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Résumé en Francais

Les nombreux bugs et attaques découverts ces dernieres années montrent que la plu-
part des technologies et des services que nous utilisons (téléphone, montre, ordinateur,
voiture connectée, boites mail, applications) sont peu sécurisés. Citons par exemple
I'attaque sur les voitures connectées par laquelle une tierce personne pouvait prendre
le controle d"une voiture a distance. L'attaque des comptes Yahoo, découverte en 2016,
qui a touché plus d"un milliard d’utilisateurs. Ou encore le bug trés médiatisé Heartbleed
de OpenSSL, qui permettait & un attaquant de lire des parties de la mémoire du serveur
et du client, pouvant ainsi récupérer les clés privées de ces derniers.

Or les systemes électroniques sont utilisés par un nombre toujours plus important
d’utilisateurs. A titre d’exemple, plus de deux milliards de personnes dans le monde
possédaient un smartphone en 2016, et ce chiffre pourrait bien s’élever a six milliards
d’ici 2020. Parallélement a cela, la sensibilité des données que manipulent ces technolo-
gies, la criticité de ce qu’elles controlent, et leur omniprésence dans nos vies amplifient
grandement 'impact d'un bug. La sécurité devient donc une préoccupation majeure. On
peut alors se demander comment augmenter le niveau de sécurité d"un logiciel.

Les programmes dont les failles de sécurité peuvent s’avérer critiques sont testés de
maniere intensive. Le test est une étape incontournable du développement logiciel, il per-
met de trouver les bugs au cours du développement, et de s’assurer que, pour certaines
entrées, le programme réponde conformément a la spécification. Cependant, si le test
permet de montrer l'existence de bugs, il ne permet pas d’en prouver I'absence. En effet,
les tests ne peuvent pas couvrir tous les cas d’exécution possibles. De plus, sans méme
parler de couverture, certaines propriétés du programme sont difficilement vérifiables
par des tests. Par exemple, la notion de confidentialité est difficile a appréhender par le
test car la lecture d"une donnée n’a pas d’effet visible sur le systeme.

La preuve formelle de programme permet non seulement de considérer fous les cas
d’exécution possible, mais aussi d’exprimer des propriétés de haut niveau, comme la
confidentialité. C’est un processus long et cotiteux. Pour ces raisons, elle est encore peu
pratiquée dans l'industrie. Cependant, le cotit et les dégats que peut générer un bug
rendent l'utilisation des méthodes formelles incontournable dans certains domaines. De
plus, la maturité des outils permet maintenant de prouver formellement des systemes
larges et complexes, comme les systémes d’exploitation (SE) [Les15; Kle09].

Ce sont justement les SE qui sont au cceur de notre étude. Le SE est la premiere couche
de logiciel qui s’installe sur le matériel. C’est lui qui le parametre, et qui gere l'acceés aux
ressources. Il est important qu’il soit sécurisé, car il peut compromettre la sécurité de
tous les programmes qui tournent au-dessus de lui. Plus exactement, c’est la base de
confiance du SE que 'on doit vérifier. C’est-a-dire la plus petite base de code sur laquelle
un bug peut mettre en péril le systéme en entier au regard d'une propriété. Il convient
donc de réduire cette base de confiance afin de réduire les risques de bugs, et faciliter la
preuve. Sur les SE monolithiques, tout le systéme tourne en mode privilégié, donc tout
le systeme a acces aux ressources. Des lors, il est difficile de réduire la base de confiance.
Les SE a micro-noyau, en revanche, ne font tourner en mode privilégié uniquement le
nécessaire (le noyau correspond a la partie du SE qui tourne en mode privilégié, d’ot le
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FIGURE 1: Shadow Page Tables

nom). Il est donc possible, avec ce genre d’architecture, de réduire la base de confiance.
Ainsi ces systémes sont de meilleures cibles pour la preuve que les précédents.

Notre travail porte sur un hyperviseur a micro-noyau, a base de confiance réduite.
Un hyperviseur est un SE particulier, sur lequel plusieurs SE peuvent eux méme tourner.
L’hyperviseur virtualise donc les ressources pour les SE invités, qui eux méme les virtu-
alisent pour leur processus. Nous nous sommes intéressés a des propriétés d’isolation de
la mémoire des SE invités. L'isolation peut étre découpée en deux parties, 1'intégrité et la
confidentialité, que 1’on définit comme suit:

e L'intégrité assure que la mémoire d’un SE invité ne peut pas étre altérée par un
autre SE invité, a part lorsqu’il a expressément donné la permission de le faire.

e La confidentialité assure que la mémoire d"un SE invité ne peut étre lue par un autre
SE invité, a part lorsqu’il a expressément donné la permission de le faire.

L’acces a la mémoire est virtualisée par le SE par le biais des tables de pages. Le SE
maintient des tables de traduction, qui traduisent des adresses virtuelles en adresses
physiques. Plus exactement, elles traduisent des pages d’adresses virtuelles vers des pages
d’adresses physiques pour des questions de performance, d’ot1 le nom table de pages. Le
SE indique au matériel quelle table de pages utiliser pour effectuer la traduction. Un
processus manipule des adresses virtuelles, qui sont traduites a son insu par le matériel
en adresses physiques, en utilisant la table indiquée: la mémoire est virtualisée. Si une
adresse physique n’est pas référencée par une adresse virtuelle dans la table de pages,
elle n’est pas accessible. C’est donc bien le SE qui gére 1’accés a la mémoire physique.

L’hyperviseur ajoute encore une couche de virtualisation. Nous présentons la solution
de virtualisation par Shadow Page Tables, qui est utilisée dans I'hyperviseur sur lequel
nous travaillons. Comme le montre la Figure 1, le SE invité gere des tables de pages
pour virtualiser la mémoire de ses processus (Guest Page Tables, GPT). L'hyperviseur
gere lui méme des tables de pages pour virtualiser la mémoire de ses invités (Host Page
Tables, HPT). Lorsque un invité tourne, il manipule des adresses virtuelles qui, pour étre
traduites en adresses physiques, devraient étres traduites successivement par les tables
de pages de l'invité puis par celles de ’hyperviseur. Or, sur certaines architectures, nous
ne pouvons indiquer au matériel qu'une seule et unique table de pages pour la traduction
d’adresses. L'hyperviseur crée donc, pour chaque invité, une table de pages qui combine
les tables de pages de l'invité et les siennes, que 1’on appelle les Shadow Page Tables
(SPT).

