the interlayer tunneling probability and β is a qualitative factor for the in-
tralayer tunneling process. From the results in Fig.6.3, we can estimate β=5.4 (nm V)−1

from the current values at VTG=-0.2 V.

6.3.2 Effect of the overlap length

In order to investigate the scalability of the vdW-TFET, let us consider different
overlap lengths LOV while keeping the same top gate extension length and width
Lext = W = 20 nm. Figure 6.5 illustrates the IDS-VTG curves for LOV= 10, 20, 30 and
40 nm. At low VTG, the drain current IDS is almost independent of LOV. In order to
provide a physical explanation for these results, we plot in Fig.6.6 (a-d) the off-state
and on-state interlayer tunneling current density in the overlap region for LOV= 10
and 30 nm.
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center of the overlap region (see Fig.6.1).

In the off-state, the interlayer tunneling occurs only on the edge of the overlap region
closer to the drain (see Fig.6.6a,b), due to the intralayer tunneling process in the
MoS2 layer, previously discussed in Sec.6.3.1. Consequently, the overlap length LOV

has almost no influence on the off-state IDS and the SS of the vdW-TFET.

In the on-state, the tunneling current density exhibits appreciable fluctuations along
the longitudinal direction (see Fig.6.6c,d). We observe very similar features in the
LDOS resolved along the x direction (see Fig.6.4). We ascribe this effect to the abrupt
termination of the materials at the edges of the 2D layers, which induces standing
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wave LDOS oscillations in the longitudinal direction. Since electron tunneling re-
quires the presence of states in both the top and the bottom layers, the LDOS on
the two layers modulates the tunneling current density. In conclusion, the fluctua-
tions of the current density stem from the quantum confinement of electrons in the
longitudinal direction of the overlap region. At larger VTG, the wavelength of such
fluctuations decreases, as expected for more energetic electrons. Very short over-
lap regions could entail strong confinement effects and finally affect significantly
the on-current, as we can see in Fig.6.5 for LOV = 10 nm and around VTG = 0.2 V.
For LOV larger than 30 nm, however, the effects of quantum confinement in the lon-
gitudinal direction become small, the ripples in the IDS versus VTG characteristics
tend to disappear and the IDS becomes fairly independent of the overlap length, as
can be seen in Fig.6.5. Such a saturation of IDS with LOV, also observed in analo-
gous tight-binding simulations [20], is due to the limited density of states, scatter-
ing mechanisms and the resulting finite resistivity of the 2–D materials. As shown
in Fig.6.7 and also in Fig.6.14(a), in fact, a significant voltage drop is observed along
the overlap region, especially in the valence band of the bottom layer, which is more
resistive than the top layer mainly because of the lower carrier density. When LOV

is increased, such a drop in the subband profile induces a reduction of the tunnel-
ing energy window and explains the tunneling current crowding at the edges of the
overlap region, see also Fig.6.6(d). This indicates that at such high current levels
the device tends to behave as a point tunneling FET. This is in contrast to what ob-
served for TFETs based on standard semiconductors, where the line tunneling has
been shown to be dominant [159, 160].

In Fig.6.6(d), the tunneling current density shows similar oscillation patterns also
along the transverse direction. This is because our 3-D simulator takes into account
also the confinement induced by the finite width (i.e. W = 20 nm) of the 2D layers.

There is admittedly a significant uncertainty in the current densities attainable in
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FIGURE 6.8: [IDS/W ] vs. VTG at VDS = 0.3 V for different values of the back-
oxide thickness TBOX.
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FIGURE 6.9: Valence (VB) and conduction band (CB) edges in the center of
the overlap region vs. VTG at VDS=0.3 V for TBOX=1 nm and 5 nm.

vdW-TFETs. New experimental work is indispensable in order to improve the sta-
tus of models through validation and calibration. In real devices, the relevance of
the voltage drop effects discussed in Fig.6.7 depends on the current level and on
the resistivity of the single (or maybe few) layer(s) materials in the source and drain
regions, which will finally set the range of LOV in which the current scales propor-
tionally to LOV.

