
HAL Id: tel-01637937
https://theses.hal.science/tel-01637937v1

Submitted on 18 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal models and verification of memory management
in a hypervisor
Pauline Bolignano

To cite this version:
Pauline Bolignano. Formal models and verification of memory management in a hypervisor. Cryp-
tography and Security [cs.CR]. Université de Rennes; Prove & Run, 2017. English. �NNT :
2017REN1S026�. �tel-01637937�

https://theses.hal.science/tel-01637937v1
https://hal.archives-ouvertes.fr

ANNÉE 2017

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Bretagne Loire

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique
Ecole doctorale Matisse

présentée par

Pauline Bolignano
préparée à l’unité de recherche 6074 - IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires

Formal Models and
Verification of
Memory

Management

in a Hypervisor

Thèse soutenue à Rennes
le 24 mai 2017

devant le jury composé de :

Mads DAM
Professeur, KTH Royal Technical University/Rapporteur
Marie-Laure POTET
Professeure, Ensimag/Rapporteuse
Delphine DEMANGE
Maître de Conférence, Université de Rennes 1 / Examina-
trice
Mario SUDHOLT
Professeur, Institut Mines Télécom/Examinateur
Thomas JENSEN
Directeur de Recherche, Inria/Directeur de thèse
Vincent SILES
Ingénieur Docteur, Prove & Run/Co-directeur de thèse

i

Contents

Remerciements vii

Résumé en Francais ix

Introduction 1

1 Context 3
1.1 Hypervisors . 4

1.1.1 Operating System Kernels . 4
1.1.2 Different Types of Hypervisors . 4
1.1.3 Memory Virtualization . 6

Memory Management in an OS . 6
Memory Management in a Hypervisor 7

1.2 Security Properties . 9
1.2.1 Non-Interference . 9
1.2.2 Variants of Non-Interference . 9

1.3 Formal Methods . 10
1.3.1 Tools for Theorem Proving . 10
1.3.2 Methods for Theorem Proving . 11

Annotations . 11
Modeling and Interactive Proving 11

1.3.3 Proof by Abstraction . 12
1.3.4 Prove & Run Tools . 12

1.4 Certification . 14
1.5 Key Points . 15

2 State of the Art 17
2.1 Early System Verification Projects . 18
2.2 Recent OS Verification Projects . 19

2.2.1 SeL4 . 19
2.3 Hypervisor Verification . 20

2.3.1 Prosper . 21
2.3.2 Verisoft XT . 21

2.4 The Methodology of Proof by Abstraction 22
2.4.1 Commutation . 23
2.4.2 Transferring Properties to the Concrete Model 23
2.4.3 Comparison of our Abstraction to State of the Art 25

2.5 Contributions . 26
2.6 Overview of the Chapters . 27
2.7 Key Points . 29

ii Contents

3 Concrete Model of the Hypervisor 31
3.1 Basic Types and Notations . 32
3.2 Modeling of the Page Tables . 32

3.2.1 Decomposition of the Function pt 33
3.2.2 Virtual Page Table Walk . 36
3.2.3 Set of Addresses Mapped by a Page Table 37

3.3 Static Structures . 37
3.3.1 Memory Layout . 37

Static Permissions . 38
Hypervisor Space . 38

3.3.2 Host Page Table . 38
3.4 Low-Level State of the Hypervisor . 38

3.4.1 Hardware State . 39
Memory . 39
Modes . 40
Application Program Status Register 41
Core Registers . 41
Coprocessor 15 . 41
Generic Interrupt Controller . 42
Caches . 42

3.4.2 Hypervisor State . 42
Virtual Mode . 44
Virtual Core and Banked Registers 44
MMU Registers . 45
Generic Interruption Controller Registers 45

3.5 Low-Level Transitions . 45
3.5.1 Guest Transition . 46
3.5.2 Save State Transition . 48
3.5.3 Hypervisor Transitions . 49

Memory Management Transitions 50
Schedule Transition . 53
GIC Transitions . 53
Modify Registers Transitions . 54

3.5.4 Restore Transition . 55
3.6 Key Points . 56

4 Invariant Properties of the System 57
4.1 Invariants on Page Tables . 59

4.1.1 Page Tables Well-formedness . 59
4.1.2 Translation of Hypervisor Virtual Space 61

4.2 Invariants Specific to some Transitions . 64
4.2.1 Guest Transition . 65

Exception Handlers . 65
4.2.2 Map a Page . 66
4.2.3 Unmap a Page . 68
4.2.4 Unmap all . 69
4.2.5 Well-formed Registers . 71
4.2.6 Interdependencies . 72

4.3 Specifications of the Effects of some Transitions 75

Contents iii

4.3.1 Map . 75
4.3.2 Unmap . 78
4.3.3 Unmap All . 79
4.3.4 Guest Transition . 80

4.4 Conclusion . 81
4.5 Key Points . 82

5 Abstract Model of the Hypervisor 83
5.1 Abstract State . 85

5.1.1 Memory Cells . 85
5.1.2 Guest State . 86
5.1.3 Whole State . 87

5.2 Abstraction . 87
5.2.1 Registers . 87
5.2.2 Segments . 88

Private Segment . 89
Shared Segments . 89

5.2.3 Abstraction Function . 90
5.3 Abstract Transitions . 90

5.3.1 Oracle . 91
5.3.2 Guest Transition . 94

Guest Run . 94
Guest Synchronize . 97
Whole Transition . 97

5.3.3 Hypervisor Transition . 98
Memory Management . 98
Schedule . 98
Nop . 98
Registers Modification . 99

5.3.4 Restore Transition . 99
5.3.5 Abstract Transition . 99

5.4 Security properties . 99
5.4.1 Integrity . 100
5.4.2 Confidentiality . 100

5.5 Refinement . 102
5.5.1 Guest Transition . 102
5.5.2 Memory Transitions . 104

Map . 104
Unmap . 109
Unmap All . 111

5.6 Impact of Optimizations on the Abstract Model 112
5.6.1 Several SPTs per Guest . 112
5.6.2 Allocator . 112
5.6.3 Dynamic Configuration . 113

5.7 Key Points . 113

iv Contents

6 Benchmarks and Measurements 115
6.1 Benchmarks . 115
6.2 Proofs . 116

6.2.1 Example: Proof of Unmap Commutation 117
6.2.2 Quantification of the Proof Effort . 118
6.2.3 Hints to Time Spent on Proofs . 121

6.3 Proof Maintenance . 121
6.4 Conclusion . 121

Conclusion 123
6.5 Summary . 123
6.6 Contributions . 123
6.7 Perspectives . 124

Glossary 127

Bibliography 129

v

List of Figures

1 Shadow Page Tables . x

1.1 Monolithic versus Micro-Kernel based OS 5
1.2 Two-Level Page Table . 7
1.3 Shadow Page Tables . 8
1.4 Commutation Diagram . 12
1.5 Example of the Signature of a Predicate in Smart 13
1.6 Example of Lemma Written in Smart . 14
1.7 Screenshot of the Proof Environment . 15

2.1 Modified Resources during Concrete Guest Execution 28
2.2 Modified Resources during Abstract Guest Execution 29

3.1 Page Table Walk . 34
3.2 Example of Physical Memory Layout for two Guests 38
3.3 Direct Memory Access with I/O MMU or SMMU 40
3.4 A Transition of the Concrete System . 46
3.5 Hypervisor Transitions . 50

4.1 Mapping from a virtual address va = idx1 ⊕ idx2 to pa, in a PT located at
pbase1. 58

4.2 Invariants Dependencies: for each invariant in a row, we mark with a cross
all the properties used in the proof of its preservation over the guest tran-
sition. 72

4.3 Invariants Dependencies: for each invariant in a row, we mark with a cross
all the properties used in the proof of its preservation over the map oper-
ation. 73

4.4 Invariants Dependencies: for each invariant in a row, we mark with a cross
all the properties used in the proof of its preservation over the unmap
operation. 74

4.5 Invariants Dependencies: for each invariant in a row, we mark with a cross
all the properties used in the proof of its preservation over the unmap_all
operation. 75

5.1 Abstraction of the Memory for Guest 1 . 84
5.2 Correspondence between Transitions of the Concrete Level (left) and the

Abstract Level (right) . 91
5.3 Confidentiality - Deterministic System . 92
5.4 Confidentiality - Non Deterministic System 92
5.5 Commutation Diagram . 93
5.6 Oracle for Scheduling . 93
5.7 Run Relation . 95

6.1 Commutation of Unmap - Case pa /∈ perm.priv 118

vi List of Figures

6.2 Commutation of Unmap - Case pa ∈ perm.priv 119

vii

Remerciements

Tout d’abord un grand merci à Thomas Jensen et Vincent Siles, qui m’ont accompagnée
tout au long de ce travail de thèse. Merci pour votre enthousiasme, votre optimisme et
tout ce que vous m’avez appris.

Merci à Marie-Laure Potet et Mads Dam de m’avoir fait l’honneur de rapporter ma
thèse. Merci pour vos retours et remarques judicieuses et constructives. Je remercie Mario
Sudholt et Delphine Demange d’avoir bien voulu faire parti de mon jury, ainsi que pour
leurs retours sur le manuscrit.

Cette thèse ne serait pas possible sans son principal sujet d’étude, l’hyperviseur développé
par l’équipe SecT de TU Berlin. Je remercie le Professeur Jean-Pierre Seifert de m’avoir
accueillie dans son équipe, ainsi que tous les membres de son équipe qui ont pu répondre
à mes nombreuses questions. Je remercie tout particulièrement Michael Peter, pour son
temps et sa gentillesse.

Je remercie l’EIT Digital pour leur financement lors de mes déplacements à l’étranger,
à Berlin puis durant mon stage de trois mois à Dresde. Je remercie Prove & Run ainsi que
mes directeurs de thèse sans qui ces déplacements n’auraient pas été possible.

Durant ma thèse, j’ai passé 4 mois à l’Inria Rennes, dans l’équipe de Thomas Jensen.
Un grand merci à l’équipe Celtique pour son accueil chaleureux, et en particulier à tous
mes collègues doctorants.

Je voudrais remercier tous mes collègues de Prove & Run. Merci tout particulière-
ment à Olivier, Stéphane et Benoit, pour leur disponibilité et leurs explications qui m’ont
beaucoup aidés dans mon travail. Cela a été très stimulant pour moi d’être dans un en-
vironnement si riche.

Je remercie mes amis Aurélie, Camille, Florian, Juliette, Marie, Marion, Raphaël ainsi
que mes soeurs, Clarisse et Lucie, d’avoir fait le déplacement pour assister à ma soute-
nance. Cela m’a fait très plaisir.

Un très très grand merci à mes parents, pour leur présence, leur soutien et leur douceur
durant ces trois années de thèse (et les 25 précédentes). Un merci tout particulier à mon
père pour avoir su rendre contagieuse sa passion pour son travail.

Enfin, je remercie Paul. Merci pour ton soutien, mais surtout merci pour ta curiosité
et l’intérêt que tu as porté à mon travail tout au long de ma thèse.

ix

Résumé en Francais

Les nombreux bugs et attaques découverts ces dernières années montrent que la plu-
part des technologies et des services que nous utilisons (téléphone, montre, ordinateur,
voiture connectée, boites mail, applications) sont peu sécurisés. Citons par exemple
l’attaque sur les voitures connectées par laquelle une tierce personne pouvait prendre
le contrôle d’une voiture à distance. L’attaque des comptes Yahoo, découverte en 2016,
qui a touché plus d’un milliard d’utilisateurs. Ou encore le bug très médiatisé Heartbleed
de OpenSSL, qui permettait à un attaquant de lire des parties de la mémoire du serveur
et du client, pouvant ainsi récupérer les clés privées de ces derniers.

Or les systèmes électroniques sont utilisés par un nombre toujours plus important
d’utilisateurs. A titre d’exemple, plus de deux milliards de personnes dans le monde
possédaient un smartphone en 2016, et ce chiffre pourrait bien s’élever à six milliards
d’ici 2020. Parallèlement à cela, la sensibilité des données que manipulent ces technolo-
gies, la criticité de ce qu’elles contrôlent, et leur omniprésence dans nos vies amplifient
grandement l’impact d’un bug. La sécurité devient donc une préoccupation majeure. On
peut alors se demander comment augmenter le niveau de sécurité d’un logiciel.

Les programmes dont les failles de sécurité peuvent s’avérer critiques sont testés de
manière intensive. Le test est une étape incontournable du développement logiciel, il per-
met de trouver les bugs au cours du développement, et de s’assurer que, pour certaines
entrées, le programme réponde conformément à la spécification. Cependant, si le test
permet de montrer l’existence de bugs, il ne permet pas d’en prouver l’absence. En effet,
les tests ne peuvent pas couvrir tous les cas d’exécution possibles. De plus, sans même
parler de couverture, certaines propriétés du programme sont difficilement vérifiables
par des tests. Par exemple, la notion de confidentialité est difficile à appréhender par le
test car la lecture d’une donnée n’a pas d’effet visible sur le système.

La preuve formelle de programme permet non seulement de considérer tous les cas
d’exécution possible, mais aussi d’exprimer des propriétés de haut niveau, comme la
confidentialité. C’est un processus long et coûteux. Pour ces raisons, elle est encore peu
pratiquée dans l’industrie. Cependant, le coût et les dégâts que peut générer un bug
rendent l’utilisation des méthodes formelles incontournable dans certains domaines. De
plus, la maturité des outils permet maintenant de prouver formellement des systèmes
larges et complexes, comme les systèmes d’exploitation (SE) [Les15; Kle09].

Ce sont justement les SE qui sont au cœur de notre étude. Le SE est la première couche
de logiciel qui s’installe sur le matériel. C’est lui qui le paramètre, et qui gère l’accès aux
ressources. Il est important qu’il soit sécurisé, car il peut compromettre la sécurité de
tous les programmes qui tournent au-dessus de lui. Plus exactement, c’est la base de
confiance du SE que l’on doit vérifier. C’est-à-dire la plus petite base de code sur laquelle
un bug peut mettre en péril le système en entier au regard d’une propriété. Il convient
donc de réduire cette base de confiance afin de réduire les risques de bugs, et faciliter la
preuve. Sur les SE monolithiques, tout le système tourne en mode privilégié, donc tout
le système a accès aux ressources. Dès lors, il est difficile de réduire la base de confiance.
Les SE à micro-noyau, en revanche, ne font tourner en mode privilégié uniquement le
nécessaire (le noyau correspond à la partie du SE qui tourne en mode privilégié, d’où le

x Résumé en Francais

Addr Space A Addr Space B Addr Space C

Guest 0

GPT

Addr Space A Addr Space B Addr Space C

Guest 1

GPT

Guest 0 Guest 1 Hypervisor

Hypervisor Guest 0Guest 1

HPT

SPT

GVA

IPA

HVA

PA

FIGURE 1: Shadow Page Tables

nom). Il est donc possible, avec ce genre d’architecture, de réduire la base de confiance.
Ainsi ces systèmes sont de meilleures cibles pour la preuve que les précédents.

Notre travail porte sur un hyperviseur à micro-noyau, à base de confiance réduite.
Un hyperviseur est un SE particulier, sur lequel plusieurs SE peuvent eux même tourner.
L’hyperviseur virtualise donc les ressources pour les SE invités, qui eux même les virtu-
alisent pour leur processus. Nous nous sommes intéressés à des propriétés d’isolation de
la mémoire des SE invités. L’isolation peut être découpée en deux parties, l’intégrité et la
confidentialité, que l’on définit comme suit:

• L’intégrité assure que la mémoire d’un SE invité ne peut pas être altérée par un
autre SE invité, à part lorsqu’il a expressément donné la permission de le faire.

• La confidentialité assure que la mémoire d’un SE invité ne peut être lue par un autre
SE invité, à part lorsqu’il a expressément donné la permission de le faire.

L’accès à la mémoire est virtualisée par le SE par le biais des tables de pages. Le SE
maintient des tables de traduction, qui traduisent des adresses virtuelles en adresses
physiques. Plus exactement, elles traduisent des pages d’adresses virtuelles vers des pages
d’adresses physiques pour des questions de performance, d’où le nom table de pages. Le
SE indique au matériel quelle table de pages utiliser pour effectuer la traduction. Un
processus manipule des adresses virtuelles, qui sont traduites à son insu par le matériel
en adresses physiques, en utilisant la table indiquée: la mémoire est virtualisée. Si une
adresse physique n’est pas référencée par une adresse virtuelle dans la table de pages,
elle n’est pas accessible. C’est donc bien le SE qui gère l’accès à la mémoire physique.

L’hyperviseur ajoute encore une couche de virtualisation. Nous présentons la solution
de virtualisation par Shadow Page Tables, qui est utilisée dans l’hyperviseur sur lequel
nous travaillons. Comme le montre la Figure 1, le SE invité gère des tables de pages
pour virtualiser la mémoire de ses processus (Guest Page Tables, GPT). L’hyperviseur
gère lui même des tables de pages pour virtualiser la mémoire de ses invités (Host Page
Tables, HPT). Lorsque un invité tourne, il manipule des adresses virtuelles qui, pour être
traduites en adresses physiques, devraient êtres traduites successivement par les tables
de pages de l’invité puis par celles de l’hyperviseur. Or, sur certaines architectures, nous
ne pouvons indiquer au matériel qu’une seule et unique table de pages pour la traduction
d’adresses. L’hyperviseur crée donc, pour chaque invité, une table de pages qui combine
les tables de pages de l’invité et les siennes, que l’on appelle les Shadow Page Tables
(SPT).

Notre étude s’intéresse principalement à la vérification de l’algorithme de SPT : nous
vérifions qu’il assure bien l’isolation de la mémoire des invités. Nous utilisons pour cela

xi

une méthode de raffinement (ou abstraction). Le principe d’une telle méthode est de mon-
trer que notre système concret correspond à un modèle abstrait, idéalisé, pour pouvoir
prouver les propriétés de haut niveau sur ce modèle abstrait. Pourvu que l’abstraction
respecte certaines contraintes, les propriétés prouvées au niveau abstrait sont valables au
niveau concret. L’intérêt d’une telle méthode est qu’elle permet d’exprimer les propriétés
dans un formalisme de haut niveau, et de raisonner sur un modèle plus simple. En effet,
dans un modèle de code concret, beaucoup d’opérations et de structures sont complexi-
fiées pour des questions d’optimisation et de conformité avec le matériel, c’est le cas par
exemple des tables de pages. Sur un modèle si complexe, il devient difficile de prouver
des propriétés telles que l’isolation, ou même seulement de les exprimer. En fait, la clarté
avec laquelle est formulée la propriété est une composante importante de la confiance: si
la propriété est elle même trop complexe pour pouvoir être comprise facilement, alors il
existe un risque que cette propriété n’aie pas le sens voulu.

Notre contribution est double. La première est la preuve, à un niveau de confiance
élevé, que l’algorithme de gestion de la mémoire assure l’isolation des SE invités. Nous
expliquons le concept de haut niveau de confiance à la Section 2.5, il tient en partie au
fait que notre niveau abstrait est très épuré, la notion de table de pages y a en effet été
totalement abstraite.

Notre seconde contribution est méthodologique. Dans la littérature, il existe de nom-
breux livres sur les meilleurs pratiques de développement logiciel. Ils sont le résultat de
plusieurs années de retour d’expérience, de la part des académiques et des industriels.
La preuve formelle de logiciel n’est pas aussi répandue que le développement logiciel ou
le test, et ce particulièrement dans l’industrie. Dans cette thèse, nous présentons précisé-
ment notre méthodologie. Nous montrons, entre autres, les propriétés du modèle concret
et l’interdépendance de leur preuve ainsi que la manière de concevoir le modèle abstrait.

Le Chapitre 1 présente le contexte et les principales notions qui permettent de com-
prendre notre travail et sa portée. En particulier, nous revenons sur les concepts
d’hyperviseur, de sécurité et de preuve formelle. De plus, nous présentons succinctement
le langage et l’assistant de preuve développé par Prove & Run, que nous utilisons pour
nos modélisations et preuves.

Dans le Chapitre 2, nous faisons un état de l’art de la preuve formelle d’hyperviseurs
et de SE. Nous expliquons plus en détails le principe de preuve par abstraction, et com-
parons notre application de cette méthodologie par rapport à celle faite dans d’autres
projets.

Nous détaillons le modèle concret de l’hyperviseur ainsi que toutes les transitions du
système dans le Chapitre 3. De plus, nous présentons notre modélisation des tables de
pages.

Nous présentons les invariants de notre système dans le Chapitre 4. Les invariants
sont des propriétés valables dans tous les états du système. Nous établissons des pro-
priétés sur les transitions du système, et nous spécifions et prouvons les effets des tran-
sitions liées à la mémoire, et de celles effectuées par les SE invités. Nous prouvons la
préservation des invariants sur ces mêmes transitions.

Ces invariants et propriétés du système concret sont essentiels pour prouver la corre-
spondance avec le modèle abstrait, que nous présentons dans le Chapitre 5. C’est dans
ce chapitre que nous présentons également la fonction d’abstraction, les propriétés de
sécurité et leur preuve ainsi que les preuves de raffinement.

1

Introduction

The numerous bugs and attacks discovered over the past years show that the technologies
that we use in our daily life are not as secure as we would want them to be. We can cite the
attack against the entertainment system of a smart car, through which an attacker could
gain control of the driving system. The attack on the Yahoo accounts, discovered in 2016,
has impacted more than one billion users. Finally, the famous Heartbleed attack over
OpenSSL allowed an attacker to retrieve the private keys of client and servers, rendering
the communication insecure. The fact that technologies handle sensitive data and control
critical mechanisms, and that their use is pervasive in our lives increase the negative
impact of a bug. There is therefore a high need for security.

The first step toward security is testing. Tests indeed allow to uncover early bugs and
verify that, for a certain set of inputs, the program behave as intended. However, if tests
allow to find bugs, they cannot prove their absence. The use of formal methods, on the
contrary, allow to reason about all the possible execution paths of a program. It is usually
more costly and time consuming than testing, yet it is the only mean of ensuring that a
system is compliant with its specifications.

We are interested by operating systems (OSes). An OS is a peace of software that
runs directly on the hardware. It manages the hardware resources for the processes, and
controls the access to them. More precisely, we study a hypervisor, which is a particular
kind of OS that runs several guest OSes on top of itself. Just as an OS does for processes,
an hypervisor manages and virtualize resources for the guest OSes. It is therefore an
important target for security, as a bug in the hypervisor might compromise all the systems
running on top of it.

In this thesis, we present a formal proof that the memory management in a hypervi-
sor provides memory isolation of the guests. We proceed by abstraction, meaning that we
design an abstract model of the hypervisor and prove its correspondence with our con-
crete model. The properties of isolation are proved on the abstract model and transferred
down to the concrete model.

We present the main concepts in Chapter 1. Among others, we present the manage-
ment of memory in hypervisors, we introduce the notion of security, we give an overview
of the existing tools for formal methods and present the one we use.

In the Chapter 2, we review the state of the art of formal proofs about OSes and hyper-
visors. We explain the principle of proof by refinement, and we compare our application
of this methodology to the one done in other projects.

We detail the concrete model of the hypervisor, along with its transitions in Chapter 3.
Furthermore, we present our modeling of the PTs.

We present the invariant properties of our concrete model in Chapter 4. We also spec-
ify and prove the effects of the transitions related to the memory management and to the
guest execution, and prove the preservation of invariants over these transitions.

These properties we prove are essential for the proof of correspondence between the
concrete and abstract model, that we present in Chapter 5. We also present in this chap-
ter the abstraction function, the security properties and their proof, and the refinement
proofs.

3

Chapter 1

Context

Contents
1.1 Hypervisors . 4

1.1.1 Operating System Kernels . 4

1.1.2 Different Types of Hypervisors . 4

1.1.3 Memory Virtualization . 6

1.2 Security Properties . 9

1.2.1 Non-Interference . 9

1.2.2 Variants of Non-Interference . 9

1.3 Formal Methods . 10

1.3.1 Tools for Theorem Proving . 10

1.3.2 Methods for Theorem Proving . 11

1.3.3 Proof by Abstraction . 12

1.3.4 Prove & Run Tools . 12

1.4 Certification . 14

1.5 Key Points . 15

This thesis evolves around three concepts: hypervisors, security, and formal methods,
which we introduce in this chapter.

A hypervisor is a particular kind of Operating System (OS). An Operating System (OS)
is a layer of software that manages the resources of the hardware. All the applications
run on top of it. A hypervisor is an OS which can run other OSes on top of itself. We
introduce OSes and hypervisors in Section 1.1.

In order to build secure systems, the base of the system, that is the OS, must be secure.
Indeed, using secure applications might be worthless if the security mechanisms can be
bypassed at the OS level. This is why we are concerned with their security. Yet, what
does security means?

The term security highly depends on the system we are considering, and of its use.
For example, in a car system, one must prevent an action of the entertainment system to
modify the driving system part. One may also define which information flow are allowed
or not. For example, in modern cars, the volume of the audio is increased when the speed
goes up, in order to mask the noise of the engine, meaning that a flow from the driving
system to the entertainment system is authorized. Similarly, data provided by the GPS
are passed to the entertainment system, but it should not be leaked to a third party. We
present the main kinds of security properties in Section 1.2.

We then introduce the notion of formal methods in Section 1.3. They allow to for-
mally ensure that the design and the implementation of a system enforce the targeted

4 Chapter 1. Context

security properties. The formal approach is the most trustworthy approach, and is re-
quired to reach the highest level of some software certifications. We will briefly develop
certification issues in Section 1.4.

1.1 Hypervisors

1.1.1 Operating System Kernels

An OS is a layer of software that interfaces directly with the hardware through a defined
set of instructions implemented by the hardware. It provides an abstraction of the hard-
ware to processes running on top of it. Consequently an OS decides which part of the
hardware resources are exposed to the processes, thus having the complete control over
the resources access. Another consequence is that the implementation of a user program
can usually be independent of the underlying platform (e.g. ARM [Arm] or Intel [X86]).

More generally, an OS virtualizes resources, i.e. it does not only abstract them but also
multiplex them. Virtualization gives processes the illusion of running alone on the OS,
whereas the resources are shared by several processes. Virtualization allows the OS to
share the resources, but it also contributes to securely isolate resources of the different
processes. We will develop the virtualization of memory in more depths in Section 1.1.3.

Kernels Hardware architectures provide at least two modes, a unprivileged mode and
a privileged mode. The code running in privileged mode has access to all the resources,
while only a restricted set of resources is available to code running in unprivileged mode.
The OS, more exactly the kernel of the OS runs in the most privileged mode. The ker-
nel of an OS is the mandatory part of the OS common to all other software. Common
OSes such as Linux, OS-X or Windows have monolithic kernels, meaning that the ker-
nel corresponds to the whole OS. It implies that all the modules such as the file system
or the device drivers run in the privileged mode. Consequently, a bug in one module
jeopardizes the whole system.

On the contrary, in a micro-kernel based OS, everything that can be put outside the
kernel is removed from the kernel [Lie95]. Micro-kernels are more modular, as depicted
in Figures 1.1. They are therefore intrinsically more robust and are particularly conve-
nient to ensure a good separation between components.

The kernel is always part of the base of code which is critical for the system security,
called the Trusted Computing Base (TCB). Since micro-kernel based OSes have smaller
kernels, they usually have a reduced TCB. Yet some components can hardly be removed
from the TCB, or even from the micro-kernel. The memory virtualization mechanism for
example controls the accesses to memory. If not trusted, the memory can be corrupted or
leaked. Similarly, the basic IPC mechanism, which manages the message passing opera-
tion between processes, should be trusted. The process manager, which decides where to
allocate new processes, is sometimes implemented outside the kernel, but performs too
sensitive operations to be put outside of the TCB [Les15]. The scheduler, which decides
which process is to be run, is considered as sensitive for some particular applications, as
it can prevent a process to run.

1.1.2 Different Types of Hypervisors

A hypervisor is a particular kind of OS that introduces an additional level of virtualiza-
tion. Hypervisors virtualize the whole hardware, so that several OSes run on the same

1.1. Hypervisors 5

Process Process Process

MONOLITHIC KERNEL

Hardware

Process Process Process

D
ri

ve
r

Fi
le

Sy
st

em

T e
rm

in
al

Se
rv

er

Se
rv

er

A
pp

lic
at

io
n

IP
C

MICRO-KERNEL

Hardware

FIGURE 1.1: Monolithic versus Micro-Kernel based OS

platform. This way, the resources virtualized by OSes for processes are themselves vir-
tualized by the hypervisor. We call an OS running on top of a hypervisor a guest OS, or
guest.

The hypervisor provides a virtual machine to the guests running on top of it. The
definition given by Popek and Goldberg in 1974 of a virtual machine is the following: "A
virtual machine is taken to be an efficient, isolated duplicate of the real machine" [PG74].
It is also specified in [PG74] that hypervisors should:

• Provide an environment almost identical to the original machine.

• Not affect performances too much.

• Be in complete control of system resources.

A hypervisor might run directly on the hardware, we call it bare-metal or type-1 hy-
pervisor. It is the case for Xen [Xen] or VMware ESXi [Esx]. Or a hypervisor might run
on top of an OS, as an application, in this case we call it a type-2 hypervisor. VMware
Workstation [Ws], VirtualBox [Vbx] or QEMU [Qem] are type-2 hypervisors.

A guest OS expects to run directly on the hardware, in a privileged mode. Yet when
it runs on a hypervisor, the hypervisor runs on the most privileged mode, thus limiting
the capacity of the guest. The hypervisor needs to be able to spot and virtualize all the
instructions. Usually, if the guest makes a privileged instruction, the hardware switches
to the most privileged mode, the hypervisor virtualizes the instruction and restores the
execution of the guest. However, some guest instructions are non-virtualizable. They
would just fail silently, thus preventing the hypervisor to be aware of it and virtualize
them. For instance, in ARMv7, access to privileged bits of the current program status
register (CPSR) has an undefined behavior in unprivileged mode [DN10]. Three main
solutions exist:

Binary Translation The first solution, used by VMware since 1998, is the binary trans-
lation [Vir]. Basically, the hypervisor analyses the binary of the guest instructions and
redirect them on the fly to virtualized instructions. This solution incurs overhead. How-
ever it does not require the guest to be modified, the guest is said to be fully-virtualized. It
is thus highly compatible with any legacy OS.

6 Chapter 1. Context

Para-virtualization The second solution is called para-virtualization (or OS assisted vir-
tualization). This solution implies that the guest is aware of virtualization. The hyper-
visor provides an interface to the guest, so that the guest can call it through hypercalls
to perform the instructions on its behalf instead of trying to access directly privileged
instructions. As the guest is modified, the compatibility might be poor, depending on
how much the OS is modified. On the other hand, modifying the guest is a chance to
optimize the calls and enhance performances. Para-virtualization has proved to be an
efficient solution [Chi07].

Hardware Assisted Solution This solution was introduced ten years ago on Intel and
AMD platforms, through virtualization extensions (Intel VT and AMD-V). It was later in-
troduced on ARM. Hardware virtualization extensions provide additional registers and
levels of privileges. The guest can run in a level of privilege higher than user level but
lower than hypervisor level. Privileged registers are duplicated so that a guest can mod-
ify registers without trapping to the hypervisor. Consequently, the hypervisor does not
need to virtualize each privileged instruction, it only has to parameterize the hardware
virtualization extensions. Hardware virtualization solution allows to run fully virtual-
ized guests, without needing to provide a binary translation. This solution is thus the
simplest and the most portable of the three solutions presented.

We work on a para-virtualized, type-1 hypervisor. In the next section we introduce
details about the Memory Management Unit (MMU). We present in more depths the
hardware assisted and para-virtualization solutions for memory virtualization.

1.1.3 Memory Virtualization

When memory is virtualized, each entity runs as if it had the whole memory for itself,
while the underlying platform shares the memory between several entities. In a classic
OS with MMU, the OS manages the translations from virtual to physical addresses. In
the case of hypervision, a level of translation is added. The hypervisor may either use a
hardware virtualization extension (if available) or implement a virtualization mechanism
in software.

Memory Management in an OS

A classical OS maintains some tables of translation from virtual to physical addresses
[SGG12, Chapter 9]. This tables are called Page Tables (PTs), basically because the mem-
ory is decomposed into pages, and memory mappings between virtual and physical ad-
dresses are done at the granularity of a page. The hardware MMU uses the PTs main-
tained by the OS in order to translate virtual addresses to physical addresses. More
specifically, the OS indicates to the hardware which PT to use through a register of the
MMU (CR3 for x86, TTBR0 for ARM).

We illustrate a two levels PT in Figure 1.2. The virtual address of a page is decom-
posed into two indexes. The first is an index in the first level PT whereas the second index
is an index in the second level PT. The entry fetched in the first level PT contains the ad-
dress of a second level PT. We take the entry corresponding to the second level index in
this second level PT. This entry contains the address of a physical page, with rights asso-
ciated to it. We will explain in more details the mechanism of translation in Section 3.2.
As can be seen, many entries in the PTs are empty, because a mapping from a virtual to a

1.1. Hypervisors 7

physical page is added only when needed. For this reason the use of several levels of PTs
saves memory space.

Virtual Address Space

OS Physical Memory

va

pa

PT Base

idx1

idx2

descr1
descr1

descr1

descr2

Level 1 PT
Level 2 PTs

FIGURE 1.2: Two-Level Page Table

The OS maintains distinct PTs for each process and for itself. Each time a context
switch is performed, the OS updates the dedicated MMU register to change the PT to be
used by the MMU. The MMU ensures that if no mapping exists between a virtual and
a physical address in the current PT, then this physical address cannot be accessed. If a
process tries to access a virtual address which is not mapped in the current PT, then the
MMU triggers a page fault. The OS then handles the fault. For example it may allocate
a new physical page for the process and maps the virtual address to it in the PT, or just
crash. The use of the MMU allows the OS to have the full control over the software
accesses to the physical addresses, and thus helps ensuring isolation between processes.

Memory Management in a Hypervisor

In the case of a hypervisor, guest OSes still manage their own Guest Page Tables (GPTs).
However, GPTs do not translate Guest Virtual Addresses (GVAs) to Physical Addresses
(PAs) directly, as only the hypervisor has enough privileges to access PAs.

As depicted in figure 1.3, GPTs translate GVAs to Intermediate Physical Addresses
(IPAs) which are not physical addresses, they correspond, up to a translation, to Hyper-
visor Virtual Addresses (HVAs). It means that they are virtualized by the hypervisor:
another PT must be used to translate them into physical addresses. The Hypervisor Page
Tables (HPTs) handle this second translation, from HVAs into PAs.

Hardware Assisted Solution With the hardware virtualization extensions [Smm], the
MMU takes two PT pointers. Therefore the guest OS can specify which GPT it uses while
the hypervisor specifies which HPT it uses. The MMU then handles the whole translation
from GVA to PA. The virtualization being offloaded to the hardware, this solution is the
most simple to implement and presents the highest performances.

8 Chapter 1. Context

Addr Space A Addr Space B Addr Space C

Guest 0

GPT

Addr Space A Addr Space B Addr Space C

Guest 1

GPT

Guest 0 Guest 1 Hypervisor

Hypervisor Guest 0Guest 1

HPT

SPT

GVA

IPA

HVA

PA

FIGURE 1.3: Shadow Page Tables

Para-virtualization: Shadow Page Tables The most common software solution is the
one based on Shadow Page Tables (SPTs). SPTs are maintained by the hypervisor and
translate the virtual addresses of the guest (GVA) to physical addresses (PA), as illustrated
in Figure 1.3. For clarity’s sake, we here consider that the IPA and HVA depicted in
the Figure 1.3 are equal and refer to them as IPA. The hypervisor creates and manages
the mappings of the SPT by combining the PTs of the guest (GPT) and the PTs of the
hypervisor (HPT). For example when a page fault occurs at GVA gva, the hypervisor is
notified. It goes through the GPTs to find out if any mapping from gva to a IPA ipa is
present in the GPTs. If there is one, it computes the physical address pa corresponding
to ipa and, provided the guest is allowed to access this part of the memory, it adds the
mapping from gva to pa in the SPTs. If the gva is not present in the GPTs, a page fault
is triggered by the MMU. The way of handling the page fault depends on the hypervisor
considered. It can for example inject the page fault into the guest, so that the guest can
add the mapping to the GPTs. Then the execution faults again on gva, because it is not
yet in the SPTs, and it brings us back to the first case.

In order to keep the SPTs in synchronization with the GPTs of the guest, the hyper-
visor traps and emulates the Translation Lookaside Buffer (TLB) instructions performed
by the guest. The TLB is a hardware cache that stores the most used address transla-
tions [ADAD14, Chapter 19]. It speeds up the translation because the hardware does
not need to walk the PTs each time. When an OS modifies its PTs, it needs to keep the
TLB in synchronization with the PTs. Basically the OS can invalidate a single entry or all
the entries of the TLB. The SPT algorithm of a hypervisor intercepts these TLB instruc-
tions and emulate them, by removing one or several mappings from the SPT. That is why
shadowing the PTs is often referred to as virtualizing the TLB.

Para-virtualization: Direct Paging Another way of handling translations when using
para-virtualization is direct paging. In this case, the guest maintains direct translations
from GVAs to PAs. It means that the IPAs depicted in Figure 1.3 are equal to the PAs, thus
the hypervisor does not maintain any PT for the guest. In particular, there is no concept
of SPT. The guest has only read access to the GPTs, thus every attempt of modification
by the guest traps, so that the hypervisor retains control over the memory accesses.

This solution implies more modifications to the guests, so it is the less portable solu-
tion of the three presented. On the other hand, it simplifies the virtualization code, thus
the implementation is less prone to error than for the SPT. Xen, which is one of the most
wildly used hypervisor, uses direct paging [Chi07, Chapter 9].

1.2. Security Properties 9

1.2 Security Properties

The security property we target is isolation of the guests, more specifically, isolation of
their memory and registers, as defined in [Les15]. Basically, we want to show that no
guest is able to read or write to some predefined secret memory parts or registers of other
guests. We do not prove functional properties on our system, for example, we do not
ensure formally that the execution is never aborted. From a security perspective, the
important point is that the security properties hold for every state of the system.

Our property of interest is a weaker version of non-interference. Indeed,
non-interference is usually too strong for kernels, as we do want guests to interfere. We
present non-interference in the next section, and weaker versions in Section 1.2.2.

1.2.1 Non-Interference

A non-interference policy defines which domain is allowed to flow information to other
domains. We note A B if a flow is authorized from domain A to domain B. Given
such a policy, the property of non-interference ensures that no other flow except the ones
specified in the policy is allowed. Formally, the non-interference has been specified with
a purge function [Rus92]. Consider an initial state of a system, and a sequence of actions
from this state. We purge the actions not related to a domain A, i.e. we remove all the
actions that are not allowed to interfere with domain A. We compare the output of the
first sequence of actions, and the output of the purged sequence. If the two outputs are
equals, then there is no flow except the one allowed by the policy. Intuitively, it means
that A cannot learn anything about the previous sequence of actions, except from the
action whose domain has a flow to A. Instead of being stated with the whole trace of
events, non-interference can equivalently be stated with the unwinding condition, which
is a step-wise property [Rus92]. Usually this condition is used for mechanized proofs
instead of the purge version, for its convenience.

Non-interference is strong, and does not make sense for processes (resp. guests) when
they are allowed to communicate because they do interfere. Usually we consider weaker
properties derived from non-interference.

1.2.2 Variants of Non-Interference

Intransitive Non-Interference In a non-interference policy, ifA K andK B , then
A B must be authorized. As the name suggests, intransitive non-interference is not
transitive. It means that A and B are considered non-interferents as long as the flow of
information is passed through an authorized channel, in our example the channel is K.
Intuitively, in an OS, K would be a part of the kernel, and A and B two processes. This
property can also be stated with a purge function or an unwinding condition.

We will introduce later seL4 [Kle+09], a formally proved micro-kernel. Klein et al
proved a more general version of intransitive non-interference. Basically in their defini-
tion, they use a weaker unwinding condition than the one of intransitive non-interference,
and the domain of an action is not defined only by the action itself but also by some parts
of the current state.

Isolation The property that we target is isolation of the guest OSes, which is also a
weaker version of non interference [Les15]. Isolation of the guest OSes can be decom-
posed in two sub-properties: integrity and confidentiality. The integrity property for one

10 Chapter 1. Context

guest ensures that its resources are not modified by other guests, unless it has given the
authorization to do so. The confidentiality for one guest ensures that executions of other
guests do not depend on its resources, unless it has given the authorization to do so.

Integrity is easier to state than confidentiality. Indeed the effects of an integrity flaw
are easily observable on a trace of execution: a data has been modified. Confidentiality
is not directly observable, it implies to compare two traces of executions. We express
confidentiality in a similar fashion as what is done with the purge function for non-
interference. Let g be a guest, s and t two states. We write s ∼

g
t if s and t are equal

except on the secrets of guest g. We compare two finite traces of execution from s and
t, in which g does not run. Then we verify that the resulting two states s′ and t′ verify
s′ ∼

g
t′. Intuitively, it means that the execution of other guests than g does not depend on

the secrets of g, hence the other guests do not know about g’s secrets. If a secret is shared
by several guests, then we consider a trace of execution where none of the guests sharing
the secret might have run.

The integrity property is similar to the non-exfiltration property presented by Nemati
et al. in [NGD15]. Confidentiality is similar to their non-infiltration. We detail their work
in Chapter 2.

1.3 Formal Methods

The first step to build a correct or secure program is to make tests. Tests allow to check
the functionalities of a program, and help the programmer to detect bugs at early stage of
development. However tests are not exhaustive. Among the infinity of possible execution
path of a program, only a few are actually tested. The utility of a test suite is measured
by its code coverage, i.e. the part of the code explored by the tests.