Notre étude s’intéresse principalement a la vérification de 1’algorithme de SPT : nous
vérifions qu’il assure bien I'isolation de la mémoire des invités. Nous utilisons pour cela
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une méthode de raffinement (ou abstraction). Le principe d'une telle méthode est de mon-
trer que notre systéme concret correspond a un modele abstrait, idéalisé, pour pouvoir
prouver les propriétés de haut niveau sur ce modeéle abstrait. Pourvu que 1’abstraction
respecte certaines contraintes, les propriétés prouvées au niveau abstrait sont valables au
niveau concret. L'intérét d"une telle méthode est qu’elle permet d’exprimer les propriétés
dans un formalisme de haut niveau, et de raisonner sur un modele plus simple. En effet,
dans un modele de code concret, beaucoup d’opérations et de structures sont complexi-
fiées pour des questions d’optimisation et de conformité avec le matériel, c’est le cas par
exemple des tables de pages. Sur un modeéle si complexe, il devient difficile de prouver
des propriétés telles que l'isolation, ou méme seulement de les exprimer. En fait, la clarté
avec laquelle est formulée la propriété est une composante importante de la confiance: si
la propriété est elle méme trop complexe pour pouvoir étre comprise facilement, alors il
existe un risque que cette propriété n’aie pas le sens voulu.

Notre contribution est double. La premiere est la preuve, a un niveau de confiance
élevé, que l'algorithme de gestion de la mémoire assure l'isolation des SE invités. Nous
expliquons le concept de haut niveau de confiance a la Section 2.5, il tient en partie au
fait que notre niveau abstrait est tres épuré, la notion de table de pages y a en effet été
totalement abstraite.

Notre seconde contribution est méthodologique. Dans la littérature, il existe de nom-
breux livres sur les meilleurs pratiques de développement logiciel. Ils sont le résultat de
plusieurs années de retour d’expérience, de la part des académiques et des industriels.
La preuve formelle de logiciel n’est pas aussi répandue que le développement logiciel ou
le test, et ce particulierement dans I'industrie. Dans cette these, nous présentons précisé-
ment notre méthodologie. Nous montrons, entre autres, les propriétés du modele concret
et I'interdépendance de leur preuve ainsi que la maniere de concevoir le modele abstrait.

Le Chapitre 1 présente le contexte et les principales notions qui permettent de com-
prendre notre travail et sa portée. En particulier, nous revenons sur les concepts
d’hyperviseur, de sécurité et de preuve formelle. De plus, nous présentons succinctement
le langage et 1’assistant de preuve développé par Prove & Run, que nous utilisons pour
nos modélisations et preuves.

Dans le Chapitre 2, nous faisons un état de 1’art de la preuve formelle d’hyperviseurs
et de SE. Nous expliquons plus en détails le principe de preuve par abstraction, et com-
parons notre application de cette méthodologie par rapport a celle faite dans d’autres
projets.

Nous détaillons le modele concret de I'hyperviseur ainsi que toutes les transitions du
systeme dans le Chapitre 3. De plus, nous présentons notre modélisation des tables de
pages.

Nous présentons les invariants de notre systeme dans le Chapitre 4. Les invariants
sont des propriétés valables dans tous les états du systéeme. Nous établissons des pro-
priétés sur les transitions du systeme, et nous spécifions et prouvons les effets des tran-
sitions liées a la mémoire, et de celles effectuées par les SE invités. Nous prouvons la
préservation des invariants sur ces mémes transitions.

Ces invariants et propriétés du systéme concret sont essentiels pour prouver la corre-
spondance avec le modele abstrait, que nous présentons dans le Chapitre 5. C’est dans
ce chapitre que nous présentons également la fonction d’abstraction, les propriétés de
sécurité et leur preuve ainsi que les preuves de raffinement.






Introduction

The numerous bugs and attacks discovered over the past years show that the technologies
that we use in our daily life are not as secure as we would want them to be. We can cite the
attack against the entertainment system of a smart car, through which an attacker could
gain control of the driving system. The attack on the Yahoo accounts, discovered in 2016,
has impacted more than one billion users. Finally, the famous Heartbleed attack over
OpenSSL allowed an attacker to retrieve the private keys of client and servers, rendering
the communication insecure. The fact that technologies handle sensitive data and control
critical mechanisms, and that their use is pervasive in our lives increase the negative
impact of a bug. There is therefore a high need for security.

The first step toward security is testing. Tests indeed allow to uncover early bugs and
verify that, for a certain set of inputs, the program behave as intended. However, if tests
allow to find bugs, they cannot prove their absence. The use of formal methods, on the
contrary, allow to reason about all the possible execution paths of a program. It is usually
more costly and time consuming than testing, yet it is the only mean of ensuring that a
system is compliant with its specifications.

We are interested by operating systems (OSes). An OS is a peace of software that
runs directly on the hardware. It manages the hardware resources for the processes, and
controls the access to them. More precisely, we study a hypervisor, which is a particular
kind of OS that runs several guest OSes on top of itself. Just as an OS does for processes,
an hypervisor manages and virtualize resources for the guest OSes. It is therefore an
important target for security, as a bug in the hypervisor might compromise all the systems
running on top of it.

In this thesis, we present a formal proof that the memory management in a hypervi-
sor provides memory isolation of the guests. We proceed by abstraction, meaning that we
design an abstract model of the hypervisor and prove its correspondence with our con-
crete model. The properties of isolation are proved on the abstract model and transferred
down to the concrete model.

We present the main concepts in Chapter 1. Among others, we present the manage-
ment of memory in hypervisors, we introduce the notion of security, we give an overview
of the existing tools for formal methods and present the one we use.

In the Chapter 2, we review the state of the art of formal proofs about OSes and hyper-
visors. We explain the principle of proof by refinement, and we compare our application
of this methodology to the one done in other projects.

We detail the concrete model of the hypervisor, along with its transitions in Chapter 3.
Furthermore, we present our modeling of the PTs.

We present the invariant properties of our concrete model in Chapter 4. We also spec-
ify and prove the effects of the transitions related to the memory management and to the
guest execution, and prove the preservation of invariants over these transitions.