6.3.3 Effect of back-oxide thickness

Since the back-oxide is usually thicker than the top-oxide in the experiments, the
effect of the back-oxide thickness is studied in this Section. As shown in Fig.6.8, in
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LOV = W = 20 nm, TBOX = 1 nm.

the on-state the IDS and the trans-conductance gm=[∂IDS/∂VTG] are reduced as TBOX

increases. This can be explained by considering that, for a fixed VBG, an increase
in TBOX lowers the back-gate capacitance and entails a reduced electrostatic p-type
doping in the WTe2 bottom layer, which is a smaller hole concentration in the WTe2

layer. As a result, the WTe2 layer is less screened from the effects of the top gate
bias, so that the WTe2 valence band edge tends to move together with the MoS2

conduction band edge as VTG increases (see Fig.6.9). This behavior is detrimental
for the device operation, because it hinders the opening of the tunneling window
with increasing VTG, thus degrading IDS and gm. The TBOX has instead only a modest
impact on the SS, because for negative VTG the hole density in the WTe2 layer is
preserved for all the TBOX, which effectively screens the effect of VTG and makes the
WTe2 valence band fairly insensitive to VTG, as can be seen in Fig.6.9.

6.3.4 Effect of inelastic scattering

All previous simulations in this Chapter were performed by including only the elas-
tic acoustic phonons. The dependence of the SS on the value of Dac is verified to be
very weak. The on-current is reduced while increasing Dac, due to the fact that the
elastic acoustic phonons generate back-scattering.

In this Section, we focus on the impact of the inelastic optical phonons on the trans-
port properties of the vdW-TFET. Figure 6.10 reports the transfer characteristics
for different values of the deformation potential Dop. The strength of the inelas-
tic phonon scattering can largely impact on the subthreshold current, as the SS is
substantially degraded when increasing Dop. To better appreciate the influence of
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FIGURE 6.12: Energy spectrum of the transport current density and (dashed
line) conduction and (solid line) valence band edges along the transport direc-
tion x in the presence of inelastic optical phonons withDop = 2.6×108 eV/cm,
at VDS=0.3 V and VTG=-0.2 V. Phonon absorption in the source and overlap re-

gion and phonon emission in the drain are represented by arrows.

optical phonons, the average SS is calculated using the definition Eq.(5.4) and re-
ported in Fig.6.11. Recalling that in the off-state, the conduction band of MoS2 is
higher than the valence band of WTe2, as shown in Fig.6.2. Without the inelastic
phonon, the electrons injected from source keep the same energy level, which is
within the band gap of the MoS2. Therefore, the off-current is strongly suppressed.
However, with the inelastic optical phonon, the electrons are able to change their
energy by interacting with the phonon. In order to visualize this effect and its im-
pact, Fig.6.12 reports the spectral density of the current J(x,E) versus the transport
direction in the off-state for Dop = 2.6× 108 eV/cm, which is the effective Dop value
for the longitudinal optical phonon mode in MoS2 [158]. In this figure, J(x,E) refers
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FIGURE 6.13: (colormap) LDOS in the top MoS2 layer for the device with
Lext = 20 nm in Fig.6.3, and for (a) VTG = 0.3 V and (b) VTG = 0.35 V. Lines:

top layer conduction band edge along the x direction.

to the current density that passes through a vertical plan perpendicular to the x-axis
at the position x. The electrons are injected from the source (at x=0) into the valence
band of WTe2 layer. As can be seen, electrons gain energy via optical phonon ab-
sorption in the WTe2 layer while traveling from source to the overlap region (from
x=40 nm to x=60 nm), and tunnel into the top MoS2 layer, where they release energy
via optical phonon emission and arrive at the drain contact. By exchanging energy
with the electrons, optical phonons promote the electrons to higher energy levels in
the conduction band of MoS2 thus making the interlayer tunneling possible in the
off-state. For this reason, the optical phonons can enhance the off-state tunneling
process, thus degrading the SS and increasing the off-current. On the other hand,
the reduction in the on-state current with increasing Dop observed in Fig.6.10 is as-
cribed to the enhancement of the back-scattering induced by optical phonon, similar
to the effect of elastic phonons.