Some automated test tools, like fuzzers, allow to improve the code coverage. Fuzzers
[Afl; Pea] execute a program continuously, with different inputs each time. They instru-
ment the program and are able to chose inputs to extend the number of paths explored.
They are widely used in industry, and they are also used by attackers to find and exploit
flaws in the code.

Yet even advanced testing methods cannot cover all the possible execution paths. For-
mal methods do.

1.3.1 Tools for Theorem Proving

Formal method tools rely on mathematics to specify and verify programs. Contrarily to
testing, which proves the presence of bugs, formal methods show the absence of bugs. We
present below three types of tools, but our list is not exhaustive [Alm+11, Chapter 2].

Model Checkers Model Checkers are automated tools for verifying finite state program
[Cbm]. They generate an abstraction of the program, a model, and verify that all the
states of the model respect some specifications. The state space of the model is verified
exhaustively. Model checkers are automated tools, they require no human interaction
for proofs. However the execution time and memory consumption rise exponentially
with the number of states. The properties can only be proved on small portion of the
program, or on a reduced setup. Bounded model checkers reduce the state space by only
unwinding loops a bounded number of times.

1.3. Formal Methods 11

SMT Solvers Satisfiability Modulo Theories (SMT) solvers are able to decide whether a
first order formula is satisfiable regarding a certain theory. The level of expressiveness of
the properties is generally reduced. However these tools present the advantage of being
fully automated. Among the most famous SMT solvers, we can cite Z3 [Z3], alt-Ergo [Alt]
and Yices [Dut14].

Interactive Theorem Provers Interactive theorem prover such as Coq [Coq], Isabelle
[Isa] or Prove & Run tools, are not fully automated, but they allow to prove more ex-
pressive properties. For example, Coq and Isabelle allow to express properties of higher
order logic. Because the proofs require interaction with the user, the use of such tools is
costly and less adaptable than the previous ones. On the other hand, only this kind of
tools enables to write such expressive properties.

1.3.2 Methods for Theorem Proving

Different methods can be used to achieve formal verification of some properties on a
system. We present two kinds of methods which have proved suitable for OS verification.

Annotations

Annotations are used to prove behavioral properties of a program. Pre and post con-
ditions specified at various steps of the program generate proof obligations that are dis-
charged automatically using some SMT solvers or model checkers, or interactively using
interactive theorem provers.

Some tools, such as Dafny [Lei10], require a modeling of the program in a specific
language. The annotation are then written in this same language.

Other tools allow to write annotations directly into the C code. The ANSI/ISO C
Specification Langage (ACSL) is an annotation language for C code, part of the Frama-C
project [Acs]. The Verifier for concurrent C code VCC [Coh+09] also allows to write an-
notations directly into the C code. VCC provides means to reason about concurrency. For
example it is possible to specify by whom an element can be modified at each point of
the program, thus making it possible to reason about shared values in a concurrent envi-
ronment [Mos+09]. VCC has been used to achieve a large project of system verification,
as we will show in Section 2.3.2.

Modeling and Interactive Proving

Other tools such as Coq, Isabelle, Why3, event-B are preferred when proving properties
on the whole model [Coq; Isa; Why; Eve]. The models along with the properties can be
written in the corresponding specification language. The proof goals are either verified
with the integrated theorem prover (this is the case for Coq or Isabelle), or verified with
external theorem provers (this is the case for Why3 and event-B). For example, Why3 is
compatible with 16 SMT solvers, and 3 interactive provers.

We use a tool developed by Prove & Run, which belongs to the second category. The
model and the properties are written in the same Specification and Modeling language,
called Smart. C code can then be generated from Smart.

12 Chapter 1. Context

st st ′

α(st) α(st)’
=
α(st ′)

CONCRETE TRANSITION

ABSTRACT TRANSITION

A
B

ST
R

A
C

T
IO

N

A
B

ST
R

A
C

T
IO

N

FIGURE 1.4: Commutation Diagram

1.3.3 Proof by Abstraction

When verifying properties, one rely on low-level properties, such as the absence of over-
flows or out of boundaries accesses. These low-level properties are needed in order to
prove more elaborated ones. For example, as we will explain in more detail in Section 3.2,
a PT is composed of several tables, each entry of a table leads to another table or to a phys-
ical page with some rights associated to it. If the goal is to specify which mapping from a
virtual to a physical address is present in a PT, one would have to prove first the low-level
properties mentioned previously, so that the PT can effectively be interpreted as a partial
function from virtual to physical addresses with rights.

At some point, on large systems, it becomes difficult to focus on high-level proper-
ties without being overwhelmed by low-level details. Furthermore, high-level properties
may be difficult to express, because they lack high-level structures.

The proof by refinement (or abstraction) addresses this problem. The principle is to
build an abstract model, which uses abstract structures for which the low-level proper-
ties intrinsically hold. For example, in the work we present in this manuscript, we have
totally abstracted the structure of PT. The abstract memory of a guest is composed of
memory cells, which are tagged with some rights. These tags are what remains of PTs af-
ter abstraction. The link between the concrete and the abstract model is formally proved.
To do so we prove that if an abstract state corresponds to a concrete state, and if a tran-
sition is possible from this concrete state, then an abstract transition is possible and the
resulting abstract state corresponds to the resulting concrete state. This is also referred to
as commutation proof, and is illustrated in Figure 1.4.

The interesting result of such an approach is when the properties proved on the ab-
stract state also hold on the concrete state. This is not true for every property, we will
develop this aspect in deeper details in Section 2.4. In our case, the key argument for
preservation are that we use a function from concrete to abstract models, instead of a
relation, and that both our models are deterministic.

The proof by refinement has been successfully applied to some large projects, such as
the formally verified micro-kernel seL4 [Kle+09], or ProvenCore, the verified OS micro-
kernel developed by Prove & Run [Les15].

1.3.4 Prove & Run Tools

We used the tool suite developed by Prove & Run to carry our modeling and proofs. We
give a short introduction to the tools.

The language is called Smart, and is used both to write the program and its specifica-
tions. It’s a pure and functional language and does not support higher order functions.
Rich properties can be expressed, in particular quantifiers are supported.

1.3. Formal Methods 13

The prover is interactive, but can also discharge trivial goals automatically. The figure
1.7 shows a screenshot of the environment. We explain below the basis of the language
and the prover, on a small example.

In Smart, a predicate is given input parameters and returns output parameters, but
it can also pass information through an other kind of output, called labels. The output
parameters are recognizable by the "+" on their right. The label is a sort of exit flag, and
can take whatever value we want. Most of the time a predicate raises the labels true or
false, or only true. Exit labels are declared after parameters with the following syntax:
->[label1, label2, ...].

Figure 1.5 shows the signature of a predicate in Smart. As we will see on Section 3.2,
we work with two levels of PTs. The first level PT is merely an array of first level descrip-
tors. The predicate of Figure 1.5 gets a first level descriptor from memory. It takes as input
a memory and a physical address ppde. If the size of a first level descriptor plus the ad-
dress ppde exceeds the size of the memory, then the access is out of memory boundaries,
and the predicate raises oob. If not, the function returns the first level descriptor located
at ppde, and raises true.

public g e t _ f s t _ l e v e l _ d e s c r _ p (mem mem, addr ppde ,
f s t _ l e v e l _ d e s c r descr1 +) ~> [t rue , oob]

/∗ I f the f i r s t l e v e l d e s c r i p t o r a t address [pde] exceeds the
∗ memory boundaries , r a i s e s [>oob] .
∗ Else r a i s e s [> true] and re tu rn s the f i r s t l e v e l d e s c r i p t o r
∗ lo ca te d at phys ica l address [ppde] in the memory [mem] .
∗/

program { . . . some implementation . . . }

FIGURE 1.5: Example of the Signature of a Predicate in Smart

A lemma is a predicate which we have to prove always raises true. We show in Fig-
ure 1.6 a lemma which states under which conditions the predicate just presented cannot
raise oob. The notation p => means if the predicate p raises the label true. The question
mark in front of a predicate is a label transformer, it redirects all the labels other than true
to false. The lemma in Figure 1.6 is to be read as if all the premises raise true then the last
predicate raises true.

More specifically, a first level PT is a table containing maximum NUM_DIR0_ENTRIES
entries. This lemmas states that if we have some well-formedness properties verified on
valid guests, and if the guest we consider is valid, then accessing an entry at an index
lesser than NUM_DIR0_ENTRIES in the first level PT of that guest succeeds.

The screenshot of the environment in Figure 1.7 shows that our lemma generates a
proof obligation (on the right part of the screen). Each node corresponds to a tactic we
have used: instantiate some quantifiers, compose with some lemmas, and unfold a def-
inition. A right click on a proof node shows the list of available interactive tactics. The
nodes are colored in red when the proof has not been completed, green otherwise. For
example, the green node on the bottom of the screenshot corresponds to a path of the
proof that has been completed.

As you can see in the proof view, the proofs are made to be humanly readable, in order
to ease the audit of the code. This is an important point when it comes to certification.

14 Chapter 1. Context

public lemma v t l b _ d 0 _ g e t _ f s t _ l e v e l (mem mem, vcpus vcpus ,
v a l i d s v a l i d s , vcpu_idx vcpu_idx , addr d0p , uint32 sn ,
uint32 i 0)
/∗ There i s no out of boundaries a c c e s s when f e t c h i n g a f i r s t l e v e l
∗ d e s c r i p t o r of a va l id SPT .
∗/

program
// Var i ab le s d e c l a r a t i o n
{ { vcpu_t vcpu , addr ppde } } {

// Well formedness p r o p e r t i e s on SPTs of va l id guests
pool_vt lb_reg ion (vcpus , v a l i d s) =>
spt_vv_pool_d0 (vcpus , v a l i d s) =>
// The guest considered i s va l id
i s _ v a l i d (v a l i d s , vcpu_addr) =>
// Get the guest
? get (vcpus , vcpu_idx , vcpu+) =>
// [d0p] i s the phys ica l address of a SPT of t h a t guest
reachable_dir0_sn (vcpu , d0p , sn) =>
// [i 0] i s a va l id index
l t (i 0 , NUM_DIR0_ENTRIES) =>
// Get the address of the [i 0] th entry in the SPT
get_pde_addr (d0p , i 0 , ppde+) =>
// Get the d e s c r i p t o r a t t h i s address
? g e t _ f s t _ l e v e l _ d e s c r _ p (mem, ppde , _) ;

}

FIGURE 1.6: Example of Lemma Written in Smart

1.4 Certification

The Common Criteria (CC) is an international standard at the basis of certification [Cc].
It defines several Evaluation Assurance Levels (EALs). A high EAL level means that the
claimed security properties are enforced with a strong level of assurance. The lowest
levels of certification only require informal analysis, whereas the highest levels require
semi-formal or formal analysis. The highest level of assurance, namely EAL7 requires
formal proofs. The EAL6 level, just below, is semi-formal. It basically means that the
specifications should be structured and not ambiguous. In particular, EAL6 does not re-
quire machine-checked proofs, except for the security policy model, as we explain below.

The CC prescribes the use of several abstraction models. The highest and more ab-
stract model specifies the security policy, and must be formal for the two highest EALs
(EAL6 and EAL7). The next lower model is the functional specification of the system.
It should be semi-formal for EAL6 and formal for EAL7. Similarly, the last and lowest
model, which is the implementation design, should be specified semi-formally for EAL6
and formally for EAL7. A formal proof of correspondence between these levels is re-
quired for EAL7, whereas EAL6 requires a manual demonstration.

The DO-178 is another standard, targeted to develop avionic systems [Do1]. The crit-
ical aspect of the software is rated from E (a failure has no effects) to A (a failure is catas-
trophic). Given this level, the software development must be conducted following some
particular guidelines. For example the level E is not submitted to any constraints, the
level D must be documented, whereas the level A must be extensively tested. The most
recent version of this standard, the DO-178C, introduces the notion of formal methods

1.4. Certification 15

FIGURE 1.7: Screenshot of the Proof Environment

[Jac12].
The ARINC 653 is a standard for separation kernel development for avionic appli-

cation purposes. A system compliant with this standard is supposed to be able to run
several processes with different DO-178 levels on the same platform in a safe manner. In
other words it should be able to provide a certain degree of isolation. Zhao et al. have
conducted proofs on a formalized model of the ARINC 653 standard in order to verify
the information flow security properties [Zha+16]. They have proved that the standard
presented some flaws, and have exhibited the presence of these covert channels in two
ARINC 653 compliant separation kernels.

1.5 Key Points

• An hypervisor manages and virtualizes hardware resources for the guest OSes.
The control of memory accesses is done through the management of PTs.

• We target the isolation of guests memory. The property relies on the good man-
agement of the PTs maintained by the hypervisor for the guests, called the
Shadow Page Tables.

• We use the proof by abstraction technique. We show the correspondence between
a low-level and a high-level model, where the properties holds intrinsically.

• We use Prove & Run tools to write our models, express our properties and
prove them.

17

Chapter 2

State of the Art

Contents
2.1 Early System Verification Projects . 18

2.2 Recent OS Verification Projects . 19

2.2.1 SeL4 . 19

2.3 Hypervisor Verification . 20

2.3.1 Prosper . 21

2.3.2 Verisoft XT . 21

2.4 The Methodology of Proof by Abstraction 22

2.4.1 Commutation . 23

2.4.2 Transferring Properties to the Concrete Model 23

2.4.3 Comparison of our Abstraction to State of the Art 25

2.5 Contributions . 26

2.6 Overview of the Chapters . 27

2.7 Key Points . 29

Forty years ago already, OSes were recognized as being a crucial component for se-
curity. Some early verification projects aimed at verifying properties of OSes. However
tools for formal methods were not mature enough, and did not allow to consider realistic
OSes, nor to conduct the proof in reasonable time. We outline these projects in Section 2.1.

The system verification field grew in importance in the years 2000. Several huge
projects were undertaken, namely seL4 and the Verisoft project, which achieved out-
standing results. Formal verification of OSes began to be adopted in the industry, mainly
in the avionic domain. We give an overview of OS verification in Section 2.2. A compre-
hensive state of the art on OS verification until 2009 has been presented in [Kle09].

Hypervisor verification projects started to emerge shortly afterwards. The extensive
use of hypervisors began in the early 2000. For example, Xen 1.0 was released after 2003,
and VMware launched VMware workstation in 1999. Cloud services have known a spec-
tacular success. Amazon Web Service, the leader for cloud services, whose solution is
based on Xen, declared having more than 1 million costumers in 2015. Although similar,
hypervisor and OS verification present some key differences, particularly when it comes
to memory management. We present the state of the art of hypervisors in a separate
section (Section 2.3).

Finally, in Section 2.4 we give details about the proof by abstraction methodology, that
have been used in several projects, including ours. We show how our approach converge
or diverge from the state of the art.

18 Chapter 2. State of the Art

2.1 Early System Verification Projects

UCLA Secure Unix The UCLA Data Secure Unix OS is a general purpose operating
system with verifiable security properties [Pop+79]. The OS was developed trying to
keep the system’s structure simple, they implemented it in Pascal, a high-level functional
language. It supports the Unix interface, thus it provides a non-trivial set of system calls.

Their design is modular, and they separate the mechanism from the policy. More
specifically, the kernel implements four abstract types: the processes, the pages, the de-
vices and the capabilities. A set of operations is available for each type. For example, a
capability might be granted or revoked. The policy then specifies which operation is al-
lowed for a particular object. The policy is managed by a special process called the policy
manager. In particular, only this process may grant a capability.

Walker et al used the proof by abstraction technique. They reported that the perfor-
mance of their OS was finally poor, and that the proofs where tedious due to the unap-
propriated tools [WKP80] at this time. Even if they only reached 20 percent of their proof
goals, their modeling and specification work allowed them to discover many flaws.

PSOS The Provably Secure Operating System is a formally specified tagged-capability
hierarchical system architecture [NF03; FN79]. Hierarchical system architecture, or lay-
ered architecture, means that the system is built by layers, and that every layer is an
implementation of the upper layer. In the uppest layer we find user abstraction, whereas
the lowest layer contains the capabilities. In a layered architecture, a functionality is im-
plemented in a level where irrelevant details for its implementation are not visible, i.e. in
the highest level that allows to express it. Contrarily to the abstraction method, a level
is not an abstraction of another level, a functionality is usually present in only one level.
The goals of such an approach is to build a modular system, and to get rid of details
that are not needed for reasoning at some levels. In PSOS, capabilities have a unique
identifier and cannot be forged. This is enforced by the hardware: each capability has a
tag unalterable by programs, so that hardware can recognize capabilities and forbid their
modifications.

Feiertag and Neumann followed the Hierarchical Development Methodology, which
involves a clear separation of the seven stages of realization. Each layer of the kernel is
composed of one or a small number of modules. The five first stages of the methodology
concern the conceptualization, the definition of the interface of each module, the formal
specification of the modules and the formal representation of the data structure of each
layer. The sixth stage concern the abstract implementation of a layer with the data struc-
tures of a lower level. The implementation into an executable program is done in the
last stage. They wrote their specifications with the SPECification and Assertion language
called SPECIAL.

Kit Bevier et al. developed the Kernel for Isolated Tasks to study the verification of the
isolation of processes [Bev89]. Kit is small and very simple; there is no dynamic creation
of processes or allocation of objects. Processes do not share memory, and protection of
memory is not done through common virtualization technique but rather by attributing
to each process a predefined segment in memory. Yet the task isolation property was
entirely formally verified, using the Boyer-Moor theorem prover. To achieve this, they
proved strong properties such as: the termination of kernel routines, the correctness of
the address space abstraction, the isolation of the operating system from tasks, and that

2.2. Recent OS Verification Projects 19

the execution of the task is never done in supervisor mode. They were the first to prove
the correct implementation of a complete OS.

2.2 Recent OS Verification Projects

At the border between early and recent verification projects, we can mention the Fiasco
and the EROS kernels. The VFiasco project aimed at verifying parts of the Fiasco kernel,
which stems from the L4 micro-kernel family [HT05]. They formalized the semantics
for a part of C++, including some behaviors that are not specified by the standards, yet
needed for their OS code.

The Extremely Reliable Operating System (EROS) is a capability based kernel de-
signed for security [SH02]. The model has been verified (although manually), but the
refinement to implementation level has not. Its successor, the Coyotos project was sup-
posed to be verified at implementation level, and to reach the EAL7 certification. How-
ever the last publication date back from 2008.

The Integrity-178B kernel is a commercial OS for avionic purpose [Ric10]. It was de-
veloped by GreenHills and has reached an EAL6 advanced CC certification. They certifi-
cate was delivered on a previous version of the CC, which makes it difficult to compare
with the CC as presented in Section 1.4. Basically, the specification model and the func-
tional specification level of the Integrity-178B kernel are formal whereas the lowest model
is semi-formal.

Similarly, the separation kernel PikeOS was developed for avionic application pur-
poses, as part of the Verisoft XT project (see Section 2.3.2) [BB09]. They proved, on an
abstract model, that there were no interference between the partitions [Bau+11]. Both
Integrity-178B and PikeOS are ARINC 653 compliant.

Prove & Core is a microkernel like OS developed by Prove & Run [Les15]. The proof
of isolation is almost completed at the time of writting. Although we proved a similar
property on the memory, the memory management in an OS differs a lot from the mem-
ory management in a hypervisor.

In the section below, we describe the seL4 project. This kernel uses a capability system
similar to EROS, and is from the L4 family, as is VFiasco.

2.2.1 SeL4

SeL4 is the first microkernel whose implementation functional correctness and security
properties have been proved [Kle+09]. It constitutes a major step in the field of OS ver-
ification. The whole project took 29 person-years, among which 11 concern the proof of
functional correctness of SeL4, and 4.1 the proof of the security properties.

The proof was conducted by abstraction. They proved the functional correctness from
the binary executable to the most abstract state. The abstract state involves high-level
structures. More models are developed on it, each one being designed for proving a
particular property. We detail them below.

The protection state is the part of the global state which is responsible for managing
the access rights. The protection state defines the authorities entities have over each other,
and how entities might modify the protection state. The protection state is not static, and
some authorities might be redundant, which render reasoning difficult. To get over these
issues, they introduced an access control policy model which abstract the protection state
into a static policy. Integrity was proved on this model [Sew+11].

20 Chapter 2. State of the Art

Murray et al abstracted this policy into an information-flow policy and proved con-
fidentiality on this model, which is a variant of intransitive non-interference [Mur+12;
Mur+13]. The scheduler is allowed to flow to any partition, but no partition is allowed to
flow to the scheduler. Otherwise the information flow property would be meaningless.
Proving confidentiality implied determinising the system [DBK14a] and modifying the
scheduler, it required 5 times the effort of proving integrity and authority confinement.

The properties of integrity and confidentiality differ from our properties. Their sys-
tem is more generic than ours, the seL4 kernel is indeed highly configurable, thus the
properties their proofs depend on the particular policy defined in the initial setup.

Our work is related to theirs because we used a similar approach, by successive re-
finements. However the order of magnitude of our work is not comparable to theirs. Our
kernel is much smaller than seL4, we did not prove functional correctness down to the
binary, and we only prove properties about the memory management part. In addition,
the design of the hypervisor on which we work differs significantly from seL4. For exam-
ple we do not have any notion of capabilities, whereas capabilities are at the core of seL4
access right enforcement. Finally, the SPT management is a feature of a hypervisor. Al-
though seL4 can be used as a hypervisor, by combining it with seL4-VMM, the memory
management in the VMM has not be proved to our knowledge.

2.3 Hypervisor Verification

Hypervisor verification projects are more recent, the oldest related work studied here
is from 2009. The existing projects vary a lot in the methodology used, the properties
targeted and the maturity of the project. Yet interestingly, many of them have published
about the memory management, which is considered as a critical part of the system.

The eXtensible and Modular Hypervisor Framework (XMHF) is a small open source
hypervisor supporting one guest. Vasudevan et al [Vas+13] proved that the guest can-
not write in hypervisor memory, i.e. they proved the integrity of the hypervisor memory.
They verified some modules of the hypervisor automatically, using the CBMC model
checker, and others manually, due to the limitation of the tool. Andrabi extended the
automatic verification by proving the well-formedness of the PT setup in [And13]. They
do not virtualize the memory with SPTs, but rather use the hardware virtualization so-
lution. The use of a model checker makes their model and methods different as when
using a theorem prover. Furthermore, as they consider one guest, the properties targeted
are inherently different from what we want to ensure for several guests. Indeed, the non-
interference or confidentiality property do not make sense, neither does the integrity of
the guest memory.

Blanchard et al. have presented a case study on the creation of a new mapping in a
PT [Bla+15] on the Anaxagoros hypervisor. They used the Frama-C framework to con-
duct their proof. They annotated their C code with pre/post conditions in ACSL and
the goals were discharged to automatic theorem provers. In contrast to us, they consid-
ered parallelism and showed that their model was valid for weak memory models. The
method and goals are thus quite different. They worked on a part (i.e. one function) in-
dependently of the rest of the system whereas we modeled the interactions between the
several parts of the system, to prove high-level properties on the whole system.

Barthe et al. formalized an idealized model of a para-virtualized hypervisor in Coq
[Bar+12]. They included the caches in their model and considered cache-based side-
channel attacks, which is out of our scope. On the other hand they make several simplifi-
cations, such as considering only one level of page tables or not considering any sharing

2.3. Hypervisor Verification 21

between guests. Our works are not directly comparable, because they do not refine their
model to an implementation level. In particular, they use abstract data structures to rep-
resent PTs, thus the PTs are not included in their attack surface. Whereas a great part of
our invariants concerns the well-formedness of the PTs structure.

We develop in more details the PROSPER and the Verisoft XT project, which are more
related to our work. The latter is certainly the project in which the SPT management has
been the most extensively studied.

2.3.1 Prosper

Prosper is a separation kernel for ARMv7 developed by Dam et al [Dam+13]. It can run
two guests and provides isolation of their component resources while enabling them to
communicate through a communication line. Our isolation property is similar to theirs.

Their proof is carried mostly with the HOL4 prover, they work on top of the ARMv7
model developed in Cambridge, extended with a MMU model, on which they proved
isolation properties when PTs are the identity map [KSD13]. They proved properties at
machine-code level, with the binary analysis platform BAP [DGN13]. Some of our axiom
on the ARM behavior are proved lemmas in their model.

They conduct their proof by abstraction. In their ideal model, the two guests execute
on abstract separated ARMv7 platforms which communicate by asynchronous message
passing. The proved the bisimulation between the ideal and concrete models.

Nemati et al. extended the HOL4 ARMv7 Cambridge model with an MMU, and
proved integrity and confidentiality [NGD15]. Their kernel uses the direct paging mech-
anism, more precisely, the guest can manage its PTs through the hypervisor with 9 hy-
percalls. Thus the invariants to be proved to ensure isolation are quite different.

Our abstract model is much more abstracted than their ideal system presented in
[Dam+13; Nem+15]. Regarding the memory management, they have abstracted the PTs
of the hypervisor in their ideal model [Nem+15]. Whereas we have no notion of PTs
anymore in our abstract model. Still, our methods and targeted properties are similar.
In addition, we use the same ARMv7 platform, with one processor, we do not model
caches, and have similar assumptions, e.g. the guests partitions are static. This makes
our concrete transition systems akin.

2.3.2 Verisoft XT

The Verisoft XT project started in 2007 and ended in 2010, it is the successor of the Verisoft
project. The goal was the creation of methods and tools which would enable the pervasive
formal verification of computer systems. Their verification is pervasive as the properties
are meant to be proved from the application level to the hardware. The project was split
into two main parts, the OS project and the hypervisor project.

The Hypervisor project aimed at proving property on the Microsoft Hyper-V hyper-
visor [LS09]. Yet the majority of their published achievements concern two other hyper-
visors: a smaller version of the Hyper-V (baby hypervisor) on which a virtualization cor-
rectness proof was reported [Alk+10], and a academic prototypical hypervisor [Kov13].

On the academic hypervisor, Alkassar et al. have proved properties of correctness
of the TLB virtualization mechanism [Alk+12]. All the details can be found in the PhD
thesis of Kovalev [Kov13]. They proved that if a translation is present in the virtual TLB
(i.e. the TLB that the guest would have if it were running directly on the hardware), it
is also present modulo some translation stages in the hardware TLB (i.e. the cache of
the SPT). They precisely modeled the hardware and formally abstracted it with reduction

22 Chapter 2. State of the Art

proofs. They considered a concrete hybrid state, composed of a hardware and a software
state. They showed a correspondence between the memory part of the virtual hardware
state (i.e. the virtual TLB) and the memory part of the hybrid state (i.e. the TLB and
the SPT algorithm). They stated their property for any SPT algorithm that would respect
some properties. Then they designed a SPT algorithm and showed that this particular
algorithm respects the established properties.

Their hardware model is more complex and realistic than ours: they consider caches,
TLBs and store buffers. In addition, they consider a multi-processor hardware. However
the particular SPT algorithm that they choose to instantiate the property is less realistic
than ours. Our method and our focus points differ from theirs. Basically because our
goals are different, the property we target is orthogonal to theirs. For example when it
comes to isolation, cache correctness is less important. Indeed it is acceptable that the
TLB should not be correctly managed as long as the TLB is flushed between each guest
execution or distinct for each guest. Also, they suppose that there is always a free SPT
slot when allocating a new one, because it is not critical for correctness. Whereas we go
in deeper details in the modeling of the SPT allocator, as we consider that the proof of its
well-formedness is a key aspect of the isolation proof.

2.4 The Methodology of Proof by Abstraction

The seL4, Prosper and Verisoft XT projects use proof by abstraction technique to prove
properties on the system. We use this methodology as well. We have presented the main
lines of OS and hypervisor verification projects in the previous section, this section aims
at presenting the methodology, and at comparing our approach to the state of the art.

The goal of the proof by abstraction is to establish a correspondence between an ab-
stract system specification and a concrete system implementation, such that properties
of the abstract level can be reported to the concrete level. Indeed, many operations and
complex algorithms are present in the concrete level only for performance and hardware
compliance purposes. Yet these implementation details are not useful when it comes to
reasoning. PTs are a good example, we use them to speed up the access to memory,
and because it allows to make use of the security mechanism provided by the hardware
MMU. Yet we phrase our specifications in terms of reachable regions of memory, the
concept of PTs can therefore be abstracted.

Usually, one use the notion of observable state to compare the behaviors of a concrete
and an abstract system. As its name suggests, the observational state is a partial view of
a state, which ignores the notions which are not needed for the targeted properties. Intu-
itively, in our case, the observational state corresponds to what a guest can observe. The
abstract and concrete states are projected on an observable state, and, roughly speaking,
we verify that if a concrete and an abstract state verify a certain relation, they have the
same observable behavior.

In our case, the observable states are the abstract states, and we do not use a relation
between abstract and concrete states, but a function from concrete to abstract states. Our
approach is akin to the second approach taken by Daum et al. for strengthening the proofs
of seL4 [DBK14b].

The preservation of trace-based properties by refinement has been extensively studied
in the literature [LV95]. However non-interference like properties, such as confidentiality,
are not trace properties, and are not preserved by refinement. In the following, we explain
briefly the formal link we establish between our two models, the kind of properties that
we prove and why they are preserved by refinement.

2.4. The Methodology of Proof by Abstraction 23

2.4.1 Commutation

We consider two state transition systems, introduced in the following Definitions 2.4.2
and 2.4.3.

Definition 2.4.1 (Concrete State Transition System). Let St be the concrete state space,
→∈ St×St the concrete transition relation and Ic and Fc the sets initial and final concrete
states, the concrete transition system is the tuple (St , Ic,Fc,→).

Definition 2.4.2 (Well Formed Concrete States). Ŝt is the subset of St containing only the
well-formed states:
Ŝt = {st ∈ St |wf (st)}

Definition 2.4.3 (Abstract State Transition System). Let St# be the abstract state space,
.−→∈ St# × St# the abstract transition relation and IA and FA the sets initial and final

abstract states, the abstract transition system is the tuple (St , IA,FA,
.−→).

The two transition systems are in correspondence if they commute (Definition 2.4.5)
regarding the view function (Definition 2.4.4).

Definition 2.4.4. view : St → St# is the abstraction function, which is total on Ŝt .

Definition 2.4.5 (Commutation). ∀st1, st2 ∈ St , if a transition is possible from st1 to st2
[1], if the view function is defined on st1 [2], then a transition from the view of st1 is
possible [3] and equal to the view of st2 [4].

If [1] st1 → st2

[2] view(st1) = st#
1

Then [3] st#
1

.−→ st#′
2

[4] view(st2) = st#′
2

Note that we also prove that each transition from a well-formed state preserves its
well-formedness. The view function being total on Ŝt , the points [2] and [4] always suc-
ceed when st1 ∈ Ŝt .

2.4.2 Transferring Properties to the Concrete Model

We present below our two properties, integrity and confidentiality, and show how they
can be transferred to the concrete level.

Integrity Our property of integrity states that, if a guest is not currently running, then
a transition does not change its secret data. The current guest is the same in the concrete
and the abstract state, in other words, the view function restricted to the field curr is the
identity.

The integrity property that we prove on the abstract level is defined in Definition 2.4.6.
If the current guest is not i, then some field stay unchanged. We write xi for one or several
fields that should not be modified by the transition of i, we will specify to which fields
such a xi corresponds in Chapter 5, at the moment we are just concerned with the transfer
of such properties.

Definition 2.4.6 (Integrity at Abstract Level).

int#(St#,
.−→)⇔ ∀a1, a2 ∈ St#, (a1.curr 6= i ∧ a1

.−→ a2)⇒ (a1.xi = a2.xi)

24 Chapter 2. State of the Art

The integrity property at concrete level is defined in Definition 2.4.7. As can be seen,
we do not express it in terms of unchanged fields of the concrete state. Indeed, we want to
express what has not been modified in terms of observable state. Of course, if one is not
convinced that such an abstract property has a meaning on the concrete model, one could
prove that an equality of a field in the abstract model implies the targeted equalities on
the concrete model. However that would mean expressing the property on the concrete
level, which is precisely the thing we try to avoid by using the abstraction method.

Definition 2.4.7 (Integrity at Concrete Level).

int(St ,→)⇔ ∀c1, c2 ∈ St , (c1.curr 6= i ∧ c1 → c2)⇒ (view(c1).xi = view(c2).xi)

What we want to prove now is Lemma 2.4.1, which states that if the property of in-
tegrity is proved on the abstract state then it implies the integrity property on the concrete
state. The proof follows immediately from the definitions.

Lemma 2.4.1 (Transfer of Integrity). int#(St#,
.−→)⇒ int(Ŝt ,→)

Proof. Let c1, c2 ∈ Ŝt , such that c1.curr 6= i (1) and c1 → c2 (2).
From the definition of commutation (Definition 2.4.5), view(c1)

.−→ view(c2).
In addition, from (1) we have that view(c1).x 6= i, because view is the identity on the

field curr .
Therefore, from int#, view(c1).x = view(c2).x (Definition 2.4.6), Qed.

Confidentiality Confidentiality means that the execution of a guest does not depend of
secrets of other guests. We formalize this by stating that if two guests are equals modulo
some so-called secret fields, and if the guest running is not supposed to have access to
these secrets, then the executions from the two similar states end up in two states equal
on some fields. It means that the execution has the same impact on these fields, whether
the secrets are equal or not.

In the property of confidentiality of abstract states described below, we state that if
two states are equal on some fields, represented by y, then, after the execution, they are
equal on some fields, represented by z. Note that if we want the property to be transitive,
we need y to be equal to z. Again, y and z may depend on the particular guest i, hence
the notation yi and zi.

In reality, our property is slightly more complicated because some regions of memory
are shared, so the execution of a guest might depend on them, we develop in Chapter 5.

Definition 2.4.8 (Confidentiality for Abstract State).

confid#(St#,→)⇔ ∀a1, a2, b1, b2 ∈ St#,
(a1.curr 6= i,
b1.curr 6= i,
a1.yi = b1.yi,
a1

.−→ a2,
b1

.−→ b2)⇒
a2.zi = b2.zi

A fundamental property of our abstract system is determinism. In our transition sys-
tem, confidentiality can only be proved because of determinism. Indeed, if several tran-
sitions are possible from a state a1, e.g. a1

.−→ a2 and a1
.−→ a3, we do not even have, in the

2.4. The Methodology of Proof by Abstraction 25

general case, the property that a2.z = a3.z. Non-determinism is usually the reason why
non-interference properties are not proved by refinement. But with our deterministic
system, the proof of transfer is straightforward.

Definition 2.4.9 defines the confidentiality at concrete level. Again, we express the
notion of similarity in the abstract space.

Definition 2.4.9 (Confidentiality for Concrete State).

confid#(St ,→)⇔ ∀c1, c2, d1, d2 ∈ St ,
(c1.curr 6= i,
d1.curr 6= i,
view(c1).yi = view(d1).yi,
c1

.−→ c2,
d1

.−→ d2)⇒
view(c2).zi = view(d2).zi

Finally, we prove the Lemma 2.4.2.

Lemma 2.4.2 (Transfer of Confidentiality). confid#(St#,
.−→)⇒ confid(Ŝt ,→)

Proof. Let c1, c2, d1, d2 ∈ Ŝt , such that c1.curr 6= i ∧ d1.curr 6= i (1), c1 → c2 (2), and
d1 → d2 (3).

From the definition of commutation (Definition 2.4.5), view(c1)
.−→ view(c2), and view(d1)

.−→
view(d2).

In addition, from (1) we have that view(c1).x 6= i, and view(d1).x 6= i because view is
the identity on the field curr .

Therefore, from confid#, view(c2).z = view(d2).z (Definition 2.4.8), Qed.

2.4.3 Comparison of our Abstraction to State of the Art

Proof by refinement is popular in OS verification. The novelty of our approach though,
is that we abstract entirely the structure of PT, while still enabling to reason precisely on
memory.

As we will see in more details in Chapter 4, proving that two PTs map two areas of
memory isolated one from each other rely on the proof that each of these PT is well-
formed and does not map itself nor the other PT with unprivileged rights. Once we have
proved these properties on PT, we can interpret PT as functions from virtual to physical
addresses, so we do not need to keep the detail of their structure. That is why we abstract
their structure, i.e. we represent memory as mappings from addresses to a pair of byte
and rights. Another solution could be to keep mapping functions from virtual to physical
addresses with rights, if needed, but the important point is that the PT structure is not
needed and thus should be abstracted.

As we have briefly mentioned in this state of the art, the abstraction presented by Dam
et al. is a duplication of a ARMv7 processor. They have proved that a hypervisor running
two guests on one ARMv7 processor is equivalent as having two guests running on two
separate processors [Dam+13]. Their abstract system stays close to the implementation
level. In particular, they keep the complexity of PTs of the guest, but the PTs of the
hypervisor are abstracted away [Nem+15]. Therefore, they have abstracted away the PTs
whose structure is managed by the hypervisor.

Daum et al also take this approach of keeping the PT in their abstract model (which is
not their most abstract level). In their model, threads have capabilities to virtual memory

26 Chapter 2. State of the Art

objects, such as PTs and pages. They abstract the objects in their access control policy
and information-flow policy. More precisely, they group several objects under some la-
bels and express their policies on these groups. Therefore, their highest levels are very
abstract, because there is not any notion of PT, not even memory. Their proof of well-
formedness of their PTs is part of the proof of well-formedness of their capability space,
thus abstracting the PT in their abstract domain would not make much sense, therefore,
even if our approaches shares similarities, they cannot really be compared on this point.

Our approach allows to have a model where memory is detailed enough to be rea-
soned about, for example, we could still reason at fine granularity about copy in this
kind of model, while abstracted enough to ease the reasoning.

2.5 Contributions

The notion of "proving properties on a system" can be broadly interpreted. In particular,
in the OS domain, the systems considered are large and complex, and the proof are done
on models. Therefore it is not always obvious to figure out the assurance provided by a
proof. We identify below three characteristics which allow to assess the trust we can have
on a system.

Confidence in the meaning of the properties. The first problem to raise is the difficulty
to express meaningful properties on large and complex systems. It is all the more
true that the properties are high-level (e.g. confidentiality), and that the system is
low-level. For example, as we have mentioned earlier, our properties would be
hard to express and to understand if they were stated on the concrete level. We
resort to abstract models to increase the confidence we have that the properties
stated have the intended meaning. We can see, moreover, in the the state of the
art just presented, that most of the projects prove their properties on an abstract
model. Some of the abstraction stay very close to the concrete model (e.g. in the
Prosper project), other are more abstract (e.g. the idealized model of Barthe et al.).
The more abstract the model is, the greater assurance one get that the property has
the intended meaning.

Confidence in the correspondence between the model and the implementation. If the
model does not correspond to the implementation, then the properties proved are
null and void. Therefore, contrarily to the previous point, we could say that the
closer the model is from the implementation, the more we can trust our model to
comply to the implementation. As we have explained in Section 2.4, in order to
take the best of both world, we can prove a refinement between an abstract and
a concrete model. This solution enables to maximize the trust in the proofs. This
is the solution that we have taken. In particular, the tools developed by Prove &
Run allow to generate C code from the concrete model, thus allowing to strengthen
the confidence that the model on which the proofs are made corresponds to the
executed code. On the other hand, some projects mentioned in the state of the art
consider only one model, or consider several models but do not prove the refine-
ment between them. Therefore, they face a trade off between gaining trust in the
meaning of the properties and gaining trust in the fact that the properties actually
hold on the implementation level. In particular, these models cannot be abstracted
too much.

2.6. Overview of the Chapters 27

Confidence between the implementation and the execution. If a compiler is bugged, or
if the implementation does not comply to the standard of the language, the com-
piled program may have a different semantic from the initial program. Some tools
allow to establish a formal link between the binary and the code. For example the
verified C compiler CompCert verifies that, for a subset of C, under some assump-
tions, the semantic of the code is preserved [Ler09]. This compiler can be used
to compile some parts of an OS, but can hardly be used for the compilation of a
whole OS, because an OS usually use code outside of the subset of C on which the
theorems of CompCert are valid [Kle09]. Another example is the Binary Analysis
Platform, which was used by Dam et al on certain parts of the hypervisor code
([DGN13; Bru+11]). This aspect was out of the scope of our study.

Finally, note that the semantic of the binary depends itself on the machine. How-
ever, the behavior of the machine may not comply to its specification. None of the
systems cited in the state of the art run on proved hardware machines, indeed as
the platforms are widely used and therefore tested, they are usually trusted. We
use ARMv7, and we only use classical features of the board, in particular we do not
use the virtualization extensions. Therefore, we consider that we have reasonable
assurance that the behavior of the hardware corresponds to its specification.

Our first main contribution is the proof, at a high level of trust, that the isolation of
the memory of the guests is ensured by a SPT algorithm which is realistic and does not
present particular simplifications. We claim a high level of trust in the properties we
prove, because our methodology apply the two first confidence principle just mentioned.
In particular, our abstract model has no more notion of PTs, while keeping the informa-
tion they provide. The step between our two models is huge, we reach a very high-level
model while formally linking it to a low-level close to the C code.

Our second main contribution is methodological. In the literature, various books for
best practice in software development or software testing can be found. They are the
result of many years of experience feedback, from the academic and from the industry.
Formal proof is not as widespread as software development or testing, especially in in-
dustry, where the proof of large projects is almost non-existent. In this thesis, we present
with many details our methodology. We present the properties we need and how they
are connected. We expose the difficulties we encountered and the limit of our proofs.

Our work has lead to a publication in the FASE conference [BJS16].