These properties we prove are essential for the proof of correspondence between the
concrete and abstract model, that we present in Chapter 5. We also present in this chap-
ter the abstraction function, the security properties and their proof, and the refinement
proofs.
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This thesis evolves around three concepts: hypervisors, security, and formal methods,
which we introduce in this chapter.

A hypervisor is a particular kind of Operating System (OS). An Operating System (OS)
is a layer of software that manages the resources of the hardware. All the applications
run on top of it. A hypervisor is an OS which can run other OSes on top of itself. We
introduce OSes and hypervisors in Section 1.1.

In order to build secure systems, the base of the system, that is the OS, must be secure.
Indeed, using secure applications might be worthless if the security mechanisms can be
bypassed at the OS level. This is why we are concerned with their security. Yet, what
does security means?

The term security highly depends on the system we are considering, and of its use.
For example, in a car system, one must prevent an action of the entertainment system to
modify the driving system part. One may also define which information flow are allowed
or not. For example, in modern cars, the volume of the audio is increased when the speed
goes up, in order to mask the noise of the engine, meaning that a flow from the driving
system to the entertainment system is authorized. Similarly, data provided by the GPS
are passed to the entertainment system, but it should not be leaked to a third party. We
present the main kinds of security properties in Section 1.2.

We then introduce the notion of formal methods in Section 1.3. They allow to for-
mally ensure that the design and the implementation of a system enforce the targeted
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security properties. The formal approach is the most trustworthy approach, and is re-
quired to reach the highest level of some software certifications. We will briefly develop
certification issues in Section 1.4.

1.1 Hypervisors

1.1.1 Operating System Kernels

An OS is a layer of software that interfaces directly with the hardware through a defined
set of instructions implemented by the hardware. It provides an abstraction of the hard-
ware to processes running on top of it. Consequently an OS decides which part of the
hardware resources are exposed to the processes, thus having the complete control over
the resources access. Another consequence is that the implementation of a user program
can usually be independent of the underlying platform (e.g. ARM [Arm] or Intel [X86]).
More generally, an OS virtualizes resources, i.e. it does not only abstract them but also
multiplex them. Virtualization gives processes the illusion of running alone on the OS,
whereas the resources are shared by several processes. Virtualization allows the OS to
share the resources, but it also contributes to securely isolate resources of the different
processes. We will develop the virtualization of memory in more depths in Section 1.1.3.

Kernels Hardware architectures provide at least two modes, a unprivileged mode and
a privileged mode. The code running in privileged mode has access to all the resources,
while only a restricted set of resources is available to code running in unprivileged mode.
The OS, more exactly the kernel of the OS runs in the most privileged mode. The ker-
nel of an OS is the mandatory part of the OS common to all other software. Common
OSes such as Linux, OS-X or Windows have monolithic kernels, meaning that the ker-
nel corresponds to the whole OS. It implies that all the modules such as the file system
or the device drivers run in the privileged mode. Consequently, a bug in one module
jeopardizes the whole system.

On the contrary, in a micro-kernel based OS, everything that can be put outside the
kernel is removed from the kernel [Lie95]. Micro-kernels are more modular, as depicted
in Figures 1.1. They are therefore intrinsically more robust and are particularly conve-
nient to ensure a good separation between components.

The kernel is always part of the base of code which is critical for the system security,
called the Trusted Computing Base (TCB). Since micro-kernel based OSes have smaller
kernels, they usually have a reduced TCB. Yet some components can hardly be removed
from the TCB, or even from the micro-kernel. The memory virtualization mechanism for
example controls the accesses to memory. If not trusted, the memory can be corrupted or
leaked. Similarly, the basic IPC mechanism, which manages the message passing opera-
tion between processes, should be trusted. The process manager, which decides where to
allocate new processes, is sometimes implemented outside the kernel, but performs too
sensitive operations to be put outside of the TCB [Les15]. The scheduler, which decides
which process is to be run, is considered as sensitive for some particular applications, as
it can prevent a process to run.

1.1.2 Different Types of Hypervisors

A hypervisor is a particular kind of OS that introduces an additional level of virtualiza-
tion. Hypervisors virtualize the whole hardware, so that several OSes run on the same
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FIGURE 1.1: Monolithic versus Micro-Kernel based OS

platform. This way, the resources virtualized by OSes for processes are themselves vir-
tualized by the hypervisor. We call an OS running on top of a hypervisor a guest OS, or
guest.

The hypervisor provides a virtual machine to the guests running on top of it. The
definition given by Popek and Goldberg in 1974 of a virtual machine is the following: "A
virtual machine is taken to be an efficient, isolated duplicate of the real machine" [PG74].
It is also specified in [PG74] that hypervisors should:

e Provide an environment almost identical to the original machine.
e Not affect performances too much.
e Be in complete control of system resources.

A hypervisor might run directly on the hardware, we call it bare-metal or type-1 hy-
pervisor. It is the case for Xen [Xen] or VMware ESXi [Esx]. Or a hypervisor might run
on top of an OS, as an application, in this case we call it a type-2 hypervisor. VMware
Workstation [Ws], VirtualBox [Vbx] or QEMU [Qem] are type-2 hypervisors.

A guest OS expects to run directly on the hardware, in a privileged mode. Yet when
it runs on a hypervisor, the hypervisor runs on the most privileged mode, thus limiting
the capacity of the guest. The hypervisor needs to be able to spot and virtualize all the
instructions. Usually, if the guest makes a privileged instruction, the hardware switches
to the most privileged mode, the hypervisor virtualizes the instruction and restores the
execution of the guest. However, some guest instructions are non-virtualizable. They
would just fail silently, thus preventing the hypervisor to be aware of it and virtualize
them. For instance, in ARMV7, access to privileged bits of the current program status
register (CPSR) has an undefined behavior in unprivileged mode [DIN10]. Three main
solutions exist:

Binary Translation The first solution, used by VMware since 1998, is the binary trans-
lation [Vir]. Basically, the hypervisor analyses the binary of the guest instructions and
redirect them on the fly to virtualized instructions. This solution incurs overhead. How-
ever it does not require the guest to be modified, the guest is said to be fully-virtualized. It
is thus highly compatible with any legacy OS.
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Para-virtualization The second solution is called para-virtualization (or OS assisted vir-
tualization). This solution implies that the guest is aware of virtualization. The hyper-
visor provides an interface to the guest, so that the guest can call it through hypercalls
to perform the instructions on its behalf instead of trying to access directly privileged
instructions. As the guest is modified, the compatibility might be poor, depending on
how much the OS is modified. On the other hand, modifying the guest is a chance to
optimize the calls and enhance performances. Para-virtualization has proved to be an
efficient solution [Chi07].