6.3.5 Large overdrive regime

In Fig.6.3, at large VTG values, some ripples are observed in the IDS versus VTG char-
acteristics. We can elucidate this behavior by focusing on the simulation results for
Lext= 20 nm and considering the LDOS in the top MoS2 layer for VTG= 0.3 V and
VTG= 0.55 V (Fig.6.13). The increase of the top-gate voltage VTG lowers the conduc-
tion band of the MoS2 layer in the overlap region, forming a quantum well and
creating localized states, as can be observed in the LDOS color map.

Moreover, as shown in Fig.6.14, the lowering of the top layer conduction band
also moves down the energy window for tunneling. As the tunneling window ap-
proaches the Fermi level in the drain EF,D = −0.3 eV, the IDS current is degraded,
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FIGURE 6.14: (colormap) Energy spectra of the transport current density
in the device with Lext = 20 nm in Fig.6.3, and for (a) VTG = 0.3 V and (b)
VTG = 0.55 V. Continous (Dashed) lines: top layer conduction band edge

(bottom layer valence band edge) along the x direction.

FIGURE 6.15: Comparison of the intrinsic switching energy and delay for the
Van der Waals TFET and the inter-layer TFET with VDDfrom 0.2 to 0.5 V.

which results in the negative trans-conductance observed in Fig.6.3 at large VTG val-
ues. These effects at large top-gate voltage are observed also in the presence of
inelastic optical phonon scattering, as shown in Fig.6.10.

6.4 Comparison of delay and energy metrics

In Fig.6.15, I plot Esw vs. Tsw of the TFET in Chapter 6 and of the TFET in this Chap-
ter, for different operating voltage VDD. These two metrics are defined in Sec.5.3.5.
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I also compare these two devices to high-power (HP) and low-power (LP) CMOS
and to TFETs as reported in Refs. [148, 149]. As can be seen, the van der Waals TFET
in this Chapter has a better switching time comparing the LP CMOS, the homo-
junction TFET and the TFET in the previous Chapter. The switching energy of the
van der Waals TFET is slightly higher than the TFET in the previous Chapter, how-
ever it is still lower than the LP CMOS. Based on these two metrics, the van der
Waals TFET in this Chapter is more suitable to work under VDD in the range of 0.2-
0.3 V rather than >0.4 V. The TFET in the previous Chapter is more competitive for
the low power applications, because of its very low switching energy.

6.5 Summary

This Chapter presented the simulation results of a vertical van der Waals TFET
based on 2D transition metal dichalcogenide in terms of performance and the pos-
sible optimization parameters. The 3-D NEGF-based quantum transport simulator
includes both elastic and inelastic phonon scattering. In particular, Sec.6.3.1 showed
that off-state current and SS can be dramatically improved with an appropriate en-
gineering of the top gate extension region. In Sec.6.3.2, I have shown that the length
of the overlap region between the two 2D layers has a small influence on SS and off-
current IDSdue strong concentration of tunneling at the edge of the overlap region.
However, very short overlap regions could entail strong quantum confinement ef-
fects and finally affect significantly the on-current. In Sec.6.3.3, simulations showed
that an increase of the back-oxide thickness can degrade the current IDS and the
trans-conductance gm of vdW-TFETs, but with a modest impact on the SS. Further-
more, in Sec.6.3.4 the simulations suggested that inelastic optical phonon scattering
may have a profound impact on the off-state current and the SS of vdW-TFETs by
activating possible paths for phonon assisted, inelastic tunneling processes.