2.6 Overview of the Chapters

We give an overview of the steps needed to achieve the proof, and in which chapter they
are developed.

The hypervisor manages the memory and the privileged registers, and manages guests
access to them. It provides virtualized resources to the guests, so that they can execute as
if they were running on bare metal. As depicted in Figure 2.1, the state of the system can
be decomposed in two parts:

• The hardware state, which captures the state of the physical memory and registers.

• The hypervisor state, which captures the virtualized machine state for each guest.

28 Chapter 2. State of the Art

The state of the hypervisor represented in the upper part of the Figure is only constituted
by software. Ellipses in Figure 2.1 show the resources that may be modified by the exe-
cution of each guest. Roughly speaking, a transition of the system can be decomposed as
such:

1. The guest executes, changing only the part of the hardware state that it can access.

2. The hypervisor handles a hypercall or exception for this guest, modifying the virtu-
alized registers for this guest, and the hardware state.

Shared Memory,
Private Memory,
Registers

Emulated Registers
for Guest 1

Modified by Execution of Guest 1

Emulated Registers
for Guest 2

Modified by Execution of Guest 2

Hardware state

Hypervisor state

FIGURE 2.1: Modified Resources during Concrete Guest Execution

[↪→ The concrete transition system is described in Chaper 3]

Our goal is to prove that, even if guest executions modify common resources, none of the
guests can tamper with the execution of other guests. For example, no guest should be
able to access the private memory of another guest.

Isolation of memory is ensured by the the mechanism of PTs. The physical addresses
reachable by one guest are the one mapped by its Shadow Page Tables (SPTs). The pri-
mary condition to reason about PTs is to prove that they are well-formed, and that no
transition break these properties. The hypervisor also makes sure that other properties
holds, such that the memory locations reachable through the SPTs of one guest are al-
lowed locations for this guest. We verify that these properties are preserved by transitions
of the system.

[↪→ Proof of invariant properties over the concrete system are presented in Chapter 4]

Showing that the memory locations reachable through the SPTs are allowed is only the
first part of the proof. The second part is to prove that this property implies isolation. To
do so, we show the correspondence between the concrete level and an abstract, idealized
system on which isolation is straightforward.

The correspondence is formally proven, following the method presented in Section 2.4.
We define an abstraction function and abstract transitions, and we prove the commuta-
tion of each concrete transition with its counterpart abstract transition. The refinement
proof relies on properties of the concrete system established by the invariants.

2.6. Overview of the Chapters 29

[↪→ The refinement proofs are presented in Chapter 5]

It is difficult to reason on the concrete level, due to the complexity of the PT structure,
and to the fact that every modification of the memory might modify the SPT in a non
wanted way, as SPTs are located in memory. On the other hand, the proof of isolation is
straightforward on the abstract system. The Figure 2.2 depicts such an isolated abstract
system. Contrarily to the precedent Figure 2.1, only explicitly shared resources may be
altered during guest execution.

Shared Memory
Private Memory,
Registers

Private Memory,
Registers

Abstract
state

FIGURE 2.2: Modified Resources during Abstract Guest Execution

[↪→ The abstract transition system and the proofs of isolation are presented in Chapter 5]

2.7 Key Points

• OS and hypervisor verification grew in importance 15 years ago.

• Several projects have studied the memory subsystem, which is complex and
error-prone.

• The SPT has been extensively studied in the Verisoft XT project, but with differ-
ent goals and methodology.

• The PROSPER hypervisor verification project targets similar properties to ours,
however they do not use SPTs for virtualization.

• The complete abstraction of SPTs as we have done has not been seen elsewhere.
It simplifies drastically the model, and enables to focus on high-level properties.

31

Chapter 3

Concrete Model of the Hypervisor

Contents
3.1 Basic Types and Notations . 32

3.2 Modeling of the Page Tables . 32

3.2.1 Decomposition of the Function pt 33

3.2.2 Virtual Page Table Walk . 36

3.2.3 Set of Addresses Mapped by a Page Table 37

3.3 Static Structures . 37

3.3.1 Memory Layout . 37

3.3.2 Host Page Table . 38

3.4 Low-Level State of the Hypervisor . 38

3.4.1 Hardware State . 39

3.4.2 Hypervisor State . 42

3.5 Low-Level Transitions . 45

3.5.1 Guest Transition . 46

3.5.2 Save State Transition . 48

3.5.3 Hypervisor Transitions . 49

3.5.4 Restore Transition . 55

3.6 Key Points . 56

In this chapter, we present the concrete transition system of the hypervisor. We first
detail how we represent the Page Tables (PTs). Then we go through our modeling, the
assumptions we make and the characteristics of the hypervisor. Finally, we present the
transitions of our system.

This chapter is particularly dense and introduces many notations. For the reader in a
hurry, we propose a shorter path of reading:

• Definition of PTs: Definition 3.2.10.

• Static permissions: Section 3.3.1.

• Definitions of the concrete state: Definitions 3.4.2, 3.4.6 and 3.4.7, without paying
attention to register fields.

• Guest transition: Section 3.5.1.

• Memory Management transitions: Section 3.5.3.

32 Chapter 3. Concrete Model of the Hypervisor

3.1 Basic Types and Notations

Before presenting our concrete model, we introduce in this section the basic types and
notations that we use afterwards:

• Uint represents unsigned 32 bits integers.

• Reg represents 32 bits registers.

• Addr represents 32 bits addresses. Note that we model both virtual and physical
addresses by Addr .

• Addrpg denotes the addresses aligned to the size of a page (i.e. addresses that are
multiple of the size of a page). Addrpg is a subtype of Addr . As we will detail in
Section 3.2, we work with pages of size 212. Addrpg thus represents the addresses
whose 12 least significant bits are equal to zero.

• Let a, b ∈ Uint ,Reg or Addr , a + b is an addition modulo 232. Furthermore, the
addition of an Addr and an Uint is defined: + : Addr × Uint → Addr and also
corresponds to an addition modulo 232.

• Byte represents bytes, and Byten represents a sequence of n bytes.

• Mem represents the memory, it is a function from addresses to bytes: Mem =
Addr → Byte + Oob. The function returns Oob for addresses out of its boundaries.

• If X is a type, {X} denotes a set of elements of type X , list < X > denotes a list of
elements of type X .

• ∀l ∈ list < X >, ∀A ∈ {X}, the notation l ⊂ A means that all the elements of the
list l are in the set A.

• When a list is not empty, we write< head :: tail > for its decomposition into a head
and a tail.

• ∀x, y ∈ Uint (resp.Addr), [x, y[= {x ∈ Uint (resp.Addr) | a ≤ x < b}. Just as for the
lists, we denote by ⊂ the inclusion of an interval in a set.

• We use the symbol "_" as a wildcard. For example "if f(a, _) = c" means "if ∃b, f(a, b) =
c".

• The notation

a1 : Type1
...
an : Typen

is equivalent to (a1 : Type1 × ...× an : Typen). We use

it for clarity’s sake.

• In the remaining of the document, we will define many records, the notation a.x
means that we access the field x of the record a.

3.2 Modeling of the Page Tables

PTs are at the core of our study and proofs. We present in this section our modeling of
their structure.

3.2. Modeling of the Page Tables 33

A PT maps virtual addresses to physical addresses and provides the access rights to
each physical address it maps. We denote the set of rights by Rights , it contains three
elements:

Rights = {pl1, rw, ro}

pl1 means Privileged Level 1, it means that the address is accessible only in privileged
mode, i.e. accessible only by the hypervisor. rw means that the address is readable and
writable in unprivileged mode, ro means that the address is only readable in unprivileged
mode. We define a total order relation "≥" over Rights by rw ≥ ro ≥ pl1.

A PT function has the following type:

PT = Addr → (Addr × Rights) + Fault

A virtual address va ∈ Addr whose image is in Fault corresponds to an address for which
there is no translation, i.e. the access to va would raise a fault.

Definition 3.2.1. (Mapped to/Mapped by) Let table ∈ PT ,

1. Just as for any function, we say that a virtual address va is mapped to a physical
address pa when table(va) = (pa, _), and that va is not mapped if table(va) ∈ Fault .

2. We say that a physical address pa is mapped by a virtual address va in the PT table
with some rights r when table(va) = (pa, r).

3. More generally, we say that a physical address pa is mapped by the PT table when
there exists va ∈ Addr such that table(va) = (pa, _). Otherwise it is not mapped.

The function pt takes a memory and a pointer to a PT and returns the PT located there.
pt(mem, basePT) is read as "the PT at address basePT in memory mem":

pt : Mem → Addr → PT

The function pt is a composition of several functions, we introduce them below, before
giving the definition of pt.

3.2.1 Decomposition of the Function pt

We work with two levels of PTs, as illustrated in Figure 3.1. First and second level PTs are
arrays of descriptors. More specifically, we use ARMv7 short descriptors, and we only
use small pages of 4KB . A first level PT contains 4096 descriptors of 4 bytes each, whereas
the second level PT contains 256 descriptors of 4 bytes each. A descriptor of a first level
PT contains the base address of a second level PT 1. Whereas a descriptor of a second level
PT contains the address of a page and rights related to it. In both cases, the descriptor
might not lead to anything, in this case it is a fault. The definition of descriptors is given
in Definition 3.2.2.

Definition 3.2.2 (Descriptors Types).

Descr1 = Addr + Fault

Descr2 = (Addr × Rights) + Fault

1A descriptor of a first level PT can also contain the base address of a section, which is a page of size 1MB.
However, we do not use sections, therefore we do not model them

34 Chapter 3. Concrete Model of the Hypervisor

Virtual Address Space

OS Physical Memory

va

pa

PT Base

idx1

idx2

descr1

descr2

PT level 1

PT level 2

FIGURE 3.1: Page Table Walk

To read PTs in memory, we use functions that interpret a sequence of 4 bytes into a
descriptor.

Definition 3.2.3 (Bytes to Descriptors). For i ∈ {1, 2}:

descr i : Byte4 → Descr i

The bytes are fetched from memory by the following function, which returns Oob if
the range of bytes requested is out of memory boundaries.

Definition 3.2.4 (Fetch).

fetch : Mem ×Addr × (size : Uint)→ (Bytesize + Oob)

Definition 3.2.5 (Domain of Fetch). For all addresses a ∈ Addr , mem ∈ Mem and size
s ∈ Int , if a+ s < sizemem, then fetch(mem, a, s) returns a sequence of bytes:

a+ s < sizemem ⇒ fetch(mem, a, s) /∈ Oob

For readability, we define a third function for each descriptor, get_descr i : Mem ×
Addr → Descr i + Oob which combine fetch and descri:

Definition 3.2.6. (Get Descriptor) ∀mem ∈ Mem,∀a ∈ Addr ,
get_descr i(mem, a) =

If fetch(mem, a, 4) ∈ Oob
Then return oob
Else return descri(fetch(mem, a, 4))

To translate a virtual address va into a physical address, va is decomposed into three
parts: an index in the first level PT, an index in the second level PT, and an offset in the
page. More precisely:

3.2. Modeling of the Page Tables 35

• The first index corresponds to the 12 most significant bits of the 32 bits address va.
This index allows to access the 4096 entries of the first level PT (212 = 4096).

• The second index corresponds to the 8 following bits of va. It allows to access the
256 entries of the second level PT (28 = 256).

• The offset corresponds to the 12 least significant bits of va. It allows to access the
4096 bytes of a small page.

Definition 3.2.7 (Sizes). We write sizePT1 for 16KB, the size of a first level PT (4 ∗ 4096 =
16384); sizePT2 for 1KB, the size of a second level PT (4∗256 = 1024); and sizepage for 4KB,
the size of a page.

Definition 3.2.8 (Virtual Address Decomposition). Forall va ∈ Addr , we note

va = idx 1 ⊕ idx 2 ⊕ off

the unique decomposition of va into two indexes idx 1, idx 2, and an offset off .

The following property follows trivially:

Property 3.2.1 (Decomposition Properties). For all va ∈ Addr , for all idx1, idx2, off ∈ Uint
such that va = idx 1 ⊕ idx 2 ⊕ off "

• idx1 < 4096 ∧ idx2 < 256 ∧ off < 4096

• off = 0⇒ va ∈ Addrpg

• Forall va′ ∈ Addr , idx′1, idx
′
2, off ∈ Uint such that va′ = idx ′

1 ⊕ idx ′
2 ⊕ off ′:

– idx 1 = idx ′
1 ∧ idx 2 = idx ′

2 ⇔ va and va′ are in the same page

Finally we denote by compute the function that computes the address of a descriptor
in a PT, given the index of the descriptor and the base address of the PT:

Definition 3.2.9 (Compute). Multiplies the size of a descriptor by the index idx of the
descriptor and adds it to the base address.

compute : (base : Addr)× (idx : Int)→ Addr

We can now give the definition of the PT function.

Definition 3.2.10 (Definition of the Page Table Function). ∀mem ∈ Mem, ∀base ∈ Addr ,∀pt ∈
PT, ∀va ∈ Addr ,

pt(mem, base)(va) =
Let idx1, idx2, off ∈ Uint such that va = idx 1 ⊕ idx 2 ⊕ off

base2 = get_descr1(mem, compute(base, idx1))
If base2 /∈ {Oob,Fault}
Then

Let descr2 = get_descr2(mem, compute(base2, idx2))
If descr2 /∈ {Oob,Fault}
Then

Let (pa, r) = descr2

return (pa+ off , r)
Else return fault

Else return fault

36 Chapter 3. Concrete Model of the Hypervisor

Less formally, pt(mem, base)(va) = (pa, r) means that the physical address pa is
mapped with rights r by the virtual address va in the PT of base address base in the
memory mem. Similarly, pt(mem, base)(va) ∈ Fault means that the address va is not
present in the PT at base address base in memory mem.

Every modification on the memory might change the mappings defined by a PT.
When the modification is performed on a region of the memory distinct from the regions
where we keep the PTs (the pools), we easily prove that the PTs stay unchanged. However
when we modify the region where the PTs are kept, in order to add or remove a mapping
in a PT for instance, it is more difficult to show which parts of the PTs are affected and
how by the modification. The proof rely on many properties of well-formedness of the
PTs, that we will present in Chapter 4.

3.2.2 Virtual Page Table Walk

Once the MMU is activated, the memory can only be accessed with virtual addresses.
Indeed, the MMU would translate any address to a physical address before accessing
it, using the PTs. Consequently, when the hypervisor runs, it only addresses memory
through virtual addresses.

The PTs are maintained by the hypervisor. It means that the hypervisor needs to
access the entries of the first and second level PTs, in order to read or modify them. How-
ever, we have seen in Section 3.2.1 that the PT is composed of arrays whose entries hold
addresses of other arrays or pages, these addresses are physical. For example, in Fig-
ure 3.1, the PT base pointer is a physical address, and Descr1 and Descr2 hold physical
addresses too. Suppose that the hypervisor needs to modify Descr2. It uses the base ad-
dress of the first level PT and the index idx 1 to compute the physical address of Descr1,
which must be translated to a virtual address before being accessed. The Descr1 holds
a second level PT physical address, which allows to compute the physical address of a
Descr2. The hypervisor would need again to translate it to a virtual address before ac-
cessing it.

Therefore, the hypervisor uses a function phys2virt , different for each guest (Defini-
tion 3.4.7), in order to translates physical addresses to virtual addresses before accessing
them. This function is the reciprocal of the PT on the pool addresses where the latter is
defined. This is ensured by the two invariants described in Section 4.1.2.

Furthermore, the hypervisor cannot call the function get_descr1 and get_descr2, which
use physical addresses. Theses functions are defined for specification purpose only. We
define the two functions which model the access to descriptors with virtual addresses
made by the hypervisor.

The versions of get_descr1 and get_descr2 with virtual addresses take one more pa-
rameter: a PT address. They model the behavior of the hardware when the hypervisor
access a descriptor. Basically, the virtual getters translate the virtual address to a physical
one with the PT and then call get_descr1 or get_descr2. We give the formal definition of
a virtual getter below.

Definition 3.2.11 (Virtual Get Descriptor). ∀mem ∈ Mem , ∀basePT ∈ Addr , ∀va ∈ Addr :
get_v_descr i(mem , basePT,va) =

If pt(mem, basePT)(va) /∈ Fault
Let pa ∈ Addr s.t.(pa, _) = pt(mem, basePT)(va),

return get_descr i(mem, pa)
Else return fault

3.3. Static Structures 37

The hypervisor not only reads the PT, but also modifies them. We thus define virtual
setters for the descriptors in Definition 3.2.12. Similarly to the getter, we need a physical
setter to express it, we call it set_descr i:

set_descr i : Mem ×Addr ×Descr i → Mem + Oob

We do not detail its definition as it is similar to the getter.

Definition 3.2.12 (Virtual Set Descriptor). ∀mem ∈ Mem , ∀basePT ∈ Addr , ∀va ∈ Addr
and descr i ∈ Descr :
set_v_descr i(mem , basePT,va,descri) =

If pt(mem, basePT)(va) /∈ Fault
Let pa ∈ Addr s.t.(pa, _) = pt(mem, basePT)(va),

return set_descr i(mem, pa, descr i)
Else return fault

3.2.3 Set of Addresses Mapped by a Page Table

As mentioned in the previous section, an address whose image by a PT is in Fault is not
mapped, otherwise it is mapped with some rights. For a page table table ∈ PT , we write
Im(table) for the intersection of the codomain of table with Addr ×Rights , and we denote
the first projection of Im(table) by Map(table).

Definition 3.2.13 (Mapped with RW rights). Let table ∈ PT , we denote by MapRW(table)
the set of all the physical addresses mapped with Read/Write (RW) user rights by table:

MapRW(table) = {pa|(pa, rw) ∈ Im(table)}

Definition 3.2.14 (Mapped with RO rights). Let table ∈ PT , we denote by MapRO(table)
the set of all the physical addresses mapped with Read Only (RO) user rights by table:

MapRO(table) = {pa|(pa, ro) ∈ Im(table)}

Definition 3.2.15 (Mapped with user rights). Let table ∈ PT , we denote by MapUSR(table)
the set of all the physical addresses mapped with user rights by table:

MapUSR(table) = MapRO(table) ∪MapRW(table)

When reasoning about PTs, we often need to know that the memory space where SPT
are stored is not mapped with user rights by any guest SPT.

Definition 3.2.16. We denote by no_auto_map(mem, base) the property stating that the
PT at address base does not map itself with user rights in the memory mem.

3.3 Static Structures

Before presenting the state of the system in the next section, we present some constant of
the system.

3.3.1 Memory Layout

The memory layout is static. Figure 3.2 depicts a memory layout for two guests. Each
region corresponds to a particular set of permissions.

38 Chapter 3. Concrete Model of the Hypervisor

HYP SPACE GUEST 1 GUEST 21→22→1 POOL 1 POOL 2

0 sizemem

FIGURE 3.2: Example of Physical Memory Layout for two Guests

Static Permissions

An active guest is identified by an index of type Idx . Static permissions define the access
rights for each guest:

Definition 3.3.1 (Static Permissions Type).

Perm =

priv : Idx → {Addr}
shared : Idx × Idx → {Addr}
pool : Idx → {Addr}

The priv field defines, for each guest, the set of addresses that the guest is allowed to
map with RW rights, and that no other guest is allowed to map. The shared field defines,
for each couple of guest, the set of addresses that can be mapped in RW by the former
and in RO by the latter (write buffer from the former to the latter). The pool field defines,
for each guest, the addresses where its SPTs are kept. The guest is not allowed to map
any address of the pool.

We work with static permissions that we denote by perm ∈ Perm , they do not change
during the whole execution and verify the following property:

Property 3.3.1 (Disjoint Spaces). The sets of addresses defined by perm are disjoint.

Hypervisor Space

We define hypspace, a set of addresses that a guest cannot access. It corresponds to a
part of the memory where the hypervisor stores its structures, in particular the Host Page
Tables (HPT).

Property 3.3.2 (No Permissions for Hypervisor Space). The sets of addresses defined by
perm are disjoints from the set of addresses defined by hypspace:

∀i, j ∈ Idx ,∀a ∈ Addr ,

a ∈ perm.priv(i)
∨a ∈ perm.shared(i, j)
∨a ∈ perm.pool(i)

⇒ a /∈ hypspace

3.3.2 Host Page Table

As described in Section 1.1.3 and illustrated in Figure 1.3, the HPT are needed in order to
resolve a page fault. We introduce here the pointer to the HPTs, which does not change
over execution. We refer to this pointer as baseHPT.

3.4 Low-Level State of the Hypervisor

As illustrated in Figure 2.1, the low-level state St of the system can be decomposed into
two components. First, the state of the hardware, of type StHW, which stores the actual

3.4. Low-Level State of the Hypervisor 39

values of the registers, and the state of the memory. Secondly the state of the hypervisor,
of type StHYP, which stores the virtualized values of the hardware components presented
to each guest, i.e. the virtual machines on which the guests execute. σHW and σHYP are
independent. In particular, as explained in Section 3.4.1, we do not represent in memory
the state of the hypervisor, therefore a modification of the hypervisor state has no effect
on the hardware memory, and the other way around.

Definition 3.4.1 (System State).

St =

{
σHW : StHW (State of the hardware)
σHYP : StHYP (State of the hypervisor)

We present the state of the hardware in Section 3.4.1, and the state of the hypervisor
in Section 3.4.2.

3.4.1 Hardware State

We model the state of the hardware with the following type:

Definition 3.4.2 (Hardware State).

StHW =

mem : Mem (Memory)
mode : Mode (Processor mode)
basePT : Addr (Pointer to the current PT)
regsmmu : Regsmmu (Coprocessor 15 registers)
regscore : Regscore (Core registers)
apsr : Apsr (Application Program Status Register)
regsgic : Regsgic (GIC registers)

Each field captures the state of a particular hardware component, we give further
details below.

Memory

The field mem ∈ Mem captures the state of a delimited part of memory. We do not
take the hypervisor memory space into account, except for the PTs about which we want
to reason. Indeed, each time the hypervisor performs an action, it has an impact on its
memory (e.g. pushing/popping something on its stack), and reasoning about these side-
effects while reasoning about the effects of the action is not conceivable.

Moreover, we do not model devices, and the hypervisor does not accommodate Di-
rect Memory Access (DMA). DMA is a mechanism that allow devices to communicate
with memory directly, bypassing the CPU, thus saving time. I/O MMU [Iom] (or SMMU
[MN11; Smm]) is a hardware component which allows the hypervisor to control the ac-
cess to memory by a PT mechanism similar to the MMU. Figure 3.3 illustrates the config-
uration: the PTs between the bus and the devices are present only when the I/O MMU
or SMMU is used. Without such extensions, DMA-aware devices can access directly the
memory, without any control by the PT. As any part of the memory can be accessed, it is
impossible to establish isolation within any model.

40 Chapter 3. Concrete Model of the Hypervisor

BUS

CPU PT RAM

Device 1

Device 2

PT

FIGURE 3.3: Direct Memory Access with I/O MMU or SMMU

Modes

In the ARMv7 design that we use, 6 execution modes are defined. Five of them are privi-
leged modes, they are at the Privileged Level 1 (PL1). One mode, the user mode, is unpriv-
ileged. It is at Privileged Level 0 (PL0).

The field mode captures the five bits of the ARM Current Program Status Register
(CPSR) which indicate the current execution mode.

Guests run in user mode. It means that they can only access a restricted set of registers.
Intuitively, they cannot access any register that changes the current setup, or which could
extend their rights. For example, an entity running in the user mode cannot modify the
mode field.

The hypervisor only uses the unprivileged user (USR) mode and four of the privileged
modes:

• The abort mode (ABT) is entered each time the system tries to access an address
which is not mapped by the current Page Table.

• The supervisor mode (SVC) is entered when a guest makes a hypercall. More pre-
cisely, we do not use virtualization support, therefore there is no distinction be-
tween supervisor call and hypercall. When an application running on top of a guest
makes a supervisor call, the hypervisor intercepts the call and inject it to the guest,
so that it can handle it.

• The UND mode is entered when a guest attempts to do something which is unde-
fined.

• The interrupt request mode (IRQ) is entered when an interrupt is pending and not
masked.

The hypervisor does not handle the Fast Interrupt Request (FIQ) mode. This mode
is similar to the IRQ mode, but is faster. As there is no handler for this mode, the hy-
pervisor would crash if the mode were entered. However, the hypervisor configures the
interrupt handling such that the FIQ mode is never entered, and guests cannot change
the configuration (see Section 3.4.1). Therefore the system cannot be in this mode.

Definition 3.4.3 (Mode Type). The set of modes Mode gathers the user mode, and the five
privileged modes : supervisor, abort, undefined, IRQ and FIQ:

Mode = {usr , svc, abt , und , irq ,fiq}

3.4. Low-Level State of the Hypervisor 41

Application Program Status Register

The CPSR mentioned previously also contains bits that can be read and written in user
mode, they give information about the instruction computation. It is called the Application
Program Status Register (APSR).

As for the other bits of the CPSR, they are masks bits, unchanged by user, and they
are always set to the same value before the guest transition, so we do not model them
here for clarity’s sake, but we model them in our implementation.

Core Registers

The record regscore represents the values of the thirteen general purpose registers, and of the
three special purpose registers, namely the stack pointer, the link register and the program
counter. The stack pointer indicates the top of the stack, the program counter indicates
the instructions to execute, while the link register holds the address to return to when a
function call completes. The core register type is given in Definition 3.4.4

Definition 3.4.4 (Core Registers).

Regscore =

r0 : Reg
...
r12 : Reg
sp : Reg
lr : Reg
pc : Reg

The core registers are the unprivileged registers. As we will develop in the presenta-
tion of the guest transition (Section 3.5.1), these registers are used and modified by the
guest while it executes. Note that we do not model their state while the hypervisor exe-
cutes, because we cannot reason both on the C code executed by the hypervisor and on
the corresponding assembly instructions. We do not model the banked registers, because
they are not modified directly by the guest, and, just as for the core registers, we do not
update them when the hypervisor is executing. We only model their virtualized version
(see Section 3.4.2).

The apsr and the regscore are the unprivileged registers, they can be read and written
in user mode.

Coprocessor 15

The coprocessor 15 is the Memory Management Unit (MMU). The Translation Table Base
Register 0 (TTBR0) is the register of the coprocessor 15 which holds the physical address
of the PTs currently used to translate virtual to physical addresses. We model it by the
basePT register.

The field regsmmu holds the other registers of interest of the coprocessor 15.

Definition 3.4.5 (MMU Registers).

Regsmmu =

{
fsr : Reg
far : Addr

The Fault Address Register (FAR) and the Fault Status Register (FSR) hold the nec-
essary information to handle a page fault. The FAR holds the virtual address which

42 Chapter 3. Concrete Model of the Hypervisor

triggered the fault, whereas the FSR holds complementary information, such as whether
the access was made on a read or a write.

Generic Interrupt Controller

The Generic Interrupt Controller (GIC) holds registers needed for the interrupt handling.
It is the first to be notified of an interrupt. More specifically, when an interrupt is triggered
by the hardware, if the interrupt signaling is enabled in the GIC, and if it is not masked
(some bits in the CPSR), the GIC marks the IRQ as pending and raises an IRQ or a FIQ
exception, depending on the configuration.

The registers of the GIC are not all "real" registers, they are stored in memory. How-
ever, the modification of the GIC does not impact any region of memory defined by the
permissions, and reciprocally (see Definition 3.3.1 for permissions). Indeed, the region of
memory where the registers are stored do not correspond to any region to which the guest
has some permissions or in which SPTs are stored. As we prove that a guest may only
modify directly the regions to which it has permissions, it means that the guest cannot
directly modify the configuration of the GIC.

Furthermore, the hypervisor itself does not modify the configuration of the GIC, or
when it does, it put it back to its initial configuration before restoring the guest. For
example, when the hypervisor masks some interrupts, it unmasks them before restoring
the guest execution. Therefore, we consider that the registers related to the configuration
of the GIC are constants, and they are not included in regsgic. regsgic only contains the
information related to which interrupt is pending. As the GIC has no impact on the
memory management, we do not model these registers in detail.

Caches

It is important to mention that we do not model caches. In particular, we do not model
the Translation Lookaside Buffer (TLB) (explained in Section 1.1.3).

Reasoning about the TLB involves concurrency. Indeed, the updates of the TLB are
performed concurrently to the CPU execution. The execution of some code might thus
hit a page fault while the MMU is updating the TLB.

As for any cache, the hardware looks first in the TLB for a mapping, and if not present,
looks in the PTs. An issue arises with the use of a TLB when the mappings in the TLB
are not in synchronization with the mappings of the current PT. As we are interested by
isolation properties, we are only concerned if a guest can take advantage of the bad syn-
chronization of the PTs with the TLB. Yet firstly, the TLB is flushed when the hypervisor
switches guests. Secondly, as every translation present in the TLB of a guest was present
at some point in the SPT of that guest, and as the definition of our allowed regions of
memory is static, we can safely say that the use of the TLB does not alter our properties.

3.4.2 Hypervisor State

The hypervisor state StHYP, whose type is defined in Definition 3.4.6, keeps the index of
the current guest, the list of guests to schedule, and the states of all the guests.

Definition 3.4.6 (Hypervisor State).

StHYP =

curr : Idx (Index of the current guest)
runqueue : list < Idx > (List of all the active guests)
vcpus : Idx → vCPU (State of all the active guests)

3.4. Low-Level State of the Hypervisor 43

The guest state holds the data needed to provide a virtual hardware interface to the
guest:

Definition 3.4.7 (Guest State).

vCPU =

baseSPT : Addr (Pointer to the SPT)
frange : {Addr} (SPT virtual addresses reserved for hypervisor)
alloc : {Addrpg} (Free pages for SPT space)
phys2virt : Addr → Addr (Function for translation from phys to virt)
regsvirt : Regsvirt (Virtual registers of the Guest)

The baseSPT contains the pointer to the SPT currently used by the guest. In particular,
when a guest executes, the hypervisor puts the baseSPT of that guest in the hardware
basePT register. In the C code that we model, the hypervisor can store several SPT for
one guest, it thus avoids to flush the whole SPT when a guest switches GPT. We have
taken that into account in our concrete model and in our proofs on the concrete model.
However, for conciseness, we only present here a state where the hypervisor maintains
one SPT for each guest. Indeed, considering only one SPT alleviates the expression of all
the properties presented in Chapter 4, and it is not essential for our isolation property.
The abstract model that we present corresponds to a model where only one SPTs per
guest is used. We discuss the impact on the abstract model of modeling one or several
SPT in Chapter 5.

The frange , alloc fields, and phys2virt function concern the pool, i.e. the place in mem-
ory where the SPTs of a guest are stored. In our implementation of the concrete model,
we normally have a field in the guest state which represents the pool. We have an invari-
ant stating that the pool corresponds to the pool defined in the static permissions (Sec-
tion 3.3.1). As the proof of this invariant is trivial, we have removed this field from the
model presented here and we only define the pool in the static permission. It allows to
alleviate the model. We still define the frange, alloc and phys2virt fields related to it.

The frange field models the forbidden range for that guest. It is a set of guest vir-
tual addresses (GVA) in the SPT that the guest is not allowed to access. More precisely,
when an exception occurs, the execution jumps to the virtual address defined in the cor-
responding exception vector. If this address is not mapped in the SPT, the hypervisor
would crash. Virtual addresses in frange are therefore used to map exception handlers in
the SPT, this is why no mapping of the forbidden range should be modified by the guest.

The alloc field is the set of free page addresses located in the pool. The hypervisor
uses these free pages to allocate new PTs.

The phys2virt function is the reciprocal function of the SPT and HPT on the addresses
of the pool region. As we will detail in Section 4.1.2, the hypervisor needs to translate
physical addresses to virtual addresses in order to go through the SPTs.

The virtual registers regsvirt defined in Definition 3.4.8 model the emulated registers
for the guest.

Definition 3.4.8 (Virtual Registers).

Regsvirt =

vcpsr : Reg
vregscore : vRegscore

vregsbnk : vRegsbnk

vregsmmu : vRegsmmu

vregsgic : vRegsgic

44 Chapter 3. Concrete Model of the Hypervisor

We define below each field of the virtual registers.

Virtual Mode

For the guest, we model the whole CPSR. The emulated mode, held into the cpsr field,
provides the mode in which the guest is supposed to be, and permits to load the correct
banked registers before restoring the guest. The hypervisor does not handle the Fast
Interrupt Request Mode (FIQ), but virtualizes it for the guest.

Virtual Core and Banked Registers

The vregscore emulate the registers r0 to r12 plus the pc. When a guest stops its execution,
the hardware r0 to r12 are stored into its vregscore, and the hardware lr is stored into the
emulated pc. In this particular case, lr contains the exception return address.

Definition 3.4.9 (Virtual Core Registers).

vRegscore =

r0 : Reg
...
r12 : Reg
pc : Reg

Contrarily to the general purpose registers which are shared between all the execution
modes, the banked registers belong to only one mode.

All the modes have their own instance of sp and lr registers. In addition, all privileged
modes have a banked Application Program Status Register (SPSR) (Definitions 3.4.10
and 3.4.11). The banked SPSR of a mode m holds the value of the CPSR which was
active before entering m. It is used to restore the previous state. The FIQ mode also bank
some general purpose registers to speed up the context switch (Definition 3.4.12).

Definition 3.4.10 (User Banked Registers).

BnkPL0 =

{
sp : Reg
lr : Reg

Definition 3.4.11 (Privileged Banked Registers).

BnkPL1 =

sp : Reg
lr : Reg
spsr : Reg

Definition 3.4.12 (FIQ Banked Registers).

Bnkfiq =

r8 : Reg
...
r12 : Reg
sp : Reg
lr : Reg
spsr : Reg

The virtual banked registers hold the banked registers of each mode (Defintion 3.4.13).

3.5. Low-Level Transitions 45

Definition 3.4.13 (Virtual Banked Registers).

Regsbnk =

bnkusr : BnkPL0

bnksvc : BnkPL1

bnkabt : BnkPL1

bnkund : BnkPL1

bnkirq : BnkPL1

bnkfiq : Bnkfiq

The banked registers are used to facilitate mode switching. We describe their use in
the inject transitions, in Section 3.5.3.

MMU Registers

The emulated PT base pointer (baseGPT) of the guest contains a pointer to the GPT, i.e. the
PTs that maps GVA to IPA. When a page fault occurs on a GVA, the hypervisor uses the
baseGPT to find the corresponding GPA. Note that baseGPT is an IPA, i.e. it is considered
as a physical address by the guest, but is in fact virtualized by the HPT.

Similarly to the hardware state, we model the fault status and the fault address reg-
isters. We also model the flag of the SCTLR register which indicates if the MMU is ac-
tivated. Indeed, the guest might not use the PTs, in this case, the SPT only contains a
translation from GPA to PA, instead of GVA to PA (see figure 1.3). For conciseness, we do
not model the other bits of the SCTLR, but we have in the implementation.

We denote by vregsmmu the emulated registers of the MMU:

Definition 3.4.14 (Virtual MMU Registers).

vRegsmmu =

baseGPT : Addr (IPA pointing to GPT)
paging : Bool (Is MMU activated)
fsr : Reg (Fault Status Register)
far : Reg (Fault Address Register)

Generic Interruption Controller Registers

As for the hardware state, we do not model the registers related to interruptions in details.

3.5 Low-Level Transitions

Now that we have defined the system state, we define the transitions. A transition is a re-
lation between two states: →: St ×St . We decompose a transition in four sub-transitions,
of the same type. The flow of execution is shown in Figure 3.4, and described as follows:

• Step 0 → 1: the hypervisor restores the execution of the guest, in particular, it sets
the processor to the unprivileged user mode.

• Step 1 → 2: the guest executes until it raises an exception or makes a hypercall,
making the hardware switch to a privileged mode of execution.

• Step 2 → 3: the hypervisor saves the registers in the dedicated virtualized register
structures.

• Step 3→ 0: the hypervisor handles the call or the fault.

46 Chapter 3. Concrete Model of the Hypervisor

PL1

PL0

1

0 3

2

Guest Trans

Save State TransHyp TransR
es

to
re

FIGURE 3.4: A Transition of the Concrete System

We describe each type of sub-transition below, and we give their formal definition. In
the transitions described thereafter:

• we let st ∈ St , σHW ∈ StHW and σHYP ∈ StHYP be such that:

st = 〈σHW,σHYP〉

• we introduce mem ∈ Mem,mode ∈ Mode, base ∈ Addr , regscore ∈ Regscore, regsmmu ∈
Regsmmu and regsgic ∈ Regsgic, such that:

σHW = 〈mem ,mode , base, regscore, regsmmu, regsgic〉

• we let i ∈ Idx , runqueue ∈ list < Idx >, vcpus ∈ (Idx → vCPU)〉, such that:

σHYP = 〈i, runqueue , vcpus〉

For readability, fields modified by a transition are represented in boldface.

3.5.1 Guest Transition

A guest transitions occurs in user mode. We confine the possible effects it can have on
the system by using the three properties provided by the hardware specification, namely
Properties 3.5.1, 3.5.2 and 3.5.3.

Property 3.5.1 (Writable Registers). An execution in user mode may only change the
hardware non-privileged registers (regscore and apsr), and regsmmu. In particular, it can-
not change the PT base register. An interrupt may occur, modifying regsgic. The guest
transition ends with an exception or a hypercall, modifying the mode field.

Property 3.5.2 (Writable Memory). An execution in user mode may only modify the
memory mapped with user RW rights by the PT currently used by the hardware.

Property 3.5.3 (Accessible Memory). An execution in user mode only depends on the
part of the memory which is mapped with user rights in the PT currently used by the
hardware, and on the user mappings defined by this PT.

These two last properties are exploitable only if the so-called current PT is constant
during a guest transition, i.e. if the current PT verifies the no_auto_map property (cf Defi-
nition 3.2.16). This property is ensured by an invariant stating that the part of the memory
space where SPTs are stored (i.e. the pool) is not mapped in RW by any guest.

We give the definition of the guest transition in Definition 3.5.1. Notice that the transi-
tion depends on some extra variable o. This o represents an external oracle. An interrupt

3.5. Low-Level Transitions 47

may happen anytime while the guest is running, modifying the regsgic. An interrupt also
has an indirect impact on memory and registers. Indeed, when an interrupt occurs, the
GIC, depending on its configuration, may raise an IRQ exception, thus stopping the guest
execution. We have not sufficient information to decide whether an interrupt is raised or
not, thus we use an external oracle. Our oracle o is to be interpreted as a list of interrupt
predictions. Each time the CPU performs an atomic action on behalf of the guest (moves a
value from a register to a RAM or vice-versa, performs an operation between two values,
compares two values...), the oracle is read to decide if an interrupt is raised. As men-
tioned in Section 3.4.1, the configuration of the GIC is static, therefore the treatment of a
hardware interrupt does not depends on the state of the GIC, and consequently, neither
does the guest transition. This is captured by Axiom 3.5.2.

Definition 3.5.1 (Guest Transition). If the system is in an unprivileged state, and if the PT
currently used by the hardware does not map itself with user RW rights, if the forbidden
range of the current guest is not mapped with user rights by the current PT, then a guest
transition is defined.

If no_auto_map(mem, base)
st .σHYP.vcpus(i).frange /∈ MapUSR(pt(st .σHW.mem, st .σHW.basePT))

Then 〈mem, base,pl0, regscore,apsr, regsmmu, regsgic〉, σHYP
GuestTrans(o)−−−−−−−−−→

〈mem′, base,pl1, regs ′
core,apsr

′, regs ′
mmu, regs ′

gic〉, σHYP

Properties 3.5.1 to 3.5.3 are specifications of ARMv7 design, we report them in our
model through axioms and characteristics of the guest transition. More specifically, the
Property 3.5.1 is captured by the definition of the guest transition. The two other prop-
erties on the hardware (Properties 3.5.2 and 3.5.3) are expressed by the Axioms 3.5.1
and 3.5.2 in our model. Axiom 3.5.2 also states that the transition of the guest does not
depend on the regsmmu and regsgic. We have given a justification for the regsgic. As for the
regsmmu, it only contain the fsr and far, which are written on a page fault, but the guest
has no access to them, therefore the guest transition cannot depend on them.

Axiom 3.5.1. (Writable Memory) If the byte at a physical address pa in memory is mod-
ified after a guest transition, then pa is mapped with user RW rights by the PT currently
in the hardware.

Let st ∈ St
pa ∈ Addr

If st
GuestTrans(o)−−−−−−−−−→ st ′

st .σHW.mem(pa) 6= st ′.σHW.mem(pa)

Then pa ∈ MapRW(pt(st .σHW.mem, st .σHW.basePT))

In order to define Axiom 3.5.2, we define the two properties, same_map and
same_user_regs_hw .

Definition 3.5.2 (Same Map). The property same_map holds for two memories and two
PT base addresses iff the two PTs define the same user mappings and if the two memories
are equals on the physical addresses mapped with user rights by the PTs.
∀mem1,mem2 ∈ St , let A = MapUSR(pt(mem1, base1)),

same_map(mem1,mem2, base1, base2)⇔

48 Chapter 3. Concrete Model of the Hypervisor

MapUSR(pt(mem2, base2)) = A,

mem1
A
= mem2,

∀va ∈ Addr , pt(mem1, base1)(va) = (pa, r) ∧ r ∈ {rw, ro} ⇒
pt(mem2, base2)(va) = (pa, r)

Definition 3.5.3 (Same User Registers in Hardware). Two states have the same non-
privileged registers if they have the same core registers and APSR.
∀st1, st2 ∈ St ,

same_user_regs_hw(st1, st2)⇔ st1.σHW.regscore = st2.σHW.regscore

st1.σHW.apsr = st2.σHW.apsr

Axiom 3.5.2. (Accessible Memory) If the user mappings defined by the PTs of two states
are equals, if the memory of these two states are equal on the physical addresses mapped
with user rights by their PTs, and if the two states have the same non-privileged registers,
then the guest transition modifies equally the two states.