Hardware Assisted Solution This solution was introduced ten years ago on Intel and
AMD platforms, through virtualization extensions (Intel VT and AMD-V). It was later in-
troduced on ARM. Hardware virtualization extensions provide additional registers and
levels of privileges. The guest can run in a level of privilege higher than user level but
lower than hypervisor level. Privileged registers are duplicated so that a guest can mod-
ify registers without trapping to the hypervisor. Consequently, the hypervisor does not
need to virtualize each privileged instruction, it only has to parameterize the hardware
virtualization extensions. Hardware virtualization solution allows to run fully virtual-
ized guests, without needing to provide a binary translation. This solution is thus the
simplest and the most portable of the three solutions presented.

We work on a para-virtualized, type-1 hypervisor. In the next section we introduce
details about the Memory Management Unit (MMU). We present in more depths the
hardware assisted and para-virtualization solutions for memory virtualization.

1.1.3 Memory Virtualization

When memory is virtualized, each entity runs as if it had the whole memory for itself,
while the underlying platform shares the memory between several entities. In a classic
OS with MMU, the OS manages the translations from virtual to physical addresses. In
the case of hypervision, a level of translation is added. The hypervisor may either use a
hardware virtualization extension (if available) or implement a virtualization mechanism
in software.

Memory Management in an OS

A classical OS maintains some tables of translation from virtual to physical addresses
[SGG12, Chapter 9]. This tables are called Page Tables (PTs), basically because the mem-
ory is decomposed into pages, and memory mappings between virtual and physical ad-
dresses are done at the granularity of a page. The hardware MMU uses the PTs main-
tained by the OS in order to translate virtual addresses to physical addresses. More
specifically, the OS indicates to the hardware which PT to use through a register of the
MMU (CR3 for x86, TTBRO for ARM).

We illustrate a two levels PT in Figure 1.2. The virtual address of a page is decom-
posed into two indexes. The first is an index in the first level PT whereas the second index
is an index in the second level PT. The entry fetched in the first level PT contains the ad-
dress of a second level PT. We take the entry corresponding to the second level index in
this second level PT. This entry contains the address of a physical page, with rights asso-
ciated to it. We will explain in more details the mechanism of translation in Section 3.2.
As can be seen, many entries in the PTs are empty, because a mapping from a virtual to a
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physical page is added only when needed. For this reason the use of several levels of PTs
saves memory space.
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FIGURE 1.2: Two-Level Page Table

The OS maintains distinct PTs for each process and for itself. Each time a context
switch is performed, the OS updates the dedicated MMU register to change the PT to be
used by the MMU. The MMU ensures that if no mapping exists between a virtual and
a physical address in the current PT, then this physical address cannot be accessed. If a
process tries to access a virtual address which is not mapped in the current PT, then the
MMU triggers a page fault. The OS then handles the fault. For example it may allocate
a new physical page for the process and maps the virtual address to it in the PT, or just
crash. The use of the MMU allows the OS to have the full control over the software
accesses to the physical addresses, and thus helps ensuring isolation between processes.

Memory Management in a Hypervisor

In the case of a hypervisor, guest OSes still manage their own Guest Page Tables (GPTs).
However, GPTs do not translate Guest Virtual Addresses (GVAs) to Physical Addresses
(PAs) directly, as only the hypervisor has enough privileges to access PAs.

As depicted in figure 1.3, GPTs translate GVAs to Intermediate Physical Addresses
(IPAs) which are not physical addresses, they correspond, up to a translation, to Hyper-
visor Virtual Addresses (HVAs). It means that they are virtualized by the hypervisor:
another PT must be used to translate them into physical addresses. The Hypervisor Page
Tables (HPTs) handle this second translation, from HVAs into PAs.

Hardware Assisted Solution With the hardware virtualization extensions [Smm], the
MMU takes two PT pointers. Therefore the guest OS can specify which GPT it uses while
the hypervisor specifies which HPT it uses. The MMU then handles the whole translation
from GVA to PA. The virtualization being offloaded to the hardware, this solution is the
most simple to implement and presents the highest performances.
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FIGURE 1.3: Shadow Page Tables

Para-virtualization: Shadow Page Tables The most common software solution is the
one based on Shadow Page Tables (SPTs). SPTs are maintained by the hypervisor and
translate the virtual addresses of the guest (GVA) to physical addresses (PA), as illustrated
in Figure 1.3. For clarity’s sake, we here consider that the IPA and HVA depicted in
the Figure 1.3 are equal and refer to them as IPA. The hypervisor creates and manages
the mappings of the SPT by combining the PTs of the guest (GPT) and the PTs of the
hypervisor (HPT). For example when a page fault occurs at GVA gva, the hypervisor is
notified. It goes through the GPTs to find out if any mapping from gva to a IPA ipa is
present in the GPTs. If there is one, it computes the physical address pa corresponding
to ipa and, provided the guest is allowed to access this part of the memory, it adds the
mapping from gva to pa in the SPTs. If the gva is not present in the GPTs, a page fault
is triggered by the MMU. The way of handling the page fault depends on the hypervisor
considered. It can for example inject the page fault into the guest, so that the guest can
add the mapping to the GPTs. Then the execution faults again on gva, because it is not
yet in the SPTs, and it brings us back to the first case.

In order to keep the SPTs in synchronization with the GPTs of the guest, the hyper-
visor traps and emulates the Translation Lookaside Buffer (TLB) instructions performed
by the guest. The TLB is a hardware cache that stores the most used address transla-
tions [ADAD14, Chapter 19]. It speeds up the translation because the hardware does
not need to walk the PTs each time. When an OS modifies its PTs, it needs to keep the
TLB in synchronization with the PTs. Basically the OS can invalidate a single entry or all
the entries of the TLB. The SPT algorithm of a hypervisor intercepts these TLB instruc-
tions and emulate them, by removing one or several mappings from the SPT. That is why
shadowing the PTs is often referred to as virtualizing the TLB.