The values of SS and current is confirmed by another recent study by Chen et al.
[161] using a tight-binding (TB) Hamiltonian including spin-orbit coupling. Their
TB parameters are well calibrated to match the band structure and effective mass
from the DFT calculation. The similarity of results shows that the effective mass ap-
proximation used in our simulations can track pretty well the transport properties of
the MoS2 and WTe2 monolayers with much less computational time and resources.
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Chapter 7

Impact of rotational misalignment on
the performance of vdW-TFETs

The derivation in the previous Chapter 6 assumes that there is a perfect rotational
alignment between the top and bottom monolayers and tunneling occurs between
equivalent valleys in the Brillouin zone, e.g. from a K to a K points (or from K ′ to
K ′). In this Chapter, the same vdW-TFET structure as in Chapter 6 is investigated by
taking into account the rotational misalignment between the MoS2 and WTe2 mono-
layers as shown in Fig.7.1. Self-consistent 3-D quantum transport simulations are
performed to investigate how such a misalignment affects the device performance.

This Chapter is organized as following. The geometrical structure of the rotated lay-
ers together with a model Hamiltonian are presented in Sec.7.1. This model Hamil-
tonian is used in the self-consistent 3-D quantum transport simulation in order to
calculate the electron transport in the vdW-TFETs. The simulation results are re-
ported in Sec.7.2, including the impact of rotation angle on the off- and on-state
performance and the influence of inelastic optical phonon scatterings.

FIGURE 7.1: Sketch of the stacked MoS2 and WTe2 layers with a rotational
misalignment in the simulations. The two monolayers are separated by a van

der Waals gap of 0.6 nm.
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FIGURE 7.2: Atomistic structure of two monolayers with same lattice size
and rotated by a small angle. The rotation turns the vector red to the vector
blue. The red lines indicate that the bilayer system has a larger periodicity,
with a super-cell defined by two new translation vectors: the green and blue

arrows in the figure.

FIGURE 7.3: The Brillouin zones (red and blue hexagons) of the two mono-
layers , and the Brillouin zones (small black hexagons) of the super-cell of the

bilayer system as defined in Fig.7.2.
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7.1 Simulation model

The same device structure as in the previous Chapter (see Fig.6.1) is considered here,
with the following geometry parameters LOV = 20 nm, Lext = 5 nm and TBOX =
1 nm. Figure 7.1 shows a partial sketch of the overlap region where the MoS2 and
the WTe2 monolayers are overlapped and stacked with a rotation angle θ between
them. Without the rotation, the two materials form a commensurate lattice with
lattice parameter a0=3.411 Å. This can be achieved by introducing a compressive
strain on WTe2 and tensile strain on MoS2 layer as described in the previous Chapter.
The van der Waals gap between the two monolayers is assumed to be 0.6 nm thick
and with the same dielectric constant as air.

The lattices of the two rotated monolayers are sketched in Fig.7.2, with the relative
rotation angle θ comprised between the red and the blue arrows in the figure. In
general, the two lattices are not commensurate any more, and only for a certain val-
ues of θ, it is possible to define a super-cell for the two stacked layers. In Fig.7.2,
the super-cells are indicated by the red lines with the two translation vectors indi-
cated by the green and blue arrows. As we can see, the number of atoms within the
super-cell depends on the rotation angle θ.

Figure 7.3 shows the rotated Brillouin zones of the two separate lattices (red and
blue hexagons) and the smaller Brillouin zones of the super-cell (black hexagons).
The conduction band in MoS2 and the valence band in WTe2 have valleys at the K
and K ′ points located on the six corners of their hexagonal single-layer Brillouin
zones, which are rotated by the angle θ around their common Γ point. The indirect
band gaps between the two layers are indicated by the black arrows (shift vectors)
in the same figure. The valleys of the MoS2 and the WTe2 are both folded onto the
K and K ′ points of the super-cell Brillouin zone. After folding, the shift vectors fall
along the six edges of the small hexagon.