Let st1, st2 ∈ St ,

If same_map(st1.mem, st2.mem, st1.σHW.basePT, st2.σHW.basePT)
same_user_regs_hw(st1, st2)

st1
GuestTrans(o)−−−−−−−−−→ st ′1

Then st2
GuestTrans(o)−−−−−−−−−→ st ′2

same_map(st ′1.mem, st ′2.mem, st ′1.σHW.basePT, st ′2.σHW.basePT)
same_user_regs_hw(st ′1, st ′2)

The guest transition (Definition 3.5.1) and the axioms on the hardware behavior (Ax-
ioms 3.5.1 and 3.5.2) formally define our attacker model.

From the definition of the guest transition (Definition 3.5.1) and Axiom 3.5.1, we triv-
ially obtain Theorem 3.5.1.

Theorem 3.5.1. (Unchanged PT) The PT currently used by the hardware is not modified
during the guest transition.

Let st ∈ St

If st
GuestTrans(o)−−−−−−−−−→ st ′

Then st ′.σHW.basePT = st .σHW.basePT

pt(st ′.σHW.mem, st .σHW.basePT) = pt(st .σHW.mem, st .σHW.basePT)

3.5.2 Save State Transition

Saving the state of a guest is the first action done by the hypervisor after a privileged
mode is entered. We separate it from the hypervisor transitions presented in the next sec-
tion for the sake of clarity. Indeed, even if this transition is performed by the hypervisor,
we make it commute with the abstract guest transition. More precisely, we will see in
Chapter 5 that the abstract guest transition commutes with the concatenation of the load
state transition, the concrete guest transition and the save state transition.

Furthermore, as we have explained previously, the guest transition ends when an ex-
ception is raised. The hardware automatically switches to a privileged mode and jumps
to the address indicated in the exception vector (modulo an offset). The exception vector
indeed holds the address for the handler. The exception vectors and the handlers should
be mapped (mapped_handlers). If not, their would be a page fault when trying to access

3.5. Low-Level Transitions 49

these addresses. It would raise another exception and so on, making the hypervisor in-
operative. Therefore, the save state transition is defined only if mapped_handlers holds.
We assume that it always holds and we explain in Section 4.2.1 why this is an accept-
able assumption. However we do prove that the guest cannot access the physical memory
where the handlers are (see Section 4.2.1). This is important from a security point of view,
because if guests were able to modify the handlers, their could be a privilege escalation.

The function that saves the state of a guest copies the core registers into the virtual
core registers and dedicated banked registers, depending on the current emulated mode
of the guest:

save_state : vCPU × Regscore → vCPU

This function only modify the fields regsvirt.regscore and regsvirt.regsbnk of the guest, and
the APSR bits of regsvirt.vcpsr.

The save state sub-transition that foregoes every hypervisor transition is the follow-
ing:

Definition 3.5.4 (Save State). The registers are saved into the guest dedicated structures.
Let vcpus ′ = vcpus[i← save_state(vcpus(i), regscore)]

If mapped_handlers(mem, vcpus)

Then σHW, 〈i, runqueue, vcpus〉 SaveState−−−−−−→
σHW, 〈i, runqueue, vcpus ′〉

Reciprocally, the function load_state loads the emulated registers of a guest into the
hardware:

load_state : vCPU → Regscore ×Apsr

It is part of the restore transition. The hypervisor indeed loads the registers of the guest
into the hardware before restoring it. It does the contrary as save_state does. In particular,
it only depends on the fields regsvirt.regscore, regsvirt.regsbnk and of the mode and APSR
bits of the CPSR of the guest it is restoring.

3.5.3 Hypervisor Transitions

Hypervisor transitions happen in a privileged mode. The first thing done by the hypervisor
is to save the state of the current guest in the guest state structure. As this operation is
common to all the hypervisor transitions, and to avoid writing it in hypervisor transition,
we present it separately in Section 3.5.2. The fourteen hypervisor transitions presented
below happen after saving the state of the current guest.

We divide the fourteen hypervisor transitions in four groups, as illustrated in the
Figure 3.5. We will see in Chapter 5 that one group of concrete transition is abstracted
into one abstract transition.

The first group contains the six transitions related to the memory management: they
either modify the current SPTs or the base pointer. Intuitively, they modify the guest’s
representation of memory.

The second group only contains the scheduling transition. It corresponds to the guest
context switch, that loads the registers of the new guest. In particular, it changes the PT
base pointer.

The third group contains three transitions that inject a fault to the guest and the emu-
lation of access to privileged registers. An injection means that the hypervisor emulates
the change of mode in the guest. This group also contains the access to different priv-
ileged registers. The hypervisor either writes to some emulated privileged register or

50 Chapter 3. Concrete Model of the Hypervisor

Concrete Transition Group
Page Fault without MMU
Page Fault with MMU
Flush Memory
Flush All Management
Switch
Enable/Disable MMU
Schedule Schedule
Inject SWI
Inject UND
Inject ABT Modify Registers
Access Privileged Registers
Handle IRQ
Passthrough IRQ GIC
Fetch IRQ

FIGURE 3.5: Hypervisor Transitions

reads its value and puts it in one of the core register. The transitions of this group have
impact on virtual registers.

Finally, the transitions of the fifth group concern the IRQs, they have an impact on the
GIC registers of the hypervisor or of the guests.

Memory Management Transitions

Memory management transitions modify the SPTs of a guest. They do not modify the
memory of the guest, in the sense that they do not modify the bytes in the memory acces-
sible by the guest. Rather, they change the accessibility to certain memory locations of a
guest (or several guests).

Page Fault A page fault occurs when the guest tries to access an address which is not
mapped in its current SPT.

When the guest does not activate MMU, it does not use its GPT. Yet the hypervisor
still maintains SPT in order to control access to memory. In this case, the SPT of a guest are
a partial copy of the HPT, with lower rights. The transition presented in Definition 3.5.6
shows the adding of a new mapping in the SPT after a page fault, when MMU is disabled.

When MMU is activated, the hypervisor go through the GPT in order to find out
to which IPA the faulting virtual address corresponds. If no translation for the faulting
address exists in the GPT, then the hypervisor notifies the guest that the translation for
the address is missing. To do so it injects the fault in the guest, we detail the injection
transitions in Section 3.5.3.

If a translation is present in the GPT of the guest, the hypervisor composes the GPT
with the HPT. It then maps the virtual address to the physical address found by this
composition in the SPT. It does not map just the address, but the whole page containing
this address, to a whole physical page. This mapping is added by the map function,
we give its formal definition in Chapter 4. The transition modifies the pool of that guest
(hence the modified memory field), and the state of the guest, when it needs to allocate a
new page (Definition 3.5.7).

In the transitions defined in Definitions 3.5.7 and 3.5.6, a mapping is added to the SPT
only if the rights requested are allowed. We define the allowed function (Definition 3.5.5).

3.5. Low-Level Transitions 51

Definition 3.5.5 (Allowed). Let i ∈ Idx and pa ∈ Addr a physical address:

allowed(pa, i, rw)⇔ ∃j ∈ Idx , pa ∈ shared(i, j) ∨ pa ∈ perm.priv(i)

allowed(pa, i, ro)⇔ ∃j ∈ Idx , pa ∈ shared(j, i) ∨ allowed(pa, i, rw)

Definition 3.5.6 (Page Fault Without MMU). If the fault was triggered by guest accessing
some address ipa [1]; if the current guest has MMU disabled [2]; if ipa is mapped in
the HPT to some PA pa [3] with suitable rights [4]; then the Page Fault without MMU
transition is defined and consists in mapping the address ipa to the physical address pa
in the current SPT:

If [1] decode(σ′HW) = pf (ipa)
[2] vcpus(i).regsvirt.vregsmmu.paging = false
[3] pt(mem, baseHPT)(ipa) = (pa, r0)
[4] allowed(pa, i, r0)
[5] pt(mem ′, baseSPT

′) = pt(mem, baseSPT)[ipa← (pa, r0)]

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 PageFault−−−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Definition 3.5.7 (Page Fault With MMU). If the fault was triggered by guest accessing
some address gva [1]; if the current guest has MMU enabled [2]; if gva is mapped in the
GPT [3,4] to some IPA ipa with suitable rights [5]; if this ipa translates into some pa in the
HPT; and if the map operation succeeds[7]; then the Page Fault with MMU transition is
defined and consists in mapping the virtual page at gva to the physical page at pa in the
current SPT:

If [1] decode(σ′HW) = pf (gva)
[2] vcpus(i).regsvirt.vregsmmu.paging = true
[3] pt(mem, baseHPT)(vcpus(i).baseGPT) = (pbaseGPT, _)
[4] pt(mem, pbaseGPT)(gva) = (ipa, r0)
[5] allowed(pa, i, r0)
[6] pt(mem, baseHPT)(ipa) = (pa, _)
[7] (mem ′, vcpus ′) = map(mem, vcpus, i, gva,pa, r0)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 PageFault−−−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Flush When the guest has MMU activated, it maintains the translation cache, i.e. the
TLB. When it unmaps one or several pages in its GPT, it sends a flush or flush all in-
struction to flush the cache. The hypervisor intercepts these operations and uses it to
synchronize the SPT with the GPT.

Similarly as for the page fault operation, we use unmap and unmap_all functions in
the following definitions but we detail them in Chapter 4.

The flush one operation removes one entry in the second level PT, i.e. it removes a
page. It does not return a second level PT to the pool, even when it removes the last entry
in the second level PT. This transition only has impact on memory (Definition 3.5.8).

The flush all operation removes all the entry in the current SPT, except the entries of
the forbidden range. It returns the second level PT to the pool. Thus this transition not
only has impact on memory, but also on the state of the current guest, more specifically
on its free field (Definition 3.5.9).

52 Chapter 3. Concrete Model of the Hypervisor

Definition 3.5.8 (Flush One Entry). If the guest called flush on gva [1]; if the current guest
has MMU enabled [2]; if gva is not in the forbidden range of the current guest [3]; and
if the unmap operation succeeds[4]; then the Flush One Entry transition is defined and
consists in unmapping the virtual page containing gva in the current SPT:

If [1] decode(σ′HW) = flush(gva)
[2] vcpus(i).regsvirt.vregsmmu.paging = true
[3] gva /∈ vcpus(i).frange
[4] mem ′ = unmap(mem, vcpus, i, gva)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 FlushOne−−−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉

Definition 3.5.9 (Flush All). If the guest called flush all [1]; if the current guest has MMU
enabled [2]; and if the unmap_all operation succeeds[3]; then the Flush All transition is
defined and consists in unmapping all the addresses outside the forbidden range in the
current SPT:

If [1] decode(σ′HW) = flush_all
[2] vcpus(i).regsvirt.vregsmmu.paging = true
[3] (mem ′, vcpus ′) = unmap_all(mem, vcpus, i)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 FlushAll−−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Switch The switch transition happens when the current guest switches its current PT,
i.e. when it schedules a new process. As mentioned in Section 3.4.2, the hypervisor only
stores one SPT for each guest. The switch transition performs two changes: it flushes the
whole SPT, and it changes the current GPT base address.

Definition 3.5.10 (Switch). If the guest called switch all [1]; if the current guest has MMU
enabled [2]; and if the unmap_all operation succeeds[3]; then the Switch transition is
defined and consists in unmapping all the addresses outside the forbidden range in the
current SPT and changing the guest emulated GPT base pointer:

If [1] decode(σ′HW) = switch(baseGPTnew)
[2] vcpus(i).regsvirt.vregsmmu.paging = true
[3] (mem ′, vcpus ′) = unmap_all(mem, vcpus, i)
[4] vcpus ′′ = vcpus ′[(i).regsvirt.vregsmmu.baseGPT ← baseGPTnew]

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 Switch−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′′〉

Enable/Disable MMU The guest might enable (resp. disable) its MMU. The hypervisor
flushes the current SPT and sets the emulated guest register controling MMU to enabled
(resp. disabled).

Definition 3.5.11 (Enable/Disable MMU). If the guest enables/disables its MMU [1]; if
the unmap_all operation succeeds [2]; then the Enable/Disable MMU transition is de-
fined and consists in unmapping all the addresses outside the forbidden range in the
current SPT and changing the guest register controlling MMU activation:

If [1] decode(σ′HW) = mmu(bool)
[2] (mem ′, vcpus ′) = unmap_all(mem, vcpus, i)
[3] vcpus ′′ = vcpus ′[(i).regsvirt.vregsmmu.paging ← bool]

3.5. Low-Level Transitions 53

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 e/d MMU−−−−−−→
〈mem ′,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′′〉

Schedule Transition

The guest may send a hypercall to suspend its execution, in this case the hypervisor
schedules another guest. It stores the registers of the current guest and loads the registers
of the next one.

Definition 3.5.12 (Schedule). If a scheduling is triggered and if the runqueue is not empty,
then the Scheduling transition is defined and consists in loading the new current guest
MMU settings in the hardware:

If decode(σ′HW) = sched
runqueue not empty

Let < j :: runqueue ′ >= runqueue
runqueuenew = runqueue ′ :: i
base′ = vcpus(j).baseSPT

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 Sched−−−→
〈mem ′,mode, base′, regs′core,apsr

′, regsmmu, regsgic〉, 〈j, runqueuenew, vcpus ′〉

GIC Transitions

In case of an interrupt request which is not pushed to the guest, the hypervisor handles
the IRQ (Definition 3.5.13). The change due to the IRQ is captured by the regsgic field, it
does not affect any other component of the state.

Some IRQs are not handled by the hypervisor, they are forwarded to the guests. They
are pushed into the IRQ queue of some or all the guests. They might change the state of
all the guests, as described in Definition 3.5.14.

The guest can fetch an IRQ through the page fault handler, when the guest accesses
external devices (Definition 3.5.15).

We do not give details about the functions used in the definitions below (push/pop
an IRQ), because they are obvious and will not be needed afterwards.

Definition 3.5.13. (Handle IRQ) If there is an IRQ to handle, the handle IRQ transition is
defined and consists in the hypervisor handling the IRQ, without interfering with guest’s
state:

If decode(σ′HW) = irq_handler

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 handleIRQ−−−−−−→
〈mem,mode, base, regs ′core, apsr , regsmmu, regs

′
gic〉, 〈i, runqueue, vcpus〉

Definition 3.5.14. (Passthrough IRQ) If a passthrough IRQ is triggered, the hypervisor
forwards the IRQ to the guests:

Let vcpus ′ s.t. ∀j, vcpus′(j) = push(vcpus(j).regsgic, n)

If decode(σHW) = passthrough_irq(n)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 passthroughIRQ−−−−−−−−−−→
〈mem,mode, base, regs ′core, apsr , regsmmu, regs

′
gic〉, 〈i, runqueue, vcpus ′〉

54 Chapter 3. Concrete Model of the Hypervisor

Definition 3.5.15. (Fetch IRQ) The guest pop an IRQ:
Let vcpus ′ = vcpus[i.regsvirt.regsgic ← pop(i.regsvirt.regsgic, n)]

If decode(σ′HW) = fetch_irq(n)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 fetchIRQ−−−−−→
〈mem,mode, base, regs ′core, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Modify Registers Transitions

Each mode has some banked registers which indicate where to return (banked lr) and in
which mode (banked mode). When the guest sends a hypercall to switch to X mode, the
hypervisor emulates the way ARMv7 handles the change of mode with banked registers:

1. The pc and the emulated cpsr are stored respectively in the emulated banked lr and
spsr of mode X.

2. The mode of the emulated cpsr is changed into X mode.

3. pc is set to the exception vector corresponding to X mode.

The inject function defined below performs these steps.

Definition 3.5.16. (Inject) ∀vcpu ∈ vCPU , X ∈ pl1, we define the function inject as
follow:

Let vregscore = vcpu.regsvirt.vregscore

regs ′bnk = regsbnk[bnkX .spsr ← regsvirt.cpsr, bnkX .lr ← vregscore.pc]
vregs ′core = vregscore[pc← X_vec,]
cpsr ′ = set_mode(vcpu.regsvirt.cpsr,X)
regs ′virt = vcpu.regsvirt.[cpsr ← cpsr ′, vregscore ← vregs ′core, regsbnk ← regs ′bnk]

Then inject(vcpu,X) = vcpu[regsvirt ← regs ′virt]

We give the definition of inject SVC and inject UND in Definition 3.5.18. The inject
ABT occurs in a different context. It corresponds to the case where the hypervisor for-
wards the page fault to the guest, so that it adds a new mapping in its GPT that the
hypervisor would shadow.

Definition 3.5.17 (Inject SVC/UND Transition). If the guest attempts to switch to mode
X ∈ {svc, und}, the inject transition is defined as follows:

Let vcpus ′ = vcpus[i← inject(vcpus(i), X)]

If decode(σ′HW) = inject(X)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 InjectX−−−−→
〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Definition 3.5.18 (Inject ABT Transition). If the fault is triggered by an access to some
address gva [1]; if the current guest has MMU enabled [2]; if gva is not mapped in the
GPT [3,4]; then the Inject ABT transition is defined and consists in injecting the fault into
the guest:

Let vcpus ′ = vcpus[i← inject(vcpus(i), X)]
vcpus ′′ = vcpus[i.regsvirt.vregsmmu.fsr ← regsmmu.fsr,

i.regsvirt.vregsmmu.far ← regsmmu.far]

3.5. Low-Level Transitions 55

If [1] decode(σ′HW) = pf (gva)
[2] vcpus(i).regsvirt.vregsmmu.paging = true
[3] pt(mem, baseHPT)(vcpus(i).baseGPT) = (pbaseGPT, _)
[4] pt(mem, pbaseGPT)(gva) ∈ Fault

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 InjectABT−−−−−−→
〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′′〉

Finally, the guest might want to read or write to privileged registers. A write would
modify one of the privileged registers emulated in regsvirt. A read would change some
emulated core register (the hypervisor reads the value and write it to an unprivileged
register).

Definition 3.5.19 (Modify Registers). If the guest attempts to access some privileged reg-
isters, the hypevisor accesses the emulated registers on its behalf:

Let vcpus ′ ∼= vcpus[i.regsvirt]

If decode(σ′HW) = inject(X)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 ModifyRegs−−−−−−−→
〈mem,mode, base, regs ′core, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

3.5.4 Restore Transition

Finally, after it finishes handling a fault or a guest request, the hypervisor restores the
state of the guest, so that it can execute (guest transition).

Before restoring the guest, the hypervisor might inject an IRQ to the guest. For clar-
ity’s sake, we divide the restore transition in two sub-transitions:

1. Inject an IRQ or do nothing.

2. Load the state of the guest to run.

Definition 3.5.20 shows the inject IRQ transition. If there is no pending IRQ, then this
transition is a nop, and the hypervisor transition is directly followed by the load state
transition of Definition 3.5.21.

Definition 3.5.20 (Inject IRQ Transition). If the system is in a privileged mode, and if an
interrupt is pending and not mask, then the IRQ is injected

Let vcpus ′ = vcpus[i← inject(vcpus(i), irq)]

If pending_irq(vcpus(i).regsgic)

¬mask(vcpus(i).regsgic)

Then 〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 InjectIRQ−−−−−−−→
〈mem,mode, base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus ′〉

Definition 3.5.21 (Load State Transition). If the system is in a privileged mode, then the
state of the guest is loaded and hardware mode is set to usr .

Let (regs′core,apsr ′) = load_state(vcpus(i))

If mode ∈ pl1

Then 〈mem,mode , base, regscore, apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉 Restore−−−−−→
〈mem,usr , base, regs′core,apsr , regsmmu, regsgic〉, 〈i, runqueue, vcpus〉

56 Chapter 3. Concrete Model of the Hypervisor

3.6 Key Points

• The permissions of each guest to some physical memory areas are defined stat-
ically.

• The concrete state is composed of the hardware state and the hypervisor state.

• In the hypervisor state, the hypervisor stores data to emulate the hardware for
each guest. In particular, for each guest, it stores the pointer to the SPT and
data necessary to the management of the SPT (forbidden addresses, allocator,
location in virtual memory).

• We work with two level PTs.

• Our concrete system has fourteen transitions. Five of them concern memory
management. It means that they have effect on the physical addresses accessi-
ble to a guest.

We have presented the concrete transition system. In the next chapter, we will present the in-
variant properties of the model. We will show their preservation over to most critical memory
management transitions.

57

Chapter 4

Invariant Properties of the System

Contents
4.1 Invariants on Page Tables . 59

4.1.1 Page Tables Well-formedness . 59

4.1.2 Translation of Hypervisor Virtual Space 61

4.2 Invariants Specific to some Transitions 64

4.2.1 Guest Transition . 65

4.2.2 Map a Page . 66

4.2.3 Unmap a Page . 68

4.2.4 Unmap all . 69

4.2.5 Well-formed Registers . 71

4.2.6 Interdependencies . 72

4.3 Specifications of the Effects of some Transitions 75

4.3.1 Map . 75

4.3.2 Unmap . 78

4.3.3 Unmap All . 79

4.3.4 Guest Transition . 80

4.4 Conclusion . 81

4.5 Key Points . 82

The correspondence between transitions of the concrete and abstract system, that we
will present in Chapter 5, can only be established on certain conditions. Indeed the ab-
straction rely on the specification of the effects of each transitions, which can be specify
only if the concrete state verifies some properties.

For example, consider the Figure 4.1, which depicts the mapping of a virtual address
whose indexes in the first and second level PT are idx1 and idx2, in the PT at address
pbase1. Suppose that pbase1 is a pointer to the SPT of some guest. When the hypervisor
maps a new page in this SPT, it may allocate memory in order to store a second level PT
(when the descriptor at idx1 is a fault).

1. If the allocation is bugged, for example if the newly allocated second level PT is not
empty, the effect of the map operation is that the guest gains access to several new
pages of addresses which were not intended to be mapped.

2. If a property ensures that the free PTs available for allocation are empty, the observ-
able effects are as expected: the guest gains access only to addresses located in the
page expressly mapped. We prove that such properties are invariants of the system.

58 Chapter 4. Invariant Properties of the System

Physical Memory

pa pbase1 pbase2

pbase1

idx1

idx2

descr1 = pbase2

descr2 = (pa, rw)

PT level 1

PT level 2

FIGURE 4.1: Mapping from a virtual address va = idx1 ⊕ idx2 to pa, in a
PT located at pbase1.

The invariants hold between every transitions, in particular at the beginning of each
transition where they are needed. Some of them are only required for preserving other
invariants over a particular transition, this is the case of the property we have just men-
tioned. Others are needed for almost every transitions, this is the case of invariants on
PTs presented in Section 4.1.1.

We divide our invariants in three groups, the PT well-formedness invariants and the
translation of the pool space invariants are properties on the PTs, they are presented in
Section 4.1. The third group gathers the invariants specifics to some transitions and are
presented in Section 4.2. We list them informally below:

• PT well-formedness:

– The first level HPT is included in the hypervisor space.

– The second level HPTs are included in the hypervisor space.

– The first level SPT of a guest does not overlap with its second level SPTs.

– The second level SPTs of a guest does not overlap with its second level SPTs.

– The first level SPT of a guest is in its pool.

– The second level SPTs of a guest are in its pool.

• Translation of pool space:

– Specification of how the pool of a guest is mapped in the HPT.

– Specification of how the pool of a guest is mapped in its SPTs.

• Invariants specifics to some transitions:

– Physical addresses mapped in the SPT of a guest are allowed for that guest.

– The pool of a guest is mapped by virtual addresses in the forbidden range of
the guest’s SPTs.

4.1. Invariants on Page Tables 59

– A page listed as free is not mapped.

– A page not listed as free is mapped.

– The forbidden range is not mapped with user rights.

A concrete state verifying all the invariants is called a well-formed state. We give the
definition of a well-formed state at the end of this chapter (Definition 4.4.1). The proofs
of refinement in Chapter 5 are stated on well-formed states.

In this chapter we define all these invariants, we analyze their inter-dependencies and
justify why each invariant is needed. In Section 4.1 we present the invariants concerning
the PTs and the properties that can be deduced. In Section 4.2 we present invariants that
are required for some specific operations. Sections 4.3.4, 4.2.2, 4.2.3 and 4.3.3 analyze in
details some transitions described in Chapter 3: we enunciate the specification properties
needed in order to abstract them, and we show on which invariants their proof rely.

4.1 Invariants on Page Tables

PT invariants are at the base of almost all the properties we have proved. Invariants of
Section 4.1.1 show that the SPT base pointers stored in a state effectively points to well
formed PT structures, i.e. that they can be interpreted as function from virtual to physical
addresses. Invariants of Section 4.1.2 specify how the SPTs are themselves mapped, and
thus allow to translate back physical addresses to virtual addresses for this particular set
of addresses.

4.1.1 Page Tables Well-formedness

The properties on PTs are related to their location in memory. As illustrated in Figure 4.1,
PT are themselves stored in the physical memory they map. We want to make sure that
no PT overlap with another, and that they are all located in safe parts of the memory, i.e.
not accessible in user mode.

Note that, for readability’s sake, we do not present here the reasoning about intervals.
Indeed, an interval [a, a+ b[makes sense only if a < a+ b, which might not be the case if
a + b overflows. This is something we take into account in our proof, but do not present
here.

In order to define the invariants in this section, we often need to express whether a
second level PT is a component of a PT. The property of Definition 4.1.1 specifies the
belonging to a PT for second level PT. Note that the base address of a PT is the base
address of its first level PT, therefore we do not need to define a similar predicate for first
level PT.

Definition 4.1.1. (Reachable Base 2) . The base address base2 of a second level PT is
reachable from the base base of a PT through idx1 if the idxth1 descriptor of the first level
PT at base contains a link to base2:
∀mem ∈ Mem,
∀base, base2 ∈ Addr ,
∀idx1 ∈ Idx ,

reachablebase2 (mem, base, idx1, base2)⇔

idx1 < 4096 ∧ get_descr1(fetch(mem, compute1(base, idx1)) = base2

60 Chapter 4. Invariant Properties of the System

Definitions 4.1.1 and 4.1.2 define invariants ensuring that the first and second level
PTs of HPT are in the hypervisor space. As all the modifications we perform on memory
concern the pools or the memory regions of the guest, these invariants are required to
prove that the HPTs are never tampered with.

Definition of Invariant 4.1.1 (HPT First Level in Hypervisor Space). The property
hpt_pt1 _hypspace is verified iff the first level PT of the HPT is located within the hyper-
visor space:

hpt_pt1_hypspace⇔ [baseHPT + sizePT1 [∈ hypspace

Definition of Invariant 4.1.2. (HPT Second Levels in Hypervisor Space) The property
hpt_pt2 _hypspace is verified iff all the second level PTs of the HPT are located within the
kernel memory:
∀mem ∈ Mem,

hpt_pt2 _hypspace(mem)⇔ (∀base2 ∈ Addr ,∀idx1 ∈ Uint ,
reachablebase2 (mem, baseHPT, idx1, base2)⇒
[base2 + sizePT2 [⊂ hypspace)

Invariants of Definitions 4.1.3 and 4.1.4 ensure that the PT of level 1 and 2 of the SPT
of each guest are in the pool of that guest. Again, it is used to isolate the SPTs from the
other parts of the memory, in particular from user space, hypspace, and from other pools.

Definition of Invariant 4.1.3. (SPT First Level in Pool) The property spt1 _in_pool is ver-
ified iff the first level PT of the SPT of a guest is located in its pool.
∀vcpus ∈ (Idx → vCPU),

spt1 _in_pool(vcpus)⇔
∀i ∈ Idx , [vcpus(i).baseSPT, vcpus(i).baseSPT + sizePT1 [⊂ perm(i).pool

Definition of Invariant 4.1.4. (SPT Second Levels in Pool) The property spt1 _in_pool is
verified iff the second level PTs of the SPT of a guest is located in its pool.
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

spt2 _in_pool(mem, vcpus)⇔ (∀i ∈ Idx ,∀base2 ∈ Addr ,∀idx1 ∈ Uint
reachablebase2 (mem, vcpus(i).baseSPT, idx1, base2)⇒
[base2 + sizePT2 [⊂ perm(i).pool)

Invariants of Definitions 4.1.5 and 4.1.6 ensure that, within a same PT, first and second
level PTs do not overlap with each other.

Definition of Invariant 4.1.5. (SPT First Level no overlap with Second Levels) The prop-
erty no_overlap_pt1 is verified iff the first level PT of the SPT of a guest does not overlap
with any of its second level PT.
∀mem ∈ Mem,
∀vcpus ∈ Idx → vCPU ,

no_overlap_pt1 (mem, vcpus)⇔
(∀i ∈ Idx , ∀base2 ∈ Addr , ∀idx1 ∈ Uint
reachablebase2 (mem, vcpus(i).baseSPT, base2)⇒
[vcpus(i).baseSPT, vcpus(i).baseSPT + sizePT1 [∩ [base2 + sizePT2 [= {})

Definition of Invariant 4.1.6. (SPT Second Levels no overlap with Second Levels) The
property no_overlap_pt2 is verified iff the second level PTs of the SPT of a guest does not

4.1. Invariants on Page Tables 61

overlap with any of its other second level PT.
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

no_overlap_pt2 (mem, vcpus)⇔ (∀i ∈ Idx ,∀base2, base
′
2 ∈ Addr ,∀idx1, idx

′
1 ∈ Uint

reachablebase2 (mem, vcpus(i).baseSPT, idx1, base2) ∧
reachablebase2 (mem, vcpus(i).baseSPT, idx

′
1, base

′
2) ∧

idx1 6= idx′1 ⇒
[base2 + sizePT2 [∩ [base′2 + sizePT2 [= {})

With these six invariants, we are able to reason on the effects of physical setters on
memory. Consider a second level descriptor which is safe to add in a SPT of a guest.
For example, a pointer to a page inside a private region of a guest is a safe second level
descriptor. If we set a second level entry in the SPT of a guest to a so called safe descriptor,
then:

1. No mapping is modified in the HPT, because of Invariants 4.1.1, 4.1.2, 4.1.3 and
4.1.4, which isolate the HPT from the SPTs.

2. No mapping is modified in the SPT of another guest, because of invariants 4.1.3 and
4.1.4, which isolate the SPT of one guest from the others.

3. No other modification than the one intended is performed in the SPT, because of
invariants 4.1.5 and 4.1.6.

4.1.2 Translation of Hypervisor Virtual Space

As we mentioned in Section 3.2.2, memory can only be accessed with virtual addresses, so
when the hypervisor needs to access some physical address, it uses phys2virt to translate
it to a virtual address before accessing it. This function is defined for each guest in its
state (field phys2virt in Definition 3.4.7).

The function phys2virt performs a mere addition. It defines how the HPT and SPT
of a guest map the addresses of a pool. In particular, in our case, a contiguous segment
of virtual memory is mapped contiguously in physical memory. This function could be
more complicated as long as it is static, as we use phys2virt for both HPT and SPT. For
each phys2virt , we define virt2phys , the inverse function.

The properties hpt_phys2virt and spt_phys2virt defined below state that the addresses
of the pool are mapped with phys2virt translation by the HPT and SPT.

Definition of Invariant 4.1.7. (HPT Mapped Translation) The addresses of the SPT region
of one guest are mapped by a translation in the HPT.
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

Let virt2phys be the inverse function of vcpus(i).phys2virt ,

hpt_phys2virt(mem, vcpus)⇔ (∀i ∈ Idx ,∀va ∈ Addr ,
virt2phys(va) ∈ perm.pool(i))⇒
pt(mem, baseHPT)(va) = (virt2phys(va), pl1))

Definition of Invariant 4.1.8. (SPT Mapped Translation) The addresses of the SPT region
of one guest are mapped by a translation in this SPT.
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

62 Chapter 4. Invariant Properties of the System

spt_phys2virt(mem, vcpus)⇔ (∀i ∈ Idx , ∀va ∈ Addr ,
virt2phys(va) ∈ perm.pool(i))⇒
pt(mem, vcpus(i).baseSPT)(va) = (virt2phys(va), pl1))

Virtual to Physical Getters/Setters The invariants of Section 4.1.1 allow to specify the
effects of the modification of a SPT with a physical setter (set_descr i). However, as ex-
plained in Section 3.2.2, the hypervisor modifies the SPT using virtual addresses, i.e. us-
ing set_v_descr i (Definition 3.2.12). The invariants of this section allow to complete the
properties provided by the invariants of the previous section: they allow to reason about
a modification of descriptors accessed by virtual addresses.

When the hypervisor accesses the idxth entry of the SPT at base baseSPT, it first trans-
lates the base address to a virtual address, then computes the virtual address of the de-
scriptor from this address, and finally accesses the descriptor at this virtual address with
the virtual getter, as follows:

1. vbaseSPT = phys2virt(baseSPT).

2. vpde = compute(vbaseSPT, idx).

3. get_v_descr1(mem, baseHPT, vpde) (or get_v_descr1(mem, baseSPT, vpde), depend-
ing which PT is currently in use).

We prove that the three steps are actually equivalent to the simpler steps involving
only physical accesses:

1. ppde = compute(baseSPT, idx).

2. get_descr1(mem, ppde)

This result, for virtualization with SPT, is summed up in Lemma 4.1.2. We have a
second lemma stating this result for virtualization with HPT.

The result stated in Lemma 4.1.1 is used in the proof of Lemma 4.1.2. It is directly
obtained from the definition of compute (Definition 3.2.9), since the function virt2phys is
linear.

Lemma 4.1.1 (Compute commutes). ∀i ∈ Idx , ∀vbaseSPT ∈ Addrpg ,∀idx1 ∈ Uint ,
Let virt2phys = st .σHYP.guests(i).virt2phys

virt2phys(compute(vbaseSPT, idx)) = compute(virt2phys(vbaseSPT), idx)

Lemma 4.1.2. (SPT Get Phys to Virt) The virtual access to an idxth descriptor in a PT can
be related to the physical access the idxth descriptor in the same PT, if the PT used for
virtualization is equivalent to the virt2phys function:
∀idx1 ∈ Uint ,
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),
∀i ∈ Idx ,

Let baseSPT = vcpus(i).baseSPT

[1] vbaseSPT = phys2virt(baseSPT)
[2] vpde = compute(vbaseSPT, idx)
[3] ppde = compute(baseSPT, idx)

4.1. Invariants on Page Tables 63

If spt1 _in_pool(mem, vcpus)
hpt_phys2virt(mem, vcpus)
idx1 < 4096

Then get_v_descr1(mem, baseHPT, vpde) = get_descr1(mem, ppde)

Proof. Since virt2phys(vpde) ∈ perm.pool(i), by Definition 4.1.8, invariant spt_phys2virt
ensure that:

pt(mem, baseSPT)(vpde) = (virt2phys(vpde), _)

Therefore, by Definition 3.2.11 of the virtual get descriptor:

get_v_descr1(mem, baseSPT, vpde) = get_descr(mem, virt2phys(vpde))

By Lemma 4.1.1, and by combining virt2phys in the equality [2]:

virt2phys(vpde) = compute(baseSPT, idx)

It means, by [3], that virt2phys(vpde) = ppde. Therefore:

get_v_descr1(mem, baseSPT, vpde) = get_descr(mem, ppde)

Qed.

In addition, for each virtualization case, we have a similar lemma for second level
descriptors, which needs spt2 _in_pool invariant to show that the address of the entry
considered is in the pool, so that hpt_phys2virt (or spt_phys2virt) can be applied. The
proofs of these lemmas are straightforward (less than 10 hints each).

We refer to these lemmas as equivalence of physical and virtual getter/setter.

PT Modification Properties As explained in Section 3.2.2, the hypervisor uses virtual
setters (Definition 3.2.11) when it modifies the SPTs. The virtual addresses it uses are
virtualized either with HPT or with SPT, i.e. the current PT used by the MMU to trans-
late the addresses is either the HPT or the SPT. At each modification, we verify that only
the intended entry in the SPT is modified. The PT function definition uses physical ad-
dresses, so we want to compare the values returned by physical getters before and after
the modification. So our lemmas on PT modification all consider modifying a SPT using
virtual addresses and compare the value of some descriptors accessed before and after
the modification with physical addresses. All in all, there are 20 lemmas:

• When setting an entry in the SPTs with HPT (resp. SPT) virtualized addresses:

– 4 lemmas for proving that there is no effects on the HPTs (resp. SPTs).

– 4 lemmas for proving that there is no effects on certain entries of the SPTs.

– 2 lemmas for specifying the effect on the modified entry.

Each proof takes between 20 and 50 hints, and rely on all the properties of PTs men-
tioned previously. For example, let’s consider the following lemma:

Lemma 4.1.3. (HPT get set first SPT) If one sets the idx th
1 entry in the first level PT of a

SPT, using the virtual setter virtualized with HPTs, then the get of another entry stays
unchanged.

64 Chapter 4. Invariant Properties of the System

∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),
∀idx1, idx

′
1 ∈ Idx ,

Let ppde = compute(vcpus(i).baseSPT, idx1),
vpde = phys2virt(ppde),
ppde′ = compute(vcpus(j).baseSPT, idx

′
1),

If no_overlap_pt1 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
hpt_phys2virt(mem, vcpus),
mem′ = set_v_descr1(mem, baseHPT,vpde),
idx1 6= idx′

1 ∨ i 6= j,

Then get_descr1(mem,ppde
′) = get_descr1(mem

′,ppde′)

The property no_overlap_pt1 ensures that the modification on the first level PT does
not impact first level PT of other guests. It thus provides the result when i 6= j. The
combination of spt1 _in_pool and hpt_phys2virt allows us to specify set_v_descr1 in terms
of physical getters and setters. This way, we can actually reason on physical addresses,
and ensure that a modification at idx1 does not impact the entry at idx′1 when idx1 6= idx′1.

On variants of this lemma which modify the second level of PT, we need in addition
the invariants on the second level PTs (such as no_overlap_pt2 , spt2 _in_pool).

We do not not present all the properties here, we refer to them in the remaining of the
document as PT modification properties.

The properties discussed in this Section give an idea of the complexity induced by the
PTs: the simultaneous manipulation of physical and virtual addresses, the different kind
of virtualization to take into account (with HPT or SPTs), their intricate structure which
multiply the risks of out of boundaries access, or overlapping. Note that these properties
may seem obvious, but they highly contribute to complicate every aspect of the proof, at
least every reasoning on memory access.

4.2 Invariants Specific to some Transitions

The invariants of the previous section ensure that the PTs are well formed and therefore
can be interpreted as functions from virtual to physical addresses. They are the basis
of abstraction. We present in this section the extra invariants we need for proving the
preservation of these PT invariants over:

• the Guest Transition,

• the map operation (used in the page fault transition),

• the unmap operation (used in the flush transition),

• the unmap_all operation (used in the flush all and the switch transitions).

Each of the following four sections is dedicated to one of these operation. We give
the definitions of the invariants needed for the particular operation, and we informally
explain why it is needed. The map, unmap and unmap_all operations have been used to
define some of the MMU transitions (Section 3.5.3), but we have not defined them yet.
Therefore we will begin each of the dedicated section by the definition of the operation.

Finally in Section 4.2.6, for each operation, we present the dependencies between the
invariants when proving their preservation over the operation.

4.2. Invariants Specific to some Transitions 65

4.2.1 Guest Transition

When the hypervisor restores the guest, it puts the guest’s own SPT in the hardware,
meaning that the current PT is the SPT of the current guest. More generally, except for the
map operation for which the hypervisor uses the HPTs, the addresses are always virtual-
ized with the current guest SPTs. This is an invariant of our system. As it is temporarily
broken for the operation map, we do not include it in our definition of a well-formed
state, but its preservation is obviously preserved by all the transitions.

Definition 4.2.1 (SPT current PT). The property spt_curr_pt holds iff the SPT base ad-
dress of the current guest is equal to the PT base address.
∀st ∈ St ,

spt_curr_pt(st)⇔ st .σHW.basePT = st .σHYP.vcpus((st .σHYP.curr).baseSPT)

Recall from Section 3.5.1 that the guest transition requires that the current PT in σHW

does not map itself with user rights (no_auto_map, Definition 3.2.16). The property
no_auto_map should then be an invariant property of the SPT of each guest.

Axiom 3.5.1 states that the guest transition only impacts parts of the memory mapped
in RW by the current PT. Therefore, if we want to preserve the 8 invariants presented, we
should ensure that the SPT of the current guest does not map in RW any place where the
GPT or HPT are kept (i.e. the pools or the hypspace).

These two requirements on the SPT are ensured by the following invariant:

Definition of Invariant 4.2.1. (Mapped User Allowed) The property map_usr_allowed
holds iff all the mappings present in the SPT of the guest are allowed:
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

map_usr_allowed(mem, vcpus)⇔ (∀i ∈ Idx ,∀va, pa ∈ Addr , r ∈ Rights
pt(mem, vcpus(i).baseSPT)(va) = (pa, r)⇒
allowed(pa, i, r))

Indeed, the fact that an address pa is allowed for guest i with some rights r (Defini-
tion 3.5.5) implies that the address is located in one of the shared or priv region of the
guest. Yet these regions are distinct from the pools and hypspace (Definition 3.3.1). So the
SPT of every guest does not map the pools and hypspace, and in particular they do not
map themselves. We detail these properties in Section 4.3.4.

Furthermore, the property map_usr_allowed allow to specify the effects of the map
transition, as we will see in Section 4.3.1.