Para-virtualization: Direct Paging Another way of handling translations when using
para-virtualization is direct paging. In this case, the guest maintains direct translations
from GVAs to PAs. It means that the IPAs depicted in Figure 1.3 are equal to the PAs, thus
the hypervisor does not maintain any PT for the guest. In particular, there is no concept
of SPT. The guest has only read access to the GPTs, thus every attempt of modification
by the guest traps, so that the hypervisor retains control over the memory accesses.

This solution implies more modifications to the guests, so it is the less portable solu-
tion of the three presented. On the other hand, it simplifies the virtualization code, thus
the implementation is less prone to error than for the SPT. Xen, which is one of the most
wildly used hypervisor, uses direct paging [Chi07, Chapter 9].
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1.2 Security Properties

The security property we target is isolation of the guests, more specifically, isolation of
their memory and registers, as defined in [Les15]. Basically, we want to show that no
guest is able to read or write to some predefined secret memory parts or registers of other
guests. We do not prove functional properties on our system, for example, we do not
ensure formally that the execution is never aborted. From a security perspective, the
important point is that the security properties hold for every state of the system.
Our property of interest is a weaker version of non-interference. Indeed,

non-interference is usually too strong for kernels, as we do want guests to interfere. We
present non-interference in the next section, and weaker versions in Section 1.2.2.

1.2.1 Non-Interference

A non-interference policy defines which domain is allowed to flow information to other
domains. We note A ~~ B if a flow is authorized from domain A to domain B. Given
such a policy, the property of non-interference ensures that no other flow except the ones
specified in the policy is allowed. Formally, the non-interference has been specified with
a purge function [Rus92]. Consider an initial state of a system, and a sequence of actions
from this state. We purge the actions not related to a domain A4, i.e. we remove all the
actions that are not allowed to interfere with domain A. We compare the output of the
first sequence of actions, and the output of the purged sequence. If the two outputs are
equals, then there is no flow except the one allowed by the policy. Intuitively, it means
that A cannot learn anything about the previous sequence of actions, except from the
action whose domain has a flow to A. Instead of being stated with the whole trace of
events, non-interference can equivalently be stated with the unwinding condition, which
is a step-wise property [Rus92]. Usually this condition is used for mechanized proofs
instead of the purge version, for its convenience.

Non-interference is strong, and does not make sense for processes (resp. guests) when
they are allowed to communicate because they do interfere. Usually we consider weaker
properties derived from non-interference.

1.2.2 Variants of Non-Interference

Intransitive Non-Interference In a non-interference policy, if A ~ K and K ~ B, then
A ~» B must be authorized. As the name suggests, intransitive non-interference is not
transitive. It means that A and B are considered non-interferents as long as the flow of
information is passed through an authorized channel, in our example the channel is K.
Intuitively, in an OS, K would be a part of the kernel, and A and B two processes. This
property can also be stated with a purge function or an unwinding condition.

We will introduce later seL4 [Kle+09], a formally proved micro-kernel. Klein et al
proved a more general version of intransitive non-interference. Basically in their defini-
tion, they use a weaker unwinding condition than the one of intransitive non-interference,
and the domain of an action is not defined only by the action itself but also by some parts
of the current state.

Isolation The property that we target is isolation of the guest OSes, which is also a
weaker version of non interference [Les15]. Isolation of the guest OSes can be decom-
posed in two sub-properties: integrity and confidentiality. The integrity property for one
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guest ensures that its resources are not modified by other guests, unless it has given the
authorization to do so. The confidentiality for one guest ensures that executions of other
guests do not depend on its resources, unless it has given the authorization to do so.
Integrity is easier to state than confidentiality. Indeed the effects of an integrity flaw
are easily observable on a trace of execution: a data has been modified. Confidentiality
is not directly observable, it implies to compare two traces of executions. We express
confidentiality in a similar fashion as what is done with the purge function for non-
interference. Let g be a guest, s and ¢ two states. We write s ~ ¢ if s and ¢ are equal

g

except on the secrets of guest g. We compare two finite traces of execution from s and

t, in which ¢g does not run. Then we verify that the resulting two states s’ and ¢’ verify

s’ ~ t'. Intuitively, it means that the execution of other guests than g does not depend on
g

the secrets of g, hence the other guests do not know about g’s secrets. If a secret is shared
by several guests, then we consider a trace of execution where none of the guests sharing
the secret might have run.

The integrity property is similar to the non-exfiltration property presented by Nemati
et al. in [NGD15]. Confidentiality is similar to their non-infiltration. We detail their work
in Chapter 2.

1.3 Formal Methods

The first step to build a correct or secure program is to make tests. Tests allow to check
the functionalities of a program, and help the programmer to detect bugs at early stage of
development. However tests are not exhaustive. Among the infinity of possible execution
path of a program, only a few are actually tested. The utility of a test suite is measured
by its code coverage, i.e. the part of the code explored by the tests.

Some automated test tools, like fuzzers, allow to improve the code coverage. Fuzzers
[Afl; Pea] execute a program continuously, with different inputs each time. They instru-
ment the program and are able to chose inputs to extend the number of paths explored.
They are widely used in industry, and they are also used by attackers to find and exploit
flaws in the code.

Yet even advanced testing methods cannot cover all the possible execution paths. For-
mal methods do.

1.3.1 Tools for Theorem Proving

Formal method tools rely on mathematics to specify and verify programs. Contrarily to
testing, which proves the presence of bugs, formal methods show the absence of bugs. We
present below three types of tools, but our list is not exhaustive [Alm+11, Chapter 2].

Model Checkers Model Checkers are automated tools for verifying finite state program
[Cbm]. They generate an abstraction of the program, a model, and verify that all the
states of the model respect some specifications. The state space of the model is verified
exhaustively. Model checkers are automated tools, they require no human interaction
for proofs. However the execution time and memory consumption rise exponentially
with the number of states. The properties can only be proved on small portion of the
program, or on a reduced setup. Bounded model checkers reduce the state space by only
unwinding loops a bounded number of times.
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SMT Solvers Satisfiability Modulo Theories (SMT) solvers are able to decide whether a
first order formula is satisfiable regarding a certain theory. The level of expressiveness of
the properties is generally reduced. However these tools present the advantage of being
fully automated. Among the most famous SMT solvers, we can cite Z3 [Z3], alt-Ergo [Alt]
and Yices [Dut14].