For each pair of valleys, the following EMA model Hamiltonian is adopted

Hi(k) =

[
E0 + ~2(k−∆ki)

2

2mc
t⊥

t⊥ −~2k2

2mv

]
, (7.1)

where the parameters t⊥,mc,mv andE0 are defined in the same way as in Chapter 6.
The new parameter ∆ki defines the shift vector of the corresponding valley couple.
The six ∆ki vectors have the same norm but different directions separated by π/3
angle, as shown in Fig.7.3.

The wave-vector space Hamiltonian is converted into the real space representation
by applying the quantum mechanics prescription k → −i∇, and then it is dis-
cretized with the finite difference method. The transport problem is solved within
the NEGF formalism. In the simulations, both elastic acoustic and inelastic optical
phonon scatterings are taken into account within the SCBA described in Chapter 3.
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The results of NEGF simulations allow us to obtain six charge density and current
density contributions from those six pairs of valleys. The total charge and current
in the device is the sum of them, then renormalized by three, due to the fact that
only two valley couples (K and K ′) are actually “owned” by the Brillouin zone in
the MoS2 and WTe2.

7.2 Results and discussions

In this Section, I will present the impact of the rotation angle on the device per-
formance in Sec.7.2.1. The simulations include phonon scattering, with the acous-
tic deformation potential Dac=3 eV and optical deformation potential Dop = 2.6 ×
108 eV/cm, with phonon parameters taken from the work of Kaasbjerg et al. [158].
In Sec.7.2.2, I study the impact of optical and acoustic phonon modes on the SS and
ION by varying the value of Dop and Dac respectively.

7.2.1 Effect of rotation angle

Figure 7.4(e) illustrates the transfer characteristic IDS-VTG in both linear and logarith-
mic scales for different rotation angles θ=0, 10.5°and 21°.

For a given top gate voltage VTG, the rotational misalignment entails notable reduc-
tion on the current IDS. As we expected, the rotation of one layer induces the indi-
rect band gap that makes the interlayer tunneling more difficult, since a momentum
change is requires for the electron to pass from one band to the other as shown in
the panels (c, d) of Fig.7.4.

In the subthreshold regime, the current is suppressed by both the interlayer and the
intralayer tunneling process, as discussed in the Sec.6.3.1. We can write the current
as

I = I0T (θ)eβLext(VTG−VT), (7.2)

where T is the interlayer tunneling probability and β is a qualitative factor for the in-
tralayer tunneling process. T is a function of the rotation angle θ due to the indirect
band gap. Figure 7.4 confirms that the rotational misalignment indeed has quite
modest influence on the subthreshold slope, and a SS smaller than 60 mV/dec is
observed for different θ. The steep slope is given by the intralayer tunneling mecha-
nism, which is not influenced by the rotational misalignment. Figures 7.5 (a,b) show
the tunneling current density in the off-state of the devices with θ=10.5°and θ=21°.
In both cases, the tunneling occurs only on the edge of the overlap region, which is
similar to the result obtained without the rotation misalignment.

After crossing the extrema of the conduction and the valence bands, the transport
properties of the vdW-TFET depends a lot on the rotation angle. For a relatively
small rotation angle (θ ≤ 10°), the two bands remain close. With helps of the elastic
and inelastic phonon scatterings, the electrons can still tunnel from the valence band
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FIGURE 7.4: Schematics of the alignment of the MoS2 conduction and WTe2
valence bands (a, b) without and (c, d) with rotational misalignment. With
the rotation, the band gap becomes indirect with a shift vector ∆k. Panels
(a, c) correspond to the subthreshold VTG<VT, and panels (b, d) correspond
to VTG>VT. (e) IDS/W vs. VTG for different values of the rotation angles θ=0,

10.5°and 21°, at VDS=0.3 V.

to the conduction band even when they do not cross each other, as indicated by the
black arrows in Fig.7.4(d). Therefore, for the same (VTG − VT) value, the current
and the trans-conductance gm=[∂IDS/∂VTG] is similar with or without the rotational
misalignment. The influence of the latter is similar to a threshold voltage shift.