Exception Handlers

We have explained in Section 3.5.2 that the guest should not be able to modify the way
the exceptions are handled. When an exception is raised, the hardware switches to a
privileged mode and jumps to an exception vector whose virtual address is defined in
the Vector Base Address Register (VBAR). The exception vector does not contain the full
code for a handler (it is only 32 bits large), it jumps to the proper handler. The handling
of an exception can therefore be altered in three places, we give their access restrictions
below:

1. the VBAR register is only modifiable in privileged mode,

2. the exception vector is mapped in the forbidden range,

66 Chapter 4. Invariant Properties of the System

3. the exception handler is also mapped in the forbidden range.

Invariant 4.2.2, presented below, ensures that the virtual addresses of the forbidden
range only map physical addresses outside of user regions. Combined with the Invari-
ant 4.2.1 it ensures that the guests cannot modify any mapping at a virtual address within
the forbidden range and cannot access any physical address mapped by the forbidden
range. Therefore the guest transition cannot modify any part of the exception handler.

Definition of Invariant 4.2.2. (Forbidden Range not User Region) The property frange_no_usr
holds iff the frange are mapped to physical addresses outside of all the user regions.
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

frange_no_usr(mem, vcpus)⇔ (∀i ∈ Idx ,∀va, pa ∈ Addr , r ∈ Rights,
va ∈ frange ∧
pt(mem, vcpus(i).baseSPT)(va) = (pa, r)⇒
@(i, j), pa ∈ perm.priv(i) ∨ pa ∈ perm.shared(i))

The hypervisor could still unmap addresses of the forbidden range, even when Invari-
ant 4.2.2 holds. However, SPTs are only modified with one of the three functions: map,
unmap or unmap_all . And each time these functions are called, they avoid the forbidden
range (a check is made before each call to map and unmap and the check is included in
the function unmap_all).

For the particular case of the abort handler, the hypervisor switches to HPTs to han-
dle the fault, then switches back to SPT at the end of the handler. The HPTs are never
modified after initialization, therefore the handler is never unmapped from the HPT.

Of course this is not a formal proof that the hypervisor never unmaps the handlers.
However, we already have the arguments in place. Furthermore we have proved that
the pool, which is mapped in the forbidden range, is always mapped in the HPTs and
the SPTs (Invariants 4.1.7 and 4.1.8). We are therefore confident that proving that the
forbidden range is never unmapped would just be a small extension. We plan to add it
to our model, but for now we consider that it is reasonable to consider that the exception
vectors and handlers are always mapped.

4.2.2 Map a Page

As previously explained in Section 3.5.3, when a guest tries to access a virtual address
which is mapped in its GPT but not in its SPT, a page fault exception occurs and the
hypervisor adds a new mapping in the SPT (Definition of the Page Fault With MMU
transition 3.5.7).

The map function is precisely the function, called in the Page Fault With MMU transi-
tion, which maps the virtual address of a page to a physical address of a page in the SPT
of a guest. This function is therefore called on page addresses, i.e. on addresses aligned to
the size of a page.

map : St × Idx ×Addrpg ×Addrpg → (St + Fail)

The function map only modifies and depends on certain component of the state (the
memory, the guests). We give its definition below.

Definition 4.2.2. (Map a Page) ∀st ∈ St ,∀i ∈ Idx ,∀va ∈ Addrpg , and for all pair (pa, r) ∈
Addrpg ×Rights , we define the function which maps the virtual page at address va to the

4.2. Invariants Specific to some Transitions 67

physical page at address pa with rights r in the SPT of the ith guest:
Let mem = st .σHW.mem,

vcpus = st .σHYP.vcpus,
phys2virt = vcpus(i).phys2virt ,
vbaseSPT = phys2virt(vcpus(i).baseSPT),
idx1, idx2 ∈ Uint such that idx 1 ⊕ idx 2 = va,
vpde = compute(vbaseSPT, idx1),

If get_v_descr(mem, baseHPT, vpde) ∈ {Oob}
Then return fail

(Case: allocate a PT1 before mapping)
Elif get_v_descr1(mem, baseHPT, vpde) ∈ {Fault},
Then If vcpus(i).free not empty

Let < a :: free ′ >= vcpus(i).free,
vcpusnew = vcpus[(i).free ← free ′],
mem′ = set_v_descr1(mem, baseHPT, vpde, a),
vbase2 = phys2virt(a),
vpte = compute(vbase2, idx2),

If set_v_descr2(mem
′, spt, vpte, (pa, r)) /∈ Oob

Then Let memnew = set_v_descr2(mem
′, baseHPT, vpte, (pa, r)),

stnew = st [σHW.mem← memnew, σHYP.vcpus ← vcpusnew],
return stnew

Else return fail
Else return fail

(Case: PT1 is already present, add an entry in it)
Else Let vbase2 = phys2virt(get_v_descr1(mem, baseSPT, vpde)),

vpte = compute(vbase2, idx2),
If set_v_descr2(mem, spt, vpte, (pa, r)) /∈ Oob
Then Let memnew = set_v_descr2(mem, baseHPT, vpte, (pa, r)),

stnew = st [σHW.mem← memnew],
return stnew

Else return fail

There are two cases for which the function is defined. In the first case (Case: allocate a
PT2 before mapping), there is no second level PT associated to the address va to be mapped.
Thus the hypervisor looks for an empty page in the pool of that guest, removes it from
the set of free pages and set the former faulting first level descriptor to the address of this
page. Then it sets the second level descriptor of this second level PT corresponding to va
to the couple of physical address and right given as argument.

In the second case (Case: PT2 is already present, add an entry in it), there is a second level
PT associated to the address va. Therefore the hypervisor only has to modify an entry in
the second level PT just allocated, similarly to how it was done in the precedent case.

In the definitions that follow, we need to express the fact that a page in memory is or
is not allocated to some PT:

Definition 4.2.3 (Not Allocated Page). A page is not allocated to a SPT of a vCPU if it
does not overlap with its first level PT nor its second level PT.
∀mem ∈ Mem,
∀vcpu ∈ vCPU ,

68 Chapter 4. Invariant Properties of the System

not_alloc_pg(mem, vcpu)⇔ (∀a ∈ Addr ,
[vcpu.baseSPT, sizePT1 [∩ [a, sizepage [= {}
∧ ∀base2 ∈ Addr , ∀idx1 ∈ Uint ,
reachablebase2 (mem, vcpu.baseSPT, idx1, a)⇒
[base2, sizePT1 [∩ [a, sizepage [= {})

When a second level PT is allocated, a whole page is allocated for the second level
PT. To make sure that two PTs do not share the same second level PT, this page should
not be allocated (not_alloc_pg). Furthermore, to make sure that the new PT does not
already contain some pointer to other parts of memory, we ensure that every entry of the
allocated PT leads to a fault, i.e. that the new second level PT is empty. This is ensured
by Invariant 4.2.3.

Definition 4.2.4 (Empty Page). The second level PT at address a is empty iff all its entries
are a fault.
∀mem ∈ Mem,
∀a ∈ Addr ,

empty(mem, a)⇔ ∀idx 2 < 256, get_descr(compute(a, idx2)) ∈ Fault

Definition of Invariant 4.2.3. (Free Page Empty and not Mapped) Free pages in the SPT
pool of a guest are not mapped by any other guest, and are empty.
∀mem ∈ Mem,
∀vcpus ∈ Idx → vCPU ,

free_not_mapped(mem, vcpus)⇔ (∀i ∈ Idx ,∀a ∈ vcpus(i).free,
empty(mem, a) ∧
∀j ∈ Idx ,not_alloc_pg(mem, vcpus(j)))

4.2.3 Unmap a Page

The unmap function removes the mapping of a virtual address va from a SPT. As the
allocation and deallocation of memory addresses is made page by page, all the virtual
addresses located in the same page as va are unmapped. The unmap function is only
called on addresses aligned to the size of a page. On an aligned address, being in the
same page as va is equivalent as being in the interval [va, va+ page_size[.

The unmap function avoids addresses which are located within the forbidden range.
Indeed if the guest unmaps addresses needed for handling a fault, the hypervisor will
crash.

The function unmap takes a state and the index of a guest and returns a new state,
or fails. As shown in the Definition 4.2.5, it only has effect on the memory field of the
state. It takes as input a memory, some vCPUS and an index of vCPU and returns a new
memory.

unmap : St × Idx → St + Fail

4.2. Invariants Specific to some Transitions 69

Definition 4.2.5. (Unmap a Page)∀st ∈ St , ∀i ∈ Idx ,∀va ∈ Addrpg , we define the function
which unmaps the page at address va in the SPT of the ith guest:

Let mem = st .σHW.mem,
vcpus = st .σHYP.vcpus,
phys2virt = vcpus(i).phys2virt ,
vbaseSPT = phys2virt(vcpus(i).baseSPT),
idx1, idx2 ∈ Uint such that idx 1 ⊕ idx 2 = va,
vpde = compute(vcpus(i).baseSPT, idx1),

If get_v_descr(mem, vcpus(i).baseSPT, vpde) ∈ {Oob}
Then return fail

(Case: not mapped, nothing to do)
If get_v_descr(mem, vcpus(i).baseSPT, vpde) ∈ {Fault}
Then return st

(Case: set the idxth2 entry to fault)
Else Let vbase2 = phys2virt(get_v_descr1(mem, baseSPT, vpde)),

vpte = compute(vbase2, idx2)
If set_v_descr2(mem, baseSPT, vpte, fault) /∈ {Oob}
Then Let memnew = set_v_descr2(mem, baseSPT, vpte, fault)

stnew = st [σHW.mem← memnew]
return stnew

Else return fail

Just as the map operation, there are two cases, depending on whether a second level
PT is already allocated for the address va considered. In the first case (Case: not mapped,
nothing to do), there is no PT2 for the address va, meaning that it is already unmapped.

In the second case (Case: set the idxth2 entry to fault), there is a second level PT, thus we
set the second level descriptor corresponding to va to fault.

The unmap operation only removes one entry in the second level PT. It does not deal-
locate the page where the second level PT stands, even when it unmaps its last entry.

Before calling the unmap function, the hypervisor verifies that it does not remove an
entry from the forbidden range of that guest. The following invariant states that the pool
is located in the forbidden range of the guest, so that we know that the removed entry is
not in a pool, thus preserving the PT invariants.

Definition of Invariant 4.2.4. (Pool in Forbidden Range) The property pool_in_frange is
verified iff the pool of a guest is in its forbidden range.
∀vcpus ∈ Idx → vCPU ,

pool_in_frange(vcpus)⇔ ∀i ∈ Idx , perm.pool(i) ⊂ vcpus(i).frange

4.2.4 Unmap all

The function unmap_all is called to remove all the mappings of the SPT of the current
guest, except the mappings of the forbidden range. To simplify, we suppose that the
forbidden range is an interval located at the end the address space, so that the function
unmap_all is called on the interval from zero to the beginning of the forbidden range.

70 Chapter 4. Invariant Properties of the System

Definition 4.2.6. (Unmap All) ∀st ∈ St ,∀i ∈ Idx , we define the function which removes
all the mapping in the SPT of the ith guest until the beginning of the forbidden range:

Let mem = st .σHW.mem
mem′ = mem
vcpus = st .σHYP.vcpus
vcpus ′ = vcpus
phys2virt = vcpus(i).phys2virt
vbaseSPT = phys2virt(vcpus(i).baseSPT)
to1 ∈ Uint the index of the beginning of the forbidden range.

For idx1 = 0...(to1 − 1):
Let vpde = compute(vcpus(i).baseSPT, idx1)
If get_v_descr(mem, vbaseSPT, vpde) ∈ {Oob}
Then return fail

(Case: set the all the entries to fault)
If get_v_descr(vbaseSPT, vpde) /∈ {Fault}
Then

Let base2 = get_v_descr1(mem, vbaseSPT, vpde)
vbase2 = phys2virt(base2)

For idx2 = 0...255
Let vpte = compute(vbase2, idx2)
If set_v_descr2(mem, baseSPT, vpte, fault) /∈ {Oob}
Then mem′′ = set_v_descr2(mem

′′, baseSPT, vpte, fault)
Else return fail

End For
mem′ = set_v_descr1(mem

′, baseSPT, vpde, fault)
free ′ = addsorted(vcpus(i).free, base2)
vcpus ′ = vcpus[(i).free ← free ′]

End For
stnew = st [σHW.mem← mem′, σHYP.vcpus← vcpus′]
return stnew

The first loop of this function go through all the entries of the first level PT of the SPT
of the guest, except the entries of the forbidden range. If the entry leads to a second level
PT, we enter a second loop, else we go to the next iteration. The second loop go through
all the second level entries and set them to fault. Then the second level PT is returned to
the pool and the first level descriptor is set to fault.

The invariant stating that the pool is in the forbidden range (Definition 4.2.4) is needed
for this transition, as only the forbidden range is avoided by the unmapping.

Contrarily to the unmap operation, here the empty second level PTs are returned to the
pool. In order to maintain the invariant of Definition 4.2.3, the invariant of Definition 4.2.5
must hold. So this invariant is not needed for the preservation of PT invariants, but for
the preservation of a specific invariant on the unmap_all operation.

Definition of Invariant 4.2.5. (Not Free Page Allocated) Pages located in the SPT pool of
a guest but not listed as free are mapped by this guest.
∀mem ∈ Mem
∀vcpus ∈ Idx → vCPU

4.2. Invariants Specific to some Transitions 71

alloc_is_alloc(mem, vcpus)⇔ (∀i ∈ Idx ,∀a ∈ Addrpg ,
a ∈ perm.pool(i) ∧ a /∈ vcpus(i).free ⇒
¬not_alloc_pg(mem, vcpus(i)))

Finally, Invariant 4.2.2 is needed to prove the effects of the unmap_all operation. In-
deed, we want to prove that, after a unmap_all operation, there is no more mappings
with user rights in the concerned SPT. In order to prove it, we must know that the for-
bidden range is not mapped with user rights by the SPT of a guest (Definition 4.2.7). This
definition is provided the combination of Invariants 4.2.2 and 4.2.1.

Definition 4.2.7. (Forbidden Range not User Mapped) The property frange_no_map holds
iff the frange of the guests are not mapped in their SPT with user rights:
∀mem ∈ Mem,
∀vcpus ∈ (Idx → vCPU),

frange_no_map(mem, vcpus)⇔ (∀i ∈ Idx , ∀va, pa ∈ Addr , r ∈ Rights,
va ∈ frange ∧
pt(mem, vcpus(i).baseSPT)(va) = (pa, r)⇒
r = pl1)

Even if an invariant is needed for one operation in particular, its preservation must be
proved over the other transitions as well, creating a need for other invariants. We have
presented here the invariants along with the transitions justifying their presence. We now
show in more detail how they interact.

4.2.5 Well-formed Registers

We have an invariant ensuring that the CPSR and the SPSR stored in the virtualized
banked registers of a guest have a well-formed mode. The mode is given by five bits of
the CPSR (resp. SPSR), there are therefore 25 possible combinations, but only six of them
actually correspond to a mode. The function mode has the following type:

mode : Reg → Mode + None

and may thus raise none. We present the invariant ensuring the mode registers well-
formedness below:

Definition of Invariant 4.2.6 (Well-formed Mode). The property wf _regs holds iff the bits
of the virtual CPSR and banked SPSR of each guest encoding the mode correspond to an
actual mode:
∀vcpus ∈ (Idx → vCPU),

wf _regs(vcpus)⇔ (∀i ∈ Idx , X ∈ {svc, abt, und, irq, fiq}
mode(vcpus(i).regsvirt.vcpsr) /∈ None∧
mode(vcpus(i).regsvirt.regsbnk.bnkX .spsr) /∈ None)

The virtualized CPSR and SPSRs are modified on transitions that modify registers,
presented in Section 3.5.3. The hypervisor modify itself these registers and always puts
one of the five defined modes. As this invariant is trivially preserved, we do not include it
in the definition of a well-formed state and we do not explain its dependency with other
invariants. Indeed, its preservation does not depend on the other invariants and it is not
needed to prove any of the other invariants presented.

In the rest of the document, we consider that this invariant is always true, i.e. that the
function mode on the CPSR and SPSRs of the guests never raises none.

72 Chapter 4. Invariant Properties of the System

4.2.6 Interdependencies

We sum up the dependencies between invariants in the following tables. We separate
the invariants in the three groups we have established in the previous sections: the PT
invariants (Definitions 4.1.1 to 4.1.6), the specific invariants (Definitions 4.2.1 to 4.2.5) and
the virtual to physical invariants (Definitions 4.1.7 to 4.1.8).

For each invariant in a line, we mark with a cross all the properties used in the proof
of its preservation over the guest transition in Figure 4.2, the map operation in Figure 4.3,
the unmap operation in Figure 4.4 and the unmap_all operation in Figure 4.5.

Proof of �

N
ee

ds

�

h
p
t_

p
t1

_h
yp

sp
a
ce

(4
.1

.1
)

h
p
t_

p
t2

_h
yp

sp
a
ce

(4
.1

.2
)

n
o

_o
ve

rl
a
p

_p
t1

(4
.1

.5
)

n
o

_o
ve

rl
a
p

_p
t2

(4
.1

.6
)

sp
t1

_i
n

_p
oo

l
(4

.1
.3

)

sp
t2

_i
n

_p
oo

l
(4

.1
.4

)

m
a
p

_u
sr

_a
l l

o
w

ed
(4

.2
.1

)

fr
a
n

ge
_n

o
_u

sr
(4

.2
.2

)

fr
ee

_n
o
t_

m
a
p
pe

d
(4

.2
.3

)

p o
o
l_

in
_f

ra
n

ge
(4

.2
.4

)

a
ll

oc
_i

s_
a
ll

oc
(4

.2
.5

)

h
p
t_

p
h
ys

2
vi

rt
(4

.1
.7

)

sp
t_

p
h
ys

2
vi

rt
(4

.1
.8

)

(hpt_pt1 _hypspace) ×
(hpt_pt2 _hypspace) × × × × ×
(no_overlap_pt1) × × × ×
(no_overlap_pt2) × × × ×

spt1 _in_pool ×
spt2 _in_pool × × ×

map_usr_allowed × × ×
(frange_no_usr) × × × ×

(free_not_mapped) × × × ×
(pool_in_frange) × × × ×
(alloc_is_alloc) × × × ×
(hpt_phys2virt) × × × ×
(spt_phys2virt) × × × ×

FIGURE 4.2: Invariants Dependencies: for each invariant in a row, we mark
with a cross all the properties used in the proof of its preservation over the

guest transition.

Guest transition The table for guest transition differs significantly from the tables for
the memory operations. The three invariants which are not between parenthesis, namely
spt1 _in_pool , spt2 _in_pool and map_usr_allowed , allow to prove that the guest transition
do not modify the memory regions where the SPTs are stored (see Lemma 4.3.7). There-
fore, the preservation of all the properties on the SPTs follows easily from this lemma.
Similar reasoning show that the memory region where HPT are stored is not impacted by
the guest transition, thus that the transition preserves the properties on HPTs.

Map Figure 4.3, show that the preservation of every invariant, except hpt_pt1 _hypspace
(which does not depend on memory), rely on hpt_phys2virt . Indeed, the map operation

4.2. Invariants Specific to some Transitions 73

Proof of �

N
ee

ds

�

h
p
t_

p
t1

_h
yp

sp
a
ce

(4
.1

.1
)

h
p
t_

p
t2

_h
yp

sp
a
ce

(4
.1

.2
)

n
o

_o
ve

rl
a
p

_p
t1

(4
.1

.5
)

n
o

_o
ve

rl
a
p

_p
t2

(4
.1

.6
)

sp
t1

_i
n

_p
oo

l
(4

.1
.3

)

sp
t2

_i
n

_p
oo

l
(4

.1
.4

)

m
a
p

_u
sr

_a
ll

o
w

ed
(4

.2
.1

)

fr
a
n

ge
_n

o
_u

sr
(4

.2
.2

)

fr
ee

_n
o
t_

m
a
p
pe

d
(4

.2
.3

)

po
o
l_

in
_f

ra
n

ge
(4

.2
.4

)

a
ll

oc
_i

s_
a
ll

oc
(4

.2
.5

)

h
p
t_

p
h
ys

2
vi

rt
(4

.1
.7

)

sp
t_

p
h
ys

2
vi

rt
(4

.1
.8

)

hpt_pt1 _hypspace ×
hpt_pt2 _hypspace × × × × ×
no_overlap_pt1 × × × × × × ×
no_overlap_pt2 × × × × × × × ×

spt1 _in_pool × × ×
spt2 _in_pool × × × × × × × ×

(map_usr_allowed) × × × × × × × × ×
(frange_no_usr) × × × × × × × × × ×
free_not_mapped × × × × × × × ×
(pool_in_frange) × × × × × × × × ×
(alloc_is_alloc) × × × × × × × × ×
hpt_phys2virt × × × × × ×

(spt_phys2virt) × × × × × × × × ×

FIGURE 4.3: Invariants Dependencies: for each invariant in a row, we mark
with a cross all the properties used in the proof of its preservation over the

map operation.

is performed with HPT virtualized addresses, therefore the hpt_phys2virt is needed to
translate physical to virtual addresses for modification purposes. As explained in Sec-
tion 4.2.2, the free_not_mapped invariant is required for the proof of preservation of the
PT invariants.

Notice that the invariants between parenthesis are not needed for proof of preservation
of the PT invariants, hpt_phys2virt and free_not_mapped . They are needed for other tran-
sitions. The proof of these invariants are rather independent one from each other. Except
spt_phys2virt which relies on the pool_in_frange invariant.

Unmap The unmap operation is performed with SPT virtualized address. Therefore,
compared to Figure 4.3, you can see that all the dependencies on hpt_phys2virt have
been replaced to dependencies on spt_phys2virt in Figure 4.4. Furthermore, we can see
that, similarly to the map operation, the PT invariants are mandatory for every invari-
ant preservation. However, as unmap does not use the HPTs, the hpt_pt1 _hypspace and
hpt_pt2 _hypspace invariants are not needed for any proof except for hpt_phys2virt . The
PT invariants only rely on themselves except for spt2 _in_pool which uses the property
pool_in_frange. Similarly to the map operation, the invariants not between parenthesis
represent the minimal set of invariants needed for the proof of their own preservation
over unmap.

74 Chapter 4. Invariant Properties of the System

Proof of �

N
ee

ds
�

h
p
t_

p
t1

_h
yp

sp
a
ce

(4
.1

.1
)

h
p
t_

p
t2

_h
yp

sp
a
ce

(4
.1

.2
)

n
o

_o
ve

rl
a
p

_p
t1

(4
.1

.5
)

n
o

_o
ve

rl
a
p

_p
t2

(4
.1

.6
)

sp
t1

_i
n

_p
oo

l
(4

.1
.3

)

sp
t2

_i
n

_p
oo

l
(4

.1
.4

)

m
a
p

_u
sr

_a
ll

o
w

ed
(4

.2
.1

)

fr
a
n

ge
_n

o
_u

sr
(4

.2
.2

)

fr
ee

_n
o
t_

m
a
p
pe

d
(4

.2
.3

)

p o
o
l_

in
_f

ra
n

ge
(4

.2
.4

)

a
l l

oc
_i

s_
a
ll

oc
(4

.2
.5

)

h
p
t_

p
h
ys

2
vi

rt
(4

.1
.7

)

sp
t_

p
h
ys

2
vi

rt
(4

.1
.8

)

(hpt_pt1 _hypspace) ×
(hpt_pt2 _hypspace) × × × × × × ×

no_overlap_pt1 × × × ×
no_overlap_pt2 × × × × ×

spt1 _in_pool × ×
spt2 _in_pool × × × × × ×

(map_usr_allowed) × × × × × ×
(frange_no_usr) × × × × × × × × ×

(free_not_mapped) × × × × × × ×
pool_in_frange × × × × × ×
(alloc_is_alloc) × × × × × × ×
(hpt_phys2virt) × × × × × × × ×
spt_phys2virt × × × × × ×

FIGURE 4.4: Invariants Dependencies: for each invariant in a row, we mark
with a cross all the properties used in the proof of its preservation over the

unmap operation.

Unmap All Just as for the unmap, the unmap_all operation is performed with SPT virtu-
alized addresses. Hence all the crosses in the column spt_phys2virt . The way of reading
this table is a bit different from the previous tables. Indeed the function unmap_all in-
volves loops. We cannot prove the preservation of invariants one by one and give a fine
analysis of their inter-dependencies, because we must make all the invariants depending
one of another pass together as a loop invariant. We have established the proof of the in-
variants in three steps. First we have proved the preservation of all the PT invariants, the
pool_in_frange invariant and the spt_phys2virt invariant alltogether. It means that these
invariants constitute a sufficient set to prove the preservation of the PT invariants over
the unmap_all operation.

Then, we have proved the preservation of the previous block plus the free_not_mapped
and alloc_is_alloc invariants that depend one of each other. Finally we have proved the
remaining invariants, which are independent from each other, on top of these block.

The granularity could be finer, for example, it should be possible to prove hpt_pt1 _hypspace
and hpt_pt2 _hypspace independently from the other invariants.

4.3. Specifications of the Effects of some Transitions 75

Proof of �

N
ee

ds

�

h
p
t_

p
t1

_h
yp

sp
a
ce

(4
.1

.1
)

h
p
t_

p
t2

_h
yp

sp
a
ce

(4
.1

.2
)

n
o

_o
ve

rl
a
p

_p
t1

(4
.1

.5
)

n
o

_o
ve

rl
a
p

_p
t2

(4
.1

.6
)

sp
t1

_i
n

_p
oo

l
(4

.1
.3

)

sp
t2

_i
n

_p
oo

l
(4

.1
.4

)

m
a
p

_u
sr

_a
ll

o
w

ed
(4

.2
.1

)

fr
a
n

ge
_n

o
_u

sr
(4

.2
.2

)

fr
ee

_n
o
t_

m
a
p
pe

d
(4

.2
.3

)

po
o
l_

in
_f

ra
n

ge
(4

.2
.4

)

a
ll

oc
_i

s_
a
ll

oc
(4

.2
.5

)

h
p
t_

p
h
ys

2
vi

rt
(4

.1
.7

)

sp
t_

p
h
ys

2
vi

rt
(4

.1
.8

)

hpt_pt1 _hypspace × × × × × × × ×
hpt_pt2 _hypspace × × × × × × × ×
no_overlap_pt1 × × × × × × × ×
no_overlap_pt2 × × × × × × × ×

spt1 _in_pool × × × × × × × ×
spt2 _in_pool × × × × × × × ×

(map_usr_allowed) × × × × × × × × × × × ×
(frange_no_usr) × × × × × × × × × × × × ×
free_not_mapped × × × × × × × × × ×
pool_in_frange × × × × × × × ×
alloc_is_alloc × × × × × × × × × ×

(hpt_phys2virt) × × × × × × × × × × × ×
spt_phys2virt × × × × × × × ×

FIGURE 4.5: Invariants Dependencies: for each invariant in a row, we mark
with a cross all the properties used in the proof of its preservation over the

unmap_all operation.

4.3 Specifications of the Effects of some Transitions

In this section, we introduce lemmas which describe the effects of the guest transition
and the memory management operations on the global state. For each operation, we
present two lemmas, one specifying the modified parts, one specifying the parts that
remain identical.

An important point to make is that even if in both cases, a part of the memory is
modified, the observable effects are not of the same nature for guest transition and mem-
ory management operations. Indeed, the guest transition changes the byte values of
the memory accessible to the guests, while the memory operations change the rights at-
tributed to them. In the next chapter, we present the abstract (or observable) state, in
which we do not represent anymore the memory where SPT are kept, but only the access
rights they define. We will see in Chapter 5 how the lemmas that we prove in this section
allow to formally link the abstract with the concrete model.

4.3.1 Map

We specify the effects of the map operation in Lemma 4.3.1. It states that the virtual ad-
dresses within the virtual page just mapped are mapped and describes how, whereas the
other mappings are not modified. The proof of this lemma requires eight of the invariant
properties: the PT invariants, the invariant for translating physical addresses of the pool

76 Chapter 4. Invariant Properties of the System

to virtual addresses with the HPT, and the free_not_mapped invariant which is needed to
preserve all the other invariants over the map operation.

Lemma 4.3.1 (Map Effects). If we map a virtual address vapg to a physical address papg
both aligned to the size of a page, in the SPT of guest i, with rights r, and if this new
mapping is allowed by the static permissions, then all the addresses in the virtual page at
vapg are mapped to physical addresses in the page at papg with rights r, and the mappings
for all the other do not change:
∀st ∈ St , ∀stnew ∈ St , ∀vapg ∈ Addrpg and ∀papg ∈ Addrpg ,

Let baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem
baseSPT

new = stnew.σHYP.vcpus(i).baseSPT

memnew = st .σHW.mem
new

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
hpt_phys2virt(mem, vcpus),
free_not_mapped(mem, vcpus),
st ′ =map(mem, vcpus, i,vapg,papg, r),

Then, ∀va ∈ Addr :

va /∈ [vapg,vapg + sizepage [⇒ pt(mem, baseSPT)(va) = pt(mem′, baseSPT
′)(va)

va ∈ [vapg,vapg + sizepage [⇒ let off < sizepage s.t. va = vapg + off ,
pt(mem′, baseSPT

′)(va) = (pa+ off , r)

Proof. We only show the proof when the map definition falls into the second case (allocate
a PT1 before mapping). The proof of the last case (Case: PT1 is already present, add an entry in
it) is simpler, and follows the same scheme. In this proof we use the properties presented
in the previous section, without naming which specifically, but giving the intuition:

Let idx pg
1 , idx pg

2 ∈ Uint such that vapg = idx pg
1 ⊕ idx pg

2

idx 1, idx 2, off ∈ Uint such that va = idx 1 ⊕ idx 2 ⊕ off

(Virtual SPT base pointer:)
vbaseSPT = phys2virt(baseSPT)

(Virtual page directory entry at index idxpg1 :)
vpdepg = compute(vbaseSPT, idx

pg
1)

(Physical page directory entry at index idx1:)
ppde = compute(vcpus(i).baseSPT, idx1)

We know that get_v_descr1(mem, baseHPT, vpde) ∈ {Fault} from the definition of
map. As hpt_phys2virt holds and ppde ∈ perm.pool(i), the lemmas on equivalence of
physical and virtual getters gives that get_descr1(mem, ppde) ∈ {Fault} too. Meaning
that va was not mapped before the map operation, by definition of PT (Definition 3.2.10.
i.e. pt(mem, baseSPT) = fault .

Case va /∈ [vapg,vapg + sizepage [By Property 3.2.1, ¬(idx 1 = idx pg
1 ∧ idx 2 = idx pg

2) (1).
We reason on the decomposition of va.

4.3. Specifications of the Effects of some Transitions 77

Case idx1 6= idx pg
1 As spt1 _in_pool and hpt_phys2virt hold, we can use the PT modi-

fication properties to state that the first and second level descriptor holding the path
for va have not been modified. Therefore, from Definition 3.2.10:

pt(memnew, baseSPT) = pt(mem, baseSPT)

Qed.

Case idx 1 = idx pg
1 Because no_overlap_pt2 holds, setting a second level descriptor has

no impact on getting a first level descriptor (PT modification properties), thus:

get_descr1(mem
new, ppde) = get_descr1(mem

′, ppde)

The descriptor at idx1 in memnew corresponds to the address a of the second level of
PT just allocated:

get_descr1(mem
new, ppde) = a

From free_not_mapped property, the second level PT at address a is empty, thus all of
its entries are faults.

From (1), idx2 6= idx pg
2 . We have proved that our invariant properties hold over the

setting of the second level descriptor. In particular spt2 _in_pool and hpt_phys2virt
hold for mem′ and vcpus′, so again, we can use the PT modification properties to
state that the second level descriptor holding the path for va has not been modified:
Let ppte be the virtual page table entry at idx2 in the PT at address a, and ppte =
compute(a, idx2), we have:

get_descr2(mem
new, ppte) = get_descr2(mem

′, ppte) = Fault

Therefore pt(memnew, baseSPT)(va) = Fault , meaning that:

pt(mem, baseSPT) = pt(memnew, baseSPT)

Qed.

Case va ∈ [vapg,vapg + sizepage [We prove this case by contradiction. By Property 3.2.1:

idx 1 = idx pg
1 ∧ idx 2 = idx pg

2 (2)
∧ off < sizepage (3)

Given (2) (3) and the PT modification properties, similar reasoning as previous cases
show that va is in the page just mapped. In particular pt(mem′, baseSPT

′)(vapg) /∈ Fault .

Case pt(mem′, baseSPT
′)(va) = (a, r1) ∧ ¬(r1 6= r) va is in the page just mapped i.e.

with the rights r, which contradicts r1 6= r. Qed.

Case pt(mem′, spt′)(va) = (a, _) ∧ a /∈ [pa, sizepage [The inequality (3) allows to prove
that vapg mapped to pa implies vapg+off mapped to pa+off . Yet pa+off ∈ [pa, sizepage [,
which leads to a contradiction. Qed.

78 Chapter 4. Invariant Properties of the System

The previous lemma specifies how the SPT of the concerned guest is affected by the
map operation, next lemma specifies which region of memory is not affected by the map
operation.

Lemma 4.3.2 (Map Unchanged). If a physical address pa is not in a private or shared
region, nor in a pool of a guest i, then the byte value at pa is left unchanged by the map
operation on that guest SPTs:
∀st ∈ St , ∀i, k ∈ Idx s.t. k 6= i, ∀vapg ∈ Addrpg , ∀pa ∈ Addr ,

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
hpt_phys2virt(mem, vcpus),
free_not_mapped(mem, vcpus),
st ′ =map(mem, vcpus, i,vapg,papg, r),
(pa ∈ perm.priv(_) ∨ pa ∈ perm.shared(_, _)pa ∈ perm.pool(k)),

Then st′.σHW.mem(pa) = st.σHW.mem(pa)

4.3.2 Unmap

Similarly as for the map operation, Lemmas 4.3.3 and 4.3.4 specify which parts of memory
are modified and how under the unmap operation.

Lemma 4.3.3 (Unmap Effects). If we unmap an aligned virtual address va1 from the cur-
rent SPT of a guest i, then all the mappings at addresses not in the page of base vapg are
unchanged. Whereas all the mappings in the page of base vapg are removed.
∀st ∈ St , ∀stnew ∈ St , ∀vapg ∈ Addrpg and ∀papg ∈ Addrpg ,

Let baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
spt_phys2virt(mem, vcpus),
pool_in_frange(mem, vcpus),
vapg /∈ vcpus(i).frange,
stnew = unmap(mem, vcpus, i,vapg),

Then, ∀va ∈ Addr :

va /∈ [va1, va1 + pg_size[⇒ pt(mem, spt)(va) = pt(mem′, spt′)(va)
va ∈ [va1, va1 + pg_size[⇒ pt(mem′, spt′)(va) = Fault

Lemma 4.3.4 (Unmap Unchanged). If a physical address pa is not in any private or shared
region, then the byte value at pa is left unchanged by unmap :

4.3. Specifications of the Effects of some Transitions 79

∀st ∈ St , ∀i, j, k ∈ Idx , ∀vapg ∈ Addrpg , ∀pa ∈ Addr ,
Let baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
spt_phys2virt(mem, vcpus),
pool_in_frange(mem, vcpus),
free_not_mapped(mem, vcpus),
stnew = unmap(mem, vcpus, i,vapg),
(pa ∈ perm.priv(_) ∨ pa ∈ perm.shared(_, _) ∨ pa ∈ perm.pool(k)),

Then stnew.σHW.mem(pa) = mem(pa)

4.3.3 Unmap All

After an unmap_all operation on the SPT of a guest, all the mappings in the forbidden
range are unchanged, whereas all the mappings outside of the forbidden range are re-
moved. frange_no_map ensures that the addresses of the forbidden range are not mapped
with user rights, hence we know that after the map operation, no address is mapped with
user rights in the SPT of the concerned guest (Lemma 4.3.5).

Lemma 4.3.5 (Unmap All). The unmap_all operation removes all the user mappings in
the SPT of a guest.
∀st ∈ St , ∀stnew ∈ St , ∀vapg ∈ Addrpg and ∀papg ∈ Addrpg ,

Let baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
spt_phys2virt(mem, vcpus),
pool_in_frange(mem, vcpus),
free_not_mapped(mem, vcpus),
frange_no_map(mem, vcpus)
stnew = unmap_all(mem, vcpus, i),

Then, ∀va ∈ Addr , va /∈ MapUSR(st
new.σHW.mem, baseSPT)

The lemma 4.3.6 is similar as the lemmas for map and unmap.

Lemma 4.3.6 (Unmap All Unchanged). If a physical address pa is not in any private or
shared region, then the byte value at pa is left unchanged by unmap:
∀st ∈ St , ∀i, j, k ∈ Idx , ∀vapg ∈ Addrpg , ∀pa ∈ Addr ,

Let baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem

80 Chapter 4. Invariant Properties of the System

If hpt_pt1 _hypspace,
hpt_pt2 _hypspace(mem),
no_overlap_pt1 (mem, vcpus),
no_overlap_pt2 (mem, vcpus),
spt1 _in_pool(mem, vcpus),
spt2 _in_pool(mem, vcpus),
spt_phys2virt(mem, vcpus),
pool_in_frange(mem, vcpus),
stnew = unmap_all(st , i),
k 6= i,
(pa ∈ perm.priv(_) ∨ pa ∈ perm.shared(_, _) ∨ pa ∈ perm.pool(k))

Then stnew.σHW.mem(pa) = mem(pa)

4.3.4 Guest Transition

The specification of the guest transition cannot be as accurate as for a hypervisor transi-
tion, because it is performed by the guest, and must be expressed independently of the
particular guest considered. Basically, we only specify the parameters which stay un-
changed: all the SPT regions, the private regions of the guest which does not run, and the
shared region which are not writable by the current guest.

Lemma 4.3.7 (Guest Trans Unchanged). If a physical address pa is not in the private or
send region of the current guest, then the byte value at pa is left unchanged by guest_trans:
∀st ∈ St , ∀j, k ∈ Idx , ∀vapg ∈ Addrpg , ∀pa ∈ Addr ,

Let curr = st .σHYP.curr
baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem
If spt1 _in_pool(mem, vcpus),

spt2 _in_pool(mem, vcpus),
map_usr_allowed(mem, vcpus),
frange_no_usr(mem, vcpus),

st
GuestTrans(o)−−−−−−−−−→ st ′,

k 6= curr,
(pa ∈ perm.priv(k) ∨ pa ∈ perm.shared(k, j) ∨ pa ∈ perm.spt(j)),

Then st′.σHW.mem(pa) = st.σHW.mem(pa)

Proof. We give the proof sketch of this lemma. Invariants spt1 _in_pool and spt2 _in_pool
ensure that the SPT of the guest are in its pool. As map_usr_allowed holds, we know
that the pool regions are not mapped with user rights. In particular, the SPTs do not map
themselves.

Consequently, we can apply the Axiom 3.5.1, which states that the memory is modi-
fied only on addresses mapped with user rights in the current guest SPT. From the prop-
erty map_usr_allowed , we know that these addresses correspond to the addresses in the
private or shared region of the current guest, hence the result.

The fact that the SPT regions are not modify allow to establish that the mappings stay
unchanged. This is not true for the memory operations.

4.4. Conclusion 81

Lemma 4.3.8 (Guest Trans Same Mappings). guest_trans does not modify the mappings:
∀st ∈ St , ∀j, k ∈ Idx , ∀vapg ∈ Addrpg , ∀pa ∈ Addr ,

Let curr = st .σHYP.curr
baseSPT = st .σHYP.vcpus(i).baseSPT

mem = st .σHW.mem
If spt1 _in_pool(mem, vcpus),

spt2 _in_pool(mem, vcpus),
map_usr_allowed(mem, vcpus),
frange_no_usr(mem, vcpus),

st
GuestTrans(o)−−−−−−−−−→ st ′,

Then pt(mem ′, baseSPT)(va) = pt(mem, baseSPT)(va)

4.4 Conclusion

We have presented all the invariants that we need to prove the refinement over the guest
transition and the MMU transitions.

In the next chapters, we use the following definition instead of stating explicitly which
invariant we need:

Definition 4.4.1 (Well-Formed State). A state is well-formed if it respects all the invari-
ants: ∀st ∈ St ,wf (st)⇔

hpt_pt1 _hypspace∧ (The first level HPT is included in the hy-
pervisor space)

hpt_pt2 _hypspace(st .σHW.mem)∧ (The second level HPTs are included in
the hypervisor space)

no_overlap_pt1 (st .σHW.mem, st .σHYP.vcpus)∧ (The first level SPT of a guest does not
overlap with its second level SPTs)

no_overlap_pt2 (st .σHW.mem, st .σHYP.vcpus)∧ (The second level SPTs of a guest does not
overlap with its second level SPTs)

spt1 _in_pool(st .σHW.mem, st .σHYP.vcpus)∧ (The first level SPT of a guest is in its
pool)

spt2 _in_pool(st .σHW.mem, st .σHYP.vcpus)∧ (The second level SPTs of a guest are in
its pool)

hpt_phys2virt(st .σHW.mem, st .σHYP.vcpus)∧ (Specification of how the pool is mapped
in the HPT)

spt_phys2virt(st .σHW.mem, st .σHYP.vcpus)∧ (Specification of how the pool is mapped
in the SPTs)

map_usr_allowed(st .σHW.mem, st .σHYP.vcpus)∧ (Physical addresses mapped in the SPT of
a guest are allowed for that guest)

pool_in_frange(st .σHW.mem, st .σHYP.vcpus)∧ (The pool is mapped by virtual addresses
in the forbidden range)

free_not_mapped(st .σHW.mem, st .σHYP.vcpus)∧ (A page listed as free is not mapped)

alloc_is_alloc(st .σHW.mem, st .σHYP.vcpus)∧ (A page not listed as free is mapped)

frange_no_usr(st .σHW.mem, st .σHYP.vcpus) (The forbidden range is not mapped with
user rights)

We have proved the preservation of these invariants over the guest transition, the
map, unmap and unmap_all operations. In particular, it means that a well-formed state
stays well-formed after these operations.