Interactive Theorem Provers Interactive theorem prover such as Coq [Coq], Isabelle
[[sa] or Prove & Run tools, are not fully automated, but they allow to prove more ex-
pressive properties. For example, Coq and Isabelle allow to express properties of higher
order logic. Because the proofs require interaction with the user, the use of such tools is
costly and less adaptable than the previous ones. On the other hand, only this kind of
tools enables to write such expressive properties.

1.3.2 Methods for Theorem Proving

Different methods can be used to achieve formal verification of some properties on a
system. We present two kinds of methods which have proved suitable for OS verification.

Annotations

Annotations are used to prove behavioral properties of a program. Pre and post con-
ditions specified at various steps of the program generate proof obligations that are dis-
charged automatically using some SMT solvers or model checkers, or interactively using
interactive theorem provers.

Some tools, such as Dafny [Leil0], require a modeling of the program in a specific
language. The annotation are then written in this same language.

Other tools allow to write annotations directly into the C code. The ANSI/ISO C
Specification Langage (ACSL) is an annotation language for C code, part of the Frama-C
project [Acs]. The Verifier for concurrent C code VCC [Coh+09] also allows to write an-
notations directly into the C code. VCC provides means to reason about concurrency. For
example it is possible to specify by whom an element can be modified at each point of
the program, thus making it possible to reason about shared values in a concurrent envi-
ronment [Mos+09]. VCC has been used to achieve a large project of system verification,
as we will show in Section 2.3.2.

Modeling and Interactive Proving

Other tools such as Coq, Isabelle, Why3, event-B are preferred when proving properties
on the whole model [Cogq; Isa; Why; Eve]. The models along with the properties can be
written in the corresponding specification language. The proof goals are either verified
with the integrated theorem prover (this is the case for Coq or Isabelle), or verified with
external theorem provers (this is the case for Why3 and event-B). For example, Why3 is
compatible with 16 SMT solvers, and 3 interactive provers.

We use a tool developed by Prove & Run, which belongs to the second category. The
model and the properties are written in the same Specification and Modeling language,
called Smart. C code can then be generated from Smart.
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1.3.3 Proof by Abstraction

When verifying properties, one rely on low-level properties, such as the absence of over-
flows or out of boundaries accesses. These low-level properties are needed in order to
prove more elaborated ones. For example, as we will explain in more detail in Section 3.2,
a PT is composed of several tables, each entry of a table leads to another table or to a phys-
ical page with some rights associated to it. If the goal is to specify which mapping from a
virtual to a physical address is present in a PT, one would have to prove first the low-level
properties mentioned previously, so that the PT can effectively be interpreted as a partial
function from virtual to physical addresses with rights.

At some point, on large systems, it becomes difficult to focus on high-level proper-
ties without being overwhelmed by low-level details. Furthermore, high-level properties
may be difficult to express, because they lack high-level structures.

The proof by refinement (or abstraction) addresses this problem. The principle is to
build an abstract model, which uses abstract structures for which the low-level proper-
ties intrinsically hold. For example, in the work we present in this manuscript, we have
totally abstracted the structure of PT. The abstract memory of a guest is composed of
memory cells, which are tagged with some rights. These tags are what remains of PTs af-
ter abstraction. The link between the concrete and the abstract model is formally proved.
To do so we prove that if an abstract state corresponds to a concrete state, and if a tran-
sition is possible from this concrete state, then an abstract transition is possible and the
resulting abstract state corresponds to the resulting concrete state. This is also referred to
as commutation proof, and is illustrated in Figure 1.4.

The interesting result of such an approach is when the properties proved on the ab-
stract state also hold on the concrete state. This is not true for every property, we will
develop this aspect in deeper details in Section 2.4. In our case, the key argument for
preservation are that we use a function from concrete to abstract models, instead of a
relation, and that both our models are deterministic.

The proof by refinement has been successfully applied to some large projects, such as
the formally verified micro-kernel seL.4 [Kle+09], or ProvenCore, the verified OS micro-
kernel developed by Prove & Run [Les15].

1.3.4 Prove & Run Tools

We used the tool suite developed by Prove & Run to carry our modeling and proofs. We
give a short introduction to the tools.

The language is called Smart, and is used both to write the program and its specifica-
tions. It's a pure and functional language and does not support higher order functions.
Rich properties can be expressed, in particular quantifiers are supported.
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The prover is interactive, but can also discharge trivial goals automatically. The figure
1.7 shows a screenshot of the environment. We explain below the basis of the language
and the prover, on a small example.

In Smart, a predicate is given input parameters and returns output parameters, but
it can also pass information through an other kind of output, called labels. The output
parameters are recognizable by the "+" on their right. The label is a sort of exit flag, and
can take whatever value we want. Most of the time a predicate raises the labels true or
false, or only true. Exit labels are declared after parameters with the following syntax:
->[labell, label2, ...].

Figure 1.5 shows the signature of a predicate in Smart. As we will see on Section 3.2,
we work with two levels of PTs. The first level PT is merely an array of first level descrip-
tors. The predicate of Figure 1.5 gets a first level descriptor from memory. It takes as input
a memory and a physical address ppde. If the size of a first level descriptor plus the ad-
dress ppde exceeds the size of the memory, then the access is out of memory boundaries,
and the predicate raises oob. If not, the function returns the first level descriptor located
at ppde, and raises t rue.

public get_fst_level _descr_p (mem mem, addr ppde,
fst_level_descr descrl+) ~> [true, oob]

/x 1f the first level descriptor at address [pde] exceeds the

* memory boundaries, raises [>oob].

* Else raises [>true] and returns the first level descriptor

* located at physical address [ppde] in the memory [mem].

*/

program { ...some implementation... }

FIGURE 1.5: Example of the Signature of a Predicate in Smart

A lemma is a predicate which we have to prove always raises true. We show in Fig-
ure 1.6 alemma which states under which conditions the predicate just presented cannot
raise oob. The notation p => means if the predicate p raises the label true. The question
mark in front of a predicate is a label transformer, it redirects all the labels other than true
to false. The lemma in Figure 1.6 is to be read as if all the premises raise t rue then the last
predicate raises t rue.

More specifically, a first level PT is a table containing maximum NUM_DIRO_ENTRIES
entries. This lemmas states that if we have some well-formedness properties verified on
valid guests, and if the guest we consider is valid, then accessing an entry at an index
lesser than NUM_DIRO_ENTRIES in the first level PT of that guest succeeds.