However, if we continue increasing the rotation angle, the device on-state perfor-
mance degrades radically. The current IDS is already significantly reduced with a
rotation angle of 21°. In this situation, the vdW-TFET cannot operate correctly in
the optimal mode. Figure 7.5 reports the interlayer tunneling current density for
the vdW-TFET in the OFF and ON state with θ=10.5°and θ=21°. Figure 7.5(c) shows
that with a relatively small rotation angle the tunneling occurs inside the overlap
area. However, if the rotation angle increases, the tunneling current turns out to be
non-zero only very close to the edges of the overlap region, as shown in Fig.7.5(d).
In addition to the indirect band gap induced by the rotation, this localized tunnel-
ing also decreases the current, thus resulting in very poor device performance, as
observed in the IV figure 7.4.

The boundary condition on the edges of such small device generate sharp potential
variation, which are similar to short-range scattering. Since the Fourier transform
of a step-like function extends over a large range in the wave-vector domain, these
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FIGURE 7.5: (colormap) Spatial distributions of the interlayer tunneling cur-
rent density in the overlap region for VDS=0.3 V. (a, c) θ=10.5°; (b,d) θ=21°; (a,

b) VTG=-0.2 V; (c, d) VTG=0.2 V.

edges are able to change considerably the electron wave-vector and allow tunneling
between the indirect valleys. In the center of overlap, the tunneling is very weak
due to the fact that phonons alone are not enough to scatter the electrons over a
large ∆k.

In order to better illustrate this short-range scattering effect, a modified structure
with a hole inside the overlap region has been simulated. This vdW-TFET has the
same structure except that the MoS2 and WTe2 monolayers are cut and removed
inside a square hole (4×4 nm) in the center of the overlap region (20×20 nm). All
the other parameters are the same and the rotation angle θ=21°. In this simulation,
I take the same electrostatic potential from the result in Fig.7.5(d) and disable the
Schrödinger-Poisson self-consistent cycle, in order to compare the results under the
exact same condition. Figure 7.6 reports the interlayer tunneling current density
for this modified structure. Comparing to Fig.7.5(d), we can see additional con-
centration of tunneling around the hole. This result confirms the influence of the
short-range scattering on the tunneling current for large rotation angles.

If we continue increasing VTG, the conduction band and valence band will eventually
cross each other. The needed energy shift ∆E for crossing depends on ∆k,

∆E =
~2

mv +mc

∆k2, (7.3)



7.2. Results and discussions 95

(arb. 
 units)

15 20 25 30 35
x(nm)

0

10

20

y(
nm

)

 0

 500

 1000

 1500

 2000

 2500

 3000

FIGURE 7.6: (colormap) Spatial distributions of the interlayer tunneling cur-
rent density in the overlap region, with a modified structure containing a

square hole in the center, for VDS=0.3 V, VTG=0.2 Vand θ=21°.

where mv is the valence band effective mass of WTe2 monolayer, mc is the conduc-
tion band effective mass of MoS2 monolayer. ∆E increases parabolically with ∆k.
In the VTG ranged and the angles considered in these simulations presented, the de-
vices with rotational misalignment never enter this working regime. For very small
rotation angles, it is possible to enter this condition at a small VTG. In this case,
however, the effect on the transfer characteristic will be just a shift of the threshold
voltage VT.

7.2.2 Effect of phonons

The schematics in Fig.7.4 show that the phonon scattering can assist the tunneling
process when the two layers are misaligned. In this Section, let us focus on the
impact of the phonons on the transport properties of the vdW-TFET with a large
rotation angle θ=21°.