82 Chapter 4. Invariant Properties of the System

This definition does not include the spt_curr_pt(st), which is broken before the map
operation and reestablished just after. For all st ∈ St , we note wf +(st) for wf (st) ∧
spt_curr_pt(st).

We have proved the effects of the guest transition, the map, unmap and unmap_all
operations on the global state. We will use these lemmas to reason on the effects of these
operation on the observable state in Chapter 5, Section 5.5.

4.5 Key Points

• We have presented three groups of invariants:

– the invariants about PT well-formedness,

– the invariants that allow to translate physical to virtual addresses,

– the specific invariants, which allow to prove the preservation of the two
first groups of invariants over the transitions of the system.

• We have formally proved the preservation of all the invariants over all the mem-
ory operations, and over the guest transition.

• We have presented the dependencies between these invariants in the preserva-
tion proofs.

• We have formally proved, for each memory operation and for the guest transi-
tion, the specification of its effects on the state components.

83

Chapter 5

Abstract Model of the Hypervisor

Contents
5.1 Abstract State . 85

5.1.1 Memory Cells . 85

5.1.2 Guest State . 86

5.1.3 Whole State . 87

5.2 Abstraction . 87

5.2.1 Registers . 87

5.2.2 Segments . 88

5.2.3 Abstraction Function . 90

5.3 Abstract Transitions . 90

5.3.1 Oracle . 91

5.3.2 Guest Transition . 94

5.3.3 Hypervisor Transition . 98

5.3.4 Restore Transition . 99

5.3.5 Abstract Transition . 99

5.4 Security properties . 99

5.4.1 Integrity . 100

5.4.2 Confidentiality . 100

5.5 Refinement . 102

5.5.1 Guest Transition . 102

5.5.2 Memory Transitions . 104

5.6 Impact of Optimizations on the Abstract Model 112

5.6.1 Several SPTs per Guest . 112

5.6.2 Allocator . 112

5.6.3 Dynamic Configuration . 113

5.7 Key Points . 113

In Chapter 3, we have presented the concrete model, which is close to the implemen-
tation. In this chapter, we present a corresponding abstract model, which is close to the
specifications.

In the concrete state, all of the guests data are stored in the same memory. The per-
missions (Definition 3.3.1) define, for each guest, which region of memory is accessible
and how:

• A region can be private, meaning that only one guest can access it.

84 Chapter 5. Abstract Model of the Hypervisor

HYP SPACE GUEST 1 GUEST 21→22→1 POOL 1 POOL 2

0 sizemem

ro

rw
rw
pl1
ro
rw
rw
rw
rw
rw
ro
rw
rw

RECEIVE

2→
1

ro
rw
rw
rw
rw

ro
rw
rw
rw
rw
rw
ro
rw
rw

PRIVATE

G
U

E
ST

1

rw
rw
rw
rw
rw
rw
rw
pl1
ro
rw
rw
rw
rw
rw
ro
rw
rw

SEND

1→
2

The pool region
contains the PTs,
it defines the
access rights (ro,
rw).

The user regions
define the seg-
ments and the
memory values.

FIGURE 5.1: Abstraction of the Memory for Guest 1

• A region can be shared between two guests i and j, in this case the region is either a
write buffer from i to j or the contrary.

• A region can be the pool of a guest i, meaning that it holds the SPT of guest i, and
cannot be accessed by any guest.

However the access rights are managed through SPTs. It is not obvious that the rights
defined by the SPTs respect the permissions, all the more that the SPTs are themselves
stored in memory. Isolation between guest’s regions of memory in the concrete state is
therefore not obvious.

In the abstract state transition system, parts of memory which are isolated from each
other are represented by distinct structures. A transition only impacts some structures,
therefore isolation becomes apparent.

We illustrate the abstraction of memory in Figure 5.1. On the bottom of the figure,
we have represented the physical memory, with the regions defined by the permissions.
The regions in white represent what is observable for guest 1: its receive buffer with guest
2, its private region, its send buffer to guest 2 and its pool. Each user region (receive
buffer, private region and send buffer) is represented in a different segment in the abstract
state. As we will develop in Section 5.1 we use the concrete permissions to define which
addresses of the abstract segments are defined, and we use the memory byte values at
these addresses to fill the abstract memory cells. The concrete pool region holds the SPTs,

5.1. Abstract State 85

it defines, for each address of the segment, which rights are associated to it (rw or ro).
The rights are stored in each abstract memory cell, as we will see in Definition 5.1.2.

In Sections 5.1, 5.2 and 5.3, we present the abstract state, the abstraction function and
the abstract transitions. In Section 5.4 we present the security properties and their proof.

Last but not least, we must show that the concrete state transition system is a refine-
ment of the abstract state transition system. To do so we must show that, if an abstract
state st# is the abstraction of a concrete state st , then the abstract state resulting from a
transition from st# is the abstraction of the concrete state resulting from a transition from
state st , as illustrated in Figure 1.4. For example, in the abstract state transition system,
the guest transition made by guest 1 does not modify its receive buffer, following what
is specified by the permissions. However, if the concrete state is not well-formed, some
addresses of the receive buffer of guest 1 might be mapped in RW by its SPT, meaning
that the guest could modify its receive buffer during the concrete guest transition. The
abstract transition would therefore not correspond to the concrete transition.

In Chapter 4, we have presented invariant properties of the concrete system. We have
specified the effects of transitions on states verifying the invariant properties. We use the
results of Chapter 4 in order to show that this kind of misbehaviour cannot happen, to
achieve the proofs of refinement in Section 5.5.

5.1 Abstract State

This section presents the abstract model used to prove that SPTs provide memory isola-
tion between guests. The abstract state transition system describes guests which have a
private region of memory, a read and a write buffer shared with every other guest and a
set of registers owned only by itself. The abstract state transition system corresponds to
what is observable for each guest. We give the definition of the abstract state at the end of
this section (Definition 5.1.5).

5.1.1 Memory Cells

First of all we describe the representation of the memory in the abstract state. In the con-
crete state, there is one memory shared by all the guests. Each memory cell holds a byte.
In the abstract state, each guest has its own representation of the memory, as illustrated
in Figure 5.1. More precisely, each guest has several segments of memory, one private,
and several shared segments. Each cell of a segment is the association of a byte value and
a set of tags, where a tag is a pair of a virtual address and a right (Definition 5.1.1). The
set of tags of a physical address gathers all the virtual addresses that map this physical
address in the SPT of a guest, with the rights associated to it.

Definition 5.1.1 (Tag).

Tag =

{
va : Addr
rights : Rights

Definition 5.1.2 (Cell).

Cell =

{
byte : Byte
tags : {Tag}

In particular, it means that, if a concrete physical address a is in the send buffer of
guest i, shared with guest j, and if this address is mapped with RW rights in the SPT
of guest i and with RO rights in the SPT of guest j, it will be represented twice in the
abstract model:

86 Chapter 5. Abstract Model of the Hypervisor

• In a send segment of guest i, by a cell whose tags contain the element < _, rw >.

• In a receive segment of guest j, by a cell whose tags contain the element < _, ro >.

We will formalize this with the abstraction functions in Section 5.2.2.
Note that, in order to express our properties of confidentiality and integrity, we do

not need to reason at the granularity of addresses, because we want to prove that a guest
can only write in its private and send segments, and read from its receive segments.
Therefore, as far as properties are concerned, a cell could just be a byte, and the access
rights could just be set for a whole segment.

If we keep some tags for each cell, it is because we need our abstract system to be de-
terministic, as we have explained in Section 2.4. In particular, recall from the Section 3.5.1
that on the concrete model, the guest may only modify the memory cells for which it has
RW access. If we represent a cell as a mere byte, then two concrete states with the same
byte value in memory and different access rights would be projected to the same abstract
state. They could transit to two states with different byte values, i.e. which would be
projected to two different abstract states. If we keep such an imprecise representation of
memory, there exist abstract states from which we cannot decide which transition to take,
i.e. the abstract state transition system is not deterministic.

Therefore, we keep in the tags field of the cell structure enough information to distin-
guish two concrete systems which do not map a physical address the same way.

5.1.2 Guest State

In the abstract state, its guest has its own state, which represents its own representation,
or view, of the concrete state. The abstract guest state has four components:

• Some abstract registers.

• A private segment, in which the guest owner can write.

• As many send segments as the number of guests, in which the guest can write data
to be shared with another guest.

• As many receive segments as the number of guests, in which the guest can read
data written by another guest.

We have presented the permissions (Definition 3.3.1) in the concrete model, the segments
of the abstract model result from the permissions, as we will see in Section 5.2.2. A seg-
ment is a function which associate to each address a cell or nothing:

Definition 5.1.3 (Segment).

Seg : Addr → (Cell + None)

We present the abstract registers directly with the abstraction function (Definition 5.2.1).
We give the definition of the guest abstract state below:

Definition 5.1.4 (Guest Abstract State).

StG =

aregs : Regsabs (Registers)
priv : Seg (Private segment)
send : Idx → Seg (Send segments)
rcv : Idx → Seg (Receive segments)

5.2. Abstraction 87

5.1.3 Whole State

Formally, the abstract state is composed of the index of the guest currently running, and
all the states of all the guests:

Definition 5.1.5 (Abstract State).

St# =

{
curr : Idx (Index of the current guest)
guests : Idx → StG (State of all the Guests)

5.2 Abstraction

In this section, we define the abstraction function, or view function, which takes a concrete
state and returns an abstract state. To do so we define the projection of the abstraction
function for each field of the state. The current guest field in the abstract state is equal to
the current guest field in the concrete state. The view of an abstract guest state is itself
split into the views of each of its abstract field.

We define the abstraction function for each field below, and finally, we give the defi-
nitions of viewG (Definition 5.2.7) and view (Definition 5.2.8) at the end of this section.

5.2.1 Registers

The registers that a guest may observe are the concrete virtual registers stored in the con-
crete guest state (regsvirt, Definition 3.4.8), except for the registers related to the generic
interrupt controller (regsgic) which have been entirely abstracted:

Definition 5.2.1 (Abstract Registers).

Regsabs =

mode : Mode
apsr : Apsr
masks : Masks
regscore : vRegscore

regsbnk : aRegsbnk

regsmmu : vRegsmmu

We have represented the virtual CPSR in three parts:

• The bits corresponding to the mode.

• The bits corresponding to the APSR.

• The bits corresponding to the masks.

Similarly, the abstract banked registers aRegsbnk have the same type as the concrete
vRegsbnk, except that the SPSRs are split in three parts as well. We note view bnk the ab-
straction from vRegsbnk to aRegsbnk.

The abstraction function for registers has the following type:

viewregs : (Idx → vCPU)× Idx → Regsabs

and is defined in Definition 5.2.2. Similarly to the function mode , the functions apsr and
masks extract the bits of the CPSR corresponding respectively to the APSR and the mask
bits. As we have explained in Section 4.2.5, the function mode never raises none.

88 Chapter 5. Abstract Model of the Hypervisor

Definition 5.2.2 (Register Abstraction). ∀vcpus ∈ (Idx → vCPU) and i ∈ Idx ,

viewregs(vcpus, i) =

mode(vcpus(i).regsvirt.cpsr)
apsr(vcpus(i).regsvirt.cpsr)
masks(vcpus(i).regsvirt.cpsr)
vcpus(i).regsvirt.vregscore

view bnk(vcpus(i).regsvirt.vregsbnk)
vcpus(i).regsvirt.vregsmmu

5.2.2 Segments

The segments are functions from addresses to cells, they represent the memory of the
abstract state. If a guest has permissions to a physical address, then one of its segment
is defined on this physical address. The cell associated to this address in the segment is
composed of the byte present in concrete memory at this address, and a set of tags, which
keep track of which virtual address maps this physical address in the SPT of that guest,
and with which rights.

More precisely, the tags of a guest i in vcpus associated to a physical address pa are
the couples of virtual addresses va and rights r such that the address va is mapped to the
address pa with rights r in the current SPT of guest i. Notice that we consider a set of
tags and not a unique tag because several virtual addresses might map the same physical
address in the concrete model.

The tags function has the following type:

tags : Mem × (Idx → vCPU)× Idx ×Addr → {Tag}+ Oob

We define it below:

Definition 5.2.3 (Tags Function). ∀mem ∈ Mem , ∀vcpus ∈ (Idx → vCPU), ∀i ∈ Idx and
∀pa ∈ Addr ,
tags(mem, vcpus, i, pa) =

Let tags′ = {}
If pa ∈ [0, sizemem[

For va = 0...232

If pt(mem, basePT)(va) = (pa, r),
r ∈ {rw, ro},

Then tags′ = tags′ ∪ (va, r)
End For
return tags′

Else return oob

It does not return Oob for addresses in the memory range.
Having a function is important because it proves the existence of a set of tags in rela-

tion with the concrete state components. However, for commutation proofs, we are only
interested in the effects of such a function, which we describe in Lemma 5.2.1.

Lemma 5.2.1 (Tags). ∀mem ∈ Mem,∀vcpus ∈ (Idx → vCPU),∀pa ∈ [0, sizemem[. Let table
be the current SPT of the guest i: table = pt(mem, vcpus(i).baseSPT). The tags of the guest
i in vcpus for an address pa, can be defined as follows:

tags(mem, vcpus, i, pa) = {〈va, r〉|table(va) = 〈pa, r〉}

5.2. Abstraction 89

We present below the abstraction functions for the private, send and receive segments.
We do not present the whole implementation of the function, rather, we give the defini-
tion for a particular address of the resulting segment.

Private Segment

The function of abstraction of the private segment, viewpriv takes as argument the mem-
ory, the permissions, the vCPUs and an index of vCPU and returns an abstract segment:

viewpriv : Mem × Perm × (Idx → vCPU)× Idx → Seg

If an address is not in the private region of the guest (as defined by the permissions,
Definition 3.3.1), then the private segment is a None at this address. If an address is in
the private region of the guest, then there is a cell at this address in the abstract private
segment of the guest. The byte of the cell is the byte value of the concrete memory at this
address whereas the set of tags is given by the SPTs located in the pool of that guest.

Definition 5.2.4 (Private Segment Abstraction). ∀mem ∈ Mem , ∀vcpus ∈ (Idx → vCPU),
∀i ∈ Idx and ∀pa ∈ Addr ,
viewpriv (mem, perm, vcpus, i)(pa) =

If pa ∈ perm.priv(i),
Then Let b = mem(pa),

tags = tags(mem, vcpus, i,pa),
return 〈b, tags〉

Else return none

Note that the tags function is invoked on addresses of the private region of a guest,
meaning on addresses located in memory. Therefore the function tags does not raise Oob
when called from the viewpriv function. The same applies to the views of shared segments
defined in the next section.

Shared Segments

The function of abstraction of the shared segments, viewsend and viewrcv both have the
same type. They take as argument the memory, the permissions, the vCPUs and an index
i of vCPU and return a function which associate, to each vCPU j, the shared segment
with vCPU i.

viewsend : Mem × Perm × (Idx → vCPU)× Idx → (Idx → Seg)

For each guest j, the send segment of guest i, shared with j, is defined just as the
private segment is. It means that if an address pa is in the shared buffer from i to j
(pa ∈ perm.shared(i, j)), then there is a cell at this address in the abstract send segment j
of the guest i. The byte of the cell is the byte value of the concrete memory at this address
whereas the set of tags is given by the SPTs located in the pool of guest i.

Definition 5.2.5 (Send Segments Abstraction). ∀mem ∈ Mem , ∀vcpus ∈ (Idx → vCPU),
∀i ∈ Idx , i, j ∈ Idx , and ∀pa ∈ Addr .

90 Chapter 5. Abstract Model of the Hypervisor

viewsend (mem, perm, vcpus, i)(j)(pa) =

If pa ∈ perm.shared(i, j),
Then Let b = mem(pa),

tags = tags(mem, vcpus, i,pa),
return 〈b, tags〉

Else return none

The receive segments abstraction is similar to the send segments abstraction, except
that we abstract the physical addresses in the domain of shared(j, i) instead of shared(i, j).

Definition 5.2.6 (Receive Segments Abstraction). ∀mem ∈ Mem , ∀vcpus ∈ (Idx → vCPU),
∀i ∈ Idx , i, j ∈ Idx , and ∀pa ∈ Addr .
viewrcv (mem, perm, vcpus, i)(j)(pa) =

If pa ∈ perm.shared(j, i),
Then Let b = mem(pa),

tags = tags(mem, vcpus, i,pa),
return 〈b, tags〉

Else return none

The shared segments are therefore partially duplicated. A shared region of the con-
crete state (perm.shared(i, j)) is represented twice in the abstract model. First in the state
of guest i, represented following what the guest i can observe, meaning as the jth send
segment of guest i. Secondly in the state of guest j, as its ith receive segment.

In the two representations of this part of memory, the byte values are the same, but
the tags can be different, as each guest will observe the rights defined by its own SPT.

5.2.3 Abstraction Function

We can now define the view of the guest viewG : St → (Idx → StG), and the view of the
whole state view : St → St#.

Definition 5.2.7 (View Guest). ∀st ∈ St , ∀i ∈ Idx :
Let mem = st .σHW.mem,

vcpus = st .σHYP.vcpus,

viewG(st)(i) =

viewregs(vcpus, i)
viewpriv (mem, perm, vcpus, i)
viewsend (mem, perm, vcpus, i)
viewrcv (mem, perm, vcpus, i)

Definition 5.2.8 (View State). ∀st ∈ St , view(st)(i) =

{
st .curr
viewG(st)

5.3 Abstract Transitions

We present here the abstractions of the transitions presented in Section 3.5. Figure 5.2 il-
lustrates the correspondence between concrete and abstract transitions. In the left graph,
we have split the restore transition into the two parts described in Section 3.5.4: InjectIRQ
and LoadState. The abstract Guest# transition is the view of the composition of the

5.3. Abstract Transitions 91

LoadState, Guest and SaveState transitions. The Hypervisor# transitions merely corre-
spond to the concrete Hypervisor transitions. The abstract Restore transition corresponds
to the first part of the concrete Restore# transition: the InjectIRQ .

0

1

3
Hyp Trans#

Restore#

Guest Trans#

1

0 3

2

Guest Trans

Save State

Hyp Trans

Inject IRQ
Load State

FIGURE 5.2: Correspondence between Transitions of the Concrete Level
(left) and the Abstract Level (right)

Before presenting the transitions, we introduce the oracle, which is an extra argument
of some of our transitions.

5.3.1 Oracle

Our abstract transition system is not deterministic. We first explain why we need it to be
deterministic, then we explain how we make it deterministic.

Determinism for Confidentiality We have explained in details our methodology of
proof by abstraction in the state of the art, in Section 2.4. In particular, we have given
a formal definition of a general confidentiality property, and we have shown that when
considering deterministic systems, a property could be transferred down to the concrete
level (Lemma 2.4.2).

We explain it again less formally. In Figure 5.3, we have two start states, one on the
top left and one on the bottom left. These states contain two guest states: the state of the
current guest and the state of a guest j. The states are equals except on a "secret" part of
guest j. We call such states similar states regarding the current guest. The confidentiality
property states that the transitions possible from two similar states do not depend on the
secret of j, i.e.that the transition modifies equally the two states. In Figure 5.3, we have
represented with the same pattern the part of the state which are equal.

In Figure 5.4, we also depict a transition from two similar states, but this time in a
non-deterministic system. As can be seen, confidentiality cannot be proved, because, in
the general case, the transitions trans′ and trans do not modify the states in the same
way. The confidentiality property cannot be proved as it is, but the weaker confidential-
ity property which state that, if two states are similar and if a particular transition t is
triggered, then the resulting states are similar, can be prove. Therefore, we add an extra
parameter, an oracle, that enable to decide which transition to take, and thus makes the
system deterministic. Then we state our property starting from two similar states and
two equal oracles.

Note that determinising the system makes the property weaker, because we assume
that the difference in guest j’s secrets do not affect the transition taken. We will develop
this point latter, when we introduce the secrets and the oracles for our particular case.

We also underline that determinising the system is a sufficient condition to prove our
property and transferring it to the concrete model, but it is not a necessary condition.

92 Chapter 5. Abstract Model of the Hypervisor

curr j

curr j

curr j

curr j

trans

trans

FIGURE 5.3: Confidentiality -
Deterministic System

curr j

curr j

curr j

curr j

curr j

curr j

trans

trans

trans’

trans’

FIGURE 5.4: Confidentiality -
Non Deterministic System

For example, suppose that the non-determinism only affects the secrets of guest j, then
non-determinism is not an issue.

Presentation of the Three Oracles As explained in Section 3.5.1, in the concrete sys-
tem, we have added an external oracle as an extra parameter for the guest transition, to
decide whether an IRQ is raised during the transition, and therefore to make the system
deterministic. This is an oracle that we keep in our abstract model.

In the abstract system, we have not specified every parts of the model. For some tran-
sition, we have not included in our model sufficient information to decide its behavior.
Therefore, in order to keep a deterministic system, we add two more oracles, which make
it possible to:

1. To decide which guest is to be run on a schedule.

2. To decide whether an IRQ is to be injected before restoring the guest.

It means that we reason with three extra arguments which make the system determin-
istic:

1. A guest to be run next (nxt ∈ Idx), used in the schedule transition.

2. The optional registers corresponding to the IRQ injection (ovirq ∈ Aregs), used in
the restore transition.

3. The optional raised IRQ (oirq ∈ Oracle), as defined in the concrete state, Sec-
tion 3.5.1, used in the guest transition.

Correspondence with the Concrete State As we will develop in Section 5.5, our goal is
to establish a formal correspondence between the concrete and abstract transitions. As
depicted in Figure 5.5, we want to show that, if there exist a transition from concrete state

5.3. Abstract Transitions 93

st st ′

view(st) view(st)’
=

view(st ′)

concrete transition

abstract transition

ab
st

ra
ct

io
n

ab
st

ra
ct

io
n

FIGURE 5.5: Commutation Diagram

st to st ’, and if there is a view of st . Then there is a view of st ’ and this view is equal to
the result of the abstract transition from view(st).

Therefore, not only must we make the abstract system deterministic, but we must also
be able to link it to the concrete model, i.e. if two transitions are possible, we must choose
the one that corresponds to the concrete transition, i.e. that "close" the commutation dia-
gram. We develop below how we chose the oracles.

Concerning the third oracle, oirq, we merely take the same as for the concrete model,
as we will develop when presenting the guest transition in Section 5.3.2.

The first and second oracles correspond to the results of some computation that can be
made on the concrete level but not on the abstract level, because the information needed
for the computation has been abstracted. We therefore use the result of the computa-
tion on the concrete level as an oracle. Figure 5.6 illustrates the commutation of the
schedule transition with the oracle. The concrete schedule transition has an algorithm
which chooses which guest is to be run next, and modifies the current guest (i.e. the field
st .σHYP.curr) accordingly. We give the new current guest as an argument of the abstract
scheduling transition. We do the same for the restore transition and the ovirq oracle.

st st ′

view(st), nxt view(st)’
=

view(st ′)

schedule

schedule#

ab
st

ra
ct

io
n

ab
st

ra
ct

io
n

nxt =
st ′.σ

HYP .curr

FIGURE 5.6: Oracle for Scheduling

In our proof of confidentiality, we compare the execution from two similar states, with
the same oracle. We therefore make the hypothesis that in the concrete state, two sim-
ilar states would schedule the same guest (resp. inject the same IRQ). We explain the
extend of these hypothesis in Section 5.4.2, when we introduce the concept of similarity
(Definitions 5.4.1 and 5.4.2).

94 Chapter 5. Abstract Model of the Hypervisor

5.3.2 Guest Transition

We have designed the abstract guest transition in such a way that some properties hold
intrinsically, e.g. a guest does not modify its receive segments, on which it only has read
access.

We divide the run into two steps:

• First, the current guest executes, modifying its registers, its private and send re-
gions.

• Secondly, the modifications are reflected on the other guests. Basically, the values
of the current guest send regions are copied to the receive regions of other guests.
Such that, at the end of the synchronization, the guest send segments have the same
values as the corresponding receive segments of other guests.

We present separately the two part of the function, before giving the definition of the
guest transition at the end of this section.

Guest Run

A concrete state is well-formed if and only if it verifies all the system invariants defined
in Chapter 4 (Definition 4.4.1). We introduce notations related to well-formed state in the
following definition.

Definition 5.3.1 (Well-formed Abstract Guest States). We denote by Ŝt
+

G the set of guest
state which are the image of a well-formed global state under viewG:

Ŝt
+

G = {σG ∈ StG | ∃st ∈ St ,wf +(st) ∧ viewG(st) = σG}

Definition 5.3.2 (Well-formed Abstract States). Similarly, we denote by Ŝt
#+

the set of
abstract states which are the image of a well-formed global state under view :

Ŝt
#+

= {st# ∈ St# | ∃st ∈ St ,wf +(st) ∧ view(st) = st#}

We consider the relation run and we show that this relation is total and functional on
the subset Ŝt

+

G of StG, i.e. that it is a function on Ŝt
+

G . The relation run1 has the following
type:

≈
run

: (StG ×Oracle)× (Regsabs × Seg × (Idx → Seg))

Definition 5.3.3 (Run Relation). An abstract guest state is in relation with a tuple of reg-
isters, private and send segments if there exists a well-formed concrete state such that:
∀σG ∈ StG, o ∈ Oracle, regsabs ∈ regsabs , priv ∈ Seg, send ∈ (Idx → Seg),

(σG, o) ≈
run

(regsabs , priv , send)⇔

1In the implementation, the Definition 5.3.3 is more precise, because we only require some registers to
be equals. Therefore Definition 5.3.5 is also more precise in the implementation. We do not put all the details
here for clarity’s sake.

5.3. Abstract Transitions 95

∃st ∈ St ,wf +(st),
viewG(st , σG.curr) = σG, [1]

st
LoadState−−−−−−→ GuestTrans(o)−−−−−−−−−→ SaveState−−−−−−→ stnew, [2]

send = viewG(stnew, i).send ,
priv = viewG(stnew, i).priv , [3]
regs = viewG(stnew, i).regs

Figure 5.7 illustrates Definition 5.3.3. Several concrete states may be abstracted to
the same state ([1]). We justify that the relation is functional by showing that if several
concrete states verify [1], they all project to the same abstract state by [2] and [3]. More
precisely, we show that two concrete states have the same view of guest i if and only if
they are equivalent for guest i (Definition 5.3.6). Then that this relation is preserved by [2]
(Lemma 5.3.1), so that [3] projects all these equivalent concrete states to the same abstract
state.

st stnew

σG, o ≈
run (send , priv , regs)

[2]

[1] [3]

FIGURE 5.7: Run Relation

Definition 5.3.4 (Same User Region). Two states have the same user regions if their mem-
ory is equal on user regions.

∀st1, st2 ∈ St , same_user_region(st1, st2, i)⇔ ∀a ∈ user_region(i),
st1.mem(a) = st2.mem(a)

Definition 5.3.5 (Same User Registers). Two states have the same user registers iff their
view of abstract registers is equal.

Let st1, st2 ∈ St ,

same_user_regs_hyp(st1, st2)⇔

viewregs(st1.σHYP.vcpus(i).regsvirt) = viewregs(st2.σHYP.vcpus(i).regsvirt)

Definition 5.3.6 (Equivalence of Concrete States for a Guest). . Two concrete states are
equivalent regarding guest i if they have the same map for the SPT of guest i and the
same virtual registers for i, and the same mapping defined.
∀st1, st2 ∈ Ŝt

+
,

st1 ≈
i
st2 ⇔ same_map(st1.mem, st2.mem, st1.sthyp.vcpus(i).baseSPT, st2.sthw.basePT),

same_user_regs_hyp(st1, st2),
same_user_region(st1, st2)

96 Chapter 5. Abstract Model of the Hypervisor

Lemma 5.3.1 (Same Abstract State). Two concrete and well-formed states are equivalent
for a guest iff they have the same view of that guest.

∀st , st ′ ∈ Ŝt
+
, view(st , i) = view(st ′, i)⇔ st ≈

i
st′

Proof. The justification for same_user_regs_hyp comes directly from Definition 5.3.5.
The justification for same_map and same_user_region comes from Definitions 5.2.4,

5.2.5 and 5.2.6, from Invariant 4.2.1 and Invariants on PTs.

Lemma 5.3.2 (Equivalence Preserved). ∀st , st ′ ∈ Ŝt
+
, i ∈ Idx

If st .σHYP.curr = st ′.σHYP.curr = i,
st ≈

i
st′,

st
LoadState−−−−−−→ st1

GuestTrans(o)−−−−−−−−−→ st2
SaveState−−−−−−→ st3,

st
LoadState−−−−−−→ st′1

GuestTrans(o)−−−−−−−−−→ st ′2
SaveState−−−−−−→ st ′3,

Then st3 ≈
i
st′3

Proof. The function load_state only depends on regsvirt.regscore, regsvirt.regsbnk and of the
mode and APSR bits of the CPSR of the current guest.

From Definition 5.3.6 of ≈
i

and Definition 5.3.5 of same_user_regs_hyp, we know that

all these registers are equal in the two initial states. The transition LoadState writes the
result of load_state to the hardware core registers and hardware APSR (st .σHW.regscore

and st .σHW.apsr).
Therefore same_user_regs_hw(st1, st

′
1) holds. Moreover, as LoadState does not mod-

ify the state of the guest, st1 ≈
i
st′1 holds.

As same_user_regs_hw(st1, st
′
1) and st1 ≈

i
st′1 hold, by Axioms 3.5.2 and 3.5.1:

same_map(st2.mem, st ′2.mem, st2.sthw.basePT, st ′2.sthw.basePT)

As the states st2 and st′2 are well-formed, the PT of their base pointer register are equal to
the SPT of their current guest, therefore:

same_map(st2.mem, st ′2.mem, st2.sthyp.vcpus(i).baseSPT, st ′2.sthyp.vcpus(i).baseSPT)

same_user_region(st2, st ′2) obviously holds, and the virtualized registers of the guest are
not modified, therefore same_user_regs_hyp(st2, st

′
2) holds, meaning that st2 ≈

i
st′2.

Furthermore, by Axioms 3.5.2 and 3.5.1, same_user_regs_hw(st2, st
′
2) holds. Same

reasoning as for load_state function ensure that save_state copies the hardware registers
into the guest virtualized registers in such a way that same_user_regs_hyp(st3, st

′
3).

Finally, save_state does not modify memory (see Section 3.5.2), therefore st3 ≈
i
st′3.

Lemma 5.3.3 (Functional Relation). ∀σG ∈ Ŝt
+

G ,
If (σG, o) ≈

run
(regsabs1, priv1, send1)∧

(σG, o) ≈
run

(regsabs2, priv2, send2)

Then (regsabs1, priv1, send1) = (regsabs2, priv2, send2)

Proof. By applying Lemma 5.3.1 twice and Lemma 5.3.2.

5.3. Abstract Transitions 97

From Lemma 5.3.3, we deduce that relation run is a function on Ŝt
+

G , we note run :

(Ŝt
+

G ×Oracle)→ (Regsabs × Seg × (Idx → Seg)).

Exit Similarly, we define run_exit : (Ŝt
+

G × Oracle) → Exit_code. We proceed the same
way as for the run relation. We define run_exit as a relation with [1] and [2] similar as for
the run relation, and [3] specifying that the exit code corresponds to the exception-related
information contained in the regsmmu, regsgic, mode and the exception vector obtained af-
ter a concrete transition. In particular, the exit code gives information about the exception
raised at the end of the guest run, thus allowing to decide which handler is to be called.
A similar reasoning as for the previous relation shows that this is a function.

We can now define the first part of the guest transition guest_run : (Ŝt
+

G ×Oracle)→
StG × Exit_code.

Definition 5.3.7 (Guest Run). ∀σG ∈ Ŝt
+

G , o ∈ Oracle,
Let (aregs, priv , send) = run(σG, o),

exit_code = run_exit(σG, o)

guest_run(σG, o) = (aregs, priv , send , σG.rcv, exit_code)

Guest Synchronize

The second step of the guest transition reports the changes of the send segments of the
current guest to the corresponding receive segments of the other guests. In other terms,
the receive segments of the other guests are synchronized with the send segment of the
current guest. The synchronization of segment seg1 with seg2, i.e. updating all the values

of seg1 with those of seg2 without changing its tags, is denoted by seg1
VAL←−−− seg2.

Definition 5.3.8 (Synchronization). ∀guests ∈ (Idx → StG), σG ∈ StG, i ∈ Idx ,
Let guests′(i).σG = σG,

∀j 6= i, guests′(j) = guests(j)[rcv
VAL←−−− guests(i).send],

synch(guests, σG, i) = guests′

Whole Transition

The abstract guest transition is the sequence of the guest_run applied on the current guest,
and of the synchronization of the current guest on the other guests.

Definition 5.3.9 (Guest Transition). ∀st# ∈ Ŝt
#+
, o ∈ Oracle,

Let curr = st#.curr
σG = guest_run(st#.guests(st#.curr), o)
guests1 = synch(guests, σG, st#.curr)

If st#
1 = st#[guests← guests1]

Then st# GuestTrans(o)−−−−−−−−−→ st#
1

In this Section, we have defined the abstract run with help of some concrete transitions
(LoadState , Guest and SaveState). Yet we do not have proved its commutation with these

98 Chapter 5. Abstract Model of the Hypervisor

concrete transitions. Basically our definition gives us the commutation of the registers,
of the send segments, and of the private segment of the current guest. We have two
properties left to prove: the commutation over the receive segments of the current guest
and the commutation over the state of the other guests.

5.3.3 Hypervisor Transition

We distinguish four types of hypervisor transitions, depending on their impact on the ob-
servable state: the Memory Management, the Schedule, the Nop and the Register Modifi-
cation transitions. Each transition corresponds to one or several groups of the hypervisor
concrete transitions presented in Section 3.5.3.

Memory Management

The memory management transition captures the effects of the concrete transitions concern-
ing the memory management virtualization. These concrete transitions have an impact
on the registers and on memory, but only on the part of memory which defines the SPT.
In particular, they do not change the value of memory cells but only the active SPT. It
means that the impact of the mem transition on the segments is only on their tag.

For this transition, we consider a function mem_op : StG × Exit_code → StG. This
function first analyses the exit code and the registers, then goes to the appropriate han-
dler. Instead of describing one transition per actual operation (map, unmap etc...), we
gather these transitions into one, which is precise enough to prove our properties. We
detail the function mem_op in Section 5.5, as we need every detail to show the commuta-
tion with concrete transitions.

Definition 5.3.10 (Memory Management Transition).
Let curr = st#.curr

σGcurr = st#.guests(curr)

If decode(st#.aregs, exit_code) ∈ {pf , switch, flush, flushall, enable, disable}
st#

1 = st#[guests(curr)← mem_op(σGcurr , exit_code)]

Then st# Mem−−−→ st#
1

Schedule

The scheduling transition corresponds to the concrete scheduling transition. As explained
in Section 5.3.1 uses the oracle to decide which guest to schedule.

Definition 5.3.11 (Schedule Transition).
If decode(st#.aregs, exit_code) = schedule

st#
1 = st#[curr ← nxt]

Then st# Schedule(nxt)−−−−−−−−→ st#
1

Nop

The nop transition is the abstraction of all the concrete transitions which do not have any
observable impact on the abstract state. It abstracts all the IRQ transitions, indeed, all
these transitions only impact the GIC which we do not represent in the abstract model.

5.4. Security properties 99

Definition 5.3.12 (Nop Transition).
If decode(st#.aregs, exit_code) = nop

Then st# Nop−−→ st#

Registers Modification

The ModRegs transition is the abstraction of the concrete injection transitions and of the
access to privileged register transition. The particularity of these transitions is that their
only observable impact is on registers.

Definition 5.3.13 (Modify Registers). .
Let curr = st#.curr
If decode(st#.aregs, exit_code) = mod_regs

st#
1 = st#.guests(curr)[aregs ← mod_regs(aregs, exit_code)]

Then st# ModRegs−−−−−→ st#
1

5.3.4 Restore Transition

The view of the concrete restore transition does either nothing (in case just the PL is
changed) or injects an IRQ into the guest, which only impacts the registers.

Definition 5.3.14 (Restore Transition). The restore transition is a nop or uses the oracle to
inject irqs if any.

Let curr = st#.curr
If oirq 6= None

Then st#
1 = st#[guests(curr).aregs ← oirq]

st# Restore(oirq)−−−−−−−−→ st#
1

Else st# Restore(oirq)−−−−−−−−→ st#

5.3.5 Abstract Transition

Now that we have formally defined the restore transition, the guest transition and the
hypervisor transition, we can express formally the Abstract Transition.

Definition 5.3.15 (Abstract Transition). ∀st#, st#
1 ∈ Ŝt

#+
, o ∈ Oracle,

st# o−→ st#
1 = st# Restore(o)−−−−−−→ GuestTrans(o)−−−−−−−−−→ HypTrans(o)−−−−−−−−→ st#

1

5.4 Security properties

Guests may interfere with each other (e.g. through shared memory), so we cannot prove
non-interference. Instead we prove an isolation property on some resources of the guests,
i.e. we prove their integrity and their confidentiality. We have compared our property of
isolation to non-interference in Section 1.2.

The resources on which we prove isolation are the registers and the memory seg-
ments. Below, we detail the properties on segments, as our main focus is the memory
isolation. We express the properties on one transition step. More exactly, to state a prop-
erty for one guest, we confine the effects that the execution of another guest can have on
the former. Thus, as our system is sequential, we consider a transition where the former

100 Chapter 5. Abstract Model of the Hypervisor

guest does not run. We prove the extension of these properties to any sequence of transi-
tions where a guest does not run. The proof sketch of integrity shows the simplicity with
which we can bound the effects of a transition in our model. The proof of confidentiality
is done in a similar way.

5.4.1 Integrity

Integrity for a guest i means that if another guest j runs, then the private segment and
the send segments of i are not modified, and only its jth receive segment might have
changed.

Theorem 5.4.1 (Integrity). ∀i, j such that i 6= j, ∀guests, guests′ ∈ (Idx → StG)
If 〈j, guests〉 → 〈j′, guests′〉

Then guests′(i).priv = guests(i).priv
∀k, guests′(i).send(k) = guests(i).send(k)
∀k 6= j, guests(i)′.rcv(k) = guests(i).rcv(k)

Proof. We consider a transition from the state 〈j, guests〉. From Definition 5.3.15, the first
part of the transition is the restore transition, which only changes the registers of the
running guest. So the segments of all the guests stay unchanged, in particular those of
guest i. The current guest index is not modified, it is still j.

The second part of the transition is the guest transition. From the definition of the
guest transition (Definition 5.3.9) we know that the current guest index is not changed,
and that the state of guest i after the transition is such that only its jth receive segment is
modified. Hence the three following facts are verified:

1. guests′(i).priv = guests(i).priv

2. ∀k, guests′(i).send(k) = guests(i).send(k)

3. ∀k 6= j, guests′(i).rcv(k) = guests(i).rcv(k).

The third part of the transition is the hypervisor transition. None of the four hy-
pervisor transitions changes the state of guest i. Therefore integrity is verified for any
transition.

5.4.2 Confidentiality

To express confidentiality properties, we compare one step of execution from two states
which differ only on some resources of guest i (Definitions 5.4.1 and 5.4.2). If the guest j
which runs in this step has no authorization to access these resources, then the two states
resulting from the transition are equal except on guest i.

We present two confidentiality properties, one for private segment, which ensure that
only one guest can access its private segment, and one for shared segments, stating that
only the two guests sharing a segment can access it.

For each property we define a notion of similarity.

Definition 5.4.1 (i-Similarity). For all i ∈ Idx , ∀guests, guests′ ∈ (Idx → StG), the ele-
ments guests and guests′ are i-similar, noted guests ∼

i
guests′ iff they only differ on the

private region of guest i:

5.4. Security properties 101

guests′ ∼
i
guests⇔ ∀l 6= i, guests′(l) = guests(l)

∀l, guests′(i).send(l) = guests(i).send(l)
∀l, guests′(i).rcv(l) = guests(i).rcv(l)

Theorem 5.4.2 (Confidentiality Private Segment). ∀i, j such that i 6= j, ∀guests1, guests2 ∈
(Idx → StG) such that guests1 ∼

i
guests2.

If 〈j, guests1〉
nxt,oirq,o−−−−−−→ 〈j′, guests′1〉

Then 〈j, guests2〉
nxt,oirq,o−−−−−−→ 〈j′, guests′2〉 ∧ guests′2 ∼

i
guests′1

The proof of Theorem 5.4.2 is almost the same as the proof of the next theorem (The-
orem 5.4.3).

Definition 5.4.2 (i, k-Similarity). For all i ∈ Idx , ∀guests, guests′ ∈ (Idx → StG), the el-
ements guests and guests′ are i, k-similar, noted guests ∼

i,k
guests′ iff they only differ on

the private region of guest i, and on the shared regions between i and k:
∀guests, guests′ ∈ (Idx → StG),

guests′ ∼
i,k
guests⇔ ∀l 6= i, guests′(l) = guests(l)

∀l 6= k, guests′(i).send(l) = guests(i).send(l)
∀l 6= k, guests′(i).rcv(l) = guests(i).rcv(l)

Theorem 5.4.3 (Confidentiality Shared Segments). ∀i, j, k ∈ Idx such that i 6= j and k 6= j,
∀guests1, guests2 ∈ (Idx → StG) such that guests1 ∼

i,k
guests2.