The screenshot of the environment in Figure 1.7 shows that our lemma generates a
proof obligation (on the right part of the screen). Each node corresponds to a tactic we
have used: instantiate some quantifiers, compose with some lemmas, and unfold a def-
inition. A right click on a proof node shows the list of available interactive tactics. The
nodes are colored in red when the proof has not been completed, green otherwise. For
example, the green node on the bottom of the screenshot corresponds to a path of the
proof that has been completed.

As you can see in the proof view, the proofs are made to be humanly readable, in order
to ease the audit of the code. This is an important point when it comes to certification.



14 Chapter 1. Context

public lemma vtlb_d0_get_fst_level (mem mem, vcpus vcpus,
valids wvalids,vcpu_idx vcpu_idx, addr dOp, uint32 sn,
uint32 i0)
/+ There is no out of boundaries access when fetching a first level
x descriptor of a valid SPT.
*/
program
// Variables declaration
{{ vcpu_t vcpu, addr ppde }} {
// Well formedness properties on SPTs of valid guests
pool_vtlb_region(vcpus, valids) =>
spt_vv_pool_dO0(vcpus, valids) =>
// The guest considered is valid
is_valid (valids, vcpu_addr) =>
// Get the guest
? get(vcpus, vcpu_idx, vcpu+) =>
// [dOp] is the physical address of a SPT of that guest
reachable_dir0_sn(vcpu, dOp, sn) =>
// [i0] is a wvalid index
1t (i0, NUM_DIRO_ENTRIES) =>
// Get the address of the [i0]th entry in the SPT
get_pde_addr(dOp, i0, ppde+) =>
// Get the descriptor at this address
? get_fst_level _descr_p (mem, ppde, _ );

FIGURE 1.6: Example of Lemma Written in Smart

1.4 Certification

The Common Criteria (CC) is an international standard at the basis of certification [Cc].
It defines several Evaluation Assurance Levels (EALs). A high EAL level means that the
claimed security properties are enforced with a strong level of assurance. The lowest
levels of certification only require informal analysis, whereas the highest levels require
semi-formal or formal analysis. The highest level of assurance, namely EAL7 requires
formal proofs. The EALS6 level, just below, is semi-formal. It basically means that the
specifications should be structured and not ambiguous. In particular, EAL6 does not re-
quire machine-checked proofs, except for the security policy model, as we explain below.

The CC prescribes the use of several abstraction models. The highest and more ab-
stract model specifies the security policy, and must be formal for the two highest EALs
(EAL6 and EAL7). The next lower model is the functional specification of the system.
It should be semi-formal for EAL6 and formal for EAL7. Similarly, the last and lowest
model, which is the implementation design, should be specified semi-formally for EAL6
and formally for EAL7. A formal proof of correspondence between these levels is re-
quired for EAL7, whereas EAL6 requires a manual demonstration.

The DO-178 is another standard, targeted to develop avionic systems [Do1]. The crit-
ical aspect of the software is rated from E (a failure has no effects) to A (a failure is catas-
trophic). Given this level, the software development must be conducted following some
particular guidelines. For example the level E is not submitted to any constraints, the
level D must be documented, whereas the level A must be extensively tested. The most
recent version of this standard, the DO-178C, introduces the notion of formal methods
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FIGURE 1.7: Screenshot of the Proof Environment

[Jac12].

The ARINC 653 is a standard for separation kernel development for avionic appli-
cation purposes. A system compliant with this standard is supposed to be able to run
several processes with different DO-178 levels on the same platform in a safe manner. In
other words it should be able to provide a certain degree of isolation. Zhao et al. have
conducted proofs on a formalized model of the ARINC 653 standard in order to verify
the information flow security properties [Zha+16]. They have proved that the standard
presented some flaws, and have exhibited the presence of these covert channels in two
ARINC 653 compliant separation kernels.

1.5 Key Points

e An hypervisor manages and virtualizes hardware resources for the guest OSes.
The control of memory accesses is done through the management of PTs.

o We target the isolation of guests memory. The property relies on the good man-
agement of the PTs maintained by the hypervisor for the guests, called the
Shadow Page Tables.

o We use the proof by abstraction technique. We show the correspondence between
a low-level and a high-level model, where the properties holds intrinsically.

e We use Prove & Run tools to write our models, express our properties and
prove them.
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Forty years ago already, OSes were recognized as being a crucial component for se-
curity. Some early verification projects aimed at verifying properties of OSes. However
tools for formal methods were not mature enough, and did not allow to consider realistic
OSes, nor to conduct the proof in reasonable time. We outline these projects in Section 2.1.

The system verification field grew in importance in the years 2000. Several huge
projects were undertaken, namely selL4 and the Verisoft project, which achieved out-
standing results. Formal verification of OSes began to be adopted in the industry, mainly
in the avionic domain. We give an overview of OS verification in Section 2.2. A compre-
hensive state of the art on OS verification until 2009 has been presented in [Kle09].

Hypervisor verification projects started to emerge shortly afterwards. The extensive
use of hypervisors began in the early 2000. For example, Xen 1.0 was released after 2003,
and VMware launched VMware workstation in 1999. Cloud services have known a spec-
tacular success. Amazon Web Service, the leader for cloud services, whose solution is
based on Xen, declared having more than 1 million costumers in 2015. Although similar,
hypervisor and OS verification present some key differences, particularly when it comes
to memory management. We present the state of the art of hypervisors in a separate
section (Section 2.3).

Finally, in Section 2.4 we give details about the proof by abstraction methodology, that
have been used in several projects, including ours. We show how our approach converge
or diverge from the state of the art.
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2.1 Early System Verification Projects

UCLA Secure Unix The UCLA Data Secure Unix OS is a general purpose operating
system with verifiable security properties [Pop+79]. The OS was developed trying to
keep the system’s structure simple, they implemented it in Pascal, a high-level functional
language. It supports the Unix interface, thus it provides a non-trivial set of system calls.

Their design is modular, and they separate the mechanism from the policy. More
specifically, the kernel implements four abstract types: the processes, the pages, the de-
vices and the capabilities. A set of operations is available for each type. For example, a
capability might be granted or revoked. The policy then specifies which operation is al-
lowed for a particular object. The policy is managed by a special process called the policy
manager. In particular, only this process may grant a capability.

Walker et al used the proof by abstraction technique. They reported that the perfor-
mance of their OS was finally poor, and that the proofs where tedious due to the unap-
propriated tools [WKP80] at this time. Even if they only reached 20 percent of their proof
goals, their modeling and specification work allowed them to discover many flaws.

PSOS The Provably Secure Operating System is a formally specified tagged-capability
hierarchical system architecture [NFO3; FN79]. Hierarchical system architecture, or lay-
ered architecture, means that the system is built by layers, and that every layer is an
implementation of the upper layer. In the uppest layer we find user abstraction, whereas
the lowest layer contains the capabilities. In a layered architecture, a functionality is im-
plemented in a level where irrelevant details for its implementation are not visible, i.e. in
the highest level that allows to express it. Contrarily to the abstraction method, a level
is not an abstraction of another level, a functionality is usually present in only one level.
The goals of such an approach is to build a modular system, and to get rid of details
that are not needed for reasoning at some levels. In PSOS, capabilities have a unique
identifier and cannot be forged. This is enforced by the hardware: each capability has a
tag unalterable by programs, so that hardware can recognize capabilities and forbid their
modifications.

Feiertag and Neumann followed the Hierarchical Development Methodology, which
involves a clear separation of the seven stages of realization. Each layer of the kernel is
composed of one or a small number of modules. The five first stages of the methodology
concern the conceptualization, the definition of the interface of each module, the formal
specification of the modules and the formal representation of the data structure of each
layer. The sixth stage concern the abstract implementation of a layer with the data struc-
tures of a lower level. The implementation into an executable program is done in the
last stage. They wrote their specifications with the SPECification and Assertion language
called SPECIAL.

Kit Bevier et al. developed the Kernel for Isolated Tasks to study the verification of the
isolation of processes [Bev89]. Kit is small and very simple; there is no dynamic creation
of processes or allocation of objects. Processes do not share memory, and protection of
memory is not done through common virtualization technique but rather by attributing
to each process a predefined segment in memory. Yet the task isolation property was
entirely formally verified, using the Boyer-Moor theorem prover. To achieve this, they
proved strong properties such as: the termination of kernel routines, the correctness of
the address space abstraction, the isolation of the operating system from tasks, and that
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the execution of the task is never done in supervisor mode. They were the first to prove
the correct implementation of a complete OS.

2.2 Recent OS Verification Projects

At the border between early and recent verification projects, we can mention the Fiasco
and the EROS kernels. The VFiasco project aimed at verifying parts of the Fiasco kernel,
which stems from the L4 micro-kernel family [HT05]. They formalized the semantics
for a part of C++, including some behaviors that are not specified by the standards, yet
needed for their OS code.

The Extremely Reliable Operating System (EROS) is a capability based kernel de-
signed for security [SHO2]. The model has been verified (although manually), but the
refinement to implementation level has not. Its successor, the Coyotos project was sup-
posed to be verified at implementation level, and to reach the EAL7 certification. How-
ever the last publication date back from 2008.

The Integrity-178B kernel is a commercial OS for avionic purpose [Ric10]. It was de-
veloped by GreenHills and has reached an EAL6 advanced CC certification. They certifi-
cate was delivered on a previous version of the CC, which makes it difficult to compare
with the CC as presented in Section 1.4. Basically, the specification model and the func-
tional specification level of the Integrity-178B kernel are formal whereas the lowest model
is semi-formal.

Similarly, the separation kernel PikeOS was developed for avionic application pur-
poses, as part of the Verisoft XT project (see Section 2.3.2) [BB09]. They proved, on an
abstract model, that there were no interference between the partitions [Bau+11]. Both
Integrity-178B and PikeOS are ARINC 653 compliant.

Prove & Core is a microkernel like OS developed by Prove & Run [Les15]. The proof
of isolation is almost completed at the time of writting. Although we proved a similar
property on the memory, the memory management in an OS differs a lot from the mem-
ory management in a hypervisor.

In the section below, we describe the sel.4 project. This kernel uses a capability system
similar to EROS, and is from the L4 family, as is VFiasco.

2.2.1 Sel4

Sel 4 is the first microkernel whose implementation functional correctness and security
properties have been proved [Kle+09]. It constitutes a major step in the field of OS ver-
ification. The whole project took 29 person-years, among which 11 concern the proof of
functional correctness of Sel.4, and 4.1 the proof of the security properties.

The proof was conducted by abstraction. They proved the functional correctness from
the binary executable to the most abstract state. The abstract state involves high-level
structures. More models are developed on it, each one being designed for proving a
particular property. We detail them below.

The protection state is the part of the global state which is responsible for managing
the access rights. The protection state defines the authorities entities have over each other,
and how entities might modify the protection state. The protection state is not static, and
some authorities might be redundant, which render reasoning difficult. To get over these
issues, they introduced an access control policy model which abstract the protection state
into a static policy. Integrity was proved on this model [Sew+11].
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Murray et al abstracted this policy into an information-flow policy and proved con-
fidentiality on this model, which is a variant of intransitive non-interference [Mur+12;
Mur+13]. The scheduler is allowed to flow to any partition, but no partition is allowed to
flow to the scheduler. Otherwise the information flow property would be meaningless.
Proving confidentiality implied determinising the system [DBK14a] and modifying the
scheduler, it required 5 times the effort of proving integrity and authority confinement.

The properties of integrity and confidentiality differ from our properties. Their sys-
tem is more generic than ours, the selL4 kernel is indeed highly configurable, thus the
properties their proofs depend on the particular policy defined in the initial setup.

Our work is related to theirs because we used a similar approach, by successive re-
finements. However the order of magnitude of our work is not comparable to theirs. Our
kernel is much smaller than seL4, we did not prove functional correctness down to the
binary, and we only prove properties about the memory management part. In addition,
the design of the hypervisor on which we work differs significantly from seL4. For exam-
ple we do not have any notion of capabilities, whereas capabilities are at the core of seL4
access right enforcement. Finally, the SPT management is a feature of a hypervisor. Al-
though sel4 can be used as a hypervisor, by combining it with seL4-VMM, the memory
management in the VMM has not be proved to our knowledge.

2.3 Hypervisor Verification

Hypervisor verification projects are more recent, the oldest related work studied here
is from 2009. The existing projects vary a lot in the methodology used, the properties
targeted and the maturity of the project. Yet interestingly, many of them have published
about the memory management, which is considered as a critical part of the system.

The eXtensible and Modular Hypervisor Framework (XMHF) is a small open sourc