Figure 7.7 reports the transfer characteristics for different values of Dac and Dop.
The strength of the phonon scatterings can substantially increase IDS in the on-state.
As indicated in Fig.7.4(d), two possible mechanisms can enhance the electron tun-
neling, either by exchanging energy with inelastic phonon to move up to a higher
energy level, or by changing the wave-vector due to scatterings. Figure 7.7 indicates
that the impacts of Dac and Dop are very similar in the on-state, which suggests that
the increase of IDS is more likely due to the momentum scattering.

Figure 7.7(b) shows an imperceptible impact of Dop on the SS of the vdW-TFET,
which is different from the previous results in Sec.6.3.4. With such a misalignment,
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FIGURE 7.7: IDS/W vs. VTG for different values of (a) acoustic deformation
potential Dac and (b) optical deformation potential Dop, with the rotation an-
gles θ=21°, at VDS=0.3 V. The optical phonon energy is ~ω = 50 meV. Other

parameters are: Dac = 3 eV, Lext = 5 nm, LOV = W = 20 nm, TBOX = 1 nm.

the energy band gap in the off-state is increased following Eq.7.3 and becomes much
larger than the optical phonon energy of monolayer MoS2 [158]. Therefore, the in-
elastic phonon scattering has a quite modest impact on the vdW-TFET off-state per-
formance when a large rotational misalignment is present in the device. As we have
expected, the elastic acoustic phonons do not influence the subthreshold current
since they do not change the electron energy and cannot promote inelastic tunnel-
ing.

7.3 Summary

The simulation results presented in this Chapter suggest that a possible rotational
misalignment is expected to affect the absolute value of the tunneling current, but
not to change significantly its dependence on the terminal voltages. The impact on
SS is negligible for a modest rotational misalignment, only a variation of the thresh-
old voltage is observed in this situation. However, the device performance starts to
degrade rapidly by increasing the rotational misalignment angle. In this case, the
electrons need the assistance of short-range scatterers to tunnel. When a rotational
misalignment is present, the acoustic and optical phonons have a quite positive im-
pact on the device transport properties by enhancing the tunneling process, without
introducing noticeable degradation of SS.

In these simulations, important approximations are made in the use of the EMA
Hamiltonian. The results are expected to be valid only for limited angles, since large
angles could entail the involvement of other bands and valleys that are not consid-
ered in this simple model. The results in this Chapter can be seen as preliminary
and exploratory work on the influence of rotational misalignment. More theoreti-
cal studies are needed in the future. Full band models, such as tight-binding, are
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expected to give more accurate descriptions of the band structures. However, the
computational complexity of these models could limit us from using them in the
transport simulations.

From a technological viewpoint, if the stack of 2-D materials is obtained using a dry
transfer method the rotational misalignment is inevitable [101, 162]. Experimental
results have shown that, when the stack is obtained by using CVD techniques to
grow one layer on top of the other, the two layers can have a fairly good angular
alignment [163].

A publication reporting the results in this Chapter is currently under preparation.





99

Chapter 8

Conclusion and Outlook

In this thesis, a quantum simulator based on non-equilibrium Green’s functions
(NEGF) formalism was developed to simulate the carrier transport in a novel tun-
nel field-effect transistor structure with vertical heterojunction of two-dimensional
materials, such as MoS2 and WTe2.

In Chapter 2, a brief introduction about the various types of 2-D materials, their
synthesis and application was provided. In Chapter 3, the second quantization for-
malism was used for the Hamiltonian and for the definition of the Green’s func-
tions, then the NEGF formalism was concisely reviewed. The lesser Green’s func-
tion contains information on the density of occupied states, and then it allows us to
calculate the charge distribution inside the device and to evaluate self-consistently
the potential profile for the electrons by means of the Poisson equation. From the
charge continuity equation, it is possible to calculate the spectral current density
flowing inside the nanodevice. The second quantization formalism and the Green’s
functions permit us to include many-body interactions, in particular the electron-
acoustic-phonon and electron-optical-phonon interactions. The developed software
takes advantage of the device slice structure. This allowed us to reduce considerably
the rank of the matrices, and to make numerical investigation of device structures of
realistic sizes. In Chapter 4, the code structure was reported briefly, with a descrip-
tion of the implemented adaptive energy integration method based on the adaptive
Simpson scheme.