If 〈j, guests1〉
nxt,oirq,o−−−−−−→ 〈j′, guests′1〉

Then 〈j, guests2〉
nxt,oirq,o−−−−−−→ 〈j′, guests′2〉 ∧ guests′2 ∼

i,k
guests′1

Proof. We consider a transition from the two states 〈j, guests1〉 and 〈j, guests2〉. We let
l ∈ Idx . We reason on each part of the transition (Definition 5.3.15).

The restore transition either does nothing or changes the registers of the running
guest, depending on the oracle. We consider two transitions with the same oracle, hence
the relation ∼

i,k
is maintained.

The second part of the transition is the guest transition, for which we distinguish two
cases:

l = j by Definition 5.3.7 of guest_run , the new value of the jth guest only depends on
the oracle o and of the state of guest j. Therefore the jth guest is equals for the two states.

l 6= j From the definition of the synchronization (Definition 5.3.8) we know that the
state of guest l after the transition is such that only its jth receive segment is modified,
with the values of the send segment of j, which, we have just proved, is equal for the
two states. Thus the relation ∼

i,k
is maintained.

The third part of the transition is the hypervisor transition. This transition only depends
on the state of guest j, which is the same in the two states considered, and of the oracle,
therefore ∼

i,k
is maintained. Thus confidentiality is verified for any transition.

In Theorems 5.4.2 and 5.4.3, we consider assume that when a guest does not run, its
memory does not interfere with oracles, i.e. that behavior of the scheduler and of the

102 Chapter 5. Abstract Model of the Hypervisor

interrupt management do not depend on the memory of a guest, when this guest is not
the current guest.

The arrival of IRQs is an external event so it is obviously not linked to the configura-
tion of memory. For the two oracles introduced in this chapter, our assumption can be
proved by showing that two concrete states corresponding to two similar abstract states
would schedule the same guest and inject the same IRQ. We set these properties aside in
order to focus on memory isolation.

5.5 Refinement

Finally, we present our commutation lemmas and their proof. As illustrated in Figure 5.5,
we want to show that, if there exist a transition from concrete state st to st ’, and if there is
a view of st . Then there is a view of st ’ and this view is equal to the result of the abstract
transition from view(st).

We prove the commutation for the guest transition and for the memory management
transitions. These proofs rely on the invariants described in Chapter 4, and on the result-
ing effects.

5.5.1 Guest Transition

The guest transition does not modify the field curr of a state. We only express the com-
mutation on the guests.

Lemma 5.5.1 (Guest Transition Commutation).
Let st ∈ St such that wf +(st),

If st
LoadState−−−−−−→ GuestTrans(o)−−−−−−−−−→ SaveState−−−−−−→ st ′

view(st) = st#

st# GuestTrans#(o)−−−−−−−−−−→ st#
1

Then view(st′) = st#
1

Proof. For clarity we introduce the following notations:

st#′
= view(st′)

guests′ = st#′
.guests

guests = st#.guests
guests1 = st#.guests1

mem = st .σHW.mem
mem′ = st ′.σ′HW.mem
vcpus = st .σHYP.vcpus
vcpus = st .σHYP.vcpus, also equal to st ′.σ′HYP.vcpus, by Definition 3.5.1
baseSPT = vcpus(i).baseSPT

Suppose that st#′ 6= st#
0 1, it means that one of their field differ. From the definitions

of the concrete and abstract guest transition, and from the definition of the view, we know
that st#′

.curr = st#
1 .curr , and we denote by i such a current guest.

Therefore st#′ 6= st#
1 means that there exists j ∈ Idx such that guests′(j) 6= guests1(j).

Case i = j . In this case, by Definition 5.3.9 and 5.3.8:

guests1(i).σG = guest_run(guests(i), o)

5.5. Refinement 103

By definition of guest_run and of the run relation (Definitions 5.3.7 and 5.3.3), we al-
ready have the commutation of the registers, private segment and send segment. We
prove it for the receive segments.

Suppose then that guests′(i).rcv 6= guests1(i).rcv (1), by Definition 5.3.7, we know that:

guests1(i).rcv = guests(i).rcv

Therefore, from (1), we obtain:

guests′(i).rcv 6= guests(i).rcv

We write rcv ′ for guests′(i).rcv and rcv for guests(i).rcv . There exists k ∈ Idx , pa ∈ Addr
such that rcv′(j)(pa) 6= rcv(j)(pa) (2).

Case pa /∈ shared(k, i) . From Definition 5.2.6:

rcv′(j)(pa) = rcv(j)(pa) = none

which contradicts (2). Qed.

Case pa ∈ shared(k, i) . From Definition 5.2.6:

rcv′(j)(pa) = 〈mem′(pa), tags(mem ′, vcpus ′, j,pa)〉
∧ rcv(j)(pa) = 〈mem(pa), tags(mem, vcpus, j,pa)〉

From Lemma 4.3.7, we know that mem′(pa) = mem(pa). It means that the tags are
different.

By Lemma 5.2.1:

rcv′(j)(pa).tags = {〈va, r〉|pt(mem′, baseSPT)(va) = 〈pa, r〉}
∧ rcv′(j)(pa).tags = {〈va, r〉|pt(mem, baseSPT)(va) = 〈pa, r〉}

From Lemma 4.3.8, we have that

∀va, pt(mem′, baseSPT)(va) = pt(mem, baseSPT)(va)

It means that rcv′(j)(pa).tags = rcv(j)(pa).tags. Qed.

Case i 6= j . Let σG = guest_run(guests(i), o). By Definition 5.3.9 and 5.3.8:

guests1(j) = guests(j)[rcv
VAL←−−− σG.send] (3)

It means that guests1(j) and guests(j) only differ on the receive segment. Similar rea-
soning as previously show that guests(j) and guests′(j) are equal on registers, send and
private segments, because the component needed for their view are not modified by
the concrete guest transition. Thus that guests1(j) and guests(j) are equals on registers,
send and private segments.

We analyze the case where guests′(i).rcv 6= guests1(i).rcv . There exists k ∈ Idx and
pa ∈ Addr such that rcv′(j)(pa) 6= rcv1(j)(pa) (4).

104 Chapter 5. Abstract Model of the Hypervisor

Case pa /∈ shared(k, i) . From Definition 5.2.6:

rcv′(j)(pa) = rcv(j)(pa) = none

From (3), rcv(j)(pa) = none implies that rcv1(j)(pa) = none . which contradicts (4).
Qed.

Case pa ∈ shared(k, i) . From Definition 5.2.6:

rcv′(j)(pa) = 〈mem′(pa), tags(mem ′, vcpus ′, j,pa)〉
rcv(j)(pa) = 〈mem(pa), tags(mem, vcpus, j,pa)〉

From (4), we know that rcv1(j)(pa).tags = rcv(j)(pa).tags. Same reasoning as before,
using the definition of tags and Lemma 4.3.8 leads to the conclusion that:

rcv′(j)(pa).tags = rcv1(j)(pa)

Suppose then that mem′(pa) 6= rcv1(j)(pa).byte (5). From (4), we know that:

rcv1(j)(pa).byte = guest_run(guests(i), o).send(j)(pa).byte

By definition of guest_run and of the run relation (Definitions 5.3.7 and 5.3.3), we
know that:

guest_run(guests(i), o).send(j)(pa).byte = viewsend (mem
′, perm, vcpus, i)(j)(pa)

which is equal tomem′(pa) by Definition 5.2.5. Meaning thatmem′(pa) = rcv1(j)(pa).byte,
which contradicts (5). Qed.

5.5.2 Memory Transitions

There are six hypervisor transitions. The page fault with MMU and without MMU call the
map operation. The flush transition calls the unmap operation. The switch, flush all and
enable/disable MMU transitions call the unmap_all operation. The mem_op operation
that we have presented in the the abstract memory management transition would call
one of these operation, depending on the exit arguments of the guest transition. We prove
the commutation of the concrete and abstract map, unmap and unmap_all operations, in
order to prove the commutation of all the memory management related transitions.

Map

We want to prove the correspondence between the concrete and an abstract map. The
abstract map, noted map#, add tags containing a virtual address within the virtual page
to map, to cells located at physical addresses in the physical page to map. It has the
following type map# : (StG × Addr × Addr × Rights) → StG. It also removes the tags
containing a virtual address located in the page to be mapped. Indeed, this captures the
side effect of the concrete map, which, by mapping a virtual address va to a physical page,
also unmap all the older occurrences of va mappings.

The addition of new mappings is made at the granularity of a page, we map the whole
page at the given addresses. Therefore our specification of map# only makes sense for

5.5. Refinement 105

addresses aligned on the size of the page, and the commutation needs to be proved only
on addresses aligned to the size of a page. We denote by rm_page : ({Tag} × Addrpg) →
{Tag} the function that removes the tags containing an address in a page at the address
given in argument.

Definition 5.5.1 (Remove Tags). Let tags ∈ Tag , vapg ∈ Addr ,

rm_page(tags, vapg) = tags\{tag|tag.va ∈ [vapg, vapg + page_size[}

We denote by add_page : ({Tag} × Addrpg × Addr × Rights) → {Tag} the function
which add a tag containing an address in a page at the address given in argument.

Definition 5.5.2 (Add Tags). ∀tags ∈ Tag , ∀vapg ∈ Addrpg , ∀pa ∈ Addr , ∀r ∈ Rights , let
off ∈ Uint such that pa = idx 1 ⊕ idx 2 ⊕ off ,

add_page(tags, vapg, pa, r) = tags ′ ∪ (vapg + off , r)

We decompose the proof of commutation in four, one for each component of the ab-
stract state. We define the projection of map#on each component of the system. Formally,
∀st# ∈ St#,∀vapg ∈ Addr :

map#(σG, vapg, papg, r) =

st#.regs

map#
priv (st#.priv, vapg, papg, r)

map#
send (st#.send, vapg, papg, r)

map#
rcv (st#.rcv, vapg, papg, r)

The commutation of the map function on the registers is easy, because the map func-
tion does not modify the registers.

We specify below the function map#
priv :

Definition 5.5.3 (Map Priv). ∀seg ∈ Seg , vapg ∈ Addrpg , a ∈ Addr ,

map#
priv (seg , vapg, papg, r)(a) = If seg(a) ∈ None

Then return none
Else Let b = seg(a).byte

tags = rm_page(seg(a).tags, vapg)
If a ∈ [papg, sizepage [
Then Let tags′ = add_page(tags, vapg, pa, r)

return 〈b, tags′〉
Else return 〈b, tags〉

Lemma 5.5.2 (Commutation of Map - Private Segment). If we unmap vapg in a concrete
state, then the view of the private segment of this state is equal to unmapping vapg in the
view of the initial concrete state:

Let st ∈ St such that wf (st),
i ∈ Idx ,
vapg ∈ Addrpg such that vapg /∈ σHYP.vcpus(i).frange ,
st ′ ∈ St ,
seg ∈ Seg ,

If st ′ = map(st , i, vapg, papg, r)
seg = viewpriv (st .σHW.mem, st .σHYP.vcpus, i)

Then viewpriv (st ′.σHW.mem, perm, st ′.σHYP.vcpus, i) = map#
priv (seg , vapg)

106 Chapter 5. Abstract Model of the Hypervisor

Proof. For clarity we introduce the following notations:

seg1 = map#
priv (seg , vapg)

seg ′ = viewpriv (st ′.σHW.mem, st ′.σHYP.vcpus, i)
mem = st .σHW.mem
mem′ = st ′.σ′HW.mem
vcpus = st .σHYP.vcpus
vcpus′ = st ′.σHYP.vcpus

Assume that seg ′ 6= seg1. Then there exists a physical address pa ∈ Addr such that
seg ′(pa) 6= seg1(pa), we denote byH this hypothesis.

By Definition 4.2.2 (Map Page), for all j 6= i, vcpus(j) = vcpus(i) and vcpus(i) is only
modified on is alloc field. In particular, vcpus(i).baseSPT = vcpus′(i).baseSPT, which we
write baseSPT for short.

Case pa /∈ perm.priv(i) . By Definition 5.2.4, seg(pa) = Oob and seg ′(pa) = Oob. From
Definition 5.5.4, seg(pa) = Oob implies that seg1(pa) = Oob.
Thus seg ′(pa) = seg1(pa), which contradictsH, Qed.

Case pa ∈ perm.priv(i) . By Definition 5.2.4:

seg ′(pa) = 〈mem′(pa), tags(mem ′, vcpus ′, i, pa)〉 (1)
∧seg(pa) = 〈mem(pa), tags(mem, vcpus, i, pa)〉 (2)

Yet from Lemma 4.3.2 (Map Unchanged), we know that mem(pa) = mem′(pa), i.e. that:

seg ′(pa).byte = seg1(pa).byte

As seg ′(pa) 6= seg1(pa) (H), we have:

seg ′(pa).tags 6= seg1(pa).tags

As the two sets are not equals, there exist an element e which is in the first set but not
in the second, or reciprocally. We introduce the virtual address ve ∈ Addr and the right
re ∈ Rights , such that e = 〈ve, re〉.

Case e ∈ seg ′(pa).tags ∧ e /∈ seg1(pa).tags . We know by (1) that:

seg ′(pa).tags = tags(mem ′, vcpus ′, i, pa)

it means that:

seg ′(pa).tags = {〈va, r〉|pt(mem′, baseSPT)(va) = 〈pa, r〉}

from Lemma 5.2.1. Therefore, as 〈ve, re〉 ∈ seg ′(pa).tags:

pt(mem′, baseSPT)(ve) = 〈pa, re〉 (4)

Case ve ∈ [vapg, vapg + page_size[. Then from Lemma 4.3.1:

∃off < sizepage , ve = vapg + off , pt(mem′, baseSPT)(ve) = (papg + off , r)

5.5. Refinement 107

From (4), we obtain that papg+off = pa and r = re. It means that pa ∈ [papg, sizepage [,
thus, let tags = rm_page(seg(pa).tags, vapg), from Definition 5.5.3:

seg1(pa).tags = add_page(tags, vapg, pa, re)

From Definition 5.5.2:

add_page(tags, vapg, pa, re) = tags ∪ (ve, re)

Therefore (ve, re) ∈ seg1(pa).tags, which contradicts the hypothesis of the case.
Qed.

Case ve /∈ [vapg, vapg + page_size[. Then from Lemma 4.3.1:

pt(mem, baseSPT)(ve) = pt(mem′, baseSPT)(ve) = 〈pa, r〉

As we know from (2) that:

seg(pa).tags = tags(mem, vcpus, i, pa)

we deduce from the specification of tags (Lemma 5.2.1) that:

seg(pa).tags = {〈va, r〉 | pt(mem, baseSPT)(va) = 〈pa, r〉}

In particular it means that:

〈ve, re〉 ∈ seg(pa).tags (5)

Case pa /∈ [papg, sizepage [From Definition 5.5.3:

seg1(pa) = 〈seg(a).byte, rm_page(seg(a).tags, vapg)〉

Therefore, from Definition 5.5.1, we know that:

rm_page(seg(a).tags, vapg) = seg(a).tags\{tag | tag.va ∈ [vapg, vapg+page_size]}

As ve /∈ [vapg, vapg + page_size]:

〈ve, re〉 ∈ seg(a).tags⇔ 〈ve, re〉 ∈ seg1(a).tags

Yet we are in the case where e /∈ seg1(pa).tags and we know from (5) that
e ∈ seg(pa).tags, which is contradictory. Qed.

Case pa ∈ [papg, sizepage [Let tags = rm_page(seg(pa).tags, vapg). The same rea-
soning as for the previous case leads to e ∈ tags.
From Definition 5.5.3:

seg1(pa) = 〈seg(pa).byte, add_page(tags, vapg, pa, r)〉

as add_page only adds tags, e ∈ seg1(pa).tags, which is contradictory with our
case. Qed.

Case e /∈ seg ′(pa).tags ∧ e ∈ seg1(pa).tags . As e /∈ seg ′(pa).tags, from the specification
of tags (Lemma 5.2.1) it means that pa is not mapped by ve with rights re in the current

108 Chapter 5. Abstract Model of the Hypervisor

page table of guest i in the new mem′:

pt(mem′, spt)(ve) 6= 〈pa, re〉 (6)

Case ve ∈ [vapg, vapg + sizepage [. From Lemma 4.3.1,

∃off < sizepage , ve = vapg + off , pt(mem′, baseSPT)(ve) = (papg + off , r)

From (6), we obtain that papg + off 6= pa or r 6= re (7).

Case pa /∈ [papg, sizepage [We know that seg1.tags = rm_page(seg(a).tags, va).
From Definition 5.5.1:

rm_page(seg(a).tags, vapg) = seg(a).tags\{tag|tag.va ∈ [vapg, vapg+page_size]}

As ve ∈ [vapg, vapg + sizepage], 〈ve, re〉 /∈ seg1(a).tags. Qed.

Case pa ∈ [papg, sizepage [Let tags = rm_page(seg(pa).tags, vapg) The same rea-
soning as for the previous case leads to e /∈ tags.
From Definition 5.5.3:

seg1(pa).tags = add_page(tags, vapg, pa, r)

Let off 1 < sizepage such that papg + off 1 = pa, from Definition 5.5.2:

add_page(tags, vapg, pa, r) = tags ∪ (va+ off 1, r)

From (7), we deduce that (va+off 1, r) 6= (ve, re). Therefore (ve, re) /∈ seg1(pa).tags.
Qed.

Case ve /∈ [vapg, vapg + sizepage [. From Lemma 4.3.1, we know that the mappings
from ve are equivalents in the initial and the new memory. Thus (6) implies that

pt(mem, spt)(ve) 6= 〈pa, re〉

Therefore e /∈ seg(pa).tags, from Lemma 5.2.1.

Case pa /∈ [papg, sizepage [We know from Definition 5.5.1 that

seg1.tags = rm_page(seg(a).tags, vapg)

Yet rm_page(seg(a).tags, vapg) only removes tags, so e /∈ seg(pa).tags implies
e /∈ seg1(pa).tags, which contradicts our case. Qed.

Case pa ∈ [papg, sizepage [Let tags = rm_page(seg(pa).tags, vapg). The same rea-
soning as for the previous case leads to e /∈ tags.
From Definition 5.5.3:

seg1(pa).tags = add_page(tags, vapg, pa, r)

From Definition 5.5.2, let off < sizepage such that papg + off = pa

add_page(tags, vapg, pa, r) = tags ∪ (va+ off , r)

5.5. Refinement 109

As e /∈ tags and e ∈ add_page(tags, vapg, pa, r), ve = va + off . Yet va + off ∈
[vapg, vapg + sizepage [, which contradicts the case. Qed.

Unmap

The abstract unmap, noted unmap#, removes the tags containing an address located in
the same page as va from all the segments’ cells. It has the following type

unmap# : (σG ×Addr)→ σG

Similarly to the map# function, our specification of unmap# only makes sens for virtual
addresses aligned to the size of a page.

Similarly as for map# we define the projection of unmap#on each component of the
system. Formally, ∀st# ∈ St#, ∀vapg ∈ Addr :

unmap#(σG, vapg) =

st#.regs

unmap#
priv (st#.priv, vapg)

unmap#
send (st#.send, vapg)

unmap#
rcv (st#.rcv, vapg)

We specify below the function unmap# on the private segment. Again, unmap does
not modify registers, therefore the commutation for registers does not present any diffi-
culties.

Definition 5.5.4 (Unmap Priv). ∀seg ∈ Seg , vapg ∈ Addrpg , a ∈ Addr ,

unmap#
priv (seg , vapg)(a) = If seg(a) ∈ None

Then return none
Else Let b = seg(a).byte

tags = rm_page(seg(a).tags, va)
return 〈b, tags〉

We have proved in Section 4.3.2, that under some requirements of well-formedness on
the concrete state (invariant properties), the concrete unmap function respects the Lem-
mas 4.3.3 and 4.3.4. We use it to prove the lemma of commutation of unmap for the private
segment, which we state below.

Lemma 5.5.3 (Commutation of Unmap - Private Segment). If we unmap vapg in a concrete
state, then the view of the private segment of this state is equal to unmapping vapg in the
view of the initial concrete state:

Let st ∈ St such that wf (st),
i ∈ Idx ,
vapg ∈ Addrpg such that vapg /∈ σHYP.vcpus(i).frange,
st ′ ∈ St ,
seg ∈ Seg ,

If st ′ = unmap(st , i, vapg)
seg = viewpriv (st .σHW.mem, st .σHYP.vcpus, i)

Then viewpriv (st ′.σHW.mem, perm, st ′.σHYP.vcpus, i) = unmap#
priv (seg , vapg)

110 Chapter 5. Abstract Model of the Hypervisor

Proof. For clarity we introduce the following notations:

seg1 = unmap#
priv (seg , vapg)

seg ′ = viewpriv (st ′.σHW.mem, st ′.σHYP.vcpus, i)
mem = σHW.mem
mem′ = σ′HW.mem
vcpus = st .σHYP.vcpus, also equal to st ′.σ′HYP.vcpus, by definition

Assume that seg ′ 6= seg1. Then there exists a physical address pa ∈ Addr such that
seg ′(pa) 6= seg1(pa), we denote byH this hypothesis.

Case pa /∈ perm.priv(i) . By Definition 5.2.4, seg(pa) = Oob and seg ′(pa) = Oob. From
Definition 5.5.4, seg(pa) = Oob implies that seg1(pa) = Oob.
Thus seg ′(pa) = seg1(pa), which contradictsH, Qed.

Case pa ∈ perm.priv(i) . By Definition 5.2.4:

seg ′(pa) = 〈mem′(pa), tags(mem ′, vcpus, i, pa)〉 (1)
seg(pa) = 〈mem(pa), tags(mem, vcpus, i, pa)〉 (2)

As seg(pa) ∈ Cell , from Definition 5.5.4:

seg1(pa) = 〈seg(pa).byte, rm_page(seg(pa).tags, va)〉 (3)

Yet from Lemma 4.3.4, we know that mem(pa) = mem′(pa), i.e. that:

seg ′(pa).byte = seg1(pa).byte

As seg ′(pa) 6= seg1(pa) (H), we have seg ′(pa).tags 6= seg1(pa).tags.

As the two sets are not equals, there exist an element e which is in the first set but not
in the second, or reciprocally. We introduce the virtual address ve ∈ Addr and the right
re ∈ Rights , such that e = 〈ve, re〉.

Case e ∈ seg ′(pa).tags ∧ e /∈ seg1(pa).tags . We know by (1) that:

seg ′(pa).tags = tags(mem ′, vcpus, i, pa)

From Lemma 5.2.1, it means that:

seg ′(pa).tags = {〈va, r〉|pt(mem′, spt)(va) = 〈pa, r〉}

Therefore, as 〈ve, re〉 ∈ seg ′(pa).tags:

pt(mem′, spt)(ve) = 〈pa, re〉 (4)

Case ve ∈ [vapg, vapg + page_size[. Then from Lemma 4.3.3:

pt(mem′, spt)(ve) = fault

Which contradicts (4). Qed.

5.5. Refinement 111

Case ve /∈ [vapg, vapg + page_size[. Then from Lemma 4.3.3:

pt(mem′, spt)(va) = 〈a, r〉 ⇔ pt(mem, spt)(va) = 〈a, r〉

As we know from (2) that seg(pa).tags = tags(mem, vcpus, i, pa), we deduce from
the Lemma 5.2.1 of the tags, that:

seg(pa).tags = {〈va, r〉 | pt(mem, spt)(va) = 〈pa, r〉}

In particular it means that:

〈ve, re〉 ∈ seg(pa).tags (5)

We know from (3) that seg1.tags = rm_page(seg(pa).tags, vapg). From Defini-
tion 5.5.1, we know that:

rm_page(seg(a).tags, vapg) = seg(pa).tags\{tag | tag.va ∈ [vapg, vapg + sizepage]}

As ve /∈ [vapg, vapg + sizepage]:

〈ve, re〉 ∈ seg(pa).tags⇔ 〈ve, re〉 ∈ seg1(pa).tags

Yet we are in the case where e /∈ seg1(pa).tags and we know from (5) that e ∈
seg(pa).tags, which is contradictory. Qed.

Case e /∈ seg ′(pa).tags ∧ e ∈ seg1(pa).tags . As e /∈ seg ′(pa).tags, from Lemma 5.2.1, it
means that pa is not mapped by ve with rights re in the current page table of guest i in
the new mem′:

pt(mem′, spt)(ve) 6= 〈pa, re〉(6)

Case ve ∈ [vapg, vapg + page_size[. We know that seg1.tags = rm_page(seg(pa).tags, va).
From Definition 5.5.1:

rm_page(seg(pa).tags, vapg) = seg(pa).tags\{tag|tag.va ∈ [vapg, vapg + sizepage]}

As ve ∈ [vapg, vapg + sizepage], 〈ve, re〉 /∈ seg1(pa).tags. Qed.

Case ve /∈ [vapg, vapg + sizepage [. From Lemma 4.3.3, we know that the mappings
from ve are equivalents in the initial and the new memory. Thus (6) implies that
pt(mem, spt)(ve) 6= 〈pa, re〉. Therefore e /∈ seg(pa).tags, from Lemma 5.2.1.
From Definition 5.5.1, we know that

seg1.tags = rm_page(seg(pa).tags, vapg)

Yet rm_page(seg(pa).tags, vapg) only removes tags, so e /∈ seg(pa).tags implies e /∈
seg1(pa).tags, which contradicts our case. Qed.

Unmap All

We proceed the same way as we did fo unmap and map. We present the definition for the
abstract unmap_all on private segment.

112 Chapter 5. Abstract Model of the Hypervisor

Definition 5.5.5 (Unmap All Priv). ∀seg ∈ Seg , vapg ∈ Addrpg , a ∈ Addr ,

unmap#
priv (seg , vapg)(a) = If seg(a) ∈ None

Then return none
Else Let b = seg(a).byte

tags = {}
return 〈b, tags〉

This function is the most simple of the three presented, and its proof is also simpler.
Indeed, Lemma 4.3.5 about the effects of the concrete unmap_all does not depend on the
address considered: there is no more user mapping in the SPT. Given the Definition 5.2.4
of the private segment abstraction, the link between the concrete unmap, and this ab-
stract unmap, where there is no more tags, is straightforward. Furthermore, although
Lemma 4.3.5 is more difficult to prove than the map and unmap counterparts, the com-
mutation is a lot easier.

5.6 Impact of Optimizations on the Abstract Model

As illustrated by Figure 5.1, there are three components defining memory abstraction: the
static permissions which define the domain of each segment, the user regions of memory
which define the byte value in each memory cell, and the SPTs which define the tag mask
of each segment.

In this section, we list three optimizations and generalizations and review their impact
on the abstract model. This section aims at showing that our work is not limited to our
particular hypervisor, but could be reused for hypervisors slightly different.

5.6.1 Several SPTs per Guest

When the guest switches of GPT, i.e. when it attempts to modify its pointer to GPT, it
traps to the hypervisor, which emulate this operation by changing the current SPTs. As
the hypervisor has only one slot per guest for holding the SPT, when the guest wants to
switch to another SPT, the hypervisor has to flush the current SPT.

An optimization that we have not included in our model is the handling of several
SPT slots per guest. This way, the hypervisor does not need to flush the SPT on every
switch, it just uses another slot.

From the abstract model perspective, flushing the SPT means removing all the tags of
the mask. If we have several SPT though, we must maintain in the abstract model several
masks per guest. In this case, it is more convenient to separate completely the masks from
the segments. Which means defining the segment as a function from addresses to bytes,
and defining a mask as being a function from addresses to tags.

5.6.2 Allocator

We have described an allocator of pages of the pool, which is used in the map operation
to allocate new second level PTs, and in the unmap_all to deallocate second level PTs. In
the map operation, if there are no more free pages available in the allocator, the operation
just fails. This could be optimized by returning a page to the pool when no more pages
are available. In terms of observable behavior, it means that the map operation, besides
adding some mappings, would also remove some mappings. Therefore, we would need
to add information in the abstract domain in order to decide which mappings to remove.

5.6. Impact of Optimizations on the Abstract Model 113

Depending on the algorithm used to choose the page to evict, this modification may
be important. Especially if the algorithm is purely based on the address of the pool phys-
ical pages, because it is related to PT structure, which we have totally abstracted. On
the contrary, if the algorithm is based on the age of the allocated page (e.g. removing the
oldest allocated page), we can easily keep track of this information in our model.

5.6.3 Dynamic Configuration

The two previous issues had an impact on SPTs, i.e. on the abstract model’s tags. In this
part we discuss the modification on the static configuration, i.e. on the domain of abstract
segments.

Our abstraction rely on permissions defined by the hypervisor. In our case, these per-
missions are static, but in some other context, we may need permissions to be dynamic.
For instance, a static configuration does not allow to launch new guests at runtime.

Rendering the global configuration dynamic would not modify the abstract state, but
only add some transitions which would for example change some None cells to real cells
and vice versa.

If no permissions are defined, i.e. if the hypervisor allocates pages for guests, without
following a global configuration, it is more difficult to design an abstract model which
makes sense. For example, suppose we have two guests which do not need to share
memory. The hypervisor makes sure that the SPTs of the two guests do not map the same
addresses. In this case we can derive the permissions from the mappings presents in the
SPTs, and present an abstract model where each guest has its own private segments.

In the case where guests can share some parts of the memory, we can still derive
the permissions from the mappings presents in the SPTs, and simulate the system by an
abstract system where addresses presents in several SPTs are in shared regions. However,
the property of isolation as we have stated it cannot be proved in the general case, because
a guest could map virtual addresses in the private region of another guest, meaning that
the secret resource of a guest would be modified while the guest is not running. Therefore
in case of sharing, the abstraction must be linked to some kind of policy which allows to
define what should be shared or not.

Therefore, our model with static permissions is not that simplistic, and can be ex-
tended to a dynamic model without modifying too much the abstract model.

5.7 Key Points

• We have presented our abstract transition system, and the abstraction function.

• The abstract state is designed in a way such that some properties intrinsically
hold.

• The transitions are deterministic.

• We have proved isolation on our abstract system.

• We have proved that the concrete system refines our abstract system, i.e. that
the isolation is verified at concrete level.

115

Chapter 6

Benchmarks and Measurements

Contents
6.1 Benchmarks . 115

6.2 Proofs . 116

6.2.1 Example: Proof of Unmap Commutation 117

6.2.2 Quantification of the Proof Effort 118

6.2.3 Hints to Time Spent on Proofs . 121

6.3 Proof Maintenance . 121

6.4 Conclusion . 121

In this small chapter, we show benchmarks about the hypervisor we have studied,
and we quantify our proof effort.

6.1 Benchmarks

The hypervisor that we have studied in this thesis was developed by the team Security in
Telecommunications (SecT) at Technische Universität Berlin [Sec; Nor+15; Vet+15]. The
code of the hypervisor is about 6000 sloc.

The benchmarks that we present below were performed by SecT. Note that the bench-
marks are performed on a more recent version of the hypervisor than the one we worked
on. Indeed, we had to consider a stable version in order to design our models and per-
form our proofs, and we did not take into account the optimizations made after March
2014. However there is no major change in the design, in particular, our low-level mod-
eling of the SPT management is still valid for this new version.

The LMBench are low-level benchmarks developed for Linux, which compute the
execution time of some common low-level operations, such as the time of memory copy-
/read/write, the cost of a page fault, the data movement through pipes and so on [Lmb].
Several benchmarks from LMbench were performed on a virtualized Linux v4.2 running
alone on the hypervisor. We present the results in Table 6.1, and compute the overhead
compared to a native execution of Linux. The simple syscall (resp. read, write) corre-
sponds to the LMBench lat_syscall with flag null (resp. read and write). Page
fault corresponds to the LMBench lat_pagefault. The Shadow Page Fault is not from
LMBench, it computes the time to solve a genuine page fault, i.e. the following sequence:
after a first page fault, the hypervisor injects the fault to the guest, which adds a mapping
in its GPT, then the execution faults again, and the hypervisor adds a mapping in the
SPT.

In Table 6.2, we compare the overhead incurred by SecT hypervisor to the overheads
incurred by Prosper and L4Linux presented in [Nem+15]. Note that the benchmarks

116 Chapter 6. Benchmarks and Measurements

Benchmark Native Ours Overhead
Simple Syscall 0.2568 2.9847 1062%
Simple Read 0.6722 4.4269 559%
Simple Write 0.6008 4.031 571%
Page Fault 1.5259 8.7215 472%
Shadow Page Fault 35.038 177.24 406%

TABLE 6.1: Low-Level Benchmarks

of SecT were performed on a Linux v4.2 whereas those of Prosper and L4Linux were
performed on a Linux v2.6.34.

As can be seen, the hypervisor we study have better results than L4Linux, but Prosper
is three times faster. It can be explained by two facts. Firstly, our hypervisor is still in the
process of being optimized. Secondly, the use of SPT makes every access to memory
slower, because a page fault from the guest triggers two page faults. SPTs are indeed not
the fastest solution. Recall from Section 1.1.3 that the three ways of virtualizing memory
are:

• Direct paging.

• Hardware virtualization extensions.

• SPT.

Direct paging and SPTs are the two software solutions. Direct paging implies more
modification to the guest than SPTs, because the guest must cooperate with the hypervi-
sor to modify its PTs. The SPTs solution is therefore more portable.

The hardware solution is the fastest solution. However virtualization extension are not
available on all the platforms. For example, the cortex A9, which is one of ARM’s most
widely deployed and mature applications processors, does not provide virtualization
extensions. Furthermore, the hardware is not proved. The behavior of the processor
is largely documented, but the implementation is not open, and we have no guarantees
that the behavior is indeed conform to the specifications. From a security point of view,
the less we can rely on the unproved hardware, the better.

Benchmark Ours Prosper L4Linux
Simple Syscall 1062% 342% 2955%
Simple Read 559% 155% 836%
Simple Write 571% 181% 874%

TABLE 6.2: Overhead Comparison

Synthetic benchmarks measure raw hardware performance. This kind of benchmarks
was not performed on this hypervisor, because hypervisors do not have much impact on
it [Nor+15].

6.2 Proofs

We measure the length and the difficulty of the proofs with hints. A hint corresponds to
an interaction with the prover. After each interaction with the prover, the prover runs a

6.2. Proofs 117

decision procedure to try to finish the proof. A hint is similar to applying a tactic followed
by auto in Coq.

For example, unfolding a definition, composing with a lemma, applying a ’for all’ state-
ment to a particular element are hints. However, writing a comment in the proof and
cleaning the goal (i.e. removing duplicated information) are also hints. They indeed cor-
respond to interactions with the prover. Therefore, similarly to counting the number of
line of code in some program or the number of lines of proofs in some proof assistants,
counting hints is not a perfect metric but it gives a good idea of the difficulty of the proof.
Especially for comparing one proof to another.

6.2.1 Example: Proof of Unmap Commutation

To give a more precise idea of the meaning of hints, we consider the proof of Lemma 5.5.3,
and compare its pen-and-paper version to the mechanized version. Figure 6.1 show the
beginning of the mechanized proof, where one case is hidden, and Figure 6.2 show the
rest of the proof, from this case. We have written below a sketch of the pen-and-paper
proof of Lemma 5.5.3, where we just show the cases and list the arguments that we have
used. For each argument, we have indicated in square brackets the corresponding step in
the mechanized proof.

We notice a first difference between the mechanized and pen-and-paper version, as
the 6 first steps of Figure 6.1 do not appear in the pen-and-paper proof. This is only
because in the mechanized version, we have stated the lemma using some wrappers,
that we have to unfold. Then the case a overflow was not described in the pen-and-
paper proof because we have not presented the reasoning about arithmetic, to simplify
the presentation. The case which is showed in Figure 6.1 corresponds almost perfectly to
the pen-and-paper case pa /∈ perm.priv(i).

The other case, showed in Figure 6.2, corresponds the pen-and-paper case
pa ∈ perm.priv(i). For readability, we have not presented the case e /∈ seg ′(pa).tags ∧ e ∈
seg1(pa).tags (e /∈ tags0 ∧ e ∈ ytags).

As could be expected, the mechanized proof presents more steps than the mathemati-
cal proof, for several reasons. Firstly, in the mechanized proof we need to destruct explic-
itly a structure to link it to its fields. Also, we have more wrappers around view functions
in the mechanized version, in order to factorize code and proofs. These wrappers then
need to be unfolded. Finally, given the way we have written our lemmas, the mechanized
proof sometimes lacks factorization. For example, in the pen-and-paper proof, we have a
case ve /∈ [vapg, vapg+page_size[, in which we deduce that ve is mapped in the new mem-
ory iff it is mapped in the old memory. It corresponds to two cases in the mechanized
proof (notin:), one case where ve is mapped in the two memories, one case where it is
not mapped in the two memories.

Case pa /∈ perm.priv(i) . [¬pa_in_priv_region(vcpu_idx, pa)]
Definition 5.2.4 of private segment abstraction. [Compose priv_segment_view_spec]
Definition 5.5.4 of unmap private segment. [Compose unmap_page_priv_proj]

Case pa ∈ perm.priv(i) . [pa_in_priv_region(vcpu_idx, pa)]
Definition 5.2.4 of private segment abstraction. [Compose priv_segment_view_spec]
Definition 5.5.4 of unmap private segment. [Compose unmap_page_priv_proj]
Lemma 4.3.4, stating that memory byte values are unchanged [b10 = b1]
Deduce fromH that tags are not equals [ytags 6= tags0]
Specification of two sets are not equals [Compose inequal_sets]

118 Chapter 6. Benchmarks and Measurements

FIGURE 6.1: Commutation of Unmap - Case pa /∈ perm.priv

Case e ∈ seg ′(pa).tags ∧ e /∈ seg1(pa).tags . [e ∈ tags0 ∧ e /∈ ytags]

Case ve ∈ [vapg, vapg + page_size[. [in : [va, va+ sizepage []

Lemma 4.3.3 about unmap effects [Compose vtlbpg_unmap_after_rw]
[Compose vtlbpg_unmap_after_ro]

Case ve /∈ [vapg, vapg + page_size[. [in : [va, va+ sizepage []

Lemma 4.3.3 about unmap effects [Compose vtlbpg_unmap_after_rw]
[Compose vtlbpg_unmap_after_ro]

Lemma 5.2.1 about tags specification [Applying forall view_tag_spec]
Definition 5.5.1 of remove tags [Compose remove_vas_tags_spec]

[Applying forall page_not_in_tags]

Case e /∈ seg ′(pa).tags ∧ e ∈ seg1(pa).tags . [e /∈ tags0 ∧ e ∈ ytags]
...

6.2.2 Quantification of the Proof Effort

We list the hints for the main properties of the system.

Preservation of Invariants Table 6.3 show hints corresponding to the preservation of
the invariants described in Chapter 4. For each operation, we also present the hints
needed for proving the effects of the operation (Section 4.3). The proof of preservation of
unmap and of its effects is short compared to the map and unmap_all counterparts. It can
be explained because the unmap operation does not modify the SPT structure, i.e. it does
not allocate or deallocate second level PT.

Commutation Table 6.4 references the hints of the commutation proofs. In Section 5.5,
we have stated and showed the commutation for the guest transition and memory oper-
ations, for the private segment of one guest. These hints correspond to the commutation
of the whole abstract state, i.e. the commutation over each operation for the private, shared
segments and registers of each guest.

We have not described the commutation of the inject_abt operation and the page fault
wrapper in this document, because it corresponds to fastidious but not very interest-
ing proofs. Basically, when a page fault occurs in the guest, it corresponds either to an

6.2. Proofs 119

FIGURE 6.2: Commutation of Unmap - Case pa ∈ perm.priv

120 Chapter 6. Benchmarks and Measurements

Property Hints
Preservation over map 3150
Map effets 1400
Preservation over GuestTrans 180
GuestTrans effets 260
Preservation over unmap 260
Unmap effets 200
Preservation over unmap all 2300
Unmap all effets 930

TABLE 6.3: Preservation of Invariants

Property Hints
Commutation of map 1500
Commutation of inject_abt 300
Page Fault wrapper 600
Commutation of GuestTrans 550
Definition of GuestTrans (Section 5.3.2) 1300
Commutation of unmap 600
Commutation of unmap all 320

TABLE 6.4: Commutation Proofs

authentic page fault (InjectFault transition) or a shadow page fault (PageFaultWithMMU
transition). The wrapper extends the proof of commutation of the operation to the whole
transition.

Security Properties The hints for security properties are showed in Table 6.5. As can be
seen, these proofs are small. This is due to the methodology used. The abstract state is
indeed very close to the specifications. Therefore we prove isolation on a system which
provides isolation by design, which is straightforward. The difficult part of the proof
resides in the preservation and the commutation proofs.

Miscellaneous We have also proved various properties such as:

• Properties on PTs and translation of the virtual space, described in Section 4.1,
which make 1650 hints.

• Properties on structures of the abstract level, 2100 hints.

• Properties about abstraction functions, 2100 hints (not counting the abstract guest
transition definition).

Property Hints
Integrity 250
Confidentiality 400

TABLE 6.5: Security properties

6.3. Proof Maintenance 121

6.2.3 Hints to Time Spent on Proofs

The number of hints does not provides a precise idea of the time spent on a proof. Some
proofs might be short but difficult to handle, because they require a good knowledge of
the base of lemmas already proved. Other proofs are just a long and fastidious sequence
of unfolds. We try to factorize hints, by writing sub lemmas, that can be used in several
proofs. This process tend to reduce the number of hints, and the difficulty of a proof, but
requires time, to think about the architecture and write the sub lemmas needed.

6.3 Proof Maintenance

Our proof is composed of several stages:

1. The proof of preservation of invariants over transitions of the concrete model (Sec-
tions 4.1 and 4.2).

2. The proof of the specifications of the effects of the transitions (Section 4.3).

3. The proof of commutation between concrete and abstract transitions (Section 5.5).

4. The proof of security properties on the abstract model (Section 5.4).

Stage 2 depends on stage 1, stage 3 depends on stage 2, and stage 4 depends on the
abstract system. Therefore, small modifications on the concrete state are absorbed by the
upper stages. For example, a modification in the concrete state which does not modify
the effects of a transition will not affect the stage 3. The proof by abstraction method
helps rendering the proof more robust.

For the same reason, using sub lemmas helps limiting the impact on the proofs of a
change on the model.

Furthermore, we made extensive use of a feature in Prove & Run prover which helps
adapting a broken proof. If the lemma is modified (add a condition, change the arity of
a predicate, change the definition of a predicate etc...), the tool will try to adapt the old
proof to the new lemma. It is possible to interact with the tool in order to modify or add
some steps during the adaptation, to help the tool to find the proof. This feature was an
immense help for the maintenance of the proof.

6.4 Conclusion

The performances measured by the benchmarks of the hypervisor show that the object of
our study is not a toy hypervisor. It allows to run several OSes with good performances.

Our proof effort is of about 16000 hints, i.e. interactions with the prover. We have
given the number of hints for some proofs that we have described in mathematical for-
malism in this manuscript, so that the reader can have an idea of the meaning of a hint.
Furthermore, the modeling of the two levels presented in Chapters 3 and 5, and the de-
sign of the proof architecture, that we have presented in Chapters 4 and 5, represents an
important part of the proof effort that we cannot measure with hints.

123

Conclusion

Formal proof allows a software developer to ensure with a high level of trust that a pro-
gram meets its specifications. In this thesis, we have formally proved that the memory
management of a hypervisor ensures isolation between guests memory and registers. It
represents the first proof of isolation of a Shadow Page Table (SPT) algorithm. Further-
more, the methodology that we have used enhance the confidence in the formally proved
properties and is more resilient to changes.

6.5 Summary

Our property of isolation was proved by abstraction. The particularity of our approach
is that there is a huge step between the abstract and concrete models. We argued in
Section 2.5 that this technique allows us to increase both the confidence in the meaning
of our properties and in the fact that our model corresponds to the implementation.

The PTs are maintained by the hypervisor to manage access to memory. As we have
explained in Section 4.1.2, the management of the PT is error-prone. Furthermore, it
complicates any operation which tries to access or modify memory, because it requires
to translate addresses before accessing their content. In our abstract model, described in
Chapter 5, we do not have a notion of PT anymore. It makes the model more readable
and the properties easier to express.

On the other hand, our concrete model, defined in Chapter 3, is close to the imple-
mentation. We clearly define our hypotheses on the hardware, and the transitions of the
system. Contrary to the abstract model, the concrete model is highly dependent on the
hypervisor considered, but we believe that our precise description would allow one to
reuse this model as a basis for similar hypervisors.

We have discussed in Section 5.6 the impact of modifications on the concrete model
on the design of the abstract model. We claim that our method makes our proofs more
resilient to changes because as long as a change in the concrete model does not have
impact on the effects of a transition (lemmas presented in Section 4.3), the impacts in the
commutation proofs are minor (see proofs of commutation in Section 5.5).

A central part of our work is presented in Chapter 4. In this chapter, we define all
the invariants of the concrete model, and how they depend on each other. The proof of
the effects of the guest transition and memory operations, and therefore the commutation
proofs, rely on these invariants.

6.6 Contributions

We have compared our methodology to those used in the Prosper and seL4 projects in
Section 2.4.3. We recall briefly how we compare to these two projects.

In the Prosper hypervisor, Nemati et al. use the direct paging mechanism, not SPTs
[Nem+15]. In the direct paging mechanism, the guest manages its own GPT. The hyper-
visor checks that the GPT verifies some properties before allowing the MMU to use it.

124 Conclusion

Therefore, all the invariants we have about the well-formedness of SPTs are not invari-
ants of the GPTs in their model, but properties of the GPTs that the hypervisor checks
before using them. Their abstraction stays close to the concrete model, they abstract the
PTs of the hypervisor but keep the PT of the guest.

The seL4 kernel has not much in common with the hypervisor that we consider. First
seL4 is not a hypervisor, so it does not manage SPTs. Furthermore, as we underlined
in Section 2.2.1, the access right management is based on capabilities, whereas ours is
not. We build our abstract model differently. In seL4, the notion of memory disappears
in their highest levels of abstraction, their description is generic and thus very abstract.
Our abstract model is merely a high level description of our concrete model, we have
several abstract machines, in which the concept of registers and memory is still present,
but highly simplified.

The particularity of our approach is that we have a concrete model very close to the C
code, in which we uses low-level data structures, and an abstract system in which all the
complex data structures have been abstracted.

The first advantage of such a method, as we have underlined in Section 2.5, is that it
allows us to have a high level of assurance that the system enforces the stated properties.
Indeed, the simple design of the abstract model allows us to state simple, easy to under-
stand properties. Therefore we have few chances to state a property that does not have
the intended meaning. Furthermore, our concrete model is close to implementation, it
means that we can be confident that our concrete model corresponds to the implementa-
tion. It also means that we broaden the attack surface, for example, we have represented
PTs as low-level structures located in memory, thus considering all the possible isolation
breaches dues to a bad management of their structure in memory.

The second advantage of such a method is the robustness of the proof. As we have
explained in Section 6.3, our proof architecture consists of four layers: the preservation
of invariants on the concrete system, the specification of the effects of the concrete tran-
sitions, the refinement and the proof of security properties on the abstract state. Some
changes in one layer can be confined to the next layer, without affecting the other upper
layers. In particular, it means that changes in the concrete level algorithms which do not
change the observable effects of a transition do not impact the proof of commutation and
the proofs on the abstract model. This advantage is important, because the lack of robust-
ness of proof is an obstacle to the use of formal methods for large systems in industry, as
it makes the maintenance of the system costly and difficult.

Finally, in this manuscript we review in detail our models and methodology. We
believe that this could be of great help for someone trying to start a proof of such a sys-
tem. Among others, we provide a precise model of the ARMv7 processor, we present
our invariants and show how they interact with each other. We show how we build our
abstraction on top of a concrete state which verify all the invariants. In particular, we try
to give the intuition about how to build such an abstract model. All in all, we explained
all the architecture of the proof. During the development, we have first proved the com-
mutation for the map operation, then we have applied the same method to the unmap,
unmap_all and inject_abt operations and to the guest transition. We conclude that the
proofs were easier to conduct once we had the architecture of the proof in mind.

6.7 Perspectives

Proofs From this work, several directions are possible. First of all, we could continue
this work by verifying that the invariants hold after the initialization phase. Mainly,

6.7. Perspectives 125

after initialization, we need to verify that the HPTs are located in the hypervisor space,
and that they map all the user and pool regions. We also need to verify that the SPTs
are empty except for the forbidden range, which maps the exception handler and SPT
regions correctly.

The virtualization of devices is done with PTs, just as memory virtualization is. We
have not included the devices in our model. Extending the model would represent a
small extension, as it uses the PTs mechanism already in place.

DMA allows a device to access the memory directly, bypassing the CPU and therefore
the PTs. A device using DMA can therefore access any part of the memory and break
isolation. The I/O MMU component (or SMMU) allows the hypervisor to control the
access of devices to memory through PTs. With such extensions, it is possible to extend
our model to DMA-aware devices, and to reuse most of our work on PTs.

Access to devices is linked to the management of IRQs, because devices may trigger
hardware interrupt, which must be virtualized by the hypervisor for the guests. Through-
out our modeling work, we realized that the management of IRQs, more precisely the
virtualization of IRQs, was also a complex part of the hypervisor. Therefore, verifying
the IRQ management part of the hypervisor would be an interesting and relevant future
direction.

Concurrency The hypervisor we consider in this work runs on a uni-processor. Our
proofs cannot be directly transposed to multiprocessor systems because we work with a
sequential model of execution which is not valid anymore in the context of concurrency.
Indeed, when several tasks can be executed simultaneously, there exist many possibilities
for the atomic operations to be interleaved. The way the operations are interleaved may
lead to different execution scenarios. When it comes to reasoning, one must be able to
capture in the model all the possible execution scenarios. As more and more systems run
on multiprocessors, studying how our model could be adapted to reason about concur-
rency would be a good way forward.

Application to a larger scope of systems One of the issue of formal proof is its lack of
robustness against software modifications. As we have explained, the proof by abstrac-
tion helps solving this issue because the changes are absorbed by the several layers of
proof. We could also combine this method with the use of tools which make the modifi-
cation process easier. For example, the analysis presented in [AJL16] makes it possible to
precisely delimit the fields of a structure which are modified by a transition. With such a
tool, the impact of code modification on proofs can be reduced, thus making it possible
to consider having a more mutable base of code.

Even if the methodology is robust regarding modifications, it is not good enough to
consider making a full proof of a very large system, such as a general purpose OS, that
change continuously. This methodology is preferred for systems which are unlikely to
be modified very often. For a large system likely to be modified a lot, it is more realistic
to consider isolating some stable critical parts of the system, and proving them. Indeed,
when we change something in the concrete model, we must show that it is still conform to
the specifications. This step can be costly if it has to be performed repeatedly. A solution
to make proof by abstraction an acceptable solution for very large systems is to lower
the cost of the link between the abstract and the concrete models. It can be done, for
example, by establishing only a semi formal link between the two models (e.g. a pen and
paper proof), or even by having just a semi formal concrete model (e.g. a diagram in a

126 Conclusion

defined semantic). The trust in the security properties would be significantly lowered,
but combined with full proof of some critical parts, it could be an interesting option.

127

Glossary

CC Common Criteria. 14

CPSR Current Program Status Register. 40–42, 44

DMA Direct Memory Access. 39, 125

GIC Generic Interrupt Controller. 42, 47

GPT Guest Page Table. 7, 8, 43, 51, 52, 54, 65, 66, 112, 115

GVA Guest Virtual Address. 7, 8, 43, 45

HPT Hypervisor Page Table. 7, 38, 60–62, 65, 66, 73, 76, 125

HVA Hypervisor Virtual Address. 7, 8

IPA Intermediate Physical Address. 7, 8, 45, 50

MMU Memory Management Unit. 6–8, 21, 36, 41, 42, 45, 50, 64, 81

OS Operating System. 3–9, 11, 17–19, 21

PA Physical Address. 7, 8

PL0 Privileged Level 0. 40

PL1 Privileged Level 1. 40

PT Page Table. 6–8, 12, 13, 20, 21, 25, 29, 31, 33–37, 39, 41, 45, 46, 51, 52, 57, 59, 64, 123

RO Read Only. 37, 38

RW Read/Write. 37, 38, 86

SPSR Application Program Status Register. 44

SPT Shadow Page Table. 8, 20–22, 28, 29, 42, 43, 45, 50–52, 57, 59, 61, 62, 66, 69, 71, 73–75,
78, 80, 84, 88, 98, 112, 115, 125

TCB Trusted Computing Base. 4

TLB Translation Lookaside Buffer. 8, 42, 51

129

Bibliography

[Acs] ANSI/ISO C Specification Language. https://frama-c.com/acsl.html.

[ADAD14] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Sys-
tems: Three Easy Pieces. 0.80. Arpaci-Dusseau Books, 2014.

[Afl] American Fuzzy Loop. http://lcamtuf.coredump.cx/afl/.

[AJL16] Oana Fabiana Andreescu, Thomas Jensen, and Stéphane Lescuyer. “Cor-
relating Structured Inputs and Outputs in Functional Specifications”. In:
Software Engineering and Formal Methods: 14th International Conference, SEFM
2016, Held as Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings.
Ed. by Rocco De Nicola and Eva Kühn. Cham: Springer International Pub-
lishing, 2016, pp. 85–103. ISBN: 978-3-319-41591-8. DOI: 10.1007/978-3-
319-41591-8_7. URL: http://dx.doi.org/10.1007/978-3-319-
41591-8_7.

[Alk+10] Eyad Alkassar et al. “Automated Verification of a Small Hypervisor”. In:
Verified Software: Theories, Tools, Experiments (VSTTE 2010). Vol. 6217. Lecture
Notes in Computer Science. Edinburgh, UK: Springer, Aug. 2010, pp. 40–54.

[Alk+12] E. Alkassar et al. “Verification of TLB Virtualization Implemented in C”.
In: 4th International Conference on Verifed Software: Theories, Tools, and Exper-
iments, VSTTE’12. Lecture Notes in Computer Science. Philadelphia, USA:
Springer-Verlag, 2012. URL: http://www-wjp.cs.uni-saarland.de/
publikationen/ACKP12.pdf.

[Alm+11] José Bacelar Almeida et al. Rigorous Software Development - An Introduction to
Program Verification. Undergraduate Topics in Computer Science. Springer,
2011, pp. I–XII, 1–263. ISBN: 978-0-85729-018-2.

[Alt] Alt-Ergo by OCamlPro. https://alt-ergo.ocamlpro.com/.

[And13] Sarah J. Andrabi. Verification of XMHF HPT Protection Setup. Tech. rep. Uni-
versity of North Carolina, 2013. URL: http://cs.unc.edu/~sandrabi/
Project_work/VerificationofXMHFHPTProtectionSetup.pdf.

[Arm] ARM Processor Architecture. 2016. URL: http://www.arm.com/products
/processors/instruction-set-architectures/.

[Bar+12] G. Barthe et al. “Cache-Leakage Resilient OS Isolation in an Idealized Model
of Virtualization”. In: Computer Security Foundations Symposium (CSF), 2012
IEEE 25th. 2012, pp. 186–197.

[Bau+11] Christoph Baumann et al. “Proving Memory Separation in a Microkernel
by Code Level Verification”. In: 1st International Workshop on Architectures
and Applications for Mixed-Criticality Systems (AMICS 2011). Ed. by Wilfried
Steiner and Roman Obermaisser. To appear. Newport Beach, CA, USA: IEEE
Computer Society, Mar. 2011. URL: http://www-wjp.cs.uni-saarlan
d.de/publikationen/Baumann-AMICS2011.pdf.

https://doi.org/10.1007/978-3-319-41591-8_7
https://doi.org/10.1007/978-3-319-41591-8_7
http://dx.doi.org/10.1007/978-3-319-41591-8_7
http://dx.doi.org/10.1007/978-3-319-41591-8_7
http://www-wjp.cs.uni-saarland.de/publikationen/ACKP12.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/ACKP12.pdf
https://alt-ergo.ocamlpro.com/
http://cs.unc.edu/~sandrabi/Project_work/VerificationofXMHFHPTProtectionSetup.pdf
http://cs.unc.edu/~sandrabi/Project_work/VerificationofXMHFHPTProtectionSetup.pdf
http://www.arm.com/products/processors/instruction-set-architectures/
http://www.arm.com/products/processors/instruction-set-architectures/
http://www-wjp.cs.uni-saarland.de/publikationen/Baumann-AMICS2011.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/Baumann-AMICS2011.pdf

130 BIBLIOGRAPHY

[BB09] Christoph Baumann and Thorsten Bormer. “Verifying the PikeOS Microker-
nel: First Results in the Verisoft XT Avionics Project”. In: Doctoral Symposium
on Systems Software Verification (DS SSV 2009). Ed. by Ralf Huuck, Gerwin
Klein, and Bastian Schlich. Aachener Informatik Berichte AIB-2009-14. De-
partment of Computer Science, RWTH Aachen, June 2009, pp. 20–22. URL:
http://aib.informatik.rwth-aachen.de/2009/2009-14.pdf.

[Bev89] W. R. Bevier. “Kit: A Study in Operating System Verification”. In: IEEE Trans.
Softw. Eng. 15.11 (1989), pp. 1382–1396. ISSN: 0098-5589. DOI: 10.1109/32.
41331. URL: http://dx.doi.org/10.1109/32.41331.

[BJS16] Pauline Bolignano, Thomas Jensen, and Vincent Siles. “Modeling and Ab-
straction of Memory Management in a Hypervisor”. In: Fundamental Ap-
proaches to Software Engineering - 19th International Conference, FASE 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings.
2016, pp. 214–230. DOI: 10.1007/978-3-662-49665-7_13. URL: http:
//dx.doi.org/10.1007/978-3-662-49665-7_13.

[Bla+15] Allan Blanchard et al. “A Case Study on Formal Verification of the Anaxagoros
Hypervisor Paging System with Frama-C”. In: Formal Methods for Industrial
Critical Systems - 20th International Workshop, FMICS 2015, Oslo, Norway, June
22-23, 2015 Proceedings. 2015, pp. 15–30. URL: http://dx.doi.org/10.
1007/978-3-319-19458-5_2.

[Bru+11] David Brumley et al. “BAP: A Binary Analysis Platform”. In: Proceedings
of the 23rd International Conference on Computer Aided Verification. CAV’11.
Snowbird, UT: Springer-Verlag, 2011, pp. 463–469. ISBN: 978-3-642-22109-5.
URL: http://dl.acm.org/citation.cfm?id=2032305.2032342.

[Cbm] Bounded Model Checker for C and C++ programs. http://www.cprover.
org/cbmc/.

[Cc] Common Criteria Portal. http://www.commoncriteriaportal.org/.

[Chi07] David Chisnall. The Definitive Guide to the Xen Hypervisor. First. Upper Sad-
dle River, NJ, USA: Prentice Hall Press, 2007. ISBN: 9780132349710.

[Coh+09] Ernie Cohen et al. “VCC: A Practical System for Verifying Concurrent C”. In:
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009. Vol. 5674. Lecture Notes in Computer Science. Springer, 2009, pp. 23–
42. ISBN: 978-3-642-03358-2. URL: http://research.microsoft.com/
apps/pubs/default.aspx?id=117859.

[Coq] The Coq proof assistant reference manual, version 8.2. August 2009.

[Dam+13] Mads Dam et al. “Formal verification of information flow security for a sim-
ple arm-based separation kernel”. In: 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’13, Berlin, Germany, November 4-8,
2013. 2013, pp. 223–234. DOI: 10.1145/2508859.2516702. URL: http:
//doi.acm.org/10.1145/2508859.2516702.

[DBK14a] Matthias Daum, Nelson Billing, and Gerwin Klein. “Concerned with the un-
privileged: user programs in kernel refinement”. In: Formal Aspects of Com-
puting 26.6 (2014), pp. 1205–1229. ISSN: 1433-299X. DOI: 10.1007/s00165-
014-0296-9. URL: http://dx.doi.org/10.1007/s00165-014-
0296-9.

http://aib.informatik.rwth-aachen.de/2009/2009-14.pdf
https://doi.org/10.1109/32.41331
https://doi.org/10.1109/32.41331
http://dx.doi.org/10.1109/32.41331
https://doi.org/10.1007/978-3-662-49665-7_13
http://dx.doi.org/10.1007/978-3-662-49665-7_13
http://dx.doi.org/10.1007/978-3-662-49665-7_13
http://dx.doi.org/10.1007/978-3-319-19458-5_2
http://dx.doi.org/10.1007/978-3-319-19458-5_2
http://dl.acm.org/citation.cfm?id=2032305.2032342
 http://www.cprover.org/cbmc/
 http://www.cprover.org/cbmc/
http://www.commoncriteriaportal.org/
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
https://doi.org/10.1145/2508859.2516702
http://doi.acm.org/10.1145/2508859.2516702
http://doi.acm.org/10.1145/2508859.2516702
https://doi.org/10.1007/s00165-014-0296-9
https://doi.org/10.1007/s00165-014-0296-9
http://dx.doi.org/10.1007/s00165-014-0296-9
http://dx.doi.org/10.1007/s00165-014-0296-9

BIBLIOGRAPHY 131

[DBK14b] Matthias Daum, Nelson Billing, and Gerwin Klein. “Concerned with the
unprivileged: user programs in kernel refinement”. In: Formal Asp. Com-
put. 26.6 (2014), pp. 1205–1229. URL: http://dx.doi.org/10.1007/
s00165-014-0296-9.

[DGN13] Mads Dam, Roberto Guanciale, and Hamed Nemati. “Machine Code Veri-
fication of a Tiny ARM Hypervisor”. In: Proceedings of the 3rd International
Workshop on Trustworthy Embedded Devices. TrustED ’13. Berlin, Germany:
ACM, 2013, pp. 3–12. ISBN: 978-1-4503-2486-1. DOI: 10.1145/2517300.
2517302. URL: http://doi.acm.org/10.1145/2517300.2517302.

[DN10] Christoffer Dall and Jason Nieh. “KVM for ARM”. In: 2010 Ottawa Linux
Symposium, July 2013. 2010, pp. 45–56. URL: http://www.cs.columbia.
edu/~cdall/pubs/ols2010-paper.pdf.

[Do1] SOFTWARE CONSIDERATIONS IN AIRBORNE SYSTEMS AND EQUIP-
MENT CERTIFICATION. URL: http://sesam.smart- lab.se/IG_
Prgsak/Publikat/ED12B_DO178B.pdf.

[Dut14] Bruno Dutertre. “Yices 2.2”. In: Computer-Aided Verification (CAV’2014). Ed.
by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, 2014, pp. 737–744.

[Esx] VMware ESXi. 2016. URL: https://www.vmware.com/fr/products/
esxi-and-esx/overview.

[Eve] Home of Event-B and the Rodin Platform. http://www.event-b.org/contact.html.

[FN79] Richard J. Feiertag and Peter G. Neumann. “The foundations of a prov-
ably secure operating system (PSOS)”. In: IN PROCEEDINGS OF THE NA-
TIONAL COMPUTER CONFERENCE. AFIPS Press, 1979, pp. 329–334.

[HT05] M. Hohmuth and H. Tews. “The VFiasco approach for a verified operating
system”. In: Proceedings of the 2nd ECOOP Workshop on Programming Lan-
guages and Operating Systems. 2005.

[Iom] AMD I/O Virtualization Technology (IOMMU) Specification. 2015. URL: http:
//support.amd.com/TechDocs/48882_IOMMU.pdf.

[Isa] Isabelle. https://isabelle.in.tum.de/.

[Jac12] Stephen Jacklin. Certification of Safety-Critical Software Under DO-178C and
DO-278A. 2012. URL: https://ti.arc.nasa.gov/publications/
5357/download/.

[Kle+09] Gerwin Klein et al. “seL4: formal verification of an OS kernel”. In: Proceed-
ings of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11-14, 2009. 2009, pp. 207–220. DOI:
10.1145/1629575.1629596. URL: http://doi.acm.org/10.1145/
1629575.1629596.

[Kle09] Gerwin Klein. “Operating System Verification — An Overview”. In: Sādhanā
34.1 (2009), pp. 27–69.

[Kov13] Mikhail Kovalev. “TLB virtualization in the context of hypervisor verifica-
tion”. eng. PhD thesis. Postfach 151141, 66041 Saarbrücken: Universität des
Saarlandes, 2013. URL: http://scidok.sulb.uni- saarland.de/
volltexte/2013/5215.

http://dx.doi.org/10.1007/s00165-014-0296-9
http://dx.doi.org/10.1007/s00165-014-0296-9
https://doi.org/10.1145/2517300.2517302
https://doi.org/10.1145/2517300.2517302
http://doi.acm.org/10.1145/2517300.2517302
http://www.cs.columbia.edu/~cdall/pubs/ols2010-paper.pdf
http://www.cs.columbia.edu/~cdall/pubs/ols2010-paper.pdf
http://sesam.smart-lab.se/IG_Prgsak/Publikat/ED12B_DO178B.pdf
http://sesam.smart-lab.se/IG_Prgsak/Publikat/ED12B_DO178B.pdf
https://www.vmware.com/fr/products/esxi-and-esx/overview
https://www.vmware.com/fr/products/esxi-and-esx/overview
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
https://isabelle.in.tum.de/
https://ti.arc.nasa.gov/publications/5357/download/
https://ti.arc.nasa.gov/publications/5357/download/
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://scidok.sulb.uni-saarland.de/volltexte/2013/5215
http://scidok.sulb.uni-saarland.de/volltexte/2013/5215

132 BIBLIOGRAPHY

[KSD13] Narges Khakpour, Oliver Schwarz, and Mads Dam. “Machine Assisted Proof
of ARMv7 Instruction Level Isolation Properties”. In: Certified Programs and
Proofs: Third International Conference, CPP 2013, Melbourne, VIC, Australia, De-
cember 11-13, 2013, Proceedings. Ed. by Georges Gonthier and Michael Nor-
rish. Cham: Springer International Publishing, 2013, pp. 276–291. ISBN: 978-
3-319-03545-1. DOI: 10.1007/978-3-319-03545-1_18. URL: http:
//dx.doi.org/10.1007/978-3-319-03545-1_18.

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional
Correctness”. In: Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning. LPAR’10. Dakar, Senegal:
Springer-Verlag, 2010, pp. 348–370. ISBN: 3-642-17510-4, 978-3-642-17510-7.
URL: http://dl.acm.org/citation.cfm?id=1939141.1939161.

[Ler09] Xavier Leroy. “A formally verified compiler back-end”. In: Journal of Au-
tomated Reasoning 43.4 (Dec. 2009), pp. 363–446. DOI: 10.1007/s10817-
009-9155-4. URL: https://hal.inria.fr/inria-00360768.

[Les15] Stéphane Lescuyer. “ProvenCore: Towards a Verified Isolation Micro-Kernel”.
In: International Workshop on MILS: Architecture and Assurance for Secure Sys-
tems. 2015. URL: http : / / mils - workshop - 2015 . euromils . eu /
downloads/hipeac_literature/04-mils15_submission_6.pdf.

[Lie95] J. Liedtke. “On Micro-kernel Construction”. In: Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles. SOSP ’95. Copper Moun-
tain, Colorado, USA: ACM, 1995, pp. 237–250. ISBN: 0-89791-715-4. DOI: 10.
1145 / 224056 . 224075. URL: http : / / doi . acm . org / 10 . 1145 /
224056.224075.

[Lmb] LMbench. http://www.bitmover.com/lmbench/.

[LS09] Dirk Leinenbach and Thomas Santen. “Verifying the Microsoft Hyper-V Hy-
pervisor with VCC”. In: FM 2009: Formal Methods: Second World Congress,
Eindhoven, The Netherlands, November 2-6, 2009. Proceedings. Ed. by Ana Cav-
alcanti and Dennis R. Dams. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 806–809. ISBN: 978-3-642-05089-3. DOI: 10.1007/978-3-642-
05089-3_51. URL: http://dx.doi.org/10.1007/978-3-642-
05089-3_51.

[LV95] N. Lynch and F. Vaandrager. “Forward and Backward Simulations”. In: In-
formation and Computation 121.2 (1995), pp. 214 –233. ISSN: 0890-5401. DOI: h
ttp://dx.doi.org/10.1006/inco.1995.1134. URL: http://www.
sciencedirect.com/science/article/pii/S0890540185711340.

[MN11] Roberto Mijat and Andy Nightingale. Virtualization is Coming to a Platform
Near You. 2011. URL: https://www.arm.com/files/pdf/System-
MMU-Whitepaper-v8.0.pdf.

[Mos+09] Michal Moskal et al. A Practical Verification Methodology for Concurrent Pro-
grams. Tech. rep. 2009. URL: https://www.microsoft.com/en-us/res
earch/publication/a-practical-verification-methodology-
for-concurrent-programs/.

https://doi.org/10.1007/978-3-319-03545-1_18
http://dx.doi.org/10.1007/978-3-319-03545-1_18
http://dx.doi.org/10.1007/978-3-319-03545-1_18
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://hal.inria.fr/inria-00360768
http://mils-workshop-2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
http://mils-workshop-2015.euromils.eu/downloads/hipeac_literature/04-mils15_submission_6.pdf
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/224056.224075
http://doi.acm.org/10.1145/224056.224075
http://doi.acm.org/10.1145/224056.224075
http://www.bitmover.com/lmbench/
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
http://dx.doi.org/10.1007/978-3-642-05089-3_51
http://dx.doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/http://dx.doi.org/10.1006/inco.1995.1134
https://doi.org/http://dx.doi.org/10.1006/inco.1995.1134
http://www.sciencedirect.com/science/article/pii/S0890540185711340
http://www.sciencedirect.com/science/article/pii/S0890540185711340
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
https://www.microsoft.com/en-us/research/publication/a-practical-verification-methodology-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/a-practical-verification-methodology-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/a-practical-verification-methodology-for-concurrent-programs/

BIBLIOGRAPHY 133

[Mur+12] Toby C. Murray et al. “Noninterference for Operating System Kernels”. In:
Certified Programs and Proofs - Second International Conference, CPP 2012, Ky-
oto, Japan, December 13-15, 2012. Proceedings. 2012, pp. 126–142. DOI: 10.
1007/978-3-642-35308-6_12. URL: http://dx.doi.org/10.
1007/978-3-642-35308-6_12.

[Mur+13] Toby C. Murray et al. “seL4: From General Purpose to a Proof of Informa-
tion Flow Enforcement”. In: 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013. 2013, pp. 415–429. URL: http:
//dx.doi.org/10.1109/SP.2013.35.

[Nem+15] Hamed Nemati et al. “Trustworthy Memory Isolation of Linux on Embed-
ded Devices”. In: Trust and Trustworthy Computing - 8th International Confer-
ence, TRUST 2015, Heraklion, Greece, August 24-26, 2015, Proceedings. 2015,
pp. 125–142. DOI: 10.1007/978- 3- 319- 22846- 4_8. URL: http:
//dx.doi.org/10.1007/978-3-319-22846-4_8.

[NF03] P. G. Neumann and R. J. Feiertag. “PSOS revisited”. In: Computer Security Ap-
plications Conference, 2003. Proceedings. 19th Annual. 2003, pp. 208–216. DOI:
10.1109/CSAC.2003.1254326.

[NGD15] Hamed Nemati, Roberto Guanciale, and Mads Dam. “Trustworthy Virtual-
ization of the ARMv7 Memory Subsystem”. In: SOFSEM 2015: Theory and
Practice of Computer Science - 41st International Conference on Current Trends in
Theory and Practice of Computer Science, Pec pod Sněžkou, Czech Republic, Jan-
uary 24-29, 2015. Proceedings. 2015, pp. 578–589. URL: http://dx.doi.
org/10.1007/978-3-662-46078-8_48.

[Nor+15] Jan C. Nordholz et al. “XNPro: Low-Impact Hypervisor-Based Execution
Prevention on ARM”. In: Proceedings of the 5th International Workshop on Trust-
worthy Embedded Devices, TrustED 2015, Denver, Colorado, USA, October 16,
2015. 2015, pp. 55–64. DOI: 10.1145/2808414.2808415. URL: http:
//doi.acm.org/10.1145/2808414.2808415.

[Pea] Peach Fuzzer. http://www.peachfuzzer.com/.

[PG74] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Vir-
tualizable Third Generation Architectures.” In: Commun. ACM 17.7 (1974),
pp. 412–421. URL: http://dblp.uni-trier.de/db/journals/cacm/
cacm17.html#PopekG74.

[Pop+79] Gerald J. Popek et al. “UCLA Secure UNIX”. In: Managing Requirements Knowl-
edge, International Workshop on 0 (1979), p. 355. DOI: http://doi.ieeecom
putersociety.org/10.1109/AFIPS.1979.128.

[Qem] QEMU, Open Source Processor Emulator. 2016. URL: http://wiki.qemu.
org/Main_Page.

[Ric10] Raymond J. Richards. “Modeling and Security Analysis of a Commercial
Real-Time Operating System Kernel”. In: Design and Verification of Micro-
processor Systems for High-Assurance Applications. Ed. by S. David Hardin.
Boston, MA: Springer US, 2010, pp. 301–322. ISBN: 978-1-4419-1539-9. DOI:
10.1007/978-1-4419-1539-9_10. URL: http://dx.doi.org/10.
1007/978-1-4419-1539-9_10.

https://doi.org/10.1007/978-3-642-35308-6_12
https://doi.org/10.1007/978-3-642-35308-6_12
http://dx.doi.org/10.1007/978-3-642-35308-6_12
http://dx.doi.org/10.1007/978-3-642-35308-6_12
http://dx.doi.org/10.1109/SP.2013.35
http://dx.doi.org/10.1109/SP.2013.35
https://doi.org/10.1007/978-3-319-22846-4_8
http://dx.doi.org/10.1007/978-3-319-22846-4_8
http://dx.doi.org/10.1007/978-3-319-22846-4_8
https://doi.org/10.1109/CSAC.2003.1254326
http://dx.doi.org/10.1007/978-3-662-46078-8_48
http://dx.doi.org/10.1007/978-3-662-46078-8_48
https://doi.org/10.1145/2808414.2808415
http://doi.acm.org/10.1145/2808414.2808415
http://doi.acm.org/10.1145/2808414.2808415
http://dblp.uni-trier.de/db/journals/cacm/cacm17.html#PopekG74
http://dblp.uni-trier.de/db/journals/cacm/cacm17.html#PopekG74
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.128
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.128
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
https://doi.org/10.1007/978-1-4419-1539-9_10
http://dx.doi.org/10.1007/978-1-4419-1539-9_10
http://dx.doi.org/10.1007/978-1-4419-1539-9_10

134 BIBLIOGRAPHY

[Rus92] John Rushby. Noninterference, Transitivity, and Channel-Control Security Poli-
cies. Tech. rep. 1992. URL: http://www.csl.sri.com/papers/csl-
92-2/.

[Sec] Security in Telecommunication, Technische Universität Berlin. http://www.
isti.tu-berlin.de/security_in_telecommunications/.

[Sew+11] Thomas Sewell et al. “seL4 Enforces Integrity”. In: Interactive Theorem Prov-
ing - Second International Conference, ITP 2011, Berg en Dal, The Netherlands,
August 22-25, 2011. Proceedings. 2011, pp. 325–340. DOI: 10.1007/978-3-
642-22863-6_24. URL: http://dx.doi.org/10.1007/978-3-642-
22863-6_24.

[SGG12] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts. 9th. Wiley Publishing, 2012. ISBN: 978-1-118-06333-0.

[SH02] Jonathan S. Shapiro and Norman Hardy. “EROS: A Principle-Driven Oper-
ating System from the Ground Up”. In: IEEE Software 19.1 (2002), pp. 26–33.
DOI: 10.1109/52.976938. URL: http://dx.doi.org/10.1109/52.
976938.

[Smm] ARM System Memory Management Unit. 2012. URL: http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/
index.html.

[Vas+13] Amit Vasudevan et al. “Design, Implementation and Verification of an eX-
tensible and Modular Hypervisor Framework”. In: Proceedings of the 2013
IEEE Symposium on Security and Privacy. SP ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 430–444. ISBN: 978-0-7695-4977-4. DOI: 10.1109/
SP.2013.36. URL: http://dx.doi.org/10.1109/SP.2013.36.

[Vbx] Virtual Box. 2016. URL: https://www.virtualbox.org/.

[Vet+15] Julian Vetter et al. “Uncloaking Rootkits on Mobile Devices with a Hypervisor-
Based Detector”. In: Information Security and Cryptology - ICISC 2015 - 18th
International Conference, Seoul, South Korea, November 25-27, 2015, Revised Se-
lected Papers. 2015, pp. 262–277. DOI: 10.1007/978-3-319-30840-1_17.
URL: http://dx.doi.org/10.1007/978-3-319-30840-1_17.

[Vir] Understanding Full Virtualization, Paravirtualization, and Hardware Assist. 2007.
URL: https://www.vmware.com/files/pdf/VMware_paravirtual
ization.pdf.

[Why] Why3, Where Programs Meet Provers. http://why3.lri.fr/.

[WKP80] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. “Specification
and Verification of the UCLA Unix Security Kernel”. In: Commun. ACM 23.2
(1980), pp. 118–131. DOI: 10.1145/358818.358825. URL: http://doi.
acm.org/10.1145/358818.358825.

[Ws] VMware Workstation Pro. 2016. URL: https://www.vmware.com/fr/
products/workstation.

[X86] Intel R© 64 and IA-32 Architectures Software Developer Manuals. 2016. URL: ht
tp://www.arm.com/products/processors/instruction-set-
architectures/.

[Xen] Xen Project Software Overview. 2016. URL: http://wiki.xen.org/wiki/
Xen_Project_Software_Overview.

http://www.csl.sri.com/papers/csl-92-2/
http://www.csl.sri.com/papers/csl-92-2/
http://www.isti.tu-berlin.de/security_in_telecommunications/
http://www.isti.tu-berlin.de/security_in_telecommunications/
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1007/978-3-642-22863-6_24
http://dx.doi.org/10.1007/978-3-642-22863-6_24
http://dx.doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1109/52.976938
http://dx.doi.org/10.1109/52.976938
http://dx.doi.org/10.1109/52.976938
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0062b/index.html
https://doi.org/10.1109/SP.2013.36
https://doi.org/10.1109/SP.2013.36
http://dx.doi.org/10.1109/SP.2013.36
https://www.virtualbox.org/
https://doi.org/10.1007/978-3-319-30840-1_17
http://dx.doi.org/10.1007/978-3-319-30840-1_17
https://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
https://doi.org/10.1145/358818.358825
http://doi.acm.org/10.1145/358818.358825
http://doi.acm.org/10.1145/358818.358825
https://www.vmware.com/fr/products/workstation
https://www.vmware.com/fr/products/workstation
http://www.arm.com/products/processors/instruction-set-architectures/
http://www.arm.com/products/processors/instruction-set-architectures/
http://www.arm.com/products/processors/instruction-set-architectures/
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview

BIBLIOGRAPHY 135

[Z3] The Z3 Theorem Prover. http://rise4fun.com/Z3/tutorial/guide.

[Zha+16] Yongwang Zhao et al. “Reasoning About Information Flow Security of Sep-
aration Kernels with Channel-Based Communication”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems: 22nd International Confer-
ence, TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings. Ed. by Marsha Chechik and Jean-François Raskin. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 791–810. ISBN: 978-3-662-
49674-9. DOI: 10.1007/978-3-662-49674-9_50. URL: http://dx.
doi.org/10.1007/978-3-662-49674-9_50.

http://rise4fun.com/Z3/tutorial/guide
https://doi.org/10.1007/978-3-662-49674-9_50
http://dx.doi.org/10.1007/978-3-662-49674-9_50
http://dx.doi.org/10.1007/978-3-662-49674-9_50

	Remerciements
	Résumé en Francais
	Introduction
	Context
	Hypervisors
	Operating System Kernels
	Different Types of Hypervisors
	Memory Virtualization
	Memory Management in an OS
	Memory Management in a Hypervisor

	Security Properties
	Non-Interference
	Variants of Non-Interference

	Formal Methods
	Tools for Theorem Proving
	Methods for Theorem Proving
	Annotations
	Modeling and Interactive Proving

	Proof by Abstraction
	Prove & Run Tools

	Certification
	Key Points

	State of the Art
	Early System Verification Projects
	Recent OS Verification Projects
	SeL4

	Hypervisor Verification
	Prosper
	Verisoft XT

	The Methodology of Proof by Abstraction
	Commutation
	Transferring Properties to the Concrete Model
	Comparison of our Abstraction to State of the Art

	Contributions
	Overview of the Chapters
	Key Points

	Concrete Model of the Hypervisor
	Basic Types and Notations
	Modeling of the Page Tables
	Decomposition of the Function pt
	Virtual Page Table Walk
	Set of Addresses Mapped by a Page Table

	Static Structures
	Memory Layout
	Static Permissions
	Hypervisor Space

	Host Page Table

	Low-Level State of the Hypervisor
	Hardware State
	Memory
	Modes
	Application Program Status Register
	Core Registers
	Coprocessor 15
	Generic Interrupt Controller
	Caches

	Hypervisor State
	Virtual Mode
	Virtual Core and Banked Registers
	MMU Registers
	Generic Interruption Controller Registers

	Low-Level Transitions
	Guest Transition
	Save State Transition
	Hypervisor Transitions
	Memory Management Transitions
	Schedule Transition
	GIC Transitions
	Modify Registers Transitions

	Restore Transition

	Key Points

	Invariant Properties of the System
	Invariants on Page Tables
	Page Tables Well-formedness
	Translation of Hypervisor Virtual Space

	Invariants Specific to some Transitions
	Guest Transition
	Exception Handlers

	Map a Page
	Unmap a Page
	Unmap all
	Well-formed Registers
	Interdependencies

	Specifications of the Effects of some Transitions
	Map
	Unmap
	Unmap All
	Guest Transition

	Conclusion
	Key Points

	Abstract Model of the Hypervisor
	Abstract State
	Memory Cells
	Guest State
	Whole State

	Abstraction
	Registers
	Segments
	Private Segment
	Shared Segments

	Abstraction Function

	Abstract Transitions
	Oracle
	Guest Transition
	Guest Run
	Guest Synchronize
	Whole Transition

	Hypervisor Transition
	Memory Management
	Schedule
	Nop
	Registers Modification

	Restore Transition
	Abstract Transition

	Security properties
	Integrity
	Confidentiality

	Refinement
	Guest Transition
	Memory Transitions
	Map
	Unmap
	Unmap All

	Impact of Optimizations on the Abstract Model
	Several SPTs per Guest
	Allocator
	Dynamic Configuration

	Key Points

	Benchmarks and Measurements
	Benchmarks
	Proofs
	Example: Proof of Unmap Commutation
	Quantification of the Proof Effort
	Hints to Time Spent on Proofs

	Proof Maintenance
	Conclusion

	Conclusion
	Summary
	Contributions
	Perspectives

	Glossary
	Bibliography