Two applications of theory and codes were reported and deeply analyzed. In Chap-
ter 5, by using a 2-D version of the NEGF code, I investigated a vertical tunnel FET
based on WTe2 and MoS2 monolayers with an h-BN interlayer. We predicted its
extremely steep sub-threshold slope. This work has shown that a larger chemical
doping in the top-layer and a more negative back-gate voltage can result in a well-
behaved ID versus VDS characteristic at small VDS. The top gate extension length has
been found to be extremely important for a good sub-threshold slope and to limit
the off-current. This work has also proven a good scalability of this device.

In Chapter 6, by using a 3-D version of the NEGF code, particular attention has
been given to a vertical heterojunction TFET, where the interlayer tunneling bar-
rier was replaced by the van der Waals gap between the 2-D monolayers of MoS2
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and WTe2. This results in a thinner tunneling barrier and a larger on-current po-
tentially expected for these devices. The results have confirmed that the off-state
current and sub-threshold slope can be dramatically improved with an appropriate
engineering of the top-gate extension. The length of the overlap region between
the two 2-D monolayers has a small influence on sub-threshold slope and the cur-
rent, because the current is strongly localized. This work not only demonstrated the
ultra-steep subthreshold slope, but also provided a physical insight into the impact
of the phonon scattering on the device performances. In particular, I showed that in-
elastic optical phonon may have a profound impact on the off-current by activating
possible paths for phonon-assisted tunneling processes.

In Chapter 7, the effect of rotation misalignment within the two layers of the het-
erostructure was investigated with the inclusion of both elastic-acoustic- and inelastic-
optical-phonon scatterings. This kind of misalignment is difficult to avoid in exper-
iments. This work has shown that the device current can substantially depend on
the rotation angle. However, the device can still offer a steep sub-threshold slope,
thus representing a promising technology for future low-power digital electronics.

For these presented simulations, the most computational expensive part is the SCBA
iteration. The good convergence is crucial for the current conservation. In order to
accelerate the convergence of this part, I made some attempts that used the Broy-
den’s method in numerical analysis, which is a quasi-Newton method for finding
the roots of a function depending on n variables. The idea was to construct the Ja-
cobian matrix for the SCBA cycle and to update the phonon self-energies along the
gradient direction defined by this Jacobian. However, the major drawback of this at-
tempt was the heavy memory requirement to store the Jacobien matrix, which was
almost impossible for the inelastic-optical phonon case.

In the present simulator, the adaptive energy integration algorithm is limited to elas-
tic electron-phonon coupling. The implementation is more complex if we want to
include also the inelastic-optical phonon because different energy-levels need to be
coupled together, and the energy mesh needs to be refined globally. As a result, the
actual simulator uses a fixed energy mesh when we need to include the inelastic
electron-phonon scattering. Further effort can be made to incorporate the adaptive
mesh when inelastic phonons are taken into account.

In the present simulations, some many-body scattering effects have already been
included, such as the electron-phonon and electron-electron Hartree interactions.
With some further effort, it will be possible to include other sources of scattering,
in particular short-range disorder and edge roughness. However, the simulations
with such disorders are more memory demanding and more difficult to reach the
convergence.

In conclusion, the theoretical and numerical results presented in this thesis provide
both reliable performance predictions and insights of the working mechanisms of
two novel structures of tunnel field effect transistor based on 2-D materials. In par-
ticular, the analysis revealed that carefully designed van der Waals TFETs can offer
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excellent subthreshold swing values (<30 mV/dec) and represent a promising tech-
nology for future low-power nanoelectronics.
